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Preface

Why do some children seem 10 learn mathematics easily and others slave away at
ii, learning it only with great effon and apparent pain? Why do some oflhe shining
lights of elementary school, high school, and even college mathematics dazzle
people al onc slage of mathematics learning and pcrfonnancc. and lhen fizzle out
ignominiously at the next stage? Why are some people good at algebra butlemble
al geometry, or vice versa? How can people who successfully run a business have
failed math earlier. and conversely, how come some professional mathematicians
can balance a checkbook only with difficuhy?Why do school children in the United
Stales perfonn so dismally on international comparisons?

These arc: the kinds of real and imponanl questions we sel OUI 10 answer, or 8t
least address, when we decided to edit Ihis book on mathematical thinking. OUf
goal was 10 seek a diversily of conlributors representing multiple points of view
whose expenise mighl converge on lIIe answers to Ihese and olher pressing and, we
believe, interesting questions regarding mathematical thinking.

This book is addressed to a varied audience: psychologists interested in the nature
of mlllhcmatical thinking and mathematical abilities, computer scientists interested
in simulating malllematical thinking, educators interested in how to teach and test
mathematical lhinking, philosophers who want 10 understand !he quantitative
aspects of logical!hinking, anthropologists and others inlerested in how and why
mathematicallhinking seems to differ in quality across cultures, and laypeople and
anyone else who has 10 think mathemillically and who wants 10 understand how he
or she is going about it. Authors were asked to wrilechaplers Ihat would be readable
10 this diverse group of potential readers, and we believe !hat, for the mosl part,
they have succeeded.

Authors were asked to focus on their own approach to mathematical thinking,
but also to address a common core of issues, such as !he nature of mathematical
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thinking, how mathemalicalthinking is similar to and different from other kinds of
thinking, what makes some people or some groups belter than others in mathemati
cal thinking, and how mathematical thinking can be assessed and taught. Therefore,
allhough the chapter authors represent adiversity of approaches and points of view,
they con\'erge in addressing a common set of issues about mathematical thinking.

Of course. we are not the first nor will we be the last to provide a book that
considers issues of mathematical thinking. What do we hope might make our book
different and even special? Some of these things we have already mentioned- tho
common core of issues, the diversity of viewpoints, the internationally recognized
expenise of the authors, and the readability of their chapters. Few books. for
example, bring together psychologists with a cognitive focus, psychologists with a
cullural focus. educators, and mathematicians all into one volume. However. we
also hope that this book will provide a depth of understanding that renders it
unparalleled among those books that deal with a concept as difficult as that of
mathematical thinking.

We have tried to produce a book that is diverse but manageable. 115 11 chapters
cover a great deal of ground. but, of course. there is ground they leave out, and
unchaned terrain that the field has yet to address. The book is divided into six parts.
roughly corresponding to psychometric, cognitive information processing, cogni
ti\·e~ultural. cognitive-educational. and mathematical (i.e.. mathematicians') ap
proaches to mathematical thinking, as well as a conclusion.

Pan I comprises a single chapter, by John B. Carroll. which takes the psychomet
ric approach to mathematical thinking. In chapter 1, ';Mathematical Abilities: Some
Results From Factor Analysis," Carroll shows how his three-stratum theory of
cognitive abilities can be applied to the understanding of mathematical thinking.
Carroll starts off by defining abilities, proceeds to describe the factor-analytic
techniques he has used to study abilities, ond then suggests abilities within the
theory that are likely to be relevant to mathematical thinking. These abilities include
general ability at the highest stratum, as well as fluid intelligence, crysta!li7.ed
intelligence, general memory ability, general visual perception, and possibly other
abilities at the second stratum. Some more specific. third-stratum abilities are
described as well.

Pan n, dealing with the cognitive information-processing approach to mathe
matical thinking, opens with chapter 2. 'The Process of Understanding Mathemati
cal Problems," by Richard E. Mayer and Mary Hegany. Mayer and Hegarty open
with a description of the nature of mathematical problem solving and of mathemat
ics problems, and then suggest critical cognitive processes involved in mathemati
cal thinking: in panicular. translating, integrating, planning. and eltecuting. Mayer
and Hegany then go on to present their theory of mathematical understanding.
according to which there are two paths to such understanding, which they refer to
as a dir~cr rranslation straugy--selecting numbers from the problem and then
preparing to perform arithmetic operations on them-and a problt!m modt!l strat·
t!gy---tr'ying to understand the situation being described in the problem nnddevising
a solution plan based on the ensuing representation of the situation. Mayer and
Hegany then derive six predictions from their theory-such as that students make
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more errors in remembering relational statements than in remembering assignment
statements-and review data testing these predictions.

In chapter 3, Talia Ben-Zeev summarizes a model of mathematical thinking.
called REASON. according to which mathematical thinking represents an altempt
on the part of the thinker rationally to solve a quantitative problem. Even when the
thinker makes errors. the errors are often rational errors. meaning that they have a
certain logic to them, even if the logic is incorrect. According to her view. the very
mechanisms that allow people to solve mathematical problems correctly are also
often responsible for the errors these people make. These errors come about when
people either overgeneralize or overspecialize partial knowledge-lhey err in their
understanding of the domain of problems to which the procedures apply. Ben-Zeev
reviews four mechanisms of mathematical thinking-inductive. analogical.
schema-based. and correlational thinking-showing how they work. and how they
can lead both to correct solutions and to rational errors.

Part III. on cognitive--cultural approaches to mathematical thinking. opens with
chapler 4. by Kevin F. Miller and David R. Paredes. Miller and Paredes show Ihal
the verbalizations of the symbols used to express mathematical concepts have an
effect on the way people think with these concepts. In other words. children in
various cultures appear to learn numerical concepts differentially depending on
how numbers are expressed verbally in their languages. On the whole. children
learn systems of numeration more easily the more regular the verbal expressions
of Ihese systems of numeration are. For example. the verbal expressions for the
numbers 11-19 (eleven, twelve, ...) are rather irregular in comparison with the
same symbols as expressed in certain other languages. causing children who learn
to count in English some difficulty.

Chapter 5. by Geoffrey B. Saxe, Venus Dawson. Randy Fall. and Sharon Howard.
is entitled "Culture and Children's Mathematical Thinki ng:' Saxe and his coauthors
are particularly interested in the interrelation ofculture and individuals' developing
mathematical understandings. They open their chapter with a brief review of
Piagetian constructivism. in which they describe the approach. and consider bolh
its contributions and its limitations. The aUlhors are particularly critical of Piagel's
failure 10 take cultural aspects of understanding into account. which leads to the
presentation of their own sociocultural approach. according 10 which people
construct mathematical understandings through a self-regulated process that is
situated in a cultural context. The aUlhors focus particularly on the emergent goals
that people sel for themselves as they learn to think mathematically. They give
specific examples across cultures of how their framework can be used to understand
such thinking.

In chapter 6. David C. Geary presents a sweeping view of"Biology. Culture. and
Cross-Nalional Differences in Mathematical Abilily." Geary's approach is notable.
as well as unusual. in combining biological and cullural considerations. Hesuggests
that abilities. including mathematical ones, can be characteri7.ed as being either
biologically primary or biologically secondary. The former kind of abilily is
species-typical and emerges in all cultures. whereas the lalter kind is culturally
specific. and Ihus biologically secondary. Biologically primary mathematical abili
ties are hypothesized 10 include numerosity. ordinality. counting. and simple
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arithmetic. Biologically secondary malhemalicaJ abilities include skills and knowl
edge laughl by parents, concepts thai children induce doing (he acr ofcounting. and
skills thaI are formally taught in school. Geary considers cross-national differences
in mathematical peJformance in terms of his Iheary. and concludes thai they are a
result of biologically secondary rather Ihan primary abilities. Moreover, in other
countries. such as Japan. mathemalicallhinking is more highly valued and children
spend much more time doing iI, leading 10 grealer success in malhematicaJ learning
and problem solving.

Pan IV, on cognitive-educational approaches to mathematical thinking, opens
with chapter 7. by Herbert Ginsburg, entitled "Toby's Math." This chapler repre
sents adclailedcase-study analysis of asingle child, Toby, a 6-year-old girl learning
and thinking about math. Ginsburg shows that mathematical thinking has a number
of properties thai go beyond mere learning achieved in a school sening. According
to Ginsburg, mathematical thinking in children is (a) in pan a relationship with an
adult; (b) in part a private activity only partly transparent 10 adults; (c) informal,
employing intuitive ideas of more and less; (d) trying to get right answers quickly
without thinking and feeling miserable about gening wrong answers: (e) a some·
what bizarre language game that first demands memorization of meaningless
material and then involves identification of patterns; (f) trying to make sense out
of materiallhat often is not very sensibly presented; (g) engaging in what, to Ihe
children, seem to be arbitrary activities with obslaclesdesigned todecc:ive and trick
them; and (h) thinking aboutone'sown lhinking and taking great pride in describing
itlo others.

In chapter 8, "Fostering Malhematical Thinking in Middle School Students:
Lessons From Research," John Bransford takes an approach thai is quite different
from that of Ginsburg. He describes work he and his colleagues have done over a
period of7 years to develop a program for teaching large numbers of middle school
children to think mathematically. The program, which uses high-tech techniques
developed at the Learning and Technology CemerofVanderbih University, teaches
children actively and reflectively 10 think mathematiCally in interesting and lively
real-world contexts ofthe kinds they are likely to encounter, sooner or later, in their
own lives. The project has gone Ihrough a number of stages, described in the
chapter. The project is ongoing, and has yielded impressive results in terms of
improving children's mathematical thinking skills.

Part V, describing mathematical approaches to understanding mathematical
thinking, shows that psychologists and mathematicians, despite the differences in
background knowledge and methodologies, have many common concc:rns as well
as conclusions. This part opens with chapter 9, by Tommy Dreyfus and 1beod0re
Eisenberg, "On Different Facets of Mathematical Thinking." The chapter is organ
ized around key issues in mathematical thinking. 1be first is aesthelics--the
mathematician'sdrive forelegancc: in their Ihinkingabout mathematics. The second
key issue is self-confidenco-to think well mathematically, people have to believe
in their own ability to succeed. The third issue is reasoning by analogy, which
involves seeing relations between different mathematical problems, some of which
may nOI appear very related on the surface:. Fourth is structure-the relationships
between facts, relationships between relationships, and other relaled issues. Fifth
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is representation, or how a problem is translated into a visual or other form that will
help solve it. Sixth is the visual reasoning that acts on representations. Seventh is
reversal of thinking, which involves working backward from the end to the
beginning-asking why something happened in the first place. or why it may occur
in the way it does. Finally, eighth is flexibility of thought-the need not to get
lockcd into any panicular and rigid way of thinking about a mathematical problem.

In chapter 10. "Structuralism and Mathematical Thinking." Charles Rickart
focuses on the role of structure in mathematical thinking. Rickan opens with a
definition of structure as a set of objects along with certain relations among those
objects. He then goes on to show how structures arc key to mathematics and to
mathematical thinking, such as its abstractness and its use of language, and also
describes how mathematical thinking differs from ordinary thinking; for example,
the lack of encouragement children often feel for learning mathemalics as opposed.
say, to leaming language. Rickart further stresses the importance of creativity as a
central element in mathematical thinking.

Pan IV, the concluding section of our book. contains just a single chapter. "What
is Mathematical ThinkingT The chapter attempts to sort out those things that we
may know and those things that we have yet fully to comprehend in our search for
understanding of the nature of mathematical thinking.

As always. a number of people have contributed to the realization of this book.
We are especially grateful to Henry Kaufman for his support in all aspects of this
project. to our editors and support staff at Lawrence Erlbaum Associates. to Benoit
Mandelbrot for the time he spent talking to one of us about his views on mathe·
matical thinking. and to our various mathematical teachers along the way who have
helped us to come to a grealer appreciation of mathematical thinking, in all its
simplicity and complexity.

Roben J. Sternberg
Tulia Ben-uev
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Mathematical Abilities:
Some Results From
Factor Analysis

John B. Carroll
Ulliversity of North Caro{i,m at Chapel HilI

The purpose of this chapler is to offer information on what the analysis of
cognitive abilities can say about the nalOfe of mathematical thinking. Mathe
matical thinking takes numerous forms, depending on the nature of the
mathematical task. Mathematical lasks differ over the various branches of
mathemalics-arithmetic, algebra. geometry. calculus. symbolic logic, topol
ogy, number theory, and so on. Even within one of these branches. however,
like arithmetic, tasks (problems) can differ in their structure and (heir diffi
culty. For cllample. some tasks posed in arithmetic are purely formal. such
as adding, subtracting, muhiplying. or dividing given numbers, whereas oth
ers are presented as "word problems." stating real-world situations in which
the respondenl must delennine how Ihe given numbers are correctly handled
to yield an answer. Presumably. the analysis of any malhemalical lask. in
any branch of mathematics. should yield some insight inlO the nature of the
mUlhematical thinking required to perform it. This chapter. however. is not
immedialely concemed wilh such analyses; doubtless they are addressed in
other chaplers of this volume.

Mathematical tasks represent only a subset of the practical infinity of
cognitive lasks that might exist or be imagined. If it is assumed Ihal the
satisfactory perfonnance of a cognitive task by an individual involves the
possession by that individual of adequale levels of the cognilive abilities re
quired in perfonning that task. a theory of cognitive abilities may help in
the idenlification of aspects of mathcmaticallhinking. Such a theory would
specify the nature of an ability and its relation to the performance of tasks.

3



• CARROl.L

and lead to the enumeration and differentiation of abilities, including those
presumably involved in the performance of mathematical tasks.

First. this chapter describes a theory ofcognitive abilities and its empirical
basis. chiefly in tems ofresults from studies employing psychological tests and
the statistical technique of factor analysis. The factors identified by Ihis
technique are conceived as being basic latent tmils or abilities that function as
determining.. at least in part. success or failure in performing cognitive tasks.

Next, the chapter summarizes evidence concerning which of these cogni
tive abilities appear 10 participate in affecting success or failure in learning
and performing various types of mathematical tasks. Possible conclusions
are drawn about the nature of mathematical thinking,

Finally, I briefly discuss various issues concerning the sources. meaning.
and relevance of cognitive abilities in mathematical performances.

THE THREE·STRATUM THEORY
OF COGNITIVE ABIUllES

The meaning of the term ability is often taken for granted, Loosely. it can
be used Ie state the capability of anything (even a nonliving object) to do
something. For the present purposes. however. it needs to be defined more
precisely, as referring to the possible I'aria/ions ol'er individuals in their thresh
old {el'els of difficulty in successflllly performing some defined class of lasks.
Suppose. for the moment. that we define the class of tasks as being mmhe
maricol, and that these tasks vary in difficulty. from the easiest (such as add
ing a pair of whole numbers) to the more difficult (such as simplifying a
complex algebraic equation. finding a derivative. or proving a theorem). Then
an individual would be characterized as having superior mathematical ability
if the individual could successfully perform all or nearly all of the tasks in
this class, Likewise. an individual would be characterized as having poor
mathematical ability if the individual were found to be able to perform only
the easiest tasks. if any at all. The exact amount of ability the individual
possesses (0) could be estimated from test data with a model that is popular
among psychometricians; that is, the three-parameter logistic item response
theory (IRT) model that is specified by the following equation:

1-,
p=c+ .

I +exp(-1.7a(O-b»

where p refers to the probability that an individual can successfully perform
a given task. a is a parameter for the slope of the function. b is a p..1fameter
for the dimcuhy of a Ulsk (or item), c is a parameter giving the probability
of successfully performing the item by chance guessing. and a is a parameter
for thc individual's threshold level of ability, The parameters band e are
scaled in terms of standard scores in an assumed distribution of ability, The
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pnrameter 1I generally takes values between about .5 and 3.0. whereas the
parameter (' generally takes values between 0 and .5 (the latter value being
that estimated a priori for two-ehoice, true-false items).

Figure 1.1 shows typical item-response curves for several patterns of pa
rameter values. Easy items. with low values of b. have response curves at
the left of the figure. while the response curves for more difficult items are
toward the right of the figure. Items with low values of a have relatively nat
response curves and are generally unreliable or imperfect measures of the
ability. whereas items with high values of a have steeper responsc curves and
yield much more reliable information on an individual's ability. Generally.
tests of an ability are designed to be composed of items with a range of
values of difficulty (in terms of the parameter b) and items that have relatively
high values of a. so that the total number-eorrect scores yield good estimates
of the true ability levels (e) of the individuals tested. For further infom13tion
on the design of tests according to item response theory (IRn, see. for ex
ample. Lord (1980) or Hambleton (1983).

Item-response theory assumes Ihat all the items ofa test are homogeneous
in the sense that they all measure the same ability or cluster of abilities.
Indeed. one of the major problems of IRT is how to determine the homo
geneity of the items. In practice, homogeneity is initially judged subjectively;

• •>

I
.L.;-__~.•",::::::",.--_-t._L"""---;-.-~-!.

•"L,n 1'1
FIG. 1.1. Item·mpon sc curves IhYJlOlhetic~11 for several p~l1em~ of y~lue:s

of parameters lI. h. ~nd c. The melric "r the baseline i~ 9. individu~l .bility.
and of the ordinate.". the probability of ~UoCCas. Parameters are; item I: II '"
I. h • .5. c '"' 0: ilem 2: " ... 2. "" O. C" .2S: ilent l:" '" I. "'" -I. C" .lD:
item 4: II ", ... h '" .5. c '" O. From CarrOll. J. 8. (19881. Individual diffen:nrcs
in rogniti\"e functioning. In R. C. Anderson. R. J. Herrnstein. G. Lindley. &
R. 0. LuCl:' l E<h.l. St,·,.....,. 1/,,,,Jfo..,oJ< "f £''I't'rimeltl,,1 P,)'d,,,lug.I·. V"I. 1. p.

822. Copyright 0 19&8. John Wiley & Sons. Inc. Reprinted hy permission.
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that is, the test constructor aspires to develop a test that will contain items
or tasks thai all appear to measure the same ability. Ordinarily this is done
by conmucting a series of items or tasks that are highly similar in formal
and conlent. allhough possibly differing in apparent difficulty. For example,
a lest of arithmetical computation ability might contain a series of tasks
requiring checking the accuracy of sums of whole numbers. Various IRT
procedures are available to assess whether all items measure the same ability,
or whether it would be wise to eliminate or uy to modify items Ihal do nOI
measure the same ability as the remainder of the items. Unfonunatcly, these
procedures are not always employed. In panicular, they have generally not
been employed in connection with ability tests constructed at various times
o\'er the past 50 or more years. Nevertheless, many of these tests are generally
acceptable in defining particular kinds of abilities, even when subjected to
IRT procedures, and such tests have ~n widely used in studying the nature
of mathematical and other abilities.

It needs to be emphasized at this point that the tenn ability is, or should
be thought of. as entirely neutral with respect to whether the level of an
individual's ability is a result of inherited characteristics, of learning and
experience, or of some combination of them. An estimate of an individual's
level of ability with respect to some class of tasks is only a statement of that
individual's cap.'1bility. at some given time. of performing those tasks; it says
nOlhing about how that level of ability came about. or how that ability might
change over time or with further learning and experience.

Over the years of the present century. a statistical technique known as
fi,c/or analysis has been developed and refined to identify and classify the
abilities measured by psychological and educational tests. For most of its
history, the procedures favored in factor analysis have been exploralOry (Car
roll, 1985). Exploratory factor analysis examines the intercorrelations among
a set of variables to detennine the number of factors (basic abilitjes) needed
to account satisfactorily for those correlations. and then, usually. to rotate
the coordinates of the factors in such a way as to exhibit the best "simple
structure" for interpreting the factors--a structure such that most variables
have zero or near-zero weights or "loadings" on all but one (or a small num
ber) of the factors. If the simple structure factors are found to be significantly
correlated, a further analysis is made to find the simple structure for those
"second-order" factors, and so on until the complete factor structure for the
variables is shown, using a procedure known as a Schmid-Leiman hierar
chical orthogonalization (Schmid & leiman, 1957). Factor analysis can be
applied to numerous datasets, using partially overlapping sets of variables,
to identify and give substantive interpretations to factors that appear to rep
licate themselves over the different datasets.

In contrast, the last several decades have seen the development of proce
dures of what has become known as cO/lfirmmor.v faclOr analysis. which can
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be applied to differem datasets to test hypotheses about factor structures.
often to "confinn" or disconfinn structures revealed by exploratory f<lctor
analysis. Confirmatory factor analysis (Joreskog & Sorbom. 1979) has a more
rigorous basis than exploralOry factor analysis. in that the statistical signifi
cance of findings can be better evaluated.

Both exploratory and confirmatory f:lctor analysis can address queslions
about the identification and classification of abilities and aptitudes. in terms
of the extent to which different kinds of psychological measuremenls do or
do not correlate with each other in samples of individuals that may be more
or less representative of the population. For usc in studies employing factor
analysis, psychometricians have developed tests thm focus on panicular hy
pothesized abilities. skills. orprocesscs. In 1993.1 published a report (Carroll.
1993) of my reanalyses, using exploratory factor analysis, of more than 480
datasets that had appeared in the psychometric literature of cognitive abilities
over the past 60 or 70 years. Many of the datasets contained correlational
information on various psychological tests that could be regarded as relevant
to the analysis of mathematical abilities and achievements, although this was
not the central purpose of my survey. My resulls tended to confinn the kind
of hierarchical structure of cognitive abilities that had been proposed, in
diITerent fonns. by previous investigators, such as Vernon (1961). Cattell
(1971), and Cattell and Horn (1978). I attempted to integrate or synthesize
the results by suggesting a three-stratum theory whereby cognitive abilities
can be hierarchically classified in terms of their generality into general. broad.
and narrow factors. At the top of the hierarchy. at lhe third or highesl stra
tum (see Fig. 1.2) is a single general faclOr (hat is found. in varying degrees.
in all or nearly all tests of cognitive ability. At a second stratum arc a rela
tively small number of "broad" abilities. named nuid intelligence. crystallized
intelligence, general memory and learning, broad visual perception. broad
auditory perception, broad retrieval ability, broad cognitive speediness. and
processing speed. Finally, at a first or lowest stratum are found a fairly large
number of narrow factors (to date, about 65) representing quile specific abili
ties in various domains. The three-stratum structure shown in Fig. 1.2 is in
many respects provisional; not aU the factors arc well demonstrated or dif
ferentialed in factorial studies. bUI the slruclure represents m), best estimate
from the available empirical data. Further swdies are needed, using both
exploratory and confinnatory factor analysis, better to define the structure
of abilities.

Factorial studies tell little about the sources of lhe factors (e.g., to what
extent they are innuenced by genetic characteristics or by learning). about
their stability, or about the extent to which they remain the same over the
life span. It may be said at this point, however. that most factors appear to
exist at most stages of the life span, even though the levels of abilities they
reprcsenl may increase or decrease at various stages.
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I. MATHEMATICAL ABILITIES

ABILITIES POSSIBLY RELEVANT
TO MATHEMATICAL THINKING

9

With two possible exceptions, there arc no uniquely mathematical abilities. In
what follows. I olTer thoughts or speculalions about which of the various factors
identified in Fig. 1.2 may be relevant 10 mathematical thinking, or "doing
mathematics" in the general sense of performing tasks or solving problems of a
mathematical nature. AI times I cile references backing up my statemenlS, but it
would consume too much space to provide extensive references to the available
scientific literature on this subject (see Kilpatrick & Wagner. 1983).

The General Fador.g

In exploratory factor analysis, the general factor arises from a finding that
lower order factors or variables are substantially correlated in such a way that
a single factor best accounts for Ihe correlations among them. In confirmatory
factor analysis, a general factor can be postulated independently of other
facto~ and confirmed by the analysis (Gustafsson. 1988), with loadings of
variables on it estimated to afford best fit to the data. By either type ofanalysis,
a general faclor is very frequently found in cognitive ability datasets. Such a
factor was postulated by Spearman (1904. 1927), and called g in his early
studies of intelligence tests.

There has been much speculation and writing on the nature ofg. Spearman
believed that g was involved in cognitive operations whenever the individual
was required to (a) apprehend experience and think about it. (b) educe or find
relations amongslimuli, and (c) educe or find correlates. Currently. the general
factor is often interpreted as representing the maximal complexity or general
difficulty of the tasks that an individual with a given level of g can perform,
and hence the amount of conscious mental manipulation required by those
tasks (Jensen. 1980, p. 231: Marshalek, Lohman, & Snow. 1983). This is
probably not Ihe whole story, however. For one thing, exceptional persons
able to perform highly complex arithmetical tasks. such as finding the 23rd
root ofa 201..Jigit number. do not always appear to possess particularly high
levcls of general ability (e.g., Jensen, 1990, with refl;rcncl; to the Cll~ or the
calculating prodigy Shakuntala Devi). Perhaps this implies that the "complex
ity" ofa task is only in theeyeofthe beholder. In addition, people with obvious
brilliance of intellect do not always make exceptionally high scores on tests of
g or IQ. According to his biographer. in high school the brilliant mathemati
cian Richard Feynman's score on the school's IQ test was "a merely respect
able 125" (Glcick. 1992, p. 30). It was probably a paper.and-pencil test that
had a ceiling. and an IQ of 125 under these circumstances is hardly to be
shrugged off. because it is about 1.6 standard deviations above the mean or
100. The geneml experience of psychologists in applying tests would 1e.1d them
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to expect that Feynman would have made a much higher IQ if he had been
properly tested.

It is difficult. however, to draw conclusions about the nature of g from
individual cases. The matter can be better considered by analyzing the
characteristics of tests thaI are highly loaded with g. Mosl such tests involve
detailed and complex thinking about similarities. comparisons. the meanings
of difficult words and senlences, logical relations and implications. quantita
tive problems. and the like. Some tests ofg also involve background knowledge
of a wide variety of relevant principles or facts. as well as the ability to apply
those principles or facts 10 a variety of problems. regardless of their complex
ity. This could mean thai g represents general ability to learn and 10 apply
knowledge. Successful perfonnance of tests of g may also require a large and
capable working memory (Carpenter. Just. & Shell, 1990; Kyllonen & Christal.
1989). and ability to choose adequate strategies for solving problems.

The practical relevance of the g factor to mathematical work is well il
lustrated by several features of Stanley's (1974) Study of Mathematically
Precocious Youth (SMPY). This is a program whereby selected students in
grade 7 or 8 are given the opportunity of laking the Preliminary Scholastic
Aptitude Test (psAT}--essentially, or for the most part, a test of g. As Stan
ley characterized il. this is "out-of-Ievel" testing because the PSAT is not
nommlly thought of as being appropriate for grade 7-8 students. Those in
the grade 7-8 group who make relatively high scores on the test. particularly
on the "mathematical" Stttion, are then olTered the opportunity to receive
college-level training in mathematics. Most of them succeed in this quite
well. in contrast to what might be expected for students with much lower
scores. Further, longitudinal studies (Lubinski & Benbow, 1994) have tended
to show that students selected and trained by this program often continue
in mathematical and "hard science" programs through their college and
graduate yeaf"$, and enter occupations requiring high·level thinking. It would
appear, therefore. that the mathematically precocious students selected by
the SMPY program are characterized by high levels of g, however acquired.
At the opposite extreme. it is found that students with low levels of IQ (gen
erally a good indicator of g) have considerable difficulty even in learning
elementary arithmetic; even if they can learn elementary mathematical op·
erations, they take much more than average time to do so. (See Geary, 1993,
1994, for discussions of cognitive. neuropsychological, and genetic compo
nents of mathematical disabilities.)

All these findings must be evaluated in lerms of the fact that g. like most
other cognitive abilities. has a strong developmental aspect. That is. the
absolute level of g ability tends to increase (initially with slight positive
acceleration, then with negative acceleration) during the childhood years, up
to early adulthood, but the rates of increase dilTer over individuals. In fact, the
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FIG. 1.3. Idealized ~'Urves repres<'nling growth of gener~1 g ability owr the
first 20 yea~ of life, for individuals with !ielecu:<! ,,,,-lues of lQ. The ordinate
U2$ tile absolute sealc of mental ability cSlablished by Thu~lonc and Ad; crson
(1929}. The curves arc pkllled with an equation adapted from Sagiv's (1919)
generalized growth function,

increases for different individuals can be thought of as forming a family of
curves (Fig. 1.3). If we transform the absolute level of g to a "general mental
age," we can divide this mental age by chronological age (and multiply by 100)
10 form a "generalIQ" with which IQs assigned by psychological tests will be
highly correlated; the general IQ is in effect a measure of the overall height of
the person's curve of intelleclUal progress over the years of childhood to
adullhood. Recent studies (Conley. 1984) have indicated that the stability of
g over the childhood years is high, and Schaie and Hertzog (1986) found that
the faclor is al!>O highly stable over the adult years. It is clear that g measures
an important characteristic of the individuallhat tends to pc~istlhroughoul

the individual's life. It may be concluded that this characteristic is likely to
affect the individual's ability to learn to perfonn mathematical tasks. and
actually to pcrfonn them, at any time during the life span. Testsofachievemcnt
in mathematics are consistently correlated with g to a substantial extent at all
points of individuals' courses of development.
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Second-Stratum Abilities
and the Narrow Abilities They Comprise

CARROLL

It is convenient to discuss each of the "broad" second-stratum abilities to
gether with the "narrow" first-stratum abilities with which they are mosl
closely associated.

Fluid I"telligence (G f, or 2C in my notation). A number of first-stratum
abilities. notably Induction. Sequential Reasoning. and Quantitative Rea
soning. tcnd to be highly correlated, bUI according to the model described
here. their correlations can be accounted for not only by g but also, inde
pendently, by a second-stratum ability called fluid intelligence by Cattell
(1971). It represents a general ability to perform thinking tasks lhal involve
induction (finding rules or generalizations that account for or govern given
stimulus configurations), deductive sequential reasoning (logical reasoning
carried out correclly over one or more steps). and quantitative reasoning
(any reasoning that involves quantitative concepts). Fluid intelligence is
highly correlated with g, and in fact. some authorities propose that fluid
intelligence is identical to g (Gustafsson, 1988: Undheim & Gustafsson,
1987). Nevertheless. the fact that fluid intelligence is not always found to be
perfectly correlatt.,-d with g ha, led me to conclude that it can be regarded
as separate from g, and can be estimated independently of it. If this is the
case, fluid intelligence represents an ability that refers specifically to thinking
activities associated with logical and quantitative concepts.

II is interesting that such thinking activities can be sorted out into those
involving inductive processes. deductive processes. and processes involving
quantitative concepts, by virtue of the factor-analytic separability of the "nar
row" factors called Induction (I), General Sequential Reasoning (RG), and
Quantitative Reasoning (RQ). In addition, there is some evidence that a fur
ther narrow factor called Piagetian Reasoning (RP) can be identified in tasks
such as seriation and "conservation" as studied by Piaget (Flavell, 1977);
the relation of such a factor to fluid intelligence and to factors I. RG, and
RQ has nal been adequately studied. The factors found under fluid intelli
gence appear to characterize the major aspects of mathematical thinking.
Indeed, authorities who have discussed mathematical thinking (Nesher &
Kilpatrick. 1990) point out that solving mathematical problems frequ~ntly

involves separate processes of induction. deduction. and mathematical con
ceptualization. Some authorities claim that expert mathematicians can be
classified according to whether they are inclined to use induction and "in
tuition" more than deduction and reasoning. or vice versa (Hadamard. 1954).

Tests of inductive abilities are those that:

require subjects to inspect a class of stimulus materials (nearly always with
more than one instance) and infer (induce. educe) a common characteristic
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underlying these materials-a concept. a class membership. a rule. a process.
a trend. or a causal relation. for example. (Carroll. 1993. p. 238)

One such test, for example. is Number Series, a sample item of which is the
following:

Fill in the blanks in the following series:

4 8 6 10 18 36

To perform this task, the student must detect rules governing the sequence:
the fact that every other number is a member of a certain numerical series,
and that each such number is followed by its double. Another frequently
used test of factor I is Raven's Progressive Matrices test (Raven. 1962).
Figure 1.4 shows a problem to illustrate the format of Raven test items. (To
protect the security of the test. it is not an actual item in any of Raven's
tests, but an "isomorph" of them.) The examinee has to inspect the entries
in the rows and columns of the figure to induce rules that. in combination.
predict which of the eight given answers correctly fits in the box in the lowest
right position. In a conceptual and cxperimental analysis of such tasks.
Carpemer et al. (1990) concluded that these tasks measure "the common
ability to decompose problems into manageable segmems and iterate through

• • • •

FIG, 1.4. A problem 10 illuSlr.l1e lhe formlll ofRlIven lest ilems. The subject's
lask is to determine which or lhe 8 figure5 ;ll lhe hQllom correclly filS in the
posilion in lhe third row and lhird column of thc malrix ahQ,·c. Tile correcl
answer is S, Fmm Carpenter. JUS1. and Sm,1l (1990). 0 1990 by American
Psychologkal Association. Reprinlt'd wilh permission.
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them. the difTereniial ability 10 manage the hierarchy of goals and subgoals
generated by this problem decomposition. and the differential ability 10 form
higher level abstractions" (p. 429). It can be argued that many mathematical
problems require precisely such abilities.

There is a great variety of psychological tests measuring the Sequential
Reasoning (RG) factor. They emphasize:

the ability 10 reason and draw conclusions from given conditions or premises.
often in a series of two or more sequential steps. The stimulus or test material
can be of almost any type-literal, verbal (scmaOlic), numerical. pictorial, or
figural. The operations in the reasoningp~s can be or many types. involving
comparisons of stimuli in terms ofcontinuous attributes or class memberships.
or perceptions of relations of causality, implication, etc. Above all, the proc
esses are deductive, in the sense thaI there is very little load of induction or
rule finding. The best tests of this factor impose lillie requirement on the
subject to induce (educe) relationships or class memberships, since these rela
tionships and class memberships are stated or otherwise immediately apparent
to most subjects. (Carroll, 1993. p. 234)

One example of a Sequential Reasoning test is False Premises (Thurstone,
1938), illustrated by the following item that the subject is 10 judge as either
"good reasoning" or "bud reasoning";

Most horses live on carpel tacks; and most rabbits are horses; therefore
some rabbits must live on carpel tacks if lhere are more rabbits than horses.

A funher example is an item from a linear syllogism test (Thurslone, 1938),
in which the subject must evaluate the correctness of the conclusion:

Brown is younger than Smith.
Brown is older than Jones.
Therefore Jones is younger than Smith.

There is evidence that many people (but not all) solve such syllogisms by
placing the concepts being compared on a number line (Sternberg & Wei!,
1980). Linear syllogism tests therefore often have loadings not only on
Sequential Reasoning but also on Quantitative Reasoning (factor RQ), which
we now consider.

Quantitative Reasoning requires reasoning based on mathematical proper
ties and relations. It is one of the uniquely mathematical abilities. As I have
slated:

Tests characteristically having high loadings on Ihis factor are usually titled
Mithmclic, Arithmetic-al Reasoning, Mathematical Aptitude, and the like.



1. MATHEMATICAL ABILITIES

Typically these testS prescnt a variety of mathematical reasoning problems
such as word problems (solving \'erbally Slated mathematical problems), num
ber series, and problems requiring seltl;:tion of appropriate arithmetical opera
tions. Generally, the amount ofactual numerical compulation required is small.
While tests are often given with a time limit. the scores are expected 10 depend
mainly on the level ofdiffkulty in the problems that can be perfonned. (Carroll,
1993, p. 241)
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Further, scores generally depend on the level of mathematical underslanding
thai Ihe student has attained with respect to such mailers as distance and
rate of motion, total cost versus cost of items per unit. work perfonned per
unit of time, and so on. Some tests of Quantitative Reasoning may include
items that require inductive or deductive reasoning. but such items are only
incidental. It is most characteristic of Quantitative Reasoning tests 10 require
understanding of quantitative and mathematical concepts.

Also classified under Fluid Intelligence is a factor tentatively identified
as Speed of Reasoning, representing rate of solving reasoning problems. in
contrast to level of ability in solving them in unlimited time. There is, to be
sure, some correlation between level and speed in this case. in thai people
with high.level reasoning abilities tend to solve mathematical problems faster
than people wilh lower levels of ability. but the correlation is far from perfect.
As a consequence. reasoning tests given wilh a time limit often do not cor
rectly assess people's ability to solve problems when they are given unlimiled
time to solve them.

It should be emphasized that it is difficult to judge the factorial compo
sition of a psychological test merely by examining il. The examples of rea
soning tests offered earlier must not be taken as adequately representing the
factors they are said to measure, because depending on their formal, contenl.
and other aspects. they may measure more than one factor. or a different
faclor from what might otherwise be thought Tests titled Number Series.
for e1tample, can be found to emphasize either Induction. Deduction, or
Quantilative Reasoning, depending on the kinds of problems they offer. Simi
larly, tests called Verbal Analogies are expected to measure Induction only
when Ihe analogies they present relatively difficult problems of relating con
cepts; otherwise they may only measure vocabulary knowledge. Factor analy
sis is able 10 sort and identify the factors separately only when the test banery
contains an adequate sample of measures of each factor. For example, a
factor-analytic ballery desirable for demonstrating the separability of Induc
tion, Deduction, and Quanlitative Reasoning should contain at least three
or four tests that typically measure or emphasize each of these factors.

Crystallized Intf.'Uigence (Gt , or 2C). A further broad second-stratum
ability is what has been called Crystallized Intelligence (Cauell. 1971). It
embraces a number of narrow, first.stratum abilities, most ofthem concerned



16 CARROLL

with language, both oral and written, and both receptive (listening and
reading) and productive (speaking and writing) (see Fig. 1.2). Indeed, the
factor might well be characterized as General Language Ability. except thai
it also sometimes embraces various narrow abilities that are learned through
general experience or schooling, such as Number Facility, which is discussed
later. For Ihis reason. Crystallized Intelligence is often characterized as
representing those aspects of general intelligence that are acquired through
general experience, learning, and schooling; through "investment" of general
intelligence in such learning activities.

A number of narrow verbal abilities Ihal appear to be relevant for mathe
matical thinking may be mentioned. Language Development (LO) refers to
the individual's general level oflanguage ability, particularly in the early years
of life; that is. the extent to which. at any given time, the person has acquired
the basic phonology, vocabulary. and grammar (sytllax. etc.) of the person's
native language. (In the case of bilingual or multilingual individuals, there can
be a separate LO factor for each language involved.) It is notable that in
perfonning mathematical thinking, people tend to use number names in a
particular language, usually the native language. but sometimes in another
language (Cohen, 1994). More generally, the individual's language develop
ment plays some role in mathematical problem solving, and mathematics
tc.:lcheM; must consider students' degrees of general language development in
assessing those students' likelihoods of succeeding in mathematics.

The Verbal or Printed Language Comprehension Ability (factor V) is
highly similar to, and usually highly correlated with, Language Development,
except that it refers to the degree to which individuals have acquired the
ability to read language in its written or printed form. Therefore. the ability
of the student to solve mathematical problems presented in written language
(as in what arc often called "word problems") will depend on the student's
level of ability on factor V. This ability may be relevant even in the per
formance of mathematical problems presented in purely symbolic form. in
that some students may not be able to distinguish the symbols adequately.
(We have in mind here innate or acquired dyslexia that is a problem for
some students; see DeFries & Gillis, 1993.)

There is evidence (Carroll. 1993. pp. 159-190) that a number of other nar
row language ability factors can be identified and differentiated, such as Lexi·
cal Knowledge (VL), Reading Comprehension (RC), Reading Decoding (RD),
Reading Speed (RS). Spelling Ability (SG), Phonetic Coding (PC), Listening
Ability (LS). and Oral Production (OP). Although some of these factors may
be relevant to the learning and perforrT1<1nce of mathematics either in class
room situations or in slUdying mathematics from textbooks. they are not
specific to mathematics learning and thus will not be considered here in detail.

One of the most frequenlly found ability factors is what is often called
Number (N) or Numerical Facility. measured by tests in which individuals
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are required to perfonn simple numerical operations (adding. subtracting,
multiplying, and dividing numbers, usually integers). Because ofils content
(his is possibly a uniquely mathematical ability, although there have been
attempts (Coombs, 1941) to show that it generalizes to the learning and ma,
nipulation of any simple rule system. Because a number-ability factor is fre
quently found to correlate substantially with other narrow facwrs classified
under Crystallized Intelligence, this factor N is considered here. although it
can also be cOnsidered under speed facwrs (sec later discussion). As I have
described it (Carroll. 1993):

Factor N refers simply to the degree to which the individual has developed
skills in dealing with numbers, from the most elementary skills of counting
objects and recognizing written numbers and their order. to the more advanced
skills of correctly adding, subtracting. muhipl)'ing, and dividing numbers with
an increasing number of digits, or with fractions and decimals. These are skills
Ihat are learned through CJlpcriences in the home, school, or even in the work
place. In the early years. skills deal with simple numbers and operations, and
the important object is to be able 10 deal with number problems correctly. at
whatever speed. In later years. practice is aimed at handling computations
with greater speed as well as accuracy. More complcl( problems can be dealt
with effectively and effldenlly only if skills with simple problems are increas
ingly automatized. (p. 469)

Most tests of factor N that have been used in facwrial studies have empha
sized speed, in that they are usually given with a severe time limit, although
scored for accuracy. They would be more informative if they were designed
to distinguish level (accuracy) and spt"ed aspects of skill, which logically could
be quite independent. Indeed, Kyllonen (l985) has found evidence for sepa
rate numerical speed and level factors.

Individual differences in numerical facility undoubledly playa role in mat~

malicalthinking whenever rapid and accurate handling of numerical quanti
ties is involved. At advanced levels of menial mathematics. it appears that
success is associated wilh having memorized many properties ofnumbers, such
as their squares and square rools, their logarithms. and so on (Smith. 1983).

Ceneral Memory Ability (Gy, or 2)'), A number of types of memory
ability are sufficiently correlated with each other to define what may be
called General Memory Ability. Narrow factors that are covered by it include
Memory Span (MS). Associative Memory (MA), and Meaningful Memory
(MM). Memory Span is often tested by giving the subjecl a series of digits
(or leiters) to repeat exaclly in the order in which they are spoken. Several
such series are given. increasing the number of digits or letters, with the
objcct of detennining the largest number of elements that the subject can
consistently repeat correctly. The fact that Memory Span is often corrcl,lIed
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substantially with g may perhaps be interpreted as showing that this factor
is a measure of the size of working memory; Ihat is. the memory in which
a person stores and calls on new infonnation that must be used in solving
a problem. Therefore. Memory Span can be involved if the person is required
10 solve a mathematical problem, especially if it must be solved "mentally,"
laking account of several different numerical values. On the other hand,
Kyllonen and Christal (1989) claimed thai "what is required in span testS

seems contrived and not typical of what people actually do when engaged
in realistic learning" (p. 156). They have proposed more realistic measures
of working memory.

Associa,live Memory (MA) is usually tesled by giving the subject a series
of art>iirarily paired stimuli to study in a relatively limited time. and then
asking the subject to demonstrate learning by responding to each stimulus
with the clement with which it was paired in the learning series. An obvious
instance in which Associative Memory may be involved is the learning of a
foreign language vocabulary. but this factor could also be involved in the
rate at which a subject could learn any series of elements. such as the number
faclS involved in elementary arithmetic, the squares or logarithms of a series
of numbers. or even a mathetrultical fonnula or equation. The factor appears
to concern the rale al which learning occurs, nol the way in which it occurs
or the maximal amoulltthal can be learned. Individual differences in learning
rates are often very striking, both in children and adults.

One olher factor that might be involved in mathematical learning and
thinking is Meaningful Memory (MM). as observed in lests thai require lhe
subject to memorize or remember "meaningful" ideas (as opposed to seem
ingly arbitrary pairings or sequences ofelements). Success in such tests seems
to depend not only on the ability of the subject to comprehend or understand
the ideas to be remembered. but also on the rate al which these ideas can
be learned. Because the tests rarely involve mathematical ideas, it is not clear
whether this Meaningful Memory faclOr would show up as a determinant
of success in learning mathematics, but I would speculate that it might. This
question would possibly be fruitful for future research.

General Visual Perception (G•• or 2V). It is highly likely that the
second-stratum factor called General Visual Perception is involved in many
lypeS of mathematical thinking. It could also be called General Spatial
Ability: spatial ability has often been cited (e.g.. WerdeJin, 1961) as possibly
being involved in mathematical work. Actually, General Visual Percep
tion seems to represent a common element in a variety of tests measur
ing narrow factors, such as Visualization (VZ), Spatial Relations (SR). Me
chanical Knowledge (MK). Perceptual Speed (P). Closure Speed (CS). and
Closure Aexibility (CF). Exactly which of these factors, along with General
Visual Perception. is actually relevant 10 mathematical thinking, if at all. is
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a question that as yet has not been adequately answered by research. Gus
tafsson and Balke (I993) did not lind any significant relation between
grade 9 mathematics grades and a General Visual Perception factor meas
ured at grade 6. Similarly. Lubinski and Humphreys (1990) found that
measures of Visualization wcre not useful as predictors of success in general
mathematics. although measures of g were excellent predictors. On the other
hand. Humphreys. Lubinski. and Yao (1993) found that high spatial visu
alization abilities seemed to function in influencing people to become engi
neers or physical scientists, that is. to choose occupations involving mathe
matics.

Visualization tests appear to require the examinee to apprehend a visual
fonn and fonn an imageofit that can be manipulated to help solve a problem
in visual space. For example, in paper-fonnboard tasks. "subjects combine
imaginatively the various parts of a figure to complete a whole figure" (Eliot
& Smith. 1983. p. 147). In paper-folding tasks, subjects are shown drawings
that illustrate successive foldings of a piece of paper; the final drawing shows
a hole in a given place. The subjcct has to imagine and predict the pattern
of holes in the paper when it is unfolded. In surface-developmem tasks, sub
jects are presented with a drawing depicting a fonn in three-dimensional
space, and are then asked to relate it to a two-dimensional drawing showing
the fonn opened up. (See Fig. 1.5 for an example taken from one of Thur
stone's, 1938. tests, where the subject has to identify parts of the "diagram"
that are identical to parts of the "picture.") To the extent that a test measures
the Visualization factor, it measures the level of difficulty and complexity
of visual forms that the individual can handle. not neressarily the speed with
which they can be handled.
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In contrast, tests of Spalial Relations presenl simple problems, such as
matching letters in different rotations, and measure the individual's speed
in performing them correctly. Tests of Closure Speed. also given in a time
limit. require the subject to recognize what is pictured by drawings that are
partially obscured in that they omit many of the lines and parts of the original
picture. Tests of Closure Flexibility prcsenl a form or geometric drawing;
the subject must then detect whether a further drawing contains the original
drawing. Tests of Perceptual Speed require the subject 10 remember a given
spatial configuration and search through a series of such configurations to
find those that are exactly identical to the one remembered.

None of these tasks is identical 10 any of the perceptual operations re
quired in mathematical work. such as in geometry or the analysis of func
tions, but it would be expected that perrons who have difficulty with tests
of visual perception or spatial ability might also have difficulty with similar
operations in mathematical thinking. unless they could circumvent these dif
ficulties with nonperceptual strategies, such as logical analysis.

DOrer Second-Strnturrr Cognitive Abilities. Factor-analytic studies
have identified several other broad abilities, such as Auditory Perception,
Broad Retrieval Ability, Broad Cognitive Speediness. and Information-Proc
essing Speed, but I would not expect any of these abilities to be particularly
relevant to mathematical thinking. Auditory Reception, for ex.ample, has to
do with abilities in perceiving speech, music, and other types ofsound stimuli.
Although it has sometimes been stated that mathematicians tend to be
particularly fond of music. I know of no evidence that this, if true, indicates
something about their thinking. Broad Retrieval Ability involves individuals'
abilities to produce different types of responses facilely, drawing on the
contents of long-tenn memory, including the ability to be creative in cognitive
domains. Whether such abilities relate to mathematical creativity------the pro
duction of new mathematical ideas---is not known.

The two broad speed factors, Broad Cognitive Speediness and Infonna
tion-Processing Speed. are possibly relevant to mathematical thinking in that
they might correlate with individuals' speeds in perfonning mathematical
operations. I have already mentioned Numerical Facility as one aspect of
Crystallized Intelligence to the degree that it represents an effect of school
learning. One of the narrow factors under Broad Cognitive Speediness is
Rate of Test Taking, which might show up in students' rates of performing
mathematical achievement tests. Narrow factors under Information-Process
ing Speed include Simple Reaction Time (R I), Choice Reaction Time (R2),
Semantic Processing Speed (R4), and Mental Comparison Speed (R 7), but
I know of no evidence to indicate that these are specifically relevant to mathe
matical activities.
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In offering the foregoing account of a Iheory ofcognitive abililies as it might
apply to mathemalical thinking, I must admit to a degree of hesitancy and
uncertainty. Despite six or seven decades of work in the psychomelric tra
dition, relations between factor-analytically derived abilities and actual per
formances in various real-world domains. such as mathematics, have re
mained unclear. There is no doubt that relations exist, but exactly whal they
are and how they operale is not known as well as might be desired. We also
know that mathematics ability is nOI unitary. That is. one may say thai there
are al least several types of abililies that appear to underlie mathematical
performances, but we cannot easily predict which abilities are most relevant
for particular performances.

A number of serious researchers (e.g., Ceci, 1990; Winch, 1990) have called
into question some of the basic assumptions of the psychometric tradition
for example. the assumption that cognitive abilities identified by factor-ana
lytic and related procedures truly represent important and enduring charac
teristics of individuals, and the assumption that scores on psychological tests
are or can be reliable and valid measures of such characteristics. In the space
assigned to this chapter, I can only give hints of the arguments that have
been brought forth.

One argument is that psychological tesls are Iypically "decontextuaIized";
thai is. Ihat Ihey present tasks thai are not embedded in contexls like Ihose
in which persons perform tasks in the ··real world." Examples are cited in
which some people are found to be able to perfoml complex and involved
thinking despite anaining only mediocre scores on tests that presumably pre
senl tasks calling for such thinking. For instance. Ceci and Liker (1986) told
us that experienced racetrack gamblers, despite making only average scores
on IQ tests, are able to perform complex thought manipulations in success·
fully predicting, from numerical and other data that they can get, the odds
that a horse will win a race.

Another argument is that the generally positive correlations of psycho
logical tests (often called "positive manifold") arc mainly the result of the
fact that people differ in the quantity. diversity, and complexity of their ex
periences and learnings, partly because of dilTerences in the social environ
ments in which they were nurtured. This argument calls into some question
the notion that g or "general intelligence." derived from Ihe positive manifold
in test correlations, is something much more than a mathematical artifact.
It is argued. furthermore, that the lower order factors found in factor analysis
(such as the second· and first-stratum factors mentioned earlier) simply re
neet classes of experiences thaI tend to occur and be learned together. like
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word meanings, number facts, or spatial fonTIS. It is pointed out that spe~

cialization of abilities frequently results from long-lasting devoted practice
(Ericsson & Chamess, 1994), nOI necessarily from superiority in any innately
laid down cognitive abilities.

Finally, it is argued that the apparently high heritability coefficients often
cited for mental abilities c..1n possibly be reinterpreted in terms of complex
interactions between hereditary and environmental forces such that there are
no direct biological constraints on the development of cognitive abilities.

Although some of these arguments may have merit, in my view they go
too far. There is abundant evidence for the existence of mental abilities that
can be measured by p5Y1=hological tests and thai show at least substantial
relations to the learning and performance of mathematical tasks. Even if the
tasks presented in psychologicaltcsts are "decontextualized," there are strong
similarities bet'A-'eCn those tasks and those encountered in the real world.
Even if learning is dependent to a large extent on environmental conditions
and opportunities. there is evidence that the degree to which people coin and
do take advantage of those opportunities is at least partly dependent on
their biological constitution.

Further, none of these arguments has any immediate bearing on whether
the factor-analytic results cited in this chapter arc relevant to the analysis
of mathematic:,1 thinking, because, as I have slressed, the ability measures
used in these studies pertain only to performances of individuals at given
points of time and do not imply anything about the sources of these abili
ties-genetic or environmental-or about their future development. For ex
ample, none of these arguments goes against the conclusion that inductive,
deductive, and quantitative conceplUal processes are aspects of mathematical
thinking. What would be questionable, however, is any prediction that per
sons showing low levels ofability on such processes would thereby be unlikely
to profit from specific training in them. The possibility of training cognitive
processes involved in mathematics presents empirical questions that as yet
have not been resolved. It would go beyond the scope of this chapter to
review efforts along these lines, but the reader may refer to Geary (1994)
for discussions on the improvement of mathematical abilities and the possible
influences of heredity on the limits to which mathematical abilities can be
enhanced by educational intervcntions.

To iIluSlrale how the abilities discussed in this chapter may apply to
mathematical thinking in the solution of tasks presented in mathematics
teaching, let us consider several such tasks.

According to Carpentcr. Corbitt, Kepner, Lindquist. and Reys (1980),
only 9'Yo of the 17-year·olds tested in the 1977-1978 National Assessment of
Education Progress could solve the following exercise:

How many cubic feet of concrete would be needed to pave an area 30
feet long and 20 feet wide with a layer four inches thick? (p. 237)
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First, verbal comprehension and reading ability would be required to solve
this. Beyond this, knowledge of the quantitative concepts of area and cllbic
jool, as well as knowledge of how to compute areas and volume, would be
required. Also. the student would have to notice that "a layer four inches
thick," for a single cubic foot, would be one-third of a cubic foot, and there
fore, for the area computed as 600 square feet. the amount ofconcrete needed
would be one-third of that, or 200 cubic feet. (At least. this would be one
way of approaching the problem.) Presumably, this would require some de
gree of general intellectual abilily, quantitative reasoning ability. or both, or
perhaps more specifically, the ability to deduce the answer from the infor
mation given and the rules for computing areas and cubic dimensions.

A more difficult problem illustrating the use of inductive and deductive
reasoning comes from an example for grades 5-8 provided in (he Curriculum
and Ewluation Statularrls for Schoof Malhematics (National Council of
Teachers of Mathematics. 1989):

Students can be asked 10 cllplorc the numbers Ihat occur bet .....een twin primes
for primes grealcr than 3. They might first look for t.....in primes to find
ellamples and then make. tcst. and validate conjectures.

567; 11/213; 171819:293031

What do 6.12. 18. and 30 have in common? Is Ihis true for all twin primes?
Why or why not? (p. 82)

It might be found thai students high in inductive ability are more likely to
notice that 6. 12. 18. and 30 are multiples of the first four prime numbers
(1,2.3.5) and thus 10 investigate whether further examples of twin primes
would exhibit this property. The source cited here contains many more ex
amples of the use of inductive and deductive reasoning in solving mathe
matical problems.

It would be a useful project to investigate the relations between various
abilities mentioned here and the actual probabilities thm students with dif
ferent levels of ability could perform mathematical tasks of different degrees
of difficulty. Such an investigation. or a series of them, would more clearly
establish the role of these abilities in mathematics learning and achievement.
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The Process of Understanding
Mathematical Problems
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INTRODUCTION TO MATHEMATICAL
UNDERSTANDING

Anyone who has reviewed thc recent outpouring of national and international
assessments of mathematics achievement (e.g., Dossey, Mullis, Lindquist, &
Chambers, 1988; laPointe, Mead. & Phillips. 1989; Robitaille & Garden.
1989; Stevenson & Stigler, 1992; Sligler, Lee. & Stevenson. 1990) is confronled
with an inescapable fact concerning the mathematics achievement of students
in the United Stales: Although many students eventually learn to perform well
on tests of low-level skills such as arithmetic computation, they tend to
perform poorly on lests of high-level skills such as mathematical problem
solving. For example, the 1986 National Assessment of Educational Progress
found that nearly all tested 17-year-olds could solvc basic arithmetic problems
such as the one shown in the top of Fig. 2. J. but nearly all failed to solve
multistep word problems such as the one shown in the boltom of the figure
(Dossey et aI., 1988). On average, many students may know how to carry out
basic mathematical procedures when problems are presented in symbolic form
but may not be able to apply these procedures to solve problems presented in
words. In short, these assessments suggest that the difficulty for students lies
in understanding problems rather than executing procedures.

In light of such performance, a call has gone oul in the United States for
the teaching of mathematical problem solving. For example. the Glrril'lIlum
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Problem that 1t"l"Jrn Computation
604-207 .. _

l'ToblC'm thal Requll'ft Unlkl'!itaDdln& and CompulIlllon
Chri§linc borrowW S850 for onoe ~~r from l~ Friendly Finwr'H;C COO1pwny.
If she paid 12% sirnpk interest on the loan. whal was the lotal amount she
repaid?

FIG. 11. Two types of mathematics problems. From Doucy Cl at (I 988}.
C 1'188 by Educational Testing Service. Reprinted wilh permission.

ond El'(l1uation SwmJort/sjor School Mathematics (National Council ofTeacb·
ers of Mathematics, 1989) calls for "a shifl in emphasis from a curriculum
dominated by memorization of isolated facts and procedures to one thaI
emphasizes conceptual understandings. multiple representation and connec
tion, mathematical modeling, and mathematical problem solving" (p. 125).
The call is being heard. Around the nation, educators are busily revising
mathematics curricula to emphasize higher order mathematicalthinking-as
exemplified in the Mathematics Framework for California Public Schools
(California Department of Education, 1992).

The reform movement in American mathematics education provides an
appropriate backdrop for cognitive psychologists who are interested in mathe
matical problem solving. Although the reforms continue, cognitive psycholo
gists may be reminded of the unanswered theoretical questions whose answers
could and. in my opinion. should, contribute to changes in mathematics
education. Why are some students able to successfully compute answers for
arithmetic problems, although they are unable to solve word problems that
require using the same basic arithmetic computations? Which cognitive proc
esses underlie mathematical problems solving? What do successful mathemati
cal problem solvers know? These are the questions that motivate this chapter.

The domain of mathematical problem solving is becomingan exciting venue
for cognitivc scicnce (Campbell, 1992; Mayer, 1989, 1992; Schoenfeld, 1985.
1987). Although the creation of a general theory of problem solving-ba""
on general problem-solving strategies----was a major goal in the 1970s (Newell
& Simon. 1972), current trends in the study of expertise point to the crucial
role ofdomain specific knowledge in any complete account ofproblem solving
(Chi, Glaser, & Farr, 1988: Ericsson & Smith, 1991: Smith. 1991; Sternberg &
Frensch. 1991). By virtue of its long research history (Grouws, 1992; Resnick
& Ford, 1981), its status as a premier "psychology of subject matter" (Mayer,
1989). and its affordances for cognitive modeling., the study of mathematical
problem solving offers an important context for studying questions about
cognition.

In constructing cognitive theories of problem solving, researchers have
tended to focus on the procedures that problem solvers use in problem solution
rather than the processes they use for representing problems (Maycr, 1985,
1992). Similarly, cognitive research in mathematics sometimesemphasizes the
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acquisition of mathematical skills such as computational procedures and
strdtegies (Siegler & Jenkins, 1989; Singley & Anderson, 1989), whereas an
equally imponam goal is to develop an account of the ways ill which problem
solvers understand problems (Kintsch & G1\.'<:no. 1985). By focusing on
comprehension processes, we in nO way wish to diminish the crucial role of
basic cognitive skiJIs such as computational procedures. Our motivation for
studying problem comprehension processes derives from growing evidence
that most problem solvers have more difficulty in constructing a useful
problem representation than in executing a problem solution (Cardelle.
Elawar, 1992; Cummins, Kintsch, Reisser & Weimer, 1988; De Cone. Ver·
schalTel, & DeWinn, 1985).

What Is Mathematical Problem Solving?

A good place to stan is with a workable definition of what is meant by basic
terms such as problem, problem solving. mathematical problem, and mathe
matical problem solving. A problem exists when a problem solver "has a
goal but does not know how this goal is to be reached" (Duncker, 1945. p.
I). In shon, you have a problem when a situation is in a given state. you
want the situation to be in a goal state. and there is no obvious way of
moving from the given to the goal state. There are three elements in a
description of a problem-the given state. the goal state. and Ihe allowable
operations. For example, if the problem is to refonn the K-12 mathematics
curriculum in the Uniled States to foster problem solving. then the given
slate is the current curriculum. the goal state is II revised curriculum. and
the allowable operalOrs involve changing what happens in classrooms.

Problem solving (or thinking) occurs as a problem solver ligures out how
to solve a problem; that is, as the problem solver understands how to get from
the given state to the goal state. Duncker (1945) eloquently stated: "Whenever
one cannot go from the given situation 10 the desired situation simply by
action. then there has to be recourse to thinking. Such thinking has the task
of devising some action which will mediate between the existing and desired
situations" (p. I). In sum. problem solving (or thinking) refers to Ihe cognitive
processes enabling a problem solver to move from a state of not knowing how
to solve a problem to a slate of knowing how 10 solve il.

A problem can be categorized as a mathematics problem whenever a
mathematical procedure, such as an arithmetic or algebraic procedure. is
needed to solve the problem. Forexample.lhe foregoing word problem about
Christine (shown in the bottom of Fig. 2.1) is a mathematics problem because
the solution requires executing arithmetic computations. Similarly, mathe·
matical problem solving (or thinking) occurs when a problem solver wishes to
solve a mathematics problem but does not know how to do so. In summary,
mathematical problem solving is Ihe cognitive process of figuring out how 10
solve a mathematics problem that one does not already know how to solve.
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What Are the Types of Mathematics Problems?
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It is useful to funher analyze mathematics problems into those thai are rou
tine and those thai are not rOUline. A routine problem exists when a problem
solver knows how to carry OUI the correct solution procedure and recognizes
that the solution procedure is appropriate for the problem. For example.
consider the problem: (70 - 60) + (90 - 80) = _, This is a routine problem
for mosl educated adults because what 10 do is obvious and most adults
know how to compute. The problem solver knows how to represent the prob
lem-namely, carry out two subtractions and add the resuhs----and the prob·
lem solver knows how 10 carry out the required opcralions---namely, how
to subtract and add. According to a strict definition. routine problems are
not really problems at all because the problem solver knows what to do and
how to do it. For this reason. such problems are often referred to as exercises.

A nonrouline problem exists when a problem solver has a problem but
does not immediately see how to solve it. For example, consider the horse
trading problem:

A man bought a horse for $60 and sold it later for $10. Then he bought
it back for $80 and sold it for £90. How much did he make in the horse
trading business? (Maier & Burke. 1967, p. 307)

This is a nonroutine problem because what to do is not obvious. When Maier
and Burke gave this problem to students. they found that many students
subtracted 60 from 70, subtracted 80 from 70. subtracted 80 from 90. and
added the three resulls to yield an answer of 10. Although they carried out
the computations correctly, these students had misunderstood the problem.
They correctly carried out computations based on an incorrect representation
of the problem. If the students were told that the fiI1it transaction involved
a white horse and the second transaction involved a black horse. they were
more likely to represent the problem correctly and carry out the correct so
IUlion plan (subtract 60 from 70 for the first transaction. subtract 80 from
90 for the second transaction. and add the results).

Some word problems may be routine for a problem solver, whereas other
word problems are nonroutine. For example. if a student knows how to use
the formula distance := rate x lime. and is familiar with distance-rate-time
problems. then the following problem is routine:

A car travels for 2 hours at a rate of 40 miles per hour.
How far does it go?

In this case. the problem is routine because the problem solver knows what
to do (i.e.• multiply 2 times 40) and how to do it (i.e.. 2 x 40 := 80).
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In contrast, consider the following problem which on the surface also
seems like a distance---rate-timc problem:

A car in Philadelphia slarts toward New York at 40 miles per hour. Fifteen
minutes later. a car in New York starts toward Philadelphia, 90 miles away,
at 55 miles per hour. Which car is nearest Philadelphia when they meet?

Although this problem may appe:lr to be routine, Davidson (1995) found
that most students failed 10 give the correct answer. It is really a Ilonroutine
problem for most students because they fail to recognize what they arc being
asked 10 find. Once students understand the importance of the phrase "when
they meet," it becomes clear Ihat computation is not needed. Both cars arc
equally distant from Philadelphia when they meet.

As another example, consider the following word problem. which is rou
line for most high school students:

Water lilies double in area every 24 hours. At the beginning of the week.
there is one water lily on a lake. How many are there after 7 days'!

This is a routine problem for someone who has solved many problems in
volving series sums because what to do is obvious-multiply I )( 2 )( 2 )( 2
x 2 x 2 x 2 x 2~and the problem solver knows how to multiply.

In contrast, the following version of the water lily problem is nonroutine
for most students:

Water lilies double in area every 24 hours. At the beginning of the summer,
there is one water lily on the lake. It takes 60 days for the lake to be
completely covered with water lilies. On whal day is the lake half covered?

When Sternberg and Davidson (1982) gave this problem to students, a com
mon answer was to divide 60 by 2, and give 30 as the answer. In this case,
the computation was correctly carried out but was based on an incorrect
representation of the problem. Instead of trying to carry out computations,
the problem solver needs to realize that on day 59 the lake must be half
covered. This problem is nonroutine because the way to solve the problem
is not inunediately obvious. In this chapter, we: focus 011 nonroutim: rather
than routine problems in order to better understand the process of how
students represent mathematics problems.

What Are the Cognitive Processes
in Mathematical Problem Solving?

It is customary in the problem solving literature to distinguish between twO
major kinds of problem-solving processes-representation and solution.
Representation occurs when a problem solver seeks to understand the prob-
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lem and solution occurs when a problem solver actually carries out actions
needed to solve the problem.

For example. suppose a slUdent who knows how 10 read English sentences
and who knows how 10 compute answers 10 arithmetic problems is asked
to solve the butter problem shown in Fig. 2.2. This problem requires two
computations. so we call it a Iwo-step problem. When we asked high school
and college students 10 solve this problem, a common incorrect approach
was to subtract 2 from 65 and multiple the result by 4. whereas the correct
solution is to add 2 to 65 and multiply by 4 (Hegarty, Mayer. & Green,
1992: Hegarty, Mayer, & Monk. 1995; Lewis & Mayer, 1987). Ho",~ver.

when we asked these same students 10 solve two-step computation problems.
such as 4(65 + 2) = _. they performed flawlessly.

Although all of the students in our study could solve computation prob
lems such as 4(65 + 2) = _, many generated the wrong answer for word
problems requiring the identical computations. In these cases, the problem
solver knows how to correctiyexecute the solution procedure-that is, knows
how to carry out two-step arithmetic computations-but applies the proce
dure to an incorrect representation of the problem. In short, problem exe
cution is routine but problem representation is nonroutine. This pattern sug
gests that students have difficulty in represenlation~tbat is, understanding
the problem-bul not in solution-that is, carrying out the computations
in a solution plan.

Mayer (1985. 1992, 1994) has proposed four main component processes in
mathematical problem solving-translating, integrating, planning, and exe
cuting. Translating involves constructing a mental representation of each
statement in the problem. such as recognizing that the first statements means
that the cost (in cents) of a stick of butter at Lucky is 65. Integrating involves
constructing a mental representation of the situation described in the problem,
including the recognition that butter costs more at Vons than at Lucky.
Planning involves devising a plan for how to solve the problem, such as first
computing the cost of a stick of butter at Vons by adding 2 to 65 and then
finding the total cost by multiplying the resuh by 4. Executing involves
carrying out the plan, including computations such as 65 + 2 = 67 and 67 x 4
=268.

In this chapter we focus on the processes involved in problem repre
sentation: namely. translating and integrating, as well as the natural product
of problem representation; namely. planning. We focus on the process of

Al Lueky. buller ~OSIS 65 cents per Slick.
This is 2 cents Ie~~ JX'r Slick lhan buller at Vons,
Ir you need to buy 4 Slicks of bUller.
how mueh will you pay at Vons?

FIG. 2.2. l1lc bUller problem.
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problem representation because students often correctly devise and carry out
computational plans based on an incorrect representation of the problem. In
shon, we base our approach on the premise that an important key to
mathematical problem solving rests in the processes by which students seek to
understand mathematics problems. Consistent with classic theories of prob
lem solving (Duncker. 1945; Mayer. 1992; Wertheimer. 1959). we contend that
the major creative work in solving word problems rests in understanding what
the problem means. According to this view. carrying out a solution plan
naturally follows from the problem solver's representation of the problem.

THEORY OF MAlliEMATICAL UNDERSTANDING

Two Paths to Mathematical Understanding

When confronted with a mathematical story problem, some people begin by
selecting numbers from the problem and preparing to perform arithmetic
operations on them-a proccc.lure we call the direct translation strategy-
whereas other people begin by trying to understand the situation being de
scribed in the problem and devising a solution plan based on their repre
sentation of the situation-a procedure we call the problem III()(Jel strategy.
The direct translation strategy is a shon-cut heuristic approach that empha
sizes computation. whereas the problem model approach is an in-depth ra
tional approach based on problem understanding. The direct translation
strategy emphasizes quantitative reasoning-that is, computing a numerical
answer-whereas the problem model strategy emphasizes qualitative reason
ing-that is. understanding the relations among the variables in the problem.

Direct Translation Strategy. For example. in the Christine problem
presented in Fig. 2.1. a problem solver using the direct translation strategy
would select at least some of the key numbers in the problem (such as 850
and 12) and perform an arithmetic operation that is most strongly primed
by the keywords in the problem (such as "interest"). In this case. a problem
solver might multiply 850 by .12. yielding the answer 102. This short-cut
approach can be summarized as "compute first and think latcr" (Stigler Cl

al .• 1990. p. 15) because the problem solver eng.'lges in quantitative reasoning
prior to qualitative reasoning (Mayer. Lewis. & Hegarty, 1992).

The direct translation strategy is a familiar character in several research
literatures. as the method of choice for less successful problem solvers. For
example. cross-national research on mathematical problem solving reveals
that American children are more likely than Japanese children to engage in
short-cut approaches to story problems, and that instruction in U.S. schools
is more likely than instruction in Japanese schools to emphasize computing
correct numerical ans'>'-'ers at the expense of understanding the problem
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(Stevenson & Stigler, 1992; Stigler et al.. 1990). Similarly. research on ex
pert/novice differences also reveals that novices are more likely to focus on
computing a quantitative answer to a story problem (such as in physics),
whereas experts are more likely initially to rely on a qualitative underS1..1nding
of the problem before seeking a solution in quantitative terms (Chi et al .•
1988; Smith, 1991; Sternberg & Frensch, 1991).

An advantage of the direct translation strategy is thaI it makes minimal
demands on memory. and it does nol depend on extensive knowledge of
problem types. An important disadvantage is that it frequently leads to in
correct answers (Hegarty et aI., 1992; lewis & Mayer, 1987; Mayer et aL,
1992; Vcrschaffel. De Corte. & Pauwels. 1992).

Problem Model Strategy. In contrast, the problem model strategy con
sists of constructing a qualilative understanding of the problem situation
before attempting to carry out arithmetic computations. In the case of the
Christine problem. for example. the problem solver begins by seeking to
construct an internal representation of the individual statements in the prob
lem-such as that the amount borrowed is a specified amount, the interest rate
is a specified amount. and the amount owed is unknown. Also. the problem
solver seeks to understand the general situation described in the problem-----a
person borrowed II certain amount ofmoney (i.e., BORROWED AMOUNn.
incurs a certain amOUnl of interest (i.e.. INTEREST AMOUNT). and must
repay a total (i.e.• TOTAL AMOUNT) consisting of the sum of the borrowed
amount and the interest amount. Then the problem solver constructs II plan
for solving the problem. such as first determining the interest amount (i.e.• by
multiplying .12 and 850) and then determining the total amount (i.e., by adding
this product and 850). These three component~local understanding of
problem statements, global understanding of the problem situation, and
construction of a solution plan-<:onstitute three major components in the
process of mathematical problem solving (Mayer, 1985. 1992).

A Closer Look at the Comprehension Process

When a problem solver is confronted with a mathematical problem. how does
the problem solver figure out what todo?ln this section. we examine in more
detail each of the three core components in thecomprehension pr~s~trans
lation. integration, and planning. The role of these component processes in
each of the two kinds ofcomprehension strategies is summarized in Fig. 2.3.

COllslnlctiotl of the Text Base. The first step is to represent each state
ment in the problem--a translation process that we assume is identical for both
direct translation and problem model strategies. As in most theories of text
comprehension (Just & Carpenter, 1987; Perrig & Kintsch. 1985; van Dijk &
Kintsch. 1983; Weaver & Kintsch, 1992), we assume that the text in a
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Olrcd T~lUIalion SlrllttlY ProbIvn Moot! SlnttU

TratlSlallnl

Illltl~tl"C

Planninl

EI«Utlnl

Update tUlbase

Select numbers
and ke words

~velOP 5OIUlion plan

Eucule wlulion plan

Update lutbase

ConJtnlCl sJiualion
mold

Develop wlution plan

Execule iIOlulion plan

FIG. 2.3. Cognitive procc:s§ts in the direct translation and problem modtl
Slralegic:s.

mathemalics problem is processed in increments. At each increment. we
assume that the problem solver reads a statement; that is, a clause or sentence
expressing a piece of information about one of the variables or values in the
problem. In constructing a text base, the problem solver must repn...sent the
propositional content ofthis statement and connect it with other information
in his or her current representation of the problem.

In the process of representing each statement, the problem solver may
use knowledge of types of statements that occur in mathematics problems.
which have been analyzed formally by Mayer (1981). These include assign
ments. which express a value for a certain variable: relations. which express
the quantitative relation between two variables: and questions. which express
that the value of a certain variable is unknown. For example. the butter
problem cited in Fig. 2.2 can be analyzed into two assignments. one relation.
and a question:

«equals) BUITER AT LUCKY..65)
«equals) BUITER AT LUCKY (minus) BUITER AT VONS, .02)
«equals) NUMBER OF BUlTER STICKS, 4)
«equals) TOTAL COST. unknown)

Units of measure and scale conversion must also be encoded as pan of each
statement.

As the problem solver reads ovcr each new statement. he or she connects
it with the current text base by making referential connections. This process
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depends on computing coreference as specified in general models of text com
prehension (Clark. 1969; Ehrlich & Rayner, 1983). For example. in the bulter
problem, the problem solver must recognize thaI "this" in the second sentence
refers to the same object as "butler al Lucky" in the first sentence, and that
"Slicks of butler" in tbe third sentence refers 10 "slick" in the first and second
sentences. In summary. the primary task of the problem solver is (0 translate
each statement from the problem into an internal propositional repre
sentation and to connect the propositions on basis on coreference into a
semantic network representation.

Construction of tlfe Problem Representation. The second step is the
construction of a coherent representation of the problem---an integration
process thai we assume is quite different in the direct translation and problem
model strategies. We propose that the problem solver cycles between this
process and the process of constructing a text base several times while reading
a problem. Thai is, we propose that as a problem solver reads each new
statement of the problem, he orshe first updates the text base and then updates
the problem representation (Kintsch & Greeno, 1985; van Dijk & Kintsch,
1983). In the direct translation strategy, the integration process involves
processing each proposition in the text base to determine whelher or not it
contains a key fact-that is, a number or a keyword such as "more," "less."
or "ahogether." We propose problem solvers delete nonessential information,
so that after several cycles this representation contains much less information
than the original text base-that is, only propositions that contain numbers
and keywords. For example. in the buller problem. the problem solver
abstracts 65 cents. 2 cents, less, how much, 4 sticks.

In contrast. consider the problem model strategy. We propose that prob
lem solvers using this approach construct a mental model of the situation
described in the problem using an object-eentered representation. As each
proposition is processed, the problem solver must detennine whether it refers
to a new object or an object that is already represented in his or her model.
The problem model has been conceptualized as a collection of objects ar·
ranged in sets (Riley & Greeno, 1988; Riley, Greeno. & Heller. 1983) or as
an array of objects along a number line where the position of an object
represents its value (Case & Okamoto. in press: lewis. 1989; lewis & Nalhan,
1991). We use the number line format here because it is more appropriate
for the large quantities described in our example problems.

For example. in the butter problem. the first statement mentions one quan·
tity-the price of a stick of butter at Lucky. When this is read. the problem
solver might construct a representation of a number line with a symbol for
Lucky at 65 on the number line. The second statement adds a second quan·
tity-the price of a stick of butter at Vons. which is 2 cents more than the
price at Lucky. so the problem solver must add a symbol for Vons 2 units
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to the right of Lucky on the number line. Therefore, the problem model
consists of two obje<:ts, Lucky and Vons (representing the price of a stick
of bulter at these stores), with their relation represented by their relative
positions on the number line. When the third sentence is processed. the prob
lem solver must nole that object in question is the cost of 4 sticks at Vons-so
the symbol for Vons on the number line is so marked.

In sununary, people who construcl a problem model change the format
of their representation from a proposition-based to an object-based repre
selllalion and elaborate their representation at this stage of problem compre
hension. In contrast, people who use the direct translation approach construct
a more impoverished representation at this stage; that is. a representation
that contains less infOmlation than the initial text base.

Construction ofSolution Pia". Once the problem solver has represented
the information in the problem, the problem solver is ready to plan the
arithmetic computations necessary to solve the problem. A problem solver
using the direct translation strategy must base the plan on the numbers and
keywords that have been identified in the problem statement-"65," "2."
and "less" suggest that the first step of the plan is to subtract 2 from 65
because "'less" primes subtraction. and "how much" and "4" suggest that
the second stage is to multiply the result by 4 because "how much" primes
mulliplication. The plan can be expressed as: (65 - 2) x 4 = _

In contrast, a problem solver using the problem model strategy has a
richer representation on which to base a solution plan. For example, the
relative position of Vons and Lucky on the number line indicates that to
detennine the value of a stick of butter at Vons one must add because Vons
is to the right of Lucky. This representation allows the problem solver to
develop a plan that can be expressed as (65+ 2) x4 =__. Anotherimponant
function ohhe problem model represent.3.tion is that it is an aid to monitoring
the solution process. For eX.3.mple, if the problem solver computes a value
for the price at Vons that is less than 65 cents, he or she knows it is wrong
because the price is greater than at Lucky.

In summary, we propose that a problem solver may use one of two lypes
of strategies for representing :1 word problem-a direct translation strategy
or a problem model strategy. The direct translation strategy consists of a
translation process in which a problem solver mentally represents each stale
ment in the word problem as a semantic network. and an inlegration process
in which a problem solver extracts numbers and key words that prime arilh
metic operations to be performed on them. The resulting solution plan is
likely to be incorrect for problems in which the key words prime incorrecl
operations (e.g., when the problem contains "less" butthe required operation
is addition). In contrast, the problem model approach consists of the same
translation process but a different integration process in which the problem
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solver seeks to mentally construct a model of the situation described in the
problem. The resulting solution plan is likely to be correct even for problems
in which the key words prime incorrect operations, such as the bUller prob
lem. We expect the direct translation strategy to be the choice of unsuccessful
problem solvers and the problem model strategy to be preferred by successful
problem solvers.

RESEARCHQN MATHEMATICAL UNDERSTANDING

In this section, we explore the two-strategy theory of problem representation
by examining how experienced students process arithmetic word problems.
In particular. we draw on a program of research carried out at the University
ofCaJifornia, Santa Barbara, over the past 15 years that examines how peo
ple read, remember. and learn to solve word problems.

Reading Word Problems

In one strand of research (Hegarty et al., 1992; Hegarty et al.. 1995), we
examined Ihe eye fixations of high school and college students as they read
word problems. For ex.ample. Fig. 2.2 shows how a typical problem was
presemed on a compUler screen. The student's task was to tell how to solve
the problem-such as S<1yiog "add 2to 65 and then multiply by 4." Therefore,
this task requires the cognitive processes of lranslating, integrating, and plan
ning, but does nol requi re executing. An eye-tracking system monitored and
recorded the studem's eye fixations. and a video camera recorded the stu
dent's answer.

Each student saw a mixture of problems. including some consistent and
some inconsistent language problems. as shown in Fig. 2.4. These are two
step problems in which the lirst step requires addition or subtraction and
the second step involves multiplication. In consistent language problems. the
required operation for the first step is primed by the key word (e.g.. the re
quired operation was subtraction when the key word was "less," or the re
quired operation was addition when the key word was "more"). In incon
sistem language problems. the required operation for the first step was the
reverse of the operation primed by the key word (e.g.. the required operation
was addition when the key word was "less," or the required operation was
subtraction when the key word was ··more"). Some students (who we labeled
as unsuccessful) made many errors in planning solutions to the problems.
whereas others (who we labeled as successful) did not make many errors.
The most common error was a reversal error in which a student used the
arithmetic operation primed by the key word when the opposite operation
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Co.wenl-I..-
At LlICky, butter com 63 cents per stick.
BUlter III VOM CQStS 2 cenls less per slick than butter al Lucky.
If you need to buy 4 Slicks of bUller.
how mllCh will you pay III Vons?

COlliistml-.\IIn
AI Lucky, buner rusts 6S cems per slick.
BUller ill Vons costs 2 cenlS more per stick than butler al Lucky.
If you need to buy 4 Slicks of buller.
how much will you pay 011 Vons?

l~nt-1Ass

Al Lucky, bUller costs 6S cenls per Slick.
This is 2 cents less per stick than bUller at Vons.
If you need 10 buy 4 Slicks of buner,
IIow much will you pay at Vons?

Ineoml5tenl-More
At Lucky. buner costs 6S ceDIs per stick.
This is 2 cenlS more per Slick Ihan butler al Vons.
If you need 10 buy 4 sticks of bUller,
how much will you pay at Vons?

FIG, 2.4. Consistent and inconsistent lllngullgt versi(ms of lite bUller
problem.

41

was required. such as saying "subtract 2 from 65 and multiply by 4" for the
ve~ion of the buller problem in Fig. 2.2.

Prediction 1: Successful Problem Solvers Spend More Time Rending
Inconsistent Problems Thnn Rending COnsistent Lnngutlge Problems.
Research on reading allows us 10 examine the impact of the direct translation
and problem model approaches on understanding word problems. If students
use a problem model approach. then inconsistent problems will require more
time 10 read than will consistent problems. This is so because constructing
a problem model for an inconsistent problem involves mentally reversing
the relational term, whereas constructing a problem model for a consistent
problem does not include this extra step. For example, for Ihe inconsistent
problem in Fig. 2.2, the second quantity (denoted by "VOIIS") musl be placed
to the right of Lucky on the number line. although the key word "less"
suggests placing it to the left of Lucky. In contrast, if students use a direci
translation approach Ihcn inconsistent problems and consistcnt problems
will require approximately the same amount of lime to read because the
process of extracting key words and numbers is equivalent for consistent
and inconsistent problems. This panem is predicted because successful prob
lem solvers-that is, Ihose who dcvise a correct solution plan-presumably
use a problem model approach.
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The results of a series of studies revealed thai. as expected. successful
problem solvers required more time to read inconsistent language problems
than to read consistent language problems. We interpret this result to suggest
that successful engaged in more cognitive processing for inconsistent !.han
for consistent problems.

How was this extra time spent? To answer this question, we examined
the eye-fixation data for consistent and inconsistent versions o[two-step com
pare problems such as the butter problem presented in Fig. 2.4. We defined
the translation phase as the lime il look to read from the first line 10 the
end of the fourth line--that is. the time 10 initially read the problem over
from start to finish. We defined the integration and planning phase as the
time it took from that point to when the student began to verbally state the
answer-that is. the time to reread parts of the problem. Interestjngly, suc*
cessful students devoted approximately the same amount of time to the trans
lation phase for both consistent and·inconsistent problems-about 10 sec
onds; however, they went on to spend considerably more time rereading parts
of inconsistent problems than rereading parts of consistent problems.

If the extra time is used to build a situation model of the problem, then
the extra time should be devoted disproportionately to rereading the variable
names and key terms-such as "Lucky" in line 1. "Vons" (or "Lucky") in
line 2. "more" (or "less") in line 2, and "Vons" in line 4. This is the infor*
mation that the reader needs in order to determine, for e'lumple. at which
store butter costs more-a key component in building a situation model. If
the extra time is used mainly to grab numbers, Ihen students are more likely
to reread the numbers in the problem-"6S cents" in line I, "2 cents" in line
2, and "4 Slicks" in line 3. A comparison of the number of times successful
problem solvers reread each word in conSistent and in inconsistent problems
reveals signific:mt differences for only four groups of words-for the variable
name in line L [he variable name in line 2, "less" (or "more") in line 2, and
the variable name in line 4. Overall, problems solvers reread these items more
than twice as many times when then were in inconsistent problems than when
they were in consistent problems. These results suggesl thaI successful prob*
lem solvers arc sensitive to the need to devote extra time to inconsistent
language problems, and that this extra time is spent constructing a qualitative
rather than a quantitative representation of the problem.

Prediction 2: This Pattern of Longer Rending Time for Inconsistent
TIfan for Consistent Problems Will Be Present for Successful Problem
Solvers but not for Unsuccessful Problem Solvers. A second prediction
is that this pattern of longer reading time for inconsistent than for consistent
problems will be present for successful problem solvers-who presumably
are more likely than unsuccessful problem solvers to use a problem model
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approach on both types of problems-but not for unsuccessful problem
solvers-who presumably are more likely than successful problem solvers to
use a direct translation approach on both types of problems. This prediction
follows from the contention that students using a problem model strategy
(Le.. the method of choice of successful problem solvers) must engage in
more cognitive processing for inconsistent than for consistent problems.
whereas students using a direct translation strategy (i.e., the method of choice
of unsuccessful problem solvers) need to devote the same amount of proc
essing to both types of problems.

In several studies. we compared the eye-fixation patterns of unsuccessful
and successful problem solvers (Hegany et a!.. 1992: Hegarty. Mayer. &
Monk. 1995). In a typical study. we defined a successful problem solver as
someone who made 0 or I errors on a set of 16 word problems: we defined
an unsuccessful problem as someone who made 4 or more errors on a set
of 16 word problems. We expected unsuccessful problem solvers to be more
likely than successful problem solvers to use a direct translation approach
that is. mainly grabbing numbers and key words--whereas we expected suc
cessful problem solvers to be more likely than unsuccessful problem solvers
to use a problem model approach-that is. constructing a model of the situ·
ation described in the problem statement.

The results indicated Ihal. as predicted. successful problem solvers spent
more time on inconsistent than on consistent problems whereas unsuccessful
problem solvers spent about the same amount of time on both types ofprob
lems. A further analysis of the students' eye fixations revealed Ihal. overall.
unsuccessful problem solvers made more regressions (i.e.• reread pariS of the
problem more times) than successful problem solvers. suggesting that they
were struggling more to construct problem representations than were suc
cessful problem solvers. Our main focus, however. is on the type of words
that successful and unsuccessful problem solvers reread as they struggled to
represent problems. If unsuccessful problem solvers arc using a direct trans
lation approach. we expect them to devote proportionately more anentiOIl
to numbers (e.g.. 65. 2. and 4 in the butter problem). In contrast. if successful
problem solvers are using a problem model approach. we expect them to
devote ~I:Hively more altenlion 10 variable n;lnlCS (e.g.. Lucky and Vons in
the butter problem).

As expected. successful problem solvers devoted a significantly higher per
centage of their rereadings 10 variable names and a lower percentage of reo
readings to numbers than did unsuccessful problem solvers. II apears that
unsuccessful problem solvers work hard to represent the problems. but spend
their additional eITort disproportionately in rereading numbers rather than
in rereading variable names. This focus on numbers suggests that unsuccess
ful problem solvers tend to use a dircct translation strategy. In contrast,



44 MAYER AND HEGARTY

successful problem solvers need to devote less extra processing to problems
than do unsuccessful problem solvers, but when they are more balanced than
the unsuccessful problem solvers in devoting their atlention to both variable
naTllC5 and numbers. This more balanced focus on words and numbers is
consistent with the problem model strategy.

The picture that emerges from research on reading mathematics problems
is that there is morc to successful problem representation than reading every
word of the problem. OUf research suggeSlS thai although successful and
unsuccessful problem solvers both showed evidence of engaging in a trans
lation process, only successful problem solvers followed up wilh an integra
tion process resuhing in the cons!ruction of a silUalion model. These results
are consistent with the claim that successful problem solvers are model build
ers who seek to understand the situation being described in the problem
stalement. In contrast, unsuccessful problem solvers appear to be number
grabbers who e:(tral:t numbers and perform arithmetil: operations primed
by keywords in the problem statement.

Remembering Word Problems

An examination of recall protocols provides a second useful approach to
the study of mathematical understanding (Hegarty et aI., 1995; Mayer, 1982).
In our research. we asked students to read a series of arithmelic word prob
lems. For each problem. students were assigned to treatment groups that
required tht:m either to write down the key information, draw a picture,
construct a diagram, or compute an answer. Then they were given memory
tests such as cued recall and recognition.

Mayer (1981) has shown that word problems consist of assignment state
ments and relational statements. Assignment statements specify a numerical
value for a variable, such as "AI Lucky. bultercosts 65 cents per stick." In this
case, the value is 65 and the variable is the cost (in cents) per stick at Vons. The
assignment can be expressed as LUCKY = 65. A relational statement expresses
the quantitative relation between two variables sUl:h as "This is two cents less
per stick than butter at Vons." In this case, the relation can be expressed asan
equation. LUCKY", 2+ VONS, where LUCKY is the cOSt (in cents) per stick
at Lucky and VONS is Ihe cOSt (in cents) per stick at Vons.

Predictioll 3: Studetlts Milke More Errors in Remembering Relotionill
Stiltements Thall in RememberiJlg Assignment Statements, The construc
tion of a situation model requires special attention be paid to relations among
the variables, particularly as expressed in the relational statements. lbere
fore, if a student uses a problem model approach, then the student should
remember the actual relation between the two variables described in a rela-
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lional statement. For example. the crucial relation in the relational statement
in the butter problem is that buller at Vons costs more than butler at Lucky.
In contrast, if a student uses a direct translation strategy. a primary goal is
to assign values to variables. Therefore. the student is less likely 10 correctly
remember relational statements. It follows that when students make errors
in remembering word problems. they will be morc likely to make errors in
remembering relations than assignments.

In order to test this prediction. we asked college students to read and
later to recall a series of eight problems. The student had 2 minutes to read
each problem. and was asked to draw a picture. write an equation, or sum
marize the main information. As predicted. students made 3 times as many
errors in recalling relational statements than in recalling assignment state
ments that had appeared in the problems. Furthermore, an analysis of errors
revealed 20 cases in which students remembered a relation as an assignment.
but only one casc in which an assignment was recalled as a relation. For
example, one student changed the relational statement "The steamer's engine
drives in still water at a rate of 12 miles per hour more than the rate the
current," to an assignment statement. "its engines push the boat at 12 mph
in still water." These results suggest that students have more difficulty in
representing. storing, or retrieving relations (or any combination thereof)
than assignments. and point 10 the difficulty some students may face in using
a problem model approach on problems involving relational statements.

Prediction 4: Successful Problem Solvers Are More Likely to Remember
ti,e Relation Between Two Variables and uss Likely to Remember ti,e
&act Wording a/the Relational Term 17lnn Are ti,e Unsllccessful Problem
Solvers. We can make a more specific prediction concerning Ihe retention
performance of unsuccessful and successful problem solvers. We define suc
cessful problem solvers as those who usc a correct solution plan in solving
a sel of word problems and unsuccessful problems as those who make errors
in solving a SCI of word problems. If unsuccessful students usc a direct
translation approach. we expectlhem 10 remember the key word (e.g.. '"Iess"
or "more"). but nOlnccessarily to remember the correct relations among the
variables (e.g., that butter cO~(~ more at Vons th.m Lucky). especially when
the key word is inconsistent with the correct relation. If successful students
use a problem model approach, we expect them to remember the correct
relations among the variables. but not necessarily to remember the exact
wording of the key word.

To lest this prediclion. we asked college students to solve a series of 12
word problems that contained four target problems. which were two-step
problems with relational statements such as the butter problem. Then we
asked students (0 recall the problems and to take a recognition tcst. In scoring
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the retention perfonnance, we scored a response as a semantic error if the
student remembered the key word (i.e., "less"), hut not the actual relation
between the variables (e.g.• bUller costs less al Lucky than al Vans or butter
costs more at Vans than al Lucky). For example. ifone oflhe target problems
was the version of the butter problem presented al the top of Fig. 2.5, then
a sclTh1ntic error involves recalling or recognizing the middle problem in Fig.
2.5. In this case. the student remembers the wording of the relational term
in lhe relational statement (i.e., "Iess") hut changes the meaning oflhe prob
lem. Similarly, we scored a response as a literal error if the student remem
bered the wrong keyword (e.g.• "more" instead of "less") hut retained the
correct meaning of the problem, such in the bottom problem in Fig. 2.5. In
Ihis case. the relational statement is reworded but describes the same situation
as the original.

As expected. unsuccessful problem solvers were more likely than successful
problem solvers to make semantic errors in recalling and recognizing the
problems. whereas successful problem solvers were more likely than unsuc·
cessful problem solvers 10 make literal errors in recalling and recognizing the
problems. This pattern is consistent with the idea thai unsuccessful problem
solvers are more likely Ihan successful problem solvers 10 use a direct
translation strategy-thereby focusing on wording rather than on meaning.
Successful problem solvers. however. are more likely than unsuccessful prob
lem solvers 10 use a problem model strategy for understanding the problems--
thereby focusing on the meaning of the situation rather than on wording.

Overall. research on remembering word problems pinpoints relational
statements as a major source of difficulty, with direct translation strategy
users more likely than problem model slrategy users to make semantic errors
in remembering the relations between variables.

Orlgl... t "roblem
Al Lucky. bUller COSIS 6S ~lIlS per Slick.
This is 2 celllS len per stick lhan butter il Vons.
If you need to buy 4 Slicks of butler.
how much will you pay at at Vons?

Sco",arwk: Err....
At Lucky. butter cos~ 65 cents per stick.
BUllet al Vons COStS 2 cents less per stick than butter at Lucky.
If you need to buy 4 Slicks of bUller.
Itow much will )'OU pay at at Vons?

Ute..' Error
At Lucky. bUller costs 6S cents per Slick.
BUller il VOIIS costs 2 cenlS more per Slick than butter al Lucky.
If you need 10 buy 4 sticks or butter.
how much will you pay at at Vons?

riG. 2.5, Semantic and Iiteml errors in rememberinillhe bUller problem.
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Learning to Solve Word Problems
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The foregoing analyses provide evidence for two dislinct strategies that stu
dents use for understanding word problems-a direct translation strategy
based on a superficial analysis of the problem statement and a problem model
strategy based on the construction of a situation model of the problem state
ment. Unfortunately. a review of mathematics textbooks shows that most
of the word problems can be solved by using a direct translation st.rategy
and that in, some cases, a direct translation strategy is explicitly taught (Briars
& Larkin, 1984). For example. when a set of exercises contains problems
that can all be solved using exactly the same computational procedure, stu
dents can be successful by using a direct translation slrategy and do not
need to use a problem model strategy. In this case, there is no need to expend
the effort to understand the meaning of the problem because the problem
can easily be solved by extracting the numbers in the problem statement and
using key words to determine the mathematical operations that should be
applied to them.

Prediction 5: Students Make More Errors on Solving Inconsistent Prob
lems Than on Solving Consistent Problems. If many students become
accustomed to using a direct translation strategy during their K-12 education
in mathematics, we would expect them to perform errorlessly on problems
that can be correctly solved using direct translation (i.e.. consistent language
problems). but to make errors on problems requiring the problem model
strategy (i.e., inconsistent language problems). Therefore. we predict that
college students will be more likely to make errors in solving inconsistent
than on consistent problems. In particular, we predict that Ihe type of errors
students will make on inconsistent problems involves carrying out the op
eration primed by the key word in the problem. We refer 10 this as a re~er5al

error because the problem solver adds whcn the correct operation is to
subtract or subtracts when the correct operation is to add.

To lest this prediction, we examined the errors that college students made
as they solved a series of word problems containing both consistent and
inconsbtenl lunguage problems (Lewis & Mayer, 1987). huerel>tingly, stu
dents made errors on about 10";'1 of Ihe problems and thc ovemhelming
majority oferrors were reversal errors rather than computational errors. This
finding helps to pinpointlhe locus of difficulties for studeills who presumably
have learned how to solve word problems: They have more difficulty in rep
resenting problems than in carrying out arithmetic procedures; (hat is, lhey
are more likely to make errors in problem understanding than in Solulion
execution. As predicted, sludents made almost no reversal errors on consis
tent language problems but produced reversal errors on many of the incon
sislent language problems. Similarly, in follow-up studies, students were 5
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1010 times more likely 10 make reversal errors on inconsislenllhan on con
sistent language problems (Hegarty el a1., 1992; Lewis. 1987).

Prediction 6: Teaching Students How to Represent Problems Reduces
Problem-Solving ErTOrs. These results provide evidence that students who
have received many years of mathematics education often fail 10 correctly
understand word problems--as indicated by failures to understand the re
lations among variables in inconsistent language problems. A straightfor
ward instructional implication of this line of rese..'l.rch is that siudents should
be taught how 10 represent word problems-particularly, relational stale
ments in word problems. If students who make reversal errors on incoRsistem
problems tend 10 use a direct translalion strategy. then instruction in how
to use a problem model stralegy should reduce problem-solving errors.

This prediction was lested in an instructional study by Lewis (1989). Col
lege students took a prelest conlaining both consistent and inconsistent lan
guage problems, and approximately one-third showed a pattcrn of making
many errors on inconsistent but not on consistenl language problems. These
students, whose error paltern suggested they tended to sometimes use a direct
translUlion slrategy. were given inslruclion in how 10 represent word prob
lems within thc context of a number line diagram. A typical instructional
worksheet is shown in Fig. 2.6. In this example. studenls first translated the
first sentence by placing Megan's savings on the number line and then trans
lated the second line by placing James to the right or left of Megan's savings.
Oncc thc student had determined thc correct qualitative relation between
Megan's savings and James' savings. the next step was 10 detennine the
amount of the difference and finally to delermine the required arithmetic
operation for finding Ihe value of James' savings. The use of Ihe number
line was intended to help sludenls to learn how 10 build a situation model
of Ihe problem.

What is the effect of training aimed at helping direct translalion stratcgy
users to become problem model strategy users? Students who received prob
Icm model stratcgy training showed large pretest-to-posttest reductions in
problcm-solvingerrors on word problems, whereas comparison students who
did not receive problem model strategy tmining did nOI show large reduc
tions. This resull provides converging evidence that a major source of prob
lem solving difficulty is problem representation, and that problem repre
sentation strategies can be laught.

Overall. the picture that emerges from research on learning to solve word
problems is that many students fail to learn how to represent word problems
during their K-12 mathematics education; thai is. they seem to have learned
to rely on a direct translation strategy for at leasl some problems. However,
when unsuccessful problem solvers learn how 10 use a problem model Slralegy.
their problem-solving errors arc dramatically reduced. suggesting thai their
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Sampic f'robll'R1
Mcgan ha~ s.a~«I $420 flY ~ocati<:t1. She has sa~«I 1/5 as much as Jamts has $B,·cd. James has
been !i.ll~ing flY his vacalion for 6 months. How mIlCh has hc sa~C1I cach month?
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DIllgl"llllllninll Stcp$
l. Draw a number line alld placr the variable and the valuc from the asslgnrrlCll1 SlatCmtN In fhe
middlc of the linc.

$420
I

Megan

2. Tentatively pl~ the unknown ~ariable (James' savingsl OTI OTIc side of the middle.

James

$420
I

Megan

3. Compare: your n:presell1ation with the information in the n:lati<:t1 statement. checkinllto sec if
your n:prl'semafion alln:cs with til(- ""'anini of the n:latlon Slatement. If It docs. then y"" (an
c01tinuc. If 1lOI. then try apin with the other side.

$420
---·---------il-------+I---

James Megan James

4. Translate your n:prcselllati01 into an arithmetic opmtion. If the unknown variable is to fhe
niht of the center. then thc DP\'r.ll.ion is an in=asc. such as additi01 Of muliiplicalion. If the
unkno....n ~ariable is to the left of the center. thm lhe opcnuion I~ a dl"crca.sc. such as subtraction
or division.

.INCREASE......
$420

-~-,-------+I-------+I---
James MCiall James

t'IG. 2.6. A ""orksbeet for Ieamin g to oonstruct anumber line represcntat ion
of a ....ord problem.

problem representation strategies are a major detenninanl of their problem
solving performance.

DISCUSSION

A review of a series of research studies on reading of word problems (Hegarty
et aI., 1992; Hegarty et al., 1995), remembering word problems (Hegarty el
al., 1995; Mayer. 1982). and learning to solve word problems (Lewis, 1989;
Lewis & Mayer. 1987) yields silt major pieces of evidence concerning our
two-strategy theory of problem understanding:

I. Consistency effect ill reading timefor word problems. Successful students
take more time 10 read inconsistent problems than to read consistent prob-
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lems. and spend Ihat exira time by rereading variable names more in incon
sistent than in consistent problems. This evidence supports the contention
that successful students use a problem model strategy.

2. Expertise effect in reading lime for word problems. Unsuccessful stu
dents focus a larger proportion of their rereading on numbers than do suc
cessful students, whereas successful students focus a larger proportion of
their rereading on variable names than do unsuccessful students. This evi
dence supports the contention thai unsuccessful students are more likely
than successful students to use a direct translation strategy whereas successful
students are more likely than unsuccessful students to use a problem model
strategy.

3. Statement type effecl in remembering word problems. In recalling word
problems. students make more errors in remembering relational statements
than in remembering assignment statements. and are more likely to change
a relational statement into an assignment statement Ihan to change an as
signment statement into a relational statement This evidence suppons the
contention that many students emerge from high school with the tendency
to use a direct translation strategy rather than a problem model stTategy for
understanding word problems.

4. Expertise effect in r('men/bering word problems. In recalling and recog
nizing relational statements in word problems. unsuccessful students are
more likely to remember the exact wording of the relational key word and
less likely to remember the correct relation between variables in the situation
than are successful studems. This evidence supports Ihe contention thai
unsuccessful students are more likely than successful students to use a direct
translation strategy. whereas successful studems are more likely than unsuc
cessful students 10 use a problem model stralegy.

5. Consistency effect in learning to soll'e problems. Unsuccessful students
make more errors on inconsistent than on consistent problems, and most
errors are reversal errors rather than computational errors. This evidence
supports the contention that many students emerge from high school with
the tendellcy to use a direct translation strategy rather than a problem model
strategy for understanding word problems.

6. Instructional effect in learning 10 sohe problems. Unsuccessful students
can become successful students when they are given direct instruction in how
to build a situation model. This evidence supports the contention that
unsuccessful students are more likely than unsucce,ssful students to use a
direct translation strategy. whereas successful students are more likely than
unsuccessful students to use a problem model strategy.

OveralL our program of research provides converging evidence that stu
dents often emerge from K-12 mathematics education with adequate prob
lem execution skills--that is. the ability to accurately carry oul arithmetic
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and algebraic procedures-but inadequate problem representation skills
that is. the ability to understand the meaning of word problems. In particular,
our research program has examined two distinct problem representation
strategies-a direct translation strategy. which is based on a superficial un~

derstanding of word problems. and a problem model strategy. which requires
mentally constructing a model of the situation described in the word problem.
We have developed a diagnostic measure of students' problem representation
strategies-namely, a pattern in which students make reversal errors on in
consistent but not on consistent problems (with no dilTerence in solution
times) indicates a direct translation strategy, whereas a pattern in which stu
dents take more time to solve inconsistent than consistent problems (with
no dilTerence in error rates) indicates a problem model strategy.

Furthennore, we have traced the source of problem-representation diffi
culty to relational stalements-as indicated by a pattern in which students
are far more likely to make errors in remembering relations. which express
the quantitative relation between two variables-than in remembering as·
signments. which express the value of a single variable. Students using a
direct translation strategy are more likely to remember the wording of the
key word in a relational statement than are slUdents using a problem model
approach, bUI students using a problem model approach are more likely to
remember the correct relation between variables in relational statement than
are students using a direct translation approach.

Finally. we have identified a major difference in the problem-repre
sentation strategies of successful and unsuccessful problem solvers: Successful
problem solvers tend to use a problem model strategy. whereas unsuccessful
problem solvers tend to use a direct translation strategy. However. when
direct translation strategy users (who are unsuccessful problem solvers) are
taught how to use a problem model strategy. their problem-solving errors
are largely eliminated (allowing them to become successful problem solvers).

In summary, our research on how students read. remember. and solve
word problems reveals that the source of difficulty in mathematical problem
solving is in problem representation rather than solution execution. the
source of difficulty in problem representation is in comprehending relational
statements rather than assignment statements. and the source of difficully
in understanding relational statements involves using a problem model stnH
egy rather than a direct translation strategy.
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When Erroneous Mathematical
Thinking Is Just as "Correct":
The Oxymoron of Rational Errors

Talia Ben·Zeev
Yale University

Students are inventive. When they reach a problem they do not know how
to solve, they create algorithms that get them unstuck. Often, these algo
rithms result in erroneous solutions. For example, in the process of learning
subtraction. students oflen commit the following smaller-from-Iarger "bug"
(VanLehn, 1983, 1986):

63
-29

46

Similarly. students learning add ilion of fractions orten erroneously add
the numerators and denominators of the fractions directly (Silver. 1986), as
follows:

I I 2-+-=-
3 2 5

The intriguing aspects of these and similar erroneous algorithms is that
they are often systematic and rule-based rather than random. They therefore
result in solutions termed rational errors (Ben-Zeev, 1995a). The term rational
has a very specific meaning. II refers to a process where a studem first induces
an incorrect rule and then proceeds to follow it "correctly" in a logically
consistent manner.

55
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Where do rational errors come from? Teachers do not instruct students
on how to create erroneous algorithms, yet rational errors appear time and
again in students' solutions to mathematics problems. One is forced to con·
clude that students create their own rules in the mathematical learning proc
ess. Aside from the students' own inventiveness, however, could the current
fonn of the mathematics instructional system inadvertently encourage the
production of students' rational errors as well? Could rational errors, in fact.
result in part from a school reality where children are simply learning too
well? In a paper entitled "When Good Teaching Leads to Bad Results: The
Disasters of 'Well-Taught' Mathematics Courses," Schoenfeld (1988) made
the point that instruction which teaches rote memorization leads to the for
mation of misconceptions.

This idea can be illustrated by the examples presented at the outset of
this chapter. Specifically, the question of interest is whether these errors have
been generated by students' overlearning of prior instruction. Students who
exhibit the smaller-from-larger bug simply subtract the smaller from the
larger digit on multicolumn subtraction problems, irrespective of the posi
tions of the digits. This kind of error may have been motivated by prior
instruction on singic-digit subtraction, where the student has always been
taught to subtrac.t the smaller from the larger number (negative numbers
are only introduced later on). In essence, the studem who commits the
smaller-from-Iarger bug is overgeneralizing from previous instructions.

In the addition of fractions example, students erroneously add the de
nominators and numerators of the fractions. Silver (1986) explained this error
by saying that students may extrapolate this erroneous algorithm from tra
ditional instruction on the representation of fractions. TeacheTh and text
books often represent fractions by using pie graphs. A "y~," for instance, is
taught as one piece of a two-piece pie. When it comes to performing addition,
a student may reason: "Well, if I have a y! then I have one piece of a two-piece
pie; I add a II). which is one piece of a three-piece pie: so I get two pieces
out of a total of five pieces altogether, which is :;'-,." nus addition error makes
sense given the fact that the pie representation of fractions is often taught
by rotc and that the student is searching for systematic rules that would get
him or her ·'unstuck."

There are even more extreme examples that show how students overlearn
from prior knowledge. For instance, in the domain of subtraction, VanLehn
(1986) showed that students who are laught how to borrow only on two
column subtraction problems may later decide that a borrowing action occurs
only in the units colunm of a multicolumn subtraction problem. Similarly,
Schoenfeld (1991) described a classroom where children learned subtraction
by solving only the following kind of problems: "n -? '" 111." where n > m.
Students in that classroom quickly learned to solve these problems by simply
subtracting m from n. Therefore, when students were presented with new
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types of problem. such as 7 = ? - 3, they erroneously answered "4. ,. Because
these kinds of subtraction errors are rule-based and systematic. they are ra
tional. even though they violate important principles of subtraction (e.g.,
noncommuta tivity).

Students construct their own algorithms in the face of and often in op
position to what the teacher intended them to do. However. students learn
.....ell what teachers instruct. Indeed. as was shown by the examples presented
earlier. students may learn "too well." and thus overgcneralize from the in
struction they receive. For instance. if a subtraction algorithm is taught by
rote, as a symbol-pushing routine. then it makes sense for the student to
subtract the smaller from the larger digit. irrespective of the digits' positions.
because subtracting the smaller from larger digit WllS always the case in sin
gle-digit subtraction. and furthennore. it appears to work.

The main argumem of this chapter, therefore, is that students' erroneous
mathematical thinking is "correct" in the sense that it follows systematic
rules. The erroneous rules. in tum, are based on procedures that have suc
cessfully worked in past problem-solving episodes. The procedures may have
been inadvertently taught in the classroom, or be the result of the student's
idiosyncratic approach. or an interaction of the two. If this argument is true.
then we should see examples where the same procedures that underlie correct
learning lead, under certain circumstances, to erroneous performance. This
chapter therefore focuses on four mechanisms that are hypothesized to un
derlie the correct acquisition of mathematical thinking, and points out the
conditions under which the mechanisms lead to the production of rational
errors. The mechanisms are induction from examples (Anderson, 1993; Bcn
Zeev, 1995a; Holland, Holyoak. Nisbett. & Thagard. 1986: Simon & Zhu,
1988: VanLehn, 1986), analogical thinking (Anderson & Thompson. 1989;
Gick & Holyoak. 1980, 1983; Novick. 1988; Novick & Holyoak. 1991).
schema-based thinking(Davis. 1982; Hinsley. Hayes. & Simon, 1977: Mayer.
1982. 1985; Riley. Greeno, & Heller. 1983; Ross. 1984). and. finally. corre·
lational thinking (Lewis & Anderson. 1985).

The inductive. analogical. schema-based, and correlational reasoning
mechanisms are overlapping rather than distinct. The main reason for ex.
amining each one scparaldy is that each mechanism has been the focus of
much research on cognition. in general, and mathematical thinking.. in par
ticular. For example. although learning by analogy is a special case of in
ductive learning. it has unique properties Ihat make it a worthwhile topic in
its own right.

Ellamining both the correct acquisition of mathematical thinking and the
conditions under which it leads to erroneous performance are not only im
portant from a theoretical point of view, but from an educational one as
well. In order to teach students how correctly to acquire a mathematical
skill, one needs access to the conditions under which students arc prone to
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make mistakes. This chapler therefore concludes by brieny presenting a new
taxonomy of r.uional errors in mathematical thinking called REASON (Ben
'h.x=v. 1995b). The new taxonomy integrates different error-production mecha
nisms across a wide mnge of mathematical domains.

THE INDUCTIVE NATURE OF MATHEMATICAL
n1INKING

There is agreement in the problem-solving literature thai students learn in
ductively by studying worked-out examples (Anderson, 1993; Simon & An
zai. 1979; Simon & Zhu. \988; VanLehn, 1986, 1990). Thai is, by following
the steps in a worked-oul example, students may generalize or abstract the
correct procedure for the given skill. especially when the eJt.'\mple is specific
rather Ihan general (Sweller & Cooper. 1985; VanLehn. 1990). and students
are able to generate explanations in the learning process (Chi. Bassok, Lewis,
Reimann, & Glaser, 1989; Chi & VanLehn, 1991; VanLehn, Jones, & Chi,
1992).

For instance. Simon and Zhu (1988) demonstrated that students who .....ere
given examples of the factorization of polynomials (e.g., )(7 + SX + 6 .. (X
+ 2)(X + 3». and were then asked to solve problems on their own (e.g., ,r
+ 9X + 18 = ( ) ( ». were able to abSlract Ihe underlying rules of factori·
zation correctly (i.e., )(7 + oX + b = (X + c)(X + d), where c • d = band c +
(I = 0). Simon and Zhu referred to this kind of learning process as "learning
by doing."

Studems' reliance on worked-out examples has been demonstrated in sev
eral studies. Specifically, when studems are given a choice between using
worked-out examples versus written instructions or explanations, students
tend overv.'helmingly to choose the former (Anderson, Farrell, & Saurers,
1984; leFevre & Dixon, 1986; Pirolli & Anderson, 1985). Furthermore, le
Fevre and Dixon found that when studems were given a conflicting instruc
tion sct (i.e., the written instructions asked subjects to perform a different
procedure than the example illustrated). the majority of students lended 10

follow the procedure illustrated by the worked-out example without realizing
that doing so was logically problematical.

The Circumstances Under Which Inductive Thinking
Leads to Rational Errors

Under particular condilions, the same inductive processes that facilitate cor·
rect learning may lead to erroneous performance as well. Indeed. evidence
from students' erroneous performance supports the idea that students over·
generalize or overspecialize solutions from familiar examples in a given do·
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main. This work has been advanced. most notably. by VanLehn (1986. 1990).
and further elaborated on by Ben-Zccv (I 995a).

Brown and VanLehn's (1980) repair theory argues that when students
reach a new problem they do not know how to solve, they do not quit. but
instead create repair algorithms that get them unstuck. Because these algo
rithms are oftentimes erroneous they result in "buggy" solutions (i.e.. solu
tions that contain one or more errors).

VanLehn (1986) showed that buggy algorithms are either overspecialized
or overgeneralized from worked-out examples students receive in the learning
process. For example. VanLehn offered the bug N-N-Causes-Borrow (pro
nounced N-minus-N-Causes Borrow) as an example of overgeneralization.
N-N-Causes-Borrow is illustrated as follows:

,
6'2

-32
210

The student who conunits the N-N-Causcs-Borrow bug has correctly
acquired the procedure of borrowing when T < 8. but not when T > B.
Problems arise. however, when the student faces a new problem where T =
B. The student then overgeneralizes the rule "borrow when T < 0" into the
rule "borrow when T S; B." Overall, VanLehn discovered that only 33% of
errors could by explained by induction from examples. I

8en-Zeev's (1995a) empirical and computational work on rational errors
in a new number system called NewAbacus provides stronger evidence for
the induction-from-examples hypothesis. Specifically. subjcets were first in
structed on NewAbacus number representation. Then subjects were divided
into different groups. where each group received an example of only a certain
part of the NewAbaeus addition algorithm. Finally. subjects were given a
range of both new and familiar NewAbacus addition problems 10 solve.

Results showed that subjects who received the same kind of worked-out
examples produced similar rational errors (i.e.• errors that are algorithmic
variations of one another). For instance. subjects who received examples of
how correctly to carry the digit 6. produced a variety of illegal carries of 6
in their solutions (for a brief tutorial on NewAbacus number representation
and addition. see Appendices A and B).

Computational modeling in LlSPshowed that subjects' rational errors were
modeled best by modifying the example procedure subjects received. For

'Vanuhn al ..... ton:.!lI("lC'd a /TIO!'t "Iibmll" analysis 0( lilt ind\l("\io<l hypothesis. ttc showed lhal
by modifying tht {'0Il'«1 pnxtdure ror subm"'lion (based on visual-numerical fCaiures or ,ubmll:liQn
problems such as lop-of.ltft-of. bollom·CQllaI·O. CIC.). he could uplain 85% 0( sllXknls' sublraclion
emn. As he himsclr admiued. bo"-eo.·er. lhe liberal apprmch docs nO! sbo.... a direct conneclion
bc\....ttn lhe workd-QUI examples to which Sludent~ art' cxpollCd during the learning process and the
r.l1ilJnill erron .'ludems produce:.
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example. illegal carries of the digit 6 were recreated computationally by
modifying the example condition thai illustrated how correctly to carry the
digit 6. From a purely syntactic viewpoint, subjects' perfonnance was reason
able; that is, subjects created rules based on the worked-out examples they
studied, and proceeded to follow these rules. Overall, Ben·Zeev found that 67%
of students' rational errors could be explained by the induction hypothesis.

The Inductive Nature of Mathematical Thinking:
A Short Summary

There is strong evidence that students abstract or generalize a procedure
from following the steps in a worked-out example. However. when either
the student's knowledge is rote or insufficient. a generalization may tum
into all overgeneralization. Therefore. the same induclive processes that lead
to correct mathematical thinking may also result in erroneous perfonnance.

A specific kind of inductive thinking-analogical thinking-has been a
particular focus of study on cognition in general and on mathematical think
ing in particular. Therefore, although analogical is a special case of inductive
thinking (see also Van.Lehn, 1990), it still merits its own discussion.

THE ANALOGICAL NATURE OF MATHEMATICAL
THINKING

In the process of solving a new problem (the "target") by analogy, the student
retrieves a similar problem thaI he or she has solved successfully in the pasl
(the "source"), and then proceeds 10 perfonn a mapping between the two
problems in order to reach a solution (Gentner, 1983; Holyoak & Thagard,
1989b). Finding an adequate source problem. however. is not a trivial task.
In order to use a problem as a source analog. one needs to recognize its
relevance to the target problem. Analogical reasoning becomes a challenging
task when the source and largel share an underlying "deep" similarity (i.e.,
they operate on the same principles) but have different surface featuTCS.

For example, Gick and Holyoak (1980, 1983) gave subjects Duncker's
(1945) tumor problem. This problem describes a patient with an inoperable
stomach tumor. Subjects are told that there are rays that can destroy the
tumor. but that a ray with sufficient intensity will destroy the healthy as well
as the unhealthy tissue. Subjects are then asked to think of a way to destroy
the tumor without causing damage to the healthy tissue that surrounds it.

In the experimental condition. subjects were first given a story analog
that had a different content (different surface struclure) but operated onlhe
same underlying principles (same deep structure). One version of the story
describes a general who is planning to conquer a fonress. The general's prob
lem is that the roads leading to the fonress are mined such thai they explode
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when a large group of soldiers passes over them. but do not explode if the
group is small. The general then decides to solve the problem of attacking
the fortress with a big enough amlY by sending a large number of small
troops along the different roads that lead to the fortress. and having them
meet at the fortress. This story provides an analogy for solving the tumor
problem: namely. that one needs to emit several weaker rays that together
converge on the tumor with the intensity of a single strong ray.

The results indicated that only 10% of control subjects who were given
the radiation problem alone .....ere able to solve the problem, versus 30% of
experimental subjects who had read the fortress problem. An interesting
point, however, is that a full 7(}'/o of experimental subjccts solved the problem
when given a hint (Q use the fortress problem as a source analog. Therefore,
analogical reasoning can greatly facilitate problem solving. However, when
the source and target have dissimilar surface structure one needs to make
the connection bet .....een them explicit.

The literature on problem solving by analogy is extremely relevant for
mathematical thinking as well. Importantly, Novick and Holyoak (1991)
showed that in agreement with Holland et al. (1986) and Holyoak and Thagard
(1989a). the end result of analogical mapping in the domain of mathematical
word problems is the induction of a schema, or a set of more abstract rules
that embodies the relationship between the source and target problems. Holyoak
and Thagard suggested that the resulting schema from fonning an analogy
between the fortress and radiation problems is a more general principle (i.e.,
converging small forces onto a single object results in a force with a sufficient
intensity to deSiroy the object without causing unnecessary harm). Similarly,
Novick and Holyoak sho....'ed that the result of mapping a mathematical word
problem (e.g., about a garden) onto a target problem (e,g" about a marching
band) resulted in a more general procedure (e.g.• the "LCM procedure").

The idea that analogical thinking results in an abstracted structure is also
expressed in the work of Anderson and colleagues (Anderson. 1993; Ander
son et aI., 1984: Anderson & Thompson, 1989; Pirolli & Anderson, 1985).
Specifically, Andel1ion and Thompson's (1989) theory of problem solving
by analogy (PUPS) argues that if the analogy between a source and target
problem proves successful. the declarlltive structure becomes pl"QCeduralized
into a set of production rules. This kind of proceduralized knowledge enables
more efficient problem solving in future episodes because it does not require
rebuilding a solution path from "scratch."

The Circumstances Under Which Analogical Thinking
Leads to Rational Errors

There are two primary origins of analogical failures: The first OCCUI1i when
the student uses an inadequate source problem: the second results from an
inadequate mapping between the source and target problems. For example,
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when a slUdent tries 10 solve a new mathematical problem. he or she may
be "reminded" of a familar problem that shares a similar surface but nOI
deep structure. The failure adequately to find a source problem is illustrated
by Ross (1984). Ross instructed college students on how to solve elementary
probability problems thai required diITerent principles (e.g., pennulation)
by using worked-out examples. Each example was associated with a particu
lar content (e.g.. involving dice). Ross found that when subjects were given
new problems to solve, they associated the given problem's content with the
particular probability principle with which it had appeared in the worked-out
example. In essence, subjects were reminded of the prior principle tbe content
was associated wilh and therefore decided erroneously to apply that principle
to the new problem.

The second kind of failure-namely, perfonning an inadequate map
ping-is illustrated in Anderson's (1989) work on the analogical origins of
errors. For instance, Anderson found that a common algebraic error that
students committed on the "algebra tutor" (i.e., an intelligent tutoring system
that is aimed toward teaching students a variety of algebra skills by using
the computer in an interactive way) involved erroneously factoring out a
common product. The tutor provided the following source problem:jaclQr(5
• 3X + 5 • 1) == 5(3X + I). The common error on :I target problem was
!actor(5 • 32 + 5) = 5(32 + 5). This error lies in an incorrect mapping, where
students mapped both the "5" and ;'1" in the source problem onto the "5"
in the target problem.

What then differentiates students who are able to perform adequate
mathematical analogies from those who cannot? The answer may lie in the
student's level of expertise. It appears that novices. in particular, are more
susceptible to making errors based on surface-structural similarities between
the source and the target problems, whereas experts P.1y more attention to
deep-structural patterns (Novick, 1988; Schoenfeld & Herrmann, 1982).

These novice--expert differences have also been demonstrated in other
learning domains, such as physics and chess (Chi et al., 1981; Simon & Chase,
1973). A related source of individual differences that is suggested to facilitate
analogical thinking is the ability to generate self-expJanations during the
problem-solving process (Chi et aI., 1989; VanLehn el al., 1992).

The Analogical Nature of Mathematical Thinking:
A Short Summary

In sum, analogical thinking can be characterized by (a) finding an appro
priate source analog for the target problem at hand, a task which is particu
larly hard for novices; (b) forming a mapping between the source and target
problems (although neither finding the appropriate source problem nor per
forming the adequate mapping is sufficient for performing an analogy, as
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suggested by Novick and Holyoak's (1991) discussion of "adaptation"); and
finally (c) proceduralizing Ihe mapping into a set of rules (Anderson. 1993;
Anderson & Thompson, 1989). or forming an abstract schema of the map
ping in order to use it in fUlure problem-solving events (Holland et al .. 1986;
Novick & Holyoak. 1991).

The last characteristic of problem solving suggests that the usc of schemata
is central to achieving successful problem solving. The chapter thus turns to
a detailed discussion of schema-based accounts of malhematical thinking.

THE SCHEMATIC NATURE OF MATIlEMATICAL
THINKlNG

In eognilion and memory, schemata have been postulated as useful mental
mechanisms that organize incoming information from the environment (Bart
lett. 1932; Piagel, 1965; Schank & Abelson, 1977). Schemata also playa
similarly important role in mathematical problem solving and thinking
(Mayer, 1985).

For example. in early arithmetical thinking. students rely on schemata in
order to solve word problems successfully. Greeno (1980) and Riley ct al.
(1983) suggested that children develop Ihree types of models for solving
arithmetic word problems. These types are change (Joe had some marbles.
Then Tom gave him 5 marbles. Now Joe has 8 marbles. How many marbles
did Joe have al the beginning?), combination (Joe has 3 marbles. Tom has 5
marbles. How many marbles do they have together1), and comparison (Joe has
3 marbles. Tom has 5 marbles more than Joe. How many marbles does Tom
have?).

Rileyel al. (1983) suggested thai children acquire a "part-whole" schema
in order to solve these kinds of arithmetic word problems successfuUy. For
inslance, in solving "change" problems such as "Joe had some marbles. Then
Tom gave him 5 marbles. Now Joe has 8 marbles. How many marbles did
Joe have al the beginning'!", children need 10 distinguish Ihe whole from its
parts. The pan-whole schema relales Joe's curr~nt number of marbles (the
whole) to the number of marbles Tom has given him (the known part) and
the number of marbles Joe had originally (the unknown part).

Furthermore, Resnick (1989) argued that the Jh1rt-whole schema has ori
gins in preschool experience. That is, she claims that preschool children de
velop a protoquanlitative part-whole schema from dealing wilh everyday
life events. For example, preschoolers know that two quantities added to
gether are bigger than anyone of Ihe quantilies alone. This knowledge allows
children to judge part~whole relationships, such as that a whole cake is larger
Ihan anyone of its slices.

Children in Ihe firsl few grad~sexperience more difficulties with comparison
problems nol because Ihey lack understanding of pari-whole relationships,
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but because comparison problems have a more complex semantic structure
than do other word problems. Following Hudson's (1983) work, Riley and
Greeno (1988) argued thai ifcomparison problems are worded differently, in
a language (0 which children can relate (Le., "How many x's won't get a y?"
instead of "How many more ..'s are there than y's?"), young children are able
to solve these problems earlier than was thought possible. Therefore, schema
construction of mathematical word problems involves more than the ability
to calculate correctly. and is affected by variables such as semantics and
language (see also Kintsch & Greeno, 1985).

In the domain of more advanced algebraic word problems, schemata play
an imponant role as well. Hinsleyet aJ. (1979) showed that college and high
school students could categorize mathematics problems into different types
by using information contained in the lim few words of the problem. For
example. problems that began with "A river steamer ..." cued retrieval of
the "river current" category of problems. In essence, particular features in
the problems were cueing a more generalized solution path.

Additional evidence for schema usc in solving mathematical word prob
lems comes from Mayer (1981, 1982). Mayer conducted an analysis of algebra
textbooks, and found that it was possible to categorize over 100 problem
types. In a subsequent study, Mayer presented subjects with different types
of word problems. The problems were either high or low frequency (where
frequency refers to how commonly the problem types were found in algebraic
textbooks). Mayer asked subjects to read and later to recall the problems.
He found Ihat when subjects tried to recall the low-frequency problems. they
often changed these problems' forms into the more familiar high-frequency
versions. This result lends support to the idea that high-frequency problems
were associated with more well-formed schemata. and therefore formed the
basis for the recall of less familiar problem types.

The Circumstances Under Which Schema-Based
Mathematical Thinking Leads to Rational Errors

As we have seen. schema-based thinking is a useful way oforganizing mathe
matical experiences. However. its advantages may turn into disadvantages
if the schema is applied rigidly. A striking example of this phenomenon comes
from Paige and Simon (1966). They gave studenls problems that were logi
cally impossible. For example:

The number of quarters a man has is seven times the number of dimes
he has. The value of the dimes exceeds the value of the quarters by two
dollars and fifty cents. How many has he of each coin?
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Paige and Simon found that some subjects aClUally proceeded to solve
the problem by forming the equations Q= 7D and .IOD= 2.5 + .25Q, without
realizing that doing so is nonsensical. In essence, subjects invoked a correct
schema and applied it in the wrong context. Note, ho.....ever, that a possible
critique of this slUdy is that students are usually given "true" rather than
purposefully misleading problems. Therefore, the students in the Paige and
Simon study may have doubted their own understanding instead of ques
tioning the validity of the problems themselves.

More recently, Davis (1982) sho.....ed that correct schemata (or frames, in
his terminology) that are used in an incorrect context lead to rational errors,
as .....ell. For instance, Davis argued that studenls create a correct "units or
label frame" for dealing with equalities such as "12 inches = I foot." He
suggested that inappropriate uses of this frame results in errors such as the
common "reversal error" (Rasnick & Clement, 1980), where students incor
rectly assertlhat "6S = P," instead of "6P:= S," on the following problem:

In a certain college there are 6 times as many students as professors. Write
an equation that formalizes the relation between the number of students
(S) and lhe number of professors (P).

The misuses of schemala in mathematical thinking are nicely illustrated
by Matz's (1982) work on students algebraic problem solving, as well. Matz
proposed that students construct underspecified schemata in the learning
process. For example, when students learn the distributive law of multipli
cation, A(B + C) = AB + AC, they fonn the schema: O(X d Y) = ax d OY.
This schema is underspecified because any operator can falsely fill in the
missing variable slots. Underspccification, in lum, gives rise to common
errors such as V<A + B) = a + fii.

Another area in which Matz identified misuse of schemata is in the fac
torization of polynomials. Students who learn how to factor polynomials
arc taught the following:

If
Then either:
Thus:

(X - n)(X - m) = 0
ex: - n) == 0 or (X - m) = 0
X",n or X=m

Matz argued that students may fail to recognize that the nand mare
incidental to the problem, and can thus be "variabilized," but that "0" is a
relevant feature which cannot be replaced by any other number. Students
thus proceed to abstract the following erroneous schema:

(-X - n)(X - m) = K
(X - n) = K or (X - m) = K
X=K+n or X=K+m
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The Schematic Nature of Mathematical Thinking:
A Short Summary
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Schema-based lhinking is a useful way for organizing mathematical experi
ences. Students can correctly use cues in a word problem (e.g., a car starts
a race at a certain lime and with a a:nain speed) 10 predict the type of
solution the problem will require (e.g., distance-rale-time). If applied rigidly
or without understanding, however, schemata can lead 10 erroneous per
formance as well. For example. Hinsley el al. (1977) showed thai a problem
can "fool" a student if its conleO! cues a cenain schema (e.g.• triangle) but
is really of a different type (e.g., distance-rale-time). Therefore, a correct
schema that is used in an incorrect context will lead to rational errors.

Furthermore, Schoenfeld (1988) pointed out that in learning to solve arith
metic problems that require subtraction, children are taught to look for cue
words that trigger the solution, such as "left" (e.g., how many apples are
left?). Therefore, many students proceed to look for cue words immediately,
without even properly reading the problem.

A group of schemata that has received panicular attention in the mathe
matical literalure is one which deals with perceived correlations between a
problem's features and the operator that is required for solving the problem.
These sch~mataare known as "operator schemata" (Lewis& Anderson, 1985).
I chose to devout the next section to these schemata because they (a) are an
important part of the student's repertoire of strategies. and (b) illustrate well
what I refer to as the rationality behind studenls' erroneous performance.

THE CORRELATIONAL NATURE
OF MATHEMATICAL nUNKlNG

Lewis and Anderson (1985) claimed that mathematics textbooks often con
tain correlations between specific features in problems and the operators that
are used for solving the problems. For instance, geometrical problems that
involve triangle congruence using the SAS (side-angle-side) postulate usually
have givens that involve two sides and an angle.

Because certain features in geometry problems tend to covary with a par
ticular algorithm or operator, it is adaptive for students 10 rely on these
feature-operator correlations in order to predict what strategy to use on a
given problem. In order to test the hypothesis that studenls use feature-op
crator correlations in that manner, Lewis and Anderson (1985) conducted
an experiment on geometrical problem solving that consisted of a learning
phase and a tcst phase. In the learning phase. subjects were divided into
active (i.e.. generating hypotheses and receiving feedback) and passive (i.e..
taking a pencil-and-paper test with no feedback) groups. Both groups re-
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ceived geometry problems that contained high correlations between a con
gruence postulate (e.g., SAS) and particular fe.."ltures of the problem (e.g.•
vertical angles). The test phase was the sanlc: for all subjects. They .....ere shown
congruence problems on a screen for a brief duration and were asked to
"guess" the correct postulate for solving the problem.

Results indicated that subjects who were active in the learning phase did
better than chance. That is, they were able to use the feature-operator cor
relations in order to guess the correct stralegy for solving the problems.

The Conditions Under Which Correlational Thinking
Leads to Rational Errors

If students think correlalionally. then they should also pick up on spurious
correlations that would lead them 10 commil errors. Even though the teacher
or texlbook may have designed an example to illustrate a panicular algorithm
or concept. the student may induce completely different rules than the te....chcr
had intended. A worked-out example or sct of examples may contain a spu
rious correlation between a particular feature and a specific algorithm, which
the student abstracts into an erroneous rule.

A particularly compelling example comes from a high school gcometrydass
where students were asked to matched polynomials to functions (Dugdale,
1993). Sludents in that class committed an error of confusing the y-intercept
of a parabola with its venex. Therefore, if the y-intercept was at -0.6 and the
vertex was at -I. students who commiued this error decided that the function
was of the form Y"".r- - I. Dugdale suggested thatlhe confusion between the
y-intercept and its vertex could be explained by the fact that in previous
examples students were given, the y-intercept had always coincided with the
vertex of the parabola. The students thereby created a functional invariance
between the y-intercept and the vertex, in an erroneous but rule-based manner.

Reliance on spurious correlations may be 'dtional. That is. if there is a high
correlation between a feature and an algorithm, then it is efficient to abstract
that correlation into a rule. This approach fits in with a Gibsonian framework.
Gibson (1979) has emphasized the role ofdetecting invariants as an important
mechanism in perceptual problem solving (e.g., he suggested th:u people
perceive depth as a function of texture gradients that contain invariant
information aboul a panicular object). Furthermore, based on the visual or
syntactic patterns of mathematical examples, people may construct erroneous
rules based on spurious correlations in a Bayesian manner.

The Bayesian odds formula as applied to feature-algorithm correlations
is presented as follows (where "Alg" is an abbreviation of "Algorithm"):

P(AlgIFearure) "" P(Alg) .. P(FealurdAlg)

P(- AlglFeature) P(- Alg) • P(Featurel-Alg)
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P(AI IF)
P(Alg). P(Feature/Alg)

g ealure =
P(Alg) * P(Ft'alurdAlg) + P(- Alg). P(Feature/- Alg)

The P(AlglFeature) is the probability that the algorithm can solve a par-
ticular problem that contains the feature. The p(FeatureiAlg) is the prob·
ability that the feature exists in the problem given that the algorithm is used
to solve that problem. The p(AIg) is the base rale of the algorithm. or the
relative frequency with which it has been used in prior problem.solving
events. The PC-A) is the base rale of an alternative algorithm, or the relative
frequenc)' with which the alternative algorithm has been used in past prob
lem-solving episodes.

Worked-out exmnples are ofleo confirmatory. That is. they illustrate how
a feature correlates with a particular algorithm but do nOl show how the
same feature can also correlate with an alternative algoritbm. Therefore,
given confirmatory examples. tbe P(F/-AIg) goes to zero as follows:

P(Alg/ Feature) _ P(AIS)· I --i I
P(Alg). 1 + 0

In sum, when students abstract rules from spurious correlations, they are
acting rationally from a Bayesian perspective.

Correlational Thinking: A Short Summary

Developing an operator schema is advantageous because more often tban
not specific features in worked-out examples (e,g" angle, side, and angle in
a geometl)' problem) contain predictive correlations with a panicular algo
rithm (e.g.. ASA postulate). However, when there are spurious correlations
between features and operators, students will abstract erroneous rules, in
much the same manner as tbey do with the relevant correlations.

WHAT PIECES ARE STILL MISSING FROM
lliE MAlliEMATICAL llilNKlNG PUZZLE?
A NEED FOR A MORE GENERAL ACCOUNT
OF ERRORS

As we have seen, examining erroneous versus correct perfonnance is impor
tant for understanding students' mathematical thinking. Currently, the pri
mary contribution to the rational-errors field comes from Brown and Van
Lehn's (1980) repair theory, and VanLehn's (1986) induction hypothesis.
This work, along with other accounts of error production. tends to be do·
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main-specific (but see Davis, 1984). Although domain-specific accounts are
extremely valuable, they provide a fragmented view of the origin of rational
errors in mathematical thinking as a wholc. Repair theory. for instance. fo
cuses on subtraction errors, whereas othcr researchers have identified sources
of errors in counting (Ginsburg. chaptcr 7, this volume), arithmctic (Ben
Zeev, 1995a; Brown & Burton. 1978; Browll & VanLehn. 1980, Young &
O'Shea, 1981). algebra (Matz, 1982; Payne & Squibb. 1990; Sleeman, 1984).
geometry (Anderson 1989. 1993; Dugdale, 1993; Schoenfeld, 1988). and cal
culus (Davis & Vinner. 1986).

There is thus a need for a more comprehensive accounl of rational errors
that would incorporate domain-specific error-production mechanisms. but
would also emphasize the commonalties between rational errors across vari
ous mathematical domains. I have attempted to reach this goal by puning
forth a new taxonomy of rational errors in mathematical thinking called
REASON (Rational Errors as Sources of Novelly). Because a detailed discus
sion of the taxonomy is provided elsewhere (Ben-Zeev, I995b), I present it only
briefly here.

REASON: A NEW TAXONOMY OF RATIONAL
ERRORS IN MATHEMATICAL THINKING

REASON incorporates rational errors thaI result from either monitoring
failures or misinduction from examples. Monitoring failures ocrur. for in
stance, when the student is not aware Ihat he or she has jusl conullittcd a
violation on a particular problem state. Inductive failures occur when the
student overgeneralizes or overspecializes a rule from worked-out examples.
Induction can either be syntactic-that is, it may involve symbol manipula
tion without regard to underlying principles, or it can be semantic-meaning
thai it draws on the student's conceptual understanding or meaning-based
representation of the problem. A more detailed account of each error
production mechanism follows (see Fig. 3.1 for the taxonomy of REASON).

Failures at the Monitoring Level:
The Role of Internal Critics

In order 10 monitor the validity of a particular problem state correctly. olle
needs to develop internal critics, or mechanisms which signal that a number
representation or rule violation has occurred. In Arlificiallntelligencc (A I). a
critic is defined as a procedure that monitors the current problem state and
fires when a constraint is violated (Rissland. 1985). REASON elaborates on
this definition by positing critics that also signal when they encounter an
unfamiliar situation that the system does not know how to handle.
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FIG. 3.1. KEASON"s la~onomy of ~Iional crrou.
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Rational errors result from three kinds of critic-related failures. The first
occurs when the critic is absent, and results in a violation that goes unnoticed.
Because this is a trivial case, it is nol elaborated on in Ihis chapter. The
second failure occurs from a competition process between a critic and a
stronger prior.knowledge rule. Even if the critic exists. it is still "inhibited"
by a stronger familiar rule from a different domain. The strength of a rule
is defined as how successfully the rule has performed in past problem-solving
episodes (Anderson. 1993; Holland et al., 1986).

For example. during NewAbacus Addition (Ben-Zeev, 1995a), students
often fail to cooven illegal numbers in NewAbacus that are valid in base·10
(e.g., "65") into their valid repr~ntations, because their NewAbacus num
ber.representation critics were only recently formed and therefore not con
solidated enough to "win" the competition with the stronger base-IO num
ber-representation rules. The fact that students had indeed developed the
adequate critics but were unable to use them was determined by giving sub
jects a test of NewAbacus number representation (i.e.. a subject is presented
with a number and has to S<.1y whether it is valid or not in NewAbacus, and
why). Only subjects who did well on the test, and had therefore developed
the relevant number-representation critics, were retained in the study.

Finally, the third critic-related failure occurs when the student makes a
problem seem valid by removing the violation in the problem that caused
the critic to fire, an action that prevents the critic from refiring. This process
is termed negation, and in essence regards a situation where the critic is "tricked."
An example of negation comes from students' errors on NewAbacus addition
(Ben-Zeev, I995a). For instance, when subjects produced an illegal number
in an intermediate problem-solving stage (e.g.• "9"), they did nOI convert it
to the correct NewAbacus representation (e.g., "63") but proceeded to delete
it. Arter deletion the problem state became "valid."
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In addition to critic-related failures, REASON also incorpomtes induc
tive-relata.! failures as well. These kind of failures are discussed next.

Failures at the Inductive Level:
The Role of Syntactic and Semantic Induction

REASON breaks down inductive failures inlO two main components: synto('
tic and semantic. In perfomling syntactic induction, the student builds on the
surface-structural features of familiar examples as a basis for generalizing or
specializing an algorithm. In the process of semantic induction. perfonnance
is still erroneous but is based on the conceptual rather than the syntactic
aspects of the problem. The student applies an intuitive mathematical ap
proach by attempting conccptually to map the problem onto cxamplcs from
prior mathematical or real-world experiences. Problcms arise from a situation
where either the experience is an inadequate source or the mapping process
itself is flawed.

Syntactic Induction. Syntactic induction is a process of overgeneralizing
or overspecializing a solution from the surface·structural features of familiar
examples. REASON encompasses three types of syntactic failures. The first
results when the student reaches an unfamiliar problem and searches for a
familiar example thai contains overlapping features. Once such an example
is found, its corresponding solution path is implemented. This process is
termed portial IIIatching and is consistent with Acr· (Anderson, 1983).

The second syntactic failure takes place when the student applies a spu
rious rule that he or she has previously abstracted from a familiar example
or set of examples. For instance, as was shown by Dugdale (1993), a student
may believe that the verlex of the pambola is equivalent to its intercept if
he or she was exposed only to examples of parabolas that were symmetrical
around the y-axis (i.e" where the y-inten:cpt always coincides with thc vertex
of the parabola).

Finally, the third syntactic failure results from a situation where students
abstract an under- or ovcrspccified schema in the problcm-solving process.
An example of this kind is Matz's schema for the distributive law of multi
plication (i.e., A(B + C) = A B + AC). which results in errors such as
,J(A + B) = fA + ..Jli.

Semantic I"duction, Mathematical induction may be based on a stu
dent's expericnce with and conceptual interpretation of (a) familiar examples
within the mathematical domain and (b) familiar real-world examples that
lie outside the classroom. In the first case, students may overspecialize or
overgeneralize solutions to new problems based on the semantic properties
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ofexamples they encountered in their previous mathematical experience (see
also Resnick el al.. 1989).

Semamic overspecification can be illustrated by Davis and Vinner's (1986)
work on students' understanding of the concept of limit in calculus. They
found thm slUdellts conunonly produced the following erroneous definition
of limit:

A limit is a boundary beyond which the sequence cannot go. A speed limit.
like one on the highway. defines only a point beyond which you are nol
supposed 10 go. But the limit of a sequence is never reached by thai sequence.

Davis and Vinner suggested that the underlying cause of Ihis error lies in
the fact that students' previous examples were of primarily monotonically
increasing or decreasing functions that never reached their limit (e.g.• ".01,
.001 ..0001. ..."). Based on these examples, students overspecialized the
concept of the limit to mean a boundary that can never be reached.

The second type of semantic induction is one that is based on examples
from beyond the classroom. The primary mechanism in this case may be
analogical failure. For instance, Payne and Squibb (1990) argued that the
common "precedence error" in algebraic manipulation problems (Le., fl + m
X ~ (n + m)X, where ~ stands for erroneous equivalence). is caused by a
linguistic analogy of tbe fonn: "three apples plus four gives seven apples."
In REASON's framework, when the critic signals an unfamiliar problem
state, the student makes the following erroneous analogy: "three apples plus
four:seven apples::" + /II X:(n + m)X."

REASON: A Short Summary

In REASON's framework. the origin of rational errors ranges from critic
related failures, through syntactic induction, to semantic induction. There
fore, it adds to repair theory which accounts for rational errors that are
induced syntactically, or by a process of "symbol pushing" alone. REASON
allows for error production that encompasses a variety ofdiverse mechanisms
operating at different levels of processing. It also incorporates errors from
different mathematical domains, ranging from counting to calculus, and,
therefore, offers a balanced view of rational errors. (For a more detailed
discussion of REASON, see Ben·Zeev, 1995b.)

WHAT HAVE WE LEARNED
ABOUT MAllJEMATlCAL THINKING,
AND WHERE DO WE GO FROM HERE?

The student often meets the challenge of a new mathematical problem st:He
by creating mle-based but erroneous algorithms that lead to rational errors.
Where do these erroneous algorithms come from? The answer lies in the
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interaction between the inherent inventiveness of the slUdent coupled with
the kind of instruction the slUdent receives. On the one hand, the student
will create his or her own rules, in the face of. and at limes in opposition
to, what the teacher has intended. On the other hand, the student may leam
100 well. That is, if the instruction teaches for rote rather than meaning.
then the student will correctly learn how to follow a procedure, and will
view the procedure as a symbol-pushing operation that obeys what seem to
be arbitrary constraints. The student will thus overgeneralize from "bits and
pieces" of prior knowledge ""1thout paying adequate attention to their un
derlying principles.

This chapter has demonstrated these ideas by pointing out the circum
stances under which the same reasoning mechanisms that lead students to
acquire mathematical knowledge corl'l."'Ctly result in erroneous perfonnance.
For example, there is ample evidence that students abstraci or generalize a
mathematical procedure from following the steps in a worked-out example.
However, when the student's knowledge is rote (e.g.. the student holds a
belief that subtraction is a process of manipulating symbols), a generalization
may turn into an overgeneralization (e.g.. subtract the smaller from the larger
digit in multicolumn subtraction because that was the case for single-digit
subtraction), Therefore, the same inductive processes that lead to correct
mathematical induction from examples may also result in erroneous per
formance.

Similarly, in the more specific case of analogical thinking, a correct map
ping may produce an erroneous resull. That is, in order to perfoml a correct
mapping from the source !O the target problem, the student has to pick an
appropriate source with which to begin. Novices in panicular can be easily
misled by a problem that shares similar surface features with the target prob
lem but does not have a similar deep structure. As was previously shown.
teachers often tell students explicitly to look for trigger words in a mathe
matical word problem (e.g.. "left" cues a subtraction procedure). The same
trigger word in a different problem type will lead to rational errors (e.g.,
when the word "left" refers to the left-hand side).

Research on analogical thinking suggests that its end product is a schema,
or an organized set of abstract rules (Andcrson, 1993: Anderson & Thomp
son, 1989; Holland et al., 1986; Novick & Holyoak, 1991). The use ofsche·
mata is important for organizing mathematical ex~riences in a more gencral
way that allows transfer to similar problems. For example, in the radiation
problem, students who correctly used the fortress problem as a source
achieved a schema Ihat was more general then either the radiation or the
fortress problem alolle (i.e.. convcrge small forces onto a single target in
order to achieve sufficient intensity without causing harm). As we have seen,
this principle also applies in the mathematics domain, especially in the proc
ess of solving mathematical word problems (Novick & Holyoak, 1991). Sche-
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mata, however, can also lead students to create rational errors. For cltample.
a correct schema that is used out of proper context results in erroneous per
formance. or a spurious correlation may be abstracted into an erroneous
schema or rule.

An important question that has educational as well as theoretical impor
tance is whether students' erroneous mathematical thinking can be predicted
a priori. Repair theory has shown that il is possible to predict students ra
lional cTrors on subtraction problems before students actually perform them.
Similarly, REASON provides a framework in which to investigate a priori
production of rational errors across a wide range of mathematical domains.

From an experimental point of view, instead of"waiting" for a student to
produce an error and only then examining its origin, the researcher should
;'force" the student into producing predictable errors. This task is best
achieved by providing subjects with new number systems such as NewAbacus,
or with new openltors (see Bcn-Zeev, 1995a. 1995b), where one has control
over what knowledge the student acquires, and can specifically predict where
it will "go wrong." By investigating the conditions under which mechanisms
that underlie correct acquisition of mathematical skill break down, and by
using novel experimental m:mipulations, ....-e may achieve a better under
standing of the processes underlying mathematical thinking in geneml.
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APPENDIX A: THE NEWABACUS SYSTEM

The NewAbacus number system can be seen in Fig. 3.2. Each familar base-IO
digit is represented by two digits in NewAbacus. In the NewAbacus pair,
the left digit is either 6 or O. and the right digit can range from 0 through
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0=00
1 = 01
2 = 02
3 = 03....
5 = 05,.W
7 = 61
8 .. 62,."

10", 0100
11",0101

12 .. 0102
13 .. 0103

14", 0104
15=0105
16,,0160
17 ",0161
18 .. 0162
19",0163

20", 0200
30", moo
4{l",OJOO
50 ... 0500
60 '" 6000
70 .. 6100

80 = 6200
90 = 6300

100 .. ooסס01

FIG. 3.2. A lisl or rose·l0 numbers and tllcir ~pr=nlluion in Nl.'WAbacus.

5. The sum of left and right digits in the NewAbacus pair produces the fa
miliar base-IO digit. For example. 7 in base-IO is equivalent to 61 in
NewAbacus (6 + I = 7). Although 64 and 65 in NewAbacus sum up to be
10 and II in basc-IO respectively. they are illegal in the NewAbacus system.
because 64 and 65 violate the rule that each base-I 0 digit must be represented
by two digits ill NewAbacus. The correct representation for 10 and II in
NewAbacus is 0100 and 0101 respectively.

APPENDIX B: ADDITION IN NEWABACUS

The NewAbacus addition algorithm is divided into four main parts. They
are: no carry, carry into the 6 digit, carry from the 6 digit. and carry into and
from the 6 digit (see Table 3.1). In the no-carry example, there is no difference
between the base-IO and the NewAbacus addition algorithms; that is, the
addition is performed column by column. In the carry into the6 digit example.
adding column by column produces an intermediate solution where the right
digit in a pair is equal to or greater than 6. In order 10 correct Ihis violation,

TABLE 3.1
Examples of tile Diffcrt11t Pans of the NewAb&cus Additim Algorithm

Examplt I
No ("QTry

0261
.0201

O<6J

Exnmplt 2
CnTry in/lJ (\

•..
.oJ

7 invalid number

61 carry a SIX

leave ~mainder

Exillnplt J
CarT',! from (\

0362
-+()161

OS23 sum ColurrllS
call)' • one

~ add digits
osm rorm .'aM

number

E.wmplt -4

Carry in(o and fr"'" 6

"".020'
to ;n""lid numher

so carry a siA and
leave ~ma;nd<T

03n sum colulTlls
carry a len

roi>! add digits
0304 form valid number
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one carries the 6 to the left and leaves the remainder. For example. when
the right column in the intermediate solUlion is 9, one carries a 6 and leaves
a remainder of 3.

In the carry from the 6 digit example, a carry of a I is required between,
rather than within a NewAbacus pair. When two 6s are added in one column
the sum is 12. Therefore. one carries a I to the next pair. and leaves are·
mainder of 2. However, because the 2 remains in the left digit, it violates
the left-digit rule (it can only be 6 or 0). In order 10 correct the violation,
one sums the 2 with the right digit, to fonn a valid NewAbacus pair. Finally,
the carry into and from the 6 digit example is a combination of the laller
cases. It is the most complete algorithm QUI of all the example types.
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If I haw sun jurrhtr il is by :flaMing on yt shoulders of Glams.
----NewlOfl (167511959, p. 416)

Our own generan'on enjoys the leg(Jcy ~q~othM to il by Ihol which
p"uded it. We frequently know more. 1/01 buauu we lKwe mOl'ed oheQ(1
by our own natural ability, bUI bt!colUt! WI! are supponed by l~ ImenIal]
strength of others. and POSSf!SS riches lhol ~.t! ho.vt! inhtriftd from our
forefotheTs. Bernard of Chartres uud 10 comparr: u.l" 10 {punyj dwarfs
puched on Ihe shoulders ofgiants. Ht. pointed aul Ihot WI! su: more and
farther dum our prethcessors. not becDllSe we ha~ kUnt!f "ision or gremer
hright. bUlluctJU!it we are lifted up and borne aloft on thrir glgan/it:: staTure.

-John of Salisbury (1159/1982. p. 161)

The claim that our intelk-ctual accomplishmenls depend in large measure on
the unacknowledged contribulions of our predecessors is usually associaled
with Sir Isaac Newton (1675/1759). Appropriately enough. however, that
metaphor itself is part of the intellectual heritage on which Newton drew.
and can be traced back 10 at least Ihe 12th century (John of Salisbury.
1159/1982) and perhaps further (Merton, 1965). Mathemalical thinking. like
thought in other domains, rests on a set of concepts, procedures, and rep
resentational systems that conslitute a major portion of each generation's
intellectual inheritance. The purpose of this chaptcr is to cxplore thc contri
bution that these cultural lools make to the development of mathematical
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thinking. by describing some of the variation in mathematical tools that have
existed in different times and places, and reporting research on how current
variations in mathemalic.al representations are associated with variations in
the development of mathematical competence. This discussion is placed in
the contcxt of a more general framework for considering how symbolic tools
might affect cognitive development. which is described next.

HOW SYMBOLS MIGHT MATTER

Representational systems such as calendars. numbers, and written language
have an internal structure that may serve to highlight some aspects of the
underlying domains (time. mathematics, and language) they represent and
obscure others. Children start learning to use symbolic systems before their
concepts of number. lime. and language are fully fonned, and this fact raises
the question of what role the structure of symbolic systems plays in the ac
quisition of a conceptual understanding of these domains. Not all of the
difficulty children have in understanding mathematics, for example, is due
to the tools their culture provides them for representing number. On the
other hand. tools for representing number may facilitalc or inhibit children',
understanding of certain mathematical principles.

It would be simple to detennine the role that symbolic systems play in
cognitive development if one could compare "symbolic thought" with "non
symbolic thought" in children of the same age. Unfortunately, the very preva
lence of symbolic systems for represeming number, time, and language makes
the enterprise of comparing development wilh and without symbolic tools
nearly impossible. In the case of mathematics. infams show a sensitivity to
number as a feature of their world within the first few days of life (Antell
& Keating. 1983). and show some limited ability to map transfonnations
between small numerosities (Baillargeon, Miller, & Constantino, 1995;
Wynn. 1992) several momhs later. However. children begin the process of
learning the counting system by as early as the end of the first year (Durkin,
Shire. Ricm, Crowther, & Rutter, 1986), and from then on the task of ac
quiring mathematical symbol systems becomes a majoroomponent ofrrmthe
matical development.

General claims about the cognitive consequences of different symbol sys
tems have often been placed within the framework of the Sapir-Whorl' hy
pothesis that language slructure is reflected in the structure of thought. As
operationalized by Brown (1956), tests of the Sapir-Whorf hypothesis have
involved attempts to associate "nonlinguistic thought" with some aspect of
a language's structure. Such tests have generally not produced evidence of
substantial Sapir-Whorf effects (Foss & Hakes, 1978). We believe that un
derstanding the ways in which the organization of symbols affects cognition
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requires a different framework that focuses more specifically on an analysis
of the structure of specific symbol systems and the challenges leamers face
as they try to acquire. usc. and understand particular symbol systems.

In general. there are at least three different ways in whieh the organization
of symbol systems might affect cognition. First, the structure of symbols
may affect the ease with which children initially acquire the system or sym
bols. Second, there may be continuing effects of the organization of symbol
systems on the ease with which competent users exploit these symbols in
online processing and problem solving. Third, the organization or symbols
may facilitate or retard the development of a conceptual understanding of
the domains they represent. Each of these kinds of effects will be considered
separately, then used as a framework for discussing how the organization
of specifically mathematical symbol systems mediate the development of
mathematical reasoning.

Symbolic Structure Effects on Initial Acquisition

In order to master a system such as numbers or an alphabetic orthography.
children need to learn something about how that system is organized. The
manifest organization of the system provides much of the data from which
learners can induce its conceptual structure, so one may expect that the struc
ture of symbolic systems could affect even relatively early stages of acquisi
tion. Research on very early symbol processing (e.g., Tolchinksy-Landsmann
& Kanniloff-Smith. 1992) indicates that children may evince an appreciation
for the structural differences between symbol systems before they master par
ticular systems. Tolchinksy-Landsmann and Karmiloff·Smith reported that
Spanish preschoolers were aware that strings of repeatl..'d digits (e.g.. ·'2222")
were valid numbers, but that strings of repeated consonants (e.g., "kkkk")
were not valid words. It is likely that children's understanding of symbol
systems shows a "prehistory" in which they gradually become aware of how
these systems are organized. Therefore. effects of symbolic structure may
begin to emerge even before children begin to really use a symbol system.
The relevant structural principle of number-naming systems is the base-IO
principle, ,!Od evidence will be reviewed indicating that difficulty in mastering
this principle is a major obstacle to learning some components of counting,
and laler in learning Arabic numerals.

Symbolic Structure Effects on Symbol Processing:
"Online" Effects

After children first learn a symbol system, lhere may be continuing effects
of the S!Tucture of the system on processing by competent users. For example.
the structure of the "ABC song" can be found by looking at the time subjects
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lake to produce the next or previous leiter (Klahr. Chase, & Lovelace, 1983;
Miller & Meyer, 1989). To the extent thai the structure of a symbol system
has been incorporated into adults' computational processes, onc might expect
to find continuing effects of thai structure on the efficiency of computation
and the kinds of errors that emerge in processing. Effects of the structure
of number-naming systems and of special calculation techniques such as the
abacus on computational perfonnance are discussed later.

Symbolic Structure Effects and Conceptual
Representations

The final aspect of symbolic structure to be considered is the effect that such
systems might have on conceptual representalion, p..1rticularly the perceived
relevance of meaningful relations in a domain (e.g.. the base-IO principle in
numbers) versus those that are merely adventitious (e.g., the fact that a "6"
can be rotated into a "9"). Miller and Stigler (1991) found that novice and
intennediate abacus users (but not experts) were very likely to emphasize
abacus-specific features in judging similarity among numerals presented as
abacus figure~ven those features that had very limited mathematical
significance. Developmentally, the effects of specific symbolic systems on
children's access to conceplual features of domains should diminish-with
increasing sophistication, adventitious characteristics of the symbol system
(such as the fact that the word "bank" can represent the place one parks either
one's money or one's canoe) should have diminishing effects 011 judgments of
the conceptual structure of a domain. This was the pauern found by Miller
and Stigler for abacus skill, and they tenned this decrease in emphasis of
representation-specific features conceptuol trflt/sparency of skill. Effects of
specific kinds of representations provided by variation in language and
numerical symbols on children's judgments ofnumber similarity are discussed
later.

In understanding how the structure of mathematical symbols affects the
development of mathematical thinking. it is important to consider separately
effects that affect early acquisition, online computation by skilled users, and
conceptual understanding of mathematics. The next section looks at the
structures underlying number.naming systems in different languages that
might affect mathematical development.

THE VARlETI' OF NUMERICAL SYMBOL SYSTEMS

It is possible to count or at least to keep a count of things without using
words at all. One could usc fingers. stones, sticks, beads, or any denumerable
set of things to keep track of other discrete things. If one wished to com
municate how many windows there are in a room. it would be a simple
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matter to make a fist and then raise a finger for each window in the room.
Similarly, a shepherd could drop a pebble into :.l lxtg for each sheep in the
herd. The quantity of pebbles in the bag would represent the quantity of
sheep in the herd, and to be sure that no sheep have been lost on the return
of the flock, the shepherd could merely remove a pebble for each sheep re
turned. When all the pebbles have been removed. all the sheep are accounted
for. and if any pebbles remain arter all the sheep have been matched with a
pebble. the remaining stones represent lost sheep. Homer described the ill
fated Cyclops Polyphemus using this method to keep track of his ewes as
they went in and out of his cave, and it is one that has been invented in
quite a variety of times and places (Menninger, 1969; Z'1Slavsky, 1973).

Numerical Representation and the Origins of Writing

Schmandt-Besserat (1992) argued that such object-based counting systems,
used about 10.000 years ago in the Near Easl. gave rise to the world's first
writing system. To resolve disputes over counlS of other agricultural and
manufactured products, it was necessary to seal the counters in a container
after the count had been made. Archeological evidence indicates that this
was done with small clay containers or envelopes into which clay tokens
were deposited. A drawback to this system was that the opaque clay enve
lopes would have to be broken open each time an accounting was needed.
To solve this problem. Neolithic accountants began 10 impress the tokens
on the sort day of the envelopes before dropping them in. Therefore, if there
were 12 sheep to be counted. there would be 12 tokens in the sealed envelope
and 12 marking on its surface. Only if there were a discrepancy at accounting
time between the number of markings and the number of sheep would it be
necessary to break open the envelope. As commerce became more compli
cated, the token system became more elaborate. Tokens of different sizes,
shapes, and markings were used to represent different goods. and tally marks
were added to the impressions of the tokens on the envelopes. If there were
30 sheep and 10 jars of oil involved in a transaction, the accompanying clay
envelope would contain 30 sheep !akens and 10 jar tokens and would display
on its surface an impression of a sheep token followed by 30 tally marks
and an impression of an olive jar token followed by 10 tally marks. Even
tually, according to Schma.ndt-Besscrat. the tokens themselves were no longer
kept in envelopes, and accouming records were made by impressions on clay
tablets-the beginning of writing.

The Structure(s) of Number-Naming Systems

Although harder 10 find in the archeological record than tokens, the most
basic symbolic tool for mathematics is the sct of names a language has for
numbers. After describing the organization of several number-naming sys-
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terns. we describe research which demonstrates that the structure of number
names has significant. specific effects on children's elTorts to master these
mathematical tools.

Names for numbers can be (and have been) genenued according to a be
wildering varielY of systems (sec ffrah, 1985; Menninger, 1969). Ikcause the
base-IO system is so familiar and widespread and because we have 10 fingers,
it may appear thai the dcvelopmcm of a base-IO system is somehow natural
and incvilable (e.g., Lehrer, 1990/1965) and perhaps optimal for all cultures.
This is certainly not the case. Flegg (1983) ciled examples of people devel·
oping counting systems based on 2 (Bushmen of Botswana in Africa as well
as native peoples of Australia and Soulh America). 4 (in South America), 5
(in South America. Africa. and Asia), and 20 (the Mayan and Aztec people
of South America). Babylonian astronomers used a base-60 system (Karpin
ski. 1925), and Menninger (1969) theorized that base-4 and base-8 systems
were historically common, arising out of counting systems using the four
fingers (excluding thumbs) of each hand. In addition to evidence that the
base-IO number system is not the only "natural" system, there is debate over
how desirable it is as a computational system. The 18th-century naturalist
Buffon argued that a base-12 system would be universally preferable because
it has twice as many integral divisors (four) as does the base-IO system,
whereas the mathematician LaGrange argued that a prime base, such as II.
would have the advantage of producing only irreducible fractions (Dantzig,
1956). Ifrah (1985) sided with Buffon:

It is regrellable thaI 12 was not chosen as the universal balie, because it is
mathematically superior to 10 and would nOI require a much g~aler elTon of
memOJ)'. But the habit of counting by tens is so deeply ingrained that the
corresponding base will probably never be replaced. (p. 36)

Although 10 is perhaps nOI the ideal base, nearly all modem languages
have number naming systems organized around base 10. In the course of
learning to count, children must induce the structure of the system they are
trying to learn, and the organization of number names conslitutes much of
the raw data for this inductive process. Therefore, careful consideration of
the structure of these sequences can permit specific predictions about differ
ent patterns of acquisition for children learning to count in different lan
guages. The structure of number names in a number of different repre
sentational systems is presented in Fig. 4.1. The spoken number names in
seven modem languages (Chinese, Korean, English, German, Italian, Span
ish, and French) are depicted, as well as one dead language (Latin) that had
a strong influence on modern European number names. Korean was included
because it employs two sets of number names. The firsl (based on Chinese
numbers) is known as "Formal numbers" and is more widely used in mathe-



" -, >

:!~~~uHnj~
•

89



90

o

"



4, MATHEMATICAL TOOLS 91

matics; the second, "Informal numbers." is used in counting many common
objects. Three written systems are also presented (Arabic numerals, Roman
numerals, Chinese characters), but are discussed further in a separate section.
Each of these systems can be described to a first approximation as a base-IO
system, but the variation among the systems represents the variety among
systems in the clarity and consistency with which the base-IO structure is
reflected in actual number representations.

In describing how number names are formed, it is useful to distinguish
four ranges of numbers: I through 10, II through 19,20 to 29, and 100 to
999.

Number Nnmes From 1 to 10. For all the spoken languages, repre
sentations for numbers in the range 1-10 consist of an unsystematically
organized lisl. There is no way to predict that "five" or ''wil'' come after
"four" and "Sl," respectively, in the English and Chinese systems. Therefore,
there is no rule that can be used to generate the number names in any of
these sequences in this portion of the list.

From 11 to 19. Above 10, the languages diverge in interesting ways, as
the second part of Fig. 4.1 demonstrates. Chinese number names in this
range (as well as both Korean systems) form a strict base·IO system. The
name for any number from 11-19 consists of the word for 10 plus the word
for unit value of the number; thus the Chinese name for 14-"shi si"-,,"
be literally translated as "10-4." English and German, on the other hand,
have unpredictable names for "II" and "12" that bear only an historical
relation to "I" and "2" (Menninger, 1969), perhaps deriving from "I left"
and "2 left" (beyond 10). Names in the olher European languages for II
and 12 incorporate at least some phonetic representation of "10," albeit
heavily modified in the case of French and Spanish. Whether the boundary
between 10 and II is marked in some way may be very significant, because
this is the first potential clue to the fact that number names are organized
attording to a base-IO system, and such a clue is completely lacking in
languages like English and German.

Beyond 12, English and German names do have an internal structure,
but in the case of English this relation is obscured by phonetic modifications
of many of the elements from those used in the first decade (e.g, "len" -i

"teen," "three" -i "thir," "five" -i "fi r'). Furthermore, names for some or
all teens in the European languages reverse place value compared wilh the
Hindu-Arabic and Chinese systems, naming the smaller value before the
larger value. The Romance languages of lIalian. Spanish, and French change
the structure of teens names between 15 and 16 (Spanish) or between 16 and
17 (Italian and French); such as from "sedici" (from "6--10") to "diciassete"
(from "10-1"). English. Gennan, and Latin do nOI make this order reversal
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in number names during the leens decade. but the Latin name for 19 C'un
deviginti") is derived from the name for 20 by subtraction (from .,\ from
20").

It is puzzling that L1tin number names did nol incorporate the switch in
structure thaI the Romance languages most closely related to Latin all em
ploy. Menninger (1969) reported that switched forms such as "decem et sep·
tern" for 17 can be found in Latin tCJtIS, and iliat this was a feature of rural
and lower class Latin speech that was presumably particularly prevalent
among the settlers and soldiers. whose speech mosl directly affccted modem
European languages.

One can make (wo opposing hypotheses about the effect on acquisition
of the Romance languages' structure regularizing number names somewhere
in the middle of the second decade. The relatively early (compared to English)
introduction of regular names based on 10 might facilitate learning Ihe sys
tem. On the other hand, the practice of changing morphological structure
somewhere in the middle of a decade might tend to diminish the importance
of decade as a salient organizing rule for number names.

From 20 to 99. Above 20, all the number·naming systems e~cept for
German converge on lhe Chinese structure of naming the larger value before
the smaller one. German continues to use the unit-dccade structure that all
the European languages used in the teens. Despite this convergence, the
systems continue to differ in the clarity of the connection between decade
names and the corresponding unit values. Chinese and Korean Formal
numbers are consistent in fonning decade names by combining a unit value
and the base (10). Korean Informal number names include a set of decade
names thai cannot be easily derived from the corresponding unil names.
Decade names in European languages generally can be derived from the
name for the corresponding unit value, with varying degrees of phonetic
modification (e.g.. "five" -+ "fir' in English, "quauro" -+ "quarant" in
Italian) and some notable e~ceptions, primarily the special name for 20 used
in Latin and the Romance languages and the complex derivation of decade
names for 70 ("soi~ant-dix," "si:'\ty-ten"), 80 ("quatre-vingt," "four-twenty").
and 90 ("quatre·vingt-dix." "four.twenty-ten") in French.

Above 100. All the listed languages follow the same basic rule for naming
hundreds. naming the unil value (2. 3. 4. etc.) followed by the word for
"hundred." In all the listed languages excepl for Chim:se and English, the
"one" can be omitted in the case of 100, which Hurford (1975) has argued
reflects a general transformational rule ("one-deletion") of number naming.
In general, the names for the remaining (two-digit) portion of numbers above
100 are not altered by being pan of a larger number. Chinese is an exception
in this regard. with a special name for numbers in the first decade above
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100 (101-109). In Chinl,,"Se. the word "ling" is inserted in measurement
situations in which there are one or more empty units between larger and
smaller units (e.g" 5 years [no months] and 3 days becomes "5 years ling 3
days:' or 8 dollars (no dimesj and 3 cents becomes "8 do11ars ling 3 [cents}).
The word ling can be variously translated as "fractional remainder." or
simply "and:' and is also used to represent zero. I Number names above \00
follow this measurement convention, and number names in the firsl decade
are formed by interposing "ling" between the hundreds value and the unit
position. Therefore. a literal translation of the Chinese name for 107 is "one
hundred and (ling) seven."

As noted earlier, Korean Formal number narnl."S are modeled directly on
Chinese number names. There are two important exceptions to this modeling.
First. Korean Formal numbers do nOI mark the absence of a tens value in
numbers like" 107" by including any analogue to the Chinese ling. Second.
Korean utilizes one deletion in naming 100. which would be called "il baek"
("one hundred") according to the Chinese model. but is instead named
"baek" ("hundred"),

The structure of number naming systems is well chamcterized by Win·
genstein's (1958/1953) metaphorical description of language in genem1:

Our language can be seen as an ancient city: a maze oflitt1c streets and squares.
of old and new houses. and of houses with additions from various periods.;
and this surrounded b)' a multitude of new boroughs with Slr3ight regular
Streets and uniform houses. (p. 8)

L.1nguages differ in the length and complexity of the irregular portion of
the system of names that must be learned. but children in general must learn
quite a few number names prior to coming across data supporting the in·
duction that they are dealing wilh an ordered base·1O s~tem of names.

Written Numeral Representations

Just as any number of Il.rbilrary sounds may be used to name u number. so
any number of markings may be used to represent the number graphically.
Although the earliest prehistoric numerical representations may have been
as simple as notches on a counting stick, by the beginning of the 12th century
A.D. two sophisticated representations of the base· I0 system were competing
for ascendancy (Menninger, 1969), Roman alphabetic numerals were pre·

'llunOl'd (1915.1961) has IISlcned Ihal the usc of Ung in Chinese rcprC$Cnl~ lhe only c1plkil
use of urn tn the fonnatt(lll of number names alt1()l1g n:llUral langua~. Ahhough Ifnll: ran be
translated as ·'wo," ils usc In Cltinl:5C is much rTvrt' g\'neral lhan tM lenn "zero" implie•• and II
uanslalion as "frllCtiooal rema;Jl(kr" ~nlS more aa-uratc.
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dominate in Europe. whereas Hindu~ArabicnOlations were used throughout
the Indian subcontinCnI and the Arab empire.

Hindu-Arabic Numerals. Originating in India, and refined and spread
by a flourishing Arab culture. the Hindu-Arabic system is familiar today as
the numerals I. 2, 3. and so on. The arrangement of these numerals constitutes
a "place-value" or positional system in which the value of the numeral is
determined by where it occurs in the sequence (Menninger. 1969). The
rightmost value is defined as the value of the numeral multiplied by I(II!, the
next lefl value is the numeml x 101, the next left is the numeral x 1()2, and so
on. Therefore, the number three hundred and eighty-seven is represented as
"387." The notational system clearly reflects its base·IO underlying structure.

Roma" Numerals. The Roman s~tem, in contrast. is a modified count·
value system in which the total number of occurrences of an individual
numeral determines the value of the numerical string. The basic Roman
numerals and their Hindu-Arabic equivalents are as follows: I = I, V = 5,
X = 10. L = 50. C = 100, D = 500. M = 1000. The Roman notation for
thirty-two consists of a count of three tens and two ones: XXXII. There is
a basic positional rule that numerals proceed from higher to lower and from
left to right. and there is a positional subtraction rule: The numeral "I" to
the lert of "V" or "X" indicates that one should be subtracted from the
higher numeraL Therefore, IV = 4, and L1X = 59 (Ifrah, 1958).

Chinese Character Representations of Numbers

Although Chinese characters for numbers are pari of the Chinese writing
system rather than a form of numerical notation, we noted earlier that the
structure of the Chinese number.naming system dosely resembles that of
the Hindu-Arabic numeral system. It is important to point out, bowever,
that there is a subtle distinction between the two systems, Chinese number
names employ a "narne·value" system (Menninger, 1969): For values higher
than one (100), the rank value (power of 10) of the number is given not by
its position but by an explicit name. In the Hindu-Arabic numeral system,
the value of the 4 in 41 is understood to be 4 x 10 1 because of its position,
but in the Chinese writing of 41, the character for four is followed by the
character for ten to indicate that its value is 4 x 10, Therefore, although the
Hindu-Arabic system uses two characters to represent fony-one (41), Chi
nese writing uses three (corresponding to "four ten one"). As will be seen,
this slight difference presents a surprising and formidable obstacle to Chinese
students when they are required to usc Chinese characters for doing simple
computallons.
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Consider the task of multiplying CXXXIV by XX as compared to the equiva
lcnt task of multiplying 134 by 20. Fibonacci (Lconardo of Pisa). one of the
great mathematicians of the Middle Ages. was one of the first Europeans
to describe the advantages of the Hindu-Arabic system over that of Roman
numerals. His Book of Computations (Libl'f Abaci) proclaimed the wonders
of the new system to his contemporaries in 1202:

But a11this, lhe agorilhm and lhe arch of Pythagoras. J regarded :IS an error
as comp:lrcd to lhe mel hods of lhe Indians.... The nine numerals of lhe
[ndi:ms arc these: 9 8 7 654321. With Ihem and with thi~ sign O. whieh in
Arabic is calloo n'phirlllll [cipher]. any de:;ired number c:m be wriucn. (Men
ninger, 1969, p. 425)

Slowly but powerfully. the new numerals spread from scholars to mer
chants and bankers and from Italy throughout Europe so that by the 16th
century Hindu-Arabic nUlllerals had completely supplanted Roman Ilumer
als in education and commerce.

Summary of the Separate Dcvclopment of Number
Names and Numeral Systems

It is clear that both number naming systems and nUlllerical notation systems
are cultural legacies th:J1 provide tremendous support for nUlllcrical cogni
tion. It is also clear. however. that the two systcms are not the same thing.
nor were Ihey produced concurrently and cooperatively by a single ancient
genius nor even by a single culture. Instead. each evolved separately and
both still preserve aspects of their evolutionary histories. Menninger (1969)
summarized the process in his work on the cultural history of numbers:

The wriling of numcrals is 1101 merely thc represenlatlOn of the IHlmber-word
sequence.... Our leiters arc nOI akin to our nUlllbers. One would be indincd
to suppose. in ,Ill innocence. lhal the human mind. when il look the trouble
to record its ideas and COIll-'CpIS. would have dcvised similar system, of wriling
words and numbers. "seven'· and "7:' bUI this did not happen. neil her in our
Weslern culture nor llnywhere else in the world. (pp. 53-54)

The Abacus

Abacus-like calculating devices have been invented the world over. The Eng
lish word '"abacus'· derives frOm an ancient Greek device in which clay balls
wcre manipulated in a series of troughs excavated in a clay tablcl. or mOved
along parallel lines marked on a table (Pullan. 1969). The abacus has taken
on a variet}" of forms over time. but a popular modern version is the bpanesc
abucus currently uscd through much of Asia and depicted in Fig. 4.2. Beads

Copyrighted Material
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FIG. 4.2. Rql~nlalion or digits on the Japan<:Se,sl)'k abacu.J,. Ikads
Mcoonl~ iIS Ihe)' are moved toward the Ct'nter (horizontal) bar. T1lc lOP bead
n:pres.:nls S. the Io"'~r heads each represent 1. Val~ within a column is the
sum l>f Ihe lOp bead {O or 51 plus the number or lower buds (0-4) pushed
IOY>'llrd lhe center bar.

"count" as they are pushed toward the center (honzonlal) bar by the thumb
(lower beads) or forefinger (upper bead). The upper bead represents 5 times
the column value. whereas the lower beads represent one unit each. The
value represented by a column is the sum of the top bead (0 or 5) and the
lower bead (0-4). with the total multiplied by the column value (as with
standard place value notation). Within a column, the abacus represents a
modulo 5 number system while remaining a base· 10 system belweencolumns.
Therefore. numbers such as I and 6 that differ by ±5 have similar abacus
representations. with the same number of lower beads counted.

The abacus is of particular interest as a symbol system for representing
number because of the that persons who have developed a high level of skill
calculate with reference to a "mental abacus," using an image of the abacus
to perform mental arithmetic (Hatano, Miyake. & Sinks. 1977; Hatano &
Osawll. 1983; Stigler, 1984). Data on elTects of abacus experience on calcu
lation speed and strategies. and on conceptual understanding of number are
described in the appropriate parts of the next section.

PSYCHOLOGICAL EFFECTS OF THE STRUcrURE
OF NUMBER NAMES

The structure of number names alTect all three of the processes mentioned
earlier as possibly being affected by symbol systems--in early acquisition,
in the online computations of adults, and in effects on conceptual processing.
Each is discussed in tum.

Acquisition Effects

Research on the development of counting has focused on the relations be
tween procedural and conceptual knowledge in early mathematical develop
ment. Learning to count also requires mastering a new symbolic system-the
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number names-which presents children with another potential source of
structure in mathematical development. As discussed in the last section,
mathematical symbols incorporate certain regularities. some of which have
broader mathematical significance (e.g.. the incorporation of a base such as
10). and others that do not (e.g., the fact the English number names "seven"
and "thirteen" are both two syllables long). This section discusses the con
tribution that these symbolic systems can make to mathematical develop
ment, primarily by describing cognitive consequences of variation between
languages in the organization of numerical symbols.

Effects ofNumber-Ntulling Systems on Early Counting. When children
first learn to count, they must induce the structure of the number names
thai they are using. Not surprisingly, many of the difficuhies children have
in learning to count can be related to the structure of the system they are
acquiring. Research on children's acquisition of number names (Fuson.
Richards, & Briars, 1982; Miller & Stigler, 1987; Siegler & Robinson, 1982)
suggests that American children learn to recite the list of number narnes
through at least the teens as essentially a rote-learning task. When first
counting above 20, American preschoolers often produce idiosyncratic num
ber names, indicating that they fail 10 understand the base-IO structure
underlying larger number names, often counting "twenty-eight. twenty-nine.
twenty-ten. twenty-eleven, twenty-twelve."

In a study comparing American and Chinese preschool children, Miller
and Stigler (1987) found different patterns of errors and stopping points in
early counting by children learning these two languages. Americans com
monly made mistakes that indicated they were not sure whether numbers
like" I0," "II," or "12" could be combined freely with other numbers-for
example, counting "twenty-eight, twenty-nine, twenty-ten. IWcnty-eleven .. :'
Chinese children never made this type of mistake.

If Ihe structure of number names accounls for the differences in early
counting between American and Chinese children. then differences should
only emerge where the structures of the number-naming systems ditTer, and
should reflect the nature of those differences. As noted earlier. Chinese and
English number names nre equally unpredictable in the range I through 10.
so this means that the earliest stages of number name learning should look
vcry similar for American and Chinese children. Miller, Smith, Zhu, and
Zhang (1995) looked at early mathematical development in 3-S·year.olds in
China and the Uniled States, and found a pattern of results thai indicates
strong and specific effccts of the structure of number names on early mathe
matical development in these two countries. Figure 4.3 shows the median
level of abstract counting (reciting number names like "I. 2. 3 ..."). Notably.
there are no significant differences al age 3. when the median level ofcounting
in both groups is only slightly above 10. Between 3 and 4 years. ho.....ever,
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a large difference emerges in counting level between the American and Chi·
nese subjects. a gap that increases between ages 4 and 5 years.

A more precise way of looking al which portions of the number-naming
sequence posed particular difficulty for children learning the two number
naming s)'$lems is presented in Fig. 4.4, which shows for each number of
the counting sequence the proportion of children in each country who were
able to count to that number or beyond. These profiles of counting "mor
tality" can be analyzed using survival anal}'5is techniques from the biomedical
statisticalliteralure (McCullagh & Neider. 1991). to detennine whether there
are steeper drops in the depicted data for one country or the other for specific
parts of the number-naming sequence.

Four effects are apparent in Fig. 4.4, all of which are confinned by survival
analyses. (a) In the range from I to 10, there are no significant differences
in counting mortality for either language. (b) In the second decade of the
number-naming sequence. English-speaking children show a substantially
greater dropoff in counting success than do Chinese speaking children. (c)
Between 20 and 99, there are no significant differences in the counting sur
vival profiles of children learning these two languages. (d) Finally, Chinese
subjects show a much greater drop after 100 than do their American peers.
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FIG. 4.4. Per~ntage of a group of 3-S-year·old children reaching each
number in abstmct counting. by «Iuntry. The dilTkult)· U.S. childn:n have in
mastering the lttns ponion of English number names is shown by their
substantial dropolT during this region.

These effects are precisely those that were predicted based on the analysis
of number-naming systems described earlier. In learning to count to 10. chil
dren in both countries must memorize a long, unstructured system of names.
a task of equal difficulty in both countries. Between 10 and 20, the simpler
and more consistent structure ofChinese teens names is associated with much
faster acquisition of this portion of the sequence by Chinese than by Ameri
can children. Above 20. the two systems converge on a common structure
of number names, and children in both countries show a parallel scalloped
pattern in which errors are concenlratcd at decade boundaries and do not
differ between countries. As noted previously. Chinese introduces a newele·
ment (ling) in number names in the first decade above 100, and this transition
becomes a serious stumbling block for Chinese children. with a significantly
greater drop for Chinese than American subjects.

These cross-national differences between American and Chinese pre
schoolers' success in mastering the number-naming sequences of their native
language occurred in very specific pans of the number-naming sequence.
and did not extend to other aspects of early counting skill. In object counting
and in simple mathematical problem solving. Miller et al. (1995) found no
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significant differences in the ability of children in the two countries 10 keep
track of which objects had been counted, or to generate sets of a given nu
merosity (producing n candies to feed 10 a toy panda as part of a game).
The effects of differences in number-name structure on carly mathematical
development appear to be very specific 10 those aspects of mathemmics that
require one to learn and use these symbol systems.

Finding that Chinese and American children show differences in early
mathematical development in the direction and at the points that an analysis
of the two symbol systems would predict lends some support to the view
that these differences in symbol systems cause lhe associated learning diffi
culties. There are clearly substantial differences in the contexts in which chil
dren develop in these two counlries, however, which compels caution in
drawing strong causal conclusions from these cross-language comparisons.
There are. for example. many anecdOlal repons (e.g.• Gardner, 1988) sug
gesting that adults in the United States use quite different teaching strategies
with their preschool children compared to Asian families.

Because a true experiment, with random assignment of subjects to cultural
group is clearly impossible, claims about tbe causal relationship belween lan
guage structure and acquisilion can bestrengthened by proxy experiments and
simulations that expose the same subjects or model to learning problems thaI
are modcled on lhe actual number naming s)'Slemschildren muslleam. An initial
ef10rt in this direction has been started in our lab. A quite simple. morphology
based connectionist modelleamed to count in systems modeled after Chinese
and English. The simulalion is a three-layer (input. hidden. output) nonrecur
rent feed forward artificial neural nelwork thai learns a slightly idealized
morphology-based counling system. The layers are pairwise fully connected.
The models were trained under a back propagalion algorithm usinga modified
supervised learning pauemcd after children's couming behavior.

Number names consisted of onc element each of otherwise unordered sets
corresponding to decade names, bases, and units. For English, the set of
decade names consisted of Iwen-, thir-, fo(u)r-, fifo, six-, seven-, eight-, nine-,
& 1null I. The set of bases consisted of -ty. -ta:n, and {null}. The set of units
eonsisled of one, two, three, four, five, six, seven, eight, nine, ten, eleven,
twelve, and {null}. For Chinese, the set of decade names consisted ofer-, san-,
si-, wU-, Iiu-, qi-, 00-. jiu-, and lnulll. The set of bases consisted ofshi and
\null). The set of units consisted ofyi. er, san, si, wu.liu, qi, ba,jiu. and {null}.

This analysis ignores several obvious semantic and morphological aspects
of number names. For example. the relation between the "sixes" in "six-ty
six" is not represented; Ihey are independent tokens.

Training used a modification of supervised learning imended 10 permit
some model control of learning sequences. In this sequential training ap
proach, training and testing are collapsed into the same process: the learner
is presented with a stimulus (starting with "one" or "yi"). generating are-
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sponse that is evaluated. If the response is correct. the learner is presented
with the next stimulus in the sequence. continuing in this fashion until an
error is made. On making an error. the model is adjusted via back propa
gation. but the model continues with the given response (nol the correct
response) as the stimulus for the next trial. Counting terminates either when
no response is given or probabilisticalJy after erron are made.

Figure 4.5 presents results from training this model with the Chinese and
English counting sequcnceS. The !irst epoch in which a number was correctly
produced is depicted. A negative y-axis scale is used to facilitate comparison
with the survival profiles presented in Fig. 4.4.

The model demonstrates three basic phenomena that children show. First,
performance in the initial part of the sequcnce (1-10) docs not differ between
languages. Second. differences favoring the Chinese language emerge during
the ·'teens." Third. counting beyond the teens in both counlries produces a
scalloped difficulty profile. with mistakes likely to occur at decade bounda
no;.
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FIG. 4.5. PcrfQlTTlance ora morphology-based neurul.net....orl modellr'~iMd
10 c<lUnl in Chinese and Engli'ih. Fir:n epoch 10 produce a number is sho....n:
10 facililDte oomparision "'ilb lhe previous figure. tbi'i is plotted on a revene
a~i'i. The model repr<:>du~'i lhe' mosl pl1)rl1iMnl phenomena lJ!own in
children's bebavior. (Ill similar performarlCc before 10. a larger dropoff for
English in the leens. and a so:alloped profik of diffICulty lit decade ooundariC'i
for bolh langulIJ!CS in the range front 20-99.
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There are a number of vcry substantial limitations with Ihis model. First
of all. the U.S. prolile for the higher numbers is distinctively less scalloped
than is the corresponding curve for Chinese data; a phenomenon not ob
served in children's counting. Overall, the model's performance is "too scal
loped." Unlike real children, the model does not catch on 10 the recurrent
structure of number names. In fact (as one would expect from catastrophic
interference analyses), learning additional decade transitions tends 10 become
harder as training progresses. Furthennore, looking only at the first correct
epoch in which a transition is made obscures a substantial amount of cata
strophic inlcrference in the previously learned parts of the model. A recently
completed longitudinal study (Miller. Smith, Zhang. & Zen, in preparation)
indicates that a certain amount of such interference may occur in real life,
but clearly not to the extent that the model indicates. Finally, the model
cannot exhibit an importalll limitation that young children show: the inabil·
ity to randomly access number names. That is. when asked to produce the
number following "5," they need to count from I in order to come up with
"6." Nonetheless, these modeling results are encouraging as presenting evi·
dence that differences between English and Chinese number names are suf·
ficient to produce a number of the empirically observed differences in diffi·
culty of acquisition of these two systems by children learning to count in
their nalive language.

Online Computational EH~cts

The effects of the idiosyncratic English number system do not entirely dis
appear with development. Miller and Zhu (1991) explored a task that re
quired subjects to access the names of two digit numbers in an unusual way,
by reversing number names (that is. naming the number produced by re
versing the tens' and unit's places, saying "24" to the stimulus "42"). In
ordinary naming. the fact that the name for "14" begins with the rightmost
element, whereas the name for "24" begins with the leftmost element and
does not affect speed or accuracy of naming. When subjects had to reverse
number names. ho....-ever, the idiosyncracy of English teens names emerged
in naming latencies. For Chinese, which has a consistent structure for names
of two-digit numbers, no such disparity was observed. The fact that with
practice even complicated s!ructures can become automatized (e.g., Shiffrin
& Dumais, 1981) suggests symbolic structure effects on symbolic computa
tion should be most prominent in unfamiliar or complex tasks, and that
automaticity or local processes that can provide computational shortcuts.

fonnnt Effects in Children's Addition in tl,e United States and China,
Fuson and Kwon (1991) have argued that the complexity of English number
names in the teens causes difficulty for children learning to add and subtract
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in early elementary school, because the fact that 12 =- 10 + 2 is not reflected
in the word "twelve." adding an extra step to problems involving carrying
and borrowing. In general. Hindu-Arabic numerals are used for computa
tion. whereas language-specific number names are used almost purely for
linguistic communication and Roman numerals are reserved for special uses
such as indicaling years and Super Bowl sequences. Indeed. it is somewhat
disconcerting to see the use of number words or Roman numerals in the
context of doing arithmetic. Figure 4.6 shows the same addition problem
presented in four formats: Roman numemls. Arabic numerals. Chincscchar
acters. and as words in the English-language alphabetic orthography.

Consider how one might try to add this problem using the representations
in which it is presented. Both the Roman numeral and English alphabetic
notations present parsing problems--detennining what is 10 be added to
what----that are absent in the other representations. Paredes (1995) asked
secondo, third-, and fourth-grade students in China and the United States
to mentally add sets of single-digit Arabic numerals as well as two double
digit numbers displayed eilher as Arabic numerals (the numeral condition)
and as number names written in the orthography of their native language
as shown in Fig. 4.5 (the word condition). As Fig. 4.7 shows. for two-digit
Arabic numerals there was no significant difference in the accuracy of U.S.
and Chinese children. but Chinese slUdents were significantly faster than
U.S. students al every grade level (a finding predicted from comparative
studies of arithmetic achievement-Geary, Fan, & Bow-Thomas. 1992;
Stevenson. Stigler. & Lee. 1986; Travers et al.. 1987).

When problems were presented in the two word orthographit.-s (English
alphabetic and Chinese character orthographies), a diITerent patlem of re
sults emerged. depicted in Fig. 4.8. Chinese students continued to be signifi
cantly faster Ihan their American peers. but the accuracy results showed a
significant difference at all ages favoring the U.S. subjecls. An analysis of
the types of errors the children made helps 10 explain these surprising results.

Errors were coded into three basic types: (a) Near misses were within two
of the correct answer for each digit and contained the correct number of
digits. These were believed to represcTlt calculation errors, and were relatively
constant between countries. (b) R('\'(!rso!s involved adding the units portion
of one addend to Ihe tens portion of the other. As Fig. 4.9 shows, this mistake
was limited to Americ.:m subjects. In the word example shown in Fig. 4.6.

XXVII 27
+ XIV + 14

FIG. 4.6. The SOIme ~rithmetk

problem p~nled in rour rorm;at$
(clock ....i~~ Roman numer-.r.l§. Ar-J.· .=. +-1::
hie nume....J.1s. Englilll alphbnic or·
thogrnphy. and Chinese characters. ..:.....±!!..

twenty·seven
+ fourteen
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FIG. 4,7. Median RT for 2..JiSil addition problems presenlcd as numerals.
Top panel !OlIo..·s median addin& time by &111~ and country for problems
corm::lly 1001\-al. Bottom panel sllo...·$ perttnl of problems answered correctly.
Despite similar levels of a«ur.ICY. Chinese sllb~IS were substantially faster
lhan tOOT U.S. peers.

this would typically involve adding the fOUf in "fourteen" to the two in
"twenty-seven" and the one in "fourteen" to the seven in "twenty-seven,"
to produce 68 as the sum of 27 + 14. The final error type was termed (e)
£.r:pansiolls. in which thc answer contained the wrong l1Iullber of digits. This
problem was limited to the Chinese subjects. and accounted for their high
error rate. This occured because Chinese children oflen treated each ehameler
of the number name as having the value corresponding to its position in the
Hindu-Arabic numeral system. In the example in Fig. 4.6, for inslance, the
number 27 is represented by Chinese characters equivalent 10 2, 10, and 7.
Chinese students tended treat that string as though it were 217, failing to
appreciale the dislinction Menninger (1969) drew between place-value sys
tems (like Arabic numerals) and name-value systems (like Chinese charac
ters). in which there is an explicit representation of each place.
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Although the mapping between Chinese characters and Arabic numerals
is more direct and consistent than is the mapping between English words
and Arabic numerals. in this special and unusual task thaI similarity of rep
n.."'5Cntation proved 10 be a problem for Chin<.."'5C subjects. Unlcss onc has II

deep understanding of the difference between place-value and name-value
systems, one is very likely to attempt to simply carryover algorithms that
work for place-value numbers and apply them to Chinese characters. with
the results revealed in Ihis sludy.

Abncus. Prior research has documented the impressive computational
skills developed by adults and children who receive extended prnctice in
abacus calculation (Hatano et al .. 1977; Hatano & Osawa. 1983; Stigler.
1984). Perhaps the most intriguing aspect of this skill is the development of
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FIG. 4.9. Errors on the wordlch~r~cler formal addition task. Errors .....ere
coded inlo (a) Near miMes (within ::1:2 on both digits of ilns..-ef. and correct
number of digits,; {bj E!lpansions (in hich lhe answer contained the ,nO'll
number of digits); and (e) Re"'cT5C'5 (in hich the units portion of one IIddend
W'.lS Oidded to lhe lens portion of the other). Error profiln differed substantilllly
acrou coulllries and rcfkcted the nature of the orthography used.

"mental abacus calculation," in which subjects calculate with reference to
an internal image of the abacus. Persons who develop a high level of skill
at abacus calculation report calculaling with reference 10 a "mental abacus,"
using an image of the abacus to perform mental arithmetic. Supporting this
claim. studies or the mental calculation or abacus experts find several ways
in which the structure or the abacus is reflected in subjects' performance.
Stigler (1984) reported that ror abacus-trained children the number or steps
involved in an ab..-acus calculation was associated with reaclion time ror
mental calculation. He also reported that these abacus-trained children could
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distinguish true inlermediate states from foils. Perhaps the strongesl evidence
for the abacus-like nature of the mental calculation of these children came
from anal~is of their errors. Abacus calculators (but not American college
students) were prone to make errors that could be accounted for by misrep
resenling the location of one bead on the abacus. These included leaving
out the value of one column, and errors in which the answer was off by 5
in some column from the correct sum. Because the abacus represents numbers
that differ by 5 in a similar way, the finding of an increased incidence of
these modulo-5 errors provides a convincing demonstration of the abacus
like nature of the calculation of Ihose who have become experts al the skill
of menial abacus calculation.

The prevalence of modulo·5 errors in the mental calculation of abacus
trained children is important. because it provides clear evidence that the
structure of the abacus has impressed itselfon the organization ofcalculation
by these children.

Conceptual Consequences of Numerical Symbols

Building B/ue-10 Representations. The difficulties young children have
in figuring OUI the base·1O structure of English are not limited to mistakes
they make in counling. Miura, Kim. Chang. and OkH!"!1C'~O (1988) reported
that first graders in China, Japan, and Korea (all speaking languages that
use the basic Chinese syslem for fonning number names) showed a substan
tially greater ability than did American children to use base-l 0 blocks (Dienes
blocks) to form object representations Ihat incorporate base-IO principles.

Abacus. Models ofexpertise permit two contradictory predictions about
the effects of abacus expertise on experts' judgments of similarity between
numbers. One view, stretching back to Bryan and Harter (1899), argues Ihat
domains of knowledge should be organized in terms of the functional expertise
one has within those domains-a view Miller and Stigler (1991) called
ronceptual determination by skill. In this view. abacus experts should view
numbers in lerms of the relations that are important in abacus calculation
(such as the modul0-5 relations prominent on the abacus). The opposite
prediction, which we lermed conceptual trQnsparenq ofskill has an equally
distinguished ancestry, going back to Binet (1893/1966). Binet argued Ihat
experts develop a representation which is much more abstraCI than the con·
straints ofa particular expertise would imply. In this view. ab.:\cus experts should
judge as salicm only features that are meaningful in a larger mathematical
context. The faci that I and 6 have similar represemations on an abacus is of
very limited mathematical significance. Conceptual transparency implies that,
although abacus experts are prone [0 make abacus-specific mistakes in
calculation (e.g.. substiluting a "I" for a "6"). abacus-specific faclors should
not be prominent in their judgmenls of similarity between numbers.
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To evaluate the effect of abacus skill on number representation, we col
lected similarity judgments for p..'lirs of numbers in the range 0-20 from three
groups of sixth graders: Novices (U.S. children wilh no abacus experience);
Intemlediates (Chinese children with only general abacus training, who knew
how numbers were represemed on the abacus. hut had no special training
in abacus calculation beyond brief exposure in the general school curricu
lum): and Experts (Chinese children who had panicipated in special after
school abacus training and were rated at one of the top three levels of skill
in the Chinese Abacus Association rating system). Children judged similarity
of pairs of numbers. and each child saw stimuli presented either as Arabic
numerals or as abacus ligures (in a truncated display showing 2 columns).

Figures 4. JO and 4.1 I present the results of a SINDSCAL (Carroll &
Chang, 1970) analysis of the similarity judgments of these two kinds of num
bers (Numerals vs. Abacus depictions) by these three groups of subjects (Aba
cus Experts, Abacus IntemlCdiates, and complete Novices-Americans). A
three-dimensional solution is described, with an overall correlation of r =
.638 between predicted and actual judgments. The first dimcnsion corre
sponds to numerical magnitude. and is most stressed by U.S. children judging
numerals and Intcnnediatesjudging the abacus. The abacus does not provide
a direct representation of magnitude, as the relatively low weighting of this
dimension by U.S. children judging the abacus shows. Therefore, Interme
diatcs judging abacus stimuli are going beyond the relations explicitly en
coded on the abacus when they emphasize numerical magnitude in judging
the similarity of abacus figures. Figure 4.11 presents the first dimension of
the SINDSCAL Solulion paired with the third dimension, which corresponds
to the number of beads used to present a particular number. It is essentially
a modulo-5 dimension: thus the numbers 0,5,10.15,20 (all of which are de
picted with 0 lower beads) have a similar low value on this dimension.

Intermediates' judgments of abacus and number stimuli were quite dif
ferent from each other, however, indicating that not every mathcmatical fea
ture known to these children was incorporated in their abacus judgments,
Intermediates judging abacus stimuli placed little emphasis on Odd versus
Even, although their judgments of numerals emphasized this feature heavily.
In terms of the developmental progression from magnitude 10 multiplicative
relations described earlier. Inteffilcdiates' judgments of abacus repre
sentations were less mature than their judgments of numerals. U.S. and In
termediate subjects judging abacus figures placed a greater emphasis than
did experts on the modul0-5 relations used to represent numbers on the aba
cus.

Expert judgments of the different types of stimuli were much more similar
to each other than were those of Intcnnediates, and both resembled Inter
mediates' judgnlcnlS of numerals more than lntennediates' judgments of aba
cus figures. This indicates that Experts' judgments lend to deemphasize aha-
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by U.S. subjects (Nov~'J. Abacus lnlC:rmedialeS. and Awcus bperlS. This
figure pairs lhe Iirsl lwo dimensions. which roughly correspond 10 Magnitude
and Odd versus Even. The lOp panelsho""s _ighlina of stimuli in a common
space derived rrom all subjects' judgmenls. The lower pand prnc:ntsthelubjeet
or weight space corresponding co che dimensions presented in lhe upper panel.
Tllrrefore. ror example. U.S. SUbjetll judging the abacus placed very lillie
wdgh' un ,he Odd E""n din..,n,ion rel~lj"" Co M"i";'l>d<-.

cus specific fealures. consistent with the conceptual Iransparency view of Ihe
conceptual consequences of expertise.

Judgments of numerical slimuli show a differenl paltern wilh expertise.
In this case, U.S. subjects show the strongest influence of magnitude, con
sistent wilh olhcr dala (e.g.. Stevenson, Lee, & Sligier. 1986) in suggesling
thaI U.S. children are less mathematically sophislicaled than Iheir Chinese
peers. Intermcdiale and Expert children show a correspondingly greater in
fluence of Odd/Even parity Ihan do U.S. children. whereas Ihere is a small
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effect of modulo-5 features that does not show a consistent change with
expertise.

Conceptual Consequences of Expertise

Abacus experts show some evidence of a unified representation of number
across dill'erent external representations. This representation does nOl, how·
ever, emphasize the features that are important in the skililhey have acquired.
Instead, features of number thai are more significant in a broader mathe
matical context assume prominence in the judgments of abacus expens, al
the expense of those features on which abacus calculation is based. The
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differences between Intermediales and U.S. subjects are interesling. because
even though Inlermediates knew the numerical value of abacus repre
senlations, their results for abacus stimuli fell between u.s. subjects (who
were perf'orce judging on the features of the abacus depiction) and Experts
(who placed strong emphasis on non-abacus mathematical features). Inter
mediate subjects enriched their judgments of abacus stimuli by including the
non-abacus feature of magnitude, yet their judgments of abacus figures failed
to include multiplicative relalions that were prominent when Intermediates
judged numerals. This finding suggests thai the conceptual transparency
model provides a good description of the conceptual consequences of exper
tise, but it also indicates that simply knowing the mapping between two
systems is not enough to ensure that all relations known in one will transfer
to the other. The problem of accessing knowledge across different but parallel
represenlalional systems is one that extends beyond the domain of abacus
calculation. The final study looks at the effects of different orthographies
for writing numbers on the mathematical relations children perceive.

Orthography and Number-Similarity

Even if one doesn't learn a special calculation technique, everyone is familiar
with multiple represenlations for numbers. The final data to be presented here
report how number similarity judgments are affected by language and orthog
raphy. O1inese and American children in Grades 2, 4, and 6 judged similarity
of numbers presented as either Arabic numerals or in a word orthography
(English words or Chinese chamcters). Another group of children in the same
grades in South Korea judged numbers presented in three orthographies:
Arabic numerals, Korean Informal, and Korean Form.:l1 notation. Korean is
particularly inleresting because it uses two different number naming systems:
one for mathematics and most measurement situations(Formai numbers), and
another that must be used instead of Formal numbers for many common
nouns (lnformal numbers). Research on early counling (Song & Ginsburg.
1988) has shown that having to learn two separate systems of numbers is
initially quite confusing for young children; whether both are later mapped
onto some unified number concept was explored in this study.

Results for a two-dimensional SINDSCAL analysis for U.s. and Chinese
subjects are presented in Fig. 4.\2, with an overall correlation of r = .76
between predicted and actual judgments, Korean results are presented in
Fig. 4.13, with an overall correlation of r = .68 between predicted and actual
judgments. In both analyses, the two dimensions correspond generally 10
Magnitude and Odd versus Even. The developmental pattern within each
country for Arabic numerals corresponds to that found by Miller and Gei
man (1983), with increasing emphasis on OddfEven and decreasing emphasis
on Magnitude. The rate of this change diITers across countries. with U.S.
fourth graders looking more like second graders in the other countries in
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in t~ Joo.o.-er panel correspond 10 the ,,'t'ightins of these two dimensions by
group!! of subjects. For example. U.S. ~ond graders judging words placed
very lillie emphasis on the odd/even dimension.

their emphasis on Magnitude. ahhough by 6th grade all groups or subjects
showed a greater emphasis on Odd-Even Ihan on Magnitude.

Judgments of "Word" orthographies showed a smaller. later, and less
consistent shift from magnitude toward multiplicative relations. 80th groups
of second graders and U.S. fourth graders placed much more emphasis on
Magnitude (han on Odd-Evcn. As with Arabic numeral stimuli. U.s. subjects
consistcntly placed more of an emphasis on magnitude relative 10 multipli-



4. MATHEMATICAL TOOLS 113

0.'0.'

" 8• • "•
•

"
..

• .",

, I.. •

II
3 •

15I . • "•5
, 13 •

•, 21 17

•

0.'

0.'

~.•
-0.4 -0.2 0

"0.•,-----""""'''-------,

0.5 ...

0.1

• l-A ...
OJf-----,----,-,-'-'-'-T"·'C·':,.>','-11 1 I I I I 1 '1

o O.t 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.11
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Korean ehildren judging numbers presented in three different orthographies:
Anlbic numerals. and the formal and informal number systems. Thi~ figure
pairs the firstt\lo'o dimen~ion~. which roughly correspond to Magnitude and
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judging numbers pre5C'nted in both the Arabic numer.tl and rormalsystems
placed relatively high emphasis on the odd/even dimension.

cative features than their Chinese peers. Results for the two Korean word
orthographies are particularly interesting, with evidence by Grade 6 of much
greater similarity in judgments for the Arabic and Fomlal notations, which
are both used in school mathematics, than between either of these numbers
and the Infonnal numbers. which are generally no! used in school situations.

Although children are very familiar with the mapping between the various
orthographies used to represent numbers. there are still substantial effects
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of orthographic variation on children's judgment of relations between num
bers. Overall. it appears that Arabic numerals do have a privileged role in
children's early numerical reasoning. This could be due to a number of
factors, IWO of which are siale-dependent learning (that is. Ihis is the preferred
notation used for teaching mathematics and performing arithmetic), and the
consistency of Arabic numerals as a base·lO representational system. Support
for the second explanation is suggested by results from the Chinese character
condition, in which children were more likely to access multiplicative rela
tions when judging an orthography that maps consistently onto the base· 10
structure of Arabic numerals than does the English alphabetic orthography
for writing number names.

Children also provided justifications for their judgments of a set of triads
presented at the end of each packet. Children in all conditions saw the same
four triads (in the appropriate orthography). and their judgments were not
incorporated in the scaling results. Coding of children's justifications are
consistent with results from the analyses ofjudgments described earlier. U.S.
children were less likely to cite Odd-Even relations. prime numbers. or other
multiplicative features as a basis for their judgments when stimuli were
presented as Arabic numerals, although Chinese subjects showed no such
elTect. Judgments based on the sound or writingofnumbers(e.g., picking"ten"
and ",hirteen" as most similar because "they both cnd in ·cn.' ..) wcre relatively
rare (8% of U.S. children in the word orthography used this rationale at least
once), and wcre limited 10 U.S. children viewing word stimuli. The alphabetic
nature of English words can be a distraction from accessing mathematical
relations, but as with Abacus experts judging abacus stimuli, U.S. children
generally do not incorporate idiosyncratic features of English words in their
judgments of relations among numbers presented in this format.

SUMMARY AND CONCLUSIONS

The symbol systems that children use in learning and performing mathemat
ics havc a number of distinct elTecls on the course of mathematical devel
opment. To use these systems, they must first be learned, and acquiring a
new symbol system requires a massive intellectual investment. Systems differ
in the extcnt and consistcncy with which they reflect a small number of gen
erative rules (such as the base-IO principle): these differences can have a sub
stantial impact on the time it takes children to acquire them and on the
mistakes and misconccptions they show along the way. Mathematics is an
area in which onc oftcn must master multiple, related symbol systems, such
as Arabic numerals and the names for those numbers. Learninga new symbol
system involves in part mapping previous knowledge and relations onto a
new sct of lools. This can be a difficult process. and differences in organi-
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zation (such as that between Arabic numerals and English number names)
can have an impact on the ease with which children acquire and use a new
symbol system. At the same time, parallel structure between two systems
can seduce children into inappropriate transferring algorithms whose use is
limited to a particular system, as shown by the case of Chinese children's
erroneous arithmetic with Chinese characters. Finally. the clarity and con
sistency with which mathematical symbols reflect an organizing principle
such as a b3se structure can affect the ease with which children develop a
conceptual access to that principle.

Mathematical tools such as numerical symbols constitute a major portion
of the intellectual legacy on which we build our own mathematical compe
tence. Understanding how the nature of these symbols affects their acquisi
tion and use is vital to helping children overcome the difficulties that the
complexity of such symbols can present to learners. For example. it is not
surprising that English-speaking children should have difficulty acquiring
aspects of mathematics related to the base-IO structure of numbers. but mak
ing that structure explicit early in instruction might prove to be a way to
compensate for the complexity that the English language presents. More gen
erally. the organization of mathematical symbols may provide a new key to
understanding both the problems that traditional symbols present and the
prospects that new representational systems may afford to future mathe
matical development.
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Examination of mathematical systems across cultures reveals a remarkable
diversity. Groups usc different symbolic vehicles to represent numerical in
formation and different procedures to organize the mathemalical applica
tions of these symbols. The Incas of Peru (1200 A.D.-1540 A.D.). for inslance.
used collections of cotlon knotted cords ("quipu") to systematically record
the numerical conlents of their storehouses, census of geographical areas.
and quantitative outputs of gold mines (Asher & Asher, 1981). The ancient
Babylonians (c. 1750 B.c.-538 B.C.) used a base-60 number system to produce
complex computations in diverse commercial practices (Menninger, 1969).
Today's traditional Oksapmin of Papua New Guinea use a counting system
consisting of 27 body parts to serve such functions as counting valuables.
measuring string bags, and tallying bride price payment contributions (Saxe.
1981). Furthermore. we. in Western technological societies. usc a number
word system and a number orthography organized in tenus of a base-IO
structure that is used to serve a wide variety of functions in our technologi
cally complex world.

This chapter addresses a question concerning the interrelalion of cullure
with individuals' developing mathematical understandings: How do fonns
of thought that have been invented, appropriated, and specialized over the
course of a culture's social history come to be interwoven with individuals'
developing abilities to accomplish problems in everyday life? In this chapler
we begin by sketching mainstream psychological approaches that bear on
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Ihis developmental question, pointing both to insights that they have yielded.
and 10 their shortcomings, p..'lrticularly with regard to the representation of
culture in the developmental process. Next, we introduce Saxe's cultural prac
lice framework as a means of elevating culture more centrally inla analyses
of cognition. illustrating the framework with examples drawn from Saxe's
prior work with the Oksapmin of Papua New Guinea. In the final section
of this chapter. we argue that clinical assessment interviews with children
are a fonn of cultural practice, and show the way in which "culture" is in
terwoven with microgenetic and onlogenetic shifts in students' evolving ap
proaches to the solution of an individual interview measurement task.

PIAGEllAN CONSTRUcnVISM:
ITS CONlRlBUTIONS AND SHORTCOMINGS
FOR THE REPRESENTATION OF CULTURE
IN COGNITIVE DEVELOPMENT

A fundamental assumplion thai dominates today's discussions of the psy
chological nature of mathemalical thinking is that it is a construction of Ihe
human mind. Piaget (1970), who produced seminal sludies on children's
mathematics, pointed to this constructive aspect in a lecture at Clark Uni·
versity when he described a SIOry relaled 10 him by a mathematician friend
about an incident when the friend was only a young boy:

When he was a small child. he was counling pebbles one day: he lined them
up in a row. counted them from left 10 righl. and gOI 10. Then. just for fun,
he counted them from right to left to see what number he would get. and was
astonished th':ll he got 10 again. He put the pebbles in a circle and counted
them. and once again there were 10. He went around the circle in the other
way and gal 10 again. And no mailer how he put the pebbles down. when he
counted them. the number came to 10. (pp. 16-17)

Piagel weill on to question what it was that the boy discovered. Piaget
argued that his friend had not discovered a propeny of pebbles, nOling thai
there was no order inherent in the pebbles. Indeed, the young boy ordered
Ihose pebbles through his own activity and Ihe boy himself had produced
the sum. His friend. through counting the pebbles in various orders. had
invented a new concept-thallhe sum was necessarily independent of order.
Piaget used the example to iIIustrale that in a very basic sense number is
not in our environment. our number system. or our language. Individuals
structure their worlds into numerical ones by cognitive operations such as
summing and ordering. In essence. Piaget argued that number is created by
individuals through a series of constructions that occur over the course of
ontogenesis-it is neither a direct reflection of our environment nor our ge-
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netic makeup. For Piaget, what was fundamental for the analysis of the con
structive process was a focus on the development of abstract cognitive struc
tures, such as systems of operations related to correspondence and order.
These structures were manifest across all knowledge domains. emerging in
an epigenetic and universal sequence.

The developmental concerns of Piaget-the cognitive structures that un
derlie our mathematical thought-are evident in the work of other investi·
gators. Researchers have documented evidence of cognitive structures un
derlying counting (Fuson. 1988; Gelman & Gallistel. 1978; Gelman & Meek.
1983; Saxe, 1977). arithmetic (Klein & Starkey. 1988), fundamental numerical
concepts like equivalence and conservation (piaget & Szeminska. 1952), and
a wide range of rational number concepts (e.g.. Inhelder & Piaget. 1958;
Kieren, 1988; Kieren. Nelson, & Smith. 1983; L1.mon, 1993: Lesh, Post, &
Behr. 1988). Although such structural developmental analyses have contrib
uted to our understanding of children's mathematics. they have tended to
omit the analysis of cultural aspects of children's developing understand
ings----the manm:r in which particular mathematical systems and cultural
practices with which children are engaged become interwoven with thc char
acter of their mathematical thought. This chapter argues that by sidestepping
an analysis of culture in children's cognitive development, we blind ourselves
to core processes in individuals' developing mathematics.

A SOCIOCULruRAL APPROACH:
THE EMERGENT GOALS FRAMEWORK

Like Piagefs constructivism, the framework that we sketch is guided by the
assumption that individuals construct mathematical understandings through
a self-regulated process. Unlike the Piagetian perspective. however. a critical
concern is to understand the individual's cognition as it takes form in cultural
practices. whelher they be practices like trade in Stone Age cultures. baseball
card trade in tooay's urban youth. or mathematics tutorial and assessment
practices involving educator and child. In cullural practices. individuals
structure and accomplish practice-linked mathematical goals that are neces
sarily interwoven with the artifacts used (such as number and measurement
systems), social interactions (with a trading partner, or a teacher). activity
structures (institutionalized patterns of activity characteristic of practices).
and individuals' prior knowledge (such as underst<'tndings of one-to-one cor
respondence or arithmetical operations). In constructing solutions to those
goals. individuals create cognitions that are interwoven with everyday cui
turallife.

We show below that a focus on mathematical goals as situated in cultural
practices serves to reorient the analytic lens through which we view individuals'
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developing mathematical knowledge. For instance. in Piagetian analyses.
investigators focus on children's verbalizations and actions thai provide
evidence for the eltistence of general cognitive structures. The way particular
cultural-bound symbolic fonnsare linked 10 theconceplualization and accom
plishment of problems in practices, and the way the acquisition and use of
those fanns may be supported through engagement in particular practices, are
understood to be largely extraneous to the analysis ofcognitive structures. In
comrast, by focusing on emergent practice-linked goals and the means that
individuals structure to accomplish those goals, we are led to analyses of
individuals' cognitive constructions as rOOled in cultural practice.

The Emergent Goals framework has emerged from studies ofthe interplay
between out-of-school and in-school mathematics of Brazilian child candy
sellers and straw weavcrs (Saxe. 1988. 1991; Saxe & Gearhart. 1990), indige
nous groups in Papua New Guinea (Saxe. 1981, 1982. 1985; Saxe & Moylan,
1982). mother-child interaction involving young children's evcryday numeri
cal practices (Saxe. Gearhart, & Guberman, 1984; Saxe, Guberman, &
Gearhart, 1987), and the arithmetical understandings that emerge in inner
city children's sustained play of an educational game (Saxe. 1992; Saxe &
Bermudez. in press; Saxe. Gearhart, Note, & Paduano. 1993; Saxe & Guber
man. in press).

To illustrate the analytic approach. we draw on prior research with the
Oksapmin. a community of people who live in remote highland hamlets in
Papua New Guinea (Saxe, 1982. 1991). I These studies provide insight into
the emergence ofnovcl mathematical understandings in a community ofpeo
pIe engaging in new trade-related cultural practices. In the example drawn
from the Oksapmin community, we focus on aduhstoshow that fundamental
developments in mathematical thinking are not restricted to children, but
occur across the life span. In the latter part of the chapler, we show how
thc framework providcs a basis for understanding children's developing cog
nitions in schools in the United States.

Emergent Goals Framework Applied 10 the Sociogenesis
of Arithmetic in the Oksapmin

Oksapmin is a community emerging from the Stone Age. Historically, Oksap
min subsistence depended on hunting for small mammals and birds with bow
and arrow and growing root crops using slash-and-burn methods. In tradi
tionallife, numerical problems involved use ofa 27-body-part countingsystem
to solve nonarithmetical problems in activities like determining the number of
one's pigs. To count asOksapmin do. one begins with the thumb on one hand

'The malerial pn:smlel! on Ihe Okupmin was dravl'll from Saxe (1991). The le~l is abridged
from 1M orillnal occoonl.
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FIG.5.1. Oksapmin body counting figure.
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and follows a trajectory around the upper periphery of the body down to the
little finger on the opposite hand (see Fig. 5.1). Recent Western contact
brought the introduction of novel trade-related practices involving currency
for economic exchange in newly established tradestores. In the new tradestore
activities, Oksapmin must use the indigenous body-part counting system to
solve arithmetical problems involving currency, problems that were nonex
isteOi in traditional life.

The Emergent Goals Framework consists of three principal componeOis
concerned with the analysis of development in relation to children's engage
ment with practices. The components include analyses ofthegoa/s that emerge
in practices like economic exchanges at Oksapmin tradestores (Component I),
the shifting relations between the cognitive forms like the indigenous number
system and cogni tive fimctions Ii ke counting or arithmetic linked to individuals
efforts to accomplish emergent goals (ComponeOi 2), and the in/erp/ay
between cognitive developments across practices (Component 3). Following.
we illustrate each component, pointing to the insights thai it yields about
practice-linked cognitive developments in Oksapmin communities.

Component 1: Practice-Linked Goals
in Oksapmin Trade Stores

Specifying the character of the goals that individuals structure in practices
is an analytic endeavor of some complexity. Not only do individuals shape
and reshape their goals as practices take fonn in everyday life, but they also
construct goals that vary in character as a function of the knowledge that
they bring to practices.

Four principal parameters are implicated in the process of goal fonnation
(Fig. 5.2)-the activity structures that often become routine phases of a prac
tice, the social illteractio/lS in which goals become modified and take par
ticular fonos (through assistance. instruction, negotiation), particular con-
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FIG. S.2. Four panllneter model.

I'enlions and ruill/ral artifacts. and the prior understandings thai individuals
bring to bear on practices. We consider each brieAy here 10 iIlustrale how
individuals' practice-linked emerging goals are rooted both in their own
sense-making activilies and the cultural practices in which they participate.

The at;til'ity strllt;turl' of a pmctice consists of a routine organization of
participation, For instance, a purchase in Oksapmin trade stores consists of
several phases. including the selection of goods and payment. A principal
motive while participating in Ihis activity mllY be 10 acquire as many desired
goods as possible while sacrificing as little money as possible. and mathe
matical goals thai emerge in item selection and payment may be guided by
this economic motive. Goals that emerge in one practice may be distinct
from other practices in which an individual participates. For instance, in
indigenous Oksapmin practices like weaving and horticulture. we do not find
individuals accomplishing tasks that require arithmetical solutions.

Social in/eraelions bet....-een participants in practices may further innuence
the character of the goals that individuals address, During an exchange. an
Oksapmin tradestore owner may help the customer with a computation in
any number of ways. thus modifying the kinds of arithmetical goals a cus
tomer addresses. Such assistance permits customers of varying degrees of
competence to participate in the practice. much like mothers' assistance to
their children pennit toddlers to engage in activities beyond their unassisted
levels of numerical competence (Saxe et aI., 1987), In the case of tradestore
transactions. assistance may be in the form of helping a customer add cur
rency. completing a subtraction problem in helping a customer cbeck the
computation of cbange. or helping to clarify an arithmetical problem. Re
gardless. practice-linked social interactions often are interwoven with the
goals and subgoals that emerge. and that individuals accomplish. in the prac·
tice,
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Artifacts and cOfl\'(mtiofls are cultural forms that have been created over
the course of social history which also figure into thc goals that emerge in
cultural practices. Examples of such cultural forms are the Oksapmin in
digenous body-p3rt counting system and cultural artifacts like a particular
currency system. The use of the body-part counting system in economic ex
changes leads Oksapmin to such goals as adding a biceps 10 a forearm, a
representation of an addition problem Ihat bolh constrains and supports the
construction of particular kinds of subgoals for a computalional solution.
Similarly, the particular denominational structure of a currency system also
innuences the panicular values addressed in aClivities and the subgoals that
emerge in problem solving.

Finally, the prior understandings that individuals bring to bear on cullural
practices both conslrain and enable the goals they conslruct in practices. In
the case of the Oksapmin, we find that Oksapmin with different levels of
experience participating in the money economy bring to bear differenl ar
ithmetical understandings on practice-linked problems, and consequently
their goals differ, Therefore. an Oksapmin wilh little experience in the money
economy typically conceptualized a purchase in terms of a multiple items
of-merchandise for multiple units of currency exchange. The goal was thus
to produce an appropriate one-for-one or many-for-one correspondence. In
contrast, individuals with greater expertise conceptualized problems as ar
ithmetical ones, summing the total cost of items of merchandise.

Component 2: Form-Function SJ.ifts
in Cognitive Development

Component 2 of the approach consists of a conceptualization of cognitive
developmental processes that draws on a formulation put forth by Werner
and Kaplan (1962) in Symbol Formation and has been subsequently extended
in Sa.o;e's work on early number development and cultural practices (Salte,
1991: Saxe & Bermudez, in press; Salte et al., 1987). The formulation also
renects a dominant concern ofVygotsky and other Soviet writers (e.g.. Leon
tiev, 1978, 1981: Vygotsky. 1978, 1986). to idcntify analytic units that pre
serve intrinsic relalions between cognitive developmental and sociocultural
processes. The model presented here focuses on the cultural forms that are
linked to practice participation and the interplay betwccn these forms and
the cognitive functions which they come to serve.

Cognitive Fonns. We use the term m/illral form to refer to historically
elaborated constructions like number systems, currency systems, and other
artifacts and social conventions. Cultural fornls vary in their specialization.
For instance. with its orthography and notational system for place value,
the Western numeration system is highly specialized for computation. Other
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number systems. like thai of the Oksapmin, have been specialized for count
ing and certain forms of measurement, bUI nol for arithmetical computation.
Still olher artifacts, such as currency systems, have been specialized for
exchanges linked to the constraints of particular economies and related social
institutions. Regardless of their properties, in the daily lives of individuals.
these cultural fonus become cogn;tir/! forms as they are acquired to accom
plish various mathematical functions.

Cognitive Functions. We use/unction 10 refer to the purposes for which
forms are used. In the domain of mathematical cognition. these purposes
include the representation of cardinal and ordinal values. arithmetic. meas
urement. and algebra. In our use of the term. cognitive or mathematical
functions are related but are not identical to mathemalical operations of the
sort with which Piaget was concemed. Indeed, mathematical structures like
that of one·ta-one correspondence have implications for the kinds of mathe
matical functions individuals create-such as the representation of cardinal
value. For each of the aforementioned domains. we can also consider more
specific mathematical functions. For instance, in the case of measurement.
functions include ordinal comparison purposes (you have more rope than I
do). interval level measurement purposes (you have 3 more inches of rope
than I do). and purposes of ratio level measurement (you have three times
as much rope as I do). Each ofthcsc measurement functions entails different
structures of mathematical operation for their meaning.

Cognitive functions vary in the extent to which they are created and used
by individuals in cultural practices. For example, in Oksapmin traditional
life, the cardinal and ordinal representation of values was a common mathe
matical function in practices like horticulture or trade, but arithmetic func
tions like addition or subtraction were not. Mathematical development in
the form-function framework can be understood as a process of appropri
ating forms that have been specialized to serve developmentally prior cog
nitive functions and respecializing them such that they take on new proper·
ties. L..ct us consider again the Oksapmin case.

fonn-Function Shifts in the Development of Arithmetic jn the Oksap
min. With incre.1Sing participation in the new practice of economic ex·
change brought about by the introduction of tradeslores, Oksapmin people
become engaged with novel mathematical goals that require the addition
and subtraction of values. goals that do not emerge in traditional life. In
this process, we witness the cultural form of body counting gradually shift
in function over changing levels of economic participation. The shift is one
in which the body system-a form that traditionally serves only an enumem
tive function for the Oksapmin-becomes a form that serves an arithmetical
one. Consider four approaches to the solution of 9 + 7 coins that emerged
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with increasing participation in the money economy depicted in Fig. 5.3 (see
Salte, 1982).

Those Oksapmin people with only minimal participation in the money
economy first attempt to elttend the body<ounting cognitive form as it is
used to serve enumerative functions in traditional activities to accomplish
arithmetical tasks that emerge in economic transactions. This direct eltten·
sion, however, is not adequate to accomplish arithmetical solutions, and it
is not even clear that Oksapmin with little eltperience treated the task as one
that involves the cognitive function of arithmetic. In these prelimin. yefforts,
Oksapmin attempt to count the sum with a prior counting stratt~~... linked
to the body system. Figure 5.3a illustrates this "global enumeration strategy."
In this strategy, an individual begins with the first term (9) of the problem
thumb (I) to bicep (9}---and then continues to count the second term (7)
from the shoulder (10). Because the problem of nine coins plus seven coins
seems to be understood as an enumeration rather than an addition. indi
viduals do not recognize the need to keep track of the addition of the second
term on to the first term, and they typically produce an incorrect sum.

Oksapmin with greater eltperience in the money economy make a clumsy
and labored effort to restructure their prior global counting strategy in such
a way that one term is added on to the other (the "double enumeration
suategy"). In one eltample of this strategic form (Figure 5.3b), individuals
again enumerate the first term-thumb (I) to forearm (9)---but now, as they
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enumerate the second, they make efforts to keep track of their enumeration.
Therefore. the shoulder (10) is paired with the thumb (I), the neck (11) is
paired with the index finger (2), and so on. until the ear on the other side
(16) is paired with the forearm (7), yielding the answer. Therefore, in this
initial extension of the body system 10 accomplish the arithmetical problem,
the body parts begin 10 lake on a new function of keeping track of the ad
dition of one term onto another.

At more advanced levels in the developmental sequence, we see the body
part-counting form progressively specialized into more sophisticated cogni
tive forms that serve distinctly arithmetical functions. Now, individuals,
rather than establishing physical correspondences between body parts as they
do previously, efficiently use the name of one body part 10 refer to another
in a "body subslitution strategy" (Fig. S.3c). To solve 7 + 9, the shoulder
(10) is called the thumb (I), the neck (II) is called the index linger (2), and
so on. until the ear on the other side (16) is called the forearm (7). The result
is a more rapid computalional process. one in which body-part names are
differentiated from the names of body parts themselves.

Cognitive forms that are distinctively specialized to serve arilhmetical and
not enumerative functions are more frequently displayed by trade store
owners who have the most experience with problems of arithmetic that
emerge in economic transactions with currency. In their s1rategies, some
trade store owners incorporale a base-IO system linked to the currency as
an aid in computation. With this strategic form (Fig. 5.3d), individuals use
the shoulder as a privileged value. In their computation of 9 + 7. they may
represent the 9 on one side of the body as biceps (9) and 7 on the other side
of the body as foreaml (7). To accomplish the problem, a lrade store owner
might simply "remove" the forearm from the second side (the seventh body
part of 7) and transfer it to the first side where it becomes the shoulder (the
10th). He then "reads" the answer as 10 + 6. or 16.

Component 3: n,e Interpitty Between Developmellts
Across Contexts and Practias

Component 3 concerns the interplay between learning across practices.
To illustrate an instance of the interplay between cognitive forms constructed
in one practice 10 accomplish emergent goals in another, consider a study
conducted with Oksapmin children attending a newly introduced Westem
styled elementary school. Children in the first, third, and fifth grades were
observed as they took an arithmetic test in their classrooms. Even though
teachers were not aware of the indigenous body system and therefore had
not instructed children in the body system, many Oksapmin children were
observed pointing around their bodies as they solved problems on the tes1.
Individual interviews with Oksapmin children revealed thai children at more
advanced grade levels progressively used strategies to keep track of the ad-
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dition of one lerm on the othcr-strategies thai resembled (but were not
idcntical to) those of the aduils with greater experience wilh the money econ
omy (Saxe, 1985).

The sludy of Oksapmin school children illustralcs the way that out-of
school cognitive forms may be appropriated and specialized 10 address prob
lems in school. thus leading to novel cognitive developments. It may be that
Oksapmin were at the same time making use of knowledge structures ac
quired in school, linked to the Western onhography. to address problems
in oUI-of-school pracliccs. allhough Ihis was not investigaled in the Oksap
min case.

UNDERSTANDING THE CLINICAL INTERVIEW
AS A CULTURAL PRACTICE

We have noted that cullural practices are not limiled to the exolic activilics
of remote communities of people; indeed, they chanlcterizc everyday life as
lived by us all. In our technological society we are witness to a wide range
of highly specialized cultural practices. One such practice well known to edu
cators, psychologists, and many children living in technological socicties is
the clinical interview. The interview is used for cognitive assessments of chil
dren in psychological research and educational evaluations (for analyses of
interviews as specialized prdctices, see Cole & Scribner, 1974; Donaldson,
1978; Siegal. 1991). Interviews may be more structun..-d. as in the standardized
administration of an IQ tesl. or less structured. as in a child and teacher's
engagemenl in a tutorial interaction. Some interviews are structured by the
ory-driven questions. as in the case of the eognilive tasks and questioning
techniques used in cognitive developmental research.

In the remainder of our chapter. we eXlend the Emergent Goals Frame
work to understand the microgenesis of children's problem solving that takes
place in assessment interviews. viewing the interview as a panicular form of
cultural practice. As a practice, wc find that the interview activity creates a
sening thai isjusl as much about a process of Icaching and learning (cncul
turation) as it is aboul assessmcm.

Clinicallnlerviews on Fractions

The two fractions tasks thai are our focus were conducted with fifth-grade
children before and after Ihey participated in a 2- to 3-month curriculum
unit on fractions. In the unit, children were engaged with activities in which
they explored fraclions as areas (how can we partition this square into
fourths?), as ratios (if two apples cost 50¢. how much would six apples cost?).
and as pans of linear units of measure (how lall is the desk in lerms of my
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FIG. 5.4, The strips used in the Blue Snip interview. (a) The blue strip and
the ""hile sHip; (b) The blue slrip and the yellow strip.

body as a unit of measurement?),l OUf two targeted tasks involved a linear
model of fractions thai were designed to circumvent children's often memo
rized procedures for solving school-linked fractions problems. In the first
task, depicted in Fig. 5.4a, the child is asked to measure a strip of white
paper (6 inches long) with a longer unmarked strip of blue paper (8 inches
long)-thc white sirip is thus ~~ of the length of the blue. In a second task.
depicted in Fig. 5Ab. the child is presented with a strip of yellow paper that
is 18 inches long, and the child is asked to measure this strip with the shaner
unmarked blue strip (8 inches long)-the yellow strip is thus 21;. or the length
or the blue.

Component 1: Emergent Gonts

As in the case or economic exchange in the Oksapmin. we represent the
mathematical goals that emerge ror children in the interview practice in re
lation to the four parameter model. Following, we sketch each parameter
as it bears on the imerview practice. pointing to the way that children's
mathematical goals are rooted in sense-making activity and sociocultural
processes.

Parameter 1. Activity Strudure. The interview. like most clinical in
terviews used ror cognitive assessmem, consists or loosely defined phases or
introduction, task presentation. children's efforts at task solution supported
by questions rrom the interviewer, and task resolution. Associated with these
phases are norms ror participation ror which children may have different
degrees or ramiliarity. norms that also have implications ror children's emer-

'The CWTiculum unil thaI is our focus was adopttd by (he Slille of Catifomia (Suillg Frocli<JIU.
Corwin. RUlosetl. &. Tierney. 1990).
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gent goals. This activity structure constrains the character of the interdctions
with which interviC\\·er and child engage and thus has implications for
children's goals. For instance, the interviewer. constrained by principles of
assessment. often asks questions that violate everyday conversational rules
but are linked to the assessment practice (Siegal, 1991). To perfonn appro
priately, the child in such a setting must realize that the questions are asked
not because the interviewer does not know the solution; rather. they are
requests for the child to offer judgments and explain reasoning. Children's
participation in the activity structure as well as children's understanding of
activity structure-specific nonns both have implications for the child's con·
struetion of mathematical goals.

Parameter 2. Social Interactions. As we observed in the Oksapmincase,
the face-to-face social interaction between participants has implications forthe
participants' construction of goals. In the same way. during the clinical
assessment, interviewer and child engage in reciprocal social interactions that
shape the construction of their emergent goals. In the introduction. the
interviewer attempts to present the task in a way that is comprehensible to the
child. If the measurement runction of the blue strip is not dear, the child may
construct goals that are not in accord with the interviC\\'er's task definition. In
tum. the interviewer may olTer more explanation. restructuring the task in
more accessible ways. leading children to structure new mathematical goals.

For our "''lrticular task. wecreated a scmistandardized "hint structure" for
interviewers to use--one that was contingent on children's successes and
difficulties in creating a definition of the task that was similar to our intended
definition.

Parameter 3. Artifacts and Conventions. The mathematical goals gen
er,:tted by the children as they participate in practices take fonn in relation to
the practice-linked artifacts and conventions. In the blue strip tasks. children
are presented with a new fonn (the blue strip), and are faced with the problem
of using it as a nonstandard unit to measure another strip. The blue strip does
not have an extended social history. with established uses and conventions, as
do other cultural fonns we have considered, such as the Oksapmin indigenous
body.part counting system or our Western number system. In children's
efforts to tailor the blue strip to serve a measurement function ......e can observe
that the physical properties of the strip both constrain and enable children's
construction of mathematical measurement goals. For instance. in using the
blue strip, which unlike a ruler does not consist ofhistoricallyevol\'cd standard
units, some children develop their own units----<:reating the goal of using the
difference in length between the white and the blue as a basis to partition the
blue into segments that become units with which to estimate the white in terms
of the blue.
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Parameter 4. Prior Understandings. In the Oksapmin example, we saw
thaI individuals' knowledge about a Western number system, as represented
in a money economy. innuenced the goals that they constructed. Similarly, the
prior understandings of malhematicaI operations like onc:·to-onecorrespond·
coee and partitioning that children bring to bear on the interview practice have
implications for their construction of mathematical goals. For instance, in
approaching the task of measuring the white strip. some children are limited
to forming only ordinal comparison goals, such as determining whether the
white is longer than. shorter than. or the same length as the blue. OtherchiJdren
with an understanding of multiplicative relations may attempt to determine
how many limes longer the blue is than the white.

In cognitive developmental psychology, the interview setting is often treated
as a neutral situation in which the child's understandings are simply recorded.
In marked contrast to this view. we have argued that in their participation.
children structure and accomplish cognitive goals that are interwoven with
their prior understandings. the activity structure of the interview. the artifacts
used. and the give and take of communicative interactions between child and
interviewer. From this perspective, the child's emerging goals are often in flux,
becoming articulated and then fading in a microgenetic process. We consider
in more detail the characteristics of this process as we sketch shifting relations
between form and function in Component 2.

Component 2: fonn-Function Shifts

We noted in our introductory remarks that representational systems for
number like the Oksapmin body system are cultural forms that have been
specialized over social history to serve varied mathematical functions. In
turning to an analysis of the blue strip interview practice, we are dealing
with a cultural form (the blue strip). which. unlike the Oksapmin number
system. has not been specialized over social history to serve measurement
purposes. Videotaped records of children's solutions provide access to the
dynamics of the interview practice. allowing us to extend our prior analyses
of shifting relations between form and function in cognitive development.
Further, our analyses are now linked to a practice common in educational
settings ill Western technological societies.

We focus on two types of cognitive development related to the interview
practice. First. our concern is to understand microge"esis-the short-term struc
turing of thc blue strip task in the joint activity of the imervicwer and child, and
the way that this structuring is interwoven with the interview practice.J Second,

-'Some ~~rli ha~ made UK Qf Mmkrogencsis" \Q mer lQ a metOOdoIOlical approecll
involving~ inlen.i~ sludy of children QVer shan pcriOO5 ollilllC' 10 lrack what an" assumed 10 be
rc:lalivcly 51able rognilive dnelopmentJ (Jee. for example. Kuhn & Phelps. 1982: Mel~. 1985; Siegler
<'I: J..... kins. 1989). Our U~ of the lenn is more coosislenl wilh earlier lreatmenls of the COOSlT\lC1
(Llinger. 1969; Werner & Kaplan. 1962). in which the procns of Jcbcm31i7.alion of a phenommon.
pcl'C'eplually or roncepul3l1y. is uooer5100d as :1 shm-lcnn dr-'clopmenlal process.
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our concern is to produce a IOllgill/dilla( mrlll.l'si.f of microgenesis before and
after the intervention. In this case. our concern is 10 undenland differences in
the microgenetic process as a resull of ontogenetic changes in a child's
fractional undentandings that occur over the course of the 3-month instruc
tional intervention.

Microgenesis. To accomplish a microgenetic analysis of children's so
lutions. we will need to sharpen our analytic lens. Not only must we under
stand the forms that individuals are using and thc mathematical functions
that these forms are serving. we must analyze with greater precision how
forms and functions become situated in the individual's construction of
solutions to tasks. For instance. how do mathematical forms (which may be
as complex and specialized as comprehensive number systems or as undif
ferentiated as a strip of blue paper) become specific means of solution that
are tailored to the situated mathematical goals that emerge in children's
activities? Correlatively. how are mathematical functions transformed into
situated and emergem g()(ds that are interwoven with the parameters dis
cussed under Component I? Finally. what is the relation between the trans
formation of cognitive forms into solution means and cognitive functions
into emergent goals? Are these independent processes? Next we offer some
guided speculations about these questions. viewing the blue strip interview
as a microcosm for general cognitive developmental processes.

Figure 5.5 contains our working model. The figure represents the process
of microgenesis (dynamic relations between form and function that emerge
over the course of the construction and accomplishment of emergent goals)
embedded in the four-parameter framework. The figure depicts the child and
the interviewer participating in an activity structure in which they take on

Activity Structure

[
"".........,..
Interviewer -( Presentin,.fromin,. tuUJ n~,OI"'t;n,
. mtUuitJI ,.,Ill symbolit ftJrms

I

Microgenelic Time

FIG. 5.5. Elaboralion of Ihe Emergenl Gwl~ Framc\lo'OrK.
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asymmclric roles. Further. through social interactional processes, the inter·
viewer presents, frames. and reframes particular artifacts that have intended
functions. These cocult uraling aspects ofthe interview practiceare interwoven
with a developmental trajectory of form and function that begins with the
child's appropriation of mathematical forms (like the blue strip artifact) and
functions (like measurement) framed by the adult in the interview practice. In
the child's initial appropriation of the blue strip. neither forms nor functions
are inherently mathematical entities. They take on mathematical meaning as
they are structured in their use, through mathematical and measurement
operations like one-to-one correspondence. partitioning, and displacement.

The developmental trajcclOries of form and function are analytically
separable but interact with one another in the microgenelic process. In order
for the blue strip form to serve as a means for accomplishing the task. a child
must specialize the blue strip form as a mathematical object-partitionable
into equivalent intervals. Indeed, such a partitioning is necessary for the blue
strip to serve an interval or ratio measurement function. In order for the
juncrion of measurement to become realized as an emerging goal. the white
strip-the target ofmeasurcment-must be conceptualized as a physical entity
that can be partitioned in terms of equal intervals. This twofold structuring of
fonns becoming means and functions becoming goals occurs as a bootstrap
ping; The blueform becomes specialized as a meafLJ as the child transforms it
into a mathemntical object. but this means must be accomplished with at least
a local goal in mind. Reciprocally. the jWlclion of measurement becomes
manifest as a goal to measure the while. a goal framed with some conceptuali
zation of a potential means of accomplishment in mind. Therefore. forms and
goals as well as functions and means are linked in their microgenetic histories.

To illustrate more concretely the interplay between form and function in
the process of microgenesis. we consider two interviews with a single child~
one before the curriculum unit and the other after. In the first interview,
our concern is with relations between form and function in Ihe microgenetic
process itself. In the second, our focus is on a longitudinal analysis of change

. .
across mtervlews.

A Microgcnetic Antilysis of Form-Functioll Relations: John's Efforts
Oil tile Blue Strip Ttlsk Before the Unit all Fractions. John is in the fifth
grade and prior to participation in the unit, his understanding of fractions
is quite limited. Table 5.1 presents excerpts from the first task in his pre-unit
blue strip interview. Next we consider the development of John's under
standings during the course of the interview with regard to relations between
form and function as John creates and recreates means and goals tailored
to the blue Strip task.

In lines 1-3 of the table. we nOle the interviewer's elTorts 10 frame the
task for John. providing the blue strip form and implicitly indicating Ihat
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TA8LE 5.1
Excerpls From John', BIIH Slrip IOlel'\·ie.... Prior 10 hISll\lC1ioo
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l. I"ltn·i~·tr: I Wl\l>l you 10 lell me hO'l" 100J lite ....hile paper is in bluel.
2. Jolm: eilll I measure like this'? (J,*,n ll"in 10 measure the white .trip wilh the width of !he blue

strip; sec FiJ. 5.6a.)
3. Inter"i~r: No. lel·. measure lhis ....ay (indic.ing the length. see Fig. 5.61». usinJ this to

mea.ure hQ.... lonll Ihe ..'hile s1rip i•. And yOIl ClIf1 mo'~ the 'lrips around to help you.
4. John: Abo.n four ioches.

lIotervle"'er prompts John 10 think ~boul 1he blue as one blue and measure the White strip with lhat
bllH. Joho doesn·. seem to understand what lite imen-iewer wallis him 10 do.)
6. John: You wanl me .0 OOllnt lhe inches?
1. Intervi~'er: No. we're in a pretend country and they dOO'l know abo.n inche. or cenlimtters

so we're lloin& to U$oC "lu..,....--4hi' i, one bl ..... lonJ. How lonll is thi. "'hite one in thi, pretend

~"y'I

II. John: lIalf a blue long.
9. Imtn';etlo't.: How do you koo.... il is half I blue: long?

10, John: Reeau$oC if. 00110 here (end of lhe blue). so you need 10 call it half.

the strip is 10 serve a measurement function. Faithful to the requesl, John
appropriales Ihe blue strip form apparently to serve an inten'ol measurement
function-to measure how many blues make a white (through operations of
partitioning and displacement). The funclion is realized in the emergenl
malhematical goal-to delermine Ihe length of the while strip in blue widths
(see Fig. 5.6a). Concomilantly, the blue strip form becomes specialized into
a means-a movcable unit-to accomplish thc goal. The process of solution,
however. is CUi short by John's apparenl uncertainty thai his definition of
the goal and means for accomplishing it is one valued by the inlerviewer (in
line 2. John asks. "Can I measure like this?"), a concern linked to the inter
view practice in which he is a participant. If he completed his initial efforts.
John's construction would havc allo.....ed him to represent the length of the
white in terms oflhe blue. However. from Ihe interviewer's perspective John
has created a solution thai allows him to circumvent the construction of a
fraction; for the inlerviewer, it is John's fractional understanding that is the
principal target of the assessment interview. Therefore, in response to John's
query about Ihe usc of wiuths, Ihe interviewer responds, "No, lees measure
this way" (Fig. 5.6b). refocusing John's efforts on Ihe use of the length and
not the width of the blue as a mcans to accomplish the goal of measuring
thc white.

In Jines 3-4. we observe a second microgenelic process of solution struc
luring, one influenced by the constraint presented by the interviewer 10 use
the length rather than the width of Ihe blue to measure. In his effort to
represent this contrast. John appears not to understand how to describe the
shorter while using the longer blue as a unit. Perhaps as a result. John puts
aside the blue strip and appropriales a nonmaterial cultural form to serve a
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b. Sltifting to the length
as a unit

FIG. 5.6, Use or blue widths lhen length as a unil or measure.

measurement function. again as in his first auempt, in tenns of integer val·
ues-thc British system of units (i.e.• inches). In his efforts we again infer a
process of transformation in which the function of interval measurement is
realized in terms of the goal of measurement in inches. At thc same time.
the British system of inches becomes specialized in the process as a 4·inch
count or estimate of the white.

In lincs 5-10. thc intervicwer makes two morc efforts to redirect John
toward the intended definition of the task. both of which have consequences
for John's construction of goals. In one of these efforts. for instance. the
interviewer presents the pretend country theme (a country where no one
knows of inches) in an attempt to reorient John's efforts (lines 7-10). John
responds by using the blue strip fonn to accomplish a hybrid of two meas·
urement functions. an ordinal and perhaps an incipient understanding of a
ratio level of measurement. John attempts to detennine the relative length
of the white in relation to the blue and express the while's length in tenns
of a fractional pan of the blue. To accomplish these goals. John appropriates
the language of fractions-a fOHn speciali7jng it as a means to suit his
needs with thc expression of "half a blue long." In this final activity. we are
unclear as to whether John is using the e:o;pression of "one hair' as a means
to indicate the white is smaller than the blue, where "one halP' may be a
way John has of making an ordinal comparison, or whether John is making
an effort to express the white as a fractional part of the blue. but lacks the
fonnallanguage of fractions, partitioning operations. or both to adequately
accomplish this function.

Jolin's Efforts 011 tile Blue Strip Task After tile Unit on FractioPlS.
John was reintcrviewed later in the school year after panicipating in the
classroom practices designed to suppon studetlls' developing understandings
of fractions. Table 5.2 contains excerpts from the past intervention interview
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TABU; 5.2

E~cnpls From loon's BIUC' Strip Inlerview After InnNC1ion
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l. fn/en·i,..·tr: 1 wanl)'l)U 10 mea~ure lhe leng'lh of this paper using the bhlC' strip.
2. Julin .. No numbtrs?
~. Inltrvi",'tr: No llUmbers. How would you mrawn: il-lhe ...·hilt strip (indiol1ing the ...·hile

strip)?
4. Jolrn .. ADoul IhTl:c·founhs.
S. I",ul';",'~r: Why do you say Ihl'tt·founhs?
6. Jolrn: 'CIUse: I lTlC:BWn: lhis inlo four equal pieces lhis sitt so it "'Clll l)IIcr and il was four.

involving (he blue strip lask. We focus here on Ihe shift in the microgenesis
of John's solution.

John's initial reaction to the task in lines l-3-"No numbers1"-suggests
knowledge about Ihe interviewer's conceplion of the activity structure and
its purpose as well as knowledge of different solulion paths that could be
created in efforts 10 address the interviewer's request. Indeed, John's query
is a self-initialed effort 10 detennine what solurion avenues the interviewer
values-whal forms and funClions are appropriate and whal particular goals
should be created.

In lines 4-6, John appears to have created an understanding of a ratio
measurement function, and can struclure it with fractional values in Ihe blue
strip task. Indeed, as he constructs a goal of measuring Ihe while wilh Ihe
blue, John specializes the blue strip form as a nleans. using the length dif
ference between the blue and white as a unit to partition the blue into four
equal segments. Finding the while to be equivalent in length to three of the
four imaginary blue segments, he concludes that the white is Ihree-fourths
of the blue.

Longitudinal Slfifts Across tile Pre- and Postintervi!l1tion Interviews.
Analyzing the continuities and discontinuities in John's performances across
pre- and postinlervention interviews provides insight into ontogenetic devel
opmental change. In the preintervention interview. we observe John deploy
ing the blue strip form to serve IWO principal measurement functions. First,
he created an interval level of measurement, specializing the blue by turning
it perpendicular to the white and counling imaginary segments of the white
in terms of blue widths; he later used the blue strip 10 serve a similar interval
function in his COUnl of inches. In bolh cases, his uses of these functions
was restricted 10 integer values. Later in the interview. he created a second
measurement funclion, although it was not clear from Ihe videolupe whether
the function was ordinal or ratio measurement: As he compared the length
of Ihe white relative to the blue, John expressed this comparison as "one
half..,
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As in the first interview. where he used the width of the bluc to partition
the white and attempted to represent the white in Icons of the blue, in the
postinterview. John again applied the partitioning operations. and again rep
resented the while in terms of the bluc. In the poslinterview. however. he
applied his partitioning to both the blue and white themselves. appropriating
and specializing a different aspect of the material fonn as a unit-the dif
ference in length between blue and white. In this effort. unlike the preintcr.
vcntion interview, John crealed a difference unit as a means 10 accomplish
his partitioning. In using the difference unit to serve a ratio and not simply
an interval function. he created a goal of detennining the relation between
the number of while units to blue units, and created a solution means that
led him to express this relation as "about three·fourths."

Component 3: The Interplay Betrvet7l Development
Across Practices

In their daily lives, children orten participate in a variety of practices in
which mathematical goals emerge. These include board game play. trips to
the store.•Ind participation in sports. In our focus on the microgenesis of
children's solutions in a targeted practice, .....e rind that children often ap
propriate forms acquired in other practices, respecializing them to serve prac·
tice.specific functions. Correlatively, children may appropriate functions cre·
ated in other practices, identifying them as relevant to emergent concerns in
a targeted practice. Therefore, in the microgenesis of solutions in any targeted
practice. we find an interplay between forms and functions across practices.
Figure 5.7 contains an elaboration of the generd.1 model that includes a rep
resentation of this interplay. Following, we discuss characteristics of this in·
terplay with specific reference to the blue strip task.

Fonns With Prior Functions in tile Blue Strip Task. Various forms used
in the blue strip task have been used to serve functions other than measure
ment. For instance, children use our lexicon of number words and fraction
words. in a wide range of practices in which numerical and arithmetical
problems emerge. In accomplishing the blue strip task, we find that children
appropriate forms that have served prior functions, specializing them to
accomplish emergent goals in the blue strip task. For example, we observed
previously thai John drew On his knowledge offmction words to representlhe
white as "one-half' of the blue.

Functions With Prior Forms in the Blue Strip Tnsk. The functions that
children identify in the blue strip task. like ratio or interval measurement,
can be accomplished by children using various forms, some of which, as we
noted previously. are quite specialized with function-specific properties. For
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FIG. 5.7. Funher elaboration of the Emergent Goob Fr~r"!lC'work.

instance, although a ruler may be used as a slraight edge or 10 prop open
a door, il is specialized 10 serve the function of linear measurement and
typically used to serve both interval and ratio measurement functions. One
key concern for a microgenetic analysis is the way that cull ural forms
associated with particular functions may be drawn into the specialization of
means and goals in targeted practices. In Ihe case of John, we observed that
such a process occurred as John made efforts to draw into his accomplish
ment of an interval measurement function, the British system of measure
ment. In this case. John tried to count or estimate the length of the white
in terms of inches.

The Interplay Between Form lind Function Across the Two Bille Strip
TliSks. The interplay between form and function across ditTerent instan~s
of microgenesis is quite striking in the following solution of the blue strip
task. In this case, we follow a single child's accomplishment of hoth thc task
of measuring the white strip and measuring the yellow strip. We find thai
the child appropriales the solution means that he has specialized to accom
plish the task with the white strip to accomplish the task with the yellow
strip, a special case of the appropriation of forms with prior functions.

I. Aleasuring the white with the blue. In Marcello's measurement of the
white strip, he used his thumb and forefinger to represent the difference in
length between the two strips. Holding his fingers at this length, he measured
the white strip with this new unit, finding that three of the units would fit
on the white strip, and four on the blue (see Figs. 5.8 and 5.9). He thcn gave
a correct answer. three· fourths, with the rationale: "It's three·fourths because
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there was four. There would be one. IWo, three, rour" (counts ofT one-fourth
intervals comparing number found in each strip).

2. Measuring the yellow with the blue. In the second task. Marcello was
asked 10 measure the yellow using the blue strip (the yellow is 21". limes the
length of the blue). Using the unit created with the white strip (I;., of the
blue) as if it were a standard unit. Marcello measured the yellow:

5: "OK. Eight. Another one. That's ... I think ... this is urn ... hm.
Four ninths. Yeah. Four ninths,"

I: "Four ninlhs? OK."

S: ., 'Cause there's four here (the blue) and nine of those (the yellow)."

Therefore. rather than creating a new (nonstandard) unit based on the
two new strips, Marcello appropriated and respccialized a solution means
used in the first task 10 measure the yellow strip. His answer to the problem
is a ratio of the two lengths. an answer which suggests Ihal Marcello has
lost sight of the blue as a measuring 1001. and inslead sees the fraction name
("four-ninths") as II relation of the two strips in lentlS of his new unit. Indeed.
it appears as if he no longer thinks of his new unit as "1;. of a blue." but
instead thinks of the unit as the standard of measure of both Sirips.

This student's invention and appropriation of a standard unil not only
illustrates the particular eOU!"5e of microgenetic development for one indio
vidual. it also illustrates a process whereby new measurement conventions
can emerge in communitjes. Marcello's standard unit could. if approprialed
by olhers. serve as a basis 10 communicate about length independent of Ihe
specific relation between a particular artifact (e.g.. the blue) and a particular

"4 :-_ ..... ...
'... )!r;:... ,"! ..;..... )!......'.. .. ,." ., ...... '.,."
:l:~:l
• • • • • •.. ... .. ... ... ..... ".. .. .

•
FIG 5.8. John'~ use or his fingeR to partition the blue and white Slrips.

FIG. 5.9. Using the prior partitioning or the blue 10 p;orlilion the white.
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target (e.g., the white). Therefore. in a microgcnetic anal~is of one student's
response to two measurement tasks we see an inventive process that could
contribute to shared conventions for measurement.

CONCLUDING REMARKS

This chapter began with a problem statement concerning culture and mathe
maticalthinking. We asked how representational and conceptual fonns that
have emerged over the history of cultures become interwoven with the mathe
matical thinking of the individual. Our problem fonnulation echoes the con
cerns of earlier developmentalists like Vygotsky (1978, 1986). who argued
that human thought must be understood as the product of four separate
developmental lines--evolutionary. historical, ontogenetic. and microge
netic. In extending Vygotsky's analytic concern, we have targeted cultural
practices-routine, socially organized activities-as a critical focus in which
these separate lines of development converge.~

Our account of the practice of economic exchange in the Oksapmin
conforms well to traditional anthropological visions of cultural studies-in
vestigations of a remote people whose dress is extraordinarily different from
our own. who use tools of stone and bone, and who employ an exotic system
for numbering. Further, the study puts in clear relief the interdependence of
historical and ontogenetic lines in the development of mathematica1thought.
We documented individuals' appropriation and specialization ofsociohistori
cal knowledge fonns (the body system) in their efforts to structure and
accomplish newly emerging goals in a practice. and in this process. brought
forward a cultural history in their creation of new fonns of mathematical
thinking.

What may seem odd in an essay on culture and mathematics. however,
is the treatment of a clinical interview as a form of cultural practice. Such
interviews are commonly used as a means of investigating "intellectual fUllc
tioning" or "competence" of individuals and are not themselves cast as prac
tices. To the contrary. we have argued that the interview is subject to the
same kind of analysis as arc practices of economic exchange in a remote
group of Melanesian people. Indeed. just as Oksapmin arc engaged in the
construction of emergent goals, appropriating and specializing cultural ar
tifacts as means to accomplish novel problems in structures of activity, so
too are Western children (and adult interviewers) as they participate in the
clinical interview. Further, because of our added ability to use videotape to

"In tbi~ ch~ter, we have .ioj"'teppm di""u~~ion$ (;i the cvolutionary rOOl~ of mathematical
cognition. Bhl>ough 1M topic is one thaI is cummly the subject of coosidc:r:lt>le auemioo (e.g.. Fodor.
198."1; Galli$lel. 1990),
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record the clinical interviews. we have been able 10 analyze a dynamic central
to the process of understanding cognition in practice-the negotiated con
struction of forms that become specialized as means and the concomitant
process of funclions becoming transformed into emergent goals in the mi
crogenesis of solutions to the Blue Strip task. We would argue that a similar
process is occurring not only in Oksapmin economic exchanges, but also in
the multitude of cultural practices in which individuals participate.

Although our analytic focus differs markedly from that of Piagetian re
search. al the core we see the approach as commensurate wilh principal fea
tures of Piaget's structural developmental approach. Indeed. central to our
practice-linked analyses was a focus on the mathematical structuring activi
ties in which individuals were engaged. In the case of the Oksapmin, we
focused on the shift in the structure of correspondence operations, from the
traditional adults' one-ta-one correspondences between body parts and ob·
jects used in their global enumeration strategies to the trade store owners'
body-part-to-body-part correspondences used to mediate arithmetical prob
lem solving with objects. In the Blue Strip task, the focus of concern was
on partitioning and displacement operations as children structured means
of measuring the white and yellow strips.

What we find problematic in the Piagetian focus on structures is its ex
clusivity, which leads to a neglect of the central role of cultural practice. In
contrast, our focus on form and function in the Emergent Goals framework
weds the structural and culturally adaptive aspects of cognitive activity, lead
ing us to represent developments occurring along multiple lines. which are
deeply interwoven with the diversity and complexity of practices in which
individuals participate. In so doing., we mark the central status of cultural
practices in the process of cognitive development.
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Biology, Culture, and
Cross-National Differences
in Mathematical Ability

David C. Geary
University of Missouri at Columbin

The primary goal of this chapter is to provide a principled consideration oftbe
source of mathematical ability differences comparing children from East Asia
and the United States (Husen. 1967; Stevenson, Chen. & Lee, 1993). Argu,
ments for the source of these differences range from racial differences in
intelligence (e.g.• Lynn, 1982; Rushton, 1992) to cultural differences in the
relative valuation of mathematical competencies (Stevenson & Stigler. 1992).
In this chapter, cross-national differences in mathematical abilities are consid
ered from an evolution-based framework that allows for biological as well as
cultural influences on children's cognitive and academic development (Geary,
1995). Three general sections were required to achieve the primary goal of this
chapter. In the first, a distinction is made between the an'hitecture and
developmental mechanisms associated with biologically based and culturally
taught abilities, which arc termed biologically primary and biologically sec
ondary cognitive abilities, respectively. Next, this framework is applied to
research on children's mathematical development. and finally. in the third
section. to cross-national differences in the pattern of malhematical abilitics.

EVOLUTION·BASED PERSPECTIVE ON COGNITIVE
DEVELOPMENTI

At some level, all forms of cognition are supported by neurocognitive systems
that have evolved 10 serve some function or functions related to reproduction

'This Ind the fotlowing scclim an: adaplcd from Geary (1995).
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or survival. These basic neurocognitive systems appear to be found in human
beings throughout the world, and appear to support the emergence of species
typical cognitive domains, such as language (Pinker& Bloom. 1990; Wilelson,
1987). However. some forms of cognitive ability. such as reading, emerge in
some cultures and not others. The pattern of cross<ultural similarities and
differences in the constellation of cognitive abilities suggests that the emer
gence of some domains of cognition is driven largely by biological influences,
whereas other domains emerge only in specific cultur'dl contexts. Therefore.
when assessing the source of group or individual differences in cognilive
abilities. it seems necessary to cons.ider whether the ability in question is part
of a species·typical, biologically primary cognitive domain, or whether the
ability in question is culturally specific. and therefore biologically secondary.

Although biologically secondary abilities only emerge in specific cultural
contexts. they must perforce be supported by neurocognitive systems that
have evolved to support primary abilities. Indeed, these cultural-specific abili
ties might involve !.he co-optation of biologically primary neurocognitive sys
tems or access to knowledge implicit in these systems for purposes other
than the original evolution-based function (S. J. Gould & Vrba. 1982; Rozin,
1976; Rozin & Schull. 1988). The basic premise is that in tenns ofchildren's
cognitive growth. the interface between culture and biology involves the co
optation of highly specialized neurocognitive systems to meet culturally rele
vant goals. In this section. a basic framework for distinguishing between
primary and secondary abilities is presented. as is a consideration of the
mechanisms that might support the acquisition of such abilities.

Biologically Primary and Biologically Secondary Abilities

Both biologically primary and biologically secondary fonus ofcognition can
probably be hierarchically organized into domains. abilities, and neurocogni
live systems. Domains, such as language orarithmetic, represent constellations
of more specialized abilities. such as language comprehension or counting.
Individual abilities. in tum. are supported by neurocognitive systems. and
appear to consist of at least three types of competencies: goal structures.,
procedural skills, and conceptual knowledge (Gelman. 1993; Siegler &
Crowley, 1994). The goal ofcounting, for instance, is to determine the number
of items in a set ofobjects. Counting is achie....ed by means of procedures. such
as the act of pointing to each object as it is counted. Pointing helps the child
to keep track of which items have been counted and which items still need to
be counted (Gelman & Gallistc1, 1978). Counting behavior, in tum. is con
strained by conceptual knowledge (or skeletal principles for the initial emer
gence of primary domains). so that, for instance. each object is pointed at or
counted only once. Despite these similarities. there appear to be a munber of
important dilTerences between primary and secondary abilities. In this section.
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basic features of the apparent architectures of primary and secondary abilities
are outlined, followed by a consideration of developmental mechanisms.

Architecture. There appear to be three basic features associated with
biologically primary cognitive domains. First, inherent in the neurocognitive
systems that support primary abilities is a system of skeletal principles
(Gelman, 1990). Skeletal principles provide the scaffolding on which goal
structures and procedural and conceptual competencies emerge. For instance,
one skeletal principle that appears to be associated with biologically primary
counting abilities is "one-one cOlTe5pondence" (Gelman & Gallistel, 1978).
Here, as noted earlier, the counting behavior of human children and even
the common chimpanzee (Pan troglodytes) is constrained by an implicit
understanding that each item in an enumerated set must be tagged once and
only once (Boysen & Bernlson. 1989; Starkey. 1992). Second. it appears, at
least initially, Ihat the knowledge that is associated with primary domains
is implicit. That is. the behavior of children appears to be constrained by
skeletal principles. but children cannot articulate these principles. Third, it
is likely that the systems that support primary abilities include an affective
component. An affective component is likely to be necessary in order 10
motivale engagement in the activities thai are needed 10 nesh out skeletal
principles and to support the growth of the associated neurobiological sys·
terns (Geary. 1995: Greenough. Black. & Wallace. 1987).'

Although the initial structures for the cognitive competencies that might
be associated with primary domains appears to be inherent, the goal struc
tures and procedural and conceptual competencies for secondary abilities
are likely to be induced or learned from other people (e.g.• teachers) and
emerge from primary abilities. For the latter, as mentioned earlier. there
appear to be two possibilities. The first involves the co-optation of the neuro
cognitive systems that support primary abilities. Second. it appears thai
knowledge that is implicit in the skeletal principles of primary abilities can
often be made explicit and used in ways unrelated to the evolution of these
principles (Rozin. 1976).

For an example, consider the possibility that the development of geometry
as a formal discipline involved. alleaSI in part. t.he co-optation of the neura
cognitive systems that have evolved to support navigation in the three-di·

~i, poIiitioo does not preclude selr-mocivBled engagemenl in biologically Sl:<:Qndary IW:livilics.
For inslance. I ha>'e argued elsewh= lhal reading i. a hiologically ~ary cOinitive domain.
whictJ involves. ror pllOlletic·based languages. the c().opIalim of the neurocognitivc .ystelTl$ lhal
suppoct language (Geary. 1995: Rozin. 1976). Nevertheles•• mOSlY individual• .ue motivale«IO relld.
The motivalioo 10 relld. however. is probably dnVC11 by rbe: CQl\lenl 0( what is being read. I'8lher Ihan
an inh=nl biu 10 enjoy rile procen of rca<ling. In rllCl. rhe cootenl of many stories and CKher
seco,,,bry lIC1iv;Iic. (e.g .. video garTlC'. televi.ion) mighl "'fleet evolutionarily ",Ievanlrhemes thaI
motivare engll,gemenr in rhC$e activities (e.g.. social ",lllIiOO$hip:s: MacDonald. 1988).
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mensional physical universe and access 10 the associated implicit knowledge.
Arguably all terrestrial species. even invertebrates (e.g., insects), have cog
nitive systems that enable navigation in three-dimensional space (Gallistel.
1990; J. L Gould, 1986; Landau, Gleitman, & Spelke. 1981: Shepard, 1994).
Cheng and Gallistcl (1984), for instance, showed that laboratory rats appear
(0 develop a "Euclidean representation of space for navigational purposes"
(p. 420). and. as a result, are sensitive to changes in basic representation.
such as shape, and metric, such as angle. Implicit in the functioning of the
associated neurocognitive systems is a basic understanding of geometric re
lationships amongst objects in the physical universe. So, for example. even
the behavior of the common honey bee (Apis mellifera) reflects an implicit
understanding that the fastest way to move from one location to another is
to fly in a straight line (1. L. Gould, 1986).

Even though an implicit understanding of geometric relationships appears
to be a feature of the neurocognitive systems that support habitat repre
sentation and navigation, this does not mean that individuals have an explicit
understanding of the formal principles of Euclidean geometry. Rather. the
development of geometry asa formal discipline might have been initially based
on early geometers' access to the knowledge that is implicit in the systems that
support habitat navigation. In keeping with this view. in the development of
formal geometry, Euclid apparently "slaned with what he thought were
self-evident truths and then proceeded to prove all the rest by logic" (West,
Griesbach, Taylor, & Taylor, 1982, p. 220). Therefore. the implicit under
standing. or "self~identtruth,"that the fastest way to get from one place to
another is to go "as the crow nics." was made explicit in the formal Euclidean
postulate "a line can be drawn from any point to any point" (in Euclidean
geometry. a line is a straight line; p. 221). The former represents implicit.
biologically primary knowledge associated with the neurocognitive systems
that support habitat navigation. whereas the laller represents the explicit
formalization of this knowledge as part of a formal academic discipline.

Moreover. many spatial abilities. such as those assessed by traditional
psychometric tests. likely reflect the operation of the neurocognilive systems
that are associated with habitat navigation (Geary, 1996). Although these
systems appear to have evolved in order to support movement in the physical
universe (Shepard. 1994), they can also be used, or co-opted, for many other
purposes. The problem-solving strategies of some preschool children, for in
stance. often involve the construction of three-dimensional representations
of the task at hand (McGuinness, 1993). Johnson (1984) found that the solv
ing of algebraic word problems was facilitated if important relationships in
the problem were diagrammed (i.e.. represellted spatially). No doubt the evo
lution of spatial abilities was unrelated to algebraic problem solving. but.
nevertheless. these systems can be co-opted during the solving of word prob
lems (sec Geary. 1996). More important. there appear to be differences in
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the ease with which these systems can be used for (heir evolution-based func
tions and co-opted tasks. The use of spatial systems for moving about in
one's surroundings or developing cognilive maps of one's surroundings ap
pears 10 occur aUlomalically (Landau el aI., 1981). However, most people
need 10 be taught how to use spatial representations to solve, for instance,
mathematical word problems (lewis. 1989).

In summary, the neurocognitive sys(ems that have more likely evolved 10
suppan movement in the three-dimensional physical universe (Shepard,
1994) can be adapted by human beings for purposes other than the original
evolution-based function (Rozin. 1976). This adaptation, however, occurs
in some cuhures and no( others and involves co-optalion of primary neuro
cognitive systems or access to, or awareness and formalization of. implicit
knowledge associated with these systems (Gelman, 1990; Rozin, 1976). An
example of co-optation is the use of spatial representations of mathematical
relationships to aid in the solving of word problems (a procedural compe
tency), whereas Euclid's basic geometric postulates (conceptual competen
cies) appear to have involved an awareness of the knowledge implicit in the
neurocognitive systems that suppon habitat navigation.

Developmental Medlanisms. The development of both primary and
secondary abilities likely requires exposure 10 the associated content. For
instance, even though there appears to be a biologically primary set of skeletal
principles that guide the early counting activities of children, the maslery of
counting requires considerable exposure to counting and number-related
activities (Briars & Siegler, 1984; Fuson, 1988; Geary, 1995; Gelman &
GallisleL 1978). The issue is (a) whether the activities that promote the
acquisition of primnry abilities are sufficient for the acquisition of secondary
abilities. and (b) the source of motivalion for engaging in the associated
activities.

Given that, by definition, biologically primary cognilive domains are
found pan-culturally, it seems reasonable to assume thai the lypeS of activities
Ihal promole the acquisition of primary abilities are also pan-cultural. One
activity Ihat should be given serious consideration as a basic vehicle for the
acquisition of primary abilities is children's play. The implicit goal of play,
across mammalian species and across human cultures, appears to be the ac·
quisition of functional adult-like abilities (Eibl-Eibesfcldl, 1989; Panksepp,
Siviy, & Normansell, 1984; Rubin, Fein, & B. Vandenberg. 1983). In fact.
it appears that children as young as 2 years of age engage in number-related
games and activities throughout the world (e.g., Saxe, Guberman, & Gear
hart. 1987; Zaslavsky. 1973). Moreover, engagemenl in early number-related
activities and play is likely to flesh out the skeletal principles associated wilh
the biologically primary mathematical abilities described in Ihe next section
(Gelman & Gallistel. 1978; Saxe et al.. 1987). Therefore, biologically primary
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mathematical abilities (described later) include goal structures and skeletal
principles that orient the child to numerical features of his or her environ
ment, as well as procedures that can be used to achieve these goals. Moreover,
a necessary aspect of primary systems is an inherent interest in. and at times
enjoyment of, the activities that \\.111 facilitate the development of the asso
ciated neurocognitivc systems.

The abilities thai are associated with biologically secondary domains do
not appear to have the initial advantage of skeletal principles or an inherent
enjoyment of the activities which are likely 10 facilitate their acquisition
(Geary, 1995; Siegler & Crowley, 1994). As a resull. the acquisition of
secondary abilities is typically slow, effortful. and occurs only with sustained
deliberate practice that is specifically designed 10 facilitate their acquisition
(Ericsson & Charness. 1994; Ericsson. Krampe. & Tesch·Romer. 1993; Gel·
man, 1993; Siegler & Crowley, 1994). The primary context within which
children receive sustained exposure to secondary domains is school. Schools
arc esscntially socilH;uhural institutions that have emerged in socially and
technically complex societies (Whiting & Whiting, 1975). The function of
schools is to ensure that children acquire culturally relevant skills that would
not emerge in more natural contexts or as a result of more natural activities
(e.g., children's play and exploration). Therefore, it is not surprising that the
abilities which are associated with most secondary domains only emerge for
large segments of a given population in cultures with fonnal institutions.
such as schools. that are explicitly designed to facilitate their acquisition
(Ginsburg. Posner. & Russell, 1981).

One very imponam corollary of this view is Ihatthe motivation to acquire
secondary abilities comes from the requirements of the wider culture and
not the inherent interests of children. This is not to say that some individuals
will not be motiv3ted 10 engage in the activities th3t will facilitate the
acquisition of secondary abilities (see Footnote 2. p. 147, this chapter, and
Geary, 1995). Rather, the point is that the motivation 10 engage in the
activities which will facilitate the acquisition of secondary cognitive abilities
is not likely to be universal.

There are a number of important implications of this perspective. First,
primary cognitive abilities should be found in all human cultures. should
serve a plausible evolutionary function, and analogous abilities and functions
should be found across related species (Pinker & Bloom, 1990). Secondary
abilities. in contrast. are more likely to emerge in some cultures and not
others. Cross-cultural differences in the emergence of secondary abilities are
most likely to reneet cultural differences in goals and values associated with
academic achievement and cognitive development. and any associated cui·
tural differences in the development of formal institutions, in panicular
schools, to facilitate the acquisition of these academic and cognitive abilities
in children (Geary. 1995). Cross-cultural variations in the extent to which
secondary abilities are valued are important because the universal emergence
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of secondary abilities is only likely to occur in cultures with values that
support and reward eng.1gement in the associated activities. This is because
the abilities associated with secondary domains are not likely to emerge from
children's natural activities. This view contrasts, for instance. with the ar
gument that cross-national differences in academic achievement largely re
flect racial differences in intelligence (Lynn, 1982).

From this perspective. if cross-national differences in mathematical abili·
ties have a biological basis, then these differences should be especially evident
in biologically primary domains. On the other hand, if there are no cross
national differences in primary domains but consistent differences in second·
ary domains, then cross-national differences in schooling and attitudes to
ward mathematics become the primary candidates for the source of
cross-national differences in mathematical abilities. Cross-national differ
ences in secondary domains do not preclude biologically based differences
in. for instance, the ease with which primary abilities can be cooPled. Pre
sumably. any such differences might be reflected on broader measures of
cognitive ability, such as intelligence tests. which are predictive of academic
achievement (Geary, 1996). Nevertheless. cultural attitudes toward academic
achievement and especially schooling would be the primary candidates for
the source of cross-national differences in secondary domains. These issues
are addressed here, after a discussion of biologically primary and biologically
secondary mathematical dOITl.1ins.

BIOLOGY AND MATHEMATICS

The gist of the earlier argument is that if the advantage of East Asian
individuals over their American peers in mathematical abilities has a bio
logical basis (e.g., an "Asian math gene"), then cross-national differences
comparing individuals from East Asian nations to individuals from the
United States should emerge for biologically primary mathematical domain.s.
In contrast. if no cross-national differences are found for primary domains,
but consistent differences emerge for secondary mathematical domains, then
these differences are more likely to be due 10 cultural differences in schooling
and attitudes toward mathematics, rather than to inherent differences in the
ability to learn mathematics or to differences in intelligcnce (see Geary,
Sahhouse. Chen. & Fan, 1996). In order to make such comparisons. bio
logically primary and biologically secondary mathcmatical abilities need to
be defined-a task that is addressed with the two following sections.

Biologically Primary Mathematical Abilities

I havc argued elsewhere (Geary. 1995) that there is evidence for the pan-cul
tural existence of a biologically primary numerical domain which consists
of at least four primary numerical abilities; numerosity (or subitizing). or-
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TABLE 6.1
Pottnlial l:lioiOlically Primary Math~malical Abilille$

GEARY

NIIIlK'I"OllJIy or Subilblng
The ability to ~curalcly d<'tc,mi,", the quantity of small $d. or items, Of e~enl'. without
couming. In humans, llCCUnue numerosity judgments ~ lypially limited [0 SCI. of fwr or f.,,,'cr
item•.

Ordlllloilly
A ba$ic und~landing ollllOK III:.! and less than. and. lain". an understandin, of specifIC' ordinal
Il'hllionships. for cumple, unden!andinlllllll 4 > 3, ~ > 2, and 2 > I. For humans. l~ limits of
this system lIll: 001 de•• bUI it i. probably limited Lo quantities < S.

COUlllhll
Early in de\'clopmenl there appears to be a PIl'\-erbal oounlingsyslcm lhal can be used for the
cn,,,ncralion of !>CIS up (0 three. pcrlIaps (oor. items. Wilh the 1Id'-cnt of 1anll\lllge and Ihe
learning of nUrOOer words., thcrc appears 10 be. p~.cul1uraJ urldc:nlandinglhal scri.I-on:lo:red
number ....ools can be used for ('()wui!li. measurement, and simple arith~k.

Slmplr- .,tdunelic
Early in development there IllIpears to be • sensitivity (0 incn:ascs (addilim) and dec~aKs

(subtraction) in the quantity of small KtS. This lystems appean lQ be limited to the addition or
subtl'lCiim 0( iteml ....ithin KIS of three, perhaps four. items.

Geary (1m). C 1995 by the American P$yeholOCical ASlIOCiation. Reprinted with penni.sim.

dinality. counting. and simple arithmetic. A brief description of these abilities
is provided in Table 6.1.

Numerosity (or subitizing) represents the ability to quickly detennine the
quantity of a set of three to four items without the use of counting or esti
mating. The ability to quickly and accurately make numerosity judgments
is evident in human infants in the first week of life. as well as in the labordtory
rat. an African grey parrot (PsinaclIs erilhacus). and the common chimpanzee
(Pa" Iroglodyres; Antell & Keating. 1983; Boysen & Berntson. 1989; Davis
& Memmott, 1982; Pepperberg, 1987). Moreover, numerosity judgments ap
pear to be based on an abstract representation of quantity rather than on
modality-specific processes. as these judgments can be made by human in
fants for auditory and visual infonnation (Starkey, Spclke. & Gelman. 1983.
1990). Supporting this view is the finding that certain cells in the parietal
occipital cortex of the cat are selectively responsive to small quantities,
whether the quantities are presented in the visual. auditory. or tactile mo
dalities (fhompson. Mayers. Robertson. & Patterson, 1970).

A sensitivity to ordinal relationships. for example, that three is mOre than
two and two is more than one. is evident in 18-month-old infants (Cooper,
1984; Strauss & Curtis. 1984). Moreover, welJ-controllcd studies have shown
that nonhuman primates are able to make very precise ordinal judg.ntents
(Boysen. 1993; Washburn & Rumbaugh. 1991). For instance. after leaming
the quantity associated with specific Arabic numbers. a rhesus monkey (Ma-
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coca mulauo) named Abel could correctly choose the larger of two Arabic
numbers more than 88% of the time (Washburn & Rumbaugh, 1991). More
important. Abel could choose the larger of two previously unpaired numbers
more than 70"/.. of Ihe time.

Counting appears to be a pan-cultural human activity Ihat is, at least
initially, supported by a set of skeletal principles before children learn to use
number words (Crump, 1990; Gelman & Gallislcl, 1978; Ginsburg et aI.,
1981; Geary, 1994; Salte, 1982; Slarkey, 1992; Zaslavsky, 1973). As described
earlier, one basic principle that appears 10 conslrain counting is one-one
correspondence (Gelman & Gallistel, 1978). Implicil knowledge of this skele
lal principle is reflecled in couming when each item is tagged (e.g., with a
number word) or pointed to once and only once. Some human infums as
young as 18 months of age are able to use some form of lag in order to
determine the numerosity of sets of up to three items (Starkey, 1992). as can
the common chimpanzee (Boysen, 1993; Rumbaugh & Washburn. 1993). In
one study, a chimpanzee named Sheba was required to point to the Arabic
number Ihat corresponded to the number of food pellets on a food tray
(Boysen, 1993). During this task, Sheba often poimed to the food pellets in
succession and then pointed to the corresponding Arabic numerical.

Other research suggests that 5·month-old infants are aware of the effects
that the addition and subtraction of one item has on the quunlity of a small
set of items (Wynn, 1992). Similar results have been reported for 18-month·
aids (Slarkey, 1992), and for the common chimpanzee (Boysen & Berntson.
1989). Moreover. these competencies in simple arithmetic appear to be
qualitatively similar in the chimpanzee and human infants and young children
(Gallistel & Gelman. 1992). Preschool children appear to be able to add
quantities up to and including three items using some fonn of preverbal
counting. whereas Sheba appears 10 be able to add items up 10 and including
four items also by means of preverbal counting (Boysen & Berntson, 1989;
Starkey. 1992).

Finally. psychometric and behavioral genetic studies support the argument
that some numerical and arithmetical skills are biologically primary and
cluster together. For 5-year-olds, tests that assess number knowledge and
memory for numbers. as well as basic counting and arithmetic skills cluster
together and define a Numerical Facility rUClOr (Osborne & Lindsey. 1967).
In fact. the Numerical Facility factor is one of (he most stable factors ever
identified through decades of psychometric research (e.g., Coombs. 1941;
Thurstone. 1938; Thurstone & Thurstone. 1941), and has been found
throughout the life span, as well as with studies of American, Chinese. and
Filipino students (Geary. 1994; Guthrie. 1963; Vandenberg, 1959). Behav
ioral genetic studies of tests that define the Numerical FacililY factor have
yielded heritability estimates of about .5. suggesling that roughly I~ of the
variability in some arithmetical abilities is due to genetic differences across
people (Vandenberg. 1962. 1966).



154

Biologically Secondary Mathematical Abilities

GEARY

The argument that certain features of counting, number. and arithmetic are
biologically primary should nOl be taken to mean that all numerical and
arithmetical abilities are biologically primary. In fact. there are many features
of counting and arithmetic thai are probably biologically secondary. These
features include skills and knowledge taught by parents (e.g.. the names of
number words), concepts that are induced by children during the act of
counting (e.g.. lhat COUnled objects are usually tagged from left to right). and
skills thai are formally taught in school (e.g.• the base-IO system, trading,
fractions. multiplication, exponents, etc.: Briars & Siegler, 1984; Fuson, 1988;
Geary. 1994: Ginsburg el aI., 1981). Moreover. it is likely that most features
of complelt mathematical domains. such as algebra, geometry (eltccpt implicit
knowledge of basic, nonanalytic. Euclidean geometry). and calculus, are
biologically secondary given that the associated abilities only emerge with
formal education.

One aspect of children's mathematical development that is the focus of
much educational and cognitive science research is mathematical problem
solving (Bransford & The Cognition and Technology Group at Vanderbilt,
1993; Schoenfeld, 1985). Mathematical problem-solving abilities are typically
assesse<.l by the solving of arithmetical and algebmic word problems. The
solving of mathematical word problems requires the ability to spatially rep
resent mathematical relations. the ability to translate word problems into
appropriate equations, and an understanding of how and when to use mathe
matical equations, among other things (Geary. 1994; Mayer. 1985; Schoen
feld, 1985). More germane to the prescm discussion is the fact that word
problems are an important aspect of cross-national comparisons of mathe
matical abilities (e.g.. Husen. 1967; Lapoime, Mead, & Askew. 1992).

Psychometric studies suggest that mathematical problem solving. or mathe
matical reasoning (as psychometric researchers call it), is a biologically
secondary cognitive domain. Allhough a Mathematical Reasoning factor has
been identified in many psychometric studies (Dye & Very, 1968; Thurstone,
1938), a distinct Mathematical Reasoning factor does not emerge in all
samples; not even in some samples of college students (e.g.• Guthrie, 1963). In
fact. a distinct Mathematical Reasoning factor is only found with groups of
older adolescents (i.e.. end of high school or early college) who have taken a
lot of mathematics courses (e.g., Very, 1967). Therefore, unlike the Numerical
Facility factor that has emerged in nearly all studies that have included
arithmetic tests, and in samples of preschool children, a Mathematical Rea·
soning factor emerges only in samples with prolonged mathematical instruc
tion. This pauem suggests that many individuals do not easily acquire the
competencies that arc associated with complclt mathematical problem solving.

The fact that a Mathematical Reasoning factor does not emerge until
adolescence does not of course preclude biological influences on the acqui-
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sition of the associated skills. Indeed, factor analytic studies suggest that
mathematical reasoning abilities initially emerge from biologically primary
mathematical abilities and general reasoning abilities, both of which are
partly heritable (Vandenberg, 1966). However. by the end of high school.
the abilities subsumed by the Numerical Facility and Mathematical Reason
ing factors are largely independent (Geary, 1994). The point is that the abili
ties that are subsumed by the Mathematical Reasoning factor only appear
to emerge with sustained mathematical instruction, and arc therefore more
likely to represent secondary abilities rather than primary abilities. In other
words, it appears that instructional practices (e.g.. teaching the usc of dia
grams to aid in the solving of mathematical word problems; Lewis, 1989)
facilitate the co-optation of primary abilities and the eventual emergence of
a coordinated system of secondary mathematical abilities.

Indeed, cognitive slUdies also suggest that mathematical problem solving
is biologically secondary and involves the co-optation of more primary abili
ties. For instance, the work of Dark and Benbow (1991) suggests that su
perior performance on the SAT Mathematics test, which includes geometry
problems and algebraic word problems, appears to involve, among other
things, the co-optation of spatial abilities, and not necessarily an inherent
undentanding of mathematical problem solving, As noted earlier, spatial
abilities appear to aid in the solving of algebraic word problems through,
for example, the diagraming of important relationships in the problem
(Geary, 1994, 1996; Johnson, 1984), but the solving of word problems is
biologically secondary with respect to spatial abilities.

In sum, most of children's knowledge of complex arithmetic and complex
mathematics emerges in formal school scuings(Ginsburget al., 1981) and only
as a result of teaching practices that are explicitly designed to impart this
knowledge. The conditions under which such biologically secondary mathe
matical abilities emerge are thus very different from the conditions that lead
to the arguably pan-cultural emergence of biologically primmy mathematical
abilities. Because the conditions associated with theemcrgence of primary and
secondary mathematical abilities differ (i.e.. natural activities versus school
ing). cross-national ability differences in primary and secondary mathematical
domains should enable influences 10 be drawn regarding the source ofany such

differences. Thede....elopment of primary and secondary mathematical abilities
for East Asian and American children is described in the next section.

CROS5-NATIONAL DIFFERENCES
IN MATHEMATICAL ABILITIES

In this section. an overview of cross-national studies that have compared
the mathematical abilities of U.S. children with children from EaSt Asian
nations (i.e., China, Korea. Japan. and Taiwan) in biologically primary and
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biologically secondary domains is presented. A more thorough review of this
literalUre can be found in Geary (1994).

Biologkally Primary Mathematical Domains

Although there have been no studies that were explicitly designed to compare
East Asian and American children in biologically primary mathematical
domains. there have been comparisons on numerical and arithmetical tasks
that appear to largely assess primary abilities (e.g.. Song & Ginsburg, 1987).
In this section, comparisons of East Asian and American children on these
tasks is presented.

In a large-scale comparison of the basic number and arithmetic skills of
4- to 8-year-old Korean and American children. Song and Ginsburg (1987)
administered an array of lasks thai appeared 10 assess both biologically
primary and biologically secondary mathematical abililies, which were called
informal and formal mathematical thinking, respectively, in this study. For
the preschool children (Le.. 4.year-olds), thc Americans outperformed their
Korean peers on informal tasks that appear to have largely assessed bio·
logically primary mathematical areas (e.g., basic counting and simple arith·
metic). In keeping with the view that secondary abilities only emerge with
form.,..1schooling. aI this age none of the children perfomled well on tasks
that assessed biologically secondary abilities (e.g.. base-IO knowledge). As a
result. few national differences were found for these tasks. For 7- and
8·year·olds. there were few cross·national differences in biologically primary
areas. Those differences that were found, now favored the Korean children.
Song and Ginsburg argued that the American children's early advantage in
informal mathematics (i.e., primary domains) likely resulted from the tend·
ency of American parents to foster the development of the basic academic
skills of their children during the preschool years. Korean parents. in con
trast. tend "not to make active attempts to provide their children with
inlelleclUal stimulation during the preschool years" (p. 1293). Rather, par
ent-<:hild interactions tend to focus on social and emotional development.

Kevin Miller and his colleagues have assessed the basic procedural and
conceptual counting competencies of preschool children from mainland
China and the United States (K. F. Miller, 1993; K. F. Miller, Smith. Zhu,
& Zhang, 1995; K. F. Miller & Stigler. 1987). The results of these studies
suggest that there are no differences in the biologically primary counting
abilities of Chinese and American preschool children. Chinese and American
preschool children are equally skilled (e.g.. accurate) at counting small num·
bers of objects, and their counting behavior appears to be constrained by
the same implicit knowledge. or skeletal principles. such as one-one corre
spondence. Any differences that are found at this age appear to be related
to differences in English and Chinese number words. In Asian languages,
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the base-IO struclUre of Arabic numbers is reflected in the number words.
For instance, "II. 12. 13," is counted "ten on~. ten two. ten three." For
most European-derived languages, in contrast, the structure of the base-IO
system is not obvious in the number words. Most American children under
stand ';twelve" as representing a set of 12 items, just as "eight" represents a
set of 8 items. Asian children understand that "twelve" (i.e., "ten IWO") rep
resents both tens and units values. This difference in the structure of Asian
and English number words provides East Asian children with an advantage
over their American peers in learning to count past 10. and in basic arithm~tic

(e.g., Fuson & Kwon. 1992). However. these advantages renect differences
in the surface structure of number words and do not reflect differences in
biologically primary numerical competencies. Therefore, aside from the in
fluence of language, the basic counting competencies of Chinese and Ameri
can preschool children appear to be equivalent.

Stevenson and his colleagues assessed the basic mathcmatics skills of kin
derganen children from the United States. Japan. and Taiwan (Stevenson,
lee, & Stigler. 1986). The test administered to the children appeared include
items that assessed both biologically primary and biologically secondary
mathematical abilities. Nevertheless, the finding of no overall dilTerence in
the perfonnance of the Chinese and American kindergarten children suggests
that there is no early Chinese advantage in basic mathematics, except for
any advantage that might result from differences in Chinese and English
number words (e.g., Geary, Bow-Thomas, Fan, & Siegler, 1993; K. F. Miller
& Stigler, 1987). The finding that the Japanese children outperfonned their
peers from both the United Stales as wen as Taiwan suggests that the early
Japanese advantage is not related to broad racial categories, but rather to
differences in exposure to mathematics in kindergarten.

Across studies. the most notable cross-national difference on tasks that
appear to largely assess biologically primary mathematical abilities invoh'ed
an advantab'C of young American children over their peers from Korea (Song
& Ginsburg. 1987). This American advantage was eliminated, and for some
measures reversed. by the end of first grade. The overall pattern in this study
and related studies suggests that these differences reflect cultural differences
in the level of early parental involvement in the acquisition of basic academic
skills. and not a cross-national difference in biologically primary mathemati
cal abilities. In fact, the research to date suggests that there are no systematic
differences in the biologically primary mathematical abilities of preschool
children in East Asian nations and the United Stlltes. When E3st Asian pre
school children outperform American preschool children in basic counting
and arithmetical areas, it is only after the onset of fonnal schooling or only
on tasks that would be influenced by differences in the structure of number
words (see K. F. Miller et al.. 1995).



158

Biologically Secondary Mathematical Domains

GEARY

In this section, a brief overview of multinational comparisons of the perfonn
ance of American and East Asian children in biologically secondary mathe
matical domains is presented. Following the overview is a consideration of
alternative explanations of the source of U.S. versus East Asian differences
(described later) in the development of secondary mathematical abilities; thai
is. racial differences in intelligence. and schooling differences. Again. a more
comprehensive review of this research is provided in Geary (1994).

The first large-scale multinational study of mathematics achievement was
conducted in 1964 (Husen. 1967); the 12 panicipaling nations were Australia.
Belgium, England, Finland, France. Germany, Holland, Israel, Japan, Scot
land, Sweden. and the United States. In this study. 13- and 17-year-olds
were administered tests that assessed their basic skills in complex arithmetic.
algebra. and geometry (these included arithmetical and algebraic word prob·
lems); the 17·year-olds were also assessed in trigonometry. calculus, prob
ability, and logic. For the 13-year-old samples. Ihe overall performance of
the U.S. adolescents ranked 11th and 10th for two separate comparisons.
The overall performance of the Japanese 13·year-olds was 1st and 2nd for
these same two comparisons. For individual a~ the performance of the
U.S. J3.year.olds was below (by l/,n 10 "'.:t of a standard deviation) the
international mean in all areas, whereas the performance of their Japanese
peers was considerably above the international mean in all areas (as was the
performance of students from Israel and Belgium). The performance of the
U.S. 17-year-olds was even more abysmal than the performance of their
13.year·old peers, as they ranked 12th overall, and scored more than ~ of
a standard deviation below the international mean in most mathematical
areas. Again, the overaU performance of the Japanese students was among
the best in this assessment and considerably higher than their U.S. cohorts.

A second multinational comparison of mathematical abilities conducted
in the early 1980s yielded essentially the same results. although the addition
of several third-world nations to this assessment resulted in lower overall
international standards than the first multinational study (Crosswhite.
Dossey. Swafford, McKnight, & Cooney, 1985). The overall mathematical
abilities of U.S. 13- and 17-year-olds changed little from 1964 to 1981. For
instance. about 60% of the U.S. students for whom mathematics was an
integral pa.rt of their high school curriculum (the top 13%) scored substan
tially (~ I standard deviation) below the international mean in algebra., ge
ometry. and calculus (M. D. Miller & Linn, 1989). The United States' best
students (the top 5%) were performing at about the ("watered down, in
ternational average for algebra. geometry. and calculus. The best Japanese
adolescents, in contrast. outperformed the beSt students from all other oa·
tions. and scored between l"'.:t and 2 standard deviations above the intema·
tional mean ;n algebra. geometry. and calculus.
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A more recent comparison of the mathematical performance of 9- and
13-year-olds from 20 nations yielded the same pattern (Lapointe et al .• 1992).
The overall mathematical performance of the V.S. 13-year-olds ranked 13th
out of 15 nations that included comparable samples. For this same compari
son, students from Korea and Taiwan were ranked 1st and 2nd, respectively;
Japan did not panicipate in this study. Students from mainland China were
also assessed in this study. but were not included in the primary comparisons,
because the researchers were not able to assess students from all areas of
China. Those Chinese students who did participate in this study substantially
outperformed the students from Korea and Taiwan. The overall performance
of the V.S. 9-year-olds ranked 9th out of 10 nations, whereas the overall
perfonnance of 9·year-olds from Korea and Taiwan ranked 1st and 3rd,
respectively; China did not participate in the assessment of 9-year-olds.

The research of Stevenson and his colleagues also shows that the mathe
matical development of V.S. children lags behind that of their peers from
Japan. Taiwan. and China by first grade (Stevenson et al., 1993; Stevenson.
Lee. Chen. Lummis, et at. 1990; Stevenson. Lee. Chen, Stigler, et aI., 1990:
Stevenson et at. 1986). Toward the end of first grade, there is a small to
moderate difference in the mathematical skills of American children and their
East Asian peers. This gap widens, however, by the time the children are in the
firth grade (Stevenson et al.. 1986). Beginning in 1980. Stevenson et al. (1993)
also conducted a longitudinal study of the perfonnance of V.S., Chinese (i.e.,
Taiwan), and Japanese children. These children were assessed in the 1st. 5th,
and 11th grades. Stevenson et al. also assessed new cohorts of 5th and 11th
graders. to detennine whether the magnitude of the East Asian versus Ameri
can difference in mathematical perfonnance changed from 1980 to 1990.

The cross-sectional comparisons indicated that from 1980 to 1990, the
relative perfonnance of American and Japanese firth-grade children was un
changed, but "the difference between the performance of the Chinese and
American children was greater in 1990 than in 1980" (Stevenson et al.. 1993,
p. 54). The mean test scores of American fifth graders improved slightly
from 1980 to 1990, whereas the mean scores of their Chinese peers improved
considerably (about 20'%) during this IO-year span. The mean scores of the
Japanese fifth graders was about the same in 1980 and 1990. The same general
pattern was found for the comparisons of the Illh graders. The longitudinal
component of the study indicated that "the achievement gap in mathematics
increased between the 1st and 11th grades" (p. 55). Another study comparing
first and fifth graders from the Vnited Slates and mainland China yielded
the same result: American children were behind their Chinese peers on nearly
every dimension of mathematical competence in the first grade, and the gap
widened by the fifth grade (Stevenson. Lee. Chen. Lummis, et al.. 1990).

In aiL the results of these and other studies (e.g.. Fuson & Kwon. 1992;
Geary. Fan. & Bow-ThOm.1S. 1992) are cle.'1r: The mathematical development
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of American children in biologically secondary mathematical domains lags
behind that of their peers in nearly all other industrialized, and some non
industrialiZl..-d, nations. In contrast, the mathematical competencies of chil·
dren and adolescents from East Asian nations in secondary domains are
among the best in the world.

Summary

The pattern of cross-national ability differences for biologically primary and
biologically secondary mathematical domains differs. Ovet"'olll, there appear
to be no systematic differences in the primary mathematical abilities of chil
dren from East Asia and the United States, but a clear and consistent ad
vantage of East Asian children and adolescents over their same-age U.S.
peers in nearly all, if not all, secondary mathematics domains. These differ
ences between the secondary mathematical development or u.s. and East
Asian children emerge from apparently no cross-national differences in bio
logically primary mathematical domains, or an occasional U.S. advantage
(Song & Ginsburg. 1987). More important. the advanlage or EaSt Asian
children in secondary mathematical domains is largely coincidenl with the
advent of formal schooling. and increases with each successive ycm of formal
schooling (c. g.. Stcvcnson et al.. 1993). Thc overall pattern of results across
biologically primary and biologically secondary mathematical domains sug
gests that the advantage of East Asian children over U.S. children in mathe
matics is largely due to diffcrences in schooling. broadly defined. and not
to an inherenl Asian advantage in mmhematics.

Despite the finding that the East Asian versus U.S. performance differ
ences in secondary mathematical domains only emerge with the advent of
formal schooling. it does not necessarily rollow that these performance
differences are caused by schooling differences. First, it is possible that group
differences in intelligence lead to differences in the facility of acquiring
biologically secondary cognitive abilities (Rushton. 1995). Second. in the
absence of group differences in intelligence. it must be shown that differences
in the schooling of East Asian and U.S. children are sufficient to explain
the just--described cross·national differences in the development of secondary
m:nhematical abilities. These issues are addressed in the next section.

INTELLIGENCE, SCHOOLING,
AND CROSS-NATIONAL DIFFERENCES
IN MATIlEMATICS

In this section. polcnlial factors that might underlic the just--described ad
vantage of East Asian children over their U.S. peers in biologically secondary
mathematical domains are considered. In keeping with the earlier argument.
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the (wo most common explanations are racial differences in intelligence (e.g.,
Lynn. 1982; Rushton. 1995), and crosvnational differences in schooling (e.g..
Stevenson & Stigler, 1992). Evidence for both of these explanations is con
sidered in tum.

Racial Differences in Intelligence

I argued at the beginning of this chapler that the acquisition of biologically
secondary cognitive abililies likely involved, among other things. the co-op
tation of the neurocognitive syslems thai support primary cognitive abilities,
an access to implicit knowledge associated with these systems, or both. There
will also almost cenainly be individual dilTerences in the degree to which
neurocognitive systems can be co-opted (Le.. individual differences in learn
ing), as well as individual differences in access to knowledge implicit in pri
mary systems (e.g., individual differences in "insightfulnesstt

). Any such dif·
ferences are likely to result in individual differences in the ease with which
biologically secondary cognitive abilities are constructed. Because perform
ance on intelligence tests is predictive of later achievement in secondary do
mains (e.g., Stevenson, Parker. Wilkinson, Hegion. & Fish, 1976), it is pos
sible that IQ scores serve as a proxy for, among other things, the ease with
which primary systems are co-opted and the ease with which implicit knowl
edge is made explicit. Either way. the possibility that the aforementioned
differences in the mathematical development of East Asian and U.S. children
result from racial differences in intelligence needs to be addressed.

Indeed. Lynn (1982) argued that the superior academic achievement of
Japanese relative to U.S. children was due to higher mean IQs in Asian relative
to Occidental peoples. In this study, Lynn compared the raw scores from the
standardization samples for the Japanese and U.S. versions of the Wechsler
intelligence tests (e.g.. Wechsler. 1974). Basically. raw scores for the Japanese
standardization samples were rescored using U.S. nomlS. On the basis of
comparisons across 27 cohorts. Lynn argued that the mean IQ of Japanese
children was 111, compared to a mean of I00 for U.S. and European children.
Stevenson and Azull"\ (1983) argued that Lynn had overestimated the IQ
scores of Japanese children, because the Japanese standardization ~mples

included too many urban and higher SES (socioeconomic status) children
relative to Japan as a whole. Statistically adjusling for these differences yielded
a mean IQ of 104 for Japanese children (Lynn, 1983).

In contrast, the results of a large-scale study of the cognitive abilities of
Japanese, Chinese (I.e., Taiwan and Hong Kong), and White U.S. elementary
school children suggested no systematic cross-racial differences in intelligence
(Stevenson et aI., 1985). Here. groups of Japanese. Chinese, and White U.S.
children were administered a battery ofcognitive ability measures, including
tests ofauditory memory. verbal memory, memory for numbers, spatial skills,
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vocabulary, and general information, among others. All children were also
administered achievement tests in reading and mathematics. If Asian children
are more intelligent than While U.S. children, then the Asian children should
have outperformed their U.S. peers on all, or nearly all, of the ability tests
(Spearman. 1927). The overall results supported no such pattern: For some
tests, such as spatial relations, the Japanesechildren outperformed the Chinese
and U.S. children. On other tests, such as verbal memory. the U.S. children
outperfonned their Japanese and Chinese peers. while for still other tests, such
as memory for numbers, the Chinese children outperformed their U.S. and
Japanese peers. On the basis of these results, Stevenson et a!. (1985) concluded,
"This study offers no support for the argument that there arc differences in the
general cognitive functioning of Chinese. Japanese. or American children" (p.
733). Nevertheless, moderate to large cross-national differences were found
for mathematics achievement, again favoring the Asian children.

This study and other studies (see Geary. 1994) suggest the following: First.
even though lQ predicts later academic achievement. cross-national differ
ences in academic achievement should not be used to make inferences about
cross-national differences in lQ. Second. there do not appear to be large
systematic differences in the intelligence of Asian and Occidental peoples; if
any differences do exist they are rather small and not sufficient to account
for the large differences in the mathematical development of Asian and U.S.
children. Third, the superior spatial abilities of Japanese relative to U.S. chil
dren (Stevenson et al.. 1985) might give them an advantage in certain mathe
matical areas, such as geometry. but probably not other areas. such as algebra
(except maybe algebraic word problems: see Geary, 1996). However. this
difference in spatial ability is Dot related to broad racial categories. because
Stevenson et aI. found no reliable differences in the spatial abilities of Chinese
and U.S. children.

Schooling

Because the emergence of the advantage of East Asian children over U.S.
children in biologically secondary mathematical domains is coincident with
the advent of formal schooling. it seems reasonable to suspect that cross~

national differences in schooling, broadly defined, govern cross-national dif
ferences in mathematical performance. The question is whether the schooling
differences are likely to be sufficient to explain the mathematical ability dif
ferences. The two school-related factors that are the most likely source of
cross-national differences in mathematical abilities are overall all exposure
to mathematics (in school and at home; e.g.. homework) and mathematics
curricula. including teaching styles (Geary. 1994).

One outcome of the first multinational study of mathematics achievement
was the finding that cross-national differences in theemphasis on mathematics
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instruction in the classroom were moderately to strongly related to cross-na
tional differences in mathematics achievement (Husen, 1967). In nearly all
mathematical domains, mathematics achievement levels varied directly with
the relative degree ofemphasis in the mathematics curriculum. Students with
the best scores in algebra, for instance, came from nations where the mathe
matics curriculum emphasized algebra. The question here is whether the
school curriculum in East Asian nations emphasizes mathematics to a greater
degree than the school curriculum in the United Stales, and. if so, whether any
such differences are likely to be sufficient to explain the differences in the
mathematical development of East Asian and U.S. children.

The research of Stevenson and his colleagues suggests that there are, in
fact. substantial differences in the extent to which East Asian and U.S. chil
dren are exposed to mathematics in school (Stevenson. lee, Chen, Stigler,
et aJ.. 1990: Stevenson et al .• 1986). For instance. eXlcnsive observations of
the classroom activities of first- and fifth-grade children from Japan, Taiwan,
and the United States suggest consistcnt differences in the activities of Asian
versus U.S. students and teachers. Overall, during potcntial instruction time,
U.S. first-grade children were engaged in academic activities about 70% of
the time, compared to 85% and 79% of the time for their Chinese and Japa
nese peers, respectively. Fifth·grade U.S. children spent about 65% of their
potential instruction time engaged in academic activities, relative to 87 to
92% of the time for their same-age Asian peers. Moreover. the typical first
grade teacher in the United States spent. on average, between I \1 and 2 hours
less time per week on mathematics than their peers in Taiwan and Japan
(Stevenson, Lee. Chen, Stigler. el aI., 1990). Fifth-grade U.S. leachers spent
between 4 and 8 hours less time per week. 011 average, on mathematics than
did Asian teachers. Geary (1994) estimated that the net result of these in
structional activity differences was that first-grade children in Taiwan would
receive 63 more hours or mathematics instruction than first-grade children
from the Uniled States; this difference was estimated to be 346 hours in the
fifth grade.

Asian children not only receive more exposure to mathematics in school,
they also do more homework, in all areas. relative to their U.S. cohorts. For
inst,lncc, Stevenson and his colleagues (Stevenson, u.-e, Chen. Stisler, et al.,
1990) round that across all areas. U.S. first-grade children did about I hour of
homework perweek, relative to 8 and 4 hours per week in Taiwan and Japan,
respectively. In the fifth grade. U.S. children did about 4 hours or homework
per week, as compared to 13 and 6 hours per week in Taiwan and Japan.
respectively. An equally important finding is systematic differences in the
relative difficulty of the malhematicscurriculum in the United States and East
Asian nations. In short, the mathematics curriculum in the United Stales is
developmenlally delayed in comparison to inlernational standards (e.g.,
Fuson, Stigler, & Bartsch. 1988; Stigler, Lee, Lucker, & Stevenson, 1982). For



164 GEARY

instance. many topics in complex arithmetic (e.g., word problems) that are
introduced in the second or third grade in East Asian, and other, nations are
not introduced until the fifth or sixth grade in the United Slales.

Finally. these East Asian versus U.S. differences in mathematics instruc
tion. homework, and the rigor of the mathern.nics curriculum reflect wider
cullural values. "Asian culture emphasizes and gives priority to mathematical
learning; high achievement in mathemalics is taken by mature members of
the culture to be an important goal for its less mature members" (Hataoo,
1990, pp. 110-111). U.S. culture, in contrast, values achievement in sports
more than achievement in mathematics (Eccles, Wigfield. Harold. & Blumen
feld. 1993). These differences in the cullural valuation of mathematics trans
late into differences in the investment of children, parents. and tcachcN> in
learning mathematics, and are likely to be the primary source of the mathe
matical ability differences comparing East Asian and U.S. children (Geary,
1994; Stevenson & Stigler, 1992).

Summary

Even though IQ scores are predictive of later academic achievement. and
there arc systematic mathematics achievement differences comparing East
Asian and U.S. children. there do nOI appear to be large systematic differ
ences in the intelligence of East Asian and U.S. children (see Geary. 1994):
If there are small differences in IQ, these are not likely to be sufficient to
explain the large gap in mathematical achievement. The Stevenson el a!.
(1985) finding of no systematic cognitive ability differences comparing East
Asian and White U.S. children with simultaneous differences in mathematics
achievement nicely illustrates this point. There are, however, substantial and
systematic differences in the opportunity to learn mathematics in school,
comparing East Asian and U.S. children. Relative to their U.S. peers, East
Asian children receive considerably more mathematics instruction in school.
do more mathematics homework, and are exposed to a much more rigorous
mathematics curriculum. Although it cannol be stated with certainty, these
and related (e.g.. instructional styles; Geary, 1994) differences in schooling
appear to be sufficient to explain the advantage of East Asian children over
U.S. children in biologically secondary mathematical domains.

CONCLUSION

Examining children's cognitive and academic development from the perspec
tive of human evolution provides a means by which biological and cultural
influences on children's cognition might be disentangled (Geary, 1995, 1996).
Evolutionary and biological influences on children's cognitive development
are likely 10 be most evident and mosl direct for pan-cultural fonus of
cognition, which were termed biologically primary cognitive abilities. Cultural
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influences on children's cognilion are most strongly reflected in Ihe emergence
of biologically secondary forms of cognition. Here. the motivation to acquire
secondary abilities is provided by the values and goals of the wider culture.
whereas the associated procedural and conceptual competencies appear to be
constructed from bits and pieces taken from biologically primary cognitive
domains.

One implication of this perspective is that the source of any group differ
ences in cognitive abilities likely differs for biologically primary and biologi
cally secondary cognitive domains (Geary, 1996). Group difTerences--for
example. sex differences---in primary domains are likely to reflect differences
in evolutionary selection pressures (e.g.• sexual selcction) and the operation of
proximate biological mechanisms (e.g.. sex hormones). Group difTerences in
secondary cognitive domains, in contrast. are more likely to reflect differences
in cultural values r,uher than the direct operation of biological mechanisms.
Primary differences in other areas, such as spatial navigation. might ofcourse
lead to differences in secondary domains. such as geometry. For instance.
Geary (1996) argued that the sex difference. favoring males, in geometric
abilities reflects the greater elaboration of the neurocognitive systems that
support habitat navigation in males than in females. As noted earlier, knowl
edge implicit in these systems appears to reflect the basic principles of
Euclidean geometry. and thus might be one source of the male ad\'antage in
geometry. Nevertheless, the finding of no systematic difference in the spatial
abilities of Asian and U.S. children (although there is a Japanese advantage)
suggests that this is not the primary source of cross-national differences in
mathematical abilities. Moreover. the sex difference in secondary mathemati
cal domains is highly selective, whereas the East Asian versus U.S. difference
in mathematical performance is found in nearly all secondary domains. The
ubiquity of the cross-national differences in mathematical performance across
secondary domains (e.g.. geometry. algebra, probability) is consistent with the
argument (once IQ differences arc ruled out) that more general cullural
factors, such as values and schooling. need to be seriously considered as the
primary source of these mathematical ability differences. Again. cultuml
valucs are important because they provide the motivation to acquire cognitive
abilities that would not emerge in more natural contexts and with more natural
activities (e.g.. children's play).

The use of this perspective to examine the mathematical development of
East Asian and U.S. children provided the following conclusions: First. there
appear to be no differences in the biologically primary mathematical abilities
of East Asian and U.S. children-there is no "Asian math gene." Second.
except for the influence of number words on carly counting and arithmetic
development, the dear and consistent advantagc of East Asian children over
their U.S. peers in secondary mathematical domains appears 10 be due to
differences in schooling. broadly defined. Relative to U.S. children. East Asian
children receive substantially more exposure 10 mathematics at school and at
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home (e.g.. homework; for a discussion of specific instructional practices
comparing classrooms from East Asia and the United States see Stevenson &
Stigler, 1992, or Geary, 1994). Finally, these schoolingdifferences reflect wider
cultural differences in the relative valuation of achievement in mathematics.
The bottom line is that U.s. children lag behind their intemational peers in
the development ofsecondary mathematical abilities because U.S. culturedoes
not value mathematical achievement. East Asian children, in contrast. are
among the best in the world in secondary mathematical domains, because
Asian culture values and rewards malhemalical achievement.

Finally, perhaps the most important practical implication Ihat arises from
considering biological and cultural influences on mathematical development
is understanding the source ofmotivation for acquiring secondary mathemati·
cal competencies. From this perspective, it should not be assumed that the
acquisition of secondary skills, mathematical or otherwise, will necessarily be
an inherently enjoyable or interesting process for children (Geary, 1995). In
fact, it is likely to be the case that the attainment of mathematical expertise
will require a sustained, often tedious and unenjoyable, investment in learning
mathematics (Ericsson et al.. 1993), contrary to current philosophical ap
proaches to educational reform in the United States; in particular. construc
tivism (Geary. 1995). I have noted that "constructivism is largely a reflection
of current American cultural beliefs and, as such, involves the development of
instructional techniques that attempt 10 make the acquisition of complex
mathematical skills an enjoyable social enterprise that will be pursued based
on individual interest and choice" (p. 32). However. when we consider
secondary mathematical domains from an evolutionary perspective, there is
no reason to believe that the acquisition of the associated abilities will be
inherently interesting or enjoyable for Asian or U.S. children. It is for this
reason that the cultural valuation of mathematics. which is evident in Asian
culture but nOI U.S. culture, is essential in motivating children to invest in
nt.:'1thematicallcaming.
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Toby's Math

Herbert P. Ginsburg
Teachers College, Columbia U/liversity

This chapter is a description and celebration of Toby's math. about 30 min
utes of it. as captured in a clinical interview I conducted one day in her
school. Toby was a first grader. 6 years old when I interviC'o"cd her, an un
exceptional girl-which does nOl mean that she was unrem..1fkable or unin
teresting. but thai she was typical of children her age. She was not considered
extremely intelligent or an outstanding student. In my experience, she per
fonned al about the same level as most first graders; she did nol display
remarkable insights or especially brilliant strategies; she did not make out·
rageous blunders. She could properly be called average. She was both White
and middle class. but 1 mention Ihis only to discount it: I believe that her
basic approach to malhcmatical thinking, her experiences. her feelings aboul
math all transcend boundaries of race and class. In key respects, poor African
American or Hispanic children are basically no different from Toby. In de
scribing and celebrating Toby's math. I aim to help you :lppreciate the minds
and muggles of all children as they encounter the math taught in school.

THE STAGE AND ITS PLAYERS

My relationship with Toby was unusual. I had recei ...ed permission from her
school to make a series of videotaped interviews that day with children from
the first through fourth grades. My plan was to use lhese interviews. if they
turned out ","'Cll. as material for a series of .....ideo workshops" designed to

115
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help teachers understand the nature of children's mathematical thinking
(Ginsburg, Kaplan, & Baroody, 1992). Teachers would view the tapes, at·
tempt to interpret them. and in the process learn something imponanl about
children. I was not Toby's tcacher; I was nol a psychologist attempting to
help her: and I was not even assuming my usual role of a psychologist "study
ing" her. I was essentially trying to arrange a "performance" thai would
bring alive basic aspects of children's mathematical thinking. Acting as a
kind of producer. I wanted Toby 10 aCI in ways that would fascinate teachers,
that would reJ1ccllhe basics ofchildren's minds grappling with mathematics,
thai would illustrate the key phenomena of mathematical thinking as revealed
by contemporary research.

My basic plan was to conduct an informal"c1inical interview" that would
explore the thinking behind Toby's school work and m.::l.p out her underlying
strategies and concepts. There were a few topics I knew that I would cover
like her strategies for mental addition. and her understanding of place
value-but for the most pan I was prepared to go with the flow, following
up on whatever seemed interesting. and letting her responses detennine the
course of the interview. I

The room. normally the school's "resource center" in which children re
ceived extra help in reading. math, and the like, was set up for videotaping.
Toby and J were to sil at a small round table. In front of us was a ralher
large video camera, operated by an assistant. Also present in the room, and
clearly visible to Toby, was an associate who observed the interviews and
occasionally made suggestions about topics I might cover or questions i
might ask.2 Announcements occasionally intruded over the loudspeaker sys
tem thai no one in the school could avoid. A phone rang now and then.

Although we familiarized Toby with the video camera (after all, it is no
longer very strange to many children) and, as you will see, tried to explain
the purpose of the interview, from the child's point of view the whole situ
ation was most unusual, and indeed must have been vinually unintelligible.
Video cameras? Three aduils in the resource room? Talking about math?
What was Ihis all about?

HELLO, TOBY

Before Toby entered Ihe room, I had written on the board "Children's
Math," which was to be the name of our imaginary television show. I began
with a theatrical introduction including fanfare:

'TIli, kind of Conlrot by the child i. e~llC1ly the opposilC: of "'hal OCCUR in ~andanlill:d lestinll
and is ...-hal defines the esseoce of lhe clinical interview.

'Rochelk Kaplan W.$ my "di=IOl".- and Takashi Yamarnolo operated lhe camen!.



7. TOBY'S MATH 177

Herber! Ginsburg (H): Let's start here ... this is a show and iI's on now?
Let's have a little music, Toby, Da da da da-Welcome to Children's
Math. [I point at "Children's Math" written on the board,] And Toby
wrote her name on the board. [I then ask the C3JTlera operator whcthcr
he had gOI a picture of Toby's name, and then direct him to tum the
camera hack on us.) All right. Very good. Now we come owr here
and I say, "Hi. Toby, how old are you?"

Toby (T):Six.

H: Six years old. And what grade are you in?

T: First.

H: How do you like that? I already knew that already. didn't I?

Now this could easily be construed as bizarre. I won't elaborate on my
reasons for doing it. except to say that this rather strange behavior was an
allempt to put the child at ease. to sct up a relaxed atmosphere.' In effect,
I was saying 10 her. or trying to say 10 her, "This is a s]XCial, unusual event,
different from school. You don't havc to act here the way you do in school.
We can laugh and have some fun."

What did Toby think of all this? Imagine the expectations with which she
arrived at the intclVicw. She must have thought that we would be doing
something related to schoolwork and that as an adult I would act in a serious
and task-oriented way. However, here I was making odd music, lalkingabout
television shows (which was actually the literal truth). and commenting on how
I already knew the answer to the questions I had asked." No doubt, the first
seconds of introduction probably only served to violate her expectancies about
what might and should happen in interaction with an adult in a school sctting.
Toby seemed bewildered, not knowing what to make of me.

I continued to put my foOl in my mouth;

H: OK, and what we're going to do today is to do some fun math things.
OK? And we']] start off real easy by asking you to count, as high as
you can. Let's hear you count.

What did this mean to her? For many children the idea of "fun malh
things" is an oxymoron. Also. you can't lell children that something is going

·'In my b<x* £"/tri"R ,~ Cllilcf, Mind: TIlt Cog"iri\~ Clinical '''/tn·i....' i" P,yd,olOf/kal
RutlJf..-ll and Pracfiu (in ~u). I describe tile intef1lClion wit~ Tolly from tile JlQ;nt of view of
w~1l1 I was trying to acromplish as an inlervie"ier. and the social psydu:llogy of !he interview. Hen:
we focus, llo""evcr, on ....~a1. il all """"'I to Toby.

'Actually, teachers frequently ask questions 10 ...·lIich Ihty aJre:wJy kro:;tw the answers. lIS in "Hcow
much is IWO plus Iwor' However, leachers do 1101 commenl.....misamlslically. thai lhty kno.... Ille
aruwer, Ihus implying 1~31 Ihe ques.tion was im~rly asked and tMt a command would have boen
more honeS! (''Tell me how much is two p1ul two. r al...,ady know. I wam 10 see if :tOO do.").



178 GINSBURG

(0 be fun; you have 10 show them. Further. the statement that we would
"SiaM off real easy" might have unsettled her a bit. She might have interpreted
it as saying. "You bener do well at this; if you don't, I will think that you
are a real dummy." Perhaps my (well-intentioned) remarks served only to
put pressure on Toby. If she had then experienced difficulty with the counting
task. she would have feil very badly and would probably have been terrified
of the harder things that might be expected to follow.

Up to this point (which was less than a minute into the interview), Toby's
overt response was very limited (mostly because she hadn't had much of a
chance to say anything). In fact, Toby had S<lid only Iwo words, "Six" and
"First" (both extremely important for an interview on mathemalics), whereas
I said approximately III. This ratio ofadult-to-child talk does not bode well
for a situation in which the child is encouraged to reveal her Ihinking. What
was going on in her mind? Perhaps, "What in the world is this person doing?"

Well. we were probably nOI off to a great start, and I do not offer this
interaction as a primer on how to interview. but it does teach us important
lessons. First. real contaci between children and aduhs is very hard to
achieve. It is nOI easy for an adult to enler the child's mind, 10 establish a
relalionship thai allows and indeed encourages the child to reveal his or her
genuine thinking. After all, I was not engaged in some rigid form of standard
lesting; experienced in interviewing, I was Irying to engage her in an enjoyable
way. BUI children are a world apart, and we adu1t~cting as psychologists
or parents--------should not think that we can easily enter and understand it.

Second, we should nol underestimate the extent 10 which children have
to put up with various forms of nonsense from adults. especially in schools.
Adults run schools; children do no!. Adults impose their points of view,
their desires. If Ilhink a lelevision show needs 10 be made. then Toby must
participate, even if she could not reasonably anticipate any benefit 10 her;
it is just another Ihing aduils tell her to do. Yet she continued to sit there,
she was patient. she tried to help. So thai is Ihe first thing we celebrale:
Toby's good will and tolerance. '

COUNTING GAMES

Asked to count "as high as you can." Toby shrugged her shoulders as if to
indicate that she did indeed think Ihe task would be easy. Beginning with
"one." she counled deliberately, showing lillie emOlion until she reached
about "twelve." when she allowed herself a slighl smile. Then she plodded

'Of course. the danger is thaI lhey cln tum into mindlen compliance. Howc~er. wc all' nOl
laJkinj: of dangt'''' hcll'_
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on, counting correctly, occasionally pausing and taking deep breaths. chug
ging along like the little engine that could, stoically e:dlibiting ber compe
tence. Perhaps she found the task a bit boring, but it allowed her to show
what she could do. Eventually she re.'\ched "forty-four," whereupon I stopped
her.

Learning 10 say the counting numbers (so far, her counting activities have
nothing to do with objects: she is not counting things but saying words). can
be seen as a linguistic game involving Iwo separate goals. When the child
first encounters counting, usually at the age of 2 years, the first goal is to
memorize nonsense material. In all languages. the sequence of the initial
counting numbers (usually about 10 of them) displays no rhyme or reason;
it is quite arbitrary. In English, we say. "One, two. three ..." There is no
logical reason why the first number in English could not be "three" and
second. "one," and the third "two."~ Moreover, at first these counting
numbers may have no meaning whatsoever, except thai adults seem to like
to say them. sing songs and make rhymes about them ("One. two. buckle
my shoe"). and evidently want the child to learn them. For the young child,
at 2 or 3 years of age, just learning to "speak math." the first task then is
pure memorization of rote and meaningless material. '

Therefore. learning the counting words is not learning math. It is a kind
of language game, like learning a song. which also must be rendered in a
particular sequence: (we do not sing "lamb Mary little a had"): it is a game
of memorization in the absence of meaning.

Children around the world play this game. Almost every language of
which we know uses counting words, and most often, as in English, the
sequence of the first 10 or so counting words is completely arbitrary. [ndeed.
children in virtually every culture we know of learn the counting words early
on. All normal children speak this kind of math; you can count on it. After
all, humans are language learners, and the capacity to learn language may
be considered a key aspect of our human biology.

'Of cwrsc. eadl individual ...'oro bean all lII'bilrary n:lalioo to its n:ferem. as do mosl words:
There is no illherem reasoo why the fim lhr~ numbers ill EIlilish should be "one. lWO. lhr«:' ralher
than "hik. mur. diy," or ·1res. deux. ein:' in lhal order.

'Inderd••t 'he "",.n. the: 2· 0< ~.yca<·oId rhild may nQl <'Y<n I'<r....,iv< <,..,h <"OUI1,inS worn n

a se:plirllle. diS!incl elllily dirrm:1lI from lhe OIher cOlImini words. In n:alily, whm tKIuhs say lhe
C<)Ulllilli words, or uuer allY olher kill<! of speech. lhe words normally blmd inlo each 0100. They
an: IlCX clellJly $oCgmo:med. ano;! Ihe adult is t11<:n likely to s.ay. "O'l1etwcahredour .. :· lhan 10 pl~
clear "~pllCC" bel"un lhem. Under coodili()ll~ lil;e lhese:. lhe coom,oi "words~ may be coo~iden:d

as a kino;! of soog to be sung. ml,l('h as lhe child pamll~ back "My CWIllJ}' tizo/'lhu" or sinp OIher
IOIlgs the meanillg of which is obscure. The words gndually emerge from lhe undifferenliated rrl3SS
(a kiod of "blooming. buuill, con(usioo") only after coosiderable perceptual leamini,. 'Tlle child
n«<ls to learn "'hal lhe units {wordsl are. lhal each i~ se:panlle from the Olhers. and lhM all an:
diffen:Ol from one anOlhcr. W,th p<aClicr. lhe child learns 10 delecl lhe differences tlmoog wo<d••
juS! as one karns 10 lilSle lhe diffen:ocu amoot wirll's previously indi$lillguishable.
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Then the game changes. After about 10 or so, the counting sequence is
no longer quite so arbitrary. Indeed. in some languages it becomes entirely
orderly. In Chinese and other East Asian languages based on it. the sequence
of the first 10 words is as nonsensical as in English. But then a regular pattern
is introduced. The Chinese say the equivalent of "ten-one, len·two. ten-three
... ten-nine," up to our 20. for which they say the equivalent of "two-ten."
Then they go on to say. "TWO-len-one, two-len-two two-teo-nine." After
thai comes. ·'Three-ten. Ihree-ten-one, three-ten-two " and so on, all the
way up to ·'nine-teo-nine." What could be more orderly and systematic! The
Chinese talk base-JO; they say the numbers as ifwritten in expanded notation:
(1[10] + I), (1[10] + 2), aJlthe way up to (9(101 + 9).

In English, there is a pattern too. but il is not as elegant as the Chinese.
In fact, it seems designed to confuse children at the outset, After the fi~t

10 arbilrary numbers. English introduces two more-"eleven.twelve." They
give little clue. if any, 10 the sequence. and so English speaking children have
to memorize IwO more meaningless sounds to continue the sequence.' Next
a sequence emerges, but il is strange: "thirteen" resembles "three-ten:' "four
teen" is like ''rour-ten,'' "fifteen" like "five-ten," and so on very clearly until
"nineteen" (ak<! "nine-ten"). It is as if English were speaking base-IO "back
wards." In expanded notation. the English "tccns" words would be written
(3 + I[IO}). (4 + 1[10]), up to (9 + 1[10J).9

From the point of view of an English-speaking child, the language game
has shifted. After learning the meaningless song, "One, two. , . ten, eleven.
twelve," the child must now try to learn a reverse base-IO pattern ("thirteen,
fourteen, , , nineteen"), Of course children could try to memorize this too
as a meaningless song, and some do, However, most children see quickly
that there is a pattern and try to learn it. Why? Perhaps they see that it
makes the task easier. After all, memorizing the rules underlying the pattern
(say the "units" word first and then the "teen" word) requires less mental
effort and "storage space" than memorizing all of the individual tenns.
(Think of it: you can count on indefinitely starting at "one million. five hun
dred fony-four" even though you have never memorized those panicular
counting words.) Or perhaps children pick up the pattern because they are
pattern detectors; that is, human minds are so constituted as to make every
effon to detL"Ct regularities in the environment, including the language en
vironment.

'Accading 10 Websler'$. "ele\'en" de,iyes fmm an old Anglo-SlUoo coMlruetioo lhal meanl
liler.llly ··0.... I..ft O""r (after I..n}." Similarly. "lweI",," deri~.... from a word lhat meant "twO lefl after
I..n." l1Ie oo!iC-IO idea wa~ clcar in thc original coo~lruetion 0( chese words: o~er lime, ~boncning

and Olll<"rw;!iC modifying th.. ward~ obscun"d thcir meaning.
"German fol1ow~ this "backwards" ordcr. ....In·und·zwanvg." ele.
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Now if English asked children to learn only the reverse base-IO paltern,
1 would not complain. There is nothing inherently wrong in s..1ying "four
teen," writing it as 41, and in expanded notation as (4 + 1[10». However,
English is patently unfair in its inconsistency: As soon as children get up to
"twenty," English revcrses the pauern to something approximating the Chi
nese. (The main dilTenmcc is that English decade words are not as transparent
as their Chinese counterparts. Being circumspect, we Westerners say "fifty,"
whereas the Chinese don't beat around the bush, and come out with a bold
"five-ten.")

So English-speaking children are faced really with several counting lan
guage tasks: memorize the initial arbitrary sequence, learn the pattern that
follows, and then reverse it to get the next pallem. From the child's point
of view, a crazy language world?11I

BUGS

Recall that Toby had counted wen up to 44 when I stopped her. At that
point, (thought her counting was very smooth. and I figured that she might
get bored if (simply let hereount on and on. Therefore, I used my prerogative
as a clinical interviewer (standard testers must deny themselves this flexibility)
and skipped ahead to find out whether she would have trouble with some
of the higher numbers:

H: OK. why don't you stan now with 87. Just keep going from 87.

T: 87.88, eighty niiiiiine-[Long pause.] A hundred?

H: OK, keep going.

On reaching 89, Toby clearly knew she was in trouble. She dragged out
89-"eighty niiiiiine"-as if she were buying time to figure out what came
next and needed help. In saying. "A hundredT' she raised her voice as if
asking a question. She went on successfully to 109. and again raised her
voice as if asking me whelher she was correct. Clearly. the tr;msition was
giving her trouble.

Toby had reached her counting limit and knew it. With a shrug and nerv
ous laugh, she indicated that she had reached the end of the line (her whole
number line, one might say):

"'n a $I'~. alilanBua~;s a liule C11Izy in lhis ...'ay. AII ....ords bear an arbilrary n:latioo to Iho:ir
referenls (a "dOB~ could juSI as easily be ealled "calM or ··bcar.M although al firs! ctIildren do not

s.ttm 10 belie~ this). Allhough language mnlains many A:Jularilies ("I ...al~«I. I lal~o:r) which
children pick up very easily.;1 OIl"" suffers from many imgularilics (We ~y "I wenl" not "I JOCdM

).
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T That's all.
H: That's all. Oh, wow, you counted real high. OK?

CINSBURG

She did nOI look too happy; however, I wanted to find OUI more about
her cOllming. Recall that she firsl encounlercd difficuhy when she was asked
to count in the 80s-"S7, 88, eighty niiiiiine...." Research has shown thai
"decade transitions"-thal is. going from 59 to the new decade, 60, or from
89 to 9()-arc especially dillicult for children (Fuson. 1988). They learn
quickly that once one has entered a new decade-whether 30 or SO-the
correci procedure is 10 add on the "one. two, three .. :' that are already
well known. The problem is 10 say the new decade. Once you figure out
what comes after 39, you can easily go further. But whal comes after 391

Faced with this dilemma, children usually make a guess based on a sensible
rule. Arter "thirty-nine" comes "thirty-ten." Why not? "Ten" normally comes
righl arter "nine," and forty really is thirty-ten. Believing that Toby would
be likely 10 make "errors" of Ihis sort, J set out to lest the hypothesis:

H: What if J tell you some numbers now and you tell me what comes
next. OK. Like if I said. L 2 ... you would say ...

T: Three

H.. OK. 57. 58....
T: [jumps in quickly with]: 59
f/: OK ... ah ... 68, 69 ...
T: [hesitates a lillie]: 70.
H: Aaaahhh ... 84, 85 ...
T: 86.
H: ... 87.88 ...

T: 89.
H: 89 ...
T: Eighty-tennnn ...

Almost all children do this, and it is a good thing that they do. II indicates
thaI they arc trying to make sense of the oflen strange (to them) world of
numbers. Constantly on the alert for regularities. they use the pallerns they
lind to deal with new problems. Toby knows that "len" normally follows
"nine." Faced with a situation in which counting on from a nine (the nine
in 89) is the problem. she does the only thing sensible under the circumstances
and given her limited knowledge; she "guesses"--or. better still, hypothe
sizes-thm a "ten" must follow. Of course, iI'S the wrong answer, and we
want her to learn the right one, but at least she is responding to a difficulty
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by making a reasonable hypothesis from the available data, She uses what
she knows to make sense of the world of mathematics,

We say that Toby was using a "buggy" procedure; that is, a flawed slralegy
Ihal systematically leads 10 error. II One of the clearest examples of such a
bug is:

12
-4
12

How can you subtract 4 from 12 and get 12? Almost any first grader
knows Ihal if you Slart wilh 12 eggs and take 4 away you don't end up with
12! A child can get an answer like this because he or she is not trying to
solve a real problem about removing eggs from a carton. Instead, the child
is solving a math problem. and is using the buggy strategy-'"always subtract
Ihe smaller number from the larger one," The child believes that because
one cannot take away a larger number from a smaller. 2 must be subtracted
from 4, which of course gives 2. Thcn take away nothing from I, which of
course gives I, so that the answer must be 12. Whm could be more logical?
You could say that the child is making sense out of a new kind of subtraction
problem by assimilating it into what he or she already knows about math,
Indeed. the teacher may have ,mid, "Always subtract the smaller from the
larger." The child's "knowledge" may well stem from a misinterpretation of
the teacher's remarks. but the bug results from an attempt to make sense of
new problems. given the (faulty) knowledge available.

Unfortunately, many teachers do not look below the surface of wrong an
swers, and simply accept them as such. Many tcachcrs think thai a wrong
answer is simply a wrong answer. They do not realize that the child's wrong
answer can be an intelligent answer, a sense-making elTon, Indeed. we might
even say that in a sense a wrong answer may be a correct answer toa different
question, Suppose the question were. '"What would follow 89 if90 is not an
option?" Then Toby's answer, basically 80 + 10, would be considered quite
correct. Many teachers lake wrong answers to indicate a lack of knowledge
of mathematics or even stupidity. However, that may not be the case: \Vrong
answers of this type may well indicate an allempl al senselll3king. an elTon

"lk lI(IIIion d ·'bug," ha.$ a lon~ and intereslin, h,Slory. Early in t~ 201h ...mury. Uusw.n and
JoM I 1926) di5I:Us~ chi\drtn', -00d hllbil1" in amh".,.ti., and in ract !ki(rilrd m;tny cE til<: S3mr
"bugs" thai can .asily M ooSCfV.d loday. Lall'l'". Erlwango:T (1975) dcs.cribc:d "bugs·' in tho (MIO\lS
(al lraSt in SOITlC drde.<) Cast cE H"nny. and I dr.rnbrd th.m in tho fil"Sl .dition of my bool< on
child..n'S rNlh.m:uicai thinkin& (Gin<;burJ. 19n). "Bull''';s a computer t.rm thaI originatod from
th" fael Ihal =1 bugs (n::JGCMS.•IC.) go! inll) th" innards of tho vaetlUm luhu of old C\lfnpul.n and
nuscd 5ysl.matic .\T1Jf$. I'rOO:lbly t~ mQSI fr«j\l.ntly cnod Ullmplr 01 ..... I)rk on !>u&s is tllal of
Brown ami VanLchn ll'lH2}.
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at intelligent response. Of course, not all wrong answers are "intelligent'"
bugs like these. Some wrong answers result from wild guesses, and others
from mere sloppiness: however. some errors result clearly from systcmatic
stratcgics and principles. like Toby's ·'eighty-ten." or the answer 12 to the
problem 12 - 4.

Therefore. counting has several interesting features. We have seen that at
first counting is a rote activity, but then evolves into a search for palterns-a
search made all the more dinicult by thc fact that the English language begins
with one system for arranging numbers but then soon switchcs to the op
posite. We also saw that Toby respondcd to a difficulty-the problem posed
by thc need to go from one decade to another-with a ·'bug." II wrong answcr
based on a systematically flawed strategy. Bugs like these can be interpreted
as the child's attempt to make sense of the world of numbers.

RIGHT AND WRONG

When Toby claimed that 100 followed 89. I said. "OK, keep going." and
when she did not know what comes after 109, I ag..in did not criticize her.
instead saying. "That's all. Oh, wow. you counled real high. OKT L.ter.
when Toby claimed that "cighty-ten" followed 89, I simply repeatcd "eighty
ten." as if it were corrcct. and asked for the next response, And llt the very
end of the counting sequcnce. I tried again to comfort her by using the same
kind of remark made earlier: "Those are really big numhcrs. I mean that's
very. very high."' Although I never criticized Toby for getting the wrong
answer. I never exactly told hcr that she was correct either.

I think Toby knew that she was wrong. She indicated her discomfort in
various ways: She frowned, she shrugged her shoulders, she grimaced: she
did nOI look 100 happy. Perhaps my failure to say. "nmt's right," led her
to believe that she had made a mistake. Or perhaps something else. perhaps
something in my tone of voice. caused her to feel uncertain of her response.
In any event. she knew that she did not really know,

Children are overly scnsitive to being wrong. To some extent, this stems
from their ps}'chology. As Piaget pointed out. the "egocentrism" of young
children leads them to see the world in terms of black and white. yes and
no. right and wrong. Subtleties arc beyond them. In a similar vein. Freud
attributed 10 young chi ldrcn a rigid. harsh superego: they see a trivial mistake
as ,I sin, a transgression deserving of punishment.

In school. teachers often seem to reinforce this tendency. One of the firsl
things they usually convey to children is that the world of mathematics can
be divided into right amI wrong answers. and that the essence of doing math
is getting the right ones. In this view. math is learning that 3 comes after 2.
and that the answer to 1 + 1 IS 4. The focus on right and wrong is commu-

Copyrighted Material
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nicated in many ways. For one thing, a good deal of the curriculum during
the early grades involves the grim exercise ofleaming--over and over again
the number facts for addition, subtraction, multiplication, and division. For
another, the teacher ordinarily does not ask a question unless its purpose is
to discover whether the child can produce a particular right answer. {The
teacher almost never asks a math question because he or she does not know
the answer!) All this serves to magnify children's natural egocentrism as it
applies to mathematics, and to create a harsh mathematical superego. In
this type of Manichean classroom of mathematical good and evil, a wrong
answer can be devastating for the child: He or she should have known the
answer or the teacher would not have asked for it in the first place.

If this is so, then Toby might have interpreted her inability to count be
yond 109 as failure. She did not yet know-if she ever will-that the essence
of mathemalics is not producing correct answers. but thinking creatively.
She did not yet know-although she would have the opportunity to leam
it-that in the cognitive clinical interview, I would give her difficult and
challenging problems, and would be more interested in her ways of attempt
ing 10 solve them than in the correctness of the answers. And she also did
not know that, according to the norms, her counting level was at least as
good as that of other first graders.

FIGURING IT OUT

Now that I had established that Toby could count reasonably well--even
though she may not have believed it and therefore felt badly about her per
formance-I decided to increase the levcl of difficulty and explore what she
could do with simple series of numbers:

H: Can you count by twos? 2. 4 [Toby nodsJ, 6 ... keep going.

T: (As if reciling a song) 2, 4. 6, 8. 10. 12 [Hesitates at 12) ...

It seemed as if Toby did not know what came next. I put her on the spot
by saying nothing and letting her sit in silencc. Her arm disappeared inlD
her sleeve and there was a long pause:

H: What do you think comes after 12? 10. 12 ...

Again I paused and let her sit in silence. She could only shrug;

H: IS?

I gave her this wrong answer to see if she would grasp at any straw. She
nodded slowly. as if lD indicate tentative agreement; but she was clearly not
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sure of herself. At this point it would have been easy and reasonable to
conclude that she did nol know anything about COllslrlicting sequences of 2.
She could sing the "twos song" up to 12, but could not invent new lyrics
after thill.

It is imporlanllO put her failure into perspective. In math classes, children
are seldom encouraged !O think. In far 100 many schools, children learn Ihal
mathematics, as well as other subjects, do not make a great deal of sense,
and that getting the "right answer" involves memory or the use of some
arbitrary procedure. As Jargued earlier, a good deal orlhe elementary mathe·
malics curriculum is oflcn devoted 10 the memorization of number facts.
The child learns to respond quickly, correctly. and without thinking to num
ber fact problems rHow much is 8 + 91") presented on flash cards or the
computer equivalent thereof (as 8 + 9 nashes on the screen, !he child mus!
type in the correct answer !o prevent a rocket from blowing up some thing
or other). Indeed, I believe it is no exaggeration to say that children may
learn from repealed experiences like these the following lesson: Mathematics
is that subject in which one is expected to obtain the correct answer quickly
and without thought (which can be considered cheating).

With this in mind, I interpreted Toby's initial success ("2, 4, 6, 8, 10, 12")
as role memory. :md her subsequent failure as indicaling that she had never
been expected to understand the logic of the series. Further, I expected that
she might be able to solve the problem if she were encouraged to think aboul
it.

I therefore introduced a lIew rule of Ihe game: If you don't know the
answer, try 10 figure it oul:

H: Maybe. How could you figure it oul? Suppose you do 10, 12 ... how
could you lind out whal comes nexl?

T: [She shrugs.]
H: You know like what comes ... well afler 12 is what? Is ...

T: 13. [Quietly]

H: 13 ... aflerI3is ...

T: 14.
H: OK now how, if you're counting by twos, and you're al 12 ...

T: 15 .

H: Yeah .

T: ... 18 .
H: Uh-huh .

T: ... 21 [Nods as she S<'lys this.] ... 24 ... 26 ...
H: Uh-huh .

T: ... 28 31 ... 34 ... [She nods as she says each number]
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Now Ihis was quile a surprise. Given the encouragement to "figure it
out," Toby seemed to enter easily imo the new foml of discourse. And in
doing so. she demonstrated a surprising degree of competence-more than
she might have otherwise exhibited. Her "mistakes" (12, 15, 18, 21. 24)
showed that she was capable of thinking; it is not easy for a first grader to
produce a series increasing by threes. Indeed. her mistakes were more inter
esting and creative than her initial success, which was limited to the mere
parroting of what was probably meaningless material (2, 4.6 ... 12).

It was now clear that Toby was thinking, but what was she up to? At first,
her series involved threes, but then she seemed to shift to twos (24, 26, 28)
before returning to threes (28, 31, 34). The flexibility of the clinical interview
had allowed me to discover something. but I wasn't sure what it meant.

Consequently, I attempted to focus Toby's anemion on how she "figured
it out." I wanted her to introspect about her method and to repon it to me:

H: OK, now say you're at 31, and you say the next one is 34. how did
you know that 34 comes next?

T: 'Cause I was counting by [Holds up tv.'o fingers.] urn ... this ... I
was skipping two of them.

At this point. Toby was visibly excited. I interpreted this as indicating
that she had succeeded in finding a sensible method for solving a problem,
was happy that it worked (at least she thought it did), and was thrilled both
that I was interested in her thinking and that she was competent at solving
problems. Indeed. I think that this was the turning point of the interview.
Now she knew what I meam about figuring out a problem in a sensible way
that she created (as opposed to using a method which was imposed by the
teacher and seemed to make no sense)--and she enjoyed solving problems
in this way.

"I WAS UKE TALKING TO MYSELF"

She was also able to "introspect"; that is, to examine her own thinking. and
then to tell me something of how she had solved the problem. She had said,
"'Cause I was counting by urn ... this ... I was skipping two of them."
This wasn't a bad description, but as pan of the interview process, I wanted
Toby to work on introspection and its expression. I persisted in encouraging
Toby to express her thought as explicitly as possible:

H: Tell me out loud how you do it. So, suppose you had. what was it,
31? {She nods] How would you do it? Tell me out loud how you
would think to yourself.
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T: [Jumps in quickly; looks straight ahead into space.] I was like, thinking
like ...

H: Yeah. like how?

T: ... 31, 32. 33 ... [Turns to the inlcrvicwcr.] I was like talking to
myself.

H: Ah-ha ... so what did yOll say to yourself when you were talking to
yourself'?

T: I was saying ... I was like skipping IWO. and then saying the next
one. and then skipping two and S<1ying the next one. [She gestures
with her hands as she explains.]

H: Ooooo-K. so if you're at 31 you'd go ...
T: 34 ... [Nods]

H: 'Cause you skipped ... thirty ... thirty-two and thirty-three. [She
nods slowly.]

At this point, she had said everything she was going to say about her
solving the problem. bUI I made a mistake and for a while kepi pressing her
to say more. I will spare you the details. In retrospect I cannot imagine whal
else she could have said. In any event. she was so happy aboul whal she
was doing that the badgering did not upset her.

Research has shown that introspection and its expression are very difficult
for young children. 11 It seems to be the case that young children seldom
engage in spontaneous introspection. or at least they do not tell people abom
it. I wonder, however. whether they cannot easily learn to introspect and
talk about it. I have observed that in the course of clinical interviews, which
often last a half hour or so, many young children "catch on" to the intro
spection game and learn to talk, with various degrees of clarity, about their
mental processes. Therefore, perhaps competence in introspection lies dor
mant in young children.

This possibility leads to a modest proposal. A major feature of mathe
matics education-and indeed education in general-should be introspection
and its expression. Mathematics is a way of thinking. Learning malhematics
should involve learning (0 think. Part of learning to think involves ·'meta
cognition"-the ability to reflect on one's thinking. The thinker should be
able to access. examine, and describe his or her thought processes so as to
improve on them. Therefore, from the very outset the mathematics curricu
lum should at least in part include training in introspection and its expression.
First graders should learn not only how to add, but how to introspect about
how they add and to describe the method to others. The discussion in the

"riagcl's \ 1964) farlkst woO;. prOJl(lSt'd lhalllJ(- Y1)Jni! mild t xpoerimc.-s diffiey lty al innospttlion.
and hlslaler Tl'scarrll reinforce.• Ihis find;nl (PiagCl. 1916).
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classroom should not revolve around "How much is 5 + 81" but around
'"How did you figure out how much is 5 + ST' Children should be schooled,
among other things, in the language of introspection. I) Arter all, the descrip
tion of mental states is very tricky: What does "think" mean to you? In fact.
one might almost say that the focus of the mathematics curriculum should
not be marhemat;cs (in the sense of a fixed body of knowledge), but thinking
and introspectioll about mathematics.

The real mathematical mind is a thinking mind, an introspecting mind,
and that is what schools should teach.

TOBY'S PROBLEM

At this point a little over 6 minutes had passed, and I knew that Toby could
count reasonably well, could devise sensible strategies, and was excited about
thinking about math and telling me about it. Next I wanted to investigate
Toby's understanding of informal addition, a basic mathematical concept:

If: Now, we're going to do something a little different, OK? [She nods.]
We have two friends here that you looked at before ... [Interviewer
puts two small animal figures on the table.]

T: Ohhh, they're so cute ... [She is very excited about working with the
animals.]

If: OK what is this? [Points to one of the animals.]

T: Rabbit.
If: Uh·huh, rabbit and ...
T: A squirrel.
H: A squirrel. OK. Now rabbit had five carrots. We're going to make

believe rabbit has five carrots and squirrel has three carrots. OK?
[She giggles.] What's so funny? A squirrel likes carrots?

T: Nuts. [Giggles.)
H: Yeah well. this squirrel likes carrots. OK? All right ... so rabbit has

how many carrots? {pause] Five. remember he had five, and squirrel
has ...

T: Two,

I took care to remind Toby of the basic facts of the problem:

H: Three, OK ... so rabbit haS five carrots, squirrel has three carrots,
how many do they have all together?

"My coltcaguo WId I ha~r bern "'Of~mg ,,·,th teocllcrs 10 impkmou Ihis ~ind of clas~1"Ot.>fI1

(Ginsbul"i. Jacobs. & lop(l.. 1~3).
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T: Seven.
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Following the basic rules of clinical interviewing. I accepted Toby's answer
without comment, and inquired inlo her method of solUlion:

H: Seven! How did you know that?

T: J coumed before you asked [very proud of hersel(]; I knew you were
going to ask me that!

Note that Toby had learned very clearly that I was interested in her Ihink~

iog and thai I would ask her about it. And she was very pleased 10 engage
in this kind of activity. I wonder if she thought of it as math:

H: You knew that! Ohhh ... how did you count?
T: I counted like, there were seven ...

H: No. five and three. tell me how you do il.

Again Toby got the terms of the problem wrong. She now wanted to
transform it into seven and three:

T: Five and three. I counted seven, I counted three (uses hands to gesture
towards each animal; looks al inlerviewer).

Again I wanted to bring her back 10 the ..re...... l.. problem. live and three.
So I reminded her again of the basic terms:

H: Five and three ... can you do that out loud for me. how you get
seven?

T: I thought. like. seven. I was thinking. seven plus three and I got ten ...

}/: You got ten! Seven plus.... How do you get ten if you do seven
plus three I mean do it out loud for me. count out loud for me.

T: I had seven .
H: Vh-huh. and Ihen what do you do?

T: I have three. so that makes ten. [She gestures that she counts on her
fingers.)

H: Oh you do it on your fingers? (She nods.] OK. Can yciu do five plus
three for me now?

T: Eight.

Two aspects of this inleraction are fundamental and deserve comment.
One is that Toby added by using the method children Ihis age usually use;
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namely, counting. Some children do this "in their heads"; some do it on
their lingers. Some children count on frolll the smaller number (in this case.
"three ... four. five, six. seven. eight. nine. ten") and some children. like
Toby. do what is more etricient. namely counting on from the larger number
Cseven ... eight. nine, ten"). Children develop these strategies whether or
not they attend school (Ginsburg, Posner. & Russell, 1981). and they gravi
tate toward the more efficient method (counting on) without the bcnelit of
instruction (Groen & Resnick. 1977). Indeed. m,my tC:lchers discourage the
use of methods like these. especially adding on the fingers. on the grounds
that they arc a form of "cheating." or are immlLture, and prefer that instead
children memorize the number facts (remember that mathematics is often
seen ,IS that subjecI in which one is expected to obllLin the correct answer
quickly and without thought. especially finger thought).

A second. and perhaps more interesting aspect of the observation. was
that at the outset, Toby did not want to deal with Illy problem, five plus
three. I do not know why. but she insisted in transforming my problem into
something else. I resisted her. I insisted that she do live plus three. but she
resisted 100. Eventually, by sheer persistence. she transformed the problem
into what she had in mind-namely. seven plus three-and got the right
answer. Then, having done what she wanted to do. she allowed herself to
consider my problem. five plus three. and easily solved it! If I had judgL-d
her ability by her initial performanee on my problem, I would have concluded
that she was not very competent. However, when she was allowed to choose
the problem her competence was manifest.

It is a general rule of constructivism that childrcn often do not deal with
the intcrviewer's (or teacher's) problem. Instead. they construct and attempt
to solve their own version of the problem. Moreover. they often believe that
what they have in mind is what the adult had in mind!

EXPLANAnON AND ACCURACY

Soon after this, I gave Toby a simple mental addition problem:

H: How much is three plus four?

T: Six.

H: Uh-huh. how did you know that?

T: 1 was like thinking and counting ...

1/: Thinking and counting at the same time? Can you do lhat out loud
for me. how you do three plus four?

T: I had three in my head ...

H: Uh-huh ...

Copyrighted Material
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T: ... and I had four in my head ...

H: Uh-huh ...
T: ... so I had three plus four [she again uses her fingers to count]

... three, four, five, six, seven seven.

Note that Toby used the addition strategy ofcounting on from the smaller
number (not the larger, as she had done before). Children's strategy use is
often inconsistent (Siegler, 1988). Then she made an error, asserting that 3
+ 4 is 6, but when asked to describe the method of solution. managed 10 get
the right answer. This sort of thing happens frequently in the course of the
clinical interview. Some initial errors seem 10 result from sloppiness. The
child tTics to retrieve a number fact too quickly or calculates an answer
carelessly. However, explaining a strategy to another person forces the child
to slow down and to consider carefully what he or she is doing. When this
happens, the child easily corrects trivial mistakes. Therefore. in addition to
their other benefits, introspection and its expression promote right answers.

THEY WANT TO MAKE SURE YOU KNOW
YOUR MAllt VERY WELL

After a while, Toby volunteered that in class the students work with a "robot
book",

T: rwJe have this robot book, and that's how you do it, you see. you
have all different math ... it has a robot and. urn. there's math on
it.

I thought I would explore what the robot book was all about. Was it the
teacher's method for introducing drill and practice?

H: Can you show us what's in your robot book?
T: We like have high nwnbcrs up to ten-mat's aU we can go up to, like ...
H: Show me ...

T: Five plus four ... {she wrote the 4 under the 5] ... equals nine, but
they don't have the line ... no line. (she is referring 10 the line that
would conventionally be written under the 5 and 4.]

H: No line?
T: No. and they don't write this (meaning the answer], you have to solve

it.

I concluded that the robot book was some kind of workbook, and for a
while talked with Toby about the kind of problems it required her to do.
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Although the details are of little interest. Toby's general views of schooling
are worth noting:

/-I: I don't understand what the robot is

T: OK, it's like a book

/-I: Yeah.

T: ... and it has malh in it to help you with il. {She showed how she
solved a robot book problem.] ... Sec, that's how you do it ... and
jf I made a mistake she would do this [she made a sad face], and if
[ didn't, if I was :111 corrl.:cl. she would do this [she made a happy
face].

Clearly. the teacher focused on the right and wrong answers. I Ihen asked
her why Ihe problem W'IS wrilten in a certain way:

T: They do it diOcrent ways ... they do it any way they want.

I then suggested that the problem might be written in that form for a
reason:

T: It ... no, they try to make it. um, tricky.

11: Tricky ... they try to trick you? [She nods.] How do you like that?
[She smiles.] Why do they try to trick you?

T: Because they walll to make sure you know your math very well.

From experience in the classroom, Toby has :lcquircd 11 view of mathe
matics education-her mathematics education-that might be p,Haphrased
as follows. To help the child learn mathematics or to assess knowledge of
mathematics Cthey want to make sure you know your math very well"),
the teacher (or the textbook) presents problems th:ll :Ire both arbitrary ("they
do it any way they want") and deceptive ("they try 10 make it. um. tricky'').
From the child's point of view, the teacher's role is 10 create obstacles. to
present meaningless tasks. to trick. and then to reward the child's success
with praise or punish failure with dis.'1pproval.l~

Now, of course it is shocking that the child should come to believe that
this is what the learning of mathematics (or anything else) is all about. [t is
even more shocking that a teacher (and I do 110t believe she is unique) would
act in way that would lead Toby 10 believe Ihis.

"Of mur"l.'. a dinil:;;m might ha"" anmhcr interpretalion. The child mighl he impl)'ing Ihal in
gl~leral, adults are out 10 dcce'''c hI". 10 trl('~ ha, The simemem aN:ou\ schooling ""ghl!>i.' a """,en
for 'UJT!l'lh'ng (IL"pcr. Th" In'el of an;II)'sis nwy indl'ed t'C u~'ful In some ,'ases. but doc' !lot <nm
u-.:rul in undcrslanding thaI tn,sling SOlII. Toby.

Copyrighted Material
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By this point in the process. the interview had demonstrated ils power and
sensitivity; it had helped Toby 10 achieve an openness that was striking. We
had achieved a rapport so strong that she could share her perception of
tcaching as deceptive and learning as meaningless. The education game as
Toby saw it was certainly different from the interview game!

Her openness extended to what might be considered personal ignorance.
failure. or inadequacy. A short while later, we were discussing how she might
solve a problem like 20 plus !()():

T: Twenty ... plus ... a hundred ... [she writes "a hundred" as 00].
There's something like that and you bave to figure it OUI ••. a hundred
and twenty ... so a hundred and twenty. so plus and you have to
write the answers down here ... I don't know ...

H: You don', know how to do it?

T: I don't know how to do it.

H: Let me give you a couple like that, OK? Suppose that ...

T: 'Cause I don't know the high numbers all that much.

Toby had learned that in the clinical interview she could freely reveal her
thinking, including her ignorance. This of course is the first step toward real
learning. However, such a strategy would not make a great deal of sense in
a classroom in which the teacher's goal was to trick her.

WHAT DOES = MEAN?

Children throughout the world possess a relatively powerful informal mathe
matics including counting skills, notions of more and less. and strategies for
addition and subtraction (KJein & Starkey, 1988). In most societies, these
children, equipped as they are with functioning mathematical minds, enter
school somewhere around the age of 5 or 6. Schools are artificially created
social institutions designed to pass on to children the accumulated social
wisdom-a cultural legacy-one aspect of which is fonnal mathematics. In
contrast to children's infonnal system, fonnal mathematics is written, codi
fied. a body of material conventionally defined and agreed on, organized
and explicit. Formal mathematics is what Vygotsky (1986) called a "scien
tific" system-----<:oherent, explicit. organized. logical. By contrast. children's
informal mathematics is a "spontaneous" system-intuitive. emotional, im
plicit, and tied to everyday life. These are the intuitions from which formal
mathematics has evolved.
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What do children. who, as we have seen. operate with their own informal
way of thinking, make of the symbols and conventions of the written mathe
matics introduced by schooling? This is what I wanted to learn when I ex
plored with Toby the meaning of the + and = signs conventionally used in
school arithmetic. In particular. I was first interested in whether Toby un
derstood the"" sign as equivalence.

The commonly accepted interpretation is that"" is written (0 indicate that
the terms on both sides of a number sentence (and later an algebraic equation)
are equivalent. Therefore, when we write that 2 + I "" 3. we mean that the
quantity expressed as 2 + I is equivalent in value to the quantity 3. In this
view, 2 + I is one way of "talking about" or "naming" the quantity "three";
the numeral 3 is but another. From this point of view, it is quite sensible
and acceptable to write 3 "" 2 + I. If Ihe terms on both sides are equivalent.
then their physical position in the number statement is irrelevant: The quan
tity "three" is still "three" no matter where it is located. Ideas like these are
especially important in algebra. where the rearrangement of terms on both
sides of the = sign is basic to solving equations.

Accepting this line of reasoning. teachers and tex.tbooks often introduce
"" as equivalence. BUI what does Toby make of it? I began by asking Toby
to write a sentence using"" in the typical manner:

H: Can you write this for me: Three plus four equals seven. [She writes
3 + 4 "" 7.] OK ... can you write five equals two plus three?

T: (She writes 5 "" 2 + 3.) I hope ... yeah. you could ...
H: You could?
T: I think ...
11: Can you write it that way?

I meant. of course, "Is it proper to write it that way'?". but Toby pounced
on my imprecise formulation:

T: Yeah ... I just wrote it!
H: You just ... [I laugh and then she joins in]. You jusl wrole it ...

but is it right to do it that way? (She shakes her head.] It's not right.
Wh • ·h·?. . . at s wrong WIt It.

T: Because this should be over here and this should be over here.

Toby seemed to mean that Ihe order must be in the form a + b "" c, with
the'" written on Ihe right. Next I asked about the + sign:

11: OK. Can you tell me, like in this one right over here, we have three
plus four equals seven. what does plus mean?
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T: I'm nol sure.

H: Huh?
T: I don't know.

H: I mean, docs plus tell )'ou to do something ... whal is it all about?
[A pause; she shrugs.] Not sure? What about equals? What doesequals
mean?

T- It tells you, um. I'm not sure about this ...

H: Uh-huh .
T: I think it tells you three plus four, three plus four. so it's telling

you. that, urn. 1 think. the. um. the end is coming up ... The end.
1-1: The end is coming up.... What do you mean the end is coming up?
T: Like, if you have equals. and so you have seven, Ihen. So if you do

three plus four equals scven. that would be right.
H: That would be right, so equal means something is coming up ... like

the anSlI'er. [We both laughcd.j

Toby nlls maintained Ihe following views: She believes that addition sen
tences should be written in the form a + b = c. In her view. it is much more
desimble 10 wrile 3 -+- 4 =7 than it is to write 7 =3 + 4. She cannot say what
the + sign indicates. although it was evidem that she in fact added in response
to -+-. Further, she Slated that = means "the end is coming up."

Toby has an "action interpretation" of addition and subtraction. For her,
addition is an operalion. Number sentences lell you what 10 do. When Toby
sees a + b = , she knows thal adding is required. She eannol say what +
means, but clearly it sends her Ihe message that she ought to add. Further,
she maintained Ihat = means that "the end is coming up:' and that is true:
= indicates that the next term in the expression is the result of the operation.
So if + shouts. "Add up those numbers," '" screams, "Put the answer here."l~

Why should we care about these trivial mistakes" For one thing, they
mean that in school, children may not learn what many teachers intend to
teach. For children, = means essentially "operate 10 get the answer," whereas
for teachers it means "both sides of the expression are equivalent." Moreover.
many teachers are mistaken in believing that children learn what is taught.

Why don't the ehildrenlearn what teachers tcach, here the approved ver
sion of = as equivalence? On a general level, the answer is that children do
not simply receive knowledge intact from adults; they must construct it or
reinvent it for themselves. On a more specific level, children interpret = as
an action to be completed mainly because their infonnal approach to addi-

"Again. Toby i$ noI unique in her appronch. MOSl childn:n employ an aclioo inttfjln:taliQn of +
anoJ '" ;~ lhis age (Baroody & GinsNr,. 198.1). Children 5:ly lhal = meam "makes" (as in S -+- )
"'lIk~J 8) ur 111.11 il "...,ans "p'I !hr ,,"swer:'
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lion involves aCling on quantilies in order to ohtain a result For years, chil
dren use such methods as counting on from the larger number to get an
answer, From their point of view, the two individual numbers that comprise
the problem need to be combined-transformed-into another number. The
numbers are changed into something else, All this has nothing to do with
equivalence in the sense teachers intend to convey and it leads quite naturally
to the belief that + means add and = means "the end is coming up." Children
assimilate the written +and = signs into their informal approach to addition. 16

In brief, despite the official presentation of = as equivalence, children's
informal knowledge leads them to conceptualize = as an indicator of activities
to be performed, In this and in other areas, children do not simply learn
what is taught. but construct their own interpretation of mathematics, Teach
ers teach one thing and children learn another!

ASCENDING TO THE CONCRETE

What can be done about this mismatch between teaching and learning? How
should teachers react to a situation in which children construct ideas diverg
ing from conventional mathematical notions? There are several ways 10 re
spond, One possibility is to "shout louder." The teacher can repeat the
equivalence explanation more loudly than before. ignoring the child's spon
taneous construction. Shouting louder includes the imposition of extensive
practice and the use of t~xtbooks that present the equivalence idea in an
efficient and attractive manner. Shouting louder is the typical approach, hut
it is unlikely to succeed at any deep level. Although the children may repeat
the teacher's words, they will no doubt continue to maintain their action
interpretation, which persists into the study of algebra, even though teachers
have by this time been shouting at a high volume for a number of years.

Another strategy is to understand the children's constructions and to use
them in a productive fashion, We can begin with the assumption that Ihe
child adds by counting to combine sets, and we can relate the symbolism of
addition-that is, the + and = signs-to the child's infonnal knowledge. This
is what I did with Toby immediately after our discussion of + and =:

t·AnoIher reason for chi!drl:n', B<"lion inle'Jlf"'lalion of + and " ;i thaI lhe namplell Iypically
presemed in ('ill". in homework lellllOOs. ard in woob«lb all slreu addilion ll' calculalion. In 1M
clanroom, childrtn'i B<"lual wrinw ,,·crt, or evl'll lheir work wilh lTIlI.nipulali,·ts, hilS lillie 10 do
wilh addition IS equivalence; the fact is thaI wrinen problems of lhe son 3 + 4 .. (or similar problems
involving manipulali_u) mainly require children 10 calelllale in order 10 get a resull and do nOi
inmlvcconsldmnion of the eqlli_alcl>CC' oflile lWO sidc:soflhe 51l1leman.lrd«d. Toby acknowledgcd
lhat e~pn:sslons of lhe form c '" II. + b might be encounlm:d "<,")OC't in II. ,,'hile," bUl .he was dearly
uncomfortable with lhese aberralions.
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H: Let's do a new one here. What jfwe do, ah. four plus two equals ...
what should it be? [After a pause, she writes "6",J Six. OK. Now,
what does the plus mean in here?

T: The plus?

H: Yeah. what does plus mean there? IShe shrugs.] OK, and the equals
means ...

T: 1 think coming up.

So as before. she could not say what + meant, even though it clearly
caused her to add. and she believed that = means "coming up." I decided
then to find out whether she CQuld understand the symbols in terms of her
informal notions of addition.

H: Something's coming up. Can you show me with these chips whal this
means?

T- Four ... [she counts out four chips.]

f/: OK.
T: and two ... [she counts out two chips.]

H: OK.
T- Lenune have these chips altogether, 'cause four: one, two, three, fOllr,

and two. equals six ... I would count it: one, two. three. four. five,
six, and I would get six altogether.

//: OK, so that's what that means, huh? OK, very good. You see when
... you were doing this counting, you said "four," and then
you said "alld two" more The "and"' is like the plus right?

T: Oooohhhhh ...

Toby lit up. A great revelation has jusl been made. She had a deep "ah-ha"
experience (or at least an "Oooohhhhh" experience), as if seeing for the first
time that her action of adding, of counting on so as to combine the two setS
of chips, was related to that little + on the paper. I would say that she made
a connection between the fonnal symbolism of mathematics and her informal
knowledge:

H: Yeah, it means you kind of put them all together, right? And then
the equals, what docs the equals mean then?

T: Equal ... mOl ... I think ... I'm not sure about that.

//: Well. you're right, it says the answer's coming up, so you do four
and two ... equals ... the whole thing. [I gesture to the chips again.]

T: Six!

H' Right, OK, very good. OK.
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What I did was relate the child's infonnal knowledge to the formalities of
mathematics. I had "ascended to the concrele" (Luria, 1979). I essenlially said
to her, "You do adding this way, by means ofcounting the chips. These written
symbols refer to aspects of what you are doing already, and thaI's OK,"

But is it really? What happened to the concept of equivalence, which is
usually seen as fundamental? From a mathematical poinl of view, an action
inlerpretation of addition is quile legitimate. One acceplable way to concep
tualize addition is in terms ofan operation. For example, we can teach addition
as movements on Ihe number line. In this case. the+sign signifies Ihe operation
to be performed (a movement forward on the number line) and the = sign can
be construed as indicating the result of the operation (the final resting place
on the number line), Therefore, 3 + 4 = 7 means that you start on position 3
on the number line, move ahead 4 spaces. and finally come to rest on position
7. All of this does not involve equivalence in the eonvenlional sense. One
approach. therefore, is to recognize that in this case the child's interpretation
is indeed a legitimate mathematical view. which can then easily be related to
compatible mathcmatical models like the number line.

TOBY'S FAREWELL

After some 37 minutes. the interview was at an end:

H: It was hard work. but you did very well. Did you enjoy it?

Toby nodded brieOy and looked me straight in the eye:

T: Who are you?

H: Who am I? (Everyone laughs. and so does Toby.) At what level do
you mean that. Tob)'?

T: Why do you want to know about different things thai children know?

H: I see. You know why we study children? We Iry to find out how they
Jearn math so that we can help them learn math if they have trouble.

Toby nodded and thc inlervicw was really over. The boldness of her ques
lion confirmed that we had accomplished somcthing imponant.

WHAT HAVE WE LEARNED?

I hope that this account of Toby's work helps you 10 unde~tand some basic
fcatures of children's mathematical thinking. It is not a unitary aptitude or
skill or ability or strategy, It is not an achievement simply learned in school.
Children's mathematical thinking is many things:
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• II is in p:1rl a relationship with an adult. It is trying to do what teachers
wanl. If the teacher assigns apparently senseless activities in a Robot book,
the child will forge ahead. After all, "they want to make sure you know
your math very well."

• It is a private activity that is only partly transparent to aduhs. The
child defines and pursues her own problems; she uses strategies of which tbe
adult is unaware; she does not necessarily learn what the adult believes is
being taught.

• It is informal. employing intuitive ideas of more and less. using counting
(sometimes with the fingers. sometimes "in the head") to carry out the tasks
of calculation.

• It is trying 10 get right answers quickly without thinking (lest one be
accused of cheating), and it is feeling miserable about gelting wrong answers.

• It is a somewhat bizarre language game that first demands the memo
rization of meaningless material (the spoken numbers "one" through
"twelve"), then involves the identification of a paltem ("thirteen" through
"nineteen") which in English is merely a misleading and temporary distrac
tion, and finally requires mastery of a sensible and even elegant system of
counting rules (from "twenty" onwards).

• It is Irying 10 make $Cnse out of material Ihat may not have been
presented in a very sensible manner in the first place. Such efTorts at sense·
making may result in "bugs," which in tum produce answers thai seem
bizarre but are in faci quite "logical" in their own way.

• It is seeing math as an arbitrary set of activities and obstacles designed
to deceive and trick.

• II is thinking about one's own thinking and taking great pride in de
scribing it to another-and it is learning about one's own thinking. and even
correcting it, in the course of describing it to another.

There is much to celebrate in Toby's work. I applaud her patience with
me (and other adults), her valiant attempts at making sense of things that
are sometimes not so sensible, her clever ways of coping. her infonnal in
tuitions and skills, her enthusiasm for trying to figure things out, her will
ingness to examine her own thinking and her openness in revealing it, and
her perseverance in the face of many difficulties imposed on her by the system
of fonnal education.

There is much also to celebrate in the "cognitive clinical interview," the
"informal" and deliberately unstandardized mode of questioning that I used
in an efTortto enter Toby's world. The interview is based on several principles
differentiating it from standardized testing: The interviewer is guided by an
ethic of respect for the integrity of the child's mental life; the interviewer
allempts to establish with the child a relationship of trust, such that the
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child is willing to reveal his or her most intimate mental processes; the in
terviewer engages in explonuion. the goal of which is to discover how the
child conceptualizes issues and solves problems. not simply how the child
deals with the adult's problems and employs methods the adult believes to
be important; and the interviewer employs nonstandardized questioning and
tasks, tailored to the individual, and indeed often created on the spot in
response to the idiosyncrasies of the child and the situation.

The "cognitive c1inic31 interview" is hard to do. but the example of Toby
demonstrates how this form of intcraction can expose the child's strengths
as well as her struggles, can illuminate her view of the world-not simply
her reaction to the aduh's-and indeed can help promote her cognitive de
velopment. Would standard tests have revealed to us the same Toby?

THE CENTRAL PROBLEM OF MATHEMATICS
EDUCATION

In response to children like Toby. effective mathematics education should
employ at least two useful strategies. One is to "ascend to the concrcte"-to
build on what the child knows or has constructed. Mathematics education
should involve realizing that the child is competent in an informal addition
which employs combining and counting to get a result, and that therefore
addition should be taught as an action. not as a type ofequivalence. Mathe
matics education should accept that the child's view of::= as "the end is coming
up" makes sense, and that instruction should flow from that insight. In par
ticular, mathematics education should make serious attempts to relate the
symbolism and formalities and mathematics as taught in school to the child's
informal knowledge. Toby needs to see that the + sign is not mysterious and
arbitrary, but that it refers to (at least in part) and gains meaning from what
she docs in the way of adding.

However. mathematics education should also accept the responsibility to
help the child move beyond her intuitions. The child's constructions are not
sufficient. Toby needs to learn. even if it is not her "natural" inclination,
that ::= can also be interpreted in terms of equivalence. It is therefore the
teacher's rel;ponsibility 10 guide the child's constructions. to help the child
advance beyond his or her initial ideas. The leacher cannot leave the learning
of mathematics entirely in the hands (or mind) of the child, and must insle..'ld
intervene so as to lead the child to "reinvent" formal mathcmatics--to
construct ideas and procedures Ihal would nOI have arisen sponlancously in
child's mind in the absence of adult help. That is what teachers are for.

How can teachers use and respect the child's constructions, but help the
child to progress beyond them? That. I think. is the basic question of mathe
matics education (and of education generally), a question too immense 10
deal with here. Perhaps. however, I can interject a note on what to aI·oid.
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The traditional approach of mathematics education. particularly at the more
advanced levels. is to leach equivalence (and other mathematical topics) by
defining it purely in terms of the formal system of written mathemntics-by
introducing explicit definitions, theorems, and the like. This may be how
mathematicians evenwally come 10 fonnulate equivalence, but it is not how
they usually arrive at such notions and it is certainly not a good way to
teach children. Except in the minds of the most advanced studenls. definitions
in formal terms are usually mere words with little meaning.

Finally, math education should /lOt, of course, involve prop.1gating the
beliefs that math is that subject in which one is required to get the right
answer, quickly, withoullhinking, and thaI math must be tricky, deceptive,
or arbitrary. That is no way to celebrate Toby.
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In this chapler we discuss the issue of fostering mathematical thinking in
middle school students (grades 5-8). Students of this age develop beliefs
about whether they "are mathematical" and whether they like mathematics.
Too often, they reach the conclusion that they arc not good at mathematics
(e.g.. Cognition and Technology Group at Vanderbilt, 1994). However, their
view of mathematical thinking is often restricted 10 the domain of mathe
matical computation and fannula following. Our assumption is that different
views of whal COUniS as mathematical thinking can have strong effects Oil

Ihe length and quality of students' "mathematical careers."
Here we explore the challenges involved in fostering mathematical think·

ing by discussing changes in thinking about this issue lhat have occurred
within our Learning Technology Center (LTC) during the past 7 years. These
changes involve a shift in assumptions about what mathematical thinking
looks like, and in assumptions about the challenges involved in promoting
mathcmaticallhinking in students.

Three major sets of evellls have influenced our assumptions about the
nature of mathematical thinking and how to promote it. These involve
opportunities to:

L Interact with middle school students who were having difficulty in
reading and mathematics and who had already decided thai they were "/lot
mathematical.,. Seeing their ideas of what counted as malhematicalthinking
laught us a greal deal.

203
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2. Work. in classroom senings with teachers and. in the process, experience
firsthand the classroom realities thai innuence actions and assumptions. A
major struggle for teachers involves their own beliefs about mathematics
beliefs thai were shaped by their school experiences. Many have not had the
benefit of being exposed to new ideas about the nature of mathematics such
as those discussed by the NCTM (1989). In addition. teachers' knowledge
of mathematics is often taxed by the use of complex problem-solving envj·
ronmellls such as the ones discussed here. It has become clear to us that
teachers need ongoing support for crealing professional communilies that
can continually discuss issues of mathematics. These dialogues support the
development of teachers' mathematical thinking and their definitions of what
mathellullicalthinking entails.

3. Merge the perspectives of researchers from two different communities:
cognitive psychology and mathematics eduC<.'ttion. Both of these communities
are currently represented within our LTC and on our national advisory
boards. I However, when the LTC began, our projects were driven primarily
from a cognitive perspective. DeCone, Greer, and Verschaffel (in press)
noted that these two communities have nOI always seen eye 10 eye. For
example, they include the following from Kilpatrick (1992):

Malhemllt;Cf, educalors have ol'ten been wary Of psychological researchers

because of what they have seen as an indifference to or ignorance of lhe
academic discipline of malhemalics, but they have never hesitated 10 borrow
ideas and tcchniques freely from psychology. (p. 5)

In retrospect, our LTC's early work on mathematics learning is well char
acterized by Kilpatrick's words. We were not indifferent to the academic
discipline of mathematics, but we were ignoram of the idea that we should
explore the nature of mathematics and its implications for instruction. After
all, each of us had passed our middle school mathematics courses-what
more was there to know?

In aClUality, the LTC's initial foray into mathematics learning was more
accidental than planned. As our work bas progressed, it bas increasingly
reflected the benefits of strong collaboration between mathematics educators
and cognitive psychologists in our community. Our experiences convince us
thai members of these two communities have a great deal to teach one an
other. We provide examples as our discussion proceeds.

Our discussion focuses on four phases of development that reflect our
Center's thinking about the nature of mathematical thinking and how to

'Advisory Boord Members include John A!ln(r. Jill As/l",·onh. Sallie Baliunas, David Bodnar.
Raffaella Bomsi. George Bright. Alma ClaYIOll·PedIl':rsen. Deborah Daviu. Marcy Gabell .. Rich
Lehrer, Frank !.esler, Hennena Mam. Roy ~a. Nancy RlIuOIn. John Wikswo, HOfllCC Williams.
David WilS(l1. and Chaocel1u- Joe 8. Wyatl. We a~ eXI~mely l1pprKiative dilleir creative insights
and \IIi:oe ad'icr.
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promote it. We begin by explaining how a group of cognitive psychologists
found themselves grappling with issues of mathematics learning without ever
intending to enter this domain.

PHASE I: THE ACCIDENTAL MATHEMATICIAN

When our Learning Technology Center began in 1984. we had no intention
of venluring into the field of mathematics education. Our early research proj
ects dealt with general issues of learning and instruction, not specific contenl
areas such as mathematics. science. social studies. or history.

The Dynamic Assessment Project

One of the earliest projects undenaken by the LTC was the Vanderbilt dy
namic assessment project, which focused on alternative assessments of chil
dren's potential (e.g.. Bransford, Delclos. Vye. Bums, & Hasselbring. 1987;
Vye, Burns. Delclos, & Bransford, 1987). The purpose of this project was
to assess individuals' responsiveness to opponunities to learn (Campione &
Brown, 1987; Feuerstein, Rand. & Hoffman. 1979; Lidz, 1987). to :ISsess
their "zone of sensitivity to instruction" (Vygotsky, 1978; Wood. 1980).

The methods of dynamic assessmenl were different from those used in
standardized. "static" assessments, such as intelligence testS and achievement
tests. In traditional assessments. instruction by the tester invalidates results.
Test scores are supposed to reflect an individual's abilities to perform with
no help from anyone. In contrast. the goal of dynamic assessment is to assess
people's abilities to learn from new opponunities. Our \'ersion of dynamic
assessment involved a systematic attempt [Q find effective learning conditions
and assess children's responsiveness to these conditions (Vye et al.. 1987).
Because children may be more responsive 10 some learning conditions than
others. the dynamic assessment project bought us face to face with issues of
curriculum and instruction (e.g.. Bransford et al.. 1988).

Our initial work on dynamic assessment involved materials that were more
like those found on ill1clligence tests than in classrooms. As our work pro
gressed. we began to question the degree to which assessments involving
general, intelligence-test-like items were most useful for helping students
achieve school-relevant goals such as learning to read for meaning and learn·
ing 10 communicate. Evidence was mounting thai Ihe ability to think and
leam could not be neatly scparated from the nature and orgmli:wtion of the
content knowledge available to individuals (e.g.. Bransford. Sherv:ood. Vye.
& Rieser. 1986; Bransford et al.. 1987; Chi, Glaser. & Farr. (991). Therefore.
we included within the dynamic assessment project an emphasis on assess
ment in the context of tasks that had face validity with respect to school
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achievement. This generated a line of research thai focused on dynamic as
sessments of students' potentials to solve verbally presented word problems.
Word problems allowed us 10 look al issues of reading comprehension, and
had the added advantage of assessing the degree to which students could
quantify their thinking by using mathematics.

Early Work on Word Problems

Our work on word problems was conducted with fifth· and sixth-grade stu
dents who were having difficulties in school. especially in areas of re.lding
and mathematics. Our goal was to understand why they were having diffi
culties, and to assess their responsiveness to new approaches 10 helping them
learn.

We presented students with written versions 01 simple word problems such
as the following:

I. Tony rides the bus to camp every summer. There are 8 olher children who
ride with him. The bus travels 9 miles an hour. It takes 4 hours 10 get there.
How far away is the camp?

2. John is sianding in fronl of a building. The building is 8 limes as lall as
JohTl. John is 16 years old. John is S feet lall. ~Iow tall is the buildin~

Nearly every student with whom we worked used an approach to solving
word problems that was mechanical rather than based on an altempt to
understand the problem. For example, a Iypical answer for the first word
problem noted here was 8 + 9 + 4 = 21. The following explanation about
solution strategies was quite typical:

Inler~ie\l'er: Why did you decide to add Ihe numbers?

Slut/em: Because it said like. "How far away is Inc camp?" How is
to add.

Interviews relevant to the second problem also involved a search for key
words in the problems. For example:

Studem: I saw the building is 8 fim~J as tall as John so I koow to
multiply.

Interviewer: What did you mUltiply?

SlUdent: Sixteen and 7 and 8.

Our experiments provided a picture of what "rnathemalical thinking"
meant to these students. Mathematical thinking was the procedures used 10
solve numerical problems. The procedures involved a search for key words
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that specified the operations to perfonn on the numbers (i.e., add, sublract,
multiply, or divide). The numbers to be operated on were rarely attached
to meaningful elements of the problem COillext. For example. both of the
problems noted earlier included numerical information that was clearly ir
relevant (i.e., the fact that 8 other boys rode with Tony; thai John is 16
years old). Despite this fact, students consistently attempted to use the ir
relevant infonnation in every problem we gave them. Basically, students dem
onstrated extremely poor comprehension of the problems they were being
asked to solve.

As we searched the litemture on word problems, we discovered that our
findings were similar to those reported by other researchers. Several inves
tigators showed that, instead of bringing real-world standards to their work,
students seem to treat word problems mechanically and often failed to think
about constraints imposed by real-world experiences (Charles & Silver, 1988;
Silver, 1986). For example, Silver asked students to detennine the number
of buses needed to lake a specific number of people on a field trip. Many
of them divided the total number of students by the number that each bus
would hold and came up with answers like 211.1. The students failed to consider
the ftlct that one cannot have a funclioning h bus.

Studies by Reusser (l988) also provided dramatic evidence of many stu
dents' problem with word problems. He gave school children the following
type of problem in the context of other mathematics problems:

There are 26 sheep and 10 goats on a ship. How old is the captain'!

Approximately -'14 of the students in Reusser's study attempted to provide
a numerical answer to the problem. 1l1cir overwhelming tcndcncy was to
ask themselves whether to add, subtract, multiply, or divide rathcr than ask
whether the problem made sense.

Several authors questioned the generality of Reusser's findings and con
ducted their own version of his experimcnts:

Our reaction to Reusser's data was that this must have been a s~ial group
of students who had been taught poorly. We gave the problem 10 one of our
own children who was in fifth grade. Much to our surprise, and dismay. the
answer given was 36. When we asked why, we were told. "Well, you need to
add or subtract or multiply in problems like this, and this one seemed to work
best if I add:' (Bransford & Stein. 1993, p. 196)

Support for Problem Comprehension

Our approach to working with students focused on eITons to improvc their
ability to understand the problems they were solving. We began to investigate
[he use of video-based scenarios that could help students generate mental
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models of situations (e.g., sec McNamara, Miller, & Bransford, 1991). In
sevemJ studies we used the first 12 minutes of the film Raiders of the Lost
Ark, wherein Indiana Jones travels to South America to capture the golden
idol (e.g.. Barron. Bransford, Kulewicz. & Hasselbring, 1989; Bransford et
aJ.. 1988). We asked students 10 imagine that they wanted 10 return to the
jungle to obtain some of the gold artifacts that Indiana lert behind. If so, il
could be important to know dimensions of obstacles such as the width of
the pit one would have to jump. the height of the cave, the width of the
river and its relationship 10 the size of the seaplane, and so forth.

The goal of learning about potential obstacles and events guided the se
lection of mathematically based problems that were derived from scenes from
the movie segmenl. We decided to usc known standards (e.g., Indiana Jones)
to estimate sizes and distances that were imponant to know. For example.
one problem asked swdenls to estimate the width of the pit they would have
to jump if they returned to the cave. This informalion could be estimated
by finding a scene where Indiana used his bullwhip to swing over the pit.
Through the use of freeze frame we were able to show a scene of Indiana
swinging with his outstretched body extending halfway across the pit. Meas
urement on the screen (either by hand or through the use of computer graph
ics) allowed students to see that the pit was approximately two Indianas
wide. SlUdents were also encouraged to create visual and symbolic repre
sentations of problems. and they received individualized feedback about the
strengths and weaknesses of their approach to each problem. AU instruction
was one-on-one.

Effects of learning in the video context were compared to the effects of
learning in a control condition in which students received one-on-one in
struction in solving and representing written problems without the use of
the Indiana Jones context. The resuhs indicated strong benefits of the context
on students' abilities to solve analogous transfer problems that occurred both
within and outside the context of Indiana Jones (see Bransford et al.. 1988).
Students in the video condition also showed marked improvements in their
:lbilitics to ViSU:1Jly represent problems. Figure 8.1 shows pretest and posuest
representations of an Indiana Jones problem that asked students to estimate
the dimensions of various objects in the video.

Our findings with RaitJers of the Lost Ark were encouraging to us, the
students, and their teachers. Students enjoyed working on problems in the
context of Raiders and most of them exhibited a major shift in their abilities
to e.'tplain the nature of the problems they were trying to solve, represent
these problems visually. and explain their work. They also showed evidence
of transfer \0 real-life settings. For example, students began to use known
heights (e.g., of one another) to estimate the height of trees, nagpoles. and
other objects in their environment.
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Pretest
Indiana Jones is lying across the pontoon. The ponloon is 3 limes as long as
Indiana Jones. The plane has 2 pontoons. Illndiana Jones is 6 leet tall, how
long is the pontoon?

.:(x3 =b Feet

POSIte't
Indiana Jones is lying across the pontoon. The ponloon is 4 limes as long as
Indiana Jones. The plane has 2 pontoons. If Indiana Jones is 6 leeltall, how
long is the pontoon?

209

.f,
6f,

FIG. 8.1. p~- and posllesl visual representations of an Indiana Jones
prob~m.

Needs for New Problem Contexts

We began to worry about a limitation of our work with Raiders; namely.
that the problems we were able to devise were 100 restricted. The primary
problem type involved simple measurement problems given a standard. In
particular, we helped students see that there was some object (e.g., the width
of the cave. the length of the pontoon on the plane) Ihal was important to
measure and that was X number of Indiana Joneses long. If Indiana Jones
were Y feet tall how long was the object? We worried that students could
learn to do well on this type of problem yet slilliack a deep understanding
of whal they .....ere doing. In particular. we were worried about what Duncker
(1945) called the functional fixedness problem. Given a change in problem
type so that new solution strategies must be generated. people often remain
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"functionally fixed" and attempt to apply familiar solution strategies even
though they are no longer relevant. Working with only a single problem
type is almost a sure way to gel people functionally fixed.

The manner in which Raiders was edited precluded us from generating
additional problem types in that context. For example. we would have liked
(0 develop problems that involved dynamic rather than static approaches to
measurement. An example involves efforts to estimate the width of the forest
in Raiders given that it took Indiana Jones X seconds to run through it
going a! a speed of Y miles per hour. A similar problem could be written
for the width of the large field that separated the forest from the river where
the airplane was parked.

Unfortunately, the movie did not let us sec continuous sequences of In
diana Jones running so that students eould time them. Instead, the movie
sho.....ed Indiana Jones going into the forest, then halfway Ihrough it, then
going into the clearing, and suddenly leaving Ihe clearing and getting 10 Ihe
river. The kinds of edits that appeared in the movie did not support the
scenes we needed to help students begin to Ihink about rate. (Movie directors
and editors know Ihat continuous scenes shot from a single perspective tend
to be boring visually.)

The River Adventure. The limitations on crealing additional problem
types in the Rai,ler.f contexi prompted us to Ihink aboul creating our own
videos that included the kinds of scenes and dala needed in an educalional
context. We eventually designed and produced our own prololype
videodisc-The Ril'er Adl·enture. In this adventure viewers are told that they
have won a I-week trip on a houseboal and must do all the planning for
food. gas. waler, docking the boat, and so forth. Data concerning the boat
(e.g.. its length, width, height). cruising speed, fuel consumption and capacity.
the route. marinas along the route, and so forth were all embedded in the
video. The students watching the video had to detennine when and why to
use various sets of data 10 help Ihem achieve particular goals. For example,
one important consideration in planning for the houseboat trip was to reserve
a dock at a certain marina that was the appropriate size for the boat. The
houseboat's dimensions were not e1tplicitly given in the video; instead, stu
dents saw scenes of a 6-foot person on the boat and could usc Ihem to
estimate its length, width. and height (analogous to using Indiana Jones as
a standard in our earlier work).

The adventure also required students to call the dock (via marine radio)
and provide their estimated time of arrival. This meant that students had to
use scenes to estimate the speed of the boat (e.g., the number of minutes to
travel between mile markers on the river) and then use the boat speed to de
temline how long it would take to ttavclthe distance to the dock (the distance
was discoverable by exploring the map included on the videodisc). The ad-
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venture included additional dala suc.h as fill times for the water lank in order
to estimate its cap.1city. estimates of amount of water needed for various
tasks, and so forth. Overall. the adventure included all the embedded data
needed to plan for the trip.

As we have discussed elsewhere (e,g.. CTGV. [994), we used Ihe same
type of instructional approach described for Raiders (see earlier discussion)
10 help students learn to understand, represent. and solve problems in the
Ril'er A(/I'entllre context. However, we worked with multiple problems so
that functional fixedness was less of a threat. Results were highly encourag
ing: Students liked the challenge and were able to transfer to posttest prob
lems. Examples of pre- and postlest representations of problems are illus
trated in Fig. 8.2.

PHASE II: BEYOND WELL-DEFINED WORD
PROBLEMS

As we thought more about our assumptions of mathematical thinking, we
began to question the fact that our approach to using Raiders and Rilw
A(/I'entllre still involved a traditional word-problem format. All we had added
was video support. As students watched the video, we stopped it in order
to present word problems to them. Oy doing so, we explicitly defined thc
problems to be solved rather than helping students learn to generate and
pose their own problems. The lalter seemed important for developing the
kind of mathematical thinking necessary 10 solve complex problems in the
real world (e.g.• Brown & Walters, 1993).

Historical accounts of great mathematical thinkers (e.g.. TurnbulL 1993)
provide ample evidence of the importance of identifying and posing problems
rather than simply solving problems that others presented 10 them. For ex
ample. Eratosthenes made ingenious use of simple principles of geometry to
accurately estimate the circumference of the earlh. Similarly. Thales esti
mated the height of a pyramid by using simple geometric principles based
on shadows. (The trick was to determine the length of the pyramid-s shadow
given that part of it was covered up by the pyramid.) In both cases. the
thinkers essentially generated their own word problems rather than solved
well-defined problems provided by someone else.

At a less complex level of mathematical sophistication. the need to gen
erate problems and subproblems arises frequently in everyday life. As a
simple example, imagine the lask of going from one·s house to n breakfast
meeling at 8:30 in a new reslaurant across town, Firsl, one needs to idenlify
the e:<istence of a problem to be solved: namely. thc need 10 determine the
time one should leave in order to make the breakfast meeting. To solve this
general problem one has to generale subproblcms such as "How far away
is the meeting?", "How fast will I be able to drive?'", and so on. The ability
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Pretest
Studenls view a slill frame 01 a boy lying across the bow of !he houseboat. The
announcer notes that the boy is 6 feel tall. One can see perceptually that the
boat is twice as wide as the boy. The Inlerviewer asks. "C8l1 you think of a way
10 figure ou! how wide the boat is?" The students replies. "Multiply?" When the
interviewer doesn't 8l1swer right away, the student says, "Divide?" He
eventually draws the following:r-"'---

Posttest
A student views a still frame of a garnage can sitting on the bow of the
houseboat. The announcer notes that the can Is two feel tall. One can see
perceptually that the top oftha boal is about 6 cans high. The interviewer asks,
"Can you think 01 II way to figure out how Isllthe boat is?" The student draws
the following and explains the math:

FIG. S.l P1"<'- and posHest rep1"<'senlalions of problems for the Ri"er
Adventure.

10 idclltify thc general problem and generate the subproblems to be solved
is crucial for real-world problem solving. We considered it to be an important
component of mathematical thinking and believed that typical uses of ap
plications problems did not develop sw::h generalive problem-finding and
problcm-fonnulation skills (Bransford & Stein. 1984; Brown & Wallers,
1993; Charles & Silver. 1988; Sternberg. 1986).



8. FOSTERING MATHEMATICAL THINKING

Research on Problem Generation

We used The Ril'er Adwl/lire to study problem generation by collecting
baseline data on people's abilities to engage in the types of mathematical
thinking necessary to plan for the houseboat trip. Members of our research
team worked with three groups of individuals: college undergraduates, aca·
demically successful fifth graders. and fifth graders who exhibited delays in
their mathematics development and were receiving special services. Arter
watching the video, students were given a structured interview consisting of
several levels of questions. The initial questions were general and open-ended
and were designed to assess students' abilities to articulate and elaborate
important categories to consider in planning the trip (e.g., fuel, estimated lime
of arrival, food. water. ctc.). Subsequent questions were designed to tap
students' abilitics to collect relevant data and formulate mathematical solu
tions for specific aspects of the plan (e.g.. "How might you estimate the
dimensions of the houseboat?").

The results of the planning questions suggested that most college students
were relatively good at identifying and elaborating the important categories
to consider to adequately plan for the trip (this was not surprising. because
the categories were mentioned at the beginning of the video). In contrast,
fifth-grade students, whether academically successful or mathematics de
layed, were much less likely to mention key categories. Whcn a category was
mentioned, the responses of the students tended to be quite general (e.g..
"You need to bring enough watcr."). Students' responses atmost never in
volved quantitative thinking such as systematic attempts to estimate how
much water would be needed for a I-week trip. In addition, nearly all of
the firth graders had a difficult time identifying the relevant mathematical
data that would be needed for solving the problems associated with their
plans, such as determining thc boat's dimensions or cstimating arrival time.
Not surprisingly, mathematics delayed students had even greater difficulty
in these areas than their academically more successful peers (Furman et aI.,
1989; Montavon, Funnan. Barron, Bransford, & Hasselbring, 1989).

We also found that the more structure we provided ill our questioning,
the bener our participants responded. (These findings have been replicated
in the context of our Jasper series; see CfGV. 1993.1.) By the time we reached
our third level of questioning, wc were essentially presenting panicipants
with simple, well-defined word problems <e.g., If this boat is twice as wide
as this boy lying on the deck. and this boy is 6 feet tall. how wide is the
boat?). The fact that everyone did much better at level 3 questioning than
level I (wilh I being the most gcnerallevel) shows that they had the potential
to answer many of the qucstions but were unable to do so initially because
they had difficulty formulating relevant subproblems. The fact that these
results were found even for students who scored very high on standardized
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tests of mathematics achievement suggested that tbe process of problem for
mulation was a pan of mathematical thinking that was worth targeting in
our instruction.

Instruction to FaciJitale Problem Formulation

As we began to develop instructional procedures for using The RiI'er Adl'en
wre to teach problem fonnulalion as well as problem solving. we had the
opportunity to work with a number of experienced mathematics edUCalors
and mathematics tcachers who provided information that changed the tra
jectory of our research project. Three members of the LTC (Elizabeth Gold·
man, Linda Barron, and Bob Sherwood) received a National Science Foun
dation grant in mathematics leacher preparation that brought them in
contact with experienced middle school mathematics Icachers in our area.
These teachers proved to be extremely helpful to our work. For example.
when we asked them to discuss problems in the curriculum that they wanted
to improve, a major concern centered around word problems. The teachers
were enthusiastic about the possibility of videodisc-based problems like our
Ril"cr Adl·enture. However, they wcre not at all enthusiastic about the pro
duction values of our prototype. They helped us see that. as researchers, we
could get by with such a prototype because we were a special event tnat got
children out of their scheduled classes. When something was introduced as
regular instruction, however, the teachers wanted it to be compelling to the
students. Because we needed the teachers to help us study the effects of dif
fcrent types of instruction, we paid close attention to their concerns. Our
collaboration with the teachers eventually led to the development of the Jas
per Woodbury Problem Solving Series. and in that context to attempts to
better define the nature of mathematical thinking. These developments are
discussed in the next section.

PHASE III: MATHEMATICAL THINKING
IN THE CONTEXT OF THE JASPER WOODBURY
PROBLEM SOLVING SERIES

Our assumptions aboul mathemalical thinking continued to evolve as we
went through a series of develop, test. and redesign cycles in the context of
the Jasper Woodbrlry Problem Solving Series. Jasper is a series of 12 videodisc~

based adventures (plus video-based analogs, extensions. teaching tools and
teaching tips) that are designed to improve the mathematical thinking of
students from grade 5 and up (see Fig. 8.3). Each videodisc contains a short
(approximately 17-minUle) video adventure that ends in a complex challenge.
The adventures are designed like good detective novels where all the data
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The Adventures of Jasper Woodbury

215

Compte. Trip Planning

Journey 10 Cedar C=k
Rescue ~l Boone's Meadow
Gel QuI ~ VOle

Stallstk:s and Buslne5!i Plans

The Big SplllSh.
Bridging ~ Gap
A Capital Idea

•,..

•'~'~. 'I''!, 0;" .\,. ~ .,.

""""""Blueprinl for SUCCe5S

The Righi Angle
The Greal Circle Race

Algebra

Working Sman
Kim's Komel
The Genernl is Missing

FIG. 8.3. Ovcrview or the Jasper Series. Thc Jasper Series consisls or 12
videodisc h~~ ~dwnturcs (plus video based analogs and teaching lips) lhat
focus on mathematical problem finding and problem soh·ing. Thc 12
advcntures are illustralcd hcrc. Each advcnlUrc js also deslgneo to pro"jde
links to olher subjecls such as science, social sludics, ,tnO literaturc.

necessary to solve the adventure (plus additional data that are not relevant
to the solution) are embedded in the story. Models of effective mathematical
thinking are also frequently provided in the videos.

Each Jasper adventure is designed from the perspective of the standards
recommended by the National Council of Te<lchers' of Mathematics (1989).
In particular, Jasper adventures provide multiple opportunities for problem
solving. reasoning. communication. and making connections to othcr areas
such as science. social studies, literature, and history.

The Jasper Series that currcmly exists did not arise full-blown from the
research and thinking discussed earlier in this chapter. Instead. its design

Copyrighted Material
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has evolved over a 6-year period Ihal involves extensive testing with hundreds
of teachers and thousands of students.

OUT experiences with Jasper have helped us rethink the idea ofenhancing
mathematical thinking in middle school students. One of the lessons learned
is that the cognitive psychologists among us had to deepen their own thinking
about mathematics-not just pedagogy. OUf research team also discovered
the need 10 help teachers understand mathematics in ways that they had not
been taught when they allcnded school. Discussion of these and other issues
relevant 10 the goal of promoting mathematical thinking follow.

From Problem·Driven to Mathematics-Driven Adventures

The opportunity 10 develop the Jasper series resulted in increased interactions
among the cognitive psychologists and mathematics educators in the LTC.
Many of the cognitive eltperts on our team had done well at mathematics
in school but had never had the opportunity to eltplore the subject mailer
deeply. A number of them adopted the role of "intelligent novices" who
helped make sure that the ideas from the mathematicians were meaningful
to ·'regular people'" At the same time, the mathematics educators kept em
phasizing the importance of finding "big ideas" in mathematics that "'ere
useful in a wide variety of conteltts. Ongoing dialogue between the "experts"
and the "intelligent novices" helped the Jasper series evolve along a number
of dimensions. These interactions have been so fruitful that the idea of linking
eontent area experts with "intelligent novices·' has become a basie principle
of all our Center's design teams.

Early Jasper Adventures. The first Jasper adventure. Journey to Cednr
Creek, was modeled after the original Ril'er A(henture. h featured an old
cruiser that had no running lights and a temporary gas tank; Jasper wanted
to buy it to fix it up. After he traveled up river to buy it, students had to
decide if the old cruiser could make it home before sunset and whether Jasper
had enough fuel for the trip and enough cash to purchase fuel.

The second Jasper adventure, Resclle aI Boone's MeocWl\" (RBM), was
designed to reintroduce the distance-rate-time considerations from the first
Jasper. plus add a new twist; namely, that there were many more possible
solution paths. RBM featured a wounded cagle and an ultralight airplane
that could be used to rescue it. Siudents were asked to find the faslest way
to rescue the eagle and state how long it would take. They had to consider
issues of fuel and its effects on the payload limits of the ultralight, issues
about which pilot 10 choose (Ihey weighed different amounls and hence af
fected the payload), and issues about when to use vehicles of different speeds.

The first two Jaspers allowed us to replicate many of the effects found
with Raiders and The Rilw Adw:nlure. For example, we found that even the
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highest achieving sixth graders (on standardized tests of math achievement)
had a very difficult time formulating subproblems that they need~ to solve
in order 10 solve the adventures. When these subproblems were explicitly
defined for them, they were much better able to solve the problems they
faced (e.g., CTGV. 1993a).

We also found that instruction in the context of Jasper had powerful ef
fects on students' abilities to formulate and solve subsequent complex prob
lems. In contrast, students whose instruction consisted solely of one- and
two-step word problems that included the same mathematical content as the
overall Jasper problem showed very poor abilities to transfer to new complex
problems (e.g., CTGV, 1993a; Van Haneghan et aL, 1992).

As our work progressed, we began to realize that our implicit design
strategy had been to begin with "authenlic" adventures (either ones such as
/Widers that were already available or ones we were able to film) and add
the mathematics later. We developed a new strategy of beginning with
mathematics concepts and deriving our advenlures from them. The NCTM
(1989) standards, plus a highly talented national advisory board, were in
valuable for thinking about the types of mathematical concepts that seemed
particularly important for middle school. We eventually decided 10 focus on
the areas of int.roductory statistics. geometry. and algebra (including pre-al
gebra). Next, the types of mathematical thinking that we hoped to promote
in these areas are discussed.

Statistics in tile Context of Creating Busi"ess Plans. Thi: third and
fourth Jasper adventures that we produced were The Big Splash and A
Capital Idea. Both were organized around the idea of developing a business
plan thai used:1 random sample of peoples' responses to questionnaires to
make inferences about the characteristics of a populalion of individuals. The
adventure Bridging the Gap was added later. It focuses on sampling in the
context of creating a grant proposal to save endangered species.

Pilot data collected prior to developing The Big Splash suggested a clear
need to introduce middle school students to key concepts about statistics.
We interviewi:d a number of sixth-grade students who had scored very high
on standardized tests of mathematics achievement. The intervie.....s centered
around issues of taking samples of peoples' opinions in order to arrive at
predictions about the beliefs of a largcr population. For example, onc of
our interview problems involved the goal of sampling people in a neighbor
hood to detem\ine their interest in having their car washed the next weekend.
How might one take a fair sample? How might thc sample be used to estimate
the response rate of people in the entire neighborhood?

We found that no students spontancously generated the idea of taking
samples and using them to make predictions about Ihe people's interest in
having their cars washed. Students viewed attempts to talk with peopk in
the neighborhood as attempts to advenise the car wash rather than galher
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data. OUf interviews convinced us that appropriately designed contexts could
help students appreciate Ihe value of taking samples and making predictions.
Given the large number of opinion polls used on the news and elsewhere.
this idea appeared to be an imponanl aspect of mathematical thinking that
was very useful to introduce in the middle grades.

The Jasper adventure The Big Splash illustrates how we attempted 10 help
students understand important concepts involving the use of statistics. The
adventure features a student, Chris. who wants to have a dunking booth at
the schools' fun fair. The principal explains that she needs 10 have a plan
which shows sufficient student interest to generate revenue equal to at least
twice the amount of the loan needed 10 rem the equipment. Chris takes a
random sample of sludents in his school and slUdenls walching the video
see the results of his sample. Their job is to help Chris creale a business plan
that predicls the amount of revenue (based on extrapolating from the sample
to thc population) and expenses. Calculation of expenses involves numerous
issues such as whether studenls will have to pay for water 10 fillihedunking
booth's pool and, if so, how much water Ihey will need.

Data indicate that students learn important information about sampling
and business plans after solving The Big Splash (e.g., Barron et al., 1995;
CTGV, 1994; Schwartz, Goldman, Vye. Barron. & CTGV. in press). They also
learn 10 communicate their ideas. We also find thai students' understanding
is deepened by Ihe opportunity 10 engage in additional eXlension activilies that
follow the solution of The Big Splash. For example. students who solve Ihe
challenge have a sense ofthe randomization procedure used in the video (Chris
sampled every sixth student in the cafeteria line at school). Nevertheless, most
lack a deep underslanding of the characterislics Ihal make samples repre
senlative of the larger population. Specially designed Jasper extension prob
lems help develop this understanding.

Extension problems for The Big Splosh also include several "hucksten"
who make claims and back them with "data." The students' job is to learn to
evaluate these claims. With practice. students learn to spot erroneous argu
ments such as ones that involve data based on biased sampling techniques, or
on incorrect procedures for extrapolating from samples to Ihe general popu
lation. The ability to critically evaluate data-based arguments is an aspect of
mathematical thinking that seems especially important for students to acquire.

From Problems to Projects. After solving a Jasper adventure and its
extensions, we encourage teachers to carry the thinking over into class
projects that are tailored to the interests and resources of students and their
community. For example. sludents who have solved The Big Splash have
then proceeded to collect data in their own schools in order to demonstrate
the feasibility of plans for their own fun fair. Plans that are well communi
cated and appropriately justified have actually been implemented (e.g.• Bar
ron el aI., 1995).
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The Jasper adventures Bridging the Gap and A Capital/dea build on the
sI<ltistics concepts introduced in Tht' Big Splash. For example, students learn
about differences between conducting a census and taking a sample, and are
introduced to multiple methods of sampling and multiple methods for repre
senting data. In A Capital Idea, students also learn about differences between
makinginferences from people's actual behal'ior (e.g.. with respect to recycling)
versus from statements about their behavior (e.g.. whether they will agree to
recycle and how much material they think they will collect each week).

Geometry. It was not an easy mailer for us to create conlexts that made
geometry meaningful to students. Most of the people on our research team
had learned geometry only as a formal set of principles devoid of interesting
applications. They held frequent conversations with mathematics e;<perts in
an attempt to understand the purpose of geometry. Many mathematics
expens explained that geometry was "the mathematical study of shapes and
space." The nonmathematicians kept asking, "But what does that mean?"

In one case a mathematics educator suggested that we help students un
derstand the geomctrie proof that three points always lie on a plane. The
nonmathematicians kept asking. "Who cares? Why is this relevant to any
thing?" After a great deal of discussion, thc mathematics expert finally said,
"Well, for example it proves that a 3-lcgged stool will always balance." This
was the kind of insight for which our nonmathematicians were looking. We
eventually decided not to focus primarily on proof in Ihe Jasper geomelry
advcntures. Nevertheless, thc experience gave our team a clear example of
an application of geometry that was exciting to cveryone.

It took ovcr one year of conversations among novices and experts 10

develop the ideas behind the geometry adventure The Righi Angle. We then
dcveloped The Great Circle Rare and, finally, Bluepril1f for Sf/rcess. Our
experiences in classrooms suggest Ihat Blueprim provides the easiest introduc
tion to geometry followed by The Right Allgle and then The Great Circle Race.

The goals of the three Jasper geometry adventures are consistent with
ideas ubout geometry suggested by Geddes (1992):

StudelllS' e>;pcricn<.-es in Ic"ming geometry should n'ale them perceive geome
try as having a dynamically important role in their environment and nOI as
merely learning vocabulary, memorizing definitions and fonnulas. and sL.1ting
properties of shapes.... The middle school geometry curriculum affords many
opportunities for studenls 10 explore their cnvironmcm and to Jeam and enjoy
many new, exciting and fascinating aspects and applications of mathematics
in their world. (pp. 2, 7)

All three Jasper gcometry adventures are designed to help students under
stand that geometry originated as a study of the measure and relationship of
elemcnts of the world. The word geomerry literally means "earth measure."
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We want to help students see the value ofdiscovering invariant mathematical
properties of simple shapes such as triangles and circles and using them as
models to measure thc world. The concepi ofscale models is important as well.

Interoif!'Ws Witll Students nnd Teadlers. Interviews with students con
vinced us 'hat thc majority of middle school students were being taught
geometry like most members of our T'CSCarch tcam had learned it. Students
we interviewed had memorized definitions of geometric concepts. but had
liltle idea of anything more. The following interview with a fifth-grade
student is very representative of what we found:

IlItt'niel1'cr (I): Do you know anything about geometry?

Student (5): Sure. We study it in school.

I: What do you do in geometry?
S: Measure angles. We usc a protractor.

I: Why do people measure angles?

S: To find out if they are obtuse or acute and stuff.
I: Why is it useful to know that?

S: To pass the firth grade. (Zech et a!.. 1994)

Zech and colleagues reported data from a survey of 308 students from
sixth, seventh and eiglllh grades that included questions about the usefulness
of gt.''Ometry. Sixty-six percent of the students were unable to state any reasons
why geometry was useful in the real world. The remaining 34% listed only
simple ideas such as "to find the area of something." Surveys conducted
with college freshman at Peabody College at Vanderbilt. and with middle
school tcachcrs of mathematics, yielded similar results. Zech and colleagues
noted that. of 25 teachers surveyed, only 3 were able to list uses of geometry
that went beyond the calculation of area and volume. Five of the (eachers
were unable 10 list any ideas aboul geometry's usefulness in the real world.

Blueprint for Success. The adventure Bltleprinr For Success provides
students with an opportunity to leam about measurement concepts such as
scale drawings, perimeter. area, volume. and the optimization of area. II
features two students, Christina and Marcus, who visit an architectural firm
during career day. While there, they encounter information about blueprints
and design. They overhear a newscast about a young boy ill their neighbor
hood who has been hit by a car while playing in the meet-the fourth such
accident in Ihe last month. They wish something could be done.

A member of the community visits the architectural firm and announces
that his company is donating a sizable piece ofland to the community. Marcus
and Christina suggest the idea of building a playground there and ask if they
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can help design it. The challenge for studems watching the video is to help
Marcus and Christina design a swingsel. slide. sandbox. and item of their
choice, determine how to best utilize the 280 feet of fence thai has been
donated. and specify the amounl of pea gravel needed to achieve playground
safety standards. Students solving the challenge are asked to provide a front
view, side view, and top view of everYlhing on Ihe playground as if they were
giving Ihe blueprint to a builder. All of the measurements must be specified.

In order to solve Ihe chaJlengc. studenls must generate the subproblems
they must consider in order to design the playground (e.g.. What is a realislic
heighl for a swingset? What angle should a slide make wilh the ground?
Whal are Ihe dimensions of a sandbox that holds 32 cubic feet of sand?
How do I draw to scale?). Students have been extremely motivated to design
playgrounds. Many leachers also have children build models \0 sec if their
designs work.

As wilh all Jasper adventures. Blueprint for SUU'CSS also contains analog
and eXlension problems. One asks students to explore a problem that
Christina confronted in thc story: What figurc has Ihe grealesl area giycn a
fixed perimeter? Using graph paper and string as Christina did in the story.
students are encouraged 10 explore the problem and idenlify the variables
and how they are related. The goal is to help students engage in systemalic
malhematical inquiry, including how to record their findings so thai they
can review them later. Eventually. sludents generale a summary of thcir in
vcstigalions and learn how to represenl their discoveries symbolically. Ex
tensions also exisl Ihat help sludenls undersland proofs of various principles:
for example. a proof of why a square of any perimeter encompasses more
area than any rectangle with the same perimeler.

TI,e Rigllt Angle and TIu' Great Circle Race. The adventures The RighI
Angle and The Great Circle Race build on the geometric concepts introduced
in Blueprinf for Success. In The Right Angle, one of the chamcters, Ryan.
learns aboul isosceles right triangles. His initial understanding involves a set
of facts such as "isosceles right lriangles have one 90 degree angle and two
45 degree angles. and they have legs of cquallengths.'· This level of under
standing allows Ryan 10 label isosceles right triangles and differentiate them
from other kinds of triangles, but it does lillie else (see Fig. 8.4).

Laler in Ihe movie. embedded teaching scenes provide glimpses of the
power of isosceles right triangles for measurement. The grandfather of an
other characler fcalured in Ihe movie. Paige. used Ihis type of triangle 10
measure the height of objects such as tall lrees or mountain peaks (see Fig.
8.4). The grandfather adjusted his distance from Ihe base of the objecl until
the angle of elevation to its lOp reached 45 degrees. Because isosceles righl
triangles have legs of equal length. Ihe grandfather knew thaI Ihe height of
the object was equal to his distancc from ils base (see Fig. 8.5).
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FIG.8.4. Ryan'. introduclion 10 isoscele. right l,ianlle•.

FIG. 8..5. Paige'sirandfatiter eslimale. lite heighl of a lree.
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In the challenge for The RighI Allgl/'. students USC:I tapa map and follow
the grandfathers' directions to find a cave where someone has traveled and
needs help. In order to do so. they must make a number of dillerent meas
urements. Some allow them to use the principle of··isosceles right triangles."
Others require more elaborate uscs of geometry such as the usc of graph
paper to draw angles and objects to scale. As students in the classroom work
to solve the challenge. they receive multiple opponunitil's to appreciate the
power of geometry :IS:1 1001 for practical problem solving rather than simply
as a sct of facts to be memorized.

The Grc{/{ Circle Ran' extends the concept of measurement to geometric
properties involved in orienteering methods like triangulation. Students also
learn the invariant properties of circles (e.g., the constant ratio of circurn
terence to diameter in circles of ,my size) and use this information to make
estimates and measurements.

Data reponed by Zcch et al. (1994; in press) indicate that studcnts who
usc The Right Allg/e and The Great Cirell' Rf/ce devc10ped a much belter
understanding of possible uses of gcometry. and were excited by the adven
tures. Teachers of these students <Ilso increascd their understanding of the
uses of geometry for measuring the world. Data reported by Barron et al.
(1995) show highly significant gains ill understanding for students who solvel.!
lJfueprint jor SII('('css.

From Problems to Projects. After solving <I geometry adventure and its
extensions. we encour<lge teachers to carry their thinking over into class proj
ects. In several classes in Nashville. students solved Bllleprim For SII('('C.\',I"
and then constructed blueprints for playhouses that were built by volunteers
and donated to kindergarten classes in their schools. An eig.hth-grade class
drew a map of their school campus after they had solved TI,e R(v.hl Angl('.
In completing this project students determined the measurements that they
ncctled to make. made the required measurements by taking be,lrings and
measuring lengths. and correctly representL'd this information by creating a
map.

AIgebrtl. 111e three algebra adventures in the Jasper series arc designed
to be used as e:lrly as fifth grade and to prepare students for the formal
study of algebra by helping them understand concepts such as variable and
function. As we developed the algebra series, we discovered some new
approaches \0 fostering mathematical thinking that have implications for
the entire Jasper series. We explore these ide:ls in the next section. where we
discuss the fourth phase of the LTCs thinking abollt mathematical thinking.
and how to promote it. Prior to this discussion \\'c consider some additiOtwl
lessons aboulmathematical thinking that we learned in Phase Ill.

Copyrighted Material
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Understanding Learning in Classrooms

BRANSFORD ET AL.

We noted earlier that a m.1jor reason for creating professional quality rna
tcrials such as Jasper involved the opportunities these presented for collabo
rating with leachers. OUT original work with /Widers and The RiI'er Ad~'enlUre

had involved "pull-out" experimcnls conducted by members of our research
team. With Jasper, we were able to find a large number of teachers who
invited us to observe and conduct research as they taught with Jasper. These
opportunities taught us a great deal about the nalure ':If mathematical dis
cussions in classrooms and how they might be supported and enriched.

Multiple Approaclles to lnstroction. A number of lessons learned from
our opportunities to obser.e Jasper being taught in classrooms have been
discussed elsewhere (e.g.• CTGV, 1992b; 1992c; 1994). For present purposes
we summarize only some of these here. Probably the most importanl lesson
is that problem-based curricula such as Jasper can be used in a variety of
ways Ihal promote different types of mathematical thinking. In one of our
articles (CTGV, I992c) we discussed approaches to teaching with Jasper that
range from computation-based (with a heavy emphasis on developing com
putation skills), to "worksheet-based" (where Ihe problem solving is broken
down into steps on workshccls), 10 more "student-generated" (where studems
are given primary responsibility for generdting goals and subproblems and
scaffolding is provided as needed). An importam lesson learned from ob
serving Jasper being taught in multiple settings is thai problem-based cur
ricula can make it easier to foster the kinds of mathematical thinking that
we hoped to sec in classrooms, but they certainly do not guarantee the
existence of this kind of thinking.

A related lesson learned involves the critical importance ofthe pedagogical
and mathematical norms operating in the classrooms (e.g., Cobb, 1994;
CfGV, I993b). These are influenced by the teachers' beliefs and knowledge
about the nature of teaching and learning in general, and about mathematics
learning in particular. In addition, the climate of the classroom is affected
by the teachers' knowledge of the mathematics content domain (e.g., Shul
man, 1986, 1987).

The Importance of Rofe Models. Our classroom observations also made
clear Ihe importance of characters in Jasper who could serve as positive role
models for studems from a wide variety of backgrounds. We realized that
we could nOI provide a wide range of role models in any particular adventure;
however, across the series we have been able to inelude a diverse set of heroes
and heroines.

The Jasper series;s named after Jasper Woodbury, who attempts to solve
the problem in the first Jasper adventure (JOIJrney 10 Cedar Creek). However.
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Jasper is not the primary problcm solver in the remaining adventures. Emily
Johnson (an African American female) is the heroine in ResclIf: 01 BQI.Hle·$

Ml'adOII~ Julie Carillo (n Hispanic femalc) is the primary problem solver in
A Capiwl Idea; Chris (an African American malc) is the hero in The Big
Splash; Paige Littlefield (an American Indian) is a heroine in The Right Angle;
Donna (a wheelchair-bound African American female) is the heroine in The
Grem Cirell! RaN' (she uses her intricate knowledge of the importance of
slope for navigation. plus her ability to read topographical maps. to pick
the best route for the mce); and so forth.

It is gratifying that our atlempts to ponray positive role models have not
gone unnoticed. In her review ofthe JasperSeries for Technology and Learning,
Eiser Slated, "Of the products we have looked at, the one that most fully
incorporates the ideas e.'(presse<! in the NCTM standards-including mathe
matical sopnistication. stress on group work. and real-world relevance, is ...
tne Adventures ofJasper Woodbury" (p. 58). Later in her review, Eiser staled:

The quality of the video is particularly nOiewonhy, wilh characlers carefully
portrayed as rough hewn and rc.1Iistic. Without making an issue OUI of race.
religion. gender or appearance, the videos are remarkably free of stereotypes.
II is only in looking back Ihat you nOlice the woman gas jockey, Ihe black
principal. the Native American and Hispanic heroines.

Challenges. Our observalions of classrooms illustrale some of the chal
lenges involved in promoting effective mathematical thinking. One involves
the fact Ihal some teachers had difficulty managing classrooms thaI involved
collaborative group lcarning. Appropriate approaches 10 management are
necCSs.1ry. but not sufficient for promoting high-qualily mathematical diS
cussions. An excellent program for tcaching management that we have used
is CaMP by Evertson and her colleagues (Evertson & Harris, 1994).

Even with appropriale management of group learning. some Jasper class
rooms focused almost exclusively on discussions of compulation. Therefore.
when asked to explain how aod why they came up with their particular plan
for solvillga Jas~r, the teachers had their students focus on showing thm their
computalions .....ere correct. There was very little emphasis on assumptions
underlying proposed solutions, or on discussions of altem3!ive approaches
that one might consider. II became clear to us Ihat Ihe idea of what it meant
to have a mathematical discussion in the contexi of Jasper needed 10 be
clarified.

Our classroom observations also drove home anothcr lesson that we saw
again and again: Student-generated queslions abollt Jasper adventures and
its extensions frequently taxed teachers' knowledge of mathematics. They
often taxed the knowledge of our research team as well. For example, in
The Big Splash Chris uses a sample size of 60. When students extend their
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Jasper experience by developing business plans relevant 10 their own schools.
they encounter issues of sample size. If their school population size is twice
as large as the one in the Jasper adventure (Chris's population size was 360),
should the sample size be 120? Remain at fiJ? What principles of statistics
help one decide?

We also discovered that it was difficult to come up with on-the-spot ways
to help siudenis understand difficull concepts. How could students be helped
10 cOllcepwalize rate problems such as the time to fill the pool rather than
simply compule an answer based on a fonnula? How could they be helped
10 understand the mathematics involved in translating from minutes to hours
rather than to simply consult a look-up table? How could they be helped to
understand how to draw a lOp view of a swingset or slide for their blueprints
and why a top view was necessary? These and many additional issues made
it clear that teachers needed help in supporting the kinds of mathematical
discussions that we hoped would take place.

Overall, our experiences in classrooms helped us realize how much we as
a research team rely on our own "learning community" as a source of in
formation to help us make sense of new or complex situations (Barron et
al., 1995). We could not rely solely on teachers manuals for professional
development. nor could we rely on one-shot workshops Ihat prepared Icach
ers for every contingency when they taught Jasper. Instead, teachers needed
ongoing access to their own learning community so that they could continue
to question and learn for themselves.

Tools for Teacllers and Students. One strategy that we have developed
for supporting teacher learning communities involves the development of
video-based teaching tools that teachers can use to help students (and some
times themselves) understand difficult concepts. Some of these tools are made
available on the Jasper videodisc and can be viewed first by teachers and
then shown 10 the class when the need arises. Many illustrate ways to help
students and teachers think visually about mathematical concepts nuher
than only computationally. For example. a visual "proportional reasoning"
tool helps students understand proportions visually and then helps them
translate this understanding to symbolic representations. A dynamic visual
of a clock helps students translate minutes inlo hours.

Other tools for students and teachers are embedded in the Jasperadventures
and referred to as embeddedleaching. These involve theequivalent of"worked
out examples" (Chi. Bassok. Lewis. & Glascr. 1989; Chi, deLeeuw. Chiu. &
LaVancher, 1994) that are pan of the story line leading to the challenge. For
example, a character in the video might show how to use graph paper to avoid
the need for trigonometry ill solving a geometry problem; how to usc a
compass to triangulate; how tocreate a graph paper ruler to measure the length
of diagonals. We do not expect viewers to fully understand the embedded
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teaching the first time through the Jasper story: instead, they can return to
these scenes and engage in "just-in-time learning" while attempting to solve
the Jasper challenge. The embedded teaching examples in Jasper neverdirectly
provide answers for the Jasper challenges; instead, they model solution
strategies that have to be adapted to the challenges in order to work.

SMART Challenges That Are Anchored Around Jasper Videos. Our
classroom observations also helped us see the need to break the isolation of
classrooms by having teachers and their students become part of a larger
community that was jointly working on selected Jasper challenges and proj
ects based on these challenges. We developed the idea of SMART Challenges
as a way to achieve this goal (CfGV. 1994).

SMART stands for "Special Multimedia Arenas for Refining Thinking:'
These arenas use telecommunications and television technology (and even
tually the Internet) 10 provide students and teachers with feedback about
the thoughts of other groups who are attempting to solve a particular Jasper
adventure. Students can look at others' work and decide whether they want
to revise their own. For example. students working on Blueprintfor Success
may see data from 60 other students about relationships between the length
of the legs for their A-frame swingsets and the desired height of their
swingsets (see Fig. 8.6). Students also see visual representations of various
types of designs. Figure 8.7 shows a design for an A-frame swingset where
the length of the legs equals the desired height of the swingsel. This design
is one that is commonly suggested by many students. The visual model helps
students see that this design does not work.

SMART Challenges also include the introduction of "just-in-time tools"
that help students conceptualize the subproblems on which they are working
in the Jasper adventure. For example. Fig. 8.8 shows:1 static representation
of a dynamic scene that lets students see the top view of a swingset, slide.
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FIG. 8.7. Visual illuslnuion ob probkmalic design.

and sandbox. The specification of top views is necessary for accurate archi
tectural drawings. Without visual models. many students have a difficult
time imagining appropriate top views.

SMART Challenges also include models of students discussing their pro
posed solutions to various pans of the Jasper adventure. These are designed
to provide models of discussions that emphasize mathematical understanding
rather than just computation. Students learn to critique lhese models and
improve on them.

$MAR T Challenges have been explicitly studied in the context of Resclle
at Boone's Meat/oll', The Big Sp/tlSh. and Blueprint for Success. (Barron et
aI., 1995; CfGV. 1994). The addition or SMART Challenges to the Jasper
series has been shown to have a value-added affect on achievement relative
to Jasper alone. Students in SMART learn more relevant content and are

FIG. 8.8. Scene from a d)·namic 100110 ShO",·lht lOP ,·it...s oflht pl<lygrl>\lnd
l"quipmenl.



8. FOSTERING MATHEMATICAL THINKING 229

able provice better explanations of their thinking than students who have
not had the benefit of SMART (Barron et aI., 1995).

PHASE 4: INCREASED EMPHASIS ON POWERFUL
MATHEMATICAL IDEAS

Within the past year, our LTC has reached a new phase of thinking about
mathematical thinking by placing increased emphasis on the goal of helping
students and teachers understand powerful mathematical ideas that tran
scend particular Jasper adventures (including their analogs and extensions).
Examples include concepts such as rates. proportions. and functions. We
have also developed a way to make these abstract concepts interesting and
meaningful to students by encouraging them to make mathematical models
of situations and crcate "SMART Tools" that can be used to solve a large
number of problems with great efficiency. The idea of creating SMART
Tools has been exciting for students.

The emphasis on building mathematical models and SMART Tools arose
in the context of developing the Jasper pre-algebra and algebra adventures.
We wanted to avoid approaches to algebra that simply introduce students
to the syntax of symbol manipulation but provide no understanding of the
concepts underlying the manipulations. In accordance with recommenda
tions from the NCTM (1989), the concept of function was one that we par
ticularly wanted students to understand.

Observations and interviews with students indicated thaI problems en
countered by studcnts when learning algebra were similar to those encoun
tered in geometry. Like the geometry students discussed previously, algebra
students often spent their time manipulating strings of symbols and learning
how to make graphs from function tables. yet had very little ide:1 of what
they were doing and why.

We wanted to help students realize that. in defining functions, they are
construcling malhemalical models of situations that are potentially very
powerful. Furthermore, when these models are tailored to fit particular
contexts, they can function as SMART Tools ror making problem solving
highly efficient. Simply trying to explain this to students, however, did lillIe
good. The first Jasper adventure in the algebra series that we completed,
Working SMA RT, was designed to help students develop an insight into the
power or building mathematical models and creating SMART Tools. It is
illustrated in Fig. 8.9.

In order to solve Working SMART. students must re-explore the video
to find the four problem types featllred in the game show. They then must
detemline reasonable constraints on the problems: for example. constraints
on the typesorspeed limits in the area. on the fuel capacity and fuel efficiency



Set in 1968, Working Smart is a story aboullhree
teenagers - Jasper, Emily, and Larry. Jasper and
Larry start a business building and delivering
birdhouses. To help them determine a fair price to
charge for delivery, Grandpa shows them a Smart
Tool that he used when he had a similar business.
The Smart Tool is a graph showing delivery times
and dislances for 3 different modes of
Iransportalion.

Emily arrives with exciting news. There is going to
be a conlest at a local travel agency. All student
teams who do well in the contest will receive an all
expense paid trip anywhere in the country. Jasper
suggests that the three of lhem sludy geography in
order to have an edge in the contest. Grandpa
suggests that they should create some Smart Tools
like his to help them answer questions about travel
time.

Ignoring Grandpa'S advice the three friends
diligenlly sludy geography 10 prepare for the
contes\. But when they arrive at the travel agency
for the preliminary round, they discover lhat none of
the questions are about geography. They are about
travel time (including overtake problems). cost of
renting vehicles, and fuel consumption. As a result,
Jasper, Emily. and larry do not do as well as they
had hoped in the preliminary round. Disappointed
and discouraged, the three leave the travel agency
to ponder what to do next.

As they are discussing their options for the next
round of the contest, Grandpa returns from
delivering birdhouses. He mentions that his Smart
Tool is still helpful in determining the lime it wi1ltake
to deliver a birdhouse. Emily realizes that
Grandpa'S Smart Too! would be helpful in
answering questions lor the contest at the travel
agency, and she convinces Jasper and larry that
they should create Smart Tools.

Challenge: Create Smart Tools to help larry. Jasper, and Emily pass the final
Interview.

FIG. 8.9. Synopsis or ~Workin& Sm~n. M
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of Ihe types of cars rented by the Iravel agency, 011 the range of dis{allL't.'S
people usually drive. and so forth. These constraints allow students to create
SMART Tools Ihal lit the needs of Ihe situation. More information about
the construction of these tools is provided in the following discussion.

Working SMART in the Classroom

The Jasper Algebra adventures are new. therefore we have limited experience
using them in classrooms. Nevertheless, we have had opportunities to con
duct several pilot experiments that have been extremely informative. One
involved seventh graders whose mathematics skills were quilc low. (These
werc not studen{s who had previously worked with Jasper adventures.) For
example, on a pretest Ihe students scored less than 20'V.. correct on simple
problems such as the following:

1. How long docs it take Emily and her mother to drive 165 miles at 5S
mph?

2. Emily and her family look a trip. They traveled for 2'''.1 hours al a
speed of 55 mph. How far did they travel?

The students' reactions to these problems reminded us of our emly re
search on word problems that led to the development of Jasper (see our
earlier discussion). There was a great deal of anxiety expressed by students
as they altempted to solve the problems on the pretest.

Afler asking studenlS {o calculate answers to problems. we supplied them
with graphs that they could use to solve the problems. For example. a graph
relevant to problem I, which was just presented, appears in Fig. 8.10. Dala
indicated that few students knew how {Q use the graphs to solve problems.
Their scores on the pre{cst were only 30"10 correct.

Following the pretest, students watched Working SMART and then
started on the challenge. They were initially asked 10 develop a SMART
Tool to help with one of the four problem categories in the travel agency
quiz-the "Are We There Yet?" category.

Students' initial reaction to the challenge was revealing. They wanted to
know what the problem was that they would be asked to solve. Without
specilic information, they fell {hat they could not do anything to prepare a
tool to help them.

Using tin Existing Toof. One approach to helping students develop an
understanding of SMART Tools is to use Grandpa's SMART Tool that was
shown in the video (an example of embedded teaching). Students need to
understand how il allowed him to solve a whole das.r of distance-rate-time
problems (see Fig. 8.11). For example, consider problems such as the follow
mg:
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I. Grandpa agrees to deliver a birdhouse to someone who lives 5 miles
away. He takes his bicycle and rides at an average speed of 15 miles
per hour, How long will it take Grandpa to deliver the birdhouse?

2. Grandpll has been walking for 2 hours at a speed of 3 mph, How far
has he traveled?

3. Grandpa has traveled 30 miles in 2 hours. What melhod of transpor
tation is he using?

4. Grllndpa is traveling at a speed of 15 miles per hour. How long will
he have traveled after YJ hour?

5. Grandpa can take his truck or his bicycle to deliver a birdhouse that
is 10 miles away. How much sooner will he arrive at the house if he
takes his truck?

Grandpa's SMART Tool (Fig. 8.11) allows students to answer these ques
tions and many morc. A useful exercise is to have students generate additional
problems that can be answered by using Grandpa's SMART Tool.

Adaptirlg an Existing Tool, Grandpa's SMART Tool needs to be
adapted in order to help young Emily, Larry and Jasper win the travel agency
contest. Students must re-explore the video in order to learn about the
constraints that are relevanl for constructing SMART Tools that lil the
context.
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As an illustration, consider creating a SMART Tool for the problem cale
gory "Are We There Yet." This involves simple dislance-rate-lime problems
that people who rem cars from lhe travel agency are likely to ask, A search
of the video reveals that relevant conslraims on distances and rates are con
tained in the map used during the Travel Agency quiz (e.g.. the primary
speed limits to worry about are 30, 45, and 60 mph; the range of driving
distances are from 1 to about 500 miles). Using these constraints on distances
and speed limits. students must prepare a SMART Tool that fits the con
straints.

Studenls who participated in our pilot study were asked to prepare their
lools for the "Are We There Yct" category. They were given a copy of the
map shown in the game show and then received a set of problems that allowed
them to test their tools' mettle. For example:

I. How long should it take me to get to Sue City by car?

2. I have been driving for 2 hours at 60 mph and I am in the country.
Can you tcll me the nearest town.

3. If 1 drive 45 mph rather than 60 mph, how much longer will it take
me to get to Hanford (which is 260 miles away)?

Opportunities to test the mettle of their tools are very important for stu
dents. Untillhey create tools and test them. many fail 10 appreciate the power
of the SMART Tool concept. In addition, creating and testing tools gives
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students :1 better sense of what it means to think about the kinds of con
straints they should consider (e.g" with respect to distances and speeds) when
building their tools.

In our pilot studies. students have been allowed to revise their tools for
the "Are We There Yel" category and test their menle once again. All groups
created better SMART Tools the second time around. An example of an
effective SMART Tool for the problem category "Are We There Yet" is
illustrated in Fig. 8.12.

In our pilot studies. students then had opponunities to create SMART
Tools for two additional categories in Working SMART: "Burning Backs"
and "Catch 'Em If You Can." (We did not do all possible categories due
to time constraints.) This lime the students had a much bener understanding
of their goals and constraints. A posttest provided students with graphs thai
they could use as SMART Tools to solve the original problems presented
during the pretest. Students averaged over 75% correct on the posttest (com
pared to a score of 30"/.. on the pretest). In addition. every student sholA-'Cd
a clear gain in scores from pretest to posttest.

Overall, our experiences with helping students create SMART Tools show
that it helps them begin to make the transition from thinking about mathe
matics as "using numbcrs to get answers to a problem" to thinking about it as
a way to build models thnt are applicable to a wide r.mge of situations, and to
build special purpose SMART tools that are consistent with these models. For
example. thinking of average speeds in terms of functions is quite different
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from thinking of them in termsof single numerical values (e.g.. 3 mph. 15 mph,
and 30 mph). Information about functions can also become an efficient
SMART Tool in a way thaI a value such as 30 mph cannot.

The experience of learning to think visually about problems was empow
ering to students-they were very excited to discover an approach to mathe
matics that was different from the computation-based approach that had so
frequently caused them problems. This is a reaction to SMART Taols that
we have found repeatedly-both during the formative work that led to the
Jasper algebra adventures and in subsequent pilot studies as well.

Extension Problems. Extension problems to Working SMA RTare being
designed to help students deepen their understanding of mathematical mod
eling and, in the process. to begin to appreciate the power of thinking in
terms of abstract concepts such as rates, proportions, and functions. (We
design extension problems and teaching tools after having the opportunity
to work with Jasper adventures on multiple classroom contexts.) In addition.
the two additional Jasper algebra adventures are being designed to help
students further develop an understanding of the power of algebraic thinking.
We describe these additional adventures after discussing our plans for ex
tensions to Working SMART.

Modeling By Defining Functions. Extensions to Working SMA RT win
help students deal with models that represent nonlinear as well as linear
functions. For example. imagine modeling Grandpa's speed while walking.
riding a bike. and driving in his old truck under conditions where the total
distance to be traveled is 20 miles and the speed Iimil is 30 mph for the first
10 miles and 20 mph for the second 10 miles. Assuming that Grandpa always
obeys speed limits (which he does), the change from a speed limit of 30 mph
to 20 mph will affect his rate in the truck. hence changing it from a linear
to a piccewise-defined function. In addition, lhe fact that humans tire out
when walking or riding long distances means that a model of Grandp.1 using
these two modes of transportation must also be nonlinear (e.g.• they may
include rest times with 0 speed or gradually decreasing rates of speed as
fatigue scts in).

With additional information about how Grandpa plans to handle fatigue.
students can create a SMART Tool thai allows them to estimate (a) how
far Grandpa would have traveled given a particular mode of transportation
and particular length of time. and (b) how much time Grandpa must have
been traveling given that he used a particular mode of transportation to
travel a given number of miles (e.g.. "Grandpa is walking and has traveled
3 miles. Approximately how long has he walked?").

Other kinds of extension problems will involve additional nonl inear func
tions such as power functions. We eventually want to help students realize



BRANSFORD ET AL.

that there are properties of dilTerent kinds of functions thai are very useful
to understand.

We emphasize the idea of ('rearing malhematical models and SMART
Tools because this seems to represent one of Ihe essential characteristics of
effeclive malhemalicalthinking. Of particular importance is lhe idea of cre-
atiog mathematical models of real life silualions (e.g., a model of Grandpa's
truck driving at 30). This is very different from being given a function table
and asked to create the appropriate graph. (The lalter task can easily become
a purely procedural exercise with no connection to insights about the power
of '"modeling the world.")

Revisiting Other Advelltures. Additional extensions to Working
SMART will revisit many of the earlier Jasper adventures and give students
practice at generaling models that can serve as SMART Tools for further
problem solving, For example. in Rescue at Boone's Meadow, Larry's ul
tralight is used 10 rescue a wounded eagle. How might one model the flying
time of the ultralight given particular conditions of headwinds and tailwinds?
In addition. how might one model flying time given the range (fuel capacity
and consumptjon) of the plane? In The Big Splash. how might one model
the rate of filling the pool with the school hose given particular values about
flow rate of the water from the hose and volume of the pool?

Eventually. we want to help studenls understand that a general mooel
for rale can apply to a variety of different situations. The model can be
transformed into useful SMART Tools when it is calibraled for particular
contextual conditions (e.g., when it takes into account the appropriate values
for range and speed that fit Larry's ultralight, or the flow rate for the school
hose and volume for the pool in The Big Splash).

Additional "Big Ideas." Extensions to Working SJ\lARTwiJI also em
phasize other "big ideas" in mathematics. The idea of creating scale models
thaI preserve proportions is another powerful idea which we want students to
understand. One extension for Working SMARTwiJI show scale models of
vehicles from the 19605 (tne time period of tnis episode): vehicles such as a
Volkswagen bus, a classic Schwin bicycle, and a classic Corvelte. Studems will
be shown now information about a particular scale (e.g., 1: 18) can be used to
predict tne actual size of a real vehicle from the model, and vice versa.

The challenge to be posed 10 students is to create a SMART Tool that
allows easy conversations from infonnation about scale models to real ob
jects and vice vers.'l, For example. if one wants to make a model or a VW
bus that is I: 12 scale. wnat snould be the height and length of the model
bus and its doors and windows, the diameter of its wheels, and so forth.
What should these be if the scale is 1:18? SMART Tools Ihat involve pro·
portions can also be created for adventures such as Blueprim for Success,



8. FOSTERING MATHEMATICAL THINKING 237

which involve the creation of blueprints and models of playgrounds that are
accurate with respect to scale.

Figure 8.13 provides an illustration of a SMART Tool for working with
models of particular proportions. As long as we are dealing with length,
width, and height. the functions are linear. However. as soon as we ask about
relationships such as area and volume (e.g.. the area of the back door on
the van. the volume of the interior of the van), the relationships are no longer
linear. Exercises such as this help students think about linear veT5US nonlinear
functions, and linear and nonlinear aspects of creating scale models. II also
sensitizes them to the importance of knowing the conditions under which to
use a SMART Tool.

Figure 8.14 illustrates a commercial version of a wheel-based Proportions
Tool for illustratoT5 and designeT5. It is an ingenious device that is based on
a model of proportions that is invisible to most students. By helping students
create their own wheel-based proportions tools and compare them 10 their
graphs, the mathematical model underlying the SMART Tool can be ap
preciated and undeT5tood.

The idea of models that preserve essential ingredients of "the real thing"
can also be extended to the Jasper statistics adventures. These adventures
feature the use of techniques of randomly sampling to make estimates about
important characteristics of larger populations. In essence, the sample serves
as a model for the population. Extrapolating to a population involves pro
porlional reasoning as well. Therefore. if 20 out of 40 people in a randomly
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drawn sample answer "yes" 10 a question. the best estimate is that 50 people
will say "yes" if one's population size is 100. SlUdents can build SMART
Tools for converting from sample to populalion dala thai look very much
like Ihe proportion tools discussed earlier.

Clearly. the principles underlying a model based on probability theory is
differenl from the principles underlying models for crealing scale models
such as model cars or models of buildings. Helping students understand the
similarities underlying these uses of models should set the stage for appre
ciating their differences as wetl.

The General is Missing

A follow"n adventure to Working SMART is designed to reinforce the idea
of creating models and SMART Tools. plus help students understand the
value of symbolizing their models and using algebra as a tool for commu
nication. Called The Gelleral Is Missing. this adventure also features young
Larry, Jasper. and Emily, plus Larry's Grandpa. Early in the adventure
Grandpa introduces students to a code used in Ihe revolutionary war and.
in the process. does some "embedded teaching" about algebra. He has Emily,
Larry. and Jasper plot two functions. cuI out the space in the middle of
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them, and use Ihe cutout as a stencil to place over a message he has written.
The stencil reveals a secret message Ihal he wants them to see.

Young Larry. Jasper. and Emily evenlUally leave Grandpa's workshop
and three shady characters enter. They want Grandpa's secrel invention and
demand that he come with Ihem. The movie shows scenes of Grandpa being
blindfolded and occasionally peeking out of his blindfold 10 record relevant
dala (e.g., speed limits and how long they tra\'cled at these speeds; time of
day relative to sounds such as an air raid siren: etc.).

When the shady characters get to their hideout, Grandpa convinces them
that he must continue to communicate with the children or they will become
suspicious. He needs 10 send a set of algebra problems for them 10 work on
the next day. Grandpa disguises his messages as algebra homework and at
tempts to tell the children where he is. However, one of the characters has
taken his notebook and he cannot remember all the data. He decides to send
a general message that helps the children create SMART Tools.

The challenge for students in the classroom is to construct SMART Tools
from Grandpa's algebra messages. Examples of the information they receive
is shown in Fig. 8.15. SlUdents learn that Gmndpa will send additional data
later. When he does, they need to use their SMART Tools to delermine as
quickly as possible where Grandpa is on the map.

The solution to this adventure again requires students to create SMART
Tools in order to respond quickly to final data to be sent by Grandpa. How
ever, in this case students must begin to understand algebraic notation in
order to consiruci Iheir SMART Tools. Extensions to this adventure will
continue 10 help students model events in terms of functions and represent
them symbolically as well as visually. Pilot data suggest that the advenlure
helps students develop Ihe idea of algebra as a language for communicaling
important mathematical ideas.

We are just beginning to create the third Jasper advenlure in Ihe algebra
series. It will probably become Ihe middle one in the series because we have
found Ihat students need help in understanding the concept of rate. Our
ultimate goal for the three Jasper algebra adventures is to provide a foun
dation for Ihe formal study of algebra that enables SlUd.:nts to understand
whal they are doing and why.

OVERALL SUMMARY AND CONCLUSIONS

The focus of our discussion has been on the goal of facilitating mathematical
thinking in middle school students. We approached this topic by discussing
important changes in our LTC's thinking about the nature of mathematical
thinking, and we organized our discussion into four temporally ordered
phases.
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Phase 1. Making Word Problems Meaningful

BRANSFORD ET AL

We found Ihal students were failing to comprehend even simple word prob
lems and. instead. were simply looking for key words that would tell them
whether to add. subtract. multiply, or divide the numbers provided in the
problem. They used all the numbers in problems. even those Ihat were clearly
irrelevant. Our approach to this problem was to provide visual support for
unde~tanding word problems; for example. we taught problem solving in
the context of relevant scenes from Raiders of the Losl Ark (Bransford el
aI., 1988). The findings were very promising, but we needed to extend the
range of problems to be considered. Therefore. we expanded our work to
The Rirer Adrent/lre protOlype and. eventually. to the Jasper Series.

Phase 2. Helping Students Identify and Define
Their Own Word Problems Rather Than Always Rely
on Others to Define Them For Them

We worried that typical approaches to presenting students with well-defined
word problems would not help them learn to take complex. real-world situ
ations and generate their own problems. Because Ihis was an aspect of malhe
matieal thinking that seemed particularly important to us, we designed our
Rilw Adl'/:,nture prototype. and our subsequent Jasper adventures, so that
students would be given an oveiolll goal but had to define for themselves the
necessary subgmlls. plus find the data relevant 10 each subgoal. Our pretest
data on problem generation indicated that even students who scored very
well on traditional tests of mathematics achievement had a very difficult
time generating appropriate subgoals for themselves. However, after expe
rience wilh complex problems such as those used in the Jasper series. students
exhibited a very promising ability to transfer to additional. complex problems
(e.g., CTOV. 1992d. 1994).

Phase 3. Focusing More Directly on Mathematical
Concepts, Reasoning, and Communication

This phase of our work involved the opportunity to develop the Jasper
Woodbury Series. The mathematics educators and cognitive psychologists
in our eeOler began 10 work much more closely with one another. The NCTM
(1989) standards provided extremely useful guidelines for (a) choosing the
mathematical content 10 be taught, and (b) providing a vision of the kinds
of mathematical thinking we wanted to see in the studt:nts. We especially
focused on the NCTM goals of problem solving, reasoning, communication,
and making connections to a variety for disciplines.

Development of the first two Jasper advcOIures was modeled after the
earlier work conducted with Raiders and Tire River Adl'/:'ntllre-these had
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essentially involved the creation of interesting adventures with the mathemat·
ics tacked on arterv.tard. Subsequcnt Jaspers were developed by first consider
ing the mathematical content to be understood and then creating contexts for
making this information meaningful. Domains that were covered include
introductions to statistics, geometry, and eventually pre-algebra and algebra.

The development of Jasper provided numerous opportunities for us to
collaborate with classroom teachers who used various adventures with their
students. They suggested innovative ways to use Jasper, including using it
as a context for parents and others to try their hand at problem solving
while being guided by the experts-the students. We were also able to conduct
a number of studies on the effects of Jasper on students' attitudes toward
malhematics as well as their ability to solve problems and communicate their
ideas (e.g.• CTGV, 1992b; 1992d; 1994).

Opportunities to collaborate with classroom teachers also helped us un
derstand the chalJenges of working with open-ended materials such as Jasper.
Students' questions frequently took all of us---our research team and the
teachers-Io the edge of our knowledge of mathematics. This prompted us
to create a number of suppons for teaching, including teaching manuals to
accompany each adventure, an interactive disc showing ways to teach Jasper
in the classroom. and video-based tools that help make important mathe·
matical concepts understandable both to teachers and students. We also de
veloped our SMART programs, which represent ways to break the isolation
of classrooms by inviting teachers and students to tune into programs de
signed to help them reflect on their own work, and revise when necessa.ry.
as they solve various Jasper adventures (CTGV. 1994). Data indicated clear
advantages for using Jasper adventures by themselvcs. but noted that they
were even more valuable when used in the context of SMART (Barron et
al .. 1995).

Phase 4. Taking Jasper to a New Level by Focusing
on Powerful Mathematical Ideas

The fourth phase of thinking about mathematical thinking is one that we
entered only within the past year. and lind extremely exciling. It involves
attempts to move the lhinking of students, teachers, and many members of
our research team to a new level of mathematical competence and under
standing. The goal is to help students understand mathematics at levels of
abstraction Ihat are well-known to mathematicians. Ideas at this level are
populated by concepls such as ratcs, proponions, and functions.

A major challenge for our research team has been to find ways to help
students acquire abSlfact mathematical knowledge in a manner that is mean
ingful. The Jasper pre-algebra and algebra adventures are designed to help
students develop the idea of creating mathematical models of situations (e.g.,
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by thinking in terms of functions) and then contcxlualizing these models to
create SMART Tools Ihal make problem solving efficient. As particular
models and SMART Tools are adapted 10 a variety of situalions involving
lhe same concepl (e.g.. rales, proportions). we hope to help develop an ap
preciation of the power of these concepts. The goal is [0 help students. teach
ers. and ou~h'es develop the habits of mind of mathematizing the world
by thinking in terms of models and the creation of SMART Tools. StudeOlS
move from visually based tools to computer tools that are symbol-based.

THREE MAJOR THEMES

The opportunity 10 reneet on our Center's path of development during the
P.1st 7 years suggests three major themes thai are relevant to thinking about
malhematical thinking.

Variable Views About Mathematical Thinking

First, what is meant by mathematical thinking varies greatly among indio
viduals. To many students, the definition of mathematical thinking is re·
stricted 10 the use of numbers and fonnulas to find answers to specific prob
lems. and to the memorization of mathematical terms. There is little emphasis
on inquiry, creativity, problem finding and pattern finding. There is little
emphasis on thc fact thai. by mathcmatizing aspects of the world, one can
discover systematicity across a widc variety of seemingly different situations.
There is little opportunity to expericnce the excitement that accompanies
discovcry of the usefulness of powcrful mathematical ideas.

In our early work described in the first section of this chapter, we noted
that many students simply looked for key words (e.g., "times") in word prob
lems and used these to select a mathematical operation to use on all the
numbers in a problem. Similarly limited views of mathematical thinking were
discovered when we worked with students in the context of developing the
Jasper triplcts for statistics, geometry, and algebra. Our interviews on sta·
tistics suggested that middle school studetlls had little idea of the process of
taking a systematic sample of cases in order to make estimates about a larger
population; instead. they kept viewing efforts to contact individuals about
their opinions as efforts to advertise. Similarly. in our work on geometry we
found that most students had memorized definitions of geometric terms (e.g.,
the definitions of a line. a point. or acute and obtuse angles) but had little
or no idea of what geometry was used for. In our work on algebra we saw
an emphasis on symbol manipulation. but almost no understanding of what
these symbols represented and how they could function as powerful concep
tual lools. Throughout all our work. we saw a great deal of anxiety with
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respect to mathematics. This anxiety is also evident in a large number of [he
nonmathematics majors we sec at the college level. It is unfortunate, and it
IS unnecessary.

In many cases studenls' limited views of mathematics were quile similar
to their teachers' views. Many middle school teachers have not had the op
portunity 10 explore mathematics from the perspeclive suggested by groups
such as the NCTM (1989). Their views are derived primarily from their ex·
perienccs as sludems in mathematics classes. As nOled earlier, many of the
nonmathematidans in our center were in a position similar to the middle
school teachers. Our views of mathematical thinking were restricted because
that is the way we leamed mathematics in school.

Helping People Change their Views
About Mathematical Thinking

A second major therne lhal emerges from our experiences is that the task of
changing people's understanding of mathematical thinking is a daunting
challenge. We know this from our own personal experiences as well as from
our research. The nonrnathematicians on our learn (the "intelligent novices")
have repeatedly expressed appreciation for lhe opportunity to work closely
with mathematics educators and observe firsthand their approaches to prob
lems. Similarly, the mathematics educators report having benefited from the
opportunity to interact with "intelligent novices" and see whal it takes to
make malhematical concepts meaningful to "outsiders:' Changes in lhinking
about mathematical thinking have occurred for members of both groups.

Although it is hard to believe we were so naive. in our early days with Jasper
we tended to assume that the adventures alone would be suffieienllo change
students' views of the nature of mathematical lhinking. Indeed. we have
evidence that students who used Jasper acrQss the course of a school year
increased their appreciation of mathematics and their willingness to tackle
complex problems (CTGV, 1992d). Furlhennore, we have added to Jasper a
number of scaffolds for students and teachers such as "embedded teaching,"
"video-based Icaching tools." and SMART progr.uns Ihat are wrapped
around Jasper adventures. Each of lh~ addilions to Jasper has helped the
teaching and leaming thm takes place in classrooms. Nevertheless. we still see
that environments such as Jasper can be used very differently depending on
the beliefs of Ihe leachers (CfGV. 1992e, 1994). Without changing teachers'
beliefs in ways that impact the classroom norms that are created (e.g., Cobb,
1994). innovative curriculum malerials fail to achieve their polential.

We have also learned Ihat the idea of "belief' is more complicated than
appears at first glance. Many teachers seem willing to believe in the idea of
expanding students' views of mathematical thinking so thai it includes ideas
such as problem solving, reasoning. conununicalion, and making connections
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to other disciplines (NCfM, 1989). The "inlelligent novices" on our research
team began with similar beliefs. Nevenheless. humans have a strong tendency
10 assimi/are infonnation to their existing knowledge or schemata rather than
change their schemas to accommodate 10 new knowledge (e.g.• Anderson,
Osborn. & Tierney. 1984; Bransford. 1984). Therefore. il is easy to think
one is following recommendations such as those in the NCTM standards
and yet. in reality, be far away from the intent of the authors of those stand
ards. We ~liel'ed we were being consistent with the NCTM standards during
each of the four phases of thinking aboul n1mhematical thinking Iha1 we de

scribed in this chapter-and it seems clear that our thinking about mathe
matical thinking still needs 10 (and hopefully will) evolve.

We know from other literatures (e.g.. Bruer. 1993) that the process of
conceptual change is not easy and rarely (if ever) instantaneous. Our expe
riences in working with teachers. and our personal experiences of change as
we have worked on Jasper, testify to this fact. Conceptual change requires
ongoing opportunities to interact with members of a broader community
and reflect on those imeractions. The establishment of professional "Iearning
communities" is something thai we now view as "necessary and not just
nice" (e.g.. Barron et .11.. 1995: CTGV. 1994).

We believe we have been successful in making some "intermediate" levcl
changes in Ihinking about mathemllticallhinking, and in helping teachers and
students also make these changes. Our work in geometry represents a case in
point. Our data indicate that students and teachers have a much greater
appreciation of uses of geometry after working with the Jasper Geometry
adventures (Zech et al.. 1994. in press). Instead ofsimply memorizing facts and
performing procedures such as measuring angles. students and teachers have
begun to understand how to use geometry for "measuring the world." Similar
insights have occurred with respect to uses of statistics in everyday life (e.g..
Barron et al., 1995; Schwartz et al.. in press).

Our work in the area of algebra represents a change in thinking about
mathematical thought that has implications for the way we view the entire
Jasper series. The idea of focusing on the importance ofcreating mathematical
models. and SMART Tools based on these models. can be used in each oflhe
Jasper adventures and beyond. It represents a change in thinking both by the
mathema.tics educators in our group as well as by the "intelligent novices."

Our Concept of Mathematical Thinking Is Still Evolving

The third theme that emerges from opportunities to reflect on the develop
ment of our center's thinking is that our efforts to define and promote mathe
matical thinking are still evolving. Our current emphasis on SMARTTools
is helping us focus on making abstract mathematical concepts meaningful
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and useful to students. We are not exactly sure where this level of thinking
will1ead us: nevertheless, it seemS to be an aVCtltll' that is valuable to pursue.
We also believe that the llvailability of new technologies (e.g.. CTGV. in
press) presents exciting opportunities for changing the n'lt ure of how studellts
think mathematie'llly. For example. a host of mathematical concepts such
as rate and proportion can now be represellled (~rn(jmi('(tlly rather than stati
cally. hence making thcm easier to understand. Similarly. computer tools
make it easier to link symbolic with dynamic visual representations. and to
provide simulations of complex mathem<ltical models of situatioll$ (e.g..
CTGV. in press: Zcch & Bransford. in press).

Overall. our experiences with changes in our own thinking make us aware
that we still lwve a great deal to lellTll. Like the students and teachers with
whom we work. we need the advantages of ongoing conversations about
mathemllticalthinking and how to enhance it. Toward that end. we are pos
ing a World Wide Web site (http://peabody.vanderbilt.edu/projectslfulldcd/
jasper/Jaspcrhome.html). The site provides more information about Jasper
and will ultimately become a place to discuss issues such as creating mathe
maticaltools. SMART Tools. and problems for testing the mettle of those
tools. We arc hopeful that this site can help generate conversations that will
allow our group. and olhers. to move beyond the "ill1ermedi:lle-level"
changes in mathematical thinking that we have experienced. As a community.
we have the chance to introduce students to a concept of mathematicallhink
ing that is much more cxciting and appealing th:lI1 the ones that many of
thcm. and many of tis. have encountered in school.
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AESTIfETlCS

What is "Mathematics"? Is it Ihe science of patterns that is motivated through
observations of nature. or is it the body of knowledge derived from pure
axiomatic logic, aspects of which have applications in nature? Is it manmade
or are individuals simply uncovering the work of a higher deity? Is mathemat
ics intuitively driven or is it logically driven? Is abstraction an inherent part of
it or is it simply Ihe medium of its conununication? Are proofs of tbeorems
time dependent or do they stand as absolute truths? Does it stand on a base of
Aristotelian logic or can mathematical statements have a variety of meanings
and degrees of truth? Are the demarcation lines as to what is mathematics as
opposed to physics, economics. linguistics. or even astronomy defined clearly
enough so that one could classify selected pages of textbooks from those
disciplines as belonging to those disciplines? Questions like these soon lead us
to the unsettling conclusion that there is no definitive answer as to "what is
mathematics and what is not." When asking "what is mathematical thought,"
however, the situation gcts a little better, and a liule worse.

For most individuals the nature of mathematics is formed from the
impressions of its facets studied in the school curriculum. and through one's
interactions with the teachers who tried to unlock their mysteries and explain
their interconnections. Those facets consist of arithmetic, algebna, geometry,
trigonometry, and calculus. For school mathematics it is irrelevant if mathe-

253



254 DREYFUS A..'JD EISENBERG

TABLE 9.1
T,,'o SoIulicns 10 Ih~ Same Problem

B

~12 matches wen: played in the fiTS! roond.
256 "-ere plll}'cd in roond IWO. 128 in round
!hr«.... So lhe number 0( matche5 played 10

delermine IlK- winner I!IJSI be: 512 .. 2S6 +
118 .. 64 .. :\2 .. 16 .. B -+ 4 .. 2 ... 1 '" I02.l

1024 players ""err rnrollcd in the lOUmBfIIC'nl.
Then: ....as only one: .... inner. so then: well'
102~ 1oK1'$. Each~ Iosl euetly one
malCh. so then: had to be 1023 malc!lts 10
determine the winncr.

malics is discovered or uncovered, ifit is based on Aristotelian logic, or is based
on some other type of logic. The curriculum consists of mastering certain
notions and different types of problems. and many of them are not easy. One
can "do" mathematics without being able to define what "is" mathematics.
Mathematicallhought is therefore simply the type of thinking process used in
doing mathematics. Thus, on the surface things seem to be a little better
mathematical thought has been defined on a notion that is ill-defined. Delving
deeper. things get muddled pretty quickly, for some thought palterns seem to
be more mathematical than others. Forexample. suppose there are 1024 tennis
players in a singleelimination tournament. How many matches must bep13~
to determine the winner? Suppose A and B reason as in Table 9.1.

In another example. assume thai there are four numbers among which
you are to find out the largest on the basis of the following information:
When the numbers are summed up in threes, they add up to the results 10,
II. 13. and 14 respectively. Person A would presumably set up a system of
four equations in four unknowns and use one of several well·known algo
rithms to solve that system. However. B might reason that when we sum all
four results each of the original numbers occurs three times in this sum;
dividing it by three. we ....ill thus get the sum of the four original numbers
(16 in our numerical example). Now subtract the smallest of the four results
(the one from which the largest number is missing) to get the largest number
- 6 in our example.

The same solution is reached by two different routes of thought. but the
reasoning of B seems to be much more elegant than that of A. The method
used by A is a pedestrian route, but the simplicity of the argument used by
B has a touch of class about it, a certain aesthetic appeal-and for many
professional mathematicians, that is the essence of mathematical thinking.
Henri Poincare put it this way:

Mathematicians auach great importance to the e1egana: of their methods and
their results. This is not pure dilettantism. What is it indeed that gives us the
feeling of elegana: in a solution, in a dcmonslration~ It is the harmony of the
diverse partS. their symmetry. their happy balance: in a word it is all that
introduces order. all that gives unity. that permits us to s« clearly and to
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comp~hend at once both the enscmbleand the details. But this is exactly what
yields great resulls. (cited in Moritz, 1914, p. 97)

G. H. Hardy (1940) put it much more succinctly: "The mathematician's pat
terns, like the painter's or the poet's must be beautiful" (p. 25).

There seem to be two schools of thought: To one school, mathematical
reasoning deals with much more than the thought patterns needed to solve
particular problems. It deals with a way of thinking that can be assessed by
the subjective metric of aesthetics. The minute aesthetics enters into the pic
lure, however. assessing mathematical thought gets complicated. for a mathe
matical structure or solution must not only "do the job," it must do it ele
gantly. The four color problem (any planar map can be colored with exactly
four colors in such a way that adjacent countries have different colors) was
solved with the aid of a computer by analyzing a huge number of configu
rations. However, this method of proofcaused an uproar in the mathematics
community, for it did the job but it did it in a crude, inelegant. brute-force
sort of way. This method of proofshook mathematics to its very foundations,
but the role of aesthetics as being at ils core has survived in spite of it:

[ am much less likely now. after their work. to go looking for a counter-example
to the four color conjecture than I was before. To that extent, what has
happened convinced me that the four color theorem is true. I have a religious
belief that some day soon, maybe 6 months from now. maybe 60 years from
now. somebody will write a proof of the fOLlr color problem Ihal will take LIp
60 pages in the Pacific Journal of Mathematics. Soon after that, perhaps 6
months or 60 years later, somebody will write a four page proof. based on
the concepts that in the meantime we have developed and structured and
understood. The result will belong to the grand glorious architectural structure
of mathematics. (Halmos cited in Albers. 1982. pp. 239-240)

Mathematical thought. therefore, is much more [han the abilities utilized
in absorbing some piece of mathematics or in solving some mathematical
problem; it is closely associated with an assessment of elegance. For those
in this school, mathematical thinking "reneets ... the desire for aesthetic
perfeclion" (Courant & Robbins, 1941, p. xv). and ils hallmarks are "sim
plicity, intricacy and above all, logical analysis" (Halmos, 1968, p. 30).

Some teachers believe they know how to instill in students the necessary
criteria against which elegance can be measured. For example, there is a
compendium of school-level problems with several solution paths, one of
which is considered to be much more elegant than the others. Juxtaposing
the solution paths and comparing and contrasting them is a classic method
for developing an appreciation for the aesthetics and power of mathematical
thought. Proofs of the irrationality of-fi (Harris, 1971) and the infinitude
of primes (Davis & Hersh. 1981) are two of the more popular exercises used
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to introduce students to the aesthetics of thought. Members in tht: second
school of thought agree that there are such classic proofs and cltcrcises 10
instill in students 11 sense of aesthetics and the power of mathematical
thought, but submit that il is irresponsible to even attempt to leach such
things 10 students because most students seem to be completely ignorant of
even the most basic problem-solving skills.

Members of the second school readily admit thai their teaching and the
curriculum have failed miserably to instill even a modicum of mathematical
thinking in the overwhelming public majority. Lim of "simple" problems
that no one seems 10 be able to do are becoming so long that il is embar
rassing 10 continue the practice of making them. Forget aesthetics, forget
elegance and juxtaposed solutions paths-so many students are deficient in
so man)' simple skills that we are in the midst of an epidemic of ignorance
running wild. Orton (1992) has bemoaned the fact that there are high school
students in the U.K. who write the number four hundred and twenty-seven
as 40027, and they have no idea why their answef$ are incorrect; Gillman
(1994) has bemoaned the finding th,lt 97% of the more than a quarter of a
million U.S. high school students queried could not correctly answer the
following question:

Under it proposed income tax, you pay nothing on income up 10 $10,000.
then 6% on an)' excess over SIO,OOO. The elTective taJl. rate is the percenl
of the income that you pay in tax. Can this be 5%1 Can it be 6%1

Mason, Burton. and Stacey (1982) have complained that students don't know
how to determine what to do first: take a 20% discount on an item and then
pay a 15% tax, or pay the tax first and then take the discount. Selden, Selden.
and Mason (1994) have lamented our failures al the collegiate level with
their finding that el'en good ('al('u/us sllldents mnllOi do II01rroutine problems.

The lists enumerating our failure to get students to solve problems in even
pedestrian ways seems to be never ending. Perhaps the highest level of
mathematical thoughl does deal with elegance and aesthetics. bUI should ....'C
be concerned with aesthetics where there is the mountain of data detailing our
miserable performance in getting students to solve even the simplest of
problems and which society has legilimi7.ed by making it "socially acceptable"
(0 claim that "I was never very good in math" and "Math is not for me"?

In the following discussion. problems from different areas of mathematics
are discussed and used for illustrating particular facets of mathematical
thinking. These problems are collected in Table 9.2 not only for convenience,
but also to give readers a chance to analyze their own mathematical thinking
before reading on.

In this chapter we identify scveral facets of thought thai are common to
both characterizations of mathematicallhinking. At the base of our discus
sion is the premise that within each characterization most everyone can be
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TABLE 9.2
Some Matl1c'matioll Probkms
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t. tntO how many rtSions. at mosl. can fi~e planes split E.J (lhe ordinary. lhrtt·dimensimal Euclidean
spocr)'!

2. Gi\'cn the numbers I. 7. 1J. 29, 3 I. 4J. S7. ~9 and 61. is it JX>Ssibit to cil<lOSl: fi~c of them which
sum to 18S'!

3. Whal is thc probabilily lhat an arbitrarily pided intcger is di>isibk by thfN. fivc or 'vven?

(al"'IXbl"'IX~l... l)
4. Pro~ lhal abc ;:0; 8.

5. Gi.-.:n a line and 1...·0 poims A. B on lhe oarne sWc of the line. find the shortCSt path from pollll
A 10 8 via a (any) point 00 the line.

6. Tom ....ent ra- two runs. one of J and me of 5 miln. Fa- the J·mik run he nttdro 11 minutes.
How tooa: did he need for the 5·mik. run. if he ran slower lhan Q'l the J·mile run by half a minute
per mile?

7. Gi~en two intCTRctina:lines in lhc plane. find the ,rometric locus of all points Ihe sum of ...'hosc
dimnccs rrom lhc 1"'0 tines eQllais a a:i,"CIl h:nglh.

8. In a parking Iol thcrc an: only bicycles llI1d cars: if thcrt are a lotal of 20 tires in lhe 101. how
mlll1y bicycles llIld how many cars are lhere?

trained to think in a mathematical way, and that the best way to achieve
this is through problem solving. Specifically, we ill ustrate the facets of mathe
matical thinking that deal with analogy, structure. representation, visualiza
tion. and reversibility of thought. We also comment on the role sclf<onfi
dence plays in mathematical thinking and on several schools of thought as
to how mathematical thinking should be developed. As is so often the case,
however, the whole is greater than the sum of its parts, and thus we attempt
to show in the concluding section that these facets add up and combine to
increase the flexibility of one's malhematical thinking patterns.

SELF·CONFIDENCE

Sdj-(onjirlt:lt(I' bl/ill 011 SU'"l"(',u is 11Il: mOSI ImporllU" obje.:II ....• (lj 11u: mmh<~mll/('s

mrrirnlulII.
-·'E\·erybody Counts.~ 1989

Tbl! purSllil ofgOQ//f,...!ilrg in l'dumliOIl is al/l'ad <'/1(1. Till' way 10 I rill! sdft:slt:r.'m
is IhrQugh rt:rlll/('hll'l"t:II1e1l1 ul1Il rl'a! It:urllillg.

-KraulhanmlCr. 1990

These quotes reflect our firm belief that everyone. to a large extent. can be
taught to think mathematically and that the way to do this is through prob
lem solving. There are at least two successful schools of thought on how



258

Copyrighted Material

DREYFUS AND EISf.,'lBERG

m:uhematical thinking can be developed. One advocates intcnsc competi
tion-this is Ihe heart of the Moore Method: the other uses Coopermive
Learning as its main teaching techniquc. The two approaches may at first
seem to be diametrically opposite but they are. in fact. related.

The Moore Method

There are many ways of teaching mathematics. The "ch:llk-and-talk" method
is probably best known. but it forces students into a receptive and passive
rolc: Students take notes from a le:nned professor and digest the COnlent in
them. They absorb knowledge and oftcn apply it through well-designed prob
Icm sets. but they seldom create knowk-dge themselves. Essentially. students
become receptive validators of inforll1:l(ioll created by others. Students cer
tainly do internalile the concepts. but it is a digestive process r:lther than a
cremivc one. The Moore method of teaching mathcmatics is built from a
differcnt premise.

R. L. Moore (1882-1980) was a professor of mathematics at the University
of Texas. His style of Icaching was unique and very. very successful as
evidenced by the cadre of individuals hc dcveloped who surged to the forcfront
of 2Oth-ecntury rnalhematics. His tcchnique was to pit one student ag.1.inst
another in a competitive situation. He would present tostudents the definitions
and the hypotheses of theorems. and they thcmselves would construci appro
priate conclusions and proofs of the statements. In other words. the students
under his tutelagc built mathematical structures day by day. yC:lr after year.
Moore had his students promise ,hat thcy would never look anything up in
tcxtbooks or in journals. and that they would address all of their questions on
thc material 10 him. and to him alone. His thesis was that progress and creative
abililies are nurtured through competition-nol friendly eOlllpetition-b",
cUI·throat competition. The easiest way to gct a person to solve a problcm is
to tell him thai an (unn3mcd) dunce (of ;mother class) solved it! Duringc1ass
Moore would call on student X 10 present a particular problem. If others in
the room had not yet solved the problem themselvcs. and they did nOI wish to
sec the solution. they could leave thc class and returtl whcn student X had
finished his prcselll:ltion. Moorc's premise was that mathematic,ll progress is
a result of intense competition, and th:ll confidence in one's ability is a result
of onc's malhematical progress. In other words. there is a symbiol ic relation
ship between progress :llld confidence. 51 range as this might sound. the system
really worked-at least for Moorc'ssludents. Forexamplc. Mary Ellen Rudin.
by her own admission, was an ilverage student. However. she fell under
Moore's tutelage and went on to oc'Come onc of the leading topologists in the
United States. In an interview. she Slated:

'·Ie built up your ego and your I:ompclili\'cncss.... I had my l:onfidence built.
,1Od my confldcnce was plcnt)' strong. .. He built )'our confidence tb.1! you
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could do anything. No matter what mathematical probkm )'OU wc-re faced
with you could do it. I ha\'C that total conndcncc to this day. (Albers & Reid.
1988, p. 122)

The Moore method is built on the Chinese proverb '" hear, J forget; I
see. , remember; I do. I understand'" Moore simply had his students con
struct mathematics-something that most teachers do not even try to get
their students to do. For most of us, we are content if students can understand
the mathematics, but many of us believe that to have them construct mathe
matics is out of the realm of their ability. This. as we see later. is nonsense.
One reason we hold these views is thaI few of us have created mathematics
ourselves, and another reason is technical: Moore dealt with highly motivated
graduate students-we see unmotivated undergraduates or high school stu
dents with deeply ingrained inferiority complexes with respect to their mathe
matics ability. As we see here. both of these can be overcoOlC.

Humanizing Moore: Cooperative Learning

Moore was successful in producing research mathematicians. but his method
of pitting one student against another is rather repugnant, at least to many
in the education field. Therefore. several intense efforts were made to hu
manize him. One of the more successful of these approaches was initiated
by Neil Davidson (1986) of the University of Maryland-and this turned
into a new international educational movement called "cooperative learn
ing." Davidson developed a teaching method over a 25-year period that is
built on Moore's principles. but which factors out the competitive element
of the Moore method. Davidson divides classes into groups of four. poses
definitions and theorems to the groups. and then stands back to let the stu
dents develop the solutions themselves. The role of the instructor is drastically
changed. from being the presenter of information to that of acting solely as
a resource individual. Davidson has a long list of guidelines to aid the in
structor in deciding when he can join in with discussions of the students and
when he should remain quiet. but the idea is that students construct their
own mathematics. Davidson is interested in the mathematics as .....ell as the
social dynamics of the working sessions. but a serendipitous outcome of his
teaching style is that students have their self-confidence bolstered. Indeed.
they often create novel proofs of theorems. One of us personally observed
a group of average students in Davidson's class construct the proof that the
limit of the product of two funclions is equal to the product of the limit of
the functions (assuming that the individual limits exist). This is a very difficult
theorem and to think that these stlJdents did this with only the barest of
mathematical machinery allests to the power of his methods.

This idea of cooperative learning is relatively new in mathematics, but it
seems to work. Treisman (1992). for example, noticed thai many Asian
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students would do their mathematics together in small groups. whereas Black
American sludcnrs would allempt to do all of their work alone. For the Asian
students. the mathematics was an extension of their social life; for the Black
Americans it seemed to be separate from their social life. Treisman developed
a program that encourages Black American slUdents 10 talk mathematics, to
bring mathematics inlo their social milieu. His method has been so successful
that it is being adopted throughout the United Slates (Jackson. 1988).

REASONING BY ANALOGY

An extremely important key in developing mathematical thinking ability is
to train oneself to look for analogies. "Problem X looks like problem Y and
Y was solved by concentrating on property Z; therefore. perhaps there is an
analogy to propeny Z in Problem X which acts like Z such that .. ." is a
heuristic of problem solving that is cumulalively unique to each individual
and develops over lime. However. one must be trained to look for such analo
gies and there are general kinds of questions one can be laughllo ask oneself
when faced with a new problem or silUation.

A tremendous literature exists on Ihe heuristics of problem solving but
George Polya (1887-1987) is considered the modern day father of it all. He
was born in Budapest and was an eminent mathematician. first at Ihe Swiss
Federal Instil ute in Zurich (from 1914to 1940) and thcn at Stanford until his
death. He was a classical mathematician working in the areas complex
variables and combinatorial analysis. However, throughout his career he was
always interested in how mathematics is done. how discoveries are made, and
how problems are solved. His reOections on this and his deep inleresl in
teaching gave binh. in 1945, to the book HoII' to Sob'e Jt. This is very much a
"how-to" book that stans off with a set of heuristics in the form of qucstions
and commands. What is the unknown? Do you knoll' tJ. relutedproblem? Find the
connection be/ween the mila {lnd the unknown. Drall'afigure. ... This book has
become a classic in the malhemalics education litcrature, and to those
interesled in the role of analogy, models, and metaphors in science and
mathematics. "How to Solve It," however. disavows an overall systemalic
theory for solving problems; to Polya. problem solving is an an, and what he
did was to lay down general hints as to how to develop it.

Over the years Polya wrote six books on thc heuristics of problem solving,
each extending the lone sel in HOlf to Soh-e It and laying bare the thinking
processes and the tangential Ihemes considered and abandoned in effecting
solutions to problems. Colleclively these books are case studies in how 10
attack a mathematical problem. but they do not present an overall theory
for problem solving-to Polya, problem-solving abilities should be nunured
in lhe SlIme way that skills in any other art form are nurtured. As such.
Polya's books introduce onc 10 the art of self-questioning. which is exem-
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plified by taking the student through various types of exercises; introducing
olle to tangemial paths, some taken and others abandoned, in effecting a
solulion and always. as his last step in the process, looking back and assessing
what was done. Throughout his books there are gems of wit that made wide
impact on teache~: "Work in letters. not numbers" (1945, p. 58). "If you
can't construct a figure, construct one geometrically similar" (1965, p. 9).
"Check only 'touchy' parts of an argument" (1945, p. 17). "Two proofs arc
beller than one" (p. 60). "Good problems, like mushrooms, grow in clusters"
(p. 64). "An idea that can be used only once is a trick. If one can usc it
more than oncc it becomes a method" (Polya & Szego. 1972, p. viii).

Polya was a master at exhibiting thinking in terms of analogies. If the
givens of the problems arc too restrictive, relax them. solve the simpler prob
lem. and then reason inductively to the more complex case. Problems in
3·space often have counterparts in 2-space: and problems in the plane often
have counterparts on the line; solve these simple cases firs\. By using this
method of thinking on problem after problem, students seemed to learn the
heuristic of looking for analogies. We illustrate his method by discussing the
Problem I of Table 9.2: Into how many regions, at most, can five planes
split E, (the ordinary, three-dimensional Euclide.m space).

The solution is that a single plane cuts space into two pieces; two planes
can cut space into a maximum of four pieces and three plancs into a maxi
mum of eight pieces. Visualizing four planes and counting we might be able
to see that they can cut space imo a maximum of 15 separate pieces-but
visualizing five planes is much morc difficult and six or evcn more planes
seems to be beyond the realm of visualiz:ltion of most people. In the spirit
of Polya. let us look for analogies in the plane and on the line.

A point separates a line into 2 distinct pieces. Two points separate a line
inlo three distinct pieces: four points will separate it into five pieces and n
points will separate it inlO (n + I) pieces.

Now let us look at lines in a plane. One linc will separale a plane into
two distinct pieces. Two lines will separate it into a maximum offour pieces
because the second line can be positioned so as to cut through both parts
generated by the first line. Of course, the third line cannot be positioned so
as to cut through all four P;:lrts but only through three; thus, three lines will
separate the plane into a maximum of seven pieces; similarly, the fourth line
can be positioned so as to cui through four parts. thus four straighl lines
cut the plane into a maximum of II pieces. Continuing in like manner, a
pattern arises; one easy way to deleet this pattern is by organizing our find
ings imo Table 9.3 listing the maximal number of regions as it depends on
the dimension d of the space to be cut and the number n of poinlsllincsl
plancslhyperplanes that cut d-dimensional space.

In the second column of this table-thc column giving lhe number of
regions into which a plane is cut-every entry equals the sum of the entry



262 DREYFUS AND EISENBERG

TABLE V
111I0 How M:my Pans Do II Hyperplanes Divide d-Dilllrn$iooal SpilC't?

, I 2 J • ,
"0 , , , , ,
, 1 1 1 1 1, ) • • • •
) • , • • 8, ,

" A" " ", ,
" ,>, A"

" .. , A~ A~

above it and Ihc number fI of the line in which it occurs: 7 = 4 + 3, 11 = 7
+ 4. 16 = 11 + 5. This pattern allows one to easily continue column 2 ad
infinitum; it is, however, one characteristic of mathematical thinking to pUI
closure on such infinite processes by expressing them in a general manner.
This can be done and leads 10 A.!JI = 1 + ....; I) for the maximal number of
regions imo which n lines cut the plane. (The proof of the fannula for A:-..
is nOI difficult. but would serve no purpose here.)

Studying Table 9.3 more closely. we might now also be able to discover
Inc recursive pattern according to which all entries of the table can be ob
tained. Namely. each entry equals the sum of the entry directly above it and
the one to the len of that entry: that is. AJ .n == A....... l + A<l-I..... I. Therefore.
A~ == 8 + 7 == 15. A,,:: 15 + II =: 26 (this. we note. provides the answer to
the original problem). and A~, == 15 + 16 '" 31. Morc generally. one can
obtain fonnulas such as A)o =: I + 1Il.~' 'I. It is interesting to note here another
crucial aspect of mathematical thinking that has played a central role in the
solution process for this problem; generalization. Generalization and sim
plification are two aspects of analogy. Establishing analogies has led us here
to attack a far more general problem than we originally intended; namely,
into how many parts. at most. n hyperplanes cut d-dimensional space. We
have also found some statements that arc true but not casily visualized such
as "five three-dimensional spaces cut the four-dimensional Euclidean space
into at most 31 regions."

Finally, it is important to the mathematician to be very clear about whal
has been established rigorously, and what has not. It should be clear that
we have not proved the solution we gave to this problem. but we most cer
tainly have a better feel for it than before-and we obtained this feeling
through the heuristic of analogy. It is satisfactory to note that a proof of
the recursive relation AJ.n '" AJ_, + Ad_I ..... ' can be built directly from the
recursive relation itself by analyzing what happens when the Illh hyperplane
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is added to the d-dimensional space with n - I hyperplanes. The analogous
reasoning in Ihe special case of E) is: Imagine n - I planes are given in E)
cutting it into AJ.lI-I regions; now add an 11th plane: look at this new plane
as a two dimensional space E2; the number of regions Al..._ , inlo which this
E2 is cut by Ihe int~rsections wilh the n - I existing planes equals the number
of newly generaled regions in El • because these regions are ex.1clly the newly
introduced separations.

Polya maintained that by exposing students to many such problems. the
heuristic of looking for analogies will be internalized by the student and
I::xploited as needed. Whelher or nOI it is sufficient to "expose" sludents may
be doubted. and in the following sections some techniques are pointed out
that may help students to more actively impose a structure on problems and
observe analogous structures between problems. However, there is no doubt
that analogies are a powerful tool in problem solving. Moreover. psycholo
gists have shown that often new knowledge is also acquired through analogi
cal reasoning, be it Ihrough overt analogies or subtle ones (e.g., Gick &
Holyoak. 1983).

Indeed, we try to acconunodate anything new into existing knowledge.
and this is often done by making analogies. Although Ihe demarcation lines
between analogical reasoning and other educational conslructs that are used
to interpret "how" new knowledge is internalized by an individual are not
well defined, analogical reasoning also seems to playa major role in concept
formation, not just in problem solving. Statistics for continuous probability
dislributions are a case in point.

To slaft with a simple I::xample. lake the median. Given a random variable
V. the median can be defined as a value m such that V falls with equal
probability above and below m. If V is a discrete variable whose frequency
dislribUlion is known. m can be found by simply counting frequencies from
both extremes on the distribution until one gets 10 the middle. But how 10
find the median of a continuous probability density? For this we need to
understand what it means to "count" frequencies in the continuous case;
and it is here that establishing an analogy can help the student in building
the necessary generalization. This can be done by choosing to represent dis·
crete and continuous distributions in tnc setting in wnich they lire most alike;
namely, the graphical selling. Depending on the background of the students,
Ihe analogy can Ihen be carried out in more or less detail; in any case, the
analogy should help students understand that the frequency, which in a dis
crete probability distribution is represented graphically by 3n area in the
histogram, should be represented by a corresponding area under the curve
giving the probability density. From there to the median it is only a small
step.

If the students have previously understood how Ihe Riemann integral is
constructed as a limit of sums, the continuous probability density can be
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constructed. in the process of establishing the analogy, as a limiting case of
a sequence of ever finer. ever morc detailed discrete probability distributions.
This may help stress the difference between the value of the probability den
sity (which. as its name says, is a density) and the value of the discrete dis
tribution. which represents a frequency or, graphically. an area of a rectangle
(of width one-and that is where the confusion originates. becnuse for such
a rectangle the area numerically equals the height). By the way, we nOle that
a second analogy has surreptitiously crept into our argument; namely, the
one between Riemann integmls and probability dens.ities.

It is also worth noting that although we started from the simple case of the
median. the analogy wc have proposed reaches the very ground of the connec
tion between the discrete and the continuous case. and can therefore be used
asa basis for establishing many more notions in the continuous case, including
percentiles, means, variam:es, and standard deviations. On the other hand. it
should also be realized that students' use of these concepts in the continuous
case may rest on a rather superficial undcrstanding unless the analogy has been
established and understood in sufficicnt detail. Such detailed understanding
can not be expectcd in view oftbe superficial treatment of the analogy in most
general statistics books. In fact, more often than not, the analogy is not dealt
with explicitly at all but appears in examples. Under such conditions. students
cannot be expected [Q learn more than to mechanically go through the motions
in the continuous case as well, and confusions such as the one between
probability density and probability distribution are likely to occur.

Descriptive statistics has been used here as an example only. Analogies
are as ubiquitous in concept form.1tion as in problem solving. The transition
from the area of a rectangle [Q more general areas and to the notion of
integral (Dreyfus, 1987) is an cxample: so is the extension of the number
system from the natural numbers to the integers. rationals. reals. and complex
numbers (conservation of the properties of the operations), or the transition
from numerical to algebraic thinking: in effect, any gencralization or ab
straction necessarily uses underlying analogies. A deep understanding of
these analogies is apt help students make transitions in eithcr direction: from
the more general case to the simpler one. for example. when simplifying as
sumptions are needed in a problem-solving situation, or from the specific
case to the general onc in order to get a more encompassing result. In both
cases, the use of analogies adds flexibility to the students' thinking processes.

STRUCTURE

Structure is one of the main characteristics of mathematics. one that by its
pervasiveness in mathematics. and by its importance in mathematical think
ing. sets mathematics apart from other sciences. In mathematics, facts are
less important than in other domains; on the other hand. relationships be·
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tween facts. relationships between relationships. and thus struc(Ure, are more
imponant than in other domains.

It is a fact that 3 + 5 '= 8. It is a relationship between setS of numbers
that the sum of two odd numbers is even. This relalionship, as elementary
as it is, helps onc to come to grips with problems such as Problem 2 of Table
9.2; namely, given the numbers I. 7, 13.29,31,43. 57. 59, and 61. is it
possible 10 choose five of them thm sum to 188? In fact, if we also use the
additional relationship that the sum of an even and an odd number is odd,
it becomes clear that any sum of seven odd numbers must be odd. and thus
the problem has no solution.

These relationships impose some structure on the integers; for example.
even and odd numbers alternate, and this is true not only in those regions
with which we are fairly familiar (between -1,000,000 and +1,000.000. say)
but in any region of the integers; indeed, using the relationships for an ar
bitrary inleger N and I: if N is even. N + I is odd. and vice versa. (A similar
argumenl. using -I instead of I, works in the opposite direction, down to
minus infinity.) This structure can be further exploited: Pick any set of con
secutive integers; in this set there are as many even numbers as there arc
odd ones, or one more or one less. In other words. the number N, of even
numbers differs from the number No of odd numbers by one. at most. lbere
fore, if N, + No is even, they must be equal.

A slight generalization of this result allows us to make progress towards
solving far more general problems, such as Problem 3 in Table 9.2: What is the
probability that an arbitrarily picked integer is divisible by 3, 5, or 7? The
generalization structures the set of integers even more. Look at any set of
consecutive integers-every second integer in this SCi is even; that is. divisible
by 2, every third one is divisible by 3. every eleventh one by II. and every Nth
one by N. For the moment, let us assume that our set starts with I (or, more
generally, with 105· k + I '= 3·5·7· k + I for an arbitrary k; for other starting
numbers, slight corrections will be needed thal are of no inlerest here). Then
a third of the numbers in our sel are divisible by 3; a fifth are divisible by 5 and
a sevenlh by 7. We might think that we have solved the problem and that '1 +
1+ { of all numbers in our sct arc divisible by 3 or by 5 or by 7. That is nOt
quitecorre<:t. however. because numbers such as 15 and 21 play tricks Oil us
(.....ecounted them twice); but we h,l\'e certainly made some progr~s-wehave
found an approximate solution 10 the problem.

Note that we have so far exhibited and used only a small fraction of (he
structure that can be imposed on the set of integers; for example, .....e have
not looked closely at the multiplicative structure. We have not related to the
fact that the integers fonn a group. a ring. a vector space. and so forth.
These are some of the most important and most frequent structures occurring
in mathcll't..1tics. Groups, for example, are of central importance for the de
scription of symmetry. In fact. symmetry may be defined using groups.
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Suppose we are given a symmetric object for simplicity. Jet us think ..bout
a geometric object. such as a regular pyramid (tctrahedron). The statement
that the object is symmetric me,ll1S th,lI there :Ire certain motions (rigid trHllS
form,lIions: rotations and rdlectionsJ of the objcct that leave the object in
<l state which cannot be distinguished from the original slate. For our pyra
mid. one such motion is to rotate the pyramid by 1200 around an axis lhat
contains one vertex of the pyramid and is perpendicular 10 the plane con
taining the other three vertices. There arc other sueh motions-altogether
24 of them for the pyramid (12 of which arc rotations). Each of these motions
has an inverse motion that cancels its enee\: carrying out any two motions
in a row is equivalent to carrying out a differelll motion-one says that the
set of all motions is dosed. Closed ness and the existence of an inverse are
the two cruci,11 properties of a group. Therefore. the motions of a tetrahedron
form a group.

Similarly. the integers form a group if wc consider addition of integers as
the relcv<lnt group operation: Each integer has an inverse: namely. its neg.1.tive.
Indeed. adding the negative of a number c:lllceis the effect of "dding the
number; also. the integers are dosed. Adding a number and thcn adding
another number is equivalent to adding their sum. Other groups arc the (set
of) permutations of /I objects. :lI1d the rational numbers (with multiplication
as the group opcration. whereby the number 0 has to be omitted from the sct).

Therefore. the symmetry of ~tll object can be expressed economically. c1e
g:llltly. and efficiently by means of the mathematical structure of a group.
Vice vcrsa. a group always points to some inherent structure of Ihe object
described by that group. For example. cryst:lls have symmetry propertics
that point to their internal structure and to the manner ill which the :.ltOlns
,tre ,trrangcd within the crystal.

Identifying symmclries in" mathcmatical situation. describing the situation
by means of symmetries. and exploiting the symmetries is a useful problem
solving heuristic. For examph.\ in order to prove that ("'IXb~~IX""11 2: 8
(Problem 4 in Table 9.2) it helps to observe that the inequality is symmetric in
a. b. and c (i.c .. a and b can be exchanged without changing the inequality); in
fact. basco on this observation. it is sufficient to show th:tt I"· II 2: 2 because

•• •
from that impl ies Ihat also Ib-; 1/2: 2:Ind 1"-; II 2: 2. ,tnd thus the product is grcater
than 8. Problem 5 in Table 9.2 is cven better known: Given a line and two
points A. BOil the same side of the line. find the shortest path from a point A
to B via a (any) point on the line. An intuitive and cOllvincingsolutioll to this
problem reduces the problcm 10 the much easier problem of lillding the
shortest path from A to B' where B' is symmctric to B with respect to the given
linc: namely. the straightlinefrom A to B'. In fact. any path from A to B (via
the line) has a corresponding path from A to B' (the corresponding path is
identiCill from A 10 the line and symmetric with respect to the line after that).
Because the shortest way from A to B' is the straiglll one. the shortest path

Copyrighted Material
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from A to 8 is identical with the straight line from A to 8' until the line. and
is its reflection after thai.

Another class of symmetry transfomlations that are efficient in solving
problems are function transformations (Eisenberg & Dreyfus. 1994)--thal
set of procedures which allows one to generate from a graph given in a
Cartesian coordinate system. its translated and reOected images. Being con
scious of these transformations often helps one extend the range of problems
we are able to solve by several orders of magnitude. A frequent situation is
the need to associate a formula with a given graph; suppose we know how
to do that for a parabola whose vertex is at the origin, namely to associate
with it a formula of the form y := ax~. Using only the aforementioned trans
formations, we can then immediately associate the correct formula with any
parabola. Similarly. if we know that the Laplace transfonn of a given func
tion F(t) is the function f(s). we can lind the Liplace transforms of the entire
family of functions F.(t):= c""F(t) (for any number a}-it is simply the trailS
late f(s-a) off(s). (For more examples of the use of symmetry in mathematical
problem solving. see Dreyfus & Eisenberg. 1990.)

In sununary, being able to detennine structure, ofwhich symmetry is orten
an integral pan. is central to mathematical thinking. What is structured are
typically mathematical concepts. Structure comes from the concepts and thus
naturally imposes itself on any problem or situation that concerns an instance
of this concept. The structure tells one what actions one mayor may not
carry out. The structure develops one's appreciation. feeling for what could
be done to solve a problem. Recognizing structure in a given problem, im
posing structure on a situation. and exploiting this structure enormously in
creases one's mathematical power and flexibility. Identifying the same struc
ture in different situations helps one to solve problems by analogy.

Finally, structure helps memory. We recall structured knowledge far better
than unstructured knowledge; the prime example of this phenomenon is linear
algebra. which is a very structure<! topic. As a consequence. there is a centml
core of concepts and relationships that, once grasped and integrated, allow
one to organize the entire topic and conceive its unity. h can be observed that
once a student gets to this stage. the amount of knowledge involved seems 10
collapse; examples that were completely disjoint now tum out to be essentially
identical. Learning becomes a maner of adding minor additions to a well
structured body of knowledgc. and problem solving becomes a matter of
fitting the problem at hand into this structure (Harel & Kaput. 1991).

REPRESENTATION

In order to express any mathematical statement. concept. or problem. a rep
resentation must necessarily be used. Such a representation can be formal
or informal. visual or verbal. explicit or implicit. Any representation will
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express some bUI not all of the information. stress some aspects and hide
others. Some representations will be more adapted to express the mathe·
malieal structure in a problem or situation, others less. For example,
Thompson (1990) proposed a theoretical framework that allows one to struc
ture any word problem by means of a diagrammatic representations; we il
lustrate this by means of Problem 6 of Table 9.2:

Tom went for two runs, one of 3 and one of 5 miles. For the 3-milc run
he needed 17 minutes. How long did he need for the 5-mile run. if he ran
slower than on the 3-miJe run by half a minUle per mile?

To the experienced solver, Ihis problem is hardly more difficult than the
following simple proportion problem:

Tom Tun 3 miles in 17 minutes. How long would it take him to run five
miles?

To Ihe student, however. even to the student who can handle proportions,
the difference between the problems may be decisive; and the reason for this
is the failure to recognize the structural analogy between them. The infor
million in tho.': verbal slatement is fairly concise but not structured---certainly
nOI structured in a manner that could support a learner to progress with
the solution oflhe problem. The hint to look at a similar but simpler problem
(Polya, 1945), although cenainly correct, can only help those students who
recognize the structural analogy; the hint does not provide any tools to find
a simpler problem, An appropriale representation may provide such tools.

Thompson proposed the more structured representation of the problem
situation given in Fig. 9.1. This figure expresses the inherent structure much
more explicitly than the verbal statemenl, and it does Ihis by using several
conventions. some of which are easily understood by common sense, whereas
others are specific agreements; one such convention is to list (or graph or
sketch) all quantities that either occur among the givens. or occur in the
question, as well as any related quantities that can be obtained from the

."", I -,
..-/ ./ .........

distance 1 time 1 distan<:e 2 -,
FIG. ~.l. Structured problem ~pre5em~liQn. Ad~pled rrom Thomp'lQt1
(19901. Reprinted ...·ilh permission.
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givens or might lead to the answer. The key word in the previous sentence
is "related"! In fact. these quantities are listed not independently of each
other. but with connecting lines that express links between the quantities.
Further conventions could be to give different types of quantities (inlensive,
extensive•.. .) and different types of links (equality. multiplicative, additive,
...) different graphical appearance. but this goes beyond the scope of the
present discussion.

Although the general principles of this diagrammatic representation for
word problems-represent "all" quantities, connect related quantities, and
so on-are applicable to any word problem. the specific geometrical arrange
ment the specific connections in Fig. 9.1 have been chosen to stress the anal·
ogy between the two problems; indeed. the only difference betwcen them. in
this representation. is the type of link between speed 1 and speed 2; this link
is an equality in the direct proportion problem. but a comparison in the
more complex problem. Once one grasps that structural similarity, one prob
lem is only slightly more difficult than the other one.

As Thompson (1990) pointed out. other geometrical arrangements and
other links can be chosen to conceptualize and structure the simple propor
tion problem. Each of these other ways are more or less appropriate for
various different views and generalizations of the proportion problem. There
fore, the general tnol of diagrammatically representing word problems are
effective problem-solving tools only to a student who has leamed to use
them flexibly. playing with different possible arrangements during the prob.
lem-solving process. As Thompson pointed out further. an (appropriately
programmed) computer is an ideal leaming environment for such problem
solving because boxes call be moved around. connected and disconnected
again in a fle.'lible manner. (Sec Thompson. 1990. for a description of Word
Problem Assistant-an appropriate computer environment.)

For many problems. representations may be and often are generated ad
hoc; for many concepts. there is a standard representation and other ad hoc
representations may be generated when necessmy or useful; for other con
cepts. however. several different standard representations are commonly be
ing used in conjunction. The paradigm for this is the function concept with
its algebraic. graphical. tabular. and possibly other representations. Function
is an abstracl concept. and .....e cannot talk about a particular function without
using at least one type of representation, such as the graphical one and speci.
fying a particular representative; for example. the one given in Fig. 9.2.

This representative is partial: It shows, at best. the part of the graph of
the functiC'n for which -2 :s x :s 2: and even this pmt is shown with rather
limited accumcy. Another graphical representative of the same function, such
as the one for 2 :s x :s 4, would look very different. Although il is true that
accuracy can be improved and other domains can be chosen, each graph
will have some limitation of domain and of accuracy.
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.,
FIG. 9.2. A graphical rcprc
scrnativc.

Similarly, other represenlation have each their own limitations; different
algebraic representatives of the same function like l'{x) = 4 IJ-~_"I or f(x) = J
- i (x + jY each give (and hide) very different infonnation from each other
and from the graphical representatives. Therefore, a function cannot be fully
described in practice because Ihis would require all its possible repre
sentatives. A student should thus become acquainted with several rcpre
senlations and learn how to generate representalives with specific properties.
The use of functions in solving problems makes further demands: Just as in
the word problem situation described earlier, a functional problem may be
given in one representation but require another one. or even several other
ones to be sol~'cd. Therefore, flexible usc of the function concept in problem
solving neeessilates not only acquaintance with various representations but
the establishment of strong and detailed links between these represenlations
and the ability to translate and switch between tbem. Typical function prob
lems where such switching is necessary and an investigation of how students
learn to do this in a computerized learning environment have been reported
elsewhere (Schwarz & Dreyfus, 1995: Schwarz, Dreyfus, & Bruckheimer,
1990). We therefore limit ourselves here to a general description.

The complexity of the structure of the function concept makes learning
to switch representations difficult; think, for e:o;ample, of a trigonometric
function, which already has the properties of periodicity, frequency, ampli
tude, and phase. Now consider tbe algebraic formula for this function, a
graph with a particular window showing. for instance, a little more than
two periods, and a table listing the value of the function at special points
including extrema and zeros. Moreover, establish links between these three
representations, such as clarify to yourself where some of the points in the
table appear on the graph or how changing the amplitude would influence
the shape, position. or both of the graph. This is already a lot of information
to be dealt with. especially for students who lack appropriate mental struc
tures. However, all of this information may only be the background needed
to solve a problem connected to, say, the behavior of the graph of a given
trigonometric function under a change of frequency or of phase. As a con
sequence. students often limit themselves 10 working in a single rcpre-
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scnt;ltion: for example. evcn when they arc required to draw a skctch. such
as before integrating an absolute value function. they often ig.nore their own
sketch and thus f;,ilto solve the problem correctly.

II lllay be ,""orthwhile to nOll..' that the one and sallle structural aspect
may be expressed in vcry different ways in different represenlations. To
illuSlmlC this. let us consider a symmetry property of functions: namely.
evenness. As Ie;lchers and writers. we would now like to say what cvenness
is and then describe it in the graphical as well as in thc algebmic repre
sentation: this. however. is an impossible undertaking. precisely be...causc of
the abstractness of mathcmatical concepts and the naturc of rcpresentation.
All we call say in general tenns is that evenness is a symmetry property: as
soon as we walll 10 characterize this symmetry property more precisely. say
what Ihe symmetry is. we need to use (at leasl) one representalion, In Ihe
gmphical reprt.oscnt;uioll. evenness appears as symmetry of the functional
graph with respecl 10 Ihe axis of the funclion's values (usually the vertical
axis. orten denoted by y). Therefore. II graph is the graph of an even function
if together with any point in the right half·plane. the corresponding poi11l
in the left half-plane belongs to the graph. and vice versa.

In Ihe algebmic representation, evenness appears as synmletry of the
fonnula that is used to compule the funclional values with respect to a sign
change of the independent variable (often denOled by x). Bolh these descrip.
tions are efficient. correct, and complete: but in spite of Ihis. they do not. by
themselves. provide a fully salisfactory description of evenness. In fact. one's
conception of evenness is powerful only if one can call up and use in 11

problem-solving process the particular form. the particular representation,
which is useful in th;lt s.1me situation: and for thai purpose. one's conception
needs 10 include not only an understanding ofevenness in either representation
but also the link between them. This link may be establishL'd. for example. as
follows: If f(x) Slands for the formula in the algebmic representalion of the
funclion. then the gmph contilins exactly the points(x. f(x», Starting now from
the graphical representation, evenness means that together with this poi nt. also
the point (~x. f(x» is on the graph: it follows that f(-x). thc value of the function
at -x. is equal 10 f(x): that is. it is not sensilive to a sign change in the
independent variable x. With a similar argument. Ihe link Ciln be started from
the algebraic side and pulled Ihrough to the graphical side.

In summary. anyone representation rarely fulfills all requirements needed
to deal with 3 problem or situation. Usually. several representations need
10 be used. Mathematical thinking is more powerful when it uses more Ihan
one representation in parallel. and establishes links betwL'Cn them. This pro
vides flexibility and thus the links become overwhelmingly important. It is
in those properties that are representation independent. and in the relation
ships between the representations Ihat the mathematical power resides. Rep
resent;lIion-independent properties are at the core of the formalion of abo
stmct concepls (Dreyfus, 1991).

Copyrighted Material
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Visualization is frequently used and accorded increasing value in mathemat
ics. including research in mathematics. The reason thai this is not ....'C1I known
is due 10 the fact that. with very few exceptions. mathematicians do not
publish the (often visual) reasonings Ihal led 10 their resulls but the (propo
sitional) proofs that they constructed for these results. The sociological rea
sons for this are complex but attitudes toward visualization in mathematics
are Sinning to change. Van der Waerden is a case in point In 1954. he pub
lished a paper describing how he found a proof almost 30 years earlier. In
deed, although the 1954 paper describes how visual reasoning was used 10

obtain the result the 1927 proof does not show any hinl or trace of this
visual reasoning.

The recent publication of an enlire volume on visualizalion in mathematics
and malhemalics leaching (Zimmermann & Cunningham, 1991) by the MAA
is a more substantial sign for the added importance of this change in attitude.
Visualization is helpful in gestalting. in generating and managing the global
picture of a problem situation. As il has been shown in an earlier sections
of this chapter, imposing. analyzing. and exploiting structure is intimately
connected to such geslalting; and indeed. structure can frequently be visu
alized. For c'Iamplc. the aspects of the structure of the integers have their
visual representation 011 the number line. Similarly. symmetry as a structural
element has its equivalent in symmetry as a geometric property. Finally, func
lion transfonnations are by Iheir very nature visual. and using a visual ap
proach 10 understand Ihem has been Ihe topic ofa recenl paper by Ihe authors
(Eisenberg & Dreyfus, 1994).

Visualization and ill't.:1gery have played a role in several of the examples
dealt with in earlier sections. For example. Thompson's (1990) method for
representing the structure of word problems is based in an essential manner
on diagrammalically repn.--sented relationships between quantities. and the
diagrammalic representation of links between quantities is expected to lead
students to generatc corresponding links in thc (mental) imagery they asso
ciate with the problem. In this case. the diagrammatic. visual representalion
of a problem situalion can safely be expecled 10 support students·' problem
solving efforts. Thc analogy between thc discrete and the continuous case
for Ihe notion of median has been specifically built in thc visual repre
semation because thai is where Ihe analogy is most easily accessible. On the
other hand. the fivc planes problem discussed in Ihe section on analogies is
from the outset a geometric problem wilh a natural visual reprcscmalion.
In trying to solve the problem using this visual representation. even most
experienced mathematicians gct slOPped by the complexity of the geometric
situation: and it was the reorganization of the numerical and algebraic data
in a table (which. to some eXlent, also has a visual aspect) that allowed us
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to find the answer to the problem by numerical and algebraic means. Inter
estingly, the proof of the correctness of this solution. which was only hinted
at in our description. is crucially based on an inlerplay between the different
rcpresentations, and the links between them.

It thus seems that although visualization can scrve as a versatile 1001 of
mathematical reasoning for slUdents, it may also impose limitations on our
ability to progress beyond cenain limits imposed precisely by the visual rep
resentation of a problem situation. Research results are cOnsislent with this
observation: Visualization may help some of the weaker studenls to success
ful problem solving. Bondes...m and Ferrari (1991 l. for example, reponed
that even poor problem solvers adapt or invent new strategies in a geomelric
selting, but not in an algebraic onc. On the Olher hand. concrete. pictorial.
visual representations of the problem Situalion itself are often of limited
value; indeed, Presmeg (1986) has found that although children have lillie
difficulty in generating visual images, their imagery is predominunlly concrete
pictorial, with far less paltem imagery, and hardly any dynamic one. Because
pal1ern and dynamic imagery is more apt to be coupled with rigorous ana·
Iytical thought processes, Ihis means that studenls are likely to generate visual
images, but are unlikely to use them for analytical reasoning. In other words.
they need to be uained 10 use visually based analytical thought processes
or. for shon, visual reasoning.

To make the idea of visual reasoning more concrete. consider an example
taken from a unit on geometric loci. designed specifically for developing vis
ual reasoning pallcms (Hershkowitz. Friedlander. & Dreyfus, 1991). Suppose
you have 10 deal with Problem 7 of Table 9.2: Given (wo imersecting lines
in the plane. find the geometric locus of all points the sum of whose distances
from the two lines equals a given length. This problem can be approached
from many angles and in many ways. One global way of starting out would
be to argue that the locus must be contained in a bounded region of the
plane because any point that is very far away must be far from at least one
of the lines. A more local way of starting would be to ask whelher any points
of the locus are going to lie on the given lines. and to stan searching along
these lines. This search may be approached dynamically by starting al the
point of interse<:tion and moving out along one of the two lines. As one
does so, the distance from the other line grows from zero wllhout bound;
Iherefore, one must at a certain stage pass a point that belongs to the locus.
Bt.'C3use of symmetry reasons. this yields four poinls. The locus lUrns out
10 be the rectangle whose comers are these four points.. as shown in Fig.
9.3. This again is not trivial but needs a detailed analytical argument. which
may be based on appropriate ratios in suitably chosen similar triangles. Every
part of this argumenl is considered to be visual reasoning because it makes
essential use of visual information. Visual reasoning used in this kind of
argument may be global or local. dynamic or static, but it is never purely
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FIG. 9.3. A probkm for ~i5ual rt'lIwning.

perceptual: II includes valid analytical argumentation leading from Slep to
step.

Visual reasoning is by no means limited to geometric situalions. Many
problems in elementary mathematics can be solved in both an analytical and
visual way. For example, the inequality -#-: > 2 can be solved by determin
ing when (1•• '!' - 2, < O. This can be: done by cht.:eking cases of the form;

(,,1.,_11

I::} (::) (::} (::} [::} (::} (::H::) to rond tho", volu" of , fo, whkh nu-

merator and denominator are of opposite sign. Although some of the cases
give an emply solution set. the idea is to exhaust all possibilities of the factors.
Another way to solve this problem is to graph the snake representing the
polynomial (x + IXx - 1)(2x + I)(x - 2), as in Fig. 9.4, and then to read 01T
those values of x for which polynomial is greater than zero.

As with many of the aspects of mathematical thinking dealt with in pre
vious sections, the value of visualization as a [001 for mathematicallhinking
resides less in the 1001 itself that in the nexibility with which it is used: When
is it appropriate to generate a visual represenlation, and when not? Should
a visual representation be abandoned because of the limitations il imposes?
Can a diagram be used to exhibit only. or mainly. those features of the prob
lem situation that are relevant at present?

REVERSAL OF TIlINKlNG

Often times when faced wilh a mathematical problem it is wise to ask, "Where
could Ihis have come from?" and "Why should this occur?" Such questions
often provide a motivating incentive in science also-"Why does X hap
pen?"-and they often start one thinking from the result, to the source or
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The case; Qll;lhpd The snake mc;lbgd

+- (2x+1Xx-2) <0- - (x+IXx-1)

+. 2x+I>o, ,.2>Q

x+1 >0, x-l<O
(2.. IX~.211.. I11.·11 <0

•• ". , ,
(,.1) (,.J)

- 2x+I>O, ,.2>Q
-+ "x+1 <0. x-1>O

• • " . "
CIC.

,
- •-
+ -r

+- 2x+1>O, x-2<O
~- x+1 >0, x·1>O

•• (1<l<2}
Solwion sec

.+- CIC. {-I<X<-i} U {I<O.<2}

FIG.9.4. Two difTcreD1 ways 10 soI~+" 2..-,
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sources causing the result. Feynman (1989) illustrated this sort of reasoning
beautifully; as a youth he was onre faced with fixing a radio that made
tremendous amounts of noise when first turned on, but which subsided after
the radio warmed up:

I start walking back and fonh. thinking. and I realize lhatthc onc way it can
happen is that the tubes are heating up in the wrong order-that is, the am
plifier's atl hot, the tubes RrC ready to go, and there's nothing feeding in, or
there's some baek circuit feeding in .... Thcn I said to mysclf. "AIl right, takc
the tubes out, Rnd reversc the ordcr completely in the sct." So [ changed the
tubes around, stepped 10 the front of the radio. lurned the thing on. and ii's
quiet as a lamb: it waits until it heats up. and then plays perfectly-no noisc.

Radio circuits were much easier to unde~tand in those days because
everylhing ",'as OUI in the open. After you took the sct apart (it was II big
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problem to find the right screws), you could see this was a resistor, that's a
condenser.... So il wasn't hard for me 10 fix a radio by understanding whal
was going on inside noticing thai something wasn', working right and fixing it.

Feynman then wenl on to discuss other radio sets he fixed as a kid and the
aura that developed around him because Oflhis. The lasl sentence-"tt wasn't
hard for me to fix a radio by understanding what was going oo"-tells it all
(p. B).

On the surface it seems as though Fcynman simply thought in a reversed
way; the radio made noise. the source of the noise could have been X. Y,
or Z; if it was X, then a, b, or c would happen; if it was Y then d, e. or f
would occur, and so on. Focusing in on his exact words. however. we see
that he had a really deep understanding of the problem.

Feynman had a global gestalt understanding of the workings of the radio.
having built in his mind a superstructure of the interconnectedness of its
component pans. When faced with pinpointing the trouble. he rephrased
the problem and thought about it in the more general abstract setting, not
in the content-specific setting.

Such global gestalting is rarely an object of consideration in school mathe
matics, where the stress is usually on a compilation of skills and facts that
are associated with various subtopics. The curriculum cenainly lends itself
to such an interpretation for the typical sequence of study is linearly ordered
with algebra being followed by geometry and then trigonometry. analytic
geometry. and calculus. Even within its various subtopics the curriculum is
linearly ordered, and parceled down into little bits and pieces (The process
by which mathematics is so prepared for school has been called didactic trans
position; Chevallard. 1985.) This leads to compartmentalization rather than
a global view in the minds of the students. It is often the case that students
can do the mechanics of a problem. but miss the bigger picture of how it
all fits together.

Good problem solvers seem to have the ability of seeing paths of devel
opment of particular issues in larger contexts, which often provides for them
an "abstract working space" to reason from the result. to the source or
sources causing the result. Poorer problem solvers seem to collect in their
minds only the results. rather than the paths and superstructure encompass
ing them. They have less trouble seeing these superstructures once they are
pointed oul, but seldom are they able to build them. Therefore, ideas asso
ciated with notions around the stan ofa line of thought appear unconnected
to those associated with its end.

Examples illustrating this disconnectedness abound in elementary mathe
matics. Elementary school teachers have found that children often do nOI
have a clue as to how to approach problems such as Problem 8 in Table
9.2: In a parking lot there are only bicycles and cars; if there are a total of
20 tires in the lot. how many bicycles and how many cars are there? However.
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these same children have no trouble with the stand3rd question of computing
the number of tires in the lot if the number of bicycles and cars is known.
Adminedly, the problem required of them is much more difficult than the
standard question, for there is no unique solution to it. However. the diffi
culty seems to be that the solution requires them to see the problem in a
more general abstract selling. Few students seem to have the depth of un
derstanding in order to solve this reversal of the standard problem.

Similarly, the slope of a line is a measure associated with its steepness. It
is often defined as rise ovcr run; that is. the slope of the line segment
connecting two points with coordinates (a,b) and (c,d) is. by definition.
.'!..=.!. If this number is positive. the line segment is moving upward as one
moves along the x-axis in a positive direction, ifit is negative the line segment
is moving downward, if it is zero the line segment is parallel to the x-axis,
and if it is undefined then the line segment is parallel to the y-axis (see Fig.
9.5). Typical school problems present the student with the coordinates of
IWO points in the p13ne and then ask them to develop the equation of the
line segment connecting the points. Most students have little trouble with
such problems because their solution, in effect, mimics the development that
was done in class and has been practiced over and over again. The procedures
of finding the equation of the straight line through two gi,-en points, or
through a given point with a given slope. are well known to most sludents.
However, troublc often enters when the problem is stated in a reversed way.
such as by presenting students with Fig. 9.6. which shows a sct of n unco
ordinatized points in the plane two of which have been circled, and asking
them which of the other n-2 points satisfy the equation of the line through
the two circled points. Such problems are troublesome because the students
often have only a partial understanding of the Cartesian connection (Schoen
feld, Smith, & Arcavi, 1993); namely, thai all points on the graph of an
equation satisfy the equation. and if a point is not on the graph then its
coordinates do not satisfy the equation. Again, the solution to the reverscrl
question requires a deeper understanding of underlying concepts than the
solution to the standard question.

Composition of functions olTers still another set of exercises employing
the same heuristics: an approach from an angle that reverses the underlying
notion's developmental path. Standard textbooks generally introduce the no
tion of composition of functions by first defining a function f mapping A
into B and a function g mapping B into C, and then guides the students

J/ J~ 1== lL
positive slope negative slope zero slope no slope

FIG. 9.5. Slope!.



278

•
•

• 0
•

•
• •

0 •
•

•

DREYFUS AND EISENBERG

FIG. 9.6. A r"tveBed question on
poinl5 in the plane.

inlO delining for themselves how a function h would map A inl0 C (by briefly
going through B). Typical exercises include defining rand g and asking the
student to build h(x) = g(f{x». The domain and range of function h is often
discussed and students seem to immediately grasp the notion that function
h can be defined only if the range of f is contained in the domain of g as
illustrated in Fig. 9.7. However, if the students are given g(f(x» and f(x) and
then they are asked 10 construct g(x). they orten !leem to be al n loss 115 10

what 10 do, because the typical solution again involves having an abstract
understanding or the developmental procedure.

Even in collegiate mathematics, this sort orthinldngpattern causes trouble.
The concept Image (Tall & Vinner, 1981) of the derivative ofa function which
mosl students hold is that for any poinl on the graph of the function, the
derivative funclion gives the slope oflhe langent line 10 the graph at that point.
As such. students have no trouble in grdphing the derivative of a function.
which is represented by its graph as in Fig. 9.8. To give Ihem the graph of Ihe
derivative and ask them to sketch a graph (from the family offunctions) which
has Ihis derivative, however. is another matter. In Ihis situation. going from
the graph oflhe derivative to that of the function seems to be far harder than
to go from the graph of the function to that of the derivative. I

A similar situation e)(ists with respect to integration. The integralllJ x1dx
can be thought of in terms of area and setting up the appropriate limiting
sums is often an exercise in beginning calculus. Students seem to grasp the

FIG. 9.7. Composition or rune
lionl.
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FIG 'l.~ P"""ll~ bclw~~n the
graph~ of.J runcl;'m and ;IS 'kriva
li\'~ in bOlh d;r~Clions

this idea very quickly and have little trouble setting up the limiting sums for
other functions. However. going in the other direction is again another story
completely. Very few calculus course graduates can corrcclly identify the
limiting sum with its integral. Seventy percellt of the more than 10.000 C:lI·
culus course graduates queried (Educational Testing Service, 1988) could
nOi identify the intcgral representing the lim'!' [(.!.)~ + (lop + (1)2 + ....(.10 rl.

n---+.. n""" n
yet most of these students could go in the other direction.

Thinking about Ihe pmh of rhoughr leading 10 X is extremely difficult for
many individuals because it places an equal emphasis on the line of thought
as on its result. Moreover, the process involved in the line of thought is extra
baggage the concept must carry. Many notions in mathematics have such a
structure associated with them. Addition and subtraction can be thought of
as being inverse operations of each other. as C:ln multiplication and division,
exponelltiation and root extraction, and integration and diflcrentiation.
Good mathematical thinking seems to entail having the flexibility of thought
to see applications of reversing paths of thought. It is a skill that can only
be developed with practice. Many textbooks, heretofore. have not emph;l
sized this type of thinking; test makers however. have.

CONCLUSION: FlEXIBIUIT OF THOUGHT

In this final section, we attempt to show how the different aspects of mathe
matical thought discussed in the preceeding sections of this chapter contrib
ute 10 the flexibility of thought required from expert mathematical problem
solvers. The history of mathematics is rich with stories of how inllexibk
thought pallerns and beliefs have hindered its development. "Euc1idcs ab
Olllili naevo vindicallls" ("Euclid Freed of Every Flaw") was the title of a
lext by Saccheri. who is known in history as the lllan who should have dis-
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covered non-Euclide:m geometry. but did not (Evcs. 1964. p. 124). lie missed
the C'dlI to fame because he could not tear himself away from Euclidean
notion of parallel lint."S which says that given :1 line L :md a point P not on
L. there is exacdy one line parallel to L through P. This is tru~ in the plane
and our thinking tends to be strongly limited by our e;<pcrience: in this case.
the planar experience-and that is what happened to S:lccheri. He could
simply not imagine other geometries in which there may be more than one
line through P, which is parallel to L, or no line at all, such as. for example.
on a sphere. Therefore. instead of being heralded as the "f:Hher of the most
notable discovery of [his) century" (Hilbert. cited in Moritz. 1914. p. 353).
S"ccheri is remembered as one of the greatest could-have·bt.-cns in the history
of mathematit.'S.

It takes extreme nexibility 10 rid one's thinking of commonly made as·
sumptions on the way to great mathem.ltical discoveries. Einstein obviously
comes to mind. The discovery of the negative. the irrational. the complex
numbers. and the extension of the complex numbers to what is known as
quatemions provide further examples. In each case. a properly previously
consideTt."'d as self-evident and used without any need for justification had
to be dropped. and our thinking seems to resist such breaking of habits.
even when we consciously search for the new and unexp10n-d. It look Ham·
ilton (see Bell. 1937). for example. 15 )'e:lrs of labor before it dawned on
him how to deline'u multiplication of the quaternions. the tinal bug in their
development. lndl."Cd. he also had to drop the n.:.'quirement of commutativ
ity-a property that had been true for all previously known multiplications.

Many people have Iried 10 understand how mathematical insights take
place: most notable among them is H"damard's (1945) work on the psy
chology or mathemalical invemion. but throughout each of the case histories
studied to understand how the discovery was made is the cryslal-dear ob
servation that great discoveries are m:lde by being able to think in a fle.xible
way. No one knows cxacl1y how this flexibility of thought :md the ability
to make insights occur. Feynman's (1989) autobiographies seem to imply
that some of the potenti:11 for great discoveries is inborn: although this may
be true for the Einsteins and the Fcynmans. hard work ccrtainly plays a
part cven for lOp scientists. The old adage that genius is 1(1'(,. inspiration
:lnd 90% perspiration is true. Moreover. we contend that to a large degree.
at least at the level nct.-dcd by teachers lind students of mathematics. flexibility
of thought can be trained and acquir~-d.

Thererore. having a good mathematical mind involves the ability 10 think
in a flexible way. Versatile thinking can be learned and didactic approacho.-s
have been specifically been designed for this (e.g.. Tall & Thomas. 1991). If
one path does not work. perhaps another one will: if one way of organizing
the givens docs nOt lead to progTt."'Ss. another one probably does: if one rep·
resentation does not provide illumination. another onc might be more likely
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to do so; if starting from the gi\'ens does not lead anywhere, maybe beginning
at the end and thinking in reverse din.'Ction could work. Flexible thinking
involves the ability (Q be "inside" the problem and to be able 10 see it from
many different aspects. Exposure to various sorts of problem situUlions on
many occasions and in many different settings. in and outside of classrooms,
is likely to help one de\'e1op such ability. In this regard, problems from rec
reational mathematics are a boon to developing flexible thinking skills.

The mathematical puzzles that are sometimes printed on placemats in res
taurants illustrate this sort of problem situation and often require the flexi
bility of thought good problem solvers have trained themselves to usc. Some
such problems are presented in Table 9.4.

Because different facets of mathematical thinking can be enhanced
through such "recreational" problems. there is good reason to use them sys
tematically as challenges in schools and extracurricular activities. Although
the flexibility required in many of these pU7..zles is extreme, many students
seem 10 be attracted to them.

On the other hand, nexibility also plays an important role in all aspects
of the processes of concept form.1.lion and of the problem·solving activities
typical for mathematical thinking that have been analyzed in the earlier sec
tions of Ihis chapter. It has been pointed out that recognizing struclure in
a given problem. imposing structure on a situation. and exploiting this struc
ture enonnously increases one's mathematical power and flexibility. Identi
fying the same structure in different situations helps one to solve problems
by analogy. We have also shown that a deep understanding of analogies is
apt help students make transitions from a more general case to a simpler
one, or from a specific case 10 a more general one in order to get a more
encompassing result. In both cases, the use of analogies adds flexibility to
the students' thinking processes.

Further, we have stressed that acquaintance with various representations
related to a set of concepts. the establishmem of strong and detailed links
between these representations, and the ability to translate and switch between
them is equivalent 10 a deep understanding of these concepts and enables their

TABLE 9.4
l'lll:~mal I'robl~ms

I. With sh toothpicks build tel.. ~quilat~rn1 lrillllgln;.
2. Is it po»<ibk to CUI • pa... ak<: in\(> 8 pans with ~xactly lh",~ <tr;lipll ti~ cutS "'ith a knif~?

~. Whal is t~ lar~st nurrhcr or Spoil that can IK pain~d l)I'1 • hasutball in s""h • way thai. ~V~I')'

spol is ~xllctly lile same dil.l:ll1c~ from ~v~ry other spol?
4. 111= men narrltd Lewis. Miller. and N~lwn fill th~ pl.lSit~l< of DCC(>Umam. cash;"r. and cl~r1o:

in the I~adin. d~p;lnment l.Iore in Cento:rbllr,. If N~lwn is the cashier. MiI\~f i. llle: clerk. If
N~ISO'l is tht cieri. /TolHlcr is lilt :lCCOUnt3'lt. If Mitler is tlot lhe cashier. Lewis is tile cieri. If
Ltwis il t~ llCC(llntant. Ncison is the elm. Whal is nell man's joh?
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flexible use in problem-solving situations. Mathematical thinking is more
powerful, when il uses more than one representation in parallel, and estab
lishes links between them. This provides flexibility and thus the links become
overwhelmingly important. It is in the representation independent properties,
and in the relationships between the representations, that the mathematical
power resides.

Similarly, the value of visualization as a tool for mathematical thinking
resides less in the 1001 itself that in the flexibility with which it is used: This
flexibility includes knowing when it is appropriate 10 generate a visual rep
resentation. and when not; whether a visual representation should be aban
doned because of the limitations ;1 imposes; and whether a diagram can be
used to exhibit the relevant features of a problem situation. Finally, it has
been shown here earlier that the fleltibility to reverse the direction of thinking
can often considerably simplify a problem solution.

Mathentaticallhinking ability can only be enhanced by working at it-i.
does not come by itself. and it is a dangerous myth to think that you either
have it or you do not (Usiskin. 1990). In this chapter. we have systematically
analyzed some of the crucial patterns of mathematical thinking and their
relationship to concept formation and fleltibilily in problem solving. We have
discussed how fleltible mathematical thinking patterns appear in ge:stalting
and structuring ideas and problems situations. how analogies contribute to
fleltibility. how fleltible choice and linkage between represenlations is pan
of mathematical understanding, how visualization is related to fleltible prob
lem solving. and how reversing thinking paths may contribute to flexibility,
To a large eltlent, Ihese thinking patterns can be learned: and on the basis
of our analysis'of thinking patterns. we have pointed OUI some ways to en
hance fleltible thinking in students of mathematics. However. as stated earlier,
mathematics thinking as a whole is greater than the sum of ils facets.
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Structuralism and
Mathematical Thinking

Charles Rickart
Yale Ulliversity

Mathematical thinking is only one aspect of thinking in general. Therefore.
questions concerning mathematical thinking raise questions concerning all
thinking. Although mathematical thoughl is in many ways very special. it
admits of a slraighlfolVlard analysis that throws light on all thinking and
suggests a powerful general approach to studying the latter. The basis of
our analysis of mathemalical thinking involves the abstract concept of struc
lures. Furthennore, structures play the same essential role in all thinking as
they do in mathematics, whether or not the thinker is aware of their presence.

A general point of view finnly based on structure is developed in some
delail in a recent book by the author entilled Structuralism and Structure
(Rickart. 1995). A main objective of the book is to build for the reader a
solid notion of abstract structure as well as an understanding of how struc
tures arc involved in the study of any serious field of information. Because
the book is strongly influenced (at least indirectly) by mathematics. much
of this material is obviously relevant to the material presemed throughout
this chapter and is referred to as needed.

The general assumption behind all of the following is that infonnation is
coded and stored in the brain in the form of structures. and that the brain
is especially "designed" for recording and processing these structures. This
is true despite the fact that an individual is seldom aware of what is going
on. Although our ultimate objective is to explain why Ihis point of view on
thinking is both valid and useful. it is desirable for obvious reasons first to
take a careful look at structures for their own sake. This provides basic con-
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cepts and the necessary language for dealing with a serious structural ap
proach to any subject. (In this connection, a reader might also find useful
the discussion of structures and examples that appear in various Stttions of
Rickart. 1995. especially in the introductory chapters I through 3.)

Structures arc present everywhere, either explicitly or implicitly. and pro
vide an approach by which any situation or mass of data might be made
intelligible. In fact. the general discipline thai is known as "structuralism"
and is devoted 10 discovering and studying the structural conlent of a field
is called "The Art of the Intelligible" by Caws (1988) in his book entitled
Slructurah~m. In other words. the structural content represents the contained
infonnalion that is ultimately recorded in one's understanding. What all of
this means becomes clearer as we proceed.

The subject of structures. for which we are about 10 offer a formal intro
duction, is rather different from most subjects. This is because virtually ev·
eryone already has a fairly clear notion of what a Slructure is without the
benefit of a definition. In other words. they are able to decide offhand which
of many familiar objects in [heir surroundings may legitimately be called a
structure. Up 10 a point this may be an advantage, but few people underst..'md
what it is that these familiar objects actually have in common. In other words.
they lack the general notion of structure, something exceedingly helpful in
a serious structural approach to any subject of substance.

The next section contains some of the basic material required for dealing
systematically with structures. The perceptive reader will note the similarity
of this situation with a common mathematical case in which one can be
familiar with certain mathematical concepts at, say, a notational level, with·
out being able to think of them in the same way that a mathematician might.
The difference here is between concreteness and abstraction. In other words,
does the concept exist in terms of the "material world," or is it independent
of the latter? Note that an abstraction, at least for purposes of communic.1
lion, usually requires a formal language to deal with it.

STRUCTURE DEFINITIONS AND PROPERTIES

A structure, by definition, consists of a set of objects along with certain re
la/ions among those objects. The set of objects is also Solid to hal'e stmct/lre.
A subset of thc objects along with some of the relations restricted to the
subset is called a substm('/ure of the given structure. A substructure is obvi·
ously a structure in its own right. and properties of a given struclUre are
often expressed in terms of its substructures.

Two structures are said to be isomorphic if there exists a one-Io-one cor
respondence between their objects that preserves relations (in the sense that
objects in one structure are related if and only if their associates in the other
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structure are also related). Isomorphic structures are said to have the same
structure, and what is common to them is an abJ·tract structure.

We regard abstract struclUres as having an independent existence. They
are also regarded as consisting of abstract objccts and relations. Within an
abstract structure, an objcct has only those properties that it gains by being
a member of the structure. including, for example, the propeny of being
related to certain other objects in the structure. A similar remark applies to
properties of relations. In facl. a relation may be thought of as being deter
mined by the (possibly ordered) sets of objects that it relmes.

A concrete structure consists of concrete objects. and may be thought of
as isomorphic to the abstract structure that defines it as a structure. It may
also be regarded as a representation oj, or as represemed by. the associated
abstract structure. Observe that the objects and relations in a concrete struc
ture may have intrinsic properties that are quite irrelevant to their properties
derived from belonging to the given concrete structure.

With these definitions and conventions, it is possible to state precisely what
it is that familiar objects recognized as structures have in common: Each one
is a concrete structure according 10 the aforementioned definition of structure.

It is worth noting at this point lhat the term "system" often appears in
common usage as a synonym for "structure." We prefer, however, to use the
lerm to mean any callec/ion of interrelaled objects along with all of the
"potential" strtlctures that might be identified within it. This turns out to be a
useful concept that includes many mathematical examples, of which we
mention only one-"a number system." It is instructive with respect to both
structures and systems to spell out some of the details of this example. Recall
that a number system. whieh consists of the numbers themselves as objects,
also admits operations of addition and multiplication. The operations deter
mine lwo "ternary" relations defined as follows: The numbers in an ordered
triple (x,y,z) are defined to be addition-related provided x + y = l, or multipli
cation-related provided xy = z. This identifies two structures in the number
system. A complete description would. of course. require precisely stated
axioms giving definitions along with individual and joint structure properties.

Although the general structure definitions enable us to concentrate on
basic structure concepts, they do not bring OUI explicitly the rllet lhal struc
tures may also be dynamic in character (a subject discussed briefly in chapter
3 of Rickart, 1995). As might be expected, lhe analysis of almost any dynamic
structure is likely to present special problems. One example of such a struc
ture is a lypical machine in operation, and it may be represented as all "or
dinary" structure existing in four-dimensional "space time." Another kind
of dynamic structure is the classical model of an alom. The latter admits a
very different, but especially effective, representation or a dynamic structure
in which the orbit or a moving electron around the nucleus of the atom is
suggested by simply drawing the orbit.
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The general structure definitions outlined here may be a bit misleading
because they represent structures as more or less isolalcd entities. In actual
practice, nothing could be farther from the truth. For example. most struc
tures that we encounter are embedded (as substructures) in larger structures
that mayor may not be relevant to whatever interest thai we might have in
the initial structure. At the very least, our attention to a structure automat
ically embeds a representation of it in our ever-present system of mental
structures. Furthermore. our perception of a structure is not a passive ex
perience, but is shaped by previous experience thai will detennine much of
what we sec in the presented structure.

One further comment on our approach is thai the emphasis on abstract
structures is obviously a partial commitment to an idealistic poin! of view.
Although most mathematicians do not appear to be very strongly commiued
10 any particular philosophical position. most of them seem 10 Ihink and
lalk of mathematical struclures as being abstract. In fact. it is a bit awkward
to do otherwise.

A STRUCTURAL ANALYSIS OF TIiINKING

It is lime now to discuss in more detail the structure basis for thinking in
general. As we have alre.:tdy noted, infomUltion is obviously recorded in some
manner or other in the mind-brain system. Although "nerve cell" details are
relatively sparse as to how such matcrial is actually recorded. it is reasonable
to assume thai the information is somchow coded into a structure which is
in lum represented by a nerve structure. The mind-brain construct is often
referred to as a mental structure. The lerm can mean either the associated
concrete nerve structure or the abstract structure that represents it. Observe
Ihal the second point of view focuses more atlention on the structure concepl.
For Ihis reason, we usually Ihink of a mental struclure as an abstract entity.

As was already mentioned, our assumption is that the thinking process
is one of the special funclions of the general struclure processing activilY of
the human brain. and the material of thought consists of information re
corded as slructures in one's mind-brain system. This material consiSls of
ideas and concepts; either structures extracted from current sense data, or
retrieved from previously recorded information.

Despite the difficuhies of determining just how structures are generally
recorded or coded in the brain. a vcry important and better known inter
mediate device involves the use of language in any form. In this case, a struc
lure is represented by a language structure that involves time. In other words,
the struclure is presented pit:ccwise and strung out in time. This form of
reprcscntation is of special importance because it provides a mechanism for
communicating the content of a structure from one person 10 another (de
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Saussure, 1966; see Rickan, 1995, chapter 5). From our point of view, use
of language is only one among many special ways that structures may be
manipulaled. In other words. thinking is a remarkable tool for dealing with
menial structures but is generally independent oflanguage. although the pos
sibility ofcommunication provided by language is of an unquestioned special
imponance.

Thinking. with or without language. involves ideas or concepts directly in
tenns of their basic intrinsic relationships. They are somehow represented so
that they can evolve and interact. largely independently of the outside world.
The system may, of course. use material out of m~mory banks and even
occasional inputs from the outside. In this context, language becomes just
another method of manipulating structures. Although thinking is normally
independent oflanguage. it may shift into the communication mode. ifnceded.

Language can playa very imponanl positive role in thinking. but it can
also playa seriously negative role. For example. it is possible for language
to function quite independently of the underlying ideas for which it was os
tensibly created. It is. of course. by virtue of its structure that language is
able to represent a system of ideas. At the same time, the language structure
may exist independently of the idea structures that it usually organizes. When
this separation occurs. the underlying substance ideas may be lost and we
are left with the empty language itself. Everyday examples of this are found.
for example. in the use of cliches. We see it in mathematics when the for
malism is used without the underlying mathematical ideas. In other words.
the structure of the formalism is adopted for its own sake. This comes up
again later, when we examine, for example, some of the problems associated
with the teaching of elementary algebra.

Despite our insistence that thinking is not dependent on language. there are
some who maintain that all thinking is actually self-communic."lIion, and thus
is dependent on language in some form or another. Although this point is
obviously dependent on ones definition of thinking. the language restriction
would exclude many instances of mental activity that. in my opinion. should
be classified as genuine thinking. Included, for example. are cenain menial
experiences of any creative mathematician. I offer specific examples later.

Thinking is generally regarded as laking place in the conscious part of
the mind. However, again because of some rather vivid mathematical expe
riences. plus certain other ordinary phenomena, it appears that there does
not exist a sharp distinction between the conscious and unconscious thinking.
The process can evidently take place in either the conscious or unconscious
mind and even shift back and fonh bet .....een the two. What is missing when
the unconscious is involved is the monitoring or censoring of the whole proc
ess by the conscious. The unconscious selling, despile a lack of discipljn~.

may allow a freedom of mental activity that can be far more creative than
when restricted by the conscious. Illustrative examples are presented later.
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At this point it is important to make a distinction between Ihe general
UflconsciOU.f, which we have in mind here when we refer to the unconscious,
and the Freudian unconsciousness. There is not a sharp line dividing the
general unconscious and the conscious mind. Although there are regions in
Ihe general unconscious Ihal are not easy (0 access, much of it is very clost
to the conscious so that passage between the two is nOI difficult. This is nOI
thc case wilh the Freudian unconscious, which is difficull to access and is
nommlly widely separated from the conscious. Any influence Ihal it has on
mathematical thinking is probably limited to familiar Freudian phenomena,
which are nOI easily related 10 the highly rational mental phenomena char·
acteristically associated with mathematical though!.

SPECIAL ASPECTS OF MATHEMATICAL THINKING

Although mathematical thinking is just one form of ordinary thinking, it
does exhibit special features that set it apart from most other thinking. One
thing that stands out here is the fact that its subject matter is unambiguously
abstract, consisting of pure mathematical structures. Whether the content is
ordinary arithmetic. elemcnlary algebra. or a very advanced IOpic, il is nec
essarily abstract when correctly understood. Anyone whose understanding
f..ns short of this is 10 lhat degree handicapped in the use of mathematics.

Another special feature of mathematics is ilS language. As far as ordinary
thinking is concerned, the language used when nceded is ordinary language
thaI already exists, whereas in the case of mathematics. the language is usually
very special and needs to be learned along with the subject mUlier. II is or
dinarily quite formal and also very close to the underlying matherrmtical
content; so close. in fact, that the formalism is sometimes naively confused
with the mathematics itself. As in ordinary thinking, mathematical thinking
may involve only the content or it may also involve the formal language.
Involvement of only the language, which amounts (0 eilher ignoring comeot
or identifying it with the language structure, is usually not good in either
case. There arc exceptions, however, that are mentioned in the next section.
The twin:: confusion of content and formalism is. in most cases. a low-level
weakness that stands in the way of a correct understanding of mathematics.
This is a special problem in the case of elementary topics such as elementary
algebra. Restriction to content is not so common and usually involves more
experienced mathematicians.

Some of the important special differences between mathematical thinking
and ordinary thinking can be brought out by examining how children learn
the most elementary material. A good place to start is with the case of lan
guage. It is obvious that children have an instinctive drive to learn the lan
guage. as auested by the spontaneous way they become involved in the learn-
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iog process. It is also clear that one cannot separate the learning of new
material and the l~arniog of the language in terms of which the material is
described. In other words. the learning process mixes the two. Furthermore.
if anyone bothers to pay attention. they will be impressed by the way virtually
every adult who comes in contact with the child automatically assumes the
role of a teacher. They will adjust their voice and repeat phrases to make it
easier for the child to learn the correct use of the language.

A closer observation will suggest that children are also equipped to learn
numbers, along with their structure, just as they can learn a language. Learn
ing about a number syslem is, of course, very different on the surface from
learning about a language system. In the first place, few are able to recognize
the process and the result does not compare in importance with language.
The development of an understanding of a number system could be encour
aged along with learning a language, but few parents. skilled or not in ele
mentary mathematics, think to encourage and help the child grow in this
way. The difference is in spomeneity, which dominates the learning of or
dinary language but is ignored in learning numbers. The result is an indi
vidual that will have to struggle later with the problem of elementary mathe·
matics on an entirely different level. We mention the problem here because
it is important and also demands a very different treatment later. This is
crucial in both the leaching of arithmetic and elementary algebm.

I digress briefly at this point to cite a rather different example. a personal
one that involved my youngest son when he was an early preschooler. One
day I showed him an ordinary fork and asked him first how many prongs
the fork had and then how many ·'spaces" it had. The answer here was 4
and 3, both of which were very easy. so I asked how many spaces there were
when the fork had various other (reasonable) numbers of prongs. These an·
swers were also very easy. although I am sure that he had never seen a fork
with more than 4 prongs. The point is that he could visualize without any
effort something he had never seen and also understand immediately that it
would have to possess a specific structuml feature. This is the kind of intuitive
understanding that I regard as fundamentally significant and closely related
to other mathematical understanding. Incidentally, I did not understand the
event then as well as I do now, or I would have pursued it further.

We turn now to the question of how we leaOl and come to understand
elementary mathematics at the level of elementary arithmetic and algebra.
Although the general problems here are superficially much the same as the
problems associated with learning elementary material of any kind, the
mathematics is dilTerent in the details.

Virtually all students in elementary school have long since passed the stage
of being able spontaneously to learn about the structure of the ordinary
number system. Therefore. these things need to be addressed in a different
way. Ideally. the number system should be introduced and its structure some-
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how communicated to the student so thai the basic idea predominates apart
from a word description of it. At the elementary level. it is nOl practical to
do this in a formal way. The message can ordinarily only be implicit in the
way arithmetic is taught. so much of the picture has to be communicated in
the atlitude and expressions of a teacher who understands what is going on.
This is a very delicate matter and is often flawed. Therefore. it is not unusual
for many students 10 wind up with either an empty or a seriously defective
notion of the arithmetic number system. It becomes very difficult 10 help
students when such handicaps become established, even if a leacher under
stands the nature of the problem-something that may not be common. Stu
dents who avoid this problem often are able to do so because !.hey retain
some of their instinctive ability to make sense out of numerical material.

This brings us to the stage of trying to teach students about elementary
algebra. The ideal situation is to deal with students who have derived from
their experience with arithmetic a correct intuitive picture of the ordinary
number system. Unfortunately. such students are probably somewhat rare.
Too often, success with students is a hit-or-miss mailer with many who never
are able to understand the true nature of a number system apart from a list
of rules. It should be admined here that a similar situation can exist in the
learning of anything new of substance. The problem is especially difficult in
mathemtics, however, because students may have a very wrong, but very
solidly established. picture of the elementary number system because of their
bad experiences with arithmetic.

Even with students who have a correct notion of the elementary number
system, there remains a problem with the learning of algebra. Although the
algebra system may be motivated by the earlier understanding of the ele
mentary number system. the fact remains that the algebra system is more
inclusive. 11 includes in addition, for example. the much larger system fonned
by all polynomials. The number system obviously has special properties that
are not held by the algebra system. lltis is not unusual, of course, because
a structure need not address all of the properties of a concrete structure that
represents it. In any case, an appropriate representation of the algebra system
will not be isomorphic with a full representation of the number system. The
transition between the number system and the algebra system is obviously
not a minor step in understanding.

For practical purposes, to this point I have restricted anention to ordinary
arithmetic and elementary algebrd. As far as the level of mathematics is con
cerned. however. geometry should also be included, but it is actually rather
different from the others. For example, the subject matter of elementary ge
ometry consists of familiar figures, such as straight lines, triangles. and circles
plus, perhaps. some three-dimensional objects. These are acquired very early
and painlessly. They also have a different relationship to the language. In
fact. up to a point. the associated language is close to ordinary language.
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This is probably one reason many students report that elementary geometry
was easy, whereas elementary algebra was impossibly difficult. In other
words, elementary geometry is learned much like anything else is learned,
so can be dealt with in a relatively routine manner. Uhimately, of course.
it is necessary in geometry to face questions similar to the ones that ultimately
underlie any serious mathematical field.

FORM VERSUS CONTENT

The problem of teaching elementary algebra is similar to the problem of
teaching (or learning) any new piece of mathematics. There are two questions
that must be addressed. The first involves the degree of understanding of
the background subject matter leading up to the immediate subject of interest,
and the second involves the formalism associated with the subject. The latter
item is very special in mathematics. making it different from learning other
material. It refers very explicitly to the s/rIIctllral ronu'n/ of the subject.

Notice that there is an ambiguity here because a mathematician may react
to the material in two different ways. There are times when the content is of
vital importance, which means that the emphasis is almost wholly on the
mathematical nature of the system described by the formal language. At other
times, the user's attention may be absorbed by a related mathematical system
and the given operations are reduced to little more than pure formalism. What
is important, however, is the fact that the mathemiuiciilll'S attention can be
shifted immediately to the content behind the given formalism when needed.
I also mention in passing that there are a few formalists who equate mathe
matics to its formalism. This. however, is a sophisticated philosophical
position having nothing in common with the views of elementary students.

One of the problems in the routine teaching of elementary algebra is that
it sometimes reduces to nothing more than teaching the formalism. This can
be a very serious problem when a student's understanding of the underlying
arithmetic structure is inadequate, and therefore the only recourse is to fall
back 011 the formalism. It is not uncommon for many tests to be constructed
to measure mastery of the algebra formalization rather than the mathematical
content behind il. For this reason, it is not uncommon to find students who
have a preuy good record as far as grades are concerned, so are fairly adept
at the formalization of elementary algebra, but do not wulers/and elementary
algebra well enough to deal with its application to calculus. Needkss to say,
such students arc almost beyond salvaging. The farther they have gone in
this direction, the more difficult it is to supply the missing understanding so
necessary for many applications of elementary algebra.

It is only fair to point out that most courses in elementary algebra do
not address directly the problem of understanding. Nevertheless. some of
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the students automatically fill in a correct understanding. This is a latc mani
festation of an ability that small children lend to show automatically if they
are allo.....ed or encouraged to do so. It is also an example of a drive to com·
plete, in one way or other. an "unfinished" structure. Such students repair,
alleas! partially. some of the deficiences in their previous training. The tend
ency of many teachers, however, to avoid the problem of understanding tends
10 blunt Ihe self-correction thai may save a student. The teacher's objective
in algebra should include a constant awareness of the desirability of help
ing the student to supply or develop the basic understanding of an algebra
s.vstem.

The student who masters the formal algebra operations without being
able to associate with them the concept of an algebra system has somehow
replaced the dl..-sircd algebra concept with the relatively superficial structure
of the associated formal language. We call thisfor", wi/hollt content (or struc·
ture). It is a special case of substituting the structure of the language for the
structure of the material that the language is supposed to describe. This can
actually occur at a level much higher than algebra, as shown by the following
personal e:<ample.

A number of years ago I was invited to give an hour.long talk before a
meeting of The American Mathematical Society. This was an important as·
signment. so I devOled considerable elTort to the preparation of my talk. In
fact, I prepared it much too well! As a result. when I gave the talk 1 found
myself standing before the audience and listening to. rather than thinking
about. my lecture. In other words it reduced to a clear case of form without
content. The content of the lecture was reduced to the language rather than
to ideas. :md instead of enjoying a now of ideas, I experienced only a now
of words. Needless to say, this was a very unusual and unpleasant experience
for me and I can only hope that the audience did not notice what was hap
pening. Incidentally. this is probably why mathematicians seldom give lec
tures by "reading" a manuscript to the audience. At the same time I am
mystified by the fact that distinguished representatives of nonscientific fields
often deliver a lecture by reading a prepared manuscript.

CREAnVE MATHEMATICAL EXPERIENCES

It is exceedingly difficult for a mathematician to convey to any nonmathe·
matician some idea of the nature of a creative experience in mathematics.
Much of the problem is due to the fact that some of the richest experience
with mathematical thinking invoh'l".'S nontrivial mathematics that cannot be
adequately described without use of highly technical malhemmicallanguage.
Dt.-spite this problem. a very distinguished mathematician. Henri Poincare.
published an essay. Mathemari{'al Creation (Poincare. 1913, pp. 383-394).
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The essay contains an account of his personal experience in discovering some
definitely nontrivial mathematics. A fairly detailed discussion of Poincare's
essay is given in Rickan (1995, section 44), where the emphasis tends to be
more in the way that mathematics fits into a general structuralism approach.
All of my references to Poincare are to the essay.

Needless to say, the Poincare essay does not provide a technical analysis
of the malhematics on which his remarks are based. but rather is devoted
to a discussion of the way his mind dealt with the ideas. Although there is
a mystery as to what actually happened with Ihe mathematics. one can ap
preciate to a degree how the ideas were manipulated. An interesting fact is
that a significant pari of the experience took place in Poincare's unconscious.
Although all approaches to this subject have much in common. it is impor
tant to understand that the Poincare account describes only one of many
possible variations on experiences of this kind. It is also important to un
derstand that what occurs is not uniquely determined by the fact thai it
concerns mathem.ltics. Experiences of this kind can occur in any subject and
al any level of understanding. What is unique about mathematics is the rela
tive case with which events can be isolated and studied.

Poincare emphasizes thai the creative experience was preceded by a lot
of hard mathematical work on the problem. which did not yield a solution.
This was followed by relaxation or preoccupation with something totaly un
related to the unsolved problem. Although Poincare's conscious mind thus
ceased to deal with the problem, his unconscious ("subliminal self") contin
ued to work on the problem and eventually came up with a solution. He
thinks of the solution as a "good combination" of known mathematical en
tities and suggested that the result has an aesthelic value thai brings it into
consciousness. He also attributed the aesthetic value to a character of beauty
and elegance. Such entities "are those whose clements are harmoniously dis
posed so that the mind ..... ithout effort can embrace their totality without
realizing the details."' These are the most useful and beautiful because thcy
lead to a mathcmaticalla...... It is their beauty and usefulness that distinguishes
them from the ordinary combinations and brings them to consciousness be,
fore the many others.

Poincare emphasized the importance of the preliminary cOllsciou$ work
that provides the unconscious with an enonnous supply of combinations.
most of which are useless. He figured thaI "the future elements of our com
binations arc something Ii ke the hooked atoms of Epicurus.·· normally mo
tionless and "hooked to the wall." Under certain nonrandom circumstances
(perhaps resulting from Ihe preliminary conscious work). certain atoms are
detached from the wall and move about "Iike the molecules of gas in the
kinematic theory of gases," so new combinations arc produced by their mu
tual impacts. The point is that the ultimately selected combinations tcnd to
be good combinations.
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It is possible to give a more structural description of what may occur in
the Poincare picture. The following account, based on the brain structure,
is a sketch of a more detailed discussion given in Rickart (1995). II views
the brain structure as a massive electrical network. despite the fact that it is
considerably more complex than that. In this piclUre, all of our mental struc
tures appear as electrical networks, each of which is a substructure of the
all-inclusive brain structure.

A brain network is inactive (or may not even exisl as a structure) until
it can become an element in the general structure processing. We may there
faTe think of the "active" structures as being "highlighted" and therefore
candidates for general processing. The process relevanllo mathematical crea
tion is an extensio/1 process. This means the crerllion of a larger (mathemati
cal) structure that includes the given one a:; a substruclUre. The extension
may be either a new structure or a structural joining of the given structure
to another previously existing structure. Either case may be regarded as
growth of the given or known structure and the result normally a new mathe
matical structure. The question now is, "How can the Poincare experience
be described in terms of such a Structure extension?"

We may think of a given structure as a potential for growth through the
existence of sensitive connector points on the "surface" of the structure. These
arc points with the potenlial of entering into an electrical nen'e connection
with material outside the given structure, possibly wilh another structure.
Mathematical creativity consists in replacing a given familiar mathematical
structure with a larger one that is a previously unknown good mathematical
structure. Just as for Poincare, the extensions are unplanned aside from
things learned in the preliminary work on the problem, and good extensions
are the beautiful ones, which are forced into consciousness by their beauty.
Needless (0 say. just what constitutes Ihe beauty. aside from usefulness, is
rather difficult to detail. In any case. to Ihe experienced mathematician the
beauty is often quite apparent, although perhaps difficult to explain.

It is worthwhile to describe another far more ordinary example of a crea
tive experience that has something in common with the earlier discussion.
This is another personal experience and would probably not rate mentioning
in another context. (It is also discussed, along wilh another example, in
Rickart. 1995.)

The example involves the proofs of a paper that J had written to be pub
lished in a standard research journal. Everything was quile routine because
the corrections were only trivial ones, so normal praclice would consist of
returning the sheets in the mail. For some reason unknown at the time, I
put the sheets aside and postponed relUrning them to the journal. In the
meantime. I nOliced that I was automatically reviewing the proof of one of
the lemmas in the paper. This occurn.."d at odd times even when the paper
was not in my thoughts. The experience. however. was not unpleasant. be-
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cause the lemma was all important one and I was generally pleased wilh it.
In fact, remembering the proof was analogous to reviewing mechanically a
melody from a favorite piece of music. The only difference here was that I
recalled the proof at odd or inconveniemtimes and there was a certain com
pulsiveness about the whole thing. Under a growing anxiety, I finally forced
myself to sit down and review the proof of the lemma. The problem, of
course, was that the proof of the lemma cOnlained an error. Fortunately,
the error was not a bad one, so was rather easy to correct_ enabling me to
return the proofs without further delay.

Notice that the aforememioned experience was an unconscious one and
suggests that the unconscious is not only uninhibited as a creator, but is
also a subtle critic as well. At the same time, one can ask why the unconscious
did not give an answer along with the warning of an error. Although it is
not completely clear why this is so, perhaps the unconscious can deal with
an exploration or development of structure, but docs not have the facility
to make references about a structure. Therefore, it can "exhibit" a structure
defect but cannot account for it. In fact, the exhibition of a structure defect
may be nothing more than an immediate result of running into the defect
while exploring the structure. Poincare also pointed out the fact that the
unconscious never seems to present one with the details of a solution. The
conscious is apparemly always required in the filling out of confirmation
details, or in supplying communication of any kind.

The reader will find additional discussion of mathematical creativity by
Hadamard (1954). One of the troubles with these frequently cited accounts
of creativity is that they suggest that creativity is an experience reserved for
the great minds. This is simply not the case, because similar experiences are
common with ordinary persons when they experience something as com
monplace as face recognition. The problem is that these experiences occur
so frequently and so casually that they are not recognized as genuinely crea
tive. A simple analysis of many experiences of this kind will reveal their
creative qualities.

QUALIFYING REMARKS

I include here some remarks on our earlier use of brain nerve structures. The
reader is probably aware of the facl that my appeal to nerve structures is not
rigorous and functions only as a convenient way of visualizing what is going
on. To determine how strucluresare actually represented in the nerve structure
is actually a very difficult problem. so it is perhaps not surprising that not very
much is known about the mailer. Regardless of the difficulty, however, the
symbolic use of nerve structure representations is convenient up to a point. At
the same time, certain mathematical objects suggestlhat nerve structures are
not what is ultimately needed.
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Consider. for example, the concept of a triangle. Note that this is some
thing rather precise and we might expect the concept to be recorded more
or less as a sharp picture of a triangle. II is difficuh to understand, however,
how the clean figure of a triangle can be represented in a chaotic mass of
nerve fibers. Everything becomes even more difficult when it is realized that
the concept of a triangle must cover a wide variety of triangles; induding.
for example, triangles that are equilateral. right angled, acule or obtuse an·
gled. and so on. Perhaps the brain structure is being considered allhe wrong
level. The following, very different kind of example. is suggestive.

Consider a drawing of a (mathematical) figure on a piece of paper. This
structure can be very sharp and may contain a great deal of infonnation.
Furthermore. the paper thm carries the drawn structure is also a complex
structure whose objects are molecules of various kinds. Although the paper
plays a vital role in the representation of the mathematical figure, its struc
ture. at least at the molecular level. appears to be totally irrevalant. Is it
possible that the underlying nerve structure of the brain is just as irrelevant
for the representation of the structures that interest us? Is there a level at
which the brain may be seen as a structure that may serve a role analagous
to that served by the gross structure of the piece of paper in the case of a
drawn figure? Needless to say. I cannot answer this question and do not
know which structural level might be more relevant.

ON MATHEMATICALABIUIT

It is obvious that individuals vary greatly in thir ability to understand mathe
matics-an ability that varies greatly with age. Some children may have dif
ficulty from the very beginning. whereas others are good at mathematics up
to the point where suddenly it becomes impossible. A sudden difficulty with
mathematics can occur at almost any stage. Finally. there are some who are
very talented with mathematics and seem to be unlimited in their ability to
develop in the subject. What are the differences here? Are they genetic or
do they result from certain combinations of experiences? Are there some
who, for some reason. simply cannot think mathematically beyond a certain
point? Differences in ability in any subjeci are difficult to analyze. but it
may be easier to deal with mathematics than with other fields because of
the clearer involvement of structure in the latter.

We have already seen some of the difficulties that arise with children who
are faced with the problem of learning mathematics. Some of these go back
to the very first experiences wilh numbers Ihat occur at the same level as
learning the language. It is obvious that difficulties al Ihis level will increase
the difficulty of developing a proper nOlion of the number system in the
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course of learning about numbers in elementary arithmetic. We have also
seen that trouble with the ordinary number system automatically creates dif
ficulties when it comes to learning about an algebra system in the course of
studying elementary algebra. Unfortunately, these problems pile up and the
problem of correcting them becoml,."S increasingly difficult. Observe that in
all of these cases the problem is not built in but results from gaps or errors
in teaching or learning. In other words, the difficulties could have been
avoided by correct handling of the problem, so it is not something that an
individual is stuck with because of heredity.

It is obvious that anyone who has had misconceptions about number or
algebra systems corrected will be bett~r able to deal with the more advanced
mathematics. At the same time. it is important to point out that there can
be a lasting defect left over from such an experience. The mind is not like
a computer: When something is corrected it is not wiped clean, but is simply
"nagged" and then followed by the correction. The nagged item is always
there and may not normally arise to consciousness, but it still exists and
may inadvertently force its way into attention. Therefore, despite the cor
rection, the error is never completely erased and may slow down one's use
of the concepts involved. I believe that most mathematicians can dredge up
mathematical experiences to support these remarks, but it will probably be
better instead to cite an everyday experience, which I now do.

Some years ago we planted a small peach tree in our back yard. II surprised
us the very first season by producing some unusually large peaches. My first
unthinking reaction to the event was to be amazed that such a small tree
produced such large peaches. I had known for a long time. of course, that
the size of peaches had nothing to do with the size of the tree, hut sometime
before I learned that fact I must have associated the size of fruit with the
size of tree. That piece of misinformation. unless it is sharply monitored.
can still force its way into my consciousness. hems may vary greatly. of
course, in their tendency to be recalled. It is not surprising that a piece of
mathematical misinformation can appear in the same way. An occurrence
in consciousness may be rare, but it is easy to see that it might still frequently
slow one's thinking about the subject of interest.

Although we have emphasized elementary mathematical itcms in this
chapter, the same phenomena can occur with more advanced material. There
fore. an uncorrected piece of mathematical information at any level might
terminate a career in the subject. In other words, mathematical type ideas
are so vital to an understanding of many things Ihat it would be surprising
if limitation on mathematical learning was limited to inborn qualities. An
exception to this conjecture may be in order for the very rare, extremely
gifted mathematicians. Admittedly, their ability may be based on something
that is even absent in many very successful mathematicians.



300

REFERENCES

RlCKART

Caws. P. (19881. Sll1Ktu,uli,<;m.' TIw urI of ,"" ;",,,fligibW. CO"lf'mporury slwiu ill pIliluo;oplty
und 1M h"mw1 ,~irllU.l. Atlantic Highlands. NJ: Humanities Press Inlernalional.

ck SaIlSSUre. F. (1966). CflU'~ ill ~nerullillgui.IIic'J.New York: Ml."Graw-HiH.
Hadamard. 1. (1954). 1M ps)'Clwtogy uj in.ention in 1M mu.fMmulkul field. New York: Dover.
PoinCilrt. H. (1913). The j"...dofi()r/s ofKit'~ (G. ,t UalSlcad. Trans.). New York: The Science_.
Rickan, C. E. {1995). SUIK/u,,,/i,,," ulJd .It'lIrl,,''S:'' nwlhi!mulic'ul~r'~lirl'. Singapore: World

&~nlirlC.



CONCLUSIONS

VI
••••••••



C~righted ma\9rial



11...........

What Is Mathematical Thinking?

Robert J. Sternberg
Yale University

What is mathematical thinking? Although the chapters in Ihis volume address
a number of questions, certainly this question is the most fundamental. We
can look al how to teach or assess mathematical thinking, at how mathe
matical thinking develops, or at how mathematical thinking differs across
cultures. but in order to look at any of these things. first we have to under
stand what mathematical thinking is.

In reading through the chaplers of this volume. it becomes clear thai there
is no consensus on what mathematical thinking is. nor even on the abilities
or predispositions that underlie il. If one were to start the volume with litlle
conception of the definition of mathematical thinking. one might end the
volume with many conccptions whose relations to each othcr are not com
pletely clear. In this chaptcr, I discuss what I see as somc or the rclalions
among lhese conceptions.

To the extent that one's goal is to understand mmhematical thinking in
terms ora set or clearly dcfining reatures that are individually necessary and
jointly sufficient ror understanding the construct, onc is going to be disap
pointed. Indeed, it is difficult to find any common reatures that pervade all
of the various kinds of mathematical thinking discussed in this vol ume. For
example, thc abilities needed to lcarn to count seem quite different rrom
those needed to prove a difficult theorem in topology; the abilities needed
to compute the correct answer to a subtraction problem with borrowing seem
quite different rrom those nceded to understand the role or base rates in
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probabilistic inference. The point is that the classical theory of meaning in
semantic theory (Katz. 1972; Katz & Fodor. 1963) just does not seem 10
apply to mathematical thinking, any more than it seems to apply to the
notion of what a game is (Wiltgenslein. 1953). In other words, mathemaliC'ol
thinking. like game, does not seem 10 be a classically defined concept with
a set of defining fe:nures that are necessary and sufficient.

MATIfEMATICAL THINKING AS A SET
OF PROTOTYPES

A better model for understanding mathematical thinking seems 10 be the
prototypical model that has been proposed by Rosch (1973, 1978) and elabo·
rated on by others (e.g., Medin & Smith. 1984). The idea in this model is
that there are typically no defining features 31 all, but rather only charac
teristic features thai are typical of the construct. For example, manipulation'
of numerical symbols, as in compulation. might be a characteristic feature
of mathematical thinking. but il is certainly not necessary. One could use
mathematical think.ing 10 soh'C a word problem. but do all of the symbol
processing on a calculator so as to avoid doing any mental computation.
Multiph: operators and verbal equivalents for numerical symbols would be
other aspects of the prototype. The complete sel of possible attributes in the
prototype would be difficult or impossible to specify, and might well differ
from one numeration syslem 10 another (e.g., some languages have unique
symbols for numbers; olhers do not).

It is not clear thai Ihere is a single prOlotype for mathemalical thinking.
There might be multiple protOlypes. as there probably are, say. for what
constilules "good leaching" (Stemberg& Horvath, 1995). For example. what
would constilute outstanding mathematical thinking might be differenl in
algebra versus geomelry, or stalistics versus calculus. The exislence of mul
tiple prototypes seems likely, if only because the people who seem to be the
best statisticians are not necessarily the same as those who are best at calculus.
and vice versa.

In order to understand fully one or morc protolypes of mathematical
Ihinking. one would probably have to combine multiple approaches to the
underslanding of malhemalicalthinking.Asin Ihe case of intelligence, there
arc mulliple models or metaphors thai can be applied to Ihe understanding of
mathematical thinking (see Siernberg, 1990). each of which complements the
others in elucidating the construct. The multiple melaphors, such as the
psychometric and infonnation-processing ones, are complementary rather
Ihan contradictory, helping us to understand a single consiruci from multiple
points of view.

The chapters in this volume self-consciously take different approaches to

the understanding of mathematical thinking. If we were to Iry to figure out.
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as weJl as we can. characteristic features of one or more prototypes. what
might these features be, combining elements of the different approaches?

CHARACfERISllC FEATURES OF PROTOlWlCAL
MATHEMATICAL THINKING

The Psychometric Approach

The psychometric or "geographical" approach 10 understanding mathemati
cal thinking views the mind as a map with multiple regions varying in size
and location. Some of these regions may be more central (i.e., characteristic
of the prototype). others more peripheral. In chapter I. Carroll takes a psy
chometric approach to understanding prototypical features of mathematical
thinking.

At the most generallevei is general ability, or g. which seems 10 be relevant
to many different types of thinking. including but in no way limited to
mathematical thinking. Psychometric approaches have never been at their best
in specifying the infonnation·processing characteristics of the entities they
define, although g has been suggested to be Ihe ability to apprehend informa
tion, induce relations, and apply those relations (Spearman. 1923). as well as
the amount of conscious mental manipulation required by complex tasks
(Jensen, 1980; Marshalek, Lohman. & Snow. 1983). Other abililies involved
in mathematical thinking, according to Carroll, include fluid intelligence
(which mayor may not even differ from g-Gustafsson. 1988; Undheim &
Gustafsson. 1987. and which seems to be closely relaled to the ability to reason
inductively), and involves quality of sequential reasoning as well as speed of
reasoning; crystallized intelligence, which involves knowledge and may com
prise language skills, including reading comprehension; general memory
ability; general visual perception. including visualization. spatial relations.
mechanical knowledge, perceptual speed, closure speed, and closure flexibility;
and speed of information processing.

The psychometric metaphor effectively shows why it is better to think of
m(lthematical thinking in terms of mulliple prototypes ruther thall in terms

of a single classical semantic entity. An ability such as spatial visualization
will be heavily involved in many kinds of geometric and topological prob
lems. bUl will almost ~rtainly be less involved in most statistical problems.
Speed of infonnation processing will be important in many testing situations.
such as when students' mathematical thinking is assessed via the SAT or a
similar test, but is likely to be far less involved when a mathematician spends
months or even years trying to work out a proof. In sum. the different abilities
seem more or less central to the extent that they pervade more versus fewer
kinds of mathemalicalthinking. Someone who is relatively weaker spatially
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may never become a world-class topologist. but may have al least a shot at
becoming a world-class statistician.

Even within a given kind of mathematics. there are probably alternative
routes to success. as there are in any field. For example. faclor analysis can
be approached either algebraically, geometrically, or both, as can many dif
ferent multivariate techniques. One could understand multivariate dala
analysis ....1:11 via either an algebraic or a geomell;c conceptual framework.
Probably those who understand multivariate analysis best would be able to
use both frameworks. In my own experience leaching multivariate analysis.
different students understand the material in different ways (e.g., algebrai
cally or geometrically), and teaching the material in different ways helps more
students comprehend the material of the course.

The Computational Approach

The computational approach loosely embraces work that seeks to elucidate
the information processing required in mathematical or other kinds of think
ing. For example, Mayer and Hegarty's (chapter 2, tbis volume) theory of
mathematical understanding is based on this approach.

Mayer and Hegarty suggest a number of information-processing bases of
milthematicallhinking. One is quantilative reasoning, used in what they refer
to as a direct-translation str..uegy of problem solving, and another is quali
tative reasoning, used in what they refer to as a problem-model strategy. In
the former strateb'Y. one selects some of the apparent key numbers in a prob
lem. and tries to lit them into arithmetical formulas. The authors refer to it
as a "compute first and think later" kind of strategy. In the latter, one con
structs a qualitati~'e understanding of a problem, constructs an internal rep
resentation that unifies. 10 the extent that it is possible. the statements of
the problem. and only then computes a solution to the problem.

The direct-translation strategy can be quite fast. but it is also likely to be
incorrect if what seem to be salient numbers in the problem are red herrings.
For example. when we are given the socks problem--"Bluc and black socks
are mixed together in a drawer in a ratio of 4:5; how many socks do we
need to lake out of the drawer in order to be assured of having a pair of
the same color1"-the direct-translation strategy primes the numbers 4 and
5. and is thereby likely to lead to an error as the problem solver tries to use
the 4:5 ratio as a basis for solving a problem in which the ratio is irrelevant.

Mayer and Hegarty's model shows the extent to which multiple kinds of
representations and processes can be involved in mathematical thinking. For
example. to comprehend a mathematical problem. the problem solver tirst
has to translate the statements into a mathematical representation, then con
struct a problem representation. and then construct a plan for solution. One
can see how crystallized abilities. as discussed by Carroll, would be relevant
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in decoding the words of Ihe problem and seeking past formulas thai one
has stored in order to solve the problem; but one can also see how fluid
abilities would be important in overriding stereotyped uses of formulas that
may nOI apply in a given instance. and in going beyond past mental models
in order 10 construct a new menial model that applies appropriately 10 a
given, unique problem.

Ben-Zeev's analysis in chapter 3 further specifics information-processing
attributes of mathematical thinking. She suggests Ihe importance of analogi
cal thinking in mathematics, as when one forms a mapping between pust
problems one has solved and the presenl problem one is seeking 10 solve.
and also when one seeks to see the relations among a sct of problems one
needs to solve in the prescnl. Of course. good analogical thinking involves
seeing points of disanalogy as well as of analogy-how the present problem
is different from as well as similar to past problems. Again, in psychometric
terms, we can see the roles of both crystallized abilities (development of past
knowledge base) and fluid abilities (flexibly using but also departing from
past knowledge base) in the solution of mathematical problems. Translation
and construction of a plan for solution. in Mayer and Hegarty's tenns. will
certainly be facilitated by proper drawing of analogies. and inhibited by the
perception of false analogies. These aspects of mathematical problem solving
will also involve what Ben-Zeev calls "schematic thinking." in that, presum
ably, past mathematical infoml:lIion is represented in part in terms of mental
schemas.

Much of the information-processing work that has been done on human
abilities has concentrated on the decomposilion of response times, assuming
correct responses (see. e.g.. chapters in Stemberg, 1984). In studies of mathe
matical thinking, of course, the role of errors has been seen as more impor
tant, b«ause the principal issue has usually been seen as producing correct
answers rather than quick answcrs (although the measurement of the number
factor in tests based on Thurstone's, 1938. theory of mental abilities often
involves numerical speed at least as much as accuracy). Ben-Zeev's work
emphasizes errors, but in an interesting twist. focuses on a sense in which
errors may be "correct"; that is. reasoning that is logical. but that starts
from incorreci premises, and hence leads to wrong conclusions.

Malhematical ability, in this view, involves not only developed reasoning
processes for solving problems. but developed processes of inferring or oth
erwise generating correct premises to scrve as the bases for solving problems.
One is reminded of the problems children face when they arc first learning
language. and overgeneralize their use of words (Clark. 1973: Nelson, 1973).
Nelson's work is particularly intcresting in this regard. in that Nelson sug
gested that overgeneraliz..'l.tions are functional. When problem solvers over
generalize the use of mathematical fonnulas, thcy. too, seem 10 be trying to
use the formulas for functions to which the fonnulas do not truly generalize.
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I have referred to the anthropological approach as encompassing models of
abilities that view a given construct as, at least in p..1n. a cultural invenllon
(Sternberg, 1990). Mathematical thinking might seem like anything bUI a
cultural invention. However, it almost certainly has highly cullurally bound
aspects to it as it is actun.lly done. For example, cultures. such as the Chinese
one. that make use of the abacus in mathematical learning and problem
solving might end up rewarding abilities different from those rewarded by
a culture that relies on paper-aDd-pencil computational skills. In lurn, a cul
ture that relies heavily on the use of calculators and computers may reward
still different abilities.

The anthropological approach shows how the nature of a construct may
vary across time as well as space. When I grew up in the 1950s and took
college admissions tests in the 19605. we needed to be facile in arithmetical
computation skills. Today. children use calculators in school and even for
college admissions tcsts. obviating the need for many of those computational
skills. Similarly. the use of slide rules has essentially disappeared from courses
on mathematics and engineering. The skills leading to adept use of this device,
therefore, have simply become irrelevant to observable mathematic..... l abili
ties. whl:reas Ihey were quite relevant 40 years ago.

In chapler 4, Miller and Paredes show that how numbers arc expressed
in a language can make an important difference 10 how easily various aspects
of mathematics are learned and internally represented in that language. On
this view. Chinese children have an advantage over English or American
children because of the greater regularity in their system of verbal expression
of numbers. These fascinating results cast a new view on cultural differences
in mathematical perfonnance, showing that one needs not only take inlo
account differences in schooling. but differences in the way the numbers that
are laught in schools are represented in the first place.

In chapter 5, Saxe, Dawson, Fall, and Howard suggcst, along similar cul
turally ba~ lines, Ihat individuals structure and work toward mathematical
goals that are interwoven with cultural artifacts, social inleractions, activity
structures. and individuals' prior knowledge. Therefore, mathematics cannot
be truly separated from everyday life.

Saxe and his colle.1gucs, like Mayer and Hegarty and like Ben-Zeev. view
malhematical thinking in cognitive lenns. but as filtered through the lens of
culture. They argue that goal formation in mathematics depends on four
parameter activilY structurcs, social interactions. sign forms and cultural
artifacts. and prior understandings.

The activity structure of a prnctice consists of a routine organizalion of
participation in the practice. For example. when we go to a supennarket,
there is a fixed sequence of events involving mathematics. We comp.1re prod-
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lIctS 10 see which are better buys than arc others. We choose our elllire set
of products to make sure that they fit within the total amount of money we
have or c.m speno on our shopping. We may check to make sure that the
addition is correct. Increasing computerizalion at the supermarket. as well
as of cash registers in general. hilS changed the abilities nccded to function
properly with a c.lsh register. I\s a child. I watched my grandmother at the
cash register computing change. and laking into account people who gave
her extra bits of money so as not to end up with a lot of chang". Today\
computers make such computations unnecessary.

Some people have taken the increasing computerization of checkouts in
the supermarket to suggest that the checking of the clerk's work is no longer
necessary. Errors. however. rem'lin-they arc jusl of a different type. Now
they arc more likely to take the form of a product being charged twice. for
example. or being ch<lrged at a price difrerelll from Ihat marked on tlte su
permarket shelf. Both have happenco to me. People who pay attention to
the products that are spit out of computcrs-and not everyone docs~quickly

realize that errors do not go away. but merely change in kind. They also
change in persistence: Try gelling a computerized bill that is in error cor
reeted! 1\ recent error with a microchip that It'ld bt.'\:n installed into many
computers showed just how susceptible to error even computers c,m be,

Social interactions are also important in mathematical thinking as it oc
curs in the real world. For example. a banker may help a client figure out
how much of ,I mortgage he or she can afford. A stock broker may hclp .1

client compute the cost of a stock purchase. Some people. of course. ,Ire
inclined to leave the computations 10 the professionals-the bankers or the
stock brokers. It usually only tllkcs getting burned once. however, for these
people to realize that placing the whole responsibility on someone else call
be an extremely risky strategy. Customers may find that they are stuck with
a mortgage they canllot afford because of false assumptions made by the
banker. or may find that they are even turned down for the mortgage because
in allowing the banker to do everything. the customers forgot to provide
crucial infomlatioll that later turned out 10 be relevant in the bank's decision
not 10 otTer the mortgage. Ironically, the increasing availability of resources
for perfonning computations---machine or human-has increased the TC

sponsibility we need to take for making sure that the resources lwve the
information they need. presented in the correl·t form. for the computations
to take pl'lce correctly.

Students and others often consider a computer output not to need check
ing, because how could the computer mllke mistakes? In my experience. com
puter outputs cOlltain errors quite frequently. not {x--causc of errors in com
putation by the computer. but because the inforrn,Jlion was not presented
correctly 10 the computer. or because the assumptions under which the COIll

pUl<ltiolls \\Ierc done were erroneous, or becausc the llwthematical model did

Copyrighted Material
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nOI fit the data in the firsl place. Computerization, ifanything, has increased
the importance of higher order thinking in performing mathematical com·
putations.

Artifacts and convcmions include use of body pans. such as lingers. in
counting. or the usc of slide rules and computers. As noted earlier. these
artifacts are quite imponam not only because they are used in computing
answers to malhematical problems. bUI because they help define who will
be perceived as having more, and who as having less. mathematical-thinking
ability. It is important to realize Ihat new artifacts. in reducing the role of
certain factors in contributing to individual differences, increase the role of
others. Computational ability may mailer less today to individual differences
in mathematical ability in Western countries. However. the ability quickly
and correctly to use a calculator matters more. In the case of complex cal
culatoT$, the ability to program them may become important. In my chil
dren's high school, for example. slUdents are allowed to use programmablc
calculatoT$. and those students who can program thcir calculators to cut
down on their work are at a big advantage over those who cannot. Inda'<i,
social intcractional abilities are even relevant here-in being able to convince
better programmers to share their programs.

Particularly interesting in the framework of Saxe and his colleagues is the
emphasis on the interplay between developments across contexts and prac
tices. This emphasis is reminiscent of the work of Carraher. Carraher, and
Schliemann (1985). which has demonstrated that the same Brazilian children
who are successfully able to do street mathematics in order to run a business
may be totally unable to do formally isomorphic mathematics in the context
of the school: and of the work of uwe, Murtaugh. and de la Roche (1984)
and Murtaugh (1985) showing that the same individuals who may be able
to do comparison shopping in the context of a supermarket may not be able
to do isomorphic abstract arithmetical operations in the context of a paper
and-pencil test administered in a classroom. Findings such as these suggest
that there may be quite a gap between the abilities required for pure mathe·
matics and those required for e\"eryday mathematics, much as there is be·
tween academic and practical intelligence (Sternberg. 1985: Sternberg. Wag
ner, Williams, & Horvath. 1995).

It is nontrivial to bridge the gap between work such as that of Saxe and
his colleagues and work such as that of Mayer or Ben·Zeev. All are talking
about mathematical thinking, but from dilTerent points of view. The work
of Geary in chaptcr 6 helps bridge the gap. In distinguishing between primary
and secondary abilities. Geary shows how it may make sense biologically as
\.\-"ell as culturally to distinguish between abilities that are universal and that
will apply to mathematics no matter where it is used. and abilities that are
culturally specific. and that will be closely tied to the uses of mathematics
and the conventions surrounding these uses.
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For example, Geary suggests that abilities such as those of counting and
simple arithmetic are universal. whereas abilities such as mathematical prob·
lem solving are secondary and cu\[urally specific. On this view, we might
see some abilities as interacting with cultural contexts. and others as not so
interacting.

In that counting appears to be universal. at least as far as we know, and
the study of real analysis is not, Geary·s distinction may well make sense. I
am not sure the distinction is quite as simple as Geary states, however.

First. one might argue that the thinking required for mathematics of all
kinds is universal; what differs is whether a given culture at a given time
exercises it. The laws of mathematics-the commutative property of addition,
for example-is culture independent, as is the Pythagorean theorem. Whether
a culture has developed mathematics that takes advantage of it may be P.1r.
ticular, but in this case, we need to consider whether we want to make a
distinction between the mental ability for mathematics-which is perhaps
universal-and the particular set of menial abilities on which the culture
draws--which may not be. The higher order question is whether the list of
abilities or kinds of thinking should depend on what the culture requires,
or on mental capacities that exist, whether or not Ihey are called for in a
given culture. For example, I would argue that the universe ofmental abilities
is constant across cultures, but that the abilities that constitute intelligence
may vary across cultures as a function of what is adaptive in the various
cultures (Sternberg, 1985). Therefore. it may not be mathematical abilitiL"S
or thinking, per se. that differ across space and time, but those aspects of it
that are exploited at a given place or time.

Second, the culture may not know about the Pythagorean theorem, but
the sa.me mental abilities used to understand or exercise it may be used as
well in other mathematical pursuits. Because we do not yet have a good
mapping between tasks and abilities. we need 10 be careful about specifying
which abilities are used. based on analysis of the tasks in which the culture
engages. The fact that a cultlJre h,IS not discovered the Pythagorean theorem
does not mean that the abilities needed to use it are not used in other aSpe1:ts
of mathematicS that are used in the culture.

Third, even universal or primary abilities may manifest themselves differ
ently in diITerent cultures. For example, the words for numbers are simpler
and more logically generated in some cultures than in others. As noted by
Miller and Paredes in chapter 4, this very fact appears to be partially reo
sponsible for some of the difference we observe in mathematical performance
across cultures (see also Miller. Smith. Zhu. & Zhang. 1995). The children
of the cultures with the simpler or more logical words may thus appear to
have higher mathematical abilities-and in fact they do better on mathe
matical tests-but not because of any underlying capacity difference. but
rather because of a Whorfian sort of linguistic advantage.
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One way 10 learn about mental processes is to attempt to teach them, and
then draw inferences back to the mental processes as a result of what is more
and Jess easily taught (e.g.. Brown, 1974. 1975; Brown & Barclay. 1976). In
this volume, two chaplers use Ihis kind of backward inferencing process in
order to understand mathematical thinking. They let us make inferences
about cognitive and other processing on the basis of what is laught more
or less easily,

An interesting result of the pedagogical approach is that it almost imme
diately expands the prototype for mathematical thinking to include variables
that go beyond the narrowly cognitive. Attitudes, relationships, and social
constraints quickly become part and parcel of the prototype laken as a whole.
For example, Ginsburg's analysis in chapter 7 points out how sometimes
mathematical thinking for children involves trying to get right answers as
quickly as possible without thinking. as, for example. when children are timed
on how quickly they can write down answers to problems that test their
knowledge of addition. subtraction, multiplication. or division facts. As
Ginsburg also points out, and as discussed earlier, the game of mathematics
differs from one culture to another, purdy as a function or language: For
example, the word "eighty" may be processed in a way that is different from
the way "quatre-vingts" (80 in French, and which means literally "four twen
ties") is processed.

Purist cognitive psychologisls might be inclined to view attitudes as the
province of social rather than cognitive psychology, and as interacting with
but not as being part of mathematical thinking. Such a position would be
hard to defend in view of work as old as that of Janis and Frick (1943) or
as recent as that of Cosmides (1989) and Johnson-Laird and Byrne (1991)
showing major elTects of content and attitude loward material on thinking
aboul it. In a task such as the Wason selection [ask-which requires people
to recognize information needed in order 10 draw valid conditional infer
ences-you cannot abstract the difficulty of the problem from the content
via which the task is presented. The task has no meaningful difficulty inde
pendent of its conlent and people's atlitudes toward that content. The work
of Lave with California shoppers and of Carraher and cc:' ag'Jes with Bra
zilian street children suggests thaI the same is true for mathematical as for
logical problems (see also Ceci & Roazzi. 1994). Indeed. in his theory of
multiple intelligences. Gardner (1983) posited that logical and mathematical
abilities combine in a single intelligence.

The work of Bransford and his colleagues in chapter 8 further shows that
mathematical thinking and learning are highly context dependent. Children
learn mathematics far better when word problems are meaningful 10 them,
when students are helped to identify and define their own word problems
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rather than always relying on others to define the problems for them, and
when teachers focus on communication of mathemalical concepts and not
just on the concepts themselves. Bransford and his colleagues were most
successful in teaching mathematical thinking with highly contextualized
problems that look virtually nothing like those Ihal constitUic Ihe material
in American mathematics tCXIS, past and present. To the extent thaI we have
nOI had much success in teaching mathematical lhinking. we perhaps havc
ourselves to blame for developing instructional methods Ihat seem to depart
so greatly from the ideal. or anything even resembling it.

The Mathematical Approach

It is worth observing that the most malhematically oriented of the chapter
authors arc those who probably depart the most from purely cognitivc models
of mathematicallhinking based wholly or largely on cognitive information
processing considerations. Although the model of mathematical thinking
proposed by Dreyfus and Eisenberg in chapter 9 includes some of the same
cognitive elements found in the work of Mayer and Hegarty and of Ben
Zeev-for example, reasoning by analogy, considerations of structure and
representation, and visual reasoning-Dreyfus and Eisenberg also emphasize
the importance of the affective. They discuss right up front, for example, and
in some detail, the Moore approach. which emphasizes self-confidcnce. and
the Davidson "'humanization" of Moore's approach, which involves a more
cooperative and less competitive approach to teaching mathematics.

In chapter 10. Rickart, Ihe mathematician, places more emphasis on
malhematical creativity than do any of the other contributors to thc volume.
Perhaps b<x:ause of my own interest in creativity (Sternberg & Lubart. 1995),
I found the relatively scarce consideralion of mathemalical creativity in the
volume to be somewhat surprising. A comment I have heard a number of
times from mathematicians is that performance in mathematics courses, up
to the college and even early graduate levels, often does not efTeclively predict
who will succeed as a mathematician. The prediction failure is due to the
fact that in math. as in most other fields. one can get away with good analytic
but weak creative thinking until one reaches the highest levels ofeduc3tion
in this case, the later years of graduate training. However, it is creative mathe
matical thinking that is most imporlant for the development of mathematics
as a discipline. Without such crelltivily. the mathemalical curriculum of today
would be no difTerent from that of hundreds and perhaps even thousands
of years ago. For mathem.1tical lhinking to develop as a discipline and not
just as an individual skill. creative mathematical thinking is or supreme im
portance. Similarly. for individuals to usc mathematics in ways that go well
beyond what they are taught, creative mathematical thinking is key.

Creative thinking in mathematics is not important only in higher math.
Any data analyst. economist, account,ult. investor. or even citizen filling out
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tax forms can attest 10 the need 10 be creative with numbers. In data analysis,
for example. one often finds that the results of p'lanned analyses do not work

•
OUI as had been hoped. However, there may be a structure in the data that
the initial anaJyses are nOI showing. The creative data analyst figures oul a
way 10 elucidate this structure; the uncreative one may never even discover
the structure that was in the data wailing all along to be discovered.

A lRlARCHIC APPROACH TO MATHEMATICAL
THINKING

The approaches described previously have in common the fact that they at
tempt to abstract from the universe of possible dements of thought those
thai apply to mathematics. Thus. the psychometrician asks what raclonally
defined abilities are relevam 10 mathematical thinking. The cognitive psy
chologist asks what mental processes and representations are relevant. The
cognitive-cuhural psychologist seeks to detennine what elements of thought
inleract with what elements of culture. The cognitive--educational psycholo·
gist seeks to abstract principles of instruction that are relevant for mathe·
matical instruction as well as learning. The mathematician may ask what
aspects of thought and, as it turns out, affect are important. As noted earlier,
there is no one "right" way to approach mathematical thinking. Each ap
proach contributes different elements to the prototype.

The triarchic theory orhuman intelligence (Sternberg, 1985, 1988) would
look at mathematical thinking, or any other kind of thinking, for that maller,
in a somewhat different way. Here. in fact. the elements of the theory that
would be applied to mathematical thinking would not differ substantial1y
from the elements that would be applied. for example. to verbal thinking.

Roughly speaking, the triarchic theory posits that analytic, creative, and
practical thinking are all relevant and crucially important to intelligence. In
particular, they are relevant to mathematical thinking as well. As we have seen
in reviewing the chapters, all three of these kinds of thinking are imponant.
and they seem to be relatively distinct. The people who are good everyday
mathematicians are not necessarily good pure mathematicians. and the people
who may be the best at analyzing existing problems are not n~sarily those
who prove to be adept at creative mathematical thinking that goes beyond the
existing state of knowledge-however. let us get more specific.

The first of three subtheories of the triarehic theory-the componential
subtheory-specifies three kinds of processes rdevant to intelligent thought:
metacomponents. performance components, and knowledge-acquisition
components. Metacomponents-such as recognizing the existence of a prob
lem. defining the problem, representing information about the problem. and
monitoring solution of the problem-are the kinds of elements described in
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this volume under the cognitive approach to mathematical thinking-b",
they are also crucial higher order processes in verbal thinking, such as in
reading for meaning or writing a play, for thai maner. In writing. for ex·
ample. one necds to decide what one wants to write about, figure out an
approach to writing about it. decide how 10 describe the elements about
which one writes, and check one's writing as one writes 10 make sure it is
accomplishing what it is supposed to.

Perfonnancecomponents, such as those involved in analogical thinking
encoding elements of a problem. inferring relations, and applying these re
lations~are crucial. according to Spearman (1923), to general ability, as well
as to verbal and mathematical thinking. Knowledge-acquisition components.
such as selectively encoding relevant clements of a problem. selectively com
bining these elements to come up with a meaningful representation. and se·
lective comparison in order to detennine what ones knows from the past
that is relevant to the present. are also as relevant in reading a book or
writing a playas Ihey are in solving a mathemalics problem.

The second subtheory of the triarchic theory, the experiential subtheory,
posits the importance of coping with novelty and of automatization in in
telligence. Again, these aspects of intelligence are relevant in mathematical
thinking-from dealing with new numeralion systems or fonnulating new
proofs for coping with novelty, to remembering and spilling back addition
facts for automatization. However. both are also relevant to reading (from
a new novel to rapidly recognizing familiar lexical elements) and to writing
(from coming up with creative ideas to knowing how to put together a sen
tence without consciously thinking about its structural elements).

The third subtheory, the contextual subthcory, suggests that intelligence
involves adaptation to, as well as shaping and selection of. environments.
We teach mathematics in school because of its importance in adaptation. It
is hard to Jive in tooay's world without being able to balance a checkbook,
compute change, understand something aboul mortgage or rent payments,
understand discounts. and the like. Mathematical thinking is important to
al1 of us because we need il to survive, or at least 10 survive ....'CII.

What, then, according 10 the triarchie theory, is unique about mathemati
cal thinking? What distinguishes it. S:ly, from verbal thinking? According to
this theory, the distinctions are largely in (a) the mental representations of
information on which components operate and in (b) the "group" and "spe
cific" perfonnance components Ihat operate on these representations. Some
of the more specific mental operations of mathematics, such as multiplica
tion, are not in fact used in reading or writing. Of course, the mental rep
resentation of numbers is different from that of words. because the symbol
system is different. It is the difference in symbol systems and the rules under
which each operates that lead to the differences in the operations on them.
Indeed, we have found in our own research (Stemberg& Clinkenbeard, 1995;
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Sternberg & Gardner. 1983), as have others, Ihal the mental representation
of information often has a greater effect on consistent patterns of individual
differences than do the mental processes that act on these representations.

Affective factor5 will also be important. For example, Bandura (1977)
has shown that views of one's own self-efficacy can have a substantial effect
on one's performance in a given domain. People who beJieve they cannot
do mathematics orten end up nOI being able to do it, in large part because
they have convinced themselves that they cannot. That is the basis of the
Moore technique cited by Dreyfus and Eisenberg: By giving people self<on·
fidence. the people orten come to realize that the mathematics they had
thought was impossible for them really is nol.

To conclude, therefore, I believe Ihal future work needs especially to focus
on the effects of various mental representations on efficacy in a given field,
and also that it needs to help us understand differences among the analytic,
creative, and practical aspects of mathematics, which appear to be roughly
as distinct as these aspects are in other domains. We also need a much better
understanding of how affective components affect our altitudes toward
mathematics and toward our ability to do mathematics (as in self-efficacy).
We have made a great deal of progress in understanding mathematical think
ing. as the chapters in this volume have shown. We will make a great deal
more, I believe, as we tum our focus specifically toward these issues.
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