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INTRODUCTION

The field of nonparametric econometrics continues to grow at an
exponential rate. The field has matured significantly in the past decade,
and many nonparametric techniques are now commonplace in applied
research. However, many challenges remain, and the papers in this Volume
address some of them.'

Below we present a brief overview of the papers accepted in this Volume,
and we shall group the papers into six categories, namely, (1) Model identi-
fication and testing of econometric models, (2) Estimation of semiparametric
models, (3) Empirical applications of nonparametric methods, (4) Copula and
density estimation, (5) Computation, and (6) Surveys.

1. MODEL IDENTIFICATION AND TESTING OF
ECONOMETRIC MODELS

Identification and inference are central to applied analysis, and two papers
examine these issues, the first being theoretical in nature and the second
being simulation based.

The evaluation of treatment effects has permeated the social sciences and is
no longer confined to the medical sciences. The first paper, “Partial
identification of the distribution of treatment effects and its confidence sets”
by Yanqin Fan and Sang Soo Park, investigates partial identification of the
distribution of treatment effects of a binary treatment under various
assumptions. The authors propose nonparametric estimators of the sharp
bounds and construct asymptotically uniform confidence sets for the
distribution of treatment effects. They also propose bias-corrected estimators
of the sharp bounds. This paper provides a complete study on partial
identification of and inference for the distribution of treatment effects for
randomized experiments.

The link between the magnitude of a bandwidth and the relevance of the
corresponding covariate in a regression has received much deserved
attention as of late. The second paper, “Cross-validated bandwidths and

XV



Xvi INTRODUCTION

significance testing” by Christopher Parmeter, Zhiyuan Zheng, and Patrick
McCann employs simulation to examine two methods for nonparametric
selection of significant variables, one being a standard bootstrap-based
nonparametric significance test, and the other being based on least squares
cross-validation (LSCV) smoothing parameter selection. The simulation
results show that the two methods perform similarly when testing for
a single variable’s significance, while for a joint test, the formal testing
procedure appears to perform better than that based on the LSCV
procedure. Their findings underscore the importance of testing for joint
significance when choosing variables in a nonparametric framework.

2. ESTIMATION OF SEMIPARAMETRIC MODELS

Semiparametric models are popular in applied settings as they are relatively
easy to interpret and deal directly with the curse-of-dimensionality issue.
Two papers address semiparametric methods.

Panel data settings present a range of interesting problems. Linear
parametric panel methods often rely on a range of devices including linear
differencing for removing fixed effects and so forth. Linear models may be
overly restrictive, however, while fully nonparametric methods may be
unreliable due to the so-called curse-of-dimensionality. The first paper,
“Semiparametric estimation of fixed effects panel data varying coefficient
models” by Yiguo Sun, Raymond Carroll, and Dingding Li, proposes
a kernel method for estimating a semiparametric varying coefficient model
with fixed effects. Their method can identify an additive intercept term,
while the conventional method based on first differences fails to do so. The
authors establish the asymptotic normality result of the proposed estimator
and also propose a procedure for testing the null hypothesis of fixed effects
against the alternative of random effects varying coefficient models. They
also point out that future research is warranted for reducing size distortions
present in the proposed test.

The functional coefficient model constitutes a flexible approach toward
semiparametric estimation, and this model nests a range of models including
the linear parametric model and partially linear models, by way of example.
The second paper, “Functional coefficient estimation with both categorical
and continuous data’” by Liangjun Su, Ye Chen, and Aman Ullah, considers
the problem of estimating a semiparametric varying coefficient model that
admits a mix of discrete and continuous covariates for stationary time series
data. They establish the asymptotic normality result for the proposed local
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linear estimator, and apply their procedure to analyze a wage determination
equation. They detect complex interaction patterns among the regressors
in the wage equation including increasing returns to education when
experience is very low, high returns for workers with several years of
experience, and diminishing returns when experience is high.

3. EMPIRICAL APPLICATIONS OF
NONPARAMETRIC METHODS

The application of nonparametric methods to substantive problems is con-
sidered in three papers.

Though human development is an extremely broad concept, two
fundamental components that receive widespread attention are health and
living standards. However, much current research is based upon uncondi-
tional estimates of joint distributions. The first paper, “The evolution of the
conditional joint distribution of life expectancy and per capita income
growth” by Thanasis Stengos, Brennan Thompson, and Ximing Wu,
examines the joint conditional distribution of health (life expectancy) and
income growth and its evolution over time. Using nonparametric estimation
methods the authors detect second-order stochastic dominance of the non-
OECD countries over the OECD countries. They also find strong evidence
of first-order stochastic dominance of the earlier years over the later ones.

Conventional wisdom dictates that there is a positive relationship between
governance and economic growth. The second paper, “A nonparametric
quantile analysis of growth and governance” by Kim Huynh and David
Jacho-Chavez, reexamines the empirical relationship between governance
and economic growth using nonparametric quantile methods. The authors
detect a significant nonlinear relationship between economic growth and
governance (e.g., political stability, voice, and accountability) and conclude
that the empirical relationship between voice and accountability, political
stability, and growth are highly nonlinear at different quantiles. They also
detect heterogeneity in these effects across indicators, regions, time, and
quantiles, which ought to be of interest to practitioners using parametric
quantile methods.

Risk in production theory is typically analyzed under either output price
uncertainty or production uncertainty (commonly known as “production
risk”). Input allocation decisions in the presence of price uncertainty and
production risk are key aspects of production theory. The third paper,
“Nonparametric estimation of production risk and risk preference
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functions” by Subal Kumbhakar and Efthymios Tsionas, uses nonpara-
metric kernel methods to estimate production functions, risk preference
functions, and risk premium. They applied their proposed method to
Norwegian salmon farming data and found that labor is risk decreasing
while capital and feed are risk increasing. They conclude by identifying
fruitful areas for future research, in particular, the estimation of
nonparametric system models that involve cross-equation restrictions.

4. COPULA AND DENSITY ESTIMATION

The nonparametric estimation of density functions is perhaps the most
popular of all nonparametric procedures. There are three papers that deal
with this fundamental topic.

Copula methods are receiving much attention as of late from applied
analysts. A copula is a means of expressing a multivariate distribution such
that a range of dependence structures can be represented. The first paper,
“Exponential series estimation of empirical copulas with application to
financial returns” by Chinman Chui and Ximing Wu, proposes using a
multivariate exponential series estimator (ESE) to estimate copula densities
nonparametrically. Conventional nonparametric methods can suffer from
the so-called boundary bias problem, and the authors demonstrate that the
ESE method overcomes this problem. Furthermore, simulation results
show that the ESE method outperforms kernel and log-spline estimators,
while it also provides superior estimates of tail dependence compared to the
empirical tail index coefficient that is popular in applied settings.

The nonparametric estimation of multivariate cumulative distribution
functions (CDFs) has also received substantial attention as of late. The
second paper, ‘“Nonparametric estimation and multivariate CDF with
categorical and continuous data” by Gaosheng Ju, Rui Li, and Zhongwen
Liang, considers the problem of estimating a multivariate CDF with mixed
continuous and discrete variables. They use the cross-validation method to
select the smoothing parameters and provide the asymptotic theory for
the resulting estimator. They also apply the proposed estimator to empirical
data to estimate the joint CDF of the unemployment rate and city size.

The presence of boundary bias in nonparametric settings is undesirable,
and a range of methods have been proposed to mitigate such bias. In a
density estimation context, perhaps the most popular methods involve the
use of “boundary kernels” and ‘“‘data reflection.” The third paper, ‘“Higher
order bias reduction of kernel density and density derivative estimators at



Introduction XX

boundary points” by Peter Bearse and Paul Rilstone, proposes a new
method that can reduce the boundary bias in kernel density estimation. The
asymptotic properties of the proposed method are derived and simulations
are used to compare the finite-sample performance of the proposed method
against several existing alternative methods.

5. COMPUTATION

Computational issues involving semiparametric and nonparametric methods
can be daunting for some practitioners. In the paper ‘“Nonparametric and
semiparametric methods in R” by Jeffrey S. Racine, the use of the R
environment for estimating nonparametric and semiparametric models is out-
lined. Many of the facilities in R are summarized, and a range of packages
that handle semiparametric nonparametric methods are outlined. The ease
with which a range of methods can be deployed by practitioners is highlighted.

6. SURVEYS

Four papers that survey recent developments in nonparametric methods are
considered.

Financial data often necessitates some of the most sophisticated
approaches toward estimation and inference. The first paper, “Some recent
developments in nonparametric finance” by Zongwu Cai and Yongmiao
Hong, surveys many of the important recent developments in nonparametric
estimation and inference applied to financial data, and provide an overview
of both continuous and discrete time processes. They focus on nonpara-
metric estimation and testing of diffusion processes including nonparametric
testing of parametric diffusion models, nonparametric pricing of derivative,
and nonparametric predictability of asset returns. The authors conclude that
much theoretical and empirical research remains to be done in this area, and
they identify a set of topics that are deserving of attention.

The ability to impose constraints in nonparametric settings has received
much attention as of late. The second paper, “Imposing economic
constraints in nonparametric regression: survey, implementation, and
extension” by Daniel Henderson and Christopher Parmeter, surveys recent
developments on the nonparametric estimation of regression models under
constraints such as convexity, homogeneity, and monotonicity. Their survey
includes isotonic regression, constrained splines, Matzkin’s approach, data
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rearrangement, data sharpening, and constraint weighted bootstrapping.
They focus on the computational implementation under linear constraints,
and then discuss extensions that allow for nonlinear constraints.

Simon Kuznets proposed a theory stating that, over time, economic
inequality increases while a country is developing and then decreases when
a critical level of average income is attained. Researchers allege that the
“Kuznets curve” (inverted U shape) also appears in the environment. The
environmental Kuznets curve estimation literature is vast, and conflicting
evidence exists on its empirical validity. The third paper, ‘“Functional form of
the environmental Kuznets curve” by Hector Zapata and Krishna Paudel,
provides an overview of recent developments on testing functional forms with
semiparametric and nonparametric methods, and then discusses applications
employing semiparametric and nonparametric methods to examine the
relationship between environmental pollution and economic growth.

A number of recent advances in nonparametric estimation and inference
have extended the reach of these methods, particularly for practitioners. The
fourth paper, “Some recent developments on nonparametric econometrics’
by Zongwu Cai, Jingping Gu, and Qi Li, provides a selected review of
nonparametric estimation and testing of econometric models. They
summarize the recent developments on (i) nonparametric regression models
with mixed discrete and continuous data, (ii) nonparametric models with
nonstationary data, (iii) nonparametric models with instrumental variables,
and (iv) nonparametric estimation of conditional quantile functions. They
also identify a number of open research problems that are deserving of
attention.

NOTE

1. The papers in this Volume of Advances in Econometrics were presented initially
at the 7th Annual Advances in Econometrics Conference held on the LSU campus in
Baton Rouge Louisiana during November 14-16 2008. The theme of the conference
was ‘“‘Nonparametric Econometric Methods” and the editors would like to
acknowledge generous financial support provided by the LSU Department of
Economics, the Division of Economic Development and Forecasting, and the LSU
Department of Agricultural Economics and Agribusiness.

Qi Li
Jeffrey S. Racine
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PARTIAL IDENTIFICATION
OF THE DISTRIBUTION OF
TREATMENT EFFECTS AND
ITS CONFIDENCE SETS

Yanqin Fan and Sang Soo Park

ABSTRACT

In this paper, we study partial identification of the distribution of
treatment effects of a binary treatment for ideal randomized experiments,
ideal randomized experiments with a known value of a dependence
measure, and for data satisfying the selection-on-observables assumption,
respectively. For ideal randomized experiments, (i) we propose nonpara-
metric estimators of the sharp bounds on the distribution of treatment
effects and construct asymptotically valid confidence sets for the
distribution of treatment effects; (ii) we propose bias-corrected
estimators of the sharp bounds on the distribution of treatment effects;
and (iii) we investigate finite sample performances of the proposed
confidence sets and the bias-corrected estimators via simulation.

Nonparametric Econometric Methods

Advances in Econometrics, Volume 25, 3-70
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4 YANQIN FAN AND SANG SOO PARK

1. INTRODUCTION

Evaluating the effect of a treatment or a social program is important in
diverse disciplines including the social and medical sciences. The central
problem in the evaluation of a treatment is that any potential outcome that
program participants would have received without the treatment is not
observed. Because of this missing data problem, most work in the treatment
effect literature has focused on the evaluation of various average treatment
effects such as the mean of treatment effects. See Lee (2005), Abbring and
Heckman (2007), Heckman and Vytlacil (2007a, 2007b) for discussions and
references. However, empirical evidence strongly suggests that treatment
effect heterogeneity prevails in many experiments and various interesting
effects of the treatment are missed by the average treatment effects alone.
See Djebbari and Smith (2008) who studied heterogeneous program impacts
in social experiments such as PROGRESA; Black, Smith, Berger, and Noel
(2003) who evaluated the Worker Profiling and Reemployment Services
system; and Bitler, Gelbach, and Hoynes (2006) who studied the welfare
effect of the change from Aid to Families with Dependent Children (AFDC)
to Temporary Assistance for Needy Families (TANF) programs. Other
work focusing on treatment effect heterogeneity includes Heckman and
Robb (1985), Manski (1990), Imbens and Rubin (1997), Lalonde (1995),
Dehejia (1997), Heckman and Smith (1993), Heckman, Smith, and Clements
(1997), Lechner (1999), and Abadie, Angrist, and Imbens (2002).

When responses to treatment differ among otherwise observationally
equivalent subjects, the entire distribution of the treatment effects or other
features of the treatment effects than its mean may be of interest. Two
general approaches have been proposed in the literature to study the
distribution of treatment effects. In the first approach, the distribution of
treatment effects is partially identified, see Manski (1997a,1997b), Fan and
Park (2010), Fan and Wu (2007), Fan (2008), and Firpo and Ridder (2008).
Assuming monotone treatment response, Manski (1997a) developed sharp
bounds on the distribution of treatment effects, while (i) assuming the
availability of ideal randomized data,' Fan and Park (2010) developed
estimation and inference tools for the sharp bounds on the distribution of
treatment effects and (ii) assuming that data satisfy the selection-on-
observables or the strong ignorability assumption, Fan and Park (2010) and
Firpo and Ridder (2008) established sharp bounds on the distribution of
treatment effects and Fan (2008) proposed nonparametric estimators of the
sharp bounds and constructed asymptotically valid confidence sets (CSs) for
the distribution of treatment effects. In the context of switching regimes
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models, Fan and Wu (2007) studied partial identification and inference for
conditional distributions of treatment effects. In the second approach,
restrictions are imposed on the dependence structure between the potential
outcomes such that distributions of the treatment effects are point identified,
see, for example, Heckman et al. (1997), Biddle, Boden, and Reville (2003),
Carneiro, Hansen, and Heckman (2003), Aakvik, Heckman, and Vytlacil
(2005), and Abbring and Heckman (2007), among others. In addition to the
distribution of treatment effects, Fan and Park (2007b) studied partial
identification of and inference for the quantile of treatment effects for
randomized experiments; Fan and Zhu (2009) investigated partial identifi-
cation of and inference for a general class of functionals of the joint
distribution of potential outcomes including the correlation coefficient
between the potential outcomes and many commonly used inequality
measures of the distribution of treatment effects under the selection-on-
observables assumption. Firpo and Ridder (2008) also presented some
partial identification results for functionals of the distribution of treatment
effects under the selection-on-observables assumption.

The objective of this paper is threefold. First, this paper provides a review
of existing results on partial identification of the distribution of treatment
effects in Fan and Park (2010) and establishes similar results for randomized
experiments when the value of a dependence measure between the potential
outcomes such as Kendall’s 7 is known. Second, this paper relaxes two
strong assumptions used in Fan and Park (2010) to derive the asymptotic
distributions of nonparametric estimators of sharp bounds on the distribu-
tion of treatment effects and constructs asymptotically valid CSs for the
distribution of treatment effects. Third, as evidenced in the simulation
results presented in Fan and Park (2010), the simple plug-in nonparametric
estimators of the sharp bounds on the distribution of treatment effects tend
to have upward/downward bias in finite samples. In this paper, we confirm
this analytically and construct bias-corrected estimators of these bounds.
We present an extensive simulation study of finite sample performances of
the proposed CSs and of the bias-corrected estimators. The issue of
constructing CSs for the distribution of treatment effects belongs to the
recently fast growing area of inference for partially identified parameters,
see for example, Imbens and Manski (2004), Bugni (2007), Canay (2007),
Chernozhukov, Hong, and Tamer (2007), Galichon and Henry (2009),
Horowitz and Manski (2000), Romano and Shaikh (2008), Stoye (2009),
Rosen (2008), Soares (2006), Beresteanu and Molinari (2008), Andrews
(2000), Andrews and Guggenberger (2007), Andrews and Soares (2007), Fan
and Park (2007a), and Moon and Schorfheide (2007). Like Fan and Park
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(2007b), we follow the general approach developed in Andrews and
Guggenberger (2005a, 2005b, 2005¢, 2007) for nonregular models.

The rest of this paper is organized as follows. In Section 2, we review
sharp bounds on the distribution of treatment effects and related results for
randomized experiments in Fan and Park (2010). In Section 3, we present
improved bounds when additional information is available. In Section 4, we
first revisit the nonparametric estimators of the distribution bounds
proposed in Fan and Park (2010) and their asymptotic properties.
Motivated by the restrictive nature of the unique, interior assumption of
the sup and inf in Fan and Park (2010), we then provide asymptotic
properties of the estimators with a weaker assumption. Section 5 constructs
asymptotically valid CSs for the bounds and the true distribution of
treatment effects under much weaker assumptions than those in Fan and
Park (2010). Section 6 provides bias-corrected estimators of the sharp
bounds in Fan and Park (2010). Results from an extensive simulation study
are provided in Section 7. Section 8 concludes. Some technical proofs are
collected in Appendix A. Appendix B presents expressions for the sharp
bounds on the distribution of treatment effects in Fan and Park (2010) for
certain known marginal distributions.

Throughout the paper, we use = to denote weak convergence. All the
limits are taken as the sample size goes to oo.

2. SHARP BOUNDS ON THE DISTRIBUTION OF
TREATMENT EFFECTS AND BOUNDS ON ITS
D-PARAMETERS FOR RANDOMIZED EXPERIMENTS

In this section, we review the partial identification results in Fan and Park
(2010). Consider a randomized experiment with a binary treatment and
continuous outcomes. Let Y; denote the potential outcome from receiving
the treatment and Y| the potential outcome without receiving the treatment.
Let F(y1, yo) denote the joint distribution of Y, Y, with marginals Fi(-)
and Fy(-), respectively. It is well known that with randomized data, the
marginal distribution functions Fi(-) and Fy(-) are identified, but the joint
distribution function F(y;, yo) is not identified. The characterization
theorem of Sklar (1959) implies that there exists a copula® C(u, v):
(u, v)€[0,1]% such that F(y,, vo) = C(Fi(y1), Fo(yo)) for all y;, yo. Conversely,
for any marginal distributions F;(-), Fy(-) and any copula function C, the
function C(Fi(yy), Fo(yo)) is a bivariate distribution function with given
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marginal distributions F), Fy. This theorem provides the theoretical
foundation for the widespread use of the copula approach in generating
multivariate distributions from univariate distributions. For reviews, see Joe
(1997) and Nelsen (1999). Since copulas connect multivariate distributions
to marginal distributions, the copula approach provides a natural way to
study the joint distribution of potential outcomes and the distribution of
treatment effects when the marginal distributions are identified.

For (u,v) €[0,17%, let C%u,v)=max(u+v—1,0) and CY(u,v)=
min(u, v) denote the Fréchet-Hoeffding lower and upper bounds for a
copula, that is, CY(u,v) < C(u,v) < CY(u,v). Then for any (yi, yo), the
following inequality holds:

CL(FI(Vl), Fo(y9)) < F(y1,»0) < CU(FI(VO; Fo(yy)) ()

The bivariate distribution functions C“(F,(y,), Fo(y,)) and CY(Fi(y,),
Fo(y,)) are referred to as the Fréchet-Hoeffding lower and upper bounds for
bivariate distribution functions with fixed marginal distributions F; and F.
They are distributions of perfectly negatively dependent and perfectly
positively dependent random variables, respectively, see Nelsen (1999) for
more discussions.

For randomized experiments, the marginals F; and F; are identified and
Eq. (1) partially identifies F(y;, )¢). See Heckman and Smith (1993),
Heckman et al. (1997), Manski (1997b), and Fan and Wu (2007) for
applications of Eq. (1) in the context of program evaluation. Lee (2002) used
Eq. (1) to bound correlation coefficients in sample selection models.

2.1. Sharp Bounds on the Distribution of Treatment Effects
Let A= Y,—Y, denote the individual treatment effect and Fa(-) its
distribution function. For randomized experiments, the marginals F; and

Fy are identified. Given F; and F, sharp bounds on the distribution of A can
be found in Williamson and Downs (1990).

Lemma 1. Let
FY(6) = max (sup{F](y) — Fo(y — 0)}, 0> and
)

FY(6) =1 + min (inf{Fl(y) — Fo(y — 9)}, o>
i

Then FL(8) < FA(3) < FY(9).
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At any given value of d, the bounds (F“(5), FY(9)) are informative on the
value of Fa(0) as long as [F(5), FU(9)] C [0, 1] in which case, we say Fa(S) is
partially identified. Viewed as an inequality among all possible distribution
functions, the sharp bounds F(5) and FY(d) cannot be improved, because
it is easy to show that if either F; or F, is the degenerate distribution
at a finite value, then for all 6, we have FL(0) = Fa(6) = FY(5). In fact,
given any pair of distribution functions F; and Fy, the inequality:
FY(0)<FA(0)<FY(0) cannot be improved, that is, the bounds F(9)
and FY(9) for Fx() are point-wise best-possible, see Frank, Nelsen, and
Schweizer (1987) for a proof of this for a sum of random variables and
Williamson and Downs (1990) for a general operation on two random
variables.

Let Zpsp and Zgqp denote the first-order and second-order stochastic
dominance relations, that is, for two distribution functions G and H,

Gz pspH iff G(x) < H(x) for all x

G = s H iff / " Gy < / " Hddv forall x

Lemma 1 implies: F“Xpgp FaZpsp FU. We note that unlike sharp
bounds on the joint distribution of Y7, Y, sharp bounds on the distribution
of A are not reached at the Fréchet—-Hoeffding lower and upper bounds for
the distribution of Y, Y,. Let Y/, Y, be perfectly positively dependent and
have the same marginal distributions as Y;, Y, respectively. Let
A" = Y| — Y|. Then the distribution of A’ is given by:

1
Fy@)=ENY, - Y, <6} = / WF (u) — Fy''(u) < 0)du
0
where 1 {-} is the indicator function the value of which is 1 if the argument
is true, 0 otherwise. Similarly, let Y7, Y be perfectly negatively dependent
and have the same marginal distributions as Y, Y, respectively. Let
A" = Y| — Y{. Then the distribution of A” is given by:

1
Fp(8) = E{Y! — Y} <5} = / WF () — Fy'(1 = u) < 8}du
0

Interestingly, we show in the next lemma that there exists a second-order
stochastic dominance relation among the three distributions Fa, Fa/, Fpr.

Lemma 2. Let Fy,Fy,Fy be defined as above. Then Fy X gy
FaZgspFar-

~
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Theorem 1 in Stoye (2008), see also Tesfatsion (1976), shows that
FnZgspFa is equivalent to E[U(A")] < E[U(A)] or E[U(Y,— Y] <
E[U(Y| — Yy)] for every convex real-valued function U. Corollary 2.3 in
Tchen (1980) implies the conclusion of Lemma 2, see also Cambanis,
Simons, and Stout (1976).

2.2. Bounds on D-Parameters

The sharp bounds on the treatment effect distribution implies bounds on the
class of “D-parameters” introduced in Manski (1997a), see also Manski
(2003). One example of “D-parameters” is any quantile of the distribution.
Stoye (2008) introduced another class of parameters, which measure the
dispersion of a distribution, including the variance of the distribution. In
this section, we show that sharp bounds can be placed on any dispersion or
spread parameter of the treatment effect distribution in this class. For
convenience, we restate the definitions of both classes of parameters from
Stoye (2008). He refers to the class of “D-parameters” as the class of
“Di-parameters.”

Definition 1. A population statistic 6 is a D-parameter, if it increases
weakly with first-order stochastic dominance, that is, F = rgnG implies
O(F) = 0(G).

Obviously if 0 is a D;-parameter, then Lemma 1 implies: O(FY) >
O(F4) > O(FY). In general, the bounds 8(F"), 0(FV) on a D,-parameter may
not be sharp, as the bounds in Lemma 1 are point-wise sharp, but not
uniformly sharp, see Firpo and Ridder (2008) for a detailed discussion on
this issue. In the special case where 0 is a quantile of the treatment effect
distribution, the bounds O(FY), 0(FY) are known to be sharp and can be
expressed in terms of the quantile functions of the marginal distributions of
the potential outcomes. Specially, let G~'(u) denote the generalized inverse
of a nondecreasing function G, that is, G~'(u) = inf{x|G(x) > u}. Then
Lemma 1 implies: for 0 < ¢ < 1,(FY)"'(¢) < F1'(9) < (F*)"'(¢) and the
bounds are known to be sharp. For the quantile function of a distribution of
a sum of two random variables, expressions for its sharp bounds in terms
of quantile functions of the marginal distributions are first established in
Makarov (1981). They can also be established via the duality theorem,
see Schweizer and Sklar (1983). Using the same tool, one can establish the
following expressions for sharp bounds on the quantile function of the
distribution of treatment effects, see Williamson and Downs (1990).
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Lemma 3. For 0 < ¢ < 1,(FY)"'(¢q) < F;'(¢) < (F*)"'(g), where

C i lF )~ Fy' = )] if g0
) (q)_{Fl‘](O)—Fo‘l(l) ifg=0
b [ Ul FT W) — Fy (b u— )] i g1
&) (Q)_{Fll(l)—Fol(O) ifg=1

Like sharp bounds on the distribution of treatment effects, sharp bounds
on the quantile function of A are not reached at the Fréchet-Hoeffding
bounds for the distribution of (Y;, Y,). The following lemma provides
simple expressions for the quantile functions of treatment effects when the
potential outcomes are either perfectly positively dependent or perfectly
negatively dependent.

Lemma 4. For ¢e[0,1], we have (i) Fy'(¢9)=[F{'(¢9) — Fy' ()] if
[FT'(9) — Fy'(¢)] is an increasing function of ¢; (i) Fy'(q)=
[Fi(@) — Fo'(1 = .

The proof of Lemma 4 follows that of the proof of Proposition 3.1 in
Embrechts, Hoeing, and Juri (2003). In particular, they showed that for a
real-valued random variable Z and a function ¢ increasing and left
continuous on the range of Z, it holds that the quantile of ¢(Z) at quantile
level ¢ is given by (p(Fgl(q)), where Fy is the distribution function of Z.
For (i), we note that FZ,' (¢g) equals the quantile of [Fl‘l(U) — Fgl(U)], where
U is a uniform random variable on [0,1]. Let ¢(U) = Fl_l(U) —Fal(U).
Then FZ/I (9 = o(q) = Fl’l(q) — Fal(q) provided that ¢(U) is an increasing
function of U. For (ii), let o(U) = F{'(U)— F;'(1 — U). Then FX}(q)
equals the quantile of ¢(U). Since ¢(U) is always increasing in this case,
we get Fi'(q) = ¢(q).

Note that the condition in (i) is a necessary condition; without this
condition, [F l’l(q) —Fy !(¢)] can fail to be a quantile function. Doksum
(1974) and Lehmann (1974) used [F l’l(Fo(yO)) — o] to measure treatment
effects. Recently, [Fy'(q) — Fy'(g)] has been used to study treatment effects
heterogeneity and is referred to as the quantile treatment effects (QTE), see
for example, Heckman et al. (1997), Abadie et al. (2002), Chernozhukov
and Hansen (2005), Firpo (2007), Firpo and Ridder (2008), and Imbens and
Newey (2009), among others, for more discussion and references on the
estimation of QTE. Manski (1997a) referred to QTE as AD-parameters
and the quantile of the treatment effect distribution as DA-parameters.
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Assuming monotone treatment response, Manski (1997a) provided sharp
bounds on the quantile of the treatment effect distribution.

It is interesting to note that Lemma 4 (i) shows that QTE equals the
quantile function of the treatment effects only when the two potential
outcomes are perfectly positively dependent AND QTE is increasing in gq.
Example 1 below illustrates a case where QTE is decreasing in ¢ and hence is
not the same as the quantile function of the treatment effects even when the
potential outcomes are perfectly positively dependent. In contrast to QTE,
the quantile of the treatment effect distribution is not identified, but can
be bounded, see Lemma 3. At any given quantile level, the lower quantile
bound (FY)~'(g) is the smallest outcome gain (worst case) regardless of the
dependence structure between the potential outcomes and should be useful
to policy makers. For example, (FY)71(0.5) is the minimum gain of at least
half of the population.

Definition 2. A population statistic 6 is a D,-parameter, if it increases
weakly with second-order stochastic dominance, that is, F 2= ¢, G implies
O(F) = 0(G).

If 0 is a D,-parameter, then Lemma 2 implies 0(Fy) < 0(Fp) < O(F 7).
Stoye (2008) defined the class of D,-parameters in terms of mean-preserving
spread. Since the mean of A is identified in our context, the two definitions
lead to the same class of D,-parameters. In contrast to D,-parameters of the
treatment effect distribution, the above bounds on Dj,-parameters of the
treatment effect distribution are reached when the potential outcomes are
perfectly dependent on each other and they are known to be sharp. For a
general functional of F,, Firpo and Ridder (2008) investigated the possibility
of obtaining its bounds that are tighter than the bounds implied by F“, FY.
Here we point out that for the class of Dy-parameters of Fj, their sharp bounds
are available. One example of D,-parameters is the variance of the treatment
effect A. Using results in Cambanis et al. (1976), Heckman et al. (1997)
provided sharp bounds on the variance of A for randomized experiments and
proposed a test for the common effect model by testing the value of the lower
bound of the variance of A. Stoye (2008) presents many other examples of
Dy-parameters, including many well-known inequality and risk measures.

2.3. An Illustrative Example: Example 1

In this subsection, we provide explicit expressions for sharp bounds on the
distribution of treatment effects and its quantiles when Y| ~ N(u,,d?) and
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Yo~ N(ug,03). In addition, we provide explicit expressions for the
distribution of treatment effects and its quantiles when the potential
outcomes are perfectly positively dependent, perfectly negatively dependent,
and independent.

2.3.1. Distribution Bounds
Explicit expressions for sharp bounds on the distribution of a sum of two
random variables are available for the case where both random variables
have the same distribution which includes the uniform, the normal, the
Cauchy, and the exponential families, see Alsina (1981), Frank et al. (1987),
and Denuit, Genest, and Marceau (1999). Using Lemma 1, we now derive
sharp bounds on the distribution of A = Y| — Y.

First consider the case o, =09=o0. Let ®(-) denote the distribu-
tion function of the standard normal distribution. Simple algebra
shows

0 — (g — Ho)

SUp{F1 () — Fo(y — 0)} = 2@( .
¥ o

> _1f0r5>,u1 — Ho»

inf{F\(y) — Fo(y — 8)} = 20 (W) — 1 for o<y — Ho
y g
Hence,
0, ifo<py —up
L _ _ _
FY0) = zq)(Wlﬂo))_l, 6> 1 — o ©)
20
0—(p — ﬂo)) .
O L2 ifs<p, —
FUG) = ( 20 Hy — Ho 3)
1, if 0> — po

When? o, #09, we get

g8 — oot gt — aps
sup{ﬂ(y)—&(y—é)}:cb(—;z §)+<D(—12 3)—1
y

1~ 9% 01— 0y

. s+ oot I+ 0o
inf{F(y) — Fo(y — 9)} = @(%) - @(7012 2 ) +1
y 01— 0p o1 =%
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where s = 6 — (u; — ptp) and ¢ = \/s2 + (07 — 03) In(6?/a}). For any 4, one
can show that sup, {Fi(y) — Fo(y — 0)}>0 and inf, {F(y) — Fo(y — 9)} <O0.

As a result,
o185 — opt o1t — 0ps
FLro) =0 ——- O(———5 | -1
@=o(%=g) o (%=%)

1 0 1~ 90

t t
U0 = o( 2558 o (TN 4
g g o o

1 0 1 0

For comparison purposes, we provide expressions for the distribution Fa
in three special cases.

Case 1. Perfect positive dependence. In this case, Y, and Y; satisfy
Yo =y + (060/01)Y1 — (00/01)ut;. Therefore,

g1 — 0y g .
Y —u — f
A ( o > 1+<01.“1 Mo): it o1 # 09

1y — Hos if 0 = 09

If g; =0y, then

0 and 6 <,ul—,U0
FA(é):{land,ul—,uofé (4)

If 01 # 0y, then

Fa(0) =@ (w)

lo1 — ool

Case II. Perfect negative dependence. In this case, we have Y, =
Uy — (00/01) Y1 + (00/01)u;. Hence,

o1+ 0 o
A==y, - <—0#1+#0>
g1 g1

FA(8) =@ (M)

o1+ 09
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Case III. Independence. This yields

0 — (1 — Ko) (5)

/2 2
al—l—ao

Fig. 1 below plots the bounds on the distribution F (denoted by F_L and
F_U) and the distribution F corresponding to perfect positive dependence,
perfect negative dependence, and independence (denoted by F_PPD,
F_PND, and F_IND, respectively) of potential outcomes for the case
Y1 ~N(2,2) and Yo~ N(1,1). For notational compactness, we use (F;, Fy) to
signify Y;~ F; and Yy~ F, throughout the rest of this paper.

First, we observe from Fig. 1 that the bounds in this case are informative
at all values of é and are more informative in the tails of the distribution Fu
than in the middle. In addition, Fig. 1 indicates that the distribution of the
treatment effects for perfectly positively dependent potential outcomes is
most concentrated around its mean 1 implied by the second-order stochastic

FA(d) =@

s
-

o]
c

lgs]
e
)

z

11
|

Il
Z

15l

Fig. 1. Bounds on the Distribution of the Treatment Effect: (N(2,2), N(1,1)).
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FLA{-1}

FUM-1}
F_PPD/{-1}
F_INDA{-1}

Fig. 2. Bounds on the Quantile Function of the Treatment Effect: (N(2,2), N(1,1)).

relation F_PPD 2z ¢, F_IND = ¢, F_PPD. In terms of the corresponding
quantile functions, this implies that the quantile function corresponding to
the perfectly positively dependent potential outcomes is flatter than the
quantile functions corresponding to perfectly negatively dependent and

independent potential outcomes, see Fig. 2 above.

2.3.2. Quantile Bounds

By inverting Egs. (2) and (3), we obtain the quantile bounds for the case

0| = 009=0.
any value in (—oo, it — o] forg=20

Ly—1 _
(F) (9 = (1 — o) + 20 @ (1;6]> otherwise

(1= i) +20 07 (2)

any value in [y, — pg,00) forg =1

FY () = forg e[0,1)



16 YANQIN FAN AND SANG SOO PARK

When o, # 0, there is no closed-form expression for the quantile bounds.
But they can be computed numerically by either inverting the distribution
bounds or using Lemma 3. We now derive the quantile function for the
three special cases.

Case 1. Perfect positive dependence. If o, = gy, we get

any value in (—oo, yt; — i) forg =20,
Fi'(g) = { any value in [ — pg,00)  forg =1,
undefined for ¢ € (0, 1).

When g, # g, we get
Fy'(9) = (1 = o) + |o1 = 00| @7 (g) for ¢ € [0, 1]
Note that by definition, QTE is given by:
Fil (@) = Fy'(9) = (1 = ) + (01 — 50)@7 ' (q)

which equals F Zl(q) only if o1>0a,, that is, only if the condition of
Lemma 4 (i) holds. If oy < gy, [Fl_l(q) — Fal(q)] is a decreasing function of
¢ and hence cannot be a quantile function.

Case II. Perfect negative dependence.

F3'(q) = (i — o) + (a1 + 60)@ ' (g) for ¢ € [0,1]

Case III. Independence.
Fil(a) = (0 — Ho) + /o7 + 0507 (g) for ¢ € [0, 1]

In Fig. 2, we plot the quantile bounds for A (FL"{—1} and FU"{-1})
when Y7~ N(2, 2) and Yo~ N(1, 1) and the quantile functions of A when Y;
and Y, are perfectly positively dependent, perfectly negatively dependent,
and independent (F_PPD"{—1}, F PND"{-1}, and F_IND"{-1},
respectively).

Again, Fig. 2 reveals the fact that the quantile function of A
corresponding to the case that Y| and Y, are perfectly positively dependent
is flatter than that corresponding to all the other cases. Keeping in
mind that in this case, o; > 0g,, we conclude that the quantile function of A
in the perfect positive dependence case is the same as QTE. Fig. 2 leads
to the conclusion that QTE is a conservative measure of the degree of
heterogeneity of the treatment effect distribution.
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3. MORE ON SHARP BOUNDS ON THE JOINT
DISTRIBUTION OF POTENTIAL OUTCOMES AND
THE DISTRIBUTION OF TREATMENT EFFECTS

For randomized experiments, Eq. (1) and Lemma 1, respectively, provide
sharp bounds on the joint distribution of potential outcomes and the
distribution of treatment effects. When additional information is available,
these bounds are no longer sharp. In this section, we consider two types
of additional information. One is the availability of a known value of a
dependence measure between the potential outcomes and the other is the
availability of covariates ensuring the validity of the selection-on-
observables assumption.

3.1. Randomized Experiments with a Known Value of Kendall’s ©

In this subsection, we first review sharp bounds on the joint distribution of
the potential outcomes Y|, Y, when the value of a dependence measure such
as Kendall’s 7 between the potential outcomes is known. Then we point out
how this information can be used to tighten the bounds on the distribution
of A presented in Lemma 1. We provide details for Kendall’s T and point out
relevant references for other measures including Spearman’s p.

To begin, we introduce the notation used in Nelsen, Quesada-Molina,
Rodriguez-Lallena, and Ubeda-Flores (2001). Let (X7, Y;), (X5, Y>), and
(X3, Y3) be three independent and identically distributed random vectors
of dimension 2 whose joint distribution is H. Kendall’s t and Spearman’s p
are defined as:

T = Pr[(X| — X2)(Y — Y2)>0] = Pr[(X, — Xo)(Y) — ¥2)<0]

p = 3{Pr[(X1 — X2)(Y1 — Y3)>0] — Pr{(X; — X2)(Y1 — Y3)<0]}
For any re[—1,1], let 7, denote the set of copulas with a common value ¢
of Kendall’s 7, that is,
T,={C|C is a copula such that ©(C) = 1}
Let T, and T, denote, respectively, the point-wise infimum and supremum

of T,. The following result presents sharp bounds on the joint distribution
of the potential outcomes Y, Y,. It can be found in Nelsen et al. (2001).
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Lemma S. Suppose that the value of Kendall’s t between Y| and Y is ¢.
Then

T,(F1(71), Fo(ro)) < F(v1,¥9) < TF1(3), Fo(,))

where, for any (u, v)€[0,1]%

Iﬁm&:mw(&u+v—L%%u+ﬂ—\ﬂu—w2+l—@>

T,(u,v):min(u,v,%[(u—l—v—l)—i—\/(u+v_1)2+1+l})

As shown in Nelsen et al. (2001),
It(u’ V) = CL(u’ V) if 7 € [_170] 6
T,(u,v) > Ct(u,v) ift€[0,1] ©)
and

T(u,v) = CYu,v) iftel0,1]

T.(u,v) < CYu,v) ifte[—1,0]

Hence, for any fixed (y1, o), the bounds [T,(Fi(»),Fo(¥y)),
T(F\(y,), Fo(yy))] are in general tighter than the bounds in Eq. (1) unless
t = 0. The lower bound on F(y, yo) can be used to tighten bounds on the
distribution of treatment effects via the following result in Williamson and
Downs (1990).

Lemma 6. Let Cy, denote a lower bound on the copula Cyy and Fy. y
denote the distribution function of X+ U. Then

sup Cy(F(,G0)) = Far(®) = inf_ Cly(F(). 60)
X+y=z XY=

where Q,j(y(u, V=u+v—Cyyu,v).

Let Y1 = Xand Y, = —Y in Lemma 6. By using Lemma 5 and the duality
theorem, we can prove the following proposition.

Proposition 1. Suppose the value of Kendall’s 7 between Y; and Y is .
Then
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(i) sup, T (Fi(x),1 = Fo(x — 8)) < Fa(d) < inf T? (Fi(x),1 — Fo(x — 9)),
where

T _(u,v)= max{O,u—i— v+ l,% |:(I,{—|— V) — m}}
74 ) = max{u g [(u+ D+ M} }

(1) SUppe (=g [F7 ') = Fo'(1 = )] < F3'(g) < inf7_u1-n=g[F; ' 1)
—Fal(l —)].

Proposition 1 and Eq. (6) imply that the bounds in Proposition 1 (i) are
sharper than those in Lemma 1 if re[—1, 0] and are the same as those in
Lemma 1 if t€[0, 1]. This implies that if the potential outcomes Y; and Y,
are positively dependent in the sense of having a nonnegative Kendall’s t,
then the information on the value of Kendall’s = does not improve the
bounds on the distribution of treatment effects. On contrary, if they are
negatively dependent on each other, then knowing the value of Kendall’s ©
will in general improve the bounds.

Remark 1. If instead of Kendall’s 7, the value of Spearman’s p between
the potential outcomes is known, one can also establish tighter bounds on
FA(z) by using Theorem 4 in Nelsen et al. (2001) and Lemma 6.

Remark 2. Other dependence information that may be used to tighten
bounds on the joint distribution of potential outcomes and thus the
distribution of treatment effects include known values of the copula
function of the potential outcomes at certain points, see Nelsen and
Ubeda-Flores (2004) and Nelsen, Quesada-Molina, Rodriguez-Lallena,
and Ubeda-Flores (2004).

3.2. Selection-on-Observables

In many applications, observations on a vector of covariates for individuals
in the treatment and control groups are available. In this subsection, we
extend sharp bounds for randomized experiments in Lemma 1 to take into
account these covariates. For notational compactness, we let n = n; +ng
so that there are n individuals altogether. For i =1, ..., n, let X; denote the
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observed vector of covariates and D; the binary variable indicating
participation; D; =1 if individual i belongs to the treatment group and
D; =0 if individual i belongs to the control group. Let Y, = Y ;D; +
Yoi(1 — D;) denote the observed outcome for individual i. We have
a random sample {Y;, X;, D;}_,. In the literature on program evaluation
with selection-on-observables, the following two assumptions are often
used to evaluate the effect of a treatment or a program, see for example,
Rosenbaum and Rubin (1983), Hahn (1998), Heckman, Ichimura, Smith,
and Todd (1998), Dehejia and Wahba (1999), and Hirano, Imbens, and
Ridder (2003), to name only a few.

Cl. Let (Y, Yy, D, X) have a joint distribution. For all xe X" (the support
of X), (Y1, Yy) is jointly independent of D conditional on X = x.

C2. For all xe X, 0<p(x)<1, where p(x) = P (D=1]x).

In the following, we present sharp bounds on the joint distribution
of potential outcomes and the distribution of A under (C1) and (C2). For
any fixed xeX, Eq. (1) provides sharp bounds on the conditional joint
distribution of Y, Y, given X = x:

CHEF1(011%), Foolx)) < F(ry, yolx) < CUF1(01]%), Fo(ro]x))

and Lemma 1 provides sharp bounds on the conditional distribution of A
given X = x:

FH(8]x) < Fa(3]x) < FY(5]x)
where

FY(3]x) = sup max(Fi(y|x) — Fo(y — 9|x),0)
y

FY0Ix) =1+ ir;f min(F,(y|x) — Fo(y — 6]x),0)

Here, we use F(-|x) to denote the conditional distribution function of A
given X = x. The other conditional distributions are defined similarly.
Conditions (C1) and (C2) allow the identification of the conditional
distributions Fj(y|x) and Fy(y|x) appearing in the sharp bounds on
F(y1,y0lx) and Fa(d|x). To see this, note that

Fiylx)=P(Y1 <y X =x)=P(Y1 =yl X =x,D=1)
=PY <y X=x,D=1) (7
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where (C1) is used to establish the second equality. Similarly, we get
Fo(yIx) = P(Y < y|X =x,D =0) ()

Sharp bounds on the unconditional joint distribution of Y7, Y, and the
unconditional distribution of A follow from those of the conditional
distributions:

E[CHF(31X), Fo(rol X)) < F(yy,30) < CUF1(01X), Fo(yol X))

E(F“(3]X)) < Fa(0) = E(FA(3|X)) < E(FY(5|X))

We note that if X is independent of (Y, Y,), then the above bounds on
F(y1, y9) and F(0) reduce, respectively, to those in Eq. (1) and Lemma 1.
In general, X is not independent of (Y7, Y,) and the above bounds are
tighter than those in Eq. (1) and Lemma 1, see Fan (2008) for a more
detailed discussion on the sharp bounds with covariates. Under the selection
on observables assumption, Fan and Zhu (2009) established sharp bounds
on a general class of functionals of the joint distribution F(y;, yo) including
the correlation coefficient between the potential outcomes and the class of
Ds-parameters of the distribution of treatment effects.

4. NONPARAMETRIC ESTIMATORS OF THE SHARP
BOUNDS AND THEIR ASYMPTOTIC PROPERTIES
FOR RANDOMIZED EXPERIMENTS

Suppose random samples {Y'1;}1L, ~ Fy and {Y¢;}[°, ~ Fy are available. Let
Vi and ) denote, respectively, the supports4 of F, and F,. Note that the
bounds in Lemma 1 can be written as:

O SUE{Fl(V) — Foy = 9L, FY(9) =1 +inf{F0) = Fov— o)} O)

since for any two distributions F; and Fp, it is always true that
sup,er{F1(») — Fo(y —0)} = 0 and inf e {F1(y) — Fo(y — 9)} < 0.
When YV, = Yy = R, Eq. (9) suggests the following plug-in estimators of
F%(6) and FY(5):
Fi(0) = sup(F1u(y) = Fouly = 9} F,/(0) = 1+ Inf{(F1() = Fouly = 9))
e

(10)
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where Fy,(-) and Fy,(-) are the empirical distributions defined as:

Ny

F()=—> UYu<y, k=10
i=1

1
Nk

When either ), or ) is not the whole real line, we derive alternative
expressions for F%(9) and FY(5) which turn out to be convenient for
both computational purposes and for asymptotic analysis. For illustration,
we look at the case: Y = )y = [0, 1] in detail and provide the results for the
general case afterwards.

Suppose V1 =Yy =[0,1]. If 1 >6>0, then Eq. (9) implies:

FH9) = maX{ SUP]{Fl(V)—Fo(V—@}, sup {F1(y) — Fo(y — 9)},

yelo,1 y€(—00,6)

sup {F1(y) — Fo(y — 5)}}
ve(l,00)

YE(=00,0) ye(l,o0)

max{ s%[z]{Fl(y)—Fo(y—é)}, sup Fi(y), sup {l —FO(V—5)}}
vel,

yeld.1]

max{ sup {Fi(y) — Fo(y — 9)}, F1(9), 1 — Fo(1 — 5)}

sup {Fi(y) — Fo(y — 9)} (11)

yels,1]

and

PO = 1+ min inf (F10) = Fo = Ok (FI0) = Foy = D)
i, (1)~ Faty— )}
ye(l,00)
= ttmin inf (Fi0) = Foly =00, _inf | FG). nf (1= Foty = o)}

=1+ min{ inf {F1(y) — Fo(y — 5)},0}
relo1]
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If —1<6<0, then

FL(5)=maX{ sup {Fi(y) — Fo(y —0)}, sup {Fi(») — Fo(y —9)},

y€[0,149] ye(—00,0)

sup  {F1(y) —Fo(y—5)}}

ye(14-9,00)

[0,1+4] y€(—00,0)

= maX{ sup {F1(») — Fo(y —9)}, sup {=Fo(y —9)},
ye

sup  {F1(y) — 1)}}

ye(1468,00)

= max{ sup {F1(y) — Fo(y — 5)},0} (12)
ye

[0,1+5]

and
FU@O) =1+ min{ inf {F1(y) — Fo(y —9)}, inf {Fi(y)— Fo(y —9)},
y€[0,14-9] y€e(—00,0)

inf (F100) = Fo(y — 5)}}

ye(1+9,00)

=1+ mln{ye[lor’llfm{Fl(y) — Foly — 5)},}:6(11102’0){—1?00’ -9,

ye(1+4,00)

=14 inf {F\(y)— Fo(y — )}
y€[0,14-9]

inf {F)(y) - 1}}

Based on Egs. (11) and (12), we propose the following estimator
of FX(6):

FL 5 Supye[é’l]{Fln()}) - F()n(y - (S)} lf 1 z 5 2 0
/(9= 1 max(sup, o145 (F1n() — Fouly — 8),0} if — 1 <5<0

Similarly, we propose the following estimator for EV(9):

FU() = 1 +min {infycis11{F1,(») — Fou(y — 0)},0} if 1 >06>0
7O =1 0o F1n0) — Fouly — 9)) it —1<0<0
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We now summarize the results for general supports V; and ). Suppose
Vi =[a,b] and Yy =|c,d] for a,b,c,d €e R =R U{—o00,+00},a<b,c<d
with Fi(a) = Fo(c) =0 and F(b) = Fo(d) = 1. It is easy to see that

Fr0)=FY(0) =0, ifo<a—d and F'©)=FY0)=1, ifo=b—c

For any 6 ela—d,b—c]NR let Vs =[a,b]N[c+0J,d+]. A similar
derivation to the case )V, = Yy = [0, 1] leads to

FY0) = max{sup{Fl(y) — Foly — 5)},0}

yeds

FU@G) =1+ min{ inf (F1() — Foy - 5)},0}
VeYs

which suggest the following plug-in estimators of F™() and FY():

Fy]:(é) = maX{SUP{Fln(V) - FOn(y - 5)}»0} (13)
yeYs
FU@o) =1+ min{ inf (1,0~ o~ 5)},0} (14)
yelks

By using F ,%(5) and F},J(é), we can estimate bounds on effects of interest
other than the average treatment effects including the proportion of people
receiving the treatment who benefit from it, see Heckman et al. (1997) for
discussion on some of these effects. In the rest of this section, we review
the asymptotic distributions of /n{(F ,%(5) — FY9)) and J(F },J((S) — FY(9))
established in Fan and Park (2010), provide two numerical examples to
demonstrate the restrictiveness of two assumptions used in Fan and Park
(2010), and then establish asymptotic distributions of /n(Fx(5) — F-(5))
and /m(F E(é) — FY(6)) with much weaker assumptions.

4.1. Asymptotic Distributions of F:(5), FY ()

Define

Vsup,s = argsup{F1(y) — Fo(y — 9)}, Vinrs = arg inf {F1(y) — Fo(y — )}
yeds yeVs

M) = Su)l}){Fl(V) — Foy =o)},  m(0) = Inf {F1(y) = Foy — )}
YeVs €Js
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M,(0) = sup{Fi,(y) — Foa(y — 0)},  mn(0) = »igyfg{Fln(y) — Fou(y — 0)}

yeds

Then
FY(8) = max{M,(5),0}, FY() =1+ min{m,(3),0}

Fan and Park (2010) assume that Vg, 5 and Viar s are both singletons. Let
Vsups and yines denote, respectively, the elements of Ygps and Viars.
The following assumptions are used in Fan and Park (2010).

Al. (i) The two samples {Y;}i', and {Y;}}2, are each ii.d. and are

independent of each other; (ii) n;/ny — 4 as n; — oo with 0</l<oo.

A2. The distribution functions F; and F, are twice differentiable with
bounded density functions f; and f, on their supports.

A3. (1) For cvery 8> 07 supyey(;:br—ys“p_a|2}:{F1(y) _FO(V - 5)} < {Fl(ysup,&)
_FO(ysup,5 - 5)}a (ll)fl(ysup,é) _fO(ysup,é - 5) =0 andf/lojsup,é) _fz)(ysup,é
—0)<0.

Ad. (i) For every .§>0, infy ey 2 F100) = Foy = 0} <{F1(Vinr5)
—/F 0ines — 0 () f1Winrs) =S oWines —0) =0 and [ (Viurs) —
SoWings —0)>0.

The independence assumption of the two samples in (A1) is satisfied by
data from ideal randomized experiments. (A2) imposes smoothness
assumptions on the marginal distribution functions. (A3) and (A4) are
identifiability assumptions. For a fixed 6 € [a — d,b — ¢c] N R, (A3) requires
the function y — {F(y) — Fo(y — )} to have a well-separated interior
maximum at yg,s on Vs, while (A4) requires the function y — {Fi(y) —
Fo(y — 0)} to have a well-separated interior minimum at yi,ss on Vs. If Vs is
compact, then (A3) and (A4) are implied by (A2) and the assumption that
the function y — {F(y) — Fo(y — J)} have a unique maximum at yg,, s and
a unique minimum at y;,¢s in the interior of V.

The following result is provided in Fan and Park (2010).

Theorem 1. Define

Gi = Fl(ysup,&)[l - Fl(ysup,é)] + j~F‘0(‘ysup,5 - 5)[1 - FO(ysup,é - 5)] and

04 = F1Wine)ll = F1Wine.s)] + AF0ing.s — O — FoWings — )]



26 YANQIN FAN AND SANG SOO PARK

(1) Suppose (A1)—(A3) hold. Forany o € [a—d,b—c]NR

N(0,02), ift M(6)>0
Vi[F;(9) = FX(9)] = { max{N(0,07),0} if M(3) =0

and Pr(F-(5) = 0) — 1 if M(5)<0

(i1) Suppose (Al), (A2), and (A4) hold. Forany d e [a —d,b — c]NR,

N(0,03) if m(6)>0
VIIF,(9) = FU(9)] = { min{N(0,¢},),0} if m(3) =0

and Pr(FY(0) = 1) — 1 if m(6)>0

Theorem 1 shows that the asymptotic distribution of FL(S)(FY(9))
depends on the value of M(9) (m(d)). For example, if ¢ is such that M(d)>0
(m(8)<0), then FL(8) (FY(8)) is asymptotically normally distributed, but
if ¢ is such that M(5)=0 (m(5)=0), then the asymptotic distribution of
F }';(5)(F }1}(5)) is truncated normal.

Remark 3. Fan and Park (2010) proposed the following procedure
for computing the estimates F(3), FY(5) and estimates of o7 and o7, in
Theorem 1. Suppose we know V5. If Vs is unknown, we can estimate it by:

Ysn = [Y101)> Yiep] N[ Yoy + 6, Yo + 0]

where {Y )}, and {Y@}:2, are the order statistics of {¥;}i, and
{Yom),, respectively (in ascending order). In the discussion below, Vs
can be replaced by Vs, if Vs is unknown.

We define a subset of the order statistics {Y;};, denoted as {Yy()}iL,, as
follows:

rp = arg miin[{Yl(i)}?;l NYs] and s = argm?X[{Yl(i)};ll N Vsl

In words, Yy, is the smallest value of {¥;};L, N Vs and Yy, is the
largest. Then,

Mn(é) = maX{nL— FOn(Yl(i) — 5)} fori e {I’l,l‘l + 1, .. .,S1} (15)
i 1
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my(0) = mjn{’; — Fou(Y14) — 5)} forie{r,rn+1,...,5} (16)
i 1

The estimates F:(5), FY(5) are given by: FY(5) = max{M,(5),0},
FY(8) = 1 + min{m,(d),0}.
Define two sets I, and I,,, such that

Iy = {i = argmax{ni— Fou(Y16) — 5)}} and
i 1

I, = {i Q= argm,in{ni = Fou(Y1) — 5)}}
i 1

Then the estimators o7, and o7;, can be defined as:

i i
Gin = Z <l — n_l> + AF (Y1) — 0)(1 — Fou(Y1) — 9)) and

Ton = nil (1 - }51) + 2Fon(Y 1) — 01 — Fou(Y1(j) — 9))

for iel,, and jel,,. Since I,; or I,, may not be singleton, we may have
multiple estimates of o7, or ¢;,. In such a case, we may use i = ming{k €
Iy} and j = ming{k € I,,,}.

Remark 4. Alternatively we can compute F,E(é), F ,Lf (0) as follows. Note
that for 0 <g< 1, Lemma 3 (the duality theorem) implies that the quantile
bounds (F }f)_l(q) and (F ,];)_l(q) can be computed by:

(F5)"(g) = inf [F},'w) — F5,!(u— @)L (FY) ' (g)

= sup [Fy, () = Fy, (1 +u—q)]
ue[0,q]

inf
uelq,1]

() and anl(~) represent the quantile functions of Fy,(-) and
Fy,(-), respectively. To estimate the distribution bounds, we compute the
values of (F,';)fl(q) and (F}f)*l(q) a evenly spaced values of ¢ in (0, 1).
One choice that leads to easily computed formulas for (F,I;)*l(q) and

where F7!
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(F,?)_l(q) is g=r/n, for r=1, ..., n;, as one can show that

11 —1) 5=

Fn! (}%) = min mink[Yl(/+1) — Yol (17)
where j = [no((/ — r)/m)]+ 1 and k = [no((/ — r + 1)/m)], and

uyv-1( 7Y _
(F, (nl) = lzol’lzcttiﬁil)xi?ffk,[lfl(lﬂ) Yo) (18)
where j' = [no((n + 1 —r)/m)] + 1 and k' = [no((n; + 1 — r + 1)/ny)]. In the
case where nj=ng=n, Eqgs. (17) and (18) simplify:

=T,...,

-
FY 71(—) = max [Y —-Y —r
(F,) ) = e (;'—1)[ 10+1) 0(+1—r+1)]

The empirical distribution of (F,I;)*l(r/nl),rz lI,...,m, provides an
estimate of the lower bound distribution and the empirical distribution
of (F}f)_l(r/nl),rz 1,...,n, provides an estimate of the upper bound
distribution. This is the approach we used in our simulations to compute
Fy(3), F}}(9).

4.2. Two Numerical Examples

We present two examples to illustrate the various possibilities in Theorem 1.
For the first example, the asymptotic distribution of F,L,(é)(FIE(é)) is
normal for all 6. For the second example, the asymptotic distribution
of FL(8)(FY(8)) is normal for some & and nonnormal for some other &.
More examples can be found in Appendix B.

Example 1 (Continued). Let Y; ~ N(y;,07) for j=0, 1 with oi#0g.
As shown in Section 2.3, M(d)>0 and m(9)<0 for all 6 € R. Moreover,

a%s—i—olaot O'%S—‘r g100t

Vsups =— 3 3t and ypps=—F5—5—+u
sup,d O'% — O'% inf,o O'% _ O’%

are unique interior solutions, where s=0—(yu; —u,) and
\/s2+2(0f—o—%)ln(al /00). Theorem 1 implies that the asymptotic
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distribution of F,&(é)(F}f(é)) is normal for all 4 € R. Inferences can be
made using asymptotic distributions or standard bootstrap with the same
sample size.

Example 2. Consider the following family of distributions indexed by
ae(0, 1). For brevity, we denote a member of this family by C(a). If
X~ C(a), then

éxz if x € [0, a] %x if x € [0,a]
F(x)= e and f(x)= _
_((xl _la)) if x € [a,1] 2((11—;;) ifxelal]

Suppose Y|~ C(1/4) and Yo~ C(3/4). The functional form of
Fi(y)—Fy(y—0) differs according to 6. For y € V;, using the expressions
for Fi(y)—Fo(y—9) provided in Appendix B, one can find yy,p, s and M(0).
They are:
1+

— if—1+%\/§<5§1

1496 ) 1
Ysup,s = {O,T,l+5} 1f5=—]+5\/§

1
{0,1+ 8} if—1§5<—1+§«/§

46+ 1) -1 if—lgég—%
4 3 1
M(S) = —552 if —1555—1+§~/§

—%(5—1)2+1 if—1+%«/§§551

Fig. 3 plots ysps and M(5) against J.

Fig. 4 plots Fi(y)—Fo(y—09) against y€[0, 1] for a few selected values of o.
When 6 = —(5/8) (Fig. 4(a)), the supremum occurs at the boundaries of V;.
When 6 = —1 4 (v/2/2) (Fig. 4(b)), aupst = {0, ((1 +6)/2),1 + 0}, that is,
there are three values of yq,,5; one interior and two boundary solutions.
When 6> — 1 + (+v/2/2), Ysup.o becomes a unique interior solution. Fig. 4(c)
plots the case where the interior solution leads to a value 0 for M(d) and
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M(5) < 0 T M(5)
— Ysup,s at boundaries — Ysup,s
"f”
-~
-~ 0,
o /’5’
' .
o
P
- delta
| Il Il | | | | | »
T T T T T T T T T L4
I\ 0.8 0.6 -0.4 0.2 0.2 0.4 0.6 0.8 1
-0.5+
1+

Fig. 3. Graphs of M(6) and yy,, s : (C(1/4), C(3/4)).

Fig. 4(d) a case where the interior solution corresponds to a positive value
for M (9).

Depending on the value of §, M(J) can have different signs leading
to different asymptotic distributions for F ,';(5). For example, when
d0=1-(/6/2) (Fig. 4(c)), M) =0 and for 5>1 —(/6/2), M(5)>0.
Since M(6) =0 when 6 =1 — (\/5/2),ysup,5 =1 —(+/6/4) is in the interior,
and [\ (Vsups) — S0Wsups — 0) = —(16/3)<0, Theorem 1 implies that at

5=1-(/6/2),

JATFL(6) = FL(6)] = max(N(0,02),0) where o> = U :x)

When § = 1/8 (Fig. 4(d)),

9 47 , , 16
Ysup,s = EaM(é) = % >0, fl(ysup,(i) _fé)(ysup,é - 5) = _? <0
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delta = -5/8
1L F1(y)-FO(y-delta)
Common support(Ys)
0.5+
y
4
-1+
(@
delta = -1+sqrt(2)/2
1 T F1(y)-FO(y-delta)
Common support(Ys)
0.5+
y
| | | | | | | | — 4
0.1 0.2 0.5 0.6 0.8 0.9 1
-0.5 +
1+
(b)

Fig. 4. Graphs of [Fi(y)— Fo(y —0)] and Common Supports for Various J;
(@) 0 =—(5/8); (b) d = =14+ (v/2/2); () d = 1 — (+/6/2); and (d) o = 1/8.
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delta = 1-sqrt(6)/2
1 4 Fl(y)-FO(y-delta)

Common support(Ys)

0.5+
y
| | | ! ‘ | | | ‘ >
~—04—67" 03 04 03 —66—87—T08 09
-0.5 +
-1+
delta = 1/8
lji F1(y)-FO(y-delta)
Common support(Ys)
0.5+
y
‘ | | | | | | | | >
01 02 03 04 05 06 07 08 09
-0.5 +

Fig. 4. (Continued)
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Theorem 1 implies that when 6 = 1/8,

7,007

JIFY(0) — FX(8)] = N(0,63) where o7 = (1+1) 36864

We now illustrate both possibilities for the upper bound FY (9).
Suppose Y| ~ C(3/4) and Yy~ C(1/4). Then using the expressions for
Fi(y)—Fy(y—0) provided in Appendix B, we obtain

1 2
%‘S if—lgagl—g
146 . V2
Vinfs = {5’7’1} 1f5—1—7
(6,1} ifl—%\/ifzfl
%(5+1)2—1 if—lfégl—ﬁ
3 2
467 V2 3
m(d) =< if] - Y= z
(9) 3 if1-—S-<0<7
—4(1 =0 +1 if%gé_l

Fig. 5 shows yinrs and m(9).

Graphs of Fi(y)—Fy(y—9) against y for selective ¢’s are presented in Fig. 6.
Fig. 6(a) and (b) illustrate two cases each having a unique interior minimum,
but in Fig. 6(a), m(d) is negative and in Fig. 6(b), m(0) is 0. Fig. 6(c) illustrates
the case with multiple solutions: one interior minimizer and two boundary
ones, while Fig. 6(d) illustrates the case with two boundary minima.

4.3. Asymptotic Distributions obe(é), F}f(é) Without (A3) and (A4)

As Example 2 illustrates, assumptions (A3) and (A4) may be violated.
Figs. 4 or 6 provide us with cases where multiple interior maximizers or
minimizers exist. In Fig. 6(b) and (c), there are two interior maximizers
when 6 =(v/6/2)—1 or 6=1-(+/2/2) with @ =3/4 and ay = 1/4.
When = (v/6/2)— 1, M(3)=(v/6—2)’/2 and Yaps = {(6 — V6)/4),
(3v6—16)/4)}.  When d=1-(/2/2),M(©)=(2-+2)%/2 and
Vups = {(W2¥2)/4),((6 — 3/2)/4)}. Shown in Fig. 4(b) and (c) are
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1+
,./
M,,,»“’“ ,,/’,,
03
e o
Vinfs e L
/'/ -~
- delta
1 08 06 04 -02 11 o4 o o3
—— Vints at boundaries —

m(3) >0

Fig. 5. Graphs of m (0) and ;¢ : (C(3/4), C(1/4)).

cases with multiple interior minimizers for a; =1/4 and ay = 3/4.
When § = (v2/2) — 1,m(6) = —(2 —v2)*/2) and Yirs = {(2 — v/2)/4),
(32 —2)/4)}. When & =1 — (v/6/2),m(5) = —(v/6 —2)*/2 and YVirs =
{(v/6 —2)/4),((10 - 3V/6)/4)}.

We now dispense with assumptions (A3) and (A4). Recall that

ysup,é = {J/ € Vs Fl(y)_FO(y_é) ZM((S)}
Vints =y € Vs : F1(y) — Fo(y — ) = m(0)}

For a given b>0, define

yfup,(i:{yeyé:Fl(y)_FO(y_é)ZM(é)—b}

Vors =1 € Vs Fi(y) — Fo(y — 8) < m(3) + b}

A3'. There exists K>0 and 0<n<1 such that for all y € )” for b>0

. . sup,o?
sufficiently small, there exists a yg,, s € Vsups such that yg, 5 <y and

(y - ysup,é) = Kb".
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delta =-1/8
1‘t F1(y)-FO(y-delta)
Common support(Ys)
0.5+
y
14
-1k
(@)
delta = sqrt(6)/2-1
) T Fl(y)-FO(y-delta)
Common support(Ys)
0.5 +
y
= o
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
-0.5 +
o1 -
(b)

Fig. 6. Graphs of [Fi(y)— Fo(y —0)] and Common Supports for Various 0;

(@) 5 = —(1/8); (b) 6 = (+/6/2) — 15 (¢) 6 = 1 — (v/2/2); and (d) & = 5/8.
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'S

" Fl(y)-FO(y-delta)

delta = 1-sqrt(2)/2

Common support(Ys)

0.5 +
M
/ y
‘ | | | | | | | | >
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
-0.5 +
-1 +
delta = 5/8
| 1 Fl(y)-Fo(y-delta)
Common support(Ys)
05 i /\
y
‘ 1 | | | | | | | >
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
-0.5 +

Fig. 6. (Continued)
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A4'. There exists K>0 and 0<x <1 such that for all y € yf’nf,é for 5>0
sufficiently small, there exists a y,rs5 € Vinrs such that ;5 <p and
(V = Vinr,s) < Kb".

Assumptions (A3) and (A4) adapt Assumption (1) in Galichon and
Henry (2009). As discussed in Galichon and Henry (2009), they are very
mild assumptions. By following the proof of Theorem | in Galichon and
Henry (2009), we can show that under conditions stated in the theorem
below,

VmIMu(0) = M()] = sup G(y,0),/mmu(d) —m()] = inf G(y,0)

1
Y€Vsup.s V€Vints

where {G(y, ) : y € Y5} is a tight Gaussian process with zero mean. Thus the
theorem below holds.

Theorem 2.

(1) Suppose (Al) and (A3) hold. For any de€la—d,b—c]NR,
we have

L N Supyey,,,, G0, 0), if M(6)>0
VIlE,©) = FEO1 =\ max{sup,oy, G(1,6),0} if M(3) =0

and Pr(FL(5) =0) — 1 if M(5)<0

where {G(y,0):y € Ys} is a tight Gaussian process with zero
mean.

(i1) Suppose (Al) and (A4) hold. For any de[a—d,b—c]NR,
we get

inf ey GO, 0), if m(8)<0
U U }eymh)
VmlE, (0) = FEO)] = {min{inf,,,e%m G(1,8),0) if m(8) =0

and Pr(FV(0)=1)— 1 if m(5)>0

When (A3) and (A4) hold, Vg5 and YViyr s are singletons and Theorem 2
reduces to Theorem 1.
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5. CONFIDENCE SETS FOR THE DISTRIBUTION
OF TREATMENT EFFECTS FOR
RANDOMIZED EXPERIMENTS

5.1. Confidence Sets for the Sharp Bounds

First, we consider the lower bound. Let
Gu(y,90) = /mi[F1,(y) — F1(»)] = V/m[Fou(y — 0) — Fo(y — )]
Then

VlF(9) = FH(0)]
= maX{SUP{Gn(y,5) +V/mlF1(y) = Fo(y — 5)]},0} — max{/m M(3),0}

yeds

= max{sup[G(y 0) + hp(y,9)] + min{hy (9),0}, — max{/(0), 0}}(_ w! Ls)
yeds

(19)

= max{ sup G(y,0) + min{A(9),0}, — max{hy (), 0}}( w? Lo) (20)
Y€Vsup.s
where  hp(p,d) =lim /m[F1(y) — Fo(y —0) —M(9)] <0 and A (d) =
lim[ /i M (D).
Define /] (0) = /m M ,(0)I{|M ()| >b,} and
hi (y,0) = /mi[F1,(y) = Fou(y — 6) — My (O)U{[F1a(»)
- FOn(y - 5) - M;1(5)]< - b:1}

where b, is a prespecified deterministic sequence satisfying b,—0 and
J/nib, — oo and b; is a prespecified deterministic sequence satisfying
b, Inln ny + (Jmd' )_ JInln n; — 0. In the simulations, we considered
b,l = enp,0<a<(1/2),¢>0 and b, = ¢n; "% 0<d' <1,¢ >0. For such
b),, we have

ln In n1 «/ln ln n
Based on Egs. (19) and (20), we propose two bootstrap procedures to
approximate the distribution of ,/n [F,I;((S) — FY(5)]. In the first procedure,

b nln my + (ub)'/In In ny = -0
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we approximate the distribution of WL() and in the second procedure,
we approximate the distribution of WL s- Draw bootstrap samples with
replacement from {Y;}i1, and {Y;}°,, respectively. Let F7},(»), Fg,(»)
denote the empirical dlstrlbution functions based on the bootstrap samples,
respectively. Define

G,(n,0) = Vm[F},(») = Fiu()] — /mlF5,(y — 6) = Fouly — 9)]

In the first bootstrap approach, we use the distribution of the following
random variable conditional on the original sample to approximate the
quantiles of the limiting distribution of /ni[F ,1;(5) — FXO)]:

WIL*(S = max{sup{G (»,0) + hi (y,0)} + min{k; (9), 0}, — max{/] (), 0}}

yed.

In the second bootstrap approach, we estimate Y5 directly and
approximate the distributions of Wy s. Define

ynsupo—{y, E{Yll}, 1U{Y01 no : n(é) (Fnl(y,‘)_FnO(yi_é))Sb;}

Then the distribution of the following random variable conditional on the
original sample can be used to approximate the quantiles of the limiting
distribution of Jn—l[F,%(é) — FL)):

Wi = max{ sup  G*(3,90), —h;(a)} + min{/zf (5), 0}

VeV sup,d

The upper bound can be dealt with similarly. Note that
Vil (8) = FU(9)]
= min{ injg {Gu(¥,0) + hu(y,0)} + max{hy(d), 0}, — min{hy(d), 0}}
Yers

= min{ inf [G(7.0) + hu(y,8)] + max{hy(8). 0), — min{f(),0) }(E W)

= min{ inf G(y, ) + max{hy(d),0}, — min{y(J), 0}}(E W%J,é)

Y€Yint o

where  hy(y,8) = lim (/mi[F1(y) — Fo(y —8) —m(3)] =0 and  hy() =
lim[/7m(5)].
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Define h{;(0) = /nim,(6)I{|m,(0)| > b,} and
h;}()@ 5) = «/n—l[Fln(J/) - FOn(y - 5) - ’nn(é)]l{[Fln(y) - FOnO} - 5) - ’nn(é)] > b:1}

We propose to use the distribution of W{js or W conditional on
the original sample to approximate the quantlles of the distribution of
JFY(S) — FY(5)], where

W{j*o = m1n{ 1nf{G*(y ) + (v, 8)) + max{h;(9), 0}, — min{A;(9), 0}}

Wch = mm{ inf G(»,0), hi}(é)} + max{#y;(9), 0}

Y€V uints
in which
ynmf o= {y; S {Yll} —1 U {Y()l }71,1(5) (Fnl(yz) - FnOO/i - 5)) = _b:1}

Throughout the simulations presented in Section 7, we used Wf*()
and Wz*b

5.2. Confidence Sets for the Distribution of Treatment Effects

For notational simplicity, we let 8y = Fx (8), 0. = F%(5), and 0y = FY(9).
Also let ® =0, 1]. This subsection follows similar ideas to Fan and Park
(2007b). Noting that

_ - Y o
0y = arg rggg{(@L 01 +(Ou —0)_}

where (x)_ = min{x, 0} and (x)+ = max {x, 0}, we define the test statistic
T,(00) = m(0, = 60)2 +m(By — 60)> ©2))
where 0 = FL(é) and Oy = 5(5). Then a (1—oa) level CS for 6, can be
constructed as,
CSy={0€0:T,0) < c1-.0)} (22)
for an appropriately chosen critical value c¢;_, (6).
To determine the critical value ¢;_, (), the limiting distribution of 7,,(6)

under an appropriate local sequence is essential. We introduce some
necessary notation. Let

h*(00) = — lim /u[0L — 0] and  h"(00) = lim v/n[0y — O]
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Then A%(09) > 0,41%(0y) > 0, and h"(0y) + hY(0y) = lim,_ oo(/nV), Where
V=0y—0L is the length of the identified interval. As proposed in
Fan and Park (2007b), we use the following shrinkage ‘“‘estimators” of
h*(60,) and hY(0,).

B (00) = —/m[0L — 00)I{[00 — 011> by}

7 (00) = V/nl0u = 00){[0u — 00]> b,)
It remains to establish the asymptotic distribution of 7,,(0o):
T,(00) = (Ym0 = 1] = /mlbo — 0D + (Vm[0u — Oul + Vrilfu — o)
= (Wrs = h(00)7 + Wy — h”(00)2
Let
T3(00) = (Wi 5 — WE00)% + (Wi 5 — Y (00))°

and cvi_ a(hL(Oo) hY(0y)) denote the l1—a quantile of the bootstrap
distribution of T7(6y), where W7 ;5 and W7y s are either W% and WU s or

WzL’fo and W7s defined in the previous subsection. The followmg theorem
holds for a p e [0, 1].

Theorem 3. Suppose (Al), (A3), and (A4)" hold. Then, for « € [0, p],
lim inf Pr(0y € {0: T,(0) < evi_,(h~(0),h"*O0)) > 1 —a

n1—00 0y e[0r,0u]

The coverage rates presented in Section 7 are results of the confidence sets
of Theorem 3. The presence of p in Theorem 3 is due to the fact that 7,,(6) is
nonnegative and so is evt_ (h™*(6), hV*(0)). In Appendix A, we show that
one can take p as,

p=1- Prl sup G(y,0) <0, inf G(»,0) > o] (23)
y

- €Vsup,o Yelinfs

In actual implementation, p has to be estimated. We propose the
following estimator p:

>

| &
=1-=Y 1{ sup GP(3,0)<0, inf GP(,0)>0
Bbz:; {}’Gynf:p.d ! (y )= VDuints (y ) -

where Gfi”)(y, 0) is G (y,6) from bth bootstrap samples.
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6. BIAS-CORRECTED ESTIMATORS OF SHARP
BOUNDS ON THE DISTRIBUTION OF
TREATMENT EFFECTS FOR RANDOMIZED
EXPERIMENTS

In this section, we demonstrate that the plug-in estimators F:(5), FY ()
tend to have nonnegligible bias in finite samples. In particular, F ,I;(é) tends
to be biased upward and FY(5) tends to be biased downward. We show this
analytically when (A3) and (A4) hold. In particular, when (A3) and (A4)
hold, we provide closed-form expressions for the first-order asymptotic
biases of FL(9), FY(5) and use these expressions to construct bias-corrected
estimators for F-(9) and FY(5). When (A3) and (A4) fail, we propose
bootstrap bias-corrected estimators of the sharp bounds F%(6) and FY(5).
Recall

FY(6) = max{M,(5),0} and F~(J) = max{M(9),0}
FY(0) = 1 + min{m,(9),0} and FY(5) = 1 + min{m(5),0}
where under (A3) and (A4), we have
V(M,(8) — M(8)) = N(0,07) and /nj(m,(3) — m(5)) = N(0,07))

First, we consider the lower bound. Ignoring the second-order terms, we get:

E[F)(8)] = EIM(3)I{s,5)20]

- oL,
=E\{M©O)+—=2Z Iiue - here Z ~ N(0, 1
H (0)+ NG } {M(())+(rr|_/\/n—|)Z_0]:| where 0,1)

oL
= M) E (m@)y+(o./ ymz=o)] + W E[ZI (@) +(o1 ) yim 7201

oL
= MO)E z=—(m/orymop] + \/—nTE (21 72— ym ) yemon]

— M(5) / D(2)dz + 2 / 2¢(2)dz
N0 NI (g feym)

= M(é){l - (D<—‘£—’Z_'M(5)> }

1 o (% ( z2 ( 22)
—_—— exp| —= |d| —=
V2 (i jem) 2 2

_ Vm L (M
= M(5)(D< o~ M(5)> + J:Tl¢< M((S))
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Case 1. Suppose M(0)>0. Then ignoring second-order terms, we
obtain

E[FL(6)] - FY(0) = M(3)® (@ M(é)) L (— @M@)) M)
gL \/n_l oL

_ M((S){(D(fM(é)) - 1} +5;_1¢(—fM(5))

— — M(5)D (—@M(5)> + 2 (—@M(a))
gL ﬁ gL

= oL {¢ (—@M(5)> VIR VP (—@M(a)) }
ﬁf oL oL oL

> 0 (positive bias)

because

lim () — x(—)} = $(0) = %2_71

lim {p(—x) — x®(—x)} = lim {p(x) +xD(x)} = lim i <@)
xX— 400 X——00 x——ocodx \ X 1

d_ic{d)(_x) — x®(—x)} = —P(—x) <0 forall x € R, N {0}

Case II. Suppose M (6)<0. Then ignoring second-order terms, we
obtain

EIF-(0) - FY(5) = M(35)® (ﬂ M(é)) + g (— @M@)
(28 \/_I’H oL

=0 (M NI Vm
e s)

- 5/%{¢ <_\£;T|M(5)I> - i—_’zllM(é)ld)(—‘éjzllM@)l) }

> 0 (positive bias)
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Summarizing Case I and Case 11, we obtain the first-order asymptotic bias
of FL(6):

airkon - o = S { o - L o)
- |M(5>|<D(—f|M(5>|)}

regardless of the sign of M(J), an estimator of which is

Bias, = {¢( N |M*(5)|> Vm |M*(5)|<1>< */”—1|M:<5)|)}
\/;_ﬂ oL OLn

where M (0) = M, (6)I{|M,()|>b,} in which b,—-0 and /mb, — oo.
We define the bias-corrected estimator of F(J) as,

max{F(5) — Biasy, 0}

=max{FL(5)—j§%{¢( o |M*(5)|>

- |M*(5)|<D< S |M:;(5>|>},0}
L FLoy

Fipc(9)

Now consider the upper bound. The following holds:
E[F,/(9)]= 1+ E[my(0) im,)<01]
- v .
=1 + E |:{I7’l((5) + \/mZ}]{m(bH_(o.U/mzio}]

ou
= 1+m()El yn(s)4(oy ) yinz<oy] + \/7— E[Z1 s)4(ov )y z<0})

(T /aum®) oy [~WT/oum) ;2
=1 +m(5)/ P(2)dz+—= zexp(—z) dz

J_«/—
B \/n_l 1 ou (f/zf@m(é) Z2 ZZ
—emon(=gime) =g [ (55

_ _m _ou VM
_]+m(5)CD< - m(5)> \/n_l¢< — m(5))



Partial Identification of the Distribution of Treatment Effects 45
Case 1. Suppose m(0) <0. Then ignoring second-order terms, we obtain

[

EIFY(0)] — FU(8) = (@) (— @m(&) L ( N m(é)) )
U U

o NGl

_ VI 6)) = 2 (=Y s

= —m(5)D (Em(é)) \/ﬁTd)( p m(é)))

_ VM) - O g (Y

= —m(é)@( p m(5)> \/n_1¢< - n1(5))

= =2 (o (=L mon) - L o~ L o )
\/ﬁf oy oy ou

< 0 (negative bias)

Case II. Suppose m(5)>0. Then ignoring second-order terms, we obtain

_ _Jm _ U (N
E[FB((S)]—FU((S)—m(é)cD( o m(é)) m¢( UU m(é))

__%u ((/, <_@m(5)> IRV (—@m(5)>>
\/ﬂ oy oy ou

< 0(negative bias)

Therefore, the first-order asymptotic bias of F,EJ((S) is given by:

AN~ P == (6~ L2 o0 ) L oo (- o) )

regardless of the sign of m(d), an estimator of which is

Biasy = — U (¢>(—“”—‘ |m:<5)|) —@w:(a)@(—@w:(én))
\/a OUn OUn O0Un

where n1(0) =m,(6)I{|m,(d)| >b,}. A bias corrected estimator of F Y(o) is

defined as,
(o(-Lmzcon )

0u

Flhe(6) = min{FY(5) — Bias, 1) = min{ PO+

N
*/’T1|m;(5)|c1>(—@|m2(5)|> > , 1} > F,/(9)

ou ou

The bias-corrected estimators we just proposed depend on the validity
of (A3) and (A4). Without these assumptions, the analytical expressions
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derived for the bias may not be correct. Instead, we propose the following
bootstrap bias-corrected estimators. Define

W, W,
J_ Jm

where W(bs(W(b)b) are WF’B(WF*é) or Wi s(Wy,) from bth bootstrap
samples, where Wf’j), Wi, Wis and W7 are defined in the previous
subsections. The bootstrap bias-corrected estimators of F L®) and FY(5)
are, respectively,

B B
Bias(FL(6)) = — Z and  Bias(FU(8)) = - Z

Fro(8) = max{FL(8) — Bias(FL(6)),0} and
Frnc(6) = min{FU(6) — Bias(FY(9)), 1)

7. SIMULATION

In this section, we examine the finite sample accuracy of the nonparametric
estimators of the treatment effect distribution bounds, investigate the
coverage rates of the proposed CSs for the distribution of treatment effects
at different values of J, and the finite sample performance of the bootstrap
bias-corrected estimators of the sharp bounds on the distribution of
treatment effects. We focus on randomized experiments.

The data generating processes (DGP) used in this simulation study are,
respectively, Example 1 and Example 2 introduced in Sections 2.3 and 4.2.
The detailed simulation design will be described in Section 7.1 together with
estimates FL and FY. Section 7.2 presents results on the coverage rates
of the CSs for the distribution of treatment effects and Section 7.3 presents
results on the bootstrap bias-corrected estimators.

7.1. The Simulation Design and Estimates FY and FY

The DGPs used in the simulations are: (i) (Case Cl) (Fy, Fy,0) =
(C(1/4),C(3/4),(1/8)); (i)  (Case C2) (Fy,Fo,0) =(C(1/4),C(3/4),
1 — (+/6/2)); (iii) (Case C3) (Fy,F,0) = (C(3/4), C(1/4),(v/6/2) — 1); and
(iv) (Case C4) (Fi, Fo,0) = (C(3/4),C(1/4),—(1/8)).
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(Case C1) is aiming at the case where M(J)>0 with a singleton Vy,p 5 S0
that we have a normal asymptotic distribution for \/ni(F(3) — F(5)). The
m(9) for this case is greater than zero so FY(d)=1 and Pr(FE((S) =1)— 1.
In this case, Vinr,s consists of two boundary points of Vs.

In (Case C2), M(6) =0 and YVsups is a singleton so we have a truncated
normal asymptotic distribution for /n(F-(5) — F=(5)). The m(5), however,
is less than zero and has two interior maximizers. So the asymptotic
distribution of \/m(F))(8) — FY(9)) is sup,.y, G(»,9).

(Case C3) is opposite to (Case C2). In (Case C3), \/n_l(F,I;(é) — FY(9)) has
an asymptotic distribution of sup,..y,  G(»,d) because M(0)>0 and Vsups
has two interior points whereas \/n‘l(F}f(é) — FY(5)) has a truncated
normal asymptotic distribution since m(d) = 0 and Yy is a singleton.

Finally, (Case C4) is the opposite of (Case C1). In (Case C4), M(5)<0
so Pr(F ,%(5) =0)— 1 and m(6)<0 with )Yjys; being a singleton so
Jn—l(F,?(é) — FY(9)) has a normal asymptotic distribution. Table 1
summarizes these DGPs.

We also generated DGPs for two normal marginal distributions. Table 2
summarizes the cases considered in the simulation. In all of these cases,
M(F,%(é) — FY(¥)) and ﬁ(F}f(é) — FY(6)) have asymptotic normal
distributions but we include these DGPs in order to see the finite sample

Table 1. DGPs (Case Cl)—(Case C4).
(Case Cl) (Case C2)
5 1

(F1, Fo, 9) (C1/4).€(3/4).5) (c(1/4).c(3/4).1-5)
F- M(S) = FY(6)~0.49 M) = F“6) =0
Vsup.s Singleton, interior point Singleton, interior point
W0 N(0,02) max{N(0, o7 ), 0}
FY m(8)~0.06, FY() = 1 1—-m(8) = FY(8)~0.9
Vint.s Two boundary points Two interior points
Wu.s Pr(FV(@) =1) - 1 infyey,.; G, )

(Case C3) (Case C4)
(F1, Fo, 0) (C(3/4), C(1/4),48 - 1) (CG/4),C(1/4),—-4)
Ft M(%) = F“(6)~0.1 M(6)~—0.06, FX(5) =0
Vsup.s Two interior points Two boundary points
Wes SUPyey,,, G, 0) Pr(FL(8) = 0) - 1
FY 1-m (8) = FY() =1 1—m(8) = FY(8)~0.51
Vint,s Singleton, interior point Singleton, interior point
Wus min{N(0, 63), 0} N(0, %))
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Table 2. DGPs (Case N1)—(Case N6).

(Case N1) (Case N2) (Case N3)
(F1, Fo, 9) (N(2,2), N(1,1), 1.3) (N(2.2), N(1,1), 2.6) (N(2,2), N(1,1), 4.5)
Ft M) = FX()~0.15 M(6) = FX(9)~0.51 M(6) = F(8)~0.86
Ysups Singleton Singleton Singleton
Wis N(0,0?) N(0,0}) N(0,0})
FY 1—m(8) = FY(5)~0.97 1—-m(5) = FY()~ 1 1—m(3) = FY(0)~ 1
Vint s Singleton Singleton Singleton
Wu.s N(0,0%) N(0,0%)) N(0,0%)

(Case N4) (Case NY5) (Case N6)
(F, Fo, 9) (N(2,2), N(1,1), —=2.4) (N(2,2), N(1,1), —0.6) (N(2,2), N(1,1), 0.7)
Ft M(d) = FX5)~0 M%) = FX6)~0 M(d) = FY(6)~0.04
Ysup.s Singleton Singleton Singleton
Wrs N(0,03) N(0,03) N(0,03)
FY 1—=m(8) = FY(8)~0.16 1—-m(8) = FY(8)~0.49 1—=m(8) = FY(8)~0.85
Vint s Singleton Singleton Singleton
Wus N, o) N(0,61)) N, at)

performance of our bootstrap procedures for different values of F%(d) and
FY(6). From (Case N1) to (Case N6), F(5) ranges from being very close to
zero to about 0.86 and FY(5) from 0.16 to almost 1.

We now present F- and F\ for the normal marginals (DGPs (Case N1)—
(Case N6)) and C () class of marginals (DGPs (Case C1)—(Case C4)).
For each set of marginal distributions, random samples of sizes n; = ny =
n = 1,000 are drawn and F~ and FV are computed. This is repeated for 500
times. Below we present four graphs. In each graph, we plotted F ,'; and F E
randomly chosen from the 500 estimates, the averages of 500 Frs and F\’s,
and the simulation variances of F- and FY multiplied by n. Each graph
consists of eight curves. The true distribution bounds F“ and FY are
denoted as F"L and F" U, respectively. Their estimates (F ,]; and F}f) are
Fn”L and Fn"U. The lines denoted by avg(Fn"L) and avg(Fn"U) show
the averages of 500 Fs and FUs. The simulation variances of F- and FY
multiplied by 7 are denoted as n*var(Fn”L) and n*var(Fn"U).

Fig. 7(a) and (b) correspond to (Case Cl)—(Case C4), while Fig. 7(c)
corresponds to (Case N1)—(Case N6). In all cases, we observe that Fn"L
and avg(Fn”L) are very close to F”~L at all points of its support (the same
holds true for F*U). In fact, these curves are barely distinguishable from
each other. The largest variance in all cases for all values of J is less than
0.0005.
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(a)

Avg(FnL) -
Avg(Fn7l)
n*var(Fn"L)

n*var(FnU)

T
}
L,
Ay
o

(b)

Fig. 7.

(a) Estimates of the Distribution Bounds: (C(1/4), C(3/4)); (b) Estimates of
the Distribution Bounds: (C(3/4), C(1/4)); and (c) Estimates of the Distribution

Bounds: (N(2.2), N(1,1)).
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n*var(FnU)

Fig. 7. (Continued)

7.2. Simulation Results for Coverage Rates

In this and the next subsections, we present simulation results for the
bootstrap CSs and the bootstrap bias-corrected estimators. For each DGP,
we generated random samples of sizes n; = ny = 300 and 1,000, respectively.
The number of replications we used is 2,500 and the number of bootstrap
repetitions is B=1,999 as suggested in Davidson and Mackinnon
(2004, pp. 163-165). The shrinkage parameters are: b, = nl_(l/ Y and
B, =03n;"%? that is, c=1.0, a=1/3, ¢ =03, and @ = 0.05 in the
expressions in Section 5.1. We used the second procedure based on W7 5 and
Wi.s- We set o = 0.05 throughout the simulations.

Table 3 presents the minimum values of coverage rates of the CSs defined
in Theorem 3 (Fa(0) columns) and the average values of p with DGPs (Case
Cl)—(Case C4). -

The CSs for DGPs (Case C2) and (Case C4) perform very well. As n
grows, the coverage rates for DGPs (Case C2) and (Case C3) become closer
to the nominal level 1—o = 0.95. Considering that (Case C2) and (Case C3)
are cases where the estimator of one of the two bounds follows a normal
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Table 3. Coverage Rates and avg(p) for (Case C1)—(Case C4).

(Case Cl) (Case C2) (Case C3) (Case C4)

FA(0)  ave(p)  Fa®)  ave(p)  Fa(®)  avg(p)  Fad)  ave(p)

n =300 0.9320 09220  0.9360 09762 09356 09766  0.9312  0.9203
n=1,000 09376 09228 0.9488 09780 09540  0.9786  0.9384  0.9213

Table 4. Coverage Rates and avg(p) for (Case N1)—~(Case N6).

(Case N1) (Case N2) (Case N3)
F(9) avg(p) FA(d) avg(p) F(9) avg(p)
n =300 0.9304 0.9628 0.9252 0.929 0.9332 0.9007
n = 1,000 0.9536 0.9626 0.9508 0.9479 0.9492 0.9050
(Case N4) (Case N5) (Case N6)
F(9) avg(p) FA(d) avg(p) F(d) avg(p)
n =300 0.950 0.9182 0.9176 0.9717 0.9444 0.9629
n = 1,000 0.9492 0.9293 0.950 0.9869 0.9492 0.9643

distribution asymptotically but the estimator of the other bound violates
(A3) and (A4), our bootstrap procedure seems to perform very well. The
minimum coverage rates for (Case C1) and (Case C4) in which the estimator
of one of the two bounds degenerates asymptotically are about 0.93-0.94.
They improve slowly as the sample size becomes larger. When n = 1,000, the
coverage rates are still less than 0.94 but a little better than the coverage
rates with n = 300. The average p differs from DGP to DGP. (Case C1) and
(Case C4), where F,%(é) or FE(&S has a degenerate asymptotic distribution,
have p as low as about 0.92. (Case C2) and (Case C3) have p about 0.98.
In both cases, p is far greater than « = 0.05. B

The coverage rates for DGPs (Case N1)—(Case N6) are in Table 4. Recall
that in all of these cases, \/n1(FL(5) — FY(9)) and /ni(FY(8) — FY(9)) have
asymptotic normal distributions.

The coverage rates for FA(d) increased from about 0.92-0.93 when
n = 300 to almost 0.95 when n = 1,000. For (Case N4) and (Case N6), the
coverage rates for n = 300 are already very good. As in DGPs (Case C1)-
(Case C4), the average p differs from DGP to DGP. Nonetheless, p is greater
than 0.05 for all cases. a
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7.3. Simulation Results for Bias-Corrected Estimators

A

errors of FL and FY as well as F, - and F ., where we used the bootstrap
bias-correction with the second bootstrap procedure discussed in Section 5.1.
“Bias” and “4/MSE” in Table 5 represent the average bias and the square
roots of the mean squared errors (MSE).

The direction of the bias without correction is as expected. The bias
estimates are positive for FL- and negative for FY for all DGPs except for the
cases that /nj (F,%(é) — FY(9)) and N (FE(&) — FY(9)) degenerate asymp-
totically (Case C1 for F. and Case C4 for FV). The bias-correction took

In each replication, we computeLd the bog}strap biases and mean squared

Table 5. Bias and MSE Reduction for (Case C1)—(Case C4).

(Case CI) (Case C2)
F#(é) F:;BC((s) F#((S) F#Bc(a)
n =300 Bias 0.0190 0.0003 0.0305 0.0142
JVMSE 0.0382 0.0352 0.0429 0.0263
n = 1,000 Bias 0.0095 —0.0009 0.0152 0.0066
MSE 0.0211 0.0197 0.0220 0.0130
F}(9) Fopc(9) F,}(9) Fopc(9)
n =300 Bias 0 0 —0.0292 —0.0064
MSE 0 0 0.0361 0.0253
n = 1,000 Bias 0 0 —0.0150 —0.0031
MSE 0 0 0.0187 0.0134
(Case C3) (Case C4)

Fy/(9) Fiic(0) F(0) Fipc(0)

n =300 Bias 0.0292 0.0064 0 0

VMSE 0.0348 0.0247 0 0

n = 1,000 Bias 0.0144 0.0024 0 0

MSE 0.0182 0.0131 0 0
F}(9) Fipc(9) F}(9) Fpc(0)
n =300 Bias —0.0306 —0.0141 —0.0192 —0.0004
VMSE 0.0430 0.0265 0.0382 0.0349
n = 1,000 Bias —0.0159 —0.0070 —0.0099 0.0004

MSE 0.0228 0.0136 0.0211 0.0194
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effect with n = 300 quite dramatically already. In (Case Cl1) for Ff; and
(Case C4) for F\/, where the asymptotic distributions of those estimators are
normal, the magnitude of the bias reduces to roughly about 1/50-1/60 of the
bias of FL or FY. For other DGPs, the magnitude of the bias-reduction is
not as great but still the biases reduced by roughly about 1/1.5-1/4.5 of the
bias of FL or FV. The relative magnitude of bias-reduction is similar in
n = 1,000 for (Case C2) or (Case C3). It is roughly about 1/2~1/5 of the
bias of FL or F\. The bias estimates of I:"jBC for (Case Cl) and I?,IIJBC
(Case C4) changed sign when n = 1,000. The bootstrap bias-corrected
estimators work quite well and we can see huge reduction in bias and
changes of signs in (Case Cl1) for F. and (Case C4) for FV (where the
normal asymptotics holds). We will see the sign change with the DGPs
(Case NI1)—-(Case N6) as well. The bootstrap bias-corrected estimators
also have smaller MSEs than F,, L and FY as shown in the table. The v'M
of FnBC and FnBC are roughly 2/3 of the ~/MSE of FL and FY for (Case C2)
and (Case C3) but the reduction in +/MSE is not as great in (Case C1) for F ,I;
and (Case C4) for F }f as in other DGPs.

Table 6 show that results for (Case N1)—~(Case N6) are similar. The sign
change happened in all DGPs except for those in which F“(§)~0 or

FY(6)~ 1. The relative magnitude of the bias in F, EBC(é) or F ;JBC(é) to the

bias in F,%(é) or F,?(é) ranges from 1/2 to 1/13. The reduction in ~/MSE
is not sizable.

8. CONCLUSION

In this paper, we have provided a complete study on partial identification
of and inference for the distribution of treatment effects for randomized
experiments. For randomized experiments with a known value of a
dependence measure between the potential outcomes such as Kendall’s 7,
we established tighter bounds on the distribution of treatment effects.
Estimation of these bounds and inference for the distribution of treatment
effects in this case can be done by following Sections 4 and 5 in this paper.
When observable covariates are available such that the selection-on-
observables assumption holds, Fan (2008) developed estimation and
inference procedures for the distribution of treatment effects and Fan
and Zhu (2009) established estimation and inference procedures for a
general class of functionals of the joint distribution of potential outcomes
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Table 6. Bias and MSE Reduction for (Case N1)—(Case NO).

(Case N1) (Case N2) (Case N3)

FE©)  Frpe@®)  FE@)  Fipe®  FE©)  Frpe(d)

n = 300 Bias  0.0233 0.0023  0.0187 0.0011  0.0108  —0.0023
JVMSE  0.0397 0.0354  0.0376 0.0343  0.0226 0.0214

n = 1,000 Bias  0.0106  —0.0008  0.0088  —0.0011  0.0049  —0.0024
MSE  0.0207 0.0187  0.0205 0.0193  0.0121 0.0118

FJ©0)  Fpc®)  F)©) Fipc®)  F©)  Fypc(d)

n =300 Bias —0.0182 0.0017 —0.0011 —0.0001 0 0
MSE 0.0276 0.0207 0.0024 0.0005 0.0001 0
n = 1,000 Bias —0.0087 0.0024 —0.0005 0.0 0.0 0.0
MSE 0.0144 0.0120 0.0010 0.0001 0.0 0.0
(Case N4) (Case N5) (Case N6)

FL©) FLac(®) FL(5) FLo(d) FL(5) FLc(6)

n = 300 Bias 0.0 0.0 0.0013  0.0001 0.0192  —0.0009
JMSE  0.0002 0.0 0.0026  0.0005  0.0286 0.0210

n = 1,000 Bias 0.0 0.0 0.0005 0.0 0.0089  —0.0021
MSE  0.0001 0.0 0.0005 0.0 0.0145 0.0118

FJO)  Fpc®  FJ©O)  Fpc®)  Fl©O) Fpc)

n =300 Bias  —0.0111 0.0024 -0.0195  —-0.0017  —0.0229  —0.0019
MSE 0.0228 0.0213 0.0381 0.0344 0.0385 0.0344
n = 1,000 Bias  —0.0055 0.0019 —0.0085 0.0014  —0.0104 0.0009
MSE 0.0127 0.012 0.02 0.0187 0.0209 0.0189

including many commonly used inequality measures of the distribution of
treatment effects.

This paper has focused on binary treatments. The results can be easily
extended to multivalued treatments. For example, consider a randomized
experiment on a treatment taking values in {0, 1, ..., T}. Define the treat-
ment effect between ¢ and ¢ as A,, =Y, — Y, for any ¢, €{0,1,..., T}
and t#¢. Then by substituting Y; with T, and Y, with Y,, the results in
this paper apply to Far,. The results in this paper can also be extended
to continuous treatments, provided that the marginal distribution of the
potential outcome corresponding to a given level of treatment intensity
is identified.
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NOTES

1. In the rest of this paper, we refer to ideal randomized experiments (data) as
randomized experiments (data).

2. A copula is a bivariate distribution with uniform marginal distributions on
[0,1].

3. Frank et al. (1987) provided expressions for the sharp bounds on the
distribution of a sum of two normal random variables. We believe there are typos
in their expressions, as a direct application of their expressions to our case would
lead to different expressions from ours. They are:

FL) = Q(w) +q,(ffo§;fgf) _1
gy — 0] gy — 07

U —015 + oot ooS + oyt
F (5):@( " )+¢)( 5

2
001 0y — 01

4. In practice, the supports of F| and Fy may be unknown, but can be estimated
by using the corresponding univariate order statistics in the usual way. This would
not affect the results to follow. For notational compactness, we assume that they are
known.
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APPENDIX A. PROOF OF EQ. (23)

Obviously, one can take 1 — p = limy, . infp,efp, 0,)Pr(0o € {0 : T,,(0) < 0)}.
Now,

mll_r)noo eoel[gLf,e)U]Pr(GO e{0:T,0)<0)
= inf Pr[(WLs — h(00))% + (Wus + hV(00))> = 0]
We need to show that

inf Pr[(Wys — h“(00))2 + (Wy,s + h(00))> = 0]

—Pr| sup G(»,9) <0, inf G(»,)>0

VEVsups Y€Vint.s
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First, we consider the case with Wy 5 — hL(Oo) < 0. We have:

Wi —h“(0p) <0

< max{ sup G(y,9), —hL(é)} < —min{hg(9),0} + hL(Qo)

V€Vsup.s

Qmw{prm®rm@}54M&+£&¢ﬂm@

VE€Vsups

Nt maX{ sup G(y,9), — lim /m M (5)} < lim /m[Fa(0) — M(9)]

Y€Vsup,s
since
W) = = lim [JmF(0) = /mFaO)]
= — lim [max{ A1} (). 0} = AT FAO)

n—o0

—rnax{ lim Jn—lM(é),O} + lim /nFa(9)

n—o0

() If FA(S) = FX(5) = 0> M(9), then

maX{ sup G(y,9),— lim /m M (5)} < lim /m[Fa(0) — M(9)]

VE€Vsup.s

< max{ sup G(y,0),00 » <00
yeysup,ri

< sup G(y,0)<oo

Y€YVsup.s

which holds trivially.
(i) If Fa(d) = FY(8) = 0 = M(5), then

max{ sup G(7,0),— lim_ JﬁTM(é)} < lim_ Jm[Fa() — M()

V€Y sups

c»max{ sup G(y,é),O} <0

V€Vsup,s

< sup G(y,0) <0

V€YVsup.s
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(iii) If Fa(8) = F~(5) = M(5)>0, then

{ sup G(y,0), — 11m J—M(é)} < lim /n[Fa(d) — M(9)]
YEVaups nj— 00

= max{ sup GQ},&),—OO} <0

yeysup.r.‘i

< sup G(y,0) <0

}'.eysupﬁ

(iv) If Fa(8) = F~(5) = 0> M(&), then

x{ sup G(y,0).— lim \/_M(é)} < lim Jm[Fa(6) — M()]

VE€Vsup.s

emax{ sup G(y,é),oo} <00

yeysup.(i
< sup G(y,0)<oo

Y€YVsup.s

which holds trivially.
(v) If FA(0)>FX(8) = 0 = M(9), then

{ sup G(y,0),— lim \/’*M((S)} < lim J[Fa(6) = M(9)]

YE€Vsup.s

= max{ sup G(y,é),O} < o0
V€Vsup.s
< sup G(y,d) <o
yeyxup,é

which holds trivially.
(vi) If Fa(0)>FY(8) = M(5)>0, then

m'x{ sup G(y,0), — 11m J—M(é)} Snlgnwﬁ[FA(é)—M(é)]

}’Eyiupr)
< max{ sup G(y,0),00 <00
YEVsup.s

< sup G(y,d) <o

}'.eysup,ﬁ

which holds trivially.

61
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Summarizing (i)—(vi), we have

Wys—h"(00) <0< sup G(y,6) <0

Y€Vsup.s

if FA(9) = FY(9) = M(5) > 0; otherwise it holds trivially.
Similarly to the Wy s — I (0) = 0 case, we get

Wu.s+hY(00) >0

- min{ inf G(,9), —hU(é)} +max{hy(8),0} + 1Y (0) > 0

y€Vints

c»min{ inf G(y,9), hU(é)} > —max{hy(9), 0}— 11m VA[FY(8) — Fa(d)]

y€Vints

c»min{ inf G(.),~ lim fm(a)} = — lim [1+m(6)— FA(9)]

Y€dints
since
hY(00) = Jim [/ F Y(0) = /mFA(0)]
= lim_armin{m(3),0)+ lim /(1 = Fa(9))
= min(hy(6),0}+ lim (1= Fa(0)

() If 1+ m(9)>1= FY(5) = Fa(5), then
min{ 1nf G(y 0), — lim \/n_lm(é)} > — lim [1 + m(6) — Fa(9)]
yey | =00 ny— 00

= min{ inf G(y, 5),—00} > —00
y€Vint s
< inf G(y,0) > —o0

Y€Vint s

which holds trivially.
(i) If 14 m(9) = 1= FY(0) = F(J), then

min{ inf G(y,0),— hm \/_m(é)} > — lilnoo[l + m(8) — Fa(9)]

V€Vint.s
= min{ inf G(y, (5),0} >0
Y€Vint s

< inf G(,0)>0

y€Vint s
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(i) If 1>1 + m(5) = FY(6) = F(5), then

min{ inf G(y,0), — hm \/_m(é)} > — liinoo[l + m(8) — Fa(9)]

V€Vint.s
= min{ inf G(y, 5),00} >0
y€Vints
< inf G(,0)>0

y€Vint s

(iv) If 1 + m(6)>1 = FY(5)> Fa(d), then
min{ 1nf G(y,0),— hm \/_m(é)} > — liinoo[l + m(8) — Fa(9)]

= min{ inf G(y, (5),—00} > —00

Y€Vint,s

< inf G(y,0) > —o0

y€Vints

which holds trivially.
(v) If 1 +m(5) = 1 = FY(5)> Fa(d), then

min{ inf G(y,0),— hm \/_m(é)} > — 1liinoo[1 + m(8) — Fa(9)]

V€Vints
= min{ inf G(y, 5),0} > —00
y€Vint s
< inf G(y,0) > —o0

Y€Vint s

which holds trivially.
(vi) If 1 >1 + m(5) = FY(5)> Fa(d), then

min{ inf G(y,0), — hm \/_m(é)} > — lim [1 + m(5) — Fa(9)]
.}e lﬂf) nlﬁw

= min{ inf G(y, 5),00} > —00

y€Vint s
< inf G(y,0) > —o0
y€Vints
which holds trivially. Summarizing (i)—(vi), we get

Wys+hY(0g) = 0= inf G(y,0)=0

}E inf,0

if 1> 14 m(d) = FY() = Fa(d); otherwise it holds trivially.
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Finally, we obtain:

inf Pr{(Wrs — h")(00); + (Wus +hY(00)” = 0]
= inf Pr[Wy; — h"(0p) < 0, Wy, + h"(0p) = 0]

=Pr| sup G(»,6) <0, inf G(y,0)>0
V€Vints y€Vints

APPENDIX B. EXPRESSIONS FOR yqup.55 Vint.s» 71(5)
AND m(5) FOR SOME KNOWN MARGINAL
DISTRIBUTIONS

Denuit et al. (1999) provided the distribution bounds for a sum of two
random variables when they both follow shifted exponential distributions or
both follow shifted Pareto distributions. Below, we augment their results
with explicit expressions for ygp.s5, Vinr.s, M(6), and m(6) which may help us
understand the asymptotic behavior of the nonparametric estimators of the
distribution bounds when the true marginals are either shifted exponential
or shifted Pareto.
First, we present some expressions used in Example 2.

Example 2 (continued). In Example 2, we considered the family of
distributions denoted by C(a) with a€(0,1). If X~ C(a), then

éxz if x € [0, 4] %x if x €[0,d]
F(x)= 2 and f(x)= _
(x—17 | 2(1 —x) .
_(l_a) if x €[a,1] (1—a) if x € [a,1]

Suppose Y1~ C(x;) and Yoy~ C(op). We now provide the functional form
of Fi(y)—Fy(y—9).

1. Suppose 6 <0. Then V5 =[0,1 + d].
(a) If aqp+<0<a; <1+, then

2 s 12
1_(1_M) ifof}’fal
a (1 —ao)

-1 G=d-1%
(1-f=an) ~(-5=ar) razrsies

Fi(y) = Fo(y—96)=
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(b) If 0<ap+d<a; <1+, then

-9’

ap

>
ap
’ —o-1) . :
Fi(y) = Fo(y —90)= fjl (1—0(1_7%))) ifap+0<y=<a

1)2 —5—1)7%\ .
( <Lﬁ$)—0—”a_%f) o =y=1+9

() If aqp+0<0<1+<aqy, then

if0<y<ay+9

7 G0\ o
FI(V)_FO(V_é)—aT_ <l_(1—ao)> if0<y=<1+49$6

(d) If 0<apt+d<1+0d<ay, then

2 _5\2
1 aop
2

<1_@—5—n2
(=)

Fi(y) = Fo(y —0) =

p > ifay+d<y=<1+496
1

() If 0<ay1<ap+d<1+9, then

y_-oy

ap ap

G=D* =9’
Fi)=Folr—9)= <1_(1—01)>_ ao

-1’ G=5-1% .
(1-6=a) - (12520 ) rarosrsies

if0<y<a

ifaj<y<ay<o

2. Suppose 6>0. Then YVs= [0, 1].
(a) If 0<apt+o<a;<]l, then
(1) if @y #ag and 6 #0, then

2 2
y_0-9 ifo<y<ag+o
ay [N
2 —5—1) .

Fi(y) = Fo(y —0) = %_(1_7@(1—@))) ifap+d<y<a

-1 G-
(1-67) - (-025T) waest
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(i) a; = ap = a and 6 = 0, then
Fi(y)—Fo(y—9)=0 for all ye]0,1]

(b) If 0<a1<ag+ <1, then

ap ap

TS 2
Fi(y)— Fo(y —9) = <1_8}—cll?))_(ya()5) fa+<y<ay<9o

( G=0-1\
(1-fr=an) - (-5=ay) wavo=rs)

2 —_5)?2

(c) If o<a;<1<ay+9, then

ﬁ_ﬂ ifo<y<a
a) ap -0
Fi(y) = Foly —9) = 2 2
) v
(d) If aj<d<ay+ <1, then
-1y ) — ) .
Fi(3) = Foly =) 0‘3—59—0%) Hosy=ao
W)= oy —0)= 2 2
-1 y—90-1) . o<
(1) - (1-5a) rarezrs
(e) If ay<do<1<ay+9, then
— 1) -8 .
Fo) - Ry -0 = (182 0) U0 iy <

(Shifted) Exponential marginals. The marginal distributions are:

-0
Fi(y) =1 —exp<—y o 1) fory € [01,00) and

y =09
oo

Fo(y)=1—exp (— ) for ye[fy,00), whereuar,0,0,60>0

Let 6. = (0; — 0p) — min{o, op}(In op — In arg).
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1. Suppose o <.
(a) If 6<6,,

FL(5) = max{M(5),0} = 0

o1 /(o1 —0to) ot /(o —otg) B _
where M(5) = ((Z”) - (?) ) exp GW) <0
1 1 1 — 0

O(()O(](ln o] — In OC()) + 06100 — O(()()l + o
o] — 0o
FY(9) = 1 + min{m(5),0} = 1 + m(d)

where m(d) = min{exp <_ max {0, —a(é + 0p), 0})
0

( max{00+5—91,0}) }
—exp| — ,0

o1

0 . . .
and yyr 5 = (an interior solution)

and yg,, s = max{0;,0p + 0} or oo (boundary solution)
(b) If 6>06,,
FY(8) = max{M(9),0} = M(5)>0
o0+ 6y—0,
o1
FY(9) = 1 4+ min{m(5),0} = 1
since m(0) =0 and yg,5 =00

where M(0) = 1 — exp <— )and Vinto = 6o+ 0

2. Suppose o) = o9 = o. Then
FY(0) = max{M(5),0} = M(5)
0 if 6 < 01 — 00

where M(J) = l—exp(—@) >0 ifo>0,— 0,

00 if 6<0y — 0o
and y;5 = { any point in R if 6 =0, — 0,
0y + 9 if 6>0; — 0

FY(6) = 1 4+ min{m(5),0} = 1 + m(d)

eXP<—w) —1<0 if6<0; — 0
where m(d) = o
0 if 6> 0, — 0,
0, if 0<0; — 0y
and yg,, ;=4 any point in R if 6 =0, —do
6o if 5>91 — 9()
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3. Suppose o> 0.
(a) If 0<0e,

FH(8) = max{M(3),0} = 0, since M(J) = 0and yj,r5 = 00
Fu(d) = 1 + min{m(5),0} = 1 + m(J)

01 — (6 + 0p)

where m(J) = exp (— "
0

) — l<0, ysup,5 = 01
(b) If 6>46,,
FL(8) = max{M(5),0} = M(5)

max{0; — (0 + 0y),0}
oo

where M(J) = max{exp (—

( max{90+5—91,0}> }
—exp| — ,0

o

and y;,r 5 = max{0;,0p + 0} or oo (boundary solution)

FY = 1 + min{m(9), 0} = 1 + m(5)

/-0 o010 o
where m(3) = ((Z‘f) - <§) ) exp (_ W) <0
1 1 1— %

opar(In oy — In o) + o010 — o6y + o4
o1 — do

0 . . .
and Vsups = (an interior solution)

(Shifted) Pareto marginals. The marginal distributions are:

A *
Fi)y=1-—" ) 1 01, and
1(») (7»1-1-)/—91) or ye€[f;,00) an
Fo(y)=1—(xx°> for y e[, 00), where a,,0;,%,00>0
o+y—1>0p
Define

de = (01 — 0p) — (max{Zy, i) D20 — /D)
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1. Suppose 1 < 4.
(a) If & < §,, then
FL(8) = max{M(5),0} = M()
;LT/(HI) _ lg/(”l) o o
—Jo+ A — 01+ 0
(6 + 0 — M) 4 (0 — 0,2/
kT/m” _ xg/(””

where M(J) = (,1(0;/(“1) _ A?/(Hl)) <5

and 5 = (an interior solution)
FY($) = 1 +min{m(d),0} = 1 + m(5)

where m(d) = min{ (

Ao *
Ao + max{0; — o — 0,0}

_ M ’ 0
A+ max{0y + 6 — 01, 0} ’

and yg,, 5 = max{0;,00 + 6} or oo (boundary solution)

(b) If 6> 6., then
FY(6) = max{M(5),0} = M(J)
;
21+ 00+ 68— 0,
FY(8) = 1 + min{m(5),0} = 1
since m(0) =0 and g, 5 = 00

where M(0) =1 — ( )VEO and  yyes =00+ 0

2. Suppose Ay = Ay = 4. Then
FY(8) = max{M(5),0} = M(5)

0 if 0 <0, -6
where M(5) = 1_(+>a20 i£5>0; — 0
A+ — (0, —0p)
00 if <0, — 0,
and y;,; s = ¢ any pointiny if 6 =0, — 0o
0o + o if >0, — 0




70 YANQIN FAN AND SANG SOO PARK

FY(6) = 1 + min{m(9),0} = 1 + m(5)

) o
—— | —1 iféo<0, -0
where m(6) = </L —0+(0) — 90)> P
0 iféz@l—(%o
91 if5<91—90

and Vsups = § any pointin) if 6 =0, — 6,
oo if >0, — 0()

3. Suppose ;> 4.
(a) If 6<0,, then

FY(9) = max{M(9),0} = 0 since M(5) =0, and Vinf,s = 00
FY(8) = 1 + min{m(5),0} = 1 + m(J)
o

where ) = (5525,

) —1<0and yg,s =0

(b) If 6 > 6, then
FL(0) = max{M(5),0} = M ()

where M(J) = max{ < al >v

Ao + max{6; — 6 — 0,0}

Al *
B (},1 + max{fy+ 6 — 01,0}) ’0}

and y;,r s = max{0}, 0y + 6} or oo (boundary solution)
FY(0) = 1 4+ min{m(9),0} = 1 4+ m(d)
/lot/(1+1) _ j'91/(%;_1) o
1 0 <0

where m(0) = (45 **" — 27/0+D) (5 ot — 0,10,

@+ 00— 2y 4 (=025 _
and yg,, 5 = PRI NpTCED (an interior solution)
"1 %




CROSS-VALIDATED BANDWIDTHS
AND SIGNIFICANCE TESTING

Christopher F. Parmeter, Zhiyuan Zheng and
Patrick McCann

ABSTRACT

The link between the magnitude of a bandwidth and the relevance of the
corresponding covariate in a regression has recently garnered theoretical
attention. Theory suggests that variables included erroneously in a
regression will be automatically removed when bandwidths are selected
via cross-validation procedure. However, the connections between the
bandwidths of the variables that are smoothed away and the insights from
these same variables when properly tested for statistical significance have
not been previously studied. This paper proposes a variety of simulation
exercises to examine the relative performance of both cross-validated
bandwidths and individual and joint tests of significance. We focus on
settings where the hypothesis of interest may focus on a single data type
(e.g., continuous only) or a mix of discrete and continuous variables.
Moreover, we propose an extension of a well-known kernel smoothing
significance test to handle mixed data types. Our results suggest that
individual tests of significance and variable-specific bandwidths are very
close in performance, but joint tests and joint bandwidth recognition
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produce substantially different results. This underscores the importance of
testing for joint significance when one is trying to arrive at the final
nonparametric model of interest.

1. INTRODUCTION

Recent research by Hall, Li, and Racine (2007) has documented that least
squares cross validation (LSCV) has the asymptotic capability to
automatically remove irrelevant variables erroneously included in a local
constant regression. Rather than the bandwidths going to zero as the sample
size increases, as one would expect under the classical analysis of a data-
driven bandwidth selection procedure, the bandwidths associated with the
irrelevant variables progress toward their theoretical upper bounds
(bandwidths for continuous variables have upper bound oo, whereas
discrete variables have an upper bound of 1) as the sample grows. In a local
constant setting, this removes continuous variables from the regression,
while in a local linear setting, this forces the continuous variable to enter the
model linearly.! In any setting (local constant, local linear, or local
polynomial), a discrete variable whose bandwidth hits its upper bound is
deemed irrelevant.

Even with this appealing feature of bandwidths selected via data-driven
methods, cross-validated bandwidths are not a panacea for erroneous
inclusion of irrelevant variables; the method can assign a large bandwidth to
a relevant variable or place a small bandwidth on an irrelevant variable.
Thus, the process of testing for variable significance is paramount in applied
work. Here, the use of standard nonparametric significance tests (e.g.,
Racine, 1997; Lavergne & Vuong, 2000; Racine, Hart, & Li, 2006; Gu, Li, &
Liu, 2007) allow the researcher to formally test for significance of a
regressor, or set of regressors, rather than relying on the relative magnitude
of the bandwidth(s). While the performance of these tests is well known, less
is understood about the relationship of these tests with the recent results
related to the “smoothing away” irrelevant variables. This paper considers
how standard nonparametric tests of significance compare with respect to
raw interpretation of cross-validated bandwidths, both in individual and
joint settings.

While the past literature on bandwidth selection is well understood and
the literature on significance testing has burgeoned, there does not yet exist
a synthesis of the methods when used in conjunction with one another.
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For example, simulation results in Gu et al. (2007) suggest that their
bootstrap test of significance displays robust size properties for the two
data-generating processes considered with respect to their bandwidth
choice?; however, their supplied bandwidths were selected to satisfy
theoretical concerns for the proposed test statistic as opposed to being data
driven. As we will argue below, while rule-of-thumb thresholds for cross-
validated bandwidths can be used to determine which variables are
irrelevant, it is also important to test the significance of any variables not
smoothed out of the model. Cai, Gu, and Li (2009) suggest first using local
constant estimation to determine the variables that are irrelevant, then
testing those variables to ensure statistically that they do not belong in the
model and then performing local linear estimation on the potentially
reduced subset of covariates. Our work here attempts to discern how well
the first stage of this approach works in the presence of numerous irrelevant
variables.’

Given our discussion so far, this paper attempts to present simulation
evidence regarding bandwidth estimation in the presence of irrelevant
variables and how it contrasts with a standard nonparametric omitted
variable test. We focus solely on LSCV given the theoretical results of Hall
et al. (2007) and show that the bootstrap test of Gu et al. (2007) can be
applied in the presence of mixed data, a ubiquitous feature of economic
datasets.* Our simulations will be conducted using local constant kernel
methods considering both individual and joint tests of significance for
continuous, discrete, or mixed continuous/discrete settings under a variety
of realistic regression models that include both a high number of irrelevant
and relevant variables to mimic settings likely to dominate applied work.
Additionally, we wish to determine the ability of using LSCV bandwidths to
determine variable relevance in a joint setting. Simulation results in Hall
et al. (2007) suggest that the bandwidths, considered individually, display a
remarkable ability to detect irrelevant variables. Overall, our simulations
will allow us to make broad comments on a number of ad hoc suggestions as
to the approach researchers should take to engage in nonparametric model
reduction.

The remainder of our paper is structured as follows. Section 2 provides
discussion on nonparametric estimation in the presence of mixed discrete—
continuous data, LSCV bandwidth selection, and the bootstrap omitted
variable test used for our simulations to investigate individual and joint
significance. Section 3 provides the details of our simulation study and
summarizes our findings. Section 4 discusses future issues that need to be
considered when considering nonparametric model selection issues.
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2. NONPARAMETRIC ESTIMATION
AND SIGNIFICANCE TESTING

2.1. General Nonparametric Kernel Regression

We begin with a generic regression setup:
vi=mx)+e, i=1,...,n (1)

where y; is our response variable, x; € R? is a vector of covariates, and ¢;
represents a random disturbance. Our interest lies in testing significance
(individual or joint) for a (set of) covariate(s) in x;. We use Li-Racine
generalized kernels (see Li & Racine, 2004; Racine & Li, 2004). These
kernels admit a mix of discrete and continuous covariates which are
ubiquitous in applied econometric settings.

Ignoring for the moment the fact that irrelevant regressors may have been
included in Eq. (1), we model the unknown relationship through the
conditional mean, that is, m(x;) = E[ y;|x;] using a method known as local
constant regression (see Nadaraya, 1964; Watson, 1964). This allows us to
write the regression equation at a given point as

() = =ik x)
(x) = Yo Kan(x, X)) _Zi=1A’(x)yi )

where

K(x, x,)_Hh lz°( —_ )qu XY, XY, S)Hlo(xs, x%,7%)  (3)

K;(x, x;) is the commonly used product kernel (see Pagan & Ullah, 1999).
We have used the notation x{, x{ and x! to denote variables that are
continuous, ordered, and unordered. Additionally, we have ¢. continuous
variables, ¢, unordered variables, and ¢, ordered variables in our regression
framework (g.+ qu+¢qo = q). We elect to employ smoothing kernels for
the discrete data because Racine and Li (2004) have shown that sample
splitting (commonly known as the frequency approach) as opposed to
smoothing categorical variables can lead to large losses in efficiency.
They advocate the use of special kernels designed explicitly for the type of
variable being smoothed. In this setting, /° can be taken to be the standard
normal kernel function® used for continuous variables with window
width /4 = hy(n) associated with the sth component of x°. /" is a
variation of Aitchison and Aitken’s (1976) kernel function for use with
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unordered data types:
1— 27 if Xt =x!
l“(xu xu /lu — il-l (4)

RERARTERAN] : u u
if xl #xt
Cyg —

where ¢; comes from the fact that x}, € {0, 1, ...¢; — 1}. The range of A is
[0, (¢s— 1)/c,]. For an indicator variable, ¢, = 2 and the largest value that 4,
can take is 1/2. /° is the Wang and Ryzin (1981) kernel function designed for
smoothing ordered discrete variables, defined as

P(x2, x5, A = () (5)

si2 s

where the range of A is [0, 1]. This kernel function is slightly different from
the original kernel proposed by Wang and Ryzin (1981). Li and Racine
(2006, p. 145) show that Wang and Ryzin’s (1981) kernel function does not
possess the ability to smooth away irrelevant ordered discrete variables
when that variable has at least three categories.

Eq. (2) can be written in matrix notation to display it in a more compact
form. Let i denote an n x 1 vector of ones and let KC(x) denote the diagonal
matrix with jth element K,(x,x;). Also, denote by y the nx 1 vector of
responses. Then, we can express our LCLS estimator as

m(x) = (DT CCx)y (6)

The name local constant comes from the fact that our estimator is a
weighted regression of a constant on our response vector. The weights are
determined locally by the associated covariates and the bandwidths. This is
similar to generalized least squares, except our weights change for each
point on our regression curve as opposed to being globally determined as
they are in standard least squares approaches.

2.2. Cross-Validated Bandwidth Selection

Estimation of the bandwidths (%, 1", A°) is typically the most salient factor
when performing nonparametric estimation. For example, choosing a very
small 2 means that there may not be enough points in a neighborhood of the
point being smoothed and thus we may get an undersmoothed estimate
(low bias, high variance). On the other hand, choosing a very large /s, we
may smooth over too many points and thus get an oversmoothed estimate
(high bias, low variance). This trade-off is a well-known dilemma in applied
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nonparametric econometrics and thus we usually resort to automatic
selection procedures to obtain the bandwidths. Although there exist many
selection methods, Hall et al. (2007) (HLR hereafter) have shown that
LSCV has the ability to smooth away irrelevant variables that may have
been erroneously included into the unknown regression function. Specifi-
cally, the bandwidths are chosen to minimize

CV(h,2) = argmin - > (3 — s (x0)) )
{h,A} 1

i=

where 71_;(x;) is the common leave-one-out estimator. An alternative data-
driven approach with impressive finite sample performance is known as
improved AIC, and was proposed by Hurvich, Simonoff, and Tsai (1998).
Li and Racine (2004) show that in small samples improved AIC. performs
admirably compared to LSCV when one employs a local linear least squares
approach. Even though the performance of smoothing parameters estimated
via the AIC, criterion have desirable features, we elect to use the standard
LSCYV criterion to estimate our bandwidths given the theoretical work of
HLR.

For the discrete variables, the bandwidths indicate which variables are
relevant, as well as the extent of smoothing in the estimation. From the
definitions for the ordered and unordered kernels, it follows that if the
bandwidth for a particular unordered or ordered discrete variable equals
zero, then the kernel reduces to an indicator function and no weight is given
to observations for which x7 #x7 or x}'#x}; in this case it is as if the
research had engaged in sample splitting. On the other hand, if the
bandwidth for a particular unordered or ordered discrete variable reaches
its upper bound, then equal weight is given to observations with
x{ =x7 and x7#x7. In this case, the variable is completely smoothed
out (and thus does not impact the estimation results). For unordered
discrete variables, the upper bound is given by (¢, — 1)/c, where ¢, represents
the number of unique values taken on by the variable. For example, a
categorical variable for geographic location which takes on 5 values would
have an upper bound for its bandwidth of 4/5 = 0.8. For ordered discrete
variables, the upper bound is always unity. See HLR for further details.

HLR have shown that the inclusion of irrelevant regressors does not add
to the ““curse of dimensionality.”” Their paper shows that when one uses
cross-validation procedures to select the appropriate amount of smoothness
of the unknown function, the covariates that are irrelevant are eliminated
from the conditional mean relationship. In essence, instead of the
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bandwidth decreasing to zero at an appropriate rate when the sample is
increased, the bandwidths move toward their theoretical upper bounds.
A large bandwidth effectively suggests that the associated variable is being
smoothed out as the product kernel in Eq. (3) can be rewritten as two
distinct product kernels, one for the relevant variables and another for
the irrelevant variables. The large bandwidths force the product kernel
pertaining to the irrelevant variables to be constant across all observations.
Thus, given that our conditional mean is a ratio, the irrelevant variables
cancel out of the formula and it is as if the researcher had failed to include
them in the first place. This property allows nonparametric estimators to not
only allow for functional form misspecification, but relevant covariate
selection at the same time.

However, there is no free lunch for this method as it hinges on several
facets that need to be considered on a case-by-case basis. First, the key
assumption used by HLR asks that the irrelevant regressors are independent
of the relevant regressors, something unlikely to hold in practice.® Second, it
is not entirely clear how well this method works as the set of relevant
regressors is increased. HLR’s finite sample simulations investigated at most
two relevant regressors while their empirical application considered six
variables for 561 observations in which only two regressors were
deemed relevant according to their procedure. Clearly more work needs to
be done to assess the performance of the bandwidths for very small sample
sizes and for large sets of potential regressors, a task we take up in our
simulations.’

What is noteworthy of the HLR finding is that the cross-validated
bandwidths provide a cheap and easy way of assessing individual
significance. However, three core issues remain. First, as our simulations
show, the method does not perform well when a large number of
irrelevant variables are included, a not uncommon feature of applied work.
Second, ignoring the number of irrelevant variables included, a large
bandwidth does not provide a p-value to assess the level of significance.
The HLR theory only provides a rule of thumb for saying yes or no to
a variable’s relevance. Lastly, while the theory predicts that all
irrelevant variables are smoothed away simultaneously, there has been no
simulation study to determine if the impressive finite sample performance
of LSCV bandwidths holds when one looks for joint significance.
Moreover, there is no appropriate rule of thumb in this case, as a “‘test”
for three variables being insignificant is confusing if two of the variables are
smoothed away but one is not, how does one draw conclusions from this
type of setup?
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2.3. Testing for Variable Significance

While the properties of LSCV discovered by HLR suggest that irrelevant
variables are removed, statistically there is no way to determine joint
(in)significance by simply appealing to the bandwidths returned. A formal
test for joint significance of variables is thus warranted to make statistically
precise statements about the relevance of variables entering into the model.

To determine whether or not a set of variables are jointly significant,
we utilize the tests of Lavergne and Vuong (2000) and Gu et al. (2007).
Consider a nonparametric regression model of the form

yi =m(w;, z;) + u; (8)

Here, we discuss in turn the case where the variables in z are all continuous
(Gu et al., 2007), are all discrete (Racine et al., 2006), or a mixture of
discrete and continuous insignificant variables, but w may contain mixed
data. In what follows, let w have dimension r and z have dimension g —r.
The null hypothesis is that the conditional mean of y does not depend on z.

Ho : E(ylw,z) = E(y|w) )

2.3.1. All Continuous Case
Define u = y — E(y|w). Then E(u|x) =0, x = (w,z), under the null we can
construct a test statistic based on

Efu f,,(w)E[u f, (w)|x] f(x)} (10)

where f,.(w) and f(x) are the pdfs of w and x, respectively. A feasible test
statistic is given by

Z Z (y[_ﬁ[).flt'(vvi)(yj_j}j)};w(lvi)W(xi’xjiha/lo’)“u) (11)

n
I’l(’l—l)l 1 j=1,j#i

where W(x,, x, h, A°, A") is the Li-Racine generalized product kernel
discussed in Eq. (3) and

n

. 1
.fw(wi) = ﬁ Z W(Wl" Wi, h“ s /“n o /IE)

J=Lj#i

is the leave-one-out estimator of f,,(w;). The leave-one-out estimator of
E(yiw) is

3
_— ij(w,',nj,hn,/lﬁ,/l}’
(n— 1)fw(wi)_j:1,j;&i '

;=
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One shortcoming of this test is that it requires the researcher to estimate
(or determine) two sets of bandwidths, one for the model under the null and
another for the model under the alternative. For large samples this may be
computationally expensive. Under the null hypothesis, a studentized version
of the statistic presented in Eq. (11) is

= (nhyhy ... h)' I /65 — N(0,1) (12)

where

Gy =SS S G )

i=1 j=1, j#i
X (y; =) fw(wj) W(xi,x;j,h, A°, A") (13)

In a small-scale simulation study, Gu et al. (2007) show that use of the
asymptotic distribution for this test statistic has inaccurate size and poor
power. A bootstrap procedure is suggested instead. The bootstrap test
statistic is obtained via the following steps:

(i) For i=1, 2, ..., n, generate the two-point wild bootstrap error
uf = [(1 — +/5)/2)d:, where @; = y; — §; with probability r = (1 — v/5)/
24/5 and u* = [(1 + +/5)/2)i; with probability 1 —r.

(if) Use the wild bootstrap error u} to construct y¥ = y; + uf, then obtain
the kernel estimator of E*( yj|w,—)ﬁ1,(w,-) via

Pefv) = —— _1 Z VEW Wi wj, by, 49, 2%)

J=1, j#i

The estimated density-weighted bootstrap residual is
Z”ZT .w(Wi) = (y;k - )’}?)fw(wi) = y;‘kfw(‘/vi) - .},}?ifw(wi)

(iii) Compute the standardized bootstrap test statistic 7, where y* and 7*
replace y and y wherever they occur.

(iv) Repeat steps (i)—(iii) B times and obtain the empirical distribution of
the B bootstrap test statistics. Let T ,'j(*a p) denote the a-percentile of the
bootstrap distribution. We will reject the null hypothesis at significance
level o if T3, > Tt ).

In practice, researchers may use any set of bandwidths for estimation of
the test statistic. However, for the test to be theoretically consistent, the
bandwidths used for the model under the alternative need to have a
slower rate than those used for the model under the null hypothesis if
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dim(w) = r < ¢/2 (see Gu et al., 2007, Assumption A2). This guarantees
that the mean-square error of the null model is smaller than that coming
from the alternative model. In essence, the residuals used in Eq. (11) or
Eq. (12) need to converge at a faster rate than the rate on the bandwidths
used for the estimation of E(u|x) =0 to ensure that the test statistic is
properly capturing this relationship.

An empirical approach would be to use LSCV to estimate the scale factors
of the bandwidths in each stage. However, this procedure has two
shortcomings. First, the theory in HLR suggests that the bandwidths
associated with irrelevant variables do not converge to zero at any rate,
inconsistent with Assumption A2 of Gu et al. (2007). Second, ignoring
theoretical rates the bandwidths are supposed to possess, the test statistics in
Egs. (11) and (12) do not incorporate the presence of the variables smoothed
away with LSCV bandwidths. In the simulations reported in Gu et al.
(2007), they smoothed both relevant and irrelevant variables with similar
bandwidths.

2.3.2. All Discrete Case

While the nonparametric significance test of Gu et al. (2007) was initially
designed and studied theoretically for the case of continuous regressors,
computationally the test can easily be generalized to handle mixed discrete—
continuous data, both for testing and estimation by simple appeal to the
generalized product kernels provided in Racine and Li (2004). In our
simulations, we report size and power by simply using the bootstrap test of
Lavergne and Vuong (2000) and Gu et al. (2007). While their theory pertains
only to continuous variables, the null hypothesis of interest does not depend
on the data type, and it is easy to replace the continuous product kernels
with generalized Li-Racine kernels.

In Racine and Li (2004), it was shown that the optimal rate for
continuous variable bandwidths for consistent estimation of a regression
function in the local constant setting was not affected by the presence of
discrete variables. Moreover, they also showed that the optimal rate for the
bandwidths associated with discrete variables were only dependent upon the
number of continuous variables. To be explicit, the bandwidths associated
with continuous variables have optimal rate n~'/¢+%) where ¢. is the
number of continuous variables. Moreover, the bandwidths pertaining to
discrete covariates have optimal rate n~%“t4%) Thus, a strategy for
implementing the aforementioned omitted variable test in the presence of
discrete variables in the null hypothesis would be to use the rates consistent
with Racine and Li (2004) and Assumption A2 of Gu et al. (2007)
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(guaranteeing that the mean-square error of the restricted model goes to
zero faster than that of the unrestricted model), which is what we take up in
our simulations.

2.3.3. Mixed Discrete—Continuous Case

To the authors knowledge no formal test that admits both discrete and
continuous variables to be tested jointly exists in the literature. We determine
the appropriateness of the Gu et al. (2007) test when both discrete and
continuous variables enter into the null hypothesis. While their theory for the
bootstrap test statistic focuses solely on continuous variables, our conjecture
is that in finite samples, there is no reason why one cannot include discrete
variables into the discussion. The key difference with the test statistic’s
construction is that generalized kernels will need to be used as opposed to the
standard continuous product kernels used in Gu et al. (2007).

While no formal theory exists for the distribution of the test statistic
under the null in the presence of mixed data, it is hypothesized that the
asymptotic properties of the test can be uncovered using stochastic
equicontinuity arguments similar to those in Hsiao, Li, and Racine (2007,
Theorem 2.1). The reason for this is that the test of correct functional
form in the presence of mixed data proposed by Hsiao et al. (2007) has
exactly the same form as the test proposed by Lavergne and Vuong (2000)
except that the residuals that enter into the test statistic come from a
nonparametric model as opposed to a parametric model (for the functional
form test). Moreover, this same rational suggests that the asymptotic
distribution of the bootstrap version of Hsiao et al.’s (2007, Theorem 2.2)
model specification test will hold as well. While our arguments for the use
of the Lavergne and Vuong’s (2000) significance test are heuristic, as we
will see, our size and power appear to confirm that the use of this test
can perform admirably in the face of mixed data. Additionally, as Lavergne
and Vuong (2000) show in the model with only continuous covariates,
a standardized test statistic has limiting standard normal distribution.
In our simulations, we too standardize our test statistic in exactly the same
fashion, except that no formal theory exists to show that this standardiza-
tion is correct.

3. MONTE CARLO ILLUSTRATION

As discussed earlier, a majority of the proposed tests of significance
in the literature, while capable of handling multiple variables, provide
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simulation studies that focus solely on a single regressor (either con-
tinuous or discrete). Table 1 lists many of the recent simulation studies
for varying nonparametric significance tests and highlights the sample
sizes used and the number of variables in the model. The w in the table
refers to variables that are always significant, while z represents the
potentially irrelevant variable used for assessing size and power properties
of the test.

Outside of Racine et al. (2006) and HLR, all of the papers listed use only
continuous variables and consider only a single relevant regressor coupled
with a single irrelevant regressor. Also, most of the simulation studies use
sample sizes of 50 and 100 to assess the properties of the test under study.
Additionally, there is no consensus in this literature as to the appropriate
data generating process (DGP). Several authors have used high-frequency
DGPs while others have employed simple linear terms. Also, a majority of
the papers have used ad hoc bandwidths selected to meet the theoretical
underpinnings of their test as opposed to investigating the properties of the
test in likely encountered applied settings. The simulation studies of Racine
(1997) and Racine et al. (2006) have used data-driven methods with notable
success as the test statistics in these settings appear to be independent of the
bandwidth choice.

Our simulations are designed to include both low- and high-frequency
settings and are similar to the DGPs used by the studies listed in Table 1.
They will allow us to gauge how the tests will work when multiple
continuous and discrete regressors are present and one is interested in joint
significance testing, a common occurrence in applied econometric work. We
also perform individual tests as well to compare them directly to the
bandwidths obtained via cross validation. Additionally, we allow for
nonlinearities both through interactions across variables as well as directly
via nonlinear terms of the covariate(s). The beauty of nonparametric
methods (and the bandwidths) is that regardless of the type of nonlinearity,
the method is capable of detecting it. Thus, suppose one posited that wages
were nonlinearly related to education and the impact of education varied
across race. Here, we have that wages are directly nonlinear in education
and indirectly nonlinear across race. In either (both) setting(s), bandwidths
obtained via data-driven methods will detect if these variables (race and
education) are relevant, but they do not suggest which type of nonlinearity is
present. To uncover the interaction effect between race and education, one
could use the nonparametric Chow test of either Lavergne (2001) or Racine
et al. (20006).
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Table 1. Characterization of Previous Simulation Studies Regarding
Tests of Significance.

Racine (1997, Table 1)
DGP
R.V.
Sample sizes
Bandwidth

Lavergne and Vuong (2000, Tables 1 and 2)

DGP

R.V.
Sample sizes
Bandwidth

Delgado and Gonzalez-Manteiga (2001, Table 1)

DGP

R.V.
Sample sizes
Bandwidth

Racine et al. (2006, Tables 1 and 2)
DGP

R.V.
Sample sizes
Bandwidth

Gu et al. (2007, Tables 3-8)
DGP

R.V.
Sample sizes
Bandwidth

Hall et al. (2007, Table 2)
DGP
R.V.
Sample sizes
Bandwidth

y =sin(2nw) +¢

w and z continuous
n=>50

LSCV

y=w+w+dz) +e

d(z) = oz or d(z) = sin(anz)
w and z continuous

n =50, 200

Rule of thumb

y=m(w)+d(z)+e

m(w) = 14+w or m(w) = 1 +sin(10w)
d(z) = asin(z)

w and z continuous

n =150, 100

Rule of thumb

y=1l+zn+w+dz)+e
d(z) = azy(1 4+ w?)

z1, zp discrete, w continuous
n =150, 100

LSCV

y=w4+w +diz)+e¢

d(z) = oz or d(z) = o sin(2nz)
w and z continuous

n =50, 100

Rule of thumb

y=wi+w+e

wi, z; discrete and w», z, continuous
n =100, 250

LSCV
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We conduct Monte Carlo simulations according to the following data-
generating processes:

DGP;: y = x1 + 0x2 + dx3 + .

DGP»: y = x; + 0x1x2 + 5x1x§ + e.

DGPs: y = x| + x2 + x3 + 6x1(1 + x3) sin (0.57x3) + Sx3 sin (x3) + e.
DGPs: y=x1 4+ x20+ x1x0 + 5x1x§ + X%X4 + 0x2x3X5 + 5xg + ¢.

Our DGPs are given in increasing order of complexity, with DGP;
indicative of a high-frequency model. DGP; and DGP, are similar to the
main DGP used in Lavergne and Vuong (2000). The key difference is that
we have added an additional variable, and we allowed for interactions
between them, potentially making it harder to determine significance. DGP5
is consistent with many of the simulation studies listed in Table 1. To
appropriately determine the size properties of Gu et al.’s (2007) bootstrap
test, we set 0 = 0. To determine power properties, we set 6 = 0.1, 0.5, or 1.
We consider both continuous-only and discrete-only settings for
DGP,-DGP; and use DGP,4 for our mixed discrete—continuous setting.
We determine both size and power for samples sizes of n = 100 and 200. We
use 399 bootstrap replications to determine the bootstrap p-value of all test
statistics and use 399 Monte Carlo simulations for each scenario considered.

In our continuous-only setting, we generate all variables as independent
N(0,1), including ¢. In our discrete-only setting, we change x, from a
continuous variable to an unordered variable with Pr[x,, = 1] = 0.35 and x3
from a continuous variable to an ordered categorical variable with
P(xz = 0) = 0.25, P(x5 = 1) = 0.4, and P(x5 = 2) = 0.35.8

Since the testing properties of the continuous-only and discrete-only case
have been canvassed in the literature, we use an expanded DGP that
includes mixed data to determine the ability of the Gu et al. (2007) test.
DGP, is only studied in our simulations involving mixed discrete—
continuous null hypotheses. The addition of an additional continuous
regressor suggests that the size properties of the test will likely be effected
given our use of small sample sizes. To generate data from this DGP, we
draw xi, x», x3, and ¢ independent of each other from a standard normal. x4
is generated as an unordered categorical variable with Pr[x;, = 1] = 0.35,
while x5 and x¢ are ordered categorical variables with Pr[x;; = 0] = 0.25,
Pr[x;s = 1] = 0.4 and Pr[x;s =2]=0.35 and Pr[x;s = 0] = Pr[x;s = 1] =
0.25 and Pr[x;s = 2] = 0.5, respectively.

We consider two rule-of-thumb metrics regarding the LSCV bandwidths
for the continuous covariates to determine if a variable (or set thereof) is
irrelevant, either two standard deviations (2 SD) or the interquartile range
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(IQR) for each variable. For discrete predictors, we use 80% of the LSCV
bandwidths’ theoretical upper bounds. For example, a dummy variable has
a bandwidth with upper bound 0.5, so our rule for assessing this variable’s
irrelevance would be a bandwidth larger than 0.4. When assessing joint
insignificance, we use a box-type method where all variables under
consideration must be smoothed out individually to be deemed jointly
irrelevant.

3.1. Continuous-Only Case

Tables 2—4 display our results in the continuous variable setting. These
tables contain quite a lot of information and as such we describe in detail
what we are reporting. First, we report the raw results from the Gu et al.
(2007) test statistic using their ad hoc bandwidth selection procedure. Their
selection of the bandwidths, when only continuous variables are present, is
to construct individual bandwidths as ¢ - SD;n~1/4+9 where ¢ is a scaling
factor common to all variables, SD; the in- sample standard deviation of the
jth variable being smoothed and d is a variable used to control the rate of
decay of the bandwidth to ensure consistency with Assumption A2 of Gu
et al. (2007). We note that the theory underlying Gu et al. (2007) suggests
that the bandwidths used for the unrestricted model be smaller than what is
theoretically consistent. To do this, one can keep the scaling portion of the
bandwidth fixed (c¢-SD;) but change the rate on the bandwidth (). Our
reported results come from undersmoothing the unrestricted model while
using optimal smoothing for the restricted model as is consistent with Gu
et al. (2007, Theorems 2.1 and 2.2). We use the same set of scaling constants
as in Gu et al. (2007) (¢ = 0.25, 0.5, 1, 2). We report size (0 = 0) and power
(0 =0.1, 0.5, or 1) in the first block at the 1%, 5%, and 10% levels. The
second block of our table looks at the performance of the LSCV bandwidths
using our ad hoc rules for assessing irrelevance (individual or joint) as
gauged by either 2 sd (columns labeled 2 SD) of each variable or the
interquartile range of the variable (column labeled IQR).

We see from these simulation results several interesting features. First, the
size of the Gu et al. (2007) is very close to nominal levels using their
bandwidth selection measure which is encouraging given that we are
including an additional continuous covariate beyond what their simulations
investigated. As noted earlier, the power of the test appears to depend
somewhat on the choice of smoothing coefficient chosen, although the
power increases as the sample size goes up across all three of our DGPs.
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Table 2. DGP;.

(a) Gu et al. (2007) Bandwidths

c=0.25 c=0.5 c=1 c=2
n =100
o 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%
o0=0 0.008 0.050 0.073 0.013 0.050 0.108 0.018 0.038 0.103 0.005 0.053 0.105
0=20.1 0.003 0.045 0.110 0.013 0.065 0.120 0.013 0.050 0.123 0.038 0.103 0.163
0=20.5 0.015 0.080 0.155 0.080 0.228 0.346 0.378 0.612 0.742 0.832 0.965 0.987
o=1 0.020 0.168 0.318 0.366 0.659 0.784 0.967 1.000 1.000 1.000 1.000 1.000
n =200
o 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%
0=0 0.008 0.053 0.0080 0.013 0.053 0.05 0.015 0.063 0.125 0.015 0.058 0.103
0=20.1 0.010 0.028 0.090 0.015 0.063 0.113 0.035 0.103 0.155 0.040 0.138 0.223
0=20.5 0.023 0.103 0.188 0.158 0.373 0.489 0.722 0.892 0.945 0.987 1.000 1.000
o=1 0.090 0.358 0.524 0.799 0.957 0.980 1.000 1.000 1.000 1.000 1.000 1.000
(b) LSCV Bandwidth Results
2 SD IQR
X1 X X3 Joint X X X3 Joint
n =100
=0 0.000 0.687 0.604 0.426 0.000 0.757 0.712 0.561
0=0.1 0.000 0.551 0.564 0.318 0.000 0.669 0.659 0.446
=075 0.000 0.018 0.013 0.000 0.000 0.048 0.043 0.000
=1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
n =200
=0 0.000 0.669 0.639 0.441 0.000 0.900 0.865 0.769
0=0.1 0.000 0.486 0.489 0.263 0.000 0.822 0.837 0.687
0=0.5 0.000 0.000 0.000 0.000 0.000 0.168 0.153 0.008
=1 0.000 0.000 0.000 0.000 0.005 0.000 0.000 0.000

We do not present testing results for the bandwidths obtained via LSCV as
they were inappropriately sized,” and per the earlier discussion, do not
satisfy the necessary theoretical underpinnings of the asymptotic validity
of the test.

Our bandwidth results suggest that data-driven methods successfully
remove irrelevant variables, although the percentage of times both variables
are removed jointly is, as expected, lower than how often each variable is
smoothed away. Additionally, we note that using the IQR of a variable
seems to consistently determine the appropriate irrelevant variables



Cross-Validated Bandwidths and Significance Testing 87
Table 3. DGP».
(a) Gu et al. (2007) Bandwidths
c=0.25 c=0.5 c=1 c=2
n =100
o 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%
=0 0.008 0.050 0.073 0.013 0.050 0.108 0.018 0.038 0.103 0.005 0.053 0.105
0=0.1 0.008 0.065 0.093 0.010 0.065 0.120 0.005 0.048 0.103 0.010 0.065 0.108
0=0.5 0.003 0.088 0.078 0.020 0.088 0.155 0.058 0.148 0.218 0.073 0.228 0.323
o=1 0.008 0.175 0.143 0.043 0.175 0.301 0.263 0.536 0.657 0.499 0.769 0.857
n =200
o 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%
=0 0.008 0.038 0.080 0.013 0.053 0.105 0.015 0.063 0.125 0.015 0.058 0.103
0=0.1 0.003 0.038 0.080 0.015 0.045 0.108 0.023 0.088 0.128 0.015 0.058 0.100
0=0.5 0.005 0.055 0.095 0.020 0.088 0.158 0.068 0.213 0.346 0.213 0.469 0.612
o=1 0.033 0.143 0.256 0.198 0.466 0.602 0.732 0.902 0.952 0.952 0.992 0.995
(b) LSCV Bandwidth Results
2 SD IQR
X1 Xo X3 Joint X Xo X3 Joint
n= 100
0=0 0.000 0.687 0.604 0.426 0.000 0.757 0.712 0.561
0=0.1 0.000 0.554 0.586 0.341 0.000 0.662 0.672 0.451
0=0.5 0.000 0.100 0.185 0.018 0.000 0.221 0.203 0.030
o=1 0.000 0.020 0.038 0.005 0.000 0.053 0.043 0.005
n =200
0=0 0.000 0.669 0.639 0.441 0.000 0.900 0.865 0.769
0=0.1 0.000 0.491 0.617 0.343 0.000 0.872 0.825 0.724
0=0.5 0.000 0.018 0.035 0.003 0.000 0.514 0.070 0.018
0= 0.000 0.000 0.000 0.000 0.000 0.133 0.003 0.000

(both individually and jointly) beyond that of using 2 SD of the variable.
However, this comes at a cost as the IQR also erroncously smooths away
relevant variables at a higher frequency that does using 2 SD. This is due to
the fact that in general, our IQR was narrower than 2 SD and as such this
resulted in better performance for appropriately smoothing away irrelevant

variables but poorer performance when considering relevant variables.

What is interesting from these simulations is that while on an individual
basis using the bandwidths to determine which variables to formally test,
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Table 4. DGP;.

(a) Gu et al. (2007) Bandwidths

c=0.25 c=0.5 c=1 c=2

n =100
o 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%
=0 0.008 0.050 0.073 0.013 0.050 0.108 0.018 0.038 0.103 0.005 0.053 0.105
0=20.1 0.005 0.060 0.095 0.008 0.060 0.123 0.005 0.060 0.125 0.025 0.090 0.138
0=20.5 0.008 0.080 0.165 0.083 0.206 0.308 0.271 0.481 0.607 0.579 0.837 0.917
o=1 0.028 0.160 0.333 0.396 0.664 0.769 0.957 0.985 0.992 1.000 1.000 1.000

n =200
o 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%
=0 0.008 0.038 0.080 0.013 0.053 0.105 0.015 0.063 0.125 0.015 0.058 0.103
0=20.1 0.008 0.028 0.085 0.018 0.055 0.103 0.025 0.100 0.143 0.038 0.118 0.198
0=20.5 0.023 0.103 0.170 0.138 0.318 0.429 0.586 0.772 0.880 0.942 0.980 0.985
o=1 0.085 0.346 0.509 0.797 0.927 0.960 1.000 1.000 1.000 1.000 1.000 1.000

(b) LSCV Bandwidth Results

2SD IQR

X1 X2 X3 Joint X1 X2 X3 Joint

n =100
0=0 0.000 0.687 0.604 0.426 0.000 0.757 0.712 0.561
0=0.1 0.000 0.554 0.586 0.341 0.000 0.662 0.672 0.451
0=0.5 0.000 0.100 0.185 0.018 0.000 0.221 0.203 0.030
0= 0.000 0.020 0.038 0.005 0.000 0.053 0.043 0.005

n =200
0= 0.000 0.669 0.639 0.441 0.000 0.900 0.865 0.769
0=0.1 0.000 0.491 0.617 0.343 0.000 0.872 0.825 0.724
0=0.5 0.000 0.018 0.035 0.003 0.000 0.514 0.070 0.018
o=1 0.000 0.000 0.000 0.000 0.000 0.133 0.003 0.000

if they are indeed irrelevant, this does not appear to be the case jointly.
When it comes to a joint decision, using the bandwidths to determine
irrelevance results in a lower total percentage of the number of times the
bandwidths jointly arrive at the appropriate set of irrelevant variables, using
our joint rule-of-thumb method. For example, in Table 4 using 2-SD and
n = 200, we see that in 66.9% of all the simulations x; is correctly smoothed
out of the regression while 63.9% of all the simulations x; is appropriately
removed, but jointly they are correctly removed in only 44% of the
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simulations. Alternatively, using the IQR rule of thumb, x, is removed 90%
of the time and x; is removed 86.5% of the time, resulting in them being
jointly removed 76.9% of the time. As noted earlier though, the IQR seems
to penalize too much when indeed the variables are relevant. Also, when n
increases from 100 to 200, we see that for 6 = 0.1 and 0.5 the percentage of
times a variable that is relevant is deemed irrelevant using the IQR has
increased. This appears to be the case for 6 = 0.1 using 2 SD as a rule of
thumb as well.

Overall, these simulations suggest that a sound empirical strategy would be
to use local constant regression coupled with LSCV bandwidth selection to
determine the variables that are initially smoothed away (based on the results
here using 2 SD as a gauge) and then to use the test of Gu et al. (2007) to
determine which of the remaining variables whose relevance is under
consideration is actually significant. This strategy will potentially circumvent
the use of “‘extreme” bandwidths in the construction of the test statistic that
resulted in the poor size properties that we found in our simulations.

3.2. Discrete-Only Case

Testing significance of discrete variables provides an opportunity to gauge
how a finite upper bound on a bandwidth impacts the test results as opposed
to an infinite upper bound. We saw that in the continuous-only case that our
rule-of-thumb methods were able to detect individual irrelevance but
refocusing our attention toward joint relevance resulted in diminished
performance relative to the testing results. Tables 5-7 provide size and
power results for our test statistic using only discrete variables in the null
hypothesis and a threshold of relevance set at 80% of the upper bound using
bandwidths determined via LSCV. Since this test has not been used in
practice before, we examine individual tests of significance as well as joint
tests of significance.

The first thing we note is that across the three DGPs, the test has impressive
size and power using the ad hoc bandwidths in both the individual and joint
testing setups. Again, we follow closely the theory laid out in Gu et al. (2007)
and undersmooth our bandwidths in the unrestricted model estimation while
using the standard level of smoothing in the restricted model. When we
consider the determination of relevance as gauged via 80% of the theoretical
upper bounds, we see that individually the bandwidths determine a high
percentage of the simulations that the appropriate variables are smoothed out
and this percentage is increasing as n increase.
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Table 5. DGP; Where x, and x5 are Discrete Variables.

(a) Gu et al. (2007) Bandwidths

c=0.25 c=0.5 c=1 c=2
X, and x; joint significance test
n =100
o 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%
0=0 0.015 0.053 0.105 0.023 0.063 0.130 0.015 0.080 0.135 0.020 0.075 0.125
0=0.1 0.020 0.070 0.110 0.023 0.078 0.135 0.023 0.088 0.160 0.035 0.088 0.175
0=0.5 0.135 0.328 0.461 0.258 0.506 0.619 0.424 0.662 0.767 0.544 0.777 0.872
o=1 0.727 0925 0.972 0.965 0.992 0.995 0.997 0.997 1.000 0.997 1.000 1.000
n =200
o 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%
0=0 0.003 0.050 0.083 0.015 0.045 0.073 0.008 0.055 0.088 0.003 0.050 0.103
0=0.1 0.005 0.050 0.110 0.025 0.053 0.118 0.015 0.070 0.118 0.023 0.110 0.165
0=0.5 0.386 0.664 0.764 0.642 0.832 0.907 0.792 0.947 0.972 0.925 0.980 0.990
o=1 0997 0997 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
x, individual significance test
n =100
o 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%
0=0 0.013 0.055 0.090 0.005 0.038 0.108 0.005 0.048 0.108 0.015 0.050 0.108
0=0.1 0.010 0.050 0.095 0.005 0.053 0.125 0.013 0.063 0.140 0.018 0.083 0.135
0=20.5 0.038 0.160 0.261 0.098 0.241 0.356 0.135 0.338 0.471 0.198 0.444 0.571
o=1 0.013 0.058 0.128 0.080 0.293 0.451 0.238 0.576 0.729 0.404 0.752 0.870
n =200
o 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%
0=0 0.013 0.058 0.095 0.015 0.048 0.100 0.020 0.050 0.083 0.010 0.055 0.095
0=0.1 0.013 0.053 0.095 0.018 0.055 0.118 0.025 0.055 0.130 0.015 0.078 0.150
0=20.5 0.093 0.286 0.401 0.198 0.439 0.574 0.358 0.617 0.742 0.471 0.712 0.842
o=1 0.504 0.764 0.842 0.779 0.907 0.950 0.922 0.967 0.987 0.957 0.987 0.992
x3 individual significance test
n =100
o 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%
o0=0 0.008 0.050 0.073 0.013 0.050 0.108 0.018 0.038 0.103 0.005 0.053 0.105
0=0.1 0.018 0.063 0.115 0.015 0.068 0.135 0.023 0.073 0.148 0.023 0.078 0.150
0=0.5 0.123 0.331 0.444 0.236 0.474 0.579 0.353 0.609 0.727 0.474 0.724 0.830
o=1 0.759 0915 0.947 0.927 0.990 0.995 0.985 1.000 1.000 1.000 1.000 1.000
n =200
o 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%
0=0 0.008 0.040 0.115 0.005 0.050 0.110 0.003 0.038 0.095 0.010 0.045 0.100
0=20.1 0.008 0.063 0.130 0.018 0.075 0.130 0.015 0.085 0.153 0.020 0.110 0.175
0=0.5 0.363 0.627 0.742 0.576 0.810 0.895 0.762 0.942 0.970 0.885 0.970 0.985
o=1 0.995 0.997 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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Table 5. (Continued).

(b) LSCV Bandwidth Results using 80% of the Upper Bound

n =100 n =200
X2 X3 Joint X2 X3 Joint
0= 0.697 0.551 0.411 0.772 0.602 0.501
0=0.1 0.684 0.506 0.378 0.707 0.521 0.398
0=0.5 0.363 0.030 0.010 0.211 0.000 0.000
=1 0.028 0.000 0.000 0.000 0.000 0.000

For example, in Table 6 we see that 69.7% of the time x, is appropriately
smoothed away when n = 100 but this number increases to 77.2% of the
time when we use samples of 200. As expected for models further away from
the null, 6 = 0.5 and 1, as » increases the probability that a variable, or set
of variables, is smoothed away is decreasing. We note that for all of our
DGPs that when 6 = 0.1 this model is extremely close to the null and is hard
to detect why the bandwidths suggest that a large portion of the time the
variable is smoothed away erroneously. Interestingly, our test results seem
to do a remarkable job of detecting even small departures from the null
hypothesis when the bandwidths do not, providing even more evidence that
one should formally test for insignificance.

Overall, we see that using the bootstrap test of Gu et al. (2007) using only
discrete variables in the null hypothesis results in remarkable size and power
properties, whereas raw interpretation of the bandwidths suggests that when
the null is false our joint bandwidth measure does a good job of not smoothing
out all variables simultancously. However, when we examine our measure
when the null is true we see that indeed, as the sample size increases the per-
formance of this baseline measure is improving, it does not mimic the desirable
behavior of the formal test. Again, the results in Racine and Li (2004) suggest
that inclusion of discrete variables does not add to the curse of dimensionality
so it is natural that the test results are better than in the continuous setting
where all variables contributed to the dimensionality of the model.

3.3. Mixed Discrete—Continuous Case

In this setting, we try to mimic traditional applied milieus where there are
a variety of covariates which are of mixed type. More importantly, we are
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Table 6. DGP,, Where x, and x5 are Discrete Variables.

(a) Gu et al. (2007) Bandwidths

c=0.25 c=0.5 c=1 c=2
X, and x; joint significance test
n =100
o 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%
0=0 0.015 0.053 0.105 0.023 0.063 0.130 0.015 0.080 0.135 0.020 0.075 0.125
0=0.1 0.015 0.063 0.110 0.020 0.073 0.150 0.015 0.100 0.163 0.023 0.090 0.145
0=0.5 0.188 0.409 0.514 0.308 0.566 0.694 0.436 0.699 0.789 0.414 0.722 0.812
o=1 0.759 0910 0.932 0.887 0.967 0.990 0.962 0.997 1.000 0.962 0.997 0.997
n =200
o 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%
0=0 0.003 0.050 0.083 0.015 0.045 0.073 0.008 0.055 0.088 0.003 0.050 0.103
0=0.1 0.010 0.045 0.100 0.018 0.063 0.118 0.018 0.075 0.138 0.010 0.090 0.153
0=0.5 0.509 0.707 0.799 0.692 0.845 0.915 0.822 0.952 0.980 0.865 0.980 0.992
o=1 0997 0997 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
x, individual significance test
n =100
o 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%
0=0 0.013 0.040 0.078 0.020 0.050 0.090 0.005 0.045 0.123 0.005 0.033 0.110
0=0.1 0.013 0.040 0.083 0.018 0.053 0.088 0.005 0.043 0.120 0.008 0.040 0.113
0=20.5 0.018 0.075 0.118 0.023 0.100 0.158 0.030 0.098 0.185 0.023 0.108 0.195
o=1 0.073 0.168 0.298 0.123 0.281 0.431 0.145 0.371 0.531 0.133 0.401 0.559
n =200
o 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%
0=0 0.005 0.053 0.095 0.005 0.050 0.115 0.000 0.043 0.113 0.005 0.030 0.073
0=0.1 0.010 0.060 0.085 0.013 0.050 0.090 0.015 0.048 0.088 0.010 0.045 0.105
0=20.5 0.020 0.073 0.135 0.028 0.105 0.178 0.025 0.128 0.218 0.018 0.095 0.203
o=1 0.075 0.223 0.393 0.160 0.381 0.519 0.233 0.494 0.637 0.216 0.534 0.687
x3 individual significance test
n =100
o 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%
0=0 0.013 0.058 0.108 0.010 0.055 0.113 0.005 0.055 0.108 0.013 0.068 0.110
0=20.1 0.018 0.063 0.133 0.015 0.075 0.150 0.015 0.078 0.160 0.018 0.088 0.165
0=0.5 0.281 0.506 0.622 0.454 0.689 0.772 0.596 0.812 0.890 0.544 0.835 0.917
o=1 0.865 0.960 0.980 0.962 0.992 0.995 0.990 0.997 1.000 0.977 0.997 1.000
n =200
o 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%
0=0 0.008 0.040 0.115 0.005 0.050 0.110 0.003 0.038 0.095 0.010 0.045 0.100
0=20.1 0.020 0.070 0.148 0.013 0.080 0.165 0.018 0.083 0.185 0.020 0.088 0.193
0=0.5 0.629 0.810 0.890 0.817 0.955 0.980 0.937 0.987 0.992 0.957 0.992 0.997
o=1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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Table 6. (Continued).

(b) LSCV Bandwidth Results using 80% of the Upper Bound

n =100 n =200
X2 X3 Joint X2 X3 Joint
=0 0.697 0.551 0.411 0.772 0.602 0.501
6=0.1 0.699 0.409 0.311 0.762 0.298 0.233
0=0.5 0.599 0.000 0.000 0.546 0.000 0.000
o=1 0.378 0.000 0.000 0.103 0.000 0.000

interested in a mixed hypothesis which the current menu of available tests
does not formally allow for. Again, as mentioned earlier, theoretical backing
aside, there is no reason the test of Lavergne and Vuong (2000) and Gu et al.
(2007) cannot include discrete variables. We present several testing
scenarios, including bandwidth rules, for DGP,, in Table 8.

Our joint significance test under the appropriate null, Hy : x3, x5, Xg are
insignificant, reveals that the test appears to be oversized across all levels of
the bandwidth. The results for ¢ = 0.25, however, seem to display uniformly
better size at our conventional testing levels than our other scaling setups.
Here, we posit that the size of the test suffers due to the inclusion of an
additional, relevant covariate. This adds to the curse of dimensionality and
having a sample size of » = 100 is not enough to overcome the additional
covariate. However, we see that doubling of our sample size to n = 200
dramatically improves the performance of the test and that the size of the
test is almost exact in this finite sample setting. This suggests that the
nonparametric test of omitted variables can be used to test significance of
mixed joint hypothesis in practice.

Switching to the performance of the LSCV bandwidths, we note that, as
before, using IQR results in a higher proportion of the simulations with the
appropriate continuous variables smoothed out, but with this specific DGP
we do not notice the erroneous smoothing out that occurred in our previous
simulations. We note that our DGP in the mixed setting results in x5 having
a hard time being determined to be relevant even when it is true. This is
because our model is close to the null even when 6 = 0.1, 0.5, or 1. What is
striking is that our joint measure of determination is worse than in our other
setups because our null hypothesis involves three covariates as opposed to
two. This highlights the difficulty of assessing irrelevance in a joint fashion
based on the LSCV bandwidths. Note that in only 34% of our simulations
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Table 7. DGP3, Where x, and x5 are Discrete Variables.

(a) Gu et al. (2007) Bandwidths

c=0.25 c=0.5 c=1 c=2
X, and x; joint significance test
n =100
o 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%
0=0 0.015 0.053 0.105 0.023 0.063 0.130 0.015 0.080 0.135 0.020 0.075 0.125
0=0.1 0.018 0.060 0.120 0.028 0.080 0.145 0.018 0.095 0.158 0.038 0.108 0.185
0=0.5 0.150 0.333 0.449 0.258 0.499 0.609 0.409 0.659 0.797 0.544 0.805 0.872
o=1 0.832 0935 0.965 0.955 0.992 0.997 0.987 1.000 1.000 0.995 1.000 1.000
n =200
o 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%
0=0 0.003 0.050 0.083 0.015 0.045 0.073 0.008 0.055 0.088 0.003 0.050 0.103
0=0.1 0.008 0.060 0.093 0.018 0.053 0.110 0.018 0.070 0.128 0.020 0.088 0.158
0=0.5 0.366 0.617 0.742 0.586 0.837 0.917 0.815 0.947 0.977 0.920 0.982 0.992
o=1 0997 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
x, individual significance test
n =100
o 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%
0=0 0.013 0.055 0.090 0.005 0.038 0.108 0.005 0.048 0.108 0.015 0.050 0.108
0=0.1 0.010 0.048 0.088 0.005 0.040 0.120 0.010 0.055 0.123 0.020 0.080 0.130
0=20.5 0.030 0.133 0.236 0.078 0.211 0.311 0.113 0.328 0.434 0.175 0.409 0.536
o0=1 0.190 0.381 0.484 0.318 0.544 0.697 0.496 0.724 0.815 0.589 0.807 0.887
n =200
o 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%
0=0 0.013 0.058 0.095 0.015 0.048 0.100 0.020 0.050 0.083 0.010 0.055 0.095
0=0.1 0.010 0.055 0.098 0.015 0.060 0.103 0.020 0.063 0.123 0.015 0.075 0.145
0=20.5 0.100 0.246 0.378 0.165 0.391 0.546 0.318 0.574 0.707 0.409 0.687 0.789
o0=1 0.516 0.742 0.837 0.752 0.902 0.940 0.880 0.952 0.972 0.917 0.970 0.982
x3 individual significance test
n =100
o 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%
0=0 0.013 0.058 0.108 0.010 0.055 0.113 0.005 0.055 0.108 0.013 0.068 0.110
0=20.1 0.015 0.068 0.120 0.013 0.073 0.123 0.015 0.083 0.155 0.023 0.088 0.158
0=0.5 0.113 0.293 0.421 0.213 0.439 0.594 0.311 0.602 0.702 0.464 0.692 0.787
o=1 0.609 0.817 0.887 0.787 0.927 0.965 0.920 0.982 0.997 0.972 0.997 0.997
n =200
o 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%
0=0 0.008 0.040 0.115 0.005 0.050 0.110 0.003 0.038 0.095 0.010 0.045 0.100
0=20.1 0.015 0.060 0.120 0.008 0.075 0.125 0.020 0.083 0.143 0.015 0.100 0.165
0=0.5 0291 0.506 0.639 0.456 0.702 0.789 0.639 0.832 0.920 0.764 0.932 0.975
o=1 0.955 0992 1.000 0.997 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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Table 7. (Continued).

(b) LSCV Bandwidth Results using 80% of the Upper Bound

n =100 n =200
X2 X3 Joint X2 X3 Joint
0=0 0.697 0.551 0.411 0.772 0.602 0.501
0=0.1 0.682 0.476 0.356 0.719 0.454 0.353
0=0.5 0.393 0.023 0.003 0.251 0.000 0.000
o=1 0.050 0.000 0.000 0.000 0.000 0.000

were x3, x5, and xg smoothed away simultancously according to our
standard deviation determination rule. For 6 = 0.5, 1, the data-driven
bandwidths never jointly remove the three variables under investigation.
We also note that x; and x4 are never smoothed out in any of these
simulations.

These results, while limited in scope, provide two key insights for applied
econometricians. First, the standard, continuous-only nonparametric
omitted variable test can be modified to handle a joint hypothesis involving
mixed data. Second, data-driven bandwidths can be used as an effective
screen for removing irrelevant variables in a local constant setting, but they
do not preclude the use of a formal statistical test.

4. CONCLUSION

This research has focused on two broad aspects of assessing variable
irrelevance in multivariate nonparametric kernel regression in the presence
of mixed data types. First, we discussed the lack of a theoretically consistent
test that allows joint hypothesis testing involving both continuous and
categorical data. We then discussed a currently existing test of significance,
which can include both types of data simultaneously, and its performance
when either discrete or mixed data enter into the null hypothesis. Second, we
investigated the performance of several suggested ad hoc means of using
LSCV bandwidths to determine variable irrelevance prior to testing.

Our results revealed that implementing the test of Gu et al. (2007) using
mixed data types did not harm its performance with respect to size or power.
Additionally, we provided evidence that while using cross-validated
bandwidths on an individual basis resulted in good detection of variable
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Table 8. DGP,4, Where x4, x5, and xg are Discrete Variables.

(a) Gu et al. (2007) Bandwidths

c=0.25 c=0.5 c=1 c=2
Joint significance test Hy: x3, x5, and xg are insignificant
n =100
o 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%
0=0 0.013 0.065 0.133 0.028 0.095 0.158 0.025 0.115 0.188 0.025 0.108 0.201
0=0.1 0.018 0.090 0.165 0.048 0.173 0.263 0.173 0.348 0.469 0.356 0.619 0.729
0=20.5 0.173 0.494 0.704 0.885 0.980 0.987 1.000 1.000 1.000 1.000 1.000 1.000
o=1 0.223 0.609 0.832 0.970 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
n =200
o 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%
0=0 0.013 0.055 0.102 0.010 0.055 0.090 0.010 0.049 0.096 0.010 0.047 0.101
0=0.1 0.035 0.153 0.236 0.190 0.386 0.509 0.637 0.825 0.907 0.900 0.982 0.995
0=0.5 0.464 0.820 0.930 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
o0=1 0.647 0.937 0.990 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
(b) LSCV Bandwidth Results
Variable Continuous Discrete Joint Continuous Joint
(2 SD) (0.8) (2 SD, 0.8) (IQR) (IQR, 0.8)
X1 Xo X3 X4 Xs Xo Joint X X> X3 Joint
n =100
=0 0.000 0.000 0.647 0.000 0.734 0.694 0.341 0.000 0.000 0.774  0.401
0 =0.1 0.000 0.000 0.632 0.000 0.674 0.311 0.093 0.000 0.000 0.767  0.108
5=20.5 0.000 0.000 0.183 0.000 0.569 0.000 0.000 0.000 0.003 0.308  0.000
=1 0.000 0.000 0.028 0.000 0.471 0.000 0.000 0.000 0.000 0.053  0.000
n =200
=0 0.000 0.000 0.685 0.004 0.765 0.779 0.420 0.000 0.000 0.882  0.461
d=0.1 0.000 0.000 0.621 0.000 0.690 0.309 0.102 0.000 0.000 0.860  0.138
9 =0.5 0.000 0.000 0.111 0.000 0.230 0.000 0.000 0.000 0.000 0.250  0.000
=1 0.000 0.000 0.002 0.000 0.176 0.000 0.000 0.000 0.000 0.038  0.000

irrelevance, the same measures applied jointly are not as successful at
uncovering irrelevance. This suggests that in the presence of multiple
irrelevant regressors formal testing should always be used as a backdrop
for determining if a set of variables should be included in one’s final
nonparametric model. One should use economic theory to guide them
toward the appropriate set of covariates to test for joint significance.
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Further research should focus on the construction of and distribution
theory for a test to formally handle mixed data types in null hypotheses,
preferably a test that only involves estimation of the unrestricted model.
Additionally, simulation results comparing test performance across local
constant and local linear methodologies would be insightful as the cross-
validated bandwidths obtained when one uses local linear (or any other
order polynomial) are not directly related to variable relevance for
continuous regressors. Also, the use of bandwidths obtained through other
cross-validation methods, such as improved AIC,, would prove useful since
LSCV is known to produce bandwidths that lead to undersmoothing in
finite samples.

NOTES

1. It is hypothesized that for local polynomial estimation with polynomial degree
p, as the bandwidth diverges, the associated variable enters the model in a
polynomial of order p fashion.

2. Their power is influenced directly via the bandwidth used to perform the test
(Gu et al., 2007, Table 6).

3. See also Li and Racine (2006, p. 373) for a related discussion.

4. Their bootstrap theory only pertains to continuous variables, however.

5. One could also use the Epanechnikov or biweight kernel as well.

6. This is not entirely damning as it was shown in finite samples that the LSCV
bandwidths continued to smooth away irrelevant variables when dependence was
allowed between relevant and irrelevant regressors. The assumption was made for
ease of proof of the corresponding theorems in the paper.

7. See Henderson, Papageorgiou, and Parmeter (2008) for additional simulation
results with a large number of irrelevant variables.

8. We still have x; continuous in these settings.

9. This was due to the fact that LSCV was providing scale factors on the order of
100 or 1000 as opposed to 0.25 or 2 for the irrelevant variables.
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SEMIPARAMETRIC ESTIMATION
OF FIXED-EFFECTS PANEL DATA
VARYING COEFFICIENT MODELS

Yiguo Sun, Raymond J. Carroll and Dingding Li

ABSTRACT

We consider the problem of estimating a varying coefficient panel data
model with fixed-effects (FE) using a local linear regression approach.
Unlike first-differenced estimator, our proposed estimator removes FE
using kernel-based weights. This results a one-step estimator without
using the backfitting technique. The computed estimator is shown to be
asymptotically normally distributed. A modified least-squared cross-
validatory method is used to select the optimal bandwidth automatically.
Moreover, we propose a test statistic for testing the null hypothesis of a
random-effects varying coefficient panel data model against an FE one.
Monte Carlo simulations show that our proposed estimator and test
statistic have satisfactory finite sample performance.

1. INTRODUCTION

Panel data traces information on each individual unit across time. Such a
two-dimensional information set enables researchers to estimate complex
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models and extract information and inferences, which may not be possible
using pure time-series data or cross-section data. With the increased
availability of panel data, both theoretical and applied work in panel data
analysis have become more popular in the recent years.

Arellano (2003), Baltagi (2005) and Hsiao (2003) provide excellent
overview of parametric panel data model analysis. However, it is well
known that a misspecified parametric panel data model may give misleading
inferences. To avoid imposing the strong restrictions assumed in the
parametric panel data models, econometricians and statisticians have
worked on theories of nonparametric and semiparametric panel data
regression models. For example, Henderson, Carroll, and Li (2008)
considered the fixed-effects (FE) nonparametric panel data model.
Henderson and Ullah (2005), Lin and Carroll (2000, 2001, 2006), Lin,
Wang, Welsh, and Carroll (2004), Lin and Ying (2001), Ruckstuhl, Welsh,
and Carroll (2000), Wang (2003), and Wu and Zhang (2002) considered the
random-effects (RE) nonparametric panel data models. Li and Stengos
(1996) considered a partially linear panel data model with some regressors
being endogenous via instrumental variable (IV) approach, and Su and
Ullah (2006) investigated an FE partially linear panel data model with
€X0genous regressors.

A purely nonparametric model suffers from the ‘curse of dimensionality’
problem, while a partially linear semiparametric model may be too
restrictive as it only allows for some additive nonlinearities. The varying
coefficient model considered in this paper includes both pure nonparametric
model and partially linear regression model as special cases. Moreover, we
assume an FE panel data model. By FE we mean that the individual effects
are correlated with the regressors in an unknown way. Consistent with the
well-known results in parametric panel data model estimation, we show that
RE estimators are inconsistent if the true model is one with FE, and that FE
estimators are consistent under both RE- and FE panel data model,
although the RE estimator is more efficient than the FE estimator when the
RE model holds true. Therefore, estimation of RE models is appropriate
only when individual effects are uncorrelated with regressors. As, in
practice, economists often view the assumptions required for the RE model
as being unsupported by the data, this paper emphasizes more on estimating
an FE panel data varying coefficient model, and we propose to use the local
linear method to estimate unknown smooth coefficient functions. We also
propose a test statistic for testing an RE varying coefficient panel data
model against an FE one. Simulation results show that our proposed
estimator and test statistic have satisfactory finite sample performances.
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Recently, Cai, and Li (2008) studied a dynamic nonparametric panel data
model with unknown varying coefficients. As Cai and Li (2008) allow the
regressors not appearing in the varying coefficient curves to be endogenous,
the generalized method of moments-based IV estimation method plus local
linear regression approach is used to deliver consistent estimator of the
unknown smooth coefficient curves. In this paper, all the regressors are
assumed to be exogenous. Therefore, the least-squared method combining
with local linear regression approach can be used to produce consistent
estimator of the unknown smoothing coefficient curves. In addition, the
asymptotic results are given when the time length is finite.

The rest of the paper is organized as follows. In Section 2 we set up the
model and discuss transformation methods that are used to remove FE.
Section 3 proposes a nonparametric FE estimator and studies its asymptotic
properties. In Section 4 we suggest a statistic for testing the null hypothesis
of an RE varying coefficient model against an FE one. Section 5 reports
simulation results that examine the finite sample performance of our
semiparametric estimator and the test statistic. Finally we conclude the
paper in Section 6. The proofs of the main results are collected in the
appendix.

2. FIXED-EFFECTS VARYING COEFFICIENT
PANEL DATA MODELS

We consider the following FE varying coefficient panel data regression
model

Yu=X0Zi)+w+vi i=1,...,mt=1,...,m (1)

where the covariate Z; =(Z;,,...,Z ,»[,q)T is of dimension ¢, X; =
Xirty--- ,Xi,,p)T is of dimension p, 6(-) = {6,(-),..., 01,(~)}T contains p
unknown functions; and all other variables are scalars. None of the
variables in X;, can be obtained from Z;, and vice versa. The random errors
v;, are assumed to be independently and identically distributed (i.i.d.) with a
zero mean, finite variance 62 >0 and independent of w, Z;, and X, for all 7, j,
s and ¢. The unobserved individual effects u; are assumed to be i.i.d. with a
zero mean and a finite variance oi > 0. We allow for yu;, to be correlated with
Z;, and/or X;, with an unknown correlation structure. Hence, model (1) is
an FE model. Alternatively, when y; is uncorrelated with Z;; and X;,, model
(1) becomes an RE model.
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A somewhat simplistic explanation for consideration of FE models and
the need for estimation of the function 0(-) arises from considerations such
as the following. Suppose that Y;, is the (logarithm) income of individual 7 at
time period #; X;, is education of individual i at time period ¢, for example,
number of years of schooling; and Z;, is the age of individual 7 at time ¢. The
FE term y; in Eq. (1) includes the individual’s unobservable characteristics
such as ability (e.g. IQ level) and characteristics which are not observable for
the data at hand. In this problem, economists are interested in the marginal
effects of education on income, after controlling for the unobservable
individual ability factors. Hence, they are interested in the marginal effects
in the income change for an additional year of education regardless of
whether the person has high or low ability. In this simple example, it is
reasonable to believe that ability and education are positively correlated.
If one does not control for the unobserved individual effects, then one would
overestimate the true marginal effects of education on income (i.e. with an
upward bias).

When X;,=1 for all i and 7 and p = 1, model (1) reduces to Henderson
et al. (2008) nonparametric panel data model with FE as a special case. One
may also interpret X IH(Zi,) as an interactive term between X; and Z,
where we allow 6(Z;) to have a flexible format since the popularly used
parametric set-up such as Z;, and/or Zf, may be misspecified.

For a given FE model, there are many ways of removing the unknown
fixed effects from the model.

The usual first-differenced (FD) estimation method deducts one equation
from another to remove the time-invariant FE. For example, deducting
equation for time ¢ from that for time ¢t — 1, we have for r =2, ..., m

Yu=Yy— Y= X50(Zi) — X[\ 0(Zi—r) + Py with B = vie — vy
()

or deducting equation for time ¢ from that for time 1, we obtain for
t=2,....,m

Yi=Yy—Yu=X,0Zy)— X 0(Zn) + ¥ with ¥ =vy—va (3

The conventional FE estimation method, on the other hand, removes the
FE by deducting each equation from the cross-time average of the system,



Semiparametric Estimation of FE Panel Data Varying Coefficient Models 105

and it gives for t =2, ..., m
m
tt = Z Ym = X H(th) - _ZX H(Zzs) + Vlf
1 m
- Z qth” H(Zm) + Vlt Wlth Vit = Vit — — st (4)
s=1
where ¢, = — 1/m if s# ¢ and 1 — 1/m otherwise, and Z;":lqm =0 for all 7.

Many nonparametric local smoothing methods can be used to estimate
the unknown function 6( - ). However, for each i, the right-hand sides of Eqgs.
(2)~(4) contain linear combination of X 0(Z;) for different time ¢. If X
contains a time-invariant term, say the first component of X, and let 6,(Z;,)
denote the first component of 0(Z;,), then a first difference of X;,,16,(Z;) =
Xi101(Z;;) gives X;1(01(Z;,) — 01(Z;,_ 1)), which is an additive function with
the same function form for the two functions but evaluated at different
observation points. Kernel-based estimator usually requires some back-
fitting algorithms to recover the unknown function, which will suffer the
common problems as indicated in estimating nonparametric additive model.
Moreover, if 0,(Z;) contains an additive constant term, say 0(Z;) =
c+g1(Z;), where ¢ is a constant, then the first difference will wipe out the
additive constant ¢. As a consequence, one cannot consistently estimate

0,(-) if one were to estlmate an FD model in general (if X;; = 1, one can
recover ¢ by averaging Y; — 9(2,,) for all cross-sections and across time).

Therefore, in this paper we c0n51der an alternative way of removing the
unknown FE, motivated by a least-squares dummy variable (LSDV) model
in parametric panel data analysis. We will describe how the proposed
method removes FE by deducting a smoothed version of cross-time average
from each individual unit. As we will show later, this transformation
method will not wipe the additive constant ¢ in 0((Z;) = c+g(Z;).
Therefore, we can consistently estimate 6,( -) as well as other components of
0(-) when at most one of the variables in X}, is time invariant.

We will use I, to denote an identity matrix of dimension 7, and ¢, to
denote an m x 1 vector with all elements being 1s. Rewriting model (1) in a
matrix format yields

Y = B{X,0(Z)} + Dopy + V (5)
where ¥ =(Y],...,¥Y)" and V =(],...,v])" are (mm)x1 vectors;
Y! =(Ya,...,Yy) and v = (vi1,...,vi). B{X, 0(Z)} stacks all X 0(Z;)

into an (nm) x 1 vector with the (i, #) subscript matching that of the (nm) x 1



106 YIGUO SUN ET AL.

vector of Y; uo = (uy,..., ,u,,)T is an nx 1 vector; and Dy =1,R¢,, is an
(nm) x n matrix with main diagonal blocks being e¢,,, where ® refers to
Kronecker product operation. However, we cannot estimate model
(5) directly due to the existence of the FE term. Therefore, we need some
identification conditions. Su and Ullah (2006) assume " ,x; = 0. We show
that assuming an i.i.d sequence of unknown FE y; with zero mean and a
finite variance is enough to identify the unknown coefficient curves
asymptotically. We therefore impose this weaker version of identification
condition in this paper.

To introduce our estimator, we first assume that model (1) holds with the
restriction Y7 1, = 0 (note that we do not impose this restriction for our
estimator, and this restriction is added here for motivating our estimator).
Define u = (u,,. . . ,u,,)T. We then rewrite Eq. (5) as

Y = B(X,0(Z)} + Du+V (6)

where D =[—e,_1 I,_1]" ®e, is an (mm)x (n—1) matrix. Note that
Du=po®e, with uy=(=>"", I, it,)" so that the restriction
> = 0 is imposed in Eq. (6).

Define an mxm diagonal matrix Kg(Z;,z) = diag{Ku(Zi2),...,
Kpy(Zinz)} for each i, and a (mm)x (nm) diagonal matrix Wg(z) =
diag{Ky(Z,2), ..., Ky(Zy, 2)}, where K y(Zi,z) = K{H (Z;; — z)} for all i
and ¢, and H = diag(hi,...,h,) is a g x ¢ diagonal bandwidth matrix. We
then solve the following optimization problem:

min[Y — B(X,0(2)) - D" W p(2)[Y — B{X,0(2)} — D] @)

where we use the local weight matrix Wy (z) to ensure locality of our
nonparametric fitting, and place no weight matrix for data variation since
the {v;} are i.i.d. across equations. Taking first-order condition with respect
to u gives
DTWyE)Y — B(X,0(Z)) — D2)] = 0 @®)
which yields
i(z) = {D" = Wy()D)"' DT Wy(2)[Y - B{X,0(2)}] ©)
Define  Sy(z) = Mu(2) Wy(z)Mnu(z)  and  Mp(2) = Lyxm — D
(D" W y(z)D}"' DT Wy(z), where I,., denotes an identity matrix of
dimension (nm) x (nm). Replacing u in Eq. (7) by ju(z), we obtain the concen-
trated weighted least squares

%}izt)l[Y — BIX, 02M" Su(2)[Y — B{X,0(Z))] (10)



Semiparametric Estimation of FE Panel Data Varying Coefficient Models 107

Note that M y(z)Du = Ogmyx1 for all z. Hence, the FE term pu is removed in
model (10).
To see how My (z) transforms the data, simple calculations give

AV — A, el A7
M =I,um—D el D'W
H(2) 1 m { Z?:]CH(Zi,Z) } (2)
where cH(Z,A,z)_1 =Y " Ky(Zy,z) for i=1,...,n and A = diag
{eu(Zr,2)7 Y. . en(Zy,2)7'). We use the formula (4 + BCD) ' = 47!

—A7'B(DA™'B+ C~")"'DA~" to derive the inverse matrix, see Appendix B
in Poirier (1995).

3. NONPARAMETRIC ESTIMATOR
AND ASYMPTOTIC THEORY

A local linear regression approach is commonly used to estimate non-/
semiparametric models. The basic idea of this method is to apply Taylor
expansion up to the second-order derivative. Throughout the paper we will
use the notation 4, ~ B, to denote that B, is the leading term of A4,,, that
is A, = B,+(s.0.), where (s.0.) denotes terms having probability order
smaller than that of B,. Foreach / =1,...,p, we have the following Taylor
expansion around z:

0i) ~ 00+ {HO@Y T G = D4 s ) (1)

where 0)(z) = 00,(z)/0z is the ¢ x 1 vector of the first-order derived func-
tion, and ry(zir, z) = (H™'(zis — 2)} T {H(&*01(2)) /(0202 ) HY{(H ' (z;1 — 2)}.
Of course, 0,(z) approximates 0,(z;,) and 0)(z) approximates 0,(z;) when z;, is
close to z. Define f,(z) = {0(z), [H@?(z)]T}T,a(q + 1) x 1 column vector for
[=1,2,...,p,and B(z) = {p;(2), .. .,ﬁp(z)}T, a p x (¢ + 1)parameter matrix.
The first column of f(z) is 6(z). Therefore, we will replace 8(Z;,) in Eq. (1) by
B(2)Gi(z, H) for each i and ¢, where G;(z, H) =[1,{H "(Z; —2)}"]" is a
(g+ 1) x 1 vector.

To make matrix operations simpler, we stack the matrix f(z) into a
p(g+1)x 1 column vector and denote it by vec{f(z)}. Since vec(4ABC) =
(CT ®A)vec(B) and (A®B)" = A" ® B', where ® refers to Kronecker
product, we have X;[ﬁ(z)G,-,(z, H) = {Gi(z, H) ® X/} " vec{p(z)} for all i and ¢.
Thus, we consider the following minimization problem:

I/}}izl)l[Y — Rz, H)vec{B(ZN]" Su(2)[Y — R(z, H)vec{B(2)}] (12)
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where
(G H)® X;n)'
Ri(z,H) = : isan m x [ p(q + 1)] matrix, and
(Gim(z H) @ Xi)"
R(z,H)=[Ri(z, H)",...,Ry(z, H)"]" is an (nm) x [ p(q + 1)] matrix

Simple calculations give
vee(B(2)) = (R(z, ) ' Su()R(z H)) ' Rz, H) ' Su(2)Y
= vec{B(2)} + (R(z, H) Su(2)R(z, H)} ' (4,/2+ B, + C,)  (13)

where A, = R(z, H)' Sy(2)II(z, H), B, = R(z, H)' Sy(2)Doyy,  and
C, = R(z, H)"S(2)V. The {t+ (i — 1)m}th element of the column vector
I(z, H) is X;rH(ZN,-t,z), where ry(, ) ={ruaa1(C, ), .., ru (s N7 and
rui(Zin2) = {H (Zy — 2y {H(8°0/(Z4))/(0z0z" ) HW{H (Z;; — 2)}  with
Z;; lying between Z; and z for each i and ¢. Both 4, and B, contribute to
the bias term of the estimator. Also, if Y ;_,u; = 0 holds true, B, = 0; if we
only assume y; being i.i.d. with zero mean and finite variance, the bias due to
the existence of unknown FE can be asymptotically ignored.

To derive the asymptotic distribution of vec{f(z)}, we first give some
regularity conditions. Throughout this paper, we use M >0 to denote a finite
constant, which may take a different value at different places.

Assumption 1. The random variables X;, and Z; are i.i.d. across the i
index, and

(@) E||1X:?1+ < M <00 and E||Z;|?"*® < M < oo hold for some 6> 0
and for all 7 and ¢.

(b) The Z;, are continuous random variables with a probability density
function (pdf) fi(z). Also, for each ze R?, f(z) = >,/ (2)>0.

(c) Denote 4y = Ky(Zy,z) and w; = A/> 0 4i € (0,1) for all i and .
¥(z) = [H|7"™, E[(1 — wi)i X i XT] is a nonsingular matrix.

(d) Let £, (z|X;,) be the conditional pdf of Z;, at Z;, = z conditional on X},
and f, (21,22 Xy, Xjs) be the joint conditional pdf of (Z;, Z;) at
(Zi1, Zjs) = (21, z,) conditional on (X;, Xj) for t#s and any i and ;.
Also, 0(z), f1(2), fi(-| X i), f 15, | X it, Xs) are uniformly bounded in the
domain of Z, and are all twice continuously differentiable at ze R? for
all t+#s, i and j.
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Assumption 2. Both X and Z have full column rank; {X.1,..., X,
{(XiyZyj:1=1,...,p,j =1,...,q}} are linearly independent. If X;,, = X,
for at most one / € {1, ..., p}, that is X;, does not depend on ¢, we assume

E(X;, ,)7&0 The unobserved FE y; are i.i.d. with zero mean and finite
variance a >0. The random errors v;, are assumed to be i.i.d. with a zero
mean, ﬁmte variance a and independent of Z;; and X, for all i and ¢. Y, is
generated by Eq. (1).

If X;, contains a time invariant regressor, say the /th component of X,
is X;,= W; Then the corresponding coefficient 0,(-) is estimable if
My) (W ®e,)#0 for a given z, where W = (Wy,..., Wn)T. Simple
calculations give My(z)(W ®e,,) = (n~! S WMy (2) x (e, @ en). The
proof of Lemma A.2 in ‘Proof of Theorem 1’ in the appendix can be used
to show that Mpy(z)(e, ® e,,)#0 for any given z with probability 1.
Therefore, 0,(-) is asymptotlcally identifiable if #7'>°7 X, =
n 1>, W -+ 0 while ,u—> 0. For example, if X}, contains a constant, say,
Xi1 = Wi=1, then 6,(-) is estimable because n='> "7 W; = 10.

Assumption 3. K(u) = [[%_,k(u,) is a product kernel, and the univariate
kernel function k(- ) is a uniformly bounded, symmetric (around zero) pdf
with a compact support [—1, 1]. In addition, define |H| = h; --- h, and

|H|| = /> 7. As n — oo, ||H|| — 0,n|H| — oo.

The assumptions listed above are regularity assumptions commonly
seen in nonparametric estimation literature. Assumption 1 apparently
excludes the case of either X;, or Z; being I(1); other than the moment
restrictions, we do not impose /(0) structure on X, across time, since
this paper considers the case that m is a small finite number. Also, instead
of imposing the smoothness assumption on f,(-|X;) and f,5 (-,- \X,,, Xis)
as in Assumption 1(d), we can assume that f,(z)E(X;X7|z) and
S5z, 22) E(X i X j€|zl,zz) are uniformly bounded in the domain of Z and
are all twice continuously differentiable at ze R for all t#s and 7 and .
Our version of the smoothness assumption simplifies our notation in
the proofs.

Assumption 2 indicates that X;, can contain a constant term of 1s. The
kernel function having a compact support in Assumption 3 is imposed for
the sake of brevity of proof and can be removed at the cost of lengthy
proofs. Specifically, the Gaussian kernel is allowed.

We use 0(2) to denote the first column of ﬁ(z) Then 6(2) estimates 0(z).
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Theorem 1. Under Assumptions 1-3, we obtain the following bias and
variance for 0(z), given a finite integer m>0:

¥(2)'AG)
2

bias(0(z)) = + O~ "*1H|1n(In n) + o(||H|*)

var(0(z)) = n ' [H| 7' oY (2) ' TEW ()" + o' |HIT)

where y(2) = [H|™"S20L E[(1 — @ik X u X 1, A(2) = |H| ‘Z, 1 E w,t)
FaXuXirn(Zin ) = OUIHIP).  and - 1) = |HI7' L (1 - w,t)
X0

The first term of b1as(0(z)) results from the local approximation of 0 (z) by
a linear function of z, which is of order O (||H]| %) as usual. The second term
of bias(0(z)) results from the unknown FE y;: (a) if we assumed Y i, u; = 0,
this term is zero exactly and (b) the result indicates that the bias term is
dominated by the first term and will vanish as n— co.

In the appendix, we show that

\H|™! ZE(A,ZXHX ) = ®(2) + ol HII*)

=1

IS XX D r(Za, )] = ka®2@n(2) + o 1HIP)
t=1

\HIT'Y ECGLXuX]) = (/ K2(u)du)(D(Z)+o(||H||2)

t=1

where k) = [k(u) wdu, ®(z)=33", [(Z)E(XUX lz) and Og(z)=
[tr(H((0*01(2)) /(02027 ) H), . . ., tr(H((8%0,(2))/(0z0zT)H)]".  Since wy €
[0,1) for all i and ¢, the results above imply the existence of W¥(z), A(z)
and I'(z). However, given a finite integer m>0, we cannot obtain explicitly
the asymptotic bias and variance due to the random denominator appearing
m .

Further, the following theorem gives the asymptotic normality results
for 0(z).

Theorem 2. Under Assumptions 1-3, and assuming in addition that
E|v;|**? <00 for some >0, and that /n[H]||H||> = O(1) as — 0o, we
have

s/n|H|{@(z) —0(z)— ¥ ()" A(Z)} E N(O’ 29@)
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where Xy = a%lim,Hoo‘P(z)_ll“ (z2)¥(2)"'. Moreover, a consistent estima-
tor for Xy, is given as follows:

o) = 8,0z, H) 'z, Bz, H) ST 5
Oz, H) =n""\H|"'R(z, H)" S ()R(z, H)
J H) = n ' [H|" 'Rz, H) Su()V V' Su(z)R(z, H)

where V is the vector of estimated residuals and S, includes the first p rows
of the identity matrix of dimension p(¢ + 1). Finally, a consistent estimator
for the leading bias can be easily obtained based on a nonparametric local
quadratic regression result.

4. TESTING RANDOM EFFECTS VERSUS
FIXED EFFECTS

In this section we discuss how to test for the presence of RE versus FE
in a semiparametric varying coefficient panel data model. The model
remains as (1). The RE specification assumes that u; is uncorrelated with the
regressors X;, and Z;,, while for the FE case, y; is allowed to be correlated
with X;; and/or Z;; in an unknown way.

We are interested in testing the null hypothesis (Hj) that yu; is a random
effect versus the alternative hypothesis (H;) that y; is a fixed effect. The null
and alternative hypotheses can be written as

Ho : P{EW|Zi1,....Zim, Xi1s...,Xin) =0} =1 foralli (14)

Hl : Pr{E(:u'ilzila---sZimaXil:”-inm)¢O}>O for some i (15)

while we keep the same set-up given in model (1) under both H, and H,.
Our test statistic is based on the squared difference between the FE
and RE estimators, which is asymptotically zero under H, and positive
under H;. To simplify the proofs and save computing time, we use local
constant estimator instead of local linear estimator for constructing our test.
Then following the argument in Section 2 and ‘Technical Sketch: Random
Effects Estimator’ in the appendix, we have

Ore(2) = (X Su(2)X) ' XTSu(2)Y
Ore(z) = (X W)X} ' XTWh(2)Y
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where X is an (nmm)xp with X = (X],.. XT) and for each i,X; =
X, ... Xin)" isan m x p matrix with X;, = [X,, T ,,,,] Motlvated by
Li, Huang, Li, and Fu (2002), we remove the random denommator of HFE(z)
by multiplying X " Sy(2)X, and our test statistic will be based on

T, = / {0rE(2) — Ore()) {X T Su(@X) (X Su(2) X HOpe(2) — Ore(2)}dz
_ / U) Su()XX TSy (=) U(2)dz

since (X7 Sp(2)X}0re(2) — Ore(@) = XSy — Xbre(2)) = X Su(2)
U(z). To simplify the statistic, we make several changes in T,. First, we
simplify the integration calculation by replacing U(z) by U where U =
U(Z) =Y — B{X, HRE(Z)} and B{X, HRE(Z)} stacks up X QRE(Z,,) in the
increasing order of i first, then of 7. Second, to overcome the complexity
caused by the random denominator in M y(z), we replace My(z) by Mp =
Lixm —m~ 1, ® (e,,,e;) such that the FE can be removed due to the fact that
MpDy = 0. With the above modification and also removing the i = j terms
in T, (since T, contains two summations » ;> "), our further modified test
statistic is given by

7 deszU 0,, / Ky(Zi,2)X] X;Ku(Z;,2)d=Q,,U;
i=1 j#i
where Q,, = I, — m leye]. If |[H| -0 as n— oo, we obtain
|H|™! / Ku(Zi,2)X X;Ky(Z;,2)d=
Ku(Zin, Zi)X[ X0 Ka(Zia, Zi) X X jm
= : : (16)

KH(Zlmstl)X Xj,l KH(Zlms ij)X,m

where Ky(Zy,Zy) = [ K{H N(Zi — Zj;) + w}K(w)dw. We then replace
K u(Ziy, Zj) by Ku(Zy, Zjy); this replacement will not affect the essence of
the test statistic since the local weight is untouched. Now, our proposed test
statistic is given by

A T A
Tn I’l2|H| Z Z Ui QmAi,ij Ui (17)

i=1 j#i
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where A4;; equals the right-hand side of Eq. (16) after replacing K u(Zit, Zj5)
by Ku(Zi;, Zjs). Finally, to remove the asymptotic bias term of the proposed
test statistic, we calculate the leave-one-unit-out RE estimator of 6(Z,); that
is for a given pair of (i, j) in the double summation of Eq. (17) with i#/,
Ore(Z;;) is calculated without using the observations on the jth unit,
{(Xj, Zjy, Y))/L, and ()RE(Z,,) is calculated without using the observations
on the ith unit.

We present the asymptotic properties of this test below and delay the
proofs to the appendix in ‘Proof of Theorem 3.

Theorem 3. Under Assumptions 1-3, and f«z) has a compact support

S for all ¢, and n/[H] ||H||* — 0 as n— oo, then we have under H,, that

A

J,=n |H| —>N(0 1) (18)
where 67 = T 2o 7¢i(I7TQmAiJQ,,1 V;)* is a consistent estimator of
m  t—1
o = 4( ) / K*(w)duy Z E[f (Z1)(X | X2)]
1=2 s=1

where V;, = Y;, — XT0pe(Zi1) — fi; and for each pair of (i, j), i #, Ope(Zy) is
a leave-two-unit-out FE estimator without using the observations from
the ith and jth units and f, =Y, —m 'Y, XTHFE(Z,,) Under H,,
Pr[J,>B,]—>1 as n— oo, where B, is any nonstochastlc sequence with
B, = O(HW)

Assuming that fy(z) has a compact support S for all 7 is to simplify
the proof of sup..¢||0re(z) — 0(2)|| = 0p(1) as n — oo; otherwise, some
trimming procedure has to be placed to show the uniform convergence
result and the consistency of 63 as an estimator of ¢j. Theorem 3 states
that the test statistic J, = n/|H| T »/Go 18 a consistent test for testing H
against H;. It is a one-sided test. If J, is greater than the critical values
from the standard normal distribution, we reject the null hypothesis at the
corresponding significance levels.

5. MONTE CARLO SIMULATIONS

In this section we report some Monte Carlo simulation results to examine
the finite sample performance of the proposed estimator. The following data
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generating process is used:
Yi=0(Zi) + 0(Zi) + Xis + pt; + vis (19)

where 91(2) =14z+ Zz, 02(2) = sin(zn), Z,’t = wj; + Wi —1,Wj is 1.1.d.
uniformly distributed in [0,7/2], X;; = 0.5X;,—1 + &1, &, 1s 1.i.d. N(O, 1). In
addition, u; = coZ; + p; for i =2,...,n with ¢o =0, 0.5, and 1.0, u; is i.i.d.
N0, 1). When ¢o#0, u; and Z,, are correlated; we use ¢, to control the
correlation between y; and Z; = m= 1" Zi,. Moreover, v;, is i.i.d. N(0, 1),
and w;;, &;, u; and v;, are independent of each other.

We report estimation results for both the proposed FE and RE
estimators; see ‘Technical Sketch: Random Effects Estimator’ in the
appendix for the asymptotic results of the RE estimator. To learn how
the two estimators perform when we have FE model and when we have
RE model, we use the integrated squared error as a standard measure of
estimation accuracy:

ISE(0) = / (01(2) — OS2 de (20)

which can be approximated by the average mean squared error (AMSE)

n m

AMSE(0) = (1)~ > S 100(Zi) — 0(Zi)P

i=1 t=1

for /=1, 2. In Table 1 we present the average value of AMSE(@/) from 1,000
Monte Carlo experiments. We choose m = 3 and n = 50, 100 and 200.

Table 1. Average Mean Squared Errors (AMSE) of the Fixed- and
Random-Effects Estimators When the Data Generation Process is a
Random Effects Model and When it is a Fixed Effects Model.

Data Process Random Effects Estimator Fixed Effects Estimator
n=>50 n =100 n =200 n=1>50 n =100 n =200
Estimating 6; (-):
=0 0.0951 0.0533 0.0277
¢o=20.5 0.6552 0.5830 0.5544 0.1381 0.1163 0.1021
co=1.0 2.2010 2.1239 2.2310
Estimating 6, (-):
co=0 0.1562 0.0753 0.0409
co=20.5 0.8629 0.7511 0.7200 0.1984 0.1379 0.0967

co=1.0 2.8707 2.4302 2.5538
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Since the bias and variance of the proposed FE estimator do not depend
on the values of the FE, our estimates are the same for different values of c¢;
however, it is not true under the RE model. Therefore, the results derived
from the FE estimator are only reported once in Table 1 since it is invariant
to different values of ¢,.

It is well known that the performance of non/semiparametric models
depends on the choice of bandwidth. Therefore, we propose a leave-one-
unit-out cross-validation method to automatically select the optimal
bandwidth for estimating both the FE and RE models. Specifically, when
estimating 0(-) at a point Z;, we remove {(X, Yi, Zi)}/- | from the data
and only use the rest of (n— 1)m observations to calculate 0( 7 (Zi). In
computing the RE estimate, the leave-one-unit-out cross-validation method
is just a trivial extension of the conventional leave-one-out cross-validation
method. The conventional leave-one-out method fails to provide satisfying
results due to the existence of unknown FE. Therefore, when calculating
the FE estimator, we use the following modified leave-one-unit-out cross-
validation method:

Hop = arg minlY — BUX, 0(Z)]" MEMp[Y — BIX. 02 21)

where Mp = Lm—m ', ® (emeT) satlsﬁes MpDy = 0; this is used to
remove the unknown FE. In addition, B{X, 0( 1) (Z)} stacks up XTQ( 2 (Zir)
in the increasing order of i first, then of . Simple calculations give

[Y — B(X, 0 (2] MM p[Y — B{X,0_1(Z)}]
= [B(X,0(2)} — B{X, 0 1(Z2)]" MLM p[B(X,0(Z)} — BIX,0_1(Z))]
+ 2[B{X,0(Z)} — B{X, 012" MM pV + VI MpMpV (22)

where the last term does not depend on the bandwidth. If v, is independent
of the { X, Z;;} for all i, j, s and ¢, or (X;, Z;) is strictly exogenous variable,
then the second term has zero expectation because the linear transforma-
tion matrix M p removes a cross-time not cross-sectional average from each
variable, for example ¥; = Y; —m~'>S" Y, for all i and ¢. Therefore, the
first term is the dominant term in large samples and Eq. (21) is used to find
an optimal smoothing matrix minimizing a weighted mean squared error
of {68(Z;;)}. Of course, we could use other weight matrices in Eq. (21) instead
of Mp as long as the weight matrices can remove the FE and do not trigger a
non-zero expectation of the second term in Eq. (22).

Table 1 shows that the RE estimator performs better than the FE
estimator when the true model is an RE model. However, the FE estimator
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performs much better than the RE estimator when the true model is an FE
model. This is expected since the RE estimator is inconsistent when the true
model is the FE model. Therefore, our simulation results indicate that a test
for RE against FE will be always in demand when we analyze panel data
models. In Tables 2-4 we report simulation results of the proposed
nonparametric test of RE against FE.

For the selection of the bandwidth A, for univariate case, Theorem 3
indicates that h—0, nh— oo, and nh’*>—0 as n— co; if we take h~n?,
Theorem 3 requires o € ((2/9),1). To fulfil both conditions nh— co and
nh®? -0 as n— oo, we use o = 2/7. Therefore, we use h = c(nm)_zﬂ&z to
calculate the RE estimator with ¢ taking a value from .8, 1.0 and 1.2. Since
the computation is very time consuming, we only report results for n = 50

Table 2. Percentage Rejection Rate When ¢y = 0.

C n =150 n =100

1% 5% 10% 1% 5% 10%
0.8 0.007 0.015 0.24 0.21 0.35 0.46
1.0 0.011 0.023 0.041 0.025 0.040 0.062
1.2 0.019 0.043 0.075 0.025 0.054 0.097

Table 3. Percentage Rejection Rate When ¢y = 0.5.

C n=>50 n =100

1% 5% 10% 1% 5% 10%
0.8 0.626 0.719 0.764 0913 0.929 0.933
1.0 0.682 0.780 0.819 0.935 0.943 0.951
1.2 0.719 0.811 0.854 0.943 0.962 0.969

Table 4. Percentage Rejection Rate When ¢y = 1.0.

C n=>50 n =100

1% 5% 10% 1% 5% 10%
0.8 0.873 0.883 0.888 0.943 0.944 0.946
1.0 0.908 0.913 0.921 0.962 0.966 0.967

1.2 0.931 0.938 0.944 0.980 0.981 0.982
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and 100. With m = 3, the effective sample size is 150 and 300, which is a
small but moderate sample size. Although the bandwidth chosen this way
may not be optimal, the results in Tables 2—4 show that the proposed test
statistic is not very sensitive to the choice of 4 when ¢ changes, and that a
moderate sized distortion and decent power are consistent with the findings
in the nonparametric tests literature. We conjecture that some bootstrap
procedures can be used to reduce the size distortion in finite samples.
We will leave this as a future research topic.

6. CONCLUSION

In this paper we proposed a local linear least-squared method to estimate an
FE varying coefficient panel data model when the number of observations
across time is finite; a data-driven method was introduced to automatically
find the optimal bandwidth for the proposed FE estimator. In addition, we
introduced a new test statistic to test for an RE model against an FE model.
Monte Carlo simulations indicate that the proposed estimator and test
statistic have good finite sample performance.
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APPENDIX
Proof of Theorem 1

To make our mathematical formula short, we introduce some simplified

notations first: for each i and ¢, 2; = Ky(Z;,z) and cy(Z;, = it
and for any positive integers i, j, ¢, s

1 Gjs1 o Gy

Gin GinGigi -+ GinGy

[']il,js = Git(za H)G£(Z, H) =

Gitq Githjsl te Giqujsq

1 (H\(Z;s —2)"
= (A.1)
H Y Zy—2 H Y Zi—2H N Zj—2)"
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where the (/+ D)th element of Gj(z, H) is Gy = (Zjy — z1)/hi, 1 = 1,.
Simple calculations show that

q
[']fl11,1‘212[']./151,./232 = (1 + Z Gilsl«fGi2’2/> [']im,izsz
=1

]_
m m
Ri(z, H) K y(Zi, 2)eme K u(Z, )Rz H) = 0 Jidil Lo s ® (Xi X))
t=1 s=1

In addition, we obtain for a finite positive integer j

m

|H|~ ‘ZE Tl Xid =D ELS,01X0) + Op(11HIP)] (A2)
t=1

™! ZE
=1

where

Z Gn/ [ ]iz,ir|Xir] = Z E(Sr,j,ZlXit) + 0p(| |H| |2) (A3)

Jj=1 =1

aft(leit)
ozT

ft(Z|Xit)RK,j

£z X ) [ K (u)du
of (21X 1)
oz

HRg ;
Sij1 = (A.4)

Ry H

af (z1X1,)
ozT

fz(Z|Xir)rK,2j

F@X ) [ K7 wyu” udu

of (2| X )
0z

HT ko
Sija= (A.5)

Tk H

where Rx ;= [K' (u) uu"du and Tg o = [ K¥ )" u)(uu”)du.
Moreover, for any finite positive integer j; and j,, we have

-2 2 /
|H| ZZE ll])lg ItzleitaXis]
=1 s#t
m

m
=D D E(T) X, Xig) + Op(IIHIP) (A.6)

t=1 s#t

m m

|H| 72> S E

t=1s#t

q
iy (Z Gy Gm;/) [icis| X it Xix‘|
/= (A7)

m m

=3 Y E(Ty) X, Xi) + O, HIP)
t=1s#t
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where we define b1, 5, = [ K/ (w)id" du [ K (u)ut du

" S 152 21X i, Xis)bj, .00 VI f 5221 X it X i) Hbj 0.1
T =

JiJa2s1

b2 HV, fz,s(za z| X, st)bjl,iz,l,o Hvis ft,s(Z’ 2| X s XfS)Hbjl J2, 1,1

and

(1,5) Z}/(vaz,y f[,s(za Z|Xi[: Xl\)H) V;Tft,s(za ZlXi[: Xl\)H
T X

b2 = bj jr.1.1
’ Hvxfz,s(Z,Zp(ita XiS) f[,s(ZaZ|Xils Xis)[qxq

Wlth vsft,s(z, Z|Xit, Xis) = afl’S(Z, Z|Xj[, X,-S)/GZX and Visft’s(z, Z|Xil,Xi.\‘) —
Pf (2,21 X it X i) /(02,027 ). )
The conditional bias and variance of vec(f(z)) are given as follows:

Bias[vec(B){ X, Zi}] = [R(z, H)" Su(z)R(z, H)] ' R(z, H)" Su(2)

x [H (z, H)/2 + Douo}

Var[vec(B(){ X i1, Zin})] = 2[Rz, H)T Su(2)R(z, H)]'[R(z, H)" S4(2)R(z, H)]
x [R(z, H)' Sy (z)R(z, H)] ™!

Lemma A.1. If Assumption A3 holds, we have

-1
= 0,(n'|H|In(In n)) (A.8)

> en(Ziz2)
i=1

Proof. Simple calculations give E(3 7 Ku(Zy,z)) = [H|f(z) +
O(H||IH|?) and  E[Ky(Zy,2)] = |HI|f(2)+ O(H|||HI|]*), where
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f(z) =,/ (2). Next, we obtain for any small ¢>0

Pr{ max Jir>e " f(2)| H| In(In n)}
<i<n I

=1- Pr{max Jir < & 'f(2)|H|In(In n)}

1<i<n p

=1- {1 — Pr{ iin>s’lf(z)|H| In(In n)}}

=1
<1- {1 _ SE(Z;”:]}m) }n
S@IH|In (In n)
<1—{1—e(1+ M||H||*)/In(In n)}" = 0asn — oo

where the first inequality uses the generalized Chebyshev inequality, and
the limit is derived using the I’'Hoépital’s rule. This will complete the proof
of this lemma.

Lemma A.2. Under Assumptions 1-3, we have

m
n ' |H|"' R, H) Su(2)R(z, H) ~ |HI™ Y E(@idal 1y ® (XiK])
=1
where @;; = Aii/Y 1o 2ie € (0,1) for all i and 1.
Proof. First, simple calculation gives

A, = R(z, )T Sy(2)R(z, H) = R(z, H)T W 41(z)M 11(z)R(z, H)

= > Rz H)'Ku(Zi,2)Ri(z, H)
i=1

n n

— > > " qiRiz, ) K(Zi, 2emen K 1(Z;, ) Ry(z, H)

j=1 i=1

n m n m m
= Z Z )vit[']iz,it ® (Xit/\/g - Z 4qii Z Z iit/lis[']i[,is &® (XitX,‘_TY
i=1 t=1 i=1 =1 s=1

n n m m

- Z Z qu Z Z jvit/ﬂ“j‘\'[']irijs & (XIIX,Y;) = Anl - An2 - An3

J=1i#j =1 s=1

where M y(z) = Lixm — [Q ® (emel)]W 1(2), and the typical elements of Q are
qii = CH(Zi, Z) — CH(Zi, 2)2/2?21(2[.](2,‘, Z) and ql/—lz —C[-[(Z,‘,Z)CH(Z_/, Z)/
St en(Zi,z) for i#j. Here, cy(Zi,z) = (3 Ay)  forall i.
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Applying (A.2), (A.3), (A.6) and (A.7) to A,,, we have n~'|H|™'4,; ~

E[S 1 @ (XX D]+ Op(IIHIP) + O, (=P H|=/P) if ||H|| — 0 and
nlH| — oo as n— o0.

Apparently, )" ,@; = 1 for all i. In addition, since the kernel function
K(-) is zero outside the unit circle by Assumption 3, the summations in A4,
are taken over units such that ||H~!(Z; — z)|| < 1. By Lemma A.1 and by
the LLN given Assumption 1 (a), we obtain

1 n m m

i @il i ® (X XT
I/l|H|Z7 CH(Z”Z)ZZwawlé[]n,ts®( 1A s

i=1 =1 s=1

= 0,(n""In(In n))

and

n m m

I)l\‘
n|H|ZZZ£’:§1} ztm®(thX,~€

i=1 t=1 s#t

n m m

< st 9000 D Vil @i | = 0,87

i=1 t=1 s#t

where we use > 1w Ay > Aig + Ais = 24/ Aicdis fOr any 1 +#s.
Hence, we have n™'|H|™' 4,p = n~ ' [H|7' S ) @il Tia ® (XX D)+
,,(|H|) Denote  dy = widul]i; ® (XuX]) and A, = n—‘|H| !
S S (diy — Edy). 1t is easy to show that nl|H|T'A, =
0,(n~'?|H|7'7?). Since E(||dall) < E[Zill[1is ® (XX E Il < M|H| holds
for all i and #, n”'|H|"' A = |HI""YX 0 Elwidil 1y ® (XaX DI+ 0p(1)
exists, but we cannot calculate the exact expectation due to the random
denominator.

Consider 4,3. We have n™!|[H|™'||4,5]| = O,(|H|* In(In n)) by Lemma A.1,
Assumption 1, and the fact that v~ |[H|7'SL S I(|H N (Zy —2)l < 1) =
2/ (2) + Op(I1HII) + Op(n~ 2| H| ')

Hence, we obtain

n m
n H T Ay~ H A =07 HITDY DY il i ® (XX

i=1 t=1

=n"'|H|"! Z Z(l — @i il T ® (XX

i=1 t=1

= |H|™' ZE[(l @il -Jiie ® XX ] + 0p(1)
=1

This will complete the proof of this Lemma.
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Lemma A.3. Under Assumptions 1-3, we have

n | HIT'RG, H) Su() [ [ 2. H)
~ HI™Y D EI = @) G ® Xi)X fru(Zis 2)]

=1
Proof. Simple calculations give

By = Rz, H) Sy(x) [[(z. H)

= Z Z 2i(Giy ® Xit)X;rH(ZNit, z)
=1
m

- Z Z CIU Z Z /LjY/“l[(Gl[ ® Xlr) ’H(Zij: Z)

n m

= Z Z 2i(Giy ® Xit)X;”H(ZNita z)

i=1 t=1

n m
- Z qii Z )L?;(Git ® Xit)XgVH(Zir’ z)
i=1 =1

n
- Z qii Z Z /LIS/LII(GU 02y X,,)X VH(Zzsa Z)
i=1 t=1 s#t
m

- Z Z qij Z Z /L]Y/HI(GU & Xll)X/_g VH(era z)

j=1 i#j t=1 s=1
= Bnl - nZ - BnS - Bn4y

where IT (z, N) is defined in Section 3. Using the same method in the proof
of Lemma A2, we show nHH|T'B, ~ n 7 HITSDL ST (1 — @)
2il Gy @ Xi) X Friy(Zy, 2).

For/=1,...,k we have

\H|'E [A,IVHJ(Z,I,Z)IXH]—Kzf< )®H(Z)+Op(||H||4)
\H| ™ Eir i (Zis 2)H ™ (Zie = )Xl = O,(11HII)

and E(n™' [H|™'B) ~ (ko[ @)@ (2)]", O(|H|I)}, where

8201(2) 0z \1"
Ou(z) = {tr(H 7 H),...,tr(H — Hﬂ
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Similarly, we can show that Var (n~'|H|™'B,) = O " |H|"'||H||*) if
E(1 Xy XEX:XT) <M <oo for all 7 and s.

In addition, it is easy to show that n~! |H|_IZ:~1:IZT:IW,',;@, Gy ®
Xit)Xng(ZNit, 7) = n! |H|_IZ?:1Z?1:1E[W”/1”(G,', ® Xit)X,:”H(ZNit, )]+ 0p
(=21 H|V2 | HIP),  where  |H|T'SOL Elwi2idGi ® X)X ru(Zi, 2)) <
[HI S EDal (G ® X)X T r(Zi 211 < M| HI|? < oofor all i and 1.

This will complete the proof of this lemma.

Lemma A.4. Under Assumptions 1-3, we have

n ' [H|™' R(z, H) Su(2)Doptg = Op(n™'*| H In(In n)).

Proof. Simple calculations give My (z)Dopy = iM y(z)(e, ® ey,), where
L=n"'>"" . It follows that

C, = R(27 H)TSH(Z)DO,UO = ,t_lR(Z, H)TSH(Z)(en ® em)

S R K i) (z ) S0, K
=1 =l j=1 \'=1 =1
m

n m n m n
=pu Z Z 4i(Giy @ Xip) — It Z (Z ijr) Z g Z 4i(Gir @ X i)
=1 =1 =1 \'=1 =1 =1

—1
nom

m -1
=np Z (; ;Lir> ; ; wi(Gi @ Xir)

n
i=1

and we obtain n~!'|H|7'C, = iO,(|H|In(In n)) by (a) Lemma A.l, (b)
for all I=1,...,¢,k(Ziy; —z))/h) =0 if |Z;;; — z)|>h by Assumption 3,
(¢) @iy <1 and (d) E||X;||'"° <M <oo for some >0 by Assumption 1.
Since p; ~ 1.1.d.(0,07), we have ji = O,(n~"/?). It follows that n™'|H|™'C, =
0,(n~'2|H|In(In n)).

Lemma A.5. Under Assumptions 1-3, we have
n " H|7'R(z, H)" S%,(2)R(z, H)

~HITYY T E(1 - w22 1@ X D)
=1
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Proof. Simple calculations give

D, = R(z, H)' S3,(2)R(z, H) = R(z, H)" Wy (2)M yr(2) W 11(2)" R(z, H)

= Z Ri(z, H)' K3,(Z;,2)Ri(z, H)

-2 Z Z 4 Ri(z, ) K3(Z;, Demel, K i(Zi,2)Ri(z, H)
j=1 i=1

S S Kz
j=1i=1 i'=
X €m€zy;KH(Zi, Z)€m€

= Dnl - 2D112 + Dn3

Ky(Z;,z2)Ry(z, H)

m

Using the same method in the proof of Lemma A.2, we show
A~ SIS (= @) 25 iy, ® (XuXD). Tt is easy to show that n™!
|H| anl—n_l|H| Dy 'Z’liz[],,,,@(m ) =3 E[Si21®(Xa XD+

OMIHIP) + O~ 2 [HI~T),

Also, we obtain n~' |H|7'S" S (1 — @) 22 [ 1is ® (X XT) = K(z)+
0~ H '), where x() = [HI"'IL E[(1 T 2 ® (2D <
\HI7'S" E[211[® (X XDl < M <oofor all i and 1.

The four lemmas above are enough to give the result of Theorem 1.
Moreover, applying Liaponuov’s CLT will give the result of Theorem 2.
Since the proof is a rather standard procedure, we drop the details for
compactness of the paper.

Technical Sketch: Random Effects Estimator

The RE estimator @RE(-) is the solution to the following optimization
problem:

FOLY = Rz, Hyvee(B)" W (Y — R(z, H)vec(f(2))]

that is, we have
veo(Bre(2))
= [R(z, )" W y(2)R(z, H)] "' R(z, H)T Wy(2)Y
= vec(B(2)) + [R(z, H) W (z)R(z, H)] ' (4,/2 + B, + Cy)
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where A, = R(z, H) Wu(2)[1(z, H), B, = R(z, H)" W (2)Dopty, and C, =
R(z, )T W 4(z)V. Its asymptotic properties are as follows.

Lemma A.6. Under Assumptions 1-3, and E(X;X[|z) and E(u,X;|z)
have continuous second-order derivative at z € R?. Also, /n[H||H|* =
O(1) as n— oo, and E(|vy|**?)<oo and E(|u,|**°)<M < oo for all i and ¢
and for some 6>0, we have under H

rlH] <9RE(Z) —0(2) =12 O g (22)) 4 N(O, 3 ) (A.9)
0(

Z).RE

where Ky = [k(v)v’dv, > 0RE = (aﬁ +62) @ ()7 [K*(u)du and @(z) =
S f(@DEX 1, X |2). Under H;, we have

m

Bias(Ore(2) = ©(2)"' > f1(2)E(1, X 1/12) + o(1)
=1

Var(Ore(2)) = n~ ' |H| 6 @ ()™ / K*(u)du (A.10)

where @ 4(z) is given in the proof of Lemma A.3.

Proof of Lemma A.6. First, we have the following decomposition:

V[ Dre() = 06)] = V/nlH1re(2) — EOre())]

+ V[ H[E(Ore(2)) — 00)]
where we can show that the first term converges to a normal distribution
with mean zero by Liaponuov’s CLT (the details are dropped since it is a
rather standard proof), and the second term contributes to the asymptotic
bias. Since it will cause no notational confusion, we drop the subscription

‘RE’. Below, we use ABiasi{é(z)} and Vari{@(z)} to denote the respective
bias and variance of Org(z) under Hy if i = 0 and under H; if i = 1.

First, under Hy, the bias and variance of é(z) are as follows: Biaso{@(z)l
{(Xies Zi)}} = Sy[R(z H)' W (2)R(z, )] R(z, ) Wy (2) [] (2, H)/2 and
Varg (0@ (Xi, Zi)))
= S,[R(z, H)' W (2)R(z, H)] ' [R(z, H) W g(z)Var(UUT)W () R(z, H)]
x [R(z, H)" W y(2)R(z, H)] 'S

It is simple to show that Var(UU”) = oo ln @ (eme)) + 3 Lm.

m
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Next, under H;, we notice that Biasl{@(z)|{(X[1,Z,-l)}} is the sum of
Biaso{0(2)|{(X i, Zi1)}} plus an additional term S,[R(z, H)" W y(z)R(z, H)]™"
R(z, H)" W 1(2)Dopy, and that

Var {0){(X i, Zi)})
= 02S,[R(z, H) W y(2)R(z, H)] ' [R(z, H) W y(2)* R(z, H))]
x [R(z, H)" W y(2)R(z, H)]'S]

Noting that R(z, H)' Wy(z2)R(z, H) is A, in Lemma A.2 and that
R(z, H)" W () [(z, H) is B, in Lemma A.3, we have

&)

Biaso{0(2)} = K205+ o(||H|I*) (A.11)

In addition, under Assumptions 1-3, and E(|p;**%) <M <00 and
E(||X])**°)< M < oo for all i and ¢ and for some >0, we show that

n~'\H|7'S,R(z, H)" W 1(z) Dopg

n'|H|7'S, Zu, ZMG,, ® Xy)

= Zf;(z)E(me + O,(II1HIP) + O, ((lHD'?)  (A12)

t=1

which is a non-zero constant plus a term of o0,(1) under H;. Combining
Egs. (A.11) and (A.12), we obtain Eq. (A.10). Hence, under H, the bias
of the RE estimator will not vanish as n— oo, and this leads to the
inconsistency of the RE estimator under H,.

As for the asymptotic variance, we can easily show that under H,

Varg{0(2)} = n~'|H| " (62 + 6)®(z) " / K*(u)du (A.13)

and under Hl,Varl{H(z)} —n*1|H| ! 2(I>(z) sz(u) du, where we have
recogmzed that R(z H)"Wy(2)*R(z, H) is D, in Lemma A.5, and (05 +0})
R(z, H)T W (2)*R(z, H) is the leading term of R(z, H)T Wy(z) Var(UUT)
Wu(2)R(z, H).
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Proof of Theorem 3

Define Al‘ = (A,’], ey A,’m)T with A,’, = XZ;(@(Z”) — éRE(Z”)). Since
MpDy = 0, we can decompose the proposed statistic into three terms

fn: n2|H|ZZU Qm l/Qm

i=1 j#i
= 7[2|H|ZZA Qm l/QmA + 2|H|ZZA Qm I/Qm
i=1 j#i i=1 j#i
T
+I12|H|ZZV Qm lem
i=1 j#i
= Tnl + 2T)12 + Tn3
where V; = (vi1,...,vin)! is the m x 1 error vector. Since éRE(Zit) does not

depend on the jth unit observation and @RE(Z ir) does not depend on the ith
unit observation for a pair of (i, j), it is easy to see that E(T,,) = 0. The
proofs fall into the standard procedures seen in the literature of
nonparametric tests. We therefore give a very brief proof below.

First, applying Hall’s (1984) CLT, we can show that under both H,
and H,

[H| T,z > N0, 03) (A.14)

by defining H,(x;, 1) = V! 0,40, V; with z; = (X;,Z;, V;), which is a
symmetric, centred and degenerate variable. We are able to show that
E[Go (115 22)] + nflE[HAl(Xla Xz)] O(IH|) + O(n™'|H)
(EMH (11 7)) O(HP)

— 0

if [H -0 and n/H|—»o as n—o, where G,(x1,%) = Ei{H.(x1, 1)
H, (13, x;)]- In addition

var(ny/|H|T,3) = 21H| " E(H(11 1))
m m

~2(1—m ™Yol Y Y IHIT EIKG(Z1s Za)(X (X 20)']

t=1 s=1

=ag +o(1)
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Second, we can show that ny/[H[T.n = O,(||H||*) 4+ O,(n~'/?|H|7'/?)
under Hy and n/[H|T,» = O,(1) under H,. Moreover, we have, under H,,
n/TH|T 1 = O,(n/THI||H||*); under Hy,n/TH|T i = O,(n/TH]).

Finally, to estimate 62 consistently under both H, and H,, we replace the

unknown V; and V; in T,3 by the estimated residual vectors from the FE
estimator. Simple calculations show that the typical element of v i0,, 18 Vi =
Vi — X1 0pe(Zi) — —( = m L X Ore(Zi) = V) = A — (i = W),
where Ay = (0(le) — Ope(Zi) —m™' S0 X T(H(Zn) - HFE(ZU)) =
YA XTOZy) — OFE(Z,;)) with ¢, =1—1/m and ¢, = —1/m for [#¢.
The leave-two-unit-out FE estimator does not use the observations from the
ith and jth units for a pair (i, j), dnd thls leads to E(V Qm i ,Q,,,V) ~
i1 S E Ky (2, Zi)(X ) PR A+ KR+ AL+ R R~
S EK3(Zis Zi )X EX)? 9272 where 7 = vy — 7 and 7 = m~ 37 vy,

Vit ]s
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ABSTRACT

We propose a local linear functional coefficient estimator that admits a
mix of discrete and continuous data for stationary time series. Under
weak conditions our estimator is asymptotically normally distributed.
A small set of simulation studies is carried out to illustrate the finite
sample performance of our estimator. As an application, we estimate a
wage determination function that explicitly allows the return to education
to depend on other variables. We find evidence of the complex interacting
patterns among the regressors in the wage equation, such as increasing
returns to education when experience is very low, high return to education
for workers with several years of experience, and diminishing returns
to education when experience is high. Compared with the commonly
used parametric and semiparametric methods, our estimator performs
better in both goodness-of-fit and in yielding economically interesting
interpretation.
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1. INTRODUCTION

In this paper, we extend the work of Racine and Li (2004) to estimating
functional coefficient models with both continuous and categorical data:

d
Y=> a(U)X;+¢ (1)
j=1

where ¢ is the disturbance term, X; a scalar random variable, U a (p+¢) x 1
random vector, and af-), j=1,...,d are unknown smooth functions.
As Cai, Fan, and Yao (2000) remark, the idea for this kind of model is not
new, but the potential of this modeling techniques had not been fully
explored until the seminal work of Cleveland, Grosse, and Shyu (1992),
Chen and Tsay (1993), and Hastie and Tibshirani (1993), in which
nonparametric techniques were proposed to estimate the unknown func-
tions a; (-). An important feature of these early works is to assume that
the random variable U is continuous, which limits the model’s potential
applications.

Drawing upon the work of Aitchison and Aitken (1976) and Racine and
Li (2004) propose a novel approach to estimate nonparametric regression
mean functions with both categorical and continuous data in the i.i.d. setup.
They apply their new estimation method to some publicly available data and
demonstrate the superb performance of their estimators in comparison with
some traditional ones.

In this paper, we consider extending the work of Racine and Li (2004) to
the estimation of the functional coefficient model (1) when U contains both
continuous and categorical variables. This is important since categorical
variables may be present in the functional coefficients. For example, in the
study of the output functions for individual firms, firms that belong to
different industries may exhibit different output elasticities with respect
to labor and capital. So we should allow the categorical variable “industry”
to enter U. We will demonstrate that this modeling strategy outperforms the
traditional dummy-variable approach widely used in the literature. For the
same reason, Li and Racine (2008b) consider a local constant estimation of
model (1) by assuming the data are identically and independently distributed
(i.i.d.).

Another distinguishing feature of our approach is that we allow for weak
data dependence. One of the key applications of nonparametric function
estimation is the construction of prediction intervals for stationary time
series. The i.i.d. setup of Racine and Li (2004) and Li and Racine (2008b)
cannot meet this purpose.
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To demonstrate the usefulness of our proposed estimator in empirical
applications, we estimate a wage determination equation based on recent CPS
data. While in the literature of labor economics, the return to education has
already been extensively investigated from various aspects, in this paper, we
explicitly allow the return to education to be dependent on other variables, both
continuous and discrete, including experience, gender, age, industry, and so
forth. Our findings are clearly against the parametric functional form
assumption of the most widely used linear separable Mincerian equation, and
the return to education does vary substantially with the other regressors.
Therefore, our model can help to uncover economically interesting interacting
effects among the regressors, and so should have high potential for applications.

The paper is structured as follows. In Section 2, we introduce our func-
tional coefficient estimators and their asymptotic properties. We conduct a
small set of Monte Carlo studies to check the relative performance of the
proposed estimator in Section 3. Section 4 provides empirical data analysis.
Final remarks are contained in Section 5. All technical details are relegated
to the appendix.

2. FUNCTIONAL COEFFICIENT ESTIMATION
WITH MIXED DATA

2.1. Local Linear Estimator

In this paper, we study estimation of model (1) when U is comprised of a
mix of discrete and continuous variables. Let {(Y;, X;, U;),i=1, 2, ...} be
jointly strictly stationary processes, where (Y; X; U;) has the same
distribution as (Y, X, U). Let U; = (UY, UYY, where U$ and UY denote a
px1 vector of continuous regressors and a ¢ x 1 vector of discrete
regressors, respectively, p>1, and ¢>1. Like Racine and Li (2004), we
will use U4 to denote the 7th component of U¢, and assume that U¢ can take
¢,>2 different values, that is, U?, e{0,1,...,¢,—1}fort=1,...,¢q. Denote
u= @, ud) e R x D. We use f,(u) = f(u, u’) to denote the joint density
function of (U7, U?) and D=[].,{0,1,..., ¢, — 1} to denote the range
assumed by U?. With a little abuse of notation, we also use {(Y;, X;, U)),
i=1,...,n} to denote the data.

To define the kernel weight function, we focus on the case for which there
is no natural ordering in UY. Define

KUt 1 if U9 =ud, 5
( its I/l[, t) - )v[ lf Ui?éu(,l, ( )
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where /4, is a bandwidth that lies on the interval [0, 1]. Clearly, when 4, =
0, (UY, ud, 0) becomes an indicator function, and 1, =1, (UY, ud, 1)
becomes an uniform weight function. We define the product kernel for the

discrete random variables by:
q
Lt b, 2y =[Juus. . i) 3)
=1

For the continuous random variables, we use w(-) to denote a univariate
kernel function and define the product kernel function by W,; =
[T_,w((US, — u€)/h;), where h= (hy, ...,h,) denotes the smoothing para-
meters and U5, («f) is the rth component of U5 (u;). We then define the kernel
weight function K;, by:

Kiu = Ll,iu Wh,iu (4)

where L;;, = L(UY, uf, 2).

We now estimate the unknown functional coefficient functions in model
(1) by using a local linear regression technique. Suppose that a,(-) assumes
a second-order derivative. Denote by @;(1) = da;(u)/ou® the p x 1 first-order
derivative of a,(u) with respect to its continuous-valued argument «°. Denote
by a;j(u) = 62aj(u) /(0uou) second-order derivative matrix of afu) with
respect to u°. We use a; (u) to denote the sth diagonal element of d;(u).

For any given u and # in a neighborhood of u, it follows from a first-order
Taylor expansion that

ai(in) ~ a;(u) + a;(w) (@ — u°) )
for «° in a neighborhood of i and ¢ = u4. To estimate {a;j(w)} (and {a;(u)}),
we choose {g;} and {b;} to minimize

n d 2

Z Y,-—Z{a,+b;(U,-—u)} Xj| Ku (6)

i=1 =1
Let {(&j,l;,)} be the local linear estimator. Then the local linear regression
estimator for the functional coefficient is given by
auwy=a, j=1,...,d @
The local linear regression estimator for the functional coefficient can be

easily obtained. To do so, let ¢; 4, 1) be the d(14p) x 1 unit vector of with 1
at the jth position and 0 elsewhere. Let X denote an n x d(1+p) matrix with

Xi=X,X,®(U;—u))
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as its ith row. Let Y= (Y,...,Y,). Set W =diag{K,,, ..., K,,}. Then
Eq. (6) can be written as

(Y — X0) W(Y — X0)
where 0 = (ai, ..., aq, by, ..., b)). So the local linear estimator is simply
0=0w)=XWX)y'XWyY (8)

which entails that

4 = a4ju) = € 40,0, j=1,....d ©)

Let 0(u) = (a1(w), ..., aq(u),ay(u), ..., a,(u)). We will study the asympto-
tic properties of 6(u).

2.2. Assumptions

To facilitate the presentation, let Q(u) = E(X;X}|U; = u), o2(u, x) =
E[&|U; = u,X; = x], Q*(u) = E[X;X/0*(U;, X;)|U; = u]. Let flu, x) denote
the joint density of (U;, X;) and f,(u) be the marginal density of U;. Also,
let f,.(u|x) be the conditional density of U; given X; = x. Let f(u, ii|x, X) be
the conditional density of (U,, U;) given (X, X;) = (x, X).

We now list the assumptions that will be used to establish the asymptotic
distribution of our estimator.

Assumption Al.

(i) The process {(Y; U, X;), i=1} is a strictly stationary o-mixing
process with coefficients a(n) satisfying E/‘zl o))/ <00 for
some y>0 and ¢>7y/(24y).

(i) fux(ulx)<M< oo and f(u,ii|x, X) < M <oo for all i>2 and u, i, x, X.

(iii) Q*(u) and Q(u) are positive definite.

(iv) The functions f,(-, u%), (-, u%, x), Q(-, u%), and Q*(-, u%) are
continuous for all u¢ € D, and f,,(1)>0.

v a(-, u%) has continuous second derivatives for all ud € D.

(vi) E||X] 22+ < o0, where || - || is the Euclidean norm and y1s given in (i).

(vii)) E[Y}+ Y7I(U1, X1) = (u,x); (Ui, X)) = (i, %)] < M <o0.

(viii) There exists 6> (2+7) such that E[Y|°|(U}, X}) = (i1, x)] < M <oo
for all x € R? and all & in the neighborhood of u. a(j) = OG™),
where x> (24+7)0/{2(6—2—7)}.

(ix) There exists a sequence of positive integers s, such that s,— oo,
$u = o((nhy ... hy)"?), and n'*(h; ... hy)~"a(s,) - 0.
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Assumption A2. The kernel function w(-) is a density function that is
symmetric, bounded, and compactly supported.

Assumption A3. As n—0, the bandwidth sequences i;,—0 fors =1, ...,p,
2s—0 for s=1,....q, and (i) nhy ... hp— oo, (i) (nhy...h)"* (|hl*+
[14)) = O(1).

Assumptions A1-A2 are similar to Conditions A and B in Cai et al. (2000)
except that we consider mixed regressors. Assumptions A1(i) is standard in
the nonparametric regression for time series. See, for example, Cai et al.
(2000) and Cai and Ould-Said (2003). It is satisfied by many well-known
processes such as linear stationary ARMA processes and a large class
of processes implied by numerous nonlinear models, including bilinear,
nonlinear autoregressive (NLAR), and ARCH-type models (see Fan & Li,
1999). As Hall, Wolf, and Yao (1999) and Cai and Ould-Said (2003) remark,
the requirement in Assumption A2 that w(-) is compactly supported can
be removed at the cost of lengthier arguments used in the proofs, and in
particular, Gaussian kernel is allowed.

Assumption A3 is standard for nonparametric regression with mixed data
(see Li & Racine, 2008a).

2.3. Asymptotic Theory for the Local Linear Estimator

To introduce our main results, let u,, = fR vw()dv, s, t =0, 1, 2. Define
two d(1+p) x d(14p) diagonal matrices S = S(x) and I" = I'(u) by:

S f ( ) Q(u) O/dpxd r f ( ) /.LSJQ*(M) Oilpxd
= u - u *
u Ogpxa 1 Q)R I, |° o 0dpa (W) ® 1)

where 0;, 4 is an [ x k matrix of zeros, I, the p x p identity matrix, and ®
the Kronecker product. For any px1 vectors c¢=(cy,...,c,) and
d=(dy,....d), let cOd=(c1dy, ..., cpd,).

To describe the leading bias term associated with the discrete random
variables, we define

q
Ll ity = 16 # ) [ [ 16 = )
t#s

where 1(-) is the usual indicator function. That is, 7I,ud a%) is
one if and only «® and #® differ only in the sth component and is
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zero otherwise. Let

n,A) =

dpx1

F 30 A iy i)

ilep s=1

QG i) (au®, i) — a(u))
— 1 (s, %) © 1,)b(u)
(10)

where H = \/nhy ... hy, A= ( P hay s, ..., lehzad,s_q(u))/, a(u) =
(a1(w), ..., as(w)), and b(u) = (a1(uy, ..., aq(u)’). Define

Bj,ls(u) = %,u'z,l aj,ss(u): and
Biay(u) = £, ()¢ @7 ) Y L, ah)f (uf, a)Qus, a)a(ws, i) — a(w)]

ileD
Now we state our main theorem.

Theorem 1. Assume that Assumptions A1-A3 hold. Then for each u that
is an interior point

HH\ (0(u) — 0(w)) — S~ b(h, 2) -5 N(0, S~/ TS

where H; = diag(l, ..., 1, /', ..., i) is a d(p+1) x 1 diagonal matrix with d
diagonal elements of 1 and d diagonal elements of /. In particular, for
j=1,....d,

P q
Vnhy <a,-(u) — aj(u) = > K Bjsw) =Y st,-,zS(u)>
s=1 s=1

d HO 2e/_/‘,dQ ! (M)Q* (u)!l l (u)e,)d
—> N 0 2
( 4 fu(u) )

Remark 1. Noting that S and I' are both block diagonal matrices, we
have asymptotic independence between the estimator of a(x) and that
of b(u). Under Assumption A3, the asymptotic bias (Abias) of a; is
comprised of two components, Zﬂ':]thj’U(u) and 7 A;B; (), which
are associated with the continuous and discrete variables in U,
respectively. For statistical inference, one needs to estimate f,(u), Q(u),
and Q*(u). The procedure is standard and thus is omitted.
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Remark 2. It is well known that the two main advantages of a local linear
estimate over a local constant estimate are the simpler structure of Abias
and the automatic boundary bias correction mechanism for the local
linear estimate (see Fan & Gijbels, 1996). Our local linear estimator has
the same asymptotic variance as the local constant estimator of Li and
Racine (2008b). But the two estimators are different in bias. In our
notation, the Abias of Li and Racine’s local constant estimator a(lc)(u) of
aju) is given by:

p
Mm@%mﬁyﬁ%>§)$2
s=1

where

B w) = po {esaf () Q7 @I ()Q() + Q) (0)]as(w) + Ja.5(w)]}

I
B (u) = Bjay(w)

Q,(u) denotes the first-order partial derivative of Q(u°, u%) with respect
to the sth element in «°, and f,(u) and ay(u) are similarly defined.
Clearly, the continuous element in u = (u, u®) causes the difference in the
asymptotic biases of the two types of estimators.

To compare boundary behavior of the two estimators, we focus on
the simplest case where there is only one continuous variable in
U, =(UY, U?’)/, that is, US is a scalar random variable and p = 1.
Without loss of generality, we assume that the support of UY is [0, 1].
In this case, we denote the bandwidth simply as s=h(n) and consider
the left boundary point «° = vh, where v is a finite positive constant.
Following the literature, we assume that f,(0, ud) = lim,e | of ,(u°, u?) exists
and is strictly positive for all % € D. Define

Lo Iy Ky Ky
S, = ( 0 \1>, and T, = ( v0 1) (11)
Iy Ly Kyl Ky2

where 1,; = [ Z/w(z)dz, and k,; = [* Fw(z)*dz for j = 0,1, and 2. Define

S0,u;v) = S, ® Q0,ud)f,(0,u%), and
r0,u';v) =T, ® Q*(0,u")/,(0,u")
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Define

b oL Q(0, u®) A0, u%)1,2 o
h,dv) = {2 <Q(o,ud)/i (0, u%)1,3 )f“( %)

+ Z i ;”SIS(uda ﬁd)fu(os ﬁd)

ilep s=1
Q(0, ii*){1y0[a(0, &%) — a(0, u%)] — 1,15(0, u?)}
x Q(0, 1){1,1[a(0, i) — a(0, u%)] — 1,25(0, ut)}

where 1,3 = [ Zw(z)dz,
A(0,u®) = (Rd[(0,u%), ..., B*d)0,u)y (12)

and @’(0, u%) is the second-order derivative of a(u°, u®) with respect to u°
evaluated at 0. The following corollary summarizes the asymptotic
properties of 0(u) = 0(uf,u") for the case where u° = vh.

Corollary 1. Assume that Assumptions A1-A3 hold. If p =1 and the
support of U is [0, 1], then for any u = (u€, u%) with u° = vh, we have

HH (0() — 0(u)) — S0, u®; vy b(h, 22 v)
—Ls N(0, S(0, u; v) ' T(0, % v)S(0, u; v) 1)

Remark 3. Clearly, for our local linear estimators the biases for the
boundary points have the same order as those for the interior points.
But the estimators of a(u) and b(u) are generally not asymptotically
independent any more because neither S(0, u%; v), nor I'(0, u%; v) is block
diagonal. As a result, the Abias and variance formulaec of a;(u)
are not as simple as those in Theorem 1. Li and Racine (2008b) did
not study the boundary behavior of the local constant estimator.
Nevertheless, following the arguments used in the proof of the above
corollary, we can readily show that their estimator has the same
asymptotic variance as ours for boundary points but totally different
bias formula. In our notation, the Abias of Li and Racine’s local constant
estimator @' (u®, ut) of a(u®, u®) with u° = vh (after being scaled by H) is
given by

Abias@' e, ud)) = S0, ud; v)~'p)(h, 1; v)
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where SY (0, u?; v) = 1,0 Q (0, u%) £, (0, u?),

(le)

b(k)(h, /l, V) {f (0 ud)Q(O ud)A (0, ud)lvl

+) zq: A, 7,0, a0, a)[a(0, &) — a(0, ud)]}

ideD s=1
and
A°0,uty = (har (0, ), ... hag(0, u®)y (13)

That is, the contribution of the continuous variable UY to the Abias of the
boundary estimator is of order O(/), which is different from the order
O(h?) for interior points. This is a reflection of the main disadvantage of
local constant estimators over the local linear estimators.

2.4. Selection of Smoothing Parameters

In this subsection, we focus on how to choose the smoothing parameters
to obtain the estimate ;. It is well known that the choice of smoothing
parameters is crucial in nonparametric kernel estimation.

Theorem 1. Implies that the leading term for the mean squared error
(MSE) of a; is

4 q
MSE@) = |> i Bj1sw) + > ABjas(u)
s=1 s=1

1 1, Q7 (W Q™ (Weja

ok 7w

By symmetry, all hj should have the same order and all 4 should also have
the same order but with A; — h2 By an argument similar to Li and Racine
(2008a), it is easy to obtain the optimal rate of bandwidth in terms of
minimizing a weighted integrated version of MSE(a;). To be concrete, we
should choose

h/ ~ nil/(4+p) and A} ~ niz/(4+p)
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Nevertheless, the exact formula for the optimal smoothing parameters is
difficult to obtain except for the simplest cases (e.g., p = 1 and q = 1). This
also suggests that it is infeasible to use the plug-in bandwidth in applied
setting since the plug-in method would first require the formula for each
smoothing parameter and then pilot estimates for some unknown functions
in the formula.

In practice, the key in estimating the functional coefficient model is the
selection of bandwidth. We propose to use least squares cross-validation
(LSCYV) to choose the smoothing parameters. We choose (4, 4) to minimize
the following LSCV criterion function

n d 2
CV(h, 1) = %Z (Y,- -3 ?;fi)(Ui)Xi,> M(U)) (14)

i=1 j=1

where sz_i) (U)) is the leave-one-out functional coefficient estimator of a(U;)
and M(U;) is a weight function that serves to avoid division by zero and
perform trimming in areas of sparse support. In the following numerical
study, we will set M(U;) = H 1(|UC l_/cl < 2sUc) where 1(-) is the usual
indicator function, and U and sue denote the sample mean and standard
deviation of {Uc I1<i< n} respectlvely In practice, we can use grid search
for (h, 4) when the dimensions of U° and UY are both small. Alternatively,
one can apply the minimization function built in various software; but
multiple starting values are recommended to reduce the chance of local
solutions. In the following simulation study with p = 1 and ¢ = 2, we try to
save time in computation and use the latter method with only one starting
value set according to the rule of thumb: hy = Syen™'/3, J; = 0.5Syen2/°
for j=1, 2, where Sy is the standard deviation of the scalar random
variable US. The performance of our nonparametric estimator is already
reasonably well with this simple method.

Nevertheless, if the number of observations in application is large, it is
extremely costly to apply the above LSCV method directly on all the
observations. So we now propose an alternative way to do the LSCV. But
the theoretical justification of this novel approach is beyond the scope of this
paper. Let n denote the number of observations in the dataset, which could
be as large as 17,446 in our empirical applications. When there is only one
continuous variable in U (i.e., U is a scalar and p = 1), we propose the
following approach to obtain the data-driven bandwidth:

Step 1. Forb =1, 2, ..., B, sample m(< n) observations randomly from
the dataset.
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Step 2. Set i = c¢Syem™'/° and J; = ¢;Syem™?> foreachandj =1, ..., g,
where ¢ and ¢; take values on [0.2, 4] with increments 0.2 and with the
constraint 4;<1 satisfied, and Sy- is the standard deviation of U{ based
on the m observatlons in Step 1. Find the values of ¢ and ¢; that minimize
the LSCV criterion function. Denote them as ¢” and c(h) for the hth
resample.

Step 3. Calculate ¢ = B~'S") @ and & = B7'S) ", j=1,....¢. Set
h=&Syen=/5 and /1 = ¢ Syen—2/3 Where Sye is the standard dev1at10n of
U7 based on all n 0bservat1ons

We will use / and )tj, j=1,...,q, in our empirical applications, where
the single continuous variable U is Experience and UY is composed of six
categorical variables. We choose m = 400 and B = 200 below. When there
are more than one continuous regressor in U, one can modify the above
procedure correspondingly.

3. MONTE CARLO SIMULATIONS

We now conduct Monte Carlo experiment to illustrate the finite sample
performance of our nonparametric functional coefficient estimators with
mixed data. In addition to the proposed estimator, we also include several
other parametric and nonparametric estimators.

The first data generating process (DGP) we consider is given by

Y, = O.I(U?I +Up+Up)+0.1(UxUn + U)X
+0.15(UpUpn + U)X + &

where X;;~ Uniform(0, 4) (j =1, 2), Uy~ Uniform(0, 4), U;e{0,1, ..., 5}
with P(U;=10)=1/6 for /=0,1,...,5 and j=2, 3, and &~N(0, 1).
Furthermore, X;;, Uy, and ¢; are i.i.d. and mutually independent.

We consider two nonparametric estimators and three parametric
estimators for the conditional mean function m(x, u)= E(Y,X;= x,
U; = u). We first obtain our nonparametric functional coefficient estimator
(NP) with mixed data where the smoothing parameters (4, 1) are chosen
by the LSCV. Then we obtain the nonparametric frequency estimator
(NP-FREQ) with mixed data by using the cross-validated / and setting
A =0 (see Li & Racine, 2007, Chapter 3). It is expected that the smaller
the ratio of the sample size to the number of “cells,” the worse the non-
parametric frequency approach relative to our proposed kernel approach.
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For the parametric estimation, we consider in practice what an applied
econometrician would do when he or she confronts the data {(Y,, X;, U)),
1 <i<n} and have a strong belief that all the variables in X; and U, can affect
the dependent variable Y;. In the first parametric model, we ignore the
potential interaction between regressors and estimate a linear model without
any interaction (LIN) by regressing Y; on X;, U;;, and the two categorical
variables Uj; and Uj;. In the second parametric model, we take into account
potential interaction between X; and Uj;, and estimate a linear model with
interaction (LIN-INT1) by adding the interaction terms between X; and Uy;
into the LIN model. In the third parametric model, we also consider
the interaction between X; and (U,,, Us;), so we estimate a linear model with
interaction (LIN-INT2) by adding the interaction terms between X; and
(U, Uy Usy) into the LIN-INT2 model. We expect LIN-INT2 outper-
forms LIN-INT1, which in turn outperforms LIN in terms of MSEs.

For performance measure, we will generate 2n observations {(Y,, X;, U)),
1 <i<2n} for n =100, 200, and 400, and use the first n observations for
in-sample estimation and evaluation, and the last n observations for out-of-
sample evaluation. We consider root-mean-square error (RMSE) for both
in-sample and out-of-sample evaluation:

1< ~
RMSE;, = \/—Z{M(Xi, Uy — m(X;, Uy
i3

1 <& ~
RMSE,; = \/Z Z{m(XnH, Unyi) — m(Xyis U}1+i)}2M(Xn+ia U§+,~)
i=1

where, for each method introduced earlier, 77i(x, u) is an estimate of m(x, u)
using the first n observations {(Y;, X;, U;), 1 <i<n}, and M(-,-) is a weight
function for the out-of-sample evaluation. We use the weight function here
because the out-of-sample observations can lie outside the data range of the
in-sample observations, and when this occurs, the nonparametric methods
51gn1ﬁcantly deteriorate. In this simulation study, we set M (X4, Uepti) =

71V — V)l < 1.5sy,), where V; = (X, U%,,) and ¥; and sy, denote
the sample mean and standard deviation of {V/;;, 1 <i<n}, respectively. We
report the mean, median, standard error, and interquartile range of RMSE
over 1,000 Monte Carlo replications.

Table 1 reports the results for all five regression models. We summarize
some interesting findings in Table 1. First, our proposed nonparametric
functional coefficient estimator dominates all the other parametric or
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Table 1. Comparison of Finite Sample Performance of Various
Estimators (DGP1).

n Model In-Sample RMSE Out-of-Sample RMSE

Mean Median SD IQR  Mean Median SD IQR

100 NP 0.729 0.703 0.160 0.194 1.140 1.096 0.449  0.271
NP-FREQ 0.993 0.994 0.141 0.193 5.494 3.222 25.067 1.374
LIN 2.375 2.336 0.521 0.713 2.752 2.684 0.693 0.754
LIN-INT1  1.686 1.649 0.353 0.495 2.088 2.027 0.464 0.591
LIN-INT2  1.091 1.072 0.209 0.273 1.531 1.494 0.351 0.427
200 NP 0.523 0.512 0.080 0.097 0.798 0.789 0.114 0.131
NP-FREQ  0.880 0.876 0.101 0.134  14.325 4.638 67.586  5.410
LIN 2.436 2.431 0.370 0.503 2.637 2.586 0.390 0.515

LIN-INT1  1.726 1.726 0.244 0.346 1.941 1.912 0.282  0.363
LIN-INT2  1.116 1.115 0.154 0.214 1.320 1.304 0.196  0.252

400 NP 0.385 0.374 0.076 0.057 0.591 0.582 0.070  0.078
NP-FREQ 0.573 0.564 0.074 0.087 7.681 2.144 44756  2.221
LIN 2.472 2.460 0.2806  0.361 2.563 2.550 0.280  0.369
LIN-INT1  1.760 1.757 0.180 0.240 1.860 1.857 0.194  0.259
LIN-INT2  1.138 1.132 0.109 0.149 1.243 1.235 0.128  0.171

nonparametric estimators in terms of both in-sample RMSE and out-of-
sample RMSE. Second, in comparison with the parametric estimators the
NP-FREQ behaves reasonably well in terms of in-sample RMSE but not out-
of-sample RMSE. The out-of-sample performance of the NP-FREQ is not
acceptable even when the sample size is 400, in which case the average number
of observations per cell is about 11. Third, as the sample size increases, the
in-sample RMSEs of both our nonparametric estimator and the NP-FREQ
decrease, but at rate slower than the parametric n~'"*-rate as expected. The
same is true for the out-of-sample RMSE of our nonparametric estimator.
Fourth, the performance of the parametric estimators based on misspecified
models may not improve as the sample size increases.

We now consider a second DGP that allows for weak data dependence
between observations. The data are generated from the following DGP

Yi=Ug(Un+Up+Up)+Un(Upy +Up+Up)X; + ¢
where

X;=0.5X,_1+en
Uj =05+ O.SU,',IJ + en
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g~N(0,1), e;; ~N(0, 1), and e, ~Uniform(—0.5, 0.5), Uye{-1, 0, 1} with
P(Uj=10)=1/3for/=—1,0,1andj=2,3. Furthermore, ¢; (j = 1, 2), Up,
Uj, and ¢; are 1.i.d. and mutually independent.

Like the case for DGP 1, we also consider two nonparametric estimators
and three parametric estimators for the conditional mean function
m(x, u) = E(Y;|X;=x, U;=u). We denote the corresponding regression
models as NP, NP-FREQ, LIN, LIN-INT1, and LIN-INT2, respectively.
We again consider the performance measure in terms of RMSE for both
in-sample and out-of-sample evaluation and for n = 100, 200, and 400. The
only difference is that when we generate {X;, U;;}, we throw away the first
200 observations to avoid the starting-up effects. We report the mean,
median, standard error, and interquartile range of RMSE over 1,000 Monte
Carlo replications in Table 2. The findings in Table 2 are similar to those in
Table 1. One noticeable difference is that the out-of-sample performance of
the NP-FREQ is not bad when n = 400 for this DGP. We conjecture this is
due to the fact the average number of observations per cell (400/9 ~44) is
not small in this case.

Table 2. Comparison of Finite Sample Performance of Various
Estimators (DGP2).

n Model In-Sample RMSE Out-of-Sample RMSE

Mean Median SD IQR Mean Median SD IQR

100 NP 0.388 0.369 0.122  0.155  0.606 0.575 0.184 0.222
NP-FREQ 0.491 0.453 0.169 0.224 5448 0.944 57.263 1.306
LIN 2.565 2.437 0.856 1.013  3.050 2.871 1.008 1.216
LIN-INTI  1.999 1.898 0.633 0.789  2.476 2.373 0.7788  1.009
LIN-INT2  0.400 0.384 0.140 0.171  0.551 0.505 0.249 0.268
200 NP 0.231 0.218 0.070  0.090  0.392 0.372 0.097 0.114
NP-FREQ  0.266 0.243 0.096 0.122  1.623 0.408 17.987 0.246
LIN 2.646 2.576 0.639 0.834 2.901 2.847 0.669 0.854

LIN-INT1  2.059 2.009 0.469 0.550 2.332 2.273 0.534 0.653
LIN-INT2  0.384 0.369 0.105 0.142  0.468 0.437 0.142 0.168

400 NP 0.129 0.122 0.039 0.046 0.256 0.247 0.049 0.055
NP-FREQ  0.138 0.126 0.046  0.051 0.274 0.255 0.140 0.062
LIN 2.690 2.624 0.464 0.630 2.826 2.778 0.439 0.566

LIN-INTI  2.096 2.066 0.328 0.442  2.240 2.217 0.342 0.459
LIN-INT2  0.380 0.371 0.076  0.100  0.418 0.411 0.085 0.108




146 LIANGJUN SU ET AL.

4. AN EMPIRICAL APPLICATION: ESTIMATING
THE WAGE EQUATION

In this section, we apply our functional coefficient model to estimate a wage
equation embedded in the framework of Mincer’s (1974) human capital
earning function. The basic Mincer wage function takes the form:

log Y = B+ 1S+ prA+ p14> + ¢ (15)

where Y is some measure of individual earnings, S is years of schooling, and
A is age or work experience. In spite of its simplicity, Mincer equation
captures the reality remarkably well (Card, 1999), and has been firmly
established as a benchmark in labor economics. Concerning its specification,
several extensions have been made to allow more general parametric
functional forms (see Murphy & Welch, 1990). Further, a nonparametric
analysis has been done in Ullah (1985) and Zheng (2000). And in practice,
other control variables, such as indicators of gender, race, occupation, or
martial status are routinely included in the wage equation when they
are available. Nevertheless, the additive separability assumption of the
standard Mincer equation may be too stringent. For instance, it ignores
the possibility that higher education results in more return to seniority.’
Also, it is often of keen economic and policy interest to investigate the
differentials among different gender and race groups, where the return to
education or experience may differ substantially. Therefore, we intend to
estimate the functional coefficient model of the following form:

logY =a1(U)+ ax(U)S + ¢ (16)

where Y and S are as defined above, and U is a vector of mixed variables
including one continuous variable — age or work experience, and six
categorical variables for gender, race, martial status, veteran status,
industry, and geographic location. The specification of Eq. (16) enables us
to both study the direct effects of variables in U flexibly and investigate
whether and how they influence the return to education. Some past
literature has already suggested nonlinear relationship between seniority
and wage beyond a quadratic form (Murphy & Welch, 1990; Ullah, 1985;
Zheng, 2000), as well as the fact that rising return to education from
the 1980s is more drastic in the younger cohorts than in the older ones
(Card & Lemieux, 2001).

Our model is also suitable for analyzing the gender and racial wage
differentials. In the study of discrimination, it is common practice to
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estimate a ‘“‘gender/racial wage gap’ or estimate wage equation in separate
samples. (For a survey of race and gender in the labor market, see Altonji &
Blank, 1999.) Here the limitation of application of the traditional
nonparametric method is the fact that indicators for gender and race are
discrete, a problem overcome in our model. Also, compared with estimating
wage separately among gender-racial groups or the frequency approach, our
approach utilizes the entire dataset, thus achieving efficiency gain. We can
also explicitly address other supposedly complicated interaction effects
between the variables of interest. Further, unlike a complete nonparametric
specification, model (16) has the further advantage that it can be readily
extended to instrument variable estimation (Cai, Das, Xiong, & Wu, 2006),
provided we have some reasonable instruments to correct the endogeneity
in education. To keep our discussion focused, however, this aspect is not
further explored in this paper.

The data utilized are drawn from March CPS data of the year 1990, 1995,
2000, and 2005. The earning variable is the weekly earning calculated from
annual salary income divided by weeks of work, and deflated by the CPI
(1982-1984 = 100). As usual, we exclude observations that are part-time
workers, self-employed, over 65, under 18, or earn less than 50 dollars per
week. All observations fall into 3 racial categories — White, Hispanic and
otherwise, 4 geographic location categories — Northeast, Midwest, South
and West, and 10 industrial categories. There are also three dichotomous
variables “Female,” ‘““Veteran,” and ‘‘Single.” Years of schooling are
estimated by records of the highest educational degree attained and
experience is approximated by Age-Schooling-6. Fig. 1 plots wage against
experience and years of schooling for the 4 years under our investigation.
The left panel in Fig. 1 suggests the linear relationship (if any) between
experience and wage is weak whereas the right panel in Fig. 1 suggests there
is a positive relationship between years of schooling and wage.

As a comparison, we also estimate a simple linear wage function, a linear
wage function with interacting covariates, and a partially linear model.
The results are reported in Tables 3-5 (see also Fig. 2), respectively.

Results in Table 3 are in conformity with some stylized effects in labor
economics, including stable return to schooling in the 1990s (Card &
DiNardo, 2002; Beaudry & Green, 2004), concavity in return to experience,
falling gender—wage gaps (Altonji & Blank, 1999), etc. The returns to
schooling appear to range from 9.8 to 10.7% for the data under our
investigation. Nevertheless, the inadequacy of a simple linear separable
model is made clear in Table 4, since most of the interaction items of the
covariates are significantly different from zero. And many of them are of
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Fig. 1. Experience—-Wage and Education—-Wage Profiles. Note: The four rows
correspond to years 1990, 1995, 2000, and 2005 from the top to the bottom. The
sparsity of the experience variable is also plotted along the experience axis.

important economic implications, such as the higher return to education for
female and higher return to experience for the White. And the goodness-of-
fit of the model after accounting for the interaction effects has also increased
modestly. Table 4 indicates the omission of these interaction terms may
cause significant bias in the estimate of returns to schooling, and the bias
can be as large as about 41% for year 2005 if we believe the linear model
with interaction terms is correctly specified.
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Education-Experience-Wage Profile in 1990 Education-Experierce-Wage Profile in 1995

Years of Schooling Years of Schooling

Education-Experierce-Wage Profile in 2000 Eduwcation-Experience-Wage Profile in 2005

Experierce a0 Years of Schooling Experisnce LRl Years of Schoding

Fig. 2. Education—Experience-Wage Profile Resulting from the Partially Linear
Models.

Another extension of Eq. (15) is to consider the partially linear model:
log Y = m(Schooling, Experience)+Z'f+¢, where Z is a set of dummy
variables, and education and experience enter the model nonparametrically.
We use the local linear method to estimate this model which is in the
spirit of Robinson (1988). A second-order Epanechnikov kernel w(v) = 0.75
(1 —0.2v»)1(Jv| < +/5) is used; and the bandwidth is chosen by a LSCV
method. Given the large number of observations in our dataset, it is
extremely costly to apply the LSCV method directly on all the observations.
So we apply a methodology similar to that proposed at the end of Section 2
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Table 3. Linear Wage Equation.

Year 1990 1995 2000 2005

(1) @) ) o
Education 0.098*  (0.002) 0.107*  (0.002) 0.105*  (0.003) 0.107*  (0.002)
Experience 0.029*  (0.001) 0.036* (0.002) 0.029*  (0.002) 0.031*  (0.001)
Experience’ —0.000* (0.000) —0.001* (0.000) —0.001* (0.000) —0.001* (0.000)
Female —0.309* (0.010) —0.290* (0.010) —0.279* (0.011) —0.277* (0.008)
White 0.100*  (0.013) 0.130* (0.013) 0.097*  (0.013) —0.098* (0.010)
Hispanic 0.034°  (0.017) 0.040°  (0.022) 0.033°  (0.019) 0.034°  (0.014)
Single —0.087* (0.009) —0.071* (0.010) —0.097* (0.010) —0.102* (0.008)
Veteran —0.013  (0.013) —0.049" (0.015) —0.008 (0.016) —0.031> (0.014)
Observations 12,328 10,834 10,433 17,466
R2 0.37 0.36 0.33 0.34

Note: (1) Heteroskedasticity-robust standard errors in parentheses. (2) a, b, and ¢ stand for
significance at 1%, 5%, and 10% levels, respectively. (3) Three region indicators, nine industry
indicators, and a constant in all specifications.

to choose the bandwidth. As reported in Table 5, the partially linear model
performs a little bit better in goodness-of-fit, as expected. However, it is
noteworthy that comparing with the simple linear model, accounting for the
possibly complex function form of education and experience has also signifi-
cantly changed the estimates of the coefficients for the other covariates.
For instance, the effects of race have drastically dropped in magnitude
as well as significance. The difference may be the result of biases induced by
the misspecification in a parametric model, and thus indicates the needs for
the more general functional form assumption.

In all the above specifications, we use dummy variables to allow different
intercepts for different regions and industries, and the majority of them have
a significant estimated coefficient. The large number of categories makes it
difficult to study their interaction effects with other regressors. In contrast,
in the nonparametric framework of mixed regressors, only one categorical
variable is necessary to describe such characteristic as industry or location.
And this advantage has made our proposed model further suitable for the
application.

For a comprehensive presentation of the regression results of model (16),
we plot the wage—experience profiles of different cells defined by a discrete
characteristic averaged over other categorical covariates. We use the second-
order Epanechnikov kernel in our nonparametric estimation, and choose
the bandwidth by the LSCV method introduced at the end of Section 2.4.
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Table 4. Linear Wage Equation with Interacted Regressors.

Year 1990 1995 2000 2005
() @) ) “)

Education 0.133* (0.007) 0.146" (0.007) 0.134* (0.008) 0.151* (0.006)
Experience 0.059* (0.003) 0.071* (0.003) 0.049" (0.004) 0.053* (0.003)
Experience’ —0.001* (0.000) —0.001* (0.000) —0.001* (0.000) —0.001* (0.000)
Female —0.349* (0.061) —0.379* (0.069) —0.526* (0.074) —0.353* (0.059)
White 0.039 (0.089) 0.091 (0.091) —0.077 (0.106) 0.025 (0.082)
Hispanic 0.496* (0.098) 0.551* (0.114) 0.455" (0.111) 0.607* (0.086)
Single —0.132* (0.013) —0.128" (0.014) —0.137* (0.014) —0.155* (0.012)
Veteran —0.024° (0.014) —0.056" (0.015) —0.010* (0.017) —0.027° (0.015)
Education x Experience —0.002* (0.000) —0.002* (0.000) —0.001* (0.000) —0.001* (0.000)
Education x Female 0.014* (0.004) 0.016* (0.004) 0.022* (0.005) 0.009° (0.004)
Education x White 0.009 (0.006) 0.007 (0.006) 0.010 (0.007) 0.006 (0.006)
Education x Hispanic ~ —0.034" (0.007) —0.035* (0.008) —0.039* (0.008) —0.046* (0.006)
White x Female —0.135" (0.025) —0.123" (0.026) —0.087* (0.026) —0.098" (0.020)
Hispanic x Female —0.017 (0.034) —0.069 (0.043) —0.035 (0.038) 0.012 (0.028)
Single x Female 0.114* (0.018)  0.141* (0.018) 0.105* (0.020) 0.135* (0.010)
Experience x Female —0.005" (0.001) —0.004" (0.001) —0.002* (0.001) —0.001* (0.001)
Experience x White 0.000 (0.001) 0.000 (0.001) 0.004* (0.001) 0.002* (0.001)
Experience x Hispanic  —0.003° (0.002) —0.004° (0.002) 0.001 (0.002) —0.000 (0.001)
Observations 12,328 10,834 10,433 17,466

R’ 0.39 0.38 0.34 0.36

Note: (1) Heteroskedasticity-robust standard errors in parentheses. (2) a, b, and ¢ stand for
significance at 1%, 5%, and 10% levels, respectively. (3) Three region indicators, nine industry
indicators, and a constant in all specifications.

The R”s of the model have been increased up to 0.66, 0.65, 0.62, 0.68,
respectively for the 4 years.

Fig. 3 reports the estimated a,(Experience, Region, :) and ay(Experience,
Region, :) of model (16) for different regions averaged across all other
categorical variables. a;(Experience, Region, :) can be viewed as the direct
effects of experience on wage for the particular region (averaged across all
other categorical variables), and a,(Experience, Region, :) represents the
return to schooling as a function of experience for the particular region.
We summarize some interesting findings from Fig. 3. First, while there are
considerable variations between regions, we find the direct effects of
experience on wage are usually positive (upward sloping) but not necessarily
concave, which is in sharp contrast with the results of the parametric model.
Notably, the experience—wage profile estimated here are from cross-sections
and cannot be taken as individuals life-cycle earning trend. Second, if the
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Table 5. Partially Linear Wage Equation.

Year 1990 1995 2000 2005

1) () (3) 4
Female —0.280* (0.010) —0.265* (0.011) —0.259* (0.011) —0.259* (0.008)
White 0.103*  (0.012)  0.135* (0.013)  0.096* (0.013)  0.102* (0.010)
Hispanic 0.001  (0.017) —0.001* (0.022) —0.017 (0.019) —0.007 (0.014)
Single —0.077*  (0.009) —0.058* (0.010) —0.082* (0.010) —0.077* (0.008)
Veteran 0.024* (0.013) —0.009 (0.015)  0.021  (0.016) —0.001 (0.014)
Observations 12,328 10,834 10,433 17,446
R? 0.40 0.39 0.36 0.38

Note: (1) Heteroskedasticity-robust standard errors in parentheses. (2) a stands for significance
at 1% level. (3) Three region indicators, nine industry indicators and a constant in all
specifications. (4) The estimate of m (Schooling, Experience) is plotted in Fig. 2.

standard Mincer equation holds, we expect the estimated a,(Experience,
Region, :) to be a horizontal line. But clearly, this is far from reality. The
effects of experience on return to schooling are mainly negative, which agrees
with our previous results from the parametric setting, presented in Table 4.
The findings here have interesting econometric interpretation. On the one
hand, we may wonder if higher education causes higher return to seniority,
or similarly, longer experience leads to higher return to education. On the
other hand, it is possible that the young cohorts (implied by shorter
experience) have higher return to education, due to cohort supply effects,
technological changes or some other reasons. And we need to resort to
empirical results to evaluate the overall influence. In the sample studied
here, the later force has been found to dominate the former in their direction
of impacts. Admittedly, the interacting patterns of the regressors in the wage
equation uncovered by this functional coefficient model require further
careful investigation.

Fig. 4 reports the estimated a;(Experience, Race, :) and a>(Experience,
Race, :) of model (16) for different races averaged across all other
categorical variables. a;(Experience, Race, :) can be viewed as the direct
effects of experience on wage for the race, and a,(Experience, Race, :)
represents the return to schooling as a function of experience for the
particular race. The findings are similar to those in Fig. 3. We only mention
that the return to schooling seems much higher for White and others
(above 0.1 across 2/3 of the range of experience) than Hispanic (below 0.1 in
almost all the range of experience).
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Fig. 5. Plots of a;(Experience, Gender, :) and a,(Experience, Gender, :) (first row),
a\(Experience, Single, :) and ay(Experience, Single, :) (second row), a,(Experience,
Veteran, :), and a)(Experience, Veteran, :) (third row), averaging over other categorical
variables. Note: Horizontal axis — Experience. Vertical axis — a; or a,. First row: The
four columns from the left to the right correspond to a; for male, @; for female, a, for
male, and a, for female, respectively. Second row: The four columns from the left to the
right correspond to a; for nonsingle, a; for single, a, for nonsingle, and a, for single,
respectively. Third row: The four columns from the left to the right correspond to a; for
nonveteran, a; for veteran, a, for nonveteran, and a, for veteran, respectively. 1990,
solid line; 1995, dotted line; 2000, dashdot line; and 2005, dashed line.

Fig. 5 reports the estimated a;(Experience, :) and a,(Experience, :)
depending on whether a person is male or female, single or nonsingle,
and veteran or nonveteran. Fig. 6 reports the estimated a;(Experience,
Industry, 1) and ax(Experience, Industry, :) of model (16) for different
industries averaged across all other categorical variables. Both figures can be
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Fig. 6. Plots of aj(Experience, Industry, 1) and ay(Experience, Industry, ) averaging
over other categorical variables. Note: Horizontal axis — Experience. Vertical axis —
a, or a,. The first two rows correspond to «, and the last two rows correspond to a,.
For rows 1 and 3, the five columns from the left to the right correspond respectively
to Industry = Agriculture, Mining, Construction, Manufacturing, and Transporta-
tion. For rows 2 and 4, the five columns from the left to the right correspond
respectively to Industry = Wholesale and return, Finance, Personal services,
Professional services, and Public administration. 1990, solid line; 1995, dotted line,
2000, dashdot line; and 2005, dashed line.

interpreted similarly to the case of Fig. 3. The most eminent implication by
these figures is that return to education does depend heavily upon other
variables. In particular, the top panel in Fig. 5 indicates that higher return
to education for female across all the range of age or work experience.
In addition, we can see substantial variation among the cells which suggests
the highly complex functional form of the wage equation.
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Fig. 7 reports the estimated a;(Experience, :) and ay(Experience, :)
averaged over all categorical variables. Similarly to the cases of Figs. 36, we
observe that the direct impact of experience on wage is positive but the
return to schooling as a function of experience tends to be decreasing except
when experience is low (<4 years in 1990, <12 in 2005). When experience
is larger than 37 years, the return to schooling is diminishing very fast as a
function of experience. Prior to 37 years, the returns to schooling may vary
from 0.105 to 0.145.

Therefore, our empirical application has demonstrated the usefulness
of our proposed model in uncovering complicated patterns of interacting
effects of the covariates on the dependent variable. And the results are of
interesting economic interpretation.
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Fig. 7. Plots of a(Experience, :) and a,(Experience, :) averaging over all

categorical variables. Note: Horizontal axis — Experience. Vertical axis — a; or aj.

The two columns from the left to the right correspond to a; and a»,

respectively. 1990, solid line; 1995, dotted line; 2000, dashdot line; and 2005,
dashed line.
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5. CONCLUSIONS

This paper proposes a local linear functional coefficient estimator that
admits a mix of discrete and continuous data for stationary time series.
Under weak conditions our estimator is asymptotically normally distrib-
uted. We also include simulations and empirical applications. We find from
the simulations that our nonparametric estimators behave reasonably well
for a variety of DGPs.

As an empirical application, we estimate a human capital earning
function from the recent CPS data. Unlike the widely used linear separable
model, or the frequency approach that conducts estimation in splitted
samples, the proposed model enables us to utilize the entire dataset and
allows the return to education to vary with the other categorical and
continuous variables. The empirical findings show considerable interacting
effects among the regressors in the wage equation. For instance, the younger
cohorts are found to have higher return to education. While these patterns
need further explanation from labor economic theory, the application
demonstrates the usefulness of our proposed functional coefficient model
due to its flexibility and clear economic interpretation. And thus the model
has good potential for applied research. Our future research will address
some related problems such as the optimal selection of smoothing
parameters. Another extension is to study the estimation of functional
coefficient model with both endogeneity and mixed regressors.

NOTE

1. Throughout our paper the use of word return or marginal return from education
refers to the functional (varying) coefficient of education that may not be the marginal
return if the education is endogenous, an issue not explored in our paper.
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APPENDIX

We use ||-|| to denote the Euclidean norm of -, C to signify a generic
constant whose exact value may vary from case to case, and @’ to denote the
transpose of a. Let dy, = S0 1(U% #u?) where 1(US #u?) is an indicator
function that takes value 1if (U$ #u%) and 0 otherwise. So d,,, indicates the
number of disagreeing components between Uﬁ and u;’ .

Proof of Theorem 1. We first define some notation. For any p x 1 vectors
c=(c1,...,c,) and d=(dy,....d,), let cOd=(cd, ..., c,d,) and
¢/d = (cidy, ..., c¢pd,) whenever applicable. Let

Sn,() Sn,l
S, =S, = S, Sw | Ty=Tuu) = Tpi+ Tur (A.1)
with
n
Sn,O = Sn,O(u) =n! ZXiX;Kiu
i=1
- , US —u)\’
Su1 = Sut) = Y X @ () &

Su2 = Syalu) = ! z":( XX @ (((U? - uc)> ((U?h— uc)) ) K
i=1
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" Xigi
Tut = Tui) =2 lZ;((Xisi)@)((Uf—uc)/h)>Kiu’ and

- - XiXa(U)) X
n2 — n,Z(u) =n ; (X,X:[l( Ul)) ® ((U: _ Llc)/h) u
where recall a(U,) = (a;(U)), ...,a[U;))’. Then
0=H'S;'T,

where H; = diag(1, ..., 1, /', ..., ") is a d(p+1) x d(p+1) diagonal matrix
with d diagonal elements of 1 and d diagonal eclements of h. Let
H = \/nhy ... hy. Then
HH,\(0 — 0) = HS; (T, — S,0)
= HSn_lTn,l + HS;I(TH,Z - S,,H)
We first prove several lemmas.

Lemma A.1.

(@) Suo = Q) (1) + 0,(1),
(b) Su1 = Op(IlAl1> + |IAI] 12]]) = 0p(1),
(©) Sna = 1 (Q)f (W) @ 1), + 0,(1).

Proof. We only prove (a) since the proofs of (b) and (c¢) are similar. First
by the stationarity of {X,, U;}

E(Sn,()) = E(XiX;'Kiu)
= E(X:X, Whiuldu = 0)p(u®)

q
+ ) EXXWhiuLiuldyy = )P(dyy = 5)

s=1

= EQU)W piuldy, = 0)p®) + O(121)
_ / QUE + h O v u)f ( + h © v, u)W(v)dv + O(||]])
= Q(u)f ,(u) + O(|AlI* + 11A1]) (A2)

where p(u®) = P(UY = u?).
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Since a typical element of S, is

n
-1
S}?,Sl:n ZXiSXitKiu’s>[:13"-sd

i=1
by the Chebyshev’s inequality, it suffices to show that
var (s,q) = o(1) . (A.3)

Let &; = X;,X;;K;,. By the stationarity of {X,,U;}, we have

n—1

var(s,s) = Lvar(z) + %; (1 - ﬁ) cov(1,&) (Ad)
Clearly,
var(¢) < E(X3 X3,K3) = O((hy ... hy)™") (A.5)

To obtain an upper bound for the second term on the right-hand side of
Eq. (A.4), we split it into two terms as follows

n—1 d, n—1
D leov(EL &l = leov (€1, &)1+ Y leov(ELE)l =T+ ;
J=1 j=1 J=dy+1

where d, is a sequence of positive integers such that d,hy...h,—0 as
n— oo. Since for any j>1,

[E(G1E)] = [EX 15X 1K1, XX K01 = O(1)

J1 = 0(d,). For J,, by the Davydov’s inequality (e.g., Hall & Heyde, 1980,
p. 278; or Bosq, 1996, p. 19), we have

cov(¢y, &) < Cla( — D]/ E|E, )@+

o oy 2/
= L = P E|on xR

-0 <(h1 o hp)—(2+2}’)/(2+>’)> [o(j — 1)])’/(2+‘/) (A.6)
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So
n—1
Ja < C(hy ... hy) /G4 Z[a(j)]v/eﬂ)
j=d,,

< Clhy .. hy) EPCDG 2N o [a(YPICTD = o((hy .. b)Y (ALT)
i:dn

by choosing d, such that d,*(h; ... h,)""/®™ = o(1). This, in conJunc-
tion with Eqgs. (A.4) and (A.S), 1mphes var(s,y) = O((nhy ... hy)~ b
= o(1).

Lemma A.2.

Xig
HT oy = 0y .. ) Z ((X (e C)//1)>Ki“ ~L N(O,T)

where H = \/nhy...h,, 6*(u,x) = E[&?|U; = u, X; = x], Q*(u) = E[X,; X/
o> (Ui, X)\U; _u] and

Moo ¥ () O
Fr=Tw=f L,(”)< H () ® I”)

Proof. Let w be a unit vector on RYP+D . Let

oy K
= O B (e @ (U — )/
By the Cramér-Wold device, it suffices to prove

n
L =n"23"¢ =5 N, W Tw). (A.8)
i=1

Clearly, by the law of iterated expectation, E({;) = 0. Now

var(l,) = var((y) +2 Z ( - —) cov(Cy. )
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By arguments similar to those used in the proof of Lemma A.1,

var({;)

Q" (U) QU U; —u)/h)
=h...hh,w'E . . , Kizu w
{(Q (UD® (U7 —u)/h) Q (U,)@(((Uj?—uc)/h)((U,?—uC)/h))) }

=wTw+o(l)

and
n—1
> leov(Cy, ()l =o(1)
j=1

which implies that
var(l,) > wTI'w as n— oo

Using the standard Doob’s small-block and large-block technique,
we can finish the rest of the proof by following the arguments of Cai et al.
(2000, pp. 954-955) or Cai and Ould-Said (2003, pp. 446—448). [ |

Lemma A.3. Let B, = H(T,,—S,0). Then B, = b(h, A)+o,(1), where
b(h, A) is defined in Eq. (10).

Proof. Let
(X Xa(U)))
=H Kiy
((XiX;a(Ui)) ®U; - “C)/h))
XiX; XX @ (U —us)/hy oK
((X,-X;) ®(US —u)/h) (XiX)® (U5 —u)/h)(U§ — u“)/h)/))

Then we have
1 n
=13 (*x9)
i=1

Let ¢; = E(g;|U;). Then
E(B,)=E(Z)
= E {Gildyu = 0}p(u®) + E (Gi|dyyp = 1} P (dyu = 1) + O(H||v]]%)
=bp1+by2+0(1)
On the set (U9 =ud, W), >0},
aj(U;) = aj(u) + a;(u) (U§ — u) + J(U§ — ) dr(u)(US — u) + o(| |2l *)
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Let A(U;u) = ((US — ) diy (u)(UF =16, ..., (Uf = u°) dig(u)(US — 1)) . Recall
A= ars@), ... X0 iaas@),  and  bw)= (G (w),....da(w))
Then we have

1 QUNAWU;,u)

2 E{ ((Q(U»A(U,-, )@ (Ug —u)/h)

Q(u)A
_ Hu, (fu(”) (u) ) o))

bn,l = > Wh,iu‘du,vu = O} X P(ud)+ 0(1)

2 \o
and
bnj
= HE{G|dyu=1}P(dyu=1)
QU)@(U;) — aw) — (QU)® (U5 — u)/H))b(u)
= HE QU (a(U)) — au)) @ (U —u)/h)
—(QU)® (U7 = u) /(U7 = ) [h))b(u)

X Kiu|dulu =1 P(du,-u = l)+0(1)

Qi) ) — alu)
= H Y ALY G )( ulzlg(;,;d)uw,,)‘;f )>+0(1)

eps=1
Consequently, E(B,) = b(h, A)+o(1), where b(h, ) is defined in Eq. (10).

To show var(B,) = o(1) elementwise, we focus on the first d elements
gll) of ¢; since the other cases are similar, where

V= H{Xixi-(a(Ui) — a(u) — (Xixg ® ((UC ; c)> )b(u)]K

A typical element of g(l)

d c_ e\ /
Cflr) = lXif Z Xis(as(Us) — as(w)) — Xy Z Xis (%) bj(u)] K
s=1 s=1

t=1,....d

e
(555 = a(4) 255 (1 L)oot



166 LIANGJUN SU ET AL.

By arguments similar to those used in the proof of Lemma A.1,

1
—var (<) = O(IAII + 1211%) = o(1)

and
n—1 | .
> leov(el). 1 = o(1)
j=1

which implies that var((1/n)> " P(l)) = o(1). Similarly, one can show that

i=1>i¢t
the variance of the other elements in B, is o(1). The conclusion then
follows by the Chebyshev’s inequality. [ |

By Lemmas A.1-A.3,

HH\(0 — 0) — B~'b(h, 7) > N0, B-'TB™)
This completes the proof of Theorem 1.

Proof of Corollary 1. Since the proof parallels that of Theorem 1, we only
sketch the difference. Recall S, (u) is defined in (A.1). When u¢ = v, we
have

E[S,0w)] = E[X:X K]
= / Qu + hz, ud)f ,(u + hz, U)W (2)dz + O(]|A]])
= Q(0,u")f (0, u")1s + o(1)
where 1,0 is defined after Eq. (11). Similarly, E[S,.; ()] =Q (0, u%) f,

(0, u®) 1,140(1), and E[S,.» ()] = Q(0, u®) £, (0, u®) 1,,+0(1). It follows
that

S, u®) -5 S, © (0, u)f (0, 1) (A.10)

where S, is defined in (11). Following the proof of Lemma A.2, with
u° = vh we can show that

var(HT ;) = T', ® Q*(0,u®)f (0, u®) + o(1) (A.11)
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where I', is defined in Eq. (11). Following the proof of Lemma A.3, when

u® = vh, we have

1 QUNAUi,u)
bn,l - _HE{ < ) Wh,iu‘du,vu - 0}
2 QUNAWU, w)(U7 — u)/h)

x p(u) + o(1)

H [ Q0,4 A0, 4", o | AL
5 <Q(O,ud)/1(0,ud)lv3>fu( s ut) + o(1) (A.12)
and
b QUNa(U)) = a()) = (U7 = u) [V )b(u)
"o QUN@(U;) — a)(U§ = ) /h) = (U§ = u°) /Ry QU )b(u)

X Kiu|duiu = 1} Xp(du,u = l)+ 0(1)

q
=HY Y A, a)f 0, i)
a‘eD s=1
Q(0, @){1ola(0, i) — a(0, u)] - 1,16(0, u)} | NE
) Q(Oa ad){lvl[a(oa ad) - a(os ud)] - lv2b(oa ud)} " 0( ) ( . )
where A(0, u%) is defined in Eq. (12). Combining Eqs. (A.10)~(A.13) yields

the desired result.
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ABSTRACT

In this paper we investigate the joint conditional distribution of health
(life expectancy) and income growth, and its evolution over time. The
conditional distributions of these two variables are obtained by applying
non-parametric methods to a bivariate non-parametric regression system
of equations. Analyzing the distributions of the non-parametric fitted
values from these models we find strong evidence of movement over time
and strong evidence of first-order stochastic dominance of the earlier
years over the later ones. We also find strong evidence of second-order
stochastic dominance by non-OECD countries over OECD countries in
each period. Our results complement the findings of Wu, Savvides and
Stengos (2008) who explored the unconditional behaviour of these joint
distributions over time.
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1. INTRODUCTION

Even though the concept of human development is a very broad concept,
it certainly would include health and standard of living as two of its
fundamental components. The Human Development Report, first published
in 1990, includes the United Nations Development Programme report of
a composite index for each member country’s average achievements. This
index, the Human Development Index (HDI), covers three basic dimensions
of human development: health, education and standard of living.

An important question for policy makers is how to improve health,
especially in developing countries. Many researchers (see Caldwell, 1986;
Musgrove, 1996) argue that development should focus on income growth,
since higher incomes indirectly lead to health improvements. Others, Anand
and Ravallion (1993) and Bidani and Ravallion (1997) take the stand that
income growth alone is not enough as people’s ability to function and
perform in their economic tasks is affected by their health status and not the
other way around. We intend to contribute to this debate by looking at the
evolution of per capita income and health as measured by life expectancy
over time for a number of countries over a 30-year period.

According to recent World Bank data, over the last 40 years, the world’s
real GDP has increased by more than 100 percent although there exist
important differences among individual country experiences. For the richest
country quartile this increase is more than 150 percent, whereas for the
poorest quartile this number was only 50 percent. Extreme poverty (the
share of population living on less than $1 per day) in developing countries
has fallen by about 20 percent over the last 10 years alone, especially in
East and South Asia where the accelerating growth of China and India has
propelled these regions to be well within the target of the Millennium
Development Goals to reduce in half the fraction of people below the cutoff
of $1 per day by 2015. Between 1960 and 2000 average life expectancy
has increased by 15 years and infant mortality has fallen by more than
50 percent around the world, giving hope that the Millennium Development
Goal of reducing infant and child mortality rates to one-third of their 1990
levels would be met.

The rapid health improvements over the last 40 years raise the question of
the driving forces behind this trend. Most of the empirical studies (see, e.g.
Musgrove, 1996; Filmer & Pritchett, 1999) assume that health improve-
ments are the by-product of higher income as countries with higher income
devote more resources for their health services, something that would
translate into improved health status for their population.
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One of the earlier benchmark studies of the income—health relationship is
Preston (1975) who compared different countries’ life expectancy and per
capita income for different benchmark years (1900, 1930 and 1960) and
proposed the ‘Preston curve’, a non-linear and concave empirical relation-
ship between the two. The concave Preston curve has provided the rationale
for much of the empirical work that has followed. However, simple health—
per capita income relationships may suffer from endogeneity, especially
when it comes to countries on the flat portion of the Preston curve, where
health has reached such an advanced stage where additional improvements
coming from income growth cannot be attained. In that case it would be the
reverse impact from health to income that would be important. Papers such
as Pritchett and Summers (1996) address this issue by relying on an
instrumental variable (IV) methodology. However, the difficulty here is the
choice of instruments as many of those chosen as instruments may not
be appropriate or may be weak, for example, the investment ratio (ratio of
investment to GDP) will itself be endogenous in a health-type production
function.

In a recent paper, Maasoumi, Racine, and Stengos (2007) (MRS
hereafter) examined the entire distribution of income growth rates, as well
as the distributions of parametrically and non-parametrically fitted and
residual growth rates relative to a space of popular conditioning variables
in this literature. In that respect they were able to compare convergence
in distribution and ‘conditional convergence’ as they introduced some
entropy measures of distance between distributions to statistically examine
the question of convergence or divergence. This approach can be viewed
as alternative quantifications within a framework of distributional
dynamics discussed in Quah (1993, 1997). Quah focused on the distribution
of per capita incomes (and relative incomes) by introducing a measure of
‘transition probabilities’, the stochastic kernel, to analyze their evolution.
The MRS paper’s focus on significant features of the probability laws that
generate growth rates goes beyond both the standard ‘f-convergence’ and
‘o-convergence’ in the literature (see Barro & Sala-i-Martin, 2004). The
former concept refers to the possible equality of a single coefficient of a
variable in the conditional mean of a distribution of growth rates. The latter,
while being derivative of a commonplace notion of ‘goodness of fit’, also is
in reference to the mere fit of a conditional mean regression, and is plagued
with additional problems when facing non-linear, non-Gaussian or multi-
modal distributions commonly observed for growth and income distribu-
tions. As has been pointed out by Durlauf and Quah (1999), the dominant
focus in these studies is on certain aspects of estimated conditional means,
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such as the sign or significance of the coefficient of initial incomes, how it
might change if other conditioning variables are included, or with other
functional forms for the production function or regressions. All of the above
studies rely on ‘correlation’ criteria to assess goodness of fit and to evaluate
‘convergence’.

In the first study to use a bivariate framework, Wu, Savvides, and Stengos
(2008) (WSS hereafter) investigate the unconditional evolution of income
per capita and life expectancy using a maximum entropy density estimator.
They consider income and life expectancy jointly and estimate their
unconditional bivariate distribution for 137 countries for the years 1970,
1980, 1990 and 2000. Their main conclusion is that the world joint distribu-
tion has evolved from a bimodal into a unimodal one, that the evolution of
the health distribution has preceded that of income and that global
inequality and poverty has decreased over time. They also find that global
inequality and poverty would be substantially underestimated if the
dependence between the income and health distributions is ignored.

In this paper we extend the work of WSS by estimating the joint
conditional distribution of health (life expectancy) and income growth, and
we examine its evolution over time. The conditional distributions of these
two variables are obtained by applying non-parametric regression methods.
This generalizes the MRS approach to a multidimensional context. Using a
similar data set as WSS, we extend their analysis to go beyond unconditional
distributions. As in the MRS univariate framework we will be examining
conditional distributions by looking into a bivariate system of per capita
income growth and life expectancy growth equations. We will then analyze
the distributions of parametrically and non-parametrically fitted values and
residuals from these models using a bivariate growth framework relative to
the standard conditioning variables that are employed in the literature.
The resulting analysis produces ‘fitted values’ of growth rates and life
expectancy as well as ‘residual growth rates and life expectancy’, which will
be used to look at the question of ‘conditional’ convergence in a bivariate
context. Note that in contrast with the WSS study, which was conducted for
the unconditional joint distribution of per capita income and life expectancy
in levels, our approach will be based on analyzing the conditional joint
distribution of growth rates, which provides new insight into the driving
forces of their joint evolution over time.

The paper is organized as follows. In Section 2 we discuss the data used.
We then proceed to discuss in Section 3 the empirical methodology and
results of both the parametric and non-parametric approaches that we
pursue. Finally, we conclude in Section 4.
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2. DATA

To estimate the global joint distribution of income and life expectancy, we
collected data on 124 countries to construct 10-year averages for the 1970s,
the 1980s and the 1990s for a total of 372 observations. These countries
account for approximately 80 percent of global population. Below we
describe in more detail the data that we use and their source. Similar data
have been used by WSS.

Data on income per capita are in PPP dollars from the Penn World Tables
6.2, and they are used to construct the real per capita GDP growth. This
data base provides estimates in 2000 international prices for most countries
beginning in 1950 until 2004.

For each country in our sample, the income information is reported in the
form of interval summary statistics. In particular, the frequency and average
income of each interval are reported. The number of income intervals differs
between the first three years (1970, 1980 and 1990) and the final year (2000).
Since we construct an average over a 10-year period we do not need to have
the same number of intervals to be the same in each year. For 1970, 1980
and 1990, we used income interval data from Bourguignon and Morrisson
(2002). We construct an average income observation for each country for
each 10-year period. An alternative source of income data for these years
would have been the World Development Indicators (WDI). There are two
reasons for using the Bourguignon/Morrisson data set: first, it provides a
greater number of intervals and thus more detailed information on income
distribution; and, second, our results on income distribution can be
compared to earlier studies." For 2000, Bourguignon/Morrisson do not
provide data and we used income interval data from the WDI.? These data
are based on household surveys of income (in some cases consumption)
from government statistical agencies and World Bank country departments.

Data on life expectancy at birth are also in the form of interval statistics.
The most detailed division of each country’s population by age is in 5-year
intervals from the World Population Prospects compiled by the Population
Division of the United Nations Department of Economic and Social Affairs
(2005). This is the most comprehensive collection of demographic statistics.
For each of the 124 countries, it provides data on the number of persons
in each age group for each of the four years (1970, 1980, 1990 and 2000).
The U.N. Population Division begun compiling estimates of life expectancy
at S-year intervals in 1950. For each country we constructed average life
expectancy over the relevant 10-year period. For more details about the data
construction, see the WSS study.
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3. EMPIRICAL RESULTS

In this paper, we use both parametric and non-parametric techniques to
estimate a bivariate system of equations that describe real per capita growth
and life expectancy growth. The framework of analysis is an extension of the
MRS framework to account for the simultaneous evolution of per capita
income and life expectancy. We proceed by first estimating a bivariate
system of equations parametrically and then continue with the non-
parametric analysis.

3.1. Parametric Results

We first consider a bivariate parametric system of seemingly unrelated
regressions (SUR) to model the growth path of per capita income and life
expectancy. The dependent variables are Y = (Y}, Y>), where Y| is real GDP
per capita growth and Y5 is life expectancy growth. For each country-year,
the list of independent variables is given by X = (X1, X>, ..., X57), where X is
a dummy variable indicating OECD status, X, is a dummy for the 1980s, X3
is a dummy for the 1990s, X, is the log of population growth plus 0.05 to
account for a constant rate of technical change of 0.02 and a depreciation
rate of 0.03, X is the log of investment share of GDP, Xj is the log of real
GDP at the start of the period and X7 is the log of life expectancy at the start
of the period. The last two variables capture initial conditions and their
effect on the transition to a steady state. The specification of the equation
describing the evolution of per capita income is a standard growth regres-
sion of an extended Solow-type model; the evolution of life expectancy is
modelled in a symmetric way.

We begin by estimating a simple benchmark bivariate parametric
regression model that is standard for the bivariate extension of the standard
workhorse model of the empirical literature,

Y =By + B X1+ BrXo+ B3 X3+ BsXa+ BsXs + Be X6 + f7X7 + &

Yo =7+ 0 X1+ 02X+ B3X3 + 74Xs +75Xs5 + 76 X6 +77X7 + &2 0

We estimate the above system of equations as an SUR. However, since
the right-hand-side variables are identical in the two equations, GLS is
identical to estimating each equation separately by OLS. Note that, in
each equation, both GDP per capita and life expectancy enter in lagged
(i.e., initial) values to guard against endogeneity.
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The parameter estimates for specification (1) are given in Tables 1 and 2,
and are in line with results from the extensive univariate growth literature.
For the per capita income growth regression, we find investment having a
positive effect on growth, while population growth seems to have a negative
effect. Initial GDP has a negative effect on growth (although not statistically
significant) suggesting the presence of (statistically weak) conditional or
fB-convergence. The initial life expectancy variable also turns out to be
statistically insignificant. In the context of an income growth regression, life
expectancy stands for a proxy for human capital and as such the latter
often does not appear significant in parametric specifications, especially with
panel data (see Savvides & Stengos, 2008).

In the life expectancy growth equation, investment is also positive and
significant, while population growth is positive but not highly significant.

Table 1. Parameter Estimates for GDP Per Capita
Growth Linear Regression.

Estimate Std. Error t-Value Pr(>|1))
(Intercept) 3.5256 4.2270 0.83 0.4048
oecdl —0.7596 0.3882 —1.96 0.0511
d1980 —1.3791 0.2852 —4.84 0.0000
d1990 —1.0124 0.3088 —3.28 0.0011
pop —2.8323 0.9554 —2.96 0.0032
inv 1.5212 0.2318 6.56 0.0000
initY —0.0423 0.0668 —0.63 0.5265
initL 0.2787 0.9392 0.30 0.7668

Table 2. Parameter Estimates for Life Expectancy
Growth Linear Regression.

Estimate Std. Error t-Value Pr(>|¢))
(Intercept) 2.0159 0.5371 3.75 0.0002
oecdl —0.1911 0.0493 —3.87 0.0001
d1980 —0.1053 0.0362 -291 0.0039
d1990 —0.2767 0.0392 —7.05 0.0000
Pop 0.2118 0.1214 1.74 0.0819
Inv 0.1556 0.0295 5.28 0.0000
initY 0.0092 0.0085 1.08 0.2805

initL —0.5441 0.1193 —4.56 0.0000
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The initial life expectancy variable has a strongly negative effect which
would seem to imply f-convergence in health outcomes. Initial GDP has a
significant effect.

Despite its use in the literature, there is evidence that the above
parametric linear specification (1) is inadequate and misspecified, especially
when it comes to describing the effect of initial conditions on the growth
process. Following the per capita income growth literature we allow the
initial condition variables X4 and X7 to enter as third-degree polynomials
(see Liu & Stengos, 1999), that is,

Yi=By+ B X1+ BaXo+ B3X3 + By Xa+ fsXs
+ BeXo + BrXg + s Xg + BoX7 + BroX7 + B X3 + e
Yy =9+ 71 X1+ 02X2 4+ f3 X5 4 74 X4 + 75X
+ 76X6 + 171Xe + 75X + 99 X7 +710X5 + 711 X5 + & (2)

The results from the above parametric SUR system are given in
Tables 3 and 4. These results are in line with results from the simple
parametric specification (1) discussed above. Investment is found to
positively affect both per capita GDP and life expectancy growth.
Population growth has a negative effect on GDP per capita growth, but
an insignificant effect on life expectancy growth. Interestingly, in both of
the equations, none of the polynomial terms for either initial GDP per

Table 3. Parameter Estimates for GDP Per Capita
Growth Polynomial Regression.

Estimate Std. Error t-Value Pr(>|¢))
(Intercept) —973.9962 869.5863 —1.12 0.2634
oecdl —0.6090 0.4550 —1.34 0.1816
d1980 —1.4345 0.2860 —5.02 0.0000
d1990 —1.0460 0.3183 —3.29 0.0011
Pop —3.2726 1.0003 -3.27 0.0012
Inv 1.3891 0.2417 5.75 0.0000
initY —2.4379 5.8822 —0.41 0.6788
inity? 0.1012 0.3479 0.29 0.7712
inity? —0.0012 0.0068 —0.18 0.8590
initL 744.6284 676.8577 1.10 0.2720
initL? —184.8683 174.8208 —1.06 0.2910

initL? 15.2578 15.0334 1.01 0.3108
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Table 4. Parameter Estimates for Life Expectancy
Growth Polynomial Regression.

Estimate Std. Error t-Value Pr(>|1))
(Intercept) —148.8768 111.0005 —1.34 0.1807
oecdl —0.1997 0.0581 —3.44 0.0007
d1980 —0.1133 0.0365 -3.10 0.0021
d1990 —0.2873 0.0406 —7.07 0.0000
Pop 0.1723 0.1277 1.35 0.1780
Inv 0.1409 0.0309 4.57 0.0000
initY —0.7304 0.7508 —0.97 0.3313
initY? 0.0402 0.0444 0.91 0.3653
inity? —0.0007 0.0009 —0.83 0.4094
initL 118.3105 86.3992 1.37 0.1717
initL? —30.2379 22.3154 —1.36 0.1763
initL? 2.5600 1.9190 1.33 0.1830

capita or initial life expectancy appear to be significant, which may suggest
overparameterization.

We next test these parametric specifications against some unknown non-
parametric alternative. If we denote the parametric model given by the
above system of equations as m,(x;, ), g = 1, 2 and the true but unknown
regression functions by FE,(yglx;), g=1, 2, then a test for correct
specification is a test of the hypothesis Ho: Eg( yeilX;) = mg(x;, p), g =1, 2
almost everywhere versus the alternative Hy: Eg( yoilx;) # mg(x;, f), g =1, 2
on a set of positive measure. That is equivalent to testing that Eg(eg/x;) = 0
almost everywhere, where &, = yoi—m,(x;, ). This implies that for an
incorrect specification, E,(g,lx;) # 0 on a set of positive measure. It is
important to note that this test is not a joint test, that is, the test is applied to
each equation separately.

To avoid problems arising from the presence of a random denominator
in the non-parametric estimator of the regression functions Eg(yglx,),
the test employs a density weighted estimator of the regression function.
To test whether E,(eg|x;) = 0 holds over the entire support of the regression
function, we use the statistic J = Eg{[Eg(sgi\x,;)]zf (x;)} where f{x;) denotes
the density weighting function. Note that J =0 if and only H, is true.
The sample analogue of J, J, is obtained by replacing &,; with the residuals
from the parametric model and both E,(e,/x;) and f(x;) by their respective
kernel estimates, and standardizing. The null distribution of the statistic is
obtained via bootstrapping (see Hsiao, Li, & Racine, 2008 for details).



180 THANASIS STENGOS ET AL.

For specification (1), we are able to reject the null of correct specification
at the 5% and 1% levels, for the income and life expectancy growth
equations, respectively (the test statistics J, are 0.6919 and 4.411, with
bootstrap p-values of 0.0276 and 0.0025, respectively). Similarly, for (2), we
are able to reject at the 5% and 0.1% levels, for the income and life
expectancy growth equations, respectively (the test statistics J,, are 0.3658
and 2.1892, with bootstrap p-values of 0.0401 and 2.22e-16, respectively).
We use 399 bootstrap replications throughout the paper.

3.2. Non-Parametric Results

Next, we use local linear estimation to (separately) estimate the non-
parametric regression models

Yi=g/(X)+e
Yy =g(X)+ &

We use least squares cross-validation techniques to obtain the appropriate
bandwidths for the discrete and continuous regressors (see Racine & Li,
2004). This approach allows for interactions among all variables and also
allows for non-linearities in and among variables. The method has the
additional feature that if there is a linear relationship in a variable, then
the cross-validated smoothing parameter will automatically detect this.
A second-order Gaussian kernel is used for the continuous variables, while
the Aitchison and Aitken kernel is used for the unordered categorical
variable (OECD status) and the Wang and Van Ryzin kernel is used for the
ordered categorical variable (decade). For details, see Racine and Li (2004).
In Figs. 1-4, we summarize the non-parametric results using partial
regression plots. These plots simply present the estimated multivariate
regression function through a series of bivariate plots in which the regressors
not appearing on the horizontal axis of a given plot have been held constant
at their respective (within group and decade) medians. For example, in the
upper-left plot in Fig. 1, we plot the estimated level of GDP per capita
growth conditioned on population growth for just OECD members in the
1970s holding all the other conditioning variables at their respective median
levels for OECD members in the 1970s (the estimates are obtained using the
pooled sample of OECD and non-OECD members, but the fitted values are
plotted for each group separately). In this way we are able to visualize the
multivariate regression surface via a series of two-dimensional plots.
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Fig. 1. GDP Per Capita Growth Non-Parametric Partial Regression Plots for
OECD Countries. The First, Second and Third Columns are for the 1970s, 1980s and
1990s, Respectively.

The level of investment appears to have a (linearly) positive and stable
effect across decade and country group for both equations. Population
growth appears to be unrelated to the dependent variables except in the
1980s, where it is slightly negative for the GDP per capita growth equation
and slightly positive for the life expectancy growth equation (for both
OECD and non-OECD members). For the GDP per capita growth
equation, initial GDP appears to have a slightly negative effect in the
1970s, but little effect in either the 1980s or the 1990s (for both OECD and
non-OECD members). For OECD members, initial life expectancy seems to
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Fig. 2. GDP Per Capita Growth Non-Parametric Partial Regression Plots for Non-
OECD Countries. The First, Second and Third Columns are for the 1970s, 1980s and
1990s, Respectively.

have a negative effect on GDP per capita growth in the 1980s, but little
effect in the other decades. However, for non-OECD members, the effect of
initial life expectancy on GDP per capita growth is mixed: The effect seems
to be positive in the 1970s, negative in the 1980s and non-existing in the
1990s. For the life expectancy growth equation, initial GDP appears to have
a slight negative effect in all decades and groups. However, initial life
expectancy appears to have a generally negative, but non-linear effect in all
decades and groups.
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Fig. 3. Life Expectancy Growth Non-Parametric Partial Regression Plots for
OECD Countries. The First, Second and Third Columns are for the 1970s, 1980s and
1990s, Respectively.

To further examine how the joint distribution of per capita GDP
and life expectancy growth rates differ between groups and over time,
we use the notion of stochastic dominance, which is defined as follows.
We say distribution G stochastically dominates distribution F at first
order if

F(x1,x2) = G(x1,x2)

for all (xq, x5).
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Fig. 4. Life Expectancy Growth Non-Parametric Partial Regression Plots for Non-
OECD Countries. The First, Second and Third Columns are for the 1970s, 1980s and
1990s, Respectively.

More generally, we can say that distribution F dominates distribution
G stochastically at order s (an integer) if

Dy(x1,x2) < Di(x1,x2)

for all (x;, x,), where Dlp(xl,xz) = F(x1,x2), and Dy(xy,x7) is defined
recursively as

X1 X2
Di(x1,x2) = / / DNy, wo)duyduy, s > 2
o Jo
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D, and DY, are defined analogously. In what follows, we will denote this
relation by F=,G.

To empirically test such a relationship, we use the approach of McCaig
and Yatchew (2007). To test the null hypothesis that F= G, these authors
introduce the test statistic

12
Trg= {/ [W(Xl,xz)]zd"ldvz}

where ¥’ (x1, x2) = max{D%(x, x2) — D}(x1, x2),0}. Of course, when the null
is true, 7 is equal to zero.

In practice, this test involves estimating 7' and testing whether it is
statistically different from zero. This process will involve estimating y/*
(x1, x») over a set of grid points on the common support of the two distribu-
tions under consideration. The p-value of this test statistic is obtained via
bootstrapping (see McCaig & Yatchew, 2007, for details).

To make such comparisons in a conditional manner, we use the fitted
values from the non-parametric regressions considered above. The estimated
joint density and distribution functions of these fitted values are shown in
Figs. 5 and 6, respectively. We separate the observations by group and
decade; that is, we consider six unique groupings (OECD and non-OECD
members for the 1970s, OECD and non-OECD members for the 1980s and
OECD and non-OECD members for the 1990s). As seen in Fig. 5, the
distribution of bivariate conditional growth rates has become more
concentrated within each group (OECD and non-OECD members) over
time. Also, it is interesting to note that the (conditional) GDP per capita
growth rates tend to be higher among OECD members, but that the
(conditional) life expectancy growth rates tend to be higher among non-
OECD members. However, these differences appear to be diminishing
over time.

We now proceed to test for stochastic dominance of the fitted
(conditional) bivariate growth rates between the two groups of countries
under consideration: OECD members and non-OECD members. The values
of the test statistics and their bootstrap p-values are presented in Table 5.
As can be seen, we can strongly reject the null of first-order stochastic
dominance of OECD members over non-OECD members (and vice-versa)
in each of the three decades under consideration. We can also strongly reject
the null of second-order stochastic dominance of OECD members over non-
OECD members in each of the three decades, but not vice-versa. That is, we
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Table 5. Stochastic Dominance Tests: Between Groups.

1970s 1980s 1990s
OECD >, Non-OECD 4.2802 3.4902 1.8601
0.0000 0.0000 0.0000
Non-OECD =, OECD 1.0816 1.9978 2.1026
0.0404 0.0000 0.0000
OECD >, Non-OECD 27.8089 23.6515 10.0243
0.0000 0.0000 0.0000
Non-OECD =, OECD 0.0742 0.0513 1.761
0.9495 0.9596 0.5051

Note: For each result, the first line is the value of the test statistic, while the second line is the
bootstrap p-value.

Table 6. Stochastic Dominance Tests: Between Decades.

OECD Non-OECD
1970s 3=, 1980s 0.0000 0.0000
0.9393 0.9899
1980s =, 1970s 2.0061 3.1569
0.0000 0.0000
1980s =, 1990s 0.4374 0.4291
0.4545 0.2929
1990s 5=, 1980s 1.3846 3.0810
0.0000 0.0000
1970s 5=, 1990s 0.0000 0.0000
0.8788 0.9899
1990s 5= 1970s 2.9433 5.2524
0.0000 0.000

Note: For each result, the first line is the value of the test statistic, while the second line is the
bootstrap p-value.

are unable to reject the null of second-order stochastic dominance of non-
OECD members over OECD members.

Next, we consider testing for first-order stochastic dominance of the same
fitted values between the three decades under consideration: the 1970s, 1980s
and 1990s. The values of the test statistics and their bootstrap p-values are
presented in Table 6. For both the OECD and non-OECD groups, we are
unable to reject the null of first-order stochastic dominance of the 1970s
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over the 1980s, and the 1980s over the 1990s (and, of course, the 1970s over
the 1990s).

These results somewhat agree with the findings of MRS, who show that
the fitted (conditional) growth rates of per capita income have ‘deteriorated’
over time for OECD countries. However, we also want to point out that the
MRS analysis is univariate, and as pointed out in WSS the overall results will
underestimate substantially the degree of global inequality and poverty if one
ignores the dependence between the two measures of welfare. Note, however,
that the later analysis was conducted for the unconditional joint distribution
of per capita income and life expectancy (levels), whereas here we analyze the
conditional joint distribution of growth rates. The implication is that there
was a more ‘equal’ joint distribution of growth rates in the earlier years than
that in the later ones, not necessarily faster growth in the earlier years. Note
that the interpretation of this result for growth rates is different from that for
levels. For the case of the joint distribution of growth rates, the results
suggest that in the earlier years ‘convergence’ between developing and more
developed countries would be more difficult to achieve since countries in
these groups would be growing more or less at equal rates. It is only in the
later years that a more ‘unequal’ joint distribution of growth rates would
allow for faster growing developing countries being able to catch up with
slower growing developed countries. Hence, the results that we find are
complementary to the ones found in WSS for levels, where the level of overall
(unconditional) inequality in levels decreased over time. Overall, it seems that
countries developed quite differently in the 1980s and 1990s with some
jumping ahead and others falling behind. We leave it for future research to
further explore the issue for subgroups of countries, such as OECD and non-
OECD and especially African and non-African countries (see, e.g. Masanjala
& Papageorgiou, 2008).

4. CONCLUSION

In this paper we have estimated the joint conditional distribution of health
(life expectancy) and income growth and examined its evolution over time.
The conditional distributions of these two variables is obtained by applying
non-parametric methods to a bivariate non-parametric regression system of
equations. Using a similar data set as WSS, we extend their analysis to go
beyond unconditional distributions. Extending the MRS univariate frame-
work we have looked at conditional distributions of a bivariate system of
per capita income growth and life expectancy growth equations. Analyzing
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the distributions of the non-parametric residuals from these models we
establish that there is strong evidence of movement over time in the joint
conditional bivariate densities of per capita growth and life expectancy. We
also find strong evidence of first-order stochastic dominance of the earlier
years over the later ones. Our results complement the findings of WSS who
explored the unconditional behaviour of these joint distributions over time.
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NOTES

1. Bourguignon and Morrisson (2002) provide data on income distribution for
almost two centuries, the last three years being 1970, 1980 and 1992. We used their
1992 income data to represent 1990 in our data set (see also the next footnote). They
provided data for very few individual countries but in most cases for geographic
groups of countries (see their study for group definitions). Our study is based on
country-level data. Therefore, where individual-country interval data were unavail-
able we used the corresponding geographic-group data.

2. Income interval data from the WDI are available only for selected years. When
referring to data for 2000, we chose the year closest to 2000 with available data
(in most cases the late 1990s). This practice is widely adopted in the literature as a
practical matter because interval data are sparse. Many researchers acknowledge
that it would not affect results much because income share data do not show wide
fluctuations from year to year.
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A NONPARAMETRIC
QUANTILE ANALYSIS OF
GROWTH AND GOVERNANCE
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ABSTRACT

Conventional wisdom dictates that there is a positive relationship between
governance and growth. This article reexamines this empirical relation-
ship using nonparametric quantile methods. We apply these methods
on different levels of countries’ growth and governance measures as
defined in World Governance Indicators provided by the World Bank.
We concentrate our analysis on three of the six measures: voice and
accountability, political stability, and rule of law that were found to be
significantly correlated with economic growth. To illustrate the nonpara-
metric quantile analysis we use growth profile curves as a visual device.
We find that the empirical relationship between voice and accountability,
political stability, and growth are highly nonlinear at different quantiles.
We also find heterogeneity in these effects across indicators, regions,
time, and quantiles. These results are a cautionary tale to practitioners
using parametric quantile methods.
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1. INTRODUCTION

Conventional wisdom dictates that countries with higher levels of
governance also have higher growth.'! This positive relationship has
motivated policy makers to implement growth policies that target change
in governance.? However, recent work by Rodrik (2006) has highlighted that
increasing governance may not necessarily increase a country’s growth level.
For example, improving governance may divert resources from actual
binding constraints. As a result, Hausmann, Rodrik, and Velasco (2008)
advocate the need to perform growth diagnostics to ascertain the binding
constraints on growth.

Given what is stake for development and aid policies, robust inference
regarding the relationship between governance and growth is needed. Fig. 1
illustrates the economic growth patterns for the world in 2004. As expected,
Western Europe and North America have low-to-moderate rates of growth
while Russia, the Former Soviet Republics, and China are experiencing high
rates of growth.

The study by Kaufmann and Kraay (2002) found that per capita incomes
and the quality of governance are positively correlated across countries.
They adopt an instrumental variable (IV) method in order to separate the
correlation into: (i) a strong positive causal effect running from better
governance to higher per capita incomes, and (ii) a weak and even negative
causal effect running in the opposite direction from per capita incomes
to governance. However, an illustration of Rule of Law (a measure of

O <2% @ (2%,3.5%] @ (3.5%,4.5%] M (4.5%,7%] = >7%

Fig. 1. Economic Growth Patterns, 2004. Note: Countries that are shaded in white
do not have data for 2004.
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governance) does not completely support this hypothesis; see Fig. 2. The
Rule of Law patterns are reversed. Western Europe and North America
have high rating of Rule of Law while for Russia, the Former Soviet
Republics, and China the measures are extremely low. These graphs reveal
that the correlation between governance and growth is not necessarily
positive.

Huynh and Jacho-Chavez (2009) argue that these somehow controversial
and contradictory findings can potentially be explained by the shortcomings
of the parametric assumptions they rely on. The present work extends
Huynh and Jacho-Chavez’s (2009) framework to the nonparametric
estimation of conditional quantiles functions. This is important because
unlike conditional mean regression, nonparametric conditional quantiles
model the relationship between governance measures at each level of
growth a country might be. This provides a complete picture of the entire
conditional distribution of this important relationship without imposing
strict parametric restrictions. In particular the assumption of linearity,
additivity, and no interaction among variables are relaxed when estimating
the following object:

Ogrowtn, [TIREGION;, DT,, voice;, stability,,

effectiveness;,, regulatory,,, law;, corruption,,] )

where

Q, [tIxi] = inf{y, |[F(y;Ixi) = 1} = F~'(z]x;)

0<-1 ®(-1-05] ® (-050] = (0,1] ™ >1

Fig. 2. Rule of Law Patterns, 2004. Note: Countries that are shaded in white do not
have data for 2004.
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represents the conditional z-quantile of y;, given x;; F(-|-) denotes the
conditional cumulative distribution function (CDF) of y;, given x;,; and F -1
(-1-) is inverse. The conditioning variables REGION; represents a
categorical unordered variable indicating the region (1, 2, 3, 4, 5) to which
country i belongs; DT, is another ordered categorical variable indicating
the year of measurement (1996, 1998, 2000, 2002, 2003, 2004, 2005, 2006);
and the governance measures voice;, stability,, effectiveness;, regulatory;,
law;,, and corruption;, are defined in Section 2.
We summarize our findings in the following two points:

e Parametric hypothesis testing indicates that the coefficients in a linear
specification are the same across quantiles for all governance variables.

e Nonparametric conditional quantile estimation shows that the relationship
between growth and governance is not necessarily positive and/or
monotonic. The relationship exhibits heterogeneity across regions and time.

Finally, this article also demonstrates that fully nonparametric methods
are not only useful, but they are also computationally feasible in a parallel
computing environment. As suggested by Racine (2002), all numerical
algorithms in this article use parallel computing® in the statistical environ-
ment Jacho-Chavez and Trivedi (2009) provide an overview of this
important computational tool for empirical researchers. All the code and
data for this article are available upon request from the authors.

The rest of this article is organized as follows. Section 2 briefly discusses
the data used in the study. The empirical findings are described and
discussed in Section 3 while Section 4 offers concluding remarks.

2. GOVERNANCE AND GROWTH DATA

The World Governance Indicators are provided by the World Bank and is
updated annually with the most recent iteration by Kaufmann, Kraay, and
Mastruzzi (2006). The six governance measures are:*

1. Voice and accountability (voice;) measures the extent to which a
country’s citizens are able to participate in selecting their government, as
well as freedom of expression, freedom of association, and a free media.

2. Political stability and absence of violence (stability,,) measures the
perceptions of the likelihood that the government will be destabilized or
overthrown by unconstitutional or violent means, including domestic
violence and terrorism.
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3. Government effectiveness (effectiveness;) measures the quality of public
services, the quality of the civil service and the degree of its independence
from political pressures, the quality of policy formulation and
implementation, and the credibility of the government’s commitment to
such policies.

4. Regulatory quality (regulatory;,) measures the ability of the government
to formulate and implement sound policies and regulations that permit
and promote private sector development.

5. Rule of Law (law;,) measures the extent to which agents have confidence
in and abide by the rules of society, in particular the quality of contract
enforcement, the police, and the courts, as well as the likelihood of crime
and violence.

6. Control of corruption (corruption;,) measures the extent to which public
power is exploited for private gain, including petty and grand forms of
corruption, as well as ““‘capture” of the state by elites and private interests.

The data is provided for the period 1996-2006. Before 2002 the data was
collected on a biannual basis. More details about these variables and their
construction can be obtained by perusing the World Bank Governance
Indicators URL.’

Data on economic growth is drawn from the Total Economy Database.®
This database is provided by the Conference Board and Groningen Growth
and Development Centre, and it is an extension of the World Economy:
Historical Statistics provided by Angus Maddison. It extends the Maddison
data from 2003 to 2006. We use this database since the Maddison data is
widely used by researchers studying growth. Tables 1-5 list all countries and
years under study. The growth rate is calculated as the two-year difference
in logarithm of real GDP, and then converted to an annualized growth rate.
The data consists of yearly observations of 125 countries classified in five
regions. A total of 913 observations are used in this study.

As suggested by Huynh and Jacho-Chavez (2007), conditional density
plots are constructed in lieu of descriptive statistics; see Fig. 3. The
conditional density plots are computed for growth rates and three different
measures (voice;, stability;, law;,) during three different years (1996, 2000,
2004). Unlike standard tables, these plots show a more complete picture of
the underlying processes generating growth;,, voice;, stability;, and law,, in
all regions. For example, there is large dispersion at low levels of voice;, in
the relationship between growth and voice;;. The dispersion is more pro-
nounced for stability,;, and law;,. Also, there is some evidence of bimodality
in the year 2000 at low levels of governance. This twin peaks effect is
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Table 1. Western Europe and Offshoots.

Country Code Data Coverage Region
Australia AUS 1996-2006 1
Austria AUT 1996-2006 1
Belgium BEL 1996-2006 1
Canada CAN 1996-2006 1
Cyprus CYP 19962006 1
Denmark DNK 1996-2006 1
Finland FIN 19962006 1
France FRA 1996-2006 1
Germany DEU 1996-2006 1
Greece GRC 1996-2006 1
Iceland ISL 1996-2006 1
Ireland IRL 1996-2006 1
Italy ITA 1996-2006 1
Luxembourg LUX 19962006 1
Malta MLT 1996-2006 1
Netherlands NLD 1996-2006 1
New Zealand NZL 1996-2006 1
Norway NOR 1996-2006 1
Portugal PRT 1996-2006 1
Spain ESP 1996-2006 1
Sweden SWE 1996-2006 1
Switzerland CHE 1996-2006 1
United Kingdom GBR 1996-2006 1
United States USA 1996-2006 1

reminiscent of what previous research using nonparametric methods have
found (see, e.g., Quah, 1993; Jones, 1997; Beaudry, Collard, & Green, 2005).

3. EMPIRICAL METHODOLOGY

This section describes the nonparametric empirical methodology utilized in
this article. First, we will estimate a parametric specification and then move
onto the nonparametric specification. The object of interest in this article is
the conditional t-quantile function (1). The estimation of function (1) is of
great importance, because it measures how growth of country i in quantile ,
region REGION,;, at year DT, is when its governance measures equal
specific values of voice;, stability;, effectiveness;;, regulatory;, law;, and
corruption;,. In other words, it provides a way to pin down the effect of
governance in country’s growth at T = 25%, 50%, and 75%, for example.
We now proceed to estimate various models for function (1).
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Table 2. Eastern Europe and Offshoots.
Country Code Data Coverage Region
Albania ALB 1996-2005 2
Armenia ARM 1996-2005 2
Azerbaijan AZE 1996-2005 2
Belarus BLR 1996-2005 2
Bosnia-Herzegovina BIH 19962005 2
Bulgaria BGR 1996-2006 2
Croatia HRV 1996-2006 2
Czech Republic CZE 1996-2006 2
Estonia EST 1996-2006 2
Georgia GEO 1996-2005 2
Hungary HUN 1996-2006 2
Kazakhstan KAZ 1996-2005 2
Kyrgyz Republic KGZ 1996-2005 2
Latvia LVA 1996-2006 2
Lithuania LTU 1996-2006 2
Macedonia MKD 1996-2005 2
Moldova MDA 1996-2005 2
Poland POL 1996-2006 2
Romania ROM 1996-2006 2
Russia RUS 1996-2005 2
Serbia and Montenegro YUG 1996-2005 2
Slovakia SVK 1996-2006 2
Slovenia SVN 1996-2006 2
Tajikistan TJK 1996-2005 2
Turkmenistan TKM 1996-2005 2
Ukraine UKR 1996-2005 2
Uzbekistan UZB 1996-2005 2

3.1. Parametric Models

To provide a benchmark for the nonparametric approach, the following

parametric model of 1 is estimated:

Qgrowin, [TIREGION;, DT, voice;, stability;,, effectiveness;,, regulatory;,

law;,, corruption,,]

8
= ByREGION; + >~ B,DT, + fyvoice; + Bostability,

+ B, effectiveness;, + f§j,regulatory;, + f5;3law; + f,4corruption;,

=1

2

Table 6 provides the estimates of fs in Eq. (2) at different quantile levels.
The model is estimated using the ““check function” approach for quantile
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Table 3. Latin America & Caribbean.

Country Code Data Coverage Region
Argentina ARG 1996-2005 3
Barbados BRB 1996-2005 3
Bolivia BOL 1996-2005 3
Brazil BRA 1996-2005 3
Chile CHL 19962005 3
Colombia COL 1996-2005 3
Costa Rica CRI 1996-2005 3
Cuba CUB 1996-2005 3
Dominican Republic DOM 1996-2005 3
Ecuador ECU 1996-2005 3
Guatemala GTM 1996-2005 3
Jamaica JAM 1996-2005 3
Mexico MEX 1996-2006 3
Peru PER 1996-2005 3
Puerto Rico PRI 1998-2005 3
St. Lucia LCA 1998-2005 3
Trinidad and Tobago TTO 1996-2005 3
Uruguay URY 1996-2005 3
Venezuela VEN 19962005 3

regression as in Koenker and Bassett (1978). The results find that the
variables: voice;, law;, and corruption;, are negatively related to growth.
The significance varies across quantiles; voice;, is insignificant at t = 0.25,
while corruption;, is not significant at 7 =0.75. The other governance
measures, stability;, effectiveness;, and regulatory;,, are positively related
to growth. At t = 0.25, stability,, is insignificant while regulatory;, is only
significant at t = 0.50. The time dummies are significant for various years
for t =0.25, 0.50, while for T =0.75 only 2002 is significant. Across all
quantiles the Eastern Europe and Offshoots and Asia dummy is positive and
significant, while Africa is negative and significant for T = 0.75.

There are some differences between some of the governance measures
across quantiles. To verify whether these differences are significant, we
proceed to test’ whether their associated coefficients are the same across
different quantiles, that is,

Ho : Broas = Broso = Bros

where /=9, ..., 14 in (2). The results are summarized in Table 7.
The large p-values indicate that we fail to reject the null hypothesis
that the coefficients are not different across different quantiles for each
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Table 4. Asia.

201

Country Code Data Coverage Region
Bahrain BHR 1996-2005 4
Bangladesh BGD 1996-2005 4
Cambodia KHM 1996-2005 4
China CHN 1996-2006 4
Hong Kong HKG 1996-2005 4
India IND 1996-2006 4
Indonesia IDN 1996-2005 4
Iran IRN 1996-2005 4
Iraq IRQ 1996-2005 4
Israel ISR 1996-2005 4
Japan JPN 1996-2006 4
Jordan JOR 1996-2005 4
Korea, South KOR 1996-2006 4
Kuwait KWT 19962005 4
Malaysia MYS 1996-2005 4
Myanmar MMR 1996-2005 4
Oman OMN 1996-2005 4
Pakistan PAK 1996-2005 4
Philippines PHL 19962005 4
Qatar QAT 1996-2005 4
Saudi Arabia SAU 19962005 4
Singapore SGP 1996-2005 4
Sri Lanka LKA 1996-2005 4
Syria SYR 1996-2005 4
Taiwan TWN 1996-2005 4
Thailand THA 1996-2005 4
Turkey TUR 1996-2006 4
United Arab Emirates ARE 1996-2005 4
Vietnam VNM 1996-2005 4
Yemen YEM 19962005 4

governance measure. Given these parametric results we turn our attention

now to the nonparametric quantiles.

3.2. Nonparametric Models

We proceed to estimate object (1) as
Qgrowth”[rlREGIONi, DT,, voice;, stability,,, effectiveness;,,
regulatory;,, law;, corruption;,]
= ¢,(REGION;, DT,, voice;, stability,,, effectiveness;,,

regulatory,,, law;, corruption;,),

(©)
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Table 5. Africa.

Country Code Data Coverage Region
Algeria DZA 1996-2005 5
Angola AGO 1996-2005 5
Burkina Faso BFA 1996-2005 5
Cameroon CMR 1996-2005 S
Egypt EGY 19962005 5
Ethiopia ETN 1996-2005 5
Ghana GHA 19962005 5
ivory Coast CIV 1996-2005 5
Kenya KEN 1996-2005 5
Madagascar MDG 1996-2005 5
Malawi MWI 19962005 5
Mali MLI 1996-2005 5
Morocco MAR 1996-2005 5
Mozambique MOZ 1996-2005 5
Niger NER 1996-2005 5
Nigeria NGA 1996-2005 5
Senegal SEN 1996-2005 5
South Africa ZAF 1996-2005 5
Sudan SDN 1996-2005 5
Tanzania TZA 19962005 5
Tunisia TUN 1996-2005 5
Uganda UGA 1996-2005 5
Zaire ZAR 1996-2005 5
Zambia ZMB 1996-2005 5
Zimbabwe ZWE 1996-2005 5

where ¢.(-) is assumed to be a smooth continuous but otherwise unknown
function. Nonparametric methods are more flexible since they require
minimal assumptions on the function ¢,; see the appendix. Eq. (2) is a
special case of Eq. (3); it will therefore capture both linear and nonlinear
relationships automatically without the need of a model search.

We use the estimator proposed in® Li and Racine (2008) with bandwidths
chosen as suggested9 therein; see Li and Racine (2007, Section 6.5,
pp- 193-196). The panel structure of the data is implicitly taken into
account by this nonparametric estimator, because it works by averaging
data points locally close to the point of interest. That is, it automatically
gives larger weights to countries in the same region and/or year of
measurement,'® allowing for heterogenous time-varying effects across
regions in the nonparametric sense akin to the inclusion of dummy
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1996

0
growth -0.1

Fig. 3. Conditional Density Plots. Note: Bandwidths were chosen by maximum

likelihood cross-validation; see Li and Racine (2007, Section 5.2.2, pp. 160-162).

The resulting values are 0.0147 for growth;,, 0.2146 for REGION;,, 0.7787 for DT,,
0.7517 for voice;;, 0.3402 for stability;,, and 0.2375 for law,,.

Table 6. Parametric Tests.

Variable p-Value
voice;, 0.4364
stability;, 0.4691
effectiveness;, 0.1182
regulatory;, 0.5417
law;, 0.9787

corruption;, 0.6073
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Table 7. Parametric Quantile Regression.
t=0.25 7 =10.50 t=0.75
Coef. Std. Error Coef. Std. Error Coef. Std. Error
REGION;
Western Europe & - - - - - -
Offshoots
Eastern Europe & 0.0223  (0.0051)*** 0.0240 (0.0039)*** 0.0278 (0.0049)™**
Offshoots
Latin America & —0.0028  (0.0051) —0.0049 (0.0039) —0.0047 (0.0052)
Offshoots
Asia 0.0108  (0.0048)** 0.0099 (0.0037)™*** 0136 (0.0046)™**
Africa 0.0042  (0.0053) —0.0029 (0.0041) —0.0101 (0.0054)*
DT,
1996 - - - - - -
1998 0.0010  (0.0042) —0.0012 (0.0032) 0.0002 (0.0041)
2000 0.0050  (0.0043) 0.0016 (0.0032) —0.0003 (0.0041)
2002 —0.0044  (0.0043) —0.0095 (0.0032)*** —0.0083 (0.0041)**
2003 —0.00004 (0.0042) —0.0077 (0.0033)**  —0.0031 (0.0041)
2004 0.0102  (0.0043)** 0.0059 (0.0032)* 0.0059 (0.0041)
2005 0.0169  (0.0042)***  0.0120 (0.0033)***  0.0067 (0.0041)
2006 0.0138  (0.0061)** 0.0045 (0.0047) 0.0051 (0.0060)
voice;, —0.0033  (0.0026) —0.0068 (0.0021)*** —0.0056 (0.0026)**
stability;, 0.0034  (0.0023) 0.0068 (0.0018)***  0.0077 (0.0023)***
effectiveness;, 0.0285  (0.0048)*** 0.0206 (0.0037)*** 0.0148 (0.0047)***
regulatory;, 0.0031  (0.0035) 0.0051 (0.0024)**  0.0009 (0.0031)
law;, —0.0173  (0.0057)*** —0.0182 (0.0044)*** —0.0173 (0.0055)***
corruption; —0.0095  (0.0044)**  —0.0065 (0.0035)*  —0.0038 (0.0044)
Constant —0.0030  (0.0049) 0.0208 (0.0037)*** 0.0384 (0.0047)***

Heteroskedasticity-robust standard errors are

significant at 5%, and (*) significant at 10%.

in parenthesis. (

ok

) significant

at 1%, (%)

variables would in the standard parametric set-up (see, e.g., Racine, 2008,
Section 6.1, p. 59). More details concerning the estimating strategy can be
found in the appendix.

Unfortunately, we have been unable to find a suitable nonparametric
counterpart of these parametric tests performed above. We leave nonpara-
metric quantile testing for future work. However, we draw upon our results
in Huynh and Jacho-Chavez (2009) for the nonparametric conditional
mean and focus on the same measures: voice;, stability;,, and law;, from

now onwards.
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3.3. Growth Profile Curves

We illustrate the results using partial regression plots because non
parametric methods do not yield scalar estimates of marginal effects.
As in Huynh and Jacho-Chavez (2009), we call these partial regression
plots — growth profile curves (GPC). As an illustrative example, a simple
case is presented to give the reader some intuition. The top plot of Fig. 4
displays the expected growth of a country in Eastern Europe and
Offshoots in 2002, and in the 50% quantile of the growth distribution, as
a function of voice;; and stability,,. Once we condition on a specific value
of voice;, let’s say, each black line on the surface represents a growth
profile as a function of the remaining variables, in this case stability;,.
The conditioning values are o = 25%, 50%, and 75% sample quantiles of
each governance measure. These curves are put together into two-
dimensional plots at the bottom of Fig. 4. These curves are informative
about the growth path of a country in the 50% quantile with respect to a
particular governance measure, once we condition the remaining variables
to a prespecified value. We call these paths GPC. Intuitively, these curves
are just slices of the fitted nonparametric hyperplane conditional on some
variables.

These GPC can be generalized to multidimensional settings, that is,
more than two conditioning variables, as it is implied by the empirical object
of interest (Eq. 3). Figs. 5-7 show the results. Each plot in each figure
displays a visualization of the estimated ¢., ie. ¢, in 3 at t=25%
(first column), 50% (second column), and 75% (third column), and
different conditioning variables. For example, the top row of plots in Fig. 5
shows

4. (REGION; = Western Europe and Offshoots, DT,, voice;,
stability;, = Qgpiiity, (0-5), effectiveness; = Ocfrectiveness; (0-5)
regulatory; = Oregutatory, (0-5), lawi; = Qyyy, (0.5), corruption;,
= Qcorruption, (0-5))

as a function of voice; for each value of DT,, where Q, («) represents the
a-sample quantile of variable x;, across both i and . Figs. 6 and 7 were
constructed accordingly by resetting the varying variable to be stability,, and
law;,, respectively.

Figs. 8-10 present a visualization of 7= 50%, but only when the
remaining indicators are held at 0 for years 1996, 2000, and 2004,
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Western Europe & Offshoots

Fig. 5. Growth Profile Curves — Voice and Accountability. Note: Graphs represent

growth profile curves at: T =0.25 (first column), 7 = 0.5 (second column), and

7 = 0.75 (third column), when all continuous covariates but voice;, are kept constant
at their respective sample median.
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Western Europe & Offshoots

RN
R
RN

N
R

Fig. 6. Growth Profile Curves — Political Stability. Note: Graphs represent growth

profile curves at: t = 0.25 (first column), T = 0.5 (second column), and = = 0.75 (third

column), when all continuous covariates but stability;, are kept constant at their
respective sample median.
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Western Europe & Offshoots

Fig. 7. Growth Profile Curves — Rule of Law. Note: Graphs represent growth profile

curves at: T =0.25 (first column), T = 0.5 (second column), and 7= 0.75 (third

column), when all continuous covariates but law; are kept constant at their
respective sample median.
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Fig. 8. 50% Quantile — Growth Profile Curves, 1996. Note: Dotted lines represent

90% bootstrap confidence intervals based on 499 bootstrap replications. They are

not symmetric because they estimate stochastic variation of hyperplanes, and not of
univariate functions.

respectively. They also present 90% bootstrap confidence interval based on
499 wild bootstrap replications. These conservative bootstrap confidence
intervals are not symmetric in Figs. 810 because they estimate stochastic
variation of hyperplanes, and not of univariate functions.
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Fig. 9. 50% Quantile — Growth Profile Curves, 2000. Note: Dotted lines represent

90% bootstrap confidence intervals based on 499 bootstrap replications. They are

not symmetric because they estimate stochastic variation of hyperplanes, and not of
univariate functions.

3.4. Discussion

To illustrate the results of the nonparametric regression, GPC are
constructed for the five regions of the world: Western Europe and
Offshoots, Eastern Europe and Offshoots, Latin America and Caribbean,
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Asia, and Africa. Each plot is conditioned on the year and governance
measure for each of the three significant variables as found in Huynh and
Jacho-Chavez (2009) (see, e.g., Alexeev, Huynh, & Jacho-Chavez, 2009).
For brevity, we present the results for the quantiles (z = 0.25, 0.50, 0.75)
conditioned on o = 0.50. We have also computed the quantile graphs
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conditioning on o = 0.25, 0.75 quantile;, these extra results, data, R code,
and full set of confidence intervals are available on request.

3.4.1. Voice and Accountability

Fig. 5 illustrates the results for voice;,. There are differences in GPC across
T-quantiles in terms of regions. For Western Europe and Offshoots the GPC
is relatively flat for T = 0.25, 0.50 quantile, but in 7 = 0.75 there is some
variation at the lower quantities of voice;,. This pattern is mirrored with
Eastern Europe and Offshoots, Latin America and Caribbean, and Asia.
For Asia the effect is most dramatic. However, for Africa the effect is
uniformly flat across quantiles. From the parametric testing the quantile
coefficients were deemed similar, but the GPC reveal interestingly that
voice;; is variable across regions. The nonparametric quantile methods are
able to capture the complex interactions between voice;;, region, and year
effects without parameterizing interaction terms. Therefore, the attractive-
ness of nonparametric quantile methods comes through.

3.4.2. Political Stability

Fig. 6 illustrates the results for stability;,. The nonparametric conditional
quantiles GPC are similar across quantiles for reach region. This result
accords with the parametric quantile testing. However, across regions the
GPC are different. The Western Europe and Offshoots, not surprisingly,
have a relative smooth albeit nonmonotonic shape. Eastern Europe and
Offshoots have more volatility in GPC especially for the earlier years to
illustrate the immense structural changes in these countries. The GPC for
Latin American and Caribbean and Asia are smooth for t = 0.75, but for
the lower quantile there is much volatility in 1996 and 1998, which were
the times of the various financial/banking crises in these regions. Africa’s
GPC are also smooth and display a positive relationship at low levels of
governance. At higher governance measures, the relationship is negative.

3.4.3. Rule of Law

Fig. 7 illustrates the results for law,,. The patterns are stark, the variation in
the GPC are amplified as we move from 7 = 0.25 to t = 0.50 quantile. In
fact, the relationship between law;, and growth is negative (similar to the
parametric model). However, the GPC show that there is considerable
variation in the quantile function. There is heterogeneity in year and
regions. In particular, Eastern Europe and Offshoots and Africa display
large amounts of variation. Compared to the nonparametric conditional
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mean results in Huynh and Jacho-Chavez (2009) the conditional quantiles
for law;, show a clearer pattern.

3.5. Case Study: Latin America and Caribbean and Africa

We focus on Latin America and Caribbean and Africa in the year 2004 to
illustrate the efficacy of nonparametric conditional quantile estimation.
Both regions display interesting GPC for the variables stability;, and law;,
at the 50% quantile that are worth discussing. Figs. 11 and 12 plot both the
observed data and their respective GPC with 90% bootstrap confidence
intervals.

For stability;,, Latin America and Caribbean’s GPC are nonmonotonic
but with confidence intervals, whereas in Africa the GPC is nonlinear
with smaller uncertainty. With law;, the GPC curves for both regions are
nonmonotonic with no discernable pattern. Again, Latin America and
Caribbean’s GPC are more variable than Africa’s. This result may be
indicative of the varying levels of development in Latin America and
Caribbean, while in Africa as a continent it is similar as a whole.

These empirical results can be wuse to understand the tradeoffs
between growth and governance in the context of growth diagnostics
advocated by Rodrik (2006). Increasing governance may not necessarily
lead to increase in growth because the binding constraint is not governance.
In Hausmann et al. (2008) the growth diagnostics yield different policy
recommendations for Brazil and the Dominican Republic. They argue
that in Brazil a reform of the governance would not increase growth or
that it is not a binding constraint. Instead they argue that the slow
growth can be explained by Brazil’s lack of access to external capital
markets and low domestic savings. The Dominican Republic has been
labeled an unlikely success story because of the low-level governance but
high growth rates until a banking crisis occurred in 2002. The suggested
cure for Dominican Republic need not require wholesale reforms but
targeted reforms.

4. CONCLUDING REMARKS

This paper considers the growth and governance relationship through the
lens of nonparametric quantile analysis. The analysis focuses on three
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Fig. 11. 50% Quantile — Case Study — Political Stability. Note: Solid line in top

graph displays ¢,5 (REGION;= Latin America & Caribbean, DT, = 2004,

voice;,; = 0, stability;, = stability, effectiveness;, =0, regulatory; =0, law; =0,

corruption;, = 0). Solid line in bottom graph displays ¢,s (REGION,; = Africa,

DT, = 2004, voice; = 0, stability,, = stability, effectiveness; = 0, regulatory;, = 0,

law;, = 0, corruption; = 0). Dotted lines represent 90% bootstrap confidence

intervals. They are not symmetric because they estimate stochastic variation of
hyperplanes, and not of univariate functions.
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Fig. 12. 50% Quantile — Case Study — Rule of Law. Note: Solid line in top graph

displays ¢,5 (REGION; = Latin America & Caribbean, DT, = 2004, voice; = 0,

stability;, = 0, effectiveness; = 0, regulatory;,, =0, law; = law, corruption; = 0).

Solid line in bottom graph displays ¢,s (REGION,; = Africa, DT, = 2004,

voice;, = 0, stability;, = 0, effectiveness;, =0, regulatory, =0, law; = law,

corruption;, = 0). Dotted lines represent 90% bootstrap confidence intervals. They

are not symmetric because they estimate stochastic variation of hyperplanes, and not
of univariate functions.
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governance measures: The relationship between growth and governance at
each quantile is nonmonotonic across regions and year. Nonparametric
quantiles reveal substantial heterogeneity that is not captured by parametric
quantiles estimation. For example, without introducing interaction terms
between variables and regions the nonparametric quantiles are able to
capture these effects in the GPC. Nonparametric quantiles also demonstrate
heterogeneity of results across different quantiles.

These nonmonotonicities and heterogeneity across quantiles highlight the
importance of careful modeling of the growth and governance relationships.
These empirical results lend credence to the arguments of Rodrik (2006)
and Hausmann et al. (2008) that caution policy makers from applying
policies uniformly across countries and years. Proper growth diagnostics are
required to understand what are the bottlenecks and barriers to growth.
Understanding the binding constraints can help policy makers to enact the
relevant reforms.

Overall, these findings indicate that caution must be used when using
parametric quantile models to analyze the relationship between World
Governance Indicators and growth. However, there are some important
omissions in this study. Most important is that this paper does not address
the issue of causality or control for endogeneity in a regression framework.
This could potentially be addressed adapting Horowitz and Lee’s (2006)
estimator to our framework, while using European settler mortality rates
(see Acemoglu, Johnson, & Robinson, 2001) as valid instruments for
example. Other important features to consider are the dynamics of these
measures across time. Finally, little is known about misspecification tests
applied to nonparametric quantiles. We leave these important considera-
tions for future study.

NOTES

1. Examples of these conjectures can be found in North (1990), Mauro (1995), and
Hall and Jones (1999).

2. The last two World Bank presidents (Paul Wolfowitz and Robert Zoellick) have
made public statements regarding this relationship; see http://go.worldbank.org/
ATIJXPHZMHO and http://blogs.iht.com/tribtalk/business/globalization/?p = 632

3. We would like to thank Jeffrey S. Racine for providing us with the necessary
software to perform these computations at Indiana University’s High Performance
Clusters.

4. The definitions are taken from http://info.worldbank.org/governance/wgi2007/
faq.htm
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5. http://info.worldbank.org/governance/wgi2007/

6. http://www.ggdc.net/Dseries/totecon.html

7. See Koenker (2005, Section 3.3.2, pp. 76-77) for details. Although this test
statistics assumes a random independent sample, no further modifications for time
series were performed in this set-up.

8. We use a second-order Gaussian kernel for each continuous variable, that is,
growth;,, voice;, stability;, government;, regulatory;, law,, and corruption;,. The
Aitchison and Aitken’s (1976) kernel for unordered categorical variable was used for
the regional indicator (REGION;), and Wang and van Ryzin’s (1981) kernel was
used for the ordered categorical variable DT,.

9. The resulting bandwidths are 0.2146, 0.7787, 0.7517, 0.3402, 0.1685, 0.4267,
0.2375, and 0.4686 for REGIONi, DT,, voice;, stability;,, government;,, regulatory;,,
law;,, and corruption;, respectively; and 0.1468 for growth;,.

10. Alternatively, we could also condition on a country-specific unordered
categorical variable as well. We thank an anonymous referee for pointing this out.
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A. TECHNICAL APPENDIX

Kernel Smoothing

Suppose we observed a sample {y;, X/}, i=1, ..., n from a random vector
[¥, x"] where y € R, and x is a mixture of continuous variables x¢ =
[x!', ..., x%] € R and discrete x? = [x0*!, ..., x9]" € §¢ where S is the

support of x%, and ¢» = ¢ — ¢;. For particular two points Vi Xi = [xl,xj’]

and y;, x; = ], let us define the functions

/
K(x{,x{:h) = th ( ) (A.1)

hy

[/’/

L(x,,x,,ﬂo—Hl(x,, X 1) (A.2)
i=y;/hy)
Gy yjihy) = / k(t)dt (A.3)

where i indexes the “estimation data” and j the “evaluation data,” which are
typically the same. The kernel function k (-) for continuous variables
satisfies [k(u)du =1 and some other regularity conditions depending on
its order p, and h=1hy, ..., hql]T is a vector of smoothing parameters
along with £, satisfying h,—0 as n— oo for s=1, ..., g1, and y. Similarly
the kernel function / (-) for discrete variables lies between 0 and 1, and
A=[A1 - e /lqz]T is a vector of smoothing parameters such that A,€[0,1],
and A;—>0asn— oo fors=1,..., g, (see, e.g., Li & Racine, 2003).

Conditional CDF Estimation

Let I(-) be the indicator function that equals 1 if its argument is true, and 0
otherwise. Then, the conditional CDF of y; given x;,

F(ylxp) = E[I(Y < y)IX = x]
can be estimated consistently by

Zl lt;é]G(yl’yj’hy)K(X,a /,/’I)L(Xl, /,/L)
Z[ ll;é]K(XuX/:h)L(xls /,})

F(ylx) =
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when F(-]-) is at least twice continuously differentiable, such that
nhy x ... x hg — 0o as n— co. This estimator is asymptotically normally
distributed under further regularity conditions (see, e.g., Li & Racine, 2007,
Theorem 6.5, p. 194).

Conditional Quantile Estimation

The conditional t-quantile function of y given Xx; can be estimated
consistently by

§.(x;) = arg min |t — F(q|x;)| (A.4)
q

when ¢.(-) is assumed to be at least twice continuously differentiable with
respect to X, such that nh; x ... x hy — 0o as n—oo. This estimator
has also been shown to be asymptotically normally distributed under
certain regularity conditions (see, e.g., Li & Racine, 2007, Theorem 6.7,
pp. 195-196).
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ABSTRACT

This paper deals with estimation of risk and the risk preference function
when producers face uncertainties in production (usually labeled as
production risk ) and output price. These uncertainties are modeled in the
context of production theory where the objective of the producers is to
maximize expected utility of normalized anticipated profit. Models
are proposed to estimate risk preference of individual producers under
(i) only production risk, (ii) only price risk, (iii) both production and
price risks, (iv) production risk with technical inefficiency, (v) price risk
with technical inefficiency, and (vi) both production and price risks with
technical inefficiency. We discuss estimation of the production function,
the output risk function, and the risk preference functions in some of
these cases. Norwegian salmon farming data is used for an empirical
application of some of the proposed models. We find that salmon farmers
are, in general, risk averse. Labor is found to be risk decreasing while
capital and feed are found to be risk increasing.
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1. INTRODUCTION

Risk in production theory is mostly analyzed under (i) output price
uncertainty and (ii) production uncertainty (commonly known as produc-
tion risk). Output price can be uncertain due to a variety of reasons. Perhaps
the most important factor is the presence of a time lag between use of inputs
and output produced. Moreover, produced output is often sold at a later
date when output price is likely to be different from the date when the
production plan was made. Uncertainty in output price makes profit
uncertain. Profit can also be uncertain if the output is risky, which may be
affected by input quantities. That is, input quantities not only determine the
volume of output produced, but some of these inputs might also be affecting
variability of output (often labeled as production risk). For example,
fertilizer might be risk augmenting in the production of crop, while labor
might decrease output risk. Here we address the implications of these risks
in a framework where producers maximize expected utility of anticipated
profit. In particular, we examine input allocation decisions in the presence
of price uncertainty and production risk. Since input demand and output
supply (as well as own and cross price elasticities, returns to scale, etc.)
are affected by the presence of these uncertainties, it is desirable to
accommodate uncertainty in production studies, especially in estimating the
underlying production technology.

Although the theoretical work on risk in the production literature is quite
extensive, there are relatively fewer empirical studies devoted to analyzing
different sources of risk on production and input allocation. Most of these
studies either looked at output price uncertainty (Appelbaum & Ullah, 1997,
Kumbhakar, 2002; Sandmo, 1971; Chambers, 1983) or production risk
along the Just—Pope framework (Tveteras, 1999, 2000; Asche & Tveteras,
1999; Kumbhakar & Tveteras, 2003). To examine producers’ behavior under
risk, some parametric forms of the utility function, production function, and
output risk function along with specific distributional assumptions on the
error term representing risk are considered in the existing literature (Love &
Buccola, 1991; Saha, Shumway & Talpaz, 1994). Thus, the risk studies in
the production literature have some or all of these features built in, viz.,
(1) parametric forms of the production and risk function, (ii) parametric
form of the utility function, and (iii) distributional assumption(s) on the
error term(s) representing either production risk or output price uncertainty
or both.

In the present paper we estimate the production function, the risk
function (output risk), and risk preference functions (associated with price
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and production uncertainties). We derive estimates of risk preference
functions that do not depend on specific functional form of the underlying
utility function. In estimating these functions no distributional assumptions
are made on the random terms associated with production and output
uncertainties. Furthermore, we obtain estimates of producer-specific risk
premium (RP).

The rest of the paper is organized as follows. The models with price
uncertainty and production risk are presented in Section 2. Extensions
of these models to accommodate technical inefficiency are considered in
Section 3. Section 4 describes various parametric econometric models first
without and then with technical inefficiency. Nonparametric versions of
some of the models are considered in Section 5. The Norwegian salmon
farming and the empirical results are presented in Section 6. Finally,
Section 7 concludes the paper with a brief summary of results.

2. RISK MODELS WITH OUTPUT PRICE
UNCERTAINTY AND PRODUCTION RISK

We assume that the production technology can be represented by a Just—
Pope (1978) form, viz.,

y=fX,2)+hX,2)e, ¢~(0,1) 1)

where y is output, X and Z are vectors of variable and quasi-fixed inputs,
fX, Z) is the mean output function, and ¢ is a random variable that
represents production uncertainty. Since output variance is represented by
(X, Z), the h(X, Z) function is labeled as the output risk function. In this
framework an input j is said to be risk increasing (decreasing) if the partial
derivative 4; (X, Z)>(<)0.

2.1. Only Production Risk (Model I)

First we start with the case where output and input markets are competitive
and their prices are known with certainty. Production is, however,
uncertain. Assume that producers maximize expected utility of anticipated
normalized profit E[U(n°/p)] to choose optimal input quantities, which in
turn determines output supply.' Define anticipated profit 7° as

¢ =py —wX =pf(X,Z) — wX + ph(X,Z)e = i, + ph(X, Z)e ~ (2)
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where u, = pf(X, Z)—wX, p being the output price and w the price vector of
the variable inputs. Note that we have not subtracted the cost of quasi-fixed
inputs to define profit. That is, profit in Eq. (2) is defined as variable
(restricted) profit. The concept of variable/restricted profit is appropriate
here because by definition quasi-fixed inputs are not choice variables
(in the optimization problem) in the short run. In other words, the variable
inputs are choice variables in maximizing profit in the short run. Thus,
for example, capital (which is often decided from a medium-/long-term
perspective) in most of the studies is treated as quasi-fixed input. The
advantage of doing so is that it is not necessary to construct price of capital
(which is nontrivial).

The first-order conditions (FOCs) of expected utility of anticipated
normalized profit E[U(n°/p)] maximization can be written as

g0 (%) 1062 -y x. 29| =0 @

where U'(n¢/p) is the marginal utility of anticipated normalized profit,
fi(X, Z) and h; (X, Z) are partial derivatives of f{X, Z) and i(X, Z) functions,
respectively, with respect to input X;. Finally, w; = w;/p.

We can rewrite the above FOCs as

F{X.2) =~ (X, Z)0,() )
where
)2 FUG )
90 = F0w ) ©

The 0:(-) term in the FOCs in Eq. (4) is the risk preference function
associated with production risk. If producers are risk averse, then 0;(-)<0
(i.e., an increase in ¢ (which can be viewed as a positive production/
technological shock) increases n/p which in turn reduces U'(n¢/p) since
U"(n°/p)<0 (utility function being concave)). Similarly, 0,(-) is positive if
producers are risk lovers and is zero for risk neutral producers.

If h; (X, Z)>0, then for risk averse producers the value of the (expected)
marginal product of input X exceeds its price p f;(-)>w;. Consequently, a
risk averse producer will use the input less relative to a risk neutral producer
0:(-) = 0. Similarly, if producer A is more risk averse than an otherwise
identical producer B, producer A will use less of input X; than producer B.
Thus, input demand functions (the solution of X; from Eq. (4)) will depend
not only on observed prices but also on the risk preference functions.
Consequently, anything that depends on the demand functions (e.g., own
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and cross price elasticities, returns to scale, technical change, etc.) is likely to
be affected by the presence of risk via 0;(-). Since input demand functions
are affected, output supply will also be affected even if the producers share
the same technology, and face the same input and output prices.

2.2. Only Output Price Uncertainty (Model I11)

We now consider the case where output price is uncertain (Appelbaum &
Ullah, 1997; Sandmo, 1971) and there is no production uncertainty (4(X, Z)
is constant). We describe output price uncertainty by postulating anticipated
price p® as pe" with the assumption that E(e") =1 (Zellner, Kmenta, &
Dreze, 1966) so that the expected value of p° is the same as the observed
price p. Note that in this specification p° is random (not p) because 7 is a
random variable. The anticipated price differs from the observed price at a
point in time because the production process is not always instantaneous,
and the quantity of output cannot be perfectly predicted at the time
production decisions are made.

Similar to Model I, we assume that producers maximize expected utility
of anticipated normalized profit E[U(n¢/p)] to determine optimal input
quantities, which in turn determines output supply. The production function
is the same as in Eq. (1). Define anticipated profit n° as

n° =py —wX =pf(X,2) —wX + pf(X,Z)(e" — 1)

= % X, 2) = X+ S 2 1) = oy + (X 20

where z; = (¢"—1) and W; = w;/p. Note that z; is a zero mean random
variable since ¢" is a random variable with mean zero.

The FOCs of expected utility of anticipated normalized profit E[U(x/p)]
maximization can be written as

E [U/ (”;) UiX.2)— i+ £,z | = 0 ™)
We can rewrite Eq. (7) as
fi(X, Z2)(1 + 02()) = W, (®)
where
0y = FLU @ /P)21] ©)

E[U'(z/p)]
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The 60(-) term in the FOCs (Eq. (9)) is the risk preference function
associated with output price uncertainty. If producers are risk averse, then
0>(-)<0 (i.e., an increase in ¢ increases n¢/p which in turn reduces U'(7°/p)
since U"(n°/p)<0 (utility function being concave)). Similarly, 0,(-) is
positive if producers are risk lovers and is zero for risk neutral producers.

2.3. Both Production Risk and Output Price Uncertainty (Model I1I)

Now we consider the case where producers face both production risk and
uncertainty in output price. Output price is assumed to be governed by the
same process as in Model II, and the production function is given in Eq. (1).
For simplicity we assume that ¢ is independent of 5. Furthermore the
variance of ¢ is assumed to be constant.

With the presence of both types of uncertainties the anticipated
normalized profit 7°/p can be written as

TC;F =ely — WX =f(X,Z2) — WX +f(X,Z)" — 1)+ h(X, Z)(e"e) (10)
=u, +f(X,2)z1 + (X, Z)z,

where z; = ¢’—1 and z, = ¢’¢e. The FOCs of expected utility of anticipated
profit E[U(n¢/p)] maximization can be written as

E [U’ <”;> Ui(X,Z) =0 + f{(X, Z)z1 + hi(X, Z)z} | =0 (11)

where U'(n°/p), f;(-), and h;(-) are the same as before.
We can rewrite Eq. (11) as

X, Z)(1 + 0x(-) =ty — hy(X, Z)0; (12)
where
5 _ EU@/p)m)
MO =T o) -
and

EU'(n°/p)z1)
EU'(z¢/p))

The 0,(-) and 0,(-) functions in Egs. (13) and (14) are called risk
preference functions associated with output price uncertainty and

02() = (14)
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production risk, respectively.? If producers are risk averse, then 92(-)<0.
A similar reasoning shows that 0,(-) = 0 when producers are risk neutral
(i.e., U"(n°/p) = 0, which implies that the utility function is linear), and if
producers are risk loving, then 0,(-)>0. (i.e., U"(n/p) = 0, which means
that the utility function is convex). Finally, it can be shown, using similar
arguments, that 0,(-) is negative if producers are risk averse, positive for risk
loving, and zero for risk neutral producers.

The model with only output price uncertainty can be obtained from the
above model by assuming that there is no output risk (i.e., /(X, Z) is a
constant thereby meaning that /;(X, Z) =0). This means that the 0,(-)
function will disappear from the FOCs. Similarly, if there is only produc-
tion risk and no uncertainty in output price, then z; = 0, and the ?)2(-)
function will disappear from the FOCs. Finally, if the producers
are risk neutral, then both 0;(-) and 0,(-) will disappear from the FOCs
in Eq. (12).

3. RISK MODELS WITH TECHNICAL EFFICIENCY
3.1. Only Production Risk (Model IV)

If the producers face production risk and are technically inefficient, the
production function can be written as

Y=fX,2)+hX,Z)e—g(X,Z)u NWX,Z)>0, g(X,Z2)>0, u>0
(15)

In this specification, u>0 represents technical inefficiency. For estima-
tion purposes u is often assumed to be truncated (or half) normal.
Furthermore, u and ¢ are assumed to be independent. This model in Eq. (15)
is a generalization of the Battese, Rambaldi, and Wan (1997) model. If
h(X, Z) = g(X, Z), then the model reduces to the Battese et al. (1997) model.

We assume that producers maximize E[U(n°/p)] conditional on u.
Anticipated profit 7° is

°=pY — wX = % — (X, Z) + WX, Z)e — o(X, Z)u — (%)X
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The FOCs of E[U(n¢/p)] maximization, given u, are
E[UO){f(X,2) + hi(X,Z)e — g{(X, Z)u — W;}] = 0

E[U()]

E[U'()]

= [{(X,2) =W — g{(X, Z)u+ hi(X,2)A() =0

= f1(X,2) — g(X, Z)u+ hi(X,2) W, =0 (16)

where 41(-) = (E[U’'()e])/(E[U’())]) is the risk preference function associated
with production risk. The only difference between A;(-) and 0(-) is that
A1(+) depends on inefficiency as well through the utility function.

3.2. Only Output Price Uncertainty (Model V')

Now we introduce the presence of technical inefficiency into the model with
only output price uncertainty. The production function is

Y=f(X,Z)+ hoe — g(X, Z)u

where /i is a constant. This is basically a stochastic frontier model in which
determinants of technical inefficiency are modeled through the scaling
function g(X, Z) (see Wang & Schmidt, 2002). Since we are considering
an optimizing model and output price is uncertain, input choices will be
affected by price uncertainty. Here we are interested in estimating the
production function, determinants of technical inefficiency, and the risk
preference function associated with output price uncertainty.

As before, we assume that producers choose X by maximizing E[U(n¢/p)]
where 7°=pY —wX = n°/p=e"[f(X,2Z) + hoe — g(X, Z)u — wX]. We
rewrite anticipated normalized profit as

T f(X, Z) — X — g(X, Z)ue" + hose + [(X, Z)(E" — 1)
)4 . (17)

- ”; — (X, Z) — WX — g(X,Z) (1 + 21) + hoza + [ (X, Z)z1

The FOCs of maximization E[U(n°/p)] with respect to the elements of X
(given u) are

E[U O (X, Z) — W — g/(X, 2)u(l + z1) + f (X, Z2)z1}] = 0
= £,(X, 2) — ity — (X, 2l + o) +£,(X, Zypa =0 D)

where Ay(-) = E[U'()z1]/E[U’(.)] is the risk preference function associated
with price risk.
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3.3. Both Production Risk and Price Uncertainty (Model VI)

In this section we introduce both output price and production uncertainty
into the analysis. The production function is the same as the one in Eq. (15),
that is,

Y =f(X,Z)+ hX,Z)e — g(X, Z)u

Output price uncertainty is modeled as before (in Model 1), that is, p¢ = pe"
such that E[¢"] =1 and V(e") = f*>0. Furthermore u, &, and 5 are
independent of each other. Here our objectives are to estimate (i) the
production risk function A(X, Z); (ii) technical inefficiency u and the
determinants of technical inefficiency through the scaling function g(X, Z);
and (iii) the risk preference functions associated with production risk and
output price uncertainty.

As before, we assume that producers choose X by maximizing E[U(7°/p)]
where n° = pY —wX = n°/p = ' (X, Z) + WX, Z)e — g(X, Z)u] — wX.

Now we rewrite anticipated profit as

%e =f(X,2) — WX — g(X, Z)ue" + WX, Z)ee" + (X, Z)(" — 1) 19

=f(X,Z2)— WX —g(X,Z2) A +z)) + W(X,2)z; + (X, Z)z,

The FOCs of maximization E[U(n°/p)] with respect to the elements of X
(given u) are
E[U (W (X, Z) =W — h{(X, Z)z — g(X, Z)ue" + [ (X, Z)z1}] = 0
= [{(X, 2) = W) + WX, Z)ia = gi(X, Z)u(l + 2) + (X, Z)l = 0
(20)

where 4; = E[U'()z1]/E[U'()] and iy = E[U'()z]/E[U()] are risk pre-
ference functions associated with price and production risks, respectively.

4. PARAMETRIC ECONOMETRIC MODELS OF RISK

Since our interest is to estimate the parameters of the mean output function,
output risk function, and the risk preference function, the most important
task is to derive an algebraic form of the risk preference function, which is
easy to implement econometrically, and imposes minimum restrictions on
the structure of risk preferences on the individual producers. Certain specific
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forms of U(.) together with some specific distributional assumptions on ¢
give an explicit closed form solution of 0,(.) (Love & Buccola, 1991; Saha
et al., 1994). However, estimation of these models is quite complex. It is,
however, possible to derive an algebraic expression for the risk preference
function without assuming any distribution on ¢ and without any specific
functional form on U(.) that imposes a priori restrictions on the structure
of risk aversion.> In fact, our result would be very useful in empirical
applications, especially if one is interested in estimating general forms of
risk preferences without estimating a complicated system of equations
(Chavas & Holt, 1996; Love & Buccola, 1991; Saha et al., 1994). Note that it
is not even necessary to assume that U(-) is concave.

4.1. Specification and Estimation of Model 1

If U(u+ph(X, Z)e) is continuous and differentiable, and we take a linear
approximation of U'(u,+ph(X, Z)¢) at ¢ =0, then the risk preference
function in Model I takes the following form™:

01() = —AR(u)(X, Z) 21

where AR(u,) = —U"(1,)/U'(1,) is the Arrow—Pratt measure of absolute
risk aversion.
Using the above result the FOC in Eq. (4) can be expressed as

/X, Z) = W + (X, Z)AR()(X, Z) (22)

A close look at the FOC in Eq. (22) shows that the focus of the problem is
now shifted from the utility function to the AR function. In addition to the
mean production and risk functions, one needs to specify a functional form
on AR, which will define a system of J equations in J variable inputs (X) in
Eq. (22). It is worth noting here that any specification of the AR function
will indirectly imply some underlying utility function, viz., U = [e *Rdp,.
That is, the AR function gives all the information possessed by the
utility function (Pratt, 1964). The main advantage of working with the AR
function is that one doesn’t have to worry about (i) the underlying utility
function (which may not be always solvable analytically), (ii) the derivation
of 6;(-) (which might not always give a closed form solution), and (iii) the
solution 6;(-) (which, although solvable for some specific utility functions,
might not be easy to work with empirically). Furthermore, one can assume a
functional form on AR that is flexible enough to test whether producers are
risk neutral (AR = 0) or not. If risk neutrality does not exist, then we can
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also test for constant absolute risk aversion (CARA), decreasing absolute
risk aversion (DARA), and increasing absolute risk aversion (IARA)
hypotheses.

AR can be parameterized to allow (test) for CARA, IARA, and DARA.
For example, if AR =& + dp, +0.56312, then CARA =3, =353 =0,
IARA = ,+03u,>0, and DARA = 9,451, <0. Furthermore, é; = 0, =
03 =0=AR =0=0 =0, that is, risk neutrality. These are all testable
hypotheses. Some other nonlinear functions can also be wused to
parameterize and test different forms of risk preferences. Although a
parametric form on AR indirectly implies some form of a utility function, it
is not necessary to know the exact parametric form of the underlying utility
function in specifying a functional form for AR. Note that although the
specification of the models under the abovementioned null hypotheses are
well defined, the models under the alternative hypotheses are not unique.
That is, one can test a specific null hypothesis (e.g., CARA) by specifying
many different AR functions. Since the tests used in the literature are always
against some specific alternatives, it is worth mentioning that the test results
might be inconsistent if the models under the alternatives are incorrect.

The model outlined above (Model I) can be estimated by estimating the
system consisting of the production function in Eq. (1) along with the FOCs
in Eq. (22) once parametric functional forms are chosen for f (X, Z), h(X, Z),
and AR(.) functions, and classical error terms are added to each of the
FOCs in Eq. (22). Two things are to be noted here. First, the system is highly
complicated and nonlinear is parameters, and therefore a nonlinear system
approach has to be used. Second, the endogenous variables are the variable
inputs (X) and output (Y), which appear almost everywhere in the system.
Thus, a nonlinear three-stage least squares or other instrumental variable
approach (system GMM) has to be used. The exogenous variables
(instruments) are the quasi-fixed inputs (Z) and prices (p and w).?

4.2. Specification and Estimation of Model 11

A similar procedure can be used to estimate Model II that incorporates only
output price risk discussed in Section 2.2. We use the following result to
express the risk preference function in terms of the AR function.

If U(u+f(X, Z)z1+2z») is continuous and differentiable, and we take a
linear approximation of U'(u,+f (X, Z)z1+z,) at z; = z, = 0, then the risk
preference function takes the following form®:

0>(-) = —AR(u,).f (X, Z), where AR = —U"(-)/U’(-) evaluated at pu,.
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Using this result we write the FOCs in Eq. (8) as
JHX, D1 — AR(u)f (X, Z)] = W; + v; (23)

where v; can be viewed as an optimization error in choosing the jth variable
input. Thus, the estimating model consists of the production function in
Eq. (1) and the FOCs in Eq. (23) that can be estimated using a nonlinear
system approach. This system is also heavily parametric and difficult to
estimate.

4.3. Specification and Estimation of Model 111

To estimate Model III that incorporates both production and output price
risk discussed in Section 2.3, we express the risk preference functions
(specified in Egs. (13) and (14)) in terms of the AR function.

If U(p+f (X, Z2) z1+h(X, Z)z;) is continuous and differentiable, and we
take a linear approximation of U'(u,+f (X, Z) z1+h(X, Z)z;) at z; = z, = 0,
then the risk preference functions are

0>() = —AR(u) f(X, 2),  01() = —AR(u)h(X, Z)
Using this result we write the FOCs in Eq. (12) as
S22 = AR(u) f(X, 2)] = iy + hi(X, WX, Z)AR (i) +v; - (24)

where v; can be viewed as an optimization error in choosing the jth variable
input. Thus, the estimating model consists of the production function in
Eq. (1) and the FOCs in Eq. (24) that can be estimated using a nonlinear
system approach.

4.4. Specification and Estimation of Model IV

To derive an estimable expression of A(-), we express it, as before, in terms
of the AR(-) function. For this, first, we expand U'(n°/p) around & =0,
that is,

v (%) = U'(g(X,Z,w) + U'(q(X, Z,u)h(X, Z)e + - - -

where g(X,Z,u) = f(X,Z) — g(X, Z)u — WX.
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Thus,
E[U()] = U'@X,Z,u),
E[U (e = U'(q(X, Z,u)h(X, Z)

_U@X, Z,uph(X,Z)
= ()= V. Zw) = ARX, Z,u)h(X, Z)

} ignoring higher order terms
(25)

where AR(X, Z, u)=—-U"(-)/U(-) is the Arrow—Pratt absolute risk
aversion function evaluated at ¢(X, Z, u). For risk averse producers
A1(-)<0=AR(.)>0.

Using the above expression for A,(-), we write Eq. (16) as:

Si(X,Z) =W — g/(X, D)u+ hi(X,Z2) [-AR(X, Z,u) h(X,Z)] = v

26
where the error term v; in Eq. (26) can be viewed as optimizing error
associated with the jth variable input.

Estimation of the above model can be done in either two steps or a single
step.

4.4.1 Two-Step Procedure

Step 1. Use the maximum likelihood (ML) method to estimate the pro-
duction function in Eq. (15) with the following distributional assumptions
on u and &’

(i) wu~iid. N* (u,02),
(i) e~iid. N (0, 1),
(iii) u and ¢ are independent.

In specifying the variance of ¢ to unity we assume that the A(X, Z)
function is proportional to a constant. Based on the above distributional
assumptions, the likelihood function can be derived by making a few
changes to the one derived in Battese et al. (1997).® By specifying
parametric functional forms for f(X, Z), h(X, Z), and g(X, Z), one can
obtain estimates of the parameters in f(X, Z), i(X, Z), and g(X, Z), as well
as p and o2.

These parameters can then be used to estimate u (for each observation)
from either the mean or mode of ule* where ¢* = (X, Z)e—g(X, Z)u
(see the appendix). It is straightforward to show that the conditional
distribution of u is truncated normal. Once u is estimated, technical
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efficiency (TE) can be estimated from

gl EYIX.Zw X2

TEYIX,Zu=0)  f(X,2) (27)

Step 2. Step 1 gives estimates of f(X, Z), g(X, Z), and h(X, Z), as well as
the estimates of u. These estimates can be used in Eq. (26) to compute 4,(.)
and AR as follows:

SN X, Z2) = — (X, 2wy = > vy — (X, Zu) Y hi(X, Z)
J j J

S (X2) — i — g (X, Z)w)

JUINE
ARz = T

assuming that »_;v; = 0. These estimates are observation specific. Thus,
one can obtain estimates of risk preference (and absolute risk aversion)
for each observation.

An alternative strategy is to assume a functional for AR and estimate
the parameters of it from the FOCs in Eq. (26), which is rewritten as

[/,(X. 2) = = (X, Z)u]
[hi(X,Z) h(X, Z)]

=ARX,Zuw+v j=1,...,0 (29

where v; is an error term.
For example, if the AR function is assumed to be linear, that is,

AR =bo + b1g(X, Z,u) = by + b1 (f (X, Z) — WX — g(X, Z)u)  (30)

one can substitute AR from Eq. (30) into Eq. (29) and estimate by and b,
parameters from the system of J equations in Eq. (29), using the estimated
values of (X, Z), g(X, Z), and u. It is to be noted that the X variables are
endogenous variables. This means that one should use instruments for the
X variables.

4.4.2 Single-Step Procedure
We write the FOCs in Eq. (29) as

VX, Z) =mi(X, Zu+v; j=1,...,J
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where (X, Z) =f,(X,Z;) — W — (X, Z)hi(X, Z) [bo + bi(f (X, Z) — WX)]
and m;(X,Z) = g(X, Z) — bihy(X, 2)h(X, 2)g(X, Z).

The above FOCs together with the production function in Eq. (15)
constitute the full system of J+1 equations with J+1 endogenous variables,
which is written compactly as

(Y —f(X,2)]  [hX,2Z)e] [ g(X,Z) ]

\PI(XSZ) V1 _ml(X’Z)

Y, (X, Z) — V2 —u —my(X,Z) (31)
L lIIJ()(,Z) ] L vy ] _—MJ(X,Z)_

The problem of dealing with this system is that the likelihood function
(based on the distributions on ¢, v, and u) cannot be expressed in a closed
form. This is because the Jacobian of the transformation will depend on u.
Because of this problem we do not discuss the full ML method here.

4.5. Specification and Estimation of Model V

To derive an estimable expression for A, we take a Taylor series expansion
of U at z; = z, = 0, given u. This gives

v (?) = Ug(X, Zow) + U'(a(X, Z, ) hoz2

+ U(q(X, Z,w) [/ (X, Z) — g(X, Z)ulz

where ¢(X,Z,u) = f(X,Z) — g(X,Z) u — wX. As before we assume that g
and ¢ are independent.
Thus,

E[U'()] =U'(q(X,Z,u))
and
E[U/(')Zl] = U”(Q(X’ 27 Ll)) [f(X, Z) - g(X> Z)M]

U”(q(Xa Z? M)) [f(X9 Z) B g(Xs Z)u]
U'(q(X, Z,u))
=—-ARWX,Z,u)[f(X,2) — g(X, Z)u]

= ()=

using the result AR(-) = —(U"(.))/(U’(\)) evaluated at ¢(X, Z, u).
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Using the above results, we rewrite the FOCs in Eq. (18) as
Si(X,Z) =W —g;(X,Z)u

32
=ARC)[{f(X,2) — g(X, Z)ul{f (X, Z) — g(X, Z) u}] (2

We write Eq. (32) more compactly as
PN Zow) ARG j=1....7 (33)

[m1(X, Z) u]

when W (X,Z,u) =f(X,Z2) —W; —g(X,Z)u, and m;(X,Z)=[f(X,Z) -
Given the complexity of the model we suggest a two-step procedure.
Step 1. We estimate the production function in Eq. (15) following the
procedure discussed in section 4.4.1. By specifying parametric functional
forms for f(X, Z) and g(X, Z) together with the distributions on u and &,
one can obtain ML estimates of the parameters in (X, Z) and g(X, Z), as
well as u, 0’5, and hy. These estimators are consistent.

Step 2. Use the estimated/predicted values from Step 1 to compute ‘¥,
and m;.

Assume a functional form for AR, for example, AR = bhy+
h(f(X,Z)—wX —g(X,Z)u). Using this specification, we rewrite
Eq. (33) as

VX, Z,u)
[bo + bi(f (X, Z) — WX — §(X, Z) )]

= (X, Z)u+n; j=1,...,J
(34)

where #; is an error term appended to the jth FOC. The above nonlinear
system of J equations can be used to estimate by and b;. The Z, w, and p
variables can be used as instruments in estimating the above system.
Once by and b, are estimated AR(-) can be computed for each
observation.

4.6. Specification and Estimation of Model VI

As before, first we derive estimable expressions for A;(-) and /()
by taking a linear Taylor series expansion of U'(-) at z; = z, = 0, given u.
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This gives

UGS=UMKZW+WMKZWMK@Q
+ Ug(X, Z) [F(X, Z) — g(X, Z) ey
where g(X, Z,u) = f(X,Z) —g(X, Z)u — wX.
Thus,
EIU' O] = U'g(X, Z,w) [ (X, 2) — g(X, Z) 1]

and

E[U()z]=U"(¢(X,Z,u) i(X,Z)
3 _ U//(q(Xa Z, Ll)) [f(Xa Z) B g(X’ Z)Ll]
=)= U'(4(X, Z, )
=—-AR(X,Z,u) [f(X,Z) — g(X, Z)u]
U'(qX,Z,u)) (X,Z)
U'(q(X,Z,u)

= o) =

= —ARX, Z,u) (X, Z)
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when AR()=—(U"())/(U(.) is evaluated at q(X,Z,u)=f(X,2Z)—

gX, 2)u—wX.
Using the above results, we rewrite the FOCs in Eq. (20) as
=ARQO) [[(X, 2/ (X, 2) — g(X, Z)u} + h(X, Z) (X, Z)

=ARC) [ (X, 2) — g(X, 2)u) (f (X, Z) — g(X, Z)u)} + hy(X, Z) (X, Z)]

We write Eq. (35) more compactly as

Yi(X,Z,u)

x, 2]~ ARO

(35)

(36)

where W;(X,Z,u) and m;;(X, Z) are defined beneath Eq. (33). Finally,

ri=hi(X, Z) h(X, 2).
Given the complexity of the model we suggest a two-step procedure.

Step 1. We estimate the production function in Eq. (15) following the
procedure discussed in the previous section. By specifying parametric
functional forms for f(X, Z), h(X, Z), and g(X, Z), together with the
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distributions on u and ¢, one can obtain ML estimates of the parameters
in f(X, Z), h(X, Z), and g(X, Z), as well as u and ¢2. These estimators are
consistent.

Step 2. Use the estimated/predicted values from Step 1 to compute ‘¥,
and m,.

Assume a functional form for AR, for example, AR = b+
h(f(X,Z2) —WwX —g(X,Z)u). Using this specification, we rewrite
Eq. (31) as

Yi(X, Z,u) ’ S . .
b Y, z)Z] =lbo +D1(/(X, 2) =X = (X, D)) +1; j=1.....J
(37)

where #; is an error term appended to the jth FOC. The above nonlinear
system of J equations can be used to estimate by and b;. The Z, w, and p
variables can be used as instruments in estimating the above system. Once
by and b; are estimated, AR(-), Zl(.), and 5»2(~) can be computed for each
observation.

Overall, it appears that estimation of the previously described systems in a
parametric framework is highly complicated. Our computational experi-
ences with some of these models (in unreported working papers) have been
somewhat disappointing. Even estimating a production function of the form
v = f(x)+ g(x)e is, in some instances, a delicate matter that involves issues
of convergence, stability of estimates, etc. The systems of FOCs are also
ill-behaved in many instances and, as a result, the parametric approach is
not only implausible in terms of assumptions but also highly unstable from
the numerical point of view.

5. NONPARAMETRIC ESTIMATION OF MODELS I-11T

5.1. Estimation of (X, Z) and h(X, Z) Functions and
Their Partial Derivatives

Suppose X € R? is a vector of explanatory variables (that include both
variable X and quasi-fixed inputs Z), and Y denotes output (the dependent
variable). We assume that the production function is of the form

Y =f(X)+h(X)e=f(X)+v (38)
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where f* R’ R is an unspecified functional form, and v is an error term.
Our objective is to obtain estimates of 7(X) and 4(X) as general is possible.
So we do not consider separable specifications that are popular when
dimensionality reductions are desired. We use the multivariate kernel
method to obtain an estimate of f(X) at a particular point f(X) as follows.
First, we estimate the density of X(3(X)) as

N N d
X)) =N KX - Xy =W DY T[KZi-2) (39
i=1

i=1 j=1

where Kj;(w) = exp(—(l/2h2)(w - w)’i;l(w —w)) is the d-dimensional
normal kernel, #>0 is the bandwidth parameter, K(w) = exp(—(1/2)w?) is
the standard univariate normal kernel, £y is the sample covariance matrix
of Xi(i=1,...,d),

Z - AX ,~4— X)
A
AZyA =1y
_ N
X=N"'Y"X
i=1
and Z is a smoothing parameter. The optimal choices for # and A are

h= 24552

4 d+4
4= <(2d + 1)N>

The unknown function is then estimated as

N
fO) =WOh™ Y W)Y, (40)
=1
where
~ Klz(/\N/ - X i)
Wi(X) = —/——Y
n =5

(see Hardle, 1990, pp. 33-34). The estimates are adjusted near the boundary
using the procedures discussed in Rice (1984), Hardle (1990, pp. 130-132),
and Pagan and Ullah (1999, Chapter 3).
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First derivatives of f(X) with respect to X are obtained from

{f:l GiKy(X — X)Y; —f(X) ﬁ/} GiKn(X — X))
- = = 41
oX; p(X) @D

d
Gy =17 25“’§(z\7k - Xuw)

k=1
and
Sy =6k k=1,....4d

Given the estimate of f (X;) one can obtain the residuals ¢; from
e; = y; —f(X;). An estimate of the variance can then be obtained from

N
F(X) =N Y Wi(X) ef (42)
i=1

(see Hardle, 1990, p. 100; Pagan & Ullah, 1999, pp. 214-215). Since
g(X) = 5(X), estimates of the g(X) function and its gradient dg(X)/6X can
be obtained. Alternatively, g(X) can be obtained from a nonparametric
regression of |¢;] on X; in a second step.” The gradient of g(X) could then be
obtained by a procedure similar to the one used to obtain the gradient of
f(X) in Eq. (41).

The asymptotic properties of this procedure are well established.
However, the nonparametric procedure has not been used so far in applied
studies, especially in agricultural economics where strong parametric and
distributional assumptions are still in use. The main advantage of this
approach is that the technology and risk properties can be recovered
without strong and restrictive/questionable assumptions. Moreover, as we
detail below, aspects of risk preference can be easily recovered in the
following manner.
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5.2. Estimation of Risk Preference Functions and Risk Premium

To estimate the risk preference function 6 = 0(X, W) in Model I we rewrite
the relationship in Eq. (4) as

1 [/5(X) =W . .
D =— L2 =X, 43
| ;[ “2® ] (X, W) (43)

Note that although not stated explicitly the FOCs in Eq. (4) is allowed to
have errors to capture optimization errors. Thus, the estimator of 6 in
Eq. (43) can be viewed as a minimum distance estimator.

Eq. (43) can be computed easily since all its components have been
estimated. Therefore, fully nonparametric estimates of 0 can be obtained at
no cost.

In Model II the risk preference function can be expressed (using Eq. (9)) as

1 Wi -
D=_—E J__1| =6 X, W 44
2 7 g Lf'( ) ] (X, W) (44)

The above equation can be, again, easily computed under fully nonparametric
conditions.
To estimate risk preference functions in Model III, we write the FOCs in
Eq. (12) as
5 = LD _ I = (D)6, D)
LA T = £(D)0i0k, X)]
1 F(X
=Di=1+) 4 :_Z[{J( )1
= Jj:l S1(X)
Ly [¥; — &(X)0: (%, X)]
J S — §1(X)0, (0, X)]
= (¥, X) +¢ (45)

where ¢ is an error term. Once the ¢(-) function is estimated nonparame-
trically, we can recover 0;(%, X) from

Z[ﬁ/j — 0w, X))
0, X)=—L —
> lgi(X) — (W, X)g,(X)]

7




244 SUBAL C. KUMBHAKAR AND EFTHYMIOS G. TSIONAS

The 6,(#, X) function can then be estimated from
S0 — gD (W, X))

0,(%, X) = ! ~——
’ Si -1

One can estimate the AR functions from different specifications using the
estimated values of 0, and 0,.

6. APPLICATION TO NORWEGIAN SALMON
FARMING

6.1. Data

Some of the models presented in the preceding sections are applied to
Norwegian salmon farms. Norway, UK, and Chile are the largest producers
of farmed Atlantic salmon (Bjorndal, 1990). Salmon farming is more risky
than most other types of meat production due to the salmon’s high
susceptibility to the marine environment it is reared in. Biophysical
factors such as fish diseases, sea temperatures, toxic algae, wave and wind
conditions, and salmon fingerling quality are major sources of output risk.

It is believed that the effect of biophysical shocks on output risk can be
influenced through the choice of input levels, although fish farmers cannot
prevent occurrences of such exogenous shocks. The most important input in
salmon farming is fish feed. Feed is expected to increase the level of output
risk, ceteris paribus. Since salmons are not able to digest all the feed the
residue is released into the environment as feed waste or feces. This organic
waste consumes oxygen, and thus competes with the salmon for the limited
amount of oxygen available in the cages. In addition, feed waste also
leads to production of toxic by-products such as ammonia. Furthermore,
production risk is expected to increase with the quantity of fish released into
the cages, due to the increased consumption of oxygen and production of
ammonia. We do not have any strong a priori presumptions on the risk
effects of capital.

Since 1982 the Norwegian Directorate of Fisheries has compiled salmon
farm production data. In the present study we use 2,447 observations on
such farms observed during 1988-1992.'° The output (y) is sales
(in thousand kilograms) of salmon and the stock (in thousand kilograms)
left at the pen at the end of the year. The input variables are feed (F),
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labor (L), and capital (K). Feed is a composite measure of salmon feed
measured in thousand kilograms. Labor is total hours of work (in thousand
hours). Capital is the replacement value (in real terms) of pens, buildings,
feeding equipment, etc. Price of salmon is the market price of salmon per
kilogram in real Norwegian Kronors (NOK). The wage rate (in real NOK)
is obtained by dividing labor cost by hours of labor. Price of feed is obtained
by dividing the cost of feed by the quantity of feed.

In the present study we are treating labor and feed as variable inputs.
Capital is treated as quasi-fixed input primarily because price data on it is
not available. Moreover, since capital stock adjustment is not instantaneous,
it is perhaps better to treat the capital variable as a quasi-fixed input,
especially in the static model like the one used in the present study.

6.2. Results and Discussions

First, we report the estimated elasticities of the mean output function f(X)
with respect to labor, capital, and feed. We plot the empirical distribution
of these elasticities for labor, capital, and feed in Fig. 1."" The mean values
of these elasticities are: 0.029, 0.017, and 0.253, respectively. It can be seen
that none of the distributions is symmetric. In fact they are all skewed to the
right. Thus, the median values of these elasticities are less than their mean
values (median elasticities of the mean output with respect to labor, capital,
and feed are 0.017, 0.007, and 0.158, respectively). The standard deviations
of these elasticities are: 0.078, 0.046, and 0.282, respectively. Although
some of these elasticities are negative, this happens for a small proportion of
salmon farmers. Alternatively, it is quite justifiable to do restricted estima-
tion, and replace any negative elasticity for some farmer with its lowest
allowable bound (zero), see Pagan and Ullah (1999, pp. 175-176).

Farm age is found to have a negative effect on mean output. The elasticity
with respect to age is expected to be positive, especially when one associates
age of the farmer with experience, knowledge, and learning. With an
increase in experience and knowledge one would expect output to increase,
ceteris paribus. However, salmon farm studies show that the marine
environment around the farm tends to become more disease prone over time
due to accumulation of organic sediments below the cages, leading to
oxygen loss and increased risk of fish diseases. Hence, the farm age variable
may capture both the positive learning effect and the negative disecase
proneness effect. According to our results, the negative disease proneness
effect seems to dominate. The median (mean) value of age elasticity is
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Fig. 1. Histograms of Elasticites of f{(X).

—0.003 (—0.002) with a standard deviation of 0.004. Similar result is found
in parametric studies.

In production models the time variable is included to capture exogenous
technical change (a shift in the production function, ceteris paribus). In the
present model one can define technical progress in terms of the mean output
function f(X), that is, TC = dIn f(X)/0t). Based on this formula we find
mean technical progress at the rate of 4.6% per year. The frequency
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distribution of TC is given in Fig. 1. The distribution is skewed to the left.
It seems that the average rate of TC for most of the farms is around 6%. The
median value of TC is 5.3% with a standard deviation of 0.026. A notable
feature of this distribution is that it is bimodal. The two modal values of
TC are 2.5% and 7.5% per annum, respectively. Although the mean TC is
around 6% per year, some farms experienced technical progress at the rate
of 2.5% while other “leading” farms experienced a much higher rate.

For a risk neutral producer, the input elasticities (labor, feed, and capital)
can be interpreted as the cost share of the input to the value of output
(revenue). This is, however, not the case for a nonrisk neutral producer.
It can be easily verified from the FOCs that the value of the marginal
product of an input deviates from its price thereby meaning that cost share
(in total revenue) of an input differs from its elasticity. For example, it can
be seen from Eq. (4) that if a producer is risk averse, input elasticity exceeds
the cost share for a risk augmenting input.

In farmed salmon production, risk plays an important part. Conse-
quently, it is important to know which input(s) is (are) risk increasing
(decreasing). For this we estimate the partial derivatives of the production
risk, g(X) function. Based on the estimates of the risk functions we find that
labor is, in general, risk reducing. Labor plays a particularly important role
in production risk management. Farm workers’ main tasks are monitoring
of the live fish in the pens, biophysical variables (sea temperature, salinity,
oxygen concentration, algae concentrations, etc.), and the condition of
the physical production equipment (pens, nets, feeding equipment, anchor-
ing equipment, etc.). Thus, workers’ ability to detect and diagnose abnormal
fish behavior, detect changes in biophysical variables, and make prognoses
on future development are crucial to mitigate adverse production condition
and reduce production risk. We found (as expected) feed to increase the level
of output risk, ceteris paribus.

In Fig. 2 we report the frequency distribution of elasticities of the risk
function g(x) with respect to labor, capital, feed, age, and time. The mean
(median) values of these elasticities for labor, capital, feed, age, and time
are —0.049 (—0.043), 0.016 (0.011), 0.085 (0.016), —0.001 (—0.001), and
0.002 (0.002), respectively. The risk part of the production technology
seems to be quite insensitive to changes in the age (experience) of farmers.
Similarly, no significant change in production risk has taken place over time.

Elasticities of the mean output and risk functions for each input are
derived from the estimates of the f(X) and the g(X) functions and their
partial derivatives. Since we used a multistep procedure in which the f(X)
and the g(X) functions and their partial derivatives are estimated in the first
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Fig. 2. Histograms of Elasticites of g(X).

step, the estimated elasticities in Models I-III are the same. We use the
estimated values of f(X) and g(X) and their partial derivatives to obtain
estimates of the risk preference functions 0,(-) and 0,(-), and estimates of
RP in the second step. The estimated values of 0,(-), 01(-) (reported in
Fig. 3), and RP depend on type of risk an individual farm faces. Two farms
with different values of 6,(-) and 6;(-) are not directly comparable, unless
both 0,(-) and 6,(-) for one farm is higher (lower) than the other. On the
other hand, the RP measures among models with different sources of
uncertainty and different values of 0,(-) and 6,(-) are directly comparable.
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Since RP gives a direct and more readily interpretable result, reporting
of RP is often preferred. Given that the RP measure is dependent on
units of measurement, a relative measure of RP (defined as RRP = RP/u,)
is often reported. Relative risk premium (RRP) is independent of the units
of measurement. RRP also takes farm heterogeneity into account by
expressing RP in percentage terms.

The frequency distributions of RRP for Models I-III are reported in
Fig. 4. These are all skewed to the right. Predicted values of RRP from
Model III are much smaller for most of the farms. The mean (median)
values of RRP associated with Models I-1II are: 0.252 (0.224), 0.171 (0.145),
and 0.087 (0.052), respectively. RP shows how much a risk averse farm
is willing to pay to insure against uncertain profit due to production risk
and/or output price uncertainty. The RRP, on the other hand, shows what
percentage of mean profit a risk averse farm is willing to pay as insurance.
The above results show that on average a farm is willing to pay 5.22% of the
mean profit as an insurance against possible loss of profit due to both
production risk and output price uncertainty (Model III).
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Numerical values for the means and standard deviations of elasticities, 0s,
and RRPs are reported in Tables 1 and 2. In Table 2, also reported are 95%
confidence intervals for Os and RRPs. These confidence intervals are
somewhat wide, indicating the presence of considerable heterogeneity
among salmon farmers regarding their attitudes toward risk.

In addition to reporting the standard errors in Tables 1 and 2, we also
report confidence intervals of the elasticities (in terms of both the mean
production and risk (f(-) and g(-)) functions in Figs. 5 and 6. These figures
plot the elasticities against the labor, capital, feed, and time associated with
the f(-) and g(-) functions. It can be seen that the confidence intervals of
these elasticities are quite wide, and the width does not change with larger
values of labor, capital, feed, and time. Elasticities of mean output f(X) with
respect to labor, capital, and feed (in Fig. 4) tend to decline with an increase
in these inputs. This is consistent with economic theoretic arguments.
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Table 1. Elasticities of the Mean Production and Production Risk
Functions.
Mean Median Std. Deviation
f(x) war.t.
Labor 0.029 0.017 0.078
Capital 0.017 0.007 0.046
Feed 0.253 0.158 0.282
Time 0.046 0.053 0.026
Age —0.002 —0.003 0.0036
g(x) w.r.t.
Labor —0.0493 —0.0427 0.044
Capital 0.0163 0.0109 0.028
Feed 0.0851 0.0159 0.216
Time 0.0024 0.0021 0.0038
Age —0.0009 —0.0011 0.0014

Table 2. Risk Preference Functions and Relative Risk Premium.

Mean Median Std. Deviation 95% Confidence Interval
Model 1
0, —2.869 —2.888 0.435 -3.970 -2.810
RRP 0.252 0.224 0.124 0.122 0.592
Model IT
0, -0.219 —0.205 0.097 —0.420 0.080
RRP 0.171 0.145 0.094 0.098 0.410
Model IIT
0, —0.577 —0.402 2.389 —5.240 4.150
0, —0.053 —0.050 0.080 —0.231 0.212
RRP 0.087 0.052 0.096 0.0220 0.342

The positive sign with respect to time shows technical progress. It shows that
technical change increased over time.

Fig. 6 shows that elasticities of risk g(X) with respect to labor declined
with an increase in labor, and thus labor is found to be risk reducing.
On the other hand, feed and capital are found to be risk increasing. The last
panel of Fig. 5 shows that production risk decreased over time. The
confidence interval is quite similar for farms of all sizes (measured by the

input levels).



SUBAL C. KUMBHAKAR AND EFTHYMIOS G. TSIONAS

252

“S[BAIIU] 90UPYUOD) %66 ) pue (Y)/ Jo sayonseg ¢ Sy

00- v0- 8O- Zi-

vo

80

2

sy poa3
oo 800 900 00 200 000 200- 00— 900~ .D 82 vz 0z 9L 'L 20 »0 00
E
.
3
s
8
A
&
2
H
°
e
23
2
°a
e
°
=
°
N
14
s
Anonsole swiy Ansop paay
1011009 J0q01
szo 0z'o SL0 oo SO0 000 $0°0- 01 0= SL0- .0 o €0 zZ0 10 00~ L0- 20~
3
.
&
E]
Le
28
-3
g
k4
°
3
°
&
°
S
3
°
S
2

£0- ¥o-

10 00- L0- ZO0-

Ayonsole joyd0)

Aynsol s0qo7

Auzasop

Auansord



253

Nonparametric Estimation of Production Risk and Risk Preference Functions

"S[BAIIUT 20UIPYUO)) 9,66 AUl pue ()3 Jo sayonsefg 9 “3uf

suiy
oro0 S£0°0 0£0°0 $20°0 0200 SL00 0L00 $000 0000 $000- 0100~

paay

9100~

0000 8000~
Auonsole

8000

9100

Auansoe awiy

1ondo)
810 »10 010 900 200 200~ 900~ 010~

ot

v

Ayonsols pasy

10907
80°0 20'0 000 $0°0- 80°0- 21°0- 91°0- 0Z°0-

910 ZI'0 800 $00 000 ¥00- 800~ ZLO-

Aonsope

sLo- sz0-

500~
Aonsope

§1'0 010 S00

Aanso@ jodo)

Ayonsos sogo

Auonsole



254 SUBAL C. KUMBHAKAR AND EFTHYMIOS G. TSIONAS

Fig. 7 plots 0 values for different models against wealth. In all the models
we find evidence of an increase in risk averseness with an increase in wealth.
The confidence interval is so wide that negative (0,) values (risk averseness
associated with output price uncertainty) cannot be ruled out. That means
almost none of the salmon farmers is risk averse (when it comes to price
uncertainty). Finally, in Fig. 8 we plot RRP against wealth for various
models. All the models show that RRP increases with wealth almost
linearly. That is, these farmers are willing to pay more to protect from risk
as their wealth increases.

7. SUMMARY AND CONCLUSIONS

In this paper we addressed modeling issues associated with risk and
the risk preference function when producers face uncertainties related to
production of output and output price. The modeling approach is based on
the assumption that the objective of the producers is to maximize
expected utility of normalized anticipated profit. Models are proposed to
estimate risk preference of individual producers under (i) only production
risk, (ii) only price risk, (iii) both production and price risks, (iv) produc-
tion risk with technical inefficiency, (v) price risk with technical
inefficiency, and (vi) both production and price risks with technical
inefficiency. We discussed problems of parametric estimation of these
models and discussed nonparametric approaches to some of these models,
sometimes partial solutions of the problems (especially in the models with
technical inefficiency). Additional theoretical work is necessary to imple-
ment some of the more complicated models. Norwegian salmon
farming data is used for an empirical application of some of the proposed
models. We find that salmon farmers are, in general, risk averse. Labor is
found to be risk decreasing while capital and feed are found to be risk
increasing.

Both the parametric and nonparametric models are quite challenging
because of the complexities/nonlinearites involved in these model. The
nonparametric models can relax the rigid functional form assump-
tions built into the system. However, more research is needed to
estimate the nonparametric system models that involve cross-equational
restrictions.
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NOTES

1. Since anticipated profit is homogeneous of degree 1 in output and input prices, it
is customary to impose the homogeneity condition by normalizing anticipated profit in
terms of either the output price (which is done here) or one of the input prices.

2. Note that n°/p in Eq. (10) has two sources of randomness ( and &) whereas the
source of randomness in 7¢ in Model I (given in Eq. (2)) is &. Consequently, the 0,(-)
and 60,(-) functions in Eqgs. (13) and (14) are not exactly the same as 6,(-) and 0,(-) in
Eqgs. (5) and (9), although we are interpreting them as risk functions associated with
output price and production risk, respectively. In general, the 0,(-) and 0,(-)
functions in Egs. (13) and (14) will depend on the parameters of the distributions of
both # and e.

3. This is, for example, the case in Appelbaum (1991), where constant absolute
risk aversion is assumed.

4. See Kumbhakar and Tveteras (2003) for a proof.

5. See Kumbhakar and Tveteras (2003) for details.

6. The proof is similar to Kumbhakar and Tveteras (2003).

7. Note that the production function (15) is more general than the one used by
Battese et al. (1997).

8. The Battese et al. (1997) model can be obtained by imposing the restriction
hX, Z) = g(X, Z), which is a testable hypothesis.

9. One anonymous referee suggested that we could use some alternative methods
for conditional heteroskedastic models. One promising approach is to follow the
procedure in Fan and Yao (1998) (also discussed in Li & Racine, 2007). This procedure
has several advantages. It uses local linear estimation, which reduces the boundary bias
of the local constant method. It also provides as a “by-product” the derivatives that we
are interested in. We would like to pursue this approach in a separate paper.

10. We thank R. Tveteras for providing the data. Details on the sample and
construction of the variables used here can be found in Tveteras (1997).

11. These elasticities are positive for most of the data points. There are, however,
some farms for which the elasticities are negative, especially for capital. This type of
violation of the properties of the underlying production technology (viz., positive
marginal product) happens when one uses a flexible parametric production function
such as the translog.
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APPENDIX. ESTIMATION OF TECHNICAL
INEFFICIENCY (MODEL 1V)

In this appendix we derive estimators of technical inefficiency and technical
efficiency (TE).

TEo EXW _fX.2)—eX.Zu_ | gX,2)

SEvu=0__ jxz ' japst M

Production function: We write the production function as
y=fX,Z)+ h(X,Z)e — g(X, Zyu=f(X,Z) + v — u

where v = (X, Z)¢ and g(X, Z) u = u™.
Assume that

(i) v~ N(O,K(X,Z)) = N0,d?),
(ll) MA ~ N+(.ug(X7 Z)’ Gigz(Xa Z)) = N+(.u0’ O—%)

With these distributional assumptions the model is similar to the normal,
truncated normal model proposed by Stevenson (1980). Following
Kumbhakar and Lovell (2000, pp. 85-86) we get

ulle! ~ Nt (1, 6%), &' =v—u’

2.4 2 2 2
o= —[ope” + 1oy ] 2 _ 0939,
oi+oy T ota]

which gives the following point estimators of inefficiency

= e

poifp>0
0 otherwise

M@t = {
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where

[ 2 2

~ 2.4 2 o 2.4 2
B [oge’ 4+ pooy] V % T _ [oge” + 03]
Ll — =

O [og + 3] G00y 000v\/ 0% + 02

Note that &' =Y —f(X,2), uy = pg(X,2), 03 = 6’g*(X,Z), and ¢’ =
I*(X,Z). Estimates of all these functions can be obtained using the
estimated parameters. Using the estimated values of u”, one can obtain
estimates of u for each observation from u? = g(x,2)u = E[u'|e'] =
g(x,z) E[ule’] = Elule?] = E[u?|e?]/g(x, 2), and TE = 1 — E[u?|e?]/f (x, 2).
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COPULAS WITH APPLICATION
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ABSTRACT

Knowledge of the dependence structure between financial assets is crucial
to improve the performance in financial risk management. It is known
that the copula completely summarizes the dependence structure among
multiple variables. We propose a multivariate exponential series
estimator (ESE) to estimate copula densities nonparametrically. The
ESE has an appealing information-theoretic interpretation and attains
the optimal rate of convergence for nonparametric density estimations
in Stone (1982). More importantly, it overcomes the boundary bias of
conventional nonparametric copula estimators. Our extensive Monte
Carlo studies show the proposed estimator outperforms the kernel and the
log-spline estimators in copula estimation. It also demonstrates that two-
step density estimation through an ESE copula often outperforms direct
estimation of joint densities. Finally, the ESE copula provides superior
estimates of tail dependence compared to the empirical tail index
coefficient. An empirical examination of the Asian financial markets using
the proposed method is provided.
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1. INTRODUCTION

The modeling of multivariate distributions from multivariate outcomes is an
essential task in economic model building. Two approaches are commonly
used. The parametric approach assumes that the data come from a specific
family. The maximum-likelihood estimators or the methods of moments are
often used to estimate unknown parameters of the assumed parametric
distributions. The multivariate normal distribution is a popular choice for
multivariate density estimation. More generally, the elliptic distribution
family is often used due to its appealing statistical properties. Although
they are efficient when the distribution is correctly specified, the parametric
estimators are generally inconsistent under misspecification. For example,
the elliptic family is often inadequate to capture the pattern of empirical
data. This is especially true when we estimate a multivariate asset return
distribution or try to account for nonlinear dependence among several assets
in financial econometrics (Embrechts, McNeil, & Straumann, 1999).

Alternatively, one can estimate densities using nonparametric methods.
Popular nonparametric estimators include the kernel estimator and the
series estimator. Because they do not impose functional form assumptions,
nonparametric estimators are consistent under mild regularity conditions.
However, this robustness against misspecification comes at the price of a
slower convergence rate. In other words, nonparametric estimators typically
require a larger sample than their appropriately specified parametric
counterparts to achieve a comparable degree of accuracy. In addition,
nonparametric estimations of multivariate outcomes suffer the “curse of
dimensionality,” the amount of data needed for the multivariate estimations
to obtain a desirable accuracy grows exponentially.

In this study, we focus on a specific strategy of estimating multivariate
densities: the copula approach. According to Sklar (1959), the joint density
of a continuous multidimensional variable can be expressed uniquely as a
product of the marginal densities and a copula function, which is a function
of corresponding probability distribution functions of margins. Since the
dependence structure among the variables is completely summarized by the
copula, it provides an effective device for modeling dependence between
random variables. It allows researchers to model each marginal distribution
that best fits the sample, and to estimate a copula function with some
desirable features separately. In practice, the joint distribution is often
estimated with certain functional form restrictions on the specific margins
and copula, respectively. For example, the t-distribution can capture the
tail heaviness in the mar