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INTRODUCTION

The field of nonparametric econometrics continues to grow at an
exponential rate. The field has matured significantly in the past decade,
and many nonparametric techniques are now commonplace in applied
research. However, many challenges remain, and the papers in this Volume
address some of them.1

Below we present a brief overview of the papers accepted in this Volume,
and we shall group the papers into six categories, namely, (1) Model identi-
fication and testing of econometric models, (2) Estimation of semiparametric
models, (3) Empirical applications of nonparametric methods, (4) Copula and
density estimation, (5) Computation, and (6) Surveys.

1. MODEL IDENTIFICATION AND TESTING OF

ECONOMETRIC MODELS

Identification and inference are central to applied analysis, and two papers
examine these issues, the first being theoretical in nature and the second
being simulation based.

The evaluation of treatment effects has permeated the social sciences and is
no longer confined to the medical sciences. The first paper, ‘‘Partial
identification of the distribution of treatment effects and its confidence sets’’
by Yanqin Fan and Sang Soo Park, investigates partial identification of the
distribution of treatment effects of a binary treatment under various
assumptions. The authors propose nonparametric estimators of the sharp
bounds and construct asymptotically uniform confidence sets for the
distribution of treatment effects. They also propose bias-corrected estimators
of the sharp bounds. This paper provides a complete study on partial
identification of and inference for the distribution of treatment effects for
randomized experiments.

The link between the magnitude of a bandwidth and the relevance of the
corresponding covariate in a regression has received much deserved
attention as of late. The second paper, ‘‘Cross-validated bandwidths and
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significance testing’’ by Christopher Parmeter, Zhiyuan Zheng, and Patrick
McCann employs simulation to examine two methods for nonparametric
selection of significant variables, one being a standard bootstrap-based
nonparametric significance test, and the other being based on least squares
cross-validation (LSCV) smoothing parameter selection. The simulation
results show that the two methods perform similarly when testing for
a single variable’s significance, while for a joint test, the formal testing
procedure appears to perform better than that based on the LSCV
procedure. Their findings underscore the importance of testing for joint
significance when choosing variables in a nonparametric framework.

2. ESTIMATION OF SEMIPARAMETRIC MODELS

Semiparametric models are popular in applied settings as they are relatively
easy to interpret and deal directly with the curse-of-dimensionality issue.
Two papers address semiparametric methods.

Panel data settings present a range of interesting problems. Linear
parametric panel methods often rely on a range of devices including linear
differencing for removing fixed effects and so forth. Linear models may be
overly restrictive, however, while fully nonparametric methods may be
unreliable due to the so-called curse-of-dimensionality. The first paper,
‘‘Semiparametric estimation of fixed effects panel data varying coefficient
models’’ by Yiguo Sun, Raymond Carroll, and Dingding Li, proposes
a kernel method for estimating a semiparametric varying coefficient model
with fixed effects. Their method can identify an additive intercept term,
while the conventional method based on first differences fails to do so. The
authors establish the asymptotic normality result of the proposed estimator
and also propose a procedure for testing the null hypothesis of fixed effects
against the alternative of random effects varying coefficient models. They
also point out that future research is warranted for reducing size distortions
present in the proposed test.

The functional coefficient model constitutes a flexible approach toward
semiparametric estimation, and this model nests a range of models including
the linear parametric model and partially linear models, by way of example.
The second paper, ‘‘Functional coefficient estimation with both categorical
and continuous data’’ by Liangjun Su, Ye Chen, and Aman Ullah, considers
the problem of estimating a semiparametric varying coefficient model that
admits a mix of discrete and continuous covariates for stationary time series
data. They establish the asymptotic normality result for the proposed local
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linear estimator, and apply their procedure to analyze a wage determination
equation. They detect complex interaction patterns among the regressors
in the wage equation including increasing returns to education when
experience is very low, high returns for workers with several years of
experience, and diminishing returns when experience is high.

3. EMPIRICAL APPLICATIONS OF

NONPARAMETRIC METHODS

The application of nonparametric methods to substantive problems is con-
sidered in three papers.

Though human development is an extremely broad concept, two
fundamental components that receive widespread attention are health and
living standards. However, much current research is based upon uncondi-
tional estimates of joint distributions. The first paper, ‘‘The evolution of the
conditional joint distribution of life expectancy and per capita income
growth’’ by Thanasis Stengos, Brennan Thompson, and Ximing Wu,
examines the joint conditional distribution of health (life expectancy) and
income growth and its evolution over time. Using nonparametric estimation
methods the authors detect second-order stochastic dominance of the non-
OECD countries over the OECD countries. They also find strong evidence
of first-order stochastic dominance of the earlier years over the later ones.

Conventional wisdom dictates that there is a positive relationship between
governance and economic growth. The second paper, ‘‘A nonparametric
quantile analysis of growth and governance’’ by Kim Huynh and David
Jacho-Chávez, reexamines the empirical relationship between governance
and economic growth using nonparametric quantile methods. The authors
detect a significant nonlinear relationship between economic growth and
governance (e.g., political stability, voice, and accountability) and conclude
that the empirical relationship between voice and accountability, political
stability, and growth are highly nonlinear at different quantiles. They also
detect heterogeneity in these effects across indicators, regions, time, and
quantiles, which ought to be of interest to practitioners using parametric
quantile methods.

Risk in production theory is typically analyzed under either output price
uncertainty or production uncertainty (commonly known as ‘‘production
risk’’). Input allocation decisions in the presence of price uncertainty and
production risk are key aspects of production theory. The third paper,
‘‘Nonparametric estimation of production risk and risk preference
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functions’’ by Subal Kumbhakar and Efthymios Tsionas, uses nonpara-
metric kernel methods to estimate production functions, risk preference
functions, and risk premium. They applied their proposed method to
Norwegian salmon farming data and found that labor is risk decreasing
while capital and feed are risk increasing. They conclude by identifying
fruitful areas for future research, in particular, the estimation of
nonparametric system models that involve cross-equation restrictions.

4. COPULA AND DENSITY ESTIMATION

The nonparametric estimation of density functions is perhaps the most
popular of all nonparametric procedures. There are three papers that deal
with this fundamental topic.

Copula methods are receiving much attention as of late from applied
analysts. A copula is a means of expressing a multivariate distribution such
that a range of dependence structures can be represented. The first paper,
‘‘Exponential series estimation of empirical copulas with application to
financial returns’’ by Chinman Chui and Ximing Wu, proposes using a
multivariate exponential series estimator (ESE) to estimate copula densities
nonparametrically. Conventional nonparametric methods can suffer from
the so-called boundary bias problem, and the authors demonstrate that the
ESE method overcomes this problem. Furthermore, simulation results
show that the ESE method outperforms kernel and log-spline estimators,
while it also provides superior estimates of tail dependence compared to the
empirical tail index coefficient that is popular in applied settings.

The nonparametric estimation of multivariate cumulative distribution
functions (CDFs) has also received substantial attention as of late. The
second paper, ‘‘Nonparametric estimation and multivariate CDF with
categorical and continuous data’’ by Gaosheng Ju, Rui Li, and Zhongwen
Liang, considers the problem of estimating a multivariate CDF with mixed
continuous and discrete variables. They use the cross-validation method to
select the smoothing parameters and provide the asymptotic theory for
the resulting estimator. They also apply the proposed estimator to empirical
data to estimate the joint CDF of the unemployment rate and city size.

The presence of boundary bias in nonparametric settings is undesirable,
and a range of methods have been proposed to mitigate such bias. In a
density estimation context, perhaps the most popular methods involve the
use of ‘‘boundary kernels’’ and ‘‘data reflection.’’ The third paper, ‘‘Higher
order bias reduction of kernel density and density derivative estimators at
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boundary points’’ by Peter Bearse and Paul Rilstone, proposes a new
method that can reduce the boundary bias in kernel density estimation. The
asymptotic properties of the proposed method are derived and simulations
are used to compare the finite-sample performance of the proposed method
against several existing alternative methods.

5. COMPUTATION

Computational issues involving semiparametric and nonparametric methods
can be daunting for some practitioners. In the paper ‘‘Nonparametric and
semiparametric methods in R’’ by Jeffrey S. Racine, the use of the R
environment for estimating nonparametric and semiparametric models is out-
lined. Many of the facilities in R are summarized, and a range of packages
that handle semiparametric nonparametric methods are outlined. The ease
with which a range of methods can be deployed by practitioners is highlighted.

6. SURVEYS

Four papers that survey recent developments in nonparametric methods are
considered.

Financial data often necessitates some of the most sophisticated
approaches toward estimation and inference. The first paper, ‘‘Some recent
developments in nonparametric finance’’ by Zongwu Cai and Yongmiao
Hong, surveys many of the important recent developments in nonparametric
estimation and inference applied to financial data, and provide an overview
of both continuous and discrete time processes. They focus on nonpara-
metric estimation and testing of diffusion processes including nonparametric
testing of parametric diffusion models, nonparametric pricing of derivative,
and nonparametric predictability of asset returns. The authors conclude that
much theoretical and empirical research remains to be done in this area, and
they identify a set of topics that are deserving of attention.

The ability to impose constraints in nonparametric settings has received
much attention as of late. The second paper, ‘‘Imposing economic
constraints in nonparametric regression: survey, implementation, and
extension’’ by Daniel Henderson and Christopher Parmeter, surveys recent
developments on the nonparametric estimation of regression models under
constraints such as convexity, homogeneity, and monotonicity. Their survey
includes isotonic regression, constrained splines, Matzkin’s approach, data
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rearrangement, data sharpening, and constraint weighted bootstrapping.
They focus on the computational implementation under linear constraints,
and then discuss extensions that allow for nonlinear constraints.

Simon Kuznets proposed a theory stating that, over time, economic
inequality increases while a country is developing and then decreases when
a critical level of average income is attained. Researchers allege that the
‘‘Kuznets curve’’ (inverted U shape) also appears in the environment. The
environmental Kuznets curve estimation literature is vast, and conflicting
evidence exists on its empirical validity. The third paper, ‘‘Functional form of
the environmental Kuznets curve’’ by Hector Zapata and Krishna Paudel,
provides an overview of recent developments on testing functional forms with
semiparametric and nonparametric methods, and then discusses applications
employing semiparametric and nonparametric methods to examine the
relationship between environmental pollution and economic growth.

A number of recent advances in nonparametric estimation and inference
have extended the reach of these methods, particularly for practitioners. The
fourth paper, ‘‘Some recent developments on nonparametric econometrics’’
by Zongwu Cai, Jingping Gu, and Qi Li, provides a selected review of
nonparametric estimation and testing of econometric models. They
summarize the recent developments on (i) nonparametric regression models
with mixed discrete and continuous data, (ii) nonparametric models with
nonstationary data, (iii) nonparametric models with instrumental variables,
and (iv) nonparametric estimation of conditional quantile functions. They
also identify a number of open research problems that are deserving of
attention.

NOTE

1. The papers in this Volume of Advances in Econometrics were presented initially
at the 7th Annual Advances in Econometrics Conference held on the LSU campus in
Baton Rouge Louisiana during November 14–16 2008. The theme of the conference
was ‘‘Nonparametric Econometric Methods’’ and the editors would like to
acknowledge generous financial support provided by the LSU Department of
Economics, the Division of Economic Development and Forecasting, and the LSU
Department of Agricultural Economics and Agribusiness.

Qi Li
Jeffrey S. Racine
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MODELS





PARTIAL IDENTIFICATION

OF THE DISTRIBUTION OF

TREATMENT EFFECTS AND

ITS CONFIDENCE SETS

Yanqin Fan and Sang Soo Park

ABSTRACT

In this paper, we study partial identification of the distribution of
treatment effects of a binary treatment for ideal randomized experiments,
ideal randomized experiments with a known value of a dependence
measure, and for data satisfying the selection-on-observables assumption,
respectively. For ideal randomized experiments, (i) we propose nonpara-
metric estimators of the sharp bounds on the distribution of treatment
effects and construct asymptotically valid confidence sets for the
distribution of treatment effects; (ii) we propose bias-corrected
estimators of the sharp bounds on the distribution of treatment effects;
and (iii) we investigate finite sample performances of the proposed
confidence sets and the bias-corrected estimators via simulation.
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1. INTRODUCTION

Evaluating the effect of a treatment or a social program is important in
diverse disciplines including the social and medical sciences. The central
problem in the evaluation of a treatment is that any potential outcome that
program participants would have received without the treatment is not
observed. Because of this missing data problem, most work in the treatment
effect literature has focused on the evaluation of various average treatment
effects such as the mean of treatment effects. See Lee (2005), Abbring and
Heckman (2007), Heckman and Vytlacil (2007a, 2007b) for discussions and
references. However, empirical evidence strongly suggests that treatment
effect heterogeneity prevails in many experiments and various interesting
effects of the treatment are missed by the average treatment effects alone.
See Djebbari and Smith (2008) who studied heterogeneous program impacts
in social experiments such as PROGRESA; Black, Smith, Berger, and Noel
(2003) who evaluated the Worker Profiling and Reemployment Services
system; and Bitler, Gelbach, and Hoynes (2006) who studied the welfare
effect of the change from Aid to Families with Dependent Children (AFDC)
to Temporary Assistance for Needy Families (TANF) programs. Other
work focusing on treatment effect heterogeneity includes Heckman and
Robb (1985), Manski (1990), Imbens and Rubin (1997), Lalonde (1995),
Dehejia (1997), Heckman and Smith (1993), Heckman, Smith, and Clements
(1997), Lechner (1999), and Abadie, Angrist, and Imbens (2002).

When responses to treatment differ among otherwise observationally
equivalent subjects, the entire distribution of the treatment effects or other
features of the treatment effects than its mean may be of interest. Two
general approaches have been proposed in the literature to study the
distribution of treatment effects. In the first approach, the distribution of
treatment effects is partially identified, see Manski (1997a,1997b), Fan and
Park (2010), Fan and Wu (2007), Fan (2008), and Firpo and Ridder (2008).
Assuming monotone treatment response, Manski (1997a) developed sharp
bounds on the distribution of treatment effects, while (i) assuming the
availability of ideal randomized data,1 Fan and Park (2010) developed
estimation and inference tools for the sharp bounds on the distribution of
treatment effects and (ii) assuming that data satisfy the selection-on-
observables or the strong ignorability assumption, Fan and Park (2010) and
Firpo and Ridder (2008) established sharp bounds on the distribution of
treatment effects and Fan (2008) proposed nonparametric estimators of the
sharp bounds and constructed asymptotically valid confidence sets (CSs) for
the distribution of treatment effects. In the context of switching regimes

YANQIN FAN AND SANG SOO PARK4



models, Fan and Wu (2007) studied partial identification and inference for
conditional distributions of treatment effects. In the second approach,
restrictions are imposed on the dependence structure between the potential
outcomes such that distributions of the treatment effects are point identified,
see, for example, Heckman et al. (1997), Biddle, Boden, and Reville (2003),
Carneiro, Hansen, and Heckman (2003), Aakvik, Heckman, and Vytlacil
(2005), and Abbring and Heckman (2007), among others. In addition to the
distribution of treatment effects, Fan and Park (2007b) studied partial
identification of and inference for the quantile of treatment effects for
randomized experiments; Fan and Zhu (2009) investigated partial identifi-
cation of and inference for a general class of functionals of the joint
distribution of potential outcomes including the correlation coefficient
between the potential outcomes and many commonly used inequality
measures of the distribution of treatment effects under the selection-on-
observables assumption. Firpo and Ridder (2008) also presented some
partial identification results for functionals of the distribution of treatment
effects under the selection-on-observables assumption.

The objective of this paper is threefold. First, this paper provides a review
of existing results on partial identification of the distribution of treatment
effects in Fan and Park (2010) and establishes similar results for randomized
experiments when the value of a dependence measure between the potential
outcomes such as Kendall’s t is known. Second, this paper relaxes two
strong assumptions used in Fan and Park (2010) to derive the asymptotic
distributions of nonparametric estimators of sharp bounds on the distribu-
tion of treatment effects and constructs asymptotically valid CSs for the
distribution of treatment effects. Third, as evidenced in the simulation
results presented in Fan and Park (2010), the simple plug-in nonparametric
estimators of the sharp bounds on the distribution of treatment effects tend
to have upward/downward bias in finite samples. In this paper, we confirm
this analytically and construct bias-corrected estimators of these bounds.
We present an extensive simulation study of finite sample performances of
the proposed CSs and of the bias-corrected estimators. The issue of
constructing CSs for the distribution of treatment effects belongs to the
recently fast growing area of inference for partially identified parameters,
see for example, Imbens and Manski (2004), Bugni (2007), Canay (2007),
Chernozhukov, Hong, and Tamer (2007), Galichon and Henry (2009),
Horowitz and Manski (2000), Romano and Shaikh (2008), Stoye (2009),
Rosen (2008), Soares (2006), Beresteanu and Molinari (2008), Andrews
(2000), Andrews and Guggenberger (2007), Andrews and Soares (2007), Fan
and Park (2007a), and Moon and Schorfheide (2007). Like Fan and Park
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(2007b), we follow the general approach developed in Andrews and
Guggenberger (2005a, 2005b, 2005c, 2007) for nonregular models.
The rest of this paper is organized as follows. In Section 2, we review

sharp bounds on the distribution of treatment effects and related results for
randomized experiments in Fan and Park (2010). In Section 3, we present
improved bounds when additional information is available. In Section 4, we
first revisit the nonparametric estimators of the distribution bounds
proposed in Fan and Park (2010) and their asymptotic properties.
Motivated by the restrictive nature of the unique, interior assumption of
the sup and inf in Fan and Park (2010), we then provide asymptotic
properties of the estimators with a weaker assumption. Section 5 constructs
asymptotically valid CSs for the bounds and the true distribution of
treatment effects under much weaker assumptions than those in Fan and
Park (2010). Section 6 provides bias-corrected estimators of the sharp
bounds in Fan and Park (2010). Results from an extensive simulation study
are provided in Section 7. Section 8 concludes. Some technical proofs are
collected in Appendix A. Appendix B presents expressions for the sharp
bounds on the distribution of treatment effects in Fan and Park (2010) for
certain known marginal distributions.

Throughout the paper, we use . to denote weak convergence. All the
limits are taken as the sample size goes to N.

2. SHARP BOUNDS ON THE DISTRIBUTION OF

TREATMENT EFFECTS AND BOUNDS ON ITS

D-PARAMETERS FOR RANDOMIZED EXPERIMENTS

In this section, we review the partial identification results in Fan and Park
(2010). Consider a randomized experiment with a binary treatment and
continuous outcomes. Let Y1 denote the potential outcome from receiving
the treatment and Y0 the potential outcome without receiving the treatment.
Let F(y1, y0) denote the joint distribution of Y1, Y0 with marginals F1( � )
and F0( � ), respectively. It is well known that with randomized data, the
marginal distribution functions F1( � ) and F0( � ) are identified, but the joint
distribution function F(y1, y0) is not identified. The characterization
theorem of Sklar (1959) implies that there exists a copula2 C(u, v):
(u, v)A[0,1]2 such that F(y1, y0) ¼ C(F1(y1), F0(y0)) for all y1, y0. Conversely,
for any marginal distributions F1( � ), F0( � ) and any copula function C, the
function C(F1(y1), F0(y0)) is a bivariate distribution function with given
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marginal distributions F1, F0. This theorem provides the theoretical
foundation for the widespread use of the copula approach in generating
multivariate distributions from univariate distributions. For reviews, see Joe
(1997) and Nelsen (1999). Since copulas connect multivariate distributions
to marginal distributions, the copula approach provides a natural way to
study the joint distribution of potential outcomes and the distribution of
treatment effects when the marginal distributions are identified.

For ðu; vÞ 2 ½0; 1�2; let CLðu; vÞ ¼ maxðuþ v� 1; 0Þ and CUðu; vÞ ¼
minðu; vÞ denote the Fréchet–Hoeffding lower and upper bounds for a
copula, that is, CLðu; vÞ � Cðu; vÞ � CUðu; vÞ. Then for any (y1, y0), the
following inequality holds:

CLðF1ðy1Þ;F0ðy0ÞÞ � Fðy1; y0Þ � CUðF1ðy1Þ;F0ðy0ÞÞ (1)

The bivariate distribution functions CLðF1ðy1Þ;F0ðy0ÞÞ and CUðF1ðy1Þ;
F0ðy0ÞÞ are referred to as the Fréchet–Hoeffding lower and upper bounds for
bivariate distribution functions with fixed marginal distributions F1 and F0.
They are distributions of perfectly negatively dependent and perfectly
positively dependent random variables, respectively, see Nelsen (1999) for
more discussions.

For randomized experiments, the marginals F1 and F0 are identified and
Eq. (1) partially identifies F(y1, y0). See Heckman and Smith (1993),
Heckman et al. (1997), Manski (1997b), and Fan and Wu (2007) for
applications of Eq. (1) in the context of program evaluation. Lee (2002) used
Eq. (1) to bound correlation coefficients in sample selection models.

2.1. Sharp Bounds on the Distribution of Treatment Effects

Let D ¼ Y1�Y0 denote the individual treatment effect and FD( � ) its
distribution function. For randomized experiments, the marginals F1 and
F0 are identified. Given F1 and F0, sharp bounds on the distribution of D can
be found in Williamson and Downs (1990).

Lemma 1. Let

FLðdÞ ¼ max sup
y
fF1ðyÞ � F0ðy� dÞg; 0

� �
and

FUðdÞ ¼ 1þmin inf
y
fF1ðyÞ � F0ðy� dÞg; 0

� �
Then FLðdÞ � FDðdÞ � FUðdÞ.
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At any given value of d, the bounds (F L(d), FU(d)) are informative on the
value of FD(d) as long as ½FLðdÞ;FUðdÞ� � ½0; 1� in which case, we say FD(d) is
partially identified. Viewed as an inequality among all possible distribution
functions, the sharp bounds F L(d) and FU(d) cannot be improved, because
it is easy to show that if either F1 or F0 is the degenerate distribution
at a finite value, then for all d, we have FLðdÞ ¼ FDðdÞ ¼ FUðdÞ: In fact,
given any pair of distribution functions F1 and F0, the inequality:
F L(d)rFD(d)rFU(d) cannot be improved, that is, the bounds F L(d)
and FU(d) for FD(d) are point-wise best-possible, see Frank, Nelsen, and
Schweizer (1987) for a proof of this for a sum of random variables and
Williamson and Downs (1990) for a general operation on two random
variables.

Let hFSD and hSSD denote the first-order and second-order stochastic
dominance relations, that is, for two distribution functions G and H,

GhFSDH iff GðxÞ � HðxÞ for all x

GhSSDH iff

Z x

�1

GðvÞdv �

Z x

�1

HðdÞdv for all x

Lemma 1 implies: FL
hFSD FDhFSD FU. We note that unlike sharp

bounds on the joint distribution of Y1, Y0, sharp bounds on the distribution
of D are not reached at the Fréchet–Hoeffding lower and upper bounds for
the distribution of Y1, Y0. Let Y

0
1;Y

0
0 be perfectly positively dependent and

have the same marginal distributions as Y1, Y0, respectively. Let
D0 ¼ Y 01 � Y 00. Then the distribution of Du is given by:

FD0 ðdÞ ¼ E1fY 01 � Y 00 � dg ¼
Z 1

0

1fF�11 ðuÞ � F�10 ðuÞ � dgdu

where 1 { � } is the indicator function the value of which is 1 if the argument
is true, 0 otherwise. Similarly, let Y 001 ;Y

00
0 be perfectly negatively dependent

and have the same marginal distributions as Y1, Y0, respectively. Let
D00 ¼ Y 001 � Y 000. Then the distribution of Dv is given by:

FD00 ðdÞ ¼ E1fY 001 � Y 000 � dg ¼
Z 1

0

1fF�11 ðuÞ � F�10 ð1� uÞ � dgdu

Interestingly, we show in the next lemma that there exists a second-order
stochastic dominance relation among the three distributions FD;FD0 ;FD00 .

Lemma 2. Let FD;FD0 ;FD00 be defined as above. Then FD0hSSD

FDhSSDFD00 .
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Theorem 1 in Stoye (2008), see also Tesfatsion (1976), shows that
FD0hSSDFD is equivalent to E½UðD0Þ� � E½UðDÞ� or E½UðY 01 � Y 00Þ� �
E½UðY1 � Y0Þ� for every convex real-valued function U. Corollary 2.3 in
Tchen (1980) implies the conclusion of Lemma 2, see also Cambanis,
Simons, and Stout (1976).

2.2. Bounds on D-Parameters

The sharp bounds on the treatment effect distribution implies bounds on the
class of ‘‘D-parameters’’ introduced in Manski (1997a), see also Manski
(2003). One example of ‘‘D-parameters’’ is any quantile of the distribution.
Stoye (2008) introduced another class of parameters, which measure the
dispersion of a distribution, including the variance of the distribution. In
this section, we show that sharp bounds can be placed on any dispersion or
spread parameter of the treatment effect distribution in this class. For
convenience, we restate the definitions of both classes of parameters from
Stoye (2008). He refers to the class of ‘‘D-parameters’’ as the class of
‘‘D1-parameters.’’

Definition 1. A population statistic y is a D1-parameter, if it increases
weakly with first-order stochastic dominance, that is, FhFSDG implies
yðFÞ � yðGÞ.

Obviously if y is a D1-parameter, then Lemma 1 implies: yðFLÞ �

yðFDÞ � yðFUÞ. In general, the bounds yðFLÞ; yðFUÞ on a D1-parameter may
not be sharp, as the bounds in Lemma 1 are point-wise sharp, but not
uniformly sharp, see Firpo and Ridder (2008) for a detailed discussion on
this issue. In the special case where y is a quantile of the treatment effect
distribution, the bounds yðFLÞ; yðFUÞ are known to be sharp and can be
expressed in terms of the quantile functions of the marginal distributions of
the potential outcomes. Specially, let G�1(u) denote the generalized inverse
of a nondecreasing function G, that is, G�1ðuÞ ¼ inffxjGðxÞ � ug. Then
Lemma 1 implies: for 0 � q � 1; ðFUÞ

�1
ðqÞ � F�1D ðqÞ � ðF

LÞ
�1
ðqÞ and the

bounds are known to be sharp. For the quantile function of a distribution of
a sum of two random variables, expressions for its sharp bounds in terms
of quantile functions of the marginal distributions are first established in
Makarov (1981). They can also be established via the duality theorem,
see Schweizer and Sklar (1983). Using the same tool, one can establish the
following expressions for sharp bounds on the quantile function of the
distribution of treatment effects, see Williamson and Downs (1990).

Partial Identification of the Distribution of Treatment Effects 9



Lemma 3. For 0 � q � 1; ðFUÞ
�1
ðqÞ � F�1D ðqÞ � ðF

LÞ
�1
ðqÞ, where

ðFLÞ
�1
ðqÞ ¼

infu2½q;1�½F
�1
1 ðuÞ � F�10 ðu� qÞ� if qa0

F�11 ð0Þ � F�10 ð1Þ if q ¼ 0

(

ðFUÞ
�1
ðqÞ ¼

supu2½0;q�½F
�1
1 ðuÞ � F�10 ð1þ u� qÞ� if qa1

F�11 ð1Þ � F�10 ð0Þ if q ¼ 1

(

Like sharp bounds on the distribution of treatment effects, sharp bounds
on the quantile function of D are not reached at the Fréchet–Hoeffding
bounds for the distribution of (Y1, Y0). The following lemma provides
simple expressions for the quantile functions of treatment effects when the
potential outcomes are either perfectly positively dependent or perfectly
negatively dependent.

Lemma 4. For q 2 ½0; 1�, we have (i) F�1D0 ðqÞ ¼ ½F
�1
1 ðqÞ � F�10 ðqÞ� if

½F�11 ðqÞ � F�10 ðqÞ� is an increasing function of q; (ii) F�1D00 ðqÞ ¼
½F�11 ðqÞ � F�10 ð1� qÞ�.

The proof of Lemma 4 follows that of the proof of Proposition 3.1 in
Embrechts, Hoeing, and Juri (2003). In particular, they showed that for a
real-valued random variable Z and a function j increasing and left
continuous on the range of Z, it holds that the quantile of j(Z) at quantile
level q is given by jðF�1Z ðqÞÞ, where FZ is the distribution function of Z.
For (i), we note that F�1D0 ðqÞ equals the quantile of ½F

�1
1 ðUÞ � F�10 ðUÞ�, where

U is a uniform random variable on [0,1]. Let jðUÞ ¼ F�11 ðUÞ � F�10 ðUÞ.
Then F�1D0 ðqÞ ¼ jðqÞ ¼ F�11 ðqÞ � F�10 ðqÞ provided that j(U) is an increasing
function of U. For (ii), let jðUÞ ¼ F�11 ðUÞ � F�10 ð1�UÞ. Then F�1D00 ðqÞ
equals the quantile of j(U). Since j(U) is always increasing in this case,
we get F�1D00 ðqÞ ¼ jðqÞ.
Note that the condition in (i) is a necessary condition; without this

condition, ½F�11 ðqÞ � F�10 ðqÞ� can fail to be a quantile function. Doksum
(1974) and Lehmann (1974) used ½F�11 ðF0ðy0ÞÞ � y0� to measure treatment
effects. Recently, ½F�11 ðqÞ � F�10 ðqÞ� has been used to study treatment effects
heterogeneity and is referred to as the quantile treatment effects (QTE), see
for example, Heckman et al. (1997), Abadie et al. (2002), Chernozhukov
and Hansen (2005), Firpo (2007), Firpo and Ridder (2008), and Imbens and
Newey (2009), among others, for more discussion and references on the
estimation of QTE. Manski (1997a) referred to QTE as DD-parameters
and the quantile of the treatment effect distribution as DD-parameters.

YANQIN FAN AND SANG SOO PARK10



Assuming monotone treatment response, Manski (1997a) provided sharp
bounds on the quantile of the treatment effect distribution.

It is interesting to note that Lemma 4 (i) shows that QTE equals the
quantile function of the treatment effects only when the two potential
outcomes are perfectly positively dependent AND QTE is increasing in q.
Example 1 below illustrates a case where QTE is decreasing in q and hence is
not the same as the quantile function of the treatment effects even when the
potential outcomes are perfectly positively dependent. In contrast to QTE,
the quantile of the treatment effect distribution is not identified, but can
be bounded, see Lemma 3. At any given quantile level, the lower quantile
bound ðFUÞ

�1
ðqÞ is the smallest outcome gain (worst case) regardless of the

dependence structure between the potential outcomes and should be useful
to policy makers. For example, ðFUÞ

�1
ð0:5Þ is the minimum gain of at least

half of the population.

Definition 2. A population statistic y is a D2-parameter, if it increases
weakly with second-order stochastic dominance, that is, FhSSDG implies
yðFÞ � yðGÞ.

If y is a D2-parameter, then Lemma 2 implies yðFD0 Þ � yðFDÞ � yðFD00 Þ.
Stoye (2008) defined the class of D2-parameters in terms of mean-preserving
spread. Since the mean of D is identified in our context, the two definitions
lead to the same class of D2-parameters. In contrast to D1-parameters of the
treatment effect distribution, the above bounds on D2-parameters of the
treatment effect distribution are reached when the potential outcomes are
perfectly dependent on each other and they are known to be sharp. For a
general functional of FD, Firpo and Ridder (2008) investigated the possibility
of obtaining its bounds that are tighter than the bounds implied by FL, FU.
Here we point out that for the class ofD2-parameters of FD, their sharp bounds
are available. One example of D2-parameters is the variance of the treatment
effect D. Using results in Cambanis et al. (1976), Heckman et al. (1997)
provided sharp bounds on the variance of D for randomized experiments and
proposed a test for the common effect model by testing the value of the lower
bound of the variance of D. Stoye (2008) presents many other examples of
D2-parameters, including many well-known inequality and risk measures.

2.3. An Illustrative Example: Example 1

In this subsection, we provide explicit expressions for sharp bounds on the
distribution of treatment effects and its quantiles when Y1 � Nðm1; s

2
1Þ and
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Y0 � Nðm0;s
2
0Þ. In addition, we provide explicit expressions for the

distribution of treatment effects and its quantiles when the potential
outcomes are perfectly positively dependent, perfectly negatively dependent,
and independent.

2.3.1. Distribution Bounds
Explicit expressions for sharp bounds on the distribution of a sum of two
random variables are available for the case where both random variables
have the same distribution which includes the uniform, the normal, the
Cauchy, and the exponential families, see Alsina (1981), Frank et al. (1987),
and Denuit, Genest, and Marceau (1999). Using Lemma 1, we now derive
sharp bounds on the distribution of D ¼ Y1 � Y0.

First consider the case s1 ¼ s0 ¼ s. Let F( � ) denote the distribu-
tion function of the standard normal distribution. Simple algebra
shows

sup
y
fF1ðyÞ � F0ðy� dÞg ¼ 2F

d� ðm1 � m0Þ
2s

� �
� 1 for d4m1 � m0,

inf
y
fF1ðyÞ � F0ðy� dÞg ¼ 2F

d� ðm1 � m0Þ
2s

� �
� 1 for dom1 � m0

Hence,

FLðdÞ ¼

0; if dom1 � m0

2F
d� ðm1 � m0Þ

2s

� �
� 1; if d � m1 � m0

8><>: (2)

FUðdÞ ¼
2F

d� ðm1 � m0Þ
2s

� �
if dom1 � m0

1; if d � m1 � m0

8><>: (3)

When3 s1as0, we get

sup
y
fF1ðyÞ � F0ðy� dÞg ¼ F

s1s� s0t
s21 � s20

� �
þ F

s1t� s0s
s21 � s20

� �
� 1

inf
y
fF1ðyÞ � F0ðy� dÞg ¼ F

s1sþ s0t
s21 � s20

� �
� F

s1tþ s0s
s21 � s20

� �
þ 1
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where s ¼ d� ðm1 � m0Þ and t ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ ðs21 � s20Þ lnðs

2
1=s

2
0Þ

q
. For any d, one

can show that supyfF1ðyÞ � F0ðy� dÞg40 and infyfF1ðyÞ � F0ðy� dÞgo0.
As a result,

FLðdÞ ¼ F
s1s� s0t
s21 � s20

� �
þ F

s1t� s0s
s21 � s20

� �
� 1

FUðdÞ ¼ F
s1sþ s0t
s21 � s20

� �
þ F

s1tþ s0s
s21 � s20

� �
þ 1

For comparison purposes, we provide expressions for the distribution FD

in three special cases.

Case I. Perfect positive dependence. In this case, Y0 and Y1 satisfy
Y0 ¼ m0 þ ðs0=s1ÞY1 � ðs0=s1Þm1. Therefore,

D ¼

s1 � s0
s1

� �
Y1 þ

s0
s1
m1 � m0

� �
; if s1as0

m1 � m0; if s1 ¼ s0

8><>:
If s1 ¼ s0, then

FDðdÞ ¼
0 and d om1 � m0
1 and m1 � m0 � d

(
(4)

If s1 6¼ s0, then

FDðdÞ ¼ F
d� ðm1 � m0Þ
js1 � s0j

� �

Case II. Perfect negative dependence. In this case, we have Y 0 ¼

m0 � ðs0=s1ÞY1 þ ðs0=s1Þm1. Hence,

D ¼
s1 þ s0

s1
Y1 �

s0
s1

m1 þ m0

� �

FDðdÞ ¼ F
d� ðm1 � m0Þ

s1 þ s0

� �
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Case III. Independence. This yields

FDðdÞ ¼ F
d� ðm1 � m0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s21 þ s20
q

0B@
1CA (5)

Fig. 1 below plots the bounds on the distribution FD (denoted by F_L and
F_U) and the distribution FD corresponding to perfect positive dependence,
perfect negative dependence, and independence (denoted by F_PPD,
F_PND, and F_IND, respectively) of potential outcomes for the case
Y1BN(2,2) and Y0BN(1,1). For notational compactness, we use (F1, F0) to
signify Y1BF1 and Y0BF0 throughout the rest of this paper.
First, we observe from Fig. 1 that the bounds in this case are informative

at all values of d and are more informative in the tails of the distribution FD

than in the middle. In addition, Fig. 1 indicates that the distribution of the
treatment effects for perfectly positively dependent potential outcomes is
most concentrated around its mean 1 implied by the second-order stochastic

F_L
F_U
F_PPD
F_IND
F_PND

-6 -4 -2 2 4 6 8

0.4

0.6

0.8

1

delta

F

0.2

Fig. 1. Bounds on the Distribution of the Treatment Effect: (N(2,2), N(1,1)).
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relation F_PPDhSSDF_INDhSSDF_PPD. In terms of the corresponding
quantile functions, this implies that the quantile function corresponding to
the perfectly positively dependent potential outcomes is flatter than the
quantile functions corresponding to perfectly negatively dependent and
independent potential outcomes, see Fig. 2 above.

2.3.2. Quantile Bounds
By inverting Eqs. (2) and (3), we obtain the quantile bounds for the case
s1 ¼ s0 ¼ s:

ðFLÞ
�1
ðqÞ ¼

any value in ð�1;m1 � m0� for q ¼ 0

ðm1 � m0Þ þ 2s F�1
1þ q

2

� �
otherwise

8><>:

ðFUÞ
�1
ðqÞ ¼

ðm1 � m0Þ þ 2s F�1
q

2

� �
for q 2 ½0; 1Þ

any value in ½m1 � m0;1Þ for q ¼ 1

8<:

FL^{-1}
FU^{-1}
F_PPD^{-1}
F_IND^{-1}
F_PND^{-1}

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-6

-4

-2

2

4

6

8

q

F^{-1}

Fig. 2. Bounds on the Quantile Function of the Treatment Effect: (N(2,2), N(1,1)).
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When s1 6¼ s0, there is no closed-form expression for the quantile bounds.
But they can be computed numerically by either inverting the distribution
bounds or using Lemma 3. We now derive the quantile function for the
three special cases.

Case I. Perfect positive dependence. If s1 ¼ s0, we get

F�1D ðqÞ ¼

any value in ð�1;m1 � m0Þ for q ¼ 0;

any value in ½m1 � m0;1Þ for q ¼ 1;

undefined for q 2 ð0; 1Þ:

8><>:
When s1 6¼ s0, we get

F�1D ðqÞ ¼ ðm1 � m0Þ þ js1 � s0jF�1ðqÞ for q 2 ½0; 1�

Note that by definition, QTE is given by:

F�11 ðqÞ � F�10 ðqÞ ¼ ðm1 � m0Þ þ ðs1 � s0ÞF�1ðqÞ

which equals F�1D ðqÞ only if s1Ws0, that is, only if the condition of
Lemma 4 (i) holds. If s1os0, ½F�11 ðqÞ � F�10 ðqÞ� is a decreasing function of
q and hence cannot be a quantile function.

Case II. Perfect negative dependence.

F�1D ðqÞ ¼ ðm1 � m0Þ þ ðs1 þ s0ÞF�1ðqÞ for q 2 ½0; 1�

Case III. Independence.

F�1D ðqÞ ¼ ðm1 � m0Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s21 þ s20

q
F�1ðqÞ for q 2 ½0; 1�

In Fig. 2, we plot the quantile bounds for D (FL4{�1} and FU4{�1})
when Y1BN(2, 2) and Y0BN(1, 1) and the quantile functions of D when Y1

and Y0 are perfectly positively dependent, perfectly negatively dependent,
and independent (F_PPD4{�1}, F_PND4{�1}, and F_IND4{�1},
respectively).

Again, Fig. 2 reveals the fact that the quantile function of D
corresponding to the case that Y1 and Y0 are perfectly positively dependent
is flatter than that corresponding to all the other cases. Keeping in
mind that in this case, s1Ws0, we conclude that the quantile function of D
in the perfect positive dependence case is the same as QTE. Fig. 2 leads
to the conclusion that QTE is a conservative measure of the degree of
heterogeneity of the treatment effect distribution.
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3. MORE ON SHARP BOUNDS ON THE JOINT

DISTRIBUTION OF POTENTIAL OUTCOMES AND

THE DISTRIBUTION OF TREATMENT EFFECTS

For randomized experiments, Eq. (1) and Lemma 1, respectively, provide
sharp bounds on the joint distribution of potential outcomes and the
distribution of treatment effects. When additional information is available,
these bounds are no longer sharp. In this section, we consider two types
of additional information. One is the availability of a known value of a
dependence measure between the potential outcomes and the other is the
availability of covariates ensuring the validity of the selection-on-
observables assumption.

3.1. Randomized Experiments with a Known Value of Kendall’s t

In this subsection, we first review sharp bounds on the joint distribution of
the potential outcomes Y1, Y0 when the value of a dependence measure such
as Kendall’s t between the potential outcomes is known. Then we point out
how this information can be used to tighten the bounds on the distribution
of D presented in Lemma 1. We provide details for Kendall’s t and point out
relevant references for other measures including Spearman’s r.
To begin, we introduce the notation used in Nelsen, Quesada-Molina,

Rodriguez-Lallena, and Ubeda-Flores (2001). Let (X1, Y1), (X2, Y2), and
(X3, Y3) be three independent and identically distributed random vectors
of dimension 2 whose joint distribution is H. Kendall’s t and Spearman’s r
are defined as:

t ¼ Pr½ðX1 � X2ÞðY1 � Y2Þ40� � Pr½ðX1 � X2ÞðY1 � Y2Þo0�

r ¼ 3fPr½ðX1 � X2ÞðY1 � Y3Þ40� � Pr½ðX1 � X2ÞðY1 � Y3Þo0�g

For any tA[�1,1], let T t denote the set of copulas with a common value t
of Kendall’s t, that is,

T t ¼ fCjC is a copula such that tðCÞ ¼ tg

Let Tt and �Tt denote, respectively, the point-wise infimum and supremum
of T t. The following result presents sharp bounds on the joint distribution
of the potential outcomes Y1, Y0. It can be found in Nelsen et al. (2001).
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Lemma 5. Suppose that the value of Kendall’s t between Y1 and Y0 is t.
Then

TtðF1ðy1Þ;F0ðy0ÞÞ � Fðy1; y0Þ � �TtðF1ðy1Þ;F0ðy0ÞÞ

where, for any (u, v)A[0,1]2;

Ttðu; vÞ ¼ max 0; uþ v� 1;
1

2
ðuþ vÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu� vÞ2 þ 1� t

q� �� �

Ttðu; vÞ ¼ min u; v;
1

2
ðuþ v� 1Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðuþ v� 1Þ2 þ 1þ t

q� �� �
As shown in Nelsen et al. (2001),

Ttðu; vÞ ¼ CLðu; vÞ if t 2 ½�1; 0�

Ttðu; vÞ � CLðu; vÞ if t 2 ½0; 1�
(6)

and

�Ttðu; vÞ ¼ CUðu; vÞ if t 2 ½0; 1�

�Ttðu; vÞ � CUðu; vÞ if t 2 ½�1; 0�

Hence, for any fixed (y1, y0), the bounds ½TtðF1ðy1Þ;F0ðy0ÞÞ;
�TtðF1ðy1Þ;F0ðy0ÞÞ� are in general tighter than the bounds in Eq. (1) unless
t ¼ 0. The lower bound on F(y1, y0) can be used to tighten bounds on the
distribution of treatment effects via the following result in Williamson and
Downs (1990).

Lemma 6. Let CXY denote a lower bound on the copula CXY and FX+Y

denote the distribution function of X+U. Then

sup
xþy¼z

CXY ðFðxÞ;GðyÞÞ � FXþY ðzÞ � inf
xþy¼z

Cd
XY ðFðxÞ;GðyÞÞ

where Cd
XY ðu; vÞ ¼ uþ v� CXY ðu; vÞ.

Let Y1 ¼ X and Y0 ¼ �Y in Lemma 6. By using Lemma 5 and the duality
theorem, we can prove the following proposition.

Proposition 1. Suppose the value of Kendall’s t between Y1 and Y0 is t.
Then
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(i) supxT�tðF1ðxÞ; 1� F0ðx� dÞÞ � FDðdÞ � infxT
d
�tðF1ðxÞ; 1� F0ðx� dÞÞ;

where

T�tðu; vÞ ¼ max 0; uþ vþ 1;
1

2
ðuþ vÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu� vÞ2 þ 1þ t

q� �	 


Td
�tðu; vÞ ¼ max uþ v; 1;

1

2
ðuþ vÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu� vÞ2 þ 1þ t

q� �	 


(ii) supTd
�tðu;vÞ¼q

½F�11 ðuÞ � F�10 ð1� vÞ� � F�1D ðqÞ � infT
�tðu;1�vÞ¼q

½F�11 ðuÞ

�F�10 ð1� vÞ�.

Proposition 1 and Eq. (6) imply that the bounds in Proposition 1 (i) are
sharper than those in Lemma 1 if tA[�1, 0] and are the same as those in
Lemma 1 if tA[0, 1]. This implies that if the potential outcomes Y1 and Y0

are positively dependent in the sense of having a nonnegative Kendall’s t,
then the information on the value of Kendall’s t does not improve the
bounds on the distribution of treatment effects. On contrary, if they are
negatively dependent on each other, then knowing the value of Kendall’s t
will in general improve the bounds.

Remark 1. If instead of Kendall’s t, the value of Spearman’s r between
the potential outcomes is known, one can also establish tighter bounds on
FD(z) by using Theorem 4 in Nelsen et al. (2001) and Lemma 6.

Remark 2. Other dependence information that may be used to tighten
bounds on the joint distribution of potential outcomes and thus the
distribution of treatment effects include known values of the copula
function of the potential outcomes at certain points, see Nelsen and
Ubeda-Flores (2004) and Nelsen, Quesada-Molina, Rodriguez-Lallena,
and Ubeda-Flores (2004).

3.2. Selection-on-Observables

In many applications, observations on a vector of covariates for individuals
in the treatment and control groups are available. In this subsection, we
extend sharp bounds for randomized experiments in Lemma 1 to take into
account these covariates. For notational compactness, we let n ¼ n1+n0
so that there are n individuals altogether. For i ¼ 1, y, n, let Xi denote the
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observed vector of covariates and Di the binary variable indicating
participation; Di ¼ 1 if individual i belongs to the treatment group and
Di ¼ 0 if individual i belongs to the control group. Let Yi ¼ Y1iDi þ

Y0ið1�DiÞ denote the observed outcome for individual i. We have
a random sample fYi;Xi;Dig

n
i¼1. In the literature on program evaluation

with selection-on-observables, the following two assumptions are often
used to evaluate the effect of a treatment or a program, see for example,
Rosenbaum and Rubin (1983), Hahn (1998), Heckman, Ichimura, Smith,
and Todd (1998), Dehejia and Wahba (1999), and Hirano, Imbens, and
Ridder (2003), to name only a few.

C1. Let (Y1, Y0, D, X) have a joint distribution. For all xAX (the support
of X), (Y1, Y0) is jointly independent of D conditional on X ¼ x.

C2. For all xAX , 0op(x)o1, where p(x) ¼ P (D=l|x).

In the following, we present sharp bounds on the joint distribution
of potential outcomes and the distribution of D under (C1) and (C2). For
any fixed xAX , Eq. (1) provides sharp bounds on the conditional joint
distribution of Y1, Y0 given X ¼ x:

CLðF1ðy1jxÞ;F0ðy0jxÞÞ � Fðy1; y0jxÞ � CUðF1ðy1jxÞ;F0ðy0jxÞÞ

and Lemma 1 provides sharp bounds on the conditional distribution of D
given X ¼ x:

FLðdjxÞ � FDðdjxÞ � FUðdjxÞ

where

FLðdjxÞ ¼ sup
y

maxðF1ðyjxÞ � F0ðy� djxÞ; 0Þ

FUðdjxÞ ¼ 1þ inf
y
minðF1ðyjxÞ � F0ðy� djxÞ; 0Þ

Here, we use FD( � |x) to denote the conditional distribution function of D
given X ¼ x. The other conditional distributions are defined similarly.
Conditions (C1) and (C2) allow the identification of the conditional
distributions F1(y|x) and F0(y|x) appearing in the sharp bounds on
F(y1, y0|x) and FD(d|x). To see this, note that

F1ðyjxÞ ¼ PðY1 � yjX ¼ xÞ ¼ PðY1 � yjX ¼ x;D ¼ 1Þ

¼ PðY � yjX ¼ x;D ¼ 1Þ ð7Þ
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where (C1) is used to establish the second equality. Similarly, we get

F0ðyjxÞ ¼ PðY � yjX ¼ x;D ¼ 0Þ (8)

Sharp bounds on the unconditional joint distribution of Y1, Y0 and the
unconditional distribution of D follow from those of the conditional
distributions:

E½CLðF1ðy1jXÞ;F0ðy0jXÞÞ� � Fðy1; y0Þ � CUðF1ðy1jXÞ;F0ðy0jXÞÞ

EðFLðdjXÞÞ � FDðdÞ ¼ EðFDðdjXÞÞ � EðFUðdjXÞÞ

We note that if X is independent of (Y1, Y0), then the above bounds on
F(y1, y0) and FD(d) reduce, respectively, to those in Eq. (1) and Lemma 1.
In general, X is not independent of (Y1, Y0) and the above bounds are
tighter than those in Eq. (1) and Lemma 1, see Fan (2008) for a more
detailed discussion on the sharp bounds with covariates. Under the selection
on observables assumption, Fan and Zhu (2009) established sharp bounds
on a general class of functionals of the joint distribution F(y1, y0) including
the correlation coefficient between the potential outcomes and the class of
D2-parameters of the distribution of treatment effects.

4. NONPARAMETRIC ESTIMATORS OF THE SHARP

BOUNDS AND THEIR ASYMPTOTIC PROPERTIES

FOR RANDOMIZED EXPERIMENTS

Suppose random samples fY1ig
n1
i¼1 � F1 and fY0ig

n0
i¼1 � F0 are available. Let

Y1 and Y0 denote, respectively, the supports4 of F1 and F0. Note that the
bounds in Lemma 1 can be written as:

FLðdÞ ¼ sup
y2R
fF1ðyÞ � F0ðy� dÞg;FUðdÞ ¼ 1þ inf

y2R
fF1ðyÞ � F0ðy� dÞg (9)

since for any two distributions F1 and F0, it is always true that
supy2RfF1ðyÞ � F0ðy� dÞg � 0 and infy2RfF1ðyÞ � F0ðy� dÞg � 0.
When Y1 ¼ Y0 ¼ R, Eq. (9) suggests the following plug-in estimators of

F L(d) and FU(d):

FL
n ðdÞ ¼ sup

y2R
fF1nðyÞ � F0nðy� dÞg;FU

n ðdÞ ¼ 1þ inf
y2R
fF1nðyÞ � F0nðy� dÞg

(10)
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where F1n( � ) and F0n( � ) are the empirical distributions defined as:

FknðyÞ ¼
1

nk

Xnk
i¼1

1fYki � yg; k ¼ 1; 0

When either Y1 or Y0 is not the whole real line, we derive alternative
expressions for F L(d) and FU(d) which turn out to be convenient for
both computational purposes and for asymptotic analysis. For illustration,
we look at the case: Y1 ¼ Y0 ¼ ½0; 1� in detail and provide the results for the
general case afterwards.

Suppose Y1 ¼ Y0 ¼ ½0; 1�. If 1ZdZ0, then Eq. (9) implies:

FLðdÞ ¼ max sup
y2½d;1�
fF1ðyÞ � F0ðy� dÞg; sup

y2ð�1;dÞ
fF1ðyÞ � F0ðy� dÞg;

(

sup
y2ð1;1Þ

fF1ðyÞ � F0ðy� dÞg

)

¼ max sup
y2½d;1�
fF1ðyÞ � F0ðy� dÞg; sup

y2ð�1;dÞ
F1ðyÞ; sup

y2ð1;1Þ
f1� F0ðy� dÞg

( )

¼ max sup
y2½d;1�
fF1ðyÞ � F0ðy� dÞg;F1ðdÞ;1� F0ð1� dÞ

( )
¼ sup

y2½d;1�
fF1ðyÞ � F0ðy� dÞg ð11Þ

and

FUðdÞ ¼ 1þmin inf
y2½d;1�
fF1ðyÞ � F0ðy� dÞg; inf

y2ð�1;dÞ
fF1ðyÞ � F0ðy� dÞg;

	
inf

y2ð1;1Þ
fF1ðyÞ � F0ðy� dÞg



¼ 1þmin inf

y2½d;1�
fF1ðyÞ � F0ðy� dÞg; inf

y2ð�1;dÞ
F1ðyÞ; inf

y2ð1;1Þ
f1� F0ðy� dÞg

	 

¼ 1þmin inf

y2½d;1�
fF1ðyÞ � F0ðy� dÞg; 0
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If �1rdo0, then

FLðdÞ ¼ max sup
y2½0;1þd�

fF1ðyÞ � F0ðy� dÞg; sup
y2ð�1;0Þ

fF1ðyÞ � F0ðy� dÞg;

(

sup
y2ð1þd;1Þ

fF1ðyÞ � F0ðy� dÞg

)

¼ max sup
y2½0;1þd�

fF1ðyÞ � F0ðy� dÞg; sup
y2ð�1;0Þ

f�F0ðy� dÞg;

(

sup
y2ð1þd;1Þ

fF1ðyÞ � 1Þg

)

¼ max sup
y2½0;1þd�

fF1ðyÞ � F0ðy� dÞg; 0

( )
ð12Þ

and

FUðdÞ ¼ 1þmin inf
y2½0;1þd�

fF1ðyÞ � F0ðy� dÞg; inf
y2ð�1;0Þ

fF1ðyÞ � F0ðy� dÞg;
	

inf
y2ð1þd;1Þ

fF1ðyÞ � F0ðy� dÞg



¼ 1þmin inf
y2½0;1þd�

fF1ðyÞ � F0ðy� dÞg; inf
y2ð�1;0Þ

f�F0ðy� dÞg;
	

inf
y2ð1þd;1Þ

fF1ðyÞ � 1g



¼ 1þ inf

y2½0;1þd�
fF1ðyÞ � F0ðy� dÞg

Based on Eqs. (11) and (12), we propose the following estimator
of F L(d):

FL
n ðdÞ ¼

supy2½d;1�fF1nðyÞ � F0nðy� dÞg if 1 � d � 0

maxfsupy2½0;1þd�fF1nðyÞ � F0nðy� dÞ; 0g if � 1 � do0

(

Similarly, we propose the following estimator for EU(d):

FU
n ðdÞ ¼

1þmin finfy2½d;1�fF1nðyÞ � F0nðy� dÞg; 0g if 1 � d � 0

1þ infy2½0;1þd�fF1nðyÞ � F0nðy� dÞg if � 1 � do0

(
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We now summarize the results for general supports Y1 and Y0. Suppose
Y1 ¼ ½a; b� and Y0 ¼ ½c; d� for a; b; c; d 2 �R 	 R [ f�1;þ1g; aob; cod
with F1ðaÞ ¼ F0ðcÞ ¼ 0 and F1ðbÞ ¼ F0ðdÞ ¼ 1: It is easy to see that

FLðdÞ ¼ FUðdÞ ¼ 0; if d � a� d and FLðdÞ ¼ FUðdÞ ¼ 1; if d � b� c

For any d 2 ½a� d; b� c� \R let Yd ¼ ½a; b� \ ½cþ d; d þ d�. A similar
derivation to the case Y1 ¼ Y0 ¼ ½0; 1� leads to

FLðdÞ ¼ max sup
y2Yd

F1ðyÞ � F0ðy� dÞ
� �

; 0

( )

FUðdÞ ¼ 1þmin inf
y2Yd

fF1ðyÞ � F0ðy� dÞg; 0
	 


which suggest the following plug-in estimators of F L(d) and FU(d):

FL
n ðdÞ ¼ max sup

y2Yd

fF1nðyÞ � F0nðy� dÞg; 0

( )
(13)

FU
n ðdÞ ¼ 1þmin inf

y2Yd

fF1nðyÞ � F0nðy� dÞg; 0
	 


(14)

By using FL
n ðdÞ and FU

n ðdÞ, we can estimate bounds on effects of interest
other than the average treatment effects including the proportion of people
receiving the treatment who benefit from it, see Heckman et al. (1997) for
discussion on some of these effects. In the rest of this section, we review
the asymptotic distributions of

ffiffiffiffiffi
n1
p
ðFL

n ðdÞ � FLðdÞÞ and
ffiffiffiffiffi
n1
p
ðFU

n ðdÞ � FUðdÞÞ
established in Fan and Park (2010), provide two numerical examples to
demonstrate the restrictiveness of two assumptions used in Fan and Park
(2010), and then establish asymptotic distributions of

ffiffiffiffiffi
n1
p
ðFL

n ðdÞ � FLðdÞÞ
and

ffiffiffiffiffi
n1
p
ðFU

n ðdÞ � FUðdÞÞ with much weaker assumptions.

4.1. Asymptotic Distributions of FL
n ðdÞ;F

U
n ðdÞ

Define

Ysup;d ¼ arg sup
y2Yd

fF1ðyÞ � F0ðy� dÞg; Yinf ;d ¼ arg inf
y2Yd

fF1ðyÞ � F0ðy� dÞg

MðdÞ ¼ sup
y2Yd

fF1ðyÞ � F0ðy� dÞg; mðdÞ ¼ inf
y2Yd

fF1ðyÞ � F0ðy� dÞg
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MnðdÞ ¼ sup
y2Yd

fF1nðyÞ � F0nðy� dÞg; mnðdÞ ¼ inf
y2Yd

fF1nðyÞ � F0nðy� dÞg

Then

FL
n ðdÞ ¼ maxfMnðdÞ; 0g; FU

n ðdÞ ¼ 1þminfmnðdÞ; 0g

Fan and Park (2010) assume that Ysup;d and Y inf ;d are both singletons. Let
ysup,d and yinf,d denote, respectively, the elements of Ysup;d and Yinf ;d.
The following assumptions are used in Fan and Park (2010).

A1. (i) The two samples fY1ig
n1
i¼1 and fY0ig

n0
i¼1 are each i.i.d. and are

independent of each other; (ii) n1=n0! l as n1!1 with 0olo1.

A2. The distribution functions F1 and F0 are twice differentiable with
bounded density functions f1 and f0 on their supports.

A3. (i) For every �40; supy2Yd: y�ysup;dj j��fF1ðyÞ �F0ðy� dÞgofF1ðysup;dÞ
�F0ðysup;d � dÞg; (ii) f 1ðysup;dÞ � f 0ðysup;d � dÞ ¼ 0 and f 01ðysup;dÞ � f 00ðysup;d
�dÞo0.

A4. (i) For every �40; infy2Yd: y�yinf ;dj j��fF1ðyÞ � F0ðy� dÞgofF1ðyinf ;dÞ
�F0ðyinf ;d � dÞg; (ii) f 1ðyinf ;dÞ � f 0ðyinf ;d � dÞ ¼ 0 and f 01ðyinf ;dÞ �
f 00ðyinf ;d �dÞ40.

The independence assumption of the two samples in (A1) is satisfied by
data from ideal randomized experiments. (A2) imposes smoothness
assumptions on the marginal distribution functions. (A3) and (A4) are
identifiability assumptions. For a fixed d 2 ½a� d; b� c� \R, (A3) requires
the function y! fF1ðyÞ � F0ðy� dÞg to have a well-separated interior
maximum at ysup,d on Yd, while (A4) requires the function y! fF1ðyÞ �
F0ðy� dÞg to have a well-separated interior minimum at yinf,d on Yd. If Yd is
compact, then (A3) and (A4) are implied by (A2) and the assumption that
the function y! fF1ðyÞ � F0ðy� dÞg have a unique maximum at ysup,d and
a unique minimum at yinf,d in the interior of Yd.

The following result is provided in Fan and Park (2010).

Theorem 1. Define

s2L ¼ F1ðysup;dÞ½1� F1ðysup;dÞ� þ lF0ðysup;d � dÞ½1� F0ðysup;d � dÞ� and

s2U ¼ F1ðyinf ;dÞ½1� F1ðyinf ;dÞ� þ lF0ðyinf ;d � dÞ½1� F0ðyinf ;d � dÞ�
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(i) Suppose (A1)–(A3) hold. For any d 2 a� d; b� c½ � \R

ffiffiffiffiffi
n1
p
½FL

n ðdÞ � FLðdÞ� )
Nð0;s2LÞ; if M dð Þ40

maxfNð0;s2LÞ; 0g if MðdÞ ¼ 0

(

and PrðFL
n ðdÞ ¼ 0Þ ! 1 if MðdÞo0

(ii) Suppose (A1), (A2), and (A4) hold. For any d 2 ½a� d; b� c� \R,

ffiffiffiffiffi
n1
p
½FU

n ðdÞ � FUðdÞ� )
Nð0; s2UÞ if mðdÞ40

minfNð0; s2UÞ; 0g if mðdÞ ¼ 0

(

and PrðFU
n ðdÞ ¼ 1Þ ! 1 if mðdÞ40

Theorem 1 shows that the asymptotic distribution of FL
n ðdÞðF

U
n ðdÞÞ

depends on the value of M(d) (m(d)). For example, if d is such that M(d)W0
(m(d)o0), then FL

n ðdÞ ðF
U
n ðdÞÞ is asymptotically normally distributed, but

if d is such that M(d)=0 (m(d)=0), then the asymptotic distribution of
FL

n ðdÞðF
U
n ðdÞÞ is truncated normal.

Remark 3. Fan and Park (2010) proposed the following procedure
for computing the estimates FL

n ðdÞ;F
U
n ðdÞ and estimates of s2L and s2U in

Theorem 1. Suppose we know Yd. If Yd is unknown, we can estimate it by:

Ydn ¼ ½Y1ð1Þ;Y1ðn1Þ� \ ½Y0ð1Þ þ d;Y0ðn0Þ þ d�

where fY1ðiÞg
n1
i¼1 and fY0ðiÞg

n0
i¼1 are the order statistics of fY1ðiÞg

n1
i¼1 and

fY0ðiÞg
n0
i¼1, respectively (in ascending order). In the discussion below, Yd

can be replaced by Ydn if Yd is unknown.

We define a subset of the order statistics fY1ðiÞg
n1
i¼1 denoted as fY1ðiÞg

s1
i¼r1

as
follows:

r1 ¼ argmin
i
½fY1ðiÞg

n1
i¼1 \ Yd� and s1 ¼ argmax

i
½fY1ðiÞg

n1
i¼1 \ Yd�

In words, Y1ðr1Þ is the smallest value of fY1ðiÞg
n1
i¼1 \ Yd and Y1(s1)

is the
largest. Then,

MnðdÞ ¼ max
i

i

n1
� F0nðY1ðiÞ � dÞ

	 

for i 2 fr1; r1 þ 1; . . . ; s1g (15)
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mnðdÞ ¼ min
i

i

n1
� F0nðY1ðiÞ � dÞ

	 

for i 2 fr1; r1 þ 1; . . . ; s1g (16)

The estimates FL
n ðdÞ; FU

n ðdÞ are given by: FL
n ðdÞ ¼ maxfMnðdÞ; 0g;

FU
n ðdÞ ¼ 1þminfmnðdÞ; 0g.
Define two sets IM and Im such that

IM ¼ i : i ¼ argmax
i

i

n1
� F0nðY1ðiÞ � dÞ

	 
	 

and

Im ¼ i : i ¼ argmin
i

i

n1
� F0nðY1ðiÞ � dÞ

	 
	 


Then the estimators s2Ln and s2Un can be defined as:

s2Ln ¼
i

n1
1�

i

n1

� �
þ lF0nðY1ðiÞ � dÞð1� F0nðY1ðiÞ � dÞÞ and

s2Un ¼
j

n1
1�

j

n1

� �
þ lF0nðY1ðjÞ � dÞð1� F0nðY1ðjÞ � dÞÞ

for iAIM and jAIm. Since IM or Im may not be singleton, we may have
multiple estimates of s2Ln or s2Un. In such a case, we may use i ¼ minkfk 2
IMg and j ¼ minkfk 2 Img.

Remark 4. Alternatively we can compute FL
n ðdÞ;F

U
n ðdÞ as follows. Note

that for 0oqo1, Lemma 3 (the duality theorem) implies that the quantile
bounds ðFU

n Þ
�1
ðqÞ and ðFL

n Þ
�1
ðqÞ can be computed by:

ðFL
n Þ
�1
ðqÞ ¼ inf

u2½q;1�
½F�11n ðuÞ � F�10n ðu� qÞ�; ðFU

n Þ
�1
ðqÞ

¼ sup
u2½0;q�
½F�11n ðuÞ � F�10n ð1þ u� qÞ�

where F�11n ð�Þ and F�10n ð�Þ represent the quantile functions of F1n( � ) and
F0n( � ), respectively. To estimate the distribution bounds, we compute the
values of ðFL

n Þ
�1
ðqÞ and ðFU

n Þ
�1
ðqÞ a evenly spaced values of q in (0, 1).

One choice that leads to easily computed formulas for ðFL
n Þ
�1
ðqÞ and
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ðFU
n Þ
�1
ðqÞ is q=r/n1 for r=1, y, n1, as one can show that

ðFL
n Þ
�1 r

n1

� �
¼ min

l¼r;...;ðn1�1Þ
min
s¼j;...;k

½Y1ðlþ1Þ � Y0ðsÞ� (17)

where j ¼ ½n0ððl � rÞ=n1Þ� þ 1 and k ¼ ½n0ððl � rþ 1Þ=n1Þ�, and

ðFU
n Þ
�1 r

n1

� �
¼ max

l¼0;...;ðr�1Þ
max

s¼j0 ;...;k0
½Y1ðlþ1Þ � Y0ðsÞ� (18)

where j0 ¼ ½n0ððn1 þ l � rÞ=n1Þ� þ 1 and k0 ¼ ½n0ððn1 þ l � rþ 1Þ=n1Þ�. In the
case where n1=n0=n, Eqs. (17) and (18) simplify:

ðFL
n Þ
�1 r

n

� �
¼ min

l¼r;...;ðn�1Þ
½Y1ðlþ1Þ � Y0ðl�rþ1Þ�

ðFU
n Þ
�1 r

n

� �
¼ max

l¼0;...;ðr�1Þ
½Y1ðlþ1Þ � Y0ðnþl�rþ1Þ�

The empirical distribution of ðFL
n Þ
�1
ðr=n1Þ; r ¼ 1; . . . ; n1; provides an

estimate of the lower bound distribution and the empirical distribution
of ðFU

n Þ
�1
ðr=n1Þ; r ¼ 1; . . . ; n1, provides an estimate of the upper bound

distribution. This is the approach we used in our simulations to compute
FL

n ðdÞ;F
U
n ðdÞ.

4.2. Two Numerical Examples

We present two examples to illustrate the various possibilities in Theorem 1.
For the first example, the asymptotic distribution of FL

n ðdÞðF
U
n ðdÞÞ is

normal for all d. For the second example, the asymptotic distribution
of FL

n ðdÞðF
U
n ðdÞÞ is normal for some d and nonnormal for some other d.

More examples can be found in Appendix B.

Example 1 (Continued). Let Yj � Nðmj;s
2
j Þ for j ¼ 0, 1 with s21as20.

As shown in Section 2.3, M(d)W0 and m(d)o0 for all d 2 R. Moreover,

ysup;d ¼
s21sþ s1s0t
s21 � s20

þ m1 and yinf ;d ¼
s21sþ s1s0t
s21 � s20

þ m1

are unique interior solutions, where s ¼ d� ðm1 � m0Þ andffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ 2ðs21 � s20Þ lnðs1=s0Þ

q
. Theorem 1 implies that the asymptotic
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distribution of FL
n ðdÞðF

U
n ðdÞÞ is normal for all d 2 R. Inferences can be

made using asymptotic distributions or standard bootstrap with the same
sample size.

Example 2. Consider the following family of distributions indexed by
aA(0, 1). For brevity, we denote a member of this family by C(a). If
XBC(a), then

F xð Þ ¼

1

a
x2 if x 2 ½0; a�

1�
ðx� 1Þ2

ð1� aÞ
if x 2 ½a; 1�

8>>><>>>: and f ðxÞ ¼

2

a
x if x 2 ½0;a�

2ð1� xÞ

ð1� aÞ
if x 2 ½a;1�

8>><>>:
Suppose Y1 � Cð1=4Þ and Y0 � Cð3=4Þ. The functional form of

F1(y)�F0(y�d) differs according to d. For y 2 Yd, using the expressions
for F1(y)�F0(y�d) provided in Appendix B, one can find ysup,d and M(d).
They are:

ysup;d ¼

1þ d
2

if � 1þ
1

2

ffiffiffi
2
p

od � 1

0;
1þ d
2

; 1þ d
	 


if d ¼ �1þ
1

2

ffiffiffi
2
p

f0; 1þ dg if � 1 � do� 1þ
1

2

ffiffiffi
2
p

8>>>>>>><>>>>>>>:

MðdÞ ¼

4ðdþ 1Þ2 � 1 if � 1 � d � �
3

4

�
4

3
d2 if �

3

4
� d � �1þ

1

2

ffiffiffi
2
p

�
3

2
ðd� 1Þ2 þ 1 if � 1þ

1

2

ffiffiffi
2
p
� d � 1

8>>>>>><>>>>>>:
Fig. 3 plots ysup,d and M(d) against d.
Fig. 4 plots F1(y)�F0(y�d) against yA[0, 1] for a few selected values of d.

When d ¼ �ð5=8Þ (Fig. 4(a)), the supremum occurs at the boundaries of Yd.
When d ¼ �1þ ð

ffiffiffi
2
p

=2Þ (Fig. 4(b)), fysup;dg ¼ f0; ðð1þ dÞ=2Þ; 1þ dg; that is,
there are three values of ysup,d; one interior and two boundary solutions.
When d4� 1þ ð

ffiffiffi
2
p

=2Þ; ysup;d becomes a unique interior solution. Fig. 4(c)
plots the case where the interior solution leads to a value 0 for M(d) and
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Fig. 4(d) a case where the interior solution corresponds to a positive value
for M (d).

Depending on the value of d, M(d) can have different signs leading
to different asymptotic distributions for FL

n ðdÞ. For example, when
d ¼ 1� ð

ffiffiffi
6
p

=2Þ (Fig. 4(c)), M(d) ¼ 0 and for d41� ð
ffiffiffi
6
p

=2Þ;MðdÞ40.
Since M(d) ¼ 0 when d ¼ 1� ð

ffiffiffi
6
p

=2Þ; ysup;d ¼ 1� ð
ffiffiffi
6
p

=4Þ is in the interior,
and f 01ðysup;dÞ � f 00ðysup;d � dÞ ¼ �ð16=3Þo0, Theorem 1 implies that at

d ¼ 1� ð
ffiffiffi
6
p

=2Þ,ffiffiffiffiffi
n1
p
½FL

n ðdÞ � FLðdÞ� ) maxðNð0; s2LÞ; 0Þ where s2L ¼
ð1þ lÞ

4

When d ¼ 1=8 (Fig. 4(d)),

ysup;d ¼
9

16
;MðdÞ ¼

47

96
40; f 01ðysup;dÞ � f 00ðysup;d � dÞ ¼ �

16

3
o0

-1 -0.8 -0.6 -0.4 -0.2 0.2 0.4 0.6 0.8 1

-1

-0.5

0.5

1

delta

M(δ)

ysup,δysup,δ at boundaries

M(δ) < 0

Fig. 3. Graphs of M(d) and ysup;d : ðCð1=4Þ;Cð3=4ÞÞ.
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delta = -5/8

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-1

(a)

(b)

-0.5

0.5

1

y

F1(y)-F0(y-delta)

Common support(Yδ)

delta = -1+sqrt(2)/2

0.1 0.2 0.3 0.4 0.5 0.6 0.8 0.9 1

-1

-0.5

0.5

1

y

F1(y)-F0(y-delta)

Common support(Yδ)

0.7

Fig. 4. Graphs of ½F1ðyÞ � F0ðy� dÞ� and Common Supports for Various d;
(a) d ¼ �ð5=8Þ; (b) d ¼ �1þ ð

ffiffiffi
2
p

=2Þ; (c) d ¼ 1� ð
ffiffiffi
6
p

=2Þ; and (d) d ¼ 1/8.

Partial Identification of the Distribution of Treatment Effects 31



delta = 1-sqrt(6)/2
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delta = 1/8
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F1(y)-F0(y-delta)

Common support(Yδ)

Fig. 4. (Continued)
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Theorem 1 implies that when d ¼ 1=8,ffiffiffiffiffi
n1
p
½FL

n ðdÞ � FLðdÞ� ) Nð0;s2LÞ where s2L ¼ ð1þ lÞ
7; 007

36; 864

We now illustrate both possibilities for the upper bound FU (d).
Suppose Y1 � Cð3=4Þ and Y0 � Cð1=4Þ. Then using the expressions for
F1(y)�F0(y�d) provided in Appendix B, we obtain

yinf ;d ¼

1þ d
2

if � 1 � d � 1�

ffiffiffi
2
p

2

d;
1þ d
2

; 1

	 

if d ¼ 1�

ffiffiffi
2
p

2

fd; 1g if 1�
1

2

ffiffiffi
2
p
� z � 1

8>>>>>>><>>>>>>>:

mðdÞ ¼

2

3
ðdþ 1Þ2 � 1 if � 1 � d � 1�

ffiffiffi
2
p

2

4d2

3
if 1�

ffiffiffi
2
p

2
� d �

3

4

�4ð1� dÞ2 þ 1 if
3

4
� d � 1

8>>>>>>><>>>>>>>:
Fig. 5 shows yinf,d and m(d).
Graphs of F1(y)�F0(y�d) against y for selective d’s are presented in Fig. 6.

Fig. 6(a) and (b) illustrate two cases each having a unique interior minimum,
but in Fig. 6(a), m(d) is negative and in Fig. 6(b), m(d) is 0. Fig. 6(c) illustrates
the case with multiple solutions: one interior minimizer and two boundary
ones, while Fig. 6(d) illustrates the case with two boundary minima.

4.3. Asymptotic Distributions of FL
n ðdÞ;F

U
n ðdÞ Without (A3) and (A4)

As Example 2 illustrates, assumptions (A3) and (A4) may be violated.
Figs. 4 or 6 provide us with cases where multiple interior maximizers or
minimizers exist. In Fig. 6(b) and (c), there are two interior maximizers
when d ¼ ð

ffiffiffi
6
p

=2Þ � 1 or d ¼ 1� ð
ffiffiffi
2
p

=2Þ with a1 ¼ 3=4 and a0 ¼ 1=4.
When d ¼ ð

ffiffiffi
6
p

=2Þ � 1; MðdÞ ¼ ð
ffiffiffiffiffiffiffiffiffiffiffi
6� 2
p

Þ
2=2 and Ysup;d ¼ fðð6�

ffiffiffi
6
p
Þ=4Þ;

ðð3
ffiffiffiffiffiffiffiffiffiffiffi
6� 6
p

Þ=4Þg. When d ¼ 1� ð
ffiffiffi
2
p

=2Þ;MðdÞ ¼ ðð2�
ffiffiffi
2
p
Þ
2
Þ=2 and

Ysup;d ¼ fðð
ffiffiffiffiffiffiffiffiffiffiffi
2þ 2
p

Þ=4Þ; ðð6� 3
ffiffiffi
2
p
Þ=4Þg. Shown in Fig. 4(b) and (c) are
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cases with multiple interior minimizers for a1 ¼ 1=4 and a0 ¼ 3=4.
When d ¼ ð

ffiffiffi
2
p

=2Þ � 1;mðdÞ ¼ �ðð2�
ffiffiffi
2
p
Þ
2=2Þ and Yinf ;d ¼ fðð2�

ffiffiffi
2
p
Þ=4Þ;

ðð3
ffiffiffi
2
p
� 2Þ=4Þg. When d ¼ 1� ð

ffiffiffi
6
p

=2Þ;mðdÞ ¼ �ð
ffiffiffiffiffiffiffiffiffiffiffi
6� 2
p

Þ
2=2 and Y inf ;d ¼

fðð
ffiffiffi
6
p
� 2Þ=4Þ; ðð10� 3

ffiffiffi
6
p
Þ=4Þg.

We now dispense with assumptions (A3) and (A4). Recall that

Ysup;d ¼ fy 2 Yd : F1ðyÞ � F0ðy� dÞ ¼MðdÞg

Yinf ;d ¼ fy 2 Yd : F1ðyÞ � F0ðy� dÞ ¼ mðdÞg

For a given bW0, define

Yb
sup;d ¼ fy 2 Yd : F1ðyÞ � F0ðy� dÞ �MðdÞ � bg

Yb
inf ;d ¼ fy 2 Yd : F1ðyÞ � F0ðy� dÞ � mðdÞ þ bg

A3u. There exists KW0 and 0oZo1 such that for all y 2 Yb
sup;d; for bW0

sufficiently small, there exists a ysup;d 2 Ysup;d such that ysup;d � y and
ðy� ysup;dÞ � KbZ.

-1 -0.8 -0.6 -0.4 -0.2 0.4 0.6 0.8

-1

-0.5

0.5

1

m(δ)

yinf,δ

yinf,δ at boundaries

m(δ) > 0

1

delta

0.2

Fig. 5. Graphs of m (d) and yinf ;d : ðCð3=4Þ;Cð1=4ÞÞ.
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delta = -1/8
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F1(y)-F0(y-delta)
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1

Fig. 6. Graphs of ½F1ðyÞ � F0ðy� dÞ� and Common Supports for Various d;
(a) d ¼ �(1/8); (b) d ¼ ð

ffiffiffi
6
p

=2Þ � 1; (c) d ¼ 1� ð
ffiffiffi
2
p

=2Þ; and (d) d ¼ 5=8.
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delta = 1-sqrt(2)/2
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Fig. 6. (Continued)
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A4u. There exists KW0 and 0oZo1 such that for all y 2 Yb
inf ;d for bW0

sufficiently small, there exists a yinf ;d 2 Yinf ;d such that yinf ;d � y and
ðy� yinf ;dÞ � KbZ.

Assumptions (A3)u and (A4)u adapt Assumption (1) in Galichon and
Henry (2009). As discussed in Galichon and Henry (2009), they are very
mild assumptions. By following the proof of Theorem 1 in Galichon and
Henry (2009), we can show that under conditions stated in the theorem
below,ffiffiffiffiffi

n1
p
½MnðdÞ �MðdÞ� ) sup

y2Ysup;d

Gðy; dÞ;
ffiffiffiffiffi
n1
p
½mnðdÞ �mðdÞ� ) inf

y2Yinf ;d

Gðy; dÞ

where fGðy; dÞ : y 2 Ydg is a tight Gaussian process with zero mean. Thus the
theorem below holds.

Theorem 2.

(i) Suppose (A1) and (A3)u hold. For any d 2 ½a� d; b� c� \R,
we have

ffiffiffiffiffi
n1
p
½FL

n ðdÞ � FLðdÞ� )
supy2Ysup;d

Gðy; dÞ; if MðdÞ40

maxfsupy2Ysup;d
Gðy; dÞ; 0g if MðdÞ ¼ 0

(

and PrðFL
n ðdÞ ¼ 0Þ ! 1 if MðdÞo0

where fGðy; dÞ : y 2 Ydg is a tight Gaussian process with zero
mean.

(ii) Suppose (A1) and (A4)u hold. For any d 2 ½a� d; b� c� \R,
we get

ffiffiffiffiffi
n1
p
½FU

n ðdÞ � FUðdÞ� )
infy2Yinf ;dGðy; dÞ; if mðdÞo0

minfinfy2Yinf ;dGðy; dÞ; 0g if mðdÞ ¼ 0

(

and PrðFU
n ðdÞ ¼ 1Þ ! 1 if mðdÞ40

When (A3) and (A4) hold, Ysup;d and Yinf ;d are singletons and Theorem 2
reduces to Theorem 1.
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5. CONFIDENCE SETS FOR THE DISTRIBUTION

OF TREATMENT EFFECTS FOR

RANDOMIZED EXPERIMENTS

5.1. Confidence Sets for the Sharp Bounds

First, we consider the lower bound. Let

Gnðy; dÞ ¼
ffiffiffiffiffi
n1
p
½F1nðyÞ � F1ðyÞ� �

ffiffiffiffiffi
n1
p
½F0nðy� dÞ � F0ðy� dÞ�

Thenffiffiffiffiffi
n1
p
½FL

n ðdÞ �FLðdÞ�

¼max sup
y2Yd

fGnðy;dÞ þ
ffiffiffiffiffi
n1
p
½F1ðyÞ �F0ðy� dÞ�g;0

( )
�maxf

ffiffiffiffiffi
n1
p

MðdÞ;0g

)max sup
y2Yd

½Gðy;dÞ þ hLðy;dÞ� þminfhLðdÞ;0g;�maxfhLðdÞ;0g

( )
ð	W1

L;dÞ

(19)

¼max sup
y2Ysup;d

Gðy;dÞ þminfhLðdÞ;0g;�maxfhLðdÞ;0g

( )
ð	W2

L;dÞ (20)

where hLðy;dÞ ¼ lim
ffiffiffiffiffi
n1
p
½F1ðyÞ �F0ðy� dÞ �MðdÞ� � 0 and hLðdÞ ¼

lim½
ffiffiffiffiffi
n1
p

MðdÞ�.
Define h
LðdÞ ¼

ffiffiffiffiffi
n1
p

MnðdÞIfjMnðdÞj4bng and

h
Lðy; dÞ ¼
ffiffiffiffiffi
n1
p
½F1nðyÞ � F0nðy� dÞ �MnðdÞ�If½F1nðyÞ

� F0nðy� dÞ �MnðdÞ�o� b0ng

where bn is a prespecified deterministic sequence satisfying bn-0 andffiffiffiffiffi
n1
p

bn!1 and b0n is a prespecified deterministic sequence satisfying
b0n ln ln n1 þ ð

ffiffiffiffiffi
n1
p

b0Þ�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln ln n1
p

! 0. In the simulations, we considered
bn ¼ cn�a1 ; 0oaoð1=2Þ; c40 and b0n ¼ c0n

�ð1�a0Þ=2
1 ; 0oa0o1; c040. For such

b0n, we have

b0n ln ln n1 þ ð
ffiffiffiffiffi
n1
p

b0nÞ
�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln ln n1

p
¼ c0

ln ln n1ffiffiffiffiffiffiffiffiffiffi
n1�a

0

1

q þ
1

c0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln ln n1
p ffiffiffiffiffiffi

na
0

1

p ! 0

Based on Eqs. (19) and (20), we propose two bootstrap procedures to
approximate the distribution of

ffiffiffiffiffi
n1
p
½FL

n ðdÞ � FLðdÞ�. In the first procedure,
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we approximate the distribution of W1
L;d and in the second procedure,

we approximate the distribution of W2
L;d. Draw bootstrap samples with

replacement from fY1ig
n1
i¼1 and fY0ig

n0
i¼1, respectively. Let F
1nðyÞ; F
0nðyÞ

denote the empirical distribution functions based on the bootstrap samples,
respectively. Define

G
nðy; dÞ ¼
ffiffiffiffiffi
n1
p
½F
1nðyÞ � F1nðyÞ� �

ffiffiffiffiffi
n1
p
½F
0nðy� dÞ � F0nðy� dÞ�

In the first bootstrap approach, we use the distribution of the following
random variable conditional on the original sample to approximate the
quantiles of the limiting distribution of

ffiffiffiffiffi
n1
p
½FL

n ðdÞ � FLðdÞ�:

W1

L;d ¼ max sup

y2Yd

fG
nðy; dÞ þ h
Lðy; dÞg þminfh
LðdÞ; 0g;�maxfh
LðdÞ; 0g

( )

In the second bootstrap approach, we estimate Ysup;d directly and
approximate the distributions of WL,d. Define

Yn sup;d ¼ fyi 2 fY1ig
n1
i¼1 [ fY0ig

n0
i¼1 :MnðdÞ � ðFn1ðyiÞ � Fn0ðyi � dÞÞ � b0ng

Then the distribution of the following random variable conditional on the
original sample can be used to approximate the quantiles of the limiting
distribution of

ffiffiffiffiffi
n1
p
½FL

n ðdÞ � FLðdÞ�:

W2

L;d ¼ max sup

y2Yn sup;d

G
nðy; dÞ;�h


LðdÞ

( )
þminfh
LðdÞ; 0g

The upper bound can be dealt with similarly. Note thatffiffiffiffiffi
n1
p
½FU

n ðdÞ �FUðdÞ�

)min inf
y2Yd

fGnðy;dÞ þ hUðy;dÞg þmaxfhUðdÞ;0g;�minfhUðdÞ;0g
	 


)min inf
y2Yd

½Gðy;dÞ þ hUðy;dÞ� þmaxfhUðdÞ;0g;�minfhUðdÞ;0g
	 


ð	W1
U;dÞ

¼min inf
y2Yinf ;d

Gðy;dÞ þmaxfhUðdÞ;0g;�minfhUðdÞ;0g
	 


ð	W2
U;dÞ

where hUðy;dÞ ¼ lim
ffiffiffiffiffi
n1
p
½F1ðyÞ �F0ðy� dÞ �mðdÞ� � 0 and hUðdÞ ¼

lim½
ffiffiffiffiffi
n1
p

mðdÞ�.
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Define h
UðdÞ ¼
ffiffiffiffiffi
n1
p

mnðdÞIfjmnðdÞj4bng and

h
Uðy;dÞ ¼
ffiffiffiffiffi
n1
p
½F1nðyÞ�F0nðy�dÞ�mnðdÞ�If½F1nðyÞ�F0nðy�dÞ�mnðdÞ�4b0ng

We propose to use the distribution of W1

U;d or W2


nU;d conditional on
the original sample to approximate the quantiles of the distribution offfiffiffiffiffi
n1
p
½FU

n ðdÞ � FUðdÞ�, where

W1

U;d ¼ min inf

y2Yd

fG
nðy; dÞ þ h
Uðy; dÞg þmaxfh
UðdÞ; 0g;�minfh
UðdÞ; 0g
	 


W2

U;d ¼ min inf

y2Yn inf d

G
nðy; dÞ;�h


UðdÞ

	 

þmaxfh
UðdÞ; 0g

in which

Yn inf ; d ¼ fyi 2 fY1ig
n1
i¼1 [ fY0ig

n0
i¼1 : mnðdÞ � ðFn1ðyiÞ � Fn0ðyi � dÞÞ � �b0ng

Throughout the simulations presented in Section 7, we used W2

L;d

and W2

U;d.

5.2. Confidence Sets for the Distribution of Treatment Effects

For notational simplicity, we let y0 ¼ FD (d), yL ¼ F L(d), and yU ¼ FU(d).
Also let Y ¼ [0, 1]. This subsection follows similar ideas to Fan and Park
(2007b). Noting that

y0 ¼ argmin
y2Y
fðyL � yÞ2þ þ ðyU � yÞ2�g

where (x)� ¼ min{x, 0} and (x)+ ¼ max {x, 0}, we define the test statistic

Tnðy0Þ ¼ n1ðŷL � y0Þ2þ þ n1ðŷU � y0Þ2� (21)

where ŷL ¼ FL
n ðdÞ and ŷU ¼ FU

n ðdÞ. Then a (1�a) level CS for y0 can be
constructed as,

CSn ¼ fy 2 Y : TnðyÞ � c1�aðyÞg (22)

for an appropriately chosen critical value c1�a (y).
To determine the critical value c1�a (y), the limiting distribution of Tn(y)

under an appropriate local sequence is essential. We introduce some
necessary notation. Let

hLðy0Þ ¼ � lim
n!1

ffiffiffi
n
p
½yL � y0� and hUðy0Þ ¼ lim

n!1

ffiffiffi
n
p
½yU � y0�
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Then hLðy0Þ � 0; hUðy0Þ � 0, and hLðy0Þ þ hUðy0Þ ¼ limn!1ð
ffiffiffi
n
p
rÞ, where

r 	 yU � yL is the length of the identified interval. As proposed in
Fan and Park (2007b), we use the following shrinkage ‘‘estimators’’ of
hL(y0) and hU(y0).

hL
ðy0Þ ¼ �
ffiffiffi
n
p
½byL � y0�If½y0 � byL�4bng

hU
ðy0Þ ¼
ffiffiffi
n
p
½byU � y0�If½byU � y0�4bng

It remains to establish the asymptotic distribution of Tn(y0):

Tnðy0Þ ¼ ð
ffiffiffiffiffi
n1
p
½byL � yL� �

ffiffiffiffiffi
n1
p
½y0 � yL�Þ

2
þ þ ð

ffiffiffiffiffi
n1
p
½byU � yU� þ

ffiffiffiffiffi
n1
p
½yU � y0�Þ

2
�

) ðWL;d � hLðy0ÞÞ2þ þ ðWU;d � hUðy0ÞÞ2�

Let

T
nðy0Þ ¼ ðW


L;d � hLðy0ÞÞ

2
þ þ ðW



U;d � hUðy0ÞÞ

2
�

and cv
1�aðh
L
ðy0Þ; h

U
ðy0ÞÞ denote the 1�a quantile of the bootstrap

distribution of T
nðy0Þ, where W
L;d and W
U;d are either W1

L;d and W1


U;d or
W2


L;d and W2

U;d defined in the previous subsection. The following theorem

holds for a p 2 ½0; 1�.

Theorem 3. Suppose (A1), (A3)u, and (A4)u hold. Then, for a 2 ½0; p�,

lim
n1!1

inf
y02½yL ;yU�

Prðy0 2 fy : TnðyÞ � cv
1�aðh
L

ðyÞ; hU
ðyÞÞgÞ � 1� a

The coverage rates presented in Section 7 are results of the confidence sets
of Theorem 3. The presence of p in Theorem 3 is due to the fact that Tn(y0) is
nonnegative and so is cv
1�aðh

L

ðyÞ; hU
ðyÞÞ. In Appendix A, we show that

one can take p as,

p ¼ 1� Pr sup
y2Ysup;d

Gðy; dÞ � 0; inf
y2Yinf ;d

Gðy; dÞ � 0

" #
(23)

In actual implementation, p has to be estimated. We propose the
following estimator p̂:

p̂ ¼ 1�
1

B

XB
b¼1

1 sup
y2Yn sup;d

GðbÞn ðy; dÞ � 0; inf
y2Yn inf ;d

GðbÞn ðy; dÞ � 0

( )

where GðbÞn ðy; dÞ is G


nðy; dÞ from bth bootstrap samples.
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6. BIAS-CORRECTED ESTIMATORS OF SHARP

BOUNDS ON THE DISTRIBUTION OF

TREATMENT EFFECTS FOR RANDOMIZED

EXPERIMENTS

In this section, we demonstrate that the plug-in estimators FL
n ðdÞ; FU

n ðdÞ
tend to have nonnegligible bias in finite samples. In particular, FL

n ðdÞ tends
to be biased upward and FU

n ðdÞ tends to be biased downward. We show this
analytically when (A3) and (A4) hold. In particular, when (A3) and (A4)
hold, we provide closed-form expressions for the first-order asymptotic
biases of FL

n ðdÞ;F
U
n ðdÞ and use these expressions to construct bias-corrected

estimators for F L(d) and FU(d). When (A3) and (A4) fail, we propose
bootstrap bias-corrected estimators of the sharp bounds F L(d) and FU(d).
Recall

FL
n ðdÞ ¼ maxfMnðdÞ; 0g and FLðdÞ ¼ maxfMðdÞ; 0g

FU
n ðdÞ ¼ 1þminfmnðdÞ; 0g and FUðdÞ ¼ 1þminfmðdÞ; 0g

where under (A3) and (A4), we haveffiffiffiffiffi
n1
p
ðMnðdÞ �MðdÞÞ ) Nð0;s2LÞ and

ffiffiffiffiffi
n1
p
ðmnðdÞ �mðdÞÞ ) Nð0;s2UÞ

First, we consider the lower bound. Ignoring the second-order terms, we get:

E½FL
n ðdÞ� ¼ E½MnðdÞI fMnðdÞ�0g�

¼ E MðdÞ þ
sLffiffiffiffiffi
n1
p Z

	 

I fMðdÞþðsL=

ffiffiffiffi
n1
p
ÞZ�0g

� �
where Z � Nð0; 1Þ

¼MðdÞE½I fMðdÞþðsL= ffiffiffiffin1p ÞZ�0g� þ
sLffiffiffiffiffi
n1
p E½ZI fMðdÞþðsL=

ffiffiffiffi
n1
p
ÞZ�0g�

¼MðdÞE½I fz��ð ffiffiffiffin1p =sLÞMðdÞg� þ
sLffiffiffiffiffi
n1
p E½ZI fZ��ð

ffiffi
n
p

1=
ffiffiffiffi
sL
p
ÞMðdÞg�

¼MðdÞ
Z 1
�ð
ffiffiffiffi
n1
p

=sLÞMðdÞ
fðzÞdzþ

sLffiffiffiffiffi
n1
p

Z 1
�ð
ffiffiffiffi
n1
p

=sLÞMðdÞ
zfðzÞdz

¼MðdÞ 1� F �
ffiffiffiffiffi
n1
p

sL
MðdÞ

� �	 

�

1ffiffiffiffiffiffi
2p
p

sLffiffiffiffiffi
n1
p

Z 1
�ð
ffiffiffiffi
n1
p

=sLÞMðdÞ
exp �

z2

2

� �
d �

z2

2

� �
¼MðdÞF

ffiffiffiffiffi
n1
p

sL
MðdÞ

� �
þ

sLffiffiffiffiffi
n1
p f �

ffiffiffiffiffi
n1
p

sL
MðdÞ

� �
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Case I. Suppose M(d)Z0. Then ignoring second-order terms, we
obtain

E½FL
n ðdÞ� �FLðdÞ ¼MðdÞF

ffiffiffiffiffi
n1
p

sL
MðdÞ

� �
þ

sLffiffiffiffiffi
n1
p f �

ffiffiffiffiffi
n1
p

sL
MðdÞ

� �
�MðdÞ

¼MðdÞ F
ffiffiffiffiffi
n1
p

sL
MðdÞ

� �
� 1

	 

þ

sLffiffiffiffiffi
n1
p f �

ffiffiffiffiffi
n1
p

sL
MðdÞ

� �

¼ �MðdÞF �
ffiffiffiffiffi
n1
p

sL
MðdÞ

� �
þ

sLffiffiffiffiffi
n1
p f �

ffiffiffiffiffi
n1
p

sL
MðdÞ

� �

¼
sLffiffiffiffiffi
n1
p f �

ffiffiffiffiffi
n1
p

sL
MðdÞ

� �
�

ffiffiffiffiffi
n1
p

sL
MðdÞF �

ffiffiffiffiffi
n1
p

sL
MðdÞ

� �	 

4 0 ðpositive biasÞ

because

lim
x!0
ffð�xÞ � xFð�xÞg ¼ fð0Þ ¼

1ffiffiffiffiffiffi
2p
p

lim
x!þ1

ffð�xÞ � xFð�xÞg ¼ lim
x!�1

ffðxÞ þ xFðxÞg ¼ lim
x!�1

d

dx

FðxÞ
x�1

� �
¼ � lim

x!�1

FðxÞ
x�2

� �
¼ 0

d

dx
ffð�xÞ � xFð�xÞg ¼ �Fð�xÞo0 for all x 2 Rþ \ f0g

Case II. Suppose M (d)o0. Then ignoring second-order terms, we
obtain

E½FL
n ðdÞ��FLðdÞ ¼MðdÞF

ffiffiffiffiffi
n1
p

sL
MðdÞ

� �
þ

sLffiffiffiffiffi
n1
p f �

ffiffiffiffiffi
n1
p

sL
MðdÞ

� �

¼
sLffiffiffiffiffi
n1
p f

ffiffiffiffiffi
n1
p

sL
MðdÞ

� �
þ

ffiffiffiffiffi
n1
p

sL
MðdÞF

ffiffiffiffiffi
n1
p

sL
MðdÞ

� �	 


¼
sLffiffiffiffiffi
n1
p f �

ffiffiffiffiffi
n1
p

sL
jMðdÞj

� �
�

ffiffiffiffiffi
n1
p

sL
jMðdÞjF �

ffiffiffiffiffi
n1
p

sL
jMðdÞj

� �	 

4 0 ðpositive biasÞ
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Summarizing Case I and Case II, we obtain the first-order asymptotic bias
of FL

n ðdÞ:

E½FL
n ðdÞ� � FLðdÞ ¼

sLffiffiffiffiffi
n1
p f �

ffiffiffiffiffi
n1
p

sL
jMðdÞj

� �	
�

ffiffiffiffiffi
n1
p

sL
jMðdÞjF �

ffiffiffiffiffi
n1
p

sL
jMðdÞj

� �


regardless of the sign of M(d), an estimator of which is

dBiasL ¼ sLnffiffiffiffiffi
n1
p f �

ffiffiffiffiffi
n1
p

sLn
jM
nðdÞj

� �
�

ffiffiffiffiffi
n1
p

sLn
jM
nðdÞjF �

ffiffiffiffiffi
n1
p

sLn
jM
nðdÞj

� �	 


where M
nðdÞ ¼MnðdÞIfjMnðdÞj4bng in which bn-0 and
ffiffiffiffiffi
n1
p

bn !1.
We define the bias-corrected estimator of F L(d) as,

FL
nBCðdÞ ¼ maxfFL

n ðdÞ � dBiasL; 0g
¼ max FL

n ðdÞ �
sLnffiffiffiffiffi
n1
p f �

ffiffiffiffiffi
n1
p

sLn
jM
nðdÞj

� �		
�

ffiffiffiffiffi
n1
p

sLn
jM
nðdÞjF �

ffiffiffiffiffi
n1
p

sLn
jM
nðdÞj

� �

; 0



� FL

n ðdÞ

Now consider the upper bound. The following holds:

E½FU
n ðdÞ� ¼ 1þE½mnðdÞI fmnðdÞ�0g�

¼ 1þE mðdÞþ
sUffiffiffiffiffi
n1
p Z

	 

I fmðdÞþðsU=

ffiffiffiffi
n1
p
ÞZ�0g

� �
¼ 1þmðdÞE½I fmðdÞþðsU= ffiffiffiffin1p ÞZ�0g�þ

sUffiffiffiffiffi
n1
p E½ZI fmðdÞþðsU=

ffiffiffiffi
n1
p
ÞZ�0g�

¼ 1þmðdÞ
Z �ð ffiffiffiffin1p =sUÞmðdÞ

�1

fðzÞdzþ
1ffiffiffiffiffiffi
2p
p

sUffiffiffiffiffi
n1
p

Z �ð ffiffiffiffin1p =sUÞmðdÞ

�1

zexp �
z2

2

� �
dz

¼ 1þmðdÞF �
ffiffiffiffiffi
n1
p

sU
mðsÞ

� �
�

1ffiffiffiffiffiffi
2p
p

sUffiffiffiffiffi
n1
p

Z �ð ffiffiffiffin1p =sUÞmðdÞ

�1

exp �
z2

2

� �
d �

z2

2

� �
¼ 1þmðdÞF �

ffiffiffiffiffi
n1
p

sU
mðdÞ

� �
�

sUffiffiffiffiffi
n1
p f �

ffiffiffiffiffi
n1
p

sU
mðdÞ

� �
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Case I. Suppose m(d)r0. Then ignoring second-order terms, we obtain

E½FU
n ðdÞ� �FUðdÞ ¼mðdÞF �

ffiffiffiffiffi
n1
p

sU
mðdÞ

� �
�

sUffiffiffiffiffi
n1
p f �

ffiffiffiffiffi
n1
p

sU
mðdÞ

� �
�mðdÞ

¼ �mðdÞF
ffiffiffiffiffi
n1
p

sU
mðdÞ

� �
�

sUffiffiffiffiffi
n1
p f �

ffiffiffiffiffi
n1
p

sU
mðdÞ

� �
¼ �mðdÞF

ffiffiffiffiffi
n1
p

sU
mðdÞ

� �
�

sUffiffiffiffiffi
n1
p f

ffiffiffiffiffi
n1
p

sU
mðdÞ

� �
¼ �

sUffiffiffiffiffi
n1
p f �

ffiffiffiffiffi
n1
p

sU
jmðdÞj

� �
�

ffiffiffiffiffi
n1
p

sU
jmðdÞjF �

ffiffiffiffiffi
n1
p

sU
jmðdÞj

� �� �
o 0 ðnegative biasÞ

Case II. Suppose m(d)W0. Then ignoring second-order terms, we obtain

E½FU
n ðdÞ��FUðdÞ ¼mðdÞF �

ffiffiffiffiffi
n1
p

sU
mðdÞ

� �
�

sUffiffiffiffiffi
n1
p f �

ffiffiffiffiffi
n1
p

sU
mðdÞ

� �
¼ �

sUffiffiffiffiffi
n1
p f �

ffiffiffiffiffi
n1
p

sU
mðdÞ

� �
�

ffiffiffiffiffi
n1
p

sU
mðdÞF �

ffiffiffiffiffi
n1
p

sU
mðdÞ

� �� �
o0 ðnegative biasÞ

Therefore, the first-order asymptotic bias of FU
n ðdÞ is given by:

E½FU
n ðdÞ��FUðdÞ ¼�

sUffiffiffiffiffi
n1
p f �

ffiffiffiffiffi
n1
p

sU
jmðdÞj

� �
�

ffiffiffiffiffi
n1
p

sU
jmðdÞjF �

ffiffiffiffiffi
n1
p

sU
jmðdÞj

� �� �
regardless of the sign of m(d), an estimator of which is

dBiasU¼� sUnffiffiffiffiffi
n1
p f �

ffiffiffiffiffi
n1
p

sUn
jm
nðdÞj

� �
�

ffiffiffiffiffi
n1
p

sUn
jm
nðdÞjF �

ffiffiffiffiffi
n1
p

sUn
jm
nðdÞj

� �� �
where m
nðdÞ ¼mnðdÞIfjmnðdÞj4bng. A bias corrected estimator of FU(d) is
defined as,

FU
nBCðdÞ ¼ minfFU

n ðdÞ�dBias;1g¼min FU
n ðdÞþ

sUnffiffiffiffiffi
n1
p f �

ffiffiffiffiffi
n1
p

sUn
jm
nðdÞj

� ��	
�

ffiffiffiffiffi
n1
p

sUn
jm
nðdÞjF �

ffiffiffiffiffi
n1
p

sUn
jm
nðdÞj

� ��
;1



�FU

n ðdÞ

The bias-corrected estimators we just proposed depend on the validity
of (A3) and (A4). Without these assumptions, the analytical expressions
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derived for the bias may not be correct. Instead, we propose the following
bootstrap bias-corrected estimators. Define

dBiasðFL
n ðdÞÞ ¼

1

B

XB
b¼1

W
ðbÞ
L;dffiffiffiffiffi
n1
p and dBiasðFU

n ðdÞÞ ¼
1

B

XB
b¼1

W
ðbÞ
U;dffiffiffiffiffi
n1
p

where W
ðbÞ
L;dðW

ðbÞ
U;dÞ are WF


L;dðW
F

U;dÞ or W
L;dðW



U;dÞ from bth bootstrap

samples, where WF

L;d; WF


U;d; W
L;d; and W
U;d are defined in the previous
subsections. The bootstrap bias-corrected estimators of F L(d) and FU(d)
are, respectively,

bFL

nBCðdÞ ¼ maxfFL
n ðdÞ �

dBiasðFL
n ðdÞÞ; 0g andbFU

nBCðdÞ ¼ minfFU
n ðdÞ �

dBiasðFU
n ðdÞÞ; 1g

7. SIMULATION

In this section, we examine the finite sample accuracy of the nonparametric
estimators of the treatment effect distribution bounds, investigate the
coverage rates of the proposed CSs for the distribution of treatment effects
at different values of d, and the finite sample performance of the bootstrap
bias-corrected estimators of the sharp bounds on the distribution of
treatment effects. We focus on randomized experiments.

The data generating processes (DGP) used in this simulation study are,
respectively, Example 1 and Example 2 introduced in Sections 2.3 and 4.2.
The detailed simulation design will be described in Section 7.1 together with
estimates FL

n and FU
n . Section 7.2 presents results on the coverage rates

of the CSs for the distribution of treatment effects and Section 7.3 presents
results on the bootstrap bias-corrected estimators.

7.1. The Simulation Design and Estimates FL
n and FU

n

The DGPs used in the simulations are: (i) ðCase C1Þ ðF1;F0; dÞ ¼
ðCð1=4Þ;Cð3=4Þ; ð1=8ÞÞ; (ii) ðCase C2Þ ðF1;F0; dÞ ¼ ðCð1=4Þ;Cð3=4Þ;
1� ð

ffiffiffi
6
p

=2ÞÞ; (iii) ðCase C3Þ ðF1;F0; dÞ ¼ ðCð3=4Þ;Cð1=4Þ; ð
ffiffiffi
6
p

=2Þ � 1Þ; and
(iv) ðCase C4Þ ðF1;F0; dÞ ¼ ðCð3=4Þ;Cð1=4Þ;�ð1=8ÞÞ.
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(Case C1) is aiming at the case where M(d)W0 with a singleton Ysup;d so
that we have a normal asymptotic distribution for

ffiffiffiffiffi
n1
p
ðFL

n ðdÞ � FLðdÞÞ. The
m(d) for this case is greater than zero so FU(d)=1 and PrðFU

n ðdÞ ¼ 1Þ ! 1.
In this case, Yinf ;d consists of two boundary points of Yd.
In (Case C2), M(d) ¼ 0 and Ysup;d is a singleton so we have a truncated

normal asymptotic distribution for
ffiffiffiffiffi
n1
p
ðFL

n ðdÞ � FLðdÞÞ. The m(d), however,
is less than zero and has two interior maximizers. So the asymptotic
distribution of

ffiffiffiffiffi
n1
p
ðFU

n ðdÞ � FUðdÞÞ is supy2Yinf ;d
Gðy; dÞ.

(Case C3) is opposite to (Case C2). In (Case C3),
ffiffiffiffiffi
n1
p
ðFL

n ðdÞ � FLðdÞÞ has
an asymptotic distribution of supy2Ysup;d

Gðy; dÞ because M(d)W0 and Ysup;d

has two interior points whereas
ffiffiffiffiffi
n1
p
ðFU

n ðdÞ � FUðdÞÞ has a truncated
normal asymptotic distribution since m(d) ¼ 0 and Yinf ;d is a singleton.

Finally, (Case C4) is the opposite of (Case C1). In (Case C4), M(d)o0
so PrðFL

n ðdÞ ¼ 0Þ ! 1 and m(d)o0 with Y inf ;d being a singleton soffiffiffiffiffi
n1
p
ðFU

n ðdÞ � FUðdÞÞ has a normal asymptotic distribution. Table 1
summarizes these DGPs.

We also generated DGPs for two normal marginal distributions. Table 2
summarizes the cases considered in the simulation. In all of these cases,ffiffiffiffiffi
n1
p
ðFL

n ðdÞ � FLðdÞÞ and
ffiffiffiffiffi
n1
p
ðFU

n ðdÞ � FUðdÞÞ have asymptotic normal
distributions but we include these DGPs in order to see the finite sample

Table 1. DGPs (Case C1)–(Case C4).

(Case C1) (Case C2)

(F1, F0, d) Cð1=4Þ;C 3=4
 �

; 18
 �

C 1=4
 �

;C 3=4
 �

; 1�
ffiffi
6
p

2

� �
F L M(d) ¼ F L(d)E0.49 M(d) ¼ F L(d) ¼ 0

Ysup;d Singleton, interior point Singleton, interior point

WL,d Nð0; s2LÞ maxfNð0; s2LÞ; 0g
FU m(d)E0.06, FU(d) ¼ 1 1�m(d) ¼ FU(d)E0.9

Yinf ;d Two boundary points Two interior points

WU,d PrðFU
n ðdÞ ¼ 1Þ ! 1 infy2Yinf ;dGðy; dÞ

(Case C3) (Case C4)

(F1, F0, d) Cð3=4Þ;Cð1=4Þ;
ffiffi
6
p

2
� 1

� �
Cð3=4Þ;Cð1=4Þ;� 1

8

 �
F L M(d) ¼ F L(d)E0.1 M(d)E�0.06, F L(d) ¼ 0

Ysup;d Two interior points Two boundary points

WL,d supy2Ysup;d
Gðy; dÞ PrðFL

n ðdÞ ¼ 0Þ ! 1

FU 1–m (d) ¼ FU(d) ¼ 1 1�m(d) ¼ FU(d)E0.51

Yinf ;d Singleton, interior point Singleton, interior point

WU,d minfNð0;s2UÞ; 0g Nð0; s2UÞ
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performance of our bootstrap procedures for different values of F L(d) and
FU(d). From (Case N1) to (Case N6), F L(d) ranges from being very close to
zero to about 0.86 and FU(d) from 0.16 to almost 1.

We now present FL
n and FU

n for the normal marginals (DGPs (Case N1)–
(Case N6)) and C (a) class of marginals (DGPs (Case C1)–(Case C4)).
For each set of marginal distributions, random samples of sizes n1 ¼ n0 ¼
n ¼ 1,000 are drawn and FL

n and FU
n are computed. This is repeated for 500

times. Below we present four graphs. In each graph, we plotted FL
n and FU

n

randomly chosen from the 500 estimates, the averages of 500 FL
n s and FU

n s,
and the simulation variances of FL

n and FU
n multiplied by n. Each graph

consists of eight curves. The true distribution bounds F L and FU are
denoted as F4L and F4U, respectively. Their estimates (FL

n and FU
n ) are

Fn4L and Fn4U. The lines denoted by avg(Fn4L) and avg(Fn4U) show
the averages of 500 FL

n s and FU
n s: The simulation variances of FL

n and FU
n

multiplied by n are denoted as n�var(Fn4L) and n�var(Fn4U).
Fig. 7(a) and (b) correspond to (Case C1)–(Case C4), while Fig. 7(c)

corresponds to (Case N1)–(Case N6). In all cases, we observe that Fn4L
and avg(Fn4L) are very close to F4L at all points of its support (the same
holds true for F4U). In fact, these curves are barely distinguishable from
each other. The largest variance in all cases for all values of d is less than
0.0005.

Table 2. DGPs (Case N1)–(Case N6).

(Case N1) (Case N2) (Case N3)

(F1, F0, d) (N(2,2), N(1,1), 1.3) (N(2,2), N(1,1), 2.6) (N(2,2), N(1,1), 4.5)

F L M(d) ¼ F L(d)E0.15 M(d) ¼ F L(d)E0.51 M(d) ¼ F L(d)E0.86

Ysup;d Singleton Singleton Singleton

WL,d Nð0; s2LÞ Nð0;s2LÞ Nð0;s2LÞ
FU 1�m(d) ¼ FU(d)E0.97 1�m(d) ¼ FU(d)E1 1�m(d) ¼ FU(d)E1

Y inf ;d Singleton Singleton Singleton

WU,d Nð0; s2UÞ Nð0;s2UÞ Nð0;s2UÞ

(Case N4) (Case N5) (Case N6)

(F1, F0, d) (N(2,2), N(1,1), �2.4) (N(2,2), N(1,1), �0.6) (N(2,2), N(1,1), 0.7)

F L M(d) ¼ F L(d)E0 M(d) ¼ F L(d)E0 M(d) ¼ F L(d)E0.04

Ysup;d Singleton Singleton Singleton

WL,d Nð0; s2LÞ Nð0;s2LÞ Nð0;s2LÞ
FU 1�m(d) ¼ FU(d)E0.16 1�m(d) ¼ FU(d)E0.49 1�m(d) ¼ FU(d)E0.85

Y inf ;d Singleton Singleton Singleton

WU,d Nð0; s2UÞ Nð0;s2UÞ Nð0;s2UÞ
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Fig. 7. (a) Estimates of the Distribution Bounds: (C(1/4), C(3/4)); (b) Estimates of

the Distribution Bounds: (C(3/4), C(1/4)); and (c) Estimates of the Distribution

Bounds: (N(2,2), N(1,1)).
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7.2. Simulation Results for Coverage Rates

In this and the next subsections, we present simulation results for the
bootstrap CSs and the bootstrap bias-corrected estimators. For each DGP,
we generated random samples of sizes n1 ¼ n0 ¼ 300 and 1,000, respectively.
The number of replications we used is 2,500 and the number of bootstrap
repetitions is B=1,999 as suggested in Davidson and Mackinnon
(2004, pp. 163–165). The shrinkage parameters are: bn ¼ n

�ð1=3Þ
1 and

b0n ¼ 0:3n
�ð0:95=2Þ
1 , that is, c ¼ 1.0, a ¼ 1=3, cu ¼ 0.3, and au ¼ 0.05 in the

expressions in Section 5.1. We used the second procedure based onW
L;d and
W
U;d. We set a ¼ 0.05 throughout the simulations.

Table 3 presents the minimum values of coverage rates of the CSs defined
in Theorem 3 (FD(d) columns) and the average values of p̂ with DGPs (Case
C1)–(Case C4).

The CSs for DGPs (Case C2) and (Case C4) perform very well. As n
grows, the coverage rates for DGPs (Case C2) and (Case C3) become closer
to the nominal level 1�a ¼ 0.95. Considering that (Case C2) and (Case C3)
are cases where the estimator of one of the two bounds follows a normal

F^L
F^U
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Fig. 7. (Continued)
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distribution asymptotically but the estimator of the other bound violates
(A3) and (A4), our bootstrap procedure seems to perform very well. The
minimum coverage rates for (Case C1) and (Case C4) in which the estimator
of one of the two bounds degenerates asymptotically are about 0.93–0.94.
They improve slowly as the sample size becomes larger. When n ¼ 1,000, the
coverage rates are still less than 0.94 but a little better than the coverage
rates with n ¼ 300. The average p̂ differs from DGP to DGP. (Case C1) and
(Case C4), where FL

n ðdÞ or F
U
n ðdÞ has a degenerate asymptotic distribution,

have p̂ as low as about 0.92. (Case C2) and (Case C3) have p̂ about 0.98.
In both cases, p̂ is far greater than a ¼ 0.05.

The coverage rates for DGPs (Case N1)–(Case N6) are in Table 4. Recall
that in all of these cases,

ffiffiffiffiffi
n1
p
ðFL

n ðdÞ � FLðdÞÞ and
ffiffiffiffiffi
n1
p
ðFU

n ðdÞ � FUðdÞÞ have
asymptotic normal distributions.

The coverage rates for FD(d) increased from about 0.92–0.93 when
n ¼ 300 to almost 0.95 when n ¼ 1,000. For (Case N4) and (Case N6), the
coverage rates for n ¼ 300 are already very good. As in DGPs (Case C1)–
(Case C4), the average p̂ differs from DGP to DGP. Nonetheless, p̂ is greater
than 0.05 for all cases.

Table 3. Coverage Rates and avgðp̂Þ for (Case C1)–(Case C4).

(Case C1) (Case C2) (Case C3) (Case C4)

FD(d) avgðp̂Þ FD(d) avgðp̂Þ FD(d) avgðp̂Þ FD(d) avgðp̂Þ

n ¼ 300 0.9320 0.9220 0.9360 0.9762 0.9356 0.9766 0.9312 0.9203

n ¼ 1,000 0.9376 0.9228 0.9488 0.9780 0.9540 0.9786 0.9384 0.9213

Table 4. Coverage Rates and avgðp̂Þ for (Case N1)–(Case N6).

(Case N1) (Case N2) (Case N3)

FD(d) avgðp̂Þ FD(d) avgðp̂Þ FD(d) avgðp̂Þ

n ¼ 300 0.9304 0.9628 0.9252 0.929 0.9332 0.9007

n ¼ 1,000 0.9536 0.9626 0.9508 0.9479 0.9492 0.9050

(Case N4) (Case N5) (Case N6)

FD(d) avgðp̂Þ FD(d) avgðp̂Þ FD(d) avgðp̂Þ

n ¼ 300 0.950 0.9182 0.9176 0.9717 0.9444 0.9629

n ¼ 1,000 0.9492 0.9293 0.950 0.9869 0.9492 0.9643
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7.3. Simulation Results for Bias-Corrected Estimators

In each replication, we computed the bootstrap biases and mean squared
errors of FL

n and FU
n as well as bFL

nBC and bFU

nBC, where we used the bootstrap
bias-correction with the second bootstrap procedure discussed in Section 5.1.
‘‘Bias’’ and ‘‘

ffiffiffiffiffiffiffiffiffiffiffi
MSE
p

’’ in Table 5 represent the average bias and the square
roots of the mean squared errors (MSE).

The direction of the bias without correction is as expected. The bias
estimates are positive for FL

n and negative for FU
n for all DGPs except for the

cases that
ffiffiffiffiffi
n1
p
ðFL

n ðdÞ � FLðdÞÞ and
ffiffiffiffiffi
n1
p
ðFU

n ðdÞ � FUðdÞÞ degenerate asymp-
totically (Case C1 for FL

n and Case C4 for FU
n ). The bias-correction took

Table 5. Bias and MSE Reduction for (Case C1)–(Case C4).

(Case C1) (Case C2)

FL
n ðdÞ FL

nBCðdÞ FL
n ðdÞ FL

nBCðdÞ

n ¼ 300 Bias 0.0190 0.0003 0.0305 0.0142ffiffiffiffiffiffiffiffiffiffiffi
MSE
p

0.0382 0.0352 0.0429 0.0263

n ¼ 1,000 Bias 0.0095 �0.0009 0.0152 0.0066ffiffiffiffiffiffiffiffiffiffiffi
MSE
p

0.0211 0.0197 0.0220 0.0130

FU
n ðdÞ FU

nBCðdÞ FU
n ðdÞ FU

nBCðdÞ

n ¼ 300 Bias 0 0 �0.0292 �0.0064ffiffiffiffiffiffiffiffiffiffiffi
MSE
p

0 0 0.0361 0.0253

n ¼ 1,000 Bias 0 0 �0.0150 �0.0031ffiffiffiffiffiffiffiffiffiffiffi
MSE
p

0 0 0.0187 0.0134

(Case C3) (Case C4)

FL
n ðdÞ FL

nBCðdÞ FL
n ðdÞ FL

nBCðdÞ

n ¼ 300 Bias 0.0292 0.0064 0 0ffiffiffiffiffiffiffiffiffiffiffi
MSE
p

0.0348 0.0247 0 0

n ¼ 1,000 Bias 0.0144 0.0024 0 0ffiffiffiffiffiffiffiffiffiffiffi
MSE
p

0.0182 0.0131 0 0

FU
n ðdÞ FU

nBCðdÞ FU
n ðdÞ FU

nBCðdÞ

n ¼ 300 Bias �0.0306 �0.0141 �0.0192 �0.0004ffiffiffiffiffiffiffiffiffiffiffi
MSE
p

0.0430 0.0265 0.0382 0.0349

n ¼ 1,000 Bias �0.0159 �0.0070 �0.0099 0.0004ffiffiffiffiffiffiffiffiffiffiffi
MSE
p

0.0228 0.0136 0.0211 0.0194
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effect with n ¼ 300 quite dramatically already. In (Case C1) for FL
n and

(Case C4) for FU
n , where the asymptotic distributions of those estimators are

normal, the magnitude of the bias reduces to roughly about 1/50–1/60 of the
bias of FL

n or FU
n . For other DGPs, the magnitude of the bias-reduction is

not as great but still the biases reduced by roughly about 1/1.5–1/4.5 of the
bias of FL

n or FU
n . The relative magnitude of bias-reduction is similar in

n ¼ 1,000 for (Case C2) or (Case C3). It is roughly about 1/2B1/5 of the

bias of FL
n or FU

n . The bias estimates of bFL

nBC for (Case C1) and bFU

nBC

(Case C4) changed sign when n ¼ 1,000. The bootstrap bias-corrected

estimators work quite well and we can see huge reduction in bias and

changes of signs in (Case C1) for FL
n and (Case C4) for FU

n (where the

normal asymptotics holds). We will see the sign change with the DGPs

(Case N1)–(Case N6) as well. The bootstrap bias-corrected estimators

also have smaller MSEs than FL
n and FU

n as shown in the table. The
ffiffiffiffiffiffiffiffiffiffiffi
MSE
p

of bFL

nBC and bFU

nBC are roughly 2/3 of the
ffiffiffiffiffiffiffiffiffiffiffi
MSE
p

of FL
n and FU

n for (Case C2)

and (Case C3) but the reduction in
ffiffiffiffiffiffiffiffiffiffiffi
MSE
p

is not as great in (Case C1) for FL
n

and (Case C4) for FU
n as in other DGPs.

Table 6 show that results for (Case N1)–(Case N6) are similar. The sign
change happened in all DGPs except for those in which F L(d)E0 or

FU(d)E1. The relative magnitude of the bias in bFL

nBCðdÞ or bFU

nBCðdÞ to the

bias in FL
n ðdÞ or FU

n ðdÞ ranges from 1/2 to 1/13. The reduction in
ffiffiffiffiffiffiffiffiffiffiffi
MSE
p

is not sizable.

8. CONCLUSION

In this paper, we have provided a complete study on partial identification
of and inference for the distribution of treatment effects for randomized
experiments. For randomized experiments with a known value of a
dependence measure between the potential outcomes such as Kendall’s t,
we established tighter bounds on the distribution of treatment effects.
Estimation of these bounds and inference for the distribution of treatment
effects in this case can be done by following Sections 4 and 5 in this paper.
When observable covariates are available such that the selection-on-
observables assumption holds, Fan (2008) developed estimation and
inference procedures for the distribution of treatment effects and Fan
and Zhu (2009) established estimation and inference procedures for a
general class of functionals of the joint distribution of potential outcomes

Partial Identification of the Distribution of Treatment Effects 53



including many commonly used inequality measures of the distribution of
treatment effects.

This paper has focused on binary treatments. The results can be easily
extended to multivalued treatments. For example, consider a randomized
experiment on a treatment taking values in {0, 1, y, T}. Define the treat-
ment effect between t and tu as Dt0 ;t ¼ Yt0 � Yt for any t; t0 2 f0; 1; . . . ;Tg
and tat0. Then by substituting Y1 with Tt0 and Y0 with Yt, the results in
this paper apply to FDt0;t. The results in this paper can also be extended
to continuous treatments, provided that the marginal distribution of the
potential outcome corresponding to a given level of treatment intensity
is identified.

Table 6. Bias and MSE Reduction for (Case N1)–(Case N6).

(Case N1) (Case N2) (Case N3)

FL
n ðdÞ FL

nBCðdÞ FL
n ðdÞ FL

nBCðdÞ FL
n ðdÞ FL

nBCðdÞ

n ¼ 300 Bias 0.0233 0.0023 0.0187 0.0011 0.0108 �0.0023ffiffiffiffiffiffiffiffiffiffiffi
MSE
p

0.0397 0.0354 0.0376 0.0343 0.0226 0.0214

n ¼ 1,000 Bias 0.0106 �0.0008 0.0088 �0.0011 0.0049 �0.0024ffiffiffiffiffiffiffiffiffiffiffi
MSE
p

0.0207 0.0187 0.0205 0.0193 0.0121 0.0118

FU
n ðdÞ FU

nBCðdÞ FU
n ðdÞ FU

nBCðdÞ FU
n ðdÞ FU

nBCðdÞ

n ¼ 300 Bias �0.0182 0.0017 �0.0011 �0.0001 0 0ffiffiffiffiffiffiffiffiffiffiffi
MSE
p

0.0276 0.0207 0.0024 0.0005 0.0001 0

n ¼ 1,000 Bias �0.0087 0.0024 �0.0005 0.0 0.0 0.0ffiffiffiffiffiffiffiffiffiffiffi
MSE
p

0.0144 0.0120 0.0010 0.0001 0.0 0.0

(Case N4) (Case N5) (Case N6)

FL
n ðdÞ FL

nBCðdÞ FL
n ðdÞ FL

nBCðdÞ FL
n ðdÞ FL

nBCðdÞ

n ¼ 300 Bias 0.0 0.0 0.0013 0.0001 0.0192 �0.0009ffiffiffiffiffiffiffiffiffiffiffi
MSE
p

0.0002 0.0 0.0026 0.0005 0.0286 0.0210

n ¼ 1,000 Bias 0.0 0.0 0.0005 0.0 0.0089 �0.0021ffiffiffiffiffiffiffiffiffiffiffi
MSE
p

0.0001 0.0 0.0005 0.0 0.0145 0.0118

FU
n ðdÞ FU

nBCðdÞ FU
n ðdÞ FU

nBCðdÞ FU
n ðdÞ FU

nBCðdÞ

n ¼ 300 Bias �0.0111 0.0024 �0.0195 �0.0017 �0.0229 �0.0019ffiffiffiffiffiffiffiffiffiffiffi
MSE
p

0.0228 0.0213 0.0381 0.0344 0.0385 0.0344

n ¼ 1,000 Bias �0.0055 0.0019 �0.0085 0.0014 �0.0104 0.0009ffiffiffiffiffiffiffiffiffiffiffi
MSE
p

0.0127 0.012 0.02 0.0187 0.0209 0.0189
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NOTES

1. In the rest of this paper, we refer to ideal randomized experiments (data) as
randomized experiments (data).
2. A copula is a bivariate distribution with uniform marginal distributions on

[0,1].
3. Frank et al. (1987) provided expressions for the sharp bounds on the

distribution of a sum of two normal random variables. We believe there are typos
in their expressions, as a direct application of their expressions to our case would
lead to different expressions from ours. They are:

FLðdÞ ¼ F
�s1s� s0t
s20 � s21

� �
þ F

s0s� s1t
s20 � s21

� �
� 1

FUðdÞ ¼ F
�s1sþ s0t
s20 � s21

� �
þ F

s0sþ s1t
s20 � s21

� �

4. In practice, the supports of F1 and F0 may be unknown, but can be estimated
by using the corresponding univariate order statistics in the usual way. This would
not affect the results to follow. For notational compactness, we assume that they are
known.
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APPENDIX A. PROOF OF EQ. (23)

Obviously, one can take 1� p ¼ limn1!1infy02 yL ;yU½ �Prðy0 2 fy : TnðyÞ � 0Þg:
Now,

lim
n1!1

inf
y02 yL;yU½ �

Prðy0 2 fy : TnðyÞ � 0Þ

¼ inf Pr½ðWL;d � hLðy0ÞÞ
2
þ þ ðWU;d þ hUðy0ÞÞ

2
� ¼ 0�

We need to show that

inf Pr½ðWL;d � hLðy0ÞÞ
2
þ þ ðWU;d þ hUðy0ÞÞ

2
� ¼ 0�

¼ Pr sup
y2Ysup;d

Gðy; dÞ � 0; inf
y2Yinf ;d

Gðy; dÞ � 0

" #
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First, we consider the case with WL;d � hLðy0Þ � 0. We have:

WL;d � hLðy0Þ � 0

3max sup
y2Ysup;d

Gðy; dÞ;�hLðdÞ

( )
� �minfhLðdÞ; 0g þ hLðy0Þ

3max sup
y2Ysup;d

Gðy; dÞ;�hLðdÞ

( )
� �hLðdÞ þ lim

n1!1

ffiffiffiffiffi
n1
p

FDðdÞ

3max sup
y2Ysup;d

Gðy; dÞ;� lim
n1!1

ffiffiffiffiffi
n1
p

MðdÞ

( )
� lim

n1!1

ffiffiffiffiffi
n1
p
½FDðdÞ �MðdÞ�

since

hLðy0Þ ¼ � lim
n1!1
½
ffiffiffiffiffi
n1
p

FLðdÞ �
ffiffiffiffiffi
n1
p

FDðdÞ�

¼ � lim
n1!1
½maxf

ffiffiffiffiffi
n1
p

MðdÞ; 0g �
ffiffiffiffiffi
n1
p

FDðdÞ�

¼ �max lim
n1!1

ffiffiffiffiffi
n1
p

MðdÞ; 0
	 


þ lim
n1!1

ffiffiffiffiffi
n1
p

FDðdÞ

(i) If FDðdÞ ¼ FLðdÞ ¼ 04MðdÞ, then

max sup
y2Ysup;d

Gðy; dÞ;� lim
n1!1

ffiffiffiffiffi
n1
p

MðdÞ

( )
� lim

n1!1

ffiffiffiffiffi
n1
p
½FDðdÞ �MðdÞ�

3max sup
y2Ysup;d

Gðy; dÞ;1

( )
� 1

3 sup
y2Ysup;d

Gðy; dÞo1

which holds trivially.
(ii) If FDðdÞ ¼ FLðdÞ ¼ 0 ¼MðdÞ, then

max sup
y2Ysup;d

Gðy; dÞ;� lim
n1!1

ffiffiffiffiffi
n1
p

MðdÞ

( )
� lim

n1!1

ffiffiffiffiffi
n1
p
½FDðdÞ �MðdÞ�

3max sup
y2Ysup;d

Gðy; dÞ; 0

( )
� 0

3 sup
y2Ysup;d

Gðy; dÞ � 0
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(iii) If FDðdÞ ¼ FLðdÞ ¼MðdÞ40, then

max sup
y2Ysup;d

Gðy; dÞ;� lim
n1!1

ffiffiffiffiffi
n1
p

MðdÞ

( )
� lim

n1!1

ffiffiffiffiffi
n1
p
½FDðdÞ �MðdÞ�

3max sup
y2Ysup;d

Gðy; dÞ;�1

( )
� 0

3 sup
y2Ysup;d

Gðy; dÞ � 0

(iv) If FDðdÞ ¼ FLðdÞ ¼ 04MðdÞ, then

max sup
y2Ysup;d

Gðy; dÞ;� lim
n1!1

ffiffiffiffiffi
n1
p

MðdÞ

( )
� lim

n1!1

ffiffiffiffiffi
n1
p
½FDðdÞ �MðdÞ�

3max sup
y2Ysup;d

Gðy; dÞ;1

( )
� 1

3 sup
y2Ysup;d

Gðy; dÞo1

which holds trivially.
(v) If FDðdÞ4FLðdÞ ¼ 0 ¼MðdÞ, then

max sup
y2Ysup;d

Gðy; dÞ;� lim
n1!1

ffiffiffiffiffi
n1
p

MðdÞ

( )
� lim

n1!1

ffiffiffiffiffi
n1
p
½FDðdÞ �MðdÞ�

3max sup
y2Ysup;d

Gðy; dÞ; 0

( )
� 1

3 sup
y2Ysup;d

Gðy; dÞo1

which holds trivially.
(vi) If FDðdÞ4FLðdÞ ¼MðdÞ40, then

max sup
y2Ysup;d

Gðy; dÞ;� lim
n1!1

ffiffiffiffiffi
n1
p

MðdÞ

( )
� lim

n1!1

ffiffiffiffiffi
n1
p
½FDðdÞ �MðdÞ�

3max sup
y2Ysup;d

Gðy; dÞ;1

( )
� 1

3 sup
y2Ysup;d

Gðy; dÞo1

which holds trivially.
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Summarizing (i)–(vi), we have

WL;d � hLðy0Þ � 03 sup
y2Ysup;d

Gðy; dÞ � 0

if FDðdÞ ¼ FLðdÞ ¼MðdÞ � 0; otherwise it holds trivially.
Similarly to the WL;d � hLðy0Þ � 0 case, we get

WU;dþhUðy0Þ � 0

3min inf
y2Yinf ;d

Gðy;dÞ;�hUðdÞ
	 


þmaxfhUðdÞ;0gþhUðy0Þ � 0

3min inf
y2Yinf ;d

Gðy;dÞ;�hUðdÞ
	 


��maxfhUðdÞ;0g� lim
n!1

ffiffiffi
n
p
½FUðdÞ�FDðdÞ�

3min inf
y2Yinf ;d

Gðy;dÞ;� lim
n1!1

ffiffiffiffiffi
n1
p

mðdÞ
	 


�� lim
n1!1
½1þmðdÞ�FDðdÞ�

since

hUðy0Þ ¼ lim
n1!1
½
ffiffiffiffiffi
n1
p

FUðdÞ�
ffiffiffiffiffi
n1
p

FDðdÞ�

¼ lim
n1!1

ffiffiffiffiffi
n1
p

minfmðdÞ;0gþ lim
n1!1

ffiffiffiffiffi
n1
p
ð1�FDðdÞÞ

¼ minfhUðdÞ;0gþ lim
n1!1

ffiffiffiffiffi
n1
p
ð1�FDðdÞÞ

(i) If 1þmðdÞ41 ¼ FUðdÞ ¼ FDðdÞ, then

min inf
y2Yinf ;d

Gðy; dÞ;� lim
n1!1

ffiffiffiffiffi
n1
p

mðdÞ
	 


� � lim
n1!1
½1þmðdÞ � FDðdÞ�

3min inf
y2Yinf ;d

Gðy; dÞ;�1
	 


� �1

3 inf
y2Yinf ;d

Gðy; dÞ � �1

which holds trivially.
(ii) If 1þmðdÞ ¼ 1 ¼ FUðdÞ ¼ FDðdÞ, then

min inf
y2Yinf ;d

Gðy; dÞ;� lim
n1!1

ffiffiffiffiffi
n1
p

mðdÞ
	 


� � lim
n1!1
½1þmðdÞ � FDðdÞ�

3min inf
y2Yinf ;d

Gðy; dÞ; 0
	 


� 0

3 inf
y2Yinf ;d

Gðy; dÞ � 0

YANQIN FAN AND SANG SOO PARK62



(iii) If 141þmðdÞ ¼ FUðdÞ ¼ FDðdÞ, then

min inf
y2Yinf ;d

Gðy; dÞ;� lim
n1!1

ffiffiffiffiffi
n1
p

mðdÞ
	 


� � lim
n1!1
½1þmðdÞ � FDðdÞ�

3min inf
y2Yinf ;d

Gðy; dÞ;1
	 


� 0

3 inf
y2Yinf ;d

Gðy; dÞ � 0

(iv) If 1þmðdÞ41 ¼ FUðdÞ4FDðdÞ, then

min inf
y2Yinf ;d

Gðy; dÞ;� lim
n1!1

ffiffiffiffiffi
n1
p

mðdÞ
	 


� � lim
n1!1
½1þmðdÞ � FDðdÞ�

3min inf
y2Yinf ;d

Gðy; dÞ;�1
	 


� �1

3 inf
y2Yinf ;d

Gðy; dÞ � �1

which holds trivially.
(v) If 1þmðdÞ ¼ 1 ¼ FUðdÞ4FDðdÞ, then

min inf
y2Yinf ;d

Gðy; dÞ;� lim
n1!1

ffiffiffiffiffi
n1
p

mðdÞ
	 


� � lim
n1!1
½1þmðdÞ � FDðdÞ�

3min inf
y2Yinf ;d

Gðy; dÞ; 0
	 


� �1

3 inf
y2Yinf ;d

Gðy; dÞ � �1

which holds trivially.
(vi) If 141þmðdÞ ¼ FUðdÞ4FDðdÞ, then

min inf
y2Yinf ;d

Gðy; dÞ;� lim
n1!1

ffiffiffiffiffi
n1
p

mðdÞ
	 


� � lim
n1!1
½1þmðdÞ � FDðdÞ�

3min inf
y2Yinf ;d

Gðy; dÞ;1
	 


� �1

3 inf
y2Yinf ;d

Gðy; dÞ � �1

which holds trivially. Summarizing (i)–(vi), we get

WU;d þ hUðy0Þ � 03 inf
y2Yinf ;d

Gðy; dÞ � 0

if 1 � 1þmðdÞ ¼ FUðdÞ ¼ FDðdÞ; otherwise it holds trivially.
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Finally, we obtain:

inf Pr½ðWL;d � hLÞðy0Þ
2
þ þ ðWU;d þ hUðy0ÞÞ

2
� ¼ 0�

¼ inf Pr½WL;d � hLðy0Þ � 0;WU;d þ hUðy0Þ � 0�

¼ Pr sup
y2Yinf ;d

Gðy; dÞ � 0; inf
y2Y inf ;d

Gðy; dÞ � 0

" #

APPENDIX B. EXPRESSIONS FOR ysup,d, yinf,d, m(d)
AND m(d) FOR SOME KNOWN MARGINAL

DISTRIBUTIONS

Denuit et al. (1999) provided the distribution bounds for a sum of two
random variables when they both follow shifted exponential distributions or
both follow shifted Pareto distributions. Below, we augment their results
with explicit expressions for ysup,d, yinf,d, M(d), and m(d) which may help us
understand the asymptotic behavior of the nonparametric estimators of the
distribution bounds when the true marginals are either shifted exponential
or shifted Pareto.

First, we present some expressions used in Example 2.

Example 2 (continued). In Example 2, we considered the family of
distributions denoted by C(a) with aA(0,1). If XBC(a), then

FðxÞ ¼

1

a
x2 if x 2 ½0;a�

1�
ðx� 1Þ2

ð1� aÞ
if x 2 ½a;1�

8>>><>>>: and f ðxÞ ¼

2

a
x if x 2 ½0;a�

2ð1� xÞ

ð1� aÞ
if x 2 ½a;1�

8>><>>:
Suppose Y1BC(a1) and Y0BC(a0). We now provide the functional form

of F1(y)�F0(y�d).

1. Suppose do0. Then Yd ¼ ½0; 1þ d�.
(a) If a0+dr0oa1r1+d, then

F1ðyÞ � F0ðy� dÞ ¼

y2

a1
� 1�

ðy� d� 1Þ2

ð1� a0Þ

� �
if 0 � y � a1

1�
ðy� 1Þ2

ð1� a1Þ

� �
� 1�

ðy� d� 1Þ2

ð1� a0Þ

� �
if a1 � y � 1þ d

8>>>><>>>>:
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(b) If 0ra0+dra1r1+d, then

F1ðyÞ �F0ðy� dÞ ¼

y2

a1
�
ðy� dÞ2

a0
if 0 � y � a0 þ d

y2

a1
� 1�

ðy� d� 1Þ2

ð1� a0Þ

� �
if a0þ d � y � a1

1�
ðy� 1Þ2

ð1� a1Þ

� �
� 1�

ðy� d� 1Þ2

ð1� a0Þ

� �
if a1 � y� 1þ d

8>>>>>>>><>>>>>>>>:
(c) If a0+dr0r1+dra1, then

F1ðyÞ � F0ðy� dÞ ¼
y2

a1
� 1�

ðy� d� 1Þ2

ð1� a0Þ

� �
if 0 � y � 1þ d

(d) If 0ra0+do1+dra1, then

F1ðyÞ � F0ðy� dÞ ¼

y2

a1
�
ðy� dÞ2

a0
if 0 � y � a0þ d

y2

a1
� 1�

ðy� d� 1Þ2

ð1� a0Þ

� �
if a0 þ d � y � 1þ d

8>>><>>>:
(e) If 0oa1ra0+dr1+d, then

F1ðyÞ�F0ðy�dÞ¼

y2

a1
�
ðy�dÞ2

a0
if 0� y� a1

1�
ðy�1Þ2

ð1�a1Þ

� �
�
ðy�dÞ2

a0
if a1� y� a0� d

1�
ðy�1Þ2

ð1�a1Þ

� �
� 1�

ðy�d�1Þ2

ð1�a0Þ

� �
if a0þd� y� 1þd

8>>>>>>>><>>>>>>>>:
2. Suppose dZ0. Then Yd¼ ½d; 1�.

(a) If doa0+dra1o1, then
(i) if a1 6¼ a0 and d 6¼ 0, then

F1ðyÞ � F0ðy� dÞ ¼

y2

a1
�
ðy� dÞ2

a0
if d � y � a0 þ d

y2

a1
� 1�

ðy� d� 1Þ2

ð1� a0Þ

� �
if a0 þ d � y � a1

1�
ðy� 1Þ2

ð1� a1Þ

� �
� 1�

ðy� d� 1Þ2

ð1� a0Þ

� �
if a1 � y � 1

8>>>>>>>><>>>>>>>>:
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(ii) a1 ¼ a0 ¼ a and d ¼ 0, then

F1ðyÞ � F0ðy� dÞ ¼ 0 for all y 2 ½0; 1�

(b) If dra1ra0+dr1, then

F1ðyÞ � F0ðy� dÞ ¼

y2

a1
�
ðy� dÞ2

a0
if d � y � a1

1�
ðy� 1Þ2

ð1� a1Þ

� �
�
ðy� dÞ2

a0
if a1þ � y � a0 � d

1�
ðy� 1Þ2

ð1� a1Þ

� �
� 1�

ðy� d� 1Þ2

ð1� a0Þ

� �
if a0 þ d � y � 1

8>>>>>>>><>>>>>>>>:
(c) If dra1o1ra0+d, then

F1ðyÞ � F0ðy� dÞ ¼

y2

a1
�
ðy� dÞ2

a0
if d � y � a1

1�
ðy� 1Þ2

ð1� a1Þ

� �
�
ðy� dÞ2

a0
if a1 � y � 1

8>>><>>>:
(d) If a1odoa0+dr1, then

F1ðyÞ � F0ðy� dÞ ¼

1�
ðy� 1Þ2

ð1� a1Þ

� �
�
ðy� dÞ2

a0
if d � y � a0 þ d

1�
ðy� 1Þ2

ð1� a1Þ

� �
� 1�

ðy� d� 1Þ2

ð1� a0Þ

� �
if a0 þ d � y � 1

8>>>><>>>>:
(e) If a1odo1ra0+d, then

F1ðyÞ � F0ðy� dÞ ¼ 1�
ðy� 1Þ2

ð1� a1Þ

� �
�
ðy� dÞ2

a0
if d � y � 1

(Shifted) Exponential marginals. The marginal distributions are:

F1ðyÞ ¼ 1� exp �
y� y1
a1

� �
for y 2 ½y1;1Þ and

F0ðyÞ ¼ 1� exp �
y� y0
a0

� �
for y 2 ½y0;1Þ; where a1; y1; a0; y040

Let dc ¼ ðy1 � y0Þ �minfa1; a0gðln a1 � ln a0Þ.
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1. Suppose a1oa0.
(a) If drdc,

FLðdÞ ¼maxfMðdÞ;0g ¼ 0

whereMðdÞ ¼
a0
a1

� �a1=ða1�a0Þ

�
a0
a1

� �a0=ða1�a0Þ
 !

exp �
d� ðy1� y0Þ

a1 � a0

� �
o0

and yinf ;d ¼
a0a1ðln a1 � ln a0Þ þ a1y0� a0y1þ a1d

a1 � a0
ðan interior solutionÞ

FUðdÞ ¼ 1þminfmðdÞ;0g ¼ 1þmðdÞ

wheremðdÞ ¼min exp �
maxfy1� ðdþ y0Þ;0g

a0

� �	
� exp �

maxfy0 þ d� y1;0g
a1

� �
;0



and ysup;d ¼maxfy1;y0þ dg or 1 ðboundary solutionÞ

(b) If dWdc,

FLðdÞ ¼ maxfMðdÞ; 0g ¼MðdÞ40

whereMðdÞ ¼ 1� exp �
dþ y0 � y1

a1

� �
and yinf ;d ¼ y0 þ d

FUðdÞ ¼ 1þminfmðdÞ; 0g ¼ 1

since mðdÞ ¼ 0 and ysup;d ¼ 1

2. Suppose a1 ¼ a0 ¼ a. Then

FLðdÞ ¼ maxfMðdÞ; 0g ¼MðdÞ

where MðdÞ ¼

0 if d � y1 � y0

1� exp �
d� ðy1 � y0Þ

a

� �
40 if d4y1 � y0

8><>:
and yinf ;d ¼

1 if doy1 � y0

any point inR if d ¼ y1 � y0

y0 þ d if d4y1 � y0

8>><>>:
FUðdÞ ¼ 1þminfmðdÞ; 0g ¼ 1þmðdÞ

where mðdÞ ¼
exp �

y1 � ðdþ y0Þ
a

� �
� 1o0 if doy1 � y0

0 if d � y1 � y0

8><>:
and ysup;d ¼

y1 if doy1 � y0

any point in R if d ¼ y1 � d0

1 if d4y1 � y0

8>><>>:
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3. Suppose a1Wa0.
(a) If dodc,

FLðdÞ ¼ maxfMðdÞ; 0g ¼ 0; since MðdÞ ¼ 0 and yinf ;d ¼ 1

FUðdÞ ¼ 1þminfmðdÞ; 0g ¼ 1þmðdÞ

where mðdÞ ¼ exp �
y1 � ðdþ y0Þ

a0

� �
� 1o0; ysup;d ¼ y1

(b) If dZdc,

FLðdÞ ¼ maxfMðdÞ; 0g ¼MðdÞ

whereMðdÞ ¼ max exp �
maxfy1 � ðdþ y0Þ; 0g

a0

� �	

� exp �
maxfy0 þ d� y1; 0g

a1

� �
; 0



and yinf ;d ¼ maxfy1; y0 þ dg or 1 ðboundary solutionÞ

FU ¼ 1þminfmðdÞ; 0g ¼ 1þmðdÞ

where mðdÞ ¼
a0
a1

� �a1=ða1�a0Þ

�
a0
a1

� �a0=ða1�a0Þ
 !

exp �
d� ðy1 � y0Þ

a1 � a0

� �
o0

and ysup;d ¼
a0a1ðln a1 � ln a0Þ þ a1y0 � a0y1 þ a1d

a1 � a0
ðan interior solutionÞ

(Shifted) Pareto marginals. The marginal distributions are:

F1ðyÞ ¼ 1�
l1

l1 þ y� y1

� �a

for y 2 ½y1;1Þ and

F0ðyÞ ¼ 1�
l0

l0 þ y� y0

� �a

for y 2 ½y0;1Þ; where a; l1; y1; l0; y040

Define

dc ¼ ðy1 � y0Þ � ðmaxfl1; l0gÞ
a=ðaþ1Þ

ðl1=ðaþ1Þ1 � l1=ðaþ1Þ0 Þ
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1. Suppose l1ol0.
(a) If d � dc; then

FLðdÞ ¼ maxfMðdÞ; 0g ¼MðdÞ

whereMðdÞ ¼ ðla=ðaþ1Þ0 � la=ðaþ1Þ1 Þ
la=ðaþ1Þ1 � la=ðaþ1Þ0

d� l0 þ l1 � y1 þ y0

 !a

40

and yinf ;d ¼
ðdþ y0 � l0Þl

a=ðaþ1Þ
1 þ ðl1 � y1Þl

a=ðaþ1Þ
0

la=ðaþ1Þ1 � la=ðaþ1Þ0

ðan interior solutionÞ

FUðdÞ ¼ 1þminfmðdÞ; 0g ¼ 1þmðdÞ

where mðdÞ ¼ min
l0

l0 þmaxfy1 � d� y0; 0g

� �a	
�

l1
l1 þmaxfy0 þ d� y1; 0g

� �a

; 0



and ysup;d ¼ maxfy1; y0 þ dg or 1 ðboundary solutionÞ

(b) If d4dc; then

FLðdÞ ¼ maxfMðdÞ; 0g ¼MðdÞ

whereMðdÞ ¼ 1�
l1

l1 þ y0 þ d� y1

� �a

� 0 and yinf ;d ¼ y0 þ d

FUðdÞ ¼ 1þminfmðdÞ; 0g ¼ 1

since mðdÞ ¼ 0 and ysup;d ¼ 1

2. Suppose l1 ¼ l0 ¼ l. Then

FLðdÞ ¼ maxfMðdÞ; 0g ¼MðdÞ

whereMðdÞ ¼

0 if d � y1 � y0

1�
l

lþ d� ðy1 � y0Þ

� �a

� 0 if d4y1 � y0

8>><>>:
and yinf ;d ¼

1 if doy1 � y0

any point in Y if d ¼ y1 � y0

y0 þ d if d4y1 � y0

8>>><>>>:
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FUðdÞ ¼ 1þminfmðdÞ; 0g ¼ 1þmðdÞ

where mðdÞ ¼

l
l� dþ ðy1 � y0Þ

� �a

� 1 if doy1 � y0

0 if d � y1 � y0

8><>:
and ysup;d ¼

y1 if doy1 � y0

any point in Y if d ¼ y1 � y0

1 if 4y1 � y0

8>><>>:
3. Suppose l1Wl0.

(a) If dodc, then

FLðdÞ ¼ maxfMðdÞ; 0g ¼ 0 since MðdÞ ¼ 0; and yinf ;d ¼ 1

FUðdÞ ¼ 1þminfmðdÞ; 0g ¼ 1þmðdÞ

where mðdÞ ¼
l0

l0 þ y1 � d� y0

� �a

� 1 � 0 and ysup;d ¼ y1

(b) If d � dc; then

FLðdÞ ¼maxfMðdÞ;0g ¼MðdÞ

where MðdÞ ¼max
l0

l0 þmaxfy1� d� y0;0g

� �a	
�

l1
l1 þmaxfy0þ d� y1;0g

� �a

;0



and yinf ;d ¼maxfy1;y0 þ dg or1 ðboundary solutionÞ

FUðdÞ ¼ 1þminfmðdÞ;0g ¼ 1þmðdÞ

wheremðdÞ ¼ ðla=ðaþ1Þ0 � la=ðaþ1Þ1 Þ
la=ðaþ1Þ1 � la=ðaþ1Þ0

d� l0þ l1 � y1 þ y0

 !a

o0

and ysup;d ¼
ðdþ y0� l0Þl

a=ðaþ1Þ
1 þ ðl1� y1Þl

a=ðaþ1Þ
0

la=ðaþ1Þ1 � la=ðaþ1Þ0

ðan interior solutionÞ
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CROSS-VALIDATED BANDWIDTHS

AND SIGNIFICANCE TESTING

Christopher F. Parmeter, Zhiyuan Zheng and

Patrick McCann

ABSTRACT

The link between the magnitude of a bandwidth and the relevance of the
corresponding covariate in a regression has recently garnered theoretical
attention. Theory suggests that variables included erroneously in a
regression will be automatically removed when bandwidths are selected
via cross-validation procedure. However, the connections between the
bandwidths of the variables that are smoothed away and the insights from
these same variables when properly tested for statistical significance have
not been previously studied. This paper proposes a variety of simulation
exercises to examine the relative performance of both cross-validated
bandwidths and individual and joint tests of significance. We focus on
settings where the hypothesis of interest may focus on a single data type
(e.g., continuous only) or a mix of discrete and continuous variables.
Moreover, we propose an extension of a well-known kernel smoothing
significance test to handle mixed data types. Our results suggest that
individual tests of significance and variable-specific bandwidths are very
close in performance, but joint tests and joint bandwidth recognition
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produce substantially different results. This underscores the importance of
testing for joint significance when one is trying to arrive at the final
nonparametric model of interest.

1. INTRODUCTION

Recent research by Hall, Li, and Racine (2007) has documented that least
squares cross validation (LSCV) has the asymptotic capability to
automatically remove irrelevant variables erroneously included in a local
constant regression. Rather than the bandwidths going to zero as the sample
size increases, as one would expect under the classical analysis of a data-
driven bandwidth selection procedure, the bandwidths associated with the
irrelevant variables progress toward their theoretical upper bounds
(bandwidths for continuous variables have upper bound N, whereas
discrete variables have an upper bound of 1) as the sample grows. In a local
constant setting, this removes continuous variables from the regression,
while in a local linear setting, this forces the continuous variable to enter the
model linearly.1 In any setting (local constant, local linear, or local
polynomial), a discrete variable whose bandwidth hits its upper bound is
deemed irrelevant.

Even with this appealing feature of bandwidths selected via data-driven
methods, cross-validated bandwidths are not a panacea for erroneous
inclusion of irrelevant variables; the method can assign a large bandwidth to
a relevant variable or place a small bandwidth on an irrelevant variable.
Thus, the process of testing for variable significance is paramount in applied
work. Here, the use of standard nonparametric significance tests (e.g.,
Racine, 1997; Lavergne & Vuong, 2000; Racine, Hart, & Li, 2006; Gu, Li, &
Liu, 2007) allow the researcher to formally test for significance of a
regressor, or set of regressors, rather than relying on the relative magnitude
of the bandwidth(s). While the performance of these tests is well known, less
is understood about the relationship of these tests with the recent results
related to the ‘‘smoothing away’’ irrelevant variables. This paper considers
how standard nonparametric tests of significance compare with respect to
raw interpretation of cross-validated bandwidths, both in individual and
joint settings.

While the past literature on bandwidth selection is well understood and
the literature on significance testing has burgeoned, there does not yet exist
a synthesis of the methods when used in conjunction with one another.
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For example, simulation results in Gu et al. (2007) suggest that their
bootstrap test of significance displays robust size properties for the two
data-generating processes considered with respect to their bandwidth
choice2; however, their supplied bandwidths were selected to satisfy
theoretical concerns for the proposed test statistic as opposed to being data
driven. As we will argue below, while rule-of-thumb thresholds for cross-
validated bandwidths can be used to determine which variables are
irrelevant, it is also important to test the significance of any variables not
smoothed out of the model. Cai, Gu, and Li (2009) suggest first using local
constant estimation to determine the variables that are irrelevant, then
testing those variables to ensure statistically that they do not belong in the
model and then performing local linear estimation on the potentially
reduced subset of covariates. Our work here attempts to discern how well
the first stage of this approach works in the presence of numerous irrelevant
variables.3

Given our discussion so far, this paper attempts to present simulation
evidence regarding bandwidth estimation in the presence of irrelevant
variables and how it contrasts with a standard nonparametric omitted
variable test. We focus solely on LSCV given the theoretical results of Hall
et al. (2007) and show that the bootstrap test of Gu et al. (2007) can be
applied in the presence of mixed data, a ubiquitous feature of economic
datasets.4 Our simulations will be conducted using local constant kernel
methods considering both individual and joint tests of significance for
continuous, discrete, or mixed continuous/discrete settings under a variety
of realistic regression models that include both a high number of irrelevant
and relevant variables to mimic settings likely to dominate applied work.
Additionally, we wish to determine the ability of using LSCV bandwidths to
determine variable relevance in a joint setting. Simulation results in Hall
et al. (2007) suggest that the bandwidths, considered individually, display a
remarkable ability to detect irrelevant variables. Overall, our simulations
will allow us to make broad comments on a number of ad hoc suggestions as
to the approach researchers should take to engage in nonparametric model
reduction.

The remainder of our paper is structured as follows. Section 2 provides
discussion on nonparametric estimation in the presence of mixed discrete–
continuous data, LSCV bandwidth selection, and the bootstrap omitted
variable test used for our simulations to investigate individual and joint
significance. Section 3 provides the details of our simulation study and
summarizes our findings. Section 4 discusses future issues that need to be
considered when considering nonparametric model selection issues.
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2. NONPARAMETRIC ESTIMATION

AND SIGNIFICANCE TESTING

2.1. General Nonparametric Kernel Regression

We begin with a generic regression setup:

yi ¼ mðxiÞ þ �i; i ¼ 1; . . . ; n (1)

where yi is our response variable, xi 2 Rq is a vector of covariates, and ei
represents a random disturbance. Our interest lies in testing significance
(individual or joint) for a (set of ) covariate(s) in xi. We use Li-Racine
generalized kernels (see Li & Racine, 2004; Racine & Li, 2004). These
kernels admit a mix of discrete and continuous covariates which are
ubiquitous in applied econometric settings.

Ignoring for the moment the fact that irrelevant regressors may have been
included in Eq. (1), we model the unknown relationship through the
conditional mean, that is, mðxiÞ ¼ E½ yijxi� using a method known as local
constant regression (see Nadaraya, 1964; Watson, 1964). This allows us to
write the regression equation at a given point as

m̂ðxÞ ¼

Pn
i¼1yiKhðx;xiÞPn
i¼1Khðx;xiÞ

¼
Xn

i¼1
AiðxÞyi (2)

where

Khðx;xiÞ ¼
Yqc
s¼1

h�1s lc
xcs � xcsi

hs

� �Yqu
s¼1

luðxus ;x
u
si; l

u
s Þ
Yqo
s¼1

loðxos ;x
o
si; l

o
s Þ (3)

Kh(x, xi) is the commonly used product kernel (see Pagan & Ullah, 1999).
We have used the notation xcs ; x

o
s and xus to denote variables that are

continuous, ordered, and unordered. Additionally, we have qc continuous
variables, qu unordered variables, and qo ordered variables in our regression
framework (qcþ quþ qo ¼ q). We elect to employ smoothing kernels for
the discrete data because Racine and Li (2004) have shown that sample
splitting (commonly known as the frequency approach) as opposed to
smoothing categorical variables can lead to large losses in efficiency.
They advocate the use of special kernels designed explicitly for the type of
variable being smoothed. In this setting, l c can be taken to be the standard
normal kernel function5 used for continuous variables with window
width hcs ¼ hsðnÞ associated with the sth component of xc. l u is a
variation of Aitchison and Aitken’s (1976) kernel function for use with
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unordered data types:

luðxus ;x
u
si; l

u
s Þ ¼

1� lus if xusi ¼ xus
lus

cs � 1
if xusiaxus

8><>: (4)

where cs comes from the fact that xsu 2 f0; 1; . . . cs � 1g. The range of lus is
[0, (cs� 1)/cs]. For an indicator variable, cs ¼ 2 and the largest value that lus
can take is 1/2. l o is the Wang and Ryzin (1981) kernel function designed for
smoothing ordered discrete variables, defined as

loðxos ;x
o
si; l

u
s Þ ¼ ðl

u
s Þ
jxos�x

o
si j (5)

where the range of los is [0, 1]. This kernel function is slightly different from
the original kernel proposed by Wang and Ryzin (1981). Li and Racine
(2006, p. 145) show that Wang and Ryzin’s (1981) kernel function does not
possess the ability to smooth away irrelevant ordered discrete variables
when that variable has at least three categories.

Eq. (2) can be written in matrix notation to display it in a more compact
form. Let i denote an n� 1 vector of ones and let KðxÞ denote the diagonal
matrix with jth element Khðx;xjÞ. Also, denote by y the n� 1 vector of
responses. Then, we can express our LCLS estimator as

m̂ðxÞ ¼ ði0KðxÞiÞ�1i0KðxÞy (6)

The name local constant comes from the fact that our estimator is a
weighted regression of a constant on our response vector. The weights are
determined locally by the associated covariates and the bandwidths. This is
similar to generalized least squares, except our weights change for each
point on our regression curve as opposed to being globally determined as
they are in standard least squares approaches.

2.2. Cross-Validated Bandwidth Selection

Estimation of the bandwidths (h, lu, lo) is typically the most salient factor
when performing nonparametric estimation. For example, choosing a very
small hmeans that there may not be enough points in a neighborhood of the
point being smoothed and thus we may get an undersmoothed estimate
(low bias, high variance). On the other hand, choosing a very large h, we
may smooth over too many points and thus get an oversmoothed estimate
(high bias, low variance). This trade-off is a well-known dilemma in applied
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nonparametric econometrics and thus we usually resort to automatic
selection procedures to obtain the bandwidths. Although there exist many
selection methods, Hall et al. (2007) (HLR hereafter) have shown that
LSCV has the ability to smooth away irrelevant variables that may have
been erroneously included into the unknown regression function. Specifi-
cally, the bandwidths are chosen to minimize

CVðh; lÞ ¼ argmin
fh;lg

1

n

Xn
i¼1

ð yi � m̂�iðxiÞÞ
2 (7)

where m̂�iðxiÞ is the common leave-one-out estimator. An alternative data-
driven approach with impressive finite sample performance is known as
improved AICc and was proposed by Hurvich, Simonoff, and Tsai (1998).
Li and Racine (2004) show that in small samples improved AICc performs
admirably compared to LSCV when one employs a local linear least squares
approach. Even though the performance of smoothing parameters estimated
via the AICc criterion have desirable features, we elect to use the standard
LSCV criterion to estimate our bandwidths given the theoretical work of
HLR.

For the discrete variables, the bandwidths indicate which variables are
relevant, as well as the extent of smoothing in the estimation. From the
definitions for the ordered and unordered kernels, it follows that if the
bandwidth for a particular unordered or ordered discrete variable equals
zero, then the kernel reduces to an indicator function and no weight is given
to observations for which xoi axoj or xui axuj ; in this case it is as if the
research had engaged in sample splitting. On the other hand, if the
bandwidth for a particular unordered or ordered discrete variable reaches
its upper bound, then equal weight is given to observations with
xoi ¼ xoj and xoi axoj . In this case, the variable is completely smoothed
out (and thus does not impact the estimation results). For unordered
discrete variables, the upper bound is given by (cr� 1)/cr where cr represents
the number of unique values taken on by the variable. For example, a
categorical variable for geographic location which takes on 5 values would
have an upper bound for its bandwidth of 4/5 ¼ 0.8. For ordered discrete
variables, the upper bound is always unity. See HLR for further details.

HLR have shown that the inclusion of irrelevant regressors does not add
to the ‘‘curse of dimensionality.’’ Their paper shows that when one uses
cross-validation procedures to select the appropriate amount of smoothness
of the unknown function, the covariates that are irrelevant are eliminated
from the conditional mean relationship. In essence, instead of the
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bandwidth decreasing to zero at an appropriate rate when the sample is
increased, the bandwidths move toward their theoretical upper bounds.
A large bandwidth effectively suggests that the associated variable is being
smoothed out as the product kernel in Eq. (3) can be rewritten as two
distinct product kernels, one for the relevant variables and another for
the irrelevant variables. The large bandwidths force the product kernel
pertaining to the irrelevant variables to be constant across all observations.
Thus, given that our conditional mean is a ratio, the irrelevant variables
cancel out of the formula and it is as if the researcher had failed to include
them in the first place. This property allows nonparametric estimators to not
only allow for functional form misspecification, but relevant covariate
selection at the same time.

However, there is no free lunch for this method as it hinges on several
facets that need to be considered on a case-by-case basis. First, the key
assumption used by HLR asks that the irrelevant regressors are independent
of the relevant regressors, something unlikely to hold in practice.6 Second, it
is not entirely clear how well this method works as the set of relevant
regressors is increased. HLR’s finite sample simulations investigated at most
two relevant regressors while their empirical application considered six
variables for 561 observations in which only two regressors were
deemed relevant according to their procedure. Clearly more work needs to
be done to assess the performance of the bandwidths for very small sample
sizes and for large sets of potential regressors, a task we take up in our
simulations.7

What is noteworthy of the HLR finding is that the cross-validated
bandwidths provide a cheap and easy way of assessing individual
significance. However, three core issues remain. First, as our simulations
show, the method does not perform well when a large number of
irrelevant variables are included, a not uncommon feature of applied work.
Second, ignoring the number of irrelevant variables included, a large
bandwidth does not provide a p-value to assess the level of significance.
The HLR theory only provides a rule of thumb for saying yes or no to
a variable’s relevance. Lastly, while the theory predicts that all
irrelevant variables are smoothed away simultaneously, there has been no
simulation study to determine if the impressive finite sample performance
of LSCV bandwidths holds when one looks for joint significance.
Moreover, there is no appropriate rule of thumb in this case, as a ‘‘test’’
for three variables being insignificant is confusing if two of the variables are
smoothed away but one is not, how does one draw conclusions from this
type of setup?
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2.3. Testing for Variable Significance

While the properties of LSCV discovered by HLR suggest that irrelevant
variables are removed, statistically there is no way to determine joint
(in)significance by simply appealing to the bandwidths returned. A formal
test for joint significance of variables is thus warranted to make statistically
precise statements about the relevance of variables entering into the model.

To determine whether or not a set of variables are jointly significant,
we utilize the tests of Lavergne and Vuong (2000) and Gu et al. (2007).
Consider a nonparametric regression model of the form

yi ¼ mðwi; ziÞ þ ui (8)

Here, we discuss in turn the case where the variables in z are all continuous
(Gu et al., 2007), are all discrete (Racine et al., 2006), or a mixture of
discrete and continuous insignificant variables, but w may contain mixed
data. In what follows, let w have dimension r and z have dimension q� r.
The null hypothesis is that the conditional mean of y does not depend on z.

H0 : Eð yjw; zÞ ¼ Eð yjwÞ (9)

2.3.1. All Continuous Case
Define u ¼ y� EðyjwÞ. Then EðujxÞ ¼ 0; x ¼ ðw; zÞ, under the null we can
construct a test statistic based on

Efu fwðwÞE½u fwðwÞjx� f ðxÞg (10)

where fw(w) and f(x) are the pdfs of w and x, respectively. A feasible test
statistic is given by

Î
c

n ¼
1

nðn� 1Þ

Xn
i¼1

Xn
j¼1; jai

ð yi � ŷiÞ f̂wðwiÞð yj � ŷjÞf̂wðwjÞWðxi;xj ;h;l
o; luÞ (11)

where W(xi, x, h, lo, lu) is the Li-Racine generalized product kernel
discussed in Eq. (3) and

f̂wðwiÞ ¼
1

n� 1

Xn
j¼1; jai

Wðwi;wj ; hw;l
o
w;l

u
wÞ

is the leave-one-out estimator of fw(wi). The leave-one-out estimator of
E( yi|wi) is

ŷi ¼
1

ðn� 1Þf̂wðwiÞ

Xn
j¼1; jai

yjWðwi;wj;hw; l
o
w;l

u
wÞ
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One shortcoming of this test is that it requires the researcher to estimate
(or determine) two sets of bandwidths, one for the model under the null and
another for the model under the alternative. For large samples this may be
computationally expensive. Under the null hypothesis, a studentized version
of the statistic presented in Eq. (11) is

T c
n ¼ ðnh1h2 . . . hqÞ

1=2Î
c

n=ŝ
c
n! Nð0; 1Þ (12)

where

ðŝcnÞ
2
¼

2h1h2 � � � hq

n2

Xn
i¼1

Xn
j¼1; jai

ð yi � ŷiÞ
2 f̂wðwiÞ

� ð yj � ŷjÞ
2 f̂wðwjÞWðxi;xj ; h; lo; luÞ ð13Þ

In a small-scale simulation study, Gu et al. (2007) show that use of the
asymptotic distribution for this test statistic has inaccurate size and poor
power. A bootstrap procedure is suggested instead. The bootstrap test
statistic is obtained via the following steps:

(i) For i ¼ 1, 2, y, n, generate the two-point wild bootstrap error
u
i ¼ ½ð1�

ffiffiffi
5
p
Þ=2�ûi, where ûi ¼ yi � ŷi with probability r ¼ ð1�

ffiffiffi
5
p
Þ=

2
ffiffiffi
5
p

and u
i ¼ ½ð1þ
ffiffiffi
5
p
Þ=2�ûi with probability 1� r.

(ii) Use the wild bootstrap error u
i to construct y
i ¼ ŷi þ u
i , then obtain
the kernel estimator of E
ð y
i jwiÞfwðwiÞ via

ŷ
i f̂wðwiÞ ¼
1

n� 1

Xn
j¼1; jai

y
j Wðwi;wj ; hw; l
o
w; l

u
wÞ

The estimated density-weighted bootstrap residual is

û
i f̂wðwiÞ ¼ ð y


i � ŷ
i Þf̂wðwiÞ ¼ y
i f̂wðwiÞ � ŷ
i f̂wðwiÞ

(iii) Compute the standardized bootstrap test statistic Tc

n , where y� and ŷn

replace y and ŷ wherever they occur.
(iv) Repeat steps (i)–(iii) B times and obtain the empirical distribution of

the B bootstrap test statistics. Let Tb

nðaBÞ denote the a-percentile of the

bootstrap distribution. We will reject the null hypothesis at significance
level a if T c

n4Tc

nðaBÞ.

In practice, researchers may use any set of bandwidths for estimation of
the test statistic. However, for the test to be theoretically consistent, the
bandwidths used for the model under the alternative need to have a
slower rate than those used for the model under the null hypothesis if
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dimðwÞ ¼ r � q=2 (see Gu et al., 2007, Assumption A2). This guarantees
that the mean-square error of the null model is smaller than that coming
from the alternative model. In essence, the residuals used in Eq. (11) or
Eq. (12) need to converge at a faster rate than the rate on the bandwidths
used for the estimation of E(u|x) ¼ 0 to ensure that the test statistic is
properly capturing this relationship.

An empirical approach would be to use LSCV to estimate the scale factors
of the bandwidths in each stage. However, this procedure has two
shortcomings. First, the theory in HLR suggests that the bandwidths
associated with irrelevant variables do not converge to zero at any rate,
inconsistent with Assumption A2 of Gu et al. (2007). Second, ignoring
theoretical rates the bandwidths are supposed to possess, the test statistics in
Eqs. (11) and (12) do not incorporate the presence of the variables smoothed
away with LSCV bandwidths. In the simulations reported in Gu et al.
(2007), they smoothed both relevant and irrelevant variables with similar
bandwidths.

2.3.2. All Discrete Case
While the nonparametric significance test of Gu et al. (2007) was initially
designed and studied theoretically for the case of continuous regressors,
computationally the test can easily be generalized to handle mixed discrete–
continuous data, both for testing and estimation by simple appeal to the
generalized product kernels provided in Racine and Li (2004). In our
simulations, we report size and power by simply using the bootstrap test of
Lavergne and Vuong (2000) and Gu et al. (2007). While their theory pertains
only to continuous variables, the null hypothesis of interest does not depend
on the data type, and it is easy to replace the continuous product kernels
with generalized Li-Racine kernels.

In Racine and Li (2004), it was shown that the optimal rate for
continuous variable bandwidths for consistent estimation of a regression
function in the local constant setting was not affected by the presence of
discrete variables. Moreover, they also showed that the optimal rate for the
bandwidths associated with discrete variables were only dependent upon the
number of continuous variables. To be explicit, the bandwidths associated
with continuous variables have optimal rate n�1=ð4þqcÞ where qc is the
number of continuous variables. Moreover, the bandwidths pertaining to
discrete covariates have optimal rate n�2=ð4þqcÞ. Thus, a strategy for
implementing the aforementioned omitted variable test in the presence of
discrete variables in the null hypothesis would be to use the rates consistent
with Racine and Li (2004) and Assumption A2 of Gu et al. (2007)
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(guaranteeing that the mean-square error of the restricted model goes to
zero faster than that of the unrestricted model), which is what we take up in
our simulations.

2.3.3. Mixed Discrete–Continuous Case
To the authors knowledge no formal test that admits both discrete and
continuous variables to be tested jointly exists in the literature. We determine
the appropriateness of the Gu et al. (2007) test when both discrete and
continuous variables enter into the null hypothesis. While their theory for the
bootstrap test statistic focuses solely on continuous variables, our conjecture
is that in finite samples, there is no reason why one cannot include discrete
variables into the discussion. The key difference with the test statistic’s
construction is that generalized kernels will need to be used as opposed to the
standard continuous product kernels used in Gu et al. (2007).
While no formal theory exists for the distribution of the test statistic

under the null in the presence of mixed data, it is hypothesized that the
asymptotic properties of the test can be uncovered using stochastic
equicontinuity arguments similar to those in Hsiao, Li, and Racine (2007,
Theorem 2.1). The reason for this is that the test of correct functional
form in the presence of mixed data proposed by Hsiao et al. (2007) has
exactly the same form as the test proposed by Lavergne and Vuong (2000)
except that the residuals that enter into the test statistic come from a
nonparametric model as opposed to a parametric model (for the functional
form test). Moreover, this same rational suggests that the asymptotic
distribution of the bootstrap version of Hsiao et al.’s (2007, Theorem 2.2)
model specification test will hold as well. While our arguments for the use
of the Lavergne and Vuong’s (2000) significance test are heuristic, as we
will see, our size and power appear to confirm that the use of this test
can perform admirably in the face of mixed data. Additionally, as Lavergne
and Vuong (2000) show in the model with only continuous covariates,
a standardized test statistic has limiting standard normal distribution.
In our simulations, we too standardize our test statistic in exactly the same
fashion, except that no formal theory exists to show that this standardiza-
tion is correct.

3. MONTE CARLO ILLUSTRATION

As discussed earlier, a majority of the proposed tests of significance
in the literature, while capable of handling multiple variables, provide
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simulation studies that focus solely on a single regressor (either con-
tinuous or discrete). Table 1 lists many of the recent simulation studies
for varying nonparametric significance tests and highlights the sample
sizes used and the number of variables in the model. The w in the table
refers to variables that are always significant, while z represents the
potentially irrelevant variable used for assessing size and power properties
of the test.

Outside of Racine et al. (2006) and HLR, all of the papers listed use only
continuous variables and consider only a single relevant regressor coupled
with a single irrelevant regressor. Also, most of the simulation studies use
sample sizes of 50 and 100 to assess the properties of the test under study.
Additionally, there is no consensus in this literature as to the appropriate
data generating process (DGP). Several authors have used high-frequency
DGPs while others have employed simple linear terms. Also, a majority of
the papers have used ad hoc bandwidths selected to meet the theoretical
underpinnings of their test as opposed to investigating the properties of the
test in likely encountered applied settings. The simulation studies of Racine
(1997) and Racine et al. (2006) have used data-driven methods with notable
success as the test statistics in these settings appear to be independent of the
bandwidth choice.

Our simulations are designed to include both low- and high-frequency
settings and are similar to the DGPs used by the studies listed in Table 1.
They will allow us to gauge how the tests will work when multiple
continuous and discrete regressors are present and one is interested in joint
significance testing, a common occurrence in applied econometric work. We
also perform individual tests as well to compare them directly to the
bandwidths obtained via cross validation. Additionally, we allow for
nonlinearities both through interactions across variables as well as directly
via nonlinear terms of the covariate(s). The beauty of nonparametric
methods (and the bandwidths) is that regardless of the type of nonlinearity,
the method is capable of detecting it. Thus, suppose one posited that wages
were nonlinearly related to education and the impact of education varied
across race. Here, we have that wages are directly nonlinear in education
and indirectly nonlinear across race. In either (both) setting(s), bandwidths
obtained via data-driven methods will detect if these variables (race and
education) are relevant, but they do not suggest which type of nonlinearity is
present. To uncover the interaction effect between race and education, one
could use the nonparametric Chow test of either Lavergne (2001) or Racine
et al. (2006).
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Table 1. Characterization of Previous Simulation Studies Regarding
Tests of Significance.

Racine (1997, Table 1)

DGP y ¼ sin(2pw)þ e
R.V. w and z continuous

Sample sizes n ¼ 50

Bandwidth LSCV

Lavergne and Vuong (2000, Tables 1 and 2)

DGP y ¼ wþw3
þ d(z)þ e

d(z) ¼ az or d(z) ¼ sin(apz)
R.V. w and z continuous

Sample sizes n ¼ 50, 200

Bandwidth Rule of thumb

Delgado and González-Manteiga (2001, Table 1)

DGP y ¼ m(w)þ d(z)þ e
m(w) ¼ 1þw or m(w) ¼ 1þ sin(10w)

d(z) ¼ a sin(z)
R.V. w and z continuous

Sample sizes n ¼ 50, 100

Bandwidth Rule of thumb

Racine et al. (2006, Tables 1 and 2)

DGP y ¼ 1þ z2þwþ d(z)þ e
d(z) ¼ az1(1þw2)

R.V. z1, z2 discrete, w continuous

Sample sizes n ¼ 50, 100

Bandwidth LSCV

Gu et al. (2007, Tables 3–8)

DGP y ¼ wþw3
þ d(z)þ e

d(z) ¼ az or d(z) ¼ a sin(2pz)
R.V. w and z continuous

Sample sizes n ¼ 50, 100

Bandwidth Rule of thumb

Hall et al. (2007, Table 2)

DGP y ¼ w1þw2þ e
R.V. w1, z1 discrete and w2, z2 continuous

Sample sizes n ¼ 100, 250

Bandwidth LSCV
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We conduct Monte Carlo simulations according to the following data-
generating processes:

DGP1: y ¼ x1 þ dx2 þ dx3 þ �.
DGP2: y ¼ x1 þ dx1x2 þ dx1x23 þ �.
DGP3: y ¼ x1 þ x2 þ x3 þ dx1ð1þ x22Þ sin ð0:5px3Þ þ dx3 sin ðx32Þ þ �.
DGP4: y ¼ x1 þ x2 þ x1x2 þ dx1x23 þ x21x4 þ dx2x3x5 þ dx3

6 þ �.

Our DGPs are given in increasing order of complexity, with DGP3

indicative of a high-frequency model. DGP1 and DGP2 are similar to the
main DGP used in Lavergne and Vuong (2000). The key difference is that
we have added an additional variable, and we allowed for interactions
between them, potentially making it harder to determine significance. DGP3

is consistent with many of the simulation studies listed in Table 1. To
appropriately determine the size properties of Gu et al.’s (2007) bootstrap
test, we set d ¼ 0. To determine power properties, we set d ¼ 0.1, 0.5, or 1.
We consider both continuous-only and discrete-only settings for
DGP1–DGP3 and use DGP4 for our mixed discrete–continuous setting.
We determine both size and power for samples sizes of n ¼ 100 and 200. We
use 399 bootstrap replications to determine the bootstrap p-value of all test
statistics and use 399 Monte Carlo simulations for each scenario considered.

In our continuous-only setting, we generate all variables as independent
N(0,1), including e. In our discrete-only setting, we change x2 from a
continuous variable to an unordered variable with Pr[xi2 ¼ 1] ¼ 0.35 and x3
from a continuous variable to an ordered categorical variable with
P(xi3 ¼ 0) ¼ 0.25, P(xi3 ¼ 1) ¼ 0.4, and P(xi3 ¼ 2) ¼ 0.35.8

Since the testing properties of the continuous-only and discrete-only case
have been canvassed in the literature, we use an expanded DGP that
includes mixed data to determine the ability of the Gu et al. (2007) test.
DGP4 is only studied in our simulations involving mixed discrete–
continuous null hypotheses. The addition of an additional continuous
regressor suggests that the size properties of the test will likely be effected
given our use of small sample sizes. To generate data from this DGP, we
draw x1, x2, x3, and e independent of each other from a standard normal. x4
is generated as an unordered categorical variable with Pr[xi4 ¼ 1] ¼ 0.35,
while x5 and x6 are ordered categorical variables with Pr[xi5 ¼ 0] ¼ 0.25,
Pr[xi5 ¼ 1] ¼ 0.4 and Pr[xi5 ¼ 2] ¼ 0.35 and Pr[xi6 ¼ 0] ¼ Pr[xi6 ¼ 1] ¼
0.25 and Pr[xi6 ¼ 2] ¼ 0.5, respectively.

We consider two rule-of-thumb metrics regarding the LSCV bandwidths
for the continuous covariates to determine if a variable (or set thereof) is
irrelevant, either two standard deviations (2 SD) or the interquartile range
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(IQR) for each variable. For discrete predictors, we use 80% of the LSCV
bandwidths’ theoretical upper bounds. For example, a dummy variable has
a bandwidth with upper bound 0.5, so our rule for assessing this variable’s
irrelevance would be a bandwidth larger than 0.4. When assessing joint
insignificance, we use a box-type method where all variables under
consideration must be smoothed out individually to be deemed jointly
irrelevant.

3.1. Continuous-Only Case

Tables 2–4 display our results in the continuous variable setting. These
tables contain quite a lot of information and as such we describe in detail
what we are reporting. First, we report the raw results from the Gu et al.
(2007) test statistic using their ad hoc bandwidth selection procedure. Their
selection of the bandwidths, when only continuous variables are present, is
to construct individual bandwidths as c � SDjn

�1=ð4þdÞ where c is a scaling
factor common to all variables, SDj the in-sample standard deviation of the
jth variable being smoothed and d is a variable used to control the rate of
decay of the bandwidth to ensure consistency with Assumption A2 of Gu
et al. (2007). We note that the theory underlying Gu et al. (2007) suggests
that the bandwidths used for the unrestricted model be smaller than what is
theoretically consistent. To do this, one can keep the scaling portion of the
bandwidth fixed (c � SDj) but change the rate on the bandwidth (d ). Our
reported results come from undersmoothing the unrestricted model while
using optimal smoothing for the restricted model as is consistent with Gu
et al. (2007, Theorems 2.1 and 2.2). We use the same set of scaling constants
as in Gu et al. (2007) (c ¼ 0.25, 0.5, 1, 2). We report size (d ¼ 0) and power
(d ¼ 0.1, 0.5, or 1) in the first block at the 1%, 5%, and 10% levels. The
second block of our table looks at the performance of the LSCV bandwidths
using our ad hoc rules for assessing irrelevance (individual or joint) as
gauged by either 2 sd (columns labeled 2 SD) of each variable or the
interquartile range of the variable (column labeled IQR).

We see from these simulation results several interesting features. First, the
size of the Gu et al. (2007) is very close to nominal levels using their
bandwidth selection measure which is encouraging given that we are
including an additional continuous covariate beyond what their simulations
investigated. As noted earlier, the power of the test appears to depend
somewhat on the choice of smoothing coefficient chosen, although the
power increases as the sample size goes up across all three of our DGPs.
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We do not present testing results for the bandwidths obtained via LSCV as
they were inappropriately sized,9 and per the earlier discussion, do not
satisfy the necessary theoretical underpinnings of the asymptotic validity
of the test.

Our bandwidth results suggest that data-driven methods successfully
remove irrelevant variables, although the percentage of times both variables
are removed jointly is, as expected, lower than how often each variable is
smoothed away. Additionally, we note that using the IQR of a variable
seems to consistently determine the appropriate irrelevant variables

Table 2. DGP1.

(a) Gu et al. (2007) Bandwidths

c ¼ 0.25 c ¼ 0.5 c ¼ 1 c ¼ 2

n ¼ 100

a 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%

d ¼ 0 0.008 0.050 0.073 0.013 0.050 0.108 0.018 0.038 0.103 0.005 0.053 0.105

d ¼ 0.1 0.003 0.045 0.110 0.013 0.065 0.120 0.013 0.050 0.123 0.038 0.103 0.163

d ¼ 0.5 0.015 0.080 0.155 0.080 0.228 0.346 0.378 0.612 0.742 0.832 0.965 0.987

d ¼ 1 0.020 0.168 0.318 0.366 0.659 0.784 0.967 1.000 1.000 1.000 1.000 1.000

n ¼ 200

a 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%

d ¼ 0 0.008 0.053 0.0080 0.013 0.053 0.05 0.015 0.063 0.125 0.015 0.058 0.103

d ¼ 0.1 0.010 0.028 0.090 0.015 0.063 0.113 0.035 0.103 0.155 0.040 0.138 0.223

d ¼ 0.5 0.023 0.103 0.188 0.158 0.373 0.489 0.722 0.892 0.945 0.987 1.000 1.000

d ¼ 1 0.090 0.358 0.524 0.799 0.957 0.980 1.000 1.000 1.000 1.000 1.000 1.000

(b) LSCV Bandwidth Results

2 SD IQR

x1 x2 x3 Joint x1 x2 x3 Joint

n ¼ 100

d ¼ 0 0.000 0.687 0.604 0.426 0.000 0.757 0.712 0.561

d ¼ 0.1 0.000 0.551 0.564 0.318 0.000 0.669 0.659 0.446

d ¼ 0.5 0.000 0.018 0.013 0.000 0.000 0.048 0.043 0.000

d ¼ 1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

n ¼ 200

d ¼ 0 0.000 0.669 0.639 0.441 0.000 0.900 0.865 0.769

d ¼ 0.1 0.000 0.486 0.489 0.263 0.000 0.822 0.837 0.687

d ¼ 0.5 0.000 0.000 0.000 0.000 0.000 0.168 0.153 0.008

d ¼ 1 0.000 0.000 0.000 0.000 0.005 0.000 0.000 0.000
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(both individually and jointly) beyond that of using 2 SD of the variable.
However, this comes at a cost as the IQR also erroneously smooths away
relevant variables at a higher frequency that does using 2 SD. This is due to
the fact that in general, our IQR was narrower than 2 SD and as such this
resulted in better performance for appropriately smoothing away irrelevant
variables but poorer performance when considering relevant variables.

What is interesting from these simulations is that while on an individual
basis using the bandwidths to determine which variables to formally test,

Table 3. DGP2.

(a) Gu et al. (2007) Bandwidths

c ¼ 0.25 c ¼ 0.5 c ¼ 1 c ¼ 2

n ¼ 100

a 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%

d ¼ 0 0.008 0.050 0.073 0.013 0.050 0.108 0.018 0.038 0.103 0.005 0.053 0.105

d ¼ 0.1 0.008 0.065 0.093 0.010 0.065 0.120 0.005 0.048 0.103 0.010 0.065 0.108

d ¼ 0.5 0.003 0.088 0.078 0.020 0.088 0.155 0.058 0.148 0.218 0.073 0.228 0.323

d ¼ 1 0.008 0.175 0.143 0.043 0.175 0.301 0.263 0.536 0.657 0.499 0.769 0.857

n ¼ 200

a 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%

d ¼ 0 0.008 0.038 0.080 0.013 0.053 0.105 0.015 0.063 0.125 0.015 0.058 0.103

d ¼ 0.1 0.003 0.038 0.080 0.015 0.045 0.108 0.023 0.088 0.128 0.015 0.058 0.100

d ¼ 0.5 0.005 0.055 0.095 0.020 0.088 0.158 0.068 0.213 0.346 0.213 0.469 0.612

d ¼ 1 0.033 0.143 0.256 0.198 0.466 0.602 0.732 0.902 0.952 0.952 0.992 0.995

(b) LSCV Bandwidth Results

2 SD IQR

x1 x2 x3 Joint x1 x2 x3 Joint

n ¼ 100

d ¼ 0 0.000 0.687 0.604 0.426 0.000 0.757 0.712 0.561

d ¼ 0.1 0.000 0.554 0.586 0.341 0.000 0.662 0.672 0.451

d ¼ 0.5 0.000 0.100 0.185 0.018 0.000 0.221 0.203 0.030

d ¼ 1 0.000 0.020 0.038 0.005 0.000 0.053 0.043 0.005

n ¼ 200

d ¼ 0 0.000 0.669 0.639 0.441 0.000 0.900 0.865 0.769

d ¼ 0.1 0.000 0.491 0.617 0.343 0.000 0.872 0.825 0.724

d ¼ 0.5 0.000 0.018 0.035 0.003 0.000 0.514 0.070 0.018

d ¼ 1 0.000 0.000 0.000 0.000 0.000 0.133 0.003 0.000
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if they are indeed irrelevant, this does not appear to be the case jointly.
When it comes to a joint decision, using the bandwidths to determine
irrelevance results in a lower total percentage of the number of times the
bandwidths jointly arrive at the appropriate set of irrelevant variables, using
our joint rule-of-thumb method. For example, in Table 4 using 2 � SD and
n ¼ 200, we see that in 66.9% of all the simulations x2 is correctly smoothed
out of the regression while 63.9% of all the simulations x3 is appropriately
removed, but jointly they are correctly removed in only 44% of the

Table 4. DGP3.

(a) Gu et al. (2007) Bandwidths

c ¼ 0.25 c ¼ 0.5 c ¼ 1 c ¼ 2

n ¼ 100

a 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%

d ¼ 0 0.008 0.050 0.073 0.013 0.050 0.108 0.018 0.038 0.103 0.005 0.053 0.105

d ¼ 0.1 0.005 0.060 0.095 0.008 0.060 0.123 0.005 0.060 0.125 0.025 0.090 0.138

d ¼ 0.5 0.008 0.080 0.165 0.083 0.206 0.308 0.271 0.481 0.607 0.579 0.837 0.917

d ¼ 1 0.028 0.160 0.333 0.396 0.664 0.769 0.957 0.985 0.992 1.000 1.000 1.000

n ¼ 200

a 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%

d ¼ 0 0.008 0.038 0.080 0.013 0.053 0.105 0.015 0.063 0.125 0.015 0.058 0.103

d ¼ 0.1 0.008 0.028 0.085 0.018 0.055 0.103 0.025 0.100 0.143 0.038 0.118 0.198

d ¼ 0.5 0.023 0.103 0.170 0.138 0.318 0.429 0.586 0.772 0.880 0.942 0.980 0.985

d ¼ 1 0.085 0.346 0.509 0.797 0.927 0.960 1.000 1.000 1.000 1.000 1.000 1.000

(b) LSCV Bandwidth Results

2 SD IQR

x1 x2 x3 Joint x1 x2 x3 Joint

n ¼ 100

d ¼ 0 0.000 0.687 0.604 0.426 0.000 0.757 0.712 0.561

d ¼ 0.1 0.000 0.554 0.586 0.341 0.000 0.662 0.672 0.451

d ¼ 0.5 0.000 0.100 0.185 0.018 0.000 0.221 0.203 0.030

d ¼ 1 0.000 0.020 0.038 0.005 0.000 0.053 0.043 0.005

n ¼ 200

d ¼ 0 0.000 0.669 0.639 0.441 0.000 0.900 0.865 0.769

d ¼ 0.1 0.000 0.491 0.617 0.343 0.000 0.872 0.825 0.724

d ¼ 0.5 0.000 0.018 0.035 0.003 0.000 0.514 0.070 0.018

d ¼ 1 0.000 0.000 0.000 0.000 0.000 0.133 0.003 0.000
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simulations. Alternatively, using the IQR rule of thumb, x2 is removed 90%
of the time and x3 is removed 86.5% of the time, resulting in them being
jointly removed 76.9% of the time. As noted earlier though, the IQR seems
to penalize too much when indeed the variables are relevant. Also, when n
increases from 100 to 200, we see that for d ¼ 0.1 and 0.5 the percentage of
times a variable that is relevant is deemed irrelevant using the IQR has
increased. This appears to be the case for d ¼ 0.1 using 2 SD as a rule of
thumb as well.

Overall, these simulations suggest that a sound empirical strategy would be
to use local constant regression coupled with LSCV bandwidth selection to
determine the variables that are initially smoothed away (based on the results
here using 2 SD as a gauge) and then to use the test of Gu et al. (2007) to
determine which of the remaining variables whose relevance is under
consideration is actually significant. This strategy will potentially circumvent
the use of ‘‘extreme’’ bandwidths in the construction of the test statistic that
resulted in the poor size properties that we found in our simulations.

3.2. Discrete-Only Case

Testing significance of discrete variables provides an opportunity to gauge
how a finite upper bound on a bandwidth impacts the test results as opposed
to an infinite upper bound. We saw that in the continuous-only case that our
rule-of-thumb methods were able to detect individual irrelevance but
refocusing our attention toward joint relevance resulted in diminished
performance relative to the testing results. Tables 5–7 provide size and
power results for our test statistic using only discrete variables in the null
hypothesis and a threshold of relevance set at 80% of the upper bound using
bandwidths determined via LSCV. Since this test has not been used in
practice before, we examine individual tests of significance as well as joint
tests of significance.

The first thing we note is that across the three DGPs, the test has impressive
size and power using the ad hoc bandwidths in both the individual and joint
testing setups. Again, we follow closely the theory laid out in Gu et al. (2007)
and undersmooth our bandwidths in the unrestricted model estimation while
using the standard level of smoothing in the restricted model. When we
consider the determination of relevance as gauged via 80% of the theoretical
upper bounds, we see that individually the bandwidths determine a high
percentage of the simulations that the appropriate variables are smoothed out
and this percentage is increasing as n increase.
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Table 5. DGP1 Where x2 and x3 are Discrete Variables.

(a) Gu et al. (2007) Bandwidths

c ¼ 0.25 c ¼ 0.5 c ¼ 1 c ¼ 2

x2 and x3 joint significance test

n ¼ 100

a 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%

d ¼ 0 0.015 0.053 0.105 0.023 0.063 0.130 0.015 0.080 0.135 0.020 0.075 0.125

d ¼ 0.1 0.020 0.070 0.110 0.023 0.078 0.135 0.023 0.088 0.160 0.035 0.088 0.175

d ¼ 0.5 0.135 0.328 0.461 0.258 0.506 0.619 0.424 0.662 0.767 0.544 0.777 0.872

d ¼ 1 0.727 0.925 0.972 0.965 0.992 0.995 0.997 0.997 1.000 0.997 1.000 1.000

n ¼ 200

a 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%

d ¼ 0 0.003 0.050 0.083 0.015 0.045 0.073 0.008 0.055 0.088 0.003 0.050 0.103

d ¼ 0.1 0.005 0.050 0.110 0.025 0.053 0.118 0.015 0.070 0.118 0.023 0.110 0.165

d ¼ 0.5 0.386 0.664 0.764 0.642 0.832 0.907 0.792 0.947 0.972 0.925 0.980 0.990

d ¼ 1 0.997 0.997 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

x2 individual significance test

n ¼ 100

a 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%

d ¼ 0 0.013 0.055 0.090 0.005 0.038 0.108 0.005 0.048 0.108 0.015 0.050 0.108

d ¼ 0.1 0.010 0.050 0.095 0.005 0.053 0.125 0.013 0.063 0.140 0.018 0.083 0.135

d ¼ 0.5 0.038 0.160 0.261 0.098 0.241 0.356 0.135 0.338 0.471 0.198 0.444 0.571

d ¼ 1 0.013 0.058 0.128 0.080 0.293 0.451 0.238 0.576 0.729 0.404 0.752 0.870

n ¼ 200

a 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%

d ¼ 0 0.013 0.058 0.095 0.015 0.048 0.100 0.020 0.050 0.083 0.010 0.055 0.095

d ¼ 0.1 0.013 0.053 0.095 0.018 0.055 0.118 0.025 0.055 0.130 0.015 0.078 0.150

d ¼ 0.5 0.093 0.286 0.401 0.198 0.439 0.574 0.358 0.617 0.742 0.471 0.712 0.842

d ¼ 1 0.504 0.764 0.842 0.779 0.907 0.950 0.922 0.967 0.987 0.957 0.987 0.992

x3 individual significance test

n ¼ 100

a 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%

d ¼ 0 0.008 0.050 0.073 0.013 0.050 0.108 0.018 0.038 0.103 0.005 0.053 0.105

d ¼ 0.1 0.018 0.063 0.115 0.015 0.068 0.135 0.023 0.073 0.148 0.023 0.078 0.150

d ¼ 0.5 0.123 0.331 0.444 0.236 0.474 0.579 0.353 0.609 0.727 0.474 0.724 0.830

d ¼ 1 0.759 0.915 0.947 0.927 0.990 0.995 0.985 1.000 1.000 1.000 1.000 1.000

n ¼ 200

a 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%

d ¼ 0 0.008 0.040 0.115 0.005 0.050 0.110 0.003 0.038 0.095 0.010 0.045 0.100

d ¼ 0.1 0.008 0.063 0.130 0.018 0.075 0.130 0.015 0.085 0.153 0.020 0.110 0.175

d ¼ 0.5 0.363 0.627 0.742 0.576 0.810 0.895 0.762 0.942 0.970 0.885 0.970 0.985

d ¼ 1 0.995 0.997 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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For example, in Table 6 we see that 69.7% of the time x2 is appropriately
smoothed away when n ¼ 100 but this number increases to 77.2% of the
time when we use samples of 200. As expected for models further away from
the null, d ¼ 0.5 and 1, as n increases the probability that a variable, or set
of variables, is smoothed away is decreasing. We note that for all of our
DGPs that when d ¼ 0.1 this model is extremely close to the null and is hard
to detect why the bandwidths suggest that a large portion of the time the
variable is smoothed away erroneously. Interestingly, our test results seem
to do a remarkable job of detecting even small departures from the null
hypothesis when the bandwidths do not, providing even more evidence that
one should formally test for insignificance.

Overall, we see that using the bootstrap test of Gu et al. (2007) using only
discrete variables in the null hypothesis results in remarkable size and power
properties, whereas raw interpretation of the bandwidths suggests that when
the null is false our joint bandwidth measure does a good job of not smoothing
out all variables simultaneously. However, when we examine our measure
when the null is true we see that indeed, as the sample size increases the per-
formance of this baseline measure is improving, it does not mimic the desirable
behavior of the formal test. Again, the results in Racine and Li (2004) suggest
that inclusion of discrete variables does not add to the curse of dimensionality
so it is natural that the test results are better than in the continuous setting
where all variables contributed to the dimensionality of the model.

3.3. Mixed Discrete–Continuous Case

In this setting, we try to mimic traditional applied milieus where there are
a variety of covariates which are of mixed type. More importantly, we are

(b) LSCV Bandwidth Results using 80% of the Upper Bound

n ¼ 100 n ¼ 200

x2 x3 Joint x2 x3 Joint

d ¼ 0 0.697 0.551 0.411 0.772 0.602 0.501

d ¼ 0.1 0.684 0.506 0.378 0.707 0.521 0.398

d ¼ 0.5 0.363 0.030 0.010 0.211 0.000 0.000

d ¼ 1 0.028 0.000 0.000 0.000 0.000 0.000

Table 5. (Continued ).
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Table 6. DGP2, Where x2 and x3 are Discrete Variables.

(a) Gu et al. (2007) Bandwidths

c ¼ 0.25 c ¼ 0.5 c ¼ 1 c ¼ 2

x2 and x3 joint significance test

n ¼ 100

a 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%

d ¼ 0 0.015 0.053 0.105 0.023 0.063 0.130 0.015 0.080 0.135 0.020 0.075 0.125

d ¼ 0.1 0.015 0.063 0.110 0.020 0.073 0.150 0.015 0.100 0.163 0.023 0.090 0.145

d ¼ 0.5 0.188 0.409 0.514 0.308 0.566 0.694 0.436 0.699 0.789 0.414 0.722 0.812

d ¼ 1 0.759 0.910 0.932 0.887 0.967 0.990 0.962 0.997 1.000 0.962 0.997 0.997

n ¼ 200

a 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%

d ¼ 0 0.003 0.050 0.083 0.015 0.045 0.073 0.008 0.055 0.088 0.003 0.050 0.103

d ¼ 0.1 0.010 0.045 0.100 0.018 0.063 0.118 0.018 0.075 0.138 0.010 0.090 0.153

d ¼ 0.5 0.509 0.707 0.799 0.692 0.845 0.915 0.822 0.952 0.980 0.865 0.980 0.992

d ¼ 1 0.997 0.997 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

x2 individual significance test

n ¼ 100

a 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%

d ¼ 0 0.013 0.040 0.078 0.020 0.050 0.090 0.005 0.045 0.123 0.005 0.033 0.110

d ¼ 0.1 0.013 0.040 0.083 0.018 0.053 0.088 0.005 0.043 0.120 0.008 0.040 0.113

d ¼ 0.5 0.018 0.075 0.118 0.023 0.100 0.158 0.030 0.098 0.185 0.023 0.108 0.195

d ¼ 1 0.073 0.168 0.298 0.123 0.281 0.431 0.145 0.371 0.531 0.133 0.401 0.559

n ¼ 200

a 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%

d ¼ 0 0.005 0.053 0.095 0.005 0.050 0.115 0.000 0.043 0.113 0.005 0.030 0.073

d ¼ 0.1 0.010 0.060 0.085 0.013 0.050 0.090 0.015 0.048 0.088 0.010 0.045 0.105

d ¼ 0.5 0.020 0.073 0.135 0.028 0.105 0.178 0.025 0.128 0.218 0.018 0.095 0.203

d ¼ 1 0.075 0.223 0.393 0.160 0.381 0.519 0.233 0.494 0.637 0.216 0.534 0.687

x3 individual significance test

n ¼ 100

a 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%

d ¼ 0 0.013 0.058 0.108 0.010 0.055 0.113 0.005 0.055 0.108 0.013 0.068 0.110

d ¼ 0.1 0.018 0.063 0.133 0.015 0.075 0.150 0.015 0.078 0.160 0.018 0.088 0.165

d ¼ 0.5 0.281 0.506 0.622 0.454 0.689 0.772 0.596 0.812 0.890 0.544 0.835 0.917

d ¼ 1 0.865 0.960 0.980 0.962 0.992 0.995 0.990 0.997 1.000 0.977 0.997 1.000

n ¼ 200

a 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%

d ¼ 0 0.008 0.040 0.115 0.005 0.050 0.110 0.003 0.038 0.095 0.010 0.045 0.100

d ¼ 0.1 0.020 0.070 0.148 0.013 0.080 0.165 0.018 0.083 0.185 0.020 0.088 0.193

d ¼ 0.5 0.629 0.810 0.890 0.817 0.955 0.980 0.937 0.987 0.992 0.957 0.992 0.997

d ¼ 1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

CHRISTOPHER F. PARMETER ET AL.92



interested in a mixed hypothesis which the current menu of available tests
does not formally allow for. Again, as mentioned earlier, theoretical backing
aside, there is no reason the test of Lavergne and Vuong (2000) and Gu et al.
(2007) cannot include discrete variables. We present several testing
scenarios, including bandwidth rules, for DGP4, in Table 8.

Our joint significance test under the appropriate null, H0 : x3, x5, x6 are
insignificant, reveals that the test appears to be oversized across all levels of
the bandwidth. The results for c ¼ 0.25, however, seem to display uniformly
better size at our conventional testing levels than our other scaling setups.
Here, we posit that the size of the test suffers due to the inclusion of an
additional, relevant covariate. This adds to the curse of dimensionality and
having a sample size of n ¼ 100 is not enough to overcome the additional
covariate. However, we see that doubling of our sample size to n ¼ 200
dramatically improves the performance of the test and that the size of the
test is almost exact in this finite sample setting. This suggests that the
nonparametric test of omitted variables can be used to test significance of
mixed joint hypothesis in practice.

Switching to the performance of the LSCV bandwidths, we note that, as
before, using IQR results in a higher proportion of the simulations with the
appropriate continuous variables smoothed out, but with this specific DGP
we do not notice the erroneous smoothing out that occurred in our previous
simulations. We note that our DGP in the mixed setting results in x5 having
a hard time being determined to be relevant even when it is true. This is
because our model is close to the null even when d ¼ 0.1, 0.5, or 1. What is
striking is that our joint measure of determination is worse than in our other
setups because our null hypothesis involves three covariates as opposed to
two. This highlights the difficulty of assessing irrelevance in a joint fashion
based on the LSCV bandwidths. Note that in only 34% of our simulations

(b) LSCV Bandwidth Results using 80% of the Upper Bound

n ¼ 100 n ¼ 200

x2 x3 Joint x2 x3 Joint

d ¼ 0 0.697 0.551 0.411 0.772 0.602 0.501

d ¼ 0.1 0.699 0.409 0.311 0.762 0.298 0.233

d ¼ 0.5 0.599 0.000 0.000 0.546 0.000 0.000

d ¼ 1 0.378 0.000 0.000 0.103 0.000 0.000

Table 6. (Continued ).
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Table 7. DGP3, Where x2 and x3 are Discrete Variables.

(a) Gu et al. (2007) Bandwidths

c ¼ 0.25 c ¼ 0.5 c ¼ 1 c ¼ 2

x2 and x3 joint significance test

n ¼ 100

a 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%

d ¼ 0 0.015 0.053 0.105 0.023 0.063 0.130 0.015 0.080 0.135 0.020 0.075 0.125

d ¼ 0.1 0.018 0.060 0.120 0.028 0.080 0.145 0.018 0.095 0.158 0.038 0.108 0.185

d ¼ 0.5 0.150 0.333 0.449 0.258 0.499 0.609 0.409 0.659 0.797 0.544 0.805 0.872

d ¼ 1 0.832 0.935 0.965 0.955 0.992 0.997 0.987 1.000 1.000 0.995 1.000 1.000

n ¼ 200

a 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%

d ¼ 0 0.003 0.050 0.083 0.015 0.045 0.073 0.008 0.055 0.088 0.003 0.050 0.103

d ¼ 0.1 0.008 0.060 0.093 0.018 0.053 0.110 0.018 0.070 0.128 0.020 0.088 0.158

d ¼ 0.5 0.366 0.617 0.742 0.586 0.837 0.917 0.815 0.947 0.977 0.920 0.982 0.992

d ¼ 1 0.997 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

x2 individual significance test

n ¼ 100

a 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%

d ¼ 0 0.013 0.055 0.090 0.005 0.038 0.108 0.005 0.048 0.108 0.015 0.050 0.108

d ¼ 0.1 0.010 0.048 0.088 0.005 0.040 0.120 0.010 0.055 0.123 0.020 0.080 0.130

d ¼ 0.5 0.030 0.133 0.236 0.078 0.211 0.311 0.113 0.328 0.434 0.175 0.409 0.536

d ¼ 1 0.190 0.381 0.484 0.318 0.544 0.697 0.496 0.724 0.815 0.589 0.807 0.887

n ¼ 200

a 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%

d ¼ 0 0.013 0.058 0.095 0.015 0.048 0.100 0.020 0.050 0.083 0.010 0.055 0.095

d ¼ 0.1 0.010 0.055 0.098 0.015 0.060 0.103 0.020 0.063 0.123 0.015 0.075 0.145

d ¼ 0.5 0.100 0.246 0.378 0.165 0.391 0.546 0.318 0.574 0.707 0.409 0.687 0.789

d ¼ 1 0.516 0.742 0.837 0.752 0.902 0.940 0.880 0.952 0.972 0.917 0.970 0.982

x3 individual significance test

n ¼ 100

a 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%

d ¼ 0 0.013 0.058 0.108 0.010 0.055 0.113 0.005 0.055 0.108 0.013 0.068 0.110

d ¼ 0.1 0.015 0.068 0.120 0.013 0.073 0.123 0.015 0.083 0.155 0.023 0.088 0.158

d ¼ 0.5 0.113 0.293 0.421 0.213 0.439 0.594 0.311 0.602 0.702 0.464 0.692 0.787

d ¼ 1 0.609 0.817 0.887 0.787 0.927 0.965 0.920 0.982 0.997 0.972 0.997 0.997

n ¼ 200

a 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%

d ¼ 0 0.008 0.040 0.115 0.005 0.050 0.110 0.003 0.038 0.095 0.010 0.045 0.100

d ¼ 0.1 0.015 0.060 0.120 0.008 0.075 0.125 0.020 0.083 0.143 0.015 0.100 0.165

d ¼ 0.5 0.291 0.506 0.639 0.456 0.702 0.789 0.639 0.832 0.920 0.764 0.932 0.975

d ¼ 1 0.955 0.992 1.000 0.997 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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were x3, x5, and x6 smoothed away simultaneously according to our
standard deviation determination rule. For d ¼ 0.5, 1, the data-driven
bandwidths never jointly remove the three variables under investigation.
We also note that x1 and x4 are never smoothed out in any of these
simulations.

These results, while limited in scope, provide two key insights for applied
econometricians. First, the standard, continuous-only nonparametric
omitted variable test can be modified to handle a joint hypothesis involving
mixed data. Second, data-driven bandwidths can be used as an effective
screen for removing irrelevant variables in a local constant setting, but they
do not preclude the use of a formal statistical test.

4. CONCLUSION

This research has focused on two broad aspects of assessing variable
irrelevance in multivariate nonparametric kernel regression in the presence
of mixed data types. First, we discussed the lack of a theoretically consistent
test that allows joint hypothesis testing involving both continuous and
categorical data. We then discussed a currently existing test of significance,
which can include both types of data simultaneously, and its performance
when either discrete or mixed data enter into the null hypothesis. Second, we
investigated the performance of several suggested ad hoc means of using
LSCV bandwidths to determine variable irrelevance prior to testing.

Our results revealed that implementing the test of Gu et al. (2007) using
mixed data types did not harm its performance with respect to size or power.
Additionally, we provided evidence that while using cross-validated
bandwidths on an individual basis resulted in good detection of variable

(b) LSCV Bandwidth Results using 80% of the Upper Bound

n ¼ 100 n ¼ 200

x2 x3 Joint x2 x3 Joint

d ¼ 0 0.697 0.551 0.411 0.772 0.602 0.501

d ¼ 0.1 0.682 0.476 0.356 0.719 0.454 0.353

d ¼ 0.5 0.393 0.023 0.003 0.251 0.000 0.000

d ¼ 1 0.050 0.000 0.000 0.000 0.000 0.000

Table 7. (Continued ).
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irrelevance, the same measures applied jointly are not as successful at
uncovering irrelevance. This suggests that in the presence of multiple
irrelevant regressors formal testing should always be used as a backdrop
for determining if a set of variables should be included in one’s final
nonparametric model. One should use economic theory to guide them
toward the appropriate set of covariates to test for joint significance.

Table 8. DGP4, Where x4, x5, and x6 are Discrete Variables.

(a) Gu et al. (2007) Bandwidths

c ¼ 0.25 c ¼ 0.5 c ¼ 1 c ¼ 2

Joint significance test H0: x3, x5, and x6 are insignificant

n ¼ 100

a 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%

d ¼ 0 0.013 0.065 0.133 0.028 0.095 0.158 0.025 0.115 0.188 0.025 0.108 0.201

d ¼ 0.1 0.018 0.090 0.165 0.048 0.173 0.263 0.173 0.348 0.469 0.356 0.619 0.729

d ¼ 0.5 0.173 0.494 0.704 0.885 0.980 0.987 1.000 1.000 1.000 1.000 1.000 1.000

d ¼ 1 0.223 0.609 0.832 0.970 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

n ¼ 200

a 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%

d ¼ 0 0.013 0.055 0.102 0.010 0.055 0.090 0.010 0.049 0.096 0.010 0.047 0.101

d ¼ 0.1 0.035 0.153 0.236 0.190 0.386 0.509 0.637 0.825 0.907 0.900 0.982 0.995

d ¼ 0.5 0.464 0.820 0.930 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

d ¼ 1 0.647 0.937 0.990 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

(b) LSCV Bandwidth Results

Variable Continuous

(2 SD)

Discrete

(0.8)

Joint

(2 SD, 0.8)

Continuous

(IQR)

Joint

(IQR, 0.8)

x1 x2 x3 x4 x5 x6 Joint x1 x2 x3 Joint

n ¼ 100

d ¼ 0 0.000 0.000 0.647 0.000 0.734 0.694 0.341 0.000 0.000 0.774 0.401

d ¼ 0.1 0.000 0.000 0.632 0.000 0.674 0.311 0.093 0.000 0.000 0.767 0.108

d ¼ 0.5 0.000 0.000 0.183 0.000 0.569 0.000 0.000 0.000 0.003 0.308 0.000

d ¼ 1 0.000 0.000 0.028 0.000 0.471 0.000 0.000 0.000 0.000 0.053 0.000

n ¼ 200

d ¼ 0 0.000 0.000 0.685 0.004 0.765 0.779 0.420 0.000 0.000 0.882 0.461

d ¼ 0.1 0.000 0.000 0.621 0.000 0.690 0.309 0.102 0.000 0.000 0.860 0.138

d ¼ 0.5 0.000 0.000 0.111 0.000 0.230 0.000 0.000 0.000 0.000 0.250 0.000

d ¼ 1 0.000 0.000 0.002 0.000 0.176 0.000 0.000 0.000 0.000 0.038 0.000
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Further research should focus on the construction of and distribution
theory for a test to formally handle mixed data types in null hypotheses,
preferably a test that only involves estimation of the unrestricted model.
Additionally, simulation results comparing test performance across local
constant and local linear methodologies would be insightful as the cross-
validated bandwidths obtained when one uses local linear (or any other
order polynomial) are not directly related to variable relevance for
continuous regressors. Also, the use of bandwidths obtained through other
cross-validation methods, such as improved AICc, would prove useful since
LSCV is known to produce bandwidths that lead to undersmoothing in
finite samples.

NOTES

1. It is hypothesized that for local polynomial estimation with polynomial degree
p, as the bandwidth diverges, the associated variable enters the model in a
polynomial of order p fashion.
2. Their power is influenced directly via the bandwidth used to perform the test

(Gu et al., 2007, Table 6).
3. See also Li and Racine (2006, p. 373) for a related discussion.
4. Their bootstrap theory only pertains to continuous variables, however.
5. One could also use the Epanechnikov or biweight kernel as well.
6. This is not entirely damning as it was shown in finite samples that the LSCV

bandwidths continued to smooth away irrelevant variables when dependence was
allowed between relevant and irrelevant regressors. The assumption was made for
ease of proof of the corresponding theorems in the paper.
7. See Henderson, Papageorgiou, and Parmeter (2008) for additional simulation

results with a large number of irrelevant variables.
8. We still have x1 continuous in these settings.
9. This was due to the fact that LSCV was providing scale factors on the order of

100 or 1000 as opposed to 0.25 or 2 for the irrelevant variables.
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SEMIPARAMETRIC ESTIMATION

OF FIXED-EFFECTS PANEL DATA

VARYING COEFFICIENT MODELS

Yiguo Sun, Raymond J. Carroll and Dingding Li

ABSTRACT

We consider the problem of estimating a varying coefficient panel data
model with fixed-effects (FE) using a local linear regression approach.
Unlike first-differenced estimator, our proposed estimator removes FE
using kernel-based weights. This results a one-step estimator without
using the backfitting technique. The computed estimator is shown to be
asymptotically normally distributed. A modified least-squared cross-
validatory method is used to select the optimal bandwidth automatically.
Moreover, we propose a test statistic for testing the null hypothesis of a
random-effects varying coefficient panel data model against an FE one.
Monte Carlo simulations show that our proposed estimator and test
statistic have satisfactory finite sample performance.

1. INTRODUCTION

Panel data traces information on each individual unit across time. Such a
two-dimensional information set enables researchers to estimate complex
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models and extract information and inferences, which may not be possible
using pure time-series data or cross-section data. With the increased
availability of panel data, both theoretical and applied work in panel data
analysis have become more popular in the recent years.

Arellano (2003), Baltagi (2005) and Hsiao (2003) provide excellent
overview of parametric panel data model analysis. However, it is well
known that a misspecified parametric panel data model may give misleading
inferences. To avoid imposing the strong restrictions assumed in the
parametric panel data models, econometricians and statisticians have
worked on theories of nonparametric and semiparametric panel data
regression models. For example, Henderson, Carroll, and Li (2008)
considered the fixed-effects (FE) nonparametric panel data model.
Henderson and Ullah (2005), Lin and Carroll (2000, 2001, 2006), Lin,
Wang, Welsh, and Carroll (2004), Lin and Ying (2001), Ruckstuhl, Welsh,
and Carroll (2000), Wang (2003), and Wu and Zhang (2002) considered the
random-effects (RE) nonparametric panel data models. Li and Stengos
(1996) considered a partially linear panel data model with some regressors
being endogenous via instrumental variable (IV) approach, and Su and
Ullah (2006) investigated an FE partially linear panel data model with
exogenous regressors.

A purely nonparametric model suffers from the ‘curse of dimensionality’
problem, while a partially linear semiparametric model may be too
restrictive as it only allows for some additive nonlinearities. The varying
coefficient model considered in this paper includes both pure nonparametric
model and partially linear regression model as special cases. Moreover, we
assume an FE panel data model. By FE we mean that the individual effects
are correlated with the regressors in an unknown way. Consistent with the
well-known results in parametric panel data model estimation, we show that
RE estimators are inconsistent if the true model is one with FE, and that FE
estimators are consistent under both RE- and FE panel data model,
although the RE estimator is more efficient than the FE estimator when the
RE model holds true. Therefore, estimation of RE models is appropriate
only when individual effects are uncorrelated with regressors. As, in
practice, economists often view the assumptions required for the RE model
as being unsupported by the data, this paper emphasizes more on estimating
an FE panel data varying coefficient model, and we propose to use the local
linear method to estimate unknown smooth coefficient functions. We also
propose a test statistic for testing an RE varying coefficient panel data
model against an FE one. Simulation results show that our proposed
estimator and test statistic have satisfactory finite sample performances.
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Recently, Cai, and Li (2008) studied a dynamic nonparametric panel data
model with unknown varying coefficients. As Cai and Li (2008) allow the
regressors not appearing in the varying coefficient curves to be endogenous,
the generalized method of moments-based IV estimation method plus local
linear regression approach is used to deliver consistent estimator of the
unknown smooth coefficient curves. In this paper, all the regressors are
assumed to be exogenous. Therefore, the least-squared method combining
with local linear regression approach can be used to produce consistent
estimator of the unknown smoothing coefficient curves. In addition, the
asymptotic results are given when the time length is finite.

The rest of the paper is organized as follows. In Section 2 we set up the
model and discuss transformation methods that are used to remove FE.
Section 3 proposes a nonparametric FE estimator and studies its asymptotic
properties. In Section 4 we suggest a statistic for testing the null hypothesis
of an RE varying coefficient model against an FE one. Section 5 reports
simulation results that examine the finite sample performance of our
semiparametric estimator and the test statistic. Finally we conclude the
paper in Section 6. The proofs of the main results are collected in the
appendix.

2. FIXED-EFFECTS VARYING COEFFICIENT

PANEL DATA MODELS

We consider the following FE varying coefficient panel data regression
model

Yit ¼ X>it yðZitÞ þ mi þ vit i ¼ 1; . . . ; n; t ¼ 1; . . . ;m (1)

where the covariate Zit ¼ ðZit;1; . . . ;Zit;qÞ
> is of dimension q, Xit ¼

ðXit;1; . . . ;Xit;pÞ
> is of dimension p, yð�Þ ¼ fy1ð�Þ; . . . ; ypð�Þg> contains p

unknown functions; and all other variables are scalars. None of the
variables in Xit can be obtained from Zit and vice versa. The random errors
uit are assumed to be independently and identically distributed (i.i.d.) with a
zero mean, finite variance s2u40 and independent of mj, Zjs and Xjs for all i, j,
s and t. The unobserved individual effects mi are assumed to be i.i.d. with a
zero mean and a finite variance s2m40. We allow for mi to be correlated with
Zit and/or Xit with an unknown correlation structure. Hence, model (1) is
an FE model. Alternatively, when mi is uncorrelated with Zit and Xit, model
(1) becomes an RE model.
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A somewhat simplistic explanation for consideration of FE models and
the need for estimation of the function y( � ) arises from considerations such
as the following. Suppose that Yit is the (logarithm) income of individual i at
time period t; Xit is education of individual i at time period t, for example,
number of years of schooling; and Zit is the age of individual i at time t. The
FE term mi in Eq. (1) includes the individual’s unobservable characteristics
such as ability (e.g. IQ level) and characteristics which are not observable for
the data at hand. In this problem, economists are interested in the marginal
effects of education on income, after controlling for the unobservable
individual ability factors. Hence, they are interested in the marginal effects
in the income change for an additional year of education regardless of
whether the person has high or low ability. In this simple example, it is
reasonable to believe that ability and education are positively correlated.
If one does not control for the unobserved individual effects, then one would
overestimate the true marginal effects of education on income (i.e. with an
upward bias).

When Xit	 1 for all i and t and p ¼ 1, model (1) reduces to Henderson
et al. (2008) nonparametric panel data model with FE as a special case. One
may also interpret X>it yðZitÞ as an interactive term between Xit and Zit,
where we allow y(Zit) to have a flexible format since the popularly used
parametric set-up such as Zit and/or Z

2
it may be misspecified.

For a given FE model, there are many ways of removing the unknown
fixed effects from the model.

The usual first-differenced (FD) estimation method deducts one equation
from another to remove the time-invariant FE. For example, deducting
equation for time t from that for time t� 1, we have for t ¼ 2, y, m

~Yit ¼ Yit � Yi;t�1 ¼ X>it yðZitÞ � X>it�1yðZit�1Þ þ ~vit with ~vit ¼ vit � vi;t�1

(2)

or deducting equation for time t from that for time 1, we obtain for
t ¼ 2, y, m

~Yit ¼ Yit � Yi1 ¼ X>it yðZitÞ � X>i1yðZi1Þ þ ~vit with ~vit ¼ vit � vi1 (3)

The conventional FE estimation method, on the other hand, removes the
FE by deducting each equation from the cross-time average of the system,
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and it gives for t ¼ 2, y, m

~Yit ¼ Yit �
1

m

Xm
s¼1

Yis ¼ X>it yðZitÞ �
1

m

Xm
s¼1

X>isyðZisÞ þ ~vit

¼
Xm
s¼1

qtsX
>
isyðZisÞ þ ~vit with ~vit ¼ vit �

1

m

Xm
s¼1

vis ð4Þ

where qts ¼ � 1/m if s 6¼ t and 1� 1/m otherwise, and
Pm

s¼1qts ¼ 0 for all t.
Many nonparametric local smoothing methods can be used to estimate

the unknown function y( � ). However, for each i, the right-hand sides of Eqs.
(2)–(4) contain linear combination of X>it yðZitÞ for different time t. If Xit

contains a time-invariant term, say the first component of Xit, and let y1(Zit)
denote the first component of y(Zit), then a first difference of Xit;1y1ðZitÞ 	

Xi;1y1ðZitÞ gives Xi,1(y1(Zit)� y1(Zi,t� 1)), which is an additive function with
the same function form for the two functions but evaluated at different
observation points. Kernel-based estimator usually requires some back-
fitting algorithms to recover the unknown function, which will suffer the
common problems as indicated in estimating nonparametric additive model.
Moreover, if y1(Zit) contains an additive constant term, say y(Zit) ¼
cþ g1(Zit), where c is a constant, then the first difference will wipe out the
additive constant c. As a consequence, one cannot consistently estimate
y1( � ) if one were to estimate an FD model in general (if Xi;1 	 1, one can
recover c by averaging Yit � X>it ŷðZitÞ for all cross-sections and across time).

Therefore, in this paper we consider an alternative way of removing the
unknown FE, motivated by a least-squares dummy variable (LSDV) model
in parametric panel data analysis. We will describe how the proposed
method removes FE by deducting a smoothed version of cross-time average
from each individual unit. As we will show later, this transformation
method will not wipe the additive constant c in y1(Zit) ¼ cþ g1(Zit).
Therefore, we can consistently estimate y1( � ) as well as other components of
y( � ) when at most one of the variables in Xit is time invariant.

We will use In to denote an identity matrix of dimension n, and em to
denote an m� 1 vector with all elements being 1s. Rewriting model (1) in a
matrix format yields

Y ¼ BfX ; yðZÞg þD0m0 þ V (5)

where Y ¼ ðY>1 ; . . . ;Y
>
n Þ
> and V ¼ ðv>1 ; . . . ; v

>
n Þ
> are (nm)� 1 vectors;

Y>i ¼ ðYi1; . . . ;YinÞ and v> ¼ ðvi1; . . . ; vinÞ. B{X, y(Z)} stacks all X>it yðZitÞ

into an (nm)� 1 vector with the (i, t) subscript matching that of the (nm)� 1
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vector of Y; m0 ¼ (m1,y, mn)
T is an n� 1 vector; and D0 ¼ In� em is an

(nm)� n matrix with main diagonal blocks being em, where � refers to
Kronecker product operation. However, we cannot estimate model
(5) directly due to the existence of the FE term. Therefore, we need some
identification conditions. Su and Ullah (2006) assume

Pn
i¼1mi ¼ 0. We show

that assuming an i.i.d sequence of unknown FE mi with zero mean and a
finite variance is enough to identify the unknown coefficient curves
asymptotically. We therefore impose this weaker version of identification
condition in this paper.

To introduce our estimator, we first assume that model (1) holds with the
restriction

Pn
i¼1mi ¼ 0 (note that we do not impose this restriction for our

estimator, and this restriction is added here for motivating our estimator).
Define m ¼ ðm2; . . . ;mnÞ

>. We then rewrite Eq. (5) as

Y ¼ BfX ; yðZÞg þDmþ V (6)

where D ¼ ½�en�1 In�1�
> � em is an (nm)� (n� 1) matrix. Note that

Dm ¼ m0� em with m0 ¼ ð�
Pn

i¼2mi; m2; . . . ;mnÞ
> so that the restrictionPn

i¼1mi ¼ 0 is imposed in Eq. (6).
Define an m�m diagonal matrix KHðZi; zÞ ¼ diagfKHðZi1;zÞ; . . . ;

KHðZim;zÞg for each i, and a (nm)� (nm) diagonal matrix WHðzÞ ¼
diagfKHðZ1;zÞ; . . . ;KHðZn; zÞg, where KHðZit; zÞ ¼ KfH�1ðZit � zÞg for all i
and t, and H ¼ diagðh1; . . . ; hqÞ is a q� q diagonal bandwidth matrix. We
then solve the following optimization problem:

min
yðZÞ;m
½Y � BfX ; yðZÞg �Dm�TWHðzÞ½Y � BfX ; yðzÞg �Dm� (7)

where we use the local weight matrix WH (z) to ensure locality of our
nonparametric fitting, and place no weight matrix for data variation since
the {vit} are i.i.d. across equations. Taking first-order condition with respect
to m gives

D>WHðzÞ½Y � BfX ; yðZÞg �Dm̂ðzÞ� ¼ 0 (8)

which yields

m̂ðzÞ ¼ fD> �WHðzÞDg
�1D>WHðzÞ½Y � BfX ; yðZÞg� (9)

Define SHðzÞ ¼MHðzÞ
>WHðzÞMHðzÞ and MHðzÞ ¼ In�m �D

fD>WHðzÞDg
�1D>WHðzÞ, where In�m denotes an identity matrix of

dimension (nm)� (nm). Replacing m in Eq. (7) by m̂ðzÞ, we obtain the concen-
trated weighted least squares

min
yðZÞ
½Y � BfX ; yðZÞg�>SHðZÞ½Y � BfX ; yðZÞg� (10)
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Note that MHðzÞDm 	 0ðnmÞ�1 for all z. Hence, the FE term m is removed in
model (10).

To see how MH (z) transforms the data, simple calculations give

MHðzÞ ¼ In�m �D
A�1 � A�1en�1e

>
n21A

�1Pn
i¼1cHðZi; zÞ

	 

D>WHðzÞ

where cHðZi; zÞ
�1
¼
Pm

t¼1KHðZit; zÞ for i ¼ 1; . . . ; n and A ¼ diag
fcHðZ2; zÞ

�1; . . . ; cHðZn; zÞ
�1
g. We use the formula ðAþ BCDÞ�1 ¼ A�1

�A�1BðDA�1Bþ C�1Þ�1DA�1 to derive the inverse matrix, see Appendix B
in Poirier (1995).

3. NONPARAMETRIC ESTIMATOR

AND ASYMPTOTIC THEORY

A local linear regression approach is commonly used to estimate non-/
semiparametric models. The basic idea of this method is to apply Taylor
expansion up to the second-order derivative. Throughout the paper we will
use the notation An E Bn to denote that Bn is the leading term of An, that
is An ¼ Bnþ (s.o.), where (s.o.) denotes terms having probability order
smaller than that of Bn. For each l ¼ 1; . . . ; p, we have the following Taylor
expansion around z:

ylðzitÞ  ylðzÞ þ Hy0lðzÞ
� �>

½H�1ðzit � zÞ� þ
1

2
rH;lðzit; zÞ (11)

where y0lðzÞ ¼ @ylðzÞ=@z is the q� 1 vector of the first-order derived func-
tion, and rH;lðzit; zÞ ¼ fH

�1ðzit � zÞg>fHðð@2ylðzÞÞ=ð@z@z>ÞÞHgfH�1ðzit � zÞg.
Of course, yl (z) approximates yl (zit) and y0lðzÞ approximates y0lðzitÞ when zit is
close to z. Define blðzÞ ¼ fylðzÞ; ½Hy0lðzÞ�

>g>; a ðqþ 1Þ � 1 column vector for
l ¼ 1; 2; . . . ; p, and bðzÞ ¼ fb1ðzÞ; . . . ; bpðzÞg

>, a p� ðqþ 1Þparameter matrix.
The first column of b(z) is y(z). Therefore, we will replace y(Zit) in Eq. (1) by
b(z)Git(z, H) for each i and t, where Gitðz;HÞ ¼ ½1; fH

�1ðZit � zÞg>�> is a
(qþ 1)� 1 vector.

To make matrix operations simpler, we stack the matrix b(z) into a
p(qþ 1)� 1 column vector and denote it by vec{b(z)}. Since vec(ABC) ¼
(C?
�A)vec(B) and (A�B)? ¼ A?

� B?, where � refers to Kronecker
product, we have X>it bðzÞGitðz;HÞ ¼ fGitðz;HÞ � Xitg

>vecfbðzÞg for all i and t.
Thus, we consider the following minimization problem:

min
bðZÞ
½Y � Rðz;HÞvecfbðZÞg�>SHðzÞ½Y � Rðz;HÞvecfbðzÞg� (12)
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where

Riðz;HÞ ¼

ðGi;1ðz;HÞ � Xi1Þ
>

..

.

ðGi;mðz;HÞ � XimÞ
>

2664
3775 is an m� ½ pðqþ 1Þ� matrix; and

Rðz;HÞ ¼ ½R1ðz;HÞ
>; . . . ;Rnðz;HÞ

>
�> is an ðnmÞ � ½ pðqþ 1Þ� matrix

Simple calculations give

vecfb̂ðzÞg ¼ fRðz;HÞ>SHðzÞRðz;HÞg
�1Rðz;HÞ>SHðzÞY

¼ vecfbðzÞg þ fRðz;HÞ>SHðzÞRðz;HÞg
�1ðAn=2þ Bn þ CnÞ ð13Þ

where An ¼ Rðz;HÞ>SHðzÞPðz;HÞ, Bn ¼ Rðz;HÞ>SHðzÞD0m0, and
Cn ¼ Rðz;HÞ>SHðzÞV . The ftþ ði � 1Þmgth element of the column vector
Pðz;HÞ is X>it rHð

~Zit; zÞ, where rHð�; �Þ ¼ frH;1ð�; �Þ; . . . ; rH;pð�; �Þg
> and

rH;lð ~Zit; zÞ ¼ fH
�1ðZit � zÞg>fHðð@2ylð ~ZitÞÞ=ð@z@z>ÞÞHgfH

�1ðZit � zÞg with
~Zit lying between Zit and z for each i and t. Both An and Bn contribute to
the bias term of the estimator. Also, if

Pn
i¼1mi ¼ 0 holds true, Bn ¼ 0; if we

only assume mi being i.i.d. with zero mean and finite variance, the bias due to
the existence of unknown FE can be asymptotically ignored.

To derive the asymptotic distribution of vecfb̂ðzÞg, we first give some
regularity conditions. Throughout this paper, we useMW0 to denote a finite
constant, which may take a different value at different places.

Assumption 1. The random variables Xit and Zit are i.i.d. across the i
index, and

(a) EjjXitjj
2ð1þdÞ �Mo1 and EjjZitjj

2ð1þdÞ �Mo1 hold for some dW0
and for all i and t.

(b) The Zit are continuous random variables with a probability density
function (pdf) ft(z). Also, for each zARq, f ðzÞ ¼

Pm
t¼1f tðzÞ40.

(c) Denote lit ¼ KHðZit; zÞ and $it ¼ lit=
Pm

t¼1lit 2 ð0; 1Þ for all i and t.
CðzÞ ¼ Hj j�1

Pm
t¼1 E½ð1�$itÞlitXitX

T
it � is a nonsingular matrix.

(d) Let ft (z|Xit) be the conditional pdf of Zit at Zit ¼ z conditional on Xit

and f t;sðz1; z2jXit;XjsÞ be the joint conditional pdf of (Zit, Zjs) at
(Zit, Zjs) ¼ (z1, z2) conditional on (Xit, Xjs) for t 6¼ s and any i and j.
Also, yðzÞ, ftðzÞ, ftð�jXitÞ, f t;sð�; �jXit;XjsÞ are uniformly bounded in the
domain of Z, and are all twice continuously differentiable at zARq for
all t 6¼ s, i and j.

YIGUO SUN ET AL.108



Assumption 2. Both X and Z have full column rank; fXit;1; . . . ;Xit;p;
fXit;lZit;j : l ¼ 1; . . . ; p; j ¼ 1; . . . ; qgg are linearly independent. If Xit,l 	Xi,l

for at most one l 2 f1; . . . ; pg; that is Xi,l does not depend on t, we assume
E(Xi,l) 6¼ 0. The unobserved FE mi are i.i.d. with zero mean and finite
variance s2m40. The random errors vit are assumed to be i.i.d. with a zero
mean, finite variance s2n and independent of Zit and Xit for all i and t. Yit is
generated by Eq. (1).

If Xit contains a time invariant regressor, say the lth component of Xit

is Xit,l ¼Wi. Then the corresponding coefficient yl ( � ) is estimable if
MHðzÞðW � emÞa0 for a given z, where W ¼ ðW1; . . . ;WnÞ

>. Simple
calculations give MHðzÞðW � emÞ ¼ ðn

�1
Pn

i¼1WiÞMHðzÞ � ðen � emÞ. The
proof of Lemma A.2 in ‘Proof of Theorem 1’ in the appendix can be used
to show that MHðzÞðen � emÞa0 for any given z with probability 1.
Therefore, yl ( � ) is asymptotically identifiable if n�1

Pn
i¼1Xit;l 	

n�1
Pn

i¼1WiQ0 while �m!
a:s:

0. For example, if Xit contains a constant, say,
Xit,1 ¼Wi	 1, then y1( � ) is estimable because n�1

Pn
i¼1Wi ¼ 1a0.

Assumption 3. KðuÞ ¼
Qq

s¼1kðusÞ is a product kernel, and the univariate
kernel function k( � ) is a uniformly bounded, symmetric (around zero) pdf
with a compact support [� 1, 1]. In addition, define jHj ¼ h1 � � � hq and

jjHjj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPq

j¼1h
2
j

q
. As n!1; jjHjj ! 0; njHj ! 1.

The assumptions listed above are regularity assumptions commonly
seen in nonparametric estimation literature. Assumption 1 apparently
excludes the case of either Xit or Zit being I(1); other than the moment
restrictions, we do not impose I(0) structure on Xit across time, since
this paper considers the case that m is a small finite number. Also, instead
of imposing the smoothness assumption on ft( � |Xit) and ft,s ( � , � |Xit, Xis)
as in Assumption 1(d), we can assume that f tðzÞEðXitX

T
it jzÞ and

f t;sðz1; z2ÞEðXitX
T
js jz1; z2Þ are uniformly bounded in the domain of Z and

are all twice continuously differentiable at zARq for all t 6¼ s and i and j.
Our version of the smoothness assumption simplifies our notation in
the proofs.

Assumption 2 indicates that Xit can contain a constant term of 1s. The
kernel function having a compact support in Assumption 3 is imposed for
the sake of brevity of proof and can be removed at the cost of lengthy
proofs. Specifically, the Gaussian kernel is allowed.

We use ŷðzÞ to denote the first column of b̂ðzÞ. Then ŷðzÞ estimates y(z).
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Theorem 1. Under Assumptions 1–3, we obtain the following bias and
variance for ŷðzÞ, given a finite integer mW0:

biasðŷðzÞÞ ¼
CðzÞ�1LðzÞ

2
þOðn�1=2jHj lnðln nÞ þ oðjjHjj2Þ

varðŷðzÞÞ ¼ n�1jHj�1s2vcðzÞ
�1GðzÞcðzÞ�1 þ oðn�1jHj�1Þ

where cðzÞ ¼ jHj�1
Pm

t¼1E½ð1�$itÞlitXitX
T
it �, LðzÞ ¼ jHj

�1
Pm

t¼1 E½ð1�$itÞ

litXitX
T
it rHð

~Zit; zÞ� ¼ OðjjHjj2Þ, and GðzÞ ¼ jHj�1
Pm

t¼1E½ð1�$itÞ
2l2itXit

XT
it �.
The first term of biasðŷðzÞÞ results from the local approximation of y (z) by

a linear function of z, which is of order O (||H||2) as usual. The second term
of biasðŷðzÞÞ results from the unknown FE mi: (a) if we assumed

Pn
i¼1mi ¼ 0,

this term is zero exactly and (b) the result indicates that the bias term is
dominated by the first term and will vanish as n-N.
In the appendix, we show that

jHj�1
Xm
t¼1

EðlitXitX
T
it Þ ¼ FðzÞ þ oðjjHjj2Þ

jHj�1
Xm
t¼1

E½litXitX
T
it rHð

~Zit; zÞ� ¼ k2FðzÞYHðzÞ þ oðjjHjj2Þ

Hj j�1
Xm
t¼1

Eðl2itXitX
T
it Þ ¼

Z
K2ðuÞdu

� �
FðzÞ þ o jjHjj2

 �
where k2 ¼

R
kðuÞ u2du, FðzÞ ¼

Pm
t¼1f tðzÞEðX1tX

T
1tjzÞ and YHðzÞ ¼

½trðHðð@2y1ðzÞÞ=ð@z@zT ÞÞHÞ; . . . ; trðHðð@2ypðzÞÞ=ð@z@zT ÞÞHÞ�T . Since $it 2

½0; 1Þ for all i and t, the results above imply the existence of C(z), L(z)
and G(z). However, given a finite integer mW0, we cannot obtain explicitly
the asymptotic bias and variance due to the random denominator appearing
in $it.

Further, the following theorem gives the asymptotic normality results
for ŷðzÞ.

Theorem 2. Under Assumptions 1–3, and assuming in addition that
Ejvitj

2þdo1 for some dW0, and that
ffiffiffiffiffiffiffiffiffiffi
njHj
p

jjHjj2 ¼ Oð1Þ as!1, we
have ffiffiffiffiffiffiffiffiffiffi

njHj
p

ŷðzÞ � yðzÞ �C ðzÞ�1
LðzÞ
2

	 

!
d
N 0;

X
yðzÞ

� �
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where SyðzÞ ¼ s2v limn!1CðzÞ
�1G ðzÞCðzÞ�1: Moreover, a consistent estima-

tor for Sy(z) is given as follows:

bSyðzÞ ¼ SpÔðz;HÞ
�1Ĵðz;HÞÔðz;HÞ�1S>p !

p
SyðzÞ

Ôðz;HÞ ¼ n�1jHj�1Rðz;HÞ>SHðzÞRðz;HÞ

Ĵðz;HÞ ¼ n�1jHj�1Rðz;HÞ>SHðzÞV̂V̂
>
SHðzÞRðz;HÞ

where V̂ is the vector of estimated residuals and Sp includes the first p rows
of the identity matrix of dimension p(qþ 1). Finally, a consistent estimator
for the leading bias can be easily obtained based on a nonparametric local
quadratic regression result.

4. TESTING RANDOM EFFECTS VERSUS

FIXED EFFECTS

In this section we discuss how to test for the presence of RE versus FE
in a semiparametric varying coefficient panel data model. The model
remains as (1). The RE specification assumes that mi is uncorrelated with the
regressors Xit and Zit, while for the FE case, mi is allowed to be correlated
with Xit and/or Zit in an unknown way.
We are interested in testing the null hypothesis (H0) that mi is a random

effect versus the alternative hypothesis (H1) that mi is a fixed effect. The null
and alternative hypotheses can be written as

H0 : Pr EðmijZi1; . . . ;Zim;Xi1; . . . ;XimÞ ¼ 0
� �

¼ 1 for all i (14)

H1 : PrfEðmijZi1; . . . ;Zim;Xi1; . . . ;XimÞa0g40 for some i (15)

while we keep the same set-up given in model (1) under both H0 and H1.
Our test statistic is based on the squared difference between the FE

and RE estimators, which is asymptotically zero under H0 and positive
under H1. To simplify the proofs and save computing time, we use local
constant estimator instead of local linear estimator for constructing our test.

Then following the argument in Section 2 and ‘Technical Sketch: Random
Effects Estimator’ in the appendix, we have

ŷFEðzÞ ¼ fX>SHðzÞXg
�1X>SHðzÞY

ŷREðzÞ ¼ fX
>WHðzÞXg

�1X>WHðzÞY
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where X is an (nm)� p with X ¼ ðX>1 ; . . . ;X
>
n Þ, and for each i;Xi ¼

ðXi1; . . . ;XimÞ
> is an m� pmatrix with Xit ¼ ½Xit;1; . . . ;Xit;p�

>. Motivated by
Li, Huang, Li, and Fu (2002), we remove the random denominator of ŷFEðzÞ
by multiplying X>SHðzÞX , and our test statistic will be based on

Tn ¼

Z
fŷFEðzÞ � ŷREðzÞg

>fX>SHðzÞXg
>fX>SHðzÞXgfŷFEðzÞ � ŷREðzÞgdz

¼

Z
~UðzÞ>SHðzÞXX

>SHðzÞ ~UðzÞdz

since fX>SHðzÞXgfŷFEðzÞ � ŷREðzÞg ¼ X>SHðzÞfY � X ŷREðzÞg 	 X>SHðzÞ
~UðzÞ. To simplify the statistic, we make several changes in Tn. First, we
simplify the integration calculation by replacing ~UðzÞ by ~U, where Û 	
Û Zð Þ ¼ Y � BfX ; ŷREðZÞg and BfX ; ŷREðZÞg stacks up XT

it ŷREðZitÞ in the
increasing order of i first, then of t. Second, to overcome the complexity
caused by the random denominator in MH(z), we replace MH(z) by MD ¼

In�m �m�1In � ðeme
>
mÞ such that the FE can be removed due to the fact that

MDD0 ¼ 0. With the above modification and also removing the i ¼ j terms
in Tn (since Tn contains two summations

P
i

P
j), our further modified test

statistic is given by

~Tn ¼
def
Xn
i¼1

X
jai

Û
>

i Qm

Z
KHðZi; zÞX

>
i XjKHðZj ; zÞdzQmÛj

where Qm ¼ Im �m�1eme
>
m. If |H|-0 as n-N, we obtain

jHj�1
Z

KHðZi; zÞX
>
i XjKHðZj ; zÞdz

¼

�KHðZi;1;Zj;1ÞX
>
i;1Xj;1 � � � �KHðZi;1;Zj;mÞX

>
i;1Xj;m

..

. . .
. ..

.

�KHðZi;m;Zj;1ÞX
>
i;mXj;1 . . . �KHðZi;m;Zj;mÞX

>
i;mXj;m

266664
377775 ð16Þ

where �KHðZit;ZjsÞ ¼
R
KfH�1ðZit � ZjsÞ þ ogKðoÞdo. We then replace

�KHðZit;ZjsÞ by KHðZit;ZjsÞ; this replacement will not affect the essence of
the test statistic since the local weight is untouched. Now, our proposed test
statistic is given by

T̂n ¼
1

n2jHj

Xn
i¼1

Xn
jai

Û
>

i QmAi; jQmÛj (17)
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where Ai,j equals the right-hand side of Eq. (16) after replacing �KHðZit;ZjsÞ

by KHðZit;ZjsÞ. Finally, to remove the asymptotic bias term of the proposed
test statistic, we calculate the leave-one-unit-out RE estimator of y(Zit); that
is for a given pair of (i, j) in the double summation of Eq. (17) with i 6¼ j,
ŷREðZitÞ is calculated without using the observations on the jth unit,
fðXjt;Zjt;YjtÞg

m
t¼1 and ŷREðZjtÞ is calculated without using the observations

on the ith unit.
We present the asymptotic properties of this test below and delay the

proofs to the appendix in ‘Proof of Theorem 3’.

Theorem 3. Under Assumptions 1–3, and ft(z) has a compact support
S for all t, and n

ffiffiffiffiffiffiffi
jHj
p

jjHjj4! 0 as n-N, then we have under H0 that

Jn ¼ n
ffiffiffiffiffiffiffi
Hj j

p T̂n

ŝ0
!
d
Nð0; 1Þ (18)

where ŝ20 ¼
2

n2jHj

Pn
i¼1

Pn
jaiðV̂

>

i QmAi;jQmV̂jÞ
2 is a consistent estimator of

s20 ¼ 4 1�
1

m

� �2

s4v

Z
K2ðuÞdu

Xm
t¼2

Xt�1
s¼1

E½ f tðZ1sÞðX
>
1sX2tÞ

2
�

where V̂ it ¼ Yit � XT
it ŷFEðZitÞ � m̂i and for each pair of (i, j), i 6¼ j, ŷFEðZitÞ is

a leave-two-unit-out FE estimator without using the observations from
the ith and jth units and m̂i ¼ �Yi �m�1

Pm
t¼1X

>
it ŷFEðZitÞ. Under H1,

Pr[JnWBn]-1 as n-N, where Bn is any nonstochastic sequence with
Bn ¼ oðn

ffiffiffiffiffiffiffi
jHj
p

Þ.
Assuming that ft(z) has a compact support S for all t is to simplify

the proof of supz2SjjŷREðzÞ � yðzÞjj ¼ opð1Þ as n!1; otherwise, some
trimming procedure has to be placed to show the uniform convergence
result and the consistency of ŝ20 as an estimator of s2

0. Theorem 3 states
that the test statistic Jn ¼ n

ffiffiffiffiffiffiffi
jHj
p

T̂n=ŝ0 is a consistent test for testing H0

against H1. It is a one-sided test. If Jn is greater than the critical values
from the standard normal distribution, we reject the null hypothesis at the
corresponding significance levels.

5. MONTE CARLO SIMULATIONS

In this section we report some Monte Carlo simulation results to examine
the finite sample performance of the proposed estimator. The following data
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generating process is used:

Yit ¼ y1ðZitÞ þ y2ðZitÞ þ Xit þ mi þ vit (19)

where y1ðzÞ ¼ 1þ zþ z2; y2ðzÞ ¼ sinðzpÞ;Zit ¼ oit þ oi;t�1;oit is i.i.d.
uniformly distributed in ½0;p=2�;Xit ¼ 0:5Xi;t�1 þ xit; xit is i.i.d. N(0, 1). In
addition, mi ¼ c0 �Zi: þ mi for i ¼ 2; . . . ; n with c0 ¼ 0, 0.5, and 1.0, ui is i.i.d.
N(0, 1). When c0 6¼ 0, mi and Zit are correlated; we use c0 to control the
correlation between mi and �Zi ¼ m�1

Pm
t¼1Zit. Moreover, vit is i.i.d. N(0, 1),

and oit, xit, ui and vit are independent of each other.
We report estimation results for both the proposed FE and RE

estimators; see ‘Technical Sketch: Random Effects Estimator’ in the
appendix for the asymptotic results of the RE estimator. To learn how
the two estimators perform when we have FE model and when we have
RE model, we use the integrated squared error as a standard measure of
estimation accuracy:

ISEðŷlÞ ¼
Z
fŷlðzÞ � ylðzÞg2f ðzÞ dz (20)

which can be approximated by the average mean squared error (AMSE)

AMSEðŷlÞ ¼ ðnmÞ
�1
Xn
i¼1

Xm
t¼1

½ŷlðZitÞ � ylðZitÞ�
2

for l ¼ 1, 2. In Table 1 we present the average value of AMSEðŷlÞ from 1,000
Monte Carlo experiments. We choose m ¼ 3 and n ¼ 50, 100 and 200.

Table 1. Average Mean Squared Errors (AMSE) of the Fixed- and
Random-Effects Estimators When the Data Generation Process is a

Random Effects Model and When it is a Fixed Effects Model.

Data Process Random Effects Estimator Fixed Effects Estimator

n ¼ 50 n ¼ 100 n ¼ 200 n ¼ 50 n ¼ 100 n ¼ 200

Estimating y1 ( � ):
c0 ¼ 0 0.0951 0.0533 0.0277

c0 ¼ 0.5 0.6552 0.5830 0.5544 0.1381 0.1163 0.1021

c0 ¼ 1.0 2.2010 2.1239 2.2310

Estimating y2 ( � ):
c0 ¼ 0 0.1562 0.0753 0.0409

c0 ¼ 0.5 0.8629 0.7511 0.7200 0.1984 0.1379 0.0967

c0 ¼ 1.0 2.8707 2.4302 2.5538
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Since the bias and variance of the proposed FE estimator do not depend
on the values of the FE, our estimates are the same for different values of c0;
however, it is not true under the RE model. Therefore, the results derived
from the FE estimator are only reported once in Table 1 since it is invariant
to different values of c0.

It is well known that the performance of non/semiparametric models
depends on the choice of bandwidth. Therefore, we propose a leave-one-
unit-out cross-validation method to automatically select the optimal
bandwidth for estimating both the FE and RE models. Specifically, when
estimating y( � ) at a point Zit, we remove fðXit;Yit;ZitÞg

m
t¼1 from the data

and only use the rest of (n� 1)m observations to calculate ŷð�iÞðZitÞ. In
computing the RE estimate, the leave-one-unit-out cross-validation method
is just a trivial extension of the conventional leave-one-out cross-validation
method. The conventional leave-one-out method fails to provide satisfying
results due to the existence of unknown FE. Therefore, when calculating
the FE estimator, we use the following modified leave-one-unit-out cross-
validation method:

Ĥopt ¼ arg min
H
½Y � BfX ; ŷð�1ÞðZÞg�>M>DMD½Y � BfX ; ŷð�1ÞðZÞg� (21)

where MD ¼ In�m �m�1In � ðeme
>
mÞ satisfies MDD0 ¼ 0; this is used to

remove the unknown FE. In addition, BfX ; ŷð�1ÞðZÞg stacks up X>it ŷð�iÞðZitÞ

in the increasing order of i first, then of t. Simple calculations give

½Y � BfX ; ŷð�1ÞðZÞg�>M>DMD½Y � BfX ; ŷð�1ÞðZÞg�

¼ ½BfX ; yðZÞg � BfX ; ŷð�1ÞðZÞg�>M>DMD½BfX ; yðZÞg � BfX ; ŷð�1ÞðZÞg�

þ 2½BfX ; yðZÞg � BfX ; ŷð�1ÞðZÞg�>M>DMDV þ V>MDMDV ð22Þ

where the last term does not depend on the bandwidth. If vit is independent
of the {Xjs, Zjs} for all i, j, s and t, or (Xit, Zit) is strictly exogenous variable,
then the second term has zero expectation because the linear transforma-
tion matrix MD removes a cross-time not cross-sectional average from each
variable, for example ~Yit ¼ Yit �m�1

Pm
s¼1Yis for all i and t. Therefore, the

first term is the dominant term in large samples and Eq. (21) is used to find
an optimal smoothing matrix minimizing a weighted mean squared error
of fŷðZitÞg. Of course, we could use other weight matrices in Eq. (21) instead
ofMD as long as the weight matrices can remove the FE and do not trigger a
non-zero expectation of the second term in Eq. (22).

Table 1 shows that the RE estimator performs better than the FE
estimator when the true model is an RE model. However, the FE estimator
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performs much better than the RE estimator when the true model is an FE
model. This is expected since the RE estimator is inconsistent when the true
model is the FE model. Therefore, our simulation results indicate that a test
for RE against FE will be always in demand when we analyze panel data
models. In Tables 2–4 we report simulation results of the proposed
nonparametric test of RE against FE.

For the selection of the bandwidth h, for univariate case, Theorem 3
indicates that h-0, nh-N, and nh9/2-0 as n-N; if we take hBn–a,
Theorem 3 requires a 2 ðð2=9Þ; 1Þ. To fulfil both conditions nh-N and
nh9/2-0 as n-N, we use a ¼ 2/7. Therefore, we use h ¼ cðnmÞ�2=7ŝz to
calculate the RE estimator with c taking a value from .8, 1.0 and 1.2. Since
the computation is very time consuming, we only report results for n ¼ 50

Table 2. Percentage Rejection Rate When c0 ¼ 0.

C n ¼ 50 n ¼ 100

1% 5% 10% 1% 5% 10%

0.8 0.007 0.015 0.24 0.21 0.35 0.46

1.0 0.011 0.023 0.041 0.025 0.040 0.062

1.2 0.019 0.043 0.075 0.025 0.054 0.097

Table 3. Percentage Rejection Rate When c0 ¼ 0.5.

C n ¼ 50 n ¼ 100

1% 5% 10% 1% 5% 10%

0.8 0.626 0.719 0.764 0.913 0.929 0.933

1.0 0.682 0.780 0.819 0.935 0.943 0.951

1.2 0.719 0.811 0.854 0.943 0.962 0.969

Table 4. Percentage Rejection Rate When c0 ¼ 1.0.

C n ¼ 50 n ¼ 100

1% 5% 10% 1% 5% 10%

0.8 0.873 0.883 0.888 0.943 0.944 0.946

1.0 0.908 0.913 0.921 0.962 0.966 0.967

1.2 0.931 0.938 0.944 0.980 0.981 0.982
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and 100. With m ¼ 3, the effective sample size is 150 and 300, which is a
small but moderate sample size. Although the bandwidth chosen this way
may not be optimal, the results in Tables 2–4 show that the proposed test
statistic is not very sensitive to the choice of h when c changes, and that a
moderate sized distortion and decent power are consistent with the findings
in the nonparametric tests literature. We conjecture that some bootstrap
procedures can be used to reduce the size distortion in finite samples.
We will leave this as a future research topic.

6. CONCLUSION

In this paper we proposed a local linear least-squared method to estimate an
FE varying coefficient panel data model when the number of observations
across time is finite; a data-driven method was introduced to automatically
find the optimal bandwidth for the proposed FE estimator. In addition, we
introduced a new test statistic to test for an RE model against an FE model.
Monte Carlo simulations indicate that the proposed estimator and test
statistic have good finite sample performance.
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APPENDIX

Proof of Theorem 1

To make our mathematical formula short, we introduce some simplified
notations first: for each i and t, lit ¼ KHðZit;zÞ and cHðZi; zÞ

�1
¼
Pm

t¼1lit,
and for any positive integers i, j, t, s

½��it; js ¼ Gitðz;HÞG
T
js ðz;HÞ ¼

1 Gjs1 � � � Gjsq

Git1 Git1Gjs1 � � � Git1Gjsq

..

. ..
. . .

. ..
.

Gitq GitqGjs1 � � � GitqGjsq

26666664

37777775
¼

1 ðH�1ðZjs � zÞÞT

H�1ðZit � zÞ H�1ðZit � zÞðH�1ðZjs � zÞÞT

24 35 ðA:1Þ
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where the (lþ 1)th element of Gjsðz;HÞ is Gjsl ¼ ðZjsl � zlÞ=hl ; l ¼ 1; . . . ; q:
Simple calculations show that

½��i1t1;i2t2 ½��j1s1; j2s2 ¼ 1þ
Xq
j¼1

Gj1s1jGi2t2j

 !
½��i1t1;j2s2

Riðz;HÞ
TKHðZi; zÞeme

T
mKHðZj ; zÞRjðz;HÞ ¼

Xm
t¼1

Xm
s¼1

litljs½��it; js � ðXitX
T
js Þ

In addition, we obtain for a finite positive integer j

jHj�1
Xm
t¼1

E½ljit½��it;itjXit� ¼
Xm
t¼1

E½ðSt; j;1jXitÞ þOpðjjHjj
2Þ� (A.2)

Hj j�1
Xm
t¼1

E l2jit
Xq
j0¼1

G2
itj0 ½��it;itjXit

" #
¼
Xm
t¼1

EðSt; j;2jXitÞ þOpðjjHjj
2Þ (A.3)

where

St; j;1 ¼

f tðzjXitÞ
R
KjðuÞdu

@f tðzjXitÞ

@zT
HRK ; j

RK ; jH
@f tðzjXitÞ

@z
f tðzjXitÞRK ; j

2664
3775 (A.4)

St; j;2 ¼

f tðzjXitÞ
R
K2jðuÞuTudu

@f tðzjX1tÞ

@zT
HGK ;2j

GK ;2jH
@f tðzjXitÞ

@z
f tðzjXitÞGK ;2j

2664
3775 (A.5)

where RK, j ¼
R
Kj (u) uuTdu and GK ;2j ¼

R
K2jðuÞðuTuÞðuuT Þdu.

Moreover, for any finite positive integer j1 and j2, we have

jHj�2
Xm
t¼1

Xm
sat

E½lj1it l
j2
is ½��it;isjXit;Xis�

¼
Xm
t¼1

Xm
sat

EðT
ðt;sÞ
j1;j2;1
jXit;XisÞ þOpðjjHjj

2Þ ðA:6Þ

jHj�2
Pm
t¼1

Pm
sat

E lj1it l
j2
is

Pq
j0¼1

Gitj0Gisj0

 !
½��it;isjXit;Xis

" #

¼
Pm
t¼1

Pm
sat

EðT
ðt;sÞ
j1;j2;2
jXit;XisÞ þOpðjjHjj

2Þ

(A.7)
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where we define bj1; j2;i1;i2 ¼
R
Kj1ðuÞu2i11 du

R
Kj2ðuÞu2i21 du

T
ðt;sÞ
j1; j2;1
¼

f t;sðz; zjXit;XisÞbj1;j2;0;0 rT
s f t;sðz; zjXit;XisÞHbj1;j2;0;1

Hrt f t;sðz; zjXit;XisÞbj1;j2;1;0 Hr2
t;s f t;sðz; zjXit;XisÞHbj1;j2;1;1

24 35
and

T ðt;sÞj1; j2;2
¼

trðHr2
t;s f t;sðz; zjXit;XisÞHÞ r

T
t f t;sðz; zjXit;XisÞH

Hrs f t;sðz; zjXit;XisÞ f t;sðz; zjXit;XisÞIq�q

24 35bj1; j2 ;1;1
with rs f t;sðz; zjXit;XisÞ ¼ @f t;sðz; zjXit;XisÞ=@zs and r2t;s f t;sðz; zjXit;XisÞ ¼

@2f t;sðz; zjXit;XisÞ=ð@zt@zTs Þ.
The conditional bias and variance of vecðb̂ðzÞÞ are given as follows:

Bias½vecðb̂ðzÞÞjfXit;Zitg� ¼ ½Rðz;HÞ
TSHðzÞRðz;HÞ�

�1Rðz;HÞTSHðzÞ

�
Y
ðz;HÞ=2þD0m0

h i

Var½vecðb̂ðzÞÞjfXit;Zitg� ¼ s2v ½Rðz;HÞ
TSHðzÞRðz;HÞ�

�1½Rðz;HÞTS2
HðzÞRðz;HÞ�

� ½Rðz;HÞTSHðzÞRðz;HÞ�
�1

Lemma A.1. If Assumption A3 holds, we have

Xn
i¼1

cHðZi; zÞ

" #�1
¼ Op n�1jHj lnðln nÞ

 �
(A.8)

Proof. Simple calculations give E
Pm

t¼1KHðZit; zÞ
 �

¼ jHj f ðzÞ þ
OðjHj jjHjj2Þ and E½KHðZit; zÞ� ¼ jHj f tðzÞ þOðjHj jjHjj2Þ, where
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f ðzÞ ¼
Pm

t¼1f tðzÞ. Next, we obtain for any small eW0

Pr max
1�i�n

Xm
t¼1

lit4��1f zð ÞjHj lnðln nÞ

( )

¼ 1� Pr max
1�i�n

Xm
t¼1

lit � ��1f ðzÞjHj lnðln nÞ

( )

¼ 1� 1� Pr
Xm
t¼1

lit4��1f ðzÞjHj lnðln nÞ

( )( )n

� 1� 1�
�Eð
Pm

t¼1litÞ
f ðzÞjHj ln ðln nÞ

	 
n

� 1� f1� �ð1þMjjHjj2Þ= lnðln nÞgn ! 0 as n!1

where the first inequality uses the generalized Chebyshev inequality, and
the limit is derived using the l’Hôpital’s rule. This will complete the proof
of this lemma.

Lemma A.2. Under Assumptions 1–3, we have

n�1jHj�1Rðz;HÞTSHðzÞRðz;HÞ  jHj
�1
Xm
t¼1

Eð$itlit½��it;it � ðXitK
T
it ÞÞ

where $it ¼ lit=
Pm

t¼1lit 2 ð0; 1Þ for all i and t.

Proof. First, simple calculation gives

An ¼ Rðz;HÞTSHðzÞRðz;HÞ ¼ Rðz;HÞTWHðzÞMHðzÞRðz;HÞ

¼
Xn
i¼1

Riðz;HÞ
TKHðZi; zÞRiðz;HÞ

�
Xn
j¼1

Xn
i¼1

qijRiðz;HÞ
TKHðZi; zÞeme

T
mKHðZj ; zÞRjðz;HÞ

¼
Xn
i¼1

Xm
t¼1

lit½��it;it � ðXitX
T
it Þ �

Xn
i¼1

qii
Xm
t¼1

Xm
s¼1

litlis½��it;is � ðXitX
T
is Þ

�
Xn
j¼1

Xn
iaj

qij
Xm
t¼1

Xm
s¼1

litljs½��it;js � ðXitX
T
js Þ ¼ An1 � An2 � An3

whereMHðzÞ ¼ In�m � ½Q� ðeme
T
mÞ�WHðzÞ, and the typical elements ofQ are

qii ¼ cHðZi; zÞ � cHðZi; zÞ
2=
Pn

i¼1cHðZi; zÞ and qij ¼ �cHðZi; zÞcHðZj ; zÞ=Pn
i¼1cHðZi; zÞ for i 6¼ j. Here, cHðZi; zÞ ¼

Pm
t¼1lit

 ��1
for all i.
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Applying (A.2), (A.3), (A.6) and (A.7) to An1, we have n�1jHj�1An1 Pm
t¼1E½St;1;1 � ðXitX

T
it Þ� þOpðjjHjj

2Þ þOpðn
�ð1=2ÞjHj�ð1=2ÞÞ if jjHjj ! 0 and

njHj ! 1 as n-N.
Apparently,

Pm
t¼1$it ¼ 1 for all i. In addition, since the kernel function

K( � ) is zero outside the unit circle by Assumption 3, the summations in An2

are taken over units such that jjH�1ðZit � zÞjj � 1. By Lemma A.1 and by
the LLN given Assumption 1 (a), we obtain

1

njHj
Pn

i¼1cHðZi; zÞ

Xn
i¼1

Xm
t¼1

Xm
s¼1

$it$is½��it;is � ðXitX
T
is Þ

�����
����� ¼ Opðn

�1 lnðln nÞÞ

and

1

n Hj j

Xn
i¼1

Xm
t¼1

Xm
sat

litlisPm
t¼1lit

½��it;is � ðXitX
T
is Þ

�����
�����

�
1

2njHj

Xn
i¼1

Xm
t¼1

Xm
sat

ffiffiffiffiffiffiffiffiffiffi
litlis

p
½��it;is�
�� ðXitX

T
is Þ
�� ¼ OpðjHjÞ

where we use
Pm

t¼1lit � lit þ lis � 2
ffiffiffiffiffiffiffiffiffiffi
litlis
p

for any t 6¼ s.
Hence, we have n�1jHj�1An2 ¼ n�1jHj�1

Pn
i¼1

Pm
t¼1$itlit½��it;it � ðXitX

T
it Þþ

OpðjHjÞ. Denote dit ¼ $itlit½��it;it � ðXitX
T
it Þ and Dn ¼ n�1jHj�1Pn

i¼1

Pm
t¼1ðdit � EditÞ. It is easy to show that n�1jHj�1Dn ¼

Opðn
�1=2jHj�1=2Þ. Since EðjjditjjÞ � E½litjj½��it;it � ðXitX

T
it Þjj� �MjHj holds

for all i and t, n�1jHj�1An2 ¼ jHj
�1
Pm

t¼1E½$itlit½��it;it � ðXitX
T
it Þ� þ opð1Þ

exists, but we cannot calculate the exact expectation due to the random
denominator.

Consider An3. We have n�1jHj�1jjAn3jj ¼ OpðjHj
2 lnðln nÞÞ by Lemma A.1,

Assumption 1, and the fact that n�1jHj�1
Pn

i¼1

Pm
t¼1IðjjH

�1ðZit � zÞjj � 1Þ ¼
2f ðzÞ þOpðjjHjj

2Þ þOpðn
�1=2jHj�1=2Þ.

Hence, we obtain

n�1jHj�1An  n�1jHj�1An1 � n�1jHj�1
Xn
i¼1

Xm
t¼1

$itlit½��it;it � ðXitX
T
it Þ

¼ n�1jHj�1
Xn
i¼1

Xm
t¼1

ð1�$itÞlit½��it;it � ðXitX
T
it Þ

¼ jHj�1
Xm
t¼1

E½ð1�$itÞlit½��it;it � ðXitX
T
it Þ� þ opð1Þ

This will complete the proof of this Lemma.
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Lemma A.3. Under Assumptions 1–3, we have

n�1jHj�1Rðz;HÞTSHðzÞ
Y
ðz;HÞ

 jHj�1
Xm
t¼1

E½ð1�$itÞlitðGit � XitÞX
T
it rHð

~Zit; zÞ�

Proof. Simple calculations give

Bn ¼ Rðz;HÞTSHðzÞ
Y
ðz;HÞ

¼
Xn
i¼1

Xm
t¼1

litðGit � XitÞX
T
it rHð

~Zit; zÞ

�
Xn
j¼1

Xn
i¼1

qij
Xm
s¼1

Xm
t¼1

ljslitðGit � XitÞX
T
js rHð

~Zjs; zÞ

¼
Xn
i¼1

Xm
t¼1

litðGit � XitÞX
T
it rHð

~Zit; zÞ

�
Xn
i¼1

qii
Xm
t¼1

l2itðGit � XitÞX
T
it rHð

~Zit; zÞ

�
Xn
i¼1

qii
Xm
t¼1

Xm
sat

lislitðGit � XitÞX
T
is rHð

~Zis; zÞ

�
Xn
j¼1

Xn
iaj

qij
Xm
t¼1

Xm
s¼1

ljslitðGit � XitÞX
T
js rHð

~Zjs; zÞ

¼ Bn1 � Bn2 � Bn3 � Bn4,

where P (z, N) is defined in Section 3. Using the same method in the proof
of Lemma A.2, we show n�1jHj�1Bn  n�1jHj�1

Pn
i¼1

Pm
t¼1ð1�$itÞ

litðGit � XitÞX
T
it rHð

~Zit; zÞ.
For l ¼ 1; . . . ; k we have

jHj�1E½litrH;lðZit; zÞjXit� ¼ k2 f t
z

Xit

� �
YHðzÞ þOpðjjHjj

4Þ

jHj�1E½litrH;lðZit; zÞH
�1ðZit � zÞjXit� ¼ OpðjjHjj

3Þ

and Eðn�1jHj�1Bn1Þ  fk2½FðzÞYHðzÞ�
T ;OðjjHjj3ÞgT , where

YHðzÞ ¼ tr H
@2y1ðzÞ
@z@zT

H

� �
; . . . ; tr H

@2ykðzÞ
@z@zT

H

� �� �T
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Similarly, we can show that Var ðn�1jHj�1Bn1Þ ¼ Oðn�1jHj�1jjHjj4Þ if
EðjjXitX

T
isXitX

T
is jjÞoMo1 for all t and s.

In addition, it is easy to show that n�1jHj�1
Pn

i¼1

Pm
t¼1$itlit ðGit �

XitÞX
T
it rHð

~Zit; zÞ ¼ n�1jHj�1
Pn

i¼1

Pm
t¼1E½$itlitðGit � XitÞX

T
it rHð

~Zit; zÞ� þOp

ðn�1=2jHj�1=2jjHjj2Þ, where jHj�1
Pm

t¼1E½$itlitðGit � XitÞX
T
it rHð

~Zit; zÞ� �
Hj j�1

Pm
t¼1 E½litjjðGit � XitÞX

T
it rHð

~Zit; zÞjj� �MjjHjj2o1for all i and t.
This will complete the proof of this lemma.

Lemma A.4. Under Assumptions 1–3, we have

n�1jHj�1Rðz;HÞTSHðzÞD0m0 ¼ Opðn
�1=2jHj lnðln nÞÞ.

Proof. Simple calculations give MHðzÞD0m0 ¼ �mMHðzÞðen � emÞ, where
�m ¼ n�1

Pn
i¼1mi. It follows that

Cn ¼ Rðz;HÞTSHðzÞD0m0 ¼ �mRðz;HÞTSHðzÞðen � emÞ

¼ �m
Xn
i¼1

Xm
t¼1

RT
i Kiem � �m

Xn
j¼1

Xm
t¼1

ljt

 !Xn
i¼1

qijR
T
i Kiem

¼ �m
Xn
i¼1

Xm
t¼1

litðGit � XitÞ � �m
Xn
j¼1

Xm
t¼1

ljt

 !Xn
i¼1

qij
Xm
t¼1

litðGit � XitÞ

¼ n �m
Xn
i¼1

Xm
t¼1

lit

 !�124 35�1Xn
i¼1

Xm
t¼1

$itðGit � XitÞ

and we obtain n�1jHj�1Cn ¼ �mOpðjHj lnðln nÞÞ by (a) Lemma A.1, (b)
for all l ¼ 1; . . . ; q; kððZit;l � zlÞ=hÞ ¼ 0 if jZit;l � zlj4h by Assumption 3,
(c) $it � 1 and (d) EjjXitjj

1þdoMo1 for some dW0 by Assumption 1.
Since mi � i:i:d:ð0;s2mÞ, we have �m ¼ Opðn

�1=2Þ. It follows that n�1jHj�1Cn ¼

Opðn
�1=2jHj lnðln nÞÞ.

Lemma A.5. Under Assumptions 1–3, we have

n�1 Hj j�1Rðz;HÞTS2
HðzÞRðz;HÞ

jHj�1
Xm
t¼1

E½ð1�$itÞ
2l2it½��it�ðXitX

T
it Þ�
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Proof. Simple calculations give

Dn ¼ Rðz;HÞTS2
HðzÞRðz;HÞ ¼ Rðz;HÞTWHðzÞMHðzÞWHðzÞ

TRðz;HÞ

¼
Xn
i¼1

Riðz;HÞ
TK2

HðZi; zÞRiðz;HÞ

� 2
Xn
j¼1

Xn
i¼1

qjiRjðz;HÞ
TK2

HðZj ; zÞeme
T
mKHðZi; zÞRiðz;HÞ

þ
Xn
j¼1

Xn
i¼1

Xn
i0¼1

qijRji0Riðz;HÞ
TKHðZj ; zÞ

� eme
T
mK

2
HðZi; zÞeme

T
mKHðZi0 ; zÞRi0 ðz;HÞ

¼ Dn1 � 2Dn2 þDn3

Using the same method in the proof of Lemma A.2, we show
Dn 

Pn
i¼1

Pm
t¼1ð1�$itÞ

2l2it½��it;it � ðXitX
T
it Þ. It is easy to show that n�1

jHj�1Dn1¼n
�1jHj�1

Pn
i¼1

Pm
t¼1l

2
it½��it;it� ðXitX

T
it Þ ¼

Pm
t¼1E½St;2;1�ðXit X

T
it Þ�þ

OpðjjHjj
2Þ þOpðn

�1=2jHj�1=2Þ:
Also, we obtain n�1jHj�1

Pn
i¼1

Pm
t¼1 ð1�$itÞ

2l2it½��it;it � ðXitX
T
it Þ ¼ kðzÞþ

Opðn
�1=2jHj�1=2Þ, where kðzÞ ¼ jHj�1

Pm
t¼1E ð1�$itÞ

2l2it½��it;it�
�

ðXitZ
T
it Þ� �

jHj�1
Pm

t¼1E l2itjj½��it;it�
�

ðXit X
T
it Þjj� �Mo1for all i and t.

The four lemmas above are enough to give the result of Theorem 1.
Moreover, applying Liaponuov’s CLT will give the result of Theorem 2.
Since the proof is a rather standard procedure, we drop the details for
compactness of the paper.

Technical Sketch: Random Effects Estimator

The RE estimator ŷREð�Þ is the solution to the following optimization
problem:

min
bðzÞ½Y � Rðz;HÞvecðbðzÞÞ�TWHðzÞ½Y � Rðz;HÞvecðbðzÞÞ�

that is, we have

vecðb̂REðzÞÞ

¼ ½Rðz;HÞTWHðzÞRðz;HÞ�
�1Rðz;HÞTWHðzÞY

¼ vecðbðzÞÞ þ ½Rðz;HÞTWHðzÞRðz;HÞ�
�1ð ~An=2þ ~Bn þ ~CnÞ
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where ~An ¼ Rðz;HÞTWHðzÞ
Q
ðz;HÞ; ~Bn ¼ Rðz;HÞTWHðzÞD0m0, and ~Cn ¼

Rðz;HÞTWHðzÞV . Its asymptotic properties are as follows.

Lemma A.6. Under Assumptions 1–3, and EðXitX
T
it jzÞ and EðmiXitjzÞ

have continuous second-order derivative at z A Rq. Also,
ffiffiffiffiffiffiffiffi
njH
p

jjHjj2 ¼
Oð1Þ as n-N, and Eðjvitj

2þdÞo1 and Eðjmij
2þdÞoMo1 for all i and t

and for some dW0, we have under H0

ffiffiffiffiffiffiffiffiffiffi
njHj

p
ŷREðzÞ � yðzÞ � k2 Y H

ðzÞ

2

� �
!
d
N 0;

X
yðZÞ;RE

 !
(A.9)

where k2 ¼
R
kðvÞv2dv;

P
yðzÞ;RE ¼ ðs

2
m þ s2v Þ F ðzÞ

�1
R
K2ðuÞdu and FðzÞ ¼Pm

t¼1f tðzÞEðX1tX
T
1tjzÞ. Under H1, we have

BiasðŷREðzÞÞ ¼ FðzÞ�1
Xm
t¼1

f tðzÞEðm1X1tjzÞ þ oð1Þ

VarðŷREðzÞÞ ¼ n�1jHj�1s2v F ðzÞ
�1

Z
K2ðuÞdu ðA:10Þ

where YH(z) is given in the proof of Lemma A.3.

Proof of Lemma A.6. First, we have the following decomposition:ffiffiffiffiffiffiffiffiffiffi
njHj

p
ŷREðzÞ � yðzÞ
h i

¼
ffiffiffiffiffiffiffiffiffiffi
njHj

p
½ŷREðzÞ � EðŷREðzÞÞ�

þ
ffiffiffiffiffiffiffiffiffiffi
n Hj j

p
½EðŷREðzÞÞ � yðzÞ�

where we can show that the first term converges to a normal distribution
with mean zero by Liaponuov’s CLT (the details are dropped since it is a
rather standard proof), and the second term contributes to the asymptotic
bias. Since it will cause no notational confusion, we drop the subscription
‘RE’. Below, we use BiasifŷðzÞg and VarifŷðzÞg to denote the respective
bias and variance of ŷREðzÞ under H0 if i ¼ 0 and under H1 if i ¼ 1.

First, under H0, the bias and variance of ŷðzÞ are as follows: Bias0fŷðzÞj
fðXit;ZitÞgg ¼ Sp½Rðz;HÞ

TWHðzÞRðz;HÞ�
�1Rðz;HÞTWHðzÞ

Q
ðz;HÞ=2 and

Var0fŷðzÞjfðXit;ZitÞgg

¼ Sp½Rðz;HÞ
TWHðzÞRðz;HÞ�

�1½Rðz;HÞTWHðzÞVarðUUT ÞWHðzÞRðz;HÞ�

� ½Rðz;HÞTWHðzÞRðz;HÞ�
�1ST

p

It is simple to show that VarðUUT Þ ¼ s2mIn � ðeme
T
mÞ þ s2vIn�m.
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Next, under H1, we notice that Bias1fŷðzÞjfðXit;ZitÞgg is the sum of
Bias0fŷðzÞjfðXit;ZitÞgg plus an additional term Sp½Rðz;HÞ

TWHðzÞRðz;HÞ�
�1

Rðz;HÞTWHðzÞD0m0, and that

Var1fŷðzÞjfðXit;ZitÞgg

¼ s2vSp½Rðz;HÞ
TWHðzÞRðz;HÞ�

�1½Rðz;HÞTWHðzÞ
2Rðz;HÞ�

� ½Rðz;HÞTWHðzÞRðz;HÞ�
�1ST

p

Noting that Rðz;HÞTWHðzÞRðz;HÞ is An1 in Lemma A.2 and that
Rðz;HÞTWHðzÞ

Q
ðz;HÞ is Bn1 in Lemma A.3, we have

Bias0fŷðzÞg ¼ k2YH
ðzÞ

2
þ oðjjHjj2Þ (A.11)

In addition, under Assumptions 1–3, and Eðjmij
2þdÞoMo1 and

EðjjXitjj
2þdÞoMo1 for all i and t and for some dW0, we show that

n�1jHj�1SpRðz;HÞ
TWHðzÞD0m0

¼ n�1jHj�1Sp

Xn
i¼1

mi
Xm
t¼1

litðGit � XitÞ

¼
Xm
t¼1

f tðzÞEðm1X1tjzÞ þOpðjjHjj
2Þ þOpððnjHjÞ

1=2
Þ ðA:12Þ

which is a non-zero constant plus a term of op(1) under H1. Combining
Eqs. (A.11) and (A.12), we obtain Eq. (A.10). Hence, under H1, the bias
of the RE estimator will not vanish as n-N, and this leads to the
inconsistency of the RE estimator under H1.
As for the asymptotic variance, we can easily show that under H0

Var0fŷðZÞg ¼ n�1jHj�1ðs2m þ s2vÞFðzÞ
�1

Z
K2ðuÞdu (A.13)

and under H1;Var1fŷðzÞg ¼ n�1jHj�1s2vFðzÞ
�1
R
K2ðuÞ du, where we have

recognized that Rðz;HÞTWHðzÞ
2Rðz;HÞ is Dn1 in Lemma A.5, and ðs2m þ s2vÞ

Rðz;HÞTWHðzÞ
2Rðz;HÞ is the leading term of Rðz;HÞTWHðzÞ VarðUUT Þ

WHðzÞRðz;HÞ.

Semiparametric Estimation of FE Panel Data Varying Coefficient Models 127



Proof of Theorem 3

Define Di ¼ ðDi1; . . . ;DimÞ
T with Dit ¼ XT

it ðyðZitÞ � ŷREðZitÞÞ. Since
MDD0 ¼ 0, we can decompose the proposed statistic into three terms

T̂n ¼
1

n2jHj

Xn
i¼1

X
jai

Û
T

i QmAi; jQmÛj

¼
1

n2 Hj j

Xn
i¼1

X
jai

DT
i QmAi; jQmDj þ

2

n2jHj

Xn
i¼1

X
jai

DT
i QmAi; jQmVj

þ
1

n2 Hj j

Xn
i¼1

X
jai

VT
i QmAi; jQmVj

¼ Tn1 þ 2Tn2 þ Tn3

where Vi ¼ ðvi1; . . . ; vimÞ
T is the m� 1 error vector. Since ŷREðZitÞ does not

depend on the jth unit observation and ŷREðZjtÞ does not depend on the ith
unit observation for a pair of (i, j), it is easy to see that E(Tn2) ¼ 0. The
proofs fall into the standard procedures seen in the literature of
nonparametric tests. We therefore give a very brief proof below.

First, applying Hall’s (1984) CLT, we can show that under both H0

and H1

n
ffiffiffiffiffiffiffi
jHj

p
Tn3!

d
Nð0;s20Þ (A.14)

by defining Hnðwi; wjÞ ¼ VT
i QmAi; jQmVj with wi ¼ ðXi;Zi;ViÞ, which is a

symmetric, centred and degenerate variable. We are able to show that

E½G2
nðw1; w2Þ� þ n�1E½H4

nðw1; w2Þ�
fE½H2

nðw1; w2Þ�g
2

¼
OðjHj3Þ þOðn�1jHjÞ

OðjHj2Þ
! 0

if |H|-0 and n|H|-N as n-N, where Gnðw1; w2Þ ¼ Ewi½Hnðw1; wiÞ
Hnðw2; wiÞ�: In addition

varðn
ffiffiffiffiffiffiffi
jHj

p
Tn3Þ ¼ 2jHj�1EðH2

nðw1; w2ÞÞ

 2ð1�m�1Þ2s4v
Xm
t¼1

Xm
s¼1

Hj j�1E½K2
HðZ1s;Z2tÞðX

T
1sX2tÞ

2
�

¼ s20 þ oð1Þ
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Second, we can show that n
ffiffiffiffiffiffiffi
jHj
p

Tn2 ¼ OpðjjHjj
2Þ þOpðn

�1=2jHj�1=2Þ
under H0 and n

ffiffiffiffiffiffiffi
jHj
p

Tn2 ¼ Opð1Þ under H1. Moreover, we have, under H0,
n
ffiffiffiffiffiffiffi
jHj
p

Tn1 ¼ Opðn
ffiffiffiffiffiffiffi
jHj
p

jjHjj4Þ; under H1; n
ffiffiffiffiffiffiffi
jHj
p

Tn1 ¼ Opðn
ffiffiffiffiffiffiffi
jHj
p

Þ.
Finally, to estimate s20 consistently under both H0 and H1, we replace the

unknown Vi and Vj in Tn3 by the estimated residual vectors from the FE

estimator. Simple calculations show that the typical element of V̂iQm is ~̂vit ¼

yit � XT
it ŷFEðZitÞ � vit �ð �yi �m�1

Pm
t¼1X

T
it ŷFEðZitÞ � �viÞ ¼ ~Dit � ðvit � �viÞ,

where ~Dit ¼ XT
it ðyðZitÞ � ŷFEðZitÞÞ �m�1

Pm
t¼1X

T
it ðyðZitÞ � ŷFEðZitÞÞ ¼Pm

l¼1qltX
T
il ðyðZilÞ � ŷFEðZilÞÞ with qtt ¼ 1� 1=m and qlt ¼ �1=m for l 6¼ t.

The leave-two-unit-out FE estimator does not use the observations from the

ith and jth units for a pair (i, j), and this leads to EðV̂
T

i QmAi;jQmV̂jÞ
2
Pm

t¼ 1

Pm
s¼ 1E ½K

2
HðZit;ZjsÞðX

T
it XjsÞ

2
ð ~D

2

it
~D
2

it þ
~D
2

it ~v
2
js þ

~D
2

js ~v
2
it þ ~v2it ~v

2
jsÞ� 

Pm
t¼ 1Pm

s¼1E½K
2
HðZit;ZjsÞðX

T
itXjsÞ

2 ~v2it ~v
2
js where ~vit ¼ vit � �vi and �vi ¼ m�1

Pm
t¼1vit.

Semiparametric Estimation of FE Panel Data Varying Coefficient Models 129





FUNCTIONAL COEFFICIENT

ESTIMATION WITH BOTH

CATEGORICAL AND

CONTINUOUS DATA

Liangjun Su, Ye Chen and Aman Ullah

ABSTRACT

We propose a local linear functional coefficient estimator that admits a
mix of discrete and continuous data for stationary time series. Under
weak conditions our estimator is asymptotically normally distributed.
A small set of simulation studies is carried out to illustrate the finite
sample performance of our estimator. As an application, we estimate a
wage determination function that explicitly allows the return to education
to depend on other variables. We find evidence of the complex interacting
patterns among the regressors in the wage equation, such as increasing
returns to education when experience is very low, high return to education
for workers with several years of experience, and diminishing returns
to education when experience is high. Compared with the commonly
used parametric and semiparametric methods, our estimator performs
better in both goodness-of-fit and in yielding economically interesting
interpretation.
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1. INTRODUCTION

In this paper, we extend the work of Racine and Li (2004) to estimating
functional coefficient models with both continuous and categorical data:

Y ¼
Xd
j¼1

ajðUÞXj þ � (1)

where e is the disturbance term, Xj a scalar random variable, U a (pþq)� 1
random vector, and aj( � ), j ¼ 1,y, d are unknown smooth functions.
As Cai, Fan, and Yao (2000) remark, the idea for this kind of model is not
new, but the potential of this modeling techniques had not been fully
explored until the seminal work of Cleveland, Grosse, and Shyu (1992),
Chen and Tsay (1993), and Hastie and Tibshirani (1993), in which
nonparametric techniques were proposed to estimate the unknown func-
tions aj ( � ). An important feature of these early works is to assume that
the random variable U is continuous, which limits the model’s potential
applications.

Drawing upon the work of Aitchison and Aitken (1976) and Racine and
Li (2004) propose a novel approach to estimate nonparametric regression
mean functions with both categorical and continuous data in the i.i.d. setup.
They apply their new estimation method to some publicly available data and
demonstrate the superb performance of their estimators in comparison with
some traditional ones.

In this paper, we consider extending the work of Racine and Li (2004) to
the estimation of the functional coefficient model (1) when U contains both
continuous and categorical variables. This is important since categorical
variables may be present in the functional coefficients. For example, in the
study of the output functions for individual firms, firms that belong to
different industries may exhibit different output elasticities with respect
to labor and capital. So we should allow the categorical variable ‘‘industry’’
to enter U. We will demonstrate that this modeling strategy outperforms the
traditional dummy-variable approach widely used in the literature. For the
same reason, Li and Racine (2008b) consider a local constant estimation of
model (1) by assuming the data are identically and independently distributed
(i.i.d.).

Another distinguishing feature of our approach is that we allow for weak
data dependence. One of the key applications of nonparametric function
estimation is the construction of prediction intervals for stationary time
series. The i.i.d. setup of Racine and Li (2004) and Li and Racine (2008b)
cannot meet this purpose.
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To demonstrate the usefulness of our proposed estimator in empirical
applications, we estimate a wage determination equation based on recent CPS
data. While in the literature of labor economics, the return to education has
already been extensively investigated from various aspects, in this paper, we
explicitly allow the return to education to be dependent on other variables, both
continuous and discrete, including experience, gender, age, industry, and so
forth. Our findings are clearly against the parametric functional form
assumption of the most widely used linear separable Mincerian equation, and
the return to education does vary substantially with the other regressors.
Therefore, our model can help to uncover economically interesting interacting
effects among the regressors, and so should have high potential for applications.

The paper is structured as follows. In Section 2, we introduce our func-
tional coefficient estimators and their asymptotic properties. We conduct a
small set of Monte Carlo studies to check the relative performance of the
proposed estimator in Section 3. Section 4 provides empirical data analysis.
Final remarks are contained in Section 5. All technical details are relegated
to the appendix.

2. FUNCTIONAL COEFFICIENT ESTIMATION

WITH MIXED DATA

2.1. Local Linear Estimator

In this paper, we study estimation of model (1) when U is comprised of a
mix of discrete and continuous variables. Let {(Yi, Xi, Ui), i ¼ 1, 2,y} be
jointly strictly stationary processes, where (Yi, Xi, Ui) has the same
distribution as (Y, X, U). Let Ui ¼ ðU

c0
i ;U

d0
i Þ
0, where Uc

i and Ud
i denote a

p� 1 vector of continuous regressors and a q� 1 vector of discrete
regressors, respectively, pZ1, and qZ1. Like Racine and Li (2004), we
will use Ud

it to denote the tth component of Ud
i , and assume that Ud

it can take
ctZ2 different values, that is, Ud

it 2 f0; 1; . . . ; ct � 1g for t ¼ 1,y, q. Denote
u ¼ ðuc; udÞ 2 Rp �D. We use fu(u) ¼ f(uc, ud) to denote the joint density
function of ðUc

i ;U
d
i Þ and D ¼

Qq
t¼1f0; 1; . . . ; ct � 1g to denote the range

assumed by Ud
i . With a little abuse of notation, we also use {(Yi, Xi, Ui),

i ¼ 1,y, n} to denote the data.
To define the kernel weight function, we focus on the case for which there

is no natural ordering in Ud
i . Define

lðUd
it; u

d
t ; ltÞ ¼

1 if Ud
it ¼ udt ;

lt if Ud
itaudt ;

(
(2)
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where lt is a bandwidth that lies on the interval [0, 1]. Clearly, when lt ¼
0; lðUd

it; u
d
t ; 0Þ becomes an indicator function, and lt ¼ 1; lðUd

it; u
d
t ; 1Þ

becomes an uniform weight function. We define the product kernel for the
discrete random variables by:

LðUd
i ; u

d; lÞ ¼
Yq
t¼1

lðUd
it; u

d
t ; ltÞ (3)

For the continuous random variables, we use w( � ) to denote a univariate
kernel function and define the product kernel function by Wh;iu ¼Qp

t¼1wððU
c
it � uct Þ=htÞ, where h ¼ (h1,y, hp) denotes the smoothing para-

meters and Uc
itðu

c
t Þ is the tth component of Uc

i ðu
c
t Þ. We then define the kernel

weight function Kiu by:

Kiu ¼ Ll;iuWh;iu (4)

where Ll;iu ¼ LðUd
i ; u

d; lÞ.
We now estimate the unknown functional coefficient functions in model

(1) by using a local linear regression technique. Suppose that aj( � ) assumes
a second-order derivative. Denote by _ajðuÞ ¼ @ajðuÞ=@uc the p� 1 first-order
derivative of aj(u) with respect to its continuous-valued argument uc. Denote
by €ajðuÞ ¼ @

2ajðuÞ=ð@uc@uc0Þ second-order derivative matrix of aj(u) with
respect to uc. We use aj,ss(u) to denote the sth diagonal element of €ajðuÞ.
For any given u and ~u in a neighborhood of u, it follows from a first-order

Taylor expansion that

ajð ~uÞ  ajðuÞ þ _ajðuÞ
0
ð ~uc � ucÞ (5)

for uc in a neighborhood of ~uc and ~ud ¼ ud. To estimate fajðuÞg ðand f _ajðuÞgÞ,
we choose {aj} and {bj} to minimize

Xn
i¼1

Yi �
Xd
j¼1

faj þ b0jðUi � uÞg Xij

" #2
Kiu (6)

Let fðâj ; b̂jÞg be the local linear estimator. Then the local linear regression
estimator for the functional coefficient is given by

âjðuÞ ¼ âj ; j ¼ 1; . . . ; d (7)

The local linear regression estimator for the functional coefficient can be
easily obtained. To do so, let ej,d(pþ1) be the d(1þp)� 1 unit vector of with 1
at the jth position and 0 elsewhere. Let ~X denote an n� d(1þp) matrix with

~Xi ¼ ðX
0
i;X
0
i � ðUi � uÞ0Þ
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as its ith row. Let Y ¼ (Y1,y,Yn)u. Set W ¼ diag{K1u,y,Knu}. Then
Eq. (6) can be written as

ðY � ~XyÞ0WðY � ~XyÞ

where y ¼ ða1; . . . ; ad ; b01; . . . ; b
0
d Þ
0. So the local linear estimator is simply

ŷ ¼ ŷðuÞ ¼ ð ~X 0W ~XÞ�1 ~X 0WY (8)

which entails that

âj ¼ âjðuÞ ¼ e0j;dð1þpÞŷ; j ¼ 1; . . . ; d (9)

Let yðuÞ ¼ ða1ðuÞ; . . . ; ad ðuÞ; _a1ðuÞ
0; . . . ; _ad ðuÞ

0
Þ
0. We will study the asympto-

tic properties of ŷðuÞ.

2.2. Assumptions

To facilitate the presentation, let OðuÞ ¼ EðXiX
0
ijUi ¼ uÞ; s2ðu;xÞ ¼

E½�2i jUi ¼ u;Xi ¼ x�, O
ðuÞ ¼ E½XiX
0
is

2ðUi;XiÞjUi ¼ u�. Let f(u, x) denote
the joint density of (Ui, Xi) and fu(u) be the marginal density of Ui. Also,
let fu|x(u|x) be the conditional density of Ui given Xi ¼ x. Let f iðu; ~ujx; ~xÞ be
the conditional density of (U1, Ui) given ðX1; XiÞ ¼ ðx; ~xÞ.
We now list the assumptions that will be used to establish the asymptotic

distribution of our estimator.

Assumption A1.

(i) The process {(Yi, Ui, Xi), iZ1} is a strictly stationary a-mixing
process with coefficients a(n) satisfying

P
j�1j

c½aðjÞ�g=ð2þgÞo1 for
some gW0 and cWg/(2þg).

(ii) fu|x(u|x)rMoN and f iðu; ~ujx; ~xÞ �Mo1 for all iZ2 and u; ~u;x; ~x.
(iii) O�(u) and O(u) are positive definite.
(iv) The functions fu( � , u

d), s2( � , ud, x), O( � , ud), and O�( � , ud) are
continuous for all ud 2 D, and fu(u)W0.

(v) aj ( � , u
d) has continuous second derivatives for all ud 2 D.

(vi) E||X||2(2þg)oN, where || � || is the Euclidean norm and g is given in (i).
(vii) E½Y2

1 þ Y2
i jðU1;X1Þ ¼ ðu;xÞ; ðUi;XiÞ ¼ ð ~u; ~xÞ� �Mo1.

(viii) There exists dW(2þg) such that E½Y1j
djðU1;X1Þ ¼ ð ~u;xÞ� �Mo1

for all x 2 Rd and all ~u in the neighborhood of u. a(j) ¼ O(j�k),
where kZ(2þg)d/{2(d�2�g)}.

(ix) There exists a sequence of positive integers sn such that sn-N,
sn ¼ o((nh1y hp)

1/2), and n1/2(h1y h2)
�1/2a(sn)-0.
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Assumption A2. The kernel function w( � ) is a density function that is
symmetric, bounded, and compactly supported.

Assumption A3. As n-0, the bandwidth sequences hs-0 for s ¼ 1,y, p,
ls-0 for s ¼ 1,y, q, and (i) nh1y hp-N, (ii) (nh1yhp)

1/2 (||h||2þ
||l||) ¼ O(1).

Assumptions A1–A2 are similar to Conditions A and B in Cai et al. (2000)
except that we consider mixed regressors. Assumptions A1(i) is standard in
the nonparametric regression for time series. See, for example, Cai et al.
(2000) and Cai and Ould-Saı̈d (2003). It is satisfied by many well-known
processes such as linear stationary ARMA processes and a large class
of processes implied by numerous nonlinear models, including bilinear,
nonlinear autoregressive (NLAR), and ARCH-type models (see Fan & Li,
1999). As Hall, Wolf, and Yao (1999) and Cai and Ould-Saı̈d (2003) remark,
the requirement in Assumption A2 that w( � ) is compactly supported can
be removed at the cost of lengthier arguments used in the proofs, and in
particular, Gaussian kernel is allowed.

Assumption A3 is standard for nonparametric regression with mixed data
(see Li & Racine, 2008a).

2.3. Asymptotic Theory for the Local Linear Estimator

To introduce our main results, let ms;t ¼
R
R
vswðvÞtdv, s, t ¼ 0, 1, 2. Define

two d(1þp)� d(1þp) diagonal matrices S ¼ S(u) and G ¼ G(u) by:

S ¼ f uðuÞ
OðuÞ 00dp�d

0dp�d m2;1OðuÞ � Ip

 !
; G ¼ f uðuÞ

mp0;2O


ðuÞ 00dp�d

0dp�d m2;2O

ðuÞ � Ip

 !

where 0l� k is an l� k matrix of zeros, Ip the p� p identity matrix, and �
the Kronecker product. For any p� 1 vectors c ¼ (c1,y, cp)u and
d ¼ (d1,y, dp)u, let c� d 	 ðc1d1; . . . ; cpdpÞ

0.
To describe the leading bias term associated with the discrete random

variables, we define

Isðu
d; ~udÞ ¼ 1ðudsa ~uds Þ

Yq
tas

1ðudt ¼ ~udt Þ

where 1( � ) is the usual indicator function. That is, Isðu
d; ~udÞ is

one if and only ud and ~ud differ only in the sth component and is
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zero otherwise. Let

bðh; lÞ ¼ H

1
2
m2;1 f uðuÞOðuÞA

0dp�1

 !(

þ
X
~ud2D

Xq
s¼1

lsI sðud; ~udÞf uðu
c; ~udÞ

Oðuc; ~udÞðaðuc; ~udÞ � aðuÞÞ

�m2;1ðOðu
c; ~udÞ � IpÞbðuÞ

0@ 1A9=;
(10)

where H ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nh1 . . . hp;

p
A ¼

Pp
s¼1h

2
s a1;ssðuÞ; . . . ;

Pp
s¼1h

2
s ad ;ssðuÞ

 �0
; aðuÞ ¼

ða1ðuÞ; . . . ; ad ðuÞÞ
0, and bðuÞ ¼ ð _a1ðuÞ

0; . . . ; _ad ðuÞ
0
Þ
0. Define

Bj;1sðuÞ ¼
1
2
m2;1aj;ssðuÞ; and

Bj;2sðuÞ ¼ f uðuÞ
�1e0j;dO

�1ðuÞ
X
~ud2D

Isðu
d; ~udÞf ðuc; ~udÞOðuc; ~udÞ½aðuc; ~udÞ � aðuÞ�

Now we state our main theorem.

Theorem 1. Assume that Assumptions A1–A3 hold. Then for each u that
is an interior point

HH1ð
byðuÞ � yðuÞÞ � S�1b h; lð Þ �!

d
Nð0;S�1GS�1Þ

where H1 ¼ diag(1,y, 1, hu,y, hu) is a d(pþ1)� 1 diagonal matrix with d
diagonal elements of 1 and d diagonal elements of h. In particular, for
j ¼ 1,y, d,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nh1 . . . hp
p bajðuÞ � ajðuÞ �

Xp
s¼1

h2sBj;1sðuÞ �
Xq
s¼1

lsBj;2sðuÞ

 !

�!
d

N 0;
mp0;2e0j;dO

�1ðuÞO
ðuÞO�1ðuÞej;d
f uðuÞ

 !

Remark 1. Noting that S and G are both block diagonal matrices, we
have asymptotic independence between the estimator of a(u) and that
of b(u). Under Assumption A3, the asymptotic bias (Abias) of âj is
comprised of two components,

Pp
s¼1h

2
sBj;1sðuÞ and

Pq
s¼1lsBj;2sðuÞ, which

are associated with the continuous and discrete variables in Ui,
respectively. For statistical inference, one needs to estimate fu(u), O(u),
and O�(u). The procedure is standard and thus is omitted.
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Remark 2. It is well known that the two main advantages of a local linear
estimate over a local constant estimate are the simpler structure of Abias
and the automatic boundary bias correction mechanism for the local
linear estimate (see Fan & Gijbels, 1996). Our local linear estimator has
the same asymptotic variance as the local constant estimator of Li and
Racine (2008b). But the two estimators are different in bias. In our
notation, the Abias of Li and Racine’s local constant estimator â

ðlcÞ
j ðuÞ of

aj(u) is given by:

AbiasðbaðlcÞj ðuÞÞ ¼
Xp
s¼1

h2sB
ðlcÞ
j;1sðuÞ �

Xq
s¼1

lsB
ðlcÞ
j;2sðuÞ

where

B
ðlcÞ
j;1sðuÞ ¼ m2;1 ej;df uðuÞ

�1O�1ðuÞ½f uðuÞOsðuÞ þ OðuÞf u;sðuÞ�asðuÞ þ
1
2aj;ssðuÞ

� �
B
ðlcÞ
j;2sðuÞ ¼ Bj;2sðuÞ

Os(u) denotes the first-order partial derivative of O(uc, ud) with respect
to the sth element in uc, and fu,s(u) and as(u) are similarly defined.
Clearly, the continuous element in u ¼ (uc, ud) causes the difference in the
asymptotic biases of the two types of estimators.

To compare boundary behavior of the two estimators, we focus on
the simplest case where there is only one continuous variable in
Ui ¼ ðU

c0
i ;U

d0
i Þ
0, that is, Uc

i is a scalar random variable and p ¼ 1.
Without loss of generality, we assume that the support of Uc

i is [0, 1].
In this case, we denote the bandwidth simply as h	h(n) and consider
the left boundary point uc ¼ nh, where n is a finite positive constant.
Following the literature, we assume that f uð0; u

dÞ 	 limuc#0f uðu
c; udÞ exists

and is strictly positive for all ud2D. Define

Sn ¼
in0 in1
in1 in2

 !
; and Gn ¼

kn0 kn1
kn1 kn2

 !
(11)

where inj ¼
R1
�n z

jwðzÞdz; and knj ¼
R1
�n z

jwðzÞ2dz for j ¼ 0; 1, and 2. Define

Sð0; ud; nÞ ¼ Sn � Oð0; udÞf uð0; u
dÞ; and

Gð0; ud; nÞ ¼ Gn � O
ð0; udÞf uð0; u
dÞ
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Define

bðh; l; nÞ ¼ H
1

2

Oð0; udÞ �Að0; udÞin2

Oð0; udÞ �A ð0; udÞin3

 !(
f uð0; u

dÞ

þ
X
~ud2D

Xq
s¼1

lsI sðud; ~udÞf uð0; ~u
dÞ

�
Oð0; ~udÞfin0½að0; ~udÞ � að0; udÞ� � in1bð0; udÞg

Oð0; ~udÞfin1½að0; ~udÞ � að0; udÞ� � in2bð0; udÞg

 !)

where iv3 ¼
R1
�n z

3wðzÞdz,

�Að0; udÞ ¼ ðh2a001ð0; u
dÞ; . . . ; h2a00d ð0; u

dÞÞ
0 (12)

and a00s ð0; u
dÞ is the second-order derivative of as(u

c, ud) with respect to uc

evaluated at 0. The following corollary summarizes the asymptotic
properties of byðuÞ ¼ byðuc; udÞ for the case where uc ¼ nh.

Corollary 1. Assume that Assumptions A1–A3 hold. If p ¼ 1 and the
support of Uc

i is [0, 1], then for any u ¼ (uc, ud) with uc ¼ nh, we have

HH1ðŷðuÞ � yðuÞÞ � Sð0; ud; nÞ�1bðh; l; nÞ

�!
d

Nð0;Sð0; ud; nÞ�1Gð0; ud; nÞSð0; ud; nÞ�1Þ

Remark 3. Clearly, for our local linear estimators the biases for the
boundary points have the same order as those for the interior points.
But the estimators of a(u) and b(u) are generally not asymptotically
independent any more because neither S(0, ud; n), nor G(0, ud; n) is block
diagonal. As a result, the Abias and variance formulae of bajðuÞ
are not as simple as those in Theorem 1. Li and Racine (2008b) did
not study the boundary behavior of the local constant estimator.
Nevertheless, following the arguments used in the proof of the above
corollary, we can readily show that their estimator has the same
asymptotic variance as ours for boundary points but totally different
bias formula. In our notation, the Abias of Li and Racine’s local constant
estimator baðlcÞðuc; udÞ of a(uc, ud) with uc ¼ nh (after being scaled by H) is
given by

AbiasðbaðlcÞðuc; udÞÞ ¼ SðlcÞð0; ud; nÞ�1bðlcÞðh; l; nÞ
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where S(lc) (0, ud; n) ¼ in0 O (0, ud) fu (0, u
d),

bðlcÞðh; l; nÞ ¼ H f uð0; u
d ÞOð0; ud Þ �A

ðlcÞ
ð0; ud Þin1

(

þ
X
~ud2D

Xq
s¼1

lsI sðud ; ~udÞf uð0; ~u
d ÞOð0; ~udÞ½að0; ~udÞ � að0; udÞ�

)

and

�A
ðlcÞ
ð0; ud Þ ¼ ðh _a1ð0; ud Þ; . . . ; h _ad ð0; ud ÞÞ0 (13)

That is, the contribution of the continuous variable Uc
i to the Abias of the

boundary estimator is of order O(h), which is different from the order
O(h2) for interior points. This is a reflection of the main disadvantage of
local constant estimators over the local linear estimators.

2.4. Selection of Smoothing Parameters

In this subsection, we focus on how to choose the smoothing parameters
to obtain the estimate baj . It is well known that the choice of smoothing
parameters is crucial in nonparametric kernel estimation.

Theorem 1. Implies that the leading term for the mean squared error
(MSE) of baj is

MSEðbajÞ ¼ Xp
s¼1

h2s Bj;1sðuÞ þ
Xq
s¼1

lsBj;2sðuÞ

" #2

þ
1

nh1 . . . hp

mp0;2e
0
j;dO

�1
ðuÞO
ðuÞO�1ðuÞej;d
f uðuÞ

By symmetry, all hj should have the same order and all ls should also have
the same order but with ls � h2j . By an argument similar to Li and Racine
(2008a), it is easy to obtain the optimal rate of bandwidth in terms of
minimizing a weighted integrated version of MSEðbajÞ. To be concrete, we
should choose

hj � n�1=ð4þpÞ and lj � n�2=ð4þpÞ
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Nevertheless, the exact formula for the optimal smoothing parameters is
difficult to obtain except for the simplest cases (e.g., p ¼ 1 and q ¼ 1). This
also suggests that it is infeasible to use the plug-in bandwidth in applied
setting since the plug-in method would first require the formula for each
smoothing parameter and then pilot estimates for some unknown functions
in the formula.

In practice, the key in estimating the functional coefficient model is the
selection of bandwidth. We propose to use least squares cross-validation
(LSCV) to choose the smoothing parameters. We choose (h, l) to minimize
the following LSCV criterion function

CVðh; lÞ ¼
1

n

Xn
i¼1

Yi �
Xd
j¼1

bað�iÞj ðUiÞXij

 !2

MðUiÞ (14)

where bað�iÞj (Ui) is the leave-one-out functional coefficient estimator of aj(Ui)
and M(Ui) is a weight function that serves to avoid division by zero and
perform trimming in areas of sparse support. In the following numerical
study, we will set MðUiÞ ¼ Pp

j¼11ðjU
c
ij �

�U
c

j j � 2sUc
j
Þ, where 1( � ) is the usual

indicator function, and �U
c

j and sUc
j
denote the sample mean and standard

deviation of fUc
ij ; 1 � i � ng, respectively. In practice, we can use grid search

for (h, l) when the dimensions of Uc and Ud are both small. Alternatively,
one can apply the minimization function built in various software; but
multiple starting values are recommended to reduce the chance of local
solutions. In the following simulation study with p ¼ 1 and q ¼ 2, we try to
save time in computation and use the latter method with only one starting
value set according to the rule of thumb: h0 ¼ SUcn�1=5; lj ¼ 0:5SUcn�2=5

for j ¼ 1, 2, where SUc is the standard deviation of the scalar random
variable Uc

i . The performance of our nonparametric estimator is already
reasonably well with this simple method.

Nevertheless, if the number of observations in application is large, it is
extremely costly to apply the above LSCV method directly on all the
observations. So we now propose an alternative way to do the LSCV. But
the theoretical justification of this novel approach is beyond the scope of this
paper. Let n denote the number of observations in the dataset, which could
be as large as 17,446 in our empirical applications. When there is only one
continuous variable in U (i.e., Uc is a scalar and p ¼ 1), we propose the
following approach to obtain the data-driven bandwidth:

Step 1. For b ¼ 1, 2 ,y,B, sample mð� nÞ observations randomly from
the dataset.
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Step 2. Set h ¼ cSUcm�1=5 and lj ¼ cjSUcm�2=5 for each and j ¼ 1,y, q,
where c and cj take values on [0.2, 4] with increments 0.2 and with the
constraint ljr1 satisfied, and SUc is the standard deviation of Uc

i based
on the m observations in Step 1. Find the values of c and cj that minimize
the LSCV criterion function. Denote them as c(b) and c

ðbÞ
j for the bth

resample.

Step 3. Calculate �c ¼ B�1
PB

b¼1c
ðbÞ and �cj ¼ B�1

PB
b¼1c

ðbÞ
j ; j ¼ 1; . . . ; q. Setbh ¼ �cSUcn�1=5 and blj ¼ �cjSUcn�2=5, where SUc is the standard deviation of

Uc
i based on all n observations.

We will use bh and blj ; j ¼ 1; . . . ; q, in our empirical applications, where
the single continuous variable Uc is Experience and Ud is composed of six
categorical variables. We choose m ¼ 400 and B ¼ 200 below. When there
are more than one continuous regressor in U, one can modify the above
procedure correspondingly.

3. MONTE CARLO SIMULATIONS

We now conduct Monte Carlo experiment to illustrate the finite sample
performance of our nonparametric functional coefficient estimators with
mixed data. In addition to the proposed estimator, we also include several
other parametric and nonparametric estimators.

The first data generating process (DGP) we consider is given by

Yi ¼ 0:1ðU2
i1 þUi2 þUi3Þ þ 0:1ðUi1Ui2 þUi3ÞXi1

þ 0:15ðUi1Ui2 þUi3ÞXi2 þ �i

where XijBUniform(0, 4) (j ¼ 1, 2), Ui1BUniform(0, 4), UijA{0, 1,y, 5}
with P(Uij ¼ l) ¼ 1/6 for l ¼ 0, 1,y, 5 and j ¼ 2, 3, and eiBN(0, 1).
Furthermore, Xij, Uij, and ei are i.i.d. and mutually independent.
We consider two nonparametric estimators and three parametric

estimators for the conditional mean function m(x, u) ¼ E(Yi|Xi ¼ x,
Ui ¼ u). We first obtain our nonparametric functional coefficient estimator
(NP) with mixed data where the smoothing parameters (h, l) are chosen
by the LSCV. Then we obtain the nonparametric frequency estimator
(NP-FREQ) with mixed data by using the cross-validated h and setting
l ¼ 0 (see Li & Racine, 2007, Chapter 3). It is expected that the smaller
the ratio of the sample size to the number of ‘‘cells,’’ the worse the non-
parametric frequency approach relative to our proposed kernel approach.
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For the parametric estimation, we consider in practice what an applied
econometrician would do when he or she confronts the data {(Yi, Xi, Ui),
1rirn} and have a strong belief that all the variables in Xi and Ui can affect
the dependent variable Yi. In the first parametric model, we ignore the
potential interaction between regressors and estimate a linear model without
any interaction (LIN) by regressing Yi on Xi, Ui1, and the two categorical
variables Ui2 and Ui3. In the second parametric model, we take into account
potential interaction between Xi and U1i, and estimate a linear model with
interaction (LIN–INT1) by adding the interaction terms between Xi and U1i

into the LIN model. In the third parametric model, we also consider
the interaction between Xi and (U2i, U3i), so we estimate a linear model with
interaction (LIN–INT2) by adding the interaction terms between Xi and
(U1i, U2i, U3i) into the LIN–INT2 model. We expect LIN–INT2 outper-
forms LIN–INT1, which in turn outperforms LIN in terms of MSEs.

For performance measure, we will generate 2n observations {(Yi, Xi, Ui),
1rir2n} for n ¼ 100, 200, and 400, and use the first n observations for
in-sample estimation and evaluation, and the last n observations for out-of-
sample evaluation. We consider root-mean-square error (RMSE) for both
in-sample and out-of-sample evaluation:

RMSEin ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
i¼1

fmðXi;UiÞ � bmðXi;UiÞg
2

s

RMSEout ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
i¼1

fmðXnþi;UnþiÞ � bmðXnþi;UnþiÞg
2MðXnþi;U

c
nþiÞ

s

where, for each method introduced earlier, bmðx; uÞ is an estimate of m(x, u)
using the first n observations {(Yi, Xi, Ui), 1rirn}, and M( � , � ) is a weight
function for the out-of-sample evaluation. We use the weight function here
because the out-of-sample observations can lie outside the data range of the
in-sample observations, and when this occurs, the nonparametric methods
significantly deteriorate. In this simulation study, we set MðXnþi;Uc;nþiÞ ¼

Pdþp
j¼1 1ðjVij � �Vjj � 1:5sVj

Þ, where Vi ¼ ðX
0
nþi;U

c0
nþiÞ
0 and �Vj and sVj

denote
the sample mean and standard deviation of {Vij, 1rirn}, respectively. We
report the mean, median, standard error, and interquartile range of RMSE
over 1,000 Monte Carlo replications.

Table 1 reports the results for all five regression models. We summarize
some interesting findings in Table 1. First, our proposed nonparametric
functional coefficient estimator dominates all the other parametric or
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nonparametric estimators in terms of both in-sample RMSE and out-of-
sample RMSE. Second, in comparison with the parametric estimators the
NP-FREQ behaves reasonably well in terms of in-sample RMSE but not out-
of-sample RMSE. The out-of-sample performance of the NP-FREQ is not
acceptable even when the sample size is 400, in which case the average number
of observations per cell is about 11. Third, as the sample size increases, the
in-sample RMSEs of both our nonparametric estimator and the NP-FREQ
decrease, but at rate slower than the parametric n�1/2-rate as expected. The
same is true for the out-of-sample RMSE of our nonparametric estimator.
Fourth, the performance of the parametric estimators based on misspecified
models may not improve as the sample size increases.

We now consider a second DGP that allows for weak data dependence
between observations. The data are generated from the following DGP

Yi ¼ Ui1ðUi1 þUi2 þUi3Þ þUi1ðUi1 þUi2 þUi3ÞXi þ �i

where

Xi ¼ 0:5Xi�1 þ ei1

Ui1 ¼ 0:5þ 0:5Ui�1;1 þ ei2

Table 1. Comparison of Finite Sample Performance of Various
Estimators (DGP1).

n Model In-Sample RMSE Out-of-Sample RMSE

Mean Median SD IQR Mean Median SD IQR

100 NP 0.729 0.703 0.160 0.194 1.140 1.096 0.449 0.271

NP-FREQ 0.993 0.994 0.141 0.193 5.494 3.222 25.067 1.374

LIN 2.375 2.336 0.521 0.713 2.752 2.684 0.693 0.754

LIN-INT1 1.686 1.649 0.353 0.495 2.088 2.027 0.464 0.591

LIN-INT2 1.091 1.072 0.209 0.273 1.531 1.494 0.351 0.427

200 NP 0.523 0.512 0.080 0.097 0.798 0.789 0.114 0.131

NP-FREQ 0.880 0.876 0.101 0.134 14.325 4.638 67.586 5.410

LIN 2.436 2.431 0.370 0.503 2.637 2.586 0.390 0.515

LIN-INT1 1.726 1.726 0.244 0.346 1.941 1.912 0.282 0.363

LIN-INT2 1.116 1.115 0.154 0.214 1.320 1.304 0.196 0.252

400 NP 0.385 0.374 0.076 0.057 0.591 0.582 0.070 0.078

NP-FREQ 0.573 0.564 0.074 0.087 7.681 2.144 44.756 2.221

LIN 2.472 2.460 0.2806 0.361 2.563 2.550 0.280 0.369

LIN-INT1 1.760 1.757 0.180 0.240 1.860 1.857 0.194 0.259

LIN-INT2 1.138 1.132 0.109 0.149 1.243 1.235 0.128 0.171
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eiBN(0,1), ei1BN(0, 1), and ei2BUniform(�0.5, 0.5), UijA{�1, 0, 1} with
P(Uij ¼ l) ¼ 1/3 for l ¼ �1, 0, 1 and j ¼ 2, 3. Furthermore, eij (j ¼ 1, 2), Ui2,
Ui3, and ei are i.i.d. and mutually independent.

Like the case for DGP 1, we also consider two nonparametric estimators
and three parametric estimators for the conditional mean function
m(x, u) ¼ E(Yi|Xi ¼ x, Ui ¼ u). We denote the corresponding regression
models as NP, NP–FREQ, LIN, LIN–INT1, and LIN–INT2, respectively.
We again consider the performance measure in terms of RMSE for both
in-sample and out-of-sample evaluation and for n ¼ 100, 200, and 400. The
only difference is that when we generate {Xi, Ui1}, we throw away the first
200 observations to avoid the starting-up effects. We report the mean,
median, standard error, and interquartile range of RMSE over 1,000 Monte
Carlo replications in Table 2. The findings in Table 2 are similar to those in
Table 1. One noticeable difference is that the out-of-sample performance of
the NP-FREQ is not bad when n ¼ 400 for this DGP. We conjecture this is
due to the fact the average number of observations per cell (400/9E44) is
not small in this case.

Table 2. Comparison of Finite Sample Performance of Various
Estimators (DGP2).

n Model In-Sample RMSE Out-of-Sample RMSE

Mean Median SD IQR Mean Median SD IQR

100 NP 0.388 0.369 0.122 0.155 0.606 0.575 0.184 0.222

NP-FREQ 0.491 0.453 0.169 0.224 5.448 0.944 57.263 1.306

LIN 2.565 2.437 0.856 1.013 3.050 2.871 1.008 1.216

LIN-INT1 1.999 1.898 0.633 0.789 2.476 2.373 0.7788 1.009

LIN-INT2 0.400 0.384 0.140 0.171 0.551 0.505 0.249 0.268

200 NP 0.231 0.218 0.070 0.090 0.392 0.372 0.097 0.114

NP-FREQ 0.266 0.243 0.096 0.122 1.623 0.408 17.987 0.246

LIN 2.646 2.576 0.639 0.834 2.901 2.847 0.669 0.854

LIN-INT1 2.059 2.009 0.469 0.550 2.332 2.273 0.534 0.653

LIN-INT2 0.384 0.369 0.105 0.142 0.468 0.437 0.142 0.168

400 NP 0.129 0.122 0.039 0.046 0.256 0.247 0.049 0.055

NP-FREQ 0.138 0.126 0.046 0.051 0.274 0.255 0.140 0.062

LIN 2.690 2.624 0.464 0.630 2.826 2.778 0.439 0.566

LIN-INT1 2.096 2.066 0.328 0.442 2.240 2.217 0.342 0.459

LIN-INT2 0.380 0.371 0.076 0.100 0.418 0.411 0.085 0.108
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4. AN EMPIRICAL APPLICATION: ESTIMATING

THE WAGE EQUATION

In this section, we apply our functional coefficient model to estimate a wage
equation embedded in the framework of Mincer’s (1974) human capital
earning function. The basic Mincer wage function takes the form:

logY ¼ b0 þ b1S þ b2Aþ b3A
2 þ � (15)

where Y is some measure of individual earnings, S is years of schooling, and
A is age or work experience. In spite of its simplicity, Mincer equation
captures the reality remarkably well (Card, 1999), and has been firmly
established as a benchmark in labor economics. Concerning its specification,
several extensions have been made to allow more general parametric
functional forms (see Murphy & Welch, 1990). Further, a nonparametric
analysis has been done in Ullah (1985) and Zheng (2000). And in practice,
other control variables, such as indicators of gender, race, occupation, or
martial status are routinely included in the wage equation when they
are available. Nevertheless, the additive separability assumption of the
standard Mincer equation may be too stringent. For instance, it ignores
the possibility that higher education results in more return to seniority.1

Also, it is often of keen economic and policy interest to investigate the
differentials among different gender and race groups, where the return to
education or experience may differ substantially. Therefore, we intend to
estimate the functional coefficient model of the following form:

logY ¼ a1ðUÞ þ a2ðUÞS þ � (16)

where Y and S are as defined above, and U is a vector of mixed variables
including one continuous variable – age or work experience, and six
categorical variables for gender, race, martial status, veteran status,
industry, and geographic location. The specification of Eq. (16) enables us
to both study the direct effects of variables in U flexibly and investigate
whether and how they influence the return to education. Some past
literature has already suggested nonlinear relationship between seniority
and wage beyond a quadratic form (Murphy & Welch, 1990; Ullah, 1985;
Zheng, 2000), as well as the fact that rising return to education from
the 1980s is more drastic in the younger cohorts than in the older ones
(Card & Lemieux, 2001).

Our model is also suitable for analyzing the gender and racial wage
differentials. In the study of discrimination, it is common practice to
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estimate a ‘‘gender/racial wage gap’’ or estimate wage equation in separate
samples. (For a survey of race and gender in the labor market, see Altonji &
Blank, 1999.) Here the limitation of application of the traditional
nonparametric method is the fact that indicators for gender and race are
discrete, a problem overcome in our model. Also, compared with estimating
wage separately among gender-racial groups or the frequency approach, our
approach utilizes the entire dataset, thus achieving efficiency gain. We can
also explicitly address other supposedly complicated interaction effects
between the variables of interest. Further, unlike a complete nonparametric
specification, model (16) has the further advantage that it can be readily
extended to instrument variable estimation (Cai, Das, Xiong, & Wu, 2006),
provided we have some reasonable instruments to correct the endogeneity
in education. To keep our discussion focused, however, this aspect is not
further explored in this paper.

The data utilized are drawn from March CPS data of the year 1990, 1995,
2000, and 2005. The earning variable is the weekly earning calculated from
annual salary income divided by weeks of work, and deflated by the CPI
(1982–1984 ¼ 100). As usual, we exclude observations that are part-time
workers, self-employed, over 65, under 18, or earn less than 50 dollars per
week. All observations fall into 3 racial categories – White, Hispanic and
otherwise, 4 geographic location categories – Northeast, Midwest, South
and West, and 10 industrial categories. There are also three dichotomous
variables ‘‘Female,’’ ‘‘Veteran,’’ and ‘‘Single.’’ Years of schooling are
estimated by records of the highest educational degree attained and
experience is approximated by Age-Schooling-6. Fig. 1 plots wage against
experience and years of schooling for the 4 years under our investigation.
The left panel in Fig. 1 suggests the linear relationship (if any) between
experience and wage is weak whereas the right panel in Fig. 1 suggests there
is a positive relationship between years of schooling and wage.

As a comparison, we also estimate a simple linear wage function, a linear
wage function with interacting covariates, and a partially linear model.
The results are reported in Tables 3–5 (see also Fig. 2), respectively.

Results in Table 3 are in conformity with some stylized effects in labor
economics, including stable return to schooling in the 1990s (Card &
DiNardo, 2002; Beaudry & Green, 2004), concavity in return to experience,
falling gender–wage gaps (Altonji & Blank, 1999), etc. The returns to
schooling appear to range from 9.8 to 10.7% for the data under our
investigation. Nevertheless, the inadequacy of a simple linear separable
model is made clear in Table 4, since most of the interaction items of the
covariates are significantly different from zero. And many of them are of
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important economic implications, such as the higher return to education for
female and higher return to experience for the White. And the goodness-of-
fit of the model after accounting for the interaction effects has also increased
modestly. Table 4 indicates the omission of these interaction terms may
cause significant bias in the estimate of returns to schooling, and the bias
can be as large as about 41% for year 2005 if we believe the linear model
with interaction terms is correctly specified.

Fig. 1. Experience–Wage and Education–Wage Profiles. Note: The four rows

correspond to years 1990, 1995, 2000, and 2005 from the top to the bottom. The

sparsity of the experience variable is also plotted along the experience axis.
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Another extension of Eq. (15) is to consider the partially linear model:
logY ¼ m(Schooling, Experience)þZubþe, where Z is a set of dummy
variables, and education and experience enter the model nonparametrically.
We use the local linear method to estimate this model which is in the
spirit of Robinson (1988). A second-order Epanechnikov kernel wðvÞ ¼ 0:75
ð1� 0:2v2Þ1ðjvj �

ffiffiffi
5
p
Þ is used; and the bandwidth is chosen by a LSCV

method. Given the large number of observations in our dataset, it is
extremely costly to apply the LSCV method directly on all the observations.
So we apply a methodology similar to that proposed at the end of Section 2

Fig. 2. Education–Experience–Wage Profile Resulting from the Partially Linear

Models.
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to choose the bandwidth. As reported in Table 5, the partially linear model
performs a little bit better in goodness-of-fit, as expected. However, it is
noteworthy that comparing with the simple linear model, accounting for the
possibly complex function form of education and experience has also signifi-
cantly changed the estimates of the coefficients for the other covariates.
For instance, the effects of race have drastically dropped in magnitude
as well as significance. The difference may be the result of biases induced by
the misspecification in a parametric model, and thus indicates the needs for
the more general functional form assumption.

In all the above specifications, we use dummy variables to allow different
intercepts for different regions and industries, and the majority of them have
a significant estimated coefficient. The large number of categories makes it
difficult to study their interaction effects with other regressors. In contrast,
in the nonparametric framework of mixed regressors, only one categorical
variable is necessary to describe such characteristic as industry or location.
And this advantage has made our proposed model further suitable for the
application.

For a comprehensive presentation of the regression results of model (16),
we plot the wage–experience profiles of different cells defined by a discrete
characteristic averaged over other categorical covariates. We use the second-
order Epanechnikov kernel in our nonparametric estimation, and choose
the bandwidth by the LSCV method introduced at the end of Section 2.4.

Table 3. Linear Wage Equation.

Year 1990 1995 2000 2005

(1) (2) (3) (4)

Education 0.098a (0.002) 0.107a (0.002) 0.105a (0.003) 0.107a (0.002)

Experience 0.029a (0.001) 0.036a (0.002) 0.029a (0.002) 0.031a (0.001)

Experience2 �0.000a (0.000) �0.001a (0.000) �0.001a (0.000) �0.001a (0.000)

Female �0.309a (0.010) �0.290a (0.010) �0.279a (0.011) �0.277a (0.008)

White 0.100a (0.013) 0.130a (0.013) 0.097a (0.013) �0.098a (0.010)

Hispanic 0.034c (0.017) 0.040c (0.022) 0.033c (0.019) 0.034b (0.014)

Single �0.087a (0.009) �0.071a (0.010) �0.097a (0.010) �0.102a (0.008)

Veteran �0.013 (0.013) �0.049a (0.015) �0.008 (0.016) �0.031b (0.014)

Observations 12,328 10,834 10,433 17,466

R2 0.37 0.36 0.33 0.34

Note: (1) Heteroskedasticity-robust standard errors in parentheses. (2) a, b, and c stand for

significance at 1%, 5%, and 10% levels, respectively. (3) Three region indicators, nine industry

indicators, and a constant in all specifications.

LIANGJUN SU ET AL.150



The R20s of the model have been increased up to 0.66, 0.65, 0.62, 0.68,
respectively for the 4 years.

Fig. 3 reports the estimated a1(Experience, Region, :) and a2(Experience,
Region, :) of model (16) for different regions averaged across all other
categorical variables. a1(Experience, Region, :) can be viewed as the direct
effects of experience on wage for the particular region (averaged across all
other categorical variables), and a2(Experience, Region, :) represents the
return to schooling as a function of experience for the particular region.
We summarize some interesting findings from Fig. 3. First, while there are
considerable variations between regions, we find the direct effects of
experience on wage are usually positive (upward sloping) but not necessarily
concave, which is in sharp contrast with the results of the parametric model.
Notably, the experience–wage profile estimated here are from cross-sections
and cannot be taken as individuals life-cycle earning trend. Second, if the

Table 4. Linear Wage Equation with Interacted Regressors.

Year 1990 1995 2000 2005

(1) (2) (3) (4)

Education 0.133a (0.007) 0.146a (0.007) 0.134a (0.008) 0.151a (0.006)

Experience 0.059a (0.003) 0.071a (0.003) 0.049a (0.004) 0.053a (0.003)

Experience2 �0.001a (0.000) �0.001a (0.000) �0.001a (0.000) �0.001a (0.000)

Female �0.349a (0.061) �0.379a (0.069) �0.526a (0.074) �0.353a (0.059)

White 0.039 (0.089) 0.091 (0.091) �0.077 (0.106) 0.025 (0.082)

Hispanic 0.496a (0.098) 0.551a (0.114) 0.455a (0.111) 0.607a (0.086)

Single �0.132a (0.013) �0.128a (0.014) �0.137a (0.014) �0.155a (0.012)

Veteran �0.024c (0.014) �0.056a (0.015) �0.010a (0.017) �0.027c (0.015)

Education�Experience �0.002a (0.000) �0.002a (0.000) �0.001a (0.000) �0.001a (0.000)

Education�Female 0.014a (0.004) 0.016a (0.004) 0.022a (0.005) 0.009b (0.004)

Education�White 0.009 (0.006) 0.007 (0.006) 0.010 (0.007) 0.006 (0.006)

Education�Hispanic �0.034a (0.007) �0.035a (0.008) �0.039a (0.008) �0.046a (0.006)

White�Female �0.135a (0.025) �0.123a (0.026) �0.087a (0.026) �0.098a (0.020)

Hispanic�Female �0.017 (0.034) �0.069 (0.043) �0.035 (0.038) 0.012 (0.028)

Single�Female 0.114a (0.018) 0.141a (0.018) 0.105a (0.020) 0.135a (0.010)

Experience�Female �0.005a (0.001) �0.004a (0.001) �0.002a (0.001) �0.001a (0.001)

Experience�White 0.000 (0.001) 0.000 (0.001) 0.004a (0.001) 0.002a (0.001)

Experience�Hispanic �0.003c (0.002) �0.004b (0.002) 0.001 (0.002) �0.000 (0.001)

Observations 12,328 10,834 10,433 17,466

R2 0.39 0.38 0.34 0.36

Note: (1) Heteroskedasticity-robust standard errors in parentheses. (2) a, b, and c stand for

significance at 1%, 5%, and 10% levels, respectively. (3) Three region indicators, nine industry

indicators, and a constant in all specifications.
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standard Mincer equation holds, we expect the estimated a2(Experience,
Region, :) to be a horizontal line. But clearly, this is far from reality. The
effects of experience on return to schooling are mainly negative, which agrees
with our previous results from the parametric setting, presented in Table 4.
The findings here have interesting econometric interpretation. On the one
hand, we may wonder if higher education causes higher return to seniority,
or similarly, longer experience leads to higher return to education. On the
other hand, it is possible that the young cohorts (implied by shorter
experience) have higher return to education, due to cohort supply effects,
technological changes or some other reasons. And we need to resort to
empirical results to evaluate the overall influence. In the sample studied
here, the later force has been found to dominate the former in their direction
of impacts. Admittedly, the interacting patterns of the regressors in the wage
equation uncovered by this functional coefficient model require further
careful investigation.

Fig. 4 reports the estimated a1(Experience, Race, :) and a2(Experience,
Race, :) of model (16) for different races averaged across all other
categorical variables. a1(Experience, Race, :) can be viewed as the direct
effects of experience on wage for the race, and a2(Experience, Race, :)
represents the return to schooling as a function of experience for the
particular race. The findings are similar to those in Fig. 3. We only mention
that the return to schooling seems much higher for White and others
(above 0.1 across 2/3 of the range of experience) than Hispanic (below 0.1 in
almost all the range of experience).

Table 5. Partially Linear Wage Equation.

Year 1990 1995 2000 2005

(1) (2) (3) (4)

Female �0.280a (0.010) �0.265a (0.011) �0.259a (0.011) �0.259a (0.008)

White 0.103a (0.012) 0.135a (0.013) 0.096a (0.013) 0.102a (0.010)

Hispanic 0.001 (0.017) �0.001a (0.022) �0.017 (0.019) �0.007 (0.014)

Single �0.077a (0.009) �0.058a (0.010) �0.082a (0.010) �0.077a (0.008)

Veteran 0.024a (0.013) �0.009 (0.015) 0.021 (0.016) �0.001 (0.014)

Observations 12,328 10,834 10,433 17,446

R2 0.40 0.39 0.36 0.38

Note: (1) Heteroskedasticity-robust standard errors in parentheses. (2) a stands for significance

at 1% level. (3) Three region indicators, nine industry indicators and a constant in all

specifications. (4) The estimate of m (Schooling, Experience) is plotted in Fig. 2.
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Fig. 5 reports the estimated a1(Experience, :) and a2(Experience, :)
depending on whether a person is male or female, single or nonsingle,
and veteran or nonveteran. Fig. 6 reports the estimated a1(Experience,
Industry, :) and a2(Experience, Industry, :) of model (16) for different
industries averaged across all other categorical variables. Both figures can be
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Fig. 5. Plots of a1(Experience, Gender, :) and a2(Experience, Gender, :) (first row),

a1(Experience, Single, :) and a2(Experience, Single, :) (second row), a1(Experience,

Veteran, :), and a2(Experience, Veteran, :) (third row), averaging over other categorical

variables. Note: Horizontal axis – Experience. Vertical axis – a1 or a2. First row: The

four columns from the left to the right correspond to a1 for male, a1 for female, a2 for

male, and a2 for female, respectively. Second row: The four columns from the left to the

right correspond to a1 for nonsingle, a1 for single, a2 for nonsingle, and a2 for single,

respectively. Third row: The four columns from the left to the right correspond to a1 for

nonveteran, a1 for veteran, a2 for nonveteran, and a2 for veteran, respectively. 1990,

solid line; 1995, dotted line; 2000, dashdot line; and 2005, dashed line.
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interpreted similarly to the case of Fig. 3. The most eminent implication by
these figures is that return to education does depend heavily upon other
variables. In particular, the top panel in Fig. 5 indicates that higher return
to education for female across all the range of age or work experience.
In addition, we can see substantial variation among the cells which suggests
the highly complex functional form of the wage equation.
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Fig. 6. Plots of a1(Experience, Industry, :) and a2(Experience, Industry, :) averaging

over other categorical variables. Note: Horizontal axis – Experience. Vertical axis –

a1 or a2. The first two rows correspond to a1, and the last two rows correspond to a2.

For rows 1 and 3, the five columns from the left to the right correspond respectively

to Industry ¼ Agriculture, Mining, Construction, Manufacturing, and Transporta-

tion. For rows 2 and 4, the five columns from the left to the right correspond

respectively to Industry ¼Wholesale and return, Finance, Personal services,

Professional services, and Public administration. 1990, solid line; 1995, dotted line,

2000, dashdot line; and 2005, dashed line.
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Fig. 7 reports the estimated a1(Experience, :) and a2(Experience, :)
averaged over all categorical variables. Similarly to the cases of Figs. 3–6, we
observe that the direct impact of experience on wage is positive but the
return to schooling as a function of experience tends to be decreasing except
when experience is low (r4 years in 1990, r12 in 2005). When experience
is larger than 37 years, the return to schooling is diminishing very fast as a
function of experience. Prior to 37 years, the returns to schooling may vary
from 0.105 to 0.145.

Therefore, our empirical application has demonstrated the usefulness
of our proposed model in uncovering complicated patterns of interacting
effects of the covariates on the dependent variable. And the results are of
interesting economic interpretation.
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Fig. 7. Plots of a1(Experience, :) and a2(Experience, :) averaging over all

categorical variables. Note: Horizontal axis – Experience. Vertical axis – a1 or a2.

The two columns from the left to the right correspond to a1 and a2,

respectively. 1990, solid line; 1995, dotted line; 2000, dashdot line; and 2005,

dashed line.
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5. CONCLUSIONS

This paper proposes a local linear functional coefficient estimator that
admits a mix of discrete and continuous data for stationary time series.
Under weak conditions our estimator is asymptotically normally distrib-
uted. We also include simulations and empirical applications. We find from
the simulations that our nonparametric estimators behave reasonably well
for a variety of DGPs.

As an empirical application, we estimate a human capital earning
function from the recent CPS data. Unlike the widely used linear separable
model, or the frequency approach that conducts estimation in splitted
samples, the proposed model enables us to utilize the entire dataset and
allows the return to education to vary with the other categorical and
continuous variables. The empirical findings show considerable interacting
effects among the regressors in the wage equation. For instance, the younger
cohorts are found to have higher return to education. While these patterns
need further explanation from labor economic theory, the application
demonstrates the usefulness of our proposed functional coefficient model
due to its flexibility and clear economic interpretation. And thus the model
has good potential for applied research. Our future research will address
some related problems such as the optimal selection of smoothing
parameters. Another extension is to study the estimation of functional
coefficient model with both endogeneity and mixed regressors.

NOTE

1. Throughout our paper the use of word return or marginal return from education
refers to the functional (varying) coefficient of education that may not be the marginal
return if the education is endogenous, an issue not explored in our paper.
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APPENDIX

We use || � || to denote the Euclidean norm of � , C to signify a generic
constant whose exact value may vary from case to case, and au to denote the
transpose of a. Let duiu ¼

Pq
t¼11ðU

d
itaudt Þ where 1ðUd

itaudt Þ is an indicator
function that takes value 1 if ðUd

itaudt Þ and 0 otherwise. So duiu indicates the
number of disagreeing components between Ud

it and udt .

Proof of Theorem 1. We first define some notation. For any p� 1 vectors
c ¼ (c1,y, cp)u and d ¼ (d1,y, dp)u, let c� d ¼ ðc1d1; . . . ; cpdpÞ

0 and
c=d ¼ ðc1d1; . . . ; cpdpÞ

0 whenever applicable. Let

Sn ¼ SnðuÞ ¼
Sn;0 Sn;1

S0n;1 Sn;2

 !
; Tn ¼ TnðuÞ ¼ Tn;1 þ Tn;2 (A.1)

with

Sn;0 ¼ Sn;0ðuÞ ¼ n�1
Xn
i¼1

XiX
0
iK iu

Sn;1 ¼ Sn;1ðuÞ ¼ n�1
Xn
i¼1

ðXiX
0
iÞ �

ðUc
i � ucÞ

h

� �0
K iu

Sn;2 ¼ Sn;2ðuÞ ¼ n�1
Xn
i¼1

ðXiX
0
iÞ �

ðUc
i � ucÞ

h

� �
ðUc

i � ucÞ

h

� �0� �
K iu
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Tn;1 ¼ Tn;1ðuÞ ¼ n�1
Xn
i¼1

Xi�i

ðXi�iÞ � ððU
c
i � ucÞ=hÞ

 !
K iu; and

Tn;2 ¼ Tn;2ðuÞ ¼ n�1
Xn
i¼1

ðXiX
0
iaðUiÞÞ

ðXiX
0
iaðUiÞÞ � ððU

c
i � ucÞ=hÞ

 !
K iu

where recall a(Ui) ¼ (a1(Ui),y, ad(Ui))u. Thenby ¼ H�11 S�1n Tn

where H1 ¼ diag(1,y, 1, hu,y, hu) is a d(pþ1)� d(pþ1) diagonal matrix
with d diagonal elements of 1 and d diagonal elements of h. Let
H ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nh1 . . . hp

p
. Then

HH1ð
by� yÞ ¼ HS�1n ðTn � SnyÞ

¼ HS�1n Tn;1 þHS�1n ðTn;2 � SnyÞ
We first prove several lemmas.

Lemma A.1.

(a) Sn;0 ¼ OðuÞf uðuÞ þ opð1Þ,
(b) Sn;1 ¼ Opðjjhjj

2 þ jjhjj jjljjÞ ¼ opð1Þ,
(c) Sn;2 ¼ m2;1ðOðuÞf uðuÞÞ � Ip þ opð1Þ.

Proof. We only prove (a) since the proofs of (b) and (c) are similar. First
by the stationarity of {Xi, Ui}

EðSn;0Þ ¼ EðXiX
0
iK iuÞ

¼ EðXiX
0
i Wh;iujduiu ¼ 0ÞpðudÞ

þ
Xq
s¼1

EðXiX
0
iWh;iuLl;iujduiu ¼ sÞPðduiu ¼ sÞ

¼ EðOðUiÞWh;iujduiu ¼ 0ÞpðudÞ þOðjjljjÞ

¼

Z
Oðuc þ h� v; udÞf uðu

c þ h� v; udÞWðvÞdvþO jjljjð Þ

¼ OðuÞf uðuÞ þOðjjhjj2 þ jjljjÞ ðA:2Þ

where pðudÞ ¼ PðUd
i ¼ udÞ.
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Since a typical element of Sn,0 is

sn;st ¼ n�1
Xn
i¼1

X isX itK iu; s; t ¼ 1; . . . ; d

by the Chebyshev’s inequality, it suffices to show that

var ðsn;stÞ ¼ oð1Þ . (A.3)

Let xi ¼ XisXitKiu. By the stationarity of {Xi,Ui}, we have

varðsn;stÞ ¼
1

n
varðx1Þ þ

2

n

Xn�1
j¼1

1�
j

n

� �
covðx1; xjÞ (A.4)

Clearly,

varðx1Þ � EðX2
1sX

2
1tK

2
1uÞ ¼ Oððh1 . . . hnÞ

�1
Þ (A.5)

To obtain an upper bound for the second term on the right-hand side of
Eq. (A.4), we split it into two terms as follows

Xn�1
j¼1

jcovðx1; xjÞj ¼
Xdn

j¼1

jcov ðx1; xjÞj þ
Xn�1

j¼dnþ1

jcovðx1; xjÞj 	 J1 þ J2

where dn is a sequence of positive integers such that dnh1yhp-0 as
n-N. Since for any jW1,

jEðx1xjÞj ¼ jEðX1sX1tK1;uXjsXjtKj;uÞj ¼ Oð1Þ

J1 ¼ O(dn). For J2, by the Davydov’s inequality (e.g., Hall & Heyde, 1980,
p. 278; or Bosq, 1996, p. 19), we have

covðx1; xjÞ � C½aðj � 1Þ�g=ð2þgÞðEjx1j
2þgÞ

2=ð2þgÞ

¼ C½aðj � 1Þ�g=ð2þgÞ E ðX1sX1tÞ
ð2þgÞK2þg

1;u

��� ���n o2=ð2þgÞ

¼ O ðh1 . . . hpÞ
�ð2þ2gÞ=ð2þgÞ

� �
½aðj � 1Þ�g=ð2þgÞ ðA:6Þ
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So

J2 � Cðh1 . . . hpÞ
�ð2þ2gÞ=ð2þgÞ

Xn�1
j¼dn

½aðjÞ�g=ð2þgÞ

� Cðh1 . . . hpÞ
�ð2þ2gÞ=ð2þgÞd�an

X1
j¼dn

ja½aðjÞ�g=ð2þgÞ ¼ oððh1 . . . hpÞ
�1
Þ ðA:7Þ

by choosing dn such that d�an ðh1 . . . hpÞ
�g=ð2þgÞ

¼ oð1Þ. This, in conjunc-
tion with Eqs. (A.4) and (A.5), implies, varðsn;stÞ ¼ Oððnh1 . . . hpÞ

�1
Þ

¼ oð1Þ.

Lemma A.2.

HTn;1 ¼ n�1=2ðh1 . . . hpÞ
1=2
Xn
i¼1

Xi�i

ðXi�iÞ � ððU
c
i � ucÞ=hÞ

 !
K iu�!

d
Nð0;GÞ

where H ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nh1 . . . hp

p
; s2ðu;xÞ ¼ E½�2i jUi ¼ u;Xi ¼ x�; O
ðuÞ ¼ E½XiX

0
i

s2ðUi;XiÞjUi ¼ u�; and

G ¼ GðuÞ ¼ f uðuÞ
mp0;2O


ðuÞ 00

0 m2;2O


ðuÞ � Ip

 !

Proof. Let w be a unit vector on Rdðpþ1Þ. Let

zi ¼ ðh1 . . . hpÞ
1=2w0

Xi�i

ðXi�iÞ � ððU
c
i � ucÞ=hÞ

 !
K iu

By the Cramér–Wold device, it suffices to prove

In ¼ n�1=2
Xn
i¼1

zi�!
d

Nð0;w0 GwÞ. (A.8)

Clearly, by the law of iterated expectation, E(zi) ¼ 0. Now

varðInÞ ¼ varðz1Þ þ 2
Xn�1
j¼1

1�
j

n

� �
covðz1; zjÞ
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By arguments similar to those used in the proof of Lemma A.1,

varðz1Þ

¼ h1 . . .hpw
0E

O
ðUiÞ O
ðUiÞ� ððU
c
i �ucÞ=hÞ0

O
ðUiÞ�ððU
c
i �ucÞ=hÞ O
ðUiÞ�ðððU

c
i �ucÞ=hÞððUc

i �ucÞ=hÞ0Þ

 !
K2

iu

( )
w

¼w0Gwþoð1Þ

and Xn�1
j¼1

jcovðz1; zjÞj ¼ oð1Þ

which implies that
varðInÞ!w0Gw as n!1

Using the standard Doob’s small-block and large-block technique,
we can finish the rest of the proof by following the arguments of Cai et al.
(2000, pp. 954–955) or Cai and Ould-Saı̈d (2003, pp. 446–448). �

Lemma A.3. Let Bn ¼ H(Tn,2�Sny). Then Bn ¼ b(h, l)þop(1), where
b(h, l) is defined in Eq. (10).

Proof. Let

Bi ¼H
ðXiX

0
iaðUiÞÞ

ðXiX
0
iaðUiÞÞ� ððU

c
i � ucÞ=hÞ

 !
K iu

�H
XiX

0
i ðXiX

0
iÞ� ððU

c
i � ucÞ=hÞ0

ðXiX
0
iÞ� ððU

c
i � ucÞ=hÞ ðXiX

0
iÞ� ðððU

c
i � ucÞ=hÞððUc

i � ucÞ=hÞ0Þ

 !
yK iu

Then we have

Bn ¼
1

n

Xn
i¼1

Bi (A.9)

Let �Bi ¼EðBijUiÞ. Then

EðBnÞ ¼Eð�BiÞ

¼E f�Bijduiu ¼ 0gpðudÞþE f�Bijduiu ¼ 1gP ðduiu ¼ 1ÞþOðHjjgjj2Þ

	 bn;1þ bn;2þ oð1Þ

On the set fUd
i ¼ ud; Wh;iu40g;

ajðUiÞ ¼ ajðuÞþ _ajðuÞ
0
ðUc

i � ucÞþ 1
2
ðUc

i � ucÞ0 €ajðuÞðU
c
i � ucÞþ oðjjhjj2Þ
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LetAðUi;uÞ¼ ððU
c
i � ucÞ0 €a1ðuÞðU

c
i � ucÞ; ... ; ðUc

i � ucÞ0 €ad ðuÞðU
c
i � ucÞÞ0. Recall

A¼ ð
Pp

s¼1h
2
s a1;ssðuÞ; ... ;

Pp
s¼1h

2
s ad ;ssðuÞÞ

0, and bðuÞ¼ ð _a1ðuÞ
0; . .. ; _ad ðuÞ

0
Þ
0.

Then we have

bn;1 ¼
1

2
H E

OðUiÞAðUi ;uÞ

ðOðUiÞAðUi;uÞÞ� ððU
c
i � ucÞ=hÞ

 !
Wh;iu

��duiu ¼ 0

( )
� pðud Þþ oð1Þ

¼
Hm2;1
2

f uðuÞOðuÞA

0

 !
þ oð1Þ

and

bn;2

¼ H Ef�Bijduiu ¼ 1gPðduiu ¼ 1Þ

¼ H E

OðUiÞðaðUiÞ� aðuÞÞ� ðOðUiÞ� ððU
c
i � ucÞ=h0ÞÞbðuÞ

ðOðUiÞ ðaðUiÞ� aðuÞÞÞ� ððUc
i � ucÞ=hÞ

�ðOðUiÞ� ðððU
c
i � ucÞ=hÞððUc

i � ucÞ=hÞ0ÞÞbðuÞ

0B@
1CA

8><>:
�K iujduiu ¼ 1

9>=>;Pðduiu ¼ 1Þþ o ð1Þ

¼ H
P
~ud2D

Pq
s¼1

lsI sðud; ~udÞf uðu
c; ~udÞ

Oðuc; ~udÞðaðuc; ~udÞ� aðuÞÞ

�m2;1ðOðu
c; ~udÞ� IpÞbðuÞ

 !
þ oð1Þ

Consequently, E(Bn)¼ b(h, l)þo(1), where b(h, l) is defined in Eq. (10).
To show var(Bn) ¼ o(1) elementwise, we focus on the first d elements

Bð1Þi of Bi since the other cases are similar, where

Bð1Þi ¼ H XiX
0
iðaðUiÞ � aðuÞÞ � XiX

0
i �

ðUc
i � ucÞ

h

� �0� �
bðuÞ

� �
K iu

A typical element of Bð1Þi is

Bð1Þi;t ¼ H Xit

Xd
s¼1

XisðasðUiÞ � asðuÞÞ � Xit

Xd
s¼1

Xis
ðUc

i � ucÞ

h

� �0
bjðuÞ

" #
K iu

t ¼ 1,y, d.

var
1

n

Xn
i¼1

Bð1Þi;t

 !
¼

1

n
var Bð1Þ1;t
� �

þ
2

n

Xn�1
j¼1

1�
j

n

� �
covðBð1Þ1;t ; B

ð1Þ
j;t Þ
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By arguments similar to those used in the proof of Lemma A.1,

1

n
var Bð1Þ1;t
� �

¼ O jjhjj4 þ jjljj2
 �

¼ oð1Þ

and

Xn�1
j¼1

jcovðBð1Þ1;t ; B
ð1Þ
j;t Þj ¼ oð1Þ

which implies that varðð1=nÞ
Pn

i¼1B
ð1Þ
i;t Þ ¼ oð1Þ. Similarly, one can show that

the variance of the other elements in Bn is o(1). The conclusion then
follows by the Chebyshev’s inequality. �

By Lemmas A.1–A.3,

HH1ðby� yÞ � B�1bðh; lÞ �!
d

Nð0;B�1GB�1Þ

This completes the proof of Theorem 1.

Proof of Corollary 1. Since the proof parallels that of Theorem 1, we only
sketch the difference. Recall Sn (u) is defined in (A.1). When uc ¼ nh, we
have

E½Sn;0ðuÞ� ¼ E½XiX
0
iKiu�

¼

Z
Oðuc þ hz; udÞf uðu

c þ hz; udÞWðzÞdzþOðjjljjÞ

¼ Oð0; udÞf uð0; u
dÞin0 þ oð1Þ

where in0 is defined after Eq. (11). Similarly, E[Sn,1 (u)] ¼ O (0, ud) fu
(0, ud) in1þo(1), and E[Sn,2 (u)] ¼ O(0, ud) fu (0, ud) in2þo(1). It follows
that

Snðu
c; udÞ �!

d
Sn � Oð0; udÞf uð0; u

dÞ (A.10)

where Sn is defined in (11). Following the proof of Lemma A.2, with
uc ¼ nh we can show that

varðHTn;1Þ ¼ Gn � O
ð0; udÞf uð0; u
dÞ þ oð1Þ (A.11)
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where Gn is defined in Eq. (11). Following the proof of Lemma A.3, when
uc ¼ nh, we have

bn;1 ¼
1

2
HE

OðUiÞAðUi; uÞ

OðUiÞAðUi; uÞððU
c
i � ucÞ=hÞ

 !
Wh;iu

��duiu ¼ 0

( )
� pðudÞ þ oð1Þ

¼
H

2

Oð0; udÞ �Að0; udÞin2

Oð0; udÞ �Að0; udÞin3

 !
f uð0; u

dÞ þ oð1Þ ðA:12Þ

and

bn;2 ¼HE
OðUiÞðaðUiÞ� aðuÞÞ� ððUc

i � ucÞ=hÞOðUiÞbðuÞ

OðUiÞðaðUiÞ� aðuÞÞððUc
i � ucÞ=hÞ� ððUc

i � ucÞ=hÞ2OðUiÞbðuÞ

 !(

�Kiujduiu ¼ 1

)
� pðduiu¼ 1Þþ oð1Þ

¼H
X
~ud �D

Xq
s¼1

lsI sðud; ~udÞf uð0; ~u
dÞ

�
Oð0; ~udÞfin0½að0; ~udÞ� að0; udÞ�� in1bð0; udÞg

Oð0; ~udÞfin1½að0; ~udÞ� að0; udÞ�� in2bð0; udÞg

 !
þ oð1Þ ðA:13Þ

where �Að0; udÞ is defined in Eq. (12). Combining Eqs. (A.10)–(A.13) yields
the desired result.
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DISTRIBUTION OF LIFE

EXPECTANCY AND PER CAPITA

INCOME GROWTH
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and Ximing Wu

ABSTRACT

In this paper we investigate the joint conditional distribution of health
(life expectancy) and income growth, and its evolution over time. The
conditional distributions of these two variables are obtained by applying
non-parametric methods to a bivariate non-parametric regression system
of equations. Analyzing the distributions of the non-parametric fitted
values from these models we find strong evidence of movement over time
and strong evidence of first-order stochastic dominance of the earlier
years over the later ones. We also find strong evidence of second-order
stochastic dominance by non-OECD countries over OECD countries in
each period. Our results complement the findings of Wu, Savvides and
Stengos (2008) who explored the unconditional behaviour of these joint
distributions over time.

Nonparametric Econometric Methods

Advances in Econometrics, Volume 25, 171–191

Copyright r 2009 by Emerald Group Publishing Limited

All rights of reproduction in any form reserved

ISSN: 0731-9053/doi:10.1108/S0731-9053(2009)0000025008

171

dx.doi.org/10.1108/S0731-9053(2009)0000025008
dx.doi.org/10.1108/S0731-9053(2009)0000025008


1. INTRODUCTION

Even though the concept of human development is a very broad concept,
it certainly would include health and standard of living as two of its
fundamental components. The Human Development Report, first published
in 1990, includes the United Nations Development Programme report of
a composite index for each member country’s average achievements. This
index, the Human Development Index (HDI), covers three basic dimensions
of human development: health, education and standard of living.

An important question for policy makers is how to improve health,
especially in developing countries. Many researchers (see Caldwell, 1986;
Musgrove, 1996) argue that development should focus on income growth,
since higher incomes indirectly lead to health improvements. Others, Anand
and Ravallion (1993) and Bidani and Ravallion (1997) take the stand that
income growth alone is not enough as people’s ability to function and
perform in their economic tasks is affected by their health status and not the
other way around. We intend to contribute to this debate by looking at the
evolution of per capita income and health as measured by life expectancy
over time for a number of countries over a 30-year period.

According to recent World Bank data, over the last 40 years, the world’s
real GDP has increased by more than 100 percent although there exist
important differences among individual country experiences. For the richest
country quartile this increase is more than 150 percent, whereas for the
poorest quartile this number was only 50 percent. Extreme poverty (the
share of population living on less than $1 per day) in developing countries
has fallen by about 20 percent over the last 10 years alone, especially in
East and South Asia where the accelerating growth of China and India has
propelled these regions to be well within the target of the Millennium
Development Goals to reduce in half the fraction of people below the cutoff
of $1 per day by 2015. Between 1960 and 2000 average life expectancy
has increased by 15 years and infant mortality has fallen by more than
50 percent around the world, giving hope that the Millennium Development
Goal of reducing infant and child mortality rates to one-third of their 1990
levels would be met.

The rapid health improvements over the last 40 years raise the question of
the driving forces behind this trend. Most of the empirical studies (see, e.g.
Musgrove, 1996; Filmer & Pritchett, 1999) assume that health improve-
ments are the by-product of higher income as countries with higher income
devote more resources for their health services, something that would
translate into improved health status for their population.
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One of the earlier benchmark studies of the income–health relationship is
Preston (1975) who compared different countries’ life expectancy and per
capita income for different benchmark years (1900, 1930 and 1960) and
proposed the ‘Preston curve’, a non-linear and concave empirical relation-
ship between the two. The concave Preston curve has provided the rationale
for much of the empirical work that has followed. However, simple health–
per capita income relationships may suffer from endogeneity, especially
when it comes to countries on the flat portion of the Preston curve, where
health has reached such an advanced stage where additional improvements
coming from income growth cannot be attained. In that case it would be the
reverse impact from health to income that would be important. Papers such
as Pritchett and Summers (1996) address this issue by relying on an
instrumental variable (IV) methodology. However, the difficulty here is the
choice of instruments as many of those chosen as instruments may not
be appropriate or may be weak, for example, the investment ratio (ratio of
investment to GDP) will itself be endogenous in a health-type production
function.

In a recent paper, Maasoumi, Racine, and Stengos (2007) (MRS
hereafter) examined the entire distribution of income growth rates, as well
as the distributions of parametrically and non-parametrically fitted and
residual growth rates relative to a space of popular conditioning variables
in this literature. In that respect they were able to compare convergence
in distribution and ‘conditional convergence’ as they introduced some
entropy measures of distance between distributions to statistically examine
the question of convergence or divergence. This approach can be viewed
as alternative quantifications within a framework of distributional
dynamics discussed in Quah (1993, 1997). Quah focused on the distribution
of per capita incomes (and relative incomes) by introducing a measure of
‘transition probabilities’, the stochastic kernel, to analyze their evolution.
The MRS paper’s focus on significant features of the probability laws that
generate growth rates goes beyond both the standard ‘b-convergence’ and
‘s-convergence’ in the literature (see Barro & Sala-i-Martin, 2004). The
former concept refers to the possible equality of a single coefficient of a
variable in the conditional mean of a distribution of growth rates. The latter,
while being derivative of a commonplace notion of ‘goodness of fit’, also is
in reference to the mere fit of a conditional mean regression, and is plagued
with additional problems when facing non-linear, non-Gaussian or multi-
modal distributions commonly observed for growth and income distribu-
tions. As has been pointed out by Durlauf and Quah (1999), the dominant
focus in these studies is on certain aspects of estimated conditional means,

Conditional Joint Distribution of Health and Income Growth 173



such as the sign or significance of the coefficient of initial incomes, how it
might change if other conditioning variables are included, or with other
functional forms for the production function or regressions. All of the above
studies rely on ‘correlation’ criteria to assess goodness of fit and to evaluate
‘convergence’.

In the first study to use a bivariate framework, Wu, Savvides, and Stengos
(2008) (WSS hereafter) investigate the unconditional evolution of income
per capita and life expectancy using a maximum entropy density estimator.
They consider income and life expectancy jointly and estimate their
unconditional bivariate distribution for 137 countries for the years 1970,
1980, 1990 and 2000. Their main conclusion is that the world joint distribu-
tion has evolved from a bimodal into a unimodal one, that the evolution of
the health distribution has preceded that of income and that global
inequality and poverty has decreased over time. They also find that global
inequality and poverty would be substantially underestimated if the
dependence between the income and health distributions is ignored.

In this paper we extend the work of WSS by estimating the joint
conditional distribution of health (life expectancy) and income growth, and
we examine its evolution over time. The conditional distributions of these
two variables are obtained by applying non-parametric regression methods.
This generalizes the MRS approach to a multidimensional context. Using a
similar data set as WSS, we extend their analysis to go beyond unconditional
distributions. As in the MRS univariate framework we will be examining
conditional distributions by looking into a bivariate system of per capita
income growth and life expectancy growth equations. We will then analyze
the distributions of parametrically and non-parametrically fitted values and
residuals from these models using a bivariate growth framework relative to
the standard conditioning variables that are employed in the literature.
The resulting analysis produces ‘fitted values’ of growth rates and life
expectancy as well as ‘residual growth rates and life expectancy’, which will
be used to look at the question of ‘conditional’ convergence in a bivariate
context. Note that in contrast with the WSS study, which was conducted for
the unconditional joint distribution of per capita income and life expectancy
in levels, our approach will be based on analyzing the conditional joint
distribution of growth rates, which provides new insight into the driving
forces of their joint evolution over time.

The paper is organized as follows. In Section 2 we discuss the data used.
We then proceed to discuss in Section 3 the empirical methodology and
results of both the parametric and non-parametric approaches that we
pursue. Finally, we conclude in Section 4.
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2. DATA

To estimate the global joint distribution of income and life expectancy, we
collected data on 124 countries to construct 10-year averages for the 1970s,
the 1980s and the 1990s for a total of 372 observations. These countries
account for approximately 80 percent of global population. Below we
describe in more detail the data that we use and their source. Similar data
have been used by WSS.

Data on income per capita are in PPP dollars from the Penn World Tables
6.2, and they are used to construct the real per capita GDP growth. This
data base provides estimates in 2000 international prices for most countries
beginning in 1950 until 2004.

For each country in our sample, the income information is reported in the
form of interval summary statistics. In particular, the frequency and average
income of each interval are reported. The number of income intervals differs
between the first three years (1970, 1980 and 1990) and the final year (2000).
Since we construct an average over a 10-year period we do not need to have
the same number of intervals to be the same in each year. For 1970, 1980
and 1990, we used income interval data from Bourguignon and Morrisson
(2002). We construct an average income observation for each country for
each 10-year period. An alternative source of income data for these years
would have been the World Development Indicators (WDI). There are two
reasons for using the Bourguignon/Morrisson data set: first, it provides a
greater number of intervals and thus more detailed information on income
distribution; and, second, our results on income distribution can be
compared to earlier studies.1 For 2000, Bourguignon/Morrisson do not
provide data and we used income interval data from the WDI.2 These data
are based on household surveys of income (in some cases consumption)
from government statistical agencies and World Bank country departments.

Data on life expectancy at birth are also in the form of interval statistics.
The most detailed division of each country’s population by age is in 5-year
intervals from the World Population Prospects compiled by the Population
Division of the United Nations Department of Economic and Social Affairs
(2005). This is the most comprehensive collection of demographic statistics.
For each of the 124 countries, it provides data on the number of persons
in each age group for each of the four years (1970, 1980, 1990 and 2000).
The U.N. Population Division begun compiling estimates of life expectancy
at 5-year intervals in 1950. For each country we constructed average life
expectancy over the relevant 10-year period. For more details about the data
construction, see the WSS study.
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3. EMPIRICAL RESULTS

In this paper, we use both parametric and non-parametric techniques to
estimate a bivariate system of equations that describe real per capita growth
and life expectancy growth. The framework of analysis is an extension of the
MRS framework to account for the simultaneous evolution of per capita
income and life expectancy. We proceed by first estimating a bivariate
system of equations parametrically and then continue with the non-
parametric analysis.

3.1. Parametric Results

We first consider a bivariate parametric system of seemingly unrelated
regressions (SUR) to model the growth path of per capita income and life
expectancy. The dependent variables are Y ¼ (Y1, Y2), where Y1 is real GDP
per capita growth and Y2 is life expectancy growth. For each country-year,
the list of independent variables is given by X ¼ (X1, X2,y, X7), where X1 is
a dummy variable indicating OECD status, X2 is a dummy for the 1980s, X3

is a dummy for the 1990s, X4 is the log of population growth plus 0.05 to
account for a constant rate of technical change of 0.02 and a depreciation
rate of 0.03, X5 is the log of investment share of GDP, X6 is the log of real
GDP at the start of the period and X7 is the log of life expectancy at the start
of the period. The last two variables capture initial conditions and their
effect on the transition to a steady state. The specification of the equation
describing the evolution of per capita income is a standard growth regres-
sion of an extended Solow-type model; the evolution of life expectancy is
modelled in a symmetric way.

We begin by estimating a simple benchmark bivariate parametric
regression model that is standard for the bivariate extension of the standard
workhorse model of the empirical literature,

Y1 ¼ b0 þ b1X1 þ b2X2 þ b3X3 þ b4X4 þ b5X5 þ b6X6 þ b7X7 þ �1

Y2 ¼ g0 þ g1X1 þ g2X2 þ b3X3 þ g4X4 þ g5X5 þ g6X6 þ g7X7 þ �2
(1)

We estimate the above system of equations as an SUR. However, since
the right-hand-side variables are identical in the two equations, GLS is
identical to estimating each equation separately by OLS. Note that, in
each equation, both GDP per capita and life expectancy enter in lagged
(i.e., initial) values to guard against endogeneity.
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The parameter estimates for specification (1) are given in Tables 1 and 2,
and are in line with results from the extensive univariate growth literature.
For the per capita income growth regression, we find investment having a
positive effect on growth, while population growth seems to have a negative
effect. Initial GDP has a negative effect on growth (although not statistically
significant) suggesting the presence of (statistically weak) conditional or
b-convergence. The initial life expectancy variable also turns out to be
statistically insignificant. In the context of an income growth regression, life
expectancy stands for a proxy for human capital and as such the latter
often does not appear significant in parametric specifications, especially with
panel data (see Savvides & Stengos, 2008).

In the life expectancy growth equation, investment is also positive and
significant, while population growth is positive but not highly significant.

Table 1. Parameter Estimates for GDP Per Capita
Growth Linear Regression.

Estimate Std. Error t-Value Pr(W|t|)

(Intercept) 3.5256 4.2270 0.83 0.4048

oecd1 �0.7596 0.3882 �1.96 0.0511

d1980 �1.3791 0.2852 �4.84 0.0000

d1990 �1.0124 0.3088 �3.28 0.0011

pop �2.8323 0.9554 �2.96 0.0032

inv 1.5212 0.2318 6.56 0.0000

initY �0.0423 0.0668 �0.63 0.5265

initL 0.2787 0.9392 0.30 0.7668

Table 2. Parameter Estimates for Life Expectancy
Growth Linear Regression.

Estimate Std. Error t-Value Pr(W|t|)

(Intercept) 2.0159 0.5371 3.75 0.0002

oecd1 �0.1911 0.0493 �3.87 0.0001

d1980 �0.1053 0.0362 �2.91 0.0039

d1990 �0.2767 0.0392 �7.05 0.0000

Pop 0.2118 0.1214 1.74 0.0819

Inv 0.1556 0.0295 5.28 0.0000

initY 0.0092 0.0085 1.08 0.2805

initL �0.5441 0.1193 �4.56 0.0000
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The initial life expectancy variable has a strongly negative effect which
would seem to imply b-convergence in health outcomes. Initial GDP has a
significant effect.

Despite its use in the literature, there is evidence that the above
parametric linear specification (1) is inadequate and misspecified, especially
when it comes to describing the effect of initial conditions on the growth
process. Following the per capita income growth literature we allow the
initial condition variables X6 and X7 to enter as third-degree polynomials
(see Liu & Stengos, 1999), that is,

Y1 ¼ b0 þ b1X1 þ b2X2 þ b3X3 þ b4X4 þ b5X5

þ b6X6 þ b7X
2
6 þ b8X

3
6 þ b9X7 þ b10X

2
7 þ b11X

3
7 þ �1

Y2 ¼ g0 þ g1X1 þ g2X2 þ b3X3 þ g4X4 þ g5X5

þ g6X6 þ g7X
2
6 þ g8X

3
6 þ g9X7 þ g10X

2
7 þ g11X

3
7 þ �2 ð2Þ

The results from the above parametric SUR system are given in
Tables 3 and 4. These results are in line with results from the simple
parametric specification (1) discussed above. Investment is found to
positively affect both per capita GDP and life expectancy growth.
Population growth has a negative effect on GDP per capita growth, but
an insignificant effect on life expectancy growth. Interestingly, in both of
the equations, none of the polynomial terms for either initial GDP per

Table 3. Parameter Estimates for GDP Per Capita
Growth Polynomial Regression.

Estimate Std. Error t-Value Pr(W|t|)

(Intercept) �973.9962 869.5863 �1.12 0.2634

oecd1 �0.6090 0.4550 �1.34 0.1816

d1980 �1.4345 0.2860 �5.02 0.0000

d1990 �1.0460 0.3183 �3.29 0.0011

Pop �3.2726 1.0003 �3.27 0.0012

Inv 1.3891 0.2417 5.75 0.0000

initY �2.4379 5.8822 �0.41 0.6788

initY2 0.1012 0.3479 0.29 0.7712

initY3
�0.0012 0.0068 �0.18 0.8590

initL 744.6284 676.8577 1.10 0.2720

initL2
�184.8683 174.8208 �1.06 0.2910

initL3 15.2578 15.0334 1.01 0.3108
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capita or initial life expectancy appear to be significant, which may suggest
overparameterization.

We next test these parametric specifications against some unknown non-
parametric alternative. If we denote the parametric model given by the
above system of equations as mg(xi, b), g ¼ 1, 2 and the true but unknown
regression functions by Eg( ygi|xi), g ¼ 1, 2, then a test for correct
specification is a test of the hypothesis H0: Eg( ygi|xi) ¼ mg(xi, b), g ¼ 1, 2
almost everywhere versus the alternative H1: Eg( ygi|xi) 6¼ mg(xi, b), g ¼ 1, 2
on a set of positive measure. That is equivalent to testing that Eg(egi|xi) ¼ 0
almost everywhere, where egi ¼ ygi�mg(xi, b). This implies that for an
incorrect specification, Eg(egi|xi) 6¼ 0 on a set of positive measure. It is
important to note that this test is not a joint test, that is, the test is applied to
each equation separately.

To avoid problems arising from the presence of a random denominator
in the non-parametric estimator of the regression functions Eg( ygi|xi),
the test employs a density weighted estimator of the regression function.
To test whether Eg(egi|xi) ¼ 0 holds over the entire support of the regression
function, we use the statistic J ¼ Eg{[Eg(egi|xi)]

2f (xi)} where f(xi) denotes
the density weighting function. Note that J ¼ 0 if and only H0 is true.
The sample analogue of J, Jn is obtained by replacing egi with the residuals
from the parametric model and both Eg(egi|xi) and f(xi) by their respective
kernel estimates, and standardizing. The null distribution of the statistic is
obtained via bootstrapping (see Hsiao, Li, & Racine, 2008 for details).

Table 4. Parameter Estimates for Life Expectancy
Growth Polynomial Regression.

Estimate Std. Error t-Value Pr(W|t|)

(Intercept) �148.8768 111.0005 �1.34 0.1807

oecd1 �0.1997 0.0581 �3.44 0.0007

d1980 �0.1133 0.0365 �3.10 0.0021

d1990 �0.2873 0.0406 �7.07 0.0000

Pop 0.1723 0.1277 1.35 0.1780

Inv 0.1409 0.0309 4.57 0.0000

initY �0.7304 0.7508 �0.97 0.3313

initY2 0.0402 0.0444 0.91 0.3653

initY3
�0.0007 0.0009 �0.83 0.4094

initL 118.3105 86.3992 1.37 0.1717

initL2
�30.2379 22.3154 �1.36 0.1763

initL3 2.5600 1.9190 1.33 0.1830
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For specification (1), we are able to reject the null of correct specification
at the 5% and 1% levels, for the income and life expectancy growth
equations, respectively (the test statistics Jn are 0.6919 and 4.411, with
bootstrap p-values of 0.0276 and 0.0025, respectively). Similarly, for (2), we
are able to reject at the 5% and 0.1% levels, for the income and life
expectancy growth equations, respectively (the test statistics Jn are 0.3658
and 2.1892, with bootstrap p-values of 0.0401 and 2.22e-16, respectively).
We use 399 bootstrap replications throughout the paper.

3.2. Non-Parametric Results

Next, we use local linear estimation to (separately) estimate the non-
parametric regression models

Y1 ¼ g1ðXÞ þ �1

Y2 ¼ g2ðXÞ þ �2

We use least squares cross-validation techniques to obtain the appropriate
bandwidths for the discrete and continuous regressors (see Racine & Li,
2004). This approach allows for interactions among all variables and also
allows for non-linearities in and among variables. The method has the
additional feature that if there is a linear relationship in a variable, then
the cross-validated smoothing parameter will automatically detect this.
A second-order Gaussian kernel is used for the continuous variables, while
the Aitchison and Aitken kernel is used for the unordered categorical
variable (OECD status) and the Wang and Van Ryzin kernel is used for the
ordered categorical variable (decade). For details, see Racine and Li (2004).
In Figs. 1–4, we summarize the non-parametric results using partial

regression plots. These plots simply present the estimated multivariate
regression function through a series of bivariate plots in which the regressors
not appearing on the horizontal axis of a given plot have been held constant
at their respective (within group and decade) medians. For example, in the
upper-left plot in Fig. 1, we plot the estimated level of GDP per capita
growth conditioned on population growth for just OECD members in the
1970s holding all the other conditioning variables at their respective median
levels for OECD members in the 1970s (the estimates are obtained using the
pooled sample of OECD and non-OECD members, but the fitted values are
plotted for each group separately). In this way we are able to visualize the
multivariate regression surface via a series of two-dimensional plots.
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The level of investment appears to have a (linearly) positive and stable
effect across decade and country group for both equations. Population
growth appears to be unrelated to the dependent variables except in the
1980s, where it is slightly negative for the GDP per capita growth equation
and slightly positive for the life expectancy growth equation (for both
OECD and non-OECD members). For the GDP per capita growth
equation, initial GDP appears to have a slightly negative effect in the
1970s, but little effect in either the 1980s or the 1990s (for both OECD and
non-OECD members). For OECD members, initial life expectancy seems to
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Fig. 1. GDP Per Capita Growth Non-Parametric Partial Regression Plots for

OECD Countries. The First, Second and Third Columns are for the 1970s, 1980s and

1990s, Respectively.
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have a negative effect on GDP per capita growth in the 1980s, but little
effect in the other decades. However, for non-OECD members, the effect of
initial life expectancy on GDP per capita growth is mixed: The effect seems
to be positive in the 1970s, negative in the 1980s and non-existing in the
1990s. For the life expectancy growth equation, initial GDP appears to have
a slight negative effect in all decades and groups. However, initial life
expectancy appears to have a generally negative, but non-linear effect in all
decades and groups.
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Fig. 2. GDP Per Capita Growth Non-Parametric Partial Regression Plots for Non-
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To further examine how the joint distribution of per capita GDP
and life expectancy growth rates differ between groups and over time,
we use the notion of stochastic dominance, which is defined as follows.
We say distribution G stochastically dominates distribution F at first
order if

Fðx1;x2Þ � Gðx1;x2Þ

for all (x1, x2).
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Fig. 3. Life Expectancy Growth Non-Parametric Partial Regression Plots for

OECD Countries. The First, Second and Third Columns are for the 1970s, 1980s and

1990s, Respectively.

Conditional Joint Distribution of Health and Income Growth 183



More generally, we can say that distribution F dominates distribution
G stochastically at order s (an integer) if

Ds
F ðx1;x2Þ � Ds

Gðx1;x2Þ

for all (x1, x2), where D1
F ðx1;x2Þ ¼ Fðx1;x2Þ, and Ds

F ðx1;x2Þ is defined
recursively as

Ds
F ðx1; x2Þ ¼

Z x1

0

Z x2

0

Ds�1
F ðu1; u2Þdu1du2; s � 2
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D1
G and Ds

G are defined analogously. In what follows, we will denote this
relation by FksG.

To empirically test such a relationship, we use the approach of McCaig
and Yatchew (2007). To test the null hypothesis that FksG, these authors
introduce the test statistic

TF ;G ¼

ZZ
½cs
ðx1;x2Þ�

2dv1dv2

	 
1=2

where cs
ðx1; x2Þ ¼ maxfDs

F ðx1;x2Þ �Ds
Bðx1;x2Þ; 0g. Of course, when the null

is true, T is equal to zero.
In practice, this test involves estimating T and testing whether it is

statistically different from zero. This process will involve estimating cs

(x1, x2) over a set of grid points on the common support of the two distribu-
tions under consideration. The p-value of this test statistic is obtained via
bootstrapping (see McCaig & Yatchew, 2007, for details).

To make such comparisons in a conditional manner, we use the fitted
values from the non-parametric regressions considered above. The estimated
joint density and distribution functions of these fitted values are shown in
Figs. 5 and 6, respectively. We separate the observations by group and
decade; that is, we consider six unique groupings (OECD and non-OECD
members for the 1970s, OECD and non-OECD members for the 1980s and
OECD and non-OECD members for the 1990s). As seen in Fig. 5, the
distribution of bivariate conditional growth rates has become more
concentrated within each group (OECD and non-OECD members) over
time. Also, it is interesting to note that the (conditional) GDP per capita
growth rates tend to be higher among OECD members, but that the
(conditional) life expectancy growth rates tend to be higher among non-
OECD members. However, these differences appear to be diminishing
over time.

We now proceed to test for stochastic dominance of the fitted
(conditional) bivariate growth rates between the two groups of countries
under consideration: OECD members and non-OECD members. The values
of the test statistics and their bootstrap p-values are presented in Table 5.
As can be seen, we can strongly reject the null of first-order stochastic
dominance of OECD members over non-OECD members (and vice-versa)
in each of the three decades under consideration. We can also strongly reject
the null of second-order stochastic dominance of OECD members over non-
OECD members in each of the three decades, but not vice-versa. That is, we
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are unable to reject the null of second-order stochastic dominance of non-
OECD members over OECD members.

Next, we consider testing for first-order stochastic dominance of the same
fitted values between the three decades under consideration: the 1970s, 1980s
and 1990s. The values of the test statistics and their bootstrap p-values are
presented in Table 6. For both the OECD and non-OECD groups, we are
unable to reject the null of first-order stochastic dominance of the 1970s

Table 5. Stochastic Dominance Tests: Between Groups.

1970s 1980s 1990s

OECD k1 Non-OECD 4.2802 3.4902 1.8601

0.0000 0.0000 0.0000

Non-OECD k1 OECD 1.0816 1.9978 2.1026

0.0404 0.0000 0.0000

OECD k2 Non-OECD 27.8089 23.6515 10.0243

0.0000 0.0000 0.0000

Non-OECD k2 OECD 0.0742 0.0513 1.761

0.9495 0.9596 0.5051

Note: For each result, the first line is the value of the test statistic, while the second line is the

bootstrap p-value.

Table 6. Stochastic Dominance Tests: Between Decades.

OECD Non-OECD

1970s k1 1980s 0.0000 0.0000

0.9393 0.9899

1980s k1 1970s 2.0061 3.1569

0.0000 0.0000

1980s k1 1990s 0.4374 0.4291

0.4545 0.2929

1990s k1 1980s 1.3846 3.0810

0.0000 0.0000

1970s k1 1990s 0.0000 0.0000

0.8788 0.9899

1990s k1 1970s 2.9433 5.2524

0.0000 0.000

Note: For each result, the first line is the value of the test statistic, while the second line is the

bootstrap p-value.

THANASIS STENGOS ET AL.188



over the 1980s, and the 1980s over the 1990s (and, of course, the 1970s over
the 1990s).

These results somewhat agree with the findings of MRS, who show that
the fitted (conditional) growth rates of per capita income have ‘deteriorated’
over time for OECD countries. However, we also want to point out that the
MRS analysis is univariate, and as pointed out in WSS the overall results will
underestimate substantially the degree of global inequality and poverty if one
ignores the dependence between the two measures of welfare. Note, however,
that the later analysis was conducted for the unconditional joint distribution
of per capita income and life expectancy (levels), whereas here we analyze the
conditional joint distribution of growth rates. The implication is that there
was a more ‘equal’ joint distribution of growth rates in the earlier years than
that in the later ones, not necessarily faster growth in the earlier years. Note
that the interpretation of this result for growth rates is different from that for
levels. For the case of the joint distribution of growth rates, the results
suggest that in the earlier years ‘convergence’ between developing and more
developed countries would be more difficult to achieve since countries in
these groups would be growing more or less at equal rates. It is only in the
later years that a more ‘unequal’ joint distribution of growth rates would
allow for faster growing developing countries being able to catch up with
slower growing developed countries. Hence, the results that we find are
complementary to the ones found in WSS for levels, where the level of overall
(unconditional) inequality in levels decreased over time. Overall, it seems that
countries developed quite differently in the 1980s and 1990s with some
jumping ahead and others falling behind. We leave it for future research to
further explore the issue for subgroups of countries, such as OECD and non-
OECD and especially African and non-African countries (see, e.g. Masanjala
& Papageorgiou, 2008).

4. CONCLUSION

In this paper we have estimated the joint conditional distribution of health
(life expectancy) and income growth and examined its evolution over time.
The conditional distributions of these two variables is obtained by applying
non-parametric methods to a bivariate non-parametric regression system of
equations. Using a similar data set as WSS, we extend their analysis to go
beyond unconditional distributions. Extending the MRS univariate frame-
work we have looked at conditional distributions of a bivariate system of
per capita income growth and life expectancy growth equations. Analyzing
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the distributions of the non-parametric residuals from these models we
establish that there is strong evidence of movement over time in the joint
conditional bivariate densities of per capita growth and life expectancy. We
also find strong evidence of first-order stochastic dominance of the earlier
years over the later ones. Our results complement the findings of WSS who
explored the unconditional behaviour of these joint distributions over time.
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NOTES

1. Bourguignon and Morrisson (2002) provide data on income distribution for
almost two centuries, the last three years being 1970, 1980 and 1992. We used their
1992 income data to represent 1990 in our data set (see also the next footnote). They
provided data for very few individual countries but in most cases for geographic
groups of countries (see their study for group definitions). Our study is based on
country-level data. Therefore, where individual-country interval data were unavail-
able we used the corresponding geographic-group data.
2. Income interval data from the WDI are available only for selected years. When

referring to data for 2000, we chose the year closest to 2000 with available data
(in most cases the late 1990s). This practice is widely adopted in the literature as a
practical matter because interval data are sparse. Many researchers acknowledge
that it would not affect results much because income share data do not show wide
fluctuations from year to year.
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A NONPARAMETRIC

QUANTILE ANALYSIS OF

GROWTH AND GOVERNANCE

Kim P. Huynh and David T. Jacho-Chávez

ABSTRACT

Conventional wisdom dictates that there is a positive relationship between
governance and growth. This article reexamines this empirical relation-
ship using nonparametric quantile methods. We apply these methods
on different levels of countries’ growth and governance measures as
defined in World Governance Indicators provided by the World Bank.
We concentrate our analysis on three of the six measures: voice and
accountability, political stability, and rule of law that were found to be
significantly correlated with economic growth. To illustrate the nonpara-
metric quantile analysis we use growth profile curves as a visual device.
We find that the empirical relationship between voice and accountability,
political stability, and growth are highly nonlinear at different quantiles.
We also find heterogeneity in these effects across indicators, regions,
time, and quantiles. These results are a cautionary tale to practitioners
using parametric quantile methods.
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1. INTRODUCTION

Conventional wisdom dictates that countries with higher levels of
governance also have higher growth.1 This positive relationship has
motivated policy makers to implement growth policies that target change
in governance.2 However, recent work by Rodrik (2006) has highlighted that
increasing governance may not necessarily increase a country’s growth level.
For example, improving governance may divert resources from actual
binding constraints. As a result, Hausmann, Rodrik, and Velasco (2008)
advocate the need to perform growth diagnostics to ascertain the binding
constraints on growth.

Given what is stake for development and aid policies, robust inference
regarding the relationship between governance and growth is needed. Fig. 1
illustrates the economic growth patterns for the world in 2004. As expected,
Western Europe and North America have low-to-moderate rates of growth
while Russia, the Former Soviet Republics, and China are experiencing high
rates of growth.

The study by Kaufmann and Kraay (2002) found that per capita incomes
and the quality of governance are positively correlated across countries.
They adopt an instrumental variable (IV) method in order to separate the
correlation into: (i) a strong positive causal effect running from better
governance to higher per capita incomes, and (ii) a weak and even negative
causal effect running in the opposite direction from per capita incomes
to governance. However, an illustration of Rule of Law (a measure of

> 7%< 2% (2%,3.5%] (3.5%,4.5%] (4.5%,7%]

Fig. 1. Economic Growth Patterns, 2004. Note: Countries that are shaded in white

do not have data for 2004.
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governance) does not completely support this hypothesis; see Fig. 2. The
Rule of Law patterns are reversed. Western Europe and North America
have high rating of Rule of Law while for Russia, the Former Soviet
Republics, and China the measures are extremely low. These graphs reveal
that the correlation between governance and growth is not necessarily
positive.

Huynh and Jacho-Chávez (2009) argue that these somehow controversial
and contradictory findings can potentially be explained by the shortcomings
of the parametric assumptions they rely on. The present work extends
Huynh and Jacho-Chávez’s (2009) framework to the nonparametric
estimation of conditional quantiles functions. This is important because
unlike conditional mean regression, nonparametric conditional quantiles
model the relationship between governance measures at each level of
growth a country might be. This provides a complete picture of the entire
conditional distribution of this important relationship without imposing
strict parametric restrictions. In particular the assumption of linearity,
additivity, and no interaction among variables are relaxed when estimating
the following object:

Qgrowthit
½tjREGIONi; DTt; voiceit; stabilityit;

effectivenessit; regulatoryit; lawit; corruptionit� ð1Þ

where

Qyit
½tjxit� 	 inffyitjFð yitjxitÞ � tg ¼ F�1ðtjxitÞ

< −1 (−1,−0.5] (−0.5,0] (0,1] > 1

Fig. 2. Rule of Law Patterns, 2004. Note: Countries that are shaded in white do not

have data for 2004.
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represents the conditional t-quantile of yit, given xit; F( � | � ) denotes the
conditional cumulative distribution function (CDF) of yit, given xit; and F �1

( � | � ) is inverse. The conditioning variables REGIONi represents a
categorical unordered variable indicating the region (1, 2, 3, 4, 5) to which
country i belongs; DTt is another ordered categorical variable indicating
the year of measurement (1996, 1998, 2000, 2002, 2003, 2004, 2005, 2006);
and the governance measures voiceit, stabilityit, effectivenessit, regulatoryit,
lawit, and corruptionit are defined in Section 2.

We summarize our findings in the following two points:

� Parametric hypothesis testing indicates that the coefficients in a linear
specification are the same across quantiles for all governance variables.
� Nonparametric conditional quantile estimation shows that the relationship
between growth and governance is not necessarily positive and/or
monotonic. The relationship exhibits heterogeneity across regions and time.

Finally, this article also demonstrates that fully nonparametric methods
are not only useful, but they are also computationally feasible in a parallel
computing environment. As suggested by Racine (2002), all numerical
algorithms in this article use parallel computing3 in the statistical environ-
ment Jacho-Chávez and Trivedi (2009) provide an overview of this
important computational tool for empirical researchers. All the code and
data for this article are available upon request from the authors.

The rest of this article is organized as follows. Section 2 briefly discusses
the data used in the study. The empirical findings are described and
discussed in Section 3 while Section 4 offers concluding remarks.

2. GOVERNANCE AND GROWTH DATA

The World Governance Indicators are provided by the World Bank and is
updated annually with the most recent iteration by Kaufmann, Kraay, and
Mastruzzi (2006). The six governance measures are:4

1. Voice and accountability (voiceit) measures the extent to which a
country’s citizens are able to participate in selecting their government, as
well as freedom of expression, freedom of association, and a free media.

2. Political stability and absence of violence (stabilityit) measures the
perceptions of the likelihood that the government will be destabilized or
overthrown by unconstitutional or violent means, including domestic
violence and terrorism.
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3. Government effectiveness (effectivenessit) measures the quality of public
services, the quality of the civil service and the degree of its independence
from political pressures, the quality of policy formulation and
implementation, and the credibility of the government’s commitment to
such policies.

4. Regulatory quality (regulatoryit) measures the ability of the government
to formulate and implement sound policies and regulations that permit
and promote private sector development.

5. Rule of Law (lawit) measures the extent to which agents have confidence
in and abide by the rules of society, in particular the quality of contract
enforcement, the police, and the courts, as well as the likelihood of crime
and violence.

6. Control of corruption (corruptionit) measures the extent to which public
power is exploited for private gain, including petty and grand forms of
corruption, as well as ‘‘capture’’ of the state by elites and private interests.

The data is provided for the period 1996–2006. Before 2002 the data was
collected on a biannual basis. More details about these variables and their
construction can be obtained by perusing the World Bank Governance
Indicators URL.5

Data on economic growth is drawn from the Total Economy Database.6

This database is provided by the Conference Board and Groningen Growth
and Development Centre, and it is an extension of the World Economy:
Historical Statistics provided by Angus Maddison. It extends the Maddison
data from 2003 to 2006. We use this database since the Maddison data is
widely used by researchers studying growth. Tables 1–5 list all countries and
years under study. The growth rate is calculated as the two-year difference
in logarithm of real GDP, and then converted to an annualized growth rate.
The data consists of yearly observations of 125 countries classified in five
regions. A total of 913 observations are used in this study.

As suggested by Huynh and Jacho-Chávez (2007), conditional density
plots are constructed in lieu of descriptive statistics; see Fig. 3. The
conditional density plots are computed for growth rates and three different
measures (voiceit, stabilityit, lawit) during three different years (1996, 2000,
2004). Unlike standard tables, these plots show a more complete picture of
the underlying processes generating growthit, voiceit, stabilityit, and lawit in
all regions. For example, there is large dispersion at low levels of voiceit in
the relationship between growth and voiceit. The dispersion is more pro-
nounced for stabilityit and lawit. Also, there is some evidence of bimodality
in the year 2000 at low levels of governance. This twin peaks effect is
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reminiscent of what previous research using nonparametric methods have
found (see, e.g., Quah, 1993; Jones, 1997; Beaudry, Collard, & Green, 2005).

3. EMPIRICAL METHODOLOGY

This section describes the nonparametric empirical methodology utilized in
this article. First, we will estimate a parametric specification and then move
onto the nonparametric specification. The object of interest in this article is
the conditional t-quantile function (1). The estimation of function (1) is of
great importance, because it measures how growth of country i in quantile t,
region REGIONi, at year DTt is when its governance measures equal
specific values of voiceit, stabilityit, effectivenessit, regulatoryit, lawit, and
corruptionit. In other words, it provides a way to pin down the effect of
governance in country’s growth at t ¼ 25%, 50%, and 75%, for example.
We now proceed to estimate various models for function (1).

Table 1. Western Europe and Offshoots.

Country Code Data Coverage Region

Australia AUS 1996–2006 1

Austria AUT 1996–2006 1

Belgium BEL 1996–2006 1

Canada CAN 1996–2006 1

Cyprus CYP 1996–2006 1

Denmark DNK 1996–2006 1

Finland FIN 1996–2006 1

France FRA 1996–2006 1

Germany DEU 1996–2006 1

Greece GRC 1996–2006 1

Iceland ISL 1996–2006 1

Ireland IRL 1996–2006 1

Italy ITA 1996–2006 1

Luxembourg LUX 1996–2006 1

Malta MLT 1996–2006 1

Netherlands NLD 1996–2006 1

New Zealand NZL 1996–2006 1

Norway NOR 1996–2006 1

Portugal PRT 1996–2006 1

Spain ESP 1996–2006 1

Sweden SWE 1996–2006 1

Switzerland CHE 1996–2006 1

United Kingdom GBR 1996–2006 1

United States USA 1996–2006 1
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3.1. Parametric Models

To provide a benchmark for the nonparametric approach, the following
parametric model of 1 is estimated:

Qgrowthit
½tjREGIONi; DTt; voiceit; stabilityit; effectivenessit; regulatoryit;

lawit; corruptionit�

¼ b0REGIONi þ
X8
t¼1

btDTt þ b9voiceit þ b10stabilityit

þ b11effectivenessit þ b12regulatoryit þ b13lawit þ b14corruptionit

(2)

Table 6 provides the estimates of bs in Eq. (2) at different quantile levels.
The model is estimated using the ‘‘check function’’ approach for quantile

Table 2. Eastern Europe and Offshoots.

Country Code Data Coverage Region

Albania ALB 1996–2005 2

Armenia ARM 1996–2005 2

Azerbaijan AZE 1996–2005 2

Belarus BLR 1996–2005 2

Bosnia-Herzegovina BIH 1996–2005 2

Bulgaria BGR 1996–2006 2

Croatia HRV 1996–2006 2

Czech Republic CZE 1996–2006 2

Estonia EST 1996–2006 2

Georgia GEO 1996–2005 2

Hungary HUN 1996–2006 2

Kazakhstan KAZ 1996–2005 2

Kyrgyz Republic KGZ 1996–2005 2

Latvia LVA 1996–2006 2

Lithuania LTU 1996–2006 2

Macedonia MKD 1996–2005 2

Moldova MDA 1996–2005 2

Poland POL 1996–2006 2

Romania ROM 1996–2006 2

Russia RUS 1996–2005 2

Serbia and Montenegro YUG 1996–2005 2

Slovakia SVK 1996–2006 2

Slovenia SVN 1996–2006 2

Tajikistan TJK 1996–2005 2

Turkmenistan TKM 1996–2005 2

Ukraine UKR 1996–2005 2

Uzbekistan UZB 1996–2005 2
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regression as in Koenker and Bassett (1978). The results find that the
variables: voiceit, lawit, and corruptionit are negatively related to growth.
The significance varies across quantiles; voiceit is insignificant at t ¼ 0.25,
while corruptionit is not significant at t ¼ 0.75. The other governance
measures, stabilityit, effectivenessit, and regulatoryit, are positively related
to growth. At t ¼ 0.25, stabilityit is insignificant while regulatoryit is only
significant at t ¼ 0.50. The time dummies are significant for various years
for t ¼ 0.25, 0.50, while for t ¼ 0.75 only 2002 is significant. Across all
quantiles the Eastern Europe and Offshoots and Asia dummy is positive and
significant, while Africa is negative and significant for t ¼ 0.75.

There are some differences between some of the governance measures
across quantiles. To verify whether these differences are significant, we
proceed to test7 whether their associated coefficients are the same across
different quantiles, that is,

H0 : bl;0:25 ¼ bl;0:50 ¼ bl;0:75

where l ¼ 9, y, 14 in (2). The results are summarized in Table 7.
The large p-values indicate that we fail to reject the null hypothesis

that the coefficients are not different across different quantiles for each

Table 3. Latin America & Caribbean.

Country Code Data Coverage Region

Argentina ARG 1996–2005 3

Barbados BRB 1996–2005 3

Bolivia BOL 1996–2005 3

Brazil BRA 1996–2005 3

Chile CHL 1996–2005 3

Colombia COL 1996–2005 3

Costa Rica CRI 1996–2005 3

Cuba CUB 1996–2005 3

Dominican Republic DOM 1996–2005 3

Ecuador ECU 1996–2005 3

Guatemala GTM 1996–2005 3

Jamaica JAM 1996–2005 3

Mexico MEX 1996–2006 3

Peru PER 1996–2005 3

Puerto Rico PRI 1998–2005 3

St. Lucia LCA 1998–2005 3

Trinidad and Tobago TTO 1996–2005 3

Uruguay URY 1996–2005 3

Venezuela VEN 1996–2005 3
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governance measure. Given these parametric results we turn our attention
now to the nonparametric quantiles.

3.2. Nonparametric Models

We proceed to estimate object (1) as

Qgrowthit
½tjREGIONi; DTt; voiceit; stabilityit; effectivenessit;

regulatoryit; lawit; corruptionit�

¼ qtðREGIONi; DTt; voiceit; stabilityit; effectivenessit;

regulatoryit; lawit; corruptionitÞ;

(3)

Table 4. Asia.

Country Code Data Coverage Region

Bahrain BHR 1996–2005 4

Bangladesh BGD 1996–2005 4

Cambodia KHM 1996–2005 4

China CHN 1996–2006 4

Hong Kong HKG 1996–2005 4

India IND 1996–2006 4

Indonesia IDN 1996–2005 4

Iran IRN 1996–2005 4

Iraq IRQ 1996–2005 4

Israel ISR 1996–2005 4

Japan JPN 1996–2006 4

Jordan JOR 1996–2005 4

Korea, South KOR 1996–2006 4

Kuwait KWT 1996–2005 4

Malaysia MYS 1996–2005 4

Myanmar MMR 1996–2005 4

Oman OMN 1996–2005 4

Pakistan PAK 1996–2005 4

Philippines PHL 1996–2005 4

Qatar QAT 1996–2005 4

Saudi Arabia SAU 1996–2005 4

Singapore SGP 1996–2005 4

Sri Lanka LKA 1996–2005 4

Syria SYR 1996–2005 4

Taiwan TWN 1996–2005 4

Thailand THA 1996–2005 4

Turkey TUR 1996–2006 4

United Arab Emirates ARE 1996–2005 4

Vietnam VNM 1996–2005 4

Yemen YEM 1996–2005 4
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where qt( � ) is assumed to be a smooth continuous but otherwise unknown
function. Nonparametric methods are more flexible since they require
minimal assumptions on the function qt; see the appendix. Eq. (2) is a
special case of Eq. (3); it will therefore capture both linear and nonlinear
relationships automatically without the need of a model search.

We use the estimator proposed in8 Li and Racine (2008) with bandwidths
chosen as suggested9 therein; see Li and Racine (2007, Section 6.5,
pp. 193–196). The panel structure of the data is implicitly taken into
account by this nonparametric estimator, because it works by averaging
data points locally close to the point of interest. That is, it automatically
gives larger weights to countries in the same region and/or year of
measurement,10 allowing for heterogenous time-varying effects across
regions in the nonparametric sense akin to the inclusion of dummy

Table 5. Africa.

Country Code Data Coverage Region

Algeria DZA 1996–2005 5

Angola AGO 1996–2005 5

Burkina Faso BFA 1996–2005 5

Cameroon CMR 1996–2005 5

Egypt EGY 1996–2005 5

Ethiopia ETN 1996–2005 5

Ghana GHA 1996–2005 5

ivory Coast CIV 1996–2005 5

Kenya KEN 1996–2005 5

Madagascar MDG 1996–2005 5

Malawi MWI 1996–2005 5

Mali MLI 1996–2005 5

Morocco MAR 1996–2005 5

Mozambique MOZ 1996–2005 5

Niger NER 1996–2005 5

Nigeria NGA 1996–2005 5

Senegal SEN 1996–2005 5

South Africa ZAF 1996–2005 5

Sudan SDN 1996–2005 5

Tanzania TZA 1996–2005 5

Tunisia TUN 1996–2005 5

Uganda UGA 1996–2005 5

Zaire ZAR 1996–2005 5

Zambia ZMB 1996–2005 5

Zimbabwe ZWE 1996–2005 5
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Fig. 3. Conditional Density Plots. Note: Bandwidths were chosen by maximum

likelihood cross-validation; see Li and Racine (2007, Section 5.2.2, pp. 160–162).

The resulting values are 0.0147 for growthit, 0.2146 for REGIONi, 0.7787 for DTt,

0.7517 for voiceit, 0.3402 for stabilityit, and 0.2375 for lawit.

Table 6. Parametric Tests.

Variable p-Value

voiceit 0.4364

stabilityit 0.4691

effectivenessit 0.1182

regulatoryit 0.5417

lawit 0.9787

corruptionit 0.6073
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variables would in the standard parametric set-up (see, e.g., Racine, 2008,
Section 6.1, p. 59). More details concerning the estimating strategy can be
found in the appendix.

Unfortunately, we have been unable to find a suitable nonparametric
counterpart of these parametric tests performed above. We leave nonpara-
metric quantile testing for future work. However, we draw upon our results
in Huynh and Jacho-Chávez (2009) for the nonparametric conditional
mean and focus on the same measures: voiceit, stabilityit, and lawit from
now onwards.

Table 7. Parametric Quantile Regression.

t ¼ 0.25 t ¼ 0.50 t ¼ 0.75

Coef. Std. Error Coef. Std. Error Coef. Std. Error

REGIONi

Western Europe &

Offshoots

– – – – – –

Eastern Europe &

Offshoots

0.0223 (0.0051)��� 0.0240 (0.0039)��� 0.0278 (0.0049)���

Latin America &

Offshoots

�0.0028 (0.0051) �0.0049 (0.0039) �0.0047 (0.0052)

Asia 0.0108 (0.0048)�� 0.0099 (0.0037)��� .0136 (0.0046)���

Africa 0.0042 (0.0053) �0.0029 (0.0041) �0.0101 (0.0054)�

DTt

1996 – – – – – –

1998 0.0010 (0.0042) �0.0012 (0.0032) 0.0002 (0.0041)

2000 0.0050 (0.0043) 0.0016 (0.0032) �0.0003 (0.0041)

2002 �0.0044 (0.0043) �0.0095 (0.0032)��� �0.0083 (0.0041)��

2003 �0.00004 (0.0042) �0.0077 (0.0033)�� �0.0031 (0.0041)

2004 0.0102 (0.0043)�� 0.0059 (0.0032)� 0.0059 (0.0041)

2005 0.0169 (0.0042)��� 0.0120 (0.0033)��� 0.0067 (0.0041)

2006 0.0138 (0.0061)�� 0.0045 (0.0047) 0.0051 (0.0060)

voiceit �0.0033 (0.0026) �0.0068 (0.0021)��� �0.0056 (0.0026)��

stabilityit 0.0034 (0.0023) 0.0068 (0.0018)��� 0.0077 (0.0023)���

effectivenessit 0.0285 (0.0048)��� 0.0206 (0.0037)��� 0.0148 (0.0047)���

regulatoryit 0.0031 (0.0035) 0.0051 (0.0024)�� 0.0009 (0.0031)

lawit �0.0173 (0.0057)��� �0.0182 (0.0044)��� �0.0173 (0.0055)���

corruptionit �0.0095 (0.0044)�� �0.0065 (0.0035)� �0.0038 (0.0044)

Constant �0.0030 (0.0049) 0.0208 (0.0037)��� 0.0384 (0.0047)���

Heteroskedasticity-robust standard errors are in parenthesis. (���) significant at 1%, (��)
significant at 5%, and (�) significant at 10%.
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3.3. Growth Profile Curves

We illustrate the results using partial regression plots because non
parametric methods do not yield scalar estimates of marginal effects.
As in Huynh and Jacho-Chávez (2009), we call these partial regression
plots – growth profile curves (GPC). As an illustrative example, a simple
case is presented to give the reader some intuition. The top plot of Fig. 4
displays the expected growth of a country in Eastern Europe and
Offshoots in 2002, and in the 50% quantile of the growth distribution, as
a function of voiceit and stabilityit. Once we condition on a specific value
of voiceit, let’s say, each black line on the surface represents a growth
profile as a function of the remaining variables, in this case stabilityit.
The conditioning values are a ¼ 25%, 50%, and 75% sample quantiles of
each governance measure. These curves are put together into two-
dimensional plots at the bottom of Fig. 4. These curves are informative
about the growth path of a country in the 50% quantile with respect to a
particular governance measure, once we condition the remaining variables
to a prespecified value. We call these paths GPC. Intuitively, these curves
are just slices of the fitted nonparametric hyperplane conditional on some
variables.

These GPC can be generalized to multidimensional settings, that is,
more than two conditioning variables, as it is implied by the empirical object
of interest (Eq. 3). Figs. 5–7 show the results. Each plot in each figure
displays a visualization of the estimated qt, i.e. q̂t, in 3 at t ¼ 25%
(first column), 50% (second column), and 75% (third column), and
different conditioning variables. For example, the top row of plots in Fig. 5
shows

q̂tðREGIONi ¼Western Europe and Offshoots; DTt; voiceit;

stabilityit ¼ Qstabilityit
ð0:5Þ; effectivenessit ¼ Qeffectivenessit

ð0:5Þ;

regulatoryit ¼ Qregulatoryit
ð0:5Þ; lawit ¼ Qlawit

ð0:5Þ; corruptionit

¼ Qcorruptionit
ð0:5ÞÞ

as a function of voiceit for each value of DTt, where Qxit
ðaÞ represents the

a-sample quantile of variable xit across both i and t. Figs. 6 and 7 were
constructed accordingly by resetting the varying variable to be stabilityit and
lawit, respectively.

Figs. 8–10 present a visualization of t ¼ 50%, but only when the
remaining indicators are held at 0 for years 1996, 2000, and 2004,
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Fig. 6. Growth Profile Curves – Political Stability. Note: Graphs represent growth

profile curves at: t ¼ 0.25 (first column), t ¼ 0.5 (second column), and t ¼ 0.75 (third

column), when all continuous covariates but stabilityit are kept constant at their

respective sample median.
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respectively. They also present 90% bootstrap confidence interval based on
499 wild bootstrap replications. These conservative bootstrap confidence
intervals are not symmetric in Figs. 8–10 because they estimate stochastic
variation of hyperplanes, and not of univariate functions.
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Fig. 8. 50% Quantile – Growth Profile Curves, 1996. Note: Dotted lines represent

90% bootstrap confidence intervals based on 499 bootstrap replications. They are

not symmetric because they estimate stochastic variation of hyperplanes, and not of

univariate functions.
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3.4. Discussion

To illustrate the results of the nonparametric regression, GPC are
constructed for the five regions of the world: Western Europe and
Offshoots, Eastern Europe and Offshoots, Latin America and Caribbean,
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Fig. 9. 50% Quantile – Growth Profile Curves, 2000. Note: Dotted lines represent

90% bootstrap confidence intervals based on 499 bootstrap replications. They are

not symmetric because they estimate stochastic variation of hyperplanes, and not of

univariate functions.
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Asia, and Africa. Each plot is conditioned on the year and governance
measure for each of the three significant variables as found in Huynh and
Jacho-Chávez (2009) (see, e.g., Alexeev, Huynh, & Jacho-Chávez, 2009).
For brevity, we present the results for the quantiles (t ¼ 0.25, 0.50, 0.75)
conditioned on a ¼ 0.50. We have also computed the quantile graphs
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Fig. 10. 50% Quantile – Growth Profile Curves, 2004. Note: Dotted lines represent

90% bootstrap confidence intervals based on 499 bootstrap replications. They are

not symmetric because they estimate stochastic variation of hyperplanes, and not of

univariate functions.

KIM P. HUYNH AND DAVID T. JACHO-CHÁVEZ212



conditioning on a ¼ 0.25, 0.75 quantile;, these extra results, data, R code,
and full set of confidence intervals are available on request.

3.4.1. Voice and Accountability
Fig. 5 illustrates the results for voiceit. There are differences in GPC across
t-quantiles in terms of regions. For Western Europe and Offshoots the GPC
is relatively flat for t ¼ 0.25, 0.50 quantile, but in t ¼ 0.75 there is some
variation at the lower quantities of voiceit. This pattern is mirrored with
Eastern Europe and Offshoots, Latin America and Caribbean, and Asia.
For Asia the effect is most dramatic. However, for Africa the effect is
uniformly flat across quantiles. From the parametric testing the quantile
coefficients were deemed similar, but the GPC reveal interestingly that
voiceit is variable across regions. The nonparametric quantile methods are
able to capture the complex interactions between voiceit, region, and year
effects without parameterizing interaction terms. Therefore, the attractive-
ness of nonparametric quantile methods comes through.

3.4.2. Political Stability
Fig. 6 illustrates the results for stabilityit. The nonparametric conditional
quantiles GPC are similar across quantiles for reach region. This result
accords with the parametric quantile testing. However, across regions the
GPC are different. The Western Europe and Offshoots, not surprisingly,
have a relative smooth albeit nonmonotonic shape. Eastern Europe and
Offshoots have more volatility in GPC especially for the earlier years to
illustrate the immense structural changes in these countries. The GPC for
Latin American and Caribbean and Asia are smooth for t ¼ 0.75, but for
the lower quantile there is much volatility in 1996 and 1998, which were
the times of the various financial/banking crises in these regions. Africa’s
GPC are also smooth and display a positive relationship at low levels of
governance. At higher governance measures, the relationship is negative.

3.4.3. Rule of Law
Fig. 7 illustrates the results for lawit. The patterns are stark, the variation in
the GPC are amplified as we move from t ¼ 0.25 to t ¼ 0.50 quantile. In
fact, the relationship between lawit and growth is negative (similar to the
parametric model). However, the GPC show that there is considerable
variation in the quantile function. There is heterogeneity in year and
regions. In particular, Eastern Europe and Offshoots and Africa display
large amounts of variation. Compared to the nonparametric conditional
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mean results in Huynh and Jacho-Chávez (2009) the conditional quantiles
for lawit show a clearer pattern.

3.5. Case Study: Latin America and Caribbean and Africa

We focus on Latin America and Caribbean and Africa in the year 2004 to
illustrate the efficacy of nonparametric conditional quantile estimation.
Both regions display interesting GPC for the variables stabilityit and lawit

at the 50% quantile that are worth discussing. Figs. 11 and 12 plot both the
observed data and their respective GPC with 90% bootstrap confidence
intervals.

For stabilityit, Latin America and Caribbean’s GPC are nonmonotonic
but with confidence intervals, whereas in Africa the GPC is nonlinear
with smaller uncertainty. With lawit the GPC curves for both regions are
nonmonotonic with no discernable pattern. Again, Latin America and
Caribbean’s GPC are more variable than Africa’s. This result may be
indicative of the varying levels of development in Latin America and
Caribbean, while in Africa as a continent it is similar as a whole.

These empirical results can be use to understand the tradeoffs
between growth and governance in the context of growth diagnostics
advocated by Rodrik (2006). Increasing governance may not necessarily
lead to increase in growth because the binding constraint is not governance.
In Hausmann et al. (2008) the growth diagnostics yield different policy
recommendations for Brazil and the Dominican Republic. They argue
that in Brazil a reform of the governance would not increase growth or
that it is not a binding constraint. Instead they argue that the slow
growth can be explained by Brazil’s lack of access to external capital
markets and low domestic savings. The Dominican Republic has been
labeled an unlikely success story because of the low-level governance but
high growth rates until a banking crisis occurred in 2002. The suggested
cure for Dominican Republic need not require wholesale reforms but
targeted reforms.

4. CONCLUDING REMARKS

This paper considers the growth and governance relationship through the
lens of nonparametric quantile analysis. The analysis focuses on three
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10−1−2

−0.05

0.00

0.05

Latin America & Caribbean − 2004

stability

gr
ow

th

ARG

BRB

BOL BRA

CHL
COL

CRI
CUB

DOM

ECU

GTM JAM
MEX

PER

PRI
LCA

TTO
URY

VEN

10−1−2

−0.05

0.00

0.05

Africa − 2004

stability

gr
ow

th

DZA
AGO

BFA

CMREGYETH

GHA

CIV
KEN

MDG

MWI MLI

MAR

MOZ

NER

NGA

SEN
ZAF

SDN

TZA
TUN

UGA

ZAR
ZMB

ZWE

Fig. 11. 50% Quantile – Case Study – Political Stability. Note: Solid line in top

graph displays q̂0:5 (REGIONi ¼ Latin America & Caribbean, DTt ¼ 2004,

voiceit ¼ 0, stabilityit ¼ stability, effectivenessit ¼ 0, regulatoryit ¼ 0, lawit ¼ 0,

corruptionit ¼ 0). Solid line in bottom graph displays q̂0:5 (REGIONi ¼ Africa,

DTt ¼ 2004, voiceit ¼ 0, stabilityit ¼ stability, effectivenessit ¼ 0, regulatoryit ¼ 0,

lawit ¼ 0, corruptionit ¼ 0). Dotted lines represent 90% bootstrap confidence

intervals. They are not symmetric because they estimate stochastic variation of

hyperplanes, and not of univariate functions.
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Fig. 12. 50% Quantile – Case Study – Rule of Law. Note: Solid line in top graph

displays q̂0:5 (REGIONi ¼ Latin America & Caribbean, DTt ¼ 2004, voiceit ¼ 0,

stabilityit ¼ 0, effectivenessit ¼ 0, regulatoryit ¼ 0, lawit ¼ law, corruptionit ¼ 0).

Solid line in bottom graph displays q̂0:5 (REGIONi ¼ Africa, DTt ¼ 2004,

voiceit ¼ 0, stabilityit ¼ 0, effectivenessit ¼ 0, regulatoryit ¼ 0, lawit ¼ law,

corruptionit ¼ 0). Dotted lines represent 90% bootstrap confidence intervals. They

are not symmetric because they estimate stochastic variation of hyperplanes, and not

of univariate functions.
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governance measures: The relationship between growth and governance at
each quantile is nonmonotonic across regions and year. Nonparametric
quantiles reveal substantial heterogeneity that is not captured by parametric
quantiles estimation. For example, without introducing interaction terms
between variables and regions the nonparametric quantiles are able to
capture these effects in the GPC. Nonparametric quantiles also demonstrate
heterogeneity of results across different quantiles.

These nonmonotonicities and heterogeneity across quantiles highlight the
importance of careful modeling of the growth and governance relationships.
These empirical results lend credence to the arguments of Rodrik (2006)
and Hausmann et al. (2008) that caution policy makers from applying
policies uniformly across countries and years. Proper growth diagnostics are
required to understand what are the bottlenecks and barriers to growth.
Understanding the binding constraints can help policy makers to enact the
relevant reforms.

Overall, these findings indicate that caution must be used when using
parametric quantile models to analyze the relationship between World
Governance Indicators and growth. However, there are some important
omissions in this study. Most important is that this paper does not address
the issue of causality or control for endogeneity in a regression framework.
This could potentially be addressed adapting Horowitz and Lee’s (2006)
estimator to our framework, while using European settler mortality rates
(see Acemoglu, Johnson, & Robinson, 2001) as valid instruments for
example. Other important features to consider are the dynamics of these
measures across time. Finally, little is known about misspecification tests
applied to nonparametric quantiles. We leave these important considera-
tions for future study.

NOTES

1. Examples of these conjectures can be found in North (1990), Mauro (1995), and
Hall and Jones (1999).
2. The last two World Bank presidents (Paul Wolfowitz and Robert Zoellick) have

made public statements regarding this relationship; see http://go.worldbank.org/
ATJXPHZMH0 and http://blogs.iht.com/tribtalk/business/globalization/?p ¼ 632
3. We would like to thank Jeffrey S. Racine for providing us with the necessary

software to perform these computations at Indiana University’s High Performance
Clusters.
4. The definitions are taken from http://info.worldbank.org/governance/wgi2007/

faq.htm

A Nonparametric Quantile Analysis of Growth and Governance 217

http://go.worldbank.org/ATJXPHZMH0
http://go.worldbank.org/ATJXPHZMH0
http://blogs.iht.com/tribtalk/business/globalization/?p=632
http://blogs.iht.com/tribtalk/business/globalization/?p=632
http://info.worldbank.org/governance/wgi2007/faq.htm
http://info.worldbank.org/governance/wgi2007/faq.htm


5. http://info.worldbank.org/governance/wgi2007/
6. http://www.ggdc.net/Dseries/totecon.html
7. See Koenker (2005, Section 3.3.2, pp. 76–77) for details. Although this test

statistics assumes a random independent sample, no further modifications for time
series were performed in this set-up.
8. We use a second-order Gaussian kernel for each continuous variable, that is,

growthit, voiceit, stabilityit, governmentit, regulatoryit, lawit, and corruptionit. The
Aitchison and Aitken’s (1976) kernel for unordered categorical variable was used for
the regional indicator (REGIONi), and Wang and van Ryzin’s (1981) kernel was
used for the ordered categorical variable DTt.
9. The resulting bandwidths are 0.2146, 0.7787, 0.7517, 0.3402, 0.1685, 0.4267,

0.2375, and 0.4686 for REGIONi, DTt, voiceit, stabilityit, governmentit, regulatoryit,
lawit, and corruptionit, respectively; and 0.1468 for growthit.

10. Alternatively, we could also condition on a country-specific unordered
categorical variable as well. We thank an anonymous referee for pointing this out.
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Huynh, K. P., & Jacho-Chávez, D. T. (2009). Growth and governance: A nonparametric

analysis. Journal of Comparative Economics, 37(1), 121–143.
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A. TECHNICAL APPENDIX

Kernel Smoothing

Suppose we observed a sample fyi; x
>
i g; i ¼ 1; . . . ; n from a random vector

[ y, x
?] where y 2 R, and x is a mixture of continuous variables xc ¼

½x1; . . . ; xq1 � 2 Rq1 and discrete xd ¼ ½xq1þ1; . . . ; xq�> 2 Sd where Sd is the
support of xd, and q2 ¼ q� q1. For particular two points yi; xi ¼ ½x

c
i ;x

d
i �,

and yj ; xj ¼ ½x
c
j ;x

d
j �, let us define the functions

Kðxci ;x
c
j ; hÞ ¼

Yq1
l¼1

1

hl
k

xli � xlj
hl

 !
(A.1)

Lðxdi ; x
d
j ; lÞ ¼

Yq2
l¼1

lðxli ;x
l
j ; llÞ (A.2)

Gðyi; yj ; hyÞ ¼

Z ðyi�yj=hyÞ
�1

kðtÞdt (A.3)

where i indexes the ‘‘estimation data’’ and j the ‘‘evaluation data,’’ which are
typically the same. The kernel function k ( � ) for continuous variables
satisfies

R
k(u)du ¼ 1 and some other regularity conditions depending on

its order p, and h ¼ ½h1; . . . ; hq1 �
> is a vector of smoothing parameters

along with hy satisfying hs-0 as n-N for s ¼ 1,y, q1, and y. Similarly
the kernel function l ( � ) for discrete variables lies between 0 and 1, and
l ¼ ½l1; . . . ; lq2 �

> is a vector of smoothing parameters such that lsA[0,1],
and ls-0 as n-N for s ¼ 1,y, q2 (see, e.g., Li & Racine, 2003).

Conditional CDF Estimation

Let I( � ) be the indicator function that equals 1 if its argument is true, and 0
otherwise. Then, the conditional CDF of yj given xj,

Fð yjjxjÞ ¼ E½IðY � yjÞjX ¼ xj�

can be estimated consistently by

F̂ð yjjxjÞ ¼

Pn
i¼1; iajGð yi; yj ; hyÞKðx

c
i ;x

c
j ; hÞLðx

d
i ;x

d
j ; lÞPn

i¼1; iajKðx
c
i ;x

c
j ; hÞLðx

d
i ;x

d
j ; lÞ
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when F( � | � ) is at least twice continuously differentiable, such that
nh1 � . . .� hq1 !1 as n-N. This estimator is asymptotically normally
distributed under further regularity conditions (see, e.g., Li & Racine, 2007,
Theorem 6.5, p. 194).

Conditional Quantile Estimation

The conditional t-quantile function of y given xj can be estimated
consistently by

q̂tðxjÞ ¼ arg min
q
jt� F̂ðqjxjÞj (A.4)

when qt( � ) is assumed to be at least twice continuously differentiable with
respect to x

c, such that nh1 � . . .� hq1 !1 as n-N. This estimator
has also been shown to be asymptotically normally distributed under
certain regularity conditions (see, e.g., Li & Racine, 2007, Theorem 6.7,
pp. 195–196).
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NONPARAMETRIC ESTIMATION

OF PRODUCTION RISK AND

RISK PREFERENCE FUNCTIONS

Subal C. Kumbhakar and Efthymios G. Tsionas

ABSTRACT

This paper deals with estimation of risk and the risk preference function
when producers face uncertainties in production (usually labeled as
production risk) and output price. These uncertainties are modeled in the
context of production theory where the objective of the producers is to
maximize expected utility of normalized anticipated profit. Models
are proposed to estimate risk preference of individual producers under
(i) only production risk, (ii) only price risk, (iii) both production and
price risks, (iv) production risk with technical inefficiency, (v) price risk
with technical inefficiency, and (vi) both production and price risks with
technical inefficiency. We discuss estimation of the production function,
the output risk function, and the risk preference functions in some of
these cases. Norwegian salmon farming data is used for an empirical
application of some of the proposed models. We find that salmon farmers
are, in general, risk averse. Labor is found to be risk decreasing while
capital and feed are found to be risk increasing.
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1. INTRODUCTION

Risk in production theory is mostly analyzed under (i) output price
uncertainty and (ii) production uncertainty (commonly known as produc-
tion risk). Output price can be uncertain due to a variety of reasons. Perhaps
the most important factor is the presence of a time lag between use of inputs
and output produced. Moreover, produced output is often sold at a later
date when output price is likely to be different from the date when the
production plan was made. Uncertainty in output price makes profit
uncertain. Profit can also be uncertain if the output is risky, which may be
affected by input quantities. That is, input quantities not only determine the
volume of output produced, but some of these inputs might also be affecting
variability of output (often labeled as production risk). For example,
fertilizer might be risk augmenting in the production of crop, while labor
might decrease output risk. Here we address the implications of these risks
in a framework where producers maximize expected utility of anticipated
profit. In particular, we examine input allocation decisions in the presence
of price uncertainty and production risk. Since input demand and output
supply (as well as own and cross price elasticities, returns to scale, etc.)
are affected by the presence of these uncertainties, it is desirable to
accommodate uncertainty in production studies, especially in estimating the
underlying production technology.

Although the theoretical work on risk in the production literature is quite
extensive, there are relatively fewer empirical studies devoted to analyzing
different sources of risk on production and input allocation. Most of these
studies either looked at output price uncertainty (Appelbaum & Ullah, 1997;
Kumbhakar, 2002; Sandmo, 1971; Chambers, 1983) or production risk
along the Just–Pope framework (Tveteras, 1999, 2000; Asche & Tveteras,
1999; Kumbhakar & Tveteras, 2003). To examine producers’ behavior under
risk, some parametric forms of the utility function, production function, and
output risk function along with specific distributional assumptions on the
error term representing risk are considered in the existing literature (Love &
Buccola, 1991; Saha, Shumway & Talpaz, 1994). Thus, the risk studies in
the production literature have some or all of these features built in, viz.,
(i) parametric forms of the production and risk function, (ii) parametric
form of the utility function, and (iii) distributional assumption(s) on the
error term(s) representing either production risk or output price uncertainty
or both.

In the present paper we estimate the production function, the risk
function (output risk), and risk preference functions (associated with price
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and production uncertainties). We derive estimates of risk preference
functions that do not depend on specific functional form of the underlying
utility function. In estimating these functions no distributional assumptions
are made on the random terms associated with production and output
uncertainties. Furthermore, we obtain estimates of producer-specific risk
premium (RP).

The rest of the paper is organized as follows. The models with price
uncertainty and production risk are presented in Section 2. Extensions
of these models to accommodate technical inefficiency are considered in
Section 3. Section 4 describes various parametric econometric models first
without and then with technical inefficiency. Nonparametric versions of
some of the models are considered in Section 5. The Norwegian salmon
farming and the empirical results are presented in Section 6. Finally,
Section 7 concludes the paper with a brief summary of results.

2. RISK MODELS WITH OUTPUT PRICE

UNCERTAINTY AND PRODUCTION RISK

We assume that the production technology can be represented by a Just–
Pope (1978) form, viz.,

y ¼ f ðX ;ZÞ þ hðX ;ZÞ�; � � ð0; 1Þ (1)

where y is output, X and Z are vectors of variable and quasi-fixed inputs,
f(X, Z) is the mean output function, and e is a random variable that
represents production uncertainty. Since output variance is represented by
h2(X, Z), the h(X, Z) function is labeled as the output risk function. In this
framework an input j is said to be risk increasing (decreasing) if the partial
derivative hj (X, Z)W(o)0.

2.1. Only Production Risk (Model I)

First we start with the case where output and input markets are competitive
and their prices are known with certainty. Production is, however,
uncertain. Assume that producers maximize expected utility of anticipated
normalized profit E [U(pe/p)] to choose optimal input quantities, which in
turn determines output supply.1 Define anticipated profit pe as

pe ¼ py� wX ¼ pf ðX ;ZÞ � wX þ phðX ;ZÞ� 	 mp þ phðX ;ZÞ� (2)
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where mp ¼ pf(X, Z)�wX, p being the output price and w the price vector of
the variable inputs. Note that we have not subtracted the cost of quasi-fixed
inputs to define profit. That is, profit in Eq. (2) is defined as variable
(restricted) profit. The concept of variable/restricted profit is appropriate
here because by definition quasi-fixed inputs are not choice variables
(in the optimization problem) in the short run. In other words, the variable
inputs are choice variables in maximizing profit in the short run. Thus,
for example, capital (which is often decided from a medium-/long-term
perspective) in most of the studies is treated as quasi-fixed input. The
advantage of doing so is that it is not necessary to construct price of capital
(which is nontrivial).

The first-order conditions (FOCs) of expected utility of anticipated
normalized profit E [U(pe/p)] maximization can be written as

E U 0
pe

p

� �
ff jðX ;ZÞ � ~wj þ hjðX ;ZÞ�g

� �
¼ 0 (3)

where Uu(pe/p) is the marginal utility of anticipated normalized profit,
fj (X, Z) and hj (X, Z) are partial derivatives of f(X, Z) and h(X, Z) functions,
respectively, with respect to input Xj. Finally, ~wj ¼ wj=p.

We can rewrite the above FOCs as

f jðX ;ZÞ ¼ ~wj � hjðX ;ZÞy1ð�Þ (4)

where

y1ð�Þ 	
E½U 0ðpe=pÞ��
E½U 0ðpe=pÞ�

(5)

The y1( � ) term in the FOCs in Eq. (4) is the risk preference function
associated with production risk. If producers are risk averse, then y1( � )o0
(i.e., an increase in e (which can be viewed as a positive production/
technological shock) increases pe/p which in turn reduces Uu(pe/p) since
Uv(pe/p)o0 (utility function being concave)). Similarly, y1( � ) is positive if
producers are risk lovers and is zero for risk neutral producers.

If hj (X, Z)W0, then for risk averse producers the value of the (expected)
marginal product of input Xj exceeds its price p fj ( � )Wwj. Consequently, a
risk averse producer will use the input less relative to a risk neutral producer
y1( � ) ¼ 0. Similarly, if producer A is more risk averse than an otherwise
identical producer B, producer A will use less of input Xj than producer B.
Thus, input demand functions (the solution of Xj from Eq. (4)) will depend
not only on observed prices but also on the risk preference functions.
Consequently, anything that depends on the demand functions (e.g., own
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and cross price elasticities, returns to scale, technical change, etc.) is likely to
be affected by the presence of risk via y1( � ). Since input demand functions
are affected, output supply will also be affected even if the producers share
the same technology, and face the same input and output prices.

2.2. Only Output Price Uncertainty (Model II)

We now consider the case where output price is uncertain (Appelbaum &
Ullah, 1997; Sandmo, 1971) and there is no production uncertainty (h(X, Z)
is constant). We describe output price uncertainty by postulating anticipated
price pe as peZ with the assumption that E(eZ) ¼ 1 (Zellner, Kmenta, &
Dreze, 1966) so that the expected value of pe is the same as the observed
price p. Note that in this specification pe is random (not p) because Z is a
random variable. The anticipated price differs from the observed price at a
point in time because the production process is not always instantaneous,
and the quantity of output cannot be perfectly predicted at the time
production decisions are made.

Similar to Model I, we assume that producers maximize expected utility
of anticipated normalized profit E [U(pe/p)] to determine optimal input
quantities, which in turn determines output supply. The production function
is the same as in Eq. (1). Define anticipated profit pe as

pe ¼ pey� wX ¼ pf ðX ;ZÞ � wX þ pf ðX ;ZÞðeZ � 1Þ

)
pe

p
¼ f ðX ;ZÞ � ~wX þ f ðX ;ZÞðeZ � 1Þ ¼ mp þ f ðX ;ZÞz1

(6)

where z1 ¼ (eZ�1) and ~wj ¼ wj=p. Note that z1 is a zero mean random
variable since eZ is a random variable with mean zero.

The FOCs of expected utility of anticipated normalized profit E [U(pe/p)]
maximization can be written as

E U 0
pe

p

� �
ff jðX ;ZÞ � ~wj þ f jðXÞz1g

� �
¼ 0 (7)

We can rewrite Eq. (7) as

f jðX ;ZÞð1þ y2ð�ÞÞ ¼ ~wj (8)

where

y2ð�Þ 	
E½U 0ðpe=pÞz1�
E½U 0ðpe=pÞ�

(9)
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The y2( � ) term in the FOCs (Eq. (9)) is the risk preference function
associated with output price uncertainty. If producers are risk averse, then
y2( � )o0 (i.e., an increase in eZ increases pe/p which in turn reduces Uu(pe/p)
since Uv(pe/p)o0 (utility function being concave)). Similarly, y2( � ) is
positive if producers are risk lovers and is zero for risk neutral producers.

2.3. Both Production Risk and Output Price Uncertainty (Model III)

Now we consider the case where producers face both production risk and
uncertainty in output price. Output price is assumed to be governed by the
same process as in Model II, and the production function is given in Eq. (1).
For simplicity we assume that e is independent of Z. Furthermore the
variance of eZ is assumed to be constant.
With the presence of both types of uncertainties the anticipated

normalized profit pe/p can be written as

pe

p
¼ eZy� ~wX ¼ f ðX ;ZÞ � ~wX þ f ðX ;ZÞðeZ � 1Þ þ hðX ;ZÞðeZ�Þ

	 mp þ f ðX ;ZÞz1 þ hðX ;ZÞz2

(10)

where z1 ¼ eZ�1 and z2 ¼ eZe. The FOCs of expected utility of anticipated
profit E [U(pe/p)] maximization can be written as

E U 0
pe

p

� �
ff jðX ;ZÞ � ~wj þ f jðX ;ZÞz1 þ hjðX ;ZÞz2g

� �
¼ 0 (11)

where Uu(pe/p), fj ( � ), and hj ( � ) are the same as before.
We can rewrite Eq. (11) as

f jðX ;ZÞð1þ ~y2ð�ÞÞ ¼ ~wj � hjðX ;ZÞ~y1 (12)

where

~y1ð�Þ 	
EðU0ðpe=pÞz2Þ
EðU 0ðpe=pÞÞ

(13)

and

~y2ð�Þ 	
EðU0ðpe=pÞz1Þ
EðU 0ðpe=pÞÞ

(14)

The ~y1ð�Þ and ~y2ð�Þ functions in Eqs. (13) and (14) are called risk
preference functions associated with output price uncertainty and
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production risk, respectively.2 If producers are risk averse, then ~y2ð�Þo0.
A similar reasoning shows that ~y2ð�Þ ¼ 0 when producers are risk neutral
(i.e., Uv(pe/p) ¼ 0, which implies that the utility function is linear), and if
producers are risk loving, then ~y2ð�Þ40. (i.e., Uv(pe/p) ¼ 0, which means
that the utility function is convex). Finally, it can be shown, using similar
arguments, that ~y1ð�Þ is negative if producers are risk averse, positive for risk
loving, and zero for risk neutral producers.

The model with only output price uncertainty can be obtained from the
above model by assuming that there is no output risk (i.e., h(X, Z) is a
constant thereby meaning that hj (X, Z) ¼ 0). This means that the ~y1ð�Þ
function will disappear from the FOCs. Similarly, if there is only produc-
tion risk and no uncertainty in output price, then z1 ¼ 0, and the ~y2ð�Þ
function will disappear from the FOCs. Finally, if the producers
are risk neutral, then both ~y1ð�Þ and ~y2ð�Þ will disappear from the FOCs
in Eq. (12).

3. RISK MODELS WITH TECHNICAL EFFICIENCY

3.1. Only Production Risk (Model IV)

If the producers face production risk and are technically inefficient, the
production function can be written as

Y ¼ f ðX ;ZÞ þ hðX ;ZÞ�� gðX ;ZÞu hðX ;ZÞ40; gðX ;ZÞ40; u � 0

(15)

In this specification, uZ0 represents technical inefficiency. For estima-
tion purposes u is often assumed to be truncated (or half) normal.
Furthermore, u and e are assumed to be independent. This model in Eq. (15)
is a generalization of the Battese, Rambaldi, and Wan (1997) model. If
h(X, Z) ¼ g(X, Z), then the model reduces to the Battese et al. (1997) model.

We assume that producers maximize E [U(pe/p)] conditional on u.
Anticipated profit pe is

pe ¼ pY � wX )
pe

p
¼ f ðX ;ZÞ þ hðX ;ZÞ�� gðX ;ZÞu�

w

p

� �
X
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The FOCs of E [U(pe/p)] maximization, given u, are

E½U 0ð:Þ ff jðX ;ZÞ þ hjðX ;ZÞ�� gjðX ;ZÞu� ~wjg� ¼ 0

) f jðX ;ZÞ � gjðX ;ZÞuþ hjðX ;ZÞ
E½U 0ð:Þ��

E½U0ð:Þ�
� ~wj ¼ 0

) f jðX ;ZÞ � ~wj � gjðX ;ZÞuþ hjðX ;ZÞlð:Þ ¼ 0

(16)

where l1ð�Þ ¼ ðE½U 0ð:Þ��Þ=ðE½U 0ð:Þ�Þ is the risk preference function associated
with production risk. The only difference between l1( � ) and y1( � ) is that
l1( � ) depends on inefficiency as well through the utility function.

3.2. Only Output Price Uncertainty (Model V)

Now we introduce the presence of technical inefficiency into the model with
only output price uncertainty. The production function is

Y ¼ f ðX ;ZÞ þ h0�� gðX ;ZÞu

where h0 is a constant. This is basically a stochastic frontier model in which
determinants of technical inefficiency are modeled through the scaling
function g(X, Z) (see Wang & Schmidt, 2002). Since we are considering
an optimizing model and output price is uncertain, input choices will be
affected by price uncertainty. Here we are interested in estimating the
production function, determinants of technical inefficiency, and the risk
preference function associated with output price uncertainty.

As before, we assume that producers choose X by maximizing E [U(pe/p)]
where pe ¼ pY � wX ) pe=p ¼ eZ½ f ðX ;ZÞ þ h0�� gðX ;ZÞu� ~wX �. We
rewrite anticipated normalized profit as

pe

p
¼ f ðX ;ZÞ � ~wX � gðX ;ZÞueZ þ h0�e

Z þ f ðX ;ZÞðeZ � 1Þ

)
pe

p
¼ f ðX ;ZÞ � ~wX � gðX ;ZÞ ð1þ z1Þ þ h0z2 þ f ðX ;ZÞz1

(17)

The FOCs of maximization E [U(pe/p)] with respect to the elements of X
(given u) are

E½U 0ð:Þff jðX ;ZÞ � ~wj � gjðX ;ZÞuð1þ z1Þ þ f jðX ;ZÞz1g� ¼ 0

) f jðX ;ZÞ � ~wj � gjðX ;ZÞuð1þ l2ð:ÞÞ þ f jðX ;ZÞl2 ¼ 0
(18)

where l2ð�Þ ¼ E½U0ð:Þz1�=E½U
0ð:Þ� is the risk preference function associated

with price risk.
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3.3. Both Production Risk and Price Uncertainty (Model VI)

In this section we introduce both output price and production uncertainty
into the analysis. The production function is the same as the one in Eq. (15),
that is,

Y ¼ f ðX ;ZÞ þ hðX ;ZÞ�� gðX ;ZÞu

Output price uncertainty is modeled as before (in Model II), that is, pe ¼ peZ

such that E [eZ] ¼ 1 and V(eZ) ¼ b2W0. Furthermore u, e, and Z are
independent of each other. Here our objectives are to estimate (i) the
production risk function h(X, Z); (ii) technical inefficiency u and the
determinants of technical inefficiency through the scaling function g(X, Z);
and (iii) the risk preference functions associated with production risk and
output price uncertainty.

As before, we assume that producers choose X by maximizing E [U(pe/p)]
where pe ¼ pY � wX ) pe=p ¼ eZ½ f ðX ;ZÞ þ hðX ;ZÞ�� gðX ;ZÞu� � ~wX .
Now we rewrite anticipated profit as

pe

p
¼ f ðX ;ZÞ � ~wX � gðX ;ZÞueZ þ hðX ;ZÞ�eZ þ f ðX ;ZÞðeZ � 1Þ

¼ f ðX ;ZÞ � ~wX � gðX ;ZÞð1þ z1Þ þ hðX ;ZÞz2 þ f ðX ;ZÞz1

(19)

The FOCs of maximization E [U(pe/p)] with respect to the elements of X
(given u) are

E½U 0ð:Þff jðX ;ZÞ � ~wj � hjðX ;ZÞz2 � gjðX ;ZÞue
Z þ f jðX ;ZÞz1g� ¼ 0

) f jðX ;ZÞ � ~wj þ hjðX ;ZÞ~l2 � gjðX ;ZÞuð1þ ~l1Þ þ f jðX ;ZÞ~l1 ¼ 0

(20)

where ~l1 ¼ E½U 0ð:Þz1�=E½U
0ð:Þ� and ~l2 ¼ E½U 0ð:Þz2�=E½U

0ð:Þ� are risk pre-
ference functions associated with price and production risks, respectively.

4. PARAMETRIC ECONOMETRIC MODELS OF RISK

Since our interest is to estimate the parameters of the mean output function,
output risk function, and the risk preference function, the most important
task is to derive an algebraic form of the risk preference function, which is
easy to implement econometrically, and imposes minimum restrictions on
the structure of risk preferences on the individual producers. Certain specific
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forms of U(.) together with some specific distributional assumptions on e
give an explicit closed form solution of y1(.) (Love & Buccola, 1991; Saha
et al., 1994). However, estimation of these models is quite complex. It is,
however, possible to derive an algebraic expression for the risk preference
function without assuming any distribution on e and without any specific
functional form on U(.) that imposes a priori restrictions on the structure
of risk aversion.3 In fact, our result would be very useful in empirical
applications, especially if one is interested in estimating general forms of
risk preferences without estimating a complicated system of equations
(Chavas & Holt, 1996; Love & Buccola, 1991; Saha et al., 1994). Note that it
is not even necessary to assume that U( � ) is concave.

4.1. Specification and Estimation of Model I

If U(mpþph(X, Z)e) is continuous and differentiable, and we take a linear
approximation of Uu(mpþph(X, Z)e) at e ¼ 0, then the risk preference
function in Model I takes the following form4:

y1ð�Þ ¼ �ARðmpÞhðX ;ZÞ (21)

where ARðmpÞ ¼ �U
00ðmpÞ=U

0ðmpÞ is the Arrow–Pratt measure of absolute
risk aversion.

Using the above result the FOC in Eq. (4) can be expressed as

f jðX ;ZÞ ¼ ~wj þ hjðX ;ZÞARðmpÞhðX ;ZÞ (22)

A close look at the FOC in Eq. (22) shows that the focus of the problem is
now shifted from the utility function to the AR function. In addition to the
mean production and risk functions, one needs to specify a functional form
on AR, which will define a system of J equations in J variable inputs (X) in
Eq. (22). It is worth noting here that any specification of the AR function
will indirectly imply some underlying utility function, viz., U ¼

R
e�ARdmp.

That is, the AR function gives all the information possessed by the
utility function (Pratt, 1964). The main advantage of working with the AR
function is that one doesn’t have to worry about (i) the underlying utility
function (which may not be always solvable analytically), (ii) the derivation
of y1( � ) (which might not always give a closed form solution), and (iii) the
solution y1( � ) (which, although solvable for some specific utility functions,
might not be easy to work with empirically). Furthermore, one can assume a
functional form on AR that is flexible enough to test whether producers are
risk neutral (AR ¼ 0) or not. If risk neutrality does not exist, then we can
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also test for constant absolute risk aversion (CARA), decreasing absolute
risk aversion (DARA), and increasing absolute risk aversion (IARA)
hypotheses.

AR can be parameterized to allow (test) for CARA, IARA, and DARA.
For example, if AR ¼ d1 þ d2mp þ 0:5d3m2p, then CARA.d2 ¼ d3 ¼ 0,
IARA.d2þd3mpW0, and DARA.d2þd3mpo0. Furthermore, d1 ¼ d2 ¼
d3 ¼ 0.AR ¼ 0.y ¼ 0, that is, risk neutrality. These are all testable
hypotheses. Some other nonlinear functions can also be used to
parameterize and test different forms of risk preferences. Although a
parametric form on AR indirectly implies some form of a utility function, it
is not necessary to know the exact parametric form of the underlying utility
function in specifying a functional form for AR. Note that although the
specification of the models under the abovementioned null hypotheses are
well defined, the models under the alternative hypotheses are not unique.
That is, one can test a specific null hypothesis (e.g., CARA) by specifying
many different AR functions. Since the tests used in the literature are always
against some specific alternatives, it is worth mentioning that the test results
might be inconsistent if the models under the alternatives are incorrect.

The model outlined above (Model I) can be estimated by estimating the
system consisting of the production function in Eq. (1) along with the FOCs
in Eq. (22) once parametric functional forms are chosen for f (X, Z), h(X, Z),
and AR(.) functions, and classical error terms are added to each of the
FOCs in Eq. (22). Two things are to be noted here. First, the system is highly
complicated and nonlinear is parameters, and therefore a nonlinear system
approach has to be used. Second, the endogenous variables are the variable
inputs (X) and output (Y), which appear almost everywhere in the system.
Thus, a nonlinear three-stage least squares or other instrumental variable
approach (system GMM) has to be used. The exogenous variables
(instruments) are the quasi-fixed inputs (Z) and prices (p and w).5

4.2. Specification and Estimation of Model II

A similar procedure can be used to estimate Model II that incorporates only
output price risk discussed in Section 2.2. We use the following result to
express the risk preference function in terms of the AR function.

If U(mpþf (X, Z)z1þz2) is continuous and differentiable, and we take a
linear approximation of Uu(mpþf (X, Z)z1þz2) at z1 ¼ z2 ¼ 0, then the risk
preference function takes the following form6:

y2( � ) ¼ �AR(mp).f (X, Z), where AR ¼ �Uv( � )/Uu( � ) evaluated at mp.
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Using this result we write the FOCs in Eq. (8) as

f jðX ;ZÞ½1�ARðmpÞf ðX ;ZÞ� ¼ ~wj þ vj (23)

where vj can be viewed as an optimization error in choosing the jth variable
input. Thus, the estimating model consists of the production function in
Eq. (1) and the FOCs in Eq. (23) that can be estimated using a nonlinear
system approach. This system is also heavily parametric and difficult to
estimate.

4.3. Specification and Estimation of Model III

To estimate Model III that incorporates both production and output price
risk discussed in Section 2.3, we express the risk preference functions
(specified in Eqs. (13) and (14)) in terms of the AR function.

If U(mpþf (X, Z) z1þh(X, Z)z2) is continuous and differentiable, and we
take a linear approximation of Uu(mpþf (X, Z) z1þh(X, Z)z2) at z1 ¼ z2 ¼ 0,
then the risk preference functions are

~y2ð�Þ ¼ �ARðmpÞ f ðX ;ZÞ; ~y1ð�Þ ¼ �ARðmpÞhðX ;ZÞ

Using this result we write the FOCs in Eq. (12) as

f jðX ;ZÞ½1�ARðmpÞ f ðX ;ZÞ� ¼ ~wj þ hjðX ;ZÞhðX ;ZÞARðmpÞ þ vj (24)

where vj can be viewed as an optimization error in choosing the jth variable
input. Thus, the estimating model consists of the production function in
Eq. (1) and the FOCs in Eq. (24) that can be estimated using a nonlinear
system approach.

4.4. Specification and Estimation of Model IV

To derive an estimable expression of l1( � ), we express it, as before, in terms
of the AR( � ) function. For this, first, we expand Uu(pe/p) around e ¼ 0,
that is,

U 0
pe

p

� �
¼ U 0ðqðX ;Z; uÞÞ þU 00ðqðX ;Z; uÞÞhðX ;ZÞ�þ � � �

where qðX ;Z; uÞ ¼ f ðX ;ZÞ � gðX ;ZÞu� ~wX .
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Thus,

E½U 0ð:Þ� ¼ U 0ðqðX ;Z; uÞÞ;

E½U 0ð:Þ�� ¼ U 00ðqðX ;Z; uÞÞhðX ;ZÞ

)
ignoring higher order terms

) l1ð�Þ ¼
U00ðqðX ;Z; uÞÞhðX ;ZÞ

U 0ðqðX ;Z; uÞÞ
¼ �ARðX ;Z; uÞhðX ;ZÞ

(25)

where AR(X, Z, u) ¼ �Uv( � )/Uu( � ) is the Arrow–Pratt absolute risk
aversion function evaluated at q(X, Z, u). For risk averse producers
l1( � )o0.AR(.)W0.

Using the above expression for l1( � ), we write Eq. (16) as:

f jðX ;ZÞ � ~wj � gjðX ;ZÞuþ hjðX ;ZÞ ½�ARðX ;Z; uÞ hðX ;ZÞ� ¼ vj

) f jðX ;ZÞ � ~wj �ARðX ;Z; uÞ hjðX ;ZÞ hðX ;ZÞ ¼ vj þ gjðX ;ZÞu
(26)

where the error term vj in Eq. (26) can be viewed as optimizing error
associated with the jth variable input.

Estimation of the above model can be done in either two steps or a single
step.

4.4.1 Two-Step Procedure

Step 1. Use the maximum likelihood (ML) method to estimate the pro-
duction function in Eq. (15) with the following distributional assumptions
on u and e:7

(i) uBi.i.d. Nþ ðm; s2uÞ,
(ii) eBi.i.d. N (0, 1),
(iii) u and e are independent.

In specifying the variance of e to unity we assume that the h(X, Z)
function is proportional to a constant. Based on the above distributional
assumptions, the likelihood function can be derived by making a few
changes to the one derived in Battese et al. (1997).8 By specifying
parametric functional forms for f (X, Z), h(X, Z), and g(X, Z), one can
obtain estimates of the parameters in f (X, Z), h(X, Z), and g(X, Z), as well
as m and s2u.
These parameters can then be used to estimate u (for each observation)

from either the mean or mode of u|e� where e� ¼ h(X, Z)e�g(X, Z)u
(see the appendix). It is straightforward to show that the conditional
distribution of u is truncated normal. Once u is estimated, technical
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efficiency (TE) can be estimated from

TE ¼
EðY jX ;Z; uÞ

EðY jX ;Z; u ¼ 0Þ
¼ 1�

gðX ;ZÞu

f ðX ;ZÞ
(27)

Step 2. Step 1 gives estimates of f (X, Z), g(X, Z), and h1(X, Z), as well as
the estimates of u. These estimates can be used in Eq. (26) to compute l1(.)
and AR as follows:X

j

ðf jðX ;ZÞ � ~wj � gjðX ;ZÞuÞ ¼
X
j

vj � l1ðX ;Z; uÞ
X
j

hjðX ;ZÞ

) l̂1ðX ;Z; uÞ ¼ �

P
jðf jðX ;ZÞ � ~wj � gjðX ;ZÞuÞP

jhjðX ;ZÞ

)dAR ðX ;Z; uÞ ¼ �
l̂1ðX ;Z; uÞ
hðX ;ZÞ

(28)

assuming that
P

jvj ¼ 0. These estimates are observation specific. Thus,
one can obtain estimates of risk preference (and absolute risk aversion)
for each observation.

An alternative strategy is to assume a functional for AR and estimate
the parameters of it from the FOCs in Eq. (26), which is rewritten as

½f̂ jðX ;ZÞ � ~wj � ĝjðX ;ZÞu�

½ĥjðX ;ZÞ ĥðX ;ZÞ�
¼ ARðX ;Z; uÞ þ vj j ¼ 1; . . . ; J (29)

where vj is an error term.
For example, if the AR function is assumed to be linear, that is,

AR ¼ b0 þ b1qðX ;Z; uÞ ¼ b0 þ b1ðf ðX ;ZÞ � ~wX � gðX ;ZÞuÞ (30)

one can substitute AR from Eq. (30) into Eq. (29) and estimate b0 and b1
parameters from the system of J equations in Eq. (29), using the estimated
values of f (X, Z), g(X, Z), and u. It is to be noted that the X variables are
endogenous variables. This means that one should use instruments for the
X variables.

4.4.2 Single-Step Procedure
We write the FOCs in Eq. (29) as

cjðX ;ZÞ ¼ mjðX ;ZÞuþ vj j ¼ 1; . . . ; J
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where cjðX ;ZÞ ¼ f jðX ;ZiÞ � ~wj � hðX ;ZÞhjðX ;ZÞ ½b0 þ b1ððf ðX ;ZÞ � ~wXÞ�
and mjðX ;ZÞ ¼ gjðX ;ZÞ � b1hjðX ;ZÞhðX ;ZÞgðX ;ZÞ.

The above FOCs together with the production function in Eq. (15)
constitute the full system of Jþ1 equations with Jþ1 endogenous variables,
which is written compactly as

Y � f ðX ;ZÞ

C1ðX ;ZÞ

C2ðX ;ZÞ

..

.

CJ ðX ;ZÞ

266666664

377777775 ¼
hðX ;ZÞ�

v1

v2

..

.

vJ

266666664

377777775� u

gðX ;ZÞ

�m1ðX ;ZÞ

�m2ðX ;ZÞ

..

.

�mJ ðX ;ZÞ

266666664

377777775 (31)

The problem of dealing with this system is that the likelihood function
(based on the distributions on e, v, and u) cannot be expressed in a closed
form. This is because the Jacobian of the transformation will depend on u.
Because of this problem we do not discuss the full ML method here.

4.5. Specification and Estimation of Model V

To derive an estimable expression for l2 we take a Taylor series expansion
of Uu at z1 ¼ z2 ¼ 0, given u. This gives

U0
pe

p

� �
¼ U 0ðqðX ;Z; uÞÞ þU 00ðqðX ;Z; uÞÞ h0z2

þU 00ðqðX ;Z; uÞÞ ½ f ðX ;ZÞ � gðX ;ZÞu�z1

where qðX ;Z; uÞ ¼ f ðX ;ZÞ � gðX ;ZÞ u� ~wX . As before we assume that Z
and e are independent.

Thus,

E½U 0ð:Þ� ¼ U0ðqðX ;Z; uÞÞ

and

E½U 0ð:Þz1� ¼ U 00ðqðX ;Z; uÞÞ ½ f ðX ;ZÞ � gðX ;ZÞu�

) l2ð�Þ ¼
U 00ðqðX ;Z; uÞÞ ½ f ðX ;ZÞ � gðX ;ZÞu�

U 0ðqðX ;Z; uÞÞ

¼ �ARðX ;Z; uÞ ½ f ðX ;ZÞ � gðX ;ZÞu�

using the result ARð�Þ ¼ �ðU 00ð:ÞÞ=ðU 0ð:ÞÞ evaluated at q(X, Z, u).
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Using the above results, we rewrite the FOCs in Eq. (18) as

f jðX ;ZÞ � ~wj � gjðX ;ZÞ u

¼ARð�Þ ½ff ðX ;ZÞ� gðX ;ZÞugff jðX ;ZÞ� gðX ;ZÞ ug�
(32)

We write Eq. (32) more compactly as

C1jðX ;Z;uÞ

½m1jðX ;ZÞ u�
¼ARð�Þ j ¼ 1; . . . ;J (33)

when C1jðX ;Z;uÞ ¼ f jðX ;ZÞ � ~wj � gjðX ;ZÞ u, and m1jðX ;ZÞ ¼ ½ f ðX ;ZÞ�
gðX ;ZÞu� ½f jðX ;ZÞ � gjðX ;ZÞ u�.

Given the complexity of the model we suggest a two-step procedure.

Step 1. We estimate the production function in Eq. (15) following the
procedure discussed in section 4.4.1. By specifying parametric functional
forms for f (X, Z) and g(X, Z) together with the distributions on u and e,
one can obtain ML estimates of the parameters in f (X, Z) and g(X, Z), as
well as m, s2u, and h0. These estimators are consistent.

Step 2. Use the estimated/predicted values from Step 1 to compute Cj

and mj.
Assume a functional form for AR, for example, AR ¼ b0þ

b1ðf ðX ;ZÞ � ~wX � gðX ;ZÞ uÞ. Using this specification, we rewrite
Eq. (33) as

Ĉ1jðX ;Z; uÞ

½b0 þ b1ðf̂ ðX ;ZÞ � ~wX � ĝðX ;ZÞ ûÞ�
¼ m̂1jðX ;ZÞ uþ Zj j ¼ 1; . . . ; J

(34)

where Zj is an error term appended to the jth FOC. The above nonlinear
system of J equations can be used to estimate b0 and b1. The Z, w, and p
variables can be used as instruments in estimating the above system.
Once b0 and b1 are estimated AR( � ) can be computed for each
observation.

4.6. Specification and Estimation of Model VI

As before, first we derive estimable expressions for ~l1ð�Þ and ~l2ð�Þ
by taking a linear Taylor series expansion of Uu( � ) at z1 ¼ z2 ¼ 0, given u.
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This gives

U 0
pe

p

� �
¼ U 0ðqðX ;Z; uÞÞ þU00ðqðX ;Z; uÞÞ hðX ;ZÞz2

þU 00ðqðX ;Z; uÞÞ ½ f ðX ;ZÞ � gðX ;ZÞ u�z1

where qðX ;Z; uÞ ¼ f ðX ;ZÞ � gðX ;ZÞ u� ~wX .
Thus,

E½U 0ð:Þz1� ¼ U 00ðqðX ;Z; uÞÞ ½ f ðX ;ZÞ � gðX ;ZÞ u�

and

E½U 0ð:Þz2� ¼ U 00ðqðX ;Z; uÞÞ hðX ;ZÞ

) ~l1ð�Þ ¼
U 00ðqðX ;Z; uÞÞ ½ f ðX ;ZÞ � gðX ;ZÞu�

U 0ðqðX ;Z; uÞÞ

¼ �ARðX ;Z; uÞ ½ f ðX ;ZÞ � gðX ;ZÞu�

) ~l2ð�Þ ¼
U 00ðqðX ;Z; uÞÞ hðX ;ZÞ

U0ðqðX ;Z; uÞÞ
¼ �ARðX ;Z; uÞ hðX ;ZÞ

when ARð�Þ ¼ �ðU 00ð:ÞÞ=ðU 0ð:ÞÞ is evaluated at qðX ;Z; uÞ ¼ f ðX ;ZÞ�
gðX ;ZÞ u� ~wX .

Using the above results, we rewrite the FOCs in Eq. (20) as

f jðX ;ZÞ � ~wj � gjðX ;ZÞu

¼ARð�Þ ½f jðX ;ZÞff ðX ;ZÞ � gðX ;ZÞug þ hjðX ;ZÞ hðX ;ZÞ

� gjðX ;ZÞuff jðX ;ZÞ � gðX ;ZÞug�

¼ARð�Þ ½fðf ðX ;ZÞ � gðX ;ZÞuÞ ðf jðX ;ZÞ � gjðX ;ZÞuÞg þ hjðX ;ZÞ hðX ;ZÞ�

(35)

We write Eq. (35) more compactly as

C1jðX ;Z;uÞ

½m1jðX ;ZÞuþ rj �
¼ARð�Þ j ¼ 1; . . . ;J (36)

where C1jðX ;Z;uÞ and m1j (X, Z) are defined beneath Eq. (33). Finally,
rj¼ hj (X, Z) h(X, Z).

Given the complexity of the model we suggest a two-step procedure.

Step 1. We estimate the production function in Eq. (15) following the
procedure discussed in the previous section. By specifying parametric
functional forms for f (X, Z), h(X, Z), and g(X, Z), together with the
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distributions on u and e, one can obtain ML estimates of the parameters
in f (X, Z), h(X, Z), and g(X, Z), as well as m and s2u. These estimators are
consistent.

Step 2. Use the estimated/predicted values from Step 1 to compute Cj

and mj.
Assume a functional form for AR, for example, AR ¼ b0þ

b1ðf ðX ;ZÞ � ~wX � gðX ;ZÞuÞ. Using this specification, we rewrite
Eq. (31) as

ĈjðX ;Z; uÞ

½m̂jðX ;ZÞu�
¼ ½b0 þ b1ðf̂ ðX ;ZÞ � ~wX � ĝðX ;ZÞûÞ� þ Zj j ¼ 1; . . . ; J

(37)

where Zj is an error term appended to the jth FOC. The above nonlinear
system of J equations can be used to estimate b0 and b1. The Z, w, and p
variables can be used as instruments in estimating the above system. Once
b0 and b1 are estimated, AR( � ), ~l1ð�Þ, and ~l2ð�Þ can be computed for each
observation.

Overall, it appears that estimation of the previously described systems in a
parametric framework is highly complicated. Our computational experi-
ences with some of these models (in unreported working papers) have been
somewhat disappointing. Even estimating a production function of the form
y ¼ f (x)þ g(x)e is, in some instances, a delicate matter that involves issues
of convergence, stability of estimates, etc. The systems of FOCs are also
ill-behaved in many instances and, as a result, the parametric approach is
not only implausible in terms of assumptions but also highly unstable from
the numerical point of view.

5. NONPARAMETRIC ESTIMATION OF MODELS I-III

5.1. Estimation of f (X, Z) and h(X, Z) Functions and
Their Partial Derivatives

Suppose ~X 2Rd is a vector of explanatory variables (that include both
variable X and quasi-fixed inputs Z), and Y denotes output (the dependent
variable). We assume that the production function is of the form

Y ¼ f ð ~XÞ þ hð ~XÞ� 	 f ð ~XÞ þ v (38)
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where f: Rd-R is an unspecified functional form, and v is an error term.
Our objective is to obtain estimates of f ð ~XÞ and hð ~XÞ as general is possible.
So we do not consider separable specifications that are popular when
dimensionality reductions are desired. We use the multivariate kernel
method to obtain an estimate of f ð ~XÞ at a particular point f ð ~XÞ as follows.
First, we estimate the density of ~Xð ~pðXÞÞ as

~pð ~XÞ ¼ ðNhÞ�1
XN
i¼1

Khð ~X � ~XiÞ ¼ ðNhÞ�1
XN
i¼1

Yd
j¼1

KðZj � ZiÞ (39)

where KhðwÞ ¼ expð�ð1=2h2Þðw� wÞ0 ~S
�1

X ðw� wÞÞ is the d-dimensional
normal kernel, hW0 is the bandwidth parameter, KðwÞ ¼ expð�ð1=2Þw2Þ is
the standard univariate normal kernel, ~SX is the sample covariance matrix
of ~Xiði ¼ 1; . . . ; dÞ,

Zi ¼
Að ~Xi �

�~XÞ

l
A ~SXA ¼ Id

�~X ¼ N�1
XN
i¼1

~Xi

and l is a smoothing parameter. The optimal choices for h and l are

h ¼ ld j ~SX j
1=2

l ¼
4

ð2d þ 1ÞN

� �dþ4

The unknown function is then estimated as

~f ð ~XÞ ¼ ðNhÞ�1
XN
t¼1

Whið ~XÞYi (40)

where

Whið ~XÞ 	
Khð ~X � ~XiÞ

~pð ~XÞ

(see Hardle, 1990, pp. 33–34). The estimates are adjusted near the boundary
using the procedures discussed in Rice (1984), Hardle (1990, pp. 130–132),
and Pagan and Ullah (1999, Chapter 3).
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First derivatives of f ð ~XÞ with respect to X are obtained from

@ ~f ð ~XÞ

@X
¼ ðNhÞ�1

XN
i¼1

@Whið ~XÞYi

@X

More specifically,

@ ~f ð ~XÞ

@Xj
¼ �ðNhÞ�1

PN
i¼1

GjiKhð ~X � ~XiÞYi �
~f ð ~XÞ

PN
i¼1

GjiKhð ~X � ~XiÞ

� �
~pð ~XÞ

(41)

where

Gji ¼ l�2
Xd
k¼1

~sjkX ð ~Xk � ~XkiÞ

and

~SX ¼ ½ ~s
jk
X ; j; k ¼ 1; . . . ; d�

Given the estimate of ~f ð ~XiÞ one can obtain the residuals ei from
ei ¼ yi �

~f ð ~XiÞ. An estimate of the variance can then be obtained from

~s2ð ~XÞ ¼ ðNhÞ�1
XN
i¼1

Whið ~XÞ e
2
i (42)

(see Hardle, 1990, p. 100; Pagan & Ullah, 1999, pp. 214–215). Since
gð ~XÞ ¼ ~sð ~XÞ, estimates of the gð ~XÞ function and its gradient @gð ~XÞ=@X can
be obtained. Alternatively, gð ~XÞ can be obtained from a nonparametric
regression of |ei| on Xi in a second step.9 The gradient of gð ~XÞ could then be
obtained by a procedure similar to the one used to obtain the gradient of
f ð ~XÞ in Eq. (41).

The asymptotic properties of this procedure are well established.
However, the nonparametric procedure has not been used so far in applied
studies, especially in agricultural economics where strong parametric and
distributional assumptions are still in use. The main advantage of this
approach is that the technology and risk properties can be recovered
without strong and restrictive/questionable assumptions. Moreover, as we
detail below, aspects of risk preference can be easily recovered in the
following manner.
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5.2. Estimation of Risk Preference Functions and Risk Premium

To estimate the risk preference function y 	 yð ~X ; ~wÞ in Model I we rewrite
the relationship in Eq. (4) as

D1 	
1

J

X
j

~f jð ~XÞ � ~wj

� ~gjð ~XÞ

" #
	 yð ~X ; ~wÞ (43)

Note that although not stated explicitly the FOCs in Eq. (4) is allowed to
have errors to capture optimization errors. Thus, the estimator of y in
Eq. (43) can be viewed as a minimum distance estimator.

Eq. (43) can be computed easily since all its components have been
estimated. Therefore, fully nonparametric estimates of y can be obtained at
no cost.

In Model II the risk preference function can be expressed (using Eq. (9)) as

D2 	
1

J

X
j

~wj

f jð ~XÞ
� 1

" #
¼ y2ð ~X ; ~wÞ (44)

The above equation can be, again, easily computed under fully nonparametric
conditions.

To estimate risk preference functions in Model III, we write the FOCs in
Eq. (12) as

dj 	
~f jð ~XÞ

~f 1ð ~XÞ
¼
½ ~wj � ~gjð ~XÞ~y1ð ~w; ~XÞ�

½ ~w1 � ~g1ð ~XÞ~y1ð ~w; ~XÞ�

) D3 	 1þ
X
j¼2

dj ¼
1

J

X
j¼1

~f jð ~XÞ

~f 1ð ~XÞ

" #

¼
1

J

X
j

½ ~wj � ~gjð ~XÞ~y1ð ~w; ~XÞ�

½ ~w1 � ~g1ð ~XÞ~y1ð ~w; ~XÞ�

	 jð ~w; ~XÞ þ B ð45Þ

where B is an error term. Once the j( � ) function is estimated nonparame-
trically, we can recover ~y1ð ~w; ~XÞ from

~y1ð ~w; ~XÞ ¼

P
j

½ ~wj �
~fð ~w; ~XÞ ~w1�P

j

½gjð ~XÞ � ~fð ~w; ~XÞ ~g1ð ~XÞ�

Nonparametric Estimation of Production Risk and Risk Preference Functions 243



The y2ð ~w; ~XÞ function can then be estimated from

~y2ð ~w; ~XÞ ¼

P
j

½ ~wj � ~gjð ~XÞ~y1ð ~w; ~XÞ�P
f

~f jð ~XÞ � 1

One can estimate the AR functions from different specifications using the
estimated values of y1 and y2.

6. APPLICATION TO NORWEGIAN SALMON

FARMING

6.1. Data

Some of the models presented in the preceding sections are applied to
Norwegian salmon farms. Norway, UK, and Chile are the largest producers
of farmed Atlantic salmon (Bjorndal, 1990). Salmon farming is more risky
than most other types of meat production due to the salmon’s high
susceptibility to the marine environment it is reared in. Biophysical
factors such as fish diseases, sea temperatures, toxic algae, wave and wind
conditions, and salmon fingerling quality are major sources of output risk.

It is believed that the effect of biophysical shocks on output risk can be
influenced through the choice of input levels, although fish farmers cannot
prevent occurrences of such exogenous shocks. The most important input in
salmon farming is fish feed. Feed is expected to increase the level of output
risk, ceteris paribus. Since salmons are not able to digest all the feed the
residue is released into the environment as feed waste or feces. This organic
waste consumes oxygen, and thus competes with the salmon for the limited
amount of oxygen available in the cages. In addition, feed waste also
leads to production of toxic by-products such as ammonia. Furthermore,
production risk is expected to increase with the quantity of fish released into
the cages, due to the increased consumption of oxygen and production of
ammonia. We do not have any strong a priori presumptions on the risk
effects of capital.

Since 1982 the Norwegian Directorate of Fisheries has compiled salmon
farm production data. In the present study we use 2,447 observations on
such farms observed during 1988–1992.10 The output (y) is sales
(in thousand kilograms) of salmon and the stock (in thousand kilograms)
left at the pen at the end of the year. The input variables are feed (F),
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labor (L), and capital (K). Feed is a composite measure of salmon feed
measured in thousand kilograms. Labor is total hours of work (in thousand
hours). Capital is the replacement value (in real terms) of pens, buildings,
feeding equipment, etc. Price of salmon is the market price of salmon per
kilogram in real Norwegian Kronors (NOK). The wage rate (in real NOK)
is obtained by dividing labor cost by hours of labor. Price of feed is obtained
by dividing the cost of feed by the quantity of feed.

In the present study we are treating labor and feed as variable inputs.
Capital is treated as quasi-fixed input primarily because price data on it is
not available. Moreover, since capital stock adjustment is not instantaneous,
it is perhaps better to treat the capital variable as a quasi-fixed input,
especially in the static model like the one used in the present study.

6.2. Results and Discussions

First, we report the estimated elasticities of the mean output function f (X)
with respect to labor, capital, and feed. We plot the empirical distribution
of these elasticities for labor, capital, and feed in Fig. 1.11 The mean values
of these elasticities are: 0.029, 0.017, and 0.253, respectively. It can be seen
that none of the distributions is symmetric. In fact they are all skewed to the
right. Thus, the median values of these elasticities are less than their mean
values (median elasticities of the mean output with respect to labor, capital,
and feed are 0.017, 0.007, and 0.158, respectively). The standard deviations
of these elasticities are: 0.078, 0.046, and 0.282, respectively. Although
some of these elasticities are negative, this happens for a small proportion of
salmon farmers. Alternatively, it is quite justifiable to do restricted estima-
tion, and replace any negative elasticity for some farmer with its lowest
allowable bound (zero), see Pagan and Ullah (1999, pp. 175–176).

Farm age is found to have a negative effect on mean output. The elasticity
with respect to age is expected to be positive, especially when one associates
age of the farmer with experience, knowledge, and learning. With an
increase in experience and knowledge one would expect output to increase,
ceteris paribus. However, salmon farm studies show that the marine
environment around the farm tends to become more disease prone over time
due to accumulation of organic sediments below the cages, leading to
oxygen loss and increased risk of fish diseases. Hence, the farm age variable
may capture both the positive learning effect and the negative disease
proneness effect. According to our results, the negative disease proneness
effect seems to dominate. The median (mean) value of age elasticity is
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�0.003 (�0.002) with a standard deviation of 0.004. Similar result is found
in parametric studies.

In production models the time variable is included to capture exogenous
technical change (a shift in the production function, ceteris paribus). In the
present model one can define technical progress in terms of the mean output
function f (X), that is, TC ¼ @ ln f (X)/qt). Based on this formula we find
mean technical progress at the rate of 4.6% per year. The frequency
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distribution of TC is given in Fig. 1. The distribution is skewed to the left.
It seems that the average rate of TC for most of the farms is around 6%. The
median value of TC is 5.3% with a standard deviation of 0.026. A notable
feature of this distribution is that it is bimodal. The two modal values of
TC are 2.5% and 7.5% per annum, respectively. Although the mean TC is
around 6% per year, some farms experienced technical progress at the rate
of 2.5% while other ‘‘leading’’ farms experienced a much higher rate.

For a risk neutral producer, the input elasticities (labor, feed, and capital)
can be interpreted as the cost share of the input to the value of output
(revenue). This is, however, not the case for a nonrisk neutral producer.
It can be easily verified from the FOCs that the value of the marginal
product of an input deviates from its price thereby meaning that cost share
(in total revenue) of an input differs from its elasticity. For example, it can
be seen from Eq. (4) that if a producer is risk averse, input elasticity exceeds
the cost share for a risk augmenting input.

In farmed salmon production, risk plays an important part. Conse-
quently, it is important to know which input(s) is (are) risk increasing
(decreasing). For this we estimate the partial derivatives of the production
risk, g(X) function. Based on the estimates of the risk functions we find that
labor is, in general, risk reducing. Labor plays a particularly important role
in production risk management. Farm workers’ main tasks are monitoring
of the live fish in the pens, biophysical variables (sea temperature, salinity,
oxygen concentration, algae concentrations, etc.), and the condition of
the physical production equipment (pens, nets, feeding equipment, anchor-
ing equipment, etc.). Thus, workers’ ability to detect and diagnose abnormal
fish behavior, detect changes in biophysical variables, and make prognoses
on future development are crucial to mitigate adverse production condition
and reduce production risk. We found (as expected) feed to increase the level
of output risk, ceteris paribus.

In Fig. 2 we report the frequency distribution of elasticities of the risk
function g(x) with respect to labor, capital, feed, age, and time. The mean
(median) values of these elasticities for labor, capital, feed, age, and time
are �0.049 (�0.043), 0.016 (0.011), 0.085 (0.016), �0.001 (�0.001), and
0.002 (0.002), respectively. The risk part of the production technology
seems to be quite insensitive to changes in the age (experience) of farmers.
Similarly, no significant change in production risk has taken place over time.

Elasticities of the mean output and risk functions for each input are
derived from the estimates of the f (X) and the g(X) functions and their
partial derivatives. Since we used a multistep procedure in which the f (X)
and the g(X) functions and their partial derivatives are estimated in the first
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step, the estimated elasticities in Models I–III are the same. We use the
estimated values of f (X) and g(X) and their partial derivatives to obtain
estimates of the risk preference functions y2( � ) and y1( � ), and estimates of
RP in the second step. The estimated values of y2( � ), y1( � ) (reported in
Fig. 3), and RP depend on type of risk an individual farm faces. Two farms
with different values of y2( � ) and y1( � ) are not directly comparable, unless
both y2( � ) and y1( � ) for one farm is higher (lower) than the other. On the
other hand, the RP measures among models with different sources of
uncertainty and different values of y2( � ) and y1( � ) are directly comparable.
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Since RP gives a direct and more readily interpretable result, reporting
of RP is often preferred. Given that the RP measure is dependent on
units of measurement, a relative measure of RP (defined as RRP ¼ RP/mp)
is often reported. Relative risk premium (RRP) is independent of the units
of measurement. RRP also takes farm heterogeneity into account by
expressing RP in percentage terms.

The frequency distributions of RRP for Models I–III are reported in
Fig. 4. These are all skewed to the right. Predicted values of RRP from
Model III are much smaller for most of the farms. The mean (median)
values of RRP associated with Models I–III are: 0.252 (0.224), 0.171 (0.145),
and 0.087 (0.052), respectively. RP shows how much a risk averse farm
is willing to pay to insure against uncertain profit due to production risk
and/or output price uncertainty. The RRP, on the other hand, shows what
percentage of mean profit a risk averse farm is willing to pay as insurance.
The above results show that on average a farm is willing to pay 5.22% of the
mean profit as an insurance against possible loss of profit due to both
production risk and output price uncertainty (Model III).
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Numerical values for the means and standard deviations of elasticities, ys,
and RRPs are reported in Tables 1 and 2. In Table 2, also reported are 95%
confidence intervals for ys and RRPs. These confidence intervals are
somewhat wide, indicating the presence of considerable heterogeneity
among salmon farmers regarding their attitudes toward risk.

In addition to reporting the standard errors in Tables 1 and 2, we also
report confidence intervals of the elasticities (in terms of both the mean
production and risk (f ( � ) and g( � )) functions in Figs. 5 and 6. These figures
plot the elasticities against the labor, capital, feed, and time associated with
the f ( � ) and g( � ) functions. It can be seen that the confidence intervals of
these elasticities are quite wide, and the width does not change with larger
values of labor, capital, feed, and time. Elasticities of mean output f (X) with
respect to labor, capital, and feed (in Fig. 4) tend to decline with an increase
in these inputs. This is consistent with economic theoretic arguments.
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The positive sign with respect to time shows technical progress. It shows that
technical change increased over time.

Fig. 6 shows that elasticities of risk g(X) with respect to labor declined
with an increase in labor, and thus labor is found to be risk reducing.
On the other hand, feed and capital are found to be risk increasing. The last
panel of Fig. 5 shows that production risk decreased over time. The
confidence interval is quite similar for farms of all sizes (measured by the
input levels).

Table 1. Elasticities of the Mean Production and Production Risk
Functions.

Mean Median Std. Deviation

f(x) w.r.t.

Labor 0.029 0.017 0.078

Capital 0.017 0.007 0.046

Feed 0.253 0.158 0.282

Time 0.046 0.053 0.026

Age �0.002 �0.003 0.0036

g(x) w.r.t.

Labor �0.0493 �0.0427 0.044

Capital 0.0163 0.0109 0.028

Feed 0.0851 0.0159 0.216

Time 0.0024 0.0021 0.0038

Age �0.0009 �0.0011 0.0014

Table 2. Risk Preference Functions and Relative Risk Premium.

Mean Median Std. Deviation 95% Confidence Interval

Model I

y1 �2.869 �2.888 0.435 �3.970 �2.810

RRP 0.252 0.224 0.124 0.122 0.592

Model II

y2 �0.219 �0.205 0.097 �0.420 0.080

RRP 0.171 0.145 0.094 0.098 0.410

Model III

y1 �0.577 �0.402 2.389 �5.240 4.150

y2 �0.053 �0.050 0.080 �0.231 0.212

RRP 0.087 0.052 0.096 0.0220 0.342
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Fig. 7 plots y values for different models against wealth. In all the models
we find evidence of an increase in risk averseness with an increase in wealth.
The confidence interval is so wide that negative (y2) values (risk averseness
associated with output price uncertainty) cannot be ruled out. That means
almost none of the salmon farmers is risk averse (when it comes to price
uncertainty). Finally, in Fig. 8 we plot RRP against wealth for various
models. All the models show that RRP increases with wealth almost
linearly. That is, these farmers are willing to pay more to protect from risk
as their wealth increases.

7. SUMMARY AND CONCLUSIONS

In this paper we addressed modeling issues associated with risk and
the risk preference function when producers face uncertainties related to
production of output and output price. The modeling approach is based on
the assumption that the objective of the producers is to maximize
expected utility of normalized anticipated profit. Models are proposed to
estimate risk preference of individual producers under (i) only production
risk, (ii) only price risk, (iii) both production and price risks, (iv) produc-
tion risk with technical inefficiency, (v) price risk with technical
inefficiency, and (vi) both production and price risks with technical
inefficiency. We discussed problems of parametric estimation of these
models and discussed nonparametric approaches to some of these models,
sometimes partial solutions of the problems (especially in the models with
technical inefficiency). Additional theoretical work is necessary to imple-
ment some of the more complicated models. Norwegian salmon
farming data is used for an empirical application of some of the proposed
models. We find that salmon farmers are, in general, risk averse. Labor is
found to be risk decreasing while capital and feed are found to be risk
increasing.

Both the parametric and nonparametric models are quite challenging
because of the complexities/nonlinearites involved in these model. The
nonparametric models can relax the rigid functional form assump-
tions built into the system. However, more research is needed to
estimate the nonparametric system models that involve cross-equational
restrictions.
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NOTES

1. Since anticipated profit is homogeneous of degree 1 in output and input prices, it
is customary to impose the homogeneity condition by normalizing anticipated profit in
terms of either the output price (which is done here) or one of the input prices.
2. Note that pe/p in Eq. (10) has two sources of randomness (Z and e) whereas the

source of randomness in pe in Model I (given in Eq. (2)) is e. Consequently, the ~y1ð�Þ
and ~y2ð�Þ functions in Eqs. (13) and (14) are not exactly the same as y1( � ) and y2( � ) in
Eqs. (5) and (9), although we are interpreting them as risk functions associated with
output price and production risk, respectively. In general, the ~y2ð�Þ and ~y1ð�Þ
functions in Eqs. (13) and (14) will depend on the parameters of the distributions of
both Z and e.

3. This is, for example, the case in Appelbaum (1991), where constant absolute
risk aversion is assumed.
4. See Kumbhakar and Tveteras (2003) for a proof.
5. See Kumbhakar and Tveteras (2003) for details.
6. The proof is similar to Kumbhakar and Tveteras (2003).
7. Note that the production function (15) is more general than the one used by

Battese et al. (1997).
8. The Battese et al. (1997) model can be obtained by imposing the restriction

h(X, Z) ¼ g(X, Z), which is a testable hypothesis.
9. One anonymous referee suggested that we could use some alternative methods

for conditional heteroskedastic models. One promising approach is to follow the
procedure in Fan and Yao (1998) (also discussed in Li & Racine, 2007). This procedure
has several advantages. It uses local linear estimation, which reduces the boundary bias
of the local constant method. It also provides as a ‘‘by-product’’ the derivatives that we
are interested in. We would like to pursue this approach in a separate paper.
10. We thank R. Tveteras for providing the data. Details on the sample and

construction of the variables used here can be found in Tveteras (1997).
11. These elasticities are positive for most of the data points. There are, however,

some farms for which the elasticities are negative, especially for capital. This type of
violation of the properties of the underlying production technology (viz., positive
marginal product) happens when one uses a flexible parametric production function
such as the translog.
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APPENDIX. ESTIMATION OF TECHNICAL

INEFFICIENCY (MODEL IV)

In this appendix we derive estimators of technical inefficiency and technical
efficiency (TE).

TE ¼
EðY juÞ

EðY ju ¼ 0Þ
¼

f ðX ;ZÞ � gðX ;ZÞu

f ðX ;ZÞ
¼ 1�

gðX ;ZÞ

f ðX ;ZÞ
u ¼ 1� TI

Production function: We write the production function as

y ¼ f ðX ;ZÞ þ hðX ;ZÞ�� gðX ;ZÞu 	 f ðX ;ZÞ þ v� uA

where v ¼ h(X, Z)e and g(X, Z) u ¼ uA.
Assume that

(i) v � Nð0; h2ðX ;ZÞÞ ¼ Nð0;s2v Þ,
(ii) uA � NþðmgðX ;ZÞ; s2ug

2ðX ;ZÞÞ ¼ Nþðm0;s
2
0Þ.

With these distributional assumptions the model is similar to the normal,
truncated normal model proposed by Stevenson (1980). Following
Kumbhakar and Lovell (2000, pp. 85–86) we get

uAj�A � Nþð ~m; s2
Þ; �A ¼ v� uA

~m ¼
�½s20�

A þ m0s
2
v �

s2
0 þ s2v

; s2
 ¼
s20s

2
v

s20 þ s2v

which gives the following point estimators of inefficiency

E½uAj�A� ¼ s

~m
s

þ

fð ~m=s
Þ
Fð ~m=s
Þ

� �

MðuAj�AÞ ¼
~m if ~m � 0

0 otherwise
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where

~m
s

¼ �
½s20�

A þ m0s
2
v �

½s20 þ s2v �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s20 þ s2v

q
s0sn

¼ �
½s20�

A þ m0s
2
n �

s0sv
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s20 þ s2

v

q
Note that �A ¼ Y � f ðX ;ZÞ; m0 ¼ mgðX ;ZÞ; s20 ¼ s2
g

2ðX ;ZÞ; and s2v ¼
h2ðX ;ZÞ. Estimates of all these functions can be obtained using the
estimated parameters. Using the estimated values of uA, one can obtain
estimates of u for each observation from uA ¼ gðx; zÞu) E½uAj�A� ¼
gðx; zÞ E½uj�A� ) E½uj�A� ¼ E½uAj�A�=gðx; zÞ, and cTE ¼ 1� E½uAj�A�=f ðx; zÞ.
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PART IV

COPULA AND DENSITY

ESTIMATION





EXPONENTIAL SERIES

ESTIMATION OF EMPIRICAL

COPULAS WITH APPLICATION

TO FINANCIAL RETURNS

Chinman Chui and Ximing Wu

ABSTRACT

Knowledge of the dependence structure between financial assets is crucial
to improve the performance in financial risk management. It is known
that the copula completely summarizes the dependence structure among
multiple variables. We propose a multivariate exponential series
estimator (ESE) to estimate copula densities nonparametrically. The
ESE has an appealing information-theoretic interpretation and attains
the optimal rate of convergence for nonparametric density estimations
in Stone (1982). More importantly, it overcomes the boundary bias of
conventional nonparametric copula estimators. Our extensive Monte
Carlo studies show the proposed estimator outperforms the kernel and the
log-spline estimators in copula estimation. It also demonstrates that two-
step density estimation through an ESE copula often outperforms direct
estimation of joint densities. Finally, the ESE copula provides superior
estimates of tail dependence compared to the empirical tail index
coefficient. An empirical examination of the Asian financial markets using
the proposed method is provided.
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1. INTRODUCTION

The modeling of multivariate distributions from multivariate outcomes is an
essential task in economic model building. Two approaches are commonly
used. The parametric approach assumes that the data come from a specific
family. The maximum-likelihood estimators or the methods of moments are
often used to estimate unknown parameters of the assumed parametric
distributions. The multivariate normal distribution is a popular choice for
multivariate density estimation. More generally, the elliptic distribution
family is often used due to its appealing statistical properties. Although
they are efficient when the distribution is correctly specified, the parametric
estimators are generally inconsistent under misspecification. For example,
the elliptic family is often inadequate to capture the pattern of empirical
data. This is especially true when we estimate a multivariate asset return
distribution or try to account for nonlinear dependence among several assets
in financial econometrics (Embrechts, McNeil, & Straumann, 1999).

Alternatively, one can estimate densities using nonparametric methods.
Popular nonparametric estimators include the kernel estimator and the
series estimator. Because they do not impose functional form assumptions,
nonparametric estimators are consistent under mild regularity conditions.
However, this robustness against misspecification comes at the price of a
slower convergence rate. In other words, nonparametric estimators typically
require a larger sample than their appropriately specified parametric
counterparts to achieve a comparable degree of accuracy. In addition,
nonparametric estimations of multivariate outcomes suffer the ‘‘curse of
dimensionality,’’ the amount of data needed for the multivariate estimations
to obtain a desirable accuracy grows exponentially.

In this study, we focus on a specific strategy of estimating multivariate
densities: the copula approach. According to Sklar (1959), the joint density
of a continuous multidimensional variable can be expressed uniquely as a
product of the marginal densities and a copula function, which is a function
of corresponding probability distribution functions of margins. Since the
dependence structure among the variables is completely summarized by the
copula, it provides an effective device for modeling dependence between
random variables. It allows researchers to model each marginal distribution
that best fits the sample, and to estimate a copula function with some
desirable features separately. In practice, the joint distribution is often
estimated with certain functional form restrictions on the specific margins
and copula, respectively. For example, the t-distribution can capture the
tail heaviness in the margins while the Clayton copula allows asymmetric
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dependence. Extensive treatments and discussions on the properties of
copulas can be found in Nelsen (2006) and Joe (1997).

There is a growing literature on the estimation of multivariate densities
using copulas; see, for example, Sancetta and Satchell (2004), Chen, Fan,
and Tsyrennikov (2006), Hall and Neumeyer (2006), Chen and Huang
(2007), and Cai, Chen, Fan, and Wang (2008). Two approaches are
commonly used. The two-step approach models the marginal distributions
and the copula function sequentially, using the estimated marginal
distributions as input in the second stage. Alternatively, one can estimate
the margins and the copula function simultaneously. The one-step method is
generally more efficient, but often computationally burdensome. For either
approach, one can use parametric or nonparametric estimators for the
margins and/or the copula function. Parametric copulas commonly used in
the literature are parameterized by one or two coefficients, which sometimes
are inadequate to capture the multivariate dependence structure. On
contrary, nonparametric estimators for empirical copula densities are
rather flexible, but might suffer boundary bias, especially the popular
kernel estimator. The boundary bias problem is particularly severe in the
estimation of copula densities, which are defined on the unit hypercube and
often do not vanish at the boundaries.

In this paper, we propose to use an alternative nonparametric estimator:
the exponential series estimator (ESE) in Wu (2007) for empirical copula
density estimation. This estimator is based on the method of maximum
entropy density subject to a given set of moment conditions. Compared with
other nonparametric estimators, the effective number of nuisance para-
meters is largely reduced in the context of the ESE for a typical copula that
is a smooth function. Furthermore, the ESE is free of boundary bias
problem. Our Monte Carlo simulations demonstrate that the ESE provides
an overall superior performance than some commonly used nonparametric
estimators do in copula density estimations. The two-step density estimation
through the ESE copula often outperforms direct estimation of multivariate
densities. We also examine the estimation of the tail dependence index,
an important risk measure in financial management. Our results suggest that
estimations based on the ESE substantially outperform the empirical tail
dependence index, especially for extreme tails and small samples.

The rest of the paper is organized as follows. Section 2 presents a brief
review of copula, its estimation, and the tail dependence index, whose
estimation is investigated in our simulations. Section 3 presents the ESE
and discusses its merits as an empirical copula density estimator. Section 4
reports Monte Carlo simulations on the ESE estimations of copula
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densities, multivariate densities, and tail dependence indices. Section 5
provides a financial application of the empirical copula density estimation.
The last section concludes.

2. COPULA

In this section, we briefly review the literature on copula, its estimation, and
the tail dependence index, which can be calculated from a copula function.

2.1. Background

Copula is introduced by Sklar (1959) and has been recognized as an effective
device for modeling dependence among random variables. It allows
researchers to model each marginal distribution that best fits the sample,
and to estimate a copula function with some desirable features separately.
The dependence structure among variables is completely summarized by the
copula function.

According to Sklar’s theorem (Sklar, 1959), the joint distribution function
of a d-dimensional random variable x can be written as,

FðxÞ ¼ CðF1ðx1Þ; . . . ; Fdðxd ÞÞ

where x ¼ (x1,y, xd), Fi is the marginal distribution for xi, i ¼ 1,y, d, and
C: [0, 1]d-[0,1] is the so-called copula function. If the joint distribution
function is d-times differentiable, then taking the dth partial derivative with
respect to x on both sides yields

f ðxÞ ¼
@d

@x1@x2 � � � @xd
FðxÞ

¼
Yd
i¼1

f iðxiÞ
@d

@u1@u2 � � � @ud
CðF1ðx1Þ; . . . ; Fdðxd ÞÞ

¼
Yd
i¼1

f iðxiÞcðu1; . . . ; ud Þ ð1Þ

where fi ( � ) is the marginal density of xi and ui ¼ FiðxiÞ; i ¼ 1; . . . ; d. In
Eq. (1) we note that the multiplicative decomposition of the joint density
into two parts. One describes the dependence structure among the random
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variables in the copula function, and another describes the marginal
behavior of each component.

There exists a unique copula function for a continuous multivariate
variable. This copula function completely summarizes the dependence
structure among variables. In addition, an appealing property of copula is
that it is invariant under increasing transformation of the margins. This
property is particularly useful in financial research. For example, the
copula function of two asset returns does not change when the returns are
transformed into a logarithm scale. In contrast, the commonly used linear
correlation is only invariant under linear transformation of the margins.

2.2. Estimation

There is a growing literature on the estimation of multivariate densities
using copulas. Both parametric and nonparametric estimators have been
considered in the literature. Either method can take a two-step or a one-step
approach. In the two-step approach, each margin is estimated first and the
estimated marginal CDF’s are used to estimate copulas in the second step.
The estimated parameters (in the parametric case) are typically inefficient
when estimated in two steps. In principle we can also estimate the joint
density in one step, in which the margins and the copula are estimated
simultaneously. Although the estimated parameters (in parametric case) are
efficient in this case, the one-step approach is more computationally
burdensome than the two-step approach. In empirical work, we sometimes
have prior knowledge on the margins but not on the structure of the
dependence structure among them. Consequently, the two-step approach
may have an advantage over the one-step approach in terms of model
specification, although the estimates may be less efficient.

In practice there is usually little guidance on how to choose the best
combination of the margins and the copula in parametric estimations.
Therefore, semiparametric and nonparametric estimations have become
popular in the literature recently. The main advantage of these estimation
methods is to let the data determine the copula function without restrictive
functional assumptions. In semiparametric estimations, often a parametric
form is specified for the copula but not for the margins. The parameters in
the copula function are estimated by the maximum-likelihood estimator.
See earlier application in Oakes (1986), Genest and Rivest (1993), Genest,
Ghoudi, and Rivest (1995), and more recently in Liebscher (2005) and Chen
et al. (2006).
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Alternatively, nonparametric estimator does not assume parametric
distributions for the margins or the copula function. In this way, nonpara-
metric estimator offers a higher degree of flexibility, since the dependence
structure of the copula is not directly observable. It also illustrates an
approximate picture helpful to researchers in subsequent parametric
estimation of the copula. In addition, the problem of misspecification in
the copula can be avoided. The earliest nonparametric estimation of copulas
is due to Deheuvels (1979), who estimated the copula density based on the
empirical distribution. Estimators using kernel methods have been con-
sidered in Gijbels and Mielnicnuk (1990), Fermanian and Scaillet (2003)
in a time series framework, and Chen and Huang (2007) with boundary
corrections. Recently, Sancetta and Satchell (2004) use the Bernstein
polynomials to approximate the Kimeldorf and Sampson copula. Hall and
Neumeyer (2006) use wavelet estimators to approximate the copula density.
Alternatively, Cai et al. (2008) use a mixture of parametric copulas to
estimate unknown copula functions.

The kernel density estimator is one of the mostly popular methods in
nonparametric estimations. Li and Racine (2007) provide a comprehensive
review of this method. In spite of its popularity, there are several drawbacks
in kernel estimation. If one uses a higher order kernel estimator in order
to achieve a faster rate of convergence, it can result in negative density
estimates. In addition, the support of data is often bounded with high
concentration at or close to the boundaries in application. This boundary
bias problem is well known in the univariate case, and can be more severe
in the case of multivariate bounded support variables; see Muller (1991) and
Jones (1993).1

The log-spline estimators have also drawn considerable attention in
the literature and have been studied extensively by Stone (1990).2

This estimator has been shown to perform well for density estimations.
However, it suffers a saturation problem. If we denote s the order of the
spline and the logarithm of the density defined on a bounded support has r
square-integrable derivatives, the fastest convergence rate is achieved only
if sWr. Like the kernel estimator, the log-spline estimator also faces a
boundary bias problem. It is known that boundary bias exists if the tail
has a nonvanishing kth order derivative, while the order the (local)
polynomial at the tail is smaller than k. For example, suppose that the
tails of a copula density can be represented as a K degree polynomial, where
the coefficient for the Kth degree term is nonzero. If the order of the log-
spline estimator is smaller than K, then the tails cannot be estimated
consistently.
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2.3. Tail Dependence Coefficient (TDC)

The copula facilitates study on the dependence structure among multiple
variables. There are various measures of dependence. For example, the
correlation is commonly used to capture linear dependence between two
variables. However, it is known that two variables can be dependent while
having a zero correlation. Moreover, the correlation is not invariant to
nonlinear transformation of variables. A popular nonlinear dependence
measure is Kendall’s t, which is invariant to increasing transformation of
variables. Starting with two independent realizations (X1,Y1) and (X2,Y2)
of the same pair of random variables X and Y, Kendall’s t gives the
difference between the probability of concordance and the probability of
discordance:

tðX ;YÞ ¼ P½ðX1 � X2ÞðY1 � Y2Þ40� � P½ðX1 � X2ÞðY1 � Y2Þo0�

for tA[–1, 1]. As is discussed above, the dependence structure between two
variables can be completely summarized by their copula. In fact, Kendall’s t
can be expressed as a function of the copula:

tðCÞ ¼ 4

Z 1

0

Z 1

0

Cðu; vÞdCðu; vÞ � 1

Although Kendall’s t offers some advantages over the correlation
coefficient, it only captures certain features of the dependence structure.
In financial industry, risk managers are often interested in the dependence
between various asset returns of the extreme events (during the bear markets
or market crashes). A useful dependence measure defined by copulas is
the tail dependence. In the bivariate case, the tail dependence measures the
dependence existing in the upper quadrant tail, or in the lower quadrant tail.
By definition, the upper and lower TDCs are, respectively,

lU ¼ lim
u!1

Pr½X4F�1X ðuÞjY4F�1Y ðuÞ� ¼ lim
u!1

1� 2uþ Cðu; uÞ

1� u
(2)

lL ¼ lim
u!0

Pr½X4F�1X ðuÞjY4F�1Y ðuÞ� ¼ lim
u!0

Cðu; uÞ

u
(3)

provided that these limits exist and lU and lLA[0, 1]. The upper (lower)
TDC quantifies the probability to observe a large (small) X, given that Y is
large (small). In other words, suppose, Y is very large (small) (at the upper
quantile of the distribution), the probability that X is very large (small)
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at the same quantile defines the TDC lU(lL). If lU(lL) are positive,
two random variables exhibit upper (lower) tail dependence. Eqs. (2) and (3)
suggest that the TDC can be derived directly from the copula density.
Furthermore, the tail dependence between X and Y is also invariant under
strictly increasing transformation of X and Y.

A more useful interpretation of this concept in finance may be obtained if
we rewrite the definition of lU as,

lU ¼ lim
u!0þ

Pr½X4VaRuðXÞjY4VaRuðYÞ�

where VaRuðXÞ ¼ F�1X ð1� uÞ is the Value at Risk (VaR). This notation
implies that we have previously multiplied the return by �1. We treat the
losses as positive values. Thus, lU captures the dependence related to stress
periods. Many important applications of the TDC in finance and insurance
concern the dependence modeling between extreme insurance claims and
large default events in credit portfolios, and VaR considerations of asset
portfolios.

3. EXPONENTIAL SERIES ESTIMATION

In this section, we present an alternative nonparametric density estimator
based on the ESE in Wu (2007). We first briefly review the maximum
entropy density, based on which the ESE is derived. We then discuss some
features of the ESE that are particularly suitable for the estimation of
empirical copula densities.

3.1. Maximum Entropy Density

Shannon’s information entropy is a central concept of information theory.
Given a density function f, its entropy is defined as,

Wðf Þ ¼ �

Z
f ðxÞ log f ðxÞdx (4)

whereWmeasures the randomness or uncertainty of a distribution. Suppose
one is to infer a density from a given set of moments, the maximum entropy
principle suggests choosing the density that maximizes Shannon’s informa-
tion entropy among all distributions that satisfy given moment conditions.
Denote f(x; h) the maximum entropy density function that maximizes
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Eq. (4) subject to the following moment conditions:Z
f ðxÞdx ¼ 1

Z
fkðxÞf ðxÞdx ¼ mk; k ¼ 1; 2; . . . ; m

where mk is estimated by m̂k ¼ ð1=NÞ
PN

i¼1fkðxiÞ �!
p

mk for an i.i.d. sample
fxig

N
i¼1 and fk; k ¼ 1; . . . ; m; is a sequence of linearly independent functions.

The first moment condition ensures that f(x) is a proper density function.
The resulting maximum entropy density takes the form

f ðx; hÞ ¼ exp �y0 �
Xm
k¼1

ykfkðxÞ

 !

where h is the vector of Lagrange multipliers associated with given moment
conditions. To ensure f(x, h) a is proper density function, we set

y0 ¼ log

Z
exp �

Xm
k¼1

ykfðxÞ

 !
dx

 !

Therefore,

f ðx; hÞ ¼
expð�

Pm
k¼1ykfðxÞÞR

expð�
Pm

k¼1ykfðxÞÞdx

where h ¼ [y1,y, ym].
In general, analytical solutions for h cannot be obtained and nonlinear

optimization is employed (see, Zellner & Highfield, 1988; Wu, 2003). To
solve for h, we use Newton’s method to iteratively update h according to the
following equation:

hðtþ1Þ ¼ hðtÞ �H�1b

where b ¼ ½b1; . . . ; bm�; bk ¼
R
fkðxÞf ðx; htÞdx� mk and the Hessian matrix H

takes the form

Hij ¼

Z
fiðxÞfjðxÞf ðx; hðtÞÞdx

The maximum entropy problem and maximum-likelihood approach
for exponential families can be considered as a duality problem (Golan,
Judge, & Miller, 1996). The maximized entropy W is equivalent to the
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sample average of the maximized negative log-likelihood function. This
implies the estimated parameters ĥ are asymptotically normal and efficient.

The maximum entropy density is an effective method of density
construction from a limited amount of information (moment conditions).
Alternatively, one can use it as a nonparametric density estimator if the
number of moment conditions is allowed to increase with the sample size at
a suitable rate. We call this estimator the ESE, to distinguish it from the
maximum entropy density, where the number of moment conditions is
typically small and fixed. Barron and Sheu (1991) study the asymptotic
properties of the ESE for a random variable x defined on a bounded
support. A key concept used in their work is the relative entropy, or
Kullback–Leibler distance. Given two densities f and g with a common
support, the relative entropy is defined as:

Dðf jjgÞ

Z
f ðxÞ log

f ðxÞ

gðxÞ
dx

The relative entropy measures the closeness, or the probability discrepancy,
between two densities. Barron and Sheu (1991) show that if the logarithm of
the density has r square-integrable derivatives, that is,

R
jDr log f ðxÞj2o1,

then the sequences of ESE density estimators f̂ ðxÞ converge to f(x) in the
sense of Kullback–Leibler distance

R
f logðf =f̂ Þdx at rate Opðð1=m2rÞ þ

ðm=NÞÞ if m-N and ðm3=NÞ ! 0 as N-N where m is the degree of poly-
nomial and N is the sample size. If m ¼ N1=ð2rþ1Þ, the optimal convergence
rate becomes OpðN

�2r=ð2rþ1ÞÞ. Wu (2007) generalizes the results of Barron
and Sheu to d-dimensional random variables and shows that under similar
regularity conditions, the optimal convergence rate is OpðN

�2r=ð2rþdÞÞ if we
set m ¼ N1=ð2rþdÞ. He further establishes the almost sure uniform conver-
gence rate of the proposed estimator.

3.2. ESE for Copula Density

In this paper, we propose to use the multivariate ESE in Wu (2007) to
estimate copula densities. In the context of entropic estimation, the ESE
empirical copula can be understood as a minimum relative entropy density
with a uniform reference density. Hence, it is most conservative in the sense
that the estimated copula is as smooth as possible, as measured by the
entropy, given the moment conditions.3

To ease exposition, we focus on bivariate case in this study. General-
ization to higher dimensional cases is straightforward. As in the univariate
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case, we denote c(u, v; h) to be the copula density function. The objective is
to maximize W, the entropy of the copula density

W ¼ �

Z
½0;1�2

cðu; vÞ log cðu; vÞdudv (5)

subject to Z
½0;1�2

cðu; vÞdudv ¼ 1;Z
½0;1�2

fijðu; vÞcðu; vÞdudv ¼ mij

(6)

where i ¼ 0; . . . ; n; j ¼ 0; . . . ; m; i þ j40, and fijðu; vÞ are a sequence of
linearly independent polynomials.4 Given an i.i.d. sample fut; vtg

N
t¼1, the

empirical moments are calculated as m̂ij ¼ ð1=NÞ
PN

t¼1fijðut; vtÞ �!
p

mij , where
iþjW0. The resulting copula density takes the form

cðu; v; hÞ ¼ exp �y0 �
Xn
i¼0

Xn
j¼0

yijfijðu; vÞ

( )
; i þ j40

To ensure c(u, v; h) is a proper density function, we set

y0 ¼ log

Z
½0;1�2

exp �
Xn
i¼0

Xm
j¼0

yijfijðu; vÞdudvÞ

 !( )
; i þ j40

Therefore,

cðu; v; hÞ ¼
expf�

P
iþj40;i�n;j�myijfijðu; vÞgR

½0;1�2 expf�
P

iþj40;i�n;j�myijfijðu; vÞdudvg

where fyijgiþj40;i�n;j�m. As in the univariate case, we solve for h using
Newton’s method.

In practice, one needs to specify the order of polynomial n and m for the
ESE. The selection of the order, which is essentially the ‘‘bandwidth’’ of
the nonparametric ESE, is crucial to the performance of the proposed
estimator. In practice, the order can be chosen automatically based on
the data. Given the close relation between the ESE and the MLE, the
likelihood-based AIC and BIC are two natural candidates. Haughton (1988)
shows that for a finite number of exponential families, the BIC chooses the
correct family with probability tending to 1. On contrary, Shibata (1981)
indicates that the AIC leads to an optimal convergence rate for infinite
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dimensional models. Wu (2007) reports that these two criteria provide
similarly good performance in the selection of the degree of polynomials for
small and moderate sample sizes.

It is known that both the AIC and the BIC are derived under the implicit
assumption that the estimated parameters of the models in question are
asymptotically normal. This condition is typically satisfied by parametric
models with a fixed number of parameters under mild conditions. However,
this is not necessarily true for nonparametric estimations. Portnoy (1988)
examines the behavior of the MLE of the exponential family when the number
of parameters, K, tends to infinity. He shows that the condition to warrant the
asymptotic normality of estimated parameters is that K2/N-0 when N-N.
Under Assumption 3 of Wu (2007), K3/N-0 when N-N, which satisfies
Portnoy’s condition. This result confirms the validity of using the AIC and the
BIC for model selection for the proposed nonparametric estimator.

We conclude this section by noting several appealing features of the ESE
for copula estimation. First, the effective number of estimated parameters
is often substantially smaller compared to the kernel or the log-spline
estimators for a given sample size. Hence the ESE enjoys good small sample
performance, which is confirmed by our Monte Carlo simulations in the
next section. Second, it is known that the ESE may not be well defined when
the underlying variable is defined on an unbounded support. Since the
copula is defined on the hypercube [0, 1]d, the ESE copula estimator is
always well defined. In addition, this bounded support of the copula also
frees the ESE from potential outlier problem often associated with higher
order polynomials. Lastly, the most important advantage of the ESE is that
it does not suffer the boundary bias problem. This is particularly important
for copula estimation where the mass of the density is at tails. This
boundary bias problem is quite severe for the kernel estimator, and to a
lesser extent, for the log-spline estimator. As demonstrated in our
simulations below, the more substantial the tails are, the better the ESE
performs compared to other estimators.

4. MONTE CARLO SIMULATIONS

To investigate the finite sample performance of the proposed ESE copula
estimator, we conduct an extensive Monte Carlo simulation study on
estimating copula densities and joint densities of bivariate random variables.
We also compare the performance of the ESE with empirical estimator on
TDCs (lower or upper).
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We consider a variety of margins and copulas in our simulations. For
margin distributions, we consider the normal, the Student’s t-distribution
and two normal mixtures as studied in Marron and Wand (1992). The
normal density is often used as a benchmark, while the t distribution is
commonly used in financial econometrics since distributions of financial
returns are usually fat tailed. The two normal mixtures considered in this
study are ‘‘skewed unimodal’’ and ‘‘bimodal’’ distributions as characterized
by Marron and Wand (1992). For simplicity, we assume two margins follow
a same distribution.

The bivariate copulas used in this study include the Gaussian copula, the
t-copula, the Frank copula, and the Clayton copula. Each copula is able to
capture a certain dependence structure. In our experiment, the dependence
parameter for each type of copula is set such that their corresponding
Kendall’s t values 0.2, 0.4, and 0.6. A larger Kendall’s t indicates a higher
degree of association between two margins. Fig. 1 displays the contours of
various copulas considered in our simulations, with Kendall’s t ¼ 0.6. Note
that all these copulas exhibit nonvanishing densities in either or both tails,
which may cause severe boundary bias problems for a general nonpara-
metric estimator (Bouezmarni & Rombouts, 2007).

We conduct three sets of simulations in this study. We first examine
the performance of copula density estimation of various nonparametric
estimators. We then investigate two different approaches of joint density
estimation: direct estimation of the joint density and the two-step estimation
via the copula. Lastly, we compare the tail index coefficient estimates based
on the ESE copula to the empirical tail index coefficient. In all experiments,
the order of exponential polynomial of the ESE’s is chosen by the BIC.
The kernel estimator uses the product Gaussian kernel with individual
bandwidth of either dimension selected according to the least squares cross-
validation. The log-spline estimator uses the cubic spline with the smoothing
parameter chosen by the method of modified cross-validation and the
number of knots is determined using the rule max(30,10N(2/9)), where N is
the sample size (see Gu & Wang, 2003 for details). Each experiment is
repeated 500 times.

4.1. Estimation of Copula Densities

Our first example concerns the estimation of the copula. For simplicity, we
assume that the marginal distributions are known. We consider three sample
sizes: 50, 100, and 500. Table 1 reports the average mean integrated squared
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errors (MISE) and their standard deviations of the three estimators for our
experiments.

For all estimators, the performance improves with the sample size but
reduces with the value of Kendall’s t. Intuitively, the larger is Kendall’s t,
the higher is the dependency between the margins. Thus the copula is
increasingly concentrated near the two tails along the diagonal, and the
shape of the copula become more acute near the tails in Fig. 1. This makes
the boundary bias problem more severe. We also note that the MISE
decreases with sample size, but the decreasing rate is slower for a larger t.
For example, the MISE in the case of Gaussian copula decreases by 60%
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Fig. 1. Contour Plots of Parametric Copulas with Dependence Parameters

Corresponding to Kendall’s t being 0.6.
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from N ¼ 50 to 500 when t ¼ 0.2; while its MISE decreases by 32% when
t ¼ 0.6. Among the copulas considered in the simulations, Gaussian and
Frank copulas have smaller MISE values. For small t, the ESE shows
slightly better performance than the log-spline estimator does. As Kendall’s

Table 1. MISE of Copula Density Estimation.

Kendall’s t Copula n ESE Log-spline Kernel

0.2 Gaussian 50 0.164 (0.0071) 0.170 (0.0112) 0.233 (0.0135)

100 0.107 (0.0014) 0.120 (0.0041) 0.171 (0.0024)

500 0.065 (0.0001) 0.076 (0.0002) 0.099 (0.0002)

t 50 0.210 (0.0194) 0.244 (0.0420) 0.270 (0.0165)

100 0.139 (0.0014) 0.160 (0.0051) 0.201 (0.0032)

500 0.098 (0.0001) 0.104 (0.0005) 0.127 (0.0006)

Frank 50 0.172 (0.0117) 0.168 (0.0161) 0.221 (0.0114)

100 0.103 (0.0020) 0.105 (0.0019) 0.170 (0.0046)

500 0.058 (0.0001) 0.069 (0.0001) 0.104 (0.0001)

Clayton 50 0.217 (0.0061) 0.236 (0.0194) 0.274 (0.0115)

100 0.160 (0.0025) 0.188 (0.0189) 0.214 (0.0052)

500 0.113 (0.0001) 0.118 (0.0008) 0.146 (0.0095)

0.4 Gaussian 50 0.240 (0.0080) 0.350 (0.0397) 0.381 (0.0223)

100 0.180 (0.0024) 0.270 (0.0150) 0.293 (0.0070)

500 0.131 (0.0001) 0.174 (0.0027) 0.199 (0.0059)

t 50 0.345 (0.0139) 0.455 (0.0829) 0.480 (0.0415)

100 0.263 (0.0024) 0.349 (0.0200) 0.371 (0.0059)

500 0.217 (0.0005) 0.251 (0.0047) 0.288 (0.0007)

Frank 50 0.215 (0.0164) 0.292 (0.0267) 0.329 (0.0187)

100 0.142 (0.0031) 0.215 (0.0101) 0.235 (0.0048)

500 0.090 (0.0002) 0.125 (0.0009) 0.157 (0.0009)

Clayton 50 0.574 (0.0190) 0.664 (0.1138) 0.683 (0.0369)

100 0.498 (0.0039) 0.555 (0.0669) 0.577 (0.0509)

500 0.364 (0.0012) 0.410 (0.0130) 0.453 (0.0154)

0.6 Gaussian 50 0.484 (0.0155) 0.780 (0.0489) 0.805 (0.0545)

100 0.401 (0.0047) 0.654 (0.0087) 0.645 (0.0166)

500 0.328 (0.0014) 0.518 (0.0012) 0.532 (0.0005)

t 50 0.721 (0.0315) 1.014 (0.0897) 1.072 (0.0812)

100 0.629 (0.0087) 0.859 (0.0230) 0.865 (0.0209)

500 0.451 (0.0039) 0.692 (0.0087) 0.721 (0.0070)

Frank 50 0.302 (0.0202) 0.551 (0.0547) 0.585 (0.0648)

100 0.212 (0.0051) 0.400 (0.0084) 0.408 (0.0123)

500 0.142 (0.0003) 0.237 (0.0034) 0.281 (0.0004)

Clayton 50 1.632 (0.0331) 1.917 (0.0872) 2.004 (0.0955)

100 1.493 (0.0169) 1.695 (0.0543) 1.750 (0.0619)

500 1.105 (0.0043) 1.409 (0.0040) 1.619 (0.0075)

Note: Standard deviations are in parentheses.
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t increases, the ESE outperforms the log-spline estimator more significantly.
At the same time, the ESE and the log-spline estimator outperform the
kernel estimator in almost all the cases. The better performance of the ESE
can be explained by the fact that the kernel estimator allocates weight
outside the boundary and underestimates the underlying copula density at
the tails.5 We also note that the log-spline estimator and the kernel estimator
have substantially larger standard deviations in the MISE than does the
ESE. Overall, the ESE outperforms the other two estimators considerably in
our experiments.

4.2. Joint Density Estimation

We next compare the direct estimation of joint densities, without estimating
a copula function, to that via the two-step copula method. We note
that for two-step estimation, the convergence rate of the joint density is
determined by the slower of two rates: convergence rate of the margins
and that for the copula. When both are estimated nonparametrically with
optimal smoothing parameters, since the later is asymptotically slower
than the former (due to the curse of dimensionality), the convergence rate
of the joint density estimation is of the same order as that of the copula
density. This result implies that asymptotically, the performance of the
joint density estimation is not affected by optimal estimation of the marginal
densities. In our two-step estimation, we use the log-spline estimator for
the margins, due to its good small sample performance for estimation of
densities with unbounded supports. The results using the kernel estimator or
the ESE for the marginal distributions are quantitatively similar and hence
not reported.

Combining four margins and four copulas considered in study, we obtain
16 ( ¼ 4� 4) joint densities. In this experiment, we set the sample size to 50.
The estimators we consider in the direct estimation are the ESE, the log-
spline estimator and the kernel estimator. In the two-step estimation, we
first estimate the margins by the log-spline estimator and then the copula
density by the ESE. The MISE of estimated joint densities of various
estimators are displayed in Table 2. Similar to the first experiment, the
MISE increases with Kendall’s t. Comparing across different copulas, we
note that Clayton copula has recorded the largest MISE as t increases for
all the margins. As shown in Fig. 1, Clayton copula has a relatively sharp
tails near the boundary, which makes the estimation difficult. Another
observation is that the Gaussian and the t margins exhibit smaller MISE in
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Table 2. Ratio of MISE of the Direct Joint Density Estimation to the
Two-step Copula Estimation.

Kendall’s t Margin Estimation Method Copula

Gaussian t Frank Clayton

0.2 Gaussian Two-step Copula 0.464 0.518 0.544 0.635

ESE 83.8% 77.8% 66.0% 169.3%

Log-spline 119.8% 140.2% 110.8% 226.3%

Kernel 261.0% 219.3% 212.5% 326.0%

Skewed

unimodal

Two-step Copula 0.513 0.468 0.481 0.483

ESE 206.4% 218.2% 240.5% 258.2%

Log-spline 173.7% 214.3% 209.8% 307.7%

Kernel 310.5% 387.8% 356.1% 500.0%

Bimodal Two-step Copula 0.435 0.473 0.457 1.153

ESE 323.9% 300.4% 290.4% 226.4%

Log-spline 195.4% 195.6% 190.6% 104.4%

Kernel 249.0% 257.5% 240.5% 209.8%

t Two-step Copula 0.268 0.244 0.245 0.278

ESE 146.3% 175.8% 158.0% 139.6%

Log-spline 173.5% 245.5% 234.3% 204.0%

Kernel 384.3% 528.7% 449.0% 512.2%

0.4 Gaussian Two-step Copula 0.836 0.784 0.704 1.07

ESE 49.6% 59.6% 166.8% 143.5%

Log-spline 98.4% 101.8% 184.2% 162.5%

Kernel 178.5% 193.5% 216.2% 248.5%

Skewed

unimodal

Two-step Copula 1.028 1.09 1.071 1.213

ESE 163.1% 134.8% 147.3% 125.3%

Log-spline 105.6% 107.6% 124.6% 152.0%

Kernel 177.1% 179.5% 196.8% 236.2%

Bimodal Two-step Copula 1.081 1.066 1.034 1.533

ESE 152.5% 155.3% 163.1% 185.5%

Log-spline 105.5% 107.8% 105.3% 104.8%

Kernel 134.0% 134.3% 154.2% 188.7%

t Two-step Copula 0.626 0.712 0.571 0.872

ESE 155.3% 149.4% 215.2% 128.0%

Log-spline 112.3% 126.4% 151.7% 97.0%

Kernel 214.4% 198.0% 282.3% 209.6%

0.6 Gaussian Two-step Copula 1.201 1.302 1.08 2.662

ESE 46.9% 53.3% 188.8% 78.4%

Log-spline 112.5% 111.3% 218.4% 103.0%

Kernel 224.8% 193.5% 283.1% 126.7%

Skewed

unimodal

Two-step Copula 1.786 1.88 1.428 2.205

ESE 115.1% 121.7% 177.8% 101.4%

Log-spline 103.5% 111.0% 255.1% 111.7%

Kernel 157.8% 171.2% 293.1% 168.6%
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all the copulas and t values. This is expected since relatively simple shapes of
the margins tend to reduce the estimation errors.

In the case of direct estimation, the patterns of MISE are similar to two-
step copula estimation in terms of the margins and copulas under
consideration. Except for the bimodal margin, the kernel estimator is
dominated by the ESE and the log-spline estimator. Under the Gaussian
margin, the ESE outperforms the log-spline estimator. The MISE under the
ESE is 50% of that of the log-spline. In general, as the shapes of the margins
become more complicated, the log-spline estimator dominates the ESE.

Further examination on the extent of improvement in the MISE under the
two-step copula estimation shows that, except for the Gaussian margins, two-
step copula estimator generally outperforms the other three estimators in
almost all Kendall’s t and copulas under consideration.6 Since a regular and
consistent pattern cannot be observed for the difference of the MISE between
two-step copula and other three estimators, we average the MISE across the
margins and calculate percentage of the MISE of two-step copula to the
MISE of the other estimators. More than 50% of improvement is found
for small t using two-step copula estimation, although the improvement
decreases as the dependence between the variables increases. The improve-
ments are in the order of ClaytonWFrankWtWGaussian in terms of copulas.

4.3. Tail Dependence Coefficient Estimation

In the last experiment, we compare the ESE with empirical estimator for the
TDC. For the ESE estimator, the copula density function is estimated first

Table 2. (Continued )

Kendall’s t Margin Estimation Method Copula

Gaussian t Frank Clayton

Bimodal Two-step Copula 1.703 1.901 1.569 3.183

ESE 137.6% 135.9% 137.7% 112.0%

Log-spline 91.5% 104.2% 104.4% 104.3%

Kernel 120.0% 136.3% 142.0% 115.8%

t Two-step Copula 0.841 1.08 0.906 1.934

ESE 180.7% 152.3% 181.5% 122.1%

Log-spline 76.8% 81.7% 86.7% 95.3%

Kernel 179.3% 176.1% 195.1% 134.3%

Note: The percentages in this table represent the MISE ratio of joint density estimation to the

two-step copula estimation for each margin and copula specification.
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via the ESE, then the corresponding TDC is derived using the last part of
TDC definitions in Eqs. (2) and (3). For the empirical estimator, the TDC
is calculated using second equality given in Eqs. (2) and (3), where the
population distributions are replaced by empirical distributions. One
hundred observations are generated from the Frank copula with Kendall’s
t ¼ 0.2, 0.4, and 0.6. Each experiment is repeated 500 times. The mean-
squared error (MSE) and the variance of these two estimators are reported
in Table 3. The larger Kendall’s t is, the larger is the MSE. The MSE
decreases as the percentile increases for the upper tail and deceases for
the lower tail. For all the t and percentiles under consideration, the ESE
gives a remarkably smaller MSE compared with the empirical estimator.

Table 3. Mean Square Error of the Tail Dependence for the Frank
Copula (n ¼ 100).

t 0.6 0.4 0.2

Percentile MSE Variance MSE Variance MSE Variance

95 Empirical 5.4311 5.4293 3.3131 3.3131 2.4778 2.4714

ESE 1.0452 0.3560 0.3100 0.2413 0.1249 0.1208

97.5 Empirical 6.7480 6.7426 4.7859 4.7832 2.1218 2.1215

ESE 0.4522 0.1131 0.1032 0.0770 0.0386 0.0376

99 Empirical 4.9867 4.9839 3.0999 3.0999 1.5585 1.5581

ESE 0.1013 0.0204 0.0191 0.0132 0.0068 0.0066

99.5 Empirical 2.0725 2.0461 1.1080 1.0988 0.7665 0.7665

ESE 0.0287 0.0060 0.0047 0.0034 0.0019 0.0019

99.75 Empirical 1.1412 1.1381 1.0308 1.0308 0.0030 0.0000

ESE 0.0078 0.0013 0.0012 0.0008 0.0004 0.0004

99.9 Empirical 0.0062 0.0000 0.0018 0.0000 0.0005 0.0000

ESE 0.0013 0.0002 0.0002 0.0001 0.0000 0.0000

5 Empirical 5.3932 5.3917 3.3348 3.3342 2.3995 2.3990

ESE 1.0197 0.3622 0.2832 0.2375 0.1342 0.1341

2.5 Empirical 6.4563 6.4560 3.9032 3.8992 2.2174 2.2144

ESE 0.4269 0.1124 0.0955 0.0762 0.0410 0.0410

1 Empirical 5.0478 5.0477 2.2984 2.2903 1.4224 1.4201

ESE 0.0938 0.0221 0.0189 0.0149 0.0078 0.0077

0.5 Empirical 3.6785 3.6757 1.5357 1.5342 0.0119 0.0000

ESE 0.0270 0.0058 0.0054 0.0044 0.0019 0.0019

0.025 Empirical 3.6762 3.6332 0.0109 0.0000 0.0030 0.0000

ESE 0.0075 0.0017 0.0012 0.0008 0.0004 0.0004

0.01 Empirical 0.4810 0.4806 0.0018 0.0000 0.0005 0.0000

ESE 0.0012 0.0002 0.0002 0.0002 0.0001 0.0001

Note: MSE and variance are multiplied by 100.
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The ratios between them increase as t decreases, except for very large or very
small percentiles. The variances of the MSE decrease as t decreases. The
ESE shows a decreasing pattern for variance as the percentile increases
for the upper tail and decreases for the lower tail. Finally, the ESE shows
smaller variances compared with empirical estimator in general. Overall the
ESE for TDC outperforms the empirical estimator in terms of the MSE and
its variance.

5. EMPIRICAL APPLICATION

An important question in risk management is whether the financial markets
become more interdependent during financial crises. The fact that inter-
national equity markets move together more in downturns than in the
upturns has been documented in the literatures, for example, see Longin and
Solnik (2001) and Forbes and Rigobon (2002). Hence, the concept of tail
dependence plays an increasingly important role in measuring the financial
contagion. If all stock prices tend to fall together as a crisis occurs, the value
of diversification might be overstated by ignoring the increase in downside
dependence (Ang & Chen, 2002). During the 1990s, several international
financial crises occurred. Asian financial crisis is one of the crises that have
been studied extensively in the literature. It started in Thailand with the
financial collapse of Thai Baht on July 2, 1997. News of the devaluation
dropped the value of the baht by as much as 20% – a record low. As the
crisis spread, most of Southeast Asia saw slumping currencies, devalued
stock markets and asset prices.

Early studies on the dependence structure between financial assets are
mostly based on their correlations, which ignore potential nonlinear
dependence structures. Some recent studies use parametric copulas to
capture the nonlinear dependence. They derive the corresponding values of
tail dependence based on the estimated copulas. The parametric approach
may lack flexibility and the estimated dependence will be biased if the copula
is misspecified. In this section, we model the dependence structure of the
Asian stock markets returns using the ESE copula. No assumptions on the
dependence structure in the data are imposed. We emphasize that the results
in the section are presented as an illustration of the ESE copula estimation,
rather than a detailed study of financial contagion in Asian financial crisis.
Following Kim (2005) and Rodriguez (2007), we analyze the dependent
structure for the Asian stock index returns by pairing all other countries
with Thailand, the originator of the Asian financial crisis.
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The data used in this study are daily returns consisting of the daily stock-
market indices of six East Asian countries from the DATASTREAM. When
these Asian countries experienced the Asian financial crisis in 1997, these data
present an interesting case for the study of tail dependence as all these
countries in the sample experienced a crisis of some severity during this
period. Specifically, the data include Hong Kong Hang Seng (HK), Singapore
Strait Times (SG), Malaysia Kuala Lumpur Composite (ML), Philippines
Stock Exchange Composite (PH), Taiwan Stock Exchange Weighted (TW),
and Thailand Bangkok S.E.T. (TH). The dataset covers the sample period
from January 1994 to December 1998. We have altogether 1,305 daily
observations. We take the log-difference of each stock index to calculate the
stock index returns. Following the standard practice, we fit each return series
by a GARCH(1,1) model using the maximum-likelihood estimation. Based
on the fitted model, we calculate the implied standardized residuals from the
GRACH model. The standardized residuals obtained in the first step estima-
tion will be as the input for the copula density estimation in the second step.7

Table 4 gives summary statistics of the data. Standard deviations reveal
that the Malaysia market is the most volatile, followed by Thailand. All the
series exhibit excessive skewness and kurtosis relative to those of the
Gaussian distribution. The Jarque–Bera test demonstrates the nonnormality
of each series, which implies the violation of multivariate Gaussian distribu-
tion assumption. In fact, it is well known, according to Mandelbort (1963),
that most financial time series are fat tailed. Existing studies often replace
the assumption of normality with the fat-tailed t distribution. Notice that
Malaysia has the highest risk in terms of volatility, skewness, kurtosis, and
nonnormality; while Taiwan ranks last in terms of volatility, kurtosis, and
nonnormality.

Table 4. Descriptive Statistics for the Stock Indices Returns.

Hong Kong Singapore Malaysia Philippines Taiwan Thailand

Mean �0.0131 �0.0329 �0.1127 �0.0574 �0.0103 �0.1118

Median 0.0046 �0.0139 �0.0280 0.0000 0.0000 �0.0533

Maximum 17.2702 15.3587 23.2840 13.3087 6.3538 16.3520

Minimum �14.7132 �10.6621 �37.0310 �11.0001 �11.3456 �15.8925

SD 1.9668 1.6484 2.7410 1.9546 1.5864 2.5656

Skewness 0.2615 0.6875 �1.2933 �0.0172 �0.4601 0.5974

Kurtosis 13.8503 16.1685 42.0452 8.1313 7.2913 9.4746

Jarque–Bera 6411.5 9524.6 83196.3 1430.7 1046.6 2355.2

P-value o1.00e-04 o1.00e-04 o1.00e-04 o1.00e-04 o1.00e-04 o1.00e-04
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To investigate the dependence between different markets, we calculate the
linear correlation and Kendall’s t between Thailand and other countries.
The estimated correlation and Kendall’s t are reported in Table 5. The
patterns revealed by these two dependence measures are qualitatively
similar. The linear correlations range from 0.19 (Taiwan and Thailand) to
0.65 (Singapore and Hong Kong) among the pairs we consider. Singapore
has the highest average dependence with other countries, while Taiwan has
the lowest average dependence. Although Thailand is suggested to play a
trigger role in the Asian financial crisis, it only shows moderate dependence
with other countries. The Kendall’s t ranges from 0.07 (Taiwan and
Thailand) to 0.50 (Philippines and Singapore).

Table 6 reports empirical estimates of lower and upper TDCs in the
bivariate equity index returns. The first cell in the table is 0.308, which
indicates that the probability of returns of Hong Kong being lower than the
5th percentile given that the returns of Thailand is lower than the 5th
percentile equals 0.308. While Singapore has the strongest lower depen-
dence, Hong Kong has the strongest upper dependence with Thailand.
Philippines and Malaysia show moderate tail dependence with Thailand,
and Taiwan has the weakest tail dependence with Thailand. In general, the
lower tail dependences are larger than the upper tail dependences. This fact
is consistent with the literature that financial markets exhibit asymmetric tail
dependence: they tend move together more in downturns than in upturns.

The next step is to estimate the copula density. Frahm, Junker, and
Schmidt (2005) show that using misspecified parametric margins instead of
nonparametric margin may lead to misleading interpretations of dependence
structure. Instead of assuming parametric margins, we estimate the margins

Table 5. Correlation Matrix of the Stock Indices Returns.

Hong Kong Singapore Malaysia Philippines Taiwan Thailand

Hong Kong 0.6526 0.3797 0.3816 0.2488 0.3867

Singapore 0.3597 0.4104 0.2581 0.2797 0.5126

Malaysia 0.2816 0.4783 0.3020 0.1993 0.3862

Philippines 0.1954 0.5080 0.2069 0.1999 0.4133

Taiwan 0.1214 0.1312 0.0992 0.0979 0.1886

Thailand 0.2205 0.2900 0.2726 0.2069 0.0669

Average dependence

Linear 0.4099 0.4863 0.3491 0.3609 0.2233 0.3775

Kendall 0.2357 0.2899 0.2541 0.1930 0.1033 0.2114

Note: Upper triangle is the linear correlation and the lower triangle is the Kendall’s t.
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by the log-spline estimator in the first step and the copula density by the
ESE method in the second step. Different dependence structures can be
visualized by plotting their estimated copula densities along the diagonal
u ¼ v. Fig. 2 shows the results. Notice that the scales in the graphs are
different. Hong Kong, Singapore, and Malaysia show clearly asymmetric
shapes with lower tail higher than upper tail; while Philippines and Taiwan
have relatively symmetric shapes. In the case of Hong Kong, most of the
mass is concentrated in the two tails, as suggested by the height of the
estimated density with a small peak in the center of the density. Singapore
and Malaysia also exhibit similar patterns with less mass concentrated on
the two tails. On contrary, Philippines and Taiwan show a symmetric tail
patterns and their densities are relatively flat compared to the previous
three markets.

The lower and upper TDCs are then calculated from estimated ESE
copula densities. The results are reported in Table 6. We note that for the
ESE, the lower TDC increases and the upper TDC decreases monotonically
in all the markets, while nonmonotonic patterns are observed in empirical
TDC estimates. Asymmetric tail dependences are observed in Hong Kong,
Singapore, and Malaysia, but not in Philippines and Taiwan. Compared
with empirical tail dependence estimates, the ESE TDC tends to be smaller.

Table 6. Estimated Tail Dependence for Bivariate Standardized
Returns.

Percentile Hong Kong Singapore Malaysia Philippines Taiwan

Lower Upper Lower Upper Lower Upper Lower Upper Lower Upper

Empirical

5 0.308 0.242 0.354 0.167 0.262 0.242 0.231 0.182 0.169 0.106

4 0.288 0.283 0.346 0.132 0.269 0.151 0.250 0.170 0.154 0.113

3 0.282 0.225 0.359 0.125 0.179 0.100 0.179 0.150 0.128 0.150

2 0.346 0.185 0.346 0.148 0.077 0.000 0.192 0.074 0.115 0.111

1 0.231 0.143 0.231 0.214 0.000 0.000 0.000 0.000 0.000 0.143

ESE

5 0.314 0.257 0.296 0.209 0.205 0.198 0.181 0.187 0.143 0.145

4 0.259 0.211 0.237 0.167 0.162 0.156 0.159 0.162 0.121 0.119

3 0.198 0.167 0.168 0.123 0.134 0.129 0.126 0.121 0.097 0.092

2 0.135 0.121 0.119 0.087 0.089 0.081 0.087 0.089 0.078 0.076

1 0.075 0.061 0.062 0.048 0.065 0.057 0.056 0.058 0.046 0.048

Note: Lower and upper represent the estimated lower and upper tail dependence coefficient,

respectively.
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Fig. 2. Plots of Diagonals of Estimated Copula Densities between various Asian

Countries and Thailand.
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Again according to the ESE estimates, Hong Kong exhibits the strongest
lower and upper tail dependence with Thailand and the lower tails
dependence is stronger than the upper tail dependence.

Lastly, for the sake of comparison, we report the TDC estimates based
on the Gaussian copula. The results are reported in the bottom panel of
Table 6. As expected, the estimates are not able to capture the asymmetric
dependence between the markets. In addition, the estimates are considerably
smaller than the ESE-based and the empirical estimates. The comparison
demonstrates that the risk associated with a misspecified parametric copula
estimate can be quite substantial.

6. CONCLUSION

This paper proposes a nonparametric estimator for copula densities based
on the ESE. The ESE has an appealing information-theoretic interpretation
and attains the optimal rate of convergence for nonparametric densities in
Stone (1982). More importantly, it overcomes the boundary bias in copula
density estimation. We examine finite sample performance of the estimator
in several simulations. The results show that the ESE outperforms the
popular kernel and log-spline estimators in copula estimation. Estimating
a joint density by first estimating the margins and the copula separately in a
two-step approach often outperforms direct estimation of the joint density.
In addition, the proposed estimator provides superior estimates to the
tail dependence index compared to the empirical tail dependence index.
We apply the ESE copula to estimate the joint distributions of stock returns
of several Asian countries during the Asian financial crisis and examine their
interdependence based on the estimated joint densities and copulas.

NOTES

1. Many methods have been proposed to resolve this boundary bias problem
of the kernel estimator. These methods either adopt different functional forms of
kernel beyond the Gaussian kernel (e.g., see Lejeune & Sarda, 1992; Jones, 1993;
Jones & Foster, 1996) or transform data before applying the Gaussian kernel
(Marron & Ruppert, 1994). Recent studies included Chen (1999), Bouezmarni and
Rombouts (2007). These studies propose to use the gamma kernel or the local linear
kernel estimators.
2. A closely related literature is the bivariate log-spline estimator studied by Stone

(1994), Koo (1996), and Kooperberg (1998).
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3. Alternatively, Miller and Liu (2002) use the mutual information that is defined as,

Ið f : gÞ ¼

Z
log

f ðx1; x2Þ

g1ðx1Þg2ðx2Þ

� �
dFðx1;x2Þ

to measure the degree of association among the variables. Note that I( f: g) is not
invariant under increasing transformation of the margins.
4. In this paper, we choose fijðu; vÞ ¼ uiv j .
5. As is pointed out by a referee, a more appropriate comparison with the kernel

estimation shall be based on kernels that correct for the boundary bias. We leave this
interesting comparison for future study.
6. The good performance of the ESE under Gaussian margins is expected because

the ESE with two moment conditions is the Gaussian distribution.
7. This two-step procedure has been proposed by McNeil and Frey (2000). Jalal

and Rockinger (2008) investigated the consequences of using GARCH filter on
various misspecified processes. Their results show that two-step approach appears to
provide very good tail-related risk measures.
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ABSTRACT

In this paper we construct a nonparametric kernel estimator to estimate
the joint multivariate cumulative distribution function (CDF) of mixed
discrete and continuous variables. We use a data-driven cross-validation
method to choose optimal smoothing parameters which asymptotically
minimize the mean integrated squared error (MISE). The asymptotic
theory of the proposed estimator is derived, and the validity of the cross-
validation method is proved. We provide sufficient and necessary
conditions for the uniqueness of optimal smoothing parameters when
the estimation of CDF degenerates to the case with only continuous
variables, and provide a sufficient condition for the general mixed
variables case.
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1. INTRODUCTION

As the rapid advancement of modern computer technology makes the
computing of complicated problems feasible, nonparametric statistic
methods become increasingly popular. Nonparametric methods have been
applied in many economic contexts. The most striking advantage of
nonparametric methods over parametric ones is that no prior assumptions,
which often turn out to be inappropriate, about the unknown true distribu-
tions are taken. The joint distributions of multiple economic variables can
give a direct illustration of the relationship among these variables and help
researchers to infer the underlying causality. Consequently, the estimation
of joint distributions is an important and fundamental issue in the
nonparametric econometrics/statistics literature.

Traditionally, nonparametric methods focus on the estimation of either
continuous variables or discrete variables (see, e.g., Grund, 1993; Grund &
Hall, 1993; Hall, 1981). However, estimation and testing methods able
to handle mixed data are quite desirable because most data sets contain
both continuous and discrete variables. For instance, labor economists
are usually interested in the relationships between the continuous income
and discrete explanatory variables such as gender, race, education levels,
locations, etc. Recently, Li and Racine (2003), Racine and Li (2004), and
Li and Racine (2008) discussed nonparametric smoothing estimations of
probability density functions, regression functions, and conditional cumu-
lative distribution functions (CDF) and quantile functions (with mixed
discrete and continuous variables). Their work is of great importance for
enlarging the scope of the application of nonparametric methods to the
context with both continuous and discrete variables. This paper contributes
to this literature by investigating a nonparametric estimation of the
unconditional joint CDF of mixed data types.

One difficulty in dealing with the estimation of discrete and continuous
variables simultaneously is a lack of joint observations. Conventional
approaches to handle the estimation of CDF of discrete variables are
frequency based. Although we can directly combine it with the kernel
estimator of continuous variables, the approach suffers because the number
of observations for estimation of discrete variables by a frequency-based
approach may be insufficient to ensure an accurate nonparametric estima-
tion of marginal CDF for the remaining continuous variables. Aitchison
and Aitken (1976) proposed a novel nonparametric smoothing method to
estimate distribution functions defined over binary data. Their method can
mitigate the problem of data insufficiency for finite-sample applications.
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Their proposed smoothing method can reduce the estimation variance
significantly, though it incurs some mild estimation bias. Li and Racine
(2003) extended Aitchison and Aitken’s method to a context with
mixed discrete and continuous variables. In this paper, we adopt
their ideas of smoothing both discrete and continuous variables to estimate
an unconditional CDF which contains both discrete and continuous
components.

It is well known that the selection of smoothing parameters is of crucial
importance in nonparametric estimations. There exist several popular
methods of smoothing parameter selections. Among them, the most popular
ways are the plug-in method and the cross-validation method. There are
many discussions about these methods (e.g., Härdle & Marron, 1985;
Loader, 1999). However, there is no clear conclusion which method is
better. In practice, the cross validation may be a preferred choice, especially
in multivariate settings. This is because the cross-validation method is
fully data driven. Rudemo (1982) and Bowman (1984) introduced the
cross-validation selection of smoothing parameters for density estimation
(see Wand & Jones, 1995, Chapter 3; Li & Racine, 2007, for a thorough
discussion). Bowman, Hall, and Prvan (1998) presented a cross-validation
bandwidth selection for the smoothing estimation of continuous distribution
functions. In this paper, we propose to use the least squares cross-validation
method to choose the smoothing parameters. We will show that the
resultant smoothing parameters are optimal in the sense of minimizing the
mean integrated squared error (MISE).

Another interesting problem is the uniqueness of the smoothing
parameter vector in cross-validation methods. This was first tackled in Li
and Zhou (2005) for the nonparametric kernel estimation of the PDF and
regression function of continuous variables. We also discuss this problem in
the paper. We give a sufficient and necessary condition for uniqueness when
the estimation of CDF degenerates to a case with only continuous variables.
For the case of mixed variables, we provide a sufficient condition.

The estimation of CDF is quite useful in econometrics and economics,
especially for the econometric theory and economic applications of tests of
stochastic dominance. Recently, there are some theories and applications
about nonparametric tests of stochastic dominance. Among them are
Barrett and Donald (2003) which provided some consistent tests of stochastic
dominance for any pre-specified order, Anderson (1996) which gave a
nonparametric test of stochastic dominance applied in income distributions,
and Davidson and Duclos (2000) which showed some statistical inference and
applications in poverty, inequality, and social welfare. Our estimation can be
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readily used in the test of stochastic dominance under the circumstance of
mixed data.

The paper is organized as follows. In Section 2, we propose an estimator
of distribution function that admits mixed discrete and continuous
variables. We derive the rates of convergence and establish the asymptotic
normality of our estimator. In Section 3, we show that the smoothing
parameters selected by the cross-validation method are optimal in the sense
that they converge to the minimizer of MISE in probability. In Section 4, we
give a sufficient and necessary condition for the uniqueness of the smoothing
parameter vector when the estimation contains continuous variables only,
and we give a sufficient condition for the mixed case. Section 5 provides
an empirical application to examine the relationship between city size and
unemployment rate. Section 6 concludes the paper.

2. ESTIMATION OF CDF WITH MIXED DISCRETE

AND CONTINUOUS VARIABLES

We consider the case for which x is a vector containing a mix of discrete and
continuous variables. Let x ¼ (xc, xd), where xcARq is a q-dimensional
continuous random vector, and where xd is an r-dimensional discrete
random vector. Let Xd

isðx
d
s Þ denote the sth component of Xd

i ðx
dÞ;

s ¼ 1; . . . ; r, i ¼ 1, y n, where n is the sample size. We restrict the discrete
components to a finite support. Without loss of generality, assume that the
support of Xd

is is {0, 1, y, cs�1}, hence the support of Xd
i is Sd ¼

Pr
s¼1f0; 1; . . . ; cs � 1g. For discrete variables, we use the following kernel:

lðXd
is; x

d
s ; lsÞ ¼

1� ls; if Xd
is ¼ xds

ls=ðcs � 1Þ; if Xd
isaxds

(

Note that ls is a bandwidth having the following properties: when ls ¼ 0,
lðXd

is; x
d
s ; 0Þ becomes an indicator function, and when ls ¼ ðcs � 1Þ=cs,

lðXd
is; x

d
s ; ðcs � 1Þ=csÞ ¼ 1=cs becomes a uniform weight function. Thus, the

range of ls is [0, (cs�1)/cs]. The product kernel function is given by

LðXd
i ; x

d; lÞ ¼
Yr
s¼1

lðXd
is; x

d
s ; lsÞ

We use k( � ) to denote a univariate kernel function for a continuous
variable. The product kernel function used for the continuous variables
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is given by

K
Xc

i � xc

h

� �
¼
Yq
j¼1

k
Xc

ij � xcj

hj

� �
where Xc

ijðx
c
j Þ denotes the jth component of Xc

i ðx
cÞ; j ¼ 1; . . . ; q, i ¼

1,y, n, and hj is the bandwidth associated with xcj . We use f(x) and F(x) to
denote the density function and CDF of X, respectively. Following Li and
Racine (2003), the kernel estimator of density function f(x) is given by

f̂ ðxÞ ¼ f̂ ðxc; xdÞ ¼
1

nh1h2 � � � hq

Xn
i¼1

K
Xc

i � xc

h

� �
LðXd

i ; x
d
i ; lÞ

Naturally, one can obtain a kernel estimator of F(x) by integrating f̂ ðxÞ,
which is expressed as

F̂ðxÞ ¼ F̂ðxc;xdÞ ¼
1

n

Xn
i¼1

G
xc � Xc

i

h

� � X
u�xd

LðXd
i ; u; lÞ

 !" #
(1)

where GðxÞ ¼
R x
�1

kðvÞdv, and Gððxc � Xc
i Þ=hÞ ¼

Qq
j¼1Gððx

c
j � Xc

ijÞ=hjÞ.
We introduce some notations before we state the main theorem of this

section. Let 1(A) denote an indicator function that takes the value 1 if A
occurs and 0 otherwise. Define an indicator function 1s( � , � ) by

1sðz
d; uÞ ¼ 1ðzdsausÞ

Yr
tas

1ðzdt ¼ utÞ (2)

We can see that 1s( � , � ) equals to one if and only if zd and u differ only in
the sth component. The following assumptions will be used in studying
the asymptotic behavior of cross-validated smoothing parameters and in
deriving the asymptotic distribution of our CDF estimator.

Condition (C1). The data fðXc
i ; X

d
i Þg

n
i¼1 are independent and identically

distributed as (Xc, Xd). F(xc, xd) has continuous third-order partial
derivatives with respect to xc.

Condition (C2). k( � ) is a bounded and symmetric kernel density function
with a compact support.

R
k(v)dv ¼ 1,

R
v2k(v)dv ¼ k2oN.

Condition (C3). As n-N, hj-0, nh6j ! 0, for j ¼ 1, y, q and
ls! 0; nl4s ! 0, for s ¼ 1, y, r.
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Let F
ð1Þ
j ðx

c; xdÞ ¼ ð@FðxÞÞ=ð@xc
j Þ; F

ð2Þ
jj ðx

c;xdÞ ¼ ð@2FðxÞÞ=ð@xcj @x
c
j Þ. The

next theorem shows the rate of convergence in terms of MSE and MISE
and the asymptotic normality of our estimator.

Theorem 1. Under condition (C1), (C2), and (C3), we have

(i) MSEðF̂ðxc;xdÞÞ ¼
1

n
Fðxc;xdÞð1� Fðxc; xdÞÞ �

Xq
j¼1

A1j
hj

n
þ
Xr
s¼1

A2s
ls
n

þ
Xq
j¼1

B1jh
2
j þ

Xr
s¼1

B2sls

 !2

þO
1

n

Xq
j¼1

h2j þ
1

n

Xr
s¼1

l2s þ
Xq
j¼1

h6j þ
Xr
s¼1

l4s

 !

where a0 ¼ 2
R
vGðvÞkðvÞdv; A1j ¼ a0F

ð1Þ
j ðx

c; xdÞ; A2s ¼ 2=ðcs � 1ÞP
u� xd

P
v� xd; va u1sðu; vÞFðx

c j uÞpðuÞ � 2Fðxc;xdÞ � 2Fðxc;xdÞB2s,

B1j ¼ ð1=2Þk2F
ð2Þ
jj ðx

c;xdÞ, and B2s ¼ 1=ðcs � 1Þ
P

zd2Sd

P
u�xd1sðz

d; uÞ

FðxcjxdÞpðxdÞ � Fðxc; xdÞ.

(ii) MISEðF̂ðxc; xdÞÞ ¼ ZT
X
xd2Sd

Z
BBTdxc

 !
Z þ

1

n
AT ~Z

þ
1

n

X
xd2Sd

Z
Fðxc;xdÞð1� Fðxc;xdÞÞdxc

þO
1

n

Xq
j¼1

h2j þ
1

n

Xr
s¼1

l2s þ
Xq
j¼1

h6j þ
Xr
s¼1

l4s

 !
ð3Þ

where Z ¼ ðh21; . . . ; h
2
q; l1; . . . ; lrÞ

T ; ~Z ¼ ðh1; . . . ; hq; l1; . . . ; lrÞ
T ;

B ¼ ðB11; . . . ; B1q; B21; . . . ; B2rÞ
T , and A ¼

P
xd2Sd

R
ð�A11; . . . ;

�A1q; A21; . . . ; A2rÞ
Tdxc.

(iii) ffiffiffi
n
p

F̂ðxc;xdÞ � Fðxc;xdÞ �
Xq
j¼1

B1jh
2
j �

Xr
s¼1

B2sls

 !

�!
d

Nð0; Fðxc; xdÞð1� Fðxc;xdÞÞÞ.

The proof of Theorem 1 is given in Appendix A.
We can see that the convergence rate of our CDF estimator is

ffiffiffi
n
p

. Under
the optimal convergence rates for hj and ls, j ¼ 1, y, q, s ¼ 1, y, r

GAOSHENG JU ET AL.296



(i.e., hjBn�1/3 and lsBn�2/3), the statement (iii) in Theorem 1 simplifies toffiffiffi
n
p
ðF̂ðxc;xdÞ � Fðxc;xdÞÞ �!

d
Nð0; Fðxc;xdÞð1� Fðxc;xdÞÞÞ.

3. CROSS-VALIDATION BANDWIDTH SELECTION

In this section, we focus on how to choose the smoothing parameters when
estimating F̂ð�Þ. Theoretically, we may choose the optimal bandwidths
by minimizing the leading term of MISE given by Eq. (3) in Theorem 1.
Taking derivatives with respect to hj and ls, one can easily see that optimal
smoothing requires that hjBn�1/3, j ¼ 1, y, q and lsBn�2/3, s ¼ 1, y, r, as
qZ1. However, we can see that the coefficients of these orders involve
unknown functions. Therefore, this method is infeasible in practice. In
practice one can compute plug-in bandwidths based on Eq. (3) by choosing
some initial ‘‘pilot’’ bandwidths, the results may be sensitive to the choice of
these pilots. Therefore, it is highly desirable to construct an automatic data-
driven bandwidth selection procedure, which does not rely on some ad hoc
pilot bandwidth values to estimate unknown functions.

Following Bowman et al. (1998), we suggest choosing the smoothing
parameters (h, l) ¼ (h1, y, hq, l1,y, lr) by minimizing the following cross-
validation function:

CVðh; lÞ ¼
1

n

Xn
i¼1

X
xd2Sd

Z
ðIðxc;Xc

i ÞIðx
d;Xd

i Þ � F̂�iðx
c;xdÞÞ2dxc

" #

where F̂�i ðx
c;xdÞ ¼ ð1=ðn� 1ÞÞ

P
jai Gððx

c � Xc
j Þ=hÞ

P
u�xdLðX

d
j ; u; lÞ;

Iðxc;Xc
i Þ ¼ 1ðXc

i � xcÞ, and Iðxd;Xd
i Þ ¼ 1ðXd

i � xdÞ.
Define I i 	 Iðx;XiÞ ¼ Iðxc;Xc

i ÞIðx
d;Xd

i Þ and a term unrelated to smooth-
ing parameters

Jn ¼
X
xd2Sd

Z
fðFn � FÞ2 � E½ðFn � FÞ2�gdxc

�
1

n

Xn
i¼1

X
xd2Sd

Z
½Iðx;XiÞ � Fðxc;xdÞ�2dxc

where Fnðx
c;xdÞ ¼ ð1=nÞ

Pn
i¼1Iðx

c;Xc
i ÞIðx

d;Xd
i Þ is the empirical distribution

function. In Theorem 2 below, we show that H(h, l) ¼ CV(h, l)þJn is a
good approximation to MISE(h, l).
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Theorem 2. Define H(h, l) ¼ CV(h, l)þJn, then under condition (C1) and
(C2), we have for each d, e, CW0,

Hðh; lÞ ¼MISEðh; lÞ þOp n�3=2 þ n�1
Xq
j¼1

hqj þ n�1=2
Xq
j¼1

hqþ2j

  

þn�1=2
Xq
j¼1

h4j þ n�1=2
Xr
s¼1

l2s

!
nd

!

with probability 1, uniformly in 0rhj, lsrCn�e for j ¼ 1,y, q, s ¼ 1,y, r,
as n-N.

Essentially, Theorem 2 says that CV(h,l) ¼ (leading terms of MISE(h, l))þ
(terms unrelated to h, l)þ(small order terms). Therefore, minimizing cross-
validation function is asymptotically equivalent to minimizing MISE (h, l).
Therefore, we immediately have the following corollary.

Corollary 1. Under the conditions (C1) and (C2), let ĥj ; l̂s; j ¼
1; . . . ; q; s ¼ 1; . . . ; r denote the smoothing parameters that minimizes
the CV(h, l) over the set [0, Cn�e]qþr for any CW0 and any 0oeo1/3, let
h0j ; l

0
s ; j ¼ 1; . . . ; q; s ¼ 1; . . . ; r denote the smoothing parameters that

minimizes the MISE(h, l), then we have

ĥj

h0j
! 1 and

l̂s
l0s
! 1 ðif l0sa0Þ or l̂s ! 0 ðif l0s ¼ 0Þ

in probability, for all j ¼ 1,y, q, and s ¼ 1,y, r.

The proof of Theorem 2 is given in the Appendix B.

4. UNIQUENESS OF SMOOTHING

PARAMETER VECTOR

Section 3 has established the fact that minimizing cross-validation func-
tion is asymptotically equivalent to minimizing MISE. Hence, to investigate
the asymptotic uniqueness of the cross-validated smoothing parameters,
we only need to examine the uniqueness of parameters minimizing the
leading terms of MISE. When there does not exist discrete variables,
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our objective function is

inf
Z2R

q
þ
; jjZjj¼1

ZTMZ þ
1

n
ATZ1=2 (4)

where Z ¼ ðh21; . . . ; h
2
qÞ

T ; Z1=2 ¼ ðh1; . . . ; hqÞ
T ; M ¼

P
xd2Sd

R
BBTdxc,

and both A and B are of dimension q� 1 (they are the first q elements
of the general mixed variable case). Based on the previous discussion, the
optimal rates for hj and ls are n

�1/3 and n�2/3, respectively. Let hj ¼ ajn
�1/3,

for j ¼ 1, y, q. Substituting these parameters into Eq. (4), then minimize
ZTMZ þ ð1=nÞATZ1=2 is equivalent to minimize ZTMZ þATZ1=2, where
we abuse notation a little bit, Z ¼ ða11; . . . ; a

2
qÞ

T and Z1=2 ¼ ða1; . . . ; aqÞ
T .

When the estimation of CDF degenerates to the case with only
continuous variables, we give the necessary and sufficient condition in the
following theorem.

Theorem 3. Assume that r ¼ 0, let Z ¼ ðh21; . . . ; h
2
qÞ

T , define

m ¼ infZ2Rq
þ; jjZjj¼1

ZTMZ. Then wðZÞ ¼ ZTMZ þATZ1=2 has a unique

minimizer Z
 2 R
q
þ, if and only if mW0.

Proof. Our proof follows similar arguments as in Li and Zhou (2005).
First we prove the ‘‘only if’’ part. Suppose m ¼ 0 is attained at some
Zð0Þ 2 R

q
þ with jjZð0Þjj ¼ 1. Then there exists at least one component

Z
ð0Þ
i a0, that is, Z

ð0Þ
i 40. So wðtZð0ÞÞ ¼ t2ðZð0ÞÞTMZð0Þ þAT ffiffi

t
p
ðZð0ÞÞ1=2 ¼

AT ffiffi
t
p
ðZð0ÞÞ1=2!�1, as t-þN. Note that the components of A are

negative, and tZð0Þ 2 R
q
þ: This implies that w has no minimizer.

Next we prove the ‘‘if ’’ part. If mW0, for any Z 2 R
q
þ, with jjZjj ¼ 1,

we have that tZ 2 R
q
þ; t40. Then wðtZÞ ¼ t2ZTMZ þ

ffiffi
t
p
ATZ1=2 ¼

ðt
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ZTMZ
p

� ð1=ð2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ZTMZ
p

ÞÞÞ
2
þ ð

ffiffi
t
p
þ ððAT Z1=2Þ=2ÞÞ2 � ð1=4ZTMZÞ�

ððATZ1=2Þ
2=4Þ ! þ1, as t-þN. For RW0, denote BR ¼ fZ 2 R

q
þ :

jjZjj � Rg. Since w is a continuous function on R
q
þ; BR is a compact set

and w(tZ)-þN, as t-þN, we have that there exists RW0 such that

min
Z2R

q
þ

wðZÞ3 min
Z2BR

wðZÞ.

From wðtZÞ ¼ t2ZTMZ þ t1=2ATZ1=2, we know that w(tZ) attains its
minimum at t ¼ ð�ðATZÞ=ð4ZTMZÞÞ2=340. So 0 is not the minimizer
of w. Similarly, we get that wðZ þ tð0; . . . ; 1; . . . ; 0ÞT Þ ¼ ZTMZ þ
2tZTMð0; . . . ; 1; . . . ; 0ÞT þATZ þ t2mii þ Ait

1=2 cannot attain its
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minimum at t ¼ 0. So Z with h2i ¼ 0 cannot be the minimizer of w, which
means that w can only attain its minimum in the interior of BR.
The Hessian matrix H of w is H ¼ ð@2w=ð@Z@ZT ÞÞ ¼ 2M þ G, where

G ¼ ð1=4Þ diag ð�c1z
�3=2
1 ; �c2z

�3=2
2 ; . . . ; �cqz

�3=2
q Þ is a diagonal matrix.

Since cio0, G is positive definite in the interior of BR. Also, M is symmetric
and positive semi-definite. So H is positive definite in the interior of BR.
Therefore, w has a unique minimizer in the interior of BR. This completes
the proof.

In general, our objective function is

inf
Z2R

q
þ; jjZjj¼1

ZTMZ þ
1

n
AT ~Z (5)

where Z ¼ ðh21; . . . ; h
2
q; l1; . . . ; lrÞ

T ; ~Z ¼ ðh1; . . . ; hq; l1; . . . ; lrÞT ;
M ¼

P
xd2Sd

R
BBTdxc, B ¼ ðB11; . . . ; B1q; B21; . . . ; B2rÞ

T , and A ¼P
xd2Sd

R
ð�A11; . . . ; �A1q; A21; . . . ; A2rÞ

Tdxc are defined in Theorem 1.
Substituting hj ¼ ajn

�1/3, for j ¼ 1, y, q, and ls ¼ bsn
�2/3, for s ¼ 1, y, r

into Eq. (5), we have that Eq. (5) is equivalent to minimize ZTMZ þAT ~Z
with respect to Z ¼ ða21; . . . ; a

2
q; b1; . . . ; brÞ

T and ~Z ¼ ða1; . . . ; aq;
b1; . . . ; brÞ

T . A sufficient condition for the estimation of the CDF of the
mixed discrete and continuous variables is given as follows.

Theorem 4. Let m ¼ infZ2Rqþr
þ ; jjZjj¼1Z

TMZ. If mW0, then w has a

minimizer Z
 2 R
qþr
þ . If M is positive definite, then Hessian matrix H

of w is positive definite at every point of R
qþr
þ . Thus, w has a unique

minimizer Z
 2 R
qþr
þ .

Proof. If mW0, for any Z 2 R
qþr
þ , with ||Z|| ¼ 1, we have that

tZ 2 R
qþr
þ ; t40. Using the notation Zð1Þ ¼ ða

2
1; . . . ; a

2
qÞ

T ; Z
1=2
ð1Þ ¼

ða1; . . . ; aqÞ
T and Zð2Þ ¼ ðb1; . . . ; brÞ

T , we have wðtZÞ ¼ t2ZTMZ þffiffi
t
p
AT

1 Z
1=2
ð1Þ þ tAT

2 Zð2Þ ¼ ðt
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ZTMZ
p

þ ððAT
2 Zð2Þ � 1Þ=ð2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ZTMZ
p

ÞÞÞ
2
þ

ð
ffiffi
t
p
þAT

1 Z
1=2
ð1Þ =2Þ

2
� ððAT

2 Zð2Þ � 1Þ2=ð4ZTMZÞÞ � ððAT
1 Z

1=2
ð1Þ Þ

2=4Þ ! þ1,
as t-þN, where A1 ¼ ðc1; . . . ; cqÞ

T ,A2 ¼ ðcqþ1; . . . ; cqþrÞ
T . For RW0,

denote BR ¼ fZ 2 R
qþr
þ : jjZjj � Rg. Since w is a continuous function

on R
qþr
þ , BR is a compact set, and w(tZ)-þN, t-þN, we have that

there exists RW0, such that min
Z2R

qþr
þ

wðZÞ3 min
Z2BR

wðZÞ. Therefore, w has a
minimizer Z
 2 R

qþr
þ .

The Hessian matrix H of w is H ¼ @2w=ð@Z@ZT Þ ¼ 2M þ
G 0

0 0

� �
. If M

is positive definite, then mW0, since ZTMZW0 on the compact set
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fZ : Z 2 R
qþr
þ ; jjZjj ¼ 1g. Also, H is positive definite at every point

Z 2 R
qþr
þ . Thus, w has a unique minimizer Z
 2 Rqþr

þ . This completes
the proof.

5. AN EMPIRICAL APPLICATION

Gan and Zhang (2006) presented a theory predicting that a large city tends
to have smaller unemployment rate. Their empirical study applied US data
on city population and average unemployment rate based upon a sample of
295 cities. The average unemployment rate, which is continuous, ranges
from 2.4% to 19.6%. To get a categorical variable, we artificially stipulate
that those with population of more than 200,000 are large cities, and the
others are small cities. This classification gives 112 large cities and 183 small
cities. In Fig. 1, we plot the conditional CDF of unemployment rate, which
is calculated from our estimation of the joint CDF, for large and small cities.
We use a Gaussian kernel for the unemployment rate. The cross-validated
bandwidths for the continuous variable and categorical variable are 0.3470
and 0.0289, respectively.1

The conditional CDF estimate is consistent with the theory that
large cities tend to have lower unemployment rates than small cities.

Small city

Large city

Unemployment rate

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0 2 4 6 8 10 12 14 16 18 20

Fig. 1. CDF Estimate of Unemployment Rate of Large and Small Cities.
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The conditional CDF curve for large cities is above that of the small cities
for most part. Fig. 1 shows that, for most of the unemployment range, the
distribution of unemployment rate for large cities stochastically dominates
that of small cities.

6. CONCLUSION

We propose a consistent nonparametric kernel estimator of joint uncondi-
tional CDF defined over a mix of discrete and continuous variables. A data-
driven cross-validation method for selecting the smoothing parameters is
examined. We show that it is asymptotically equivalent to minimizing
integrated MSE. The uniqueness condition of the cross-validation procedure
is discussed. In view of the fact that many economic data sets involve
both continuous and discrete variables, our proposed estimator should
prove useful to applied researchers.

NOTE

1. For practical implementations of nonparametric econometrics, refer to Scott
(1992) and Hayfield and Racine (2008).
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APPENDIX A. PROOF OF THEOREM 1

Proof of Theorem 1

As we all know MSEðF̂ðxÞÞ ¼ E½F̂ðxÞ � FðxÞ�2 ¼ ½biasðF̂ðxÞÞ�2 þ varðF̂ðxÞÞ.
We will evaluate the terms biasðF̂ðxÞÞ and varðF̂ðxÞÞ separately. For
simplicity, we use dz and dv to denote dz1y dzq and dv1y dvq, respectively,
throughout the appendices.

For the continuous variables, using the change of variables, integration by
parts, and Taylor expansion, we have

E G
xc�Xc

i

h

� �� �
¼E

Yq
j¼1

G
xcj �Xc

ij

hj

� �" #
¼

Z Yq
j¼1

G
xcj � zj

hj

� �" #
f ðz1; z2; . . . ; zqÞdz

¼ h1h2 � � �hq

Z Yq
j¼1

GðvjÞ

" #
f ðxc1� h1v1; x

c
1� h2v2; . . . ; x

c
q� hqvqÞdv

¼

Z Yq
j¼1

kðvjÞ

" #
Fðxc1� h1v1; x

c
2� h2v2; . . . ; x

c
q� hqvqÞdv

¼

Z Yq
j¼1

kðvjÞ

" #
FðxcÞ�

Xq
j¼1

F
ð1Þ
j ðx

cÞhjvjþ
1

2

Xq
i;j¼1

F
ð2Þ
ij ðx

cÞhihjvivj

( )
dv

þO
Xq
j¼1

h3j

 !
¼ FðxcÞþ

k2
2

Xq
j¼1

F
ð2Þ
jj ðx

cÞh2j þO
Xq
j¼1

h3j

 !
ðA:1Þ

where k2 ¼
R
v2kðvÞdv, and

E G2 xc�Xc
i

h

� �� �
¼E

Yq
j¼1

G2
xcj �Xc

ij

hj

� �" #
¼

Z Yq
j¼1

G2
xcj � zj

hj

� �" #
f ðz1; z2; . . . ; zqÞdz

¼ h1h2 � � �hq

Z Yq
j¼1

G2ðvjÞ

" #
f ðxc1� h1v1; x

c
2� h2v2; . . . ; x

c
q� hqvqÞdv

¼ 2q
Z Yq

j¼1

GðvjÞ

" # Yq
j¼1

kðvjÞ

" #
Fðxc1� h1v1; x

c
2� h2v2; . . . ; x

c
q� hqvqÞdv

¼ 2q
Z Yq

j¼1

GðvjÞ

" # Yq
j¼1

kðvjÞ

" #
fFðxcÞ�

Xq
j¼1

F ð1Þj ðx
cÞhjvjgdvþO

Xq
j¼1

h2j

 !

¼ FðxcÞ� a0
Xq
j¼1

Fjðx
cÞhj þO

Xq
j¼1

h2j

 !
ðA:2Þ

where a0 ¼ 2
R
vGðvÞkðvÞdv.
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For the discrete variables, we have

Lðzd; u; lÞ ¼
Yr
s¼1

lðzds ; us; lÞ ¼
Yr
s¼1

ls
cs � 1

� �1ðzdsausÞ

ð1� lsÞ1ðz
d
s¼usÞ

¼
Yr
s¼1

ð1� lsÞ

 !
1ðzd ¼ uÞ þ

Xr
s¼1

ls
cs � 1

Yr
tas

ð1� ltÞ

 !
1sðz

d; uÞ

þO
Xr
s¼1

l2s

 !
¼ 1�

Xr
s¼1

ls

 !
1ðzd ¼ uÞ

þ
Xr
s¼1

ls
cs � 1

1sðz
d; uÞ þO

Xr
s¼1

l2s

 !
ðA:3Þ

where 1(zd ¼ u) and 1s(z
d, u) are indicator functions. 1s(z

d, u) denotes that zd

and u only differ in sth component. Note that if zd and u differ in more than
one component, Lðzd; u; lÞ ¼ Oð

Pr
s¼1l

2
s Þ.

From (A.3), it is easy to obtain:

X
u�xd

Lðzd; u; lÞ

" #2
¼

X
u�xd

1�
Xr
s¼1

ls

 !
1ðzd ¼ uÞ

"

þ
X
u�xd

Xr
s¼1

ls
cs � 1

1sðz
d; uÞ þO

Xr
s¼1

l2s

 !#2

¼ 1�
Xr
s¼1

ls

 !2 X
u�xd

1ðzd ¼ uÞ

" #

þ 2
Xr
s¼1

ls
cs � 1

X
u; v�xd

1ðzd ¼ uÞ1sðz
d ; vÞ

" #
þO

Xr
s¼1

l2s

 !

¼ 1� 2
Xr
s¼1

ls

 ! X
u�xd

1ðzd ¼ uÞ

" #

þ 2
Xr
s¼1

ls
cs � 1

XX
uav

1ðzd ¼ uÞ1sðu; vÞ

" #

þO
Xr
s¼1

l2s

 !
ðA:4Þ

Here and in the following, for any two vectors x; y 2 Rr, xry denotes xiryi
for all i ¼ 1, y, r, where xi and yi are the ith component of x and y,
respectively.
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We use f(xc|xd) and F(xc|xd) to denote the conditional density function
and conditional CDF of X, respectively. Then,

f ðxc;xdÞ ¼ f ðxcjxdÞpðxdÞ (A.5)

Fðxc; xdÞ ¼
X

zd2Sd; zd�xd

FðxcjzdÞpðzdÞ (A.6)

With (A.5) and (A.6), we can calculate E½Gð�Þ
P

Lð�Þ� by two steps. First,
integrate the integrand with respect to xc conditional on xd and then take the
summation with respect to xd. Thus,

E F̂ðxc;xdÞ
� �

¼ E G
xc�Xc

i

h

� �X
u�xd

LðXd
i ;u;lÞ

" #

¼
X
zd2Sd

Z
G

xc� zc

h

� �X
u�xd

Lðzd;u;lÞf ðzcjzdÞpðzdÞdzc

¼
X
zd2Sd

Z
G

xc� zc

h

� �
f ðzcjzdÞdzc

� � X
u�xd

Lðzd;u;lÞ

 !
pðzdÞ

¼
X
zd2Sd

FðxcjzdÞþ
k2
2

Xq
j¼1

F
ð2Þ
jj ðx

cjzdÞh2j

 "

þO
Xq
j¼1

h3j

 !!X
u�xd

1�
Xr
s¼1

ls

 !
1ðzd ¼ uÞ

 

þ
Xr
s¼1

ls
cs� 1

1sðz
d;uÞþO

Xr
s¼1

l2s

 !!#
pðzdÞ

¼ Fðxc; xdÞþ
Xr
s¼1

1

cs� 1

X
zd2Sd

X
u�xd

1sðz
d; uÞFðxcjxdÞpðxdÞ�Fðxc; zdÞ

" #
ls

þ
Xq
j¼1

k2
2
F
ð2Þ
jj ðx

c; xdÞ
h i

h2j þO
Xq
j¼1

h3j þ
Xr
s¼1

l2s

 !

¼ Fðxc; xdÞþ
Xq
j¼1

B1jh
2
j þ
Xr
s¼1

B2slsþO
Xq
j¼1

h3j þ
Xr
s¼1

l2s

 !
ðA:7Þ

where B1j¼ðk2=2ÞF
ð2Þ
jj ðx

c;xdÞ; B2s ¼ ð1=ðcs� 1ÞÞ
P

zd2Sd

P
u�xd1sðz

d;uÞFðxcjxdÞ
pðxdÞ�Fðxc;xdÞ.
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So we obtain

biasðF̂ðxc;xdÞÞ ¼
Xq
j¼1

B1jh
2
j þ

Xr
s¼1

B2sls þO
Xq
j¼1

h3j þ
Xr
s¼1

l2s

 !
(A.8)

Similarly, combining (A.2) and (A.4), we have

E G2 xc � Xc
i

h

� � X
u�xd

LðXd
i ; u; lÞ

" #224 35
¼
X
zd2Sd

Z
G2 xc � zc

h

� � X
u�xd

Lðzd; u; lÞ

" #2
f ðzcjzdÞpðzdÞdzc

¼
X
zd2Sd

FðxcjzdÞ � a0
Xq
j¼1

F
ð1Þ
j ðx

cjzdÞhj þO
Xq
j¼1

h2j

 !" #

� 1� 2
Xr
s¼1

ls

 !X
u�xd

1ðzd ¼ uÞ

"

þ 2
Xr
s¼1

ls
cs � 1

XX
uav

1ðzd ¼ uÞ1sðu; vÞ þO
Xr
s¼1

l2s

 !#
pðzdÞ

¼ Fðxc;xdÞ � a0
Xq
j¼1

F
ð1Þ
j ðx

c;xdÞhj

þ
Xr
s¼1

2

cs � 1

XX
uav

1sðu; vÞFðx
cjuÞpðuÞ � 2Fðxc; xdÞ

" #
ls

þO
Xq
j¼1

h2j þ
Xr
s¼1

l2s

 !

¼ Fðxc;xdÞ �
Xq
j¼1

A1jhj þ
Xr
s¼1

C2sls þO
Xq
j¼1

h2j þ
Xr
s¼1

l2s

 !

where A1j¼a0F
ð1Þ
j ðx

c; xdÞ;C2s ¼ ð2=ðcs�1ÞÞ
PP
uav

1sðu; vÞFðxcjuÞpðuÞ �2Fðxc; xdÞ.
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Hence,

var½F̂ðxc;xdÞ� ¼
1

n
var G

xc �Xc
i

h

� �X
u�xd

LðXd
i ; u;lÞ

" #

¼
1

n
E G2 xc �Xc

i

h

� � X
u�xd

LðXd
i ;u;lÞ

 !2
24 3524

� E G
xc �Xc

i

h

� �X
u�xd

LðXd
i ; u;lÞ

" #" #235
¼

1

n
Fðxc;xdÞ �

Xq
j¼1

A1jhj þ
Xr
s¼1

C2sls þO
Xq
j¼1

h2j þ
Xr
s¼1

l2s

 !"

�ðFðxc;xdÞþ
Xq
j¼1

B1jh
2
j þ

Xr
s¼1

B2sls þO
Xq
j¼1

h3j þ
Xr
s¼1

l2s

 !!2
35

¼
1

n
Fðxc;xdÞð1� Fðxc;xdÞÞ �

Xq
j¼1

A1j
hj

n

þ
Xr
s¼1

ðC2s � 2Fðxc;xdÞB2sÞ
ls
n

þO
1

n

Xq
j¼1

h2j þ
1

n

Xr
s¼1

l2s

 !

¼
1

n
Fðxc;xdÞð1� Fðxc;xdÞÞ �

Xq
j¼1

A1j
hj

n
þ
Xr
s¼1

C2s
ls
n

þO
1

n

Xq
j¼1

h2j þ
1

n

Xr
s¼1

l2s

 !
ðA:9Þ

where A2s ¼ C2s�2F(x
c, xd)B2s.
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Using (A.8) and (A.9), we have

MSEðF̂ðxc;xdÞÞ ¼ ½biasðF̂ðxc;xdÞÞ�2 þ varðF̂ðxc; xdÞÞ

¼
Xq
j¼1

B1jh
2
j þ

Xr
s¼1

B2sls þO
Xq
j¼1

h3j þ
Xr
s¼1

l2s

 ! !2

þ
1

n
Fðxc;xdÞð1� Fðxc; xdÞÞ �

Xq
j¼1

A1j
hj

n
þ
Xr
s¼1

A2s
ls
n

þO
1

n

Xq
j¼1

h2j þ
1

n

Xr
s¼1

l2s

 !
¼

1

n
Fðxc;xdÞð1� Fðxc; xdÞÞ

�
Xq
j¼1

A1j
hj

n
þ
Xr
s¼1

A2s
ls
n
þ

Xq
j¼1

B1jh
2
j þ

Xr
s¼1

B2sls

 !2

þO
1

n

Xq
j¼1

h2j þ
1

n

Xr
s¼1

l2s þ
Xq
j¼1

h6j þ
Xr
s¼1

l4s

 !
Thus, we obtain

MISEðF̂ðxc;xdÞÞ ¼
X
xd2Sd

Z
MSEðF̂ðxc;xdÞÞdxc ¼

X
xd2sd

Z
1

n
Fðxc;xdÞð1� Fðxc;xdÞÞ

�

�
Xq
j¼1

A1j
hj

n
þ
Xr
s¼1

A2s
ls
n
þ

Xq
j¼1

B1jh
2
j þ
Xr
s¼1

B2sls

 !2
1Adxc

þO
1

n

Xq
j¼1

h2j þ
1

n

Xr
s¼1

l2s þ
Xq
j¼1

h6j þ
Xr
s¼1

l4s

 !

¼ ZT
X
xd2Sd

Z
BBTdxc

 !
Zþ

1

n
AT ~Z

þ
1

n

X
xd2Sd

Z
Fðxc;xdÞð1� Fðxc;xdÞÞdxc

þO
1

n

Xq
j¼1

h2j þ
1

n

Xr
s¼1

l2s þ
Xq
j¼1

h6j þ
Xr
s¼1

l4s

 !
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where Z ¼ ðh21; . . . ; h
2
q; l1; . . . ; lrÞ

T ; ~Z ¼ ðh1; . . . ; hq; l1; . . . ; lrÞT ; B¼
ðB11; . . . ; B1q; B21; . . . ; B2rÞ

T and A¼
P

xd2Sd

R
ð�A11; . . . ; �A1q; A21; . . . ;

A2rÞ
Tdxc.

Let Wi ¼ Gððxc � Xc
i Þ=hÞ

P
u�xdLðX

d
i ; u; lÞ. From (A.8), (A.9), and condi-

tion (C3), we have

ffiffiffi
n
p

F̂ðxc; xdÞ � Fðxc;xdÞ �
Xq
j¼1

B1jh
2
j �

Xr
s¼1

B2sls

 !

¼
1ffiffiffi
n
p
Xn
i¼1

Wi � Fðxc;xdÞ �
Xq
j¼1

B1jh
2
j �

Xr
s¼1

B2sls

" #

¼
1ffiffiffi
n
p
Xn
i¼1

½Wi � EðWiÞ� þ
ffiffiffi
n
p

Op

Xq
j¼1

h3j þ
Xr
s¼1

l2s

 !

�!
d

Nð0;Fðxc;xdÞð1� Fðxc;xdÞÞÞ

by Lyapunov’s central limit theorem and varðð1=
ffiffiffi
n
p
Þ
Pn

i¼1½Wi � EðWiÞ�Þ

! Fðxc;xdÞð1� Fðxc;xdÞÞ. This completes the proof of Theorem 1.

APPENDIX B. PROOF OF THEOREM 2

Proof of Theorem 2

Recall that

CVðh; lÞ ¼
1

n

Xn
i¼1

X
xd2Sd

Z
ðIðxc;Xc

i ÞIðx
d;Xd

i Þ � F̂�iðx
c;xdÞÞ2dxc

" #

where F̂�iðx
c;xdÞ¼ð1=ðn�1ÞÞ

P
jaiGððx

c�Xc
j Þ=hÞ

P
u�xdLðX

d
j ; u; lÞ; Iðx

c;Xc
i Þ¼

1ðXc
i � xcÞ, and Iðxd;Xd

i Þ ¼ 1ðXd
i � xdÞ.

Let I i 	 Iðx;XiÞ ¼ Iðxc;Xc
i ÞIðx

d;Xd
i Þ and H ¼ CVðh; lÞ � ð1=nÞPn

i¼1

P
xd2sd

R
½Iðx;XiÞ � Fðxc;xdÞ�2dxc. For simplicity, we use F̂�i and

F to denote F̂�iðx
c; xdÞ and F(xc, xd), respectively, throughout this appendix.
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Then we have

nH ¼
X
i

X
xd2Sd

Z
½ðI i � F̂�iÞ

2
� ðI i � FÞ2�dxc

¼
X
i

X
xd2Sd

Z
fðF̂�i � FÞ2 � 2ðI i � FÞðF̂�i � FÞgdxc

¼
X
i

X
xd2Sd

Z
ðF̂�i � FÞ2dxc � 2

X
i

X
xd2Sd

Z
ðI i � FÞðF̂�i � FÞdxc

	 S1 � 2S2 ðB:1Þ

Let Di ¼ Gððxc � Xc
i Þ=hÞ

P
u�xdLðX

d
i ; u; lÞ � Fðxc;xdÞ; D0

i ¼ I i � F , then

S1 ¼
X
i

X
xd2Sd

Z
ðF̂�i � FÞ2dxc ¼

X
i

X
xd2Sd

Z
n

n� 1
ðF̂ � FÞ �

1

n� 1
Di

� �2
dxc

¼
n3

ðn� 1Þ2

X
xd2Sd

Z
ðF̂ � FÞ2dxc �

2n

ðn� 1Þ2

X
i

X
xd2Sd

Z
ðF̂ � FÞDidx

c

þ ðn� 1Þ�2
X
i

X
xd2Sd

Z
D2

i dx
c

¼
n3 � 2n2

ðn� 1Þ2

X
xd2Sd

Z
ðF̂ � FÞ2dxc þ

1

ðn� 1Þ2

X
i

X
xd2Sd

Z
D2

i dx
c ðB:2Þ

and

S2 ¼
X
i

X
xd2Sd

Z
ðI i � FÞðF̂�i � FÞdxc

¼
X
i

X
xd2Sd

Z
ðI i � FÞ

n

n� 1
ðF̂ � FÞ �

1

n� 1
Di

� �
dxc

¼
n2

n� 1

X
xd2Sd

Z
1

n

X
i

I i � F

" #
ðF̂ � FÞdxc �

1

n� 1

X
i

X
xd2Sd

Z
ðI i � FÞDidx

c

¼
n2

n� 1

X
xd2Sd

Z
ðFn � FÞðF̂ � FÞdxc �

1

n� 1

X
i

X
xd2Sd

Z
DiD

0
i dx

c ðB:3Þ

by noting that Fn 	 Fnðx
c;xdÞ ¼ ð1=nÞ

Pn
i¼1Iðx

c;Xc
i ÞIðx

d ;Xd
i Þ 	 ð1=nÞ

P
iI i.
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Combining (B.1), (B.2), and (B.3), we have

H ¼ 1

n
½S1 � 2S2�

¼ 1�
1

ðn� 1Þ2

� � X
xd2Sd

Z
ðF̂ � FÞ2dxc þ

1

nðn� 1Þ2

X
i

X
xd2Sd

Z
D2

i dx
c

� 2 1þ
1

n� 1

� � X
xd2Sd

Z
ðFn � FÞðF̂ � FÞdxc

þ
2

nðn� 1Þ

X
i

X
xd2Sd

Z
DiD

0
i dx

c ðB:4Þ

Let mðh; lÞ ¼
P

xd2Sd

R
EðDiD

0
i Þdx

c. Using lemma (B.1) and (B.4), we have
that

Hþ
X
xd2Sd

Z
ðFn � FÞ2dxc ¼

X
xd2Sd

Z
ðF̂ � FnÞ

2dxc

�
1

ðn� 1Þ2

X
xd2Sd

Z
ðF̂ � FÞ2dxc �

2

n� 1

X
xd2Sd

Z
ðFn � FÞðF̂ � FÞdxc

þ
1

nðn� 1Þ2

X
i

X
xd2Sd

Z
D2

i dx
c þ

2

nðn� 1Þ

X
i

X
xd2Sd

Z
DiD

0
i dx

c

¼
X
xd2Sd

Z
ðF̂ � FnÞ

2dxc þ
2

n� 1
mðh; lÞ

þOp n�3=2 þ n�1
Xq
j¼1

h4j þ n�1
Xr
s¼1

l2s

 !
ðB:5Þ

Recall that Wi ¼ Gððxc � Xc
i Þ=hÞ

P
u�xdLðX

d
i ; u; lÞ, we have that

X
xd2Sd

Z
ðF̂ �FnÞ

2dxc ¼
X
xd2Sd

Z
1

n

Xn
i¼1

Wi�
1

n

Xn
i¼1

I i

 !2

dxc

¼
1

n2

XX
iaj

X
xd2Sd

Z
ðWi � I iÞðWj � I jÞdx

c

þ
1

n2

X
i

X
xd2Sd

Z
ðWi � I iÞ

2dxc

¼
1

n2

XX
iaj

gðXi;XjÞ þ
1

n2

Xn
i¼1

gðXi;XiÞ ¼ SþT ðB:6Þ
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where the definitions of S and T are obvious, and gðXi;XjÞ ¼
P

xd2SdR
ðWi � I iÞðWj � I jÞdx

c.
We can see that S is a second-order U-statistic. Define g1(x) ¼ E[g(x, X1)]

and g0 ¼ E[g1(X1)], then we have g1(Xi) ¼ E[g(Xi, Xj)|Xi] and g1(Xj) ¼
E[g(Xi, Xj)|Xj], if i 6¼ j. Using the Hoeffding decomposition, we have

S ¼ n�2
XX

iaj

gðXi;XjÞ

¼ n�2
XX

iaj

fgðXi;XjÞ � g1ðXjÞ � g1ðXjÞ þ g0g

þ 2
1

n
1�

1

n

� �Xn
i¼1

fg1ðXiÞ � g0g þ 1�
1

n

� �
g0

¼ Sð1Þ þ Sð2Þ þ 1�
1

n

� �
g0 ðB:7Þ

where the definitions of S(1) and S(2) are obvious.
Then by the law of iterated expectations, we have

EðSð1ÞÞ ¼ n�2
XX

iaj

½EðgðXi;XjÞÞ � Eðg1ðXiÞÞ � Eðg1ðXjÞÞ þ g0� ¼ 0 (B.8)

EðSð2ÞÞ ¼ 2n�1ð1� n�1Þ
Xn
i¼1

ðEðg1ðXiÞÞ � g0Þ ¼ 0 (B.9)

Also, it is easy to see that E[S(1)|Xi] ¼ 0 for all i ¼ 1, y, n and
E[S(2)|Xj] ¼ 0 for j 6¼ i, since Xi and Xj are independent. Thus, we have

EðSð1ÞÞ2 ¼ E n�2
XX

iaj

ðgðXi;XjÞ � g1ðXiÞ � g1ðXjÞ þ g0Þ

 !2

¼ n�4
XX

iaj

EðgðXi;XjÞ � g1ðXiÞ � g1ðXjÞ þ g0Þ
2

ðB:10Þ

and

EðSð2ÞÞ2 ¼ E 2n�1ð1� n�1Þ
Xn
i¼1

ðg1ðXiÞ � g0Þ

" #2

¼
4ðn� 1Þ2

n4

Xn
i¼1

E½g1ðXiÞ � g0�
2

(B.11)
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From lemma B.2 and (B.10), (B.11), we have

EðSð1ÞÞ2 ¼ O
1

n4
ðn2 � nÞðEðgðXi;XjÞÞ

2
þ Eðg1ðX1ÞÞ

2
þ g20

� �
¼ O n�2

Xq
j¼1

h3qj þ
Xq
j¼1

h2qþ4j þ
Xq
j¼1

h8j þ
Xr
s¼1

l4s

 ! !

and

EðSð2ÞÞ2 ¼
4ðn� 1Þ2

n4

Xn
i¼1

E½g1ðXiÞ � g0�
2

¼ O n�1
Xq
j¼1

h
2qþ4
j þ

Xq
j¼1

h8j þ
Xr
s¼1

l4s

 ! !

Also, E½gðX1;X1Þ�
2¼E½

P
xd2Sd

R
ðW1 � I1Þ

2dxc�2 ¼ Oð1Þ implies VarðTÞ ¼
Varðn�2

P
igðXi;XiÞÞ ¼ ð1=n3ÞVarðgðXi;XiÞÞ ¼ Oðn�3Þ.

Combining (B.6) and (B.7), we have
P

xd2Sd

R
ðF̂ � FnÞ

2dxc ¼ S þ T ¼
Sð1Þ þ Sð2Þ þ ð1� n�1Þg0 þ T .With (B.8) and (B.9), we have

E
X
xd2Sd

Z
ðF̂ � FnÞ

2dxc

" #
¼ EðSð1ÞÞ þ EðSð2ÞÞ þ ð1� n�1Þg0

þ EðTÞ ¼ ð1� n�1Þg0 þ EðTÞ

(B.12)

Using (B.10), (B.11), and (B.12), we can see that Eð
P

xd2Sd

R
ðF̂ � FnÞ

2dxc �

ð1 � n�1Þg0 � EðTÞÞ2 ¼ E½S þ T � ð1� n�1Þg0 � EðTÞ�2 ¼ E½Sð1Þ þ Sð2Þ þ
ðT � EðTÞÞ�2 ¼ OðEðSð1ÞÞ2 þ EðSð2ÞÞ2 þ VarðTÞÞ ¼ Oðn�3 þ n�2

Pq
j¼1h

3q
j þ

n�1
Pq

j¼1h
2qþ4
j þ n�1

Pq
j¼1h

8
j þ n�1

Pr
s¼1l

4
s Þ. Hence,

X
xd2Sd

Z
ðF̂ � FnÞ

2dxc ¼ EðTÞ þ ð1� n�1Þg0

þOp n�3=2 þ n�1
Xq
j¼1

h
3q=2
j þ n�1=2

Xq
j¼1

h
qþ2
j

 

þ n�1=2
Xq
j¼1

h4j þ n�1=2
Xr
s¼1

l2s

!
ðB:13Þ
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Combining (B.5), (B.12), and (B.13), we have

Hþ
X
xd2Sd

Z
ðFn�FÞ2dxc ¼ EðTÞ þ ð1� n�1Þg0þ 2ðn� 1Þ�1mðh;lÞ

þOp n�3=2þ n�1
Xq
j¼1

h
3q=2
j þ n�1=2

Xq
j¼1

h
qþ2
j þ n�1=2

Xq
j¼1

h4j þ n�1=2
Xr
s¼1

l2s

 !

¼ E
X
xd2Sd

Z
ðF̂ �FnÞ

2dxc

" #
þ 2ðn� 1Þ�1mðh;lÞ þOp n�3=2þ n�1

Xq
j¼1

h
3q=2
j

 

þ n�1=2
Xq
j¼1

h
qþ2
j þ n�1=2

Xq
j¼1

h4j þ n�1=2
Xr
s¼1

l2s

!
ðB:14Þ

It is easy to see that

E
X
xd2Sd

Z
ðF̂ �FnÞ

2dxc

" #
¼
X
xd2Sd

Z
E½ðF̂ �FÞ2�dxcþ

X
xd2Sd

Z
E Fn� Fð Þ

2
� �

dxc

� 2E
X
xd2Sd

Z
EðF̂ �FÞðFn�FÞdxc�

" #

¼
X
xd2Sd

Z
E½ðF̂ �FÞ2�dxcþ

X
xd2Sd

Z
E½ðFn�FÞ2�dxc

� 2
1

n

X
xd2Sd

Z
E½ðWi �FÞðI i �FÞ�dxc

¼
X
xd2Sd

Z
E½ðF̂ �FÞ2�dxc

þ
X
xd2Sd

Z
E½ Fn�Fð Þ

2
�dxc�

2

n
mðh;lÞ

Also, we have mðh;lÞ ¼ E½
P

xd2Sd

R
ðDiD

0
i Þdx

c� ¼
P

xd
1
2Sd

R
f
P

xd2Sd

R
ðGðvÞP

u�xdLðx
d
1 ;u;lÞ�Fðxc1þ hv;xdÞÞðIðxc1þ hv;xc1ÞIðx

d;xd1Þ �Fðxc1þ hv;xdÞÞhdvg
f ðxc1;x

d
1Þdx

c
1 ¼Oð

Pq
j¼1h

q
j Þ.

Thus, we have

E
X
xd2Sd

Z
ðF̂ �FnÞ

2dxc

" #
¼
X
xd2Sd

Z
E½ðF̂ �FÞ2�dxc

þ
X
xd2Sd

Z
E½ðFn�FÞ

2
�dxcþO n�1

Xq
j¼1

h
q
j

 ! (B.15)
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Combining (B.14) and (B.15), we obtain that

Hþ
X
xd2Sd

Z
ðFn�FÞ2dxc �

X
xd2Sd

Z
E½ðFn�FÞ2�dxc ¼

X
xd2Sd

Z
E½ðF̂ �FÞ2�dxc

þOp n�3=2þ n�1
Xq
j¼1

h
q
j þ n�1=2

Xq
j¼1

h
qþ2
j þ n�1=2

Xq
j¼1

h4j þ n�1=2
Xr
s¼1

l2s

 !

That is,

CVðh; lÞ þ Jn ¼MISEðh; lÞ þOp n�3=2 þ n�1
Xq
j¼1

h
q
j

 

þn�1=2
Xq
j¼1

h
qþ2
j þ n�1=2

Xq
j¼1

h4j þ n�1=2
Xr
s¼1

l2s

!

Essentially, we have proved the upper bound of the second moment of
CV(h, l)þJn–MISE(h, l). Using Markov’s inequality to the left hand side
of (B.16) and Rosenthal’s inequality (see Hall & Heyde, 1980, p. 23) to S(1)

in (B.7) and repeating the previous proof, we can give the upper bound of
each order moment of CV(h, l)þJn�MISE(h, l). With the aid of nd and the
differentiability of the kernel function, we can get

P sup jCVðh; lÞ þ Jn �MISEðh; lÞj4 n�3=2 þ n�1
Xq
j¼1

h
q
j

 (

þn�1=2
Xq
j¼1

hqþ2j þ n�1=2
Xq
j¼1

h4j þ n�1=2
Xr
s¼1

l2s Þn
d

!)
¼ Oðn�gÞ

(B.16)

for arbitrarily large g. Then by the Borel–Cantelli lemma, we obtain the
uniform strong convergence.

This completes the proof of Theorem 2.

Lemma B.1.

(i)
X
xd2Sd

Z
ðF̂ � FÞ2dxc þ

X
xd2Sd

Z
ðFn � FÞðF̂ � FÞdxc

¼ Op n�1 þ
Xq
j¼1

h4j þ
Xr
s¼1

l2s

 !

(ii) n�3
X
i

X
xd2Sd

Z
D2

i dx
c ¼ Opðn

�2Þ and n�2
X
i

X
xd2Sd

Z
DiD

0
i dx

c

¼ n�1
X
xd2Sd

Z
EðDiD

0
i Þdx

c þOðn�3=2Þ.
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Proof. From (A.8) and (A.9), we have F̂ � F ¼ Opðn
�1=2 þ

Pq
j¼1h

2
jþPr

s¼1lsÞ. So we have
P

xd2Sd

R
ðF̂ � FÞ2dxc ¼ Opðn

�1 þ
Pq

j¼1h
4
jþ
Pr

s¼1l
2
s Þ.

It is easy to see that E½Fnðx
c;xdÞ� ¼ E½Iðx;XiÞ� ¼ Fðxc; xdÞ and Var(Fn

(xc, xd)) ¼ n�1{E[I(x, Xi)]
2
�(E[I(x, Xi)])

2} ¼ n�1F(xc, xd)[1�F(xc, xd)].

Thus, we have E½Fnðx
c;xdÞ � Fðxc;xdÞ�2 ¼ Var½Fnðx

c;xdÞ� ¼ Oð1=nÞ,

which implies Fnðx
c;xdÞ � Fðxc;xdÞ ¼ Opðn

�1=2Þ and
P

xd2Sd

R
ðFn � FÞ

ðF̂ � FÞdxc ¼ Oðn�1 þ
Pq

j¼1h
4
j þ

Pr
s¼1l

2
s Þ.

From the law of large numbers and the central limit theorem, we
get that n�1

P
iD

2
i ¼ Opð1Þ and n�1

P
iDiD

0
i ¼ EðDiD

0
i Þ þOpðn

�1=2Þ.

Therefore, n�3
P

i

P
xd2Sd

R
D2

i dx
c ¼ n�2ð1=nÞ

P
i

P
xd2Sd

R
D2

i dx
c ¼ Opðn

�2Þ

and n�2
P

i

P
xd2Sd

R
DiD

0
i dx

c ¼ n�1
P

xd2Sd

R
EðDiD

0
i Þdx

c þOpðn
�3=2Þ.

This completes the proof of this lemma.

Lemma B.2. (i) E½gðX1;X2Þ
2
� ¼ Oð

Pq
j¼1h

3q
j Þ; (ii) Eðg1ðX1ÞÞ

2
¼

Oð
Pq

j¼1h
2qþ4
j þ

Pr
s¼1l

4
s Þ; (iii) g0 ¼ Oð

Pq
j¼1h

4
j þ

Pr
s¼1l

2
s Þ.

Proof. Using the change of variables, we have

E½gðX1;X2Þ�
2 ¼

X
xd
1
2Sd

X
xd
2
2Sd

Z X
xd2Sd

Z
G

xc� xc1
h

� �X
u�xd

Lðxd1 ;u;lÞ

"(

� Iðxc;xc1ÞIðx
d;xd1Þ

#

G
xc � xc2

h

� �X
u�xd

Lðxd2 ;u;lÞ � Iðxc;xc2ÞIðx
d;xd2Þ

" #
dxc

)2

� f ðxc1;x
d
1 ;x

c
2;x

d
2Þdx

c
1dx

c
2

¼
X
xd
1
2Sd

X
xd
2
2Sd

Z X
xd2Sd

Z
GðvÞ

X
u�xd

Lðxd1 ;u;lÞ � Iðxc1þ hv;xc1ÞIðx
d;xd1Þ

" #(

G vþ
xc1 � xc2

h

� �X
u�xd

Lðxd2 ;u;lÞ � Iðxc1þ hv;xc2ÞIðx
d;xd2Þ

" #
hdv

)2

� f ðxc1;x
d
1 ;x

c
2;x

d
2Þdx

c
1dx

c
2

¼
X
xd
1
2Sd

X
xd
2
2Sd

Z X
xd2Sd

Z
GðvÞ

X
u�xd

Lðxd1 ;u;lÞ � Iðhv;0ÞIðxd;xd1Þ

" #(

GðvþwÞ
X
u�xd

Lðxd2 ;u;lÞ � IðhðvþwÞ;0ÞIðxd;xd2Þ

" #
hdv

)2

� f ðxc2þ hw;xd1 ;x
c
2;x

d
2Þhdwdx

c
2 ¼O

Xq
j¼1

h
3q
j

 !
ðB:17Þ
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From (A.7) and E(Ii) ¼ F(xc, xd), we obtain E½W1 � I1� ¼ Oð
Pq

j¼1h
2
jþPr

s¼1lsÞ. Then we have

Eðg1ðX1ÞÞ
2
¼ E

X
xd2Sd

Z
ðW1 � I1ÞE½W1 � I1�dx

c

( )2

¼ ðE½W1 � I1�Þ
2
X
xd
1
2Sd

Z X
xd2Sd

Z
G

xc � xc1
h

� �X
u�xd

Lðxd1 ; u; lÞ

 (

� Iðxc;xc1ÞIðx
d; xd1Þ

!
dxc

)2

dxc1

¼ O
Xq
j¼1

h4j þ
Xr
s¼1

l2s

 ! X
xd
1
2Sd

Z X
xd2Sd

Z
GðvÞ

X
u�xd

Lðxd1 ; u; lÞ

 (

� Iðxc1 þ hv; xc1ÞIðx
d;xd1Þ

!
hdv

)2

dxc1

¼ O
Xq
j¼1

h2qþ4j þ
Xr
s¼1

l4s

 !
. ðB:18Þ

It is easy to see that g0 ¼ E½g1ðX1Þ� ¼ ðE½W1 � I1�Þ
2
¼ Oð

Pq
j¼1h

4
jþPr

s¼1l
2
s Þ, which completes the proof.
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HIGHER ORDER BIAS

REDUCTION OF KERNEL

DENSITY AND DENSITY

DERIVATIVE ESTIMATION

AT BOUNDARY POINTS

Peter Bearse and Paul Rilstone

ABSTRACT

A new, direct method is developed for reducing, to an arbitrary order,
the boundary bias of kernel density and density derivative estimators.
The basic asymptotic properties of the estimators are derived. Simple
examples are provided. A number of simulations are reported, which
demonstrate the viability and efficacy of the approach compared to
several popular alternatives.

1. INTRODUCTION

Bias reduction in kernel estimation has received considerable attention in
the statistics literature. As Jones and Foster (1993, 1996) and Foster (1995)
survey, most of the suggestions in this regard can be seen as special cases of
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generalized jackknifing in which linear combinations of kernels are
constructed to reduce bias. Several authors have considered bias reduction
in the context of a boundary problem. One way of viewing the boundary
problem is that the effective support of the kernel becomes truncated
so that the kernel neither integrates to one nor do its lower moments
vanish as is usually required for bias reduction. Hall and Wehrly (1991)
suggested ‘‘reflecting’’ data points around the boundary. This is somewhat
ad hoc however and does not necessarily remove bias. Gasser and
Müller (1979) have suggested various boundary kernels that mix the kernel
with a polynomial constructed so that the mixture has vanishing lower
moments. Contrasted with this, say, indirect approach, Rice (1984)
suggested a direct method for eliminating the second-order bias using
a linear combination of two estimators. However, this approach does
not readily generalize for higher order bias reduction. Jones (1993) shows
that a linear combination of a kernel and its derivative can also remove the
second-order bias. However, he does not consider how to remove higher
order bias.

In some situations one may wish to remove bias to a higher order. This
may be the case in purely nonparametric estimation procedures when one
wants a higher rate of convergence. Also, in some semiparametric problems,
the kernel estimator of the nonparametric component of a model is assumed
to have the higher order bias removed. For example, this is the case in Klein
and Spady (1993) and Bearse, Canals, and Rilstone (2007). In many
instances, such as with duration models, boundary problems are the norm
rather than the exception.

In this paper we propose an alternative direct approach to higher order
bias reduction. In the simulations we have conducted, we find that our
approach has distinct advantages over other approaches.

The intuition of our approach is as follows. Let Yi, i ¼ 1,y,N, be i.i.d.
random variables whose common density f has support [0,N). It is assumed
that f (0)W0. We focus on estimating at points close to zero. Right boundary
problems and nonzero boundary problems can be dealt with in an
analogous fashion. Let bf be a standard kernel density estimator:

bf ðyÞ ¼ 1

Ng

XN
i¼1

K
y� Yi

g

� �
(1)

where K has support [�1, 1]. Let g(s) denote the s-order derivative of a
function g. Put gjmj ¼ ðg; gð1Þ; gð2Þ; . . . ; gðmÞÞT, where superscript T indicates
transposition. Under standard regularity conditions, it is straightforward
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that the expected value of bf ð yÞ can be derived as

E½ bf ð yÞ� ¼ 1

g
E K

y� Yi

g

� �� �
¼

Z y=g

�1

KðwÞf ð y� wgÞdw

¼ f ð yÞ

Z y=g

�1

KðwÞdw� gf ð1Þð yÞ
Z y=g

�1

wKðwÞdw

þ � � � þ gsf ðsÞð yÞ
Z y=g

�1

KðwÞ
ð�wÞs

s!
dwþ gsþ1Oð1Þ ð2Þ

By inspection, the first-order bias can be removed by dividing the usual
estimator by

R y=g
�1 KðwÞdw. Rice’s (1984) proposal of taking a linear combina-

tion of two kernel estimators effectively provides a discrete approximation
to f (1)( y). This approach can be extended to removing higher order bias, but
the resulting estimator is somewhat unwieldy.

Our approach is as follows. By inspection, it is clear that any
unbiased estimator of f (1)( y) can be used to remove the bias of bf to order
g2. However, the usual kernel density estimator of f (1)( y) is biased in the

same manner that bf is. In fact, the second-order bias of bf ð1Þ depends on f,

f (1), and f (2). More generally, it can be shown that the bias of, say, bf ð jÞ; j � s

depends on f, f (1),y, f (s). In Section 2 we show how to construct a linear
combination of bf and its derivatives to obtain an estimator, unbiased to
arbitrary order.

To illustrate this in the second-order case we have the following. Put
K j1j ¼ ðK ; K ð1ÞÞT . By standard manipulations we have

E K 1j j y�Yi

g

� �� �
¼ f ðyÞg

Z y=g

�1

K 1j jðwÞdw� g2f ð1ÞðyÞ
Z y=g

�1

K j1jðwÞwdwþ g3Oð1Þ

(3)

Let

Q2

y

g

� �
¼

Z y=g

�1

K j1jðwÞð1;�wÞdw; G2

g 0

0 g2

 !
(4)

so that Q2 is a matrix of incomplete moments of K|1|. (Note that, for most
kernels used in estimation, this is simply the identity matrix for yZg.)
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It is straightforward that

E K 1j j y� Yi

g

� �� �
¼ Q2

y

g

� �
G2f

j1j
ð yÞ þ g2Oð1Þ (5)

Therefore, with

~f
j1j
ðyÞ ¼ G�12 Q2

y

g

� ��1
1

N

XN
i¼1

K j1j
y� Yi

g

� �
(6)

we have

E½ ~f
j1j
ðyÞ� ¼ G�12 Q2

y

g

� ��1
E K j1j

y� Yi

g

� �� �
¼ f j1jðyÞ þ g3G�1Oð1Þ ð7Þ

so that, using the first element of this to estimate f (y), we have

E½ ~f ðyÞ� ¼ f ðyÞ þ g2Oð1Þ (8)

Also note that the second element of ~f
j1j
ðyÞ provides an estimator of f (1)(y),

which is also unbiased to order O(g2).
In the next section we show how bias reduction can be done to arbitrary

order. We also derive the pointwise variance and hence get a pointwise rate
of convergence. In Section 3 we use a simple simulation to show how the
procedure works in practice and compare its performance to unadjusted
kernels and boundary kernels. Section 4 concludes the paper.

2. ASYMPTOTIC PROPERTIES AND EXAMPLE

Before stating the estimator, some additional notation is useful. Put

WsðwÞ ¼ 1;�w;
ð�wÞ2

2!
; . . . ;
ð�wÞs�1

ðs� 1Þ!

� �
(9)

and

Gs ¼ Diagðg; g2; . . . ; gsÞ (10)

Define an s� s matrix of partial moments for K|s–1| by

Qs

y

g

� �
¼

Z y=g

�1

K js�1jðwÞWsðwÞdw (11)
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and define a 1� s row vector i0 ¼ ð1; 0; . . . ; 0Þ. The estimator is thus
given by

~f ðyÞ ¼ i0G�1s Q�1s

y

g

� �
1

N

XN
i¼1

K s�1j j y� Yi

g

� �
(12)

We make standard assumptions about the kernel and window width
as follows. K is bounded with support [�1, 1];

R
KðwÞdw ¼ 1; and K(w) is

s-times differentiable. K(w) is an s-order kernel such that, for some
s�1;

R
wmKðwÞdw ¼ 0 for m ¼ 1,y, s�1 and

R
jwjsjKðwÞjdwo1. The

window width sequence satisfies limN!1g ¼ 0 and limN!1Ng ¼ 1; Qs is
nonsingular; and the elements of Q�1s are finite.

Proposition 1. Suppose that f (y) is differentiable to order s, and these
derivatives are uniformly bounded. Then, uniformly in yZ0,

E½ ~f ðyÞ� � f ðyÞ ¼ OðgsÞ

Proof. Using a change of variables and an sth-order Taylor series
expansion of f we have,

E K s�1j j y� Yi

g

� �� �
¼

Z 1
0

K s�1j j y� Yi

g

� �
f ðYiÞdYi

¼ g
Z y=g

�1

K s�1j jðwÞ f ðy� wgÞdw

¼ g
Z y=g

�1

K s�1j jðwÞ
Xs�1
k¼0

f ðkÞðyÞ
ð�wgÞk

k!
þ f ðsÞð �yÞ

ð�wgÞs

s!

" #
dw

¼ Qs

y

g

� �
Gs f

s�1j j
ðyÞ þ gsþ1

Z y=g

�1

K s�1j jðwÞ f ðsÞð �yÞ
ð�wÞs

s!
dw ð13Þ

where �y is a mean value.1 Since Q�1s ðy=gÞ; K
js�1j, and f (s) are bounded, we

have

E i0G�1s Qs

y

g

� ��1
K s�1j j y� Yi

g

� �" #
� f ðyÞ

�����
����� � gsC (14)

uniformly in yZ0. QED
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Put

MN ¼Qs

y

g

� ��1
E K s�1j j y�Yi

g

� �
K s�1j j y�Yi

g

� �T
" #

Qs

y

g

� ��1 !T

¼ gf ðyÞQs

y

g

� ��1 Z y=g

�1

K js�1jðwÞK js�1jðwÞT
� �

dw Qs

y

g

� ��1 !T

þ oðgÞ ð15Þ

The variance of the estimator is given by the following result.

Proposition 2. Suppose that f (y) is differentiable to order s, and these
derivatives are uniformly bounded. Then,

Var½ ~f ðyÞ� ¼
1

Ng
f ðyÞ

Z 1

�1

KðwÞ2dwþ o
1

Ng

� �

Proof. The result follows by standard change of variables as follows.

Var½ ~f
½s�1�
ðyÞ�

¼
1

N
G�1s Qs

y

g

� ��1
Var K s�1j j y� Yi

g

� �� �
Qs

y

g

� ��1 !T

G�1s

¼
1

N
G�1s MNG�1s þ G�1s o

g
N

� �
G�1s ð16Þ

Note that i0G�1 ¼ g�1i0. From the property that K is an sth-order kernel,
the first row of Qs(1) is i0. Qs(1)

�1 has the same property. (This is easily
shown using the properties of partitioned matrices.) Hence,
limN!1i0Qsðy=gÞ

�1
¼ i0 and

Var½i0 ~f
s�1j j
ðyÞ� ¼

1

N
g�1f ðyÞi0

Z 1

�1

½K js�1jðwÞK js�1jðwÞT �dwi00 þ o
1

Ng

� �
and the result follows. QED

Remarks.

1. Note that the asymptotic variance is the same as the usual formula
when there is no boundary issue. It may be possible to get a more
accurate measure of dispersion by using Qs(y/g) in the calculations.
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2. By inspection, the bias and variance vanish as N-N, and so ~f ðyÞ is
consistent in mean squared error (MSE) and probability. Also by

inspection, the rate of convergence in MSE is given by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gs þ ðNgÞ�1

q
.

3. A biased reduced estimator of the jth derivative of f (y) is provided
by ~f

ð jÞ
ðyÞ ¼ ijþ1 ~f

js�1j
ðyÞ where ijþ1 ¼ ð0; . . . ; 0; 1; 0; . . . ; 0Þ and the

one is the jþ1’th element of ijþ1. It follows that the bias of ~f
ð jÞ
ðyÞ is

of order O(g s). It is also straightforward to confirm that
Var½ ~f

ð jÞ
ðyÞ� ¼ OððNg1þ2jÞ�1Þ. The rate of convergence in MSE is given

by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gs þ ðNg1þ2jÞ�1

q
.

4. Since each of the estimators are linear combinations of averages, it
follows that the estimators, appropriately normalized (and with the
appropriate conditions on the window width) are asymptotically
normal in distribution.

5. One might be interested in estimation at a sequence of points yN-c
where, for example, c could be the boundary point. We note that our
results are pointwise and stronger conditions may be necessary to derive

the properties of, say, ~f
js�1j
ðyN Þ in this case.

Consider a specific example using the Epanicheknikov kernel with s ¼ 1, 2:

KðwÞ ¼
3

4
ð1� w2Þ1½jwjo1� (17)

K j1jðwÞ ¼

3

4
ð1� w2Þ

�
3

2
w

0BB@
1CCA1½jwj � 1� (18)

Q1

y

g

� �
¼

Z y=g

�1

K ð0ÞðwÞdw

¼

Z y=g

�1

3

4
ð1� w2Þdw

¼
3

4

y

g
�

1

3

y

g

� �3
 !

� �1�
1

3
ð�1Þ3

� �" #

¼
3

4

2

3
þ

y

g
�

1

3

y

g

� �3
 !" #

ð19Þ
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Note, for y � g; Q1ð1Þ ¼ 1.

Q2

y

g

� �
¼

Z y=g

�1

KðwÞ

K ð1ÞðwÞ

 !
ð1� wÞdw

¼

Z y=g

�1

3

4
ð1� w2Þ �

3

4
ðw� w3Þ

�
3

2
w

3

2
w2

0BB@
1CCAdw

¼

3

4
w�

w3

3

� �
�
3

4

w2

2
�

w4

4

� �
�
3w2

4

3

6
w3

0BBB@
1CCCA
���������
y=g

�1

¼

3

4

2

3
þ

y

g
�

1

3

y

g

� �3
 !" #

3

4

1

4
�

1

2

y

g

� �2

�
1

4

y

g

� �4
 !" #

3

4
1�

y

g

� �2
 !

1

2
1þ

y

g

� �3
 !

0BBBBBB@

1CCCCCCA ð20Þ

Note, for y � g; Q2ð1Þ is simply the 2� 2 identity matrix.

3. MONTE CARLO STUDY

Here we examine the performance of our bias reducing density estimation
approach in the context of a small-scale Monte Carlo experiment. We
construct the data Yi, i ¼ 1,y, N, from an exponential (1) distribution
implying a left boundary of zero. We evaluate the performance of each
density estimator over a mesh of 101 equally spaced points in the boundary
region [0, g], where g	 g(N, K) is the smoothing parameter which is a
function of both the sample size and the underlying kernel K. We use sample
sizes N ¼ 50, 100, 200, and 500. We consider two kernels:2 the quadratic
kernel

K2ðwÞ ¼
3

4
ð1� w2ÞI ð�1;1ÞðwÞ (21)
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and the quartic kernel

K4ðwÞ ¼
15

32
ð3� 10w2 þ 7w4ÞI ð�1;1ÞðwÞ (22)

where I(–1,1) (w) is an indicator taking the value 1 if wA(�1, 1), and zero
otherwise. Each simulation is based on 500 replications (Tables 1 and 2).3

For a given kernel function K, we denote our bias reducing density
estimator with order of bias reduction s by ~f s. For the case of K2 we consider
s ¼ 1, 2, 3 while for K4 we consider s ¼ 1, 2, 3, 4, 5.

For comparative purposes we also consider the typical fixed bandwidth
density estimator

bf ðyÞ ¼ 1

Ng

XN
i¼1

K
y� Yi

g

� �
(23)

and the adaptive density estimator

f AðyÞ ¼
1

Ng

XN
i¼1

1

li
K

y� Yi

gli

� �
(24)

Table 1. Performance in the Boundary Region: Quadratic Kernel.

N g bf fA ~f 1
~f 2

~f 3 fGM

Average bias

50 0.9029 �0.0804 �0.0603 �0.0653 0.0102 0.0014 0.0183

100 0.7860 �0.0800 �0.0612 �0.0623 0.0084 0.0004 0.0138

200 0.6843 �0.0802 �0.0609 �0.0588 0.0065 �0.0008 0.0110

500 0.5697 �0.0786 �0.0587 �0.0514 0.0070 0.0015 0.0108

Average variance

50 0.9029 0.0086 0.0197 0.0039 0.0116 0.0217 0.0139

100 0.7860 0.0056 0.0119 0.0027 0.0076 0.0145 0.0090

200 0.6843 0.0035 0.0074 0.0018 0.0053 0.0053 0.0053

500 0.5697 0.0019 0.00 0.0011 0.0026 0.0044 0.0029

Average MSE

50 0.9029 0.0468 0.0580 0.0167 0.0124 0.0217 0.0145

100 0.7860 0.0434 0.0510 0.0132 0.0081 0.0145 0.0095

200 0.6843 0.0406 0.0452 0.0105 0.0049 0.0085 0.0056

500 0.5697 0.0380 0.0408 0.0075 0.0028 0.0044 0.0031
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where li is a local bandwidth factor given by4

li ¼
bf ðYiÞ

exp
1

N

XN
i¼1

log bf ðYiÞ

 !
266664

377775
0:5

(25)

Since bf is not designed to perform well in finite samples with bounded
data, we also consider an alternative that was designed for this case. In
particular, we consider the boundary kernel approach of Gasser and Müller
(1979). Let K be a kth-order polynomial kernel with support [�1, 1]. In our
context where the data has a left boundary of zero, the Gasser–Muller
boundary kernel can then be written as

fGMðyÞ ¼
1

Ng

XN
i¼1

Kq
y� Yi

g

� �
y 2 0; g½ � (26)

where

KqðwÞ ¼ ðc0;q þ c1;qwþ � � � þ ck�1;qw
k�1ÞKðwÞI ð�1;qÞðwÞ (27)

Table 2. Performance in the Boundary Region: Quartic Kernel.

N g bf fA ~f 1
~f 2

~f 3
~f 4

~f 5 fGM

Average bias

50 2.2680 �0.0686 �0.0538 �0.0140 0.0056 0.0062 �0.0063 �0.0005 �0.0053

100 2.0999 �0.0700 �0.0507 �0.0139 0.0050 0.0057 �0.0048 �0.0003 �0.0047

200 1.9442 �0.0710 �0.0472 �0.0132 0.0047 0.0051 �0.0030 �0.0002 �0.0043

500 1.7560 �0.0725 �0.0437 �0.0125 0.0045 0.0045 �0.0021 �0.0002 �0.0024

Average variance

50 2.2680 0.0010 0.0020 0.0015 0.0027 0.0040 0.0552 0.0116 0.0488

100 2.0999 0.0006 0.0013 0.0009 0.0017 0.0024 0.0638 0.0071 0.0298

200 1.9442 0.0004 0.0008 0.0006 0.0010 0.0014 0.0192 0.0038 0.0168

500 1.7560 0.0002 0.0005 0.0003 0.0005 0.0007 0.0082 0.0018 0.0070

Average MSE

50 2.2680 0.0437 0.0356 0.0110 0.0043 0.0044 0.0563 0.0116 0.0502

100 2.0999 0.0431 0.0351 0.0097 0.0029 0.0027 0.0372 0.0071 0.0305

200 1.9442 0.0426 0.0354 0.0085 0.0021 0.0016 0.0194 0.0038 0.0173

500 1.7560 0.0416 0.0365 0.0070 0.0012 0.0008 0.0083 0.0018 0.0072
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is the ‘‘boundary kernel’’; qðy=gÞ ¼ minf1; ðy=gÞg; and c0;q; c1;q; . . . ; ck�1;q
are chosen to ensure thatZ qðy=gÞ

�1

KqðwÞdw ¼ 1Z qðy=gÞ

�1

wjKqðwÞdw ¼
0 j ¼ 1; 2; . . . ; k� 1

Co1 j ¼ k

( (28)

at each point y in the boundary region [0, g] where the density is estimated.
Thus, the boundary kernel approach adjusts the kernel weights to ensure
that the weighting function used in the boundary region satisfies the
same moment restrictions as the kth-order kernel. Note that when yWg,
c0,q ¼ 1 and c1,q ¼ 0, c2,q ¼ 0,y ck–1,g ¼ 0 so that fGM(y) reduces to bf ðyÞ for
all points outside the boundary.

For each sample size and each optimal kernel, we choose the bandwidth g
to minimize asymptotic mean integrated squared error of the fixed
bandwidth kernel density estimator bf under exponential (1) data.5 While
we could consider choosing g optimally for each density estimator, this
would pose some problems for interpreting the results since the boundary
region itself varies with g.

The results for the third-order bias reduction are mixed. Our proposed
estimator dominates in that case in bias, but not overall in MSE. However,
with the fifth-order bias reduction our proposed estimator clearly dominates
the others in terms of bias error and MSE.

4. CONCLUSION

A method has been developed for boundary bias reduction of a variety of
kernel estimators. These estimators are simple to compute, their asymptotic
properties are comparable to the usual kernel estimators outside the
boundary region, and they performed well in the simulations we conducted.
There are a number of possible modifications possible to the approach,
such as varying the window width for derivative estimation and by using
pointwise optimal bandwidths. Another alternative is Loader’s (1996) local
likelihood estimator. Preliminary results applying local likelihood to the
models in Section 3 were not promising.6 Variations to specialize local
likelihood for derivative estimation may yield better results. We intend to
explore these alternatives in future work.
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NOTES

1. This is a slight abuse of notation. Since Eq. (13) actually represents a vector of
Taylor series expansions, each of the remainder terms is evaluated at possibly
different points or ‘‘mean values’’ between y and y�wg.

2. See Gasser, Müller, and Mammitzsch (1985, p. 243); Table 1.
3. As summary descriptive statistics, for each estimator, we calculated its

empirical (over the 500 replications) bias, variance, and MSE at each of the 101
grid points. Tables 1 and 2 report the average of these over the 101 grid points.
4. See Abramson (1982) and Silverman (1986). Klein and Spady (1993) use fA as

an alternative to explicit higher order bias reduction.
5. Note from Tables 1 and 2 that this can result in large boundary regions

covering areas with substantial probabilities. This underscores the potential
significance of the boundary issue. We thank a referee for pointing this out.
6. We thank J. Racine for this insight.
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PART V

COMPUTATION





NONPARAMETRIC AND

SEMIPARAMETRIC METHODS IN R

Jeffrey S. Racine

ABSTRACT

The R environment for statistical computing and graphics (R Develop-
ment Core Team, 2008) offers practitioners a rich set of statistical
methods ranging from random number generation and optimization
methods through regression, panel data, and time series methods, by way
of illustration. The standard R distribution (base R) comes preloaded with
a rich variety of functionality useful for applied econometricians. This
functionality is enhanced by user-supplied packages made available via R
servers that are mirrored around the world. Of interest in this chapter
are methods for estimating nonparametric and semiparametric models.
We summarize many of the facilities in R and consider some tools that
might be of interest to those wishing to work with nonparametric methods
who want to avoid resorting to programming in C or Fortran but need the
speed of compiled code as opposed to interpreted code such as Gauss or
Matlab by way of example. We encourage those working in the field to
strongly consider implementing their methods in the R environment
thereby making their work accessible to the widest possible audience via
an open collaborative forum.
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1. INTRODUCTION

Unlike their more established parametric counterparts, many nonparametric
and semiparametric methods that have received widespread theoretical
treatment have not yet found their way into mainstream commercial
packages. This has hindered their adoption by applied researchers, and it
is safe to describe the availability of modern nonparametric methods as
fragmented at best, which can be frustrating for users who wish to assess
whether or not such methods can add value to their application. Thus,
one frequently heard complaint about the state of nonparametric kernel
methods concerns the lack of software along with the fact that implementa-
tions in interpreted1 environments such as Gauss are orders of magnitude
slower than compiled2 implementations written in C or Fortran. Though
many researchers may code their methods, often using interpreted environ-
ments such as Gauss, it is fair to characterize much of this code as
neither designed nor suited as tools for general-purpose use as they are
typically written solely to demonstrate ‘‘proof of concept.’’ Even though
many authors are more than happy to circulate such code (which is of course
appreciated!), this often imposes certain hardships on the user including
(1) having to purchase a (closed and proprietary) commercial software
package and (2) having to modify the code substantially in order to use it for
their application.

The R environment for statistical computing and graphics (R Develop-
ment Core Team, 2008) offers practitioners a range of tools for estimating
nonparametric, semiparametric, and of course parametric models. Unlike
many commercial programs, which must first be purchased in order to
evaluate them, you can adopt R with minimal effort and with no financial
outlay required. Many nonparametric methods are well documented,
tested, and are suitable for general use via a common interface3 structure
(such as the ‘‘formula’’ interface) making it easy for users familiar with R to
deploy these tools for their particular application. Furthermore, one of
the strengths of R is the ability to call compiled C or Fortran code via a
common interface structure thereby delivering the speed of complied code in
a flexible and easy-to-use environment. In addition, there exist a number of
R ‘‘packages’’ (often called ‘‘libraries’’ or ‘‘modules’’ in other environments)
that implement a variety of kernel methods, albeit with varying degrees
of functionality (e.g., univariate vs. multivariate, the ability/inability to
handle numerical and categorical data, and so forth). Finally, R delivers
a rich framework for implementing and making code available to the
community.
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In this chapter, we outline many of the functions and packages available
in R that might be of interest to practitioners, and consider some illustrative
applications along with code fragments that might be of interest. Before
proceeding further, we first begin with an introduction to the R environment
itself.

2. THE R ENVIRONMENT

What is R? Perhaps, it is best to begin with the question ‘‘what is S’’? S is a
language and environment designed for statistical computing and graphics
which was developed at Bell Laboratories (formerly AT&T, now Lucent
Technologies). S has grown to become the de facto standard among eco-
nometricians and statisticians, and there are two main implementations,
the commercial implementation called ‘‘S-PLUS’’ and the free, open-source
implementation called ‘‘R.’’ R delivers a rich array of statistical methods,
and one of its strengths is the ease with which ‘‘packages’’ can be developed
and made available to users for free. R is a mature open platform4 that is
ideally suited to the task of making one’s method available to the widest
possible user base free of charge.

In this section, we briefly describe a handful of resources available to
those interested in using R, introduce the user to the R environment, and
introduce the user to the foreign package that facilitates importation of
data from packages such as SAS, SPSS, Stata, and Minitab, among others.

2.1. Web Sites

A number of sites are devoted to helping R users, and we briefly mention a
few of them below:

http://www.R-project.org/: This is the R home page from which you can
download the program itself and many R packages. There are also manuals,
other links, and facilities for joining various R mailing lists.
http://CRAN.R-project.org/: This is the ‘‘Comprehensive R Archive
Network,’’ ‘‘a network of ftp and web servers around the world that
store identical, up-to-date, versions of code and documentation for the R
statistical package.’’ Packages are only put on CRAN when they pass a
rather stringent collection of quality assurance checks, and in particular are
guaranteed to build and run on standard platforms.
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http://cran.r-project.org/web/views/Econometrics.html: This is the CRAN
‘‘task view’’ for computational econometrics. ‘‘Base R ships with a lot of
functionality useful for computational econometrics, in particular in the
stats package. This functionality is complemented by many packages on
CRAN, a brief overview is given below.’’ This provides an excellent summary
of both parametric and nonparametric packages that exist for the R
environment.
http://pj.freefaculty.org/R/Rtips.html: This site provides a large and
excellent collection of R tips.

2.2. Getting Started with R

A number of well-written manuals exist for R and can be located at the R
web site. This section is clearly not intended to be a substitute for these
resources. It simply provides a minimal set of commands which will aid
those who have never used R before.
Having installed and run R, you will find yourself at the W prompt. To

quit the program, simply type q(). To get help, you can either enter a
command preceded by a question mark, as in ?help, or type help.
start() at theW prompt. The latter will spawn your web browser (it reads
files from your hard drive, so you do not have to be connected to the
Internet to use this feature).

You can enter commands interactively at the R prompt, or you can create
a text file containing the commands and execute all commands in the file
from the R prompt by typing source(‘‘commands.R’’), where
commands.R is the text file containing your commands. Many editors
recognize the .R extension providing a useful interface for the development
of R code. For example, GNU Emacs is a powerful editor that works well
with R and also LATEX (http://www.gnu.org/software/emacs/emacs.html).
When you quit by entering the q() command, you will be asked whether

or not you wish to save the current session. If you enter Y, then the next time
you run R in the same directory it will load all of the objects created in the
previous session. If you do so, typing the command ls() will list all of the
objects. For this reason, it is wise to use different directories for different
projects. To remove objects that have been loaded, you can use the
command rm(objectname) or rm(list ¼ ls()) which will remove all
objects in memory.
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2.3. Importing Data from Other Formats

The foreign package allows you to read data created by different popular
programs. To load it, simply type library (foreign) from within R.
Supported formats include:

read.arff: Read Data from ARFF Files
read.dbf: Read a DBF File
read.dta: Read Stata Binary Files
read.epiinfo: Read Epi Info Data Files
read.mtp: Read a Minitab Portable Worksheet
read.octave: Read Octave Text Data Files
read.S: Read an S3 Binary or data.dump File
read.spss: Read an SPSS Data File
read.ssd: Obtain a Data Frame from a SAS Permanent Dataset, via
read.xport
read.systat: Obtain a Data Frame from a Systat File
read.xport: Read a SAS XPORT Format Library

The following code snippet reads the Stata file ‘‘mroz.dta’’ directly from
one’s working directory (Carter Hill, Griffiths, & Lim, 2008) and lists the
names of variables in the data frame.

RW library(foreign)

RW Mydat o- read.dta(file ¼ ‘‘mroz.dta’’)
RW names(mydat)

[1] ‘‘taxableinc’’‘‘federaltax’’‘‘hsiblings’’ ‘‘hfathereduc’’‘‘hmothereduc’’

[6] ‘‘siblings’’ ‘‘lfp’’ ‘‘hours’’ ‘‘kidsl6’’ ‘‘kids618’’

[11]‘‘age’’ ‘‘educ’’ ‘‘wage’’ ‘‘wage76’’ ‘‘hhours’’

[16]‘‘hage’’ ‘‘heduc’’ ‘‘hwage’’ ‘‘faminc’’ ‘‘mtr’’

[21]‘‘mothereduc’’‘‘fathereduc’’‘‘unemployment’’‘‘largecity’’ ‘‘exper’’

Alternatively, you might wish to read your Stata file directly from the
Internet, as in

RW Mydat o- read.dta(file ¼ ‘‘http://www.principlesofeconometrics.

com/stata/mroz.dta’’)

Clearly R makes it simple to migrate data from one environment to another.
Having installed R and having read in data from a text file or supported

format such as a Stata binary file, you can then install packages via the
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install.packages() command, as in install.packages(‘‘np’’)
which will install the np package (Hayfield & Racine, 2008) that we discuss
shortly.

3. BASIC PARAMETRIC ESTIMATION IN R

Before proceeding, we demonstrate some basic capabilities of R via three
examples, namely multiple linear regression, logistic regression, and a simple
Monte Carlo simulation.

By way of example, we consider Wooldridge’s (2002) ‘‘wage1’’ dataset
(n ¼ 526) that is included in the np package and estimate an earnings equation.

Variables are defined as follows:

(1) ‘‘lwage’’ log (wage);
(2) ‘‘female’’ (‘‘Female’’ if female, ‘‘Male’’ otherwise);
(3) ‘‘married’’ (‘‘Married’’ if married, ‘‘Nonmarried’’ otherwise);
(4) ‘‘educ’’ years of education;
(5) ‘‘exper’’ years of potential experience; and
(6) ‘‘tenure’’ years with current employer.

RW library(np)

Nonparametric Kernel Methods for Mixed Data types (version 0.30–3)
RW data(wage1)

RW model.lm o- lm(lwageBfact or(female)þ
þ factor(married)þ

þ educþ
þ tenureþ

þ experþ
þ expersq,

þ data ¼ wage1)

RW summary(model.lm)

Call:

lm(formula ¼ lwageBfactor(female)þfactor(married)þeducþ

tenureþexperþexpersq, data ¼ wage1)

Residuals:

Min 1Q Median 3Q Max
�1.8185 �0.2568 �0.0253 0.2475 1.1815
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Coefficients:

Estimate SE t-value Pr(W|t|)

(Intercept) 0.181161 0.107075 1.69 0.091.
factor (female)Male 0.291130 0.036283 8.02 6.9e–15���

factor (married)
Notmarried

�0.056449 0.040926 �1.38 0.168

educ 0.079832 0.006827 11.69 o2e–16���

tenure 0.016074 0.002880 5.58 3.9e–08���

exper 0.030100 0.005193 5.80 1.2e–08���

expersq �0.000601 0.000110 �5.47 7.0e–08���

---

Significant Codes: 0‘���’ 0.001‘��’ 0.01‘�’ 0.05‘.’ 0.1‘ ’ 1

Residual SE: 0.401 on 519 Degrees of Freedom (df)

Multiple R2: 0.436 Adjusted R2: 0.43

F-statistic: 66.9 on 6 and 519 df p-value: o2e–16

For the next example, we use data on birthweights taken from the R
MASS library (Venables & Ripley, 2002), and compute a parametric logit
model. We also construct a confusion matrix5 and assess the model’s
classification ability. The outcome is an indicator of low infant birthweight
(0/1). This application has n ¼ 189 and 7 regressors.

Variables are defined as follows:

(1) ‘‘low’’ indicator of birthweight less than 2.5 kg;
(2) ‘‘smoke’’ smoking status during pregnancy;
(3) ‘‘race’’ mother’s race (‘‘1’’ ¼ white, ‘‘2’’ ¼ black, ‘‘3’’ ¼ other);
(4) ‘‘ht’’ history of hypertension;
(5) ‘‘ui’’ presence of uterine irritability;
(6) ‘‘ftv’’ number of physician visits during the first trimester;
(7) ‘‘age’’ mother’s age in years; and
(8) ‘‘lwt’’ mother’s weight in pounds at last menstrual period.

Note that all variables other than age and lwt are categorical in nature in
this example:

RW data(‘‘birthwt’’,package ¼ ‘‘MASS’’)
RW attach(birthwt)

RW model.logit o- glm(lowBfactor(smoke)þ

þ factor(race)þ
þ factor(ht)þ
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þ factor(ui)þ
þ ordered(ftv)þ

þ ageþ
þ lwt,

þ family ¼ binomial(link ¼ logit))
RW cm o- table (low, ifelse(fitted(model.logit)W0.5, 1, 0))

RW ccr o- sum(diag(cm))/sum(cm)
RW summary(model.logit)

Call:

glm(formula ¼ lowBfactor(smoke)þfactor(race)þfactor(ht)
þfactor(ui)þordered(ftv)þageþlwt, family ¼ binomial(link

¼ logit))

Deviance Residuals:

Min 1Q Median 3Q Max

�1.707 �0.843 �0.508 0.975 2.146

Coefficients:

Estimate SE z-value Pr(W|z|)

(Intercept) �1.64947 147.13066 �0.01 0.991
factor(smoke)1 1.00001 0.41072 2.43 0.015�

factor(race)2 1.26760 0.53357 2.38 0.018�

Factor(race)3 0.91040 0.45142 2.02 0.044�

factor(ht)1 1.79128 0.70990 2.52 0.012�

factor(ui)1 0.89534 0.45108 1.98 0.047�

ordered(ftv).L �7.22342 527.54069 �0.01 0.989
ordered(ftv).Q �7.16294 481.57657 �0.01 0.988

ordered(ftv).C �5.15187 328.98002 �0.02 0.988
ordered(ftv)44 �2.06949 166.82485 �0.01 0.990

ordered(ftv)45 �0.27780 55.61212 �0.005 0.996
Age �0.01683 0.03627 �0.46 0.643

Lwt �0.01521 0.00717 �2.12 0.034�

---

Significant Codes: 0‘���’ 0.001‘��’ 0.01‘�’ 0.05‘.’ 0.1‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null Deviance : 234.67 on 188 df
Residual Deviance: 202.21 on 176 df

AIC: 228.2
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Number of Fisher Scoring Iterations: 13

RW cm

low 0 1

0 119 11
1 34 25

RW detach(birthwt)

It can be seen that both the lm() and glm() functions support a
common formula interface, and the np package that we introduce shortly
strives to maintain this method of interacting with functions with minimal
changes where necessary.

As a final illustration of the capabilities and ease of use of the R environ-
ment, we consider a simple Monte Carlo experiment where we examine the
finite-sample distribution of the sample mean for samples of size n ¼ 5 when
the underlying distribution is w2 with 1 df. We then plot the empirical
PDF versus the asymptotic PDF of the sample mean (Fig. 1). M ¼ 10,000
replications are computed.

4. SOME NONPARAMETRIC AND

SEMIPARAMETRIC ROUTINES AVAILABLE IN R

Table 1 summarizes some of the nonparametric and semiparametric routines
available to users of R. As can be seen, there appears to be a rich range of
nonparametric implementations available to the practitioner. However,
upon closer inspection, many are limited in one way or another in ways that
might frustrate applied econometricians. For instance, some nonparametric
regression methods admit only one regressor, while others admit only
numerical data types and cannot admit categorical data that is often
found in applied settings. Table 1 is not intended to be exhaustive, rather
it ought to serve to orient the reader to a subset of the rich array
of nonparametric methods that currently exist in the R environment.
To see a routine in action, you can type example (‘‘funcname,’’
package ¼ ‘‘pkgname’’) where funcname is the name of a routine
and pkgname is the associated package, and this will run an example con-
tained in the help file for that function. For instance, example (‘‘npreg,’’
package ¼ ‘‘np’’) will run a kernel regression example from the
package np.
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4.1. Nonparametric Density Estimation in R

Univariate density estimation is one of the most popular exploratory
nonparametric methods in use today. Readers will likely be familiar with
two popular nonparametric estimators, namely the univariate histogram
and kernel estimators. For an in-depth treatment of kernel density
estimation, we direct the interested reader to the wonderful monographs
by Silverman (1986) and Scott (1992), while for mixed data density
estimation we direct the reader to Li and Racine (2003) and the references
therein. We shall begin with an illustrative parametric example.
Consider any random variable X having probability density function f(x),

and let f( � ) be the object of interest. Suppose one is presented with a series
of independent and identically distributed draws from the unknown
distribution and asked to model the density of the data, f(x).
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Fig. 1. Empirical Versus Asymptotic PDF.
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Table 1. An Illustrative Summary of R Packages that Implement
Nonparametric Methods.

Package Function Description

Ash ash1 Computes univariate averaged shifted histograms

ash2 Computes bivariate averaged shifted histograms

car n. bins Computes number of bins for histograms with different rules

gam gam Computes generalized additive models using the method

described in Hastie and Tibshirani (1990)

GenKern KernSec Computes univariate kernel density estimates

KernSur Computes bivariate kernel density estimates

Graphics (base) boxplot Produces box-and-whisker plot(s)

nclass.Sturges Computes the number of classes for a histogram

nclass.scott Computes the number of classes for a histogram

nclass.FD Computes the number of classes for a histogram

KernSmooth bkde Computes a univariate binned kernel density estimate using the

fast Fourier transform as described in Silverman (1982)

bkde2D Compute a bivariate binned kernel density estimate as described

in Wand (1994)

dpik Computes a bandwidth for a univariate kernel density estimate

using the method described in Sheather and Jones (1991)

dpill Computes a bandwidth for univariate local linear regression

using the method described in Ruppert, Sheather, and Wand

(1995)

locpoly Computes a univariate probability density function, bivariate

regression function or their derivatives using local

polynomials

ks kde Computes a multivariate kernel density estimate for

1–6-dimensional numerical data

locfit locfit Computes univariate local regression and likelihood models

sjpi Computes a bandwidth via the plug-in Sheather and Jones

(1991) method

kdeb Computes univariate kernel density estimate bandwidths

MASS bandwidth.nrd Computes Silverman’s rule of thumb for choosing the

bandwidth of a univariate Gaussian kernel density estimator

hist.scott Plot a histogram with automatic bin width selection (Scott)

hist.FD Plot a histogram with automatic bin width selection

(Freedman–Diaconis)

kde2d Computes a bivariate kernel density estimate

width.SJ Computes the Sheather and Jones (1991) bandwidth for a

univariate Gaussian kernel density estimator

bcv Computes biased cross-validation bandwidth selection for a

univariate Gaussian kernel density estimator
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Table 1. (Continued )

Package Function Description

ucv Computes unbiased cross-validation bandwidth selection for a

univariate Gaussian kernel density estimator

np npcdens Computes a multivariate conditional density as described in

Hall, Racine, and Li (2004)

npcdist Computes a multivariate conditional distribution as described

in Li and Racine (2008)

npcmstest Conducts a parametric model specification test as described in

Hsiao, Li, and Racine (2007)

npconmode Conducts multivariate modal regression

npindex Computes a multivariate single index model as described in

Ichimura (1993), Klein and Spady (1993)

npksum Computes multivariate kernel sums with numeric and

categorical data types

npplot Conducts general purpose plotting of nonparametric objects

npplreg Computes a multivariate partially linear model as described in

Robinson (1988), Racine and Liu (2007)

npqcmstest Conducts a parametric quantile regression model specification

test as described in Zheng (1998), Racine (2006)

npqreg Computes multivariate quantile regression as described in Li

and Racine (2008)

npreg Computes multivariate regression as described in Racine and Li

(2004), Li and Racine (2004)

npscoef Computes multivariate smooth coefficient models as described

in Li and Racine (2007b)

npsigtest Computes the significance test as described in Racine (1997),

Racine, Hart, and Li (2006)

npudens Computes multivariate density estimation as described in

Parzen (1962), Rosenblatt (1956), Li and Racine (2003)

npudist Computes multivariate distribution functions as described in

Parzen (1962), Rosenblatt (1956), Li and Racine (2003)

stats (base) bw.nrd Univariate bandwidth selectors for Gaussian windows in

density

density Computes a univariate kernel density estimate

hist Computes a univariate histogram

smooth.spline Computes a univariate cubic smoothing spline as described in

Chambers and Hastie (1991)

ksmooth Computes a univariate Nadaraya–Watson kernel regression

estimate described in Wand and Jones (1995)

loess Computes a smooth curve fitted by the loess method described

in Cleveland, Grosse, and Shyu (1992) (1–4 numeric

predictors)
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For this example, we shall simulate n ¼ 500 draws but immediately
discard knowledge of the true data generating process (DGP) pretending
that we are unaware that the data is drawn from a mixture of normals
(N(�2, 0.25) and N(3, 2.25) with equal probability). The following code
snippet demonstrates one way to draw random samples from a mixture of
normals.

RW set.seed(123)

RW n o- 250
RW x o- sort(c(rnorm(n,mean ¼ �2,sd ¼ 0.5),rnorm(n,mean ¼ 3,

sd ¼ 1.5)))

The following figure plots the true DGP evaluated on an equally spaced
grid of 1,000 points (Fig. 2).

Suppose one naively presumed that the data is drawn from, say, the
normal parametric family (not a mixture thereof), then tested this
assumption using the Shapiro–Wilks test. The following code snippet
demonstrates how this is done in R.
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Fig. 2. True DGP.
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RW set.seed(123)
RW M o- 10000

RW n o- 5
RW mean.vec o- numeric(length ¼ M)

RW for (i in 1:M) {
þ x o- rchisq(n,df ¼ 1)

þ mean.vec [i] o- mean(x)
þ }
RW mean.vec o- sort(mean.vec)
RW plot(density(mean.vec),type ¼ ‘‘1’’,lty ¼ 1,main ¼ ‘‘‘‘)

RW lines(mean.vec,dnorm(mean.vec,mean ¼ mean(mean.vec),
sd ¼ sd(mean.vec)),

þ col ¼ ‘‘blue’’,lty ¼ 2)
RW legend(2,0.75,

þ c(‘‘Finite–Sample’’,‘‘Asymptotic Approximation’’),
þ lty ¼ c(1,2),col ¼ c(‘‘black’’,‘‘blue’’))

RW shapiro. test (x)
Shapiro–Wilk normality test

RW x.seq o- seq(–5,9,length ¼ 1000)
RW plot (x.seq,0.5�dnorm(x.seq,mean ¼ –2,sd ¼ 0.5)

þ0.5�dnorm(x.seq,mean ¼ 3,sd ¼ 1.5),
þ xlab ¼ ‘‘X’’,

þ ylab ¼ ‘‘Mixture of Normal Densities’’
þ type ¼ ‘‘1’’,

þ main ¼ ‘‘‘‘,
þ col ¼ ‘‘blue’’,

þ lty ¼ 1)
data: x

W ¼ 0.87, p-valueo2.2e–16

Given that this popular parametric model is flatly rejected by this dataset,
we have two choices: (1) search for a more appropriate parametric model or
(2) use more flexible estimators. For what follows, we shall presume that the
readers have found themselves in just such a situation. That is, they have
faithfully applied a parametric method and conducted a series of tests of
model adequacy that indicate that the parametric model is not consistent
with the underlying DGP. They then turn to more flexible methods of
density estimation. Note that though we are considering density estimation
at the moment, it could be virtually any parametric approach that we have
been discussing, for instance, regression analysis and so forth.

If one wished to examine the histogram (Fig. 3) for this data one could use
the following code snippet:

RW hist(x,prob ¼ TRUE,main ¼ ‘‘‘‘)
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Of course, though consistent, the histogram suffers from a number of
drawbacks; hence, one might instead consider a smooth nonparametric
density estimator such as the univariate Parzen kernel estimator (Parzen,
1962). A univariate kernel estimator can be obtained using the density
command that is part of R base. This function supports a range of
bandwidth methods (see ?bw.nrd for details) and kernels (see ?density
for details). The default bandwidth method is Silverman’s ‘‘rule of thumb’’
(Fig. 4) (Silverman, 1986, p. 48, Eq. (3.31)), and for this data we obtain the
following:

RW plot(density(x),main ¼ ‘‘‘‘)

The density function in R has a number of appealing features. It is
extremely fast computationally speaking, as the algorithm disperses the
mass of the empirical distribution function over a regular grid and then uses
the fast Fourier transform to convolve this approximation with a discretized
version of the kernel and then uses a linear approximation to evaluate the
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density at the specified points. If one wishes to obtain a univariate kernel
estimate for a large sample of data, then this is definitely the function of
choice. However, for a bivariate (or higher dimensional) density estimate,
one would require alternative R routines. The function bkd2dD in the
KernSmooth package can compute a two-dimensional density estimate as
can kde2d in the MASS package and kde in the ks package though neither
package implements a data-driven two-dimensional bandwidth selector.
The np package, however, contains the function npudens that computes
multivariate density estimates, is quite flexible, and admits data-driven
bandwidth selection for an arbitrary number of dimensions and for both
numeric and categorical data types. As the method does not rely on Fourier
transforms and approximations, it is nowhere near as fast as the density
function6; however, it is much more flexible. The default method of
bandwidth selection is likelihood cross validation, and the following code
snippet demonstrates this function using the ‘‘Old Faithful’’ dataset (Fig. 5).
The Old Faithful Geyser is a tourist attraction located in Yellowstone
National Park. This famous dataset containing n ¼ 272 observations
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consists of two variables, eruption duration (minutes) and waiting time until
the next eruption (minutes).

RW data(‘‘faithful’’,package ¼ ‘‘datasets’’)

RW Fhat o- npudens(Bwaitingþeruptions,data ¼ faithful)
RW plot(fhat,view ¼ ‘‘fixed’’,xtrim ¼ �0.1,theta ¼ 310,

phi ¼ 30,main ¼ ‘‘‘‘)

For dimensions greater than two, one can plot ‘‘partial density surfaces’’
that plot one-dimensional slices of the density holding variables not on the
axes constant at their median/modes (these can be changed by the user – see
?npplot for details). One can also plot asymptotic and bootstrapped error
surfaces, the CDF, and so forth as the following code snippet reveals (Fig. 6).

RW plot(fhat,cdf ¼ TRUE,plot.errors.method ¼ ‘‘asymptotic’’,
þ view ¼ ‘‘fixed’’,xtrim ¼ �0.1,theta ¼ 310,phi ¼ 30,main ¼ ‘‘‘‘)
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4.2. Kernel Density Estimation with Numeric and Categorical Data

Suppose that we were facing a mix of categorical and numeric data and
wanted to model the joint density7 function. When facing a mix of
categorical and numeric data, traditionally researchers using kernel methods
resorted to a ‘‘frequency’’ approach. This approach involves breaking the
numeric data into subsets according to the realizations of the categorical
data (cells). This of course will produce consistent estimates. However, as
the number of subsets increases, the amount of data in each cell falls leading
to a ‘‘sparse data’’ problem. In such cases, there may be insufficient data in
each subset to deliver sensible density estimates (the estimates will be highly
variable). In what follows, we consider the method of Li and Racine (2003)
that is implemented in the np package via the npudens function.

By way of example, we consider Wooldridge’s (2002) ‘‘wage1’’ dataset
(n ¼ 526), and model the joint density of two variables (Fig. 7), one numeric
(lwage) and one categorical (numdep). The ‘‘lwage’’ is the logarithm of
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average hourly earnings for an individual and ‘‘numdep’’ the number of
dependents (0, 1, y). We use likelihood cross validation to obtain the
bandwidths. Note that this is indeed a case of ‘‘sparse’’ data, and the
traditional approach would require estimation of a nonparametric
univariate density function based upon only two observations for the last
cell (c ¼ 6) (Table 2).
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Fig. 7. Joint PDF for ‘‘lwage’’ and ‘‘numdep.’’

Table 2. Summary of numdep (c ¼ 0, 1, y, 6).

c nc

0 252

1 105

2 99

3 45

4 16

5 7

6 2
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4.3. Conditional Density Estimation

Conditional density functions underlie many popular statistical objects of
interest, though they are rarely modeled directly in parametric settings and
have perhaps received even less attention in kernel settings. Nevertheless, as
will be seen, they are extremely useful for a range of tasks, whether directly
estimating the conditional density function, modeling count data (see
Cameron & Trivedi, 1998) for a thorough treatment of count data models),
or perhaps modeling conditional quantiles via estimation of a conditional
CDF. And, of course, regression analysis (i.e., modeling conditional means)
depends directly on the conditional density function, so this statistical object
in fact implicitly forms the backbone of many popular statistical methods.

We consider Giovanni Baiocchi’s Italian GDP growth panel for 21
regions covering the period 1951–1998 (millions of Lire, 1990 ¼ base)
(Fig. 8). There are 1,008 observations in total, and two variables, ‘‘gdp’’ and
‘‘year.’’ We treat gdp as numeric and year as ordered.8 The code snippet
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below plots the estimated conditional density, f̂ ðgdpjyearÞ based upon
likelihood cross-validated bandwidth selection.

It is clear that the distribution of income has evolved from a unimodal
one in the early 1950s to a markedly bimodal one in the 1990s. This result is
robust to bandwidth choice, and is observed whether using simple rules-of-
thumb or data-driven methods such as least squares or likelihood cross
validation. The kernel method readily reveals this evolution which might
easily be missed if one were to use parametric models of the income
distribution. For instance, the (unimodal) lognormal distribution is a
popular parametric model for income distributions, but is incapable of
revealing the multimodal structure present in this dataset.

RW library(scatterplot3d)
RW attach(wage1)

RW bw o- npudensbw(Blwageþordered(numdep),data ¼ wage1)
RW numdep.seq o- sort(unique(numdep))

RW lwage.seq o- seq(min(lwage),max(lwage),length ¼ 50)
RW wage1.eval o- expand.grid(numdep ¼ ordered(numdep.seq),

lwage ¼ lwage.seq)
RW fhat o- fitted(npudens(bws ¼ bw,newdata ¼ wage1.eval))

RW f o- matrix(fhat,length(unique(numdep)),50)
RW scatterplot3d(wage1.eval[,1],wage1.eval[,2],fhat,

þ ylab ¼ ‘‘Log wage (lwage)’’,
þ xlab ¼ ‘‘Number of Dependents (numdep)’’,

þ zlab ¼ ‘‘Joint Density’’,

þ angle ¼ 15,box ¼ FALSE,type ¼ ‘‘h’’,grid ¼ TRUE,
color ¼ ‘‘blue’’)

RW detach(wage1)
RW data(‘‘Italy’’)

RW attach(Italy)
RW fhat o- npcdens(gdpByear)

RW plot(fhat,view ¼ ‘‘fixed’’,main ¼ ‘‘‘‘,theta ¼ 300,phi ¼ 50)

4.4. Kernel Estimation of a Conditional Quantile

Estimating regression functions is a popular activity for applied economists.
Sometimes, however, the regression function is not representative of the
impact of the covariates on the dependent variable. For example, when
the dependent variable is left (or right) censored, the relationship given
by the regression function is distorted. In such cases, conditional quantiles
above (or below) the censoring point are robust to the presence of censoring.
Furthermore, the conditional quantile function provides a more
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comprehensive picture of the conditional distribution of a dependent
variable than the conditional mean function

We consider the method described in Li and Racine (2008) that is
implemented in the npqreg function in the np package, which we briefly
describe below.

The conditional ath quantile of a CDF F(y|x) is defined as (Fig. 9)

qaðxÞ ¼ inffy : FðyjxÞ � ag ¼ F�1ðajxÞ

where a 2 ð0; 1Þ. In practice, we can estimate the conditional quantile
function qa(x) by inverting an estimated conditional CDF. Using a kernel
estimator of F(y|x), we would obtain

q̂aðxÞ ¼ inffy : F̂ðyjxÞ � ag 	 F̂
�1
ðajxÞ

Because F̂ðyjxÞ lies between zero and one and is monotone in Y ; q̂aðxÞ
always exists. In the example below, we compute the bandwidth object
suitable for a conditional PDF and use this to estimate the conditional CDF
and its conditional quantiles.
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The above plot, along with that for the conditional PDF, reveals that the
distribution of income evolved from a unimodal one in the early 1950s to a
markedly bimodal one in the 1990s.

4.5. Binary Choice and Count Data Models

We define a conditional mode by

mðxÞ ¼ max
y

f ðyjxÞ

In order to estimate a conditional mode m(x), we need to model the
conditional density. Let us call m̂ðxÞ the estimated conditional mode, which
is given by

m̂ðxÞ ¼ max
y

f̂ ðyjxÞ

where f̂ ðyjxÞ is the kernel estimator of f(y|x). By way of example, we
consider modeling low birthweights (a binary indicator) using this method.

For this example, we shall use the data on birthweights taken from the R
MASS library (Venables & Ripley, 2002) that we used earlier in our
introduction to parametric regression in R.

RW data(‘‘birthwt’’,package ¼ ‘‘MASS’’)
RW attach(birthwt)

RW bw o- npcdensbw(factor(low)Bfactor(smoke)þ
þ factor(race)þ

þ factor(ht)þ
þ factor(ui)þ

þ ordered(ftv)þ
þ ageþ

þ lwt)
RW model.np o- npconmode(bws ¼ bw)

RW model.np$confusion.matrix
RW bw o- npcdensbw(gdpBordered (year))

RW model.q0.25 o- npqreg(bws ¼ bw, tau ¼ 0.25)
RW model.q0.50 o- npqreg(bws ¼ bw, tau ¼ 0.50)

RW model.q0.75 o- npqreg(bws ¼ bw, tau ¼ 0.75)
RW plot(ordered(year), gdp,

þ main ¼ ‘‘‘‘,

þ xlab ¼ ‘‘Year’’,
þ ylab ¼ ‘‘GDP Quantiles’’)
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RW lines(ordered(year), model.q0.25$quant ile, col ¼ ‘‘green’’,
lty ¼ 3, lwd ¼ 3)

RW lines(ordered(year), model.q0.50$quantile, col ¼ ‘‘blue’’,
lty ¼ 1, lwd ¼ 2)

RW lines(ordered(year), model.q0.75$quant ile, col ¼ ‘‘red’’,
lty ¼ 2,lwd ¼ 3)

RW legend(ordered(1951), 32, c(‘‘0.25’’, ‘‘0.50’’, ‘‘0.75’’),
þ lty ¼ c(3, 1, 2), col ¼ c(‘‘green’’, ‘‘blue’’, ‘‘red’’))

RW detach(Italy)

Predicted

Actual 0 1
0 128 2

1 27 32
RW detach(birthwt)

4.6. Regression

One of the most popular methods for nonparametric kernel regression was
proposed by Nadaraya (1965) and Watson (1964) and is known as the
‘‘Nadaraya–Watson’’ estimator (also known as the ‘‘local constant’’
estimator), though the ‘‘local polynomial’’ estimator (Fan, 1992) has
emerged as a popular alternative; see Li and Racine (2007a, Chapter 2) for a
detailed treatment of nonparametric regression.

For what follows, we consider an application taken from Wooldridge
(2003, p. 226) that involves multiple regression analysis with both numeric
and categorical data types.

We consider modeling an hourly wage equation using Wooldridge’s
(2002) ‘‘wage1’’ dataset that was outlined in Section 3. We use Hurvich,
Simonoff, and Tsai’s (1998) AICc approach for bandwidth selection
in conjunction with local linear kernel regression (Fan, 1992). Note that
the bandwidth object bw.all is precomputed and loaded when you
load the wage1 data, but we provide the code for its computation
(commented out).

Note that the above figure displays ‘‘partial regression plots.’’ A ‘‘partial
regression plot’’ is simply a two-dimensional plot of the outcome y versus
one covariate xj when all other covariates are held constant at their
respective medians/modes. The robust variability bounds are obtained by
a nonparametric bootstrap.
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4.7. Semiparametric Regression

Semiparametric methods constitute some of the more popular methods
for flexible estimation. Semiparametric models are formed by combining
parametric and nonparametric models in a particular manner. Such models
are useful in settings where fully nonparametric models may not perform
well, for instance, when the curse of dimensionality has led to highly
variable estimates or when one wishes to use a parametric regression model
but the functional form with respect to a subset of regressors or perhaps
the density of the errors is not known. We might also envision situations
in which some regressors may appear as a linear function (i.e., linear in
variables) but the functional form of the parameters with respect to the
other variables is not known, or perhaps where the regression function is
nonparametric but the structure of the error process is of a parametric
form (Fig. 10).

Semiparametric models such as the generalized additive model presented
below can best be thought of as a compromise between fully nonparametric
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and fully parametric specifications. They rely on parametric assumptions
and can therefore be misspecified and inconsistent, just like their parametric
counterparts.

RW attach (wage1)
RW xbw.all o- npregbw(lwageBfactor(female)þ

RW x factor(married)þ
RW x educþ

RW x experþ
RW x tenure,

RW x regtype ¼ ‘‘11’’,
RW x bwmethod ¼ ‘‘cv.aic’’,

RW x data ¼ wage1)
RW

RW model.np o- npreg(bws ¼ bw.all)
RW plot (model.np,

þ plot.errors.method ¼ ‘‘boot strap’’,

þ plot.errors. boot.num ¼ 100,
þ plot.errors.type ¼ ‘‘quantiles’’,

þ plot.errors.style ¼ ‘‘band’’,
þ common.scale ¼ FALSE)

RW detach(wage1)

4.8. Generalized Additive Models

Generalized additive models (see Hastie & Tibshirani, 1990) are popular
in applied settings, though one drawback is that they do not support
categorical variables (Fig. 11).

The semiparametric generalized additive model is given by

Yi ¼ c0 þ g1ðZ1iÞ þ g2ðZ2iÞ þ � � � þ gqðZqiÞ þ ui; i ¼ 1; . . . ; n

where c0 is a scalar parameter, the Zli’s are all univariate continuous
variables, and glð�Þ ðl ¼ 1; . . . ; qÞ are unknown smooth functions.

The following code snippet considers the wage1 dataset and uses three
numeric regressors.

Note that the above figure again displays partial regression plots, but
this time for the generalized additive model using only the continuous
explanatory variables.
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4.9. Partially Linear Models

The partially linear model is one of the simplest semiparametric models used
in practice, and was proposed by Robinson (1988) while Racine and
Liu (2007) extended the approach to handle the presence of categorical
covariates.

A semiparametric partially linear model is given by

Yi ¼ X 0ibþ gðZiÞ þ ui; i ¼ 1; . . . ; n

where Xi is a p� 1 vector of regressors, b a p� 1 vector of unknown
parameters, and Zi 2 Rq. The functional form of g( � ) is not specified, and
the finite dimensional parameter b constitutes the parametric part of the
model and the unknown function g( � ) the nonparametric part.

Suppose that we again consider the wage1 dataset from Wooldridge
(2003, p. 222), but now assume that the researcher is unwilling to presume
the nature of the relationship between exper and lwage, hence relegates
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exper to the nonparametric part of a semiparametric partially linear model.
The following code snippet considers a partially linear specification:

RW bw o- npplregbw(lwageBfactor(female)þ
þ factor(married)þ

þ educþ
þ tenure|exper,

þ data ¼ wage1)

RW model.pl o- npplreg(bw)
RW summary(model.pl)

Partially Linear Model
Regression Data: 526 Training Points, in 5 Variable(s)

With 4 Linear Parametric Regressor(s), 1 Nonparametric Regressor(s)

y(z)
Bandwidth(s): 2.05

RW options (SweaveHooks ¼ list (mult i fig ¼ function ()

par(mfrow ¼ c(2,2))))
RW library(gam)

RW attach(wage1)
RW model.gam o- gam(lwageBs(educ)þs(exper)þs(tenure))

RW plot(model.gam,se ¼ T)
RW detach(wage1)

x(z)

Bandwidth(s): 4.19
1.35

3.16
5.24

factor(female) factor(married) educ tenure
Coefficient(s): 0.286 �0.0383 0.0788 0.0162

Kernel Regression Estimator: Local Constant

Bandwidth Type: Fixed

Residual SE: 0.154
R2: 0.452

Continuous Kernel Type: Second-Order Gaussian

No. Continuous Explanatory Vars.: 1

We can see from the above summary that the partially linear model yields
coefficients for the explanatory variables entering the parametric part of the
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model along with bandwidth from the nonparametric regression of Y on Z
and each component of X on Z, where Y is the response, Z the explanatory
variable entering the nonparametric component, and X the explanatory
variables entering the parametric component.

4.10. Index Models

A semiparametric single index model is of the form

Yi ¼ gðX 0ib0Þ þ ui; i ¼ 1; . . . ; n

where Y is the dependent variable, X 2 Rq the vector of explanatory
variables, b0 the q� 1 vector of unknown parameters, and u the error
satisfying E(u|X) ¼ 0. The term xub0 is called a ‘‘single index’’ because it is a
scalar (a single index) even though x is a vector. The functional form of g( � )
is unknown to the researcher. This model is semiparametric in nature
since the functional form of the linear index is specified, while g( � ) is left
unspecified.

Ichimura (1993), Manski (1988), and Horowitz (1998, pp. 14–20) provide
excellent intuitive explanations of the identifiability conditions under-
lying semiparametric single index models (i.e., the set of conditions under
which the unknown parameter vector b0 and the unknown function g( � )
can be sensibly estimated), and we direct the reader to these references for
details.

We consider applying Ichimura’s (1993) single index method which is
appropriate for numeric outcomes, unlike that of Klein and Spady (1993)
outlined below. We again make use of the wage1 dataset found in
Wooldridge (2003, p. 222).

RW bw o- npindexbw(lwageBfactor (female) þ
þ factor(married)þ
þ educþ
þ experþ
þ expersqþ
þ tenure,
þ data ¼ wage1)
RW model o- npindex(bw)
RW summary(model)

Single Index Model
Regression Data: 526 Training Points, in 6 Variable(s)
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factor

(female)

factor

(married)

educ exper expersq tenure

Beta: 1 �0.057 0.0427 0.0189 �0.000429 0.0101

Bandwidth: 0.0485
Kernel Regression Estimator: Local Constant

Residual SE: 0.151

R2: 0.466

Continuous Kernel Type: Second-Order Gaussian
No. Continuous Explanatory Vars.: 1

We again consider data on birthweights taken from the R MASS
library (Venables & Ripley, 2002), and compute a single index model
(the parametric logit model is outlined in Section 3). The outcome is
an indicator of low infant birthweight (0/1) and so Klein and Spady’s
(1993) approach is appropriate. The confusion matrix is presented to
facilitate a comparison of the index model and the logit model considered
earlier.

RW bw o- npindexbw(lowB
þ factor(smoke)þ
þ factor(race)þ

þ factor(ht)þ
þ factor(ui)þ

þ ordered(ftv)þ
þ ageþ

þ lwt,
þ method ¼ ‘‘kleinspady’’,

þ data ¼ birthwt)

RW model.index o- npindex(bws ¼ bw, gradients ¼ TRUE)
RW summary(model.index)

Single Index Model
Regression Data: 189 Training Points, in 7 Variable(s)

factor
(smoke)

factor
(race)

factor
(ht)

factor
(ui)

ordered
(ftv)

age

Beta: 1 0.051 0.364 0.184 �0.0506 �0.0159

lwt
Beta: �0.00145

Bandwidth: 0.0159
Kernel Regression Estimator: Local Constant
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Confusion Matrix
Predicted

Actual 0 1
0 119 11

1 22 37

Overall Correct Classification Ratio: 0.825

Correct Classification Ratio By Outcome:
0 1

0.915 0.627

McFadden–Puig–Kerschner Performance Measure: 0.808

Continuous Kernel Type: Second-Order Gaussian
No. Continuous Explanatory Vars.: 1

4.11. Smooth Coefficient (Varying Coefficient) Models

The smooth coefficient model is given by

Yi ¼ aðZiÞ þ X 0ibðZiÞ þ ui

¼ ð1þ X 0iÞ
aðZiÞ

bðZiÞ

 !
þ ui

¼W 0igðZiÞ þ ui

where Xi is a k� 1 vector and where b(z) is a vector of unspecified smooth
functions of z.

Suppose that we once again consider the wage1 dataset from Wooldridge
(2003, p. 222), but now assume that the researcher is unwilling to presume
that the coefficients associated with the numeric variables do not vary with
respect to the categorical variables female and married. The following code
snippet presents a summary from the smooth coefficient specification.

RW attach(wage1)
RW bw o- npscoefbw(lwageB
þ educþ
þ tenureþ

þ experþ
þ expersq/factor(female)þfactor(married))
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RW model.scoef o- npscoef(bw,betas ¼ TRUE)
RW summary(model.scoef)

Smooth Coefficient Model
Regression Data: 526 Training Points, in 2 Variable(s)

factor(female) factor(married)

Bandwidth(s): 0.00176 0.134

Bandwidth Type: Fixed

Residual SE: 0.147
R2: 0.479

Unordered Categorical Kernel Type: Aitchison and Aitken

No. Unordered Categorical Explanatory Vars.: 2

RW xx You could examine the matrix of smooth coefficients, or

compute the average
RW xx coefficient for each variable. One might then compare the

average with the
RW xx OLS model by way of example.

RW
RW colMeans(coef(model.scoef))

Intercept educ tenure exper expersq

0.340213 0.078650 0.014296 0.030052 �0.000595

RW coef (model.lm)

(Intercept) factor(female)Male factor(married)Notmarried

0.181161 0.291130 –0.056449
educ tenure exper

0.079832 0.016074 0.030100
expersq

–0.000601

RW detach(wage1)

4.12. Panel Data Models

The nonparametric and semiparametric estimation of panel data models
has received less attention than the estimation of standard regression
models. Data panels are samples formed by drawing observations on N
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cross-sectional units for T consecutive periods yielding a dataset of the form
fYit;Zitg

N; T
i¼1; t¼1. A panel is therefore simply a collection of N individual time

series that may be short (small T) or long (large T).
The nonparametric estimation of time series models is itself an evolving

field. However, when T is large and N is small then there exists a lengthy
time series for each individual unit and in such cases one can avoid
estimating a panel data model by simply estimating separate nonparametric
models for each individual unit using the T individual time series available
for each. If this situation applies, we direct the interested reader to Li and
Racine (2007a, Chapter 18) for pointers to the literature on nonparametric
methods for time series data.

When contemplating the nonparametric estimation of panel data models,
one issue that immediately arises is that the standard (parametric)
approaches that are often used for panel data models (such as first
differencing to remove the presence of so-called ‘‘fixed effects’’) are no
longer valid unless one is willing to presume additively separable effects,
which for many defeats the purpose of using nonparametric methods in the
first place.

A variety of approaches have been proposed in the literature, including
Wang (2003), who proposed a novel method for estimating nonparametric
panel data models that utilizes the information contained in the covariance
structure of the model’s disturbances; Wang, Carroll, and Lin (2005),
who proposed a partially linear model with random effects; and Henderson,
Carroll, and Li (2006), who consider profile likelihood methods for
nonparametric estimation of additive fixed effect models which are removed
via first differencing. In what follows, we consider direct nonparametric
estimation of fixed effects models.

Consider the following nonparametric fixed effects panel data regression
model:

Yit ¼ gðXitÞ þ uit; i ¼ 1; 2 . . . ; N; t ¼ 1; 2; . . . ; T

where g( � ) is an unknown smooth function, Xit ¼ (Xit, 1, y, Xit,q) is of
dimension q, all other variables are scalars, and EðuitjXi1; . . . ; XiT Þ ¼ 0.

We say that panel data is ‘‘poolable’’ if one can ‘‘pool’’ the data, by in
effect, ignoring the time series dimension, that is, by summing over both i
and t without regard to the time dimension thereby effectively putting all
data into the same pool then directly applying kernel regression methods. Of
course, if the data is not poolable, this would obviously not be a wise choice.

However, to allow for the possibility that the data is in fact potentially
poolable, one can introduce an unordered categorical variable, say di ¼ i for
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i ¼ 1, 2, y, N, and estimate EðYitjZit; diÞ ¼ gðZit; diÞ nonparametrically
using the mixed categorical and numeric kernel approach introduced earlier.
Letting l̂ denote the cross-validated smoothing parameter associated with
di, then if l̂ ¼ 1, one gets gðZit; diÞ ¼ gðZitÞ and the data is thereby pooled in
the resulting estimate of g( � ). If, on the other hand, l̂ ¼ 0 (or is close to 0),
then this effectively estimates each gi( � ) using only the time series for the ith
individual unit. Finally, if 0ol̂o1, one might interpret this as a case in
which the data is partially poolable.

We consider a panel of annual observations for six US airlines for
the 15-year period, 1970–1984, taken from the Ecdat R package
(Croissant, 2006) as detailed in Greene (2003, Table F7.1, p. 949). The
variables in the panel are airline (airline), year (year), the logarithm of
total cost in $1,000 (lcost), the logarithm of an output index in revenue
passenger miles (loutput), the logarithm of the price of fuel (lpf), and
load factor, that is, the average capacity utilization of the fleet (lf). We
treat ‘‘airline’’ as an unordered factor and ‘‘year’’ as an ordered factor
and use a local linear estimator with Hurvich et al.’s (1998) AICc bandwidth
approach.

RW library(plm)
[1] ‘‘kinship is loaded’’

RW library(Ecdat)
RW data(Airline)

RW model.plm o- plm(log(cost)Blog(output)þlog(pf)þlf,

þ data ¼ Airline,
þ model ¼ ‘‘within’’,

þ index ¼ c(‘‘airline’’,‘‘year’’))

[1] 90 3

RW summary(model.plm)
Oneway (individual) effect Within Model

Call:

plm(formula ¼ log(cost)Blog(output)þlog(pf)þlf, data ¼ Airline,
model ¼ ‘‘within’’, index ¼ c(‘‘airline’’, ‘‘year’’))

Balanced Panel: n ¼ 6, T ¼ 15, N ¼ 90

Residuals:

Min 1Q Median 3Q Max
�0.1560 �0.0352 �0.0093 0.0349 0.1660
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Coefficients:

Estimate SE t-value Pr(W|t|)
log(output) 0.9193 0.0299 30.76 o 2e–16���

log(pf) 0.4175 0.0152 27.47 o 2e–16���

lf –1.0704 0.2017 –5.31 0.00000011���

---

Significant codes: 0‘���’ 0.001‘��’ 0.01‘�’ 0.05‘.’ 0.1‘ ’ 1

Total Sum of Squares: 39.4
Residual Sum of Squares: 0.293

F-statistic: 3604.81 on 3 and 81 df, p-value: o2e–16

RW attach (Airline)
RW lcost o- as.numeric(log(cost))

RW loutput o- as.numeric(log(output))
RW lpf o- as.numeric(log(pf))

RW lf o- as.numeric(lf)
RW bw o- npregbw(lcostBloutput þ

þ lpf þ
þ lf þ

þ ordered(year) þ
þ factor(airline),

þ regtype ¼ ‘‘11’’,
þ bwmethod ¼ ‘‘cv.aic’’,

þ ukertype ¼ ‘‘liracine’’,
þ okertype ¼ ‘‘liracine’’)

RW summary(bw)
Regression Data (90 observations, 5 variable(s)):

Regression Type: Local Linear

Bandwidth Selection Method: Expected Kullback–Leibler Cross
Validation

Formula: lcostBloutputþlpfþlfþordered(year)þfactor(airline)
Bandwidth Type: Fixed

Objective Function Value: –8.9eþ15 (achieved on multistart 4)

Exp. Var. Name: loutput Bandwidth: 1669084 Scale Factor: 2758857

Exp. Var. Name: lpf Bandwidth: 0.0774 Scale Factor: 0.181

Exp. Var. Name: lf Bandwidth: 0.0125 Scale Factor: 0.488

Exp. Var. Name: ordered(year) Bandwidth: 0.167 Lambda Max: 1

Exp. Var. Name: factor(airline) Bandwidth: 0.0452 Lambda Max: 1

Continuous Kernel Type: Second-Order Gaussian
No. Continuous Explanatory Vars.: 3
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Unordered Categorical Kernel Type: Li and Racine
No. Unordered Categorical Explanatory Vars.: 1

Ordered Categorical Kernel Type: Li and Racine

No. Ordered Categorical Explanatory Vars.: 1

RW detach (Airline)

4.13. Rolling Your Own Functions

The np package contains the function npksum that computes kernel sums
on evaluation data, given a set of training data, data to be weighted
(optional), and a bandwidth specification (any bandwidth object).

The npksum exists so that you can create your own kernel objects with or
without a variable to be weighted (default Y ¼ 1). With the options
available, you could create new nonparametric tests or even new kernel
estimators. The convolution kernel option would allow you to create, say,
the least squares cross-validation function for kernel density estimation.

The npksum uses highly optimized C code that strives to minimize its
‘‘memory footprint,’’ while there is low overhead involved when using
repeated calls to this function (see, by way of illustration, the example below
that conducts leave-one-out cross validation for a local constant regression
estimator via calls to the ‘‘R’’ function ‘‘nlm,’’ and compares this to the
‘‘npregbw’’ function).

The npksum implements a variety of methods for computing multivariate
kernel sums (p-variate) defined over a set of possibly numeric and/or
categorical (unordered, ordered) data. The approach is based on Li and
Racine (2003) who employ ‘‘generalized product kernels’’ that admit a mix
of numeric and categorical data types.

Three classes of kernel estimators for the numeric data types are available:
fixed, adaptive nearest neighbor, and generalized nearest neighbor. Adaptive
nearest-neighbor bandwidths change with each sample realization in the set,
xi, when estimating the kernel sum at the point x. Generalized nearest-
neighbor bandwidths change with the point at which the sum is computed,
x. Fixed bandwidths are constant over the support of x. The npksum
computes

P
jW
0
jYjKðXjÞ, where Aj represents a row vector extracted from

A. That is, it computes the kernel-weighted sum of the outer product of the
rows ofW and Y. In the examples from ?npksum, the uses of such sums are
illustrated.

The npksum may be invoked either with a formula-like symbolic
description of variables on which the sum is to be performed or through a
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simpler interface whereby data is passed directly to the function via the
‘‘txdat’’ and ‘‘tydat’’ parameters. Use of these two interfaces is mutually
exclusive.

Data contained in the data frame ‘‘txdat’’ (and also ‘‘exdat’’) may be a
mix of numeric (default), unordered categorical (to be specified in the
data frame ‘‘txdat’’ using the ‘‘factor’’ command), and ordered categorical
(to be specified in the data frame ‘‘txdat’’ using the ‘‘ordered’’ command).
Data can be entered in an arbitrary order and data types will be detected
automatically by the routine (see ‘‘np’’ for details).

A variety of kernels may be specified by the user. Kernels implemented for
numeric data types include the second, fourth, sixth, and eighth order
Gaussian and Epanechnikov kernels, and the uniform kernel. Unordered
categorical data types use a variation on Aitchison and Aitken’s (1976)
kernel, while ordered data types use a variation of the Wang and van Ryzin
(1981) kernel (see ?np for details).

The following example implements leave-one-out cross validation for
the local constant estimator using the npksum function and the R nlm
function that carries out a minimization of a function using a Newton-type
algorithm.

RW n o- 100
RW x1 o- runif(n)

RW x2 o- rnorm(n)
RW x3 o- runif(n)

RW txdat o- data.frame(x1, x2, x3)
RW tydat o- x1þsin(x2)þrnorm(n)

RW ss o- function (h) {
þ

þ if(min(h)o ¼ 0) {
þ

þ return(.Machine$double.xmax)
þ

þ } else {
þ

þ mean o- npksum(txdat,

þ tydat,
þ leave.one.out ¼ TRUE,

þ bandwidth.divide ¼ TRUE,
þ bws ¼ h)$ksum/

þ npksum(txdat,
þ leave.one.out ¼ TRUE,

þ bandwidth.divide ¼ TRUE,
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þ bws ¼ h)$ksum
þ

þ return(sum((tydat–mean)42)/length(tydat))
þ

þ }
þ

þ }
RW nlm.return o- nlm(ss, runif(length(txdat)))

RW bw o- npregbw(xdat ¼ txdat, ydat ¼ tydat)
RW ## Bandwidths from nlm()

RW
RW nlm.return$estimate

[1] 0.318 0.535 166.966
RW ## Bandwidths from npregbw()

RW
RW bw$bw

[1] 0.318 0.535 5851161.850
RW ## Function value (minimum) from nlm()

RW
RW nlm.return$minimum

[1] 1.02
RW ## Function value (minimum) from npregbw()

RW
RW bw$fval

[1] 1.02

5. SUMMARY

The R environment for statistical computing and graphics (R Development
Core Team, 2008) offers practitioners a rich set of statistical methods
ranging from random number generation and optimization methods
through regression, panel data, and time series methods, by way of
illustration. The standard R distribution (base R) comes preloaded with
a rich variety of functionality useful for applied econometricians. This
functionality is enhanced by user-supplied packages made available via R
servers that are mirrored around the world. We hope that this chapter will
encourage users to pursue the R environment should they wish to adopt
nonparametric or semiparametric methods, and we wholeheartedly encou-
rage those working in the field to strongly consider implementing their
methods in the R environment thereby making their work accessible to the
widest possible audience via an open collaborative forum.
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NOTES

1. An interpreted programming language is one whose implementation is in the
form of an interpreter. One often heard disadvantage of such languages is that when
a program is interpreted, it tends to run slower than if it had been compiled.
2. A compiled language is one whose implementations are typically compilers

(i.e., translators which generate ‘‘machine code’’ from ‘‘source code’’).
3. By ‘‘interface’’ we are simply referring to the way one interacts with the

functions themselves. The np package that we discuss shortly supports the common
‘‘formula’’ interface which allows you to specify the list of covariates in a model
in the same manner as you would any number of functions in the R environment
(think of this as a ‘‘common look and feel’’ if you will).
4. An open software platform indicates that the source code and certain rights

(those typically reserved for copyright holders) are provided under a license that
meets the ‘‘open-source definition’’ or that is in the public domain.
5. A ‘‘confusion matrix’’ is simply a tabulation of the actual outcomes versus those

predicted by a model. The diagonal elements contain correctly predicted outcomes
while the off-diagonal ones contain incorrectly predicted (confused) outcomes.
6. To be specific, bandwidth selection is nowhere near as fast though computing

the density itself is comparable once the bandwidth is supplied.
7. The term ‘‘density’’ is appropriate for distribution functions defined over mixed

categorical and numeric variables. It is the measure defined on the categorical
variables in the density function that matters.
8. It is good practice to classify your variables according to their data type in your

data frame. This has already been done; hence, there is no need to write ordered (year).
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PART VI

SURVEYS





SOME RECENT DEVELOPMENTS

IN NONPARAMETRIC FINANCE

Zongwu Cai and Yongmiao Hong

ABSTRACT

This paper gives a selective review on some recent developments of
nonparametric methods in both continuous and discrete time finance,
particularly in the areas of nonparametric estimation and testing of
diffusion processes, nonparametric testing of parametric diffusion
models, nonparametric pricing of derivatives, nonparametric estimation
and hypothesis testing for nonlinear pricing kernel, and nonparametric
predictability of asset returns. For each financial context, the paper
discusses the suitable statistical concepts, models, and modeling procedures,
as well as some of their applications to financial data. Their relative
strengths and weaknesses are discussed. Much theoretical and empirical
research is needed in this area, and more importantly, the paper points to
several aspects that deserve further investigation.

1. INTRODUCTION

Nonparametric modeling has become a core area in statistics and
econometrics in the last two decades; see the books by Härdle (1990),
Fan and Gijbels (1996), and Li and Racine (2007) for general statistical
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methodology and theory as well as applications. It has been used
successfully in various fields such as economics and finance due to its
advantage of requiring little prior information on the data-generating
process; see the books by Pagan and Ullah (1999), Mittelhammer, Judge,
and Miller (2000), Tsay (2005), Taylor (2005), and Li and Racine (2007) for
real examples in economics and finance. Recently, nonparametric techni-
ques have been proved to be the most attractive way of conducting research
and gaining economic intuition in certain core areas in finance, such as
asset and derivative pricing, term structure theory, portfolio choice, risk
management, and predictability of asset returns, particularly, in modeling
both continuous and discrete financial time series models; see the books
by Campbell, Lo, and MacKinlay (1997), Gourieroux and Jasiak (2001),
Duffie (2001), Tsay (2005), and Taylor (2005).

Finance is characterized by time and uncertainty. Modeling both
continuous and discrete financial time series has been a basic analytic tool
in modern finance since the seminal papers by Sharpe (1964), Fama (1970),
Black and Scholes (1973), and Merton (1973). The rationale behind it is that
for most of time, news arrives at financial markets in both continuous
and discrete manners. More importantly, derivative pricing in theoretical
finance is generally much more convenient and elegant in a continuous-
time framework than through binomial or other discrete approximations.
However, statistical analysis based on continuous-time financial models has
just emerged as a field in less than a decade, although it has been used for
more than four decades for discrete financial time series. This is apparently
due to the difficulty of estimating and testing continuous-time models
using discretely observed data. The purpose of this survey is to review some
recent developments of nonparametric methods used in both continuous
and discrete time finance in recent years, and particularly in the areas of
nonparametric estimation and testing of diffusion models, nonparametric
derivative pricing and its tests, and predictability of asset returns based on
nonparametric approaches. Financial time series data have some distinct
important stylized facts, such as persistent volatility clusterings, heavy tails,
strong serial dependence, and occasionally sudden but large jumps.
In addition, financial modeling is often closely embedded in a financial
theoretical framework. These features suggest that standard statistical
theory may not be readily applicable to both continuous and discrete
financial time series. This is a promising and fruitful area for both financial
economists and statisticians to interact with.

Section 2 introduces various continuous-time diffusion processes and
nonparametric estimation methods for diffusion processes. Section 3 reviews
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the estimation and testing of a parametric diffusion model using
nonparametric methods. Section 4 discusses nonparametric estimation and
hypothesis testing of derivative and asset pricing, particularly the nonpara-
metric estimation of risk neutral density (RND) functions and nonlinear
pricing kernel models. Nonparametric predictability of asset returns is
presented in Section 5. In Sections 2–5, we point out some open and
interesting research problems, which might be useful for graduate students
to review the important research papers in this field and to search for their
own research topics, particularly dissertation topics for doctoral students.
Finally, in Section 6, we highlight some important research areas that
are not covered in this paper due to space limitation, say nonparametric
volatility (conditional variance) and ARCH- or GARCH-type models and
nonparametric methods in volatility for high-frequency data with/without
microstructure noise. We plan to write a separate survey paper to discuss
some of these omitted topics in the near future.

2. NONPARAMETRIC DIFFUSION MODELS

2.1. Diffusion Models

Modeling the dynamics of interest rates, stock prices, foreign exchange
rates, and macroeconomic factors, inter alia, is one of the most important
topics in asset pricing studies. The instantaneous risk-free interest rate or the
so-called short rate is, for example, the state variable that determines the
evolution of the yield curve in an important class of term structure models,
such as Vasicek (1977) and Cox, Ingersoll, and Ross (1985, CIR). It is of
fundamental importance for pricing fixed-income securities. Many theore-
tical models have been developed in mathematical finance to describe the
short rate movement.1

In the theoretical term structure literature, the short rate or the underlying
process of interest, {Xt, tZ0}, is often modeled as a time-homogeneous
diffusion process, or stochastic differential equation:

dXt ¼ mðXtÞdtþ sðXtÞdBt (1)

where {Bt, tZ0} is a standard Brownian motion. The functions m( � ) and
s2( � ) are, respectively, the drift (or instantaneous mean) and the diffusion
(or instantaneous variance) of the process, which determine the dynamics
of the short rate. Indeed, model (1) can be applied to many core areas in
finance, such as options, derivative pricing, asset pricing, term structure of
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interest rates, dynamic consumption and portfolio choice, default risk,
stochastic volatility, exchange rate dynamics, and others.

There are two basic approaches to identifying m( � ) and s( � ). The first is a
parametric approach, which assumes some parametric forms of m( � , y) and
s( � , y), and estimates the unknown model parameters, say y. Most existing
models in the literature assume that the interest rate exhibits mean reversion
and that the drift m( � ) is a linear or quadratic function of the interest rate
level. It is also often assumed that the diffusion s( � ) takes the form of s|Xt|

g,
where g measures the sensitivity of interest rate volatility to the interest rate
level. In modeling interest rate dynamics, this specification captures the
so-called ‘‘level effect,’’ that is, the higher the interest rate level, the larger
the volatility. With g ¼ 0 and 0.5, model (1) reduces to the well-known
Vasicek and CIR models, respectively. The forms of m( � , y) and s( � , y) are
typically chosen due to theoretical wisdom or convenience. They may not
be consistent with the data-generating process and there may be at risk of
misspecification.

The second approach is a nonparametric one, which does not assume any
restrictive functional form for m( � ) and s( � ) beyond regularity conditions.
In the last few years, great progress has been made in estimating and testing
continuous-time models for the short-term interest rate using nonparametric
methods.2 Despite many studies, empirical analysis on the functional forms
of the drift and diffusion is still not conclusive. For example, recent studies
by Ait-Sahalia (1996b) and Stanton (1997) using nonparametric methods
overwhelmingly reject all linear drift models for the short rate. They find
that the drift of the short rate is a nonlinear function of the interest rate
level. Both studies show that for the lower and middle ranges of the interest
rate, the drift is almost zero, that is, the interest rate behaves like a random
walk. But the short rate exhibits strong mean reversion when the interest
rate level is high. These findings lead to the development of nonlinear term
structure models such as those of Ahn and Gao (1999).

However, the evidence of nonlinear drift has been challenged by Pritsker
(1998) and Chapman and Pearson (2000), who find that the nonparametric
methods of Ait-Sahalia (1996b) and Stanton (1997) have severe finite
sample problems, especially near the extreme observations. The finite
sample problems with nonparametric methods cast doubt on the evidence of
nonlinear drift. On the other hand, the findings in Ait-Sahalia (1996b) and
Stanton (1997) that the drift is nearly flat for the middle range of the
interest rate are not much affected by the small sample bias. The reason is
that near the extreme observations, the nonparametric estimation might not
be accurate due to the sparsity of data in this region. Also, this region is
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close to the boundary point, so that the Nadaraya–Watson (NW) estimate
suffers a boundary effect. Chapman and Pearson (2000) point out that this is
a puzzling fact, since ‘‘there are strong theoretical reasons to believe that
short rate cannot exhibit the asymptotically explosive behavior implied by
a random walk model.’’ They conclude that ‘‘time series methods alone are
not capable of producing evidence of nonlinearity in the drift.’’ Recently, to
overcome the boundary effect, Fan and Zhang (2003) fit a nonparametric
model using a local linear technique and apply the generalized likelihood
ratio test of Cai, Fan, and Yao (2000) and Fan, Zhang, and Zhang (2001) to
test whether the drift is linear. They support Chapman and Pearson’s (2000)
conclusion. However, the generalized likelihood ratio test is developed
by Cai et al. (2000) for discrete time series and Fan et al. (2001) for
independently and identically distributed (iid) samples, but it is still
unknown whether it is valid for continuous time series contexts, which is
warranted for a further investigation. Interest rate data are well known for
persistent serial dependence. Pritsker (1998) uses Vasicek’s (1977) model of
interest rates to investigate the performance of a nonparametric density
estimation in finite samples. He finds that asymptotic theory gives poor
approximation even for a rather large sample size.

Controversies also exist on the diffusion s( � ). The specification of s( � ) is
important, because it affects derivative pricing. Chan, Karolyi, Longstaff, and
Sanders (1992) show that in a single factor model of the short rate, g roughly
equals to 1.5 and all the models with gr1 are rejected. Ait-Sahalia (1996b)
finds that g is close to 1; Stanton (1997) finds that in his semiparametric model
g is about 1.5; and Conley, Hansen, Luttmer, and Scheinkman (1997) show
that their estimate of g is between 1.5 and 2. However, Bliss and Smith (1998)
argue that the result that g equals to 1.5 depends on whether the data between
October 1979 and September 1982 are included. From the foregoing
discussions, it seems that the value of g may change over time.

2.2. Nonparametric Estimation

Under some regularity conditions, see Jiang and Knight (1997) and Bandi and
Nguyen (2000), the diffusion process in Eq. (1) is a one dimensional, regular,
strong Markov process with continuous sample paths and time-invariant
stationary transition density. The drift and diffusion are, respectively, the first
two moments of the infinitesimal conditional distribution of Xt:

mðXtÞ ¼ lim
D!0

D�1E½YtjXt�; and s2ðXtÞ ¼ lim
D!0

D�1E½Y2
t jXt� (2)
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where Yt ¼ XtþD�Xt (see, e.g., Øksendal, 1985; Karatzas & Shreve, 1988).
The drift describes the movement of Xt due to time changes, whereas the
diffusion term measures the magnitude of random fluctuations around
the drift.

Using the Dynkin (infinitesimal) operator (see, e.g., Øksendal, 1985;
Karatzas & Shreve, 1988), Stanton (1997) shows that the first-order
approximation:

mðXtÞ
ð1Þ
¼

1

D
EfXtþD � XtjXtg þOðDÞ

the second-order approximation:

mðXtÞ
ð2Þ
¼

1

2D
½4EfYtjXtg � EfXtþ2D � XtjXtg� þOðD2

Þ

and the third-order approximation:

mðXtÞ
ð3Þ
¼

1

6D
½18EfYtjXtg�9EfXtþ2D�XtjXtgþ2EfXtþ3D�XtjXtg�þOðD3

Þ

etc. Fan and Zhang (2003) derive higher-order approximations. Similar
formulas hold for the diffusion (see Stanton, 1997). Bandi and Nguyen
(2000) argue that approximations to the drift and diffusion of any order
display the same rate of convergence and limiting variance, so that
asymptotic argument in conjunction with computational issues suggest
simply using the first-order approximations in practice. As indicated by
Stanton (1997), the higher the order of the approximations, the faster they
will converge to the true drift and diffusion. However, as noted by Bandi
and Nguyen (2000) and Fan and Zhang (2003), higher-order approxima-
tions can be detrimental to the efficiency of the estimation procedure in
finite samples. In fact, the variance grows nearly exponentially fast as the
order increases and they are much more volatile than their lower-order
counterparts. For more discussions, see Bandi (2000), Bandi and Nguyen
(2000), and Fan and Zhang (2003). The question arises is how to choose the
order in application. As demonstrated in Fan and Zhang (2003), the first or
second order may be enough in most applications.

Now suppose we observe Xt at t ¼ tD, t ¼ 1,y, n, in a fixed time interval
[0, T] with T. Denote the random sample as fXtDg

n
t¼1. Then, it follows from

Eq. (2) that the first-order approximations to m(x) and s(x) lead to

mðxÞ 
1

D
E½YtjXtD ¼ x� and s2ðxÞ 

1

D
E½Y2

t jXtD ¼ x� (3)
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for all 1rtrn�1, where Yt ¼ X(tþ1)D–XtD. Both m(x) and s2(x) become
classical nonparametric regressions and a nonparametric kernel smoothing
approach can be applied to estimating them.

There are many nonparametric approaches to estimating conditional
expectations. Most existing nonparametric methods in finance dwell mainly
on the NW kernel estimator due to its simplicity. According to Ait-Sahalia
(1996a, 1996b), Stanton (1997), Jiang and Knight (1997), and Chapman and
Pearson (2000), the NW estimators of m(x) and s2(x) are given for any given
grid point x, respectively, by

m̂ðxÞ
1

D

Pn�1
t¼1Y tKhðx� XtDÞPn�1
t¼1Khðx� XtDÞ

; and ŝ2ðxÞ ¼
1

D

Pn�1
t¼1Y

2
tKhðx� XtDÞPn�1

t¼1Khðx� XtDÞ
(4)

where KhðuÞ ¼ Kðu=hÞ=h; h ¼ hn40 is the bandwidth with h-0 and nh-
N as n-N, and K( � ): R! R is a standard kernel. Jiang and Knight
(1997) suggest first using Eq. (4) to estimate s2(x). Observe that the drift

mðXtÞ ¼
1

2pðXtÞ

@½s2ðXtÞpðXtÞ�

@Xt

where p(Xt) is the stationary density of {Xt}; see, for example, Ait-Sahalia
(1996a), Jiang and Knight (1997), Stanton (1997), and Bandi and Nguyen
(2000). Therefore, Jiang and Knight (1997) suggest estimating m(x) by

m̂ðxÞ ¼
1

2p̂ðxÞ
@fŝ2ðxÞp̂ðxÞg

@x

where p̂ðxÞ is a consistent estimator of p(x), say, the classical kernel density
estimator. The reason of doing so is based on the fact that in Eq. (1),
the drift is of order dt and the diffusion is of order

ffiffiffiffiffi
dt
p

, as
ðdBtÞ

2
¼ dtþOððdtÞ2Þ. That is, the diffusion has lower order than the drift

for infinitesimal changes in time, and the local-time dynamics of the
sampling path reflects more of the diffusion than those of the drift term.
Therefore, when D is very small, identification becomes much easier for the
diffusion term than the drift term.

It is well known that the NW estimator suffers from some disadvantages
such as larger bias, boundary effects, and inferior minimax efficiency (see,
e.g., Fan & Gijbels, 1996). To overcome these drawbacks, Fan and Zhang
(2003) suggest using the local linear technique to estimate m(x) as follows:
When XtD is in a neighborhood of the grid point x, by assuming that
the second derivative of m( � ) is continuous, m(XtD) can be approximated
linearly as b0 þ b1ðXtD � xÞ, where b0 ¼ m(x) and b1 ¼ mu(x), the first
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derivative of m(x). Then, the locally weighted least square is given byXn�1
t¼1

fD�1Y t � b0 � b1ðXtD � xÞg2KhðXtD � xÞ (5)

Minimizing the above with respect to b0 and b1 gives the local linear
estimate of m(x). Similarly, in view of Eq. (3), the local linear estimator of
s2( � ) can be obtained by changing D�1Yt in Eq. (5) into D�1Y2

t . However,
the local linear estimator of the diffusion s( � ) cannot be always nonnegative
in finite samples. To attenuate this disadvantage of local polynomial
method, a weighted NW method proposed by Cai (2001) can be used to
estimate s( � ). Recently, Xu and Phillips (2007) study this approach and
investigate its properties.

The asymptotic theory can be found in Jiang and Knight (1997) and
Bandi and Nguyen (2000) for the NW estimator and in Fan and Zhang
(2003) for the local linear estimator as well as Xu and Phillips (2007) for the
weighted NW estimator. To implement kernel estimates, the bandwidth(s)
must be chosen. In the iid setting, there are theoretically optimal bandwidth
selections. There are no such results for diffusion processes available
although there are many theoretical and empirical studies in the literature.
As a rule of thumb, an easy way to choose a data-driven fashion bandwidth
is to use the nonparametric version of the Akaike information criterion
(see Cai & Tiwari, 2000).

One crucial assumption in the foregoing development is the stationarity of
{Xt}. However, it might not hold for real financial time series data. If {Xt} is
not stationary, Bandi and Phillips (2003) propose using the following
estimators to estimate m(x) and s2(x), respectively:

m̂ðxÞ ¼
Pn

t¼1Khðx� XtDÞ ~mðXtDÞPn
t¼1Khðx� XtDÞ

; and ŝ2ðxÞ ¼
Pn

t¼1Khðx� XtDÞ ~s2ðXtDÞPn
t¼1Khðx� XtDÞ

where

~mðxÞ ¼
1

D

Pn�1
t¼1IðjXtD� xj � bÞY tPn
t¼1IðjXtD� xj � bÞ

; and ~s2ðxÞ ¼
1

D

Pn�1
t¼1IðjXtD� xj � bÞY2

tPn
t¼1IðjXtD� xj � bÞ

See also Bandi and Nguyen (2000). Here, b ¼ bnW0 is a bandwidth-
like smoothing parameter that depends on the time span and on the sample
size, which is called the spatial bandwidth in Bandi and Phillips (2003).
This modeling approach is termed as the chronological local time
estimation. Bandi and Phillips’s approach can deal well with the situation
that the series is not stationary. The reader is referred to the papers by
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Bandi and Phillips (2003) and Bandi and Nguyen (2000) for more
discussions and asymptotic theory.

Bandi and Phillips’s (2003) estimator can be viewed as a double kernel
smoothing method: The first step defines straight sample analogs to the
values that drift and diffusion take at the sampled points and it can be
regarded as a generalization of the moving average. Indeed, this step uses
the smoothing technique (a linear estimator with the same weights) to
obtain the raw estimates of the two functions ~mðxÞ and ~s2ðxÞ, respectively.
This approach is different from classical two-step method in the literature
(see Cai, 2002a, 2002b). The key is to figure out how important the first is to
the second step. To implement this estimator, an empirical and theoretical
study on the selection of two bandwidths b and h is needed.

2.3. Time-Dependent Diffusion Models

The time-homogeneous diffusion models in Eq. (1) have certain limitations.
For example, they cannot capture the time effect, as addressed at the end
of Section 2.1. A variety of time-dependent diffusion models have been
proposed in the literature. A time-dependent diffusion process is
formulated as

dXt ¼ mðXt; tÞdtþ sðXt; tÞdBt (6)

Examples of Eq. (6) include Ho and Lee (HL) (1986), Hull and White
(HW) (1990), Black, Derman, and Toy (BDT) (1990), and Black and
Karasinski (BK) (1991), among others. They consider, respectively, the
following models:

HL : dXt ¼ mðtÞdtþ sðtÞdBt

HW : dXt ¼ ½a0 þ a1ðtÞXt�dtþ sðtÞXg
t dBt; g ¼ 0 or 0:5

BDT : dXt ¼ ½a1ðtÞXt þ a2ðtÞXt logðXtÞ�dtþ sðtÞXtdBt

BK : dXt ¼ ½a1ðtÞXt þ a2ðtÞXt logðXtÞ�dtþ sðtÞXtdBt

where a2ðtÞ ¼ s0ðtÞ=sðtÞ. Similar to Eq. (2), one has

mðXt; tÞ ¼ lim
D!0

D�1EfYtjXtg; and s2ðXt; tÞ ¼ lim
D!0

D�1EfY2
t jXtg

where Yt ¼ XtþD�Xt, which provide a regression form for estimating m( � , t)
and s2( � , t).
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By assuming that the drift and diffusion functions are linear in Xt with
time-varying coefficients, Fan, Jiang, Zhang, and Zhou (2003) consider the
following time-varying coefficient single factor model:

dXt ¼ ½a0ðtÞ þ a1ðtÞXt�dtþ b0ðtÞX
b1ðtÞ
t dBt (7)

and use the local linear technique in Eq. (5) to estimate the coefficient
functions {aj( � )} and {bj( � )}. Since the coefficients depend on time, {Xt}
might not be stationary. The asymptotic properties of the resulting
estimators are still unknown. Indeed, the aforementioned models are a
special case of the following more general time-varying coefficient multi-
factor diffusion model:

dXt ¼ mðXt; tÞdtþ sðXt; tÞdBt (8)

where

mðXt; tÞ ¼ a0ðtÞ þ a1ðtÞgðXtÞ and ðsðXt; tÞsðXt; tÞ
>
Þij ¼ b0;ijðtÞ þ b1;ijðtÞ

>hijðXtÞ

and g( � ) and {hij( � )} are known functions. This is the time-dependent
version of the multifactor affine model studied in Duffie, Pan, and Singleton
(2000). It allows time-varying coefficients in multifactor affine models.
A further theoretical and empirical study of the time-varying coefficient
multifactor diffusion model in Eq. (8) is warranted. It is interesting to point
out that the estimation approaches described above are still applicable to
model (8) but the asymptotic theory is very challenging because of the
nonstationarity of unknown structure of the underlying process {Xt}.

2.4. Jump-Diffusion Models

There has been a vast literature on the study of diffusion models with
jumps.3 The main purpose of adding jumps into diffusion models or
stochastic volatility diffusion models is to accommodate impact of sudden
and large shocks to financial markets, such as macroeconomic announce-
ments, the Asian and Russian finance crisis, the US finance crisis, an
unusually large unemployment announcement, and a dramatic interest rate
cut by the Federal Reserve. For more discussions on why it is necessary to
add jumps into diffusion models, see, for example, Lobo (1999), Bollerslev
and Zhou (2002), Liu, Longstaff, and Pan (2002), and Johannes (2004),
among others. Also, jumps can capture the heavy tail behavior of the
distribution of the underlying process.
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For the expositional purpose, we only consider a single factor diffusion
model with jump:

dXt ¼ mðXtÞdtþ sðXtÞdBt þ dJt (9)

where Jt is a compensated jump process (zero conditional mean) with
arrival rate (conditional probability) lt ¼ l(Xt)Z0, which is an instanta-
neous intensity function. There are several studies on specification of Jt. For
example, a simple specification is to assume Jt ¼ xPt, where Pt is a Poisson
process with an intensity l(Xt) or a binomial distribution with probability
l(Xt), and the jump size, x, has a time-invariant distribution P( � ) with mean
zero. P( � ) is commonly assumed to be either normally or uniformly
distributed. If l( � ) ¼ 0 or E(x2) ¼ 0, the jump-diffusion model in Eq. (9)
becomes the diffusion model in Eq. (1). More generally, Chernov, Gallant,
Ghysels, and Tauchen (2003) consider a Lévy process for Jt. A simple jump-
diffusion model proposed by Kou (2002) is discussed in Tsay (2005) by
assuming that Jt ¼

Pnt
i¼1ðLi � 1Þ, where nt is a Poisson process with rate l

and {Li} a sequence of iid nonnegative random variables such that ln(Li) has
a double exponential distribution with probability density function f ðxÞ ¼
expð�jx� y1j=y2Þ=2y2 for 0oy2o1. This simple model enjoys several nice
properties. The returns implied by the model are leptokurtic and asymmetric
with respect to zero. In addition, the model can reproduce volatility smile
and provide analytical formulas for the prices of many options.

In practice, l( � ) might be assumed to have a particular form. For
example, Chernov et al. (2003) consider three different types of special
forms, each having the appealing feature of yielding analytic option pricing
formula for European-type contracts written on the stock price index. There
are some open issues for the jump-diffusion model: (i) jumps are not
observed and it is not possible to say surely if they exist; (ii) if they exist, a
natural question arises is how to estimate a jump time t, which is defined
to be the discontinuous time at which XtþaXt�, and the jump size
x ¼ Xtþ�Xt�. We conjecture that a wavelet method may be potentially
useful here because a wavelet approach has an ability of capturing the
discontinuity and removing the contaminated noise. For detailed discussion
on how to use a wavelet method in this regard, the reader is referred to the
paper by Fan and Wang (2007). Indeed, Fan and Wang (2007) propose
using a wavelet method to cope with both jumps in the price and market
microstructure noise in the observed data to estimate both integrated
volatility and jump variation from the data sampled from jump-diffusion
price processes, contaminated with the market microstructure noise.
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Similar to Eq. (2), the first two conditional moments are given by

m1ðXtÞ ¼ lim
D#0

D�1E½YtjXt� ¼ mðXtÞ þ lðXtÞEðxÞ

and

m2ðXtÞ ¼ lim
D#0

D�1E½Y2
t jXt� ¼ s2ðXtÞ þ lðXtÞEðx2Þ

Clearly, m2(Xt) is much bigger than s2(Xt) if there is a jump. This means
that adding a jump into the model can capture the heavy tails. Also, it is
easy to see that the first two moments are the same as those for a diffusion
model by using a new drift coefficient ~mðXtÞ ¼ mðXtÞ þ lðXtÞEðxÞ and a new
diffusion coefficient ~s2ðxÞ ¼ s2ðxÞ þ lðxÞEðx2Þ. However, the fundamental
difference between a diffusion model and a diffusion model with jumps relies
on higher-order moments. Using the infinitesimal generator (Øksendal,
1985; Karatzas and Shreve, 1988) of Xt, we can compute, jW2,

mjðXtÞ ¼ lim
D!0

D�1E½Yj
tjXt� ¼ lðXtÞEðx

j
Þ

See Duffie et al. (2000) and Johannes (2004) for details. Obviously, jumps
provide a simple and intuitive mechanism for capturing the heavy tail
behavior of underlying process. In particular, the conditional skewness and
kurtosis are, respectively, given by

sðXtÞ 	
lðXtÞEðx3Þ

½s2ðXtÞ þ lðXtÞEðx2Þ�3=2
; and kðXtÞ 	

lðXtÞEðx4Þ

½s2ðXtÞ þ lðXtÞEðx2Þ�2

Note that s(Xt) ¼ 0 if x is symmetric. By assuming x � Nð0; s2xÞ, Johannes
(2004) uses the conditional kurtosis to measure the departures for the
treasury bill data from normality and concludes that interest rates exchanges
are extremely non-normal.

The NW estimation of mj( � ) is considered by Johannes (2004) and Bandi
and Nguyen (2003). Moreover, Bandi and Nguyen (2003) provide a general
asymptotic theory for the resulting estimators. Further, by specifying a
particular form of P(x) ¼ P0(x, y), say, x � Nð0; s2xÞ, Bandi and Nguyen
(2003) propose consistent estimators of l( � ), s2x, and s2( � ) and derive their
asymptotic properties.

A natural question arises is how to measure the departures from a pure
diffusion model statistically. That is to test model (9) against model (1).
It is equivalent to checking whether l( � )	 0 or x ¼ 0. Instead of using the
conditional skewness or kurtosis, a test statistic can be constructed based on
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the higher-order conditional moments. For example, one can construct the
following nonparametric test statistics:

T1 ¼

Z
m̂4ðxÞwðxÞdx; or T2 ¼

Z
m̂23ðxÞwðxÞdx (10)

where w( � ) is a weighting function. The asymptotic theory for T1 and T2 is
still unknown. It needs a further investigation theoretically and empirically.
Based on a Monte Carlo simulation approach, Cai and Zhang (2008b) use
the aforementioned testing statistics in an application, described as follows.

It is well known that prices fully reflect the available information in the
efficient market. Thus, Cai and Zhang (2008b) consider the market
information consisting of two components. The first is the anticipated
information that drives market prices’ daily normal fluctuation, and the
second is the unanticipated information that determines prices to excep-
tional fluctuation, which can be characterized by a jump process. Therefore,
Cai and Zhang (2008b) investigate the market information via a jump-
diffusion process. The jump term in the dynamic of stock price or return rate
reflects the sensitivity of unanticipated information for the related firms.
This implies that the investigation of the jump parameters for firms with
different sizes would help us to find the relationship between firm sizes and
information sensitivity. With the nonparametric method as described above,
Cai and Zhang (2008b) use the kernel estimation method, and reveal how
the nonparametric estimation of the jump parameters (functions) reflect the
so-called information effect. Also, they test the model based on the test
statistic formulated in Eq. (10). Due to the lack of the relevant theory of
the test statistics in Eq. (10), Cai and Zhang (2008b) use the Monte Carlo
simulation, and find that a jump-diffusion process performs better to model
with all market information, including anticipated and unanticipated
information than the pure diffusion model. Empirically, Cai and Zhang
(2008b) estimate the jump intensity and jump variance for portfolios with
different firm sizes for data from both the US and Chinese markets, and find
some evidences that there exists information effect among different firm
sizes, from which we could get valuable references for investors’ decision
making. Finally, using a Monte Carlo simulation method, Cai and Zhang
(2008a) examine the test statistics in Eq. (10) to see how the discontinuity of
drift or diffusion function affects the performance of the test statistics. They
find that the discontinuity of drift or diffusion function has an impact on the
performance of the test statistics in Eq. (10).
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More generally, given a discrete sample of a diffusion process, can one tell
whether the underlying model that gave rise to the data was a diffusion, or
should jumps be allowed into the model? To answer this question,
Ait-Sahalia (2002b) proposes an approach to identifying the sufficient
and necessary restriction on the transition densities of diffusions, at the
sampling interval of the observed data. This restriction characterizes
the continuity of the unobservable continuous sample path of the
underlying process and is valid for every sampling interval including long
ones. Let {Xt, tZ0} be a Markovian process taking values in D � R.
Let p(D, y|x) denote the transition density function of the process over
interval length D, that is, the conditional density of XtþD ¼ y given Xt ¼ x,
and it is assumed that the transition densities are time homogenous.
Ait-Sahalia (2002b) shows that if the transition density p(D, y|x) is strictly
positive and twice-continuously differentiable on D�D and the following
condition:

@2

@x @y
ln pðD; yjxÞ40 for all D40 and ðx; yÞ 2 D�D

(which is the so-called ‘‘diffusion criterion’’ in Ait-Sahalia, 2002b), is
satisfied, then the underlying process is a diffusion. From a discretely
sampled time series {XtD}, one could test nonparametrically the hypothesis
that the data were generated by a continuous-time diffusion {Xt}. That is to
test nonparametrically the null hypothesis

H0 :
@2

@x @y
ln pðD; yjxÞ40 for all x; y

versus the alternative

Ha :
@2

@x @y
ln pðD; yjxÞ � 0 for some x; y

One could construct a test statistic based on checking whether the above
‘‘diffusion criterion’’ holds for a nonparametric estimator of p(D, y|x).
This topic is still open. If the model has a specific form, say a parametric
form, the diffusion criterion becomes a simple form, say, it becomes just
a constraint for some parameters. Then, the testing problem becomes
testing a constraint on parameters; see Ait-Sahalia (2002b) for some real
applications.
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2.5. Time-Dependent Jump-Diffusion Models

Duffie et al. (2000) consider the following time-dependent jump-diffusion
model:

dXt ¼ mðXt; tÞdtþ sðXt; tÞdBt þ dJt (11)

where Jt is a compensated jump process with the time-varying intensity
l(Xt, t) ¼ l0(t)þ l1(t)XT; and Chernov et al. (2003) consider a more general
stochastic volatility model with the time-varying stochastic intensity
lðx0; Xt; tÞ ¼ l0ðx0; tÞ þ l1ðx0; tÞXt, where x0 is the size of the previous
jump. This specification yields a class of jump Lévy measures which
combine the features of jump intensities depending on, say, volatility, as well
as the size of the previous jump. Johannes, Kumar, and Polson (1999)
also propose a class of jump-diffusion processes with a jump intensity
depending on the past jump time and the absolute return. Moreover,
as pointed out by Chernov et al. (2003), another potentially very useful
specification of the intensity function would include the past duration,
that is, the time since the last jump, say t(t), which is the time that has
elapsed between the last jump and t where t(t) is a continuous function of t,
such as

lðx0; Xt; t; tÞ ¼ fl0ðtÞ þ l1ðtÞXtglftðtÞg expfGðx0Þg (12)

which can accommodate the increasing, decreasing, or hump-shaped
hazard functions of the size of the previous jump, and the duration
dependence of jump intensities. However, to the best of our knowledge,
there have not been any attempts in the literature to discuss the estimation
and test of the intensity function l( � ) nonparametrically in the above
settings.

A natural question arises is how to generalize model (9) economically and
statistically to a more general time-dependent jump-diffusion model given in
Eq. (11) with the time-dependent intensity function lðx0; Xt; t; tÞ without
any specified form or with some nonparametric structure, say, like Eq. (12).
Clearly, they include the aforementioned models as a special case, which are
studied by Duffie et al. (2000), Johannes et al. (1999), and Chernov et al.
(2003), among others. This is still an open problem.
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3. NONPARAMETRIC INFERENCES OF

PARAMETRIC DIFFUSION MODELS

3.1. Nonparametric Estimation

As is well known, derivative pricing in mathematical finance is generally much
more tractable in a continuous-time modeling framework than through
binomial or other discrete approximations. In the empirical literature,
however, it is an usual practice to abandon continuous-time modeling when
estimating derivative pricing models. This is mainly due to the difficulty that
the transition density for most continuous-time models with discrete
observations has no closed form and therefore the maximum likelihood
estimation (MLE) is infeasible.

One major focus of the continuous-time literature is on developing
econometric methods to estimate continuous-time models using discretely
sampled data.4 This is largely motivated by the fact that using the discrete
version of a continuous-time model can result in inconsistent parameter
estimates (see Lo, 1988). Available estimation procedures include the MLE
method of Lo (1988); the simulated methods of moments of Duffie and
Singleton (1993) and Gourieroux, Monfort, and Renault (1993); the general-
ized method of moments (GMM) of Hansen and Scheinkman (1995); the
efficient method of moments (EMM) of Gallant and Tauchen (1996); the
Markov chain Monte Carlo (MCMC) of Jacquier, Polson, and Rossi (1994),
Eraker (1998), and Jones (1998); and the methods based on the empirical
characteristic function of Jiang and Knight (2002) and Singleton (2001).

Below we focus on some nonparametric estimation methods of a
parametric continuous-time model

dXt ¼ mðXt; yÞdtþ sðXt; yÞdBt (13)

where m( � , � ) and s( � , � ) are known functions and y an unknown
parameter vector in an open bounded parameter space Y. Ait-Sahalia
(1996b) proposes a minimum distance estimator:

ŷ ¼ arg min
y2Y

n�1
Xn
t¼1

½p̂0ðXtDÞ � pðXtD; yÞ�2 (14)

where

p̂0ðxÞ ¼ n�1
Xn
t¼1

Khðx� XtDÞ

ZONGWU CAI AND YONGMIAO HONG394



is a kernel estimator for the stationary density of Xt, and

pðx; yÞ ¼
cðyÞ

s2ðx; yÞ
exp

Z x

x

0

2mðu; yÞ
s2ðu; yÞ

du

( )
(15)

is the marginal density estimator implied by the diffusion model, where
the standardization factor c(y) ensures that p( � , y) integrates to 1 for
every yAY, and x
0 is the lower bound of the support of Xt. Because the
marginal density cannot capture the full dynamics of the diffusion
process, one can expect that ŷ will not be asymptotically most efficient,
although it is root-n consistent for y0 if the parametric model is correctly
specified.

Next, we introduce the approximate maximum likelihood estimation
(AMLE) approach, according to Ait-Sahalia (2002a). Let pxðD; xjx0yÞ be
the conditional density function of XtD ¼ x given X ðt�1ÞD ¼ x0 induced by
model (13). The log-likelihood function of the model for the sample is

lnðyÞ ¼
Xn
t¼1

ln pxðD; XtDjX ðt�1ÞD; yÞ

The MLE estimator that maximizes ln(y) would be asymptotically most
efficient if the conditional density pxðD; xjx0; yÞ has a closed form.
Unfortunately, except for some simple models, pxðD; xjx0; yÞ usually does
not have a closed form.

Using the Hermite polynomial series, Ait-Sahalia (2002a) proposes
a closed-form sequence fpðJÞx ðD; xjx0; yÞg to approximate pxðD; xjx0; yÞ
and then obtains an estimator ŷ

ðJÞ

n that maximizes the approximated model

likelihood. The estimator ŷ
ðJÞ

n enjoys the same asymptotic efficiency as the
(infeasible) MLE as J ¼ Jn-N. More specifically, Ait-Sahalia (2002a) first
considers a transformed process:

Yt 	 gðXt; yÞ ¼
Z Xt

�1

1

sðu; yÞ
du

This transformed process obeys the following diffusion:

dYt ¼ myðYt; yÞdtþ dBt

where

myðy; yÞ ¼
m½g�1ðy; yÞ; y�
s½g�1ðy; yÞ; y�

�
1

2

@s½g�1ðy; yÞ; y�
@x
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The transform X-Y ensures that the tail of the transition density
pyðD; yjy0; yÞ of Yt will generally vanish exponentially fast so that Hermite
series approximations will converge. However, pyðD; yjy0; yÞ may get
peaked at y0 when the sample frequency D gets smaller. To avoid this,
Ait-Sahalia (2002a) considers a further transformation as

Zt ¼ D�1=2ðYt � y0Þ

and then approximates the transition density of Zt by the Hermite
polynomials:

pðJÞz ðzjz0; yÞ ¼ fðzÞ
XJ
j¼0

ZðjÞz ðz0; yÞHjðzÞ

where f( � ) is the N(0, 1) density, and {Hj(z)} is the Hermite polynomial
series. The coefficients fZðjÞz ðz0; yÞg are specific conditional moments of
process Zt, and can be explicitly computed using the Monte Carlo method
or using a higher Taylor series expansion in D.
The approximated transition density of Xt is then given as follows:

pxðxjx0; yÞ ¼ sðx; yÞ�1pyðgðx; yÞjgðx; yÞ; yÞ

¼ D�1=2pzðD
�1=2
ðgðx; yÞ � gðx; yÞÞjgðx0; yÞ; yÞ

Under suitable regularity conditions, particularly when J ¼ Jn-N as
n-N, the estimator

ŷ
ðJÞ

n ¼ arg min
y2Y

Xn
t¼1

ln pðJÞx ðXtDjX ðt�1ÞD; yÞ

will be asymptotically equivalent to the infeasible MLE. Ait-Sahalia (1999)
applies this method to estimate a variety of diffusion models for spot interest
rates, and finds that J ¼ 2 or 3 already gives accurate approximation for
most financial diffusion models. Egorov, Li, and Xu (2003) extend this
approach to stationary time-inhomogeneous diffusion models. Ait-Sahalia
(2008) extends this method to general multivariate diffusion models and
Ait-Sahalia and Kimmel (2007) to affine multifactor term structure models.

In contract to the AMLE in Ait-Sahalia (2002a), Jiang and Knight (2006)
consider a more general Markov models where the transition density is
unknown. The approach Jiang and Knight (2006) propose is based on the
empirical characteristic function estimation procedure with an approximate
optimal weight function. The approximate optimal weight function is
obtained through an Edgeworth/Gram-Charlier expansion of the
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logarithmic transition density of the Markovian process. They derive
the estimating equations and demonstrate that they are equivalent to the
AMLE as in Ait-Sahalia (2002a). However, in contrast to the common
AMLE, their approach ensures the consistency of the estimator even in
the presence of approximation error. When the approximation error of the
optimal weight function is arbitrarily small, the estimator has MLE
efficiency. For details, see Jiang and Knight (2006).

Finally, in a rather general continuous-time setup which allows for
stationary multifactor diffusion models with partially observable state
variables, Gallant and Tauchen (1996) propose an EMM estimator that also
enjoys the asymptotic efficiency as the MLE. The basic idea of EMM is to
first use a Hermite polynomial-based semi-nonparametric (SNP) density
estimator to approximate the transition density of the observed state
variables. This is called the auxiliary model and its score is called the score
generator, which has expectation zero under the model-implied distribution
when the parametric model is correctly specified. Then, given a parameter
setting for the multifactor model, one may use simulation to evaluate the
expectation of the score under the stationary density of the model and
compute a w2 criterion function. A nonlinear optimizer is used to find the
parameter values that minimize the proposed criterion.

Specifically, suppose {Xt} is a stationary possibly vector valued process
such that the true conditional density function p0ðD; XtDjXsD; s � t� 1Þ ¼
p0ðD; XtDjY tDÞ where Y tD 	 ðX ðt�1ÞD; . . . ; X ðt�dÞDÞ

> for some fixed integer
dZ0. This is a Markovian process of order d. To check the adequacy of a
parametric model in Eq. (13), Gallant and Tauchen (1996) propose to check
whether the following moment condition holds:

Mðbn; yÞ 	
Z
@ log f ðD; x; y; bnÞ

@bn
pðD; x; y; yÞdxdy ¼ 0; if y ¼ y0 2 Y

(16)

where p(D, x, y; y) is the model-implied joint density for ðXtD; Y
>
tDÞ
>, y0 the

unknown true parameter value, and f(D, x, y; bn) an auxiliary model for the
conditional density of ðXtD; Y

>
tDÞ
>. Note that bn is the parameter vector

in the SNP density model f(D, x, y; bn) and generally does not nest the
parametric parameter y. By allowing the dimension of bn to grow with
the sample size n, the SNP density f(D, x, y; bn) will eventually span the
true density p0(D, x, y) of ðXtD; Y

>
tDÞ
>, and thus it is free of model

misspecification asymptotically. Gallant and Tauchen (1996) use a Hermite
polynomial approximation for f(D, x, y; bn), with the dimension of bn
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determined by a model selection criterion such as the Baysian information
criterion (BIC). The integration in Eq. (16) can be computed by simulating
a large number of realizations under the distribution of the parametric
model p(D, x, y; y).

The EMM estimator is defined as follows:

ŷ ¼ arg min
y2Y

Mðb̂n; yÞ
>Î
�1

yð ÞMðb̂n; yÞ

where b̂ is the quasi-MLE estimator for bn, the coefficients in the Hermite
polynomial expansion of the SNP density model f(x, y, bn), and the
matrix ÎðyÞ is an estimate of the asymptotic variance of

ffiffiffi
n
p

@Mnðb̂n; yÞ=@y
(Gallant & Tauchen, 2001). This estimator ŷ is asymptotically as efficient as
the (infeasible) MLE.

The EMM has been applied widely in financial applications. See, for
example, Andersen and Lund (1997), Dai and Singleton (2000), and Ahn,
Dittmar, and Gallant (2002) for interest rate applications; Liu (2000),
Andersen, Benzoni, and Lund (2002), Chernov et al. (2003) for estimating
stochastic volatility models for stock prices with such complications as long
memory and jumps; Chung and Tauchen (2001) for estimating and testing
target zero models of exchange rates; Jiang and van der Sluis (2000) for price
option pricing; and Valderrama (2001) for a macroeconomic application.
It would be interesting to compare the EMM method and Ait-Sahalia’s
(2002a) approximate MLE in finite sample performance and this topic is
still open.

3.2. Nonparametric Testing

In financial applications, most continuous-time models are parametric. It is
important to test whether a parametric diffusion model adequately captures
the dynamics of the underlying process. Model misspecification generally
renders inconsistent estimators of model parameters and their variance–
covariance matrix, leading to misleading conclusions in inference and
hypothesis testing. More importantly, a misspecified model can yield large
errors in hedging, pricing, and risk management.

Unlike the vast literature of estimation of parametric diffusion models,
there are relatively few test procedures for parametric diffusion models
using discrete observations. Suppose {Xt} follows a continuous-time
diffusion process in Eq. (6). Often it is assumed that the drift and diffusion
m( � , t) and s( � , t) have some parametric forms m( � , t, y) and s( � , t, y), where
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yAY. We say that models m( � , t, y) and s( � , t, y) are correctly specified for
the drift and diffusion m( � , t) and s( � , t), respectively, if

H0 : P½mðXt; t; y0Þ ¼ mðXt; tÞ; sðXt; t; y0Þ ¼ sðXt; tÞ� ¼ 1 for some y0 2 Y

(17)

As noted earlier, various methods have been developed to estimate y0,
taking Eq. (17) as given. However, these methods generally cannot deliver
consistent parameter estimates if m( � , t, y) or s( � , t, y) is misspecified in the
sense that

Ha : P½mðXt; t; yÞ ¼ mðXt; tÞ; sðXt; t; yÞ ¼ sðXt; tÞ�o1 for all y 2 Y

(18)

Under Ha of Eq. (18), there exists no parameter value yAY such that the
drift model m( � , t, y) and the diffusion model s( � , t, y) coincide with the true
drift m( � , t) and the true diffusion s( � , t), respectively.
There is a growing interest in testing whether a continuous-time model is

correctly specified using a discrete sample fX tDg
n
t¼1. Next we will present

some test procedures for testing the continuous-time models. Ait-Sahalia
(1996b) observes that for a stationary time-homogeneous diffusion process
in Eq. (13), a pair of drift and diffusion models m( � , y) and s( � , y) uniquely
determines the stationary density p( � , y) in Eq. (15). Ait-Sahalia (1996b)
compares a parametric marginal density estimator pð�; ŷÞ with a nonpara-
metric density estimator p̂0ð�Þ via the quadratic form:

M 	

Z x

1

x

0

½p̂0ðxÞ � pðx; ŷÞ�
2
p̂0ðxÞdx (19)

where x
1 is the upper bound for Xt, ŷ the minimum distance estimator given
by Eq. (14). The M statistic, after demeaning and scaling, is asymptotically
normal under H0.

The M test makes no restrictive assumptions on the data-generating
process and can detect a wide range of alternatives. This appealing power
property is not shared by parametric approaches such as GMM tests
(e.g., Conley et al., 1997). The latter has optimal power against certain
alternatives (depending on the choice of moment functions) but may be
completely silent against other alternatives. In an application to Euro-dollar
interest rates, Ait-Sahalia (1996b) rejects all existing one-factor linear
drift models using asymptotic theory and finds that ‘‘the principal source of
rejection of existing models is the strong nonlinearity of the drift,’’ which is
further supported by Stanton (1997).

Some Recent Developments in Nonparametric Finance 399



However, several limitations of this test may hinder its empirical
applicability. First, as Ait-Sahalia (1996b) has pointed out, the marginal
density cannot capture the full dynamics of {Xt}. It cannot distinguish two
diffusion models that have the same marginal density but different
transition densities.5 Second, subject to some regularity conditions, the
asymptotic distribution of the quadratic form M in Eq. (19) remains the
same whether the sample XtDf gnt¼1 is iid or highly persistently dependent
(Ait-Sahalia, 1996b). This convenient asymptotic property unfortunately
results in a substantial discrepancy between the asymptotic and finite sample
distributions, particularly when the data display persistent dependence
(Pritsker, 1998). This discrepancy and the slow convergence of kernel
estimators are the main reasons identified by Pritsker (1998) for the poor
finite sample performance of the M test. They cast some doubts on the
applicability of first-order asymptotic theory of nonparametric methods in
finance, since persistent serial dependence is a stylized fact for interest rates
and many other high-frequency financial data. Third, a kernel density
estimator produces biased estimates near the boundaries of the data
(e.g., Härdle, 1990, and Fan & Gijbels, 1996). In the present context, the
boundary bias can generate spurious nonlinear drifts, giving misleading
conclusions on the dynamics of {Xt}.

Recently, Hong and Li (2005) have developed a nonparametric test for
the model in Eq. (6) using the transition density, which can capture the full
dynamics of {Xt} in Eq. (13). Let p0(x, t|x0, s) be the true transition density
of the diffusion process Xt, that is, the conditional density of Xt ¼ x given
Xs ¼ x0, sot. For a given pair of drift and diffusion models m( � , t, y)
and s( � , t, y), a certain family of transition densities fpðx; tjx0; s; yÞg is
characterized. When (and only when) H0 in Eq. (17) holds, there exists some
y0AY such that pðx; tjx0; s; y0Þ ¼ p0ðx; tjx0; sÞ almost everywhere for all
tWs. Hence, the hypotheses of interest H0 in Eq. (17) versus Ha in Eq. (18)
can be equivalently written as follows:

H0 : pðx; tjy; s; y0Þ ¼ p0ðx; tjy; sÞ almost everywhere for some y0 2 Y

(20)

versus the alternative hypothesis:

Ha : pðx; tjy; s; yÞap0ðx; tjy; sÞ for some t4s and for all y 2 Y (21)

Clearly, to test H0 in Eq. (20) versus Ha in Eq. (21) would be to compare
a model transition density estimator pðx; tjx0; s; ŷÞ with a nonparametric
transition density estimator, say p̂0ðx; tjx0; sÞ. Instead of comparing
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pðx; tjx0; s; ŷÞ and p̂0ðx; tjx0; sÞ directly, Hong and Li (2005) first transform
fXtDg

n
t¼1 via a probability integral transformation. Define a discrete

transformed sequence

ZtðyÞ 	
Z XtD

�1

p½x; tDjX ðt�1ÞD; ðt� 1ÞD; y�dx; t ¼ 1; . . . ; n (22)

Under (and only under) H0 in Eq. (20), there exists some y0AY such that
p½x; tDjX ðt�1ÞD; ðt� 1ÞD; y0� ¼ p0½x; tDjX ðt�1ÞD; ðt� 1ÞD� almost surely for
all DW0. Consequently, the transformed series fZt 	 Ztðy0Þgnt¼1 is iid U[0, 1]
under H0 in Eq. (20). This result is first proven, in a simpler context, by
Rosenblatt (1952), and is more recently used to evaluate out-of-sample
density forecasts (e.g., Diebold, Gunther, & Tay, 1998) in a discrete-time
context. Intuitively, we may call {Zt(y)} ‘‘generalized residuals’’ of the
model p(x, t|y, s, y).

To test H0 in Eq. (20), Hong and Li (2005) check whether fZtg
n
t¼1 is both

iid and U[0, 1]. They compare a kernel estimator ĝjðz1; z2Þ defined in
Eq. (23) below for the joint density of {Zt, Zt�j} with unity, the product
of two U[0, 1] densities. This approach has at least three advantages.
First, since there is no serial dependence in {Zt} under H0 in Eq. (20),
nonparametric joint density estimators are expected to perform much better
in finite samples. In particular, the finite sample distribution of the resulting
tests is expected to be robust to persistent dependence in data. Second, there
is no asymptotic bias for nonparametric density estimators under H0 in
Eq. (20). Third, no matter whether {Xt} is time inhomogeneous or even
nonstationary, {Zt} is always iid U[0, 1] under correct model specification.

Hong and Li (2005) employ the kernel joint density estimator:

ĝjðz1; z2Þ 	 ðn� jÞ�1
Xn
t¼jþ1

Khðz1; ẐtÞKhðz2; Ẑt�jÞ; j40 (23)

where Ẑt ¼ ZtðŷÞ; ŷ is any
ffiffiffi
n
p

-consistent estimator for y0, and for xA[0, 1],

Khðx; yÞ 	

h�1k
x� y

h

� �
=
R 1
�ðx=hÞ kðuÞdu; if x 2 ½0; hÞ

h�1k
x� y

h

� �
; if x 2 ½h; 1� h�

h�1k
x� y

h

� �
=
R ð1�xÞ=h
�1

kðuÞdu; if x 2 ð1� h; 1�

8>>>>><>>>>>:
is the kernel with boundary correction (Rice, 1986) and k( � ) is a standard
kernel. This avoids the boundary bias problem, and has some advantages
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over some alternative methods such as trimming and the use of the jackknife
kernel.6 To avoid the boundary bias problem, one might apply other
kernel smoothing methods such as local polynomial (Fan & Gijbels, 1996)
or weighted NW (Cai, 2001).

Hong and Li’s (2005) test statistic is

Q̂ðjÞ 	
ðn� jÞh

R 1
0

R 1
0 ½ĝjðz1; z2Þ � 1�2dz1dz2 � A0

h

h i
V

1=2
0

where A0
h and V0 are non-stochastic centering and scale factors which are

functions of h and k( � ).
In a simulation experiment mimicking the dynamics of US interest rates

via the Vasicek model, Hong and Li (2005) find that Q̂ðjÞ has rather
reasonable sizes for n ¼ 500 (i.e., about two years of daily data). This is a
rather substantial improvement over Ait-Sahalia’s (1996b) test, in lights of
Pritsker’s (1998) simulation evidence. Moreover, Q̂ðjÞ has better power than
the marginal density test. Hong and Li (2005) find extremely strong evidence
against a variety of existing one-factor diffusion models for the spot interest
rate and affine models for interest rate term structures. Egorov, Hong, and
Li (2006) have recently extended Hong and Li (2005) to evaluate out of
sample of density forecasts of a multivariate diffusion model possibly with
jumps and partially unobservable state variables.

Because the transition density of a continuous-time model generally has
no closed form, the probability integral transform {Zt(y)} in Eq. (22) is
difficult to compute. However, one can approximate the model transi-
tion density using the simulation methods developed by Pedersen (1995),
Brandt and Santa-Clara (2002), and Elerian, Chib, and Shephard (2001).
Alternatively, we can use Ait-Sahalia’s (2002a) Hermite expansion
method to construct a closed-form approximation of the model transition
density.

When a misspecified model is rejected, one may like to explore what are
the possible sources for the rejection. For example, is the rejection due to
misspecification in the drift, such as the ignorance of mean shifts or jumps?
Is it due to the ignorance of GARCH effects or stochastic volatility? Or is
it due to the ignorance of asymmetric behaviors (e.g., leverage effects)?
Hong and Li (2005) consider to examine the autocorrelations in the various
powers of {Zt}, which are very informative about how well a model fits
various dynamic aspects of the underlying process (e.g., conditional mean,
variance, skewness, kurtosis, ARCH-in-mean effect, and leverage effect).
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Gallant and Tauchen (1996) also propose an EMM-based minimum w2

specification test for stationary continuous-time models. They examine the
simulation-based expectation of an auxiliary SNP score function under
the model distribution, which is zero under correct model specification.
The greatest appeal of the EMM approach is that it applies to a wide range
of stationary continuous-time processes, including both one-factor and
multifactor diffusion processes with partially observable state variables
(e.g., stochastic volatility models). In addition to the minimum w2 test for
generic model misspecifications, the EMM approach also provides a class of
individual t-statistics that are informative in revealing possible sources of
model misspecification. This is perhaps the most appealing strength of the
EMM approach.

Another feature of the EMM tests is that all EMM test statistics avoid
estimating long-run variance–covariances, thus resulting in reasonable finite
sample size performance (cf. Andersen, Chung, & Sorensen, 1999). In
practice, however, it may not be easy to find an adequate SNP density model
for financial time series, as is shown in Hong and Lee (2003b). For example,
Andersen and Lund (1997) find that an AR(1)-EGARCH model with a
number of Hermite polynomials adequately captures the full dynamics of
daily S&P 500 return series, using a BIC criterion. However, Hong and Lee
(2003a) find that there still exists strong evidence on serial dependence in the
standardized residuals of the model, indicating that the auxiliary SNP model
is inadequate. This affects the validity of the EMM tests, because their
asymptotic variance estimators have exploited the correct specification of
the SNP density model.7

There has also been an interest in separately testing the drift model and
the diffusion model in Eq. (13). For example, it has been controversial
whether the drift of interest rates is linear. To test the linearity of the drift
term, one can write it as a functional coefficient form (Cai et al., 2000)
m(Xt) ¼ a0(Xt)þa1(Xt)Xt. Then, the null hypothesis is H0: a0( � )	 a0 and
a1( � )	 a1. Fan and Zhang (2003) apply the generalized likelihood ratio test
developed by Cai et al. (2000) and Fan et al. (2001). They find that H0 is not
rejected for the short-term interest rates. It is noted that the asymptotic
theory for the generalized likelihood ratio test is developed for the iid
samples, but it is still unknown whether it is valid for a time series context.
One might follow the idea from Cai et al. (2000) to use the bootstrap or wild
bootstrap method instead of the asymptotic theory for time series context.
Fan and Zhang (2003) and Fan et al. (2003) conjecture that it would hold
based on their simulations. On the other hand, Chen, Härdle, and Kleinow
(2002) consider an empirical likelihood goodness-of-fit test for time series
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regression model, and they apply the test to test a discrete drift model of a
diffusion process.

There has also been interest in testing the diffusion model s( � , y). The
motivation comes from the fact that derivative pricing with an underlying
equity process only depends on the diffusion s( � ), which is one of the
most important features of Eq. (13) for derivative pricing. Kleinow (2002)
recently proposes a nonparametric test for a diffusion model s( � ). More
specifically, Kleinow (2002) compares a nonparametric diffusion estimator
ŝ2ð�Þ with a parametric diffusion estimator s2( � , y) via an asymptotically w2

test statistic

T̂l ¼
Xk
t¼1

½T̂ðxtÞ�
2

where

T̂ðxÞ ¼ ½nhp̂ðxÞ�1=2 ŝ2ðxÞ=ŝ2ðx; ŷÞ � 1
h i

ŷ is an
ffiffiffi
n
p

-consistent estimator for y0 and

ŝ2ðx; yÞ ¼
1

nhp̂ðxÞ

Xn
t¼1

s2ðx; ŷÞKh
x� Xt

h

� �
is a smooth version of s2(x, y). The use of ŝ2ðx; ŷÞ instead of s2ðx; ŷÞ
directly reduces the kernel estimation bias in T̂ðxÞ, thus allowing the use of
the optimal bandwidth h for ŝ2ðxÞ. This device is also used in Härdle and
Mammen (1993) in testing a parametric regression model. Kleinow (2002)
finds that the empirical level of T̂k is too large relative to the significance
level in finite samples and then proposes a modified test statistic using the
empirical likelihood approach, which endogenously studentizes conditional
heteroscedasticity. As expected, the empirical level of the modified test
improves in finite samples, though not necessarily for the power of the test.

Furthermore, Fan et al. (2003) test whether the coefficients in the time-
varying coefficient single factor diffusion model of Eq. (7) are really time
varying. Specially, they apply the generalized likelihood ratio test to check
whether some or all of {aj( � )} and {bj( � )} are constant. However, the
validity of the generalized likelihood ratio test for nonstationary time series
is still unknown and it needs a further investigation.

Finally, Kristensen (2008) considers an estimation method for two classes
of semiparametric scalar diffusion models. In the first class, the diffusion
term is parameterized and the drift is left unspecified, while in the second

ZONGWU CAI AND YONGMIAO HONG404



class, only the drift term is specified. Under the assumption of stationarity,
the unspecified term can be identified as a function of the parametric
component and the stationary density. Given a discrete sample with a fixed
time distance, the parametric component is then estimated by maximizing
the associated likelihood with a preliminary estimator of the unspecified
term plugged in. Kristensen (2008) shows that this pseudo-MLE (PMLE) isffiffiffi
n
p

-consistent with an asymptotically normal distribution under regularity
conditions, and demonstrates how the estimator can be used in specification
testing not only of the semiparametric model itself but also of fully
parametric ones. Since the likelihood function is not available on closed
form, the practical implementation of the proposed estimator and tests will
rely on simulated or approximate PMLE. Under regularity conditions,
Kristensen (2008) verifies that the approximate/simulated version of the
PMLE inherits the properties of the actual but infeasible estimator. Also,
Kristensen (2007) proposes a nonparametric kernel estimator of the drift
(diffusion) term in a diffusion model based on a preliminary parametric
estimator of the diffusion (drift) term. Under regularity conditions, rates of
convergence and asymptotic normality of the nonparametric estimators are
established. Moreover, Kristensen (2007) develops misspecification tests
of diffusion models based on the nonparametric estimators, and derives the
asymptotic properties of the tests. Furthermore, Kristensen (2007) proposes
a Markov bootstrap method for the test statistics to improve on the finite
sample approximations.

4. NONPARAMETRIC PRICING KERNEL MODELS

In modern finance, the pricing of contingent claims is important given the
phenomenal growth in turnover and volume of financial derivatives over the
past decades. Derivative pricing formulas are highly nonlinear even when they
are available in a closed form. Nonparametric techniques are expected to be
very useful in this area. In a standard dynamic exchange economy, the
equilibrium price of a security at date t with a single liquidating payoff Y(CT)
at date T, which is a function of aggregate consumption CT, is given by

Pt ¼ Et½YðCT ÞMt;T � (24)

where the conditional expectation is taken with respect to the information
set available to the representative economic agent at time t, Mt;T ¼

dT�1U 0ðCT Þ=U
0ðCtÞ, the so-called stochastic discount factor (SDF), is the
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marginal rate of substitution between dates t and T, d the rate of time
preference; and U( � ) the utility function of the economic agent. This is the
stochastic Euler equation, or the first-order condition of the intertemporal
utility maximization of the economic agent with suitable budget constraints
(e.g., Cochrane, 1996, 2001). It holds for all securities, including assets and
various derivatives. All capital asset pricing (CAP) models and derivative
pricing models can be embedded in this unified framework – each model
can be viewed as a specific specification of Mt,T. See Cochrane (1996, 2001)
for an excellent discussion.

There have been some parametric tests for CAP models (e.g., Hansen &
Janaganan, 1997). To the best of our knowledge, there are only a few
nonparametric tests available in the literature for testing CAP models based
on the kernel method, see Wang (2002, 2003) and Cai, Kuan and Sun
(2008a, 2008b), which will be elaborated in detail in Section 4.3 later. Also,
all the tests for CAP models are formulated in terms of discrete-time frame-
works. We focus on nonparametric derivative pricing in Section 4.2 and the
nonparametric asset pricing will be discussed separately in Section 4.3.

4.1. Nonparametric Risk Neutral Density

Assuming that the conditional distribution of future consumption CT

has a density representation ft( � ), then the conditional expectation can be
expressed as

Et½YðCT ÞMt;T � ¼ expð�trtÞ
Z

YðCT Þf


t ðCT ÞdCT ¼ expð�trtÞE
t ½YðCtÞ�

where rt is the risk-free interest rate, t ¼ T�t, and

f 
t ðCT Þ ¼
Mt;T f tðCT ÞR

Mt;Tf tðCT ÞdCT

is called the RND function; see Taylor (2005, Chapter 16) for details about the
definition and estimation methods. This function is also called the risk-neutral
pricing probability (Cox & Ross, 1976), or equivalent martingale measure
(Harrison & Kreps, 1979), or the state-price density (SPD). It contains
rich information on the pricing and hedging of risky assets in an economy,
and can be used to price other assets, or to recover the information about
the market preferences and asset price dynamics (Bahra, 1997; Jackwerth,
1999). Obviously, the RND function differs from ft(CT), the physical density
function of CT conditional on the information available at time t.
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4.2. Nonparametric Derivative Pricing

In order to calculate an option price from Eq. (24), one has to make some
assumption on the data-generating process of the underlying asset, {Pt}.
For example, Black and Scholes (1973) assume that the underlying asset
follows a geometric Brownian motion:

dPt ¼ mPtdtþ sPtdBt

where m and s are two constants. Applying Ito’s Lemma, one can show
immediately that Pt follows a lognormal distribution with parameter
ðm� 1

2s
2Þt and s

ffiffiffi
t
p

. Using a no-arbitrage argument, Black and Scholes
(1973) show that options can be priced if investors are risk neutral by setting
the expected rate of return in the underlying asset, m, equal to the risk-free
interest rate, r. Specifically, the European call option price is

pðKt; Pt; r; tÞ ¼ PtFðdtÞ � e�rttKtFðdt � s
ffiffiffi
t
p
Þ (25)

where Kt is the strike price, F( � ) the standard normal cumulative distribu-
tion function, and dt ¼ flnðPt=KtÞ þ ðrþ

1
2s

2Þtg=ðs
ffiffiffi
t
p
Þ. In Eq. (25), the only

parameter that is not observable a time t is s. This parameter, when
multiplied with

ffiffiffi
t
p

, is the underlying asset return volatility over the
remaining life of the option. The knowledge of s can be inferred from the
prices of options traded in the markets: given an observed option price,
one can solve an appropriate option pricing model for s which is essentially
a market estimate of the future volatility of the underlying asset returns.
This estimate of s is known as ‘‘implied volatility.’’

The most important implication of Black–Scholes option pricing model is
that when the option is correctly priced, the implied volatility s2 should be
the same across all exercise prices of options on the same underlying asset
and with the same maturity date. However, the implied volatility observed
in the market is usually a convex function of exercise price, which is often
referred to as the ‘‘volatility smile.’’ This indicates that market participants
make more complicated assumptions than the geometric Brownian motion
for the dynamics of the underlying asset. In particular, the convexity of
‘‘volatility smile’’ indicates the degree to which the market RND function
has a heavier tail than a lognormal density. A great deal of effort has been
made to use alternative models for the underlying asset to smooth out the
volatility smile and so to achieve higher accuracy in pricing and hedging.

A more general approach to derivative pricing is to estimate the RND
function directly from the observed option prices and then use it to price
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derivatives or to extract market information. To obtain better estimation of
the RND function, several econometric techniques have been introduced.
These methods are all based on the following fundamental relation between
option prices and RNDs: Suppose Gt ¼ G(Kt, Pt, rt, t) is the option pricing
formula, then there is a close relation between the second derivative of Gt

with respect to the strike price Kt and the RND function:

@2Gt

@K2
t

¼ expð�trtÞf 
t ðPT Þ (26)

This is first shown by Breeden and Litzenberger (1978) in a time-state
preference framework.

Most commonly used estimation methods for RNDs are various
parametric approaches. One of them is to assume that the underlying asset
follows a parametric diffusion process, from which one can obtain the
option pricing formula by a no-arbitrage argument, and then obtain the
RND function from Eq. (26) (see, e.g., Bates, 1991, 2000; Anagnou,
Bedendo, Hodges, & Tompkins, 2005). Another parametric approach is to
directly impose some form for the RND function and then estimate
unknown parameters by minimizing the distance between the observed
option prices and those generated by the assumed RND function (e.g.,
Jackwerth & Rubinstein, 1996; Melick & Thomas, 1997; Rubinstein, 1994).
A third parametric approach is to assume a parametric form for the call
pricing function or the implied volatility smile curve and then apply Eq. (26)
to get the RND function (Bates, 1991; Jarrow & Tudd, 1982; Longstaff,
1992, 1995; Shimko, 1993).

The aforementioned parametric approaches all impose certain restrictive
assumptions, directly or indirectly, on the data-generating process as well as
the SDF in some cases. The obtained RND function is not robust to the
violation of these restrictions. To avoid this drawback, Ait-Sahalia and Lo
(1998) use a nonparametric method to extract the RND function from
option prices.

Given observed call option prices {Gt, Kt, t}, the price of the underlying
asset {Pt}, and the risk-free rate of interest {rt}, Ait-Sahalia and Lo (1998)
construct a kernel estimator for E(Gt|Pt, Kt, t, rt). Under standard regularity
conditions, Ait-Sahalia and Lo (1998) show that the RND estimator is
consistent and asymptotically normal, and they provide explicit expressions
for the asymptotic variance of the estimator.

Armed with the RND estimator, Ait-Sahalia and Lo (1998) apply it to the
pricing and delta hedging of S&P 500 call and put options using daily data
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obtained from the Chicago Board Options Exchange for the sample
period from January 4, 1993 to December 31, 1993. The RND estimator
exhibits negative skewness and excess kurtosis, a common feature of
historical stock returns. Unlike many parametric option pricing models, the
RND-generated option pricing formula is capable of capturing persistent
‘‘volatility smiles’’ and other empirical features of market prices. Ait-Sahalia
and Lo (2000) use a nonparametric RND estimator to compute the
economic value at risk, that is, the value at risk of the RND function.

The artificial neural network (ANN) has received much attention in
economics and finance over the last decade. Hutchinson, Lo, and Poggio
(1994), Anders, Korn, and Schmitt (1998), and Hanke (1999) have
successfully applied the ANN models to estimate pricing formulas of
financial derivatives. In particular, Hutchinson et al. (1994) use the ANN to
address the following question: If option prices are truly determined by
the Black–Scholes formula exactly, can ANN ‘‘learn’’ the Black–Scholes
formula? In other words, can the Black–Scholes formula be estimated
nonparametrically via learning networks with a sufficient degree of
accuracy to be of practical use? Hutchinson et al. (1994) perform Monte
Carlo simulation experiments in which various ANNs are trained on
artificially generated Black–Scholes formula and then compare to the
Black–Scholes formula both analytically and in out-of-sample hedging
experiments. They begin by simulating a two-year sample of daily
stock prices, and creating a cross-section of options each day according to
the rules used by the Chicago Broad Options Exchange with prices
given by the Black–Scholes formula. They find that, even with training
sets of only six months of daily data, learning network pricing formulas
can approximate the Black–Scholes formula with reasonable accuracy. The
nonlinear models obtained from neural networks yield estimated option
prices and deltas that are difficult to distinguish visually from the true
Black–Scholes values.

Based on the economic theory of option pricing, the price of a call option
should be a monotonically decreasing convex function of the strike price
and the SPD proportional to the second derivative of the call function
(see Eq. (26)). Hence, the SPD is a valid density function over future values
of the underlying asset price and must be nonnegative and integrate to one.
Therefore, Yatchew and Härdle (2006) combine shape restrictions with
nonparametric regression to estimate the call price function and the SPD
within a single least squares procedure. Constraints include smoothness of
various order derivatives, monotonicity and convexity of the call function,
and integration to one of the SPD. Confidence intervals and test procedures
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are to be implemented using bootstrap methods. In addition, they apply the
procedures to option data on the DAX index.

There are several directions of further research on nonparametric
estimation and testing of RNDs for derivative pricing. First, how to evaluate
the quality of an RND function estimated from option prices? In other
words, how to judge how well an estimated RND function reflects the market
expected uncertainty of the underlying asset? Because the RND function
differs from the physical probability density function of the underlying asset,
the valuation of the RND function is rather challenging. The method
developed by Hong and Li (2005) cannot be applied directly. One possible
way of evaluating the RND function is to assume a certain family of
utility functions for the representative investor, as in Rubinstein (1994) and
Anagnou et al. (2005). Based on this assumption, one can obtain the SDF and
then the physical probability density function, to which Hong and Li’s (2005)
test can be applied. However, the utility function of the economic agent is
not observable. Thus, when the test delivers a rejection, it may be due to
either misspecification of the utility function or misspecification of the data-
generating process, or both. More fundamentally, it is not clear whether the
economy can be regarded as a proxy by a representative agent.

A practical issue in recovering the RND function is the limitation of
option prices data with certain common characterizations. In other words,
the sample size of option price data could be small in many applications.
As a result, nonparametric methods should be carefully developed to fit the
problems on hand.

Most econometric techniques to estimate the RND function is restricted
to European options, while many of the more liquid exchange-traded
options are often American. Rather complex extensions of the existing
methods, including the nonparametric ones, are required in order to
estimate the RND functions from the prices of American options. This is an
interesting and practically important direction for further research.

4.3. Nonparametric Asset Pricing

The CAP model and the arbitrage asset pricing theory (APT) have been
cornerstones in theoretical and empirical finance for decades. A classical
CAP model usually assumes a simple and stable linear relationship
between an asset’s systematic risk and its expected return; see the books
by Campbell et al. (1997) and Cochrane (2001) for details. However, this
simple relationship assumption has been challenged and rejected by several
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recent studies based on empirical evidences of time variation in betas and
expected returns (as well as return volatilities). As with other models, one
considers the conditional CAP models or nonlinear APT with time-
varying betas to characterize the time variations in betas and risk premia.
In particular, Fama and French (1992, 1993, 1995) use some instrumental
variables such as book-to-market equity ratio and market equity as proxies
for some unidentified risk factors to explain the time variation in returns.
Although Ferson (1989), Harvey (1989), Ferson and Harvey (1991, 1993,
1998, 1999), Ferson and Korajczyk (1995), and Jagannathan and Wang
(1996) conclude that beta and market risk premium vary over time, a static
CAP model should incorporate time variations in beta in the model.
Although there is a vast amount of empirical evidences on time variation in
betas and risk premia, there is no theoretical guidance on how betas and risk
premia vary with time or variables that represent conditioning information.
Many recent studies focus on modeling the variation in betas using
continuous approximation and the theoretical framework of the conditional
CAP models; see Cochrane (1996), Jagannathan and Wang (1996, 2002),
Wang (2002, 2003), Ang and Liu (2004), and the references therein.
Recently, Ghysels (1998) discusses the problem in detail and stresses the
impact of misspecification of beta risk dynamics on inference and estimation.
Also, he argues that betas change through time very slowly and linear
factor models like the conditional CAP model may have a tendency to
overstate the time variation. Further, Ghysels (1998) shows that among
several well-known time-varying beta models, a serious misspecification
produces time variation in beta that is highly volatile and leads to large
pricing errors. Finally, Ghysels (1998) concludes that it is better to use the
static CAP model in pricing when we do not have a proper model to capture
time variation in betas correctly.

It is well documented that large pricing errors could be due to the linear
approach used in a nonlinear model, and treating a nonlinear relationship
as a linear could lead to serious prediction problems in estimation. To
overcome these problems, some nonlinear models have been considered
in the recent literature. Following are some examples: Bansal, Hsieh, and
Viswanathan (1993) and Bansal and Viswanathan (1993) advocate the idea
of a flexible SDF model in empirical asset pricing, and they focus on
nonlinear arbitrage pricing theory models by assuming that the SDF is a
nonlinear function of a few state variables. Further, Akdeniz, Altay-Salih,
and Caner (2003) test for the existence of significant evidence of nonlinearity
in the time series relationship of industry returns with market returns using
the heteroskedasticity consistent Lagrange multiplier test of Hansen (1996)
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under the framework of the threshold model, and they find that there exists
statistically significant nonlinearity in this relationship with respect to real
interest rates. Wang (2002, 2003) explores a nonparametric form of the SDF
model and conducted a test based on the nonparametric model. Parametric
models for time-varying betas can be the most efficient if the underlying
betas are correctly specified. However, a misspecification may cause serious
bias, and model constraints may distort the betas in local area.

To follow the notions from Bansal et al. (1993), Bansal and Viswanathan
(1993), Ghysels (1998), and Wang (2002, 2003), which are slightly different
from those used in Eq. (24), a very simplified version of the SDF framework
for asset pricing admits a basic pricing representation, which is a special case
of model (24),

E½mtþ1ri;tþ1jOt� ¼ 0 (27)

where Ot denotes the information set at time t, mtþ1 the SDF or the
pricing kernel, and ri,tþ1 the excess return on the ith asset or portfolio. Here,
�tþ1 ¼ mtþ1ri;tþ1 is called the pricing error. In empirical finance, different
models impose different constraints on the SDF. Particularly, the SDF is
usually assumed to be a linear function of factors in various applications
and then it becomes the well-known CAP model, see Jagannathan and
Wang (2002) and Wang (2003). Indeed, Jagannathan and Wang (2002) give
the detailed comparison of the SDF and CAP model representations.
Further, when the SDF is fully parameterized such as linear form, the
general method of moments (GMM) of Hansen (1982) can be used to
estimate parameters and test the model; see Campbell et al. (1997) and
Cochrane (2001) for details.

Recently, Bansal et al. (1993) and Bansal and Viswanathan (1993) assume
that mtþ1 is a nonlinear function of a few state variables. Since the exact
form of the nonlinear pricing kernel is unknown, Bansal and Viswanathan
(1993) suggest using the polynomial expansion to approximate it and then
apply the GMM for estimating and testing. As pointed out by Wang (2003),
although this approach is intuitive and general, one of the shortcomings
is that it is difficult to obtain the distribution theory and the effective
assessment of finite sample performance. To overcome this difficulty,
instead of considering the nonlinear pricing kernel, Ghysels (1998) focuses
on the nonlinear parametric model and uses a set of moment conditions
suitable for GMM estimation of parameters involved. Wang (2003) studies
the nonparametric conditional CAP model and gives an explicit expression
for the pricing kernel mtþ1, that is, mtþ1 ¼ 1� bðZtÞrp;tþ1, where Zt is a k� 1
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vector of conditioning variables from Ot; bðZtÞ ¼ Eðrp;tþ1jZtÞ=Eðr2p;tþ1jZtÞ

which is an unknown function, and rp,tþ1 is the return on the market
portfolio in excess of the riskless rate. Since the functional form of b( � ) is
unknown, Wang (2003) suggests estimating b( � ) by using the NW method
to two regression functions E(rp,tþ1|Zt) and Eðr2p;tþ1jZtÞ. Also, he conducts a
simple nonparametric test about the pricing error. Indeed, his test is the
well-known F-test by running a multiple regression of the estimated pricing
error �̂tþ1 versus a group of information variables; see Eq. (32) later for
details. Further, Wang (2003) extends this setting to multifactor models by
allowing b( � ) to change over time, that is, b(Zt) ¼ b(t). Finally, Bansal et al.
(1993), Bansal and Viswanathan (1993), and Ghysels (1998) do not assume
that mtþ1 is a linear function of rp,tþ1 and instead they consider a parametric
model by using the polynomial expansion.

To combine the models studied by Bansal et al. (1993), Bansal and
Viswanathan (1993), Ghysels (1998), and Wang (2002, 2003), and some
other models in the finance literature under a very general framework,
Cai, Kuan, and Sun (2008a) assume that the nonlinear pricing kernel has
the form of mtþ1 ¼ 1�m(Zt)rp,tþ1, where m( � ) is unspecified and they focus
on the following nonparametric APT model:

E½f1�mðZtÞrp;tþ1gri;tþ1jOt� ¼ 0 (28)

where m( � ) is an unknown function of Zt which is a k� 1 vector of
conditioning variables from Ot. Indeed, Eq. (28) can be regarded as a
moment (orthogonal) condition. The main interest of Eq. (28) is to identify
and estimate the function m(Zt) as well as test whether the model is correctly
specified.

Let It be a q� 1 (qZk) vector of conditional variables from Ot, including
Zt, satisfying the following orthogonal condition:

E½f1�mðZtÞrp;tþ1gri;tþ1jI t� ¼ 0 (29)

which can be regarded as an approximation of Eq. (28). It follows from the
orthogonality condition in Eq. (29) that for any vector function Q(Vt)	Qt

with a dimension dq specified later,

E½Qtf1�mðZtÞrp;tþ1gri;tþ1jI t� ¼ 0

and its sample version is

1

T

XT
t¼1

Qtf1�mðZtÞrp;tþ1gri;tþ1 ¼ 0 (30)
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Therefore, Cai et al. (2008a) propose a new nonparametric estimation
procedure to combine the orthogonality conditions given in Eq. (30) with the
local linear fitting scheme of Fan and Gijbels (1996) to estimate the unknown
function m( � ). This nonparametric estimation approach is called by Cai et al.
(2008a) as the nonparametric generalized method of moment (NPGMM).

For a given grid point z0 and {Zt} in a neighborhood of z0, the
orthogonality conditions in Eq. (30) can be approximated by the following
locally weighted orthogonality conditions:XT

t¼1

Qt½1� ða� bT ðZt � z0ÞÞrp;tþ1�ri;tþ1KhðZt � z0Þ ¼ 0 (31)

where Khð�Þ ¼ h�kKð�=hÞ; Kð�Þ is a kernel function in Rk and h ¼ hnW0 a
bandwidth, which controls the amount of smoothing used in the estimation.
Eq. (31) can be viewed as a generalization of the nonparametric estimation
equations in Cai (2003) and the locally weighted version of (9.2.29) in
Hamilton (1994, p. 243). Therefore, solving the above equations leads to the
NPGMM estimate of m(z0), denoted by m̂ðz0Þ, which is â, where ðâ; b̂Þ is the
minimizer of Eq. (31). Cai et al. (2008a) discuss how to choose Qt and derive
the asymptotic properties of the proposed nonparametric estimator.

Let êi;tþ1 be the estimated pricing error, that is, êi;tþ1 ¼ m̂tþ1ri;tþ1, where
m̂tþ1 ¼ 1� m̂ðZtÞrp;tþ1. To test Eðei;tþ1jOtÞ ¼ 0, Wang (2002, 2003) con-
siders a simple test as follows. First, to run a multiple regression

êi;tþ1 ¼ VT
t di þ vi;tþ1 (32)

where Vt is a q� 1 (qZk) vector of observed variables from Ot,
8 and then

test if all the regression coefficients are zero, that is, H0 : d1 ¼ � � � ¼ dq ¼ 0.
By assuming that the distribution of vi,tþ1 is normal, Wang (2002, 2003)
uses a conventional F-test. Also, Wang (2002) discusses two alternative test
procedures. Indeed, the above model can be viewed as a linear approxima-
tion of E[ei,tþ1|Vt]. To examine the magnitude of pricing errors, Ghysels
(1998) considers the mean square error (MSE) as a criterion to test if the
conditional CAP model or APT model is misspecified relative to the
unconditional one.

To check the misspecification of the model, Cai, Kuan, and Sun (2008b)
consider the testing hypothesis H0,

H0 : mð�Þ ¼ m0ð�Þ versus Ha : mð�Þam0ð�Þ (33)

where m0( � ) has a particular form. For example, if m0( � ) ¼ b( � ), where b( � )
is given in Wang (2003), this test is about testing the mean-covariance
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efficiency. If m( � ) is a linear function, the test reduces to testing whether
the linear pricing kernel is appropriate. Then, Cai et al. (2008b) construct a
consistent nonparametric test based on a U-Statistics technique, described as
follows. Since It is a q� 1 (qZk) vector of observed variables from Ot,
similar to Wang (2003), It is taken to be Zt. It is clear that E(ei,tþ1|Zt) ¼ 0,
where ei;tþ1 ¼ ½1�m0ðZtÞrp;tþ1�ri;tþ1, if and only if ½Eðei;tþ1jZtÞ�

2f ðZtÞ ¼ 0,
and if and only if Eðei;tþ1Eðei;tþ1jZtÞf ðZtÞ ¼ 0, where f( � ) is the density of
Zt. Interestingly, the testing problem on conditional moment becomes
unconditional. Obviously, the test statistic could be postulated as

UT ¼
1

T

XT
t¼1

ei;tþ1Eðei;tþ1jZtÞf ðZtÞ (34)

if ei;tþ1Eðei;tþ1jZtÞf ðZtÞ would be known. Since Eðei;tþ1jZtÞf ðZtÞ is unknown,
its leave-one-out Nadaraya–Watson estimator can be formulated as

Êðei;tþ1jZtÞf ðZtÞ ¼
1

T � 1

XT
sat

ei;sþ1KhðZs � ZtÞ (35)

Plugging Eq. (35) into Eq. (34) and replacing ei,tþ1 by its estimate
êi;tþ1 ¼ êt, one obtain the test statistic, denoted by ÛT , as

ÛT ¼
1

TðT � 1Þ

X
sat

KhðZs � ZtÞêsêt (36)

which is indeed a second-order U-statistics. Finally, Cai et al. (2008b) show
that this nonparametric test statistic is consistent. In addition, they apply
the proposed testing procedure to test if either the CAP model or the
Fama and French model, in the flexible nonparametric form, can explain the
momentum profit which is the value-weighted portfolio of NYSE stocks as
the market portfolio, using the dividend-price ratio, the default premium,
the one-month Treasury bill rate, and the excess return on the NYSE
equally weighted portfolio as the conditioning variables.

5. NONPARAMETRIC PREDICTIVE

MODELS FOR ASSET RETURNS

The predictability of stock returns has been studied for the last two decades
as a cornerstone research topic in economics and finance,9 and it is now
routinely used in studies of many financial applications such as mutual fund
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performances, tests of the conditional CAP, and optimal asset allocations.10

Tremendous empirical studies document the predictability of stock returns
using various lagged financial variables, such as the log dividend-price ratio,
the log earning-price ratio, the log book-to-market ratio, the dividend yield,
the term spread and default premium, and the interest rates. Important
questions are often asked about whether the returns are predictable and
whether the predictability is stable over time. Since many of the predictive
financial variables are highly persistent and even nonstationary, it is really
challenging econometrically or statistically to answer these questions.

Predictability issues are generally assessed in the context of parametric
predictive regression models in which rates of returns are regressed against
the lagged values of stochastic explanatory variables (or state variables).
Mankiw and Shapiro (1986) and Stambaugh (1986) were first to discern
the econometric and statistical difficulties inherent in the estimation of
predictive regressions through the structural predictive linear model as

yt ¼ a0 þ a1xt�1 þ �t; xt ¼ rxt�1 þ ut; 1 � t � n (37)

where yt is the predictable variable, say excess stock return at time t;

innovations {(et, ut)} are iid bivariate normal N(0, S) with
P
¼

s2� s�u
s�u s2u

 !
;

and xt�1 is the first lag of a financial variable such as the log dividend-price
ratio, which is commonly modeled by an AR(1) model as the second
equation in model (37).

There are several limitations to model (37) that should be seriously
considered. First, note that the correlation between two innovations et and
ut in Eq. (37) is f ¼ seu/sesu, which is unfortunately non-zero for many
empirical applications; see, for example, Table 4 in Campbell and Yogo
(2006) and Table 1 in Torous, Valkanov, and Yan (2004) for some real
applications. This creates the so-called ‘‘endogeneity’’ (xt�1 and et may be
correlated) problem which makes modeling difficult and produces biased
estimation. Another difficulty comes from the parameter r, which is the
unknown degree of persistence of the variable xt. That is, xt is stationary
if |r|o1 – see Viceira (1997), Amihud and Hurvich (2004), Paye and
Timmermann (2006), and Dangl and Halling (2007); or it is unit root or
integrated if r ¼ 1, denoted by I(1) – see Park and Hahn (1999), Chang
and Martinez-Chombo (2003), and Cai, Li, and Park (2009b); or it is
local to unity or nearly integrated if r ¼ 1þc/n for some co0, denoted by
NI(1) – see Elliott and Stock (1994), Cavanagh, Elliott, and Stock (1995),
Torous et al. (2004), Campbell and Yogo (2006), Polk, Thompson, and
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Vuolteenaho (2006), and Rossi (2007), among others. This means that the
predictive variable xt is highly persistent, and even nonstationary, which
may cause troubles for econometric modeling.

The third difficulty is the instability issue of the return predictive model.
In fact, in return predictive models based on financial instruments such as
the dividend and earnings yield, short interest rates, term spreads, and
default premium, and so on, there have been many evidences on the
instability of prediction model, particularly based on the dividend and
earnings yield and the sample from the second half of the 1990s. This leads
to the conclusion that the coefficients should change over time; see, for
example, Viceira (1997), Lettau and Ludvigsson (2001), Goyal and Welch
(2003), Paye and Timmermann (2006), Ang and Bekaert (2007), and Dangl
and Halling (2007). While the aforementioned studies found evidences of
instability in return predictive models, they did not provide any guideline on
how the coefficients change over the time and where the return models may
have changed. It is well known that if return predictive models are unstable,
one can only assess the economic significance of return predictability
provided it can be determined how widespread such instability changes over
time and the extent to which it affects the predictability of stock returns.
Therefore, all of the foregoing difficulties about the classical predictive
regression models motivate us to propose a new varying coefficient
predictive regression model. The proposed model is not only interesting in
its applications to finance and economics but also important in enriching
the econometric theory.

As shown in Nelson and Kim (1993), because of the endogeneity, the
ordinary least squares (OLS) estimate of the slope coefficient a1 in Eq. (37)
and its standard errors are substantially biased in finite samples if xt is
highly persistent, not really exogenous, and even nonstationary. Conven-
tional tests based on standard t-statistics from OLS estimates tend to over
reject the null of non-predictability in Monte Carlo simulations. Some
improvements have been developed recently to deal with the bias issue. For
example, the first-order bias-correction estimator is proposed by Stambaugh
(1999) based on Kendall’s (1954) analytical result for the bias expression of
the least squares estimate of r, while Amihud and Hurvich (2004) propose a
two-stage least squares estimator by using a linear projection of et onto ut.
Finally, the conservative bias-adjusted estimator is proposed by Lewellen
(2004) if r is very close to one for some predicting variables. Unfortunately,
all of them still have not overcome the instability difficulty mentioned
above. To deal with the instability problems, Paye and Timmermann (2006)
analyze the excess returns on international equity indices related to state
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variables such as the lagged dividend yield, short interest rate, term spread,
and default premium, to investigate how widespread the evidence of
structural breaks is and to what extent breaks affect the predictability
of stock returns. Finally, Dangl and Halling (2007) consider equity return
prediction model with random coefficients generated from a unit root
process, related to 16 state variables.

Cai and Wang (2008a) consider a time-varying coefficient predictive
regression model to allow the coefficients a0 and a1 in Eq. (37) to change
over time (to be function of time), denoted by a0(t) and a1(t). They use a
nonlinear projection of et onto ut, that is et ¼ a2(t) utþvt, and then model
(37) becomes the following time-varying coefficient predictive model:

yt ¼ a0ðtÞ þ a1ðtÞxt�1 þ a2ðtÞut þ vt; xt ¼ rxt�1 þ ut; 1 � t � n (38)

They apply the local linear method to find the nonparametric estimates
for aj(t) and derive the asymptotic properties for the proposed estimator.
Also, they derive the limiting distribution of the proposed nonparametric
estimator, which is a mixed normal with conditional variance being a
function of integrations of an Ornstein–Uhlenbeck process (mean-reverting
process). They also show that the convergence rates for the intercept
function (the regular rate at (nh)1/2) and the slope function (a faster rate at
(n2h)1/2) are totally different due to the NI(1) property of the state variable,
although the asymptotic bias, coming from the local linear approximation,
is the same as the stationary covariate case. Therefore, to estimate the
intercept function optimally, Cai and Wang (2008a) propose a two-stage
optimal estimation procedure similar to the profile likelihood method;
see, for example, Speckman (1988), Cai (2002a, 2002b), and Cai et al.
(2009b), and they also show that the proposed two-stage estimator reaches
indeed the optimality.

Cai and Wang (2008b) consider some consistent nonparametric tests for
testing the null hypothesis of whether a parametric linear regression model is
suitable or if there is no relationship between the dependent variable and
predictors. Therefore, these testing problems can be postulated as the
following general testing hypothesis:

H0 : ajðtÞ ¼ ajðt; yjÞ (39)

where aj(t, yj) is a known function with unknown parameter yj. If aj(t, yj)
is constant, Eq. (39) becomes to test if model (37) is appropriate. If
a1(t, y1) ¼ 0, it is to test if there exists predictability. If aj(t, yj) is a piecewise
constant function, it is to test whether there exits any structural change.
Cai and Wang (2008b) propose a nonparametric test which is a U-statistic
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type, similar to Eq. (36), and they also show that the proposed test statistic
has different asymptotic behaviors depending on the stochastic properties of
xt. Specifically, Cai and Wang (2008b) address the following two scenarios:
(a) xt is nonstationary (either I(1) or NI(1)); (b) xt contains both stationary
and nonstationary components. Cai and Wang (2008a, 2008b) apply the
estimation and testing procedures described above to consider the instability
of predictability of some financial variables. Their test finds evidence for
instability of predictability for the dividend-price and earnings-price ratios.
They also find evidence for instability of predictability with the short rate
and the long-short yield spread, for which the conventional test leads to
valid inference.

For the linear projection used by Amihud and Hurvich (2004), it is
implicitly assumed that the joint distribution of two innovations et and ut
in model (37) is normal and this assumption might not hold for all
applications. To relax this harsh assumption, Cai (2008) considers a
nonlinear projection of et onto xt�1 instead of ut as et ¼ f(xt�1)þ vt, so that
E(vt|xt�1) ¼ 0. Therefore, the endogeneity is removed. Then, model (37)
becomes the following classical regression model with nonstationary
predictors:

yt ¼ gðxt�1Þ þ vt; xt ¼ rxt�1 þ ut; 1 � t � n (40)

where gðxt�1Þ ¼ a0 þ a1xt�1 þ fðxt�1Þ and E(vt|xt�1) ¼ 0. Now, for model
(40), the testing predictability H0: a1 ¼ 0 for model (37) as in Campbell and
Yogo (2006) becomes the testing hypothesis H0: g(x) ¼ c for model (40),
which is indeed more general. To estimate g( � ) nonparametrically, Cai
(2008) uses a local linear or local constant method and derives the limiting
distribution of the nonparametric estimator when xt is an I(1) process. It is
interesting to note that the limiting distribution of the proposed nonpara-
metric estimator is a mixed normal with a conditional variance associated
with a local time of a standard Brownian motion and the convergence rate
is

ffiffiffiffiffiffiffiffiffiffiffi
n1=2h
p

instead of the conventional rate
ffiffiffiffiffi
nh
p

. Furthermore, Cai (2008)
proposes two test procedures. The first one is similar to the testing approach
proposed in Sun, Cai, and Li (2008) when xt is integrated and the second
one is to use the generalized likelihood ratio type testing procedure as in Cai
et al. (2000) and the bootstrap. Finally, Cai (2008) applies the aforemen-
tioned estimation and testing procedures to consider the predictability of
some financial instruments. The tests find some strong evidences that the
predictability exists for the log dividend-price ratio, log earnings-price ratio,
the short rate, and the long-short yield spread.
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6. CONCLUSION

Over the last several years, nonparametric methods for both continuous and
discrete time have become an integral part of research in financial economics.
The literature is already vast and continues to grow swiftly, involving a full
spread of participants for both financial economists and statisticians and
engaging a wide sweep of academic journals. The field has left indelible mark
on almost all core areas in finance such as APT, consumption portfolio
selection, derivatives, and risk analysis. The popularity of this field is also
witnessed by the fact that the graduate students at both master and doctoral
levels in economics, finance, mathematics, and statistics are expected to take
courses in this discipline or alike and review the important research papers in
this area to search for their own research interests, particularly dissertation
topics for doctoral students. On the other hand, this area also has made
an impact in the financial industry, as the sophisticated nonparametric
techniques can be of practical assistance in the industry. We hope that this
selective review has provided the reader a perspective on this important field
in finance and statistics and some open research problems.

Finally, we would like to point out that the paper by Cai, Gu, and Li
(2009a) gives a comprehensive survey on some recent developments in non-
parametric econometrics, including nonparametric estimation and testing of
regression functions with mixed discrete and continuous covariates, nonpara-
metric estimation/testing with nonstationary data, nonparametric instrumen-
tal variable estimations, and nonparametric estimation of quantile regression
models, which can be applied to financial studies. Other two promising lines of
nonparametric finance are nonparametric volatility (conditional variance) and
ARCH- or GARCH-type models and nonparametric methods in volatility for
high-frequency data with/without microstructure noise. The reader interested
in these areas of research should consult with the recent works, to name just
a few, including Fan and Wang (2007), Long, Su, and Ullah (2009), and
Mishra, Su, and Ullah (2009), and the references therein. Unfortunately, these
topics are omitted in this paper due to too vast literature. However, we will
write a separate survey paper on this important financial area, which is
volatility models for both low-frequency and high-frequency data.

NOTES

1. Other theoretical models are studied by Brennan and Schwartz (1979),
Constantinides (1992), Courtadon (1982), Cox, Ingersoll, and Ross (1980),
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Dothan (1978), Duffie and Kan (1996), Longstaff and Schwartz (1992), Marsh and
Rosenfeld (1983), and Merton (1973). Heath, Jarrow, and Morton (1992) consider
another important class of term structure models which use the forward rate as the
underlying state variable.
2. Empirical studies on the short rate include Ait-Sahalia (1996a, 1996b),

Andersen and Lund (1997), Ang and Bekaert (2002a, 2002b), Brenner, Harjes, and
Kroner (1996), Brown and Dybvig (1986), Chan et al. (1992), Chapman and Pearson
(2000), Chapman, Long, and Pearson (1999), Conley et al. (1997), Gray (1996), and
Stanton (1997).
3. See, to name just a few, Pan (1997), Duffie and Pan (2001), Bollerslev and Zhou

(2002), Eraker, Johannes, and Polson (2003), Bates (2000), Duffie et al. (2000),
Johannes (2004), Liu et al. (2002), Zhou (2001), Singleton (2001), Perron (2001),
Chernov et al. (2003).
4. Sundaresan (2001) states that ‘‘perhaps the most significant development in the

continuous-time field during the last decade has been the innovations in econometric
theory and in the estimation techniques for models in continuous time.’’ For other
reviews of the recent literature, see Melino (1994), Tauchen (1997, 2001), and
Campbell et al. (1997).

5. A simple example is the Vasicek model, where if we vary the speed of mean
reversion and the scale of diffusion in the same proportion, the marginal density will
remain unchanged, but the transition density will be different.
6. One could simply ignore the data in the boundary regions and only use the data

in the interior region. Such a trimming procedure is simple, but in the present
context, it would lead to the loss of significant amount of information. If h ¼ sn�

1
5

where s2 ¼ Var(Xt), for example, then about 23, 20, and 10 of a uniformly distributed
sample will fall into the boundary regions when n ¼ 100, 500, and 5,000, respectively.
For financial time series, one may be particularly interested in the tail distribution of
the underlying process, which is exactly contained in (and only in) the boundary
regions.
Another solution is to use a kernel that adapts to the boundary regions and can

effectively eliminate the boundary bias. One example is the so-called jackknife
kernel, as used in Chapman and Pearson (2000). In the present context, the jackknife
kernel, however, has some undesired features in finite samples. For example, it may
generate negative density estimates in the boundary regions because the jackknife
kernel can be negative in these regions. It also induces a relatively large variance for
the kernel estimates in the boundary regions, adversely affecting the power of the test
in finite samples.
7. Chen, Gao, and Tang (2008) consider kernel-based simultaneous specification

testing for both mean and variance models in a discrete-time setup with dependent
observations. The empirical likelihood principle is used to construct the test statistic.
They apply the test to check adequacy of a discrete version of a continuous-time
diffusion model.
8. Wang (2003) takes Vt to be Zt in his empirical analysis.
9. See, for example, Fama and French (1988), Keim and Stambaugh (1986),

Campbell and Shiller (1988), Cutler, Poterba, and Summers (1991), Balvers,
Cosimano, and McDonald (1990), Schwert (1990), Fama (1990), and Kothari and
Shanken (1997).
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10. See, Christopherson, Ferson, and Glassman (1998), Ferson and Schadt (1996),
Ferson and Harvey (1991), Ghysels (1998), Ait-Sahalia and Brandt (2001), Barberis
(2000), Brandt (1999), Campbell and Viceira (1998), and Kandel and Stambaugh
(1996).
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ABSTRACT

Economic conditions such as convexity, homogeneity, homotheticity, and
monotonicity are all important assumptions or consequences of assump-
tions of economic functionals to be estimated. Recent research has seen
a renewed interest in imposing constraints in nonparametric regression.
We survey the available methods in the literature, discuss the challenges
that present themselves when empirically implementing these methods,
and extend an existing method to handle general nonlinear constraints.
A heuristic discussion on the empirical implementation for methods that
use sequential quadratic programming is provided for the reader, and
simulated and empirical evidence on the distinction between constrained
and unconstrained nonparametric regression surfaces is covered.
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1. INTRODUCTION

Nonparametric estimation methods are a desirable tool for applied
researchers since economic theory rarely yields insights into a model’s
appropriate functional form. However, when paired with the specific
smoothness constraints imposed by an economic theory, such as mono-
tonicity of a cost function in all input prices, this often increases the
complexity of the estimator in practice. Access to a constrained nonpara-
metric estimator that can handle general, multiple smoothness conditions is
desirable.1 Fortunately, a rich literature on constrained estimation has taken
shape, and a multitude of potential suitors have been proposed for various
constrained problems. Given the potential need for constrained nonpara-
metric estimators in applied economic research and the availability of a
wide range of potential estimators, coupled with the dearth of detailed,
simultaneous descriptions of these methods, a survey on the current state of
the art is warranted.

Smoothness constraints present themselves in a variety of economic
milieus. In empirical studies on games, such as auctions, monotonicity of
player strategies is a key assumption used to derive the equilibrium solution.
This monotonicity assumption thus carries over to the estimated equilibrium
strategy. And while parametric models of auctions have monotonicity
‘‘built-in,’’ their nonparametric counterparts impose no such condition.
Thus, using a nonparametric estimator of auctions that allows monotonicity
to be imposed is expected to be more competitive against parametric
alternatives than an unconstrained estimator. Recently, Henderson, List,
Millimet, Parmeter, and Price (2009) have shown that random samples from
equilibrium bid distributions can produce nonmonotonic nonparametric
estimates for small samples. This suggests that being able to construct
an estimator that is monotonic from the onset is important for analyzing
auction data.

Analogously, convexity is theoretically required for either a production or
a cost function, and the ability to impose this constraint in a nonparametric
setting is thus desirable given that very few models of production yield
reduced form parametric solutions. Cost functions are concave in input
prices and outputs, nondecreasing and homogeneous of degree 1 in input
prices. Thus, estimating a cost function requires the imposition of three
distinct economic conditions. To our knowledge, applied studies that
nonparametrically estimate cost functions (Wheelock & Wilson, 2001) do
not impose these conditions directly. Thus, at the very least there is a loss of
efficiency since these constraints are not directly imposed on the estimator.
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Moreover, since the constraints are not imposed, it is difficult to test
whether these smoothness conditions are valid.

Before highlighting the potential methods available we aim to gauge the
necessity of imposing smoothness constraints via a primitive example.
Consider the univariate data generating process:

yi ¼ lnðxiÞ þ �i; i ¼ 1; 2; . . . ; n

This data generating process is monotonic and concave. If we generate
random samples under a variety of sample sizes and distributional
assumptions for the pair (xi, ei), we can gain insight into the need for a
constrained estimator. Tables 1 and 2 provide the proportion of times, out
of 9,999 simulations, a local constant kernel estimator, in unconstrained
form, provides an estimate that is either monotonic or concave uniformly
over a grid of points on the interior of the range of x (0.75–1.25). We use
three different bandwidths for our simulations. Generically, we use band-
widths of the form h ¼ csxn�1=5 where c is a user-defined constant, sx is the
standard deviation of the regressand and n is the sample size being used.
A traditional rule-of-thumb bandwidth is obtained by setting c ¼ 1.06.
We also use c ¼ 0.53 (lesser-smoothed) and c ¼ 2.12 (greater-smoothed) to
assess the impact the bandwidth has on the ability of the unconstrained
estimator to satisfy the constraints without further manipulation.

We see that as the sample size is increased from 100 to 200 to 500, the
proportion of trials where monotonicity is uniformly found over the grid of
points approaches unity. However, concavity is violated much more often.
There are many instances, especially when the bandwidth is relatively small,

Table 1. Likelihood of an Estimated Monotonic Regression (9,999
Trials).

eBN(0, 0.1) eBN(0, 0.2)

100 200 500 100 200 500

xBU[0.5, 1.5]

c ¼ 0.53 0.996 0.999 1.000 0.731 0.825 0.933

c ¼ 1.06 1.000 1.000 1.000 0.999 1.000 1.000

c ¼ 2.12 1.000 1.000 1.000 1.000 1.000 1.000

xBN(1, 0.25)

c ¼ 0.53 0.978 0.993 0.99 0.584 0.699 0.841

c ¼ 1.06 1.000 1.000 1.000 0.997 1.000 1.000

c ¼ 2.12 1.000 1.000 1.000 1.000 1.000 1.000
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where there are no cases where concavity is found uniformly over the grid of
points. This result may be unexpected to some given that we have nearly
10,000 replications. Further, we see that as we increase the error variance,
this leads to large decreases in the number of cases of both monotonicity
and concavity.

Even with these alarming results we note that larger scale factors (c)
increase the incidence of concavity. Somewhat surprising is that we do not
always see that increasing the sample size leads to higher incidences of
concavity. While increasing n increases the number of cases of concavity
when we have large bandwidths, we often find the opposite result when
c ¼ 1.06. This conflicting result likely occurs because of two competing
forces. First, the increase in the number of observations leads to more points
in the neighborhood of x. This should lead to more cases of concavity.
The second effect counteracts the first because increasing the number of
observations decreases the bandwidth as h p n–1/5. Finally, we note that the
design of the experiment also has a noticeable effect on the likelihood
of observing monotonicity or concavity without resorting to a constrained
estimator. For instance, generating the regressor from the Gaussian
distribution as opposed to the uniform distribution brings about much
larger proportions of concave estimates when the bandwidth is relatively
large (likely due to more data in the interior of x).2

The results from these tables suggest that constrained estimators are
necessary tools for nonparametric analysis, as in even very simple settings
direct observation of an unrestricted estimator that satisfies the constraints is
by no means expected. One can imagine that with multiple covariates,
multiple bandwidths and a variety of constraints to be imposed simulta-
neously, the likelihood that the constraints are satisfied de facto is low.

Table 2. Likelihood of an Estimated Concave Regression (9,999 Trials).

eBN(0, 0.1) eBN(0, 0.2)

100 200 500 100 200 500

xBU[0.5, 1.5]

c ¼ 0.53 0.000 0.000 0.000 0.000 0.000 0.000

c ¼ 1.06 0.021 0.033 0.040 0.016 0.016 0.014

c ¼ 2.12 0.016 0.004 0.008 0.022 0.007 0.003

xBN(1, 0.25)

c ¼ 0.53 0.000 0.000 0.000 0.000 0.000 0.000

c ¼ 1.06 0.027 0.019 0.014 0.019 0.0190 0.003

c ¼ 2.12 0.445 0.527 0.683 0.397 0.427 0.498
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In general, a wide variety of constrained nonparametric estimation
strategies have been proposed to incorporate economic theory within an
estimation procedure. While many of these estimators are designed
myopically for a specific smoothness constraint, a small but burgeoning
literature has focused on estimators which can handle many arbitrary
economic constraints simultaneously. Of note are the recent contributions
of Racine, Parmeter, and Du (2009) who developed a constrained kernel
regression estimator and Beresteanu (2004) who developed a similar
type of estimator but for use with spline-based estimators.3 In addition to
providing a survey of the current menu of available constrained nonpara-
metric estimators, we also shed light on the quantitative aspects for
empirical implementation regarding the constrained kernel estimator of
Racine et al. (2009). While they mention the ability of their method to
handle general constraints, their existence results and simulated and real
examples all focus on linear (defined in the appropriate sense) restrictions.
We augment their discussion by providing existence results as well as
heuristic arguments on the implementation of the method. Simulated and
empirical evidence targeting imposing concavity on a regression surface is
provided to showcase the full generality of the method.

The rest of this paper proceeds as follows. Section 2 reviews the literature
on constrained nonparametric regression. Section 3 discusses imposing
general nonlinear constraints, specifically concavity, using constraint
weighted bootstrapping and shows how it can be implemented computa-
tionally. Section 4 presents a small-scale simulation and an empirical
discussion of estimation of an age-earnings profile. Section 5 presents
several concluding remarks and directions for future research.

2. AVAILABLE CONSTRAINED ESTIMATORS

Consider the standard nonparametric regression model

yi ¼ mðxiÞ þ sðxiÞ�i; for i ¼ 1; . . . ; n (1)

where yi is the dependent variable, m( � ) is the conditional mean function
with argument xi, xi being a k� 1 vector of covariates, s( � ) is the con-
ditional volatility function, and ei is a random variable with zero mean and
unit variance. Our goal is to estimate the unknown conditional mean subject
to economic constraints (e.g., concavity) in a smooth framework.

Imposing arbitrary constraints on nonparametric regression surfaces,
while not new to econometrics, has not received as much attention as other
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aspects of nonparametric estimation, for instance bandwidth selection, at
least not in the kernel regression framework. Indeed, one can divide the
literature on imposing constraints in nonparametric estimation frameworks
into two broad classes:

1. Developing a nonparametric estimator to satisfy a particular con-
straint. Here the class of monotonically restricted estimators is a prime
example.

2. Developing a nonparametric estimator (either smooth or interpolated)
that satisfies a class of constraints.

Our goal is to highlight the variety of existing methods and document the
differences across the available techniques to guide the reader to an
appropriate estimator for the problem at hand.

2.1. Isotonic Regression

The first constrained nonparametric estimators were nonsmooth and
fell under the heading of ‘‘isotonic regression,’’ initially proposed by
Brunk (1955). Brunk’s (1955) estimator was a minmax estimator that was
designed to impose monotonicity on a regression function with a single
covariate, while Hansen, Pledger, and Wright (1973) extended the estima-
tor to two dimensions and provided results on consistency of the estimator.
To explain Brunk’s estimator, let CB be the discrete cone of restrictions
in Rn:

fðz1; z2; . . . ; znÞ : z1 � z2 � � � � � zng

We let y
i be a solution to the minimization problem

min
ðy


1
; ...; y
n Þ2CB

Xn
i¼1

ðyi � y
i Þ
2

This minimization problem has a unique solution that is expressed
succinctly by a minmax formula.

Use X(1), y, X(n) to denote the order statistics of X and y[i] the cor-
responding observation of X(i). Then our ‘‘isotonized’’ fitted values can be
represented as

y
i ¼ min
s�i

max
t�i

Xt
j¼s

y½ j�

ðt� sþ 1Þ
(2)
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or

y
i ¼ min
s�i

max
t�i

Xt
j¼s

y½ j�

ðt� sþ 1Þ
(3)

In Brunk’s (1955) approach there is no attempt to smooth the estimation
results to values of x between the observation points. A simple approach
would be to extend flatly between the values of xi, but this has been
criticized for the presence of too many flat spots and a slow rate of
convergence.4

Interestingly, Hildreth (1954) introduced a related method to that in
Brunk (1955), but geared toward estimating a regression function that is
restricted to be concave. His procedure amounts to conducting least squares
subject to discretized concavity restrictions. Similar to Brunk (1955), let CH
be the discrete cone of restrictions in Rn:

ðz1; z2; . . . ; znÞ :
ziþ1 � zi

xiþ1 � xi
�

ziþ2 � ziþ1

xiþ2 � xiþ1
; i ¼ 1; . . . ; n� 2

	 

Then y
i is a solution of

min
ðy


1
; ...; y
nÞ2CH

Xn
i¼1

ðyi � y
i Þ
2 (4)

An iterative procedure is required to solve the minimization as no closed
form solution exists. However, unlike the monotonically constrained
estimator of Brunk (1955), the concave restricted estimator of Hildreth
(1954) extends between observation points linearly, thus falling into the
classification of a least-squares spline estimator.

While both of these estimators construct restricted regression estimates
predicated on simple concepts, they are not ‘‘smooth’’ in the traditional
sense. The classic isotonic regression estimator of Brunk (1955) was
smoothed by Mukerjee (1988) and Mammen (1991a). An alternative way
to characterize their estimators is to say that they forced the traditional
Nadaraya–Watson regression smoother to satisfy a monotonicity con-
straint. The key insight was to use a two-step estimator that consisted of a
smoothing step and an isotonizing step. Mukerjee (1988) proved that one
could preserve the isotonization constructed in the first step by using a log-
concave kernel to smooth in the second step. Thus, after one uses either
Eq. (2) or (3) to isotonize the regressand, a smooth, nonparametric estimate
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of the unknown conditional mean is constructed as

m̂ðxÞ ¼

Pn
i¼1

Kððx� X ðiÞÞ=hÞy
iPn
i¼1

Kððx� X ðiÞÞ=hÞ
(5)

where h is the bandwidth.5 One does not need to use a special kernel,
however, as a second-order Gaussian kernel is log concave, thus making this
method easy to implement. Mammen (1991a) proved that asymptotically
the order of the steps is irrelevant. No equivalent estimator exists for the
concave variant introduced by Hildreth (1954), and as such the general-
izability of smoothing isotonic-type estimators is unknown. Moreover,
multivariate extensions to the traditional isotonic regression estimator are
difficult to implement and often not available in closed form solutions.

2.2. Constrained Spline/Series Estimation

Both spline- and series-based functions provide the researcher with a flexible
set of basis functions with which to construct a regression model that is
linear in parameters, which is intuitively appealing. Early methods using
splines or series, designed to impose general economic constraints, include
Gallant (1981, 1982) and Gallant and Golub (1984). This work introduced
the Fourier flexible form (FFF) estimator, whose coefficients could be
restricted to impose concavity, homotheticity, and heterogeneity in a
nonparametric setting.6 Constrained spline smoothers were proposed by
Dierckx (1980), Holm and Frisen (1985), Ramsay (1988), and Mammen
(1991b), to name a few early approaches.

In what follows we describe the basic setup for constrained least-squares
spline estimation.7 We define our spline space to be S which has dimension p.8

Our least-squares spline estimate is a function m, which represents a linear
combination of spline functions from S that solves:

min
s2S

Xn
i¼1

ðyi �mðxiÞÞ
2 (6)

To impose constraints we note that positivity of either the first or the second
derivative at a given point ~x of the function m( � ) can be written equivalently
as positivity of a linear combination of the associated parameters with respect
to the chosen basis. Thus, monotonicity or concavity can be readily imposed
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on a discretized grid of points where each point adds additional linear
constraints on the spline coordinates with the associated basis. It is a natural
step to include these linear constraints directly into the least-squares spline
problem.

Similar to isotonic regression, the literature appears to have focused on
concavity first (Dierckx, 1980) and then monotonicity (Ramsay, 1988).
In what will seen to be a common theme in constrained nonparametric
regression, Dierckx (1980) used a quadratic program to enforce local
concavity or convexity of a spline function. His function estimate, using
normalized B-splines (see Schumaker, 1981) with basis Nj, is

m̂ðxÞ ¼
Xk
j¼�3

c
j NjðxÞ

Here k denotes the total number of knots. The values c
j solve the quadratic
program

minPk
j¼�3

dj;l cjej�0

Xn
i¼1

yi �
Xk
j¼�3

cjNjðxiÞ

 !2

(7)

The ej in Eq. (7) determines the type of constraint being imposed on the
function locally. That is, ej ¼ 1 if the function is locally convex at knot
‘, ej ¼ 0 if the function is unrestricted at the ‘th knot and ej ¼ –1 if the
function is locally concave at knot ‘. The numbers dj,l are derived from the
second derivatives of the basis splines at each of the knots, and have a
simple representation

dj;l ¼ 0 if j � l � 4 or j � 4

dl�3;l ¼
6

ðtlþ1 � tl�2Þðtlþ1 � tl�1Þ

dl�1;l ¼
6

ðtlþ2 � tl�1Þðtlþ1 � tl�1Þ

dl�2;l ¼ �ðdl�3;l þ dl�1;lÞ

where tl refers to the lth point under consideration. Ramsay (1988) developed
a similar monotonically constrained spline estimator using I-splines. I-splines
have a direct link to the B-splines used by Dierckx (1980). An I-spline of order
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M is an indefinite integral of a corresponding B-spline of the same order.
Ramsay (1988) used I-splines because he was able to establish that they had
the property that each individual I-spline is monotonic and that any linear
combination of I-splines with positive coefficients is also monotonic. This
made it easy to construct the associated monotonic spline estimator. Both of
the aforementioned estimators can also be placed in the smoothing spline
domain as well.

Yatchew and Bos (1997) developed a series-based estimator that can
handle general constraints. This estimator is constructed by minimizing
the sum of squared errors of a nonparametric function relative to an
appropriate Sobolev norm. The basis functions that make up the series
estimation are determined from a set of differential equations that provide
‘‘representors.’’ Representors of function evaluation consist of two func-
tions spliced together, where each of these functions is a linear combination
of trigonometric functions. In essence, one can ‘‘represent’’ any function in
Sobolev space through this process (see Yatchew & Bos, 1997, Appendix 2).
Let R be an n� n ‘‘representor’’ matrix whose columns (equivalently
rows) equal the representors of the function, evaluated at the observations
x1, y, xn.

9 Then, arbitrary constrained estimation of a nonparametric
function

min
f2F

n�1
Xn
i¼1

ðyi �mðxiÞÞ
2 s:t jjmjj2Sob � L

can be recast as

min
c

n�1
Xn
i¼1

ðyi � RcÞ
2

s:t: c0Rc � L; c0Rð1Þc � Lð1Þ; c0Rð2Þc � Lð2Þ; . . . ; c0RðkÞc � LðkÞ
(8)

Here L denotes the upper bound on the squared Sobolev norm of our
constrained function, c is an n� 1 vector of coefficients, and F is our con-
strained function space which we are searching over. Since we are interested
in constraints that relate directly to the derivatives of the nonparametric
function we are estimating, R(1), y, R(k) represent the appropriate
derivatives of the original representor matrix and L(1),y,L(k) are the cor-
responding bounds. For example, if one wished to impose monotonicity,
L(1)
¼ 0 and R(1) represents the representor matrix with each of the

representors first-order differentiated with respect to the corresponding
column’s variable (i.e., the fifth column of R(1) corresponds to the fifth
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covariate so the representors are first-order differentiated with respect to
that variable). Again, this is a quadratic programming (QP) problem with
a quadratic constraint.10

Beresteanu (2004) introduced a spline-based procedure that can handle
multivariate data and impose multiple, general, derivative constraints.
His estimator is solved via QP over an equidistant grid created on the
covariate space. These points are then interpolated to create a globally
constrained estimator. He employed his method to impose monotonicity
and supermodularity of a cost function for the telephone industry. His
estimation setup is similar to the approaches described above and involves
setting up a set of appropriately defined constraint matrices for the shape
constraint(s) desired and solving for a set of coefficients, then interpolating
these points to construct the nonparametric function that satisfies
the constraints over the appropriate interval. In essence, since Beresteanu
(2004) is constructing his estimator first based on a grid of points and
then interpolating, this estimation procedure can be viewed as a two-
step series-based equivalent of the isotonic regression discussed earlier
(Mukerjee, 1988).

2.3. The Matzkin Approach

The seminal work of Matzkin (1991, 1992, 1993, 1994, 1999) considered
identification and estimation of general nonparametric problems with
arbitrary economic constraints. One of her pioneering insights was that
when nonparametric identification was not possible, imposing shape
constraints tied to economic theory could provide nonparametric identifica-
tion in certain estimation settings. Her work laid the foundations for a
general operating theory of constrained nonparametric estimation. Her
methods focused on standard economic constraints (monotonicity, con-
cavity, homogeneity, etc.) but were capable of being facilitated in more
general settings than regression. Primarily, her work focused on binary-
threshold crossing models and polychotomous choice models, although
her definition of subgradients equally carried over to a regression context.
One can suitably recast her estimation method in the regression context as
nonparametric constrained least squares.

For example, to impose concavity on a regression function she created
‘‘subgradients,’’ T j, which were defined for any convex function
m : X ! Rk, where X�R is a convex set and xAX for any vector T 2 Rk

such that ’yAX m(y)Zm(x)þT(y�x).11 We use the notation T j to denote
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that the subgradients are calculated for the observations. Matzkin (1994)
showed how to use the subgradients to impose concavity and monotonicity
simultaneously. Using the Hildreth (1954) constraints for concavity of a
regression surface, Matzkin (1994) rewrites them as

mðxiÞ � mðxjÞ þ Tjðxi � xjÞ; i; j ¼ 1; . . . ; n

She solves the minimization problem in Eq. (4), but the minimization is over
m(xi)’i and T j ’j. To impose monotonicity one would add the additional
constraint that T j

W0’j. Algorithms to solve the constrained optimization
problem were first developed for the regression setup by Dykstra (1983),
Goldman and Ruud (1992), and Ruud (1995) and for general functions
by Matzkin (1999), who used a random search routine regardless of the
function to be minimized.

Implementation of these constrained methods is of the two-step variety
(see Matzkin, 1999). First, for the specified constraints, a feasible solution
consisting of a finite number of points is determined through optimization
of some criterion function (in Matzkin’s choice framework setups this is
a pseudo-likelihood function). Second, the feasible points are interpolated
or smoothed to construct the nonparametric surface that satisfies the
constraints. These methods can be viewed in the same spirit as that of
Mukerjee (1988), but for a more general class of problems.

2.4. Rearrangement

Recent work on imposing monotonicity on a nonparametric regression
function, known as rearrangement, is detailed in Dette, Neumeyer, and
Pilz (2006) and Chernozhukov, Fernandez-Val, and Galichon (2009).
The estimator of Dette et al. (2006) combines density and regression
techniques to construct a monotonic estimator. The appeal of ‘‘rearrange-
ment’’ is that no constrained optimization is required to obtain a
monotonically constrained estimator, making it computationally efficient
compared to the previously described methods. Their estimator actually
estimates the inverse of a monotonic function, which can then be inverted to
obtain an estimate of the function of interest.

To derive this estimator let M denote a natural number that dictates the
number of equi-spaced grid points to evaluate the function. Then, their
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estimator is defined as

m̂�1ðxÞ ¼

Z x

�1

1

Mh

XM
j¼1

K
m̂ðj=MÞ � u

h

� �
du (9)

where m̂ðxÞ is any unconstrained nonparametric regression function estimate
(kernel smoothed, local polynomial, series, splines, neural network, etc.).
The intuition behind this estimator is simple; the connection rests on the
properties of transformed random variables.

Note that m(xi) is a transformation of the random variable xi. The
estimator

1

nh

Xn
i¼1

K
mðxiÞ � u

h

� �
represents the classical kernel density of the random variable u ¼ m(x1),
which has density

gðuÞ ¼ f ðx1Þjðm
�1Þ
0
ðx1Þj

The integration in Eq. (9) is that of a probability density function and as
such a CDF is constructed, which is always monotonically increasing.
The equi-spaced grid is used for the estimation since the evaluation points
are then treated as though they came from a uniform density, making
f( j/M) ¼ I[a, b], where a and b denote the lower and upper bounds of the
support of X, respectively. Thus, the integration in this case amounts to
integrating jðm�1Þ0ðx1Þj over its domain, which gives us m–1(x1). Once this
has been obtained, it is a simple matter to reflect this estimate across
the y ¼ x line in Cartesian 2-space to obtain our monotonically restricted
regression estimator. Chernozhukov et al. (2009) discuss implementation of
this estimator in a multivariate setting and show that the constrained
estimator always improves (reduces the estimation error) over an original
estimate whenever the original estimate is not monotonic.

The name rearrangement comes from the fact that the point estimates are
rearranged so that they are in increasing order (monotonic). This happens
because the kernel density estimate of the first-stage regression estimates
sorts the data from low to high to construct the density, which is then
integrated. This sorting, or rearranging, is how the monotonic estimate is
produced. It works because monotonicity as a property is nothing more
than a special ordering, and the kernel density estimator is ‘‘unaware’’ that
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the points it is smoothing over to construct a density are from an estimate of
a regression function as opposed to raw data.

One issue with this estimator is that while it is intuitive, computationally
simple, and easy to implement with existing software, it requires the
selection of two ‘‘bandwidths.’’12 Additionally, the intuition underlying the
ease of implementation does not readily extend itself to general constraints
on nonparametric regression surfaces. No such transformation is obtainable
to impose concavity using the same insights, for example.

2.5. Data Sharpening

Data sharpening derives from the work of Friedman, Tukey, and Tukey
(1980) and was later employed in Choi and Hall (1999). These methods are
designed to admit a wide range of constraints and are closely linked to
biased-bootstrap methods (Hall & Presnell, 1999). Data sharpening is
inherently different than biased-bootstrapping and constraint weighted
bootstrapping (to be discussed later) as it alters the data, but keeps the
weights associated with each point fixed, whereas biased-bootstrapping and
constraint weighted bootstrapping change the weights associated with each
point, but keep the points fixed. Both of these methods, however, can be
thought of as data tuning methods which in some sense alter the underlying
empirical distribution to achieve the desired outcome. We discuss the
method of Braun and Hall (2001) in what follows.

Let our original data be {x1,y,xn} and our sharpened data be {z1,y, zn}.
Define the distance between original and sharpened points as D(xi, zi)Z0.
We choose Z ¼ fz1; . . . ; zng, our set of sharpened data, to minimize

DðX ;ZÞ ¼
Xn
i¼1

Dðxi; ziÞ

subject to our constraints of interest. Once the sharpened data have been
obtained we apply our method of interest, in this setting nonparametric
regression, to the sharpened data.

More formally, our kernel regression (local constant, say) estimator is

m̂ðxjX ;YÞ ¼

Pn
i¼1

Kððxi � xÞ=hÞyiPn
i¼1

Kððxi � xÞ=hÞ
¼
Xn
i¼1

AiðxÞyi
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We want to impose an arbitrary constraint on the function, monotonicity
for example, by ‘‘sharpening’’ y. Thus, we minimize

DðY;QÞ ¼
Xn
i¼1

Dðyi; qiÞ (10)

for a preselected distance function, subject to the constraints

m̂ðxjX ;QÞ ¼
Xn
i¼1

A0iðxÞqi40 (11)

Notice the conditioning set for which the estimator is defined over has
changed from Y to Q Thus, we construct our restricted estimator while
simultaneously minimizing our criterion function. If one chose D(r, t) ¼
(r�t)2, we would have a standard QP problem, provided the constraints
were linear (which they are in our monotonicity example). Compared to
rearrangement, given the fact that the data is smoothed, even though the
response variables are moved around, the corresponding constrained curve
is as smooth as the unconstrained curve. The rearranged curve will have
ambiguous low-order kinks where the nonmonotonic portion of the curve is
‘‘forced’’ to be monotonic resulting in a curve that is less smooth than its
unconstrained counterpart.

2.6. Constraint Weighted Bootstrapping

Hall and Huang (2001) suggest an alternative smooth, monotonic non-
parametric estimator that admits any number of covariates. Racine et al.
(2009) have generalized the method to accommodate a variety of ‘‘linear’’
constraints simultaneously. Start again with the standard local constant
least-squares estimator

m̂ðxÞ ¼

Pn
i¼1

Kððxi � xÞ=hÞyiPn
i¼1

Kððxi � xÞ=hÞ
¼

1

n

Xn
i¼1

AiðxÞyi (12)

where AiðxÞ ¼ nKððxi � xÞ=hÞ=f̂ ðxÞ and f̂ ðxÞ ¼
Pn

i¼1Kððxi � xÞ=hÞ. Even
though we are choosing to use the local constant least-squares framework,
this setup can be immediately extended to other types of kernel and local
polynomial estimation routines. As it stands, the regression estimator in
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Eq. (12) is not guaranteed to produce a monotonic estimator. Hall and
Huang’s (2001) insight was to introduce observation-specific weights pi
instead of the 1/n that appears in Eq. (12). These weights can then be
manipulated so that the estimator satisfies monotonicity. To be clear,

m̂ðxjpÞ ¼
Xn
j¼1

piAiðxÞyi

is the constraint weighted bootstrapping estimator. It is still not monotonic
until we properly restrict the weights.

In the unconstrained setting we have p ¼ (p1,y, pn) ¼ (1/n,y, 1/n),
which represents weights drawn from a uniform distribution. If the
bandwidth chosen produces an estimate that is already monotonic, the
weights should be set equal to the uniform weights. However, if the function
by itself is not monotonic, then the weights are diverted away from the
uniform case to create a monotonic estimate. In order to decide how to
manipulate the weights, a distance metric is introduced based on power
divergence (Cressie & Read, 1984):

DrðpÞ ¼
1

rð1� rÞ
n�

Xn
i¼1

ðnpiÞ
r

" #
;�1oro1 (13)

where r 6¼ 0, 1. One needs to take limits for r ¼ 0 or 1. They are given as

D0ðpÞ ¼ �
Xn
i¼1

logðnpiÞ; D1ðpÞ ¼
Xn
i¼1

pi logðnpiÞ

This distance metric is quite general. If one uses r ¼ 1/2, then this
corresponds to Hellinger distance, whereas nD0(p)þn

2log(n) is equivalent to
Kullback–Leibler divergence ð�

Pn
i¼1nlogðpi=nÞÞ. This metric is minimized

for a selected r subject to the constraint that

m̂0ð�jpÞ ¼
Xn
j¼1

piA
0
ið�Þyi � �

on a grid of selected points. Here eZ 0 can be used to guarantee either weak
or strict monotonicity. A nice feature of this estimator is that the kernel and
bandwidth are chosen before the weights are selected. This means that
the user can choose their desired kernel estimator and bandwidth selector
to construct their nonparametric estimator and then constrain it to be
monotonic. This leaves the door open to straightforward modification of the
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estimator. In fact, there is nothing special about monotonicity for the
method of Hall and Huang (2001) to work. Any constraint that is desired
could, in principle, be imposed on the regression surface.

Note that the monotonic constraint imposed in Hall and Huang (2001)
can be written in the more general form:

Xn
i¼1

pi
X
s2S

asA
ðsÞ
i ðxÞ

" #
yi � cðxÞ � 0 (14)

where the inner sum is taken over all vectors S that correspond to our
constraints of interest (monotonicity, say), as are a set of constants used to
generate various constraints, and c(x) is a known function. S indexes the
order of the derivative associated with the kernel portion of the regression
estimator. In our example of monotonicity, s ¼ ej is a k-vector (since we
have x 2 Rk) with 1 in the jth position and 0s everywhere else, as ¼ 1’sAS

and c(x) ¼ 0.13 Racine et al. (2009) provide existence and uniqueness for a
set of weights for constraints of the form (14). They call these constraints
linear since they are linear with respect to the weights pi’i. Additionally, to
make the constrained optimization computationally simple, they use the L2

norm with respect to the uniform weights (1/n), as opposed to the power
divergence metric. This condenses the problem into a standard QP problem,
which can be solved using existing packages in almost all standard
econometric software.

Note the subtle difference between the data sharpening methods discussed
previously and the constraint weighted bootstrapping methods here. When
one chooses to sharpen the data, the actual data values are being
transformed while the weighting is held constant. Here, the exact opposite
occurs: the data is held fixed while the weights are changed. At the end of
the day however, the two estimators can be viewed as ‘‘visually’’ equivalent.
That is, both estimators can be looked at as

m̂ðxÞ ¼
Xn
j¼1

AiðxÞy


i (15)

where y
i corresponds to either the sharpened values or piyi obtained from
the constraint weighted bootstrapping approach. The difference between the
methods is how y
i is arrived at.14 Also, note that both constraint weighted
bootstrapping and data sharpening are vertically moving the data, whereas
rearrangement methods horizontally move the data.
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2.7. Summary of Methods

While our discussion of existing methods has indicated a number of choices
for the user, there does not exist one clear-cut method for imposing arbitrary
constraints on a regression surface for every given situation. Each of the
methods discussed has computational or theoretical drawbacks when
considered against the set of all available methods. Additionally, several
of the key differences across the methods focus on the choice of operating in
a kernel, spline, or series-based framework, the selection of smoothing
parameters, the smoothness of the estimator, the adaptability/general-
izability of the method, whether to impose global or discrete constraints,
and the ability to use the method to conduct inference on the constraints
being imposed.

2.7.1. Spline, Series, and Kernels
Given that the constrained estimation methods discussed earlier use
vastly differing nonparametric methods, this choice cannot be overlooked.
Kelly and Rice (1990) mention that if the coefficients in the B-spline bases
are nondecreasing, then so is the function (if one was imposing mono-
tonicity), and Delecroix and Thomas-Agnan (2000) focus attention on the
fact that splines are defined as the solution to a minimization problem and
this, in general, lends support for their use in constrained settings. However,
given the prevalence of discrete data in applied settings, the seminal
work of Racine and Li (2004) highlighting the fact that smoothing
categorical data can lead to substantial finite sample efficiency gains, lends
support for adopting a kernel-based method. Alternatively, given the
ease with which one may construct and employ series-based methods, it is
easy to advocate that these constrained methods are computationally easy
to employ.

Given the adaptability of the methods of Yatchew and Bos (1997) (which
is series based), Beresteanu (2004) (which is spline based), and Racine et al.
(2009) (which is kernel based), we cannot advocate for a particular type of
nonparametric method based on imposing general smoothness constraints.
Nor do we advocate on behalf of the particular type of nonparametric
smoothing one should engage in. However, given the ease with which one
can implement a constrained estimator, we remark that the easiest method
for which a researcher can incorporate the constraints should be used.
Additionally, if a researcher traditionally uses a type of nonparametric
method (spline, say), then they may have more familiarity with employing
one set of constrained methods over another, which is an obvious benefit.
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2.7.2. Choice of Smoothing Parameter
As with all nonparametric estimation methods, the choice of smoothing
parameter plays a crucial role to the performance of the estimator both in
practice and theory, yet there was no mention of the appropriate level of
smoothing in the aforementioned constrained methods. Few results exist
suggesting how the optimal level of smoothing should be imposed. For many
of the methods described previously, one could engage in cross-validation
simultaneously with the constraint imposition. This may actually help in
determination of the optimal smoothing parameter. The simulations of
Delecroix and Thomas-Agnan (2000) show that the mean integrated square
error (typically used in cross-validation) as a function of the smoothing
parameter typically had a wider zone of stability around the optimal level of
the smoothing parameter, suggesting it may be easier to determine the optimal
level; it is well known that various forms of the cross-validation function are
noisy, making determination of the optimal level difficult in certain settings.

However, engaging in cross-validation and constraint imposition simul-
taneously is unnecessary in particular methods. For example, the constraint
weighted bootstrapping methods of Hall and Huang (2001) and Racine
et al. (2009) show that the constrained kernel estimator should use a
bandwidth of the standard, unconstrained optimal order. In this setting
both the restricted and unrestricted smooths will have the same level of
smoothing. Further tuning could be performed by cross-validation after the
constraint weights have been found and simple checks to determine if the
constraints were still satisfied (similar to that described above).

2.7.3. Method Complexity
The methods discussed earlier range from simple computation (rearrange-
ment and univariate isotonic regression) to involving quadratic or nonlinear
program solvers. These numerical methods may dissuade the user from
adopting a specific approach, but we note that with the drastic reductions
in computation time and the availability of solvers in most econometric
software packages, these constraints will continue to lessen over time.
Indeed, part of this survey discusses in detail the implementation of a
sequential quadratic program to showcase its implementation in practice.
Also, given the ease with which a quadratic program can be solved with
linear constraints, the method of Racine et al. (2009) addresses the critique
of Dette and Pilz (2006, p. 56) who note ‘‘[rearrangement offers] substantial
computational advantages, because it does not rely on constrained
optimization methods.’’ We mention here that rearrangement requires
slightly more sophistication when one migrates from a univariate to
multivariate setting and so this concern is of limited use in applied work.
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2.7.4. Numerical Comparisons
Very little theoretical work exists to showcase the performance of one
method against a set of competitors. Indeed, even numerical comparisons
are scant. The most comprehensive study between methods is that of Dette
and Pilz (2006) who conducted a Monte Carlo comparison of smooth
isotonic regression and rearrangement, and the method of Hall and Huang
(2001) for the constraint of monotonicity, in the univariate setting for a
bevy of DGPs. Their findings suggest that rearrangement has desirable/
equivalent finite sample performance compared to the other methods across
all of the DGPs considered.

3. IMPOSING NONLINEAR CONSTRAINTS

We discuss a further generalization of Racine et al. (2009) that can handle
general nonlinear constraints and discuss in detail the computational
method of sequential quadratic programming (SQP) required to implement
nonparametric regression in this setting. Our choice for a deeper, prolonged
discussion of this method hinges on the necessity of SQP methods in several
of the methods mentioned previously. Very rarely are the methods to obtain
a solution discussed at length, and given the use of these methods in both
data sharpening and constraint weighted bootstrapping, we feel it requisite
to highlight the implementation of this technique.

While we discuss general constrained estimation in the face of arbitrary
nonlinear constraints, to cement our ideas we focus on the specific example
of concavity. Concavity is a common assumption used in the characteriza-
tion of production functions. Concavity of the production function implies
diminishing marginal productivity of each input.15 This assumption is
widely agreed upon by economists, and failure to impose it may lead to
conclusions that are economically infeasible.

In the case of a single factor, a twice continuously differentiable function
m(x) is said to be concave if mv(x) r 0 ’x A SðxÞ. Extending this result to
the case of multiple x is relatively straightforward. Concavity implies that
the Hessian matrix

HðmðxÞÞ ¼

m11 m12 � � � m1k

m21 m22 � � � m2k

..

. . .
. ..

.

mk1 mk2 � � � mkk

266664
377775
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where mlk 	 ð@
2mðxÞÞ=ð@xl@xkÞ must be negative semidefinite. In other

words, all the lth (l ¼ 1, 2,y, k) order principal minors of H are less than or
equal to zero if l is odd, and greater than or equal to zero if l is even
(alternatively, all the eigenvalues of this matrix are negative). We could,
instead, choose to impose concavity via the constraints given in Hildreth
(1954); however, many formal definitions of concavity are linked to the
Hessian and as such we enforce concavity using this.

Following Hall and Huang (2001), we have the following constrained
nonlinear programming problem:

minDrðpÞ s:t: HðmðxjpÞÞ is negative semidefinite 8x 2 SðxÞ;

pi � 0 8i; and
Xn
i¼1

pi ¼ 1
(16)

To solve this or any other constrained optimization problem in the spirit
of Hall and Huang (2001) we need to use SQP.

3.1. Sequential Quadratic Programming

Although the steps to construct a constrained nonparametric estimator
seem straightforward, implementing these types of programs are often not
discussed in detail in econometrics papers. In this subsection we outline SQP.

Consider the inequality constrained problem

minDðzÞ subject to riðzÞ ¼ 0; i 2 E; and cjðzÞ � 0; j 2 I (17)

where D : Rqo ! R; ri : R
qo ! Rq1 , and ci : R

qo ! Rq2 can all be nonlinear,
but we require that all the functions are smooth in the z argument. The idea
behind SQP is to convert the nonlinear programming problem in Eq. (17)
into a conventional QP problem. To do this we need to ‘‘linearize’’ our
constraints and ‘‘quadracize’’ our objective function. Before doing this we
introduce some additional concepts.

The Lagrangian of our problem is defined as

Lðz; lr; lcÞ ¼ DðzÞ � l0rriðzÞ � l0ccjðzÞ (18)

Also, define BrðzÞ
0
¼ ½rr1ðzÞ;rr2ðzÞ; . . . ; rrnðzÞ� and BcðzÞ

0
¼ ½rc1ðzÞ;

rc2ðzÞ; . . . ; rcnðzÞ�. Now pick an initial z, z0, and an initial set of vectors
of Lagrange multipliers, lr,0 and lc,0. Lastly, define r2Lzzðz; lr; lcÞ ¼
r2DðzÞ � rBrðzÞ

0lr � rBcðzÞ
0lc. We are now ready to describe how to solve

our SQP problem.
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Our QP at step 0 is

min Dðz0Þ þ rDðz0Þ
0qþ

1

2
q0r2

zzLðz0; lr;0; lc;0Þq (19)

subject to

Brðz0Þqþ rðz0Þ ¼ 0 and BcðzÞqþ cðz0Þ � 0 (20)

The solution of this standard quadratic program, q0, ‘r;0, and ‘c;0, can be
used to update z0, lr,0, and lc,0 as follows: z1 ¼ z0þq0, lr;1 ¼ ‘r;0, and
lc;1 ¼ ‘c;0. These updated values can then be plugged back into the SQP to
repeat the whole process until convergence. SQP requires nothing more than
repeated evaluation of the levels, first- and second-order derivatives of the
objective and constraint functions. It is a simple matter to determine these
derivatives; thus, this simplification process requires nothing more than
taking derivatives of a set of functions.

3.2. Existence and Uniqueness of a Solution

When the following assumptions hold:

1. the constraint Jacobians Br(z) and Bc(z) have full row rank, and
2. the matrix r2

zzLðz; lr; lcÞ is positive definite on the tangent space of
constraints

our SQP has a unique solution that satisfies the constraints. Essentially, this
result comes from the fact that one could have used Newton’s method to
solve the constrained optimization, and the result here is obtained from
the associated iterate from running Newton’s method instead. These two
assumptions are enough to guarantee that a unique solution holds if one
were to use Newton’s method instead of the one we outlined. However,
Nocedal and Wright (2000, pp. 531–532) show that these two procedures,
in this setting, are equivalent. For more on existence of a local solution we
direct the interested reader to Robinson (1974).
Additionally, since we have converted our general nonlinear program-

ming problem into a QP problem, the conditions required for existence of
a solution in QP problems are exactly the conditions we need to hold,
at each iteration, to guarantee a solution exists in this setting. Thus, the
results established in Racine et al. (2009) carry over to our setting, provided
our nonlinear constraints are first-order differentiable in p and satisfy our
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assumptions listed above, which are easily checked. Moreover, if the forcing
matrix ðr2

zzLðq; lr; lcÞÞ in the quadratic portion of our ‘‘quadricized’’
objective function is positive semidefinite, and if our solution satisfies the set
of linearized equality/inequality constraints, then our solution is the unique,
global solution to the problem (Nocedal & Wright, 2000, Theorem 16.4).
Positive semidefiniteness guarantees that our objective function is convex,
which is what yields a global solution. We note that this only shows
uniqueness but does not guarantee a solution will exist.

However, it should be noted that because the constraint weights are
restricted to be nonnegative and sum to 1, this implies that it may be difficult
to impose a constraint that is ‘‘far away’’ from being satisfied. In essence, the
constraints imposed on the problem may be inconsistent if a nonnegative
weight or a weight greater than 1 is needed to satisfy the constraints of
interest. However, the conditions needed to determine how far away is
‘‘far away’’ are not investigated here. Our conjecture is that the distance
from an observation and the underlying function is dependent on the error
process that perturbs the data generating process.

In essence the weights act as vertical scaling factors, and if the amount of
scaling is restricted, then it can be difficult to find a solution. Hall and
Presnell (1999) note the difficulty in finding the appropriately sharpened
points using essentially the same technique described here in roughly 10%
of their simulations. They advocate for an approach similar to simulated
annealing that was always able to arrive at a solution although that
procedure was computationally more intensive than SQP. An alternative,
not followed here, would be to dispense with the power divergence metric
and all constraints on the weights if no solution is found in the SQP format.
In this setting one could use the L2 norm of Racine et al. (2009) and
linearize (provided the nonlinear constraints are differentiable) the non-
linear constraints, again engaging in an iterative procedure to determine the
optimal set of weights that can be shown to always exist in this setting.

3.3. SQP Imposing Concavity

If we use the power divergence measure of Cressie and Read (1984):

DrðpÞ ¼
1

rð1� rÞ
n�

Xn
i¼1

ðnpiÞ
r

( )
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for �NoroN and r 6¼ 0, 1, as our objective function to minimize, then
we have the following set of functions that need to be estimated prior to
solving our QP at any iteration (‘th):

(i) Drðp‘Þ 	
1

rð1� rÞ
n�

Xn
i¼1

ðnpi;‘Þ
r

( )
:

(ii) rDrðp‘Þ ¼ vec
�n

1� r
ðnpi;‘Þ

r�1
� �

:

(iii) r2Drðp‘Þ ¼ diag½n2ðnpi;‘Þ
r�2
�:

(iv) rðzÞ 	
Pn
i¼1

pi;‘ � 1:

(v) Brðp‘Þ ¼ ½1; 1; . . . ; 1�, an n-vector of 1s.
(vi) rBrðp‘Þ which is an n� n matrix of 0s.

Our objective function is defined in (i), whereas (ii) and (iii) are the first
and second partial derivatives of our objective function, respectively.
Our equality constrained function (ensuring the weights sum to 1) is defined
in (iv) and the first and second partial derivatives of this function are given
in (v) and (vi).

Additionally, we have to calculate our inequality constrained functions as
well as their first and second partial derivatives, which can be broken into
two pieces. First, we focus directly on the linear inequality constraints
piZ0’i. For this we have

(i) Bc;1ðp‘Þ ¼ ½e1; e2; . . . ; en�, where ej is an n-vector of 0s with a 1 in the jth
spot.

(ii) rBc;1ðp‘Þ, which is an n� n matrix of 0s.

We also have to calculate the first and second derivatives of the
determinants of the principal minors of our Hessian matrix for each point
we wish to impose concavity. In a local constant setting, the Hessian matrix
is calculated as follows. Assume that we have q continuous covariates
and we are smoothing with a standard product kernel with second-order,
individual Gaussian kernels. Then, we have

@KiðxÞ

@xs
¼ �

xs � xsi

h2s

 !
KiðxÞ;KiðxÞ ¼ ð2pÞ

�q=2
Yq
j¼1

h�1j e
�ðxj�xjiÞ

2=2h2j (21)
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and we can easily determine that

@2KiðxÞ

@xs@xr
¼

xs � xsi

h2s

 !
xr � xri

h2r

 !
þ dsr

1

h2s

" #
KiðxÞ (22)

where dsr ¼ 1, when s ¼ r and is 0 otherwise.
Recalling that AiðxÞ ¼ nKiðxÞ=

Pn
i¼1KiðxÞ we have

@AiðxÞ

@xs
¼

nðð@KiðxÞÞ=@xsÞ
Pn
i¼1

KiðxÞ � nKiðxÞ
Pn
i¼1

ð@KiðxÞÞ=@xs

Pn
i¼1

KiðxÞ

� �2
¼ AiðxÞ n�1

Xn
i¼1

DiðxsÞAiðxÞ �DiðxsÞ

" #
¼ AiðxÞMsðxÞ ð23Þ

where DiðxsÞ ¼ ðxs � xsiÞ=ðh
2
s Þ. Similar arguments show that

@2AiðxÞ

@xs@xr
¼
@AiðxÞ

@xr
MsðxÞ þ AiðxÞ

@MsðxÞ

@xr

¼ AiðxÞMsðxÞMrðxÞ þ AiðxÞ MrðxÞn
�1
Xn
i¼1

DiðxsÞAiðxÞ

" #
¼ AiðxÞMrðxÞ½2MsðxÞ þDiðxsÞ� ð24Þ

Our first-order partial derivatives of our local constant smoother are

@m̂ðxjpÞ

@xs
¼
Xn
i¼1

piyi
@AiðxÞ

@xs
¼
Xn
i¼1

piyiAiðxÞMsðxÞ (25)

Note that we cannot pull Ms(x) through the summation since it has a Di(xs)
inside of it so that it depends on the counter. To determine the second-order
partial derivatives of our smooth regression function we use our results from
Eq. (24) to obtain

@2m̂ðxjpÞ

@xs@xr
¼
Xn
i¼1

piyi
@2AiðxÞ

@xs@xr
¼
Xn
i¼1

piyi½AiðxÞMrðxÞð2MsðxÞ þDiðxsÞÞ�

¼ 2
Xn
i¼1

piyiAiðxÞMrðxÞMsðxÞ þ
Xn
i¼1

piyiAiðxÞMrðxÞDiðxsÞ ð26Þ

One can save computation time by noting that terms required for
calculation of Ms(x), Mr(x), and Di(xs) are all calculated when Ai(x) is
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calculated. We suggest using numerical techniques in the user’s preferred
software to calculate the first and second derivatives of the Hessian matrix
to then pass to the SQP.16 For k covariates, if one imposes concavity for
each of the n points, then this requires construction of n k� k Hessian
matrices. There are k determinants of principal minors (or k eigenvalues) to
be calculated for each Hessian representation, resulting in nk constraints to
go with the nþ1 constraints placed on the weights. This results in a total
of n(kþ1)þ1 total constraints.17 As noted in the introduction, imposing
concavity over the entire support of the data may be burdensome since it
will be harder to enforce the constraints near the boundaries. However,
using an interior hypercube of the data will lessen the burden on the SQP
since concavity is less likely to be violated (assuming concavity holds in the
limit) on the interior of the support.

4. DEMONSTRATION

4.1. Simulated Examples

This section uses Monte Carlo simulations to examine the finite sample
performance of the nonlinearly constrained estimator described above.
Following the focus on concavity, we choose to perform our simulations
imposing concavity in models which should be concave. We consider the
following data generating process used to motivate our problem in the
introduction:

y ¼ lnðxÞ þ u (27)

where x is generated as uniform distribution from 0.5 to 1.5, and u is
generated as normal with mean zero and variance equal to 0.1. Note that
this data generating process produces a theoretically consistent concave
function. However, both the unknown error and finite sample biases of
the estimator itself may cause the kernel estimate to exhibit ranges of
nonconcavities.

We consider samples of n ¼ 100 and 500 for each of our 999 Monte Carlo
replications. We present results using r ¼ 0.5, but note that other choices
for r do not significantly change the results. We use local-constant least-
squares and a Gaussian kernel with h ¼ 1:06sxn�1=5. The weights (p) are
found using the SQP routine SQPSolve in the programming language
GAUSS 8.0. While our problem is not a QP problem, this type of solver uses
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a modified quadratic program to find the step length for moving in the
direction of a minimum.

The simulation results for Eq. (27) are given in Figs. 1 and 2 for n ¼ 100
and 500, respectively. Each of the curves corresponds to the 95th percentile
of the distance metric for each sample size.18 The solid line in panel (a) of
each figure is the corresponding unconstrained local constant least-squares
estimator and the dashed line is the constrained local constant least-squares
estimator. We note that in each case the constrained estimator deviates from
the unconstrained estimator where the second derivative is positive. This
difference is shown by positive values for the distance metric. Specifically,
in Figs. 1 and 2 the values of the distance metric are 0.111 and 0.069,
respectively. Note that the distance metric decreases with the sample size.
It is easy to see that as the sample size increases the incidence of concavity
increases, and the constrained and the unconstrained estimator appear to
be more similar. Recall that the distance metric reaches its minimum of 0
when each weight is set equal to 1/n, or, in other words, the estimated
function is de facto concave. This is related to the general trend of increasing
observance of concavity as the sample size grows.

In panel (b) of each figure is the corresponding set of weights. The
unconstrained estimator sets each of the weights equal to 1/n. It is obvious
that the unconstrained estimators show regions where the second derivative
is positive. Our constrained estimator corrects for these nonconcavities by
changing the probability weights. Where the weights are larger than 1/n,
these points are given a greater influence in the construction of the estimate,
and where the weights are less than 1/n these observations are given a lesser
influence in the construction of the estimate.

4.2. Empirical Application

The seminal work of Jacob Mincer on human capital suggested that the
logarithm of a worker’s earnings is concave in her age (potential work
experience). Concavity is consistent with the investment behavior implied
by the optimal distribution of human capital investment over a worker’s
life cycle. A voluminous literature within labor economics has generally
specified age-earnings profiles as quadratic, consistent with concavity.
Murphy and Welch (1990) challenged the conventional empirical strategy
of specifying a quadratic in age for an age-earnings profile. Their work
suggests that a quadratic specification in age understates early career
earnings growth by 30–50% and overstates midcareer earnings growth by
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20–50%. An analysis of residual plots from their estimated quadratic relation-
ships (as well as several statistical tests) reveals patterns suggesting that
determinant differences from this specification exist. They advocate on behalf
of a quartic age-earnings profile and find that this specification yields a
substantial improvement in fit relative to the common quadratic relationship.

Given that the human capital theory of Mincer does not suggest a precise
empirical relationship, Pagan and Ullah (1999, Section 3.14.2) considered
the use of nonparametric regression techniques to shed light on the
appropriate link between income and ages. They provided an example using
the 1971 Canadian Census Public Use Tapes consisting of 205 individuals
who had 13 years of education. Fitting a local constant kernel regression
function (see Pagan & Ullah, 1999, Fig. 3.4) they found a visually sub-
stantial difference between the common quadratic specification and their
nonparametric estimates. A ‘‘dip’’ in the age-earnings profile around age 40
suggested that the relationship was neither quadratic nor concave. Pagan
and Ullah (1999) argue that this ‘‘dip’’ may occur because of generational
effects present in the cross-section; specifically, pooling workers who have
differing earnings trajectories.

Given the need to conform to theory in applied work, partnered with the
findings of Murphy and Welch (1990) and Pagan and Ullah (1999), we fit
a concavity-restricted age-earnings profile. This approach will adopt the
theoretical restrictions but relax the functional form specifications primarily
used in the empirical labor economics literature. Fig. 3(a) plots the
unrestricted nonparametric regression estimator of Pagan and Ullah
(1999) (using bandwidth h ¼ ŝAgen

�1=5), the concave-restricted estimator
with identical bandwidth, and the common quadratic specification.19 The
corresponding weights are provided in Fig. 3(b).

We see that the concavity-restricted estimator still has a visually distinct
difference from the quadratic specification around age 40 (as does the
unrestricted nonparametric estimator), yet the concave-restricted estimator
does not have the ‘‘dip’’ found in Pagan and Ullah (1999), consistent with
the core interpretation of Mincer’s human capital theory. Additionally, the
unrestricted estimator appears to have a slight nonconcavity around age 25,
further highlighting the need to impose concavity.

To focus on the importance of the bandwidth in examining this
relationship, we plot the unrestricted estimator of Pagan and Ullah (1999)
using their bandwidth as well as the optimal bandwidth found using least-
squares cross-validation along with the corresponding concavity-
restricted fits. These plots are provided in Fig. 4(a). The ‘‘dip’’ presented
in Pagan and Ullah (1999) now takes on the appearance of a trough. Again,
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both unconstrained estimators are nonconcave. The estimator using the
cross-validated bandwidths produces a distance metric value of 0.005272,
almost double of that found using the rule-of-thumb bandwidth. In addition
to the nonconcave area around age 40, the cross-validated curve has
a region of nonconcavity around age 33, which is more distinct than that
for the curve of Pagan and Ullah (1999), which has a slight area of
nonconcavity around age 25. The constraint weights, presented in Fig. 4(b),
bear this out as well. An interesting feature of this comparison is that the
constraint weights for the cross-validated curve appear to be rougher than
those for the rule-of-thumb curve, whereas the cross-validated bandwidth is
smaller than the rule-of-thumb bandwidth (1.89 vs. 4.22).

While we have not statistically tested for a difference between our concave-
restricted nonparametric estimator and the unconstrained estimator, our
example shows that we can think more soundly about the implementation of
nonparametric estimators in the presence of economic smoothness conditions.
We mention again that the ability to impose theoretically consistent
smoothness constraints on an economic relationship, paired with the ability
to relax restrictive functional form requirements, provides the researcher with
a serious set of tools with which to investigate substantive economic questions.

5. CONCLUSION

This chapter has surveyed the existing literature on imposing constraints
in nonparametric regression, described an array of methods and discussed
computational implementation. This survey included recent research that
has not been discussed previously in the literature. We also described a novel
method to impose general nonlinear constraints in nonparametric regression
that can be implemented using only a standard QP solver. We illustrated this
method with a small simulated example focusing on concavity and a detailed
example from the empirical labor economics literature. Our empirical
results showcased that constrained nonparametric methods can still uncover
detail in the data overlooked by rigid parametric models while maintaining
theoretical consistency.

Overall future research should determine the relevant merits of each of
the methods described here to narrow the set of potential methods down to
a few, which can be easily and successfully used in applied nonparametric
settings. Given the dearth of detailed simulation studies comparing the
available methods highlighted here (notwithstanding Dette & Pilz, 2006),
an interesting topic for future research would be to compare the varying
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methods (kernel, spline, series) across various constraints to discover under
what settings which methods perform the best. Additionally, we feel that
our description of the available methods should help further research in
extending these ideas to additional nonparametric settings, most notably
in the estimation of quantile functions (Li & Racine, 2008), conditional
densities, treatment effects (Li, Racine, & Wooldridge, 2008), and structural
estimators (Henderson et al., 2009).

NOTES

1. An additional benefit of imposing constraints in a nonparametric framework
is that it may provide nonparametric identification; see Matzkin (1994). Also,
Mammen, Marron, Turlach, and Wand (2001) show that when one imposes
smoothness constraints on derivatives higher than first order the rate of convergence
is faster than had the constraints not been imposed.
2. We also looked at the proportion of times a single point on the interior of grid

produced a monotonic or concave result. For example, when setting this value of x
equal to the expected mean of each series, the incidence of both monotonicity
and concavity increased. This percentage increase proved to be much larger for
concavity. These results are available from the authors upon request.
3. We should also recognize Yatchew and Bos (1997) who also developed a general

framework for constrained nonparametric estimation in a series-based setting. See also
the recent application of their method in Yatchew and Härdle (2006).

4. Slower than conventional nonparametric rates.
5. This has connections with both data sharpening (Section 2.5) and constraint

weighted bootstrapping (Section 2.6).
6. Monotonicity is not easily imposed in this setting.
7. For a more detailed treatment of either series- or spline-based estimation we

refer the reader to Eubank (1988) and Li and Racine (2007, Chapter 15).
8. Unlike kernel smoothing where smoothing is dictated by a bandwidth, in series-

and spline-based estimation, the smoothing is controlled by the dimension of the
series or spline space.
9. For more on the construction of representor matrices, see Wahba (1990) or

Yatchew and Bos (1997, Appendix 2).
10. See the work of Yatchew and Härdle (2006) for an empirical application of

constrained nonparametric regression using the series-based method of Yatchew
and Bos (1997). Yatchew and Härdle (2006) focus on nonparametric estimation of an
option pricing model where the unknown function must satisfy monotonicity and
convexity as well as the density of state prices being a true density (positivity and
integrates to 1).
11. When m(x) is differentiable at x the gradient of x is the unique subgradient of

m( � ) at x.
12. We use the word bandwidth loosely here as the first stage does not have to

involve kernel regression. One could use series estimators in which case the selection
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would be over the number of terms. Or, if one uses splines, then the number of knots
would have to be selected in the first stage.
13. The notation A(s) refers to the order of the derivative of our weight function

with respect to its argument.
14. An interesting topic for future research would be to compare the performance

of these methods across a variety of constraints.
15. Quasi-concavity does not imply diminishing marginal productivity to factor

inputs. However, under constant returns to scale, quasi-concavity does guarantee
diminishing marginal products. This is because quasi-concavity combined with
constant returns to scale yields concavity. That being said, a major issue with
constant returns to scale is that it implies that both the average and marginal
productivities of inputs are independent of the scale of production. In other words,
they depend only on the relative proportion of inputs.
16. An alternative would be to solve analytically for all of these derivatives, perhaps

with the assistance of a numerical software such as Maxima, Maple, or Mathematica.
17. If one can also assume monotonicity, then to impose concavity all one requires

is that the second-order derivatives are negative; thus, only 2n constraints need to be
imposed which is always fewer constraints than imposing concavity without
monotonicity.
18. It should be noted that the number of times that the unconstrained estimator

was concave over the grid was very small. Specifically, out of the 999 Monte Carlo
simulations for each scenario, the unconstrained estimator was concave 20 and
37 times when n ¼ 100 and 500 observations, respectively.

19. Our restricted estimator was calculated using r ¼ 1/2, and at the optimum we
had D1=2ðp̂Þ ¼ 0:003806.
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ABSTRACT

This is a survey paper of the recent literature on the application of
semiparametric–econometric advances to testing for functional form of
the environmental Kuznets curve (EKC). The EKC postulates that there
is an inverted U-shaped relationship between economic growth (typically
measured by income) and pollution; that is, as economic growth expands,
pollution increases up to a maximum and then starts declining after
a threshold level of income. This hypothesized relationship is simple
to visualize but has eluded many empirical investigations. A typical
application of the EKC uses panel data models, which allows for
heterogeneity, serial correlation, heteroskedasticity, data pooling, and
smooth coefficients. This vast literature is reviewed in the context of
semiparametric model specification tests. Additionally, recent develop-
ments in semiparametric econometrics, such as Bayesian methods,
generalized time-varying coefficient models, and nonstationary panels
are discussed as fruitful areas of future research. The cited literature is
fairly complete and should prove useful to applied researchers at large.
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INTRODUCTION

This study provides a survey of the literature on the effect of economic
growth on environmental quality using semiparametric and nonparametric
techniques. The relationship between economic growth and environmental
quality became increasingly important in economic development since
the mid-1990s. Grossman and Krueger (1991, 1995) examined the relation-
ship between economic growth and environmental quality during the
North American Free Trade Agreement debate of the 1990s. Their major
conclusion was that increased development initially led to environmental
deterioration, but this deterioration started to decline (turning point) as
some level of economic prosperity (income per capita) was obtained. While
the location of the turning point varied with the indicator of pollution, the
relative reduction in pollution started at income levels of less than $8,000
(in 1985 dollars). Given the similarity between the accepted relationship
between income inequality and economic growth (typically referred to as the
Kuznets curve, named after Simon Kuznets), this inverted-U relationship
(where the level of pollution increased until some level of prosperity is
obtained) has been labeled the environmental Kuznets curve (EKC). The
first use of the term ‘‘environmental Kuznets curve’’ was by Panayatou
(1993), while its first use in academic journals was by Seldon and Song
(1994). Current development issues such as alternative sources of energy
(biofuels, solar, wind) and global warming re-emphasize the importance of
environmental quality in the pursuit of economic development, and thus,
inquiries on the validity of the EKC will continue to emerge.

Literature on the subject is voluminous and continues to grow as do the
controversial findings. One issue of controversy in the existing literature is
the sensitivity of the relationship between economic growth and environ-
mental quality to individual specific factors (de Bruyn, van den Bergh, &
Opschoor, 1998). Different countries may experience different stages of
development, and the point at which environmental quality begins to
improve may vary accordingly. Similarly, some countries may have been
slow to monitor environmental degradation, and data may not be available
for a long enough period to reveal any significant relationship. From an
econometric perspective, the complex problem of finding adequate model
specifications for the EKC under the possibility of alternative data
generating mechanisms provides a rich setting for the empirical implemen-
tation of model specification testing via more flexible nonparametric and
semiparametric structures. Some of this nonparametric/semiparametric
literature has started to emerge. Millimet, List, and Stengos (2003) and
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Paudel, Zapata, and Susanto (2005), for example, provide empirical support
for nonlinear effects between pollution and income for some pollutants
but not for others, thus giving credence to the use of more flexible
semiparametric functional forms of the EKC. Yet, it is difficult to generalize
such findings without repeated samples in experimental or simulated data.
Fortunately, the most recent econometric advances provide results that are
useful for empirical modeling with small samples and under a much richer
set of models.

This paper contributes to the literature through the following. First, it
summarizes the existing literature on model specification tests with EKC
research, and second, it provides a discussion of EKC research questions
that can be addressed via recent advances in semiparametric econometric
methods. The EKC specification problem has been the subject of extensive
research in environmental economics, and since the specification issue is of
continued research interest, the literature summarized in this paper may
prove beneficial to a large empirical audience.

EKC MODELING BACKGROUND

The EKC literature is founded on the idea that an estimate of the quantity
of air and water pollution (pit) at place i at time t can be expressed as
(e.g., Grossman & Krueger, 1995):

pit ¼ b1Xit þ b2X
2
it þ b3X

3
it þ b4 �Xit� þ b5 �X

2

it� þ b6 �X
3

it� þ buZ
0
it þ �it (1)

where Xit is the gross domestic product (GDP) per capita in the country
where station i is located, �Xit� is the average GDP per capita for the
previous three years, Zit is a vector of other covariates, and �it is an error
term. This parametric specification is sufficiently flexible to allow for the
hypothesized inverted-U formulation, but it also places several important
restrictions on the estimated relationship. Intuitively, the inverted-U shape
results because environmental quality is a luxury good. In the initial stages
of development, each individual in the society is unwilling to pay the direct
cost of reducing emissions (i.e., the marginal utility of income based on
other goods is higher than the marginal utility of environmental quality).
However, as income grows the marginal utility of income based on other
goods falls as the marginal utility of environmental quality increases. Hence,
the linear specification presented in Eq. (1) provides for a reduced form
expression of these changes.
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The most general specification of the EKC that appears in the literature is
the two-way fixed effects panel data model:

pit ¼ ai þ ft þ Xitdþ Zitgþ uit (2)

where pit is concentration of a pollutant (e.g., SO2 or NOx) in state or county
i in time t; ai are specific state/country fixed effects that control location-
specific factors that affect emission rates; ft are time effects such as the
common effect of environmental or other policies; Xit is CPI-adjusted
per capita income in state/county i in time t and is a vector containing
polynomial effects up to order three on per capita income (i.e.,
Xit ¼ ð xit x

2
it x

3
it Þ); d is the associated vector of slope coefficients, and the

Zit includes other variables such as population density, lagged income, and
dummy variables; and uit is a contemporaneous error term. A variation of
Eq. (2) is one where the polynomial income effect is replaced with a spline
function of income based on a number of preselected knots K (e.g., Millimet
et al., 2003; Schmalensee, Toker, & Judson, 1998). As articulated in List and
Gallet (1999), Eq. (2) is a reduced form model that does not lend itself to the
inclusion of endogenous characteristics of income or to causality inferences;
its specification is general enough to allow for individual-specific effects
(heterogeneous a and d), thus avoiding heterogeneity bias; lastly, state-
specific time trends can capture a number of implied effects related to
technology, population changes, regulations, and pollution measurement.

The hypothesis of an inverted-U relationship between economic growth
and environmental quality is by definition nonlinear in income. Implicitly,
this nonlinearity can be approximated with a Taylor series expansion based
on a low-order polynomial in income, but one question is whether these
parametric restrictions adequately represent the nonlinearity of the EKC
relationship. An alternative is to model the nonlinear effects using a
nonparametric component on income while permitting fixed and time effects
to enter through the error term in the following model:

pit ¼ ai þ ft þ gðXitÞ þ f ð�Þ þ uit (3)

where all previous definitions hold and f( � ) represents other variables such
as population density and other social and country characteristics; a
nonparametric structure for income is indicated by g( � ), which replaces
the polynomial component of Xit in Eq. (2); and uit is an error component,
which can take different structures. The specification of error components
can depend solely on the cross section to which the observation belongs or
on both the cross section and time series. If the specification depends on the
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cross section, then we have uit ¼ vi þ �it, and if the specification is assumed
to be dependent on both cross section and time series, then the error
components are modeled as uit ¼ vi þ et þ �it. Here eit is assumed to be a
classical error term with zero mean and a homoskedastic covariance matrix;
ni represents heterogeneity across individuals (region/country/state); and et
represents the heterogeneity over time. The nature of the error structure
leads to different estimation procedures, and this is also true in the
parametric specification of Eq. (1).

SEMIPARAMETRIC ESTIMATION OF THE EKC

The interest of the present survey is to identify econometric advances in the
estimation of the EKC that fall mainly into the subject of semiparametric
modeling (a special issue of Ecological Economics (1998) provides a
complete account of previous parametric EKC studies). The literature
summary provided in Table 1 relates to EKC research that has employed
semiparametric methods, and includes authors, journal, year of publication,
type of model and specification tests as well as turning point findings.1

Table 1, column 1, makes it clear that the interest in the application of
semiparametric methods to EKC research is recent and rising. Millimet et al.
(2003) advance that the appropriateness of a parametric specification of the
EKC should be based on the formulation of an alternative hypothesis of a
semiparametric partial linear regression (PLR) model.2 This idea is pursued
using the same panel data as in List and Gallet (1999), and estimations
are reported for sulfur dioxide and nitrogen oxide for the entire sample
(1929–1994) and for a partial sample (1985–1994). Model specification tests
of Zheng (1996) and Li and Wang (1998) were used to test parametric
(Eq. (2)) and semiparametric (Eq. (3)) models of the EKC.3 The parametric
specification is a two-way fixed effects panel data model. The semipara-
metric model follows root-N consistent estimates (Robinson, 1988) of the
intercepts and time effects in Eq. (3), conditional on the nonlinear income
variables; the standard Gaussian density was used in local constant kernel
estimation and cross-validation (CV) generated the smoothing parameters.
As in List and Gallet (1999), individual-state EKCs were calculated for
cubic parametric and semiparametric models. Convincing results were
reported in favor of adopting model specification tests of the EKC to
decipher whether the implications from parametric models were statistically
different from those generated from semiparametric EKCs. The test statistic
was labeled Jn, which has an asymptotic normal distribution under H0.
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Because of small sample skewness, bootstrapping of critical values is usually
required. Millimet et al. provided results for the PLR and a spline model
(for Ha) and the conclusion favors the semiparametric model of the EKC
over the parametric one. State-specific EKCs are based on time series data;
thus, Li and Stengos’ test for first-order serial correlation in a PLR was
estimated using a density-weighted version of Eq. (3) (this avoids the
random denominator problem associated with nonparametric kernel
estimation), and it was adapted to a panel data model (Li and Hsiao,
1998) for a In statistic. The results favored the null model of no serial
correlation in this data set. A relevant policy finding of this study is that the
location of the peak of the EKC is sensitive to modeling assumptions, a
finding consistent with the heterogeneity results in List and Gallet (1999).
Van (2003) estimated a semiparametric additive partially linear model

for protected areas for 89 countries to examine the EKC hypothesis.
Van uses Hastie and Tibshirani’s (1990) backfitting algorithm to estimate
the semiparametric model. To compare the nonparametric function of
a variable with the corresponding parametric function, he uses a ‘‘gain’’
statistic. He found that EKC did not exist for protected areas for the year
1996 for the set of countries included in the analysis.

Roy and van Kooten (2004) used a semiparametric model to examine the
EKC for carbon monoxide (CO), ozone (O3), and nitrogen oxide (NOx).
The estimation technique in this application adjusted the standard PLR
to allow for heteroskedasticity (Robinson, 1988) and tested a quadratic
parametric model against the semiparametric model using the Li and Wang
(1998) test. As opposed to most previous applications, the variables are
expressed as the natural log of pollutants and income. Because this is a panel
data specification, a generalized local linear estimator (Henderson & Ullah,
2005) is used. Roy and van Kooten started the analysis by first considering
linear, quadratic, and cubic models of income for each pollutant and
analyzed the statistical significance of income; they found that income was
significant in some models but not in others. This led to the specification of
the semiparametric model as a more flexible functional form. The main
result of this study is that the quadratic model is strongly rejected in favor of
the semiparametric model, and similar results are obtained for estimates of
the income elasticities.

Bertinelli and Strobl (2005) used Robinson’s additive linear regression
approach in estimating the relationship between pollution (SO2 and CO2

emission) and GDP. They used 1950–1990 observations of 108 and 122
countries for CO2 and SO2, respectively. Using the unit-root test
in Im, Pesaran, and Shin (2003), they found the data to be stationary.
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Using semiparametric regression, they found that the relationship between
SO2 and CO2 to GDP is linear. The confidence interval is calculated at a
99% level using the approach suggested by Härdle (1990). The linearity of
EKC was tested against semiparametric form using the approach suggested
in Ullah (1985). The null hypothesis is linear in form where an alternative
was a semiparametric form. They used a bootstrap procedure recommended
by Lee and Ullah (2001) to obtain p-values. They were unable to reject the
linearity of the relationship between pollution and GDP.

Nonpoint source water pollutants in Louisiana watersheds were studied
in Paudel et al. (2005), and turning points were estimated for nitrogen (N),
phosphorus (P), and dissolved oxygen (DO) at the watershed level for 53
parishes for the period 1985–1999 using data collected by the Department of
Environmental Quality. Parametric and semiparametric models as in Eqs.
(2) and (3) were estimated. The parametric model is similar to Eq. (2) with
f( � ) being a population density and a weighted income variable to represent
spillover effect. One-way and two-way fixed and random effects models were
estimated, and a Hausman test was used to evaluate the appropriateness
of the model specifications. The best parametric model is set up as the null
hypothesis and tested against a semiparametric model, that is,

H0 : pjit ¼ ai þ ft þ Xitdþ f ð�Þ þ ujit

Ha : pjit ¼ aþ gðXitÞ þ f ð�Þ þ uit ð4Þ

Paudel et al. used Hong and White’s test and found that a semiparametric
model better represented the Louisiana pollution–economic growth
relationship for phosphorus. They also observed the existence of an EKC
form for nitrogen but not for phosphorus and dissolved oxygen.

Deforestation can quickly deteriorate the quality of the environment, and
in the process of economic development, most developing countries
must confront local (loss in biodiversity) and global (carbon sequestration)
dimensions of such environmental degradation. Van and Azomahou (2007)
investigated nonlinearities and heterogeneity in the deforestation process
with parametric and semiparametric EKCs, and their focus is on whether
the EKC exists, and they identify the determinants of deforestation. The
data set was a panel of 59 developing countries over the period 1972–1994.
The EKC is first estimated as a quadratic parametric model with deforesta-
tion rate as the dependent variable and GDP per capita along with other
variables as independent variables. F-tests of fixed time and country effects
supported a fixed country effects model. A Hausman test supported the
existence of a random effects model relative to a fixed effects specification;
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however, the overall specification was insignificant. In order to check the
robustness of the functional form between deforestation rate and GDP per
capita, a semiparametric fixed effects model was estimated (as in Paudel
et al.). The salient finding was the nonexistence of an EKC for the
deforestation process. The analysis was extended to investigate whether
other variables (e.g., population growth rate, trade ratio ((importsþ
exports)/GDP), population density, the literacy rate, and political institu-
tions) may be more relevant in the determination of deforestation, and a
model similar to Eq. (2) was estimated. Contrary to the previous case, the
data supported a fixed effects model and many of the new variables were
significant, while a within estimator was preferred to a first difference
estimator. A semiparametric model similar to Eq. (3) was specified, with
GDP assumed to enter nonlinearly in the nonparametric function g( � ). The
method of Robinson (1988) was used to estimate a first difference
representation of Eq. (3), but the results did not support the existence of
an EKC. It was hypothesized that perhaps modeling bias could be reduced
by specifying a smooth coefficient model (e.g., Li, Huang, Li, & Fu, 2002)
that captures the influence of GDP on deforestation rates depending upon
the state of development of each country. The smooth coefficient model can
be written as:

pit ¼ aðxitÞ þ zbðxitÞ þ uit (5)

where b(xit) is a smooth function of xit. Note that when bðxitÞ ¼ b the model
reduces to a standard PLR (similar to Eq. (3)). Having a nonparametric
effect ðxit ¼ GDPÞ on the deforestation rate and varying coefficients on
other determinants of deforestation (zit) allows the assumption that GDP
per capita can have a direct effect and a nonneutral effect, respectively, on
the deforestation rate. The model specification test (H0 vs. Ha) in Li et al.
(denoted as Jn) follows a standard normal distribution under Ha. One
finding from smooth coefficients for the growth rate of GDP per capita was
that for developing countries at a higher stage of economic development, the
growth rate of GDP per capita accelerates the deforestation process and
deteriorates environmental quality. The results from a Jn test supported the
parametric over the semiparametric model at the 5% significance level; in
fact, Eq. (2), with a quadratic polynomial in GDP, was preferred to all other
models. Heterogeneity due to the economic development process, however,
could not be ascertained with these data, and the authors suggested that
further work is needed on this research question.
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The question of whether a fixed effects panel data model (pooling) is
appropriate has received limited attention in the EKC literature. Criado
(2008) argues that in most applications, no formal tests of the homogeneity
assumption is conducted for time (stability of the cross-sectional regressions
over time) and space (stability of the cross-sectional regressions over
individual units). Existing literature on the subject has generated mixed
results. Criado tests poolability in the EKC by examining the adequacy of
such an assumption on both dimensions via nonparametric tests robust to
functional misspecification using models similar to those in Eqs. (2) and (3).
The data set is a balanced panel of 48 Spanish provinces over the 1990–2002
period, and the pollutants include methane, carbon monoxide, carbon
dioxide, nitrous oxide, ammonia, nonmethanic volatile organic compounds,
and nitrogen and sulfur oxides. Poolability tests on the spatial dimension
(spatial heterogeneity) reject it, particularly for nonparametric specifica-
tions. Time poolability (temporal homogeneity) results were mixed; it holds
for three of four air pollutants in Spanish provinces, and the estimated
pooled nonparametric functions reflected inverted U shapes. It was also
pointed out that the parametric and nonparametric tests overwhelmingly
rejected the null hypothesis of spatial homogeneity and fixed effects, and
that failure to recognize this property of EKC panel data would lead
to mixed findings. The work suggested that future EKC research should
use advances in parametric and nonparametric quantile regression,
random coefficient modeling, and panel heterogeneity. In similar research,
Azomahou, Laisney, and Van (2006) use the local linear kernel regression
to estimate W(xit) with xit ¼ ð xit xi;t�1 Þ. They claim that the local linear
(polynomial of order 1) kernel estimator performs better than the local
constant (polynomial of order 0) kernel estimator or Nadaraya–Watson
estimator, since it is less affected by the bias resulting from data asymmetry,
notably at the boundaries of the sample. They use standard univariate
Gaussian kernel and marginal integration to estimate the nonparametric
model. To select the bandwidth in the nonparametric regression, they used
a least squares CV method. To develop the confidence interval of the
estimated function they used a wild bootstrap method, and to test for the
suitability of nonparametric versus parametric functional form, they used
the specification test developed by Li and Wang (1998).

Luzzati and Orsini (2009) investigated the relationship between absolute
energy consumption and GDP per capita for 113 countries over the period
1971–2004. They estimated both parametric fixed and random effects
models and a semiparametric model. For the semiparametric model
estimation, they used the approach presented by Wood (2006). Luzzati and
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Orsini did not perform specification tests of parametric versus nonpara-
metric functional form. However, they found that EKC existed for energy
consumption for middle- and high-oil-producing countries.

The debate about the existence of an EKC in the empirical literature is
likely to continue, and this presents an opportunity for the application of
recent advances in semiparametric modeling and consistent specification
testing that adds flexibility not only to model structures, but also that
provides inference results for various dependent data structures with small
samples. The summary of applications of the EKC presented in Table 1 is
clearly a lagging indicator of the theoretical literature. Advances in
econometrics are arriving at such a fast pace that a bridge is needed to
connect the theory with the practice; this appears applicable to a number of
applied fields. One example is the use of consistent specification tests in fixed
effects panel data models that allow for continuous and discrete regressors
(e.g., Racine & Li, 2004; Hsiao, Li, & Racine, 2007; Henderson, Carroll, &
Li, 2008). A brief summary of recent advances on consistent specification
tests that we feel would be relevant to applied researchers interested in
EKC-related questions is provided in the next section. The section starts
with a seminal paper by Li (1999), which provides a general framework for
kernel-based tests (KBTs) for time series econometric models. Li and Racine
(2006, Chapter 12) provide a rigorous theory of recent developments in
a manner useful for applied researchers; they also provide proofs to many of
the theorems related to these tests. For completeness, the most relevant
literature is cited4 in this paper, and the discussion of selected papers
relevant to EKC research should be considered a complement to Li and
Racine (2006, Chapter 12). It should be noted that emphasis is placed on
the use of the ‘‘wild bootstrap,’’ initially suggested in Härdle and Mammen
(1993), because the existing literature on KBTs convincingly points to its use
in the calculation of critical values in small samples, which are characteristic
in EKC applications.

CONSISTENT SPECIFICATION TESTS

Consistent model specification tests, which are generalizations of those
in Fan and Li (1996) and Lavergne and Vuong (1996), in the context of
time series data, were introduced by Li (1999). Li develops the asymptotic
normality theory of the proposed test statistics under similar regularity
conditions as in the case of independent data, thus resolving previous
conjectures about the validity of the tests. Using kernel methods to estimate
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unknown functions, Li allows for the null model to be nonparametric or
semiparametric, with the inclusion of a parametric model as one possible
null model. At the cost of oversimplification, and consistent with previous
work on the solution of the random denominator problem, the asymptotic
results in Li can be summarized as follows. First, the asymptotic distribution
of the test statistics, referred to as nhd=2Jn, is normal with mean zero and
variance s20, and a feasible test statistic is defined by an estimate of Jn
(Li, Eq. (2), p. 105). Further, Li proves that under the null hypothesis of a
nonparametric regression model (and under some regularity conditions), the
statistic Ta

n converges to a standard normal distribution given a consistent
estimator of the variance (Li, Theorem 3.1, p. 108). Because even in the
independent data case this statistic has small sample bias, Li develops a new
test, denoted Va

n, with possible smaller finite sample bias and shows that it
can be standardized to a N(0,1) distribution (Li, p. 109). The above results
for a nonparametric significance test were also applied to derive the
asymptotic distribution for testing a partially linear model (Hb

0), with results
equivalent to those above and leading to a standard normal distribution
labeled Tb

n (Li, Corollary 4.2, p. 113). Li develops a Monte Carlo simulation
and obtains the following general findings. The finite sample versions of the
test statistic had much smaller estimated sizes than their feasible asymptotic
counterpart (the Ĵn test). The Ĵn tests were less powerful than their finite
sample versions, with power being sensitive to the relative smoothing
parameter choices. It was found that smoothing should be carefully
examined in light of data frequency: for low frequency data a relatively
large smoothing parameter leads to a high power test; the opposite being
true for high frequency data. Optimal methods for choosing such smoothing
parameters were not explored. It was also suggested that parametric and
nonparametric bootstrap methods with time series data to approximate the
null distributions should be investigated. The finding that for low frequency
data a relatively large smoothing coefficient improves power (at no size cost)
is clearly relevant to studies of the EKC hypotheses that are based on annual
data, whose frequency tends to be low. The combination of independent
and weak dependent data in the context of the EKC would also suggest
that application of the finite sample versions of null parametric model test
statistics should be applicable in EKC testing problems. Clearly, the use of
wild bootstrap methods should be a mandatory practice.

The literature on consistent model specification tests that appeared until
the late 1990s used either nonparametric regression estimators (KBTs) or
Bierens’s (1982) tests (Integrated Conditional Moment, ICM tests). Fan and
Li (2000) established the relationship between KBT and ICM tests and
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provided results indicating that certain consistent KBTs with a fixed
smoothing parameter (Härdle & Mammen’s, 1993 Tn test and Li & Wang’s,
1998 and Zheng’s, 1996 In test) can be regarded as ICM tests of Bierens
(1982) and Bierens and Ploberger (1997) with specific weight functions.5

In the context of ‘‘singular’’ local alternatives, KBT can detect such
alternatives converging in probability to the null model at a rate faster
than n�1/2. For the first time, it is shown that KBTs are a complement to
ICM tests: KBT have higher power for high-frequency alternatives whereas
ICM tests have higher power for low-frequency alternatives (Pitman type).6

The relevance of these asymptotic results in finite samples was illustrated via
a Monte Carlo experiment that compares the In KBT and the ICM tests
under a variety of data generating processes and 5,000 replications. As in
Li and Wang (1998), Fan and Li used the wild-bootstrap procedure to
approximate the asymptotic null distributions of the test statistics with 1,000
replications and 1,000 wild bootstrap statistics for each replication. The
Monte Carlo findings were in agreement with the theoretical results on local
power properties of the KBT versus the ICM tests. The estimated sizes,
based on the wild bootstrap for all the tests considered, were very close to
the nominal sizes, suggesting a good approximation of the null distribution
of the test statistics. Given the relative simplicity of the KBT, a feature
appealing to applied researchers, applications of the wild-bootstrap tests
(In type tests) in EKC work is warranted for two reasons. First, EKC models
are estimated via panel data that combine independent and dependent data.
Fan and Li (2000) are the first to extend such work in the context of weak
dependent data. Second, EKC models are typically estimated with annual
data of relatively short length, which would suggest that bootstrapping
methods are recommended to obtain critical values for specification tests.

By the time the Fan and Li (2000) paper appeared, the literature on
consistent specification tests using KBTs was growing fast, and there
was a need to condense the available literature in a manner useful to
practitioners. Lee and Ullah (2003) provide a comprehensive Monte Carlo
study to analyze the size and power properties of two KBTs for neglected
nonlinearity in time series models using bootstrap methods. The first test
is a bootstrap version (Cai, Fan, & Yao, 2000) that compares the expected
values of the squared errors under the null and alternative hypotheses
(Ullah, 1985), referred to as a T-test, and the second test is a nonparametric
conditional moment goodness of fit test (Li & Wang, 1998; Zheng, 1996),
referred to as an L-test. Similar to other works, Lee and Ullah make use of
existing asymptotic normality results to examine the bootstrap performance
of the tests. One of the main conclusions is that the wild bootstrap L-test
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worked well with conditionally heteroskedastic data; these tests had good
size and power properties in the simulated DGPs. It was also found that the
power of both tests was considerably influenced by the choice of nonlinear
models and that no test (T or L) was uniformly superior. Since the L-test has
an asymptotic normal distribution under the null, the bootstrap L-tests were
found to be more accurate than their asymptotic counterpart, a finding
consistent with previous work. It was stated, as in Li (1999) and others, that
the choice of the bandwidth in the L-test is more important for time series
processes than for independent processes. However, the effect of optimal
bandwidth choice on the performance of the tests was not evaluated
(see also the specification testing section in Ullah & Roy, 1998; Baltagi,
1995; Baltagi, Hidalgo, & Li, 1996). To our knowledge, specification of
nonparametric EKC models in the presence of conditional heteroskedasti-
city has not been considered. Therefore, the bootstrap results of Lee and
Ullah should serve as a useful guide in future work.

Discrete variables are often used in EKC regressions to capture a variety
of effects that contribute to industrial activity and that lead to economic
growth. These types of regressors are important and have been alluded to in
the literature as ways of capturing scale-, composition-, and technique-
related variables in EKC models (Grossman & Krueger, 1991; Copeland &
Taylor, 2004; Kukla-Gryza, 2009). Examples include variables such as
openness to trade (yes ¼ 1, no ¼ 0), democracy, and freedom (X ¼ 1 for a
democratic country and X ¼ 0 otherwise). Another instance of need for
dummy regressors relates to pooling countries of different income levels in
an EKC model. The concern, such as whether it is accurate to have the same
model for all the countries in one EKC, is raised by List and Gallet (1999).
Criado (2008) proposed a nonparametric poolability test, but if a dummy
for each country group can be included in the EKC regression, this concern
can potentially be eliminated. In the situations described above, some recent
econometric advances can be adopted.

Racine and Li (2004) propose an estimator for nonparametric regressions
that admits continuous and discrete variables and which also allows for
the discrete variables to have a natural order or not. Hsiao et al. (2007)
expands Racine and Li’s model by introducing nonparametric kernel-
based consistent model specification tests.7 Through smoothing both the
continuous and discrete variables, and using least squares CV methods,
they arrive at an asymptotically normal distribution under the null. Their
approach has significant practical appeal because it avoids the ‘‘running
out of observations’’ problem related to frequency-based nonparametric
estimators that require sample splitting and associated efficiency losses.
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It also provides new results on the use of CV methods in model specification
testing and demonstrates its superior performance. Small samples are
commonly used in the estimation of the EKC, a fact also related to modeling
of economic time series with annual data. Hsiao et al. suggest using
bootstrap methods as viable alternatives for approximating the finite-sample
null distribution of the CV-based test statistics (Ĵn), a statistic that is similar
to that of Zheng and Li and Wang, given that the simulations showed a
poor finite-sample performance of the asymptotic normal approximation of
the CV test. They also illustrate the usefulness of the proposed test in testing
for the correct specification for wage equations, an application whose
specification issues parallel that of the EKC, and advocate that it may be
useful in practice to consider the use of interaction terms that may better
capture variation of a continuous dependent variable when the number of
continuous regressors is insufficient. The usefulness of this new development
cannot be overemphasized given that it is often the case that discrete
variables are needed to capture a variety of indirect effects in EKC analyses.

DISCUSSION

This survey article emphasizes recent developments in semiparametric
econometric methods and their application to the study of the pollution–
economic growth tradeoff, commonly referred to as the EKC. The
papers reviewed included the standard heterogeneous panel data model,
which is the typical general structure used to represent the null model in
semiparametric model specification evaluations. Variations of this para-
metric structure include the standard PLR of Robinson (1988) and
extensions thereof, including a PLR with heterogeneity, serial correlation,
and heteroskedasticity, poolability, and smooth coefficients.

Various advances in econometrics are absent in the EKC literature
reviewed above. The functional form of Bayesian models, for example,
provides a vehicle to introduce prior information around diffuse,
independent, priors on the parametric component of the EKC and partially
informative priors on the nonparametric function (e.g, Koop & Poirier,
2004; Huang & Lin, 2007). Another natural extension of future EKC
research relates to the estimation of semiparametric models that contain
continuous and discrete regressors. The nonparametric CV technique
introduced by Hsiao et al. (2007) is applicable to the case where the EKC
contains dummy variables; one appealing point of this estimator is that its
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superior performance carries over to model specification tests (see also
Racine & Li, 2004; Li & Racine, 2006).

Research using standard EKC parametric panel data models typically
start by applying a Hausman test for fixed versus random effects.
Subsequently, the best parametric structure is set up as the null model
and a semiparametric model as the alternative (as in Eqs. (2) and (3),
respectively). This model specification has been of recent interest in the
econometrics literature. Henderson et al. (2008) introduce an iterative
nonparametric kernel estimator for panel data with fixed effects that
naturally carries into the typical panel data specification of the EKC. One of
the specifications in Henderson et al. sets up the null hypothesis to be a
parametric fixed effects model and the alternative a semiparametric model.
The proposed test statistics converge to 0 under the null and to a positive
constant under the alternative, and thus, it is argued that the proposed test
can be used to detect the validity of the null model. The asymptotic
normality results are left to future work, but it is conjectured that even if it
were provided, the existing literature suggest that asymptotic theory does
not provide a good approximation for nonparametric KBTs in finite
samples, as summarized in the previous literature cited here. Henderson
et al.’s approach would be a natural application of specification tests of the
EKC in a way that is consistent with previous inquiries on random versus
fixed effects, and on determining whether a semiparametric model is a more
adequate specification. In light of the work by Racine and Li (2004) and
Hsiao et al. (2007), an extension of this research to continuous and discrete
panels is pending in the literature.8

The PLR smooth coefficient model of Li et al. (and other recent
applications such as Henderson & Ullah, 2005; Lin & Carroll, 2006;
Henderson et al., 2008) has been revisited by Sun and Carroll (2008), with
the random effects and fixed effects as the null and alternative hypotheses,
respectively (note that that in Li et al. the null hypothesis is a parametric
smooth coefficient model whereas the alternative is a semiparametric
smooth coefficient model). They propose an estimator that is consistent
when there is an additive intercept term (case in which the conventional first
difference model fails to generate a consistent estimator). They show the
inconsistency of random effects estimators if the true model is one with fixed
effects, and that fixed effects estimators are consistent under both random
and fixed effects panel data models. It is concluded that estimation of a
random effects model is appropriate only when the individual effect is
independent of the regressors. They also introduce Jn-type statistics for
the above hypotheses that, under asymptotic normality of the proposed
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estimator, converges to a standard normal distribution. The test is one sided
and rejects the random effects model for large values at some significance
level. Sun and Carroll provide Monte Carlo evidence that supports the
satisfactory finite sample performance of the estimator and test statistic and
suggest bootstrapping critical values for future research. Given that the
question of random effects often plays out in EKC applications (and is
often rejected), the estimator and statistic introduced in Sun and Carroll
should shed brighter light on heterogeneity properties of EKC panels with
semiparametric varying coefficient models.

One of the most promising econometric advances, and an area that is still
emerging, is the estimation of nonstationary semiparametric panel data
models. There is considerable empirical evidence on the existence of unit
roots in per capita pollutants and income variables (e.g., Romero-Avila,
2008; Liu, Skjerpen, Swensen, & Telle, 2006). This evidence points to the
adequacy of vector autoregression and error correction models (ECM) for
some nonstationary panels, and mixed results for others. The failure of
many of these previous studies in finding an inverted U-shaped EKC in
nonstationary panel data consistent with the data generation process led
Romero-Avila to design a study that jointly controlled for structural breaks
and cross-sectional dependence; the main finding was one of mixed unit
roots for the emissions and income relationship of the EKC, putting to
question findings that support ECM in world or specific country groups.
Perhaps the most challenging case to model is that of mixed unit roots in
panels and the ensuing interpretation of estimated parameters. Extensions
of existing work (e.g., Ullah & Roy, 1998; Baltagi & Kao, 2000) to
semiparametric nonstationary panels should enhance the empirical under-
standing of the tradeoff between pollution and growth in environmental
economics and the practice of semiparametric econometrics in general.

NOTES

1. We thank an anonymous reviewer for suggesting this summary table.
2. As pointed out by an anonymous reviewer, consistency of estimates of a

semiparametric model depends on the correct specification of the parametric com-
ponent and no interaction among the variables of the semiparametric components.
3. A rigorous presentation of model specification tests in nonparametric

regressions is found in Li and Racine (2006, Chapter 12).
4. To save space, the following is the list of papers on estimation and specification

testing in parametric and nonparametric modeling that are related to this survey:
Ramsey (1974), the pioneer paper by Hausman (1978), Breausch and Pagan (1980),
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Davidson and MacKinnon (1981), White (1982), Bera, Jarque, and Lee (1984),
Newey (1985), Tauchen (1985), Godfrey (1988), Ullah (1988), Robinson (1989),
Bierens (1990), Scott (1992), Bera and Yoon (1993), Whang and Andrews (1993),
Delgado and Stengos (1994), Li (1994), Härdle, Mammen, and Muller (1998),
Silverman (1998), Härdle, Muller, Sperlich, and Werwatz (2004), Horowitz and Lee
(2002), Li et al. (2002), Li and Stengos (1995, 1996, 2003), Li, Hsiao, and Zinn
(2003). A century of history of parametric hypothesis testing, the reading of which
motivated a larger initial version of this paper, can be found in Bera (2000).
5. The tests based on Tn and In are strictly asymptotically locally unbiased, that is,

the conditional bias of the kernel regression estimator under H0 has been removed.
6. The construction of consistent tests based on the estimation of unconditional

moments results in what is referred to as nonsmoothing tests. As pointed out by an
anonymous reviewer, this is a growing literature that may deserve further analysis,
particularly in light of the simulation findings in Fan and Li (2000). An excellent up-
to-date reading on this subject is Li and Racine (2006, Chapter 13) and the references
therein.
7. Other useful references on consistent model specification tests are Yatchew

(2003), Pagan and Ullah (1999), Ait-Sahalia, Bickel, and Stoker (2001), and
references in Hsiao et al. (2007).
8. Recent advances in nonparametric econometrics have been implemented using

the R package (Racine, 2008).
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SOME RECENT DEVELOPMENTS

ON NONPARAMETRIC

ECONOMETRICS

Zongwu Cai, Jingping Gu and Qi Li

In this paper, we survey some recent developments of nonparametric
econometrics in the following areas: (i) nonparametric estimation of
regression models with mixed discrete and continuous data; (ii) nonpara-
metric models with nonstationary data; (iii) nonparametric models with
instrumental variables; and (iv) nonparametric estimation of conditional
quantile functions. In each of the above areas, we also point out some open
research problems.

1. INTRODUCTION

There is a growing literature in nonparametric econometrics in the recent
two decades. Given the space limitation, it is impossible to survey all the
important recent developments in nonparametric econometrics. Therefore,
we choose to limit our focus on the following areas. In Section 2, we review
the recent developments of nonparametric estimation and testing of
regression functions with mixed discrete and continuous covariates. We
discuss nonparametric estimation and testing of econometric models for
nonstationary data in Section 3. Section 4 is devoted to surveying the
literature of nonparametric instrumental variable (IV) models. We review
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nonparametric estimation of quantile regression models in Section 5.
In Sections 2–5, we also point out some open research problems, which
might be useful for graduate students to review the important research
papers in this field and to search for their own research interests, particularly
dissertation topics for doctoral students. Finally, in Section 6 we highlight
some important research areas that are not covered in this paper due to
space limitation. We plan to write a separate survey paper to discuss some of
the omitted topics.

2. MODELS WITH DISCRETE AND

CONTINUOUS COVARIATES

In this section, we mainly focus on analysis of nonparametric regression
models with discrete and continuous data. We first discuss estimation of
a nonparametric regression model with mixed discrete and continuous
regressors, and then we focus on a consistent test for parametric regression
functional forms against nonparametric alternatives.

2.1. Nonparametric Regression Models with Discrete and
Continuous Covariates

We are interested in estimating the following nonparametric regression model:

Yi ¼ gðXiÞ þ ui; ði ¼ 1; . . . ; nÞ (1)

where Xi ¼ ðX
c
i ;X

d
i Þ;X

c
i 2 <

q is a continuous random variable of dimension
q (qZ1), and Xd

i is a discrete random variable of dimension r (rZ0). We will
only consider independent and identically distributed data case in Section 2.
Let Xd

is denote the sth component of Xd
i . We consider two possibilities:

Xd
is can be an ordered and unordered discrete variable. If Xd

is is
unordered, Xd

is 2 Ds ¼ fa1; a2; . . . ; acsg with cs taking distinct different
values and cs 2 N , where N denotes the set of positive integers. Here we
allow for the possibility that cs ¼N. If cs ¼N, we need to add a condition
that infxdsaxd

s0
;xdx ;x

d
s0
2Ds
jxds � xds0 j � d40 so that xds can take at most countably

infinitely many different values, and there is only finite many distinct points
of xds in any bounded interval.
The conventional approach dealing with the discrete variable is to split

the sample into many parts sorted by different discrete cells. Then one uses
the data falling into a given discrete cell to estimate the conditional mean
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function of Y given the remaining continuous variables. However, this
sample splitting method may give unreliable estimation results or even
become infeasible when the number of discrete cells is not small compared
with the sample size. In a seminal paper, Aitchison and Aitken (1976)
proposed a novel method of smoothing discrete variables in estimating a
discrete probability function. Hall, Racine, and Li (2004), Racine and Li
(2004), and Hall, Li, and Racine (2007) generalized Aitchison and Aitken’s
smoothing method to the problem of estimating a conditional density
function or a conditional mean function. Their proposed smoothing method
avoids the sample splitting problem and therefore remains a feasible
estimation method when the number of discrete cells is comparable or even
larger than the sample size. An additional advantage of smoothing the
discrete variables is that, as shown by Hall et al. (2004, 2007), irrelevant
covariates can be automatically smoothed out (i.e., removed) from a
conditional density or a regression model.

We now introduce the kernel smoothing function for discrete variables.
The kernel function associated with unordered discrete variable Xd

is is given
by lðXd

is;x
d
s ; lsÞ ¼ 1 if Xd

is ¼ xds ; and lðXd
is;x

d
s ; lsÞ ¼ ls if Xd

isaxds , where ls is
the smoothing parameter. If Xd

is is an ordered discrete variable, we use
the following kernel function: lðXd

is;x
d
s ; lsÞ ¼ ljX

d
is�x

d
s j

s . Whether xds is either
ordered or unordered, when ls ¼ 0, the kernel function becomes an
indicator function, that is, lðXd

is;x
d
s ; 0Þ ¼ 1ðXd

is ¼ xds Þ, where I(A) denotes
an indicator function that takes value one if event A holds true, and zero
otherwise. Also, when ls ¼ 1; lðXd

is;x
d
s ; 1Þ 	 1 is a constant function. The

range of ls is [0,1] for all s ¼ 1, y, r. The product kernel for the discrete
variables Xd is LðXd

i ;x
d; lÞ ¼

Qr
s¼1lðX

d
is; x

d
s ; lsÞ. For the continuous variable

Xc ¼ ðXc
1; . . . ; X

c
qÞ, we use the product kernel given by Whðx

c;Xc
i Þ ¼Qq

s¼1h
�1
s w ððxcs � Xc

isÞ=hsÞ, where w( � ) is a symmetric and univariate density
function, and 0ohsoN is the smoothing parameter for xcs .

The kernel function for the mixed regressor case X ¼ (Xc, Xd) is simply
the product of W and L, that is, Kðx;XiÞ ¼Whðx

c;Xc
i ÞLðx

d;Xd
i ; lÞ. Thus we

estimate gðxÞ ¼ EðY jX ¼ xÞ by the Nadaraya–Watson (NW) (local constant
(LC)) method, defined as,

bgðxÞ ¼Pn
i¼1YiKðx;XiÞPn
i¼1Kðx;XiÞ

(2)

It is easy to see that if ls ¼ 0 for all s ¼ 1, y, r, then the discrete kernel
function becomes an indicator function, that is, LðXd

i ;x
d; 1Þ ¼

1ðXd
i ¼ xdÞ: bgðxÞdefined in (2) reduces to the conventional frequency
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estimator of g(x). Also, if ls ¼ 1 for some sA{1,y, r}, since lðXd
is;x

d
s ; 1Þ 	 1,

in this case bgðxÞ becomes unrelated to xd
s , that is, the covariate xds is

completely removed from the regression model. Similarly, for the con-
tinuous variable xcs , if hs is sufficiently large, xcs is effectively removed from
the regression model, see Hall et al. (2007) on a more detailed discussion on
removing irrelevant covariates by oversmoothing these variables.

It is well known that the smoothing parameters play an essential role in
the trade-off between reducing bias and variance, so that their choice
in a nonparametric approach is very critical. For the aforementioned
setting, Hall et al. (2007) suggested choosing the smoothing parameters
ðh; lÞ ¼ ðh1; . . . ; hp; l1; . . . ; lqÞ by minimizing the following cross-valida-
tion (CV) function:

CVðh; lÞ ¼
1

n

Xn
i¼1

ðYi � bg�iðXiÞÞ
2w1ðXiÞ (3)

where ĝ�iðXiÞ ¼
Pn

jaiYjKðXi;XjÞ=
Pn

jaiKðXi;XjÞ is the leave-one-out ker-
nel estimator of gðXiÞ 	 EðYijXiÞ, and 0 � w1ð�Þ � 1 is a weight function
(which has a compact support) that serves to avoid difficulties caused by
dividing by zero, or by the slower convergence rate arising when Xi lies near
the boundary of the support of X. Although it is necessary to introduce the
weight function wl( � ) from the theoretical point of view, in practice the use
of the weight function may not be necessary. In applications, since the data
range is always finite, one usually does not need to use any weight function,
or equivalently one can use w1(Xi)	1 for all i ¼ 1, y, n.
Now suppose that Xd

s , the sth component of Xd, is an irrelevant
component, that is, EðYijXi ¼ xÞ ¼ EðYijXi=X

d
is ¼ x=xds Þ almost every-

where, where Xi=X
d
is denote the set of variables in Xi with Xd

is being
removed. Let ls denote the smoothing parameter associated with irrelevant
component Xd

s . Hall et al. (2007) showed that, when Xd
s is an irrelevant

regressor, the cross-validated ls converges to 1 in probability. Recall that
when ls ¼ 1, the corresponding variable Xd

s is completely removed from the
nonparametric kernel estimator bgðxÞ. This means that all irrelevant discrete
variables can be automatically removed (asymptotically) by the least squares
CV method. Similar results hold true for the continuous covariates. Indeed,
Hall et al. (2007) showed that, when Xc

s is an irrelevant covariate, then the
cross-validated smoothing parameter hs diverges to þN. In such a case, the
corresponding kernel function wððXc

is � xcsÞ=hsÞ ! wð0Þ becomes a constant.
Moreover, this constant is cancelled out from bgðxÞ because the same
constant appears at both the numerator and the denominator of bgðxÞ.
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Hence, asymptotically all irrelevant covariates, either continuous or
discrete, is smoothed out from the regression model by the CV method.

The nonparametric estimator bgðxÞ with the cross-validated smoothing
parameters has the same asymptotic distribution of a kernel estimator of g(x)
that first removes the irrelevant covariates. Hall et al. (2007) defined the
irrelevant variables as those regressors that are independent with both the
dependent variable and the relevant regressors. However, the simulation
results suggest that the CV method can still remove irrelevant variables as
long as those irrelevant variables are independent with the dependent variable
conditional on the relevant variables. However, it is still of theoretical interest
if one can also relax the independent assumption to conditional independent
assumption, and this remains an interesting open question.

Note that the above result was extended by Li and Racine (2009) to the
case of estimating a varying-coefficient model and by Li, Ouyang, and Racine
(2009) and Su, Chen, and Ullah (2009) to weakly dependent data case.
When all the covariates are discrete, the asymptotic analysis is quite dif-

ferent and cannot be obtained from the regression model with mixed discrete
and continuous regressors as a special case (since the above result assumes
that qZ1, where q is the number of continuous regressors). When all the
regressors are discrete variables, irrelevant discrete covariates are smoothed
out by the least squares CV method with a positive probability, say d. Indeed,
Ouyang, Li, and Racine (2009) concluded that 0.5odo1. More precisely,
the simulation results reported in their paper suggest that dA[0.6, 0.65].
In summary, when all the regressors are discrete, one can still remove the
irrelevant regressors (by the CV method) with a positive probability, but this
probability is strictly less than one, even as the sample size goes to þN.
Finally, various programs for implementing the CV method to estimate

a regression model with mixed discrete and continuous covariates
are available. For example, a R-package (np) is currently available at
http://www.R-project.org for a free download and a Stata program will be
available soon.

2.2. Consistent Model Specification Tests

It is well known that the selection of smoothing parameter is of crucial
importance in nonparametric estimation. It is probably less well known
(say, to applied econometricians) what important roles the smoothing
parameters play in nonparametric model specification testing. In this
subsection, we first consider a simple univariate regression model to
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illustrate how the selection of smoothing parameter affects the performance
of a nonparametric test. Toward this end, we consider the following
nonparametric regression model

Yi ¼ gðXiÞ þ ui

where Xi is a univariate continuous random variable and g( � ) is a smooth
function. We are interested in testing the null hypothesis H0 : EðYijXiÞ ¼

b0 þ Xib1 almost surely (a.s.). One can construct a test based on
I ¼ E½uiEðuijXiÞf ðXiÞ�, where ui ¼ Yi � b0 � Xib1 and f( � ) is the density
function of Xi. This is because I ¼ E½ðEðuijXiÞÞ

2f ðXiÞ� � 0, and it equals to 0
if and only if the null hypothesis is true. Hence, I serves as a proper
candidate for testing H0. A feasible test statistic based on I is given by:

In ¼
1

n

Xn
i¼1

bui bE�iðuijXiÞbf �iðXiÞ ¼
1

nðn� 1Þ

Xn
i¼1

Xn
jai

buibujKh;ij

where Kh;ij ¼ KhðXi � XjÞ and KhðvÞ ¼ h�1Kðv=hÞ. It can be shown that In
converges to 0 under H0 ðindeed; In ¼ Opððnh

1=2
Þ
�1
Þ under H0Þ, and that In

goes to a positive constant if H0 is false. A standardized test is given
by where Tn ¼ nh1=2In=bs0, where bs20 ¼ 2½nðn� 1Þh��1

Pn
i¼1

Pn
jaibu2i bu2i K2

h;ij.
One can show that Tn converges to a standard normal random variable
under H0, and it diverges to þN at the rate of nh1/2 if H0 does not hold.
In practice, some residual-based bootstrap methods (say, the wild bootstrap
method) are recommended for a better approximation to the finite-sample
null distribution of the test statistic Tn. The conditions on h are the usual
ones: h-0 and nh-N as n-N.

Now the question is: How does the selection of h affect the performance
of the Tn test? And how should we select h in practice? Given that residual-
based bootstrap methods can give quite satisfactory estimated sizes for Tn, a
sensible starting point seems to examine the power property of the test. For
a given significance level for a test, one would prefer a test with a large
power. To examine how h affects the power of the test, we need to know the
behavior of gðxÞ 	 EðYijXi ¼ xÞ when H0 fails to hold. In this case, g(x) is a
nonlinear function of x. Let us consider a specific example. Suppose that
XA[0,2] and g(x) ¼ sin(mpx), where m is a positive constant. Now consider
the case that m is small, say m ¼ 1/4. Then g(x) changes from sin(0) ¼ 0 to
sin(p/2) ¼ 1 as x varies from 0 to 2. The function is monotonically
increasing (slowly) over the domain of x. For such a slowly changing
function (as x varies), intuitively it is not hard to imagine that the optimal
smoothing should be relatively large. In contrast, if m ¼ 2, then mpx
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changes from 0 to 4p (as x moves from 0 to 2) and the function sin(mpx)
completes two full periods, moving up and down several times as x varies in
the domain. This function changes more rapidly compared to the case of
m ¼ 1/4, the optimal smoothing for this fast changing function should be
much smaller compared to a slow changing function (the case of m ¼ 1/4).
We generate Xi’s uniformly from [0, 2] and use the least squares CV method to
select the smoothing parameters. For a sample size of n ¼ 100 and over 1,000
simulations, the median value of bh (cross-validated h) is 0.172 for m ¼ 1/4,
and 0.068 form ¼ 2. If we use an ad hoc rule such as h ¼ xsdn

�1/5
¼ 0.230 for

n ¼ 100, where xsd is the sample standard error of fXig
n
i¼1. We say that the

optimal smoothing parameter (in estimation) can be quite different depending
on the different shapes of the unknown regression functions.

How is the nonparametric estimation accuracy related to a power of a
nonparametric test? In general, more accurate estimation of the unknown
function is expected to lead to a better power of a test if the test is based on
the difference between the null hypothesized linear model and the true
unknown function.1 For this reason, Hsiao, Li, and Racine (2007) suggested
using the least squares CV method to select the smoothing parameters in
a nonparametric smoothing test. Hsiao et al. (2007) considered the problem
of testing a parametric regression functional form with mixed discrete and
continuous covariates. We next describe their testing procedure.

For testing the null hypothesis that a parametric regression model is
correctly specified, we state it as,

H0 : P½EðYijXiÞ ¼ mðXi; bÞ� ¼ 1 for some b 2 B (4)

where m( � , � ) is a known function with b being a p� 1 vector of unknown
parameters and B is a compact subset in <p. The alternative hypothesis is
the negation of H0, that is,

H1 : P½EðYijXiÞ ¼ mðXi;bÞ�o1 for all b 2 B (5)

Hsiao et al. (2007) considered a test statistic that was independently
proposed by Fan and Li (1996) and Zheng (1996).2

The test statistic is based on I ¼ E½uiEðuijXiÞf ðXiÞ� as we discussed
earlier. The sample analogue of I is given by:

In ¼ n�1
Xn
i¼1

bui bE�iðuijXiÞ
bf �iðXiÞ ¼ n�1

Xn
i¼1

bui n�1
Xn

j¼1;jai

bujWh;ijLl;ij

( )
¼ n�2

X
i

X
jai

buibujKg;ij ð6Þ
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where Kg;ij ¼Wh;ijLl;ijðg ¼ ðh; lÞÞ; bui ¼ Yi �mðXi;bbÞ is the residual
obtained from estimating the parametric null model, bb is a

ffiffiffi
n
p

-consistent
estimator of b (under H0), and bE�iðuijXiÞ

bf �iðXiÞ is a leave-one-out kernel
estimator of EðYijXiÞf ðXiÞ: In the case where we have only continuous
regressors Xc

i and use a nonstochastic value of hs (hs-0 and nh1y hq-N),
the asymptotic null (normal) distribution of the In test was derived
independently by Fan and Li (1996) and Zheng (1996).
For the In test with the mixed discrete and continuous covariates, Hsiao et

al. (2007) advocated the use of CV methods for selecting the smoothing
parameter vectors h and l. We use bIn to denote the test statistic with CV
selected smoothing parameters, that is, bIn is defined the same way as In given
in (6) but with ðh1; . . . ; hq; l1; . . . ; lrÞ replaced by the CV smoothing
parameters ðbh1; . . . ; bhq; bl1; . . . ; blrÞ. The asymptotic distribution of our
CV-based test was derived by Hsiao et al. (2007):

bTn 	
nðbh1 . . . bh q

Þ
1=2Î nffiffiffiffibOp !

d
Nð0; 1Þ

under H0, where ‘‘!
d
’’ denotes the convergence in distribution andbO ¼ ½2ðbh1 . . . bhqÞ=n2�Pn

i¼1

Pn
ja1bu2i bu2j W2bh;ijL2bl;ij .

Hsiao et al. (2007) also showed that the bTn test diverges to þN if H0 is
false; thus it is a consistent test. Hsiao et al. (2007) recommended the use of
a residual-based wild bootstrap method to better approximate the null
distribution of bTn. Specifically, one generates the wild bootstrap error u
i
via a two point distribution u
i ¼ ½ð1�

ffiffiffi
5
p
Þ=2�ûi with probability

ð1þ
ffiffiffi
5
p
Þ=½2

ffiffiffi
5
p
�, and u
i ¼ ½ð1þ

ffiffiffi
5
p
Þ=2�bui with probability ð

ffiffiffi
5
p
� 1Þ=½2

ffiffiffi
5
p
�.

Using fu
i g
n
i¼1, one generates Y



i ¼ mðXi; bbÞ þ u
i for i ¼ 1; . . . ; n: fXi;Y



i g

n
i¼1

is called the ‘‘bootstrap sample,’’ and one uses this bootstrap sample to
obtain a nonlinear least squares estimator of b (a least squares estimator if
mðXi;bÞ ¼ XT

i bÞ: Let bb
 denote the resulting estimator. The bootstrap
residual is given by bu
i ¼ Y
i �mðXi;bb
Þ. The bootstrap test statistic bT
n is
obtained the same way as bTn with bui being replaced by bu
i . Note that we use
the same CV selected smoothing parameters bh and bl when computing the
bootstrap statistics. That is, there is no need to rerun CV with the bootstrap
sample. Therefore, our bootstrap test is computationally quite simple. In
practice, one repeats the above steps a large number of times, say B ¼ 1,000
times, then, the original test statistic bTn plus the B bootstrap test statistics
give us the empirical distribution of the bootstrap statistics, which is then
used to approximate the finite-sample null distribution of bTn.

By adopting the concept of ‘‘convergence in distribution in probability’’
(see e.g., Li, Hsiao, & Zinn, 2003) to study the asymptotic distribution of the
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bootstrap statistic bT
n, Hsiao et al. (2007) showed that the wild bootstrap
method works by proving the following result:

sup
z2<jPð

bT
n � zjfXi;Yig
n
i¼1Þ � FðzÞj ¼ opð1Þ (7)

where F( � ) is the cumulative distribution function of a standard normal
random variable. The simulation results reported in Hsiao et al. (2007) show
that the proposed bootstrap procedure indeed works well in finite sample
applications. See Hsiao et al. (2007) for details on this regard.

2.3. Testing Significance (Relevance) of Discrete Variables

When all the regressors are discrete variables, Ouyang et al. (2009) showed
that while the irrelevant variables can be smoothed out with about 65%
probability, there is a 35% probability that the cross-validated l takes
values strictly o1 even as n-N. Therefore, sometimes the CV method may
not be able to determine whether a given variable is irrelevant or not. In
such cases, one can use the test statistic proposed by Racine, Hart, and Li
(2006) to test whether a given discrete variable is relevant or not. The null
hypothesis is,

H0 : mðx; zÞ ¼ EðY jX ¼ x;Z ¼ zÞ ¼ EðY jX ¼ xÞ almost everywhere ða:e:Þ

(8)

where Z is a discrete variable and X can contain both discrete and
continuous components. Under the null hypothesis, the discrete variable Z
is an irrelevant regressor.

Assume that Z takes c different values, without loss of generality,
say that Z 2 f0; 1; . . . ; c� 1g. The null hypothesis H0 is equivalent to:
m(X, Z ¼ l) ¼ m(X, Z ¼ 0) for l ¼ 1,y, c�1 (for all X). Racine et al. (2006)
suggested constructing a test statistic based on

I ¼
Xc�1
l¼1

Ef½mðX ;Z ¼ lÞ �mðX ;Z ¼ 0Þ�2g (9)

Obviously, IZ0 and I ¼ 0 if and only if H0 is true. Therefore, I serves as a
proper measure for testing H0. A feasible test statistic is given by:

bIn ¼ 1

n

Xn
i¼1

Xc�1
l¼1

½ bmðXi;Zi ¼ lÞ � bmðXi;Zi ¼ 0Þ�2 (10)

where bmðXi;ZiÞ is the kernel estimator of m(Xi, Zi).
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Racine et al. (2006) recommended using the least squares CV method to
select the smoothing parameters. Let blz denote the smoothing parameter
selected by the CV method. Since under H0, blz has a nondegenerate
(complicated) limiting distribution, the null distribution of bIn is unknown
even as n-N. Therefore, Racine et al. (2006) recommended using some
bootstrap procedures to approximate the null distribution of the bIn test, one
of which is described below.

2.3.1. A Bootstrap Procedure

1. Randomly select Z
i from fZjg
n
j¼1 with replacement, and call

fYi;Xi;Z


i g

n
i¼1 the bootstrap sample.

2. Use the bootstrap sample to compute the bootstrap statistic bI
n, where bI
n
is the same as bIn except that Zi is replaced by Z
i (using the same cross-
validated smoothing parameters of bh, bl, and blz obtained earlier).

3. Repeat steps 1 and 2, a large number of times, say B times. Let fbI
n;jgBj¼1 be
the ordered (in an ascending order) statistic of the B bootstrap statistics,
and let bI
n;ðaÞ denote the (1�a)th percentile of fbI
n;jgBj¼1. We reject H0 ifbIn4bI
n;ðaÞ at the level a.

The simulation results reported in Racine et al. (2006) show that the
above bootstrap procedure works well in finite sample applications.
See Racine et al. (2006) for details on empirical studies.

3. NONPARAMETRIC REGRESSION MODELS

WITH NONSTATIONARY DATA

Phillips and Park (1998) were the first to study the asymptotic theory on
nonparametric estimation of econometric models with nonstationary data.
Recently, nonparametric estimation of regression functions has attracted
many attentions among statisticians and econometricians. Juhl (2005) and
Wang and Phillips (2008, 2009) considered nonparametric regression models
with nonstationary regressors, while Cai, Li, and Park (2009) and Xiao
(2009) considered semiparametric varying-coefficient models with some of
the regressors being nonstationary. Gao, King, Lu, and Tjøstheim (2008)
and Sun, Cai, and Li (2008a) considered nonparametric testing issues
with nonstationary data. Finally, Karlsen, Myklebust, and Tjöstheim (2007)
considered nonparametric estimation of a regression model for a more
general type of nonstationary processes, a subclass of the class of null
recurrent Markov chains. We summarize some of these works below.
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3.1. Nonparametric Density and Regression Function Estimation

Phillips and Park (1998) considered a nonparametric autoregressive regres-
sion model with the true data generated by an unit root process:

Yt ¼ mðYt�1Þ þ ut 	 Yt�1 þ ut

where ut, for expositional simplicity, is assumed to be i.i.d. ð0;s2uÞ. Phillips
and Park (1998) suggested using a LC method to estimate m( � ) as,

bmðxÞ ¼Pn
t¼1YtKhðYt�1 � xÞPn
t¼1KhðYt�1 � xÞ

	
ðnhÞ�1

Pn
t¼1YtKhðYt�1 � xÞbf nðxÞ (11)

where KhðvÞ ¼ h�1Kðv=hÞ, h is the bandwidth, K( � ) the kernel function, andbf nðxÞ ¼ ðnhÞ�1Pn
t¼1KhðYt�1 � xÞ, which would be regarded as an estimator

of the density function if Yt were stationary. Phillips and Park (1998)
derived the asymptotic distributions for both bmðxÞ and bf nðxÞ.
It follows from Donsker’s theorem that under some regularity conditions,

for 0 � r � 1, Y ½nr�=
ffiffiffi
n
p
)WuðrÞ, where [ � ] denotes the integer part of � , .

denotes weak convergence, Wu( � ) is a Brownian motion on ½0; 1�;s�1u WuðrÞ
is a standard Brownian motion on [0, 1], and s2

u ¼ Eðu2t Þ. Define the local
time LW(t, x) for a Brownian motion W( � ) as,

LW ðt; xÞ¼
lim
2!0

1

22

Z t

0

1ðjWðsÞ � xj �2Þds (12)

Under some regularity conditions including h-0 and nh-N, as n-N,
Phillips and Park (1998) established the following result:

n1=4h1=2ð bmðxÞ �mðxÞÞ!
d
MN

0;s2un0ðKÞ
LWu
ð1; 0Þ

� �
(13)

where MN(m, S) denotes a mixed normal distribution with mean m and
conditional variance S, and n0ðKÞ ¼

R
K2ðvÞdv. Note that there is no bias

term in Eq. (13) because m(x) ¼ x is a linear function so that its derivatives
with orders greater or equal to two all vanish.

Wang and Phillips (2009) considered the following nonlinear cointegra-
tion model:

Yt ¼ gðXtÞ þ ut; t ¼ 1; 2; . . . ; n

where X0 ¼ 0 and Xt ¼ Xt�1 þ �t, both ut and et are mean zero stationary
processes. Wang and Phillips (2009) considered the LC estimator for g(x)
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given by:

bgðxÞ ¼Pn
t¼1YtKhðXt � xÞPn
t¼1KhðXt � xÞ

Under some regularity conditions including nh-N and nh3-0 (under-
smoothing) as n-N, Wang and Phillips (2009) showed that

n�1=2
Xn
t¼1

KhðXt � xÞ

 !1=2

n1=4h1=2ðbgðxÞ � gðxÞÞ!
d
Nð0;s21Þ (14)

where s21 ¼ s2un0ðKÞ. When Xt ¼ Yt–1, Eq. (14) gives the asymptotic
distribution of bmðxÞ defined in Eq. (11). This is because the asymptotic
variances in Eqs. (13) and (14) are the same since it can be shown that
n�1
Pn

t¼1KhðXt � xÞ!
p
LW ð1; 0Þ=s�, where W( � ) is a standard Brownian

motion and s2� ¼ limn!1Varðn
�1=2

Pn
t¼1�tÞ ðs

2
� ¼ Varð�tÞ if et is serially

uncorrelated). Finally, Wang and Phillips (2008) extended the result of
Wang and Phillips (2009) to allow for endogenous regressors.

3.2. Semiparametric Estimation of a Varying-Coefficient
Model with Nonstationary Covariates

Cai et al. (2009) considered the following varying-coefficient model:

Yt ¼ XT
t bðZtÞ þ ut ¼ XT

t1b1ðZtÞ þ XT
t2b2ðZtÞ þ ut; t ¼ 1; . . . ; n (15)

where AT denotes the transpose of a matrix or vector A, Xt1, Zt, and ut
are stationary, Xt2 is an I(1) process, bðZtÞ ¼ ðb1ðZtÞ

T;b2ðZtÞ
T
Þ
T, and

Xt ¼ ðX
T
t1;X

T
t2Þ

T. Here Xti is a di� 1 vector, i ¼ 1, 2, d1þd2 ¼ d, and the first
component of Xt1 is identically one. Also, Yt, Zt, and ut are scalars, and
EðutÞ ¼ 0, s2u ¼ limn!1Varðn

�1=2
Pn

t¼1utÞ is finite, and ut is assumed to be
independent with (Xt, Zt).

3 When there is no term XT
t1b1ðZtÞ, Eq. (15)

reduces to the model investigated by Xiao (2009). Note that Yt can be
stationary or nonstationary. If Yt is nonstationary, model (15) implies that
Yt and Xt2 are cointegrated with a varying cointegration vector b2(Zt).
The reason why Cai et al. (2009) considered a following varying-coefficient
model in Eq. (15) is that it might approximate a general nonparametric
model well (see Eq. (36) for details).
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It is easy to see that the local linear (LL) estimator for b(z) and its
derivative function b(1)(z) ¼ db(z)/dz is given by:

bbðzÞ
bbð1ÞðzÞ

0@ 1A ¼ Xn
t¼1

Xt

ðZt � zÞXt

 !�2
KhðZt � zÞ

24 35�1

�
Xn
t¼1

Xt

ðZt � zÞXt

 !
YtKhðZt � zÞ

(16)

where A�2 ¼ AAT and A�1 ¼ A.
We assume that Xt2 can be written as Xt2 � Xt�1;2 ¼ Zt, where Zt is a zero

mean stationary process. Then under some standard regularity conditions,
Xt2=

ffiffiffi
n
p
)WZ2ðrÞ, where WZ2ð�Þ is a d2-dimensional Brownian motion on

[0, 1]. By the continuous mapping theorem, we know that, for l ¼ 1, 2,

1

n

Xn
t¼1

Xt2ffiffiffi
n
p

� ��l
!
d
Z 1

0

½WZ2ðrÞ�
�ldr 	W

ðlÞ
Z2 (17)

Let fz(z) be the marginal density of Zt. Define MkðzÞ ¼ E½X�kt1 jZt ¼ z� for
1 � k � 2. Further, let

SðzÞ ¼
M2ðzÞ M1ðzÞW

ð1ÞT

Z2

W
ð1Þ
Z2M1ðzÞ

T W
ð2Þ
Z2

0@ 1A
and Dn ¼ diagfId1

;
ffiffiffi
n
p

Id2
g. Then, Cai et al. (2009) showed that under some

regularity conditions,ffiffiffiffiffi
nh
p

Dn
bbðzÞ � bðzÞ �

1

2
h2m2ðKÞb

ð2Þ
ðzÞ

� �
!
d
MNð0;S

b
ðzÞÞ (18)

where MN(0, Sb(z)) is a mixed normal variable with mean zero and con-
ditional covariance SbðzÞ ¼ s2un0ðKÞSðzÞ

�1=f zðzÞ and m2ðKÞ ¼
R
v2KðvÞdv.

Eq. (18) implies that bb1ðzÞ � b1ðzÞ ¼ Opðh
2
þ ðnhÞ�1=2Þ and bb2ðzÞ � b2ðzÞ ¼

Opðh
2
þ ðn2hÞ�1=2Þ. Thus, the convergence rate for bb2ðzÞ � b2ðzÞ is faster than

that of bb1ðzÞ � b1ðzÞ. The bias term is O(h2) for both bb1ðzÞ and bb2ðzÞ, and
the variance of bb1ðzÞ is OððnhÞ�1Þ, while the variance of bb2ðzÞ is Oððn2hÞ�1=2Þ.
This is similar to the linear regression model case because

Pn
t¼1X2tX

T
t2 ¼

Opðn
2Þ and

Pn
t¼1Xt1X

T
t1 ¼ OpðnÞ. The estimated coefficient for the I(1)

regressor is n-consistent, while the estimated coefficient for the I(0) regressor
has the standard

ffiffiffi
n
p

rate of convergence.
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Cai et al. (2009) also considered the case that Xt is I(0) but Zt is I(1).
For such a case, Zt can be expressed as Zt ¼ Zt�1 þ vt ¼ Z0 þ

Pt
s¼1vs,

where {vs} is a stationary process with mean zero and s2u ¼ limn!1

Varðn�1=2
Pn

t¼1vtÞ40. Then, it follows from Donsker’s theorem that under
some regularity conditions, for 0 � r � 1;Z½nr�=

ffiffiffi
n
p
)WvðrÞ, where Wv( � ) is

a Brownian motion on [0, 1] and s�1v WvðrÞ is a standard Brownian motion
on [0, 1]. Cai et al. (2009) established the following asymptotic result:ffiffiffiffiffiffiffiffiffiffiffi

n1=2h
p

½bbðzÞ � bðzÞ � h2BðzÞ�!
d
MNð0;S1Þ (19)

where BðzÞ ¼ m2ðKÞb
ð2Þ
ðzÞ=2; MNð0;S1Þ is a mixed normal distribution with

mean zero and conditional covariance S1 ¼ svs2un0ðKÞ½EðXtX
T
t �LW ð1; 0Þ�

�1.
Eq. (19) implies that bbðzÞ � bðzÞ ¼ Opðh

2
þ ðn1=4h1=2Þ�1Þ so that the optimal

smoothing h is proportional to n�1=10. Thus, h should converge to 0 at
a fairly slow rate at n�1/10. This is because when Zt is I(1), it returns to the
fixed interval [z�h, zþh] less often compared to the case when Zt is I(0).
Therefore, one needs to let h go to 0 slowly so as to balance the squared bias
and the variance.

When d ¼ 1 and Xt ¼ 1, the varying-coefficient model reduces to a simple
regression model Yt ¼ bðZtÞ þ utðZt is Ið1ÞÞ. The asymptotic variance in
Eq. (19) simplifies to sus2un0ðKÞLW ð1; 0Þ

�1. It can be shown that bf ðzÞ 	
n�1=2

Pn
t¼1KhðZt � zÞ consistently estimates LW ð1; 0Þ=sv; see Phillips and

Park (1998). Hence, in this case Eq. (19) can be equivalently written as,

½bs2un0ðKÞ��1=2½bf ðzÞ�1=2 ffiffiffiffiffiffiffiffiffiffiffi
n1=2h

p
½bbðzÞ � bðzÞ � h2BðzÞ�!

d
Nð0; 1Þ (20)

where bs2u ¼ n�1
Pn

i¼1½Yt �
bbðZtÞ�

2 is a consistent estimator for s2u. As
expected, Eq. (20) is the same as that in Wang and Phillips (2009) for a
nonparametric regression model with an I(1) regressor.
Bachmeier, Leelahanon, and Li (2006) considered the following

semiparametric dynamic varying-coefficient model:

Yt ¼ b1ðZtÞ þ Yt�1b2ðZtÞ þ ut (21)

where Yt is the rate of inflation, and Zt is an I(1) variable ‘‘velocity of money
supply.’’ Bachmeier et al. (2006) applied the above model to forecast U.S.
inflation rate and showed that the semiparametric varying-coefficient
dynamic model (with a nonstationary covariate) has smaller forecast
mean squared error compared with the conventional linear model, or some
nonparametric model using only stationary covariates. For more examples
in finance, the reader is referred to the paper by Cai and Hong (2009).
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Park and Hahn (1999) considered the varying-coefficient model in
Eq. (15) with Zt being replaced by the time trend variable t, and established
the asymptotic distribution of a series-based estimator for b(t). Park and
Hahn (1999) also proposed a test statistics for testing a parametric function
form for b( � ) and for testing cointegration in a time-varying coefficient
model framework.

Cai and Wang (2009) considered a similar time-varying coefficient model
as the one considered in Park and Hahn (1999) with nonstationary or nearly
nonstationary (local to unit root) and endogenous regressors. Cai and Wang
(2009) used a LL estimation method and derived the asymptotic distribution
of their proposed estimators. Finally, Cai and Wang (2009) applied the
above model to test the stability of the predictability of asset returns in
finance. That is,

rt ¼ b0t þ b1txt�1 þ ut

where rt is the asset return and xt�1 is the first lag of financial instrument,
say the logarithm of the earnings-price ratio or the dividend-price ratio or
other financial variables. But ut and xt�1 is usually correlated and xt is
nonstationary like I(1) or near I(1) and highly persistent. For details about
the theory and applications, we refer the reader to the paper by Cai and
Wang (2009).

3.3. Data-Driven Method of Selecting Smoothing Parameter

Sun and Li (2009a) considered the problem of selecting the smoothing
parameter h of model (15) by the least squares CV method. They proposed
to choosing h by minimizing the following least squares CV objective
function:

CVðhÞ ¼ n�1
Xn
t¼1

½Yt � XT
t
bb�tðZtÞ�

2
MðZtÞ (22)

where bb�tðZtÞ is a leave-one-out kernel estimator of b(Zt).
Sun and Li (2009a) first considered the case that Xt is I(1) (there is no I(0)

components in Xt), Zt and ut are stationary processes. They found
an interesting result that the LC and the LL estimation methods lead
to very different asymptotic behaviors for ĥ by the CV method selected
smoothing parameter. Specifically, they showed that for the LC estimation
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method (assuming Xt is a scalar to simplify the notation)

ffiffiffi
n
p bhLC�CV �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c1ns2un0

R
MðzÞdz

n2c2n
R
ðbð1ÞðzÞÞ2MðzÞdz

s
!
p
0 (23)

where c1n ¼ n�2
Pn

t¼1X
2
t , c2n ¼ n�3

P
tX

4
t , and nj ¼

R
vjK2ðvÞdu. For the LL

estimation method the result is,

n2=5bhLL�CV � 4s2un0
R
MðzÞdz

c1nm2ðKÞEððb
ð2Þ
t Þ

2MtÞ

 !1=5

!
p
0 (24)

One interesting implication of Eqs. (23) and (24) is that the CV selected h
is stochastic even asymptotically. Also, comparing Eq. (23) with Eq. (24) we
see that the CV selected h has different convergence rates. Both these results
are in sharp contrast to the stationary data or independent data case
where we know that the CV selected smoothing parameter is asymptotically
nonstochastic and that the CV functions have the same probability
order whether one uses the LC or the LL method. The reason for the
different rates of convergence of bh is that CVLCðhÞ ¼ Opðhþ ðnhÞ

�1
Þ, while

CVLLðhÞ ¼ Opðnh
4
þ ðnhÞ�1Þ. This also implies that CVLCð

bhÞ ¼ Opðn
�1=2Þ

and CVLLð
bhÞ ¼ Opðn

�3=5Þ. Hence, the LL method leads to more efficient
estimation than the LC method.

Sun and Li (2009a) further provided asymptotic analysis for CV selected h
for model (15) with Xt containing both I(0) and I(1) components.

3.4. Testing a Parametric Coefficient Functional Form

Sun et al. (2008a) considered the problem of testing the null hypothesis (H0)
that P(b(Z) ¼ b0) ¼ 1 for some d� 1 vector of constant coefficient b0 in the
following semiparametric model:

Yt ¼ XTbðZtÞ þ ut ¼ XT
1tb1ðZtÞ þ XT

2tb2ðZtÞ þ ut

where X1t, Zt, and ut are I(0) variables, and X2t is an I(1) process. They
proposed a test statistic based on the sample analogue of

R
jjDðbbðzÞ�bb0ðzÞÞjj2dz, where bbðzÞ is the semiparametric estimator of b(z), bb0 is the

least squares estimator of b0 and D is a positive definite weight matrix.
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The test statistic proposed by Sun et al. (2008a) can be simplified to

bIn ¼ 1

n3

Xn
t¼1

Xn
sat

XT
t XsbutbusKh;ts (25)

where but is the residual obtained from the parametric null model.
Sun et al. (2008a) showed that under some regularity conditions and

under H0,

bJn ¼
n
ffiffiffi
h
p bInffiffiffiffiffibs2bq !

d
Nð0; 1Þ

where bs2b ¼ n�4h
Pn

t¼1

Pn
sat ~u

2
t ~u

2
s ½X

T
t Xs�

2K2
h;ts; ~ut ¼ Yt � XT

t
bb�tðZtÞ is the

nonparametric residual and bb�tðZtÞ is the leave-one-out estimator of b(Zt).
The power of the test statistic Jn depends on whether b2(z) ¼ b20 or not,

where b20 is a vector of constant parameters. If b2(z) 6¼b20 for some z in a set
with positive measure, Sun et al. (2008a) showed that the bJn test statistic
diverges to þN at the rate of n2h. However, when b2(z) ¼ b20 for all z, and
b1(z) 6¼b10 on a set with positive measure, bJn diverges to þN at the rate of
n
ffiffiffi
h
p

: Intuition behind this result is that, since X2tX
T
2t is larger than X1tX

T
1t

by an order of n, hence, the test statistic diverges to þN at a faster rate
when b2(z), the coefficient of X2t, is not a constant vector. We summarize the
above results on power of the Jn test statistic as follow.
Sun et al. (2008a) showed that under some regularity conditions and H1,

the following two results hold.

(i) If P½b2ðZtÞ ¼ b20�o1 for any b20 2 B2, where B2 is a compact subset of
Rd2 , then P½Jn4Bn� ! 1 as n-N for any nonstochastic sequence
Bn ¼ oðn2

ffiffiffi
h
p
Þ.

(ii) If P½b2ðZtÞ ¼ b20� ¼ 1 for some b20 2 B2, and P½b1ðZtÞ ¼ b10�o1 for any
b10 2 B1, where B1 is a compact subset of Rd1 , then P½Jn4Bn� ! 1 as
n-N for any nonstochastic sequence Bn ¼ oðn

ffiffiffi
h
p
Þ.

The above results imply that underH1, the test statistic Jn diverges to þN
at different rates depending on whether b2(z) ¼ b20 (a constant vector) or
not. Nevertheless, the test statistic Jn is consistent in both cases, and a larger
sample size might be required for the power of the test statistic to approach
one if b2(z) ¼ b20, and only the coefficients associated with the I(0) variables
are nonconstant (b1(z) 6¼b10) �

Also, Sun et al. (2008a) showed that when b1(z) ¼ b10 (a constant vector)
for all z, and b2ðzÞab20, then the least squares estimator bb10 diverges to þN
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at the rate of
ffiffiffi
n
p

. Therefore, a misspecified linear model not only leads to
inconsistent estimation result but also overestimates the true parameter b10
by a different order of magnitude (the true b10 ¼ O(1) is finite, whilebb10 diverges to N at the rate of

ffiffiffi
n
p

). Thus, one drastically overestimates b10
in such a case if one estimates a misspecified linear model in which one
assumes that the model is linear in both X1t and X2t, while in fact the true
model is only linear in stationary covariate X1t, but the coefficient of
the nonstationary variable X2t is a smoothing function of the stationary
covariate Zt. This result suggests that it is very important to test if the model
specification is correct when there are integrated regressors in the model.

3.5. Testing Cointegration in Semiparametric Varying-Coefficient Models

In this subsection, we discuss the problem of testing whether ut is an I(1) or
an I(0) process through a varying-coefficient model:

Yt ¼ XT
t bðZtÞ þ ut

where Xt is a d� 1 vector of I(1) variables, Zt is an I(0) scalar process, and ut
follows an AR(1) process as,

ut ¼ rut�1 þ �t

where et is a mean zero stationary process.
Xiao (2009) set the null hypothesis as Ha

0: ut is an I(0) process (i.e., r ¼ 0)
and the alternative is Ha

1: ut is an I(1) process (r ¼ 1). It is easy to see that
under Ha

0;VarðutÞ ¼ s2u, a positive constant, while under Ha
1, VarðutÞ ¼

a0 þ a1t, where a0 and a1 are positive constants. Hence, Xiao (2009)
suggested testing Ha

0 by testing a1 ¼ 0. The test statistic is based on the
following regression:

bu2t ¼ a0 þ a1tþ error (26)

where but ¼ Yt � XT
t
bbðZtÞ. Xiao (2009) showed that under Ha

0,bta1 ¼ ba1=seðba1Þ!d Nð0; 1Þ, where ba1 is the OLS estimator of a1 based on
Eq. (26) and SEðba1Þ is the estimated standard error of ba1.
However, Sun and Li (2009b) considered the case that under the null

hypothesis, ut is an I(1) process. Therefore, the null hypothesis considered by
Sun and Li (2009b) is Hb

0: ut is an I(1) process, and the alternative is Hb
1: ut is

an I(0) process. Thus, the null hypothesis is Hb
0 : r ¼ 1 and the alternative

hypothesis is Hb
1 |r|o1. We consider only the case that b(z) is not a constant
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function. Based on the well-established cointegration testing for linear
models, one can test H0 based on

br ¼Pt butbut�1P
t bu2t�1

where but is an estimator for ut ¼ Yt � XT
t bðZtÞ and the test statistic is

nðbr� 1Þ. Sun and Li (2009b) showed that the leading term of the test
statistic depends on bbðZtÞ in a complicated way and the asymptotic
distribution is not nuisance parameter free. Therefore, one needs to design
some simulation (or bootstrap) methods to approximate the null distribu-
tion of nðbr� 1Þ. It is still an open question as how to approximate the null
distribution of the test statistic considered by Sun and Li (2009b).

3.6. Varying-Coefficient Models with Time Trend Variables

Gu and Hernandez-Verme (2009) and Liang and Li (2009) considered a
varying-coefficient model with regressors containing a time trend:

Yt ¼ XT
t bðZtÞ þ ut (27)

where XT
t ¼ ðX

T
1t; tÞ and X1t is an I(0) variable. Gu and Hernandez-Verme

(2009) considered the LL estimation method and applied the method to
evaluate the presence of credit rationing in the U.S. credit markets, while
Liang and Li (2009) considered both the LC and local polynomial estimation
methods.

3.7. Varying-Coefficient Models with I(1) Error

Sun, Hsiao, and Li (2008b) consider the problem of estimating a varying-
coefficient model

Yt ¼ XT
t bðZtÞ þ ut (28)

when both Xt and the error term ut are integrated I(1) processes. They show
that in this case, it is still possible to obtain consistent estimate of b( � ),
but the rate of convergence will be reduced to Opðh

2
þ ðnhÞ�1=2Þ rather than

Opðh
2
þ ðn2hÞ�1=2Þ as compared to the case when ut is a stationary process.
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4. NONPARAMETRIC INSTRUMENTAL

VARIABLE ESTIMATION

There is a vast amount of papers available in the literature on parametric
IVs estimation of econometric models in economics and finance. As
with other economic models, one may consider nonparametric structural
modeling to permit greater flexibility than tightly specified parametric
models in describing such relationships. However, new problems arise for
inference in nonparametric structural models that are not present in
standard nonparametric regression; see Newey and Powell (2003). Estima-
tion of such models depend on strong regularization and sometimes
preclude the asymptotic distribution theory required for inference. To deal
with these problems, Newey and Powell (1988) were the first to explore the
nonparametric IV models and part of their result was later published in
Newey and Powell (2003). Since then, some of the other papers in this area
include Newey, Powell, and Vella (1999), Daroles, Florens, and Renault
(2002), Blundell and Powell (2003), Das (2003, 2005), Ai and Chen (2003),
Das, Newey, and Vella (2003), Newey and Powell (2003), Hall and Horowitz
(2005), Cai, Das, Xiong, and Wu (2006) (CDXW, hereinafter), Horowitz
(2007), and the references therein.

We describe the nonparametric model (with endogenous regressors)
below. Suppose we have i.i.d. data fðXi;Yi;ZiÞg

n
i¼1, and the data are

generated by the following data generating process:

Yi ¼ gðXi;Zi1Þ þ ui (29)

where gð�Þ is an unknown structural function of interest, Zi1 is a d1� 1
vector of exogenous variables, and the ui’s denote disturbances. The ui’s are
correlated with the explanatory variables Xi and, in particular, EðuijXiÞa0,
so that Xi 2 <

dx is an endogenous variable. Suppose, however, that for each
i, we have available another observed data value, Zi ¼ ðZi1;Zi2Þ, for which
EðuijZiÞ ¼ 0, where Zi2 is a d2� 1 vector of the so-called IVs. Clearly, the
nonparametric IV model is different from the standard nonparametric
model in the sense that because EðuijXi;Zi1Þa0, the structural function gð�Þ
is not given by the regression EðYijXi;Zi1Þ.

Taking the conditional expectation of Eq. (29) yields the following
integration equation:

zðzÞ 	 E½YijZi ¼ z� ¼ E½gðXi; z1ÞjZi ¼ z� ¼

Z
gðx; z1ÞdFxjzðxjzÞ (30)

ZONGWU CAI ET AL.514



where FxjzðxjzÞ is the conditional distribution function of Xi given as Zi ¼ z.
Although z(z) and FxjzðxjzÞ are estimable based on data fðXi;Yi;ZiÞg,
estimation of gð�Þ is difficult because the relation that identifies gð�Þ is a
Fredholm equation of the first kind, which leads to the difficulty called ill-
posed inverse problem in the literature. That is, for nonparametric estimatorsbzðzÞ and bFxjzðxjzÞ obtained from preliminary nonparametric estimation,

bzðzÞ ¼ Z gðx; z1Þd bFxjzðxjzÞ

may not exist a solution for ĝð�Þ. Even if it exists, it may not be computable
and continuous in bzðzÞ and bFxjzðxjzÞ. As pointed out by Newey and Powell
(2003), noncontinuity of ĝð�Þ is the biggest obstacle to overcome and the lack
of continuity of ĝð�Þ in bzð�Þ and bFxjzð�Þ means that a small change in bzð�Þ andbFxjzð�Þ may cause a huge error to ĝð�Þ. Therefore, the consistency of ĝð�Þ may
not exist even if both bzð�Þ and bFxjzð�Þ are consistent. To recover the structural
function gð�Þ and to overcome these difficulties, in nowadays, several methods
were proposed in the literature, described below.

4.1. Series Estimation

Newey and Powell (2003) suggested using the series method to approximate
the unknown function gð�Þ as,

gðwÞ 
XJ
j¼1

gjjjðwÞ (31)

where w ¼ ðx; z1Þ; fjjð�Þg is a sequence of basis functions and {gj} are the
corresponding coefficients. Substitution of Eq. (31) into Eq. (30) leads to

zðzÞ ¼ E½YijZi ¼ z� 
XJ
j¼1

gjE½jjðWiÞjZi ¼ z� 	
XJ
j¼1

gjpjðzÞ ¼ gTPðzÞ

where pjðzÞ ¼ E½jjðWiÞjZi ¼ z�; g ¼ ðg1; . . . ; gJ Þ
T and PðzÞ ¼ ðp1ðzÞ; . . . ;

pJðzÞÞ
T. Now, to estimate g(z), one can use a nonparametric two-stage

approach. At the first stage, using a nonparametric method to obtain bpjðzÞ
and then at the second stage, using the least squares method to obtain bgj by
a regression of Yi on fbpjðZiÞg. Finally, one obtains bgðwÞ ¼PJ

j¼1bgjjjðwÞ.
Under some regularity conditions, Newey and Powell (2003) derived the
consistency of bgðwÞ. But they did not obtain the asymptotic distribution of
their estimator.
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4.2. Functional Operator Approach

Hall and Horowitz (2005) considered a functional operator approach
for estimating gð�Þ. Taking an expectation of zðZiÞf x;zðv;ZiÞ for any fixed v,
we have

E½zðZiÞf x;zðv;ZiÞ� ¼

Z
zðzÞf z;zðv; zÞf zðzÞdz

where f x;zðx; zÞ and fz(z), respectively, denote the joint density of (Zi, Xi)
and the marginal density of Zi. Substitution of Eq. (30) into the above
equation yields

E½zðZiÞf x;zðv;ZiÞ� ¼

Z Z
gðx; z1Þf x;zðx; zÞf z;zðv; zÞdxdz

If one assumes that g(x, z1) ¼ g(x); that is, g( � ) depends only on the
endogenous variable Xi but not on any exogenous variable, then,

E½Yif x;zðv;ZiÞ� ¼ E½EðYijZiÞf x;zðv;ZiÞ� ¼

Z
gðxÞtðx; vÞdx 	 TgðvÞ

which defines a functional operator T, where

tðx; vÞ ¼

Z
f x;zðx; zÞf z;zðv; zÞdz

Clearly, T is a functional operator defined on the space of functions that are
square integrable on L2ð<

dx �<dx Þ. Assume that the functional operator T
is nonsingular. Then, for each v, g(v) can be expressed as,

gðvÞ ¼ E½YiðT
�1f x;zÞðv;ZiÞ� (32)

and g(v) could be estimated easily by,

bgðvÞ ¼ 1

2

Xn
i¼1

YiðT
�1f x;zÞðv;ZiÞ

if the operator T and fx,z(v, Zi) were known. Clearly, fx,z(v, Zi) can be
estimated by a kernel method plus jackknife (leave-one-out) approach,
given by,

bf x;zðv;ZiÞ ¼
1

n

Xn
j¼1;jai

KhðXj � v;Zj � ZiÞ (33)
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where Kð�; �Þ is a kernel in <dxþdx . Hall and Horowitz (2005) proposed the
following estimator:

bgðvÞ ¼ 1

2

Xn
i¼1

Yið bTþbf x;zÞðv;ZiÞ (34)

where bTþ ¼ ð bT þ anIÞ
�1, which is a ridge type estimator and an-0 is a

ridge parameter, and

btðx; vÞ ¼ Z bf x;zðx; zÞbf z;zðv; zÞdz
where bf x;zðx; zÞ is defined in Eq. (33). Alternatively, Hall and Horowitz
(2005) suggested using a series method to estimate fx,z(x, z); see Hall and
Horowitz (2005) for details. Finally, for a general form of g(x, z1), one can
still define the functional operator Tz1 for a fixed z1 and then apply the same
idea as above to define the nonparametric estimator for g(x, z1); see Section
3 of Hall and Horowitz (2005) for the detailed discussions.

Remark 1. As addressed in Hall and Horowitz (2005) and Horowitz
(2007), Eq. (32) is a Fredholm equation of the first kind. T�1 may not
always exist and if not, it generates the so-called ill-posed inverse
problem. This phenomenon happens if zero is a limit point of the
eigenvalues of T, in particular, when fx,z(x, z) is a well-behaved density
function. In that case, T�1 is not a bounded operator, and g( � ) cannot be
estimated consistently by replacing unknown population quantities on
the right-hand side of Eq. (32) with consistent estimators. This problem is
well known in the theory of integral equations. One way to deal with
this problem is to modify T�1 to make it a continuous operator. Hall
and Horowitz (2005) suggested using a ridge idea to replace T�1 for
estimation purposes with (Tþan I)

�1 (see Eq. (34) above), where I is the
identity operator and {an} is a sequence of positive constants that
converge to 0 as n-N.

Hall and Horowitz (2005) derived the asymptotic mean square error of
their estimator and showed that for a certain class of distributions, the
convergence rates are optimal in a minimax sense, while Horowitz (2007)
obtained the asymptotic normality of bgðvÞ.
Remark 2. For convenience of discussion, assume that dx ¼ 1 (Xi is
univariate). Unfortunately, both papers by Hall and Horowitz (2005)
and Horowitz (2007) did not discuss whether the convergence rate (nh)�1/2

for ordinary nonparametric regression models can be achievable or not,

Some Recent Developments on Nonparametric Econometrics 517



since the convergence rates in both papers depend on the smoothness
conditions for the functions fx,z( � ) and g( � ). To answer the aforemen-
tioned question, let us look at Theorem 4.1 of Hall and Horowitz (2005)
or Theorem 1 of Horowitz (2007), from which, it follows that the
asymptotic integrated mean squared errors (AIMSE) is of the order
Oðn�ð2b�1Þ=ð2bþaÞÞ by using the same notation as in both papers. If it would
achieve the optimal convergence rate for ordinary nonparametric
regression models, ð2b� 1Þ=ð2bþ aÞ ¼ 4=5 so that a ¼ b=2� 5=4 that
does not satisfy Assumption A3 in Hall and Horowitz (2005) or
Assumption 3 in Horowitz (2007). Therefore, one might conclude that
the optimal convergence rate for bgðvÞ cannot reach the optimal AIMSE
rate O(n�4/5) for ordinary nonparametric regression models. Finally,
both papers mentioned above did not give an explicit expression for the
asymptotic bias. Therefore, it is difficult to make the adaptive bandwidth
selection feasibly implemented in practice. Now, a natural question arises
is whether the optimal convergence rate (nh)�1/2 is achievable for a
nonparametric estimator under nonparametric IV settings. If possible, it
would be interesting to investigate what the scenarios are. Also, it would
be warranted to explore the asymptotic bias.

4.3. Projection Method

Newey et al. (1999) proposed using a projection method to estimate g( � ).
The reduced form of Eq. (29) can be expressed as,

Xi ¼ pðZiÞ þ xi; E½xijZi� ¼ 0

where pðZiÞ ¼ EðXijZiÞ. Further, using the new notation Wi ¼

ðxi;Xi;Zi1Þ 2 <
2dxþd1 and taking the conditional expectation of Eq. (29)

conditional on (Xi, Zi), we have,

E½YijXi;Zi� ¼ gðXi;Zi1Þ þ E½uijXi;Zi� ¼ gðXi;Zi1Þ þ E½uijxi�

	 gðXi;Zi1Þ þ l0ðxiÞ 	 h0ðWiÞ ð35Þ

by assuming that E½uijXi;Zi� ¼ E½uijxi�, where the definitions of l0(xi) and
h0(Wi) should be apparent. Since E½ui� ¼ 0, we have the following
projection:

E½h0ðx; z1; xiÞ� ¼ gðx; z1Þ þ E½l0ðxiÞ� ¼ gðx; z1Þ þ E½ui� ¼ gðx; z1Þ
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Therefore, g(x, z1) can be estimated by a projection method as,

bgpðx; z1Þ ¼ n�1
Xn
i¼1

bh0ðx; z1; xiÞ
if bh0ðx; z1; xiÞ and xi would be known. To find a nonparametric estimatebh0ðx; z1; xiÞ in <2dxþd1 , one can use a kernel smoothing technique (say,
LL fitting) as ordinary nonparametric regression by regressing Yi on
ðXi;Zi1;bxiÞ, where bxi is the nonparametric residual obtained from the
reduced form as bxi ¼ Xi � bpðZiÞ, where bpðZiÞ is a nonparametric estimate of
pðZiÞ. Therefore, the feasible estimate bgpðx; z1Þ is given by:

bgpðx; z1Þ ¼ 1

n

Xn
i¼1

bh0ðx; z1;bxiÞ
This method is termed as two-stage nonparametric fitting plus a projection.
By following the steps in Masry and Tjøstheim (1997) and Cai and Masry
(2000), recently, Su and Ullah (2008) derived the asymptotic properties of
the estimator that are the exactly same as that for the ordinary
nonparametric regression models. The main disadvantage of using this
approach is that it suffers from the problem associated with the curse of
dimensionality. Since the unknown function g(x, z1) is defined in <dxþd1 , the
nonparametric model fitting has to be implemented in <2dxþd1 . This might
be infeasible in applications when dx is large.
Due to the computational convenience and high efficiency in imposing

additivity, alternatively, Newey et al. (1999) suggested a series method as
follows. At the first step, p(Zi) is estimated by:

bpðZiÞ ¼
XK1

j¼1

bgjrjðZiÞ

where fbgjg are obtained by a regression of Xi versus frjðZiÞg; frjðZiÞg is a
sequence of basis functions. Then, one obtains the residual bxi ¼ Xi � bpðZiÞ.
At the second step, a series method is used again as follows. Use the series
approximation again to approximate g(x, z1) and l0(x), respectively, as,

gðx; z1Þ 
XK2

l¼1

bl1flðx; z1Þ; and l0ðxÞ 
XK3

m¼1

bm2cmðxÞ
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where fflðx; z1Þg and fcmðxÞg are basis functions, so that

h0ðwÞ 
XK2

l¼1

bl1flðx; z1Þ þ
XK3

m¼1

bm2cmðxÞ

Then, {bl1} and {bm2} can be easily estimated by regressing Yi versus
fflðXi;Zi1Þg and fcmð

bxiÞg. Therefore, g(x, z1) can be estimated as,

bgsðx; z1Þ ¼XK2

l¼1

bbl1flðx; z1Þ

Newey et al. (1999) derived the consistency of ĝsðx; z1Þ with a convergence
rate for consistency, but they did not derive the asymptotic distribution of
their proposed estimator.

4.4. Functional-Coefficient Modeling

Das (2005) considered a nonparametric IV model with discrete endogenous
variables. That is, Xi is a discrete variable. Without loss of generality,
assume that Xi ¼ 0 or 1. Then, g(x, z1) can be rewritten as,

gðx; z1Þ ¼ gð0; z1Þ1ðx ¼ 0Þ þ gð1; z1Þ1ðx ¼ 1Þ ¼ a0ðz1Þ þ a1ðz1Þx

where a0(z1) ¼ g(0, z1) and a1(z1) ¼ g(1, z1)�g(0, z1). Therefore, g(x, z1) is
linear in endogenous variable but nonlinear in exogenous variable, which is
called a functional-coefficient model in the literature; see Cai, Fan, and Yao
(2000), Li, Huang, Li, and Fu (2002), CDXW (2006), Juhl (2005), and Cai
and Xu (2008). Assuming that g(x, z1) has a higher order partial derivative
with respect to x, then applying Taylor expansion to g(x, z1) we obtain

gðx; z1Þ ¼
X1
j¼1

@jgð0; z1Þ

@xj
xj

j!

Xd
j¼0

ajðz1Þxj (36)

for some d, where ajðz1Þ ¼ @
jgð0; z1Þ=@x

j and xj ¼ xj=j!. This implies that a
functional-coefficient model might approximate a general nonparametric
model well. Therefore, CDXW (2006) studied the following functional-
coefficient IV model:

Yi ¼
Xd
j¼1

ajðZi1Þ
TXij þ ui ¼ aðZi1Þ

TXi þ ui; E½uijZi� ¼ 0 (37)
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where Yi is an observable scalar random variable, {aj( � )} are the unknown
structural functions of interest, Xi0 	 1;Xi ¼ ðXi0;Xi1; . . . ; Xid Þ

T is a (dþ1)-
dimension vector consisting of d endogenous regressors, aðZi1Þ ¼

ða0ðZi1Þ; . . . ; ad ðZi1ÞÞ
T, and Zi is a (d1þd2)-dimension vector consisting of

a d1-dimension vector Zi1 of exogenous variables and a d2-dimension vector
Zi2 of IVs.

Model (37) includes the following nonparametric IV model with binary
endogenous variable Di as a special case:

Yi ¼ a0ðZi1Þ þ a1ðZi1ÞDi þ �i

which, as noted above, is analyzed in Das (2005). Further, if aj( � ) is a
threshold function such as,

ajðzÞ ¼ aj11ðz � rjÞ þ aj21ðz4rjÞ

for some rj, then model (37) may describe a threshold IV regression model.
Recently, a threshold model related to this with endogenous covariates
has been considered in Caner and Hansen (2004). In this way, the class of
models in Eq. (37) includes some interesting special cases that arise
commonly in empirical research.

As elaborated by CDXW (2006), functional-coefficient models are
appropriate for many applications in economics and finance, and in particular
when additive separability of covariates is unsuitable for the problem at hand.
For a specific example, CDXW (2006) considered a labor economics problem
which is to establish an empirical relationship between marginal returns to
education and the level of schooling (see Schultz, 1997). If work experience is
also an attribute valued by employers, then the marginal returns to education
should vary with experience. As suggested by Card (2001), if a wage model
assumes the additive separability of education and experience, the returns to
education can be understated at higher levels of education because the
marginal return to education is plausibly increasing in work experience. This
setting is, therefore, a natural one for a functional-coefficient model, which
was further explored by CDXW (2006). Indeed, the marginal returns to
education vary positively and nonlinearly with experience and these returns
are themselves declining in experience for both low experienced and high
experienced workers; see CDXW (2006) for details.

To estimate {aj(z1)} nonparametrically, CDXW (2006) proposed a two-
stage nonparametric method, described as follows. We begin with the first
stage, where we obtain bpjðZiÞ, the fitted value for pjðZiÞ ¼ E½XijjZi�

ð1 � j � d; 1 � i � nÞ. To this end, we apply the LL fitting technique and
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the jackknife (leave-one-out) idea as follows. Assuming that fpjð�Þg has a
continuous second-order derivative, when Zk falls in a neighborhood of Zi,
a Taylor expansion approximates pj(Zk) by,

pjðZkÞ  pjðZiÞ þ ðZk � ZiÞ
Tp0jðZiÞ ¼ aij þ ðZk � ZiÞ

Tbij

The jackknife idea is to use the all observations except the ith observations
in estimating pj(Zi). Then, the least squares estimator with a local weight
(i.e., locally weighted least squares) is given by,Xn

kai

fXkj � aij � ðZk � ZiÞ
Tbijg

2 Kh1 ðZk � ZiÞ

Minimizing the above locally weighted least squares with respect to aij
and bij gives the LL estimate pjðZiÞ by bpj;�iðZiÞ ¼ baij . Now, we derive the
LL estimator of {aj( � )}. The LL estimators bbj and bcj are defined as the
minimizers of the sum of weighted least squares

Xn
i¼1

Yi �
Xd
j¼0

fbj þ ðZi1 � z1Þ
Tcjgbpj;�iðZiÞ

" #2
Lh2 ðZi1 � z1Þ

and bajðziÞ ¼ bbj , where L( � ) is a kernel function at this step.
CDXW (2006) showed that under some regularity conditions,ffiffiffiffiffiffiffiffiffi

nhd12

q baðz1Þ � aðz1Þ �
h22
2
trfm2ðLÞa

00ðz1Þg þ opðh
2
2Þ

� �
!
d
Nð0;Sðz1ÞÞ (38)

where Sðz1Þ ¼ f�1z1
ðz1Þn0ðLÞO�10 ðz1ÞO1ðz1ÞO�10 ðz1Þ; f z1 ðz1Þ is the marginal

density of Zi1, O0ðz1Þ ¼ E½pðZiÞpðZiÞ
T
jZi1 ¼ z1�, and O1ðziÞ ¼ OZ;1ðz1Þþ

Ox;1ðziÞ � 2OZx;1ðz1Þ. The definitions of OZ;1ðz1Þ; Ox;1ðz1Þ, and OZx;1ðz1Þ can
be found in CDXW (2006) and they are omitted here due to too many
notations.

One difference of the results in Eq. (38) compared with those in some
other two-stage instrumental regressions (see Newey & Powell, 2003; Newey
et al., 1999) is the asymptotic variance term. Here the asymptotic variance
consists of three terms: the first addresses the variation of measurement
error in the second step, the second term accounts for variability of the
estimated reduced form, and the third term accounts correctly for the
asymptotic covariance between the first and second steps. The presence of
the covariance term is different from some other IV estimators (e.g., Newey
et al., 1999), and arises because the second step does not condition on the
first step dependent variables.
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4.5. Bandwidth Selection

Selecting an optimal (data-driven) bandwidth is an important aspect in
applications. Unfortunately, there is basically not an elegant approach to
discuss theoretically and empirically how to adaptively select a bandwidth
under nonparametric IV settings, when a nonparametric method is applied
to estimate the structural regression function, except a rule-of-thumb
bandwidth proposed by CDXW (2006) for the functional-coefficient IV
models in Eq. (37). As mentioned in CDXW (2006), the second stage
estimation is not sensitive to the choice of the first stage bandwidth so long
as the bandwidth h1 at the first stage is chosen small enough such that the
bias in the first stage is not too large. This gives us an ad hoc method to
choose h1, similar to that discussed in Cai (2002a): use the CV or generalized
CV criterion of Cai, Fan, and Li (2000) or others to select the bandwidthbh10, Then use h1 ¼ A0

bh10ðA0 ¼ 1=2; say, or smaller) or choose a very
small h1 as the first-stage bandwidth. Alternatively, A0 can be taken to be
A0 ¼ n�a1 with a14l=ðd1 þ 4Þðd1 þ l þ 4Þ; as discussed in Cai (2002a),
where d1 is the dimension of the regressor z1.
In implementation at the second stage, the choice of bandwidth can be

carried out as in standard nonparametric regression. In that case, a number
of methods could be used to select h2, including CV (Stone, 1974),
generalized CV (Cai et al., 2000), preasymptotic substitution method (Fan &
Gijbels, 1996), the plug-in bandwidth selector (Ruppert, Sheather, & Wand,
1995), empirical bias method (Ruppert, 1997), nonparametric version of the
Akaike information criterion (AIC) (see Eq. (66) later) (Hurvich, Simonoff,
& Tsai, 1998; Cai & Tiwari, 2000) or the Schwarz-type information criterion
(SIC), among others. However, there appears to be no results in the
literature for a data-driven bandwidth selection with optimal properties
(see Newey et al. (1999) for the related discussion) under nonparametric IV
settings. It is an open question for future work and it would be very
interesting to give a more precise result. Nevertheless, as recommended
by CDXW (2006), the procedure suggested above is a useful one for
practitioners.

4.6. Semiparametric IV Models

Finally, we would like to mention some recent developments on nonpara-
metric IV models with a parametric part, so that they become semipara-
metric IV models. Due to the limitation of space, we only cite some
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references here. First, we mention the paper by Ai and Chen (2003) which
discussed a general framework for analyzing economic data (X, Y) by
assuming that the data satisfy some conditional moment restrictions such as,

E½rðZ; y;mð�ÞÞjX � ¼ 0 (39)

where Z ¼ ðTT;XT
z Þ

T;Xz is a subset of X, and r( � ) is a vector of known
(residual) functions. The true conditional distribution of Y given X is assumed
unknown and the parameters of interest contain a vector of finite dimen-
sional unknown parameters y and possibly a vector of infinite dimensional
unknown functions m( � ). Clearly, if ðZ ¼ ðY1;Y

T
2 ;X

T
1 ;X

T
2 Þ;Xz ¼ X1 and

rðZi; y;mð�ÞÞ ¼ Yi1 � yTXi1 �mðYi2Þ; model (39) reduces to a partially
linear model

Y1i ¼ bTXi1 þmðYi2Þ þ ui (40)

where E½uijXi� ¼ 0; which was studied by Newey et al. (1999) and Park
(2003), while Pakes and Olley (1995) considered a semiparametric IV model
with endogenous variables restricted only to the parametric part. Newey et al.
(1999) used the series method to approximate m( � ) and then to estimate both
b and m( � ) based on the nonparametric series method, whereas Pakes and
Olley (1995) and Park (2003) applied the generalized method of moment
estimation method to estimate b and m( � ).
As argued by Ai and Chen (2003), model (39) covers many known

nonparametric and semiparametric models as a special case. To estimate y
and m( � ), Ai and Chen (2003) proposed to approximate m( � ) by a sieve
method and then to estimate y and the sieve parameters jointly by applying
the method of minimum distance. They showed that the sieve estimator
of m( � ) is consistent with a rate faster than n�1/4 under certain metric and
the estimator of y is

ffiffiffi
n
p

-consistent and asymptotically normally distributed.
Finally, they addressed the efficiency by choosing the optimally weighted
minimum distance to attain the semiparametric efficiency bound. But, they
did not provide the asymptotic normality for the sieve estimator of m( � )
(see Ai & Chen, 2003 for details).

To obtain the asymptotic normality of nonparametric part, Cai and
Xiong (2006) considered a partially varying-coefficient IV model with the
following form:

Y ¼ gðX ;Z1Þ þ � ¼ g1ðZ11Þ
TZ12 þ g2ðZ11Þ

TX1 þ bT1Z13 þ bT2X2 þ � (41)

where Y is an observable scalar random variable, X ¼ ðXT
1 ;X

T
2 Þ

T is a vector
of endogenous variables including l-dimension vector X1 and p-dimension
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vector X2, Z1 ¼ ðZ
T
11;Z

T
12;Z

T
13Þ

T is a vector of exogenous variables,
consisting of d11-dimension vector Z11, d12-dimension vector Z12 with its
first element being one, and d13-dimension vector Z13, Z ¼ ðZT

1 ;Z
T
2 Þ

T is a
dz-dimension vector with Z2 being a vector of IVs of dimension d2,
dz ¼ d11þd12þd13þd2, and E(e |Z) ¼ 0.

To estimate b and g( � ) in (41), Cai and Xiong (2006) proposed a three-
stage method, briefly described below. First, by regarding b as a function of
Z11; that is b(Z11), then model (41) becomes (37). The nonparametric two
stage proposed in CDXW (2006) can be applied here to estimate g( � ) and
b( � ). Note that while b is a global parameter, the estimation of b( � ) only
involves the local data points in a neighborhood of Z11 so that the variance
is too large. To reduce variance, the estimation of the constant coefficients
requires using all data points. Cai and Xiong (2006) proposed using the
(weighting) average method to obtain the estimator for b and they showed
that the average estimator of b is

ffiffiffi
n
p

-consistent. To address the efficiency of
the constant parameter estimator, the weighted version estimator, similar
to Ai and Chen (2003), can be used to gain the efficiency by choosing the
optimal weighting function to minimize the asymptotic variance. See Cai
and Xiong (2006) for the related discussions.

Alternatively, one may use the profile likelihood (least squares for normal
likelihood) approach to estimate b1 and b2 in (41). It is well documented in
the literature that for ordinary semiparametric models, profile likelihood is a
useful approach and is semiparametrically efficient; see Speckman (1988),
Cai (2002a, 2002c), and Fan and Huang (2005) for details. Now we discuss
applying the profile likelihood approach to estimate b1 and b2 in (41).
For given b1 and b2, model (41) becomes

Y
 ¼ g1ðZ11Þ
TZ12 þ g2ðZ11Þ

TX1 þ � (42)

where Y
 ¼ Y � bT1Z13 � bT2X2 is the partial residual. This transforms the
partially varying-coefficient IV model (41) into the varying-coefficient IV
model (37). The two-stage LL estimation technique proposed in CDXW
(2006) can be applied to estimate the coefficient functions g1( � ) and g2( � ),
denoted by bg1ð�Þ and bg2ð�Þ, respectively. According to CDXW (2006), bothbg1ð�Þ and bg2ð�Þ are linear estimators of Y�. That is,

bM ¼
ĝ1ðZ11;1Þ

TZ12;1 þ ĝ2ðZ11;1Þ
TX1;1

..

.

ĝ1ðZ11;nÞ
TZ12;n þ ĝ2ðZ11;nÞ

TX1;n

0BB@
1CCA ¼ SY
 ¼ SðY � Z13b1 � X2b2Þ
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where Y
 ¼ ðY
1; . . . ; Y


nÞ

T. The matrix S is a smoothing matrix and
depends only on the data fðZ11;i;Z12;i;X1;i; bX1;iÞ; i ¼ 1; . . . ; ng and the kernel
function, where bX1;i is obtained from the reduced equation by the jackknife
least squares method; see CDXW (2006) for the explicit expression for S andbX1;i (which depends on the data fðXj ;ZjÞ; j ¼ 1; . . . ; i � 1; i þ 1; . . . ; ngÞ:
Substituting cM into Eq. (42), we obtain the following linear IV model

ðI � SÞY ¼ ðI � SÞ½Z13b1 þ X2b2� þ � (43)

Applying the two-stage least squares to the linear model (43), we obtain the
profile likelihood estimators of b1 and b2, respectively, termed as profile
two-stage least squares estimate. Note that if there is no endogeneity in the
model, Fan and Huang (2005) showed that the profile likelihood estimator is
semiparametrically efficient. Therefore, we conjecture that the profile least
squares estimate for b2 described above should be

ffiffiffi
n
p

-consistent and semi-
parametrically efficient. It is interesting to justify this result theoretically.

5. NONPARAMETRIC QUANTILE

REGRESSION MODELS

Since quantile regression or conditional quantile was introduced by
Koenker and Bassett (1978), it has been successfully and widely used in
various disciplines, such as finance, economics, medicine, and biology.
In nowadays, estimation of conditional quantiles is a common practice in
risk management operations and many other financial applications. The
literature on estimating quantile regression function is large but is still
swiftly growing. Much of the study on quantile regression is based on linear
parametric quantile regression models. But in recent years, nonparametric
quantile regression models in both theory and applications have attracted
a great deal of research attentions due to their greater flexibility than
tightly specified parametric models. A nonexhaustive list of important recent
contributions to this growing literature include (but not limited to)
Chaudhuri (1991), Koenker, Portnoy, and Ng (1992), Fan, Hu, and Troung
(1994), Koenker, Ng, and Portnoy (1994), Chaudhuri, Doksum, and
Samarov (1997), He, Ng, and Portnoy (1998), Yu and Jones (1998), He and
Ng (1999), He and Portnoy (2000), Honda (2000, 2004), Khindanova
and Rachev (2000), Cai (2002b), Cai and Ould-Said (2003), De Gooijer and
Zerom (2003), Yu and Lu (2004), Engle and Manganelli (2004), Horowitz
and Lee (2005), Kim (2007), and Cai and Xu (2008) and references therein
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for recent statistics and econometrics literature on nonparametric estimation
of quantile regression models.

Let fXt;Ytg
n
t¼1 be a stationary sequence and F(y|x) denote the conditional

distribution of Yt given Xt ¼ x, where Xt is a vector of covariates in <d ;
including possibly exogenous variables and lagged variables, the conditional
quantile function of Yt given Xt ¼ x is defined as, for any 0oto1,

qtðxÞ ¼ inffy 2 < : FðyjxÞ � tg ¼ F�1ðtjxÞ (44)

where F�1(t|x) is the inverse function of F(y|x). Equivalently, qt(x) can be
expressed as,

qtðxÞ ¼ argmina2<EfrtðYt � aÞjXt ¼ xg (45)

where rtðyÞ ¼ y½t� Ifyo0g� with y 2 < is called the loss (‘‘check’’) function
and I{A} is the indicator function of any set A. Function qt(x) is called as a
conditional quantile function or regression quantile.

It is well documented that quantile regression has several important
properties, described as follows. It does not require knowing the distribution
of Yt and symmetry of the distribution. When t ¼ 1/2, it becomes the
median or least absolute deviation regression, which is well known to posses
the robustness. Therefore, it has a robust property. Also, it has an ability to
model heterogeneous effects and to account for unobserved heterogeneity.
To see the intuitive behind this property, we use the basic Skorohod
representation to express the quantile regression model. Using this
representation, the dependent variable Yt, conditional on the exogenous
variable of interest Xt, takes the form

Yt ¼ qðXt;UtÞ; where UtjXt � Uð0; 1Þ

where q(x, u) ¼ qu(x) is the conditional uth quantile of Yt given Xt ¼ x and
Ut is the nonseparable error. Furthermore, it is convenient to use the
conditional quantile for detecting conditional heteroskedasticity. To this
end, we assume that Yt is related to Xt through the model

Yt ¼ mðXtÞ þ sðXtÞ�t

where m( � ) is the mean function, s2( � ) is the variance function, and Xt and
et are independent. The conditional quantile of Yt given Xt is

qtðXtÞ ¼ mðXtÞ þ sðXtÞF
�1
�t
ðtÞ

where Fet( � ) is the distribution of et. An informal way to test conditional
heteroskedasticity is to use a graph. That is, if the curves of qt(x) for
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different values of t are parallel, this indicates that s( � ) should be a
constant. Moreover, regression quantiles can also be useful for the
estimation of predictive intervals. For example, in predicting the response
from a given covariate Xt, estimates of qa/2(Xt) and q1–a/2(Xt) can be used to
obtain a (1�a) 100% nonparametric predictive interval. Finally, it is very
useful in various applied fields. For example, in risk management, it can be
used to compute the conditional value-at-risk (CVaR): the percentage loss
in market value over a given time horizon that is exceeded with a certain
probability, and the conditional expected shortfall (CES). Indeed, CVaR
can be regarded as a special case of quantile regression. Of course, there are
many methods available to model the CVaR. The CES can be expressed in
terms of a regression quantile as,

E½YtjYt � qtðXtÞ;Xt� ¼

Z t

0

quðXtÞdu

t

For details, see Cai and Wang (2008).
Given observed data fXt;Ytg

n
t¼1; the main interest is to estimate qt(x).

If we assume that qtðxÞ ¼ bTt x; we obtain a linear quantile regression model,
which is popular in the literature; see the book by Koenker (2005), and we
can estimate easily the parameters (see Eq. (60) below). In some practical
applications, a linear quantile regression model might not be flexible enough
to capture the underlying complex dependence structure. For example, some
components may be highly nonlinear or some covariates may be interactive.
Therefore, to make quantile regression models more flexible, there is a
swiftly growing literature on nonparametric quantile regression. Various
smoothing techniques, such as kernel methods, splines, and their variants,
have been used to estimate the nonparametric quantile regression for both
independent and time series data. Some recent developments and detailed
discussions on theory, methodologies, and applications can be found in the
literature. For example, Chaudhuri (1991), Fan et al. (1994), Chaudhuri
et al. (1997), Yu and Jones (1998), Honda (2000), Cai (2002b), and Cai and
Ould-Said (2003) considered nonparametric kernel smoothing estimate
of quantile function, while He et al. (1998), He and Ng (1999), and He and
Portnoy (2000) used spline methods to obtain nonparametric estimate.
However, a purely nonparametric quantile regression model may suffer
from the so-called ‘‘curse of dimensionality’’ problem, the practical
implementation might not be easy, and the visual display may not be useful
for the exploratory purposes. To deal with the aforementioned problems,
some dimension reduction modeling methods have been proposed in the
literature. For example, De Gooijer and Zerom (2003), Yu and Lu (2004),
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and Horowitz and Lee (2005) considered the additive quantile regression
models for i.i.d. data, while Honda (2004) and Cai and Xu (2008)
investigated the varying-coefficient quantile regression models for time
series processes. Particularly, there has been some study on a time-varying
coefficient quantile regression model, which is potentially useful to see
whether the quantile regression changes over time and in a case with a
practical interest is, for example, the analysis of the reference growth data
by Cole (1994), Wei, Pere, Koenker, and He (2006), Wei and He (2006), and
Kim (2007).

5.1. Direct Methods

A direct procedure is based on equation (44), described as follows. First,
estimate the conditional distribution function using a nonparametric
method such as the ‘‘double-kernel’’ LL technique of Yu and Jones (1998)
and then to invert the conditional distribution estimator to produce an
estimator of a conditional quantile. This estimator is called the Yu and
Jones estimator (see bqt;LLðxÞ in (57) later); see Yu and Jones (1998) for
details. As noticed by Cai (2002b) and Cai and Wang (2008), the key for
a direct estimation method is to find a good estimator for conditional
distribution function. Further, as demonstrated by Cai (2002b), although
LL estimators of the Yu and Jones type have some attractive properties such
as no boundary effects, design adaptation, and mathematical efficiency;
see, for example, Fan and Gijbels (1996), they have the disadvantage
of producing conditional distribution function estimators that are not
constrained either to lie between zero and one or to be monotone increasing
although some modifications in implementation were addressed by Yu and
Jones (1998). In both these respects, the NW methods are superior, despite
their rather large bias and boundary effects. The properties of positivity
and monotonicity are particularly advantageous if the method of inverting
the conditional distribution estimator is applied to produce an estimator of
a conditional quantile.

To overcome these difficulties, Cai (2002b) and Cai and Wang (2008)
proposed a weighted version of the NW (WNW) estimator and weighted
double kernel (WDK) estimator, which are designed to possess the superior
properties of LL methods such as bias reduction and no boundary effect and
to preserve the property that the NW estimator is always a distribution
function. Cai (2002b) and Cai and Wang (2008) established the asymptotic
normality and weak consistency for both the WNW and WDK estimators of
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conditional distribution for a-mixing under a set of weaker conditions at
both boundary and interior points. It is therefore shown, to the first order,
that the WNWmethod enjoys the same convergence rates as those of the LL
‘‘double-kernel’’ procedure of Yu and Jones (1998). More importantly, both
the WNW and WDK estimators have desired sampling properties at
both boundary and interior points of the support of the design density. Cai
(2002b) and Cai and Wang (2008) also derived both the WNW and WDK
estimators of the conditional quantile by inverting their estimated
conditional distributions estimator and showed that both the WNW and
WDK quantile estimators always exist as a result of both the WNW
and WDK distributions being a distribution function in finite samples and
that they inherit all advantages from the WNW and WDK estimators of
conditional distribution.

For simplicity of notation, we consider the case of d ¼ 1. We now turn to
the estimation of the conditional distribution function F(y|x). To this end,
let pt(x), for 1rtrn, denote the weight functions of the data X1, y, Xn and
the design point x with the property that each ptðxÞ � 0;

Pn
t¼1ptðxÞ ¼ 1 andXn

t¼1

ðXt � xÞptðxÞKhðx� XtÞ ¼ 0 (46)

where K( � ) is a kernel function, Kh( � ) ¼ K( � /h)/h, and h ¼ hnW0 is the
bandwidth. Motivated by the property of LL estimator, the constraint (46)
can be regarded as a discrete moment condition; see Fan and Gijbels (1996,
p. 63) for details. Of course, {pt(x)} satisfying these conditions are not
uniquely defined and we specify them by maximizing

Qn
t¼1ptðxÞ subject to

the constraints. The weighted version of NW estimator of the conditional
distribution F(y|x) of Yt given Xt ¼ x is defined

bFWNWðyjxÞ ¼

Pn
t¼1

ptðxÞKhðx� XtÞ1ðYt � yÞ

Pn
t¼1

ptðxÞKhðx� XtÞ

Note that 0 � bFWNWðyjxÞ � 1 and it is monotone in y. Cai (2002b) showed
that bFWNWðyjxÞ is first-order equivalent to a LL estimator (see bFLLðyjxÞ in
Eq. (56) later). More importantly, that bFWNWðyjxÞ has automatic good
behavior at boundaries. In contrast, bFLLðyjxÞ may not take values in [0,1]
and it may not be monotone in y.

The natural question arises regarding how to choose the weights.
Borrowing the idea is from the empirical likelihood, Cai (2002b) suggested
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maximizing
Pn

t¼1 logfptðxÞg subject to the constraints
Pn

t¼1ptðxÞ ¼ 1 and
Eq. (46) through the Lagrange multiplier method, the {pt(x)} are simplified to

ptðxÞ ¼ n�1f1þ lðXt � xÞKhðx� XtÞg
�1

where l, a function of data and x, is uniquely defined by Eq. (46), which
ensues that

Pn
t¼1ptðxÞ ¼ 1: Equivalently, l is chosen to maximize

LnðlÞ ¼
1

nh

Xn
t¼1

logf1þ lðXt � xÞKhðx� XtÞg (47)

In implementation, Cai (2002b) recommended using the Newton Raphson
scheme to find the root of equation L0nðlÞ ¼ 0:
Cai (2002b) showed that, under some regularity conditions including that
fðXt;YtÞg

n
t¼1 is an a-mixing sequence, then as n-N,

bFWNWðyjxÞ � FðyjxÞ ¼
1

2
h2m2ðKÞF

2;0ðyjxÞ þ opðh
2
Þ þOpððnhÞ

�1=2
Þ (48)

where Fa;bðyjxÞ ¼ @aþb=@ya@xbFðyjxÞ and mjðKÞ ¼
R
ujKðuÞdu: This, of

course, implies that bFWNWðyjxÞ ! FðyjxÞ in probability with a rate. In
addition, Cai (2002b) derived the asymptotic normality for bFWNWðyjxÞ as,ffiffiffiffiffi

nh
p
½ bFWNWðyjxÞ � FðyjxÞ � Bf ðyjxÞ þ opðh

2
Þ�!

d
Nð0;s2f ðyjxÞÞ (49)

where the bias and variance are given, respectively, by:

Bf ðyjxÞ ¼
1

2
h2m2ðKÞF2;0ðyjxÞ; and s2f ðyjxÞ ¼ n0ðKÞFðyjxÞ

½1� FðyjxÞ�

f 1ðxÞ

(50)

with f1(x) being the marginal density of Xt. This implies that to the first
order, the WNW method enjoys the exactly same convergence rates as those
of LL ‘‘double-kernel’’ procedure (see bFLLðyjxÞ in Eq. (56) later) of Yu and
Jones (1998), under similar regularity conditions. However, Yu and Jones
(1998) treated only the case of independent data.

Based on Eq. (44), we define the WNW type conditional quantile
estimator bqWNWðxÞ to satisfy bFWNWðbqWNWðxÞjxÞ ¼ t so that

bqWNWðxÞ ¼ inffy 2 < : bFWNWðyjxÞ � tg 	 bF�1WNWðtjxÞ (51)

Clearly, bqWNWðxÞ always exists since bFWNWðyjxÞ is between 0 and 1 and
monotone in y, and it involves only one bandwidth so that it makes
practical implementation more appealing. In contrast, the LL double-kernel
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estimator of Yu and Jones (1998) has some difficulty of inverting the
conditional distribution estimator due to lack of monotonicity and it
requires choosing two bandwidths although the second bandwidth should
not be very sensitive (see Remark 3 later). Furthermore, Cai (2002b) showed
that the WNW estimator bqt;WNWðxÞ maintains the aforementioned
advantages as bFWNWðyjxÞ does. Also, Cai (2002b) showed that under some
regularity conditions, as n-N,ffiffiffiffiffi

nh
p
½bqt;WNWðxÞ � qtðxÞ � BtðxÞ þ opðh

2
Þ�!

d
Nð0;s2tðxÞÞ (52)

where the bias and variance are given, respectively, by:

BtðxÞ ¼ �
Bf ðqtðxÞjxÞ

f ðqtðxÞjxÞ
and s2tðxÞ ¼

s2f ðqtðxÞjxÞ

f 2ðqtðxÞjxÞ
¼

n0ðKÞp½1� p�

f 2ðqtðxÞjxÞf 1ðxÞ
(53)

where f(y|x) is the conditional density of Yt ¼ y given Xt ¼ x.
It is clear that for given x, bFWNWðyjxÞ is not a continuous function of y.

It might cause the computational trouble when computing the estimated
conditional quantile bqt;WNWðxÞ by Eq. (51). To overcome this shortcoming,
Cai and Wang (2008) proposed a WDK estimator (see below), which indeed
is differentiable with respect to y. Cai and Wang (2008) showed that the
differentiability of the estimated conditional distribution function cannot
only make the asymptotic analysis much easier for the nonparametric
estimators of quantile regression, but also can reduce the asymptotic variance
(or asymptotic mean squared error) in a higher order sense. The main idea of
Cai and Wang (2008) is described as follows.

It is noted for a given symmetric kernel g( � ), where G( � ) is the
distribution function of g( � ), as h0-0,

EfGh0ðy� YtÞjXt ¼ xg ¼ FðyjxÞ þ
h20
2
m2ðgÞF

0;2ðyjxÞ þ oðh20Þ ! FðyjxÞ (54)

where Gh0 ðuÞ ¼ Gðu=h0Þ=h0: The above convergence ignores the higher terms
oðh20Þ since h0 ¼ o(h), where h is the smoothing bandwidth in the x direction
(see Eq. (55) below). We can see that Y
t ðyÞ ¼ Gh0 ðy� YtÞ can be regarded as
an initial estimate of F(y|x) smoothing in the y direction. Thus, the left-hand
side of Eq. (54) can be regraded as a nonparametric regression of the
observed variable Y
t ðyÞ versus Xt and the LL (or polynomial) fitting scheme
can be applied here. This leads to the locally weighted least squares
regression problem:Xn

t¼1

fY
t ðyÞ � a� bðXt � xÞg2Khðx� XtÞ (55)
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Note that Eq. (55) involves two kernels g( � ) and K( � ) and two bandwidths
h0 and h. This is the reason for calling it ‘‘double kernel.’’

Minimizing Eq. (55) with respect to a and b, we obtain the locally
weighted least squares estimator of F(y|x), which is ba: It is easy to see that
this estimator can be reexpressed as a linear estimator as,

bFLLðyjxÞ ¼
Xn
t¼1

WLL;tðx; hÞGh0 ðy� YtÞ (56)

where with Sn;jðxÞ ¼
Pn

t¼1Khðx� XtÞðXt � xÞj ; the weights fWLL;tðx; hÞg are
given by,

WLL;tðx; hÞ ¼ ½Sn;2ðxÞ � ðx� XtÞSn;1ðxÞ�Khðx� XtÞ½Sn;0ðxÞSn;2ðxÞ � S2
n;1ðxÞ�

�1

Clearly, {WLL,t(x, h)} satisfy the discrete moments conditions given in
Eq. (46). bFLLðyjxÞ is the so-called Yu and Jones estimator. Yu and Jones
(1998) studied the asymptotic properties of bFLLðyjxÞ for i.i.d. data, which
are similar to those given in Eqs. (48) and (49) if h0 ¼ o(h).

Remark 3. If the bandwidth at the initial step h0 is not undersmoothed,
say h0 ¼ O(h), then there is an extra term in the asymptotic bias and
it is given by m2ðgÞðh

2
0=2ÞF

0;2ðyjxÞ; which is carried over from the initial
estimation.

Also, Yu and Jones (1998) considered the nonparametric estimate of qt(x)
based on bFLLðyjxÞ; which is defined as,

bqt;LLðxÞ ¼ bF�1LLðtjxÞ (57)

and they derived the asymptotic properties of bqt;LLðxÞ; which is the exactly
same as that given in Eq. (52). Further, Yu and Jones (1998) proposed an
ad hoc method to adaptively select the optimal bandwidths h0 and h.
Clearly, bFLLðyjxÞ may not be constrained either to lie between zero and one
or monotone increasing. To overcome this difficulty, some modifications in
implementation of bqt;LLðxÞ were addressed in Yu and Jones (1998).
To accommodate all of the above attractive properties (monotonicity,

continuity, differentiability, lying between zero and one, design adaption,
avoiding boundary effects, and mathematical efficiency) of both estimatorsbFLLðyjxÞ and F̂WNWðyjxÞ under a unified framework, Cai and Wang (2008)
proposed the following nonparametric estimator for conditional distribu-
tion F(y|x), termed as WDK estimation,

bFWDKðyjxÞ ¼
Xn
t¼1

WWDK;tðx; hÞGh0 ðy� YtÞ (58)
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where

WWDK;tðx; hÞ ¼ ptðxÞWhðx� XtÞ
Xn
t¼1

ptðxÞWhðx� XtÞ

" #�1

and {pt(x)} is chosen to be ptðxÞ ¼ n�1f1þ lðXt � xÞWhðx� XtÞg
�1 � 0 to

satisfy Eq. (46). Here l is a function of the data and x and is uniquely
defined by Eq. (47). Cai and Wang (2008) showed that the asymptotic
properties for bFWDKðyjxÞ are similar to those given in Eqs. (48) and (49)
if h0 ¼ o(h). Note that this undersmoothing at the initial step is needed
(see Remark 3).

Moreover, Cai and Wang (2008) considered the nonparametric estimate
of qt(x) based on bFWDKðyjxÞ; which is defined as,

bqt;WDKðxÞ ¼ bF�1WDKðtjxÞ (59)

Note that bqt;WDKðxÞ always exists in finite samples and is uniquely
determined since bFWDKðyjxÞ is a continuous distribution function. Cai and
Wang (2008) also showed that bqt;WDKðxÞ has the exactly same asymptotic
behavior as that given in Eq. (52). In addition, Cai and Wang (2008)
proposed an ad hoc data-driven bandwidth selection method based on the
nonparametric version of the AIC.

Finally, Yu and Jones (1998), Cai (2002b) and Cai and Wang (2008)
discussed the asymptotic behavior of their nonparametric estimatorsbqt;LLðxÞ; bqt;WNWðxÞ and bqt;WDKðxÞ at boundaries and the result shows that
all estimators have the exactly same asymptotic bias and do not have
boundary effect; see Yu and Jones (1998), Cai (2002b) and Cai and Wang
(2008) for details.

Cai and Wang (2008) considered a real data set on Dow Jones Industrials
(DJI) index returns and applied the proposed method to estimate the 5%
CVaR and CES functions. Both the CVaR and CES estimates exhibit a
U-shape, which corresponds to the so-called ‘‘volatility smile.’’ Therefore,
the risk tends to be lower when the lagged log loss of DJI is close to the
empirical average, and larger otherwise. We can also observe the curves are
asymmetric. This may indicate that the DJI index is more likely to fall if
there were a loss within the last day than if there was a same amount of
positive return.
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5.2. Loss Function Approaches

Based on Eq. (45), if qtðxÞ ¼ bTt x is linear in x, then, one can find the
estimate of bt by,

bbt ¼ argminbt

Xn
t¼1

rtðYt � bTt xÞ (60)

see Koenker and Bassett (1978, 1982) for details.
To compute bbt in Eq. (60), it can be implemented by using the function

rq( ) in the package quantreg in the computing language R, due to Koenker
(2004).

If qt(x) is a nonparametric function, there are several methods proposed
in the literature to estimate qt(x), we describe some of them below.

5.2.1. Local Polynomial Methods
If qt(x) is assumed to have continuous (mþ1)th order partial derivative, for
Xt in a neighborhood of x, qt(Xt) can be approximated by

Pm
j¼0yjðXt � xÞj

where yj ¼ ð1=j!Þ@jqtðxÞ=@x
j is the jth partial derivative of qt(x). Then, we

can use the following locally weighted loss function, which is a locally
weighted version of Eq. (60),

by ¼ argminy
Xn
t¼1

rt Yt �
Xm
j¼0

yjðXt � xÞj

 !
Khðx� XtÞ (61)

to obtain the local polynomial estimation of quantile function. Clearly,bqtðxÞ ¼ by0 estimates the quantile function and bqðjÞt ðxÞ ¼ j!byj estimates the jth
partial derivative. Note that formula (61) has been addressed (essentially)
by Chaudhuri (1991), Fan et al. (1994), Koenker et al. (1992), Yu and Jones
(1998) for i.i.d. sample and Honda (2000) and Cai and Ould-Said (2003) for
time series.

To compute bqtðxÞ and bqðjÞt ðxÞ; one also can use the function rq( ) by setting
covariates as Xt � x; . . . ; ðXt � xÞm; and the weight as Kh(Xt�x). Alter-
natively, one can use the function lprq( ) in the same package.

By using the series expansion method, Chaudhuri (1991) was the first to
obtain the local Bahadur type representation of parameter’s estimators so
that one can easily derive some asymptotic results. Honda (2000) general-
ized these results to the a-mixing process by using local polynomial fitting,
and obtained the similar asymptotic results. To derive the asymptotic
properties, Honda (2000) and Cai and Xu (2008) gave the local Bahadur
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representation for bqtðxÞ for univariate case (d ¼ 1). That is, they showed
that under some regular conditions, the LL (m ¼ 1) quantile estimator bqtðxÞ
has the following representation,ffiffiffiffiffi

nh
p
½bqtðxÞ � qtðxÞ� ¼

1

f yjxðqtðxÞjxÞf 1ðxÞ
ffiffiffiffiffi
nh
p

Xn
t¼1

ctðY


t ÞK

ðXt � xÞ

h

� �
þ opð1Þ

(62)

where ctðxÞ ¼ t� Ixo0 and Y
t ¼ Yt � qtðxÞ � q0tðxÞðXt � x0Þ: Therefore,
one can easily obtain the asymptotic normality as,ffiffiffiffiffi

nh
p bqtðxÞ � qtðxÞ �

h2

2
m2ðKÞq

00
t ðxÞ þ opðh

2
Þ

� �
!
d
Nð0;s2tðxÞÞ (63)

where s2tðxÞ is given in Eq. (53). Clearly, a comparison of Eqs. (52) and (63)
leads to conclusions that the LL quantile estimator bqtðxÞ and three direct
estimators share the exactly same asymptotic variance, but the biases
are quite different. Indeed, the bias term in Eq. (52) (see also Eq. (53)), the
quantity �F2;0ðqtðxÞjxÞ=f ðqtðxÞjxÞ; involving the second derivative of the
conditional distribution function, is replaced by q00t ðxÞ, the second derivative
of the conditional quantile function itself. This is not surprising since for the
direct methods, the approximation is applied to the conditional distribution
function, while for LL quantile estimator q̂tðxÞ, the approximation is applied
to the conditional quantile function itself.

5.2.2. Spline Approaches
In the 1990s, there were many research papers on nonparametric estimation
of quantile regression using various splines methods such as smoothing
splines and B-splines. For example, for a single covariate, He and Shi (1994)
used quantile regression B-splines and considered the convergence with
a rate of B-splines estimator, while Koenker et al. (1994) suggested quantile
smoothing splines. In bivariate smoothing, He et al. (1998) considered
bivariate quantile smoothing splines that belong to the space of bilinear
tensor product splines, while Portnoy (1997) and He and Portnoy (2000)
provided the asymptotic properties of these bivariate quantile splines
estimators. The optimality properties of the splines provide justification for
their use in nonparametric quantile function estimation, and the optimiza-
tion problems can be solved efficiently as linear programs. He and Ng (1999)
considered a general additive (several covariates) model with univariate
linear splines capturing the main effects and bilinear tensor product splines
capturing the second-order interactions. But all splines methods encounter
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the same difficulties that it is not easy to derive the asymptotic properties like
asymptotic normality and to make statistical inferences (see Remark 5 later
for more discussions), although they might be attractive in applications.

We now begin by briefly reviewing the smoothing splines technique; see
the aforementioned papers for details. For a univariate design variable Xt

with observed response Yt, the tth quantile smoothing spline function qt(x)
minimizes over Xn

t¼1

rtðYt � qtðXtÞÞ þ lVðq0tÞ (64)

where VðhÞ ¼ sup
Pk

j¼1jhðxjÞ � hðxj�1Þj denotes the total variation of the
function h( � ) with the supremum being taken over all finite partitions
x0ox1o � � �oxk of the support of h( � ). If h( � ) is differentiable, it is easy to
see that

VðhÞ ¼

Z 1

0

jh0ðxÞjdx; if the support of hð�Þ is ½0; 1�

The optimal solution bqtðxÞ estimates the tth conditional quantile function
qt(x). The problem of quantile smoothing in expression (64) can be viewed
as a special case (p ¼ 1) of the following general form of quantile smoothingXn

t¼1

rtðYt � qtðXtÞÞ þ l
Z
jq00t ðxÞj

pdx

� �1=p

(65)

for pZ1. If p ¼ 2 in Eq. (65), the solution to expression (65) is a natural
cubic smoothing spline with knots at the observed design points. Its
computation is rather efficient as it simply amounts to solving a linear
system. The solution to expression (64) is a linear smoothing spline with
possible breaks in the derivative at the design points, and the computation
can be performed by modern linear programming methods. See the forgoing
papers for the computational issue. As for selecting the smoothing
parameter l, the SIC is commonly suggested in the smoothing spline
literature; see Koenker et al. (1994) and He and Ng (1999) for details. But it
is well known that the SIC is overfitting due to the heavy penalty (see Eq.
(66) later) when the sample is large.

Remark 4. As commented by He et al. (1998), generalization of
smoothing splines to bivariate or multivariate cases is not always
straightforward. The form of the solution often depends on the roughness
penalty used in the optimization process and it is quite complex. Due to
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the complicated notation, we ignore the presentation of smoothing splines
for multivariate case. Instead, we refer the reader to the papers by He and
Shi (1994), He et al. (1998), He and Ng (1999), and He and Portnoy (2000)
for the detailed discussions.

Remark 5. It is well known in the splines literature; see the previously
mentioned papers, that the rate of convergence for the nonparametric
estimates depends mainly on two aspects: the smoothness of the function
being estimated and the dimensionality of the spline space or, equivalently,
the number of knots. These issues are still valid for the conditional quantile
smoothing splines estimates. The asymptotic behavior such as the rate of
convergence for the quantile smoothing splines is rather difficult to analyze,
especially when a data-driven smoothing parameter is used. In the
univariate case when the smoothing parameter is not data-driven, Portnoy
(1997) derived some local asymptotic properties of the quantile smoothing
splines, while He and Ng (1999) and He and Portnoy (2000) presented the
asymptotic mean square error for bivariate and multivariate cases.
Unfortunately, the asymptotic normality of a quantile spline (smoothing
spline or B-spline) estimator for the data-driven smoothing parameters is
still open and it is warranted as a future research topic.

A B-spline approach can be formulated as follows. It is well known that a
B-spline approach depends on the degree of smoothness of the true quantile
function, which determines how well the quantile function can be
approximated. Therefore, it is commonly assumed that the quantile function
with a certain degree of smoothness r defined as follows. To this end, define
a functional space Qr to be the collection of all functions on a domain, say
[0, 1] for which the mth order derivative satisfies the Hölder condition of
order of g with r ¼ mþg. That is, for each h 2 Qr; jh

ðmÞ
ðsÞ � hðmÞðtÞj �

W0js� tjg for any 0rs, tr1 and a positive finite constant W0.
Here we first assume that the quantile regression function qt(x) is from Qr

and then, we can define B-splines of order mþ1 used to approximate the
quantile function qt( � ). We consider a sequence of positive integers {kn},
nZ1, (the number of knots) and an extended partition of [0, 1] by kn knots
with equal or unequal length. Then, we can define the associated B-spline
basis functions by fBjðxÞg; 1 � j � kn þmþ 1; see Schumaker (1981) for
details. The proposed B-spline estimator of qt(x) is given by,

bqtðxÞ ¼ Xknþmþ1
j¼1

byjBjðxÞ
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where byj solves the minimization problemXn
t¼1

rt Yt �
Xknþmþ1
j¼1

yjBjðXtÞ

 !
Clearly, when the B-spline basis is given, computations can be easily carried
using standard quantile regression algorithms as in Eq. (60). As for selecting
the order and knots for the splines, the SIC is commonly suggested in the
B-spline literature; see He and Shi (1994) and Kim (2007).

5.2.3. Smoothing Parameter Selection
It is well known that the smoothing tuning parameter Z (Z ¼ h for kernel
smoothing and Z ¼ l for smoothing spline) plays an essential role in the
trade-off between reducing bias and variance. To the best of our knowledge,
there has been very limited literature about selecting Z in the context of
estimating the quantile regression even though there is a rich amount of
literature on this issue in the mean regression setting; see, for example,
Cai et al. (2000) and Cai and Tiwari (2000). Indeed, Yu and Jones (1998) or
Yu and Lu (2004) proposed a simple and convenient method for the
nonparametric quantile estimation. Their approach assumes that the second
derivatives of the quantile function are parallel. However, this assumption
might not be valid for many applications due to (nonlinear) heteroscedas-
ticity. Further, the mean regression approach cannot directly estimate the
variance function. To attenuate these problems, Cai and Xu (2008) proposed
a method of selecting bandwidth for the foregoing estimation procedure,
based on the nonparametric version of the AIC, which can attend to the
structure of time series data and the overfitting or underfitting tendency. The
basic idea is motivated by its analogue of Cai and Tiwari (2000) for nonlinear
mean regression for time series models and we briefly describe it below.

By recalling the classical AIC for linear models under the likelihood
setting; that is the negative of twice of the maximized log likelihood plus
twice of the number of estimated parameters, Cai and Xu (2008) proposed
the following nonparametric version of the bias-corrected AIC; see
Hurvich et al. (1998) and Cai and Tiwari (2000) for nonparametric regres-
sion models, to select Z by minimizing

AICðZÞ ¼ logfbs2Zg þ 2ðpZ þ 1Þ

½n� ðpZ þ 2Þ�
(66)

where bs2Z ¼ n�1
Pn

t¼1rtðYt � bqtðXtÞÞ and pZ is the nonparametric version of
degrees of freedom, called the effective number of parameters. This criterion
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may be interpreted as the AIC for the local quantile smoothing problem and
seems to perform well in some limited applications. Note that similar to
Eq. (66), Koenker et al. (1994) considered the SIC with the second term on
the right-hand side of Eq. (66) replayed by 2n�1 pl log n, where pl is the
number of ‘‘active knots’’ for the smoothing spline quantile setting.

For different smoothing techniques, the choice of pZ might be different.
For example, see Koenker et al. (1994) on how to choose pZ ¼ pl in quantile
smoothing splines setting and Cai and Xu (2008) for how to determine
pZ ¼ ph under kernel smoothing framework.

5.2.4. Dimension Reduction Modeling
As mentioned earlier, a purely nonparametric quantile regression model may
suffer from the so-called ‘‘curse of dimensionality’’ problem. To overcome
this difficulty, some dimension reduction modeling methods have been
proposed in the literature such as additive and varying-coefficient models,
discussed next.

5.2.4.1. Additive Models. An additive quantile regression model takes a
form as,

qtðxÞ ¼ dþ
Xd
j¼1

qt;jðxjÞ (67)

which was studied by De Gooijer and Zerom (2003), Yu and Lu (2004), and
Horowitz and Lee (2005). For ease of notation, assume that d ¼ 2 in what
follows. De Gooijer and Zerom (2003) used a two-stage approach to
estimate each component in Eq. (67) as follows. First, estimate the
d-dimensional quantile regression surface gt(x) using Eq. (51) to obtainbqt;WNWðxÞ and then use the projection method of Cai and Masry (2000) as,

bqt;1ðx1Þ ¼
1

n

Xn
t¼1

bqt;WNWðx1;Xt2ÞWðx1;Xt2Þ

where W( � ) is a weighting function, which can be chosen based on
minimizing the asymptotic variance as in Cai and Fan (2000) to achieve the
optimality or to screen out outliers. Similarly, one can estimate bqt;2ðx2Þ:
De Gooijer and Zerom (2003) also presented the asymptotic normality of
the proposed estimator.

Later, Yu and Lu (2004) proposed using a backfitting algorithm equipped
with a LL fitting as follows.
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1. Step (1), initial estimation. Set

d̂ ¼ argmind
Xn
t¼1

rtðYt � dÞ

and, for j ¼ 1 and 2,

ðbaj ; bbjÞ ¼ argmina;b
Xn
t¼1

rtðYt � bd� a� bðXtj � xjÞÞKhjðXtj � xjÞ

Then, set q
ð0Þ
t;j ðxjÞ ¼ baj , and take q


ð0Þ
t;j ðxjÞ as q

ð0Þ
t;j ðxjÞ minus the tth sample

quantile of fq
ð0Þ
t;j ðXtjÞg

n
t¼1.

2. Step (2), iteration. Set

bdðlÞ¼ argmind

Xn
t¼1

rtðYt � q

ðl�1Þ
t;1 ðXt1Þ � q


ðl�1Þ
t;2 ðXt2Þ � dÞ

and for j ¼ 1 and 2 and m ¼ 3�j,

ðbaj ; bbjÞ ¼ argmina;b
Xn
t¼1

rtðYt �
bdðlÞ � q
ðl�1Þt;m ðXtmÞ

� a� bðXtj � xjÞÞKhjðXtj � xjÞ

then take q
ðlÞ
t;jðxjÞ ¼ baj ; and take q


ðlÞ
t;j ðxjÞ as q

ðlÞ
t;jðxjÞ minus the tth sample

quantile of fq
ðlÞ
t;jðXt;jÞg

n
t¼1:

3. Step (3), keep cycling step (2) for l ¼ 1; 2; 3; . . . until the value of q
ðlÞt ¼

ðbdðlÞ; q
ðlÞt;1 ; q

ðlÞ
t;2 Þ has converged. Next, for j ¼ 1 and 2, let ðbaj ; bbjÞ ¼

ðq

ðlÞ
t;j ðxjÞ;

bbjÞ. Then, ðbaj; bbjÞ gives the estimators of qt;jðxjÞ and q0t;jðxjÞ;

respectively.

Further, Yu and Lu (2004) investigated the large sample behavior of the
proposed backfitting estimator.

Recently, Horowitz and Lee (2005) used a two-stage approach which is
different from that in De Gooijer and Zerom (2003). At the first stage, use a
series approximation to each component as qt;jðxjÞ 

Pkj
l¼0yljfjlðxjÞ; where

ffjlð�Þg is a basis function, and then estimate ylj by,

argmind;y

Xn
t¼1

rt Yt � d
X2
j¼1

Xkj
l¼0

yljfjlðxjÞ

 !
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denoted by bylj ; to obtain

bqð0Þt;j ðxjÞ ¼Xkj
l¼0

byljfjlðxjÞ

At the second stage, estimate qt,j(xj) by first finding

ðbaj ; bbjÞ ¼ argmina;b
Xn
t¼1

rtðYt � bd� bqð0Þt;mðXtmÞ � a� bðXtj � xjÞÞKhjðXtj � xjÞ

and then taking bqt;jðxjÞ ¼ baj . Also, Horowitz and Lee (2005) derived the
asymptotic properties for the proposed two-stage estimator.

5.2.4.2. Varying-Coefficient Models. A varying-coefficient quantile regres-
sion model takes a form as,

qtðu;xÞ ¼
Xd
j¼1

at;jðuÞxj ¼ atðuÞ
Tx (68)

which was studied by Honda (2004) for i.i.d. data, Cai and Xu (2008)
for dynamic time series observations, and Kim (2007) for time-varying
coefficients (u is time) for i.i.d. samples. For easy exposition, we assume
that u is univariate below.

To estimate {ak( � )} using the local polynomial method based on
fUt;Xt;YtÞg

n
t¼1; assume that the coefficient functions {a( � )} have the

(mþ1)th derivative (mZ1), so that for any given gird point u 2 <; akð�Þ can
be approximated by a polynomial function in a neighborhood of the given
grid point u as aðUtÞ 

Pm
j¼0bjðUt � uÞj ; where bj ¼ aðjÞðuÞ=j! and a(j)(u) is

the jth derivative of a(u), so that qtðUt;XtÞ 
Pm

j¼0X
T
t bjðUt � uÞj : Then, the

locally weighted loss function is

Xn
t¼1

rt Yt �
Xm
j¼0

XT
t bjðUt � uÞj

 !
KhðUt � uÞ (69)

Solving the minimization problem in Eq. (69) gives baðuÞ ¼ bb0; the local
polynomial estimate of a(u), and baðjÞðuÞ ¼ j!bbjðj � 1Þ; the local polynomial
estimate of the jth derivative a(j)(u). By moving u along with the real line, the
estimate of the entire curve baðuÞ is obtained.

Cai and Xu (2008) derived the asymptotic properties for baðuÞ. Under
some regularity conditions, we have the following asymptotic normality
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for m odd,

ffiffiffiffiffi
nh
p baðuÞ � aðuÞ �

hmþ1

ðmþ 1Þ!
aðmþ1ÞðuÞmmþ1ðKÞ þ opðh

mþ1
Þ

� �
!
d
Nð0;SaðuÞÞ

where SaðuÞ ¼ tð1� tÞSðuÞ; SðuÞ ¼ ½O
ðuÞ��1OðuÞ½O
ðuÞ��1=f uðuÞ; OðuÞ ¼
E½XtX

T
t jUt ¼ u�; O
ðuÞ ¼ E½XtX

T
t f yju;xðqtðu;XtÞÞjUt ¼ u�; f uð�Þ is the mar-

ginal density of Ut, and fy|u,x(y) is the conditional density of Yt given Ut

and Xt. Also, Cai and Xu (2008) proposed an ad hoc bandwidth selection
method that is similar to that described in Section 5.2.3.
Finally, Kim (2007) considered the time-varying coefficient quantile

regression model as,

qtðt;xÞ ¼
Xd
j¼1

at;jðtÞxj ¼ atðtÞ
Tx (70)

and used a B-spline technique to estimate at(t). Note that model (70) might
be potentially useful to see whether the quantile regression changes over
time and in a case with a practical interest is, for example, the analysis of
the reference growth data by Cole (1994), Wei et al. (2006), and Wei and
He (2006) for longitudinal data, and Kim (2007) for i.i.d. samples.
Finally, it is worth to point out that model (70) might be very useful for a
nonparametric testing for testing structural changes in regression quantiles
as in Qu (2008).

Cai and Xu (2008) used model (68) and its modeling approaches to
explore the possible nonlinearity feature, heteroscedasticity, and predict-
ability of the exchange rate series of the Japanese Yen in terms of the U.S.
dollar. Their empirical findings are that the quantile has a complex structure
and that both heteroscedasticity and nonlinearity exist. This implies that
the GARCH effects occur in the exchange rate time series. Finally, they
considered the one-step ahead post-sample forecasting for the last 25
observations and constructed the 95% nonparametric prediction interval
ðbq0:025ð�Þ; bq0:975ð�ÞÞ based on the past two lags. It turns out that 24 of 25
predictive intervals contain the corresponding true values. This means
that under the dynamic smooth coefficient quantile regression model
assumption, the prediction intervals based on the proposed method work
reasonably well.
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6. CONCLUSION

In this paper, we survey some recent developments in nonparametric eco-
nometrics, including (i) nonparametric estimation and testing of regression
functions with mixed discrete and continuous covariates; (ii) nonparametric
estimation/testing with nonstationary data; (iii) nonparametric IV estima-
tions; and (iv) nonparametric estimation of quantile regression models.

In the paper by Cai and Hong (2009), they gave a survey on the recent
developments of nonparametric estimation and testing of financial econo-
metric models. Due to space limitation, we omit some of the important areas
such as nonparametric/semiparametric with limited dependent variable
models and nonparametric/semiparametric panel data models. Another
promising line of research is to impose less restrictions on econometric
models and hence parameters may not be point identified but are set
identified. Readers interested in these areas of research should consult with
the works by Manski (2003), Imbens and Manski (2004), Honore and
Tamer (2006), and the references therein.

NOTES

1. This argument may not be always true as one can also choose a fixed value of h
in testing problems, resulting in a non-smoothing test, see Chapter 13 of Li and
Racine (2007) on more detailed discussions of non-smoothing tests.
2. Fan and Li (1996) proposed a nonparametric significance test. Gu, Li, and Liu

(2007) showed that a residual-based bootstrap method can be used to better
approximate the null distribution of Fan and Li’s test.
3. This independence assumption can be relaxed to E(ut|Xt, Zt) ¼ 0, which leads

to some modification to the asymptotic theory.
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