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1. Introduction 

A discrete time series is here defined as a vector x, of observations made at 
regularly spaced time points t = 1,2,. . . , n. These series arise in many fields, 
including oceanography, meterology, medicine, geophysics, as well as in econom- 
ics, finance and management. There have been many methods of analysis pro- 
posed for such data and the methods are usually applicable to series from any 
field. For many years economists and particularly econometricans behaved as 
though either they did not realize that much of their data was in the form of time 
series or they did not view this fact as being important. Thus, there existed two 
alternative strategies or approaches to the analysis of economic data (excluding 
cross-sectional data from this discussion), which can be called the time series and 
the classical econometric approaches. The time series approach was based on 
experience from many fields, but that of the econometrician was viewed as 
applicable only to economic data, which displayed a great deal of simultaneous or 
contemporaneous interrelationships. Some influences from the time series domain 
penetrated that of the classical econometrician, such as how to deal with trends 
and seasonal components, Durbin-Watson statistics and first-order serial correla- 
tion, but there was little influence in the other direction. In the last ten years, this 
state of affairs has changed dramatically, with time series ideas becoming more 
mainstream and the procedures developed by econometricians being considered 
more carefully by the time series analysts. The building of large-scale models, 
worries about efficient estimation, the growing popularity of rational expectations 
theory and the consequent interest in optimum forecasts and the discussion of 
causality testing have greatly helped in bringing the two approaches together, with 
obvious benefits to both sides. 

In Section 2 the methodology of time series is discussed and Section 3 focuses 
on the theory of forecasting. Section 4 emphasizes the links between the classical 
econometric and time series approaches while Section 5 briefly discusses the 
question of differencing of data, as an illustration of the alternative approaches 
taken in the past. Section 6 considers seasonal adjustment of data and Section 7 
discusses some applications of time series methods to economic data. 

2. Methodology of time series analysis 

A discrete time series consists of a sequence of observations x, taken at equi-spaced 
time intervals, examples being annual automobile production, monthly unemploy- 
ment, weekly readings on the prime interest rate and daily (closing) stock market 
prices. x, may be a vector. Underlying these observations will be a theoretical 
stochastic process X, which can, of course, be fully characterized by a (possibly 
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countable-infinitely dimensioned) distribution function. The initial and basic 
objective of time series analysis is to use the observed series x, to help characterize 
or describe the unobserved theoretical sequence of random variables X,. The 
similarity between this and the ideas of sample and population in classical 
statistics is obvious. However, the involvement of time in our sequences and the 
fact, or assumed fact, that time flows in a single direction does add a special 
structure to time-series data and it is imperative that this extra structure be fully 
utilized. When standing at time t, it is important to ask how will the next value of 
the series be generated. The general answer is to consider the conditional 
distribution of x 1+1 given x,_~, j 2 0, and then to say that x,+i will be drawn 
from this distribution. However, a rather different kind of generating function is 
usually envisaged in which the x<+r is given by: 

x,+~ = (function of Z()+ e,,,, (2.1) 

where 

i,=(x,,x,_I)...) 

and the parameters of the distribution of e,,, other than the mean, can depend 
on x[_~, j 2 0. It is usually overly ambitious to consider the whole distribution of 
e f+ 1 and, at most, the variance is considered unless e,,,, or a simple transforma- 
tion of it, is assumed to be normally distributed. An obviously important class of 
models occurs when the function in (2.1) is linear, so that: 

X r+1 
=f a, txt-j + e,+,. 

j=O ’ 
(2.2) 

For linear models, an appropriate set of characterizing statistics are the first and 
second moments of the process, that is the mean: 

the variance: 

and the covariances: 

Ewl -PAL - Pt-Jl = h,,> 

assuming that these quantities exist. 
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Given a finite amount of data and a single realization, which is the usual case in 
practice with economic data, it is fairly clear that one cannot estimate these 
quantities without imposing some further structure. A case which provides a good 
base situation is when the process is stationary. A process is said to be second-order 
stationary if the mean and variance, p and u2, do not vary with time and the 
covariances, h,, depend only on the time interval between X, and X,_, rather than 
on time itself. A general definition of stationarity has that any group of x’s, and 
the same group shifted by a finite time interval, have identical joint distributions. 
In terms of the generating function (2.1), x, will be stationary if the form and 
parameters of the function do not vary through time. For the linear form (2.2) a 
sufficient set of conditions are that the parameters of the distribution of E* are 
time invariant and the parameters Q are both time invariant and are such that 
the difference equation: 

m 

X f+l= C ajixr-j, 
J=o 

is stable. An assumption of stationarity is not made because it is believed to be 
realistic, but because a number of important results derive from the assumption 
and these results can then be studied as the stationarity assumption is relaxed in 
useful ways. 

If x, is a univariate, stochastic process, its linear properties can be studied from 
knowledge of its mean, which is henceforth assumed known and to be zero, 
variance a2 and the autocovariances A,, or equivalently the autocorrelations 
p, = A,/a2. Given a single realization x,, t = 1,. . . , n, consistent estimates of these 
quantities are easily found provided that the process is ergodic, which essentially 
means that as n increases the amount of useful information about the process 
continually increases. (An example of a non-ergodic process is X, = acos(bt) 
where a is a random variable with finite mean.) Although these quantities, 
particularly the autocorrelations, ‘do characterize the linear properties of the 
process, they are not always easy to interpret or to use, if, for example, one is 
interested in forecasting. For many purposes there is greater interest in the 
generating process, or at least approximations to it. Ideally, one should be able to 
look at the correlogram, which is the plot of p, against s, decide which is the 
appropriate model, estimate this model and then use it. To do this, one naturally 
first requires a list, or menu of possible and interesting models. There is actually 
no shortage of time series models, but in the stationary case just a few models are 
of particular importance. 

The most fundamental process, called white noise, consists of an uncorrelated 
sequence with zero mean, that is E, such that E[E~] = 0, var(eI) < cc and 
corr(e,, E,_,) = 0, all s # 0. The process can be called pure white noise if E, and 
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El-, are independent for s # 0. Clearly a pure white-noise process cannot be 
forecast from its own past, and a white noise cannot be forecast linearly, in each 
case the optimal forecast is the mean of the process. If one’s objective when 
performing an analysis is to find a univariate model that produces optimum linear 
forecasts, it is clear that this objective has been reached if a linear transformation 
of x, can be found that reduces the series to white noise, and this is why the white 
noise process is so basic. It can be shown that any univariate stationary process 
can, in theory at least, be reduced uniquely to some white-noise series by linear 
transformation. If non-linear or multivariate processes are considered there may 
not be a unique transformation. 

A class of generating processes, or models, that are currently very popular are 
the mixed autoregressive moving averages given by: 

P 4 

x,= C a,x,_j+ C $&t-j, b, =l, 
j=l j=O 

where E, is white noise. In terms of the extremely useful backward shift operator, 
B, where 

Bkx, = x,-k, 

these ARMA ( p, q) models can be expressed as: 

a(B)x, = b(B)&,, 

where 

a(B)=l- i ajBJ 
j=l 

and 

b(B) = 2 bjB’, b,=l. 
j = 0 

If q = 0, one has an autoregressive, AR(p), model and if p = 0 the model is a 
moving average, denoted MA(q). The q’s are, of course not directly observable, 
but a model is said to be invertible if the original E, can be reconstructed from 
the observed x,. Given a long enough series for x,, the models are invertible if the 
roots of the equation b(z) = 0 all lie outside the unit circle. 

Consider now the AR(l) model: 
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This simple difference equation has the solution: 
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ttn 
x,= c cd, ~ t J’ 

j==O 

if the process started up at time t = - n. If E~ has zero mean and variance a*, then 
clearly the variance of x, is: 

var( xr) = 
i 

l_ a*[n+r+ll 

l-lx2 1 fJ2, 
and x, has mean zero. If now the starting up time is moved into the distant past, 
the variance of x, tends to l/(1 - a2) if 1~~1 -C 1, but increases exponentially and 
explodes if (a I> 1. A borderline case, known as a random walk when (x = 1, has 
var x, = (f + n + l)a*. It is clear that if I a ( 2 1, x, will have infinite variance. More 
generally, if all of the roots of a(z) = 0 lie outside the unit circle and the process 
started in the distant past, the series will be stationary, if any roots lie inside the 
unit circle the series will be explosive. If d roots lie on the unit circle and all 
others outside one has an integrated process. Suppose that x, is generated by 

(14+z(B)x,=b(B)e,, 

where a(B) is a polynomial of order p with all roots outside the unit circle and 
b(B) is a polynomial of order q, then x, is said to be an integrated autoregres- 
sive-moving average series, denoted x, - ARIMA( p, d, q) by Box and Jenkins 
(1976) who introduced and successfully marketed these models. It should be 
noted that the result of differencing x, d times is a series y, = (1 - B)d~,, which is 
ARMA( p, q) and stationary. Although, when d > 0 and x, is not stationary, then 
these models are only a rather simple subset of the class of all non-stationary 
series. There has been a rather unfortunate confusion in the literature recently 
about distinguishing between integrated and general non-stationary processes. 
These terms have, incorrectly, been used as synonyms. 

One reason for the popularity of the ARMA models derives from Weld’s 
theorem, which states that if x, is a stationary series it can be represented as the 
sum of two components, xtr and xzt, where xtt is deterministic (i.e. x1 t+k, k > 0, 
can be forecast without any error by a linear combination of x1 t_,, j ; 0) and x2t 
has an MA(q) representation where q may be infinite. As an’infinite series can 
frequently be well approximated by a rational function, the MA(co) process may 
be adequately approximated by an ARMA( p, q) process with finite p and q. The 
ARIMA( p, d, q) models give the analyst a class of linear time series processes 
that are general enough to provide a good approximation to the true model, but 
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are still sufficiently uncomplicated so that they can be analyzed. How this is done 
is discussed later in this section. 

Many other models have been considered. The most venerable considers a 
series as being the sum of a number of distinct components called trend, long 
waves, business cycles of various periods, seasonal and a comparatively unim- 
portant and undistinguished residual. Many economic series have a tendency to 
steadily grow, with only occasional lapses, and so may be considered to contain a 
trend in mean. Originally such trends were usually represented by some simple 
function of time, but currently it is more common to try to pick up these trends 
by using integrated models with non-zero means after differencing. Neither 
technique seems to be completely successful in fully describing real trends, and a 
“causal” procedure, which attempts to explain the trend by movements in some 
other series-such as population or price-may prove to be better. The position 
that economic data contains deterministic, strictly periodic cycles is not currently 
a popular one, with the exception of the seasonal which is discussed in Section 5. 
The ARIMA models can adequately represent the observed long swings or 
business cycles observed in real economics, although, naturally, these components 
can be better explained in a multivariate context. 

The decomposition of economic time series into unobserved components (e.g. 
permanent and transitory, or, “trend” and seasonal components) can be accom- 
plished by signal extraction methods. These methods are discussed in detail in 
Nerlove, Grether and Carvalho (1979). In Section 6 we show how the Kalman 
filter can be used for this purpose. 

A certain amount of consideration has been given to both non-stationary and 
non-linear models in recent years, but completely practical procedures are not 
usually available and the importance of such models has yet to be convincingly 
demonstrated in economics. The non-stationary models considered include the 
ARIMA models with time-varying parameters, the time variation being either 
deterministic, following a simple AR(l) process or being driven by some other 
observed series. Kalman filter techniques seem to be a natural approach with such 
models and a useful test for time-varying autoregressive parameters has been 
constructed by Watson and Engle (1980). 

Estimation and prediction in models with time varying autoregressive parame- 
ters generated by an independent autoregressive process is a straightforward 
application of the techniques discussed by Chow in Chapter 20 of this Handbook. 
Stochastically varying moving average coefficients are more difficult to handle. 
Any stochastic variation in the coefficients yields a model which is not invertible 
as it is impossible to completely unscramble the shocks to the coefficients from 
the disturbance. In the moving average model this introduces a non-linear 
relationship between the unobservables, the disturbances and the coefficients. The 
Kalman filter cannot be used directly. It is possible to linearize the model and use 
an extended Kalman filter as Chow does in Chapter 20 for the simultaneous 
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equation model. The properties of the coefficient estimates and forecasts derived 
from this method are not yet established. 

Useful classes of non-linear models are more difficult to construct, but a class 
with some potential is discussed in Granger and Andersen (1978). These are the 
bilinear models, an example being: 

x, = ax,_1 + px,_2e,_1+ E,. 

When ar = 0, this particular model has the interesting property that the autocorre- 
lations p, all vanish for s # 0, and so appears, in this sense, to be similar to white 
noise. Thus, in this case xI cannot be forecast linearly from its own past, but it 
can usually be very well forecast from its own past non-linearly. Conditions for 
stationarity and invertibility are known for some bilinear models, but it is not yet 
known if they can be used to model the types of non-linearity that can be 
expected to occur in real economic data. 

Priestly (1980) introduces a state-dependent model which in its general form 
encompasses the bilinear model and several other non-linear models. The restricted 
and conceivably p’iactical form of the model is a mix of the bilinear and 
stochastically time varying coefficient models. 

Engle (1982) has proposed a model which he calls autoregressive conditional 
heteroscedastic (ARCH) in which the disturbances, E,, have a variance which is 
unconditionally constant, but conditional on past data may change, so that: 

+:+I] = u2, 

but 

As will be shown in the next section, e,+i is just the one step ahead forecast error 
X r+l. The ARCH model postulates that x,+ I will sometimes be relatively easy to 
forecast from x,, i.e. h,,, < u2, while at other times it may be relatively difficult. 
This seems an attractive model for economic data. 

One of the basic tools of the time series analyst is the correlogram, which is the 
plot of the (estimated) autocorrelations p, against the lag s. In theory, the shape of 
this plot can help discriminate between competing linear models. It is usual 
practice in time series analysis to initially try to identify from summaries of the 
data one or just a few models that might have generated the data. This initial 
guess at model specification is now called the identification stage and decisions 
are usually made just from evidence from the data rather than from some 
preconceived ideas, or theories, about the form of the true underlying generating 
process. As an example, if a process is ARMA ( p, q) with p > 0, then p, = 13” for s 
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large, with lfll< 1, but if p = 0, p, = 0 for s 2 q + 1 so that the shape of the 
correlogram can, theoretically, help one decide if p > 0 and, if not, to choose the 
value of q. A second diagram, which is proposed by Box and Jenkins to help with 
identification is the partial correlogram, being the plot of us,s against s, where 
uk,k is the estimated coefficient of x,_~ when an kth order AR model is fitted. If 
q > 0, this diagram also declines as 8” for s large, but if q = 0, then usTs = 0 for 
s 2 p + 1. Thus, the pair of diagrams, the correlogram and the partial correlo- 
gram, can, hopefully, greatly help in deciding which models are appropriate. In 
this process, Box and Jenkins suggest that the number of parameters used, p + q, 

should be kept to a minimum-which they call the principal of parsimony-so 
that estimation properties remain satisfactory. The value of this suggestion has 
not been fully tested. 

The Box and Jenkins procedure for identifying the orders p and q of the 
ARMA( p, q) model is rather complicated and is not easily conducted, even by 
those experienced in the technique. This is particularly true for the mixed model, 
when neither p nor q vanishes. Even for the pure AR or MA models difficulties 
are often encountered and identification is expensive because it necessitates 
decision making by a specially trained statistician. A variety of other identifica- 
tion procedures have been suggested to overcome these difficulties. The best 
known of these is the Akaike information criteria (AIC) in which if, for example, 
an AR(k) model is considered using a data set of size N resulting in an estimated 
residual variance 6:, then one defines 

AIC( k) = log 6; + 2k/N. 

By choosing k so that this quantity is minimized, an order for the AR model is 
selected. Hannan and Quinn (1979) have shown that this criteria provides 
upward-biased estimates of the order of the model, and that minimization of the 
criterion: 

& = lo@,2 + N-‘2kcloglogN, c>l, 

provides better, and strongly consistent estimates of this order. 
Although c is arbitrary, a value c = 1 appears to work well according to 

evidence of a simulation. So for instance, if N = 100 an AR(4) model would be 
prefered to an AR(S) model if the increase in e2 is less than 2% using AIC and 
less than 3% using @. These procedures can be generalized to deal also with mixed 
ARMA( p, q) models. (A critical discussion on the use of information criteria in 
model selection can be found in Chapter 5 of the Handbook.) Another partly 
automated method has been proposed by Gray, Kelly and McIntire (1978) which 
is particularly useful with the mixed model. Although the method lacks intuitive 
appeal, examples of its use indicate that it has promise. As these, and other, 
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automated methods become generally available, the original Box-Jenkins proce- 
dures will probably be used only as secondary checks on models derived. There is 
also a possibility that these methods can be used in the multiple series case, but 
presently they are inclined to result in very non-parsimonious models. 

The identification stage of time series modeling is preceded by making an 
estimate of d, in the ARIMA( p, d, q) model. If d > 0, the correlogram declines 
very slowly-and theoretically not at all-so the original series is differenced 
sufficiently often so that such a very smooth correlogram does not occur. In 
practice, it is fairly rare for a value of d other than zero or one to be found with 
economic data. The importance and relevance of differencing will be discussed 
further in Section 5. Once these initial estimates of p, d and q have been obtained 
in the identification stage of analysis, the various parameters in the model are 
estimated and finally various diagnostic checks applied to the model to see if it 
adequately represents the data. 

Estimation is generally carried out using maximum likelihood or approximate 
maximum likelihood methods. If we assume the E’S are normally distributed with 
mean zero and variance (conditional on past data) u,‘, the likelihood function is 
proportional to: 

(uY’*fWexp[ - W& XTV-2u,Z]T 
where /I contains the parameters in a(B) and 6(B) and now X, = (x1, x2,. . . , xr)‘. 
Analytic expressions for f( p) and S( p, X,) can be found in Newbold (1974). 

One of three methods, all with the same asymptotic properties, is generally used 
to estimate the parameters. The first is the exact maximum likelihood method, 
and Ansley (1979) proposes a useful transformation of the data when this method 
is used. The second method, sometimes called exact least squares, neglects the 
term f(p), which does not depend on the data, and minimizes S(/?, X,). The 
method is called exact least squares since S(/3, X,) can be written as: 

1=--00 

where .$ = E[e,]Xr, /3]. Box and Jenkins (1976) suggest approximating this by 
“back-forecasting” (a finite number of) the pre-sample values of E. The third and 
simplest approach, called conditional least squares, is the same as exact least 
squares except pre-sample values of the disturbances are set equal to their 
unconditional expected values. 

Monte Carlo evidence [see Newbold and Ansley (1979)] suggests that the exact 
maximum likelihood method is generally superior to the least squares methods. 
Conditional least squares performs particularly poorly when the roots of the MA 
polynomial, b(z), are near the unit circle. 
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Once the model has been estimated diagnostic checks are carried out to test the 
adequacy of the model. Most of the procedures in one way or another test the 
residuals for lack of serial correlation. Since diagnostic tests are carried out after 
estimation Lagrange Multiplier tests are usually the simplest to carry out (see 
Chapter 12 of this Handbook). For the exact form of several of the tests used the 
reader is referred to Hosking (1980). Higher moments of the residuals should also 
be checked for lack of serial correlation as these tests may detect non-linearities 
or ARCH behavior. 

The use of ARIMA models and the three stages of analysis, identification, 
estimation and diagnostic testing are due to Box and Jenkins (1976), and these 
models have proved to be relatively very successful in forecasting compared to 
other univariate, linear, time-invariant models, and also often when compared to 
more general models. The models have been extended to allow for seasonal 
effects, which will be discussed in Section 6. 

A very different type of analysis is known as spectral analysis of time series. 
This is based on the pair of theorems [see, for instance, Anderson (1971, sections 
7.3 and 7.4)] that the autocorrelation sequence p, of a discrete-time stationary 
series, x, has a Fourier transformation representation: 

p, = 
/ 

-?reiwsdS(w), 
71 

where S(o) has the properties of a distribution function, and the spectral 
representation for x,: 

x, = 
J 

-Veirodz(w), 
71 

where 

E[dz(o)&(X)] = 0, W#X, 

= a2dS(o), o=h, 

where u2 = var(x,). When x, contains no purely cyclical components dS( w) can 
be replaced by s(w)do, where s(w) is known as the spectral function and is given 
by: 

s(w) = Y& C (psemiSW). 
all s 

The spectral representation for x, can be interpreted as saying that x, is the sum 
of an uncountably infinite number of random components, each associated with a 
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particular frequency, and with each pair of components being uncorrelated. The 
variance of the component with frequencies in the range (w, w + do) is u* s( o)dw 
and the sum (actually integral) of all these variances is a*, the variance of the 
original series. This property can obviously be used to measure the relative 
importance of the frequency components. Small, or low, frequencies correspond 
to long periods, as frequency = 257 (period)-‘, and thus to long swings or cycles 
in the economy if x, is a macro-variable. High frequencies, near 7~, correspond to 
short oscillations in the series. In one sense, spectral analysis or frequency-domain 
analysis gives no more information than the more conventional time-domain 
analysis described earlier, as there is a unique one-to-one relationship between the 
set of autocorrelations p,, s = 1,2,. . . , and the spectral function s(w). However, 
the two techniques do allow different types of interpretation to be achieved and 
for each there are situations where they are clearly superior. Thus, for example, if 
one is interested in detecting cycles or near cycles in one’s data, spectral analysis 
is obviously appropriate. 

If x, is a stationary series and a second series is formed from it by a linear 
transformation of the form: 

YI= 5 g/x*-,, 
J=o 

then their respective spectral representations are easily seen to be: 

y,=]” e”“g(o)dz(w), 
-77 

if 

/ 

77 

x, = ei“‘dz(w), 
-77 

where 

g(w) = 2 gjz'? z = e-i”. 

j=O 

By considering the autocovariance sequence of y, it follows immediately that the 
spectrum of yt is g( w)g( w)s,( w) where s,(w) is the spectrum of x, and g is the 
complex conjugate of g. y, is known as a (one-sided) filter of x, and the effect on a 
series of the application of a filter is easily determined in the frequency domain. 

A zero-mean, white-noise series E, with variance of u,’ has spectrum s,(w) = 
u,*/(2s), so that the spectrum of a white noise is flat, meaning that all frequency 
components are present and contribute equal proportions to the total variance. 
Considering a series x, generated by an ARMA( p, q) process as a filtered version 
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of E*, that is: 

a,(B)x, = 4@)% 

or 

it follows that the spectrum of x, is: 

991 

Some applications of spectral analysis in econometrics will be discussed in Section 
7. Potentially, the more important applications do not involve just single series, 
but occur when two or more series are being considered. A pair of series, x,, y,, 
that are individually stationary are (second-order) jointly stationary, if all cross 
correlations p:’ = corr(x,y,_,) are time invariant. In terms of their spectral 
representations, it is necessary that: 

E[dz,( o)dz,( X)] = 0, wf X, 

= cr( w)dw, w=h, 

where x, and yI have spectral representations: 

/ 

7l 

x, = ei“‘dz,( w) 
-7l 

and 

y~=l” e”“dz,(w). 
--n 

cr(w) is known as the cross spectrum and is, in general, a complex valued 
quantity. Interpretation is easier in terms of three derived functions, the phase 
(p(w), the coherence C(o), and the gain R,,(w) given by: 

+( ~4) = tan-’ 
[ 

imaginary part of cr( 0) 

real part of cr( w ) 1 ’ 
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When the two series are related in a simple fashion: 

x, = QY,-, + u,, 

where u, is a stationary series uncorrelated withy,_,, all s, the phase diagram takes 
the form: 

G(W) = kw. 

This is true whether k is an integer or not, so a plot of the estimate of Cp(w) 
against w will give an estimate of the lag k in this simple model. Models relating 
x, and y, involving more complicated structures do not lead to such easily 
interpreted phase diagrams, this being particularly true for two-way causal 
relationships. The coherence function measures the square of the correlation 
between corresponding frequency components of the two series and is always 
important. For instance, it might be found that two series are highly interrelated 
at low frequencies (“in the long rum”) but not at high frequencies (“in the short 
run”) and this could have interesting econometric implications. The gain can be 
interpreted as the regression coefficient of the o-frequency component of x on the 
corresponding component of y. 

The extension of spectral techniques to analyze more than two series is much 
less well developed, although partial cross spectra can be easily determined but 
have been little used. 

Spectral estimation has generated a considerable literature and only the rudi- 
ments will be discussed here. Since the spectral density function is given by: 

S(U)=& E p,e-jJw. 

/=-a: 

A natural estimator is its sample counterpart: 

S;(w) = -& ‘2’ li,e-ijw_ 
J=-T+l 

This estimator has the desirable property of being asymptotically unbiased but 
also has the undesirable properties of being inconsistent and producing a rather 
“choppy” graph when plotted against frequency even when s(o) is smooth. This 
last property follows from the fact that 3(w,) and $(wZ) will be asymptotically 
uncorrelated for w1 # 02. 

To alleviate these problems 3(w) is usually smoothed to produce an estimator 
jk (w) given by: 

3&~)=/~ k(X)+-A)dh. 
--B 

The weighting function k(A) is called the spectral window. It is symmetric about 
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o and most of its mass is concentrated around this frequency. Specific forms for 
spectral windows are given in the references below. 

Since 5,(o) is a weighted averaged of i(h) for X near w large changes in the 
spectrum near o cause a large bias in jk(o). These spillover effects are called 
leakage, and will be less of a problem the flatter the spectrum. To avoid leakage 
series are often “prewhitened” prior to spectral estimation and the spectrum is 
then “recolored”. A series is prewhitened by applying a filter to the series to 
produce another series which is more nearly white noise, i.e. has a flatter spectrum 
than the original series. So, for example, x, might be filtered to produce a new 
series y, as: 

The filter +(B) may be chosen from a low order autoregression or an ARMA 
model. Once the spectrum of y, has been estimated, the spectrum of x, can be 
recovered by recoloring, that is: 

The details of spectral estimation and the properties of the estimators can be 
found in the books by Anderson (1971), Fishman (1969), and Koopmans (1974). 
There are many computer packages for carrying out spectral and cross-spectral 
estimation. For the length of time series generally encountered in economics 
computation costs are trivial. 

If in the spectral representation, 

/ 

71 

x, = eir“dz(w), 
--?i 

the random amplitudes dz(w) are not orthogonal, so that 

E[dz(w)&(X)] =d*F(W,X), 

which is not necessarily zero when o # X, a very general class of non-stationary 
processes result, known as harmonizable processes. They have recently been 
discussed and applied to economic data by Joyeux (1979). 

3. Theory of forecasting’ 

In applied economics as well as many other sciences much of the work on time 
series analysis has been motivated by the desire to generate reliable forecasts of 
future events. Many theoretical models in economics now assume that agents in 

‘This section relies heavily on Granger and Newbold (1977). 
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the economy optimally or “rationally” forecast future events and take actions 
based on these forecasts. This section will be devoted to discussing certain aspects 
of forecasting methodology and forecast evaluation. 

Let X, be a discrete time stochastic process, and suppose that we are at time n 
(n = now) and seek a forecast of X,,+,, (h = hence). Anything that can be said 
about X,, + ,, at time n will obviously be based on some information set available at 
time n, which will be denoted by Z,. As an example, a univariate forecast might 
use the information set: 

where by “model” we mean the process generating the data. Any information set 
containing the past and present of the variable being forecast will be called a 
proper information set. 

Everything that can be inferred about X,,, given the information set Z, is 
contained in the conditional distribution of X,,+,, given Z,,. Typically it is too 
ambitious a task to completely characterize the entire distribution, and the 
forecaster must settle for a confidence band for X”+h, or a single value, called a 
point forecast. 

To derive an optimal point forecast a criterion is needed, and one can be 
introduced using the concept of a cost function. Agents engage in forecasting 
presumably because knowledge about the future aids them in deciding which 
actions to take today. An accurate forecast will lead to an appropriate action and 
an inaccurate forecast to an inappropriate action. An investor, for example, will 
forecast the future price of an asset to decide whether to purchase the asset today 
or to sell the asset “short”. An accurate forecast implies a profit for the investor 
and an inaccurate forecast implies a loss. A cost function measures the loss 
associated with a forecast error. If we define the forecast of X,,,, based on 
information set Z, as &( I,,), then the forecast error will be: 

e,“,,(ZJ = X,+, - j,X,,(ZJ. (3.1) 

The cost associated with this error can be denoted as c( ei, ,,( I,)). (For notational 
convenience we will often suppress the subscripts, superscripts, and information 
set when they are easily inferred from the context.) A natural criterion for judging 
a forecast is the expected cost of the forecast error. 

The most commonly used cost function is the quadratic: 

C(e) = ae’, 

where a is some positive constant. This cost function is certainly not appropriate 
in all situations-it is symmetric for example. However, it proves to be the most 
tractable since standard least squares results can be applied. Many results 



Ch. 17: Time Series and Spectral Methoak 995 

obtained from the quadratic cost function carry over to other cost functions with 
only minor modification. For a discussion of more general cost functions the 
reader is referred to Granger (1969) and Granger and Newbold (1977). 

Standard theory shows that the forecast which minimizes the expected squared 
forecast error is: 

fn,,, = E(Xn+,/Zn). 

Calculating the expected value of the conditional distribution may be difficult or 
impossible in many cases, since as mentioned earlier the distribution may be 
unknown. Attention has therefore focused on forecasts which minimize the mean 
square forecast error and which are linear in the data contained in I,,. Except for 
a brief mention of non-linear forecasts at the end of this section, we will concern 
ourselves only with linear forecasts. 

We will first derive the optimal linear forecast of Xn+h for the quadratic cost 
function using the information set Zi introduced above. We will assume that X, is 
covariance stationary and strictly non-deterministic. The deterministic component 
of the series can, by definition, be forecast without error from Z, so there is no 
loss in generality in the last assumption. For integrated processes, X, is the 
appropriate differenced version of the original series. Since the infinite past of X, 
is never available the information set Z,’ is rather artificial. In many cases, 
however, the backward memory of the X, process [see Granger and Newbold 
(1977)] is such that the forecasts from Z,’ and 

I,“= ( x,, t = O,l,. . . ,n; model). 

differ little or not at all. 
The optimal forecast for the quadratic cost function is just the minimum mean 

square error forecast. The linear minimum mean square error forecasts from the 
information set Z,’ will be of the form: 

cc 

fn,h = C cix,-i = c( B)xnY 
i=o 

where c(B) minimizes: 

E[ (xnttl - WxJ2] 
From Wold’s theorem x, has a moving average representation: 

x, = b(B)&,, (3.2) 
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where E, is white noise. If we define: 
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w(B) = b(B)@), 

and we assume that b(B) is invertible, the problem reduces to finding w(B) which 
minimizes: 

E[ (xn+h - w(Bb,)*] - 
It is then straightforward to show [Granger and Newbold (1977, p. 121)] that the 
equations which characterize w(B) are: 

WI = bi+h 3 i=O,l )... . 

A compact way of writing this is: 

b(B) w(B)= - I 1 Bh +’ 

where “ + ” means ignore all negative powers of B. The linear mean square error 
forecast can then be written as: 

fn.h = y E,, 
[ 1 + 

or: 

fn.h = y +&y.. 1 I (3.3) 

Substituting (3.2) and (3.3) into (3.1) shows that the forecast error will be: 

h-l 

en.h = c b&h-r, 
i=o 

so that the h step forecast errors are generated by a moving average process of 
order h - 1. The one step ahead forecast error is just ~,+i which is white noise. 
Furthermore, x, + h can be decomposed as: 

X n+h = fn,h + en.hr 

where f,,h and e, h are uncorrelated. The variance of the forecast will therefore be 
bounded above by the variance of the series. 
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The formulae given above for the optimal univariate forecast may look rather 
imposing, but simple recursions can easily be derived. Note, for instance, that: 

so that forecasts of Xn+h can easily be updated as more data becomes available. A 
very simple method is also available for ARMA models. Suppose that x, is 
ARMA( p, q) so that: 

X n+h =alXn+h-l+ e-e +apX,+h_p+&,+h - blq,+h_, - . . . - bqq,+,,-q. 

f n,h can be formed by replacing the terms on the right-hand side of the equation 
by their known or optimal forecast values. The optimal forecast for E,,+~ is, of 
course, zero for k 2 0. 

While univariate forecasting methods have proved to be quite useful (and 
popular) the dynamic interaction of economic time series suggests that there may 
be substantial gains from using wider information sets. Consider the forecast of 
X n+h from the information set: 

I”‘= {(x,,y,‘),-oo<t~n;model}. n 

where y is a vector of other variables. If we assume that (X,, q’) is a covariance 
stationary process, then an extension of Wold’s theorem allows us to write: 

Xl 
z, = [I [ a*1@) a,*(B) 

Y, = a21w I 5 
a**(B) f’ 

where [ is vector of white noise with contemporaneous matrix 2, so that A(0) = I. 
The linear mean square error forecast will be of the form: 

where Q(B) minimizes: 

If the matrix polynomial, A(B) is invertible it can be shown that: 

Q(B) = [F] [A(B)] -l, + 
where a,(B) is the first row of A(B). 
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Once again, the forecast errors, e,* ,, (I,,“’ ) will follow a moving average process 
of order h - 1. Furthermore, it must be the case that: 

vark,,&)) 2 var(e,,AY I)? 

since adding more variables to the information set cannot increase the forecast 
error variance. 

These optimal forecasting results have been used to derive variance bounds 
implied by a certain class of rational expectations models. [The discussion below 
is based on Singleton (1981); see also Shiller (1981) and LeRoy and Porter 
(1981).] The models under consideration postulate a relationship of the form: 

P, = i ~;fnx.;(~~), 
r=O 

(3.4) 

where the forecasts are linear minimum mean square error. In some models P,, 
could represent a long-term interest rate and X,, a short-term rate, while in others 
P,, represents an asset price and X, is the value of services produced by the asset 
over the time interval. 

If we define 

and 

where fn&(IJ is the linear mean square error forecast, then: 

where 

9” = 5 Q,,,(Y) 
1=1 

and 

v, = t 6ie,.i(Z,‘). 
r=l 
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Since P,, and p” are linear combinations of optimal forecasts: 

999 

which implies: 

2 =u2+a2=&+a2 
UP' P R P Y . 

Furthermore, since Z,’ is a subset of Z/ : 

which leaves us with the inequality 

The variances a$ and up? are then the bounds for the variance of the observed 
series. If cri falls outside of these bounds the model (3.4) must be rejected. The 
first two variances can be calculated from the available data in a straightforward 
manner. Singleton proposes a method for estimating the last variance, derives the 
asymptotic distribution of these estimators and proposes a test based on this 
asymptotic distribution. 

The discussion thus far has dealt only with optimal forecasts. It is often the 
case that a researcher has at his disposal forecasts from disparate information 
sets, none of which may be optimal. These forecasts could be ranked according to 
mean square error and the best one chosen, but there may be gains from using a 
combination of the forecasts. This was first noted by Bates and Granger (1969) 
and independently by Nelson (1972) and has been applied in a number of 
research papers [see, for example, Theil and Feibig (1980)]. 

To fix notation, consider one step ahead forecasts of x~+~, denoted 

f1,f2,...,frn, with corresponding errors e’, e2,. . . , em. Since bias in a forecast is 
easily remedied we will assume that all of the forecasts are unbiased. An optimal 
linear combined forecast is: 

fC= f a,fi, 
r=l 

where the a,‘~ are chosen to minimize: 

Eb,+l - f?‘. 
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If the mean of X is not zero the resulting combined forecast will be unbiased 
only if: 

The papers by Bates and Granger and Nelson derive the weights subject to this 
constraints. This is just a constrained least squares problem. 

Granger and Ramanathan (1981) point out that the constraint will generally be 
binding and so a lower mean square root error combined forecast is available. As 
an example suppose that x, is generated by: 

x, = Y,-1 + z1-1+ 917 

where y,, z,, and nit are independent white noise. If Z,’ contains only past and 
present y and Z,’ contains only past and present z, the optimal forecasts are: 

f’=Y”-1’ 

f2=z,-1 
and 

f’=f’+ f2. 

The combined forecast has a mean square error equal to ai. Imposing the 
constraint yields: 

fc = alfi + a2f2, 

where 

and the mean square error of fc is: 

When the weights are unconstrained the combined forecast will generally be 
biased. This is easily remedied. One merely expands the list of available forecasts 
to include the mean of X. There is no need to impose the constraint as it will be 
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satisfied by the unconstrained least squares solution, for the same reson that if a 
constant is included in an OLS regression the residuals will sum to zero. 

Evaluation of forecast performance is by no means a clear-cut procedure. The 
discussion of optimal forecasts does however suggest some properties which are 
easily checked. The optimal linear forecast of X,,,, based on the information set 
Z, is the projection of X,,,, on the data Z,. This implies that the forecast error, 
e n ,,, is orthogonal to any linear combination of variables in the information set. 
Forecast errors can then be regressed on linear combinations of data in the 
information set and the estimated coefficients can be tested to see if they are 
significantly different from zero. Care must be taken in carrying out these tests. 
We showed earlier that the optimal h-step forecast errors from a proper informa- 
tion set followed a moving average process of order h - 1, and therefore even 
under the null the residuals in this regression will not be white noise for h larger 
than 1. One step ahead forecast errors from proper information sets should be 
white noise and this is an easy property to check. The variance bounds derived 
above also suggest a weak test. The variance of the forecast should be less than 
the variance of the series being forecast. 

When more than one forecast of the same quantity is available additional tests 
can be constructed. Forecasts can be ranked on a mean square error criterion and 
the best chosen. More demanding tests can also be constructed. If f is the optimal 
forecast from an information set Z,/, and g is a forecast from an additional 
information set I,“, which is a subset of Z,f, then the forecast error from f will be 
uncorrelated with g. A regression of the forecast error, e,, on g should yield a 
coefficient which is not significantly different from zero. Equivalently, if the 
optimal combined forecast using f and g is formed the weights on f and g 
should not be significantly different from one and zero, respectively. Tests similar 
to these have been constructed to evaluate the forecasting performance of macro 
models and are briefly discussed in Section 7. A thorough discussion of these tests 
and others is contained in Granger and Newbold (1977, ch. 8). 

We have largely been concerned in this section with linear forecasts; however, 
even for covariance stationary processes considerable gains can occur from 
considering nonlinear forecasts. Consider for example a special case of the 
bilinear model introduced in Section 2: 

x,=&1x,_2 + E,, 

where E, is white noise. The process will be covariance stationary if /3’u,’ < 1 
[Granger and Andersen (1978, p. 40)]. Since the lagged autocovariances are all 
zero, it follows that the optimal univariate linear one step ahead forecast of X,,,, 
is zero. The forecast mean square error is then: 
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The optimal non-linear one step ahead forecast is BE*_ 1x,-z which will have an 
expected mean square forecast error u,‘. 

Identification of complicated bilinear models is a difficult procedure, but the 
book by Granger and Andersen suggests methods which seem practical for simple 
models. Their procedure is to examine the autocorrelations of the squares of the 
residuals from linear time series models. Many nonlinear models have linear 
approximations with serially correlated squared residuals. If the squared residuals 
appear to be serially correlated it is not clear which non-linear models should be 
considered as alternatives. A further discussion of non-linear forecasting and 
forecasting non-linear transformations of the data can be found in Granger and 
Newbold (1976, 1977) and in Priestley (1980). 

4. Multiple time series and econometric models 

Econometric models (for time series data) and multiple time series models both 
attempt to describe or at least approximate the dynamic relationship between the 
variables under consideration. As mentioned in the first section the approaches 
taken in building these two types of models have historically been quite different. 
To facilitate the comparison of these approaches it is useful to introduce a variety 
of multiple time series representations. 

Let Z, be an N X 1 vector stationary time series. Then an extension of Weld’s 
theorem [Hannan (1970)] allows us to write: 

z, = c(B)s,, 

where c(B) is an N x N matrix of (possibly infinite degree) polynomials in the 
backward shift operator and e, is an N X 1 vector white noise, that is: 

s, = (ei,, e 21,...,Ej& 

with 

E[ e,] = 0 

and 

E[ e,e:] = &,z, 

where 6 is the Kronecker delta. 
As was the case with the univariate model, it may be true that c(B) can be 

represented, or at least well approximated, by the rational function: 

c@)=a-‘(B)b(B), (4.1) 
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where both a(B) and 6(B) are N X N matrices of finite order polynomials in B. 
We will assume that these matrices are of full rank, so that their inverses exist. 
When (4.1) is satisfied, 2, is said to follow a vector ARMA or VARMA process of 
order (P, Q). P and Q are now N X N matrices with pi, equal to the order of the 
polynomial alj( B) and q’, equal to the order of the polynomial blj( B). The 
generating process for 2, can then be written as: 

a(B)Z,=b(B)e,. (4.2) 

The AR side of (4.2) states that each component of Z, is at least partially 
explained by its own past and the present and past of the other components. The 
whole model then states that when the lag operator a(B) is applied to Z,, the 
resulting vector time series is such that its autocovariances and cross covariances 
can be represented by the multivariate moving average model b(B)&,. It should 
be noted that the variables which are observed are the components of Z, and that 
the disturbances, E,, are at best estimated from the model, provided that the 
moving average part is invertible. Invertibility is satisfied in the multivariate 
model if F’(B) exists. 

The representation (4.2) is by no means unique and normalizations must be 
imposed if the parameters are to be identified in the econometric sense. One 
source of under-identification comes from the contemporaneous relationship or 
causality of the data. The elements Z, will be contemporaneously related if any of 
the off-diagonal elements of a(O), 6(O), or ,Z are non-zero. Clearly, there will be no 
way to tell these apart given only data on Z. A common normalization sets 
u(O) = 6(O) = I and leaves 2 unrestricted. Others are, of course, possible. Sims 
(1980) for example uses the recursive form of the model for his vector autoregres- 
sions in which a(0) is lower triangular and 2 is diagonal. This is a useful form for 
forecasting and for the vector AR model implies that the parameters can be 
efficiently estimated by ordinary least squares. Sufficient conditions for parameter 
identification in VARMA models are given in Hannan (1969). 

As u(B) is assumed of full rank, (4.2) may also be written as: 

Z, = u-‘( B)b( B)E,. 

If a*(B) is the adjoint matrix associated with u(B) and lu( B)J is the determinant 
of this matrix. This results in the equivalent model: 

l@)lZ, = a*(B)b(B)q, 

and the j th equation of this system is: 

l@)lZ,, = ++t, j=l ,***, N, 
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where a,(B) is the jth row of a*(B)b(B). If no cancellation of factors of the 
form (1- /3B) from both sides of these equations occurs, it follows that all the 
single series ARMA (p, q) models for the components of Z, will have identical 
AR parts, and further that p and q will be very large if the number of 
components is large. As neither of these features is actually observed, this suggests 
that considerable cancellations do occur or that the present single series modeling 
techniques tend to choose models that are too simple. Zellner and Palm (1976) 
and Protheo and Wallis (1976) have suggested that the common AR property can 
be utilized to indicate relevant constraints on the form of the matrix a(B) in the 
full model (4.2), but the technique has been applied only to small systems so far. 
A possible limitation to this technique can be seen by noting that the Z/(‘s could 
all be univariate white noises, but still be related through a model of the form 
(4.2) although this model will be constrained so that la( B)l and the moving 
average process implied by a,(B)&, are equal for all j. Such constraints are not 
easily used in practice. 

Time series identification, that is the choice of p and q, for VARMA models is 
a difficult task and completely satisfactory methods are not yet available. Tiao et 
al. (1979) suggest a method similar to univariate methods of Box and Jenkins 
which is practical for AR or MA models. Mixed models are substantially more 
difficult. A procedure for bivariate models is proposed in Granger and Newbold 
(1977). A computer package, Tiao et al. (1979), is available for estimating small 
scale (up to five series) VARMA models. 

A model more familiar to traditional econometricians is achieved by using the 
partition: 

where the lag operators have not been shown for notational convenience. If it is 
now assumed that u2t = 0, 6,, = 0, and 6,, = 0, one obtains the two sets of 
equations: 

(4.4) 

If, furthermore, there are no contemporaneous correlations between the compo- 
nents of the white-noise vector en and the white noise vector Ebb, the Z, is 
decomposed into x, and yI, where the components of x, are called exogenous. 
The question of how exogeneity should be defined and tested is discussed in 
Chapter 18, on causality, in this Handbook. Alternative definitions of exogeneity 
can be found in Engle, Hendry, and Richard (1981). The correct division of 
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variables into these two classes is clearly important for forecasting, as well as 
other purposes. Equations (4.3) and (4.4) provide the link between times series 
and econometric models. Equation (4.3) can be viewed as the structural form of a 
dynamic simultaneous equation model, while (4.4) describes the evolution of the 
exogenous variables. Traditionally, the existence of the subsystem (4.4) is not 
considered, as the exogenous variables are said to be “generated outside of the 
system.” In the time series literature, systems such as (4.3) are now being called 
ARMAX systems, for autoregressive-moving average with exogenous variables. 

Although the structural form (4.3) is of fundamental importance, some other 
derived models are also of interest. Denote a,,,(B) = ai,( B)- a,,(O), then (4.3) 
may be written either as: 

which is known as the reduced form, or as: 

which has been called the final form, a multidimensional rational-distributed lag 
model, or of a unidirectional transfer-function form. In the reduced form, 
endogenous variables are explained by “predetermined variables”- that is, exog- 
enous and lagged endogenous variables-whereas in the final form y, appears to 
be explained by just the exogenous variables. If parameter values are known, or 
have been estimated, both the reduced form and the final form can be used to 
produce forecasts. The reduced form used the information set I,(‘): [xn_,, y,_,, 
j 2 01, plus forecasts of exogenous variables and the final form appears to use just 
I,“): [x,~,, j 2 01, plus exogenous variable forecasts. However, as is easily seen 
from (4.5) the use of Zj2) will generally produce forecasts with errors that are not 
white noise. These forecasts can then be improved by modeling the residuals, but 
to do this earlier values of the residuals are required and to know this earlier 
values of y, are needed, so that effectively one ends up using Z!“. As situations are 
rare in which past values of exogenous variables are available, but not the past 
values of endogenous variables, the proper information set Z,I” is the appropriate 
one in most cases. 

Traditionally, econometricians have viewed their task as specifying and estimat- 
ing the model (4.3) while ignoring (4.4). The time series analyst, on the other 
hand, would identify and estimate both (4.3) and (4.4). To the econometrician, the 
parameters of (4.3) were thought to be the most important as these presumably 
contained the sought after information about the working of the economy. These 
parameters could then be subjected to hypothesis tests, etc. Time series analysts, 
being primarily interested in forecasting and not economic theory, required both 
(4.3) and (4.4) for their purpose. Lucas (1976) showed that the parameters of (4.3) 
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were in general not the parameters of economic interest. He persuasively argued 
that the important economic parameters could not be deduced without knowledge 
of the process generating the exogenous variables. The main point of Lucas is that 
the parameters of (4.3) are not structural at all. They will in general be functions 
of underlying structural parameters and the parameters of (4.4). The Lucas 
critique has spawned a new class of econometric models in which the time series 
properties of the exogenous variables play a crucial role. Examples can be found 
in Wallis (1980) and Sargent (1981). 

Other clear differences between the time series and classical econometric 
approaches are the size of the information sets used and the intensity with which 
they are analyzed. Time series models often involve just a few series, but a wide 
variety of different lag structures are considered. Classically, econometric models 
involved very large numbers of series, a model of 400 equations now being 
classified as moderate in size, but are sparse in that most variables do not enter 
most equations. To the time series analyst’s eyes, econometric models involve 
remarkably few lags. It has been said that when a time series analyst is unhappy 
with his model, he adds further lagged terms, but an unhappy econometrician is 
inclined to add further equations. One reason why econometricians rely heavily 
on an economic theory is that they have so many variables, but usually with 
rather small amounts of data, so that it would be impossible to consider a wide 
enough variety of models to be able to get anywhere near the true model. The use 
of the theory severely limits the number of alternative model specifications that 
need to be considered. Thus, the theory effectively greatly expands the available 
data set, but the difficulty is that if an incorrect theory is imposed an incorrect 
model specification results. 

A further use of time series analysis in econometric model building is based on 
the precept that one man’s errors may be another man’s data. Thus, the residuals 
from an econometric model can be analyzed using time series methods to check 
for model mis-specification. Calling the procedure TSAR, for time series analysis 
of residuals, Ashley and Granger (1979) looked at the residuals from the St. Louis 
Federal Reserve Bank Model. Some of the individual residual series were found 
not to be white-noise and so could be forecast from their own past, and some 
residuals could be forecast from other residuals, suggesting missing variables, 
model mis-specification and inefficient estimation. The classification of some 
variables as exogenous was also found to be questionable. 

5. Differencing and integrated models 

An example of differences in attitudes between time series analysts and the 
classical econometricians concerns the question of whether the levels or changes 
of economic variables should be modeled. If one has a properly specified model in 
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levels, then there will correspond an equally properly specified model in changes. 
Forecasting from either will lead to identical results, for example, by noting that 
next level equals next change plus current level. However, if it is possible that the 
model is mis-specified, which is certainly a sensible viewpoint to take, there can 
be advantages in using differenced data rather than levels. The occurrence of 
spurious relationships between independent variables has been known for a long 
time and was documented again, using theory and simulation, by Granger and 
Newbold (1974). There it was shown, for example, that if x, and yt were each 
ARIMA (p, d, q), with d = 1, but independent, then regressions of the form: 

x, = a + Py,_c + E,, 

when estimated by ordinary least squares would frequently show apparently 
significant /3 and R* values. The problem can be seen by considering the null 
hypothesis, /3 = 0, which implies E, = x, - a. This shows that E, is serially corre- 
lated under the null so that standard t-tests based on ordinary least squares are 
not appropriate. Estimation methods which assume E, is AR(l) improve matters, 
but do not totally remove the problem, as spurious relationships can still occur. 
Clearly, if a sufficiently general model is allowed for the errors, the problem is less 
likely to occur, but if the dependent variable x, has infinite variance, as occurs 
when d = 1, but the model for E, only allows finite variance, then spurious 
relationships are often found. If all series involved are differenced, the residual 
need not be white noise, so that ordinary least squares is not efficient, but now at 
least the change series and the residual all have finite variance. Plosser and 
Schwert (1977, 1978) have shown that, in a sense, over-differencing is less 
dangerous than under-differencing and have provided illustrations using real data 
of spurious relationships and the effects of differencing. Using differenced data is 
not, of course, a general panacea and, as Plosser and Schwert state “the real issue 
is not differencing, but an appropriate appreciation of the role of the error term in 
regression”. As some econometricians were traditionally rather casual about the 
error specification, to the eyes of a time series analyst, until recently the 
possibility that apparently significant relationships were spurious or weaker than 
they appear remained. 

Despite these results, some econometricians have been reluctant to build 
models other than in levels or have rejected the idea of differencing all variables. 
Partly this is because they feel more comfortable in specifying models in levels 
from their understanding of economic theory and also because differencing may 
not always seem appropriate, particularly when non-linear terms are present or if 
a change in one variable is to be explained by the difference between the levels of 
two other variables. Another reason for this reluctance is that econometricians 
have become used to extremely high R2, or corrected R*, values when explaining 
levels, but R* often falls to modest, or even embarrassingly low values, when 
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changes in a variable are explained. Partly this is due to the removal of spurious 
relationships, but is largely due to the fact that a very smooth, high-momentum 
variable, such as many levels, are very well explained from past values of this 
variable, but this is no longer true with the highly variable change series. An 
extreme case is stock market prices, the levels following a random walk and the 
changes being white noise, or very nearly so. Econometricians have also been 
worried that differencing may greatly reduce or even largely remove the very 
important low-frequency component, corresponding to the long-swings and the 
business cycle. This can certainly occur if one over-differences, but should not be 
a problem if the correct amount of differencing occurs to reduce the series to an 
ARMA generated sequence. Differencing may also exacerbate errors in variables 
problems, but the presence of errors in variables can often be tested, and these 
tests can be carried out on the differences as well as the levels. There has also 
been some debate about the usefulness of differencing by time series analysts. It 
has been pointed out that if a series has a mean, then this mean cannot be 
reconstructed from the differenced series, but this would not be so if the 
difference operator (1 - B) is replaced by (1 - aB) with (Y near, but less than, one. 
The obvious response is that an ARIMA series need not possess a mean. 

A way of generalizing this discussion in a potentially useful fashion follows by 
noting that differencing a series d times means that the spectrum of the series is 
multiplied by: 

where 

If a series x, has a spectrum of the form: 

ll- zl -2df(4, 

where f(w) is the spectrum of a stationary ARMA series, it will be said to be 
integrated of order d, and denoted x, - I(d). Note that x, needs to be differenced 
d times to become stationary ARMA. As just defined, d need not be an integer 
and one can talk of fractional differencing a series if a filter of the form 
a(B) = (1 - B)d is applied to it. It has been shown that integrated series, with 
non-integer d, arise from the aggregation of dynamic microvariables and from 
large dynamic systems [see Granger (1980a)j. 

When d L f , x, will have infinite variance and if d < i, the series has finite 
variance. An integrated series with d 2 i will be inclined to be identified by 
standard Box-Jenkins techniques as requiring differencing. Note that if also 
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d ~1, the differencing will produce a series whose spectrum is zero at zero 
frequency. Thus, the time series analysts will, in a sense, be correct in requiring 
differencing to remove infinite variance, but the econometricians’ worries about 
losing their critical low-frequency components are well founded. The proper 
procedure is, of course, to fractionally difference, provided that the correct value 
of d is known. The best way to estimate d has yet to be determined, as has the 
importance and actual occurrence of integrated series with non-integer d. 

Possible use of fractional integrated models, if they occur in practice, is in 
long-run forecasting. It can easily be shown that if the MA( 00) model correspond- 
ing to x, - Z(d) is considered, then the coefficients 

bj - Ajd-l, 

whereas a stationary ARMA( p, q) model, with 
coefficients declining at least exponentially, i.e. 

b, - AfP, \e\ cl. 

will decline in the form: 

infinite p and q, will have 

This “long-memory” property can be utilized to improve long-run forecasts in a 
simple fashion, once d is known or has been reliably estimated. 

6. Seasonal adjustment 

Many important economic series show a consistent tendency to be relatively high 
in one part of the year and low in another part, examples being unemployment, 
retail sales, exports, and money supply. It is fairly uncontroversial to say that a 
series contains seasonal variation if its spectrum shows peaks, that is extra power, 
at the seasonal frequencies, which are: 

2+ j=l 6 ,..*, > 

for monthly series. For some series, the seasonal component is an important one, 
in that the seasonal frequencies contribute a major part of the total variance. For 
reasons that are not always clearly stated, many econometricians feel that if the 
seasonal component is reduced, or removed, analysis of the remaining compo- 
nents becomes easier. Presumably, the seasonal part is considered to be economi- 
cally unimportant or easily understood, but that leaving it in the series confuses 
the analysis of the more important low-frequency business cycle components. By 
“seasonal adjustment” is meant any procedure that is designed to remove, or 
reduce, the seasonal component. The problem of how best to design seasonal 
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adjustment procedures is a very old one and it has generated a considerable 
literature. Although much progress has been made the problem can hardly be 
classified as solved. Two excellent recent references are the extensive collection of 
papers and discussions edited by Zellner (1979) and the survey by Pierce (1980). 

Much of the discussion of seasonal adjustment begins with the additive 
decomposition of an observed series yI into two unobserved components: 

y,=n,+s I’ 

where s, is strongly seasonal-so that its spectrum is virtually nothing except 
peaks at the seasonal frequencies and rrt is non-seasonal, For this model, “sea- 
sonal adjustment” is any procedure which yields an estimate of the non-seasonal 
component. If this estimate is based on an information set which contains only 
the past, present, and possibly future values of y,, the method is called auto- 
adjustment. A procedure based on a wider information set, called causal adjust- 
ment, will be discussed at the end of this section. Most of the literature on 
seasonal adjustment concerns auto-adjustment procedures and these are by far 
the most widely used methods. Consequently, much of our discussion will be 
devoted to these methods. 

Early methods of seasonal adjustment relied on the additive decomposition 
above, and assumed that s, followed a periodic deterministic process, an example 
for monthly data being: 

12 

s,= C aiD,i, 
1=1 

where the Dri's are a set of monthly dummy variables or sine and cosine terms. 
The non-seasonal component was assumed to be composed of a “trend” and 
“irregular” component. These components were approximated by a polynomial in 
t and white noise. The seasonal component in this model can be estimated using 
standard regression techniques. Subtracting this estimate from the observed series 
yields an estimate of the non-seasonal component. This method and its statistical 
properties are discussed in Jorgenson (1964, 1967). 

The causes of seasonal fluctuations, e.g. weather, and the inspection of esti- 
mated spectra for economic time series suggest that the deterministic model for s, 
is a poor one. A popular approach is to assume that each component is stochastic 
and generated by an ARMA model. (The possible need to difference the series 
can be handled, but introduces further complications that will not be discussed 
here. More details can be found in the references given above.) Thus, we can 
write: 

and 
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where 17~ and E, are independent white noise: 
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a,(B)=l-a;B-a;B*-,...,-a,““~P~, 

b,(B) =l- b;B- b;B*- ,..., - b;“B? 

and a,(B) and b,(B) are similarly defined. The polynomials are such that s, is 
strongly seasonal, so that 

s (w) = bJ4W 2 
s u,(z)a,(z) 2a’ 

z = e-im, 

has most of its power concentrated around the seasonal frequency and n, is 
non-seasonal. The implied model for y, is: 

a(B)y, = b(B)e,, 

where u(B) = u,(B)u,(B) if u,(B) and u,(B) have no common roots, and 
b( B)e, is a moving average having the same autocovariances as a,( B)b,( B)e, + 

u,(B)bAB)v,. 
Since only the sum of nr and s, is observed it is impossible to deduce the values 

of the components if both u,’ and ut are non-zero. We will denote the seasonal 
adjustment error at time t by: 

a, = n, - A, = 9, - s,, 

where S, and A, are the estimated values of the components. The linear estimate of 
n, which minimizes the mean square seasonal adjustment error is the projection of 
n, on the available data (conditional expected value if y, is normal). If an entire 
realization of y, is available the optimal linear estimate of the seasonally adjusted 
series is then: 

A, = P(n,lyk, -00 <k < 00) = V(B)y,, 

where P is the projection operator and [Weiner (1949), Whittle (1963) Grether 
and Nerlove (1970)]: 

v(z) = 
spectrum of n, 

spectrum of y, ’ 

where z = e-‘“. 
Several properties of the optimal linear estimate follow immediately. First, A, is 

obtained from a time invariant linear filter applied to y,, so that the coherence 
between A, and yr is one. Second, the filter is symmetric, u, = u_,, implying that 
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the phase between y, and it, 
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is zero. Finally, the spectrum of ?r, is 

so that 

SR(W) IS”(W). 

The spectrum of it, will be substantially less than the spectrum of n, over those 
frequencies where the spectrum of st is large relative to the spectrum of n,. Since 
this occurs at the seasonal frequencies the spectrum of the adjusted series will 
contain “dips” at these frequencies. Equivalently, the adjusted series will have 
negative autocorrelations at the seasonal lags. The “optimal” procedure will tend 
to “overadjust” for seasonality. 

This optimal filter cannot be used for obvious reasons. The parameters of the 
model and hence the elements of V(B) are rarely known, and a complete 
realization of y, is never available. Since the process is stationary y, = u_~ = 0 for 
large j implying that the last problem is most serious near the begmning and end 
of the sample. 

Pagan (1975) and Engle (1979) overcome this problem through the use of the 
Kalman filter and smoother. The Kalman filter produces linear minimum mean 
square error estimates of n, using observed data up through time t. The smoother 
optimally updates these estimates as data beyond time t becomes available. (The 
Kalman filter and smoother are discussed in detail in Chapter 20 of this 
Handbook.) To implement the filter the model is written in state space form. 
Although moving average terms can easily be handled [see Harvey and Phillips 
(1979)] it is notationally convenient to assume that b,(B) = b,(B) = 1. With this 
assumption the model can be written as: 
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where 1, is a k vector with one as its first element and all other elements zero: 

-I n, = n,,n,-, )...) 

[ 

nt-p,+l 2 1 

s;= [Sf,SI--l,..., %p,L 

and 

a$...a,“,_ 
.-------- 

I (Pr-1) 

I 

1 1 aPk 
-+--- 

I O 
10 ’ 

I : 
I . 

10 _ 

fork=nors. 

As Engle (1979) notes, this formulation has several advantages. Computa- 
tionally it is easier to implement than the Weiner filter, which requires a 
factorization of the spectral density of y [see Nerlove, Grether and Carvalho 
(1979)]. The model is also more general as a slight modification will allow weakly 
exogenous variables to appear as explanatory variables for n, and s,. Models with 
deterministic components can easily be handled. The filter also insures that the 
revisions made in n, at time t + k follow a (time varying) moving average process 
of order k - 1. This follows since the revision will be a (time varying) linear 
function of e,+l,er+2 ,..., et+k. 

The filter does require a value of the mean and variance of n, and sa to begin 
the recursions. In the case under consideration these components are covariance 
stationary and the correct starting values are just the unconditional means and 
variances. For non-stationary models the initial values can be estimated as 
nuisance parameters, as described in Rosenberg (1973) or Engle and Watson 
(1981b). 

Since the parameters of the model are rarely known, they will generally need to 
be estimated prior to the adjustment process. If E, and 9, are assumed to be 
normally distributed, the parameters can be estimated using the maximum 
likelihood methods discussed in Chapter 20 of this Handbook. The scoring 
algorithm presented in Engle and Watson (1981a) and the EM algorithm dis- 
cussed in Engle and Watson (1981b) have been successfully used in similar 
models. 

There are of course many ways to additively decompose y, into two uncorre- 
lated components. The parameters of the model will not in general be identified. 
Identification can sometimes be achieved by assuming specific forms for the 
processes as in Engle (1979), or by finding a representation which minimizes the 
variance of the seasonal component as in Pierce (1979). 
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Some of the other approaches to seasonal adjustment rely on models which 
have parameters varying in a seasonal manner, such as the cycle-stationary 
models investigated by Parzen and Pagan0 (1978), while others have the ampli- 
tude of the seasonal changing with the size of other components, such as the 
multiplicative and the harmonizable models. Havenner and Swamy (1981) pro- 
pose a model similar to the deterministic model discussed above, but they allow 
the regression coefficients to vary stochastically. When some of these models are 
employed the concept of seasonal adjustment can become rather confused. 

The most widely used program for seasonal adjustment is the Census Bureau’s 
X-11. The program consists primarily of a set of symmetric linear filters applied 
to the data, but also has features which correct for the number of trading days 
and “extreme” values. For recent data the symmetric filter is inappropriate and 
special “end weights” are used. Young (1968) presents a symmetric linear filter 
which approximates the filter used by X-11, and Cleveland and Tiao (1976) 
present models for which X-11 is approximately optimal. Details on the character- 
istics of X-11 can be found in Shiskin, Young, and Musgrave (1967) and Kupier 
(1979). A discussion of the models for X-11 is presented in the survey paper by 
Pierce. 

In practice, the use of seasonally adjusted data can lead to considerable 
modeling problems. Many techniques, including X-11, will usually insert “over- 
adjustment problems”, such as the above mentioned negative autocorrelations at 
seasonal frequencies and the relationships between pairs of series can be consider- 
ably disturbed, as various studies have indicated. Partly this is due to the use of 
robust techniques, which attempt to reduce the relevance of outliers. When actual 
outliers occur, these methods are valuable, but if over-used, as in X-11, the 
resulting non-linearities that are introduced can have serious consequences for 
modeling relationships, for parameter estimation, for causality testing and for 
forecasting. 

Godfrey and Karreman (1967) present evidence that the methods of adjustment 
often used in practice will have no unfortunate effects on low-frequency compo- 
nents (that is components with frequencies lower than the seasonal frequency), 
but that all other components are badly affected, even non-seasonal higher- 
frequency components. The original components with frequencies higher than the 
seasonal frequencies are partly replaced with variables uncorrelated with them, so 
that coherences between the original non-seasonal components and the corre- 
sponding components of the adjusted series are reduced. This suggests that 
modeling pairs of seasonally adjusted series can lead to difficulties, and Newbold 
(1981) presents convincing evidence that this does occur. Wallis (1974,1979) and 
Sims (1974) have discussed this problem in detail. Their conclusions suggest that 
in general it is preferable to use seasonally unadjusted data and explicitly model 
the seasonahty. 
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The question of how to evaluate a seasonal adjustment procedure is not an easy 
one, partly because the seasonal and non-seasonal components introduced above 
are not clearly distinguished. A white-noise series has a flat spectrum and, thus, 
has some power at seasonal frequencies. The seasonal component is thought of as 
giving extra power at seasonal frequencies, over and above that provided by the 
non-seasonal component. However, this statement does not provide enough 
information to ensure a unique decomposition of a given series into seasonal and 
non-seasonal components. A similar criterion applies to the simple criterion that a 
series, after adjustment, has no peaks remaining in its spectrum. A clearer 
criterion is to require that the variance of the seasonal component, or a suitable 
transformation of it, should be minimized. This criterion can be characterized in 
either time or frequency domains and in a sense removes no more than necessary 
to achieve no seasonality. When one knows the correct model, or a reasonable 
approximation to it, such a criterion can be used to provide a good seasonal 
adjustment procedure. However, if the assumed model does not approximate the 
true world, an inappropriate adjustment may occur. 

To evaluate an adjustment procedure, it has been suggested that spectral 
techniques are the most appropriate and that, (a) the adjusted series should have 
neither peaks nor dips (over adjustment) at seasonal frequencies, and (b) if the 
adjustment procedure is applied to a non-seasonal series, the cross spectrum 
between the original and the adjusted series should have a coherence near one and 
a phase near zero at all frequencies. Although these appear to be sensible criteria, 
as shown above the “optimal” adjustment method mentioned earlier will not obey 
them, producing dips in the spectrum at seasonal frequencies or, equivalently, 
negative autocorrelation at seasonal lags. This merely means that a pair of 
“sensible” criteria are inconsistent, but it does leave the choice of proper criteria 
for the selection and evaluation of techniques for further consideration. 

The methods discussed above have all been “auto-adjustment,” in that just the 
observed series X, has been utilized. As one must expect the seasonal components 
to be, at least partially, the results of various causal variables a sounder approach 
would be to seasonally adjust in a multivariate context. Thus, if the weather 
causes the seasonality in Chicago house construction, it should be natural for 
econometricians to model this relationship. The effects of a severe winter, for 
example, are then directly allowed for rather than being considered as some 
vague, unexplained outlier. Of course, it is by no means easy to correctly model 
the required relationships, particularly as the series involved will all be strongly 
seasonal and the use of causal adjustment procedures would be far too expensive 
for the government to use on all of the series that are said to need adjustment. 
Nevertheless, if an econometrician is anxious to produce a really sound model, it 
is advisable to use unadjusted, raw data and to build seasonal causal terms in the 
model. However, even then the data may still need application of a seasonal 
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adjustment procedure as some causes could be unobservable, but if one does it 
oneself at least the methods used is under one’s own control and need produce 
less unpleasant surprises than the use of an “off-the-shelf” technique. Further 
discussion of these points may be found in the papers by Granger and Engle in 
the volume edited by Zellner mentioned above. 

7. Applications 

In this section a few examples of the way in which time series techniques have 
been applied to economic data will be briefly discussed. It would be virtually 
impossible to survey all of the applications that exist. Two applications that will 
not be discussed, although they are currently very much in vogue, are testing for 
causality and the use of Kalman filter techniques for investigating time-varying 
parameter models, as these are described in Chapters 18 and 20 of this Handbook. 
Additional applications using frequency domain techniques can be found in 
Granger and Engle (1981). 

The most obvious, and oldest, application is to model a single series to provide 
what are termed “naive” forecasts against which the forecasts from a full-scale 
econometric model can be compared. Of course, the comparison is not strictly 
fair, as the econometric model uses a much larger information set, and also has 
the “advantage” of being based on an economic theory, but, nevertheless, 
econometricians have behaved as though they believe that such naive models are 
worthy forecasting opponents. In fact, the econometric models have found it 
difficult to beat the time-series forecasts, an example being Cooper (1972), who 
used only AR(4) models. More recently, the econometric models have performed 
relatively better, although a more stringent criterion suggested in Granger and 
Newbold (1977, ch. 8) involving the combination of forecasts, would still 
probably suggest that there is still room for considerable improvement by the 
econometric models. It will be interesting to continue to compare forecasts from 
the two types of model, as each is certainly improving through time. 

More natural comparisons are between econometric models and multivariate 
time series, although the best way to specify the latter is still uncertain. Some 
examples are the papers by Zellner and Palm (1974), Sargent (1981) and Taylor 
(1979). No complete comparison of relative forecasting abilities is available at this 
time. Multivariate time series techniques can also be used to measure the 
importance, in terms of improved forecasting ability, of adding further variables 
to the model. An obvious example is to ask how useful is anticipation data. The 
technique used is the same as that developed for causality testing, as discussed in 
Chapter 18 of this Handbook. The results are sometimes rather surprising, such as 
the weak relationships found between some financial series by Pierce (1977). 
Neftci (1979) investigated the usefulness of the NBER leading indicator for 
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forecasting the index of industrial production (IIP). He modeled III’ in terms of 
its own lags and the added various leading indicators to the model. Using 
post-sample forecasts, he found that the leading indicators did not improve 
forecasts for “normal” times, but did help during the recession year of 1974. The 
results thus agree with the NBER claims about the usefulness of this indicator 
series at turning points, but nothing more. Auerbach (1981) studied the usefulness 
of the leading indicator series in predicting changes in both IIP and the adult 
civilian unemployment rate. Based on both in-sample fit and forecasting perfor- 
mance he found the leading indicator series useful, but his in-sample results 
suggest that it may be possible to choose better (possibly time varying) weights 
for the components of the leading indicator series. 

The ARCH model introduced in Section 2 has been used in a number of 
applications. Engle (1980, 1982) has shown that there are significant ARCH 
effects in U.S. and U.K. inflation data, and Engle and Kraft (1981) derive 
conditional multiperiod forecast variances from an autoregressive model where 
the disturbance follows an ARCH process. Robbins (1981) estimates a model in 
which the conditional variance of excess returns for short rates affects the 
liquidity premium for long rates. Engle, Granger and Kraft (1981) use a multi- 
variate ARCH model to compute optimal time varying weights for forecasts of 
inflation from two competing models. 

The obvious applications of univariate spectral analysis are to investigate the 
presence or not of cycles in data. Thus, for example, Hatanaka and Howrey 
(1969) looked for evidence of long swings or long cycles in the economy, by 
asking if there were peaks in the spectrum corresponding to such cycles. The 
results were inconclusive, because very long series would be required to find 
significant peaks, particularly against the “ typical spectral shape” background, 
corresponding to the high power at low frequencies found with ARIMA (p, d, q) 
models, d > 0, which we often observed for the levels of economic macro 
variables. A related application is to compare the estimated spectral shape with 
that suggested by some theory. For example, the random-walk theory of stock 
market prices suggests that price changes should be white noise and thus have a 
flat spectrum. Granger and Morgenstem (1970) found evidence that was generally 
in favor of the hypothesis, although a very slight evidence for a seasonal in.price 
changes was occasionally observed. Estimated spectra of a wide range of eco- 
nomic series give no evidence of strict cycles except for the seasonal component. 
Howrey (1972) calculated the spectra of major variables implied by the Wharton 
model and compared them to the typical spectral shape, and generally found the 
econometric model did produce the correct spectral shape. 

The power spectrum is obviously useful in consideration of the seasonal, both 
to find out if a series contains a seasonal component, to measure its strength and 
also to investigate the effects of seasonal adjustment. One of the very first 
applications of frequency domains techniques to economic data was by Nerlove 
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(1964) investigating these aspects of seasonality. He also used the spectrum to 
define the seasonal component in a similar way to that used in Section 6. He gave 
clear indication that seasonal adjustment could disrupt the data in an unfortunate 
manner with the follow-up study by Godfrey and Karreman (1967) providing 
further illustrations of this problem. 

The first application of cross-spectral analysis in economics were by Nerlove 
(1964) on seasonals and by Hatanaka in Granger and Hatanaka (1964), who 
considered the leads and strength of the relationship between the NBER leading 
indicators and the level of the economy. Hatanaka found some coherence at low 
frequencies, but the leads observed in the phase diagram were less than found by 
the NBER using less sophisticated methods. A later investigation of leading 
indicators by Hymans (1973) also used spectral methods. The results threw some 
doubts on the usefulness of several of the components of the index of leading 
indicators and using the observed coherence values an alternative weighted index 
was proposed, which would seem to be superior to that now in use. Most 
subsequent applications of cross-spectral analysis try simply to measure the extent 
to which pairs of series are related and whether or not there is evidence for a 
simple lag. Examples may be found in Labys and Granger (1970). When there is a 
feedback relationship between the variables, the lag structure cannot be de- 
termined, and so difficulties in interpretation frequently occur. 

The Fourier transform of a stationary series allows one to look at the different 
frequency components of the series, at least to some extent. This idea was used in 
Granger and Hatanaka (1964) to test for stationarity by considering the possibil- 
ity of the amplitude of the frequency components varying through time. By 
isolating frequency components in a group of series, the possibility of the 
relationships between the series varying with frequency can be analyzed. Calling 
the technique band spectrum regression, Engle (1974) considered a simple time- 
domain regression, transformed it into the frequency domain and then used a test 
similar to the Chow test for structure stability, to see if relationships were 
frequency dependent. The method is an obvious generalization of the familiar 
decomposition into “permanent” and “ transitory” components and has similar 
interpretational advantages. In Engle (1978) the technique was applied to a 
variety of wage and price series and it was found, for example, that “ the effect on 
prices of a low-frequency change in wages is much greater than the effect of a 
high-frequency change”. 

Spectral techniques have also been used recently by Sargent and Sims (1977), 
Geweke (1975, 1977), and Singleton (1980) to search for unobserved variables or 
factors, in a group of series, such as a common “business cycle factor” in a group 
of macro variables or a “national factor” in a group of regional employment 
series. The model is a dynamic generalization of the factor analysis model 
typically applied to cross-section data and postulates that all of the dynamic 
interrelationships between the series can be accounted for by a small number of 
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common factors. In the exploratory version of the model, which is useful for 
determining the number of common factors, standard estimation techniques 
adapted for complex arithmetic can be applied. Rather than applying these 
techniques to a covariance matrix, as in the cross-section case, they are applied to 
the spectral density matrix, frequency by frequency. When there are constraints 
on the model, as in confirmatory factor analysis, estimation is more difficult as 
constraints must be imposed across frequency bands. Often these constraints are 
more easily imposed in the time domain, and Engle and Watson (1981b) discuss 
time domain estimation and hypothesis testing methods. 

8. Conclusion 

Because of the way econometrics has been developing in recent years, the 
distinction between time series methods and the rest of econometrics has become 
much less clear. It seems very likely that this will continue and the tendency is 
already being reflected in modern textbooks such as Maddala (1977). It is 
nevertheless true that many econometricians do not appreciate the theoretical 
results and techniques available in the time series field, and so a list of some of 
the textbooks in this field is provided. The first four books concentrate on the 
frequency domain, and the others are general in coverage or deal just with 
the time domain (in each group, the books are approximately in order of 
increasing mathematical sophistication): Granger and Hatanaka (1964), Bloom- 
field (1976), Koopmans (1974), Priestly (1981), Granger (198Oc), Nelson (1973) 
Box and Jenkins (1976), Granger and Newbold (1977), Fuller (1976), Anderson 
(1971) Brillinger (1975), and Hannan (1970). 
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