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1.1 INTRODUCTION
Financial markets can move quite dramatically, and stock prices may 

appear too volatile to be justified by changes in fundamentals. Such observ-

able facts have been under scrutiny over the years and are still being stud-

ied vigorously (LeRoy and Porter, 1981; Shiller, 1981; Zhong et al., 2003).

Volatility as a phenomenon as well as a concept remains central to  

modern financial markets and academic research. The link between vola-

tility and risk has been to some extent elusive, but stock market volatility 
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is not necessarily a bad thing. In fact, fundamentally justified volatility 

can form the basis for efficient price discovery, while volatility dependence 

implies predictability, which is welcomed by traders and medium-term 

investors.

The importance of volatility is widespread in the area of financial eco-

nomics. Equilibrium prices, obtained from asset pricing models, are affected  

by changes in volatility, investment management lies upon the mean-

variance theory, while derivatives valuation hinges upon reliable volatility 

forecasts. Portfolio managers, risk arbitrageurs, and corporate treasurers 

closely watch volatility trends, as changes in prices could have a major 

impact on their investment and risk management decisions.

The current chapter provides an overarching review of the equity  

market volatility, covering areas that have caught the attention of practi-

tioners and academics alike.* It aims to enlighten financiers and anyone 

interested in equity markets about the theories underlying stock mar-

ket volatility, the historical trends and debates in the field, as well as the 

empirical findings at the forefront of academic research.

In what follows, Section 1.2 discusses the link between volatility and 

speculative action, Section 1.3 looks at the interface among information, 

volume, and volatility, and Section 1.4 explores the impact of derivatives 

trading on the underlying asset’s volatility. Section 1.5 considers some 

stylized facts related to equity volatility, Section 1.6 compares rival vola-

tility forecasts, and Section 1.7 focuses on volatility trading. Section 1.8 

concludes the chapter.

1.2 SPECULATION AND VOLATILITY
Speculators are usually seen with some sort of resentment by the wider 

community.† From the early days, scholars have either supported that 

speculators stabilize prices (Smith, 1776; Mill, 1871; Friedman, 1953) or 

argued that speculators make money at the expense of others, which in 

turn produces a net loss and results in unnecessary price fluctuations 

(Kaldor, 1960; Stein, 1961; Hart, 1977). In any event, large institutional 

* Because of the vast amount of research available, and to keep the task manageable, this  

chapter has no intention to lessen the importance of any studies excluded. Further and more 

specialized reading can be obtained from the references provided in the papers cited in this 

chapter. For market microstructure issues see O’Hara (1997).
† Carpenter (1866, p. 84) quotes Abraham Lincoln: “For my part, I wish every one of them 

[speculators] had his devilish head shot off.” The role of speculators has also been discussed 

by Walras (1896) and Keynes (1936).



An Overview of the Issues Surrounding Stock Market Volatility  5

investors should be able to insure against excess fluctuations (at least in the 

short run), while small agents may have to bear the consequences. Under 

these circumstances, greater instability leads to real economic costs.

Analysts often argue that there is a link between speculation and vola-

tility, while some even commit themselves to the  

fallacy. It is crucial, however, to distinguish between the order of events 

and the factors that rule out any connection between the two episodes, 

i.e., understand the concept of coincidental correlation, or more formally 

separate the notion of correlation and causation. In essence, a case could 

be made that speculators act as momentum traders by identifying peaks 

and troughs in retrospect, which in turn accelerates upward/downward 

movements or even increases the amplitude and frequency of fluctuations. 

What determines the level of disruption in the cash market is the specu-

lators’ (poor) forecasting ability and lack of information (Baumol, 1957; 

Seiders, 1981).* But from a practical point of view, how do speculators 

inject excess volatility (if any) in financial markets?

Volatility is an inevitable market experience mirroring (1) fundamen-

tals, (2) information, and (3) market expectations. Interestingly, these three  

elements are closely associated and interact with each other. Adjustments 

in equity prices (should) echo changes in various aspects of our society 

such as economic, political, monetary, and so forth. That is, corporate 

profitability, product quality, business strategy, political stability, interest 

rates, etc., should have a role to play in shaping the intensity of price fluctu-

ations, as the market moves from one equilibrium to another.† At the same 

time, information about changes in fundamentals should spark market 

activity changing the landscape of future prices. In fact, the process can 

be viewed as a “game” where the sequence becomes one of changes in fun-

damentals, information arrival, and new expectations (hence new trading 

positions), which in turn results in an endless cycle where these events 

embrace each other in a series of lagged responses.

The point here is what kind of information speculators‡ possess, which 

raises a few interesting questions. First, do speculators have superior access 

* Early research has produced mixed results (Telser, 1959; Kemp, 1963; Farrell, 1966; Hart and 

Kreps, 1986). Noise traders can also be held responsible for fueling price instability. These 

investors irrationally trade on information immaterial to equity values (Black, 1986).
† Under market efficiency (Fama, 1970, 1991) any changes should be reflected in prices 

instantaneously.
‡ We refer here to institutional speculators such as hedge funds, investment houses, etc., which 

aim to profit from changes in market conditions.
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to information? Speculators devote more resources to follow the markets 

and, because of their size, are able to reduce any associated expenses. 

Second, do speculators, by means of expertise/knowledge, better inter-

pret the same set of information than others? Theoretically, sophisticated 

speculators should be one step ahead. On the other hand, historical cases 

(Metallgesellschaft (1993), Orange County (1994), Daiwa Bank (1995), 

Chase Manhattan (1997), UBS (1998), LTCM (1998), etc.) do not endorse 

such a claim, which places more emphasis on the roots of excessive vola-

tility and market instability. Third, on the basis of information received/

interpreted, do speculators behave in a proactive rather than inactive 

way? This actually leads us, indirectly, to the concept of herding behav-

ior. Market analysts sometimes pin down the origins of volatility to either 

uninformed trading or collective irrationality—possibly resulting from 

herding behavior. Such an approach reinforces the view that speculation 

can lead to unjustified price variability.

The debate over speculation and excess volatility has become more of a 

two-handed lawyer problem. If speculators indeed lead the market, then 

we shall observe faster price adjustments on the basis of their actions. It 

would also be hard to blame them for acting quicker than others, or hold 

them responsible for long-term excess volatility. Besides, such volatility 

should fade away rather quickly in an efficient market. On the other hand, 

if speculators simply follow the market or possess the same information 

set—interpreted in the same way as by the rest of the market—then their 

actions would lack the material information* required to justify price 

changes or even excess volatility.

Nonetheless, professional market players measure their performance 

against their peers’ (Lakonishok et al., 1992a), while some tend to “ratio-

nally” herd (Lakonishok et al., 1992b; Wermers, 1999; Grinblatt et al., 1995; 

Welch, 2000). The contagion advocated by the second group of studies  

preserves reputation since the failure/loss is shared with the market 

peers.† This issue has been the subject of analysis (Devenow and Welch, 

1996; Calvo and Mendoza, 2000), but bear in mind that markets closely 

watch those who tend to lose as a result of taking decisions different from 

* Information is material if it has an impact on securities prices when it becomes publicly 

available for the first time. If it has no impact on prices, it is largely irrelevant, although it 

may cause portfolio adjustments that leave prices unchanged.
† Actually, this is not a new approach, as Keynes, (1936, p. 158) states, “It is better for reputa-

tion to fail conventionally than to succeed unconventionally.”
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their peer group. Finally, note that the approaches discussed are based on 

the fact that legitimate information (about future demand) governs the 

actions of speculators. Yet, price manipulation* is a market reality. It is 

certainly possible that through price manipulation excess profits can be 

earned (Allen and Gorton, 1992; Allen and Gale, 1992; Jarrow, 1992, 1994; 

Cooper and Donaldson, 1998), but all largely depends upon the underly-

ing model assumptions, such as risk aversion, information, etc.

1.3 INFORMATION, LIQUIDITY, AND VOLATILITY
Volatility is a natural consequence of trading, which occurs through the 

news arrival and the ensuing response of traders. The chain reaction of 

market participants† will force equity prices to reach a postinformation 

equilibrium level. Revision of expectations and subsequent actions will 

be reflected in the liquidity of the particular market and specifically on 

the amount of stocks traded. If we place the above process in a continu-

ous time of revising expectations, and since the underlying prime mover 

is common, i.e., flow of information, then it is expected that information, 

liquidity, and volatility are related.

The relation among information, volume (liquidity), and volatility is 

consistent with four competing propositions: the mixture of distributions 

hypothesis (MDH) (Clark, 1973; Epps and Epps, 1976; Harris, 1986, 1987), 

the sequential information hypothesis (Copeland, 1976; Morse, 1980; 

Jennings et al., 1981; Jennings and Barry, 1983), the dispersion of beliefs 

approach (Harris and Raviv, 1993; Shalen, 1993), and the information 

trading volume model of Blume et al. (1994).

The motivation behind the MDH is drawn by the apparent leptokurtosis 

exhibited in daily price changes attributed to the random events of impor-

tance to the pricing of stocks. The MDH postulates that volume and volatil-

ity are contemporaneously and positively correlated, while jointly driven by 

* In March 2008, the SEC launched an inquiry suspecting short selling and market manipula-

tion surrounding Lehman Brothers (shares fell 40%). The SEC also investigated the trading 

of Bear Stearns shares prior to its purchase by JP Morgan (March 2008). During the same 

period, in the UK, the Bank of England and the FSA investigated allegations of market abuse 

by traders spreading false rumors to profit from short selling. Shares of Halifax, UK’s largest 

mortgage lender, fell 20% amid speculation of stock shorting by hedge funds as well as claims 

of emergency funding.
† Obviously their expectation about future prices will determine their trading activity. 

Hedgers will mainly respond in order to secure their future income, while speculators will 

take advantage should their expectations about future volatility come true.
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a stochastic variable defined as the information flow.* The question of how 

noncorrelated news can change these variables in a simultaneous fashion, 

prompted Andersen (1996) to argue for a modified version of MDH, where 

information is serially correlated implying that current volume and volatili-

ties are affected by their past values. The MDH is subject to one limitation: 

it fails to consider the precision or quality of information.

Under the sequential information hypothesis, information is absorbed 

by traders on a group-by-group basis who then trade upon the arrival of 

news. The implication of this model is that the volume-volatility relation 

is sequential, not contemporaneous. A number of incomplete equilib-

ria are observed before a final equilibrium is attained—when all traders 

observe the same information set. The sequential response to the arrival 

of information implies that price volatility is forecastable, based on the 

knowledge of trading volume. Yet, the model is not flawless as (1) it does 

not account for the fact that traders learn from the market price as other 

traders become informed, and (2) it implies that volume is greatest when 

all investors agree on the meaning of the information.

The dispersion of beliefs model posits that the greater the dispersion of 

beliefs among traders, the higher the volatility/volume relative to their equi-

librium values. The approach engulfs both informed and uninformed seg-

ments of financial markets, with uninformed traders reacting to changes 

in volume/prices as if these changes reflect new information. On the other 

hand, knowledgeable investors make their trades on price reflecting fair val-

ues, as they possess homogeneous beliefs. It is therefore expected that unin-

formed investors will shake prices and increase price volatility.

Finally, the information trading volume approach is based on the notion 

that volume plays an informationally important role in an environment 

where traders receive pricing signals of different quality. Of paramount 

importance is the assumption that the equilibrium price is nonrevealing 

given that pricing signals alone do not provide sufficient information to 

ascertain the underlying value. Trading volume is treated as containing 

information regarding the quality of signals received by traders, whereas 

prices alone do not. This in turn leads to the formulation of a link among 

trading volume, the quality of information flow, and volatility. It is also 

argued that traders who use information contained in market statistics do 

better than those who do not.

* The mixture of distributions model does not explicitly preclude a lead-lag relation between 

volume and volatility.
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Over the recent years, scholars have made noteworthy advances in 

equity volatility modeling by taking into account features of returns not 

previously considered. One of the assumptions underlying time-series 

models is that time intervals over which price variations are observed 

are fixed. Price changes and news arrival, however, can take place in 

irregular time intervals. Empirical evidence using high-frequency data 

indicates that adjusting volume and volatility for the duration between 

trades provides time-consistent parameter estimators in microstruc-

ture models, while allowing for proper integration of the information— 

proxied by trade intensity—into the regression model (Engle and Russell, 

1998; Dufour and Engle, 2000; Engle, 2000). Recent research shows that 

volatility and volume are persistent and highly autocorrelated, while 

shorter time duration between trades implies higher probability of news 

arrival and higher volatility (Xu et al., 2006). The findings suggest that 

there is an inverse relation between price impact of trades and dura-

tion between trades. A similar relationship is documented for the speed 

of price adjustment to trade-related information and the time interval 

between transactions.

The issue of information asymmetry is also important. Agents with dif-

ferent information sets take different trade positions, while their actions 

flag signals and cause a persistent impact on equity prices. As trading 

actions spread, news is conveyed into the market and stock prices adjust 

to reflect expectations based on previous trades and all available infor-

mation. Empirical research (Glosten and Harris, 1988; Hasbrouck, 1988, 

1991a, 1991b) has put forward models to understand the equity pricing 

function by integrating the news arrival process into equity prices. The 

results suggest that past price changes as well as signed trades have a per-

sistent impact on current price changes, thereby being important in deter-

mining the intrinsic value of stocks.

Within a noisy rational expectations framework Wang (1994) and 

Blume et al. (1994) unveil a positive association between volume and price 

changes. McKenzie and Faff (2003) take into account liquidity disparities 

for equities, as they exert a significant impact on individual stocks but not 

on indices. They show that conditional autocorrelation in equity returns 

is highly dependent on trading volume for individual stocks but not for 

indices. Elsewhere, Li and Wu (2006) find that by controlling for the effect 

of informed trading, return volatility is negatively correlated with volume. 

This is consistent with the contention that liquidity increases market depth 

and reduces price volatility.
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In general, empirical research supports a positive correlation between 

equity price changes and volume.* Nonetheless, the difficulty in evaluat-

ing such a relationship stems from the ambiguity regarding the informa-

tion content of volume. We would rather suggest that volume provides 

insights on the dispersion and quality of information signals, rather than 

representing the information signal per se.

1.4 DERIVATIVES TRADING AND VOLATILITY
The general belief that futures trading triggers excess speculation, and pos-

sible price instability, has been a fertile research terrain for many scholars  

(Damodaran and Subrahmanyam, 1992). The implications for policy mak-

ers and those responsible for regulating futures trading have also been 

noted. The debate became more vivid after “Black Monday,” which has led 

to much interest in examining volatility in modern financial markets.

It is not yet clearly established whether derivatives induce excess volatil-

ity in the cash market and thus destabilize equity prices. Financial bubbles 

along with the existence of speculators have been addressed (Edwards, 

1988a, 1988b; Harris, 1989; Stein, 1987, 1989) as other potential sources 

of excess price variability.† It is also true that closer to the expiration day, 

traders attempt to settle their contracts, close their trading positions, and 

aggressively arbitrage on price differences. Miller (1993) finds that futures 

trading has raised volatility in the Japanese market, possibly attributed to 

low-cost speculative opportunities. These arguments along with the dis-

cussion in Section 1.2 underline the role of derivatives trading in destabi-

lizing financial markets.

On the other hand, there is a consensus that derivatives trading con-

tributes to stabilizing the underlying equity market. The very nature of 

derivatives is risk reducing, being a platform for competitive price dis-

covery, and acting as a hedging device for buyers and sellers. Derivatives 

also increase market liquidity and expand the investment opportunity 

* For more evidence see Crouch (1970), Rogalski (1978), Smirlock and Starks (1985), Wood 

et al. (1985), Richardson et al. (1986), Gallant et al. (1992), Richardson and Smith (1994), 

Kandel and Pearson (1995), Chan and Fong (2000), Chordia and Subrahmanyam (2001), 

Chen et al. (2001), and Llorente et al. (2002). The following studies use a GARCH framework: 

Lamoureux and Lastrapes (1990), Najand and Yung (1991), Sharma et al. (1996), Brooks 

(1998), and Kalotychou and Staikouras (2006). The volume-volatility theory and a survey of 

the literature can be found in O’Hara (1997) and Karpoff (1986, 1987).
† Financial fads, investment trends, and social norms can also notably contribute to equity 

price changes (Shiller, 1984). See Shiller (1989) for other aspects of market volatility.
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set at lower transaction costs and margin requirements. Exchange traded 

derivatives are more centralized, enabling participants to trade and com-

municate their information more effectively. Assuming that derivatives 

do attract rational traders, then equity prices should move closer to their 

fundamentals and markets should become less volatile. Based on intraday 

data, Schwert (1990) shows that the equity cash market is 40% less volatile 

than its counterpart futures arena, while Merton (1995) argues that the 

volatility’s asymmetric response to the arrival of news is reduced in the 

presence of futures markets.

Yet, anecdotal evidence both supports and refutes the aforesaid hypoth-

eses. Moreover, tightening any regulatory framework in the derivatives 

market is not empirically endorsed. With the lack of a clear-cut theoreti-

cal background that justifies market realities, the question becomes an 

empirical one. At times, when fluctuations are large, they can easily call 

into question the collective rationality of the market. The issue is whether 

volatility is a sign of collective irrationality or is consistent with the kind of 

fluctuations expected to arise naturally from the actions of less informed 

investors.

Early evidence (Bessembinder and Seguin, 1992) points out that futures 

trading improves liquidity and depth in the cash equity market, which 

is corroborated by more recent studies (Board et al., 2001). Analysis of 

the FTSE100, S&P500, and DJIA indices (Robinson, 1994; Pericli and 

Koutmos, 1997; Rahman, 2001) reveals either a volatility reduction in the 

postfutures phase or no change in the conditional volatility over the two 

periods. Elsewhere, findings indicate that twenty-three international stock 

indices exhibit either a reduction or no change in volatility during the post-

futures period, while the opposite applies for the U.S. and Japanese equity 

markets (Gulen and Mayhew, 2000). Recently, Dawson and Staikouras 

(2008) investigated whether the newly cultivated platform of derivatives 

volatility trading has altered the variability of the S&P500 index. They 

document that the onset of the CBOE volatility futures trading has low-

ered the equity cash market volatility, and reduced the impact of shocks to 

volatility. The results also indicate that volatility is mean reverting, while 

market data support the impact of information asymmetries on condi-

tional volatility. Finally, comparisons with the UK and Japanese indices, 

which have no volatility derivatives listed, show that these indices exhibit 

higher variability than the S&P500.

The dynamic interaction between derivatives and cash equity markets 

engulfs the issue of volatility’s asymmetric response to the arrival of news 
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(Engle and Ng, 1993). In other words, do market participants react differ-

ently upon the arrival of bad and good news? The information transmis-

sion mechanism, from futures to spot market, is yet unclear. The role of 

asymmetries in the futures market* will have implications for the effec-

tiveness of policy frameworks at both an institutional and a state level. 

Early evidence unveils that bad news in the futures market increases vola-

tility in the cash markets more than good news (Koutmos and Tucker, 

1996; Antoniou et al., 1998), while postfutures asymmetries are signifi-

cantly lower for major economies, except the United States and United 

Kingdom. When both spot and futures markets are examined, it seems 

that asymmetries run from the spot to the futures market. The leverage 

hypothesis† is not the only force behind asymmetries, as market interac-

tions, noise trading, and irrational behavior may well contribute to the 

rise of asymmetries.

Analysts and traders use techniques such as portfolio insurance, senti-

ment, and other technical indicators, as well as extrapolative expectations 

that are in line with the positive feedback trading approach. The latter calls 

for tracking market movements in retrospect of a trend change. On that 

basis, as futures do attract a diverse number of participants, then some 

form of market destabilization may take place. Recent evidence (Antoniou 

et al., 2005; Chau et al., 2008) indicates that feedback trading is either 

reduced or not attributed, at least in large part, to the existence of futures 

markets. When feedback trading does take place, both rational and any 

other investors/speculators tend to join the trading game, which in the 

short run may drive prices away from fundamentals.‡ On the other hand, 

in efficient markets and under rational expectations, the effect of feedback 

trading might be limited as speculators will ultimately start liquidating 

their positions, driving equity prices closer to their intrinsic values.

Finally, research has concentrated on stock indices rather than individual 

shares. It is a fact, however, that individual share futures (ISFs) are traded 

in modern markets, and their analysis sheds light on financial markets’  

behavior (McKenzie et al., 2001; Chau et al., 2008). It is true that equity 

indices capture wide-market forces, but when it comes to identifying the 

* In that respect, Staikouras (2006) provides some evidence for the UK interest rate market, 

while Dawson and Staikouras (2008) offer findings for the S&P500.
† Negative equity returns imply higher leverage, through the reduced firm’s market value, 

which in turn increases the firm’s perceived riskiness and leads to higher volatility.
‡ Asset values with long-term swings away from fundamentals could be translated to predict-

able stock returns, in the long run, which in turn broaches the idea of market inefficiency.
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origins of a phenomenon, the large number of constituent stocks poses an 

obstacle. Liquidity is another motive behind such an analysis, as indices 

are more liquid than individual stocks, amplifying any possible impact of 

stock index futures on the underlying asset. At the same time, the under-

lying asset on stock index futures is not traded as opposed to ISFs, making 

the latter an apt alternative for investigation. In a multiaspect examination, 

McKenzie et al. (2001) study the systematic risk, asymmetries, and volatil-

ity of ISFs. Their stock-specific empirical findings add to the mixed results 

of the ongoing literature. They detect a clear reduction in beta risk and 

unconditional volatility, during the post-IFS listing, and offer some mixed 

evidence regarding the change in conditional volatility, while asymmetric 

response is not consistent across all stocks.

1.5 STYLIZED FACTS OF VOLATILITY MODELING
It is well established by now that equity volatility is time varying and tends 

to display patterns, thereby rendering the stock returns’ empirical distri-

bution nonnormal. Several historical time-series models have been pro-

posed to account for such features. The simplest class of historical volatility 

models lies on the premise that past standard deviations of returns can be 

estimated. The most naive historical volatility model is the , 

where the best forecast of today’s volatility is yesterday’s realized value, 

i.e., ˆ 2
1

2 . Another approach is the (HA), which 

amounts to a long-term average of past standard deviations. Whereas the 

HA uses all past standard deviations, the  (MA) discards 

older information by deploying a rolling window of fixed length ( ), typi-

cally 20 to 60 trading days. The MA volatility forecast is

 

ˆ ( / ) ˆ / )2 2

1

2

1

1 1(

where  is the observed return on day , with squared returns typically 

used as an estimate of the ex-post daily variance. A drawback of the MA is 

that all past observations carry the same weight, while the so-called ghost-

ing feature* should not be ignored.

* The volatility forecast increases as a direct result of including a particular high observation. 

After days this observation is dropped out of the estimation window, causing a sudden fall 

in volatility, 
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A more refined approach is the  model (JP Morgan, 1996), 

which uses an  (EWMA) to forecast 

volatility and gives greater importance to more recent volatility estimates. 

The EWMA variance forecast is formulated as

 

ˆ ( )2 1 2

1

1

where the decay parameter is set at   0.94 for daily and   0.97 for 

monthly forecasts, and a window of   75 days is typically used. The 

EWMA posits geometrically declining weights on past observations, giving  

greater emphasis to new information. The smaller the , the higher the 

impact of recent news is and the faster the decay in weights for old news.

Volatility clustering is a characteristic of equity returns and mirrors the 

leptokurtosis (fat tails) in the returns’ distribution. Volatility clustering 

refers to large/small price changes being followed by large/small changes 

in either direction. It has been attributed to the quality of information 

reaching the market in clusters (Gallant et al., 1991), as well as to the time-

varying rate of information arrival and news processing by the market 

(Engle et al., 1990). One of the major breakthroughs in financial economics  

is the modeling of nonconstant variances ( )  

and volatility clustering in equity returns.* The GARCH framework builds 

on the notion of volatility dependence to measure the impact of last peri-

od’s forecast error and volatility in determining current volatility. The 

simplest GARCH specification is formulated as

 

~ ,0 2

2
0 1 1

2
1

2

where the ARCH term 1 measures the extent to which a volatility shock 

today feeds into tomorrow’s volatility and represents the short-run per-

sistence of shocks on return variance. The GARCH term  is the contri-

bution of older shocks to the long-run persistence. Akgiray (1989) finds 

that a GARCH(1,1) model is sufficient to capture all volatility clustering. 

* See Engle (1982), Bollerslev (1986, 1987), and Engle and Bollerslev (1986). For academic  

surveys see Bollerslev et al. (1992, 1994), and for a practical review of these models see Engle 

(1993).
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It is also shown that the GARCH estimator performs better than the 

ARCH, EWMA, and HA for predicting monthly U.S. stock index volatil-

ity. Interestingly, ARCH effects are more pronounced in daily and weekly 

data and tend to dampen as the frequency of the data decreases.

The degree of volatility persistence ( 1  ) measures the rate at which 

the volatility feedback effect decays over time.* High persistence ( 1   

close to 1) means volatility shocks are felt further into the future, albeit at 

a progressively smaller extent. That is, mean reversion toward the long run 

variance will take several days, although shocks decay rather quickly in 

longer horizons over a month. The fall in persistence, when using monthly 

data, indicates that volatility predictability based on current information 

weakens. Christoffersen and Diebold (2000) suggest that there is little value 

in forecasting volatility for more than 10 days ahead. Volatility persistence 

has two implications: predictability of future economic variables† and pre-

dictability of changes in the risk-return trade-off over business cycles.

In the limiting case of 1    1, a process known as integrated 

GARCH (IGARCH), the shock will have a permanent effect on the vari-

ance process; i.e., after the shock the variance will rise and will remain at 

that level. In fact, the EWMA variance estimate, which can be expressed 

as 2
1

2
1

21( ) , is an IGARCH process. Therefore, the one-day-

ahead EWMA volatility forecasts are very close to those of the GARCH. 

Nevertheless, be aware that longer-horizon forecasts are markedly different,  

as the EWMA is not mean reverting. At the same time, mean reversion 

in monthly volatility is well established. RiskMetrics accounts for this by 

proxying the latest variance innovation using the 25-day MA, rather than 

the latest squared return. Thus, the month τ variance is expressed as

 

2 2

1

25

1
21( )

Asymmetry, long memory, and spillover effects are by now stylized facts 

that characterize the behavior of global equity market volatility. From an 

empirical point of view, volatility is higher in bearish markets than it is in 

bullish markets (asymmetry), indicating a negative correlation between 

* Typical financial time series may have GARCH persistence of 0.90 to 0.99 for daily data.
† Economic variables and stock market volatility are related (Schwert, 1989; Campbell et al., 

2001).
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future conditional volatility and current stock returns (Black, 1976). Apart 

from the leverage effect, mentioned in the previous section, volatility feed-

back has been put forward as another justification of volatility asymme-

tries (Campbell and Hentschel, 1992). According to this hypothesis, the 

causality runs from volatility to prices; i.e., positive shocks to volatility 

increase future risk premium, and if dividends remain the same, then 

the stock price should fall. In emerging markets, asymmetric volatility 

has been identified at the aggregate market level (Chiang and Doong, 

2001), but there is no evidence of how this asymmetric volatility occurs at  

sector and firm levels. Yet, volatility feedback does not preclude the pres-

ence of leverage effects. Christie (1982) tests Black’s hypothesis by ana-

lyzing a cross section of firms. Although he finds that there is a strong 

correlation between asymmetry and leverage, the leverage itself is not suf-

ficient to explain the asymmetric effects.

A number of extensions to the standard GARCH model have been sug-

gested, such as the exponential GARCH (EGARCH) (Nelson, 1991) and 

threshold GARCH (TGARCH) (Glosten et al., 1993; Zakoian, 1994), to 

accommodate the asymmetric nature of volatility. Pagan and Schwert 

(1990) notice that EGARCH yields somewhat better predictions for 

monthly U.S. stock index volatility than GARCH, whereas Franses and 

van Dijk (1996) argue that asymmetric models fare no better than simple 

GARCH for forecasting the weekly volatility of European stock market 

indices. Brailsford and Faff (1996) support the TGARCH for the Australian 

stock market, albeit only slightly better in performance than the simple 

random walk, HA, MA, and EWMA. A GARCH-in-mean parameteriza-

tion is also proposed (Engle et al., 1987) to formalize the idea that risk is 

priced by the market and risk premia vary with volatility.

Looking at high-frequency data, volatility changes slowly and shocks 

tend to take a long time to decay (long memory). Fractionally integrated 

GARCH (FIGARCH) specifications have been developed (Baillie et al., 

1996) as a way of modeling the hyperbolic rather than exponential decay 

of shocks. Financial globalization has eased the transmission of price fluc-

tuations from one market to others, or among assets in the same market  

(Hamao et al., 1990; Conrad et al., 1991; Koutmos and Booth, 1995; 

Karolyi and Stulz, 1996). Such contagion effects increase during periods 

of high-equity market volatility. Volatility co-movements or spillovers 

endorse a multivariate framework for forecasting the variance-covariance 

structure of asset returns. To this end, multivariate GARCH (MGARCH) 

specifications have been suggested for modeling asset interdependence as 
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well as the dynamics of volatility and covariance/correlation. The BEKK 

estimator, introduced by Engle and Kroner (1995), directly characterizes 

volatilities and covariances. In a multiasset setting, however, conditional 

correlation models are more appealing, and among them the dynamic 

conditional correlation (DCC) model (Engle, 2002) is becoming all the 

more popular (Kalotychou et al., 2008).

1.6 THE RIVAL VOLATILITY FORECASTS
An alternative to time-series approaches is market-based volatility fore-

casts, which are derived from the Balck-Scholes European option pric-

ing formula. Volatility is a crucial factor in determining the value of an 

option, and using numerical methods, the option’s implied volatility can 

be obtained. Nowadays, traders quote options in terms of volatility rather 

than price, since an option’s implied volatility is a more useful measure of 

its relative value. This is because the price of an option is associated with 

the price of its underlying asset, and if an option is held as part of a delta-

neutral portfolio, then the next most important factor in determining the 

value of the option is its implied volatility.

There has been a burgeoning literature on the forecasting ability of 

GARCH models and their relative merits over alternative approaches, 

such as implied volatility. When it comes to forecasting future volatility 

of financial assets, simple historical volatility and GARCH models are 

roughly comparable, but lag behind their main rival of implied volatility. 

There is some support for the EWMA approach (Dimson and Marsh, 1990; 

Tse and Tung, 1992; Figlewski, 1997), pointing out that GARCH models 

are not superior to their simpler rivals. Looking at the S&P indices, implied 

volatility has often been found to outperform time-series approaches 

(Fleming, 1998; Blair et al., 2001; Hol and Koopman, 2002). Nonetheless, 

implied-based volatility forecasts face some shortcomings, as they are not 

available for all assets and are prone to volatility smile effects, namely, 

different strike prices yield different volatilities. Donaldson and Kamstra 

(2004) suggest that market conditions influence the relative performance 

of historical and market-based measures of volatility. ARCH-type models 

are found to be better in periods of low trading volume when information 

is stale, while implied volatility leads in periods of intense trading with 

rich information flow. Vasilellis and Meade (1996) advocate combining 

implied and GARCH volatility forecasts. As earlier discussed, the role of 

trading volume in improving the predictability of market volatility has 
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also been attested (Lamoureux and Lastrapes, 1990; Brooks, 1998), but 

with limited success.

Studies by Akgiary (1989), Heynen and Kat (1994), Franses and van 

Dijk (1995), Brailsford and Faff (1996), Figlewski (1997), and Brooks 

(1998) find that a regression of realized volatility on out-of-sample 

GARCH volatility predictions yields a low coefficient of determination 

(R2 often <10%). Nevertheless, substantial gains can be achieved by improv-

ing the measure of actual or population volatility, which is a latent process. 

A very common, albeit crude proxy for the unobserved daily price varia-

tion is the daily squared return. Andersen and Bollerslev (1998) empha-

size how the evaluation of volatility forecasts depends on the underlying 

measure of ex-post volatility. They show that daily squared returns are 

an unbiased but very noisy estimator of the conditional variance under-

mining the forecasting performance of GARCH models. When cumu-

lated squared intraday returns proxy the true volatility, the accuracy of 

GARCH forecasts increases tenfold. This study has been the impetus for 

the growing interest in exploiting intraday prices to better characterize 

the all-important volatility of financial assets. The availability of intra-

day data has created new grounds for unravelling volatility dynamics with 

more precision. Fuertes et al. (2008) compare the relative merits of various 

high-frequency volatility estimators under different market conditions. 

The realized power variation (Barndorff-Nielsen and Shephard, 2004) 

provides the most accurate one-day-ahead forecasts, while forecast com-

bination of different measures is also fruitful. The use of intraday price 

information to forecast volatility is most beneficial when trading volume 

is low or when the stock is on a bullish trend.

1.7 VOLATILITY TRADING
As foreign exchange investors think they can foretell the currency trends, 

or bond traders believe they know something about the future path of 

interest rates, laying a bet on the level of expected volatility surfaces as 

another trading vehicle.  has become the new buzzword 

in financial markets and established itself as a new asset class. A range of 

structured derivatives products, either over the counter or, more recently, 

exchange traded, are available to investment banks, hedge funds, and traders 

to accommodate their bets on stock market volatility. CBOE and EUREX 

have launched a range of volatility derivatives (on S&P500, DJIA, SMI, 

NASDAQ-100, DAX, etc.) to house the demand for these instruments.
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Among the various CBOE products, VIX* has been a popular volatility 

index and has been regarded as the world’s premier barometer of inves-

tors’ sentiment and market volatility. It is worth noting that while variance 

futures are based on realized volatility, implied volatility†—as measured 

by VIX—reflects expectations, hence its market name as “the fear gauge.” 

In general, VIX starts to rise during times of financial stress and lessens 

as investors become complacent. Thus, the greater the fear, the higher the 

volatility index would be. Remember, during the collapse of the fixed- 

income arbitrage hedge fund LTCM and the Russian debt crisis, the S&P500 

plunged to 957 (August 1998) and 970 (October 1998) while the VIX soared 

above 45 in each trough.

But what is it about these instruments that make them particularly 

attractive to some investors? First, hedging volatility in equity markets 

with options instead of volatility derivatives, as was the case until recently, 

is not ideal. Remember, options hedge against price risk but delta-hedging 

is inaccurate, since many of the Black-Scholes assumptions are violated 

in real world. Second, volatility is mean reverting, which makes volatility 

products appealing to statistical arbitrage funds and other market-neutral 

players.‡ Third, the existence of stochastic volatility and stochastic jumps 

makes financial markets incomplete and acts as a deterrent in achiev-

ing an optimum payoff. Finally, empirical evidence supports a negative/

low correlation between volatility and equities (Dawson and Staikouras, 

2008). Volatility contracts could, therefore, reduce risk or increase port-

folio diversification instead of using other assets, such as commodities, 

precious metals, property, etc.

At the same time it is worth mentioning some issues pertinent to volatil-

ity trading. Many commentators use the VIX to represent the overall sen-

timent for equity options. Yet this relationship could be easily overstated, 

as these two are often unrelated since different forces drive the volatility 

* For a detailed description of the VIX contract see http://cfe.cboe.com/Products/ 

Products_VIX.aspx.
† Note that realized volatility tends to be lower than implied, mirroring investors’ preference 

to avoid short options.
‡ Statistical arbitrage involves data mining and statistical methods, as well as automated trad-

ing systems. It is not without risk, as it depends heavily on market prices returning to a 

historical or predicted “normal.” Market neutral strategies (or relative value trading) involve 

buying one asset (undervalued) and simultaneously selling another (overvalued) while avoid-

ing systematic risk. In theory, the portfolio would make money on the increase or decrease 

in the spread between the two positions, and would be unaffected by the absolute level of the 

assets.
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of index options compared to that of equity options. This becomes clearer 

when volatility is considered at an industry level or compared to the time 

span of VIX and nonindex equity options. Volatility is usually assumed 

to be high in certain sectors (IT) and low in others (utility), implying that 

a single volatility figure for all equities may be a crude proxy. Also, VIX 

reflects expectations over a 30-day period, while most nonindex equity 

options exhibit high liquidity within 2- to 6-month maturities.

Given the various features of the volatility trading platform, a number  

of market professionals would be interested in these instruments. 

Participants in the credit market who anticipate volatility increases 

(spreads widen) can hedge their credit exposure with volatility index 

futures. Portfolio managers exposed to correlation risk can go short on 

volatility, while volatility index futures can be used for directional bets on 

expected volatility. Traders selling (buying) options can do so when the 

volatility index trades high (low) and buy (sell) the option back (later) at a 

lower (higher) price when volatility decreases (falls). Moreover, a number  

of professions, such as long-equity funds, are implicitly short volatil-

ity due to the negative correlation between equity indices and volatility.* 

The hedge fund industry is actively involved in absolute return strategies† 

(merger arbitrage/event-driven hedge) by shorting the stock of a bidding 

firm and being long on the target firm. If the deal goes through, they 

earn the spread, but if volatility rises, the spread widens and the deal may  

collapse. Other short-volatility categories could involve portfolio manag-

ers, where increased volatility will inflate their tracking errors, or active 

portfolio rebalancing could result in greater transaction costs.

Research shows that there is an economic motivation behind variance 

contracts (Branger and Schlag, 2006). They argue that investors who are 

willing to trade variance risk are likely to prefer such contracts as opposed 

to standard options. Their main argument is that variance contracts are 

superior to dynamic and semistatic replication strategies due to discrete 

trading, incorrect parameter estimation, and model risk in the sense of 

misspecification problems. Christoffersen and Diebold (2006) find that 

* This point reinforces the use of volatility derivatives, because global correlations have 

increased, rendering geographic diversification as an ineffective portfolio hedging strategy.
† The return is associated with the risk of certain corporate transactions, and is established 

independently of the market return. Under a merger arbitrage, risk arbitrageurs bet on the 

rise (decline) of the target (bidding) firm’s equity, while under event-driven hedge the phi-

losophy is exactly the same, focusing on important business events (divestments, recapitali-

zation, restructuring, etc.) that have an impact on corporate equity.
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volatility fluctuations prompt variations in the sign of equity returns, sup-

porting the idea that forecastability (dependence) in stock market volatility 

can assist in generating directional change forecasts. For instance, in the 

case of a positive (negative) return-volatility relationship a predicted rise 

in volatility for the next day will indicate a buy (sell) signal. Christoffersen 

et al. (2007) propose models that use conditional moments (mean, vari-

ance, skewness, and kurtosis) to predict the market direction of change, 

and more specifically the probability of positive returns.

Finally, active portfolio managers can take advantage of dynamic vola-

tility timing strategies by allocating assets according to recursively updated 

variance-covariance estimates. The dynamic nature of volatility and cor-

relations among assets has put into question the simple static investment 

strategies. Multivariate and rolling GARCH estimators with increasing 

levels of sophistication have been developed to accommodate this. But do 

their statistical advantages translate into economic value? Fleming et al. 

(2001) show that switching from a static portfolio approach to a dynamic 

volatility timing strategy yields portfolios with improved performance. In 

a follow-up article, Fleming et al. (2003) demonstrate that this improved 

portfolio selection strategy can be enhanced even more by using intraday 

instead of daily price data. The incremental gains to a risk-averse investor 

who adopts dynamic volatility timing, based on intraday information, can 

be up to 200 basis points a year.

1.8 CONCLUSION
Volatility has enjoyed the attention of a wide audience, ranging from 

research laboratories to institutional investors. The mere fact that the 

stock market is estimated at about $51 trillion, as well as its fundamental 

role for raising corporate capital, has placed it at the forefront of economic 

and policy debates. The current survey highlights the diverse themes that 

equity volatility touches upon, and offers some insights into empirical 

findings across international stock markets.

The current discussion delineates the controversial role of speculators, 

and recognizes the impact of price manipulation and herding behavior 

on equity markets. Research on the volume-volatility relationship shows 

that there is a positive correlation between the two, but it is not clear as yet 

whether volume can represent the information signal per se. Regarding 

the role of derivatives, evidence both supports and refutes the argument 

of market stabilization, while new research areas, such as individual share 

futures, feedback trading, and volatility futures, are explored. Moreover, 
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a number of stylized facts are considered, including volatility clustering, 

asymmetries, long memory and persistence, volatility co-movements, 

along with the pertinent advances on the modeling front. When it comes 

to forecasting volatility, implied volatility models are favored over histori-

cal and conditional volatility frameworks. Finally,  

seem to be the new buzzword, and to that extent the chapter illustrates 

some aspects of this new trading platform.

Looking ahead, one should be very open-minded when analyzing stock 

market data, since it is difficult to identify and model all the factors respon-

sible for price swings. Most of the time, the interaction among drivers  

of volatility makes it difficult to isolate their precise impact, while eco-

nomic theory could remain silent as to why markets have moved toward 

a certain direction. From a methodological perspective, modeling and 

forecasting equity volatility warrants even further investigation. What 

is complicated but at the same time appealing is to design an empirical 

framework that attenuates the intricate characteristics of a stochastic 

global environment.
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2.1 INTRODUCTION
2.1.1 Modeling Market Volatility and the Risk-Return Trade-off

Understanding the volatility of a market is critical to our understanding 

of finance. The  of an equity market as a whole—where the mar-

ket’s returns may be proxied, for example, by the returns on an index such 

as the S&P500 index—are frequently modeled as a function of investors’ 

expectations of the market’s  (see, for example, Merton, 1980; 

French et al., 1987; Abel, 1988; Barsky, 1989). Ang et al. (2006) present 

evidence that the volatility of the market is a candidate for inclusion 

as an additional factor augmenting standard multifactor models of the 

cross section of stock returns (Fama and French, 1993; Carhart, 1997). In 

arguing that total risk is priced, Ang et al. (2006) present a considerable 

challenge to paradigms that argue that only diversifiable, or systematic, 

risk is required to capture the cross section of expected equity returns 

(Sharpe, 1964).

Nevertheless, while the theorized relationship of the risk of a market to 

its return has attracted considerable attention, empirical support for the 

relationship has been mixed and disappointing. To quantify such a rela-

tionship, the market’s volatility must be estimated, in some way, from the 

market’s returns. Analyses such as those of Ang et al. and Durand et al. 

(2007) take an indirect route by using a proxy for expected volatility—the 

Chicago Board of Options Exchange Volatility Index (the VIX)—which 

is exogenous to the market. Although the use of a proxy is one way of 

dealing with the issue, still the question of estimating risk directly from 

returns is appealing, and conditional volatility models represent a natural 

choice with which to model it.*

Hsieh (1991) represents an early attempt to model the S&P500 using 

high-frequency data (Hsieh uses 15-minute rather than 5-minute obser-

vation intervals), and finds support for an EGARCH (4,4) model. Later, 

Anderson et al. (2002) and Eraker et al. (2003) used models admitting 

stochastic volatility together with jumps both in returns and in vola-

tility, for the S&P500. Lundblad (2007) estimates daily and monthly 

volatility of returns on the U.S. market using data stretching from the 

early 1800s to the 1990s (but the S&P500 index was not available over 

such a long period). While he finds some evidence of a relationship 

between volatility and return, he is agnostic as to which of the models he 

* We note that such models have recently attracted some criticism (Ghysels et al., 2005; 

Durham, 2007).
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uses—GARCH (1,1), TARCH (1,1), QGARCH (1,1), or EGARCH (1,1)—

best fits the data.

In the present chapter we will also model the volatility of the U.S. mar-

ket using the S&P500 index to represent the returns of the market. The 

S&P500 index is perhaps the most widely followed measure of the U.S. 

equities market, being made up of 500 of the largest stocks in the mar-

ket (representing around three-quarters of all U.S. equities).* We are not 

concerned, however, with running a “horse race” to find a best model. 

Rather, we demonstrate the applicability of a certain continuous-time 

GARCH model (the COGARCH model of Klüppelberg et al. (2004)) for 

modeling the time-varying volatility of the S&P500. Maller et al. (2008) 

have recently shown how to apply this kind of methodology to describe 

the volatility of the Australian stock market, using it to analyze 10 years 

of daily data, mostly equally spaced in time, for the ASX200 index. This 

analysis does not, however, demonstrate the full potential applicability of 

the COGARCH. Rather than using daily data, the analysis in the present 

paper will use very high-frequency observations—observations taken at 

5-minute intervals—to better approximate the underlying continuous- 

time framework the methodology is designed to capture. The use of 

COGARCH enables the analysis of irregularly spaced data without 

recourse to approximations involving missing values estimation, and in 

high-frequency data such as studied in this chapter, irregular spacing—

here due to a transformation to a business time scale—is a dominant fea-

ture of the data.

2.1.2 ARCH/GARCH and COGARCH Modeling

The ARCH/GARCH model paradigm introduced by Engle (1995) and 

Bollerslev et al. (1995) has been enormously influential and successful in 

capturing some of the most important empirical features of financial data, 

and is therefore widely used in finance research and applications.

Empirical studies commonly show that volatility changes randomly in 

time, has distributions with heavy or semiheavy tails, and clusters on high 

levels. These stylized features are well modeled by the GARCH family, as 

has been shown in many studies. For a recent discussion concerning the 

GARCH(1,1) process, see Mikosch and Stărică (2000).

* See www.indices.standardandpoors.com for further information on the index.
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Up until quite recently, stochastic volatility models have been investigated 

mostly in discrete time, but with modern easy access to voluminous quanti-

ties of very high-frequency data, a demand for continuous-time models that 

allow, for instance, a more natural analysis of possibly irregularly spaced 

data, has arisen (for a general overview on stochastic volatility see Shephard, 

2005). A first attempt to create a continuous-time GARCH model dates back 

to Nelson (1990), who, by taking a limit of a discrete-time GARCH process, 

derived a bivariate diffusion driven by two independent Brownian motions. 

By contrast, the discrete-time GARCH model incorporates only one source 

of uncertainty. Consequently, Nelson’s continuous-time limit process does 

not possess the feedback mechanism whereby a large innovation in the mean 

process produces a burst of higher volatility, which is a distinctive feature of 

the discrete-time GARCH process. Moreover, the diffusion limit no longer 

has the heavy tailed distribution of returns needed for realistic modeling of 

returns in high-frequency financial data.

To overcome these problems, Klüppelberg et al. (2004) suggested an 

extension of the GARCH concept to continuous-time processes. Their 

COGARCH (continuous-time GARCH) model is based on a single back-

ground driving (continuous-time) Lévy process, which preserves the essen-

tial features of discrete-time GARCH processes and is amenable to further 

analysis, possessing useful Markovian and stationarity properties.

The aim of this chapter is to illustrate the advantages of using the 

continuous-time COGARCH model for the analysis of very high- 

frequency, unequally spaced financial data. We proceed by summariz-

ing, in the following section, the currently available literature on the 

COGARCH, taking a detailed look at the model definition, and also 

outlining briefly the pseudo-maximum-likelihood method we will use 

to fit the model to data. Section 2.3 gives an illustrative data analy-

sis, applying the COGARCH model to high-frequency data from the 

S&P500 stock market index, over the years 1998 to 2007. The model 

proves to be remarkably stable and informative. We discuss some exten-

sions of the model and other issues in Section 2.4, and conclude with 

Section 2.5.

2.2 COGARCH: A SUMMARY OF  
THE CURRENT LITERATURE

Since its introduction in 2004, many aspects of the COGARCH model 

have been studied. One field of research covered Markovian and sta-

tionarity properties, as well as extremal behavior of the model, and its 
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relations to other models. Model extensions, such as a COGARCH( , ), 

and a multivariate COGARCH model, have been developed. Regarding 

data analysis, so far a couple of different approaches have been suggested 

for estimation of parameters.

In this section we summarize the literature on these topics, and briefly 

sketch the ideas. Throughout, by COGARCH we will usually mean the 

COGARCH(1,1) model, as introduced in Section 2.1, because this is the most 

widely applied version. Since there exists, analogously to the GARCH(1,1) 

and GARCH( , ) models, a generalization to COGARCH( , ), we will 

always point this out by adding the complexity tupel ( , ) when referring 

to this kind of model extension.

2.2.1 The COGARCH Model and Its Theoretical Properties

We first recall the definition of the COGARCH process as introduced in 

Klüppelberg et al. (2004). On a filtered probability space ( , , , )( ) 0  

satisfying the “usual hypothesis” (see Protter, 2005), one is given a 

( ( )) 0. See Applebaum (2004), Bertoin 

(1996), and Sato (1999) for detailed results concerning Lévy processes. 

Throughout it is assumed that ( )1 0  and 2 1 1( ) .

Given parameters ( , , ), with 0 0 0, , , and a square inte-

grable random variable ( )rv ( )0 , independent of , the COGARCH

 2 2
0( ( ))  is defined as the almost surely unique solution 

of the stochastic differential equation

 2 2 2 0( ) ( ) ( ) [ , ]( ), ,  (2.1)

where [ , ] is the bracket process (quadratic variation) of  (Protter, 

2005). Then one defines the ( ( )) 0

in terms of  and  as

 
( ) ( ) ( ), .

0

0
 (2.2)

As has been shown in Klüppelberg et al. (2004), Corollary 3.1, the 

bivariate process ( ( ), ( )) 0  is Markovian. Moreover, under a cer-

tain integrability condition, and for the right choice of 2 0( ), the pro-

cess 2( )  is strictly stationary (Klüppelberg et al., 2004, Theorem 

3.2). As a consequence,  has stationary increments. Furthermore, 

Klüppelberg et al. (2004) also provide explicit expressions for the 

moments and autocorrelation functions of the variance process 2 
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and for the increments ( )( ) : ( ) ( )  of . These can be used 

to estimate the COGARCH parameters by the method of moments, cf. 

Section 2.2.3.

Fasen et al. (2005) show that the COGARCH model, in general, exhib-

its regularly varying (heavy) tails, volatility jumps upwards, and clusters 

on high levels. More precisely, it can be shown that both the tail of the 

distribution of the stationary volatility and the tail of the distribution 

of ( )  are Pareto-like under weak assumptions (cf. Klüppelberg et al., 

2006). For more details on the theoretical properties of  and 2 , we 

refer to Klüppelberg et al. (2004), Fasen et al. (2005), and Klüppelberg  

et al. (2006).

2.2.2 The Relation between GARCH and COGARCH

The discrete-time GARCH(1,1) model is specified by the mean and vari-

ance equations

 1

and

 
2

1
2

1
2

1
2 ,

for 1 2, , , , with 0
2 given, and , ,  as parameters. The  are indepen-

dent, identically distributed (i.i.d.) random variables with mean 0 and unit 

variance. By writing a discretized version of Equation (2.2)  in the form

 1 1 ,

where we replace the increment ( ) with one of an i.i.d. sequence 

1 , , ,  and similarly, a discretized version of Equation (2.1) in the form

 
2

1
2 2

1
21( ) ,

we can see a direct analogy between the discrete- and continuous-time 

models. In fact, taking 1  in the continuous-time equations (corre-

sponding to equally spaced data), we see that the models differ only by a 

nonessential alteration in parameterization.

More generally, in the continuous-time model, we do not need to assume 

equally spaced data. We can proceed as follows. Starting with a finite interval 
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[ , ]0 , 0, take deterministic sequences ( ) 1  with lim  

and 0 0 1( ) ( ) ( ) , and for each 1 2, , , divide [ , ]0  

into  subintervals of length ( ) : ( ) ( )1 , for 1 2, , , . 

Define, for each 1 2, , , a discrete-time process ( ), , ,1K  satisfying

 , , , ,( )1 1
 1 2, , ,  ( . )2 3

where 0 0 0, ( ) , and the variance ,
2  follows the recursion

 , ,
( )( ) ( )2 2

11 ,,
2 , 1 2, , , .  ( . )2 4

Here the innovations ( ), , ,1 , 1 2, , , are constructed using a “first 

jump” approximation to the Lévy process developed by Szimayer and 

Maller (2007), which divides a compact interval into an increasing num-

ber of subintervals and for each subinterval takes the first jump exceeding 

a certain threshold. Finally, embed the discrete-time processes ·,  and 

·,
2  into continuous-time versions  and 2  defined by

 
( ) : ,  and 2 2( ) : , , when [ ( ), ( )]1 , 0  (2.5)

with ( )0 0 . The processes  and  are in [ , ]0 , the space of càd-

làg real-valued stochastic processes on [ , ]0 .

Assume ( ) : max ( ), ,1 0 as . As one main result 

of their paper, Maller et al. (2008) showed then that the discretized, piece-

wise constant processes ( ), 2
1 defined by Equation (2.5) converge in 

distribution as  to the continuous-time processes ( , )2  defined by 

Equations (2.1) and (2.2). Further, this result was used by Maller et al. (2008) 

to develop a pseudo-maximum-likelihood estimation procedure for the 

parameters in the COGARCH. We sketch this method in Section 2.2.3.

2.2.3 Estimation Procedures

Haug et al. (2007) suggested moment estimators for the parameters of the 

COGARCH process based on equally spaced observations. Using the fact 

that the increments of the COGARCH process are strongly mixing with 

exponential rate, they showed that under moment conditions the result-

ing estimators are consistent and asymptotically normal. The paper by 
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Müller (2007) shows it is also possible to use Bayesian methods to estimate 

the COGARCH model. At the time of writing, however, this method is 

restricted to the case where COGARCH is driven by a compound Poisson 

process. More generally, Maller et al. (2008) describe a straightforward 

and intuitive pseudo-maximum-likelihood (PML) method based on the 

GARCH approximation to COGARCH. This estimation procedure is well 

adapted for the analysis of unequally spaced data, as we will illustrate in 

the next section. By applying it, we can easily account also for a transfor-

mation to a business time rather than calendar time scale. The general 

strategy is as follows.

Suppose we are given observations ( ), 0 0 1 , on the 

integrated COGARCH as defined and parameterized in Equations (2.1) 

and (2.2), assumed to be in its stationary regime. The { }  are assumed 

fixed (nonrandom) time points; set : 1 . Let ( ) ( )1 ,  

1, , , and denote the observed returns. We wish to estimate the 

parameters ( , , ). From Equation (2.2) we can write

 

1

( ) ( ),

and because  is Markovian (Klüppelberg et al., 2004, Theorem 3.2),  

is conditionally independent of 1 2, , , given the natural filtration  

of the Lévy process , with conditional expectation 0, and a conditional 

variance given by Equation (3.2) of Maller et al. (2008). To ensure station-

arity, we take 2 0( ) /( ), with .

We can then apply the PML method, as in Maller et al. (2008), assum-

ing at first that the  are conditionally ( , )0 2 , and using recursive 

conditioning and a GARCH-type recursion for the variance process to 

write a pseudo-log-likelihood function for 1 2, , , . Taking as start-

ing value for 2 0( )  the stationary value /( ), one can maximize the 

function  in Equation (3.3) of Maller et al. (2008) to get PML estimates  

of ( ), , .

2.3 DATA ANALYSIS
In this section we illustrate how to apply the COGARCH model to some 

market data. After a brief description of the raw data on the S&P500 index, 

we discuss data cleaning and preprocessing. Then we report on results of 
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fitting the COGARCH model, using the PML method described in Section 

2.2.3, after rescaling calendar time to a business time scale.

2.3.1 Description of Raw Data

Intraday data on the value of the S&P500 index was obtained from the 

TAQTIC database maintained by the Securities Industry Research Centre 

of Asia-Pacific (SIRCA). Based on this tick-by-tick index data, we com-

pute and analyze 5-minute log-returns from the index, separately for the 

years 1998 to 2007. Table 2.1 reports, for each year, the number of trading 

days and the total number of observations, i.e., the number of log-returns. 

On average, we have 19,169 log-returns per year. However, even for years 

with the same number of trading days, the values can differ quite sig-

nificantly. The first reason is that on a couple of trading days each year 

the NYSE opens later or closes earlier for annual memorials and holidays. 

For example, in Table 2.1, Christmas Eve, as long as it does not coincide 

with Saturday or Sunday, is counted as a full trading day, although the 

NYSE closes at 1 p.m. on December 24. The second reason for irregulari-

ties is special events. Here we just note, as an example, one of many which 

occurred within our time frame since 1998: on September 11, 2002, the 

NYSE did not open until 11 a.m. due to the memorial events commemo-

rating the 1-year anniversary of the attack on the World Trade Center. 

However, in Table 2.1 this day is again counted as a full trading day. For 

a complete list of trading hours exceptions at NYSE since 1885 see http://

www.nyse.com/pdfs/closings.pdf. The third reason is that each year a few 

observations are missing, usually since some data are obviously erroneous 

and have to be removed from the data set However, taking advantage of 

our continuous-time approach, we will not use interpolation to fill in the 

missing values, but instead take the time difference to the previous avail-

able observation into account.

TABLE 2.1 Number of Trading Days at NYSE and Number of Log-Returns Based on 

5-Minute Index Data from the S&P500, for Years 1998 to 2007

1998 245 18,934 2003 251 19,260

1999 250 19,359 2004 249 19,373

2000 251 19,311 2005 252 19,617

2001 245 18,468 2006 251 19,460

2002 251 19,028 2007 251 19,458
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2.3.2 Data Cleaning: Local Trends and Local Volatility Weights

Before applying the COGARCH model to the data, one has to think carefully 

about which features of the data are to be captured by the COGARCH, and 

which are not. The COGARCH is mainly designed to describe the behav-

ior of the volatility in the data. Moreover, since we assume the COGARCH 

parameters , , and to be constant over time, we must check first whether 

the data indeed show a stationary volatility pattern over the whole time frame. 

In our data, this is definitely not the case. See, for instance, the 2002 returns 

(c.f. Figure 2.1, first and second rows). Therefore, we first preprocess the data 

by estimating local trends and local volatility weights. This procedure is nec-

essary since we have around 20,000 observations per year, so that we cannot 

expect the COGARCH parameters to be constant over the whole time frame. 

On the other hand, we must be careful not to destroy the volatility structure 

that we want to describe by the COGARCH model. Therefore, we aim at a stan-

dardization procedure, which uses trends and volatility weights over longer 

Index in 2002

Log-returns in 2002

0

8
0

0
1

1
0

0
–

0
.0

2
0

.0
1

5000 10000 15000

0 5000 10000 15000

Local trends in 2002

1
0

^
–

4
–

1
.5

*1
0

^
–

4

1
0

^
–

4
–

1
.5

*1
0

^
–

4

0
.6

1
.2

1
.8

0
.6

1
.2

1
.8

0 5000 10000 15000

Local volatility weights in 2002

0 5000 10000 15000

–
0

.0
2

0
.0

1

Detrended/reweighted log-returns in 2002

0 5000 10000 15000

Index in 2005

Log-returns in 2005

0

8
0

0
1

1
0

0
–

0
.0

2
0

.0
1

5000 10000 15000

0 5000 10000 15000

Local trends in 2005

0 5000 10000 15000

Local volatility weights in 2005

0 5000 10000 15000

–
0

.0
2

0
.0

1

Detrended/reweighted log-returns in 2005

0 5000 10000 15000

20000

20000

20000

20000

20000

FIGURE 2.1 Five-minutely observations from S&P500 index data: log- 

returns, local trends, local volatility weights, and detrended and reweighted 

log-returns for years 2002 and 2005.
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periods, such as 1 month, which corresponds to around 1,600 observations in  

our setup.

In the following we denote the observed log-returns by , 1, , ,  

whereas  denotes the number of trading days in the year under consider-

ation (e.g., in 2002 we have 19 208,  and 251 ). Next we have to intro-

duce some functions, to be able to cover all aspects of the data within our 

subsequent formulas. First, let : { , , } { , , }1 1 , a ( ), denote a 

function that returns the trading day for observation , : { , , }1 •, 

a ( )  denote a function that returns the number of available observa-

tions on trading day , and : { , , }1 • , a ( ), a function that 

returns the number of missing observations on trading day . On a regu-

lar trading day we usually have ( ) 78 and ( ) 0 , since we take 

5-minute data between 9:30 a.m. and 4:00 p.m. Note that (·) can also be 

0, when the NYSE opened later or closed earlier, since (·)  counts only 

missing values when trading really took place at that time. Although only 

very few observations are missing overall (less than 0.5%), we introduce, to 

act very precisely, the function : { , , }1 • , a ( ), which returns 

the number of 5-minute intervals elapsed before observation . Usually 

( ) 1, and if, e.g., one observation is missing, ( ) 2, and so on. Later, 

we will also need the more precise functions : { , , }1 • , a ( ),  

for { , , , }9 10 15 , which specify how many 5-minute intervals during trad-

ing hour  elapsed before observation . For example, if we have an observation 

at 9:55 a.m. and the value at 10:00 a.m. was deleted, so that the next observa-

tion  is from 10:05 a.m., we have ( ) 2, 9 10 1( ) ( ) , and ( ) 0 for 

11 15, , .

We now assume that the log-returns follow the model

 ( ) ( )
, 1, ,

where ( )  represents a , ( )  a , and the 

 are detrended and locally reweighted log-returns. This approach takes 

irregularities of the stock prices and index data into account, which can-

not be captured by the COGARCH model. Both local trends and volatility 

weights are assumed to be constant over trading days, and are estimated 

as follows. Using a fixed •, the local trends ( )  are estimated as 

moving averages over 2 1 trading days:

 

ˆ ( ( ) ( ))( )

( )

( )
11

{ | ( ) }( )

( )

, ( )
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For the cases ( )  and ( )  we can again employ this for-

mula by using data from the previous and following years, respectively, 

or else we can shrink the time frame of estimation. Note that the addition 

( ) ( ) makes sense, since log-returns are additive.

Similarly, the volatility weights are estimated, for some • , by com-

puting preliminary weights

 

ˆ ( ( ) ( ))( )

( )

( )
1

{ | ( ) }( )

( )

( )| ˆ |, ( )

 

and then by reweighting these according to

 

ˆ
| ˆ | / ˆ

| ˆ( )

( ) ( )1

1 (( )
( )|

ˆ

This implies that for ˆ : ( ˆ )/ˆ
( ) ( )  we have 1 1| | | ˆ |ˆ

( ) ,  

so that the magnitude of the values is preserved.

In our analysis, we set     10, so that we use a time frame 

of 21 trading days to determine the local trend and volatility weight. 

This seems to be a reasonable choice since we usually get larger stan-

dard errors for the COGARCH parameter estimates for very large or 

very small values of  and . In Figure 2.1, as an example, the third 

and fourth rows show the estimated local trends and estimated local 

volatility weights for the years 2002 and 2005. The fifth row shows 

the detrended and reweighted log-returns. Note that, for each row, the 

left figure for 2002 has the same scale as the right figure for 2005. We 

chose the years 2002 and 2005 for illustration since they apparently 

show quite different patterns; however, the cleaning and preprocessing 

procedure is the same for all years. We emphasize once more that both
ˆ

( ) and ˆ
( ) depend only on the ( ), so that all observations of the 

same day are reweighted by the same weight. This way we do not lose 

information about the dependence of the volatility on the exact trading 

time during the day. This dependence is accounted for in the following 

subsection.
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2.3.3 Accounting for Trading Time by Transformation of Time

To take the possible impact of trading time on the volatility into account, we 

first conducted a standard regression analysis for the squared log-returns 

to check for explanatory variables having an influence on the volatility. 

We used indicator variables for the month January, for all weekdays from 

Monday to Friday, and for all trading hours (9, 10, 11, , 15). For reasons 

of identifiability we had to remove one weekday and one trading hour (we 

chose Friday and hour 15), so that this sums up to a collection of 11 vari-

ables. The four most significant indicators always turned out to be hours 9, 

12, 13, and 10, in this order. All these had -values of less than 1%.

An easy way to account for these explanatory variables within the 

COGARCH context is to apply the COGARCH to a fictive business time 

axis. That means that we do not insert the explanatory variables into  

the COGARCH model itself, but use the PML method both to rescale the 

physical time axis and to estimate the COGARCH parameters, simultane-

ously. The idea is to replace  in Equations (2.3) and (2.4) by

 : ( ) ( ) ( ) ( )9 9 10 10 12 12 133 13( ),

where 9, 10, 12, and 13 are unknown parameters. Since we account 

for missing values within the functions  and , respectively, does 

not depend on  in our setup and serves just as the basic time unit.  

To get estimates nearly on an annual basis, we choose  as 1/( ( )),  

since ( ) ( ) ( ) ( ). However, since the time axis is 

transformed during the estimation procedure, values such as the exact 

annualized volatilities in each year have to be computed separately after 

the estimation procedure.

Of particular interest are the quantities : ( )/  for 

9 10 12 13, , , . These report the factors by which the basic time unit has to 

be rescaled during a certain trading hour to get business time.

2.3.4 Results and Interpretation

Table 2.2 reports the PML estimates together with their corresponding 

standard errors. We first note that our estimates satisfy the stationarity 

condition . Moreover, the estimates for  and  are very similar for 

all 10 years, with values around 0.20 and 0.10, respectively. Such stability is 

very reassuring as to the applicability of the model. As a consequence, the 
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parameter  directly reflects the long-run volatility in each year, since the 

mean of the COGARCH variance equation can be expressed as / ( ),  

with  almost constant in our case. For example, from the plots in 

Figure 2.1 one can immediately see that in 2002 the overall mean volatility 

was much higher than in 2005. This conjecture is now confirmed by the 

estimates of , which are around 0.0039 in 2002 and only 0.0007 in 2005.

Table 2.3 contains the factors that have to be applied to the physical time 

axis to get business time. For example, the value 5.3057 of the estimate for 

9 in 1998 means that during this year business time was running at around 

5.3 times faster than physical time between 9:30 a.m. and 10:00 a.m.,  

which reflects the high activity in the market after the opening of the 

exchange. Between 10:00 a.m. and 11:00 a.m. the activity decreased, but  

is still higher than on average. In general, during lunchtime, between  

TABLE 2.2 PML Estimates and Corresponding Approximated Standard Errors  

of the Parameters , , , 9, 10, 12, and 13

1998 0.00215457 (0.00009185) 0.2035 (0.0099) 0.1002 (0.0075)

1999 0.00212128 (0.00007431) 0.2022 (0.0040) 0.1028 (0.0023)

2000 0.00312924 (0.00015303) 0.2032 (0.0052) 0.1019 (0.0032)

2001 0.00224318 (0.00010266) 0.1988 (0.0047) 0.1035 (0.0019)

2002 0.00385930 (0.00013885) 0.2067 (0.0068) 0.0918 (0.0054)

2003 0.00152757 (0.00011513) 0.2011 (0.0112) 0.1024 (0.0051)

2004 0.00076915 (0.00002222) 0.1979 (0.0037) 0.1048 (0.0025)

2005 0.00071658 (0.00002205) 0.2018 (0.0046) 0.1027 (0.0038)

2006 0.00069020 (0.00002447) 0.2039 (0.0054) 0.1009 (0.0049)

2007 0.00145146 (0.00008295) 0.2017 (0.0071) 0.0999 (0.0053)

1998 2.2616 (0.1230) 0.1225 (0.0194) –0.2587 (0.0081) –0.2320 (0.0090)

1999 2.0057 (0.1038) 0.2080 (0.0213) –0.2534 (0.0077) –0.2290 (0.0085)

2000 1.9162 (0.1035) 0.2232 (0.0219) –0.2420 (0.0082) –0.1957 (0.0096)

2001 2.7368 (0.1571) 0.5309 (0.0349) –0.2257 (0.0096) –0.1637 (0.0113)

2002 2.7753 (0.1317) 0.4186 (0.0267) –0.1412 (0.0106) –0.1381 (0.0107)

2003 3.0822 (0.1526) 0.5732 (0.0329) –0.1694 (0.0103) –0.1970 (0.0096)

2004 2.5946 (0.1318) 0.2317 (0.0223) –0.2085 (0.0091) –0.1944 (0.0095)

2005 1.8003 (0.0988) 0.1923 (0.0198) –0.1979 (0.0088) –0.1504 (0.0106)

2006 2.1767 (0.1170) 0.2547 (0.0228) –0.1667 (0.0103) –0.1346 (0.0112)

2007 2.6795 (0.1377) 0.1301 (0.0193) –0.1965 (0.0093) 0.1766 (0.0099)
 

  For notational convenience, the estimates and standard errors of 9, 10, 12, 13 

have been multiplied by 10,000.
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12:00 p.m. and 2:00 p.m., business time runs slower than physical time; 

usually the activity is only 50 to 70% of the average observed between 

11:00 a.m. and 12:00 p.m. as well as after 2:00 p.m.

2.4 DISCUSSION
2.4.1 Extensions: COGARCH(p,q), ECOGARCH, Multivariate Models

There exist a couple of model extensions to the COGARCH model, which 

we briefly mention in this section. For more details refer to the corre-

sponding chapters.

Motivated by the generalization of the GARCH(1,1) to the GARCH( , ) 

model, Brockwell et al. (2006) introduced the COGARCH( , ) model. 

Here the volatility follows a continuous-time ARMA (CARMA) process, 

which is again driven by a Lévy process. As in the discrete-time case, this 

model displays a broader range of autocorrelation structures than those of 

the COGARCH(1,1) process.

Haug and Czado (2007) introduce an exponential continuous-time 

GARCH (ECOGARCH) process as analog to the EGARCH( , ) models. 

They investigate stationarity and moments and show an instantaneous 

leverage effect for the ECOGARCH( , ) model. In a subsequent paper, 

Czado and Haug (2008) derive a quasi-maximum-likelihood estimation 

procedure for the ECOGARCH(1,1) model, in the case when it is driven by 

a compound Poisson process, assuming normally distributed jumps.

TABLE 2.3 Factors That Have to Be Applied to Get from Physical to 

Business Time Scale, for Trading Hours 9, 10, 12, and 13, Respectively

1998 5.3057 1.2332 0.5076 0.5583

1999 4.8966 1.4040 0.5077 0.5551

2000 4.7377 1.4353 0.5280 0.6183

2001 6.2005 2.0089 0.5712 0.6889

2002 6.4119 1.8164 0.7246 0.7307

2003 6.9899 2.1140 0.6709 0.6172

2004 6.0300 1.4491 0.5958 0.6231

2005 4.5319 1.3772 0.6117 0.7049

2006 5.2458 1.4967 0.6748 0.7374

2007 6.2170 1.2533 0.6174 0.6561
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In Stelzer (2008a) multivariate COGARCH(1,1) processes are intro-

duced constituting a dynamical extension of normal mixture models and 

covering again such features as dependence of returns (but without auto-

correlation), jumps, heavy tailed distributions, etc. As in the univariate 

case, the model has only one source of randomness, a single multivariate 

Lévy process. The time-varying covariance matrix is modeled as a sto-

chastic process in the class of positive semidefinite matrices. The paper 

analyzes the probabilistic properties and gives a sufficient condition for 

the existence of a stationary distribution for the stochastic covariance 

matrix process, and criteria ensuring the finiteness of moments.

As for the univariate COGARCH, the multivariate COGARCH can be 

extended to a multivariate ECOGARCH model, as is done in Haug and 

Stelzer (2008).

Analogously to the papers by Szimayer and Maller (2007) and Maller 

et al. (2008), Stelzer (2008b) generalizes the first jump approximation of 

a pure jump Lévy process, which converges to the Lévy process in the 

Skorokhod topology in probability, to a multivariate setting and an infi-

nite time horizon. Applying this result to multivariate ECOGARCH(1,1) 

processes, he shows that there exists a sequence of piecewise constant 

processes determined by multivariate EGARCH(1,1) processes in discrete 

time that converge in probability in the Skorokhod topology to the con-

tinuous-time process.

2.4.2 Other Theory

We pointed out in Section 2.2.2 the striking similarity between the theo-

retical formulations of the discrete-time GARCH and the COGARCH vol-

atility equations. In relation to this, Kallsen and Vesenmayer (2008) derive 

the infinitesimal generator of the bivariate Markov process representation 

of the COGARCH model and show that any COGARCH process can be 

represented as the limit in law of a sequence of GARCH(1,1) processes. 

The result of Maller et al. (2008) is even stronger. They approximate the 

COGARCH with an embedded sequence of discrete-time GARCH(1,1) 

models that converges to the continuous-time model in a strong sense (in 

probability, in the Skorokhod metric), as the discrete-approximating grid 

grows finer. Whereas the diffusion limit in law established by Nelson (1990) 

occurs from GARCH by aggregating its innovations, the COGARCH limit 

arising in Kallsen and Vesenmayer (2008) and Maller et al. (2008) occurs 

when the innovations are randomly thinned. We sketched briefly the basic 

idea of the Maller et al. (2008) approximation in Section 2.3.
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The question also arises as to how strong this similarity may be from 

a statistical point of view, and how this similarity might be measured 

mathematically. A sophisticated approach to measuring the similar-

ity between two statistical models is Le Cam’s framework of 

. As was shown by Wang (2002), the diffusion limit in law of 

the GARCH(1,1) established by Nelson (1990) is  statistically equiva-

lent to the approximating series of GARCH models. A recent paper by 

Buchmann and Müller (2008) investigates in detail the possibility of sta-

tistical equivalence between the GARCH and COGARCH models. They 

show that if full information about the volatility processes is available, the 

limiting COGARCH experiment is in fact equivalent to the approximat-

ing sequence of GARCH models. If, however, the corresponding volatili-

ties of the COGARCH process are unobservable, the limit experiment is 

again not equivalent to GARCH in deficiency.

2.5 CONCLUSION
In Section 2.2 we summarized the literature on the theoretical properties 

of the COGARCH, estimation procedures, and some model extensions 

that have been proposed. In Section 2.3 we used the COGARCH model to 

analyze high-frequency data on the S&P500.

We emphasize once more that the COGARCH model incorporates the 

most important stylized features of financial data. Since it is a continu-

ous-time model, it provides great flexibility in modeling different aspects 

of the data. While we are accustomed to seeing financial time series at 

relatively low, or coarser, frequencies—such as the closing value of the 

index reported in nightly news broadcasts—it is relatively easy to forget 

that such values are merely one point on the high-frequency activity func-

tion. High-frequency data readily lend themselves to analysis within a 

continuous-time framework. Further, the COGARCH methodology dem-

onstrated in this chapter is also appropriate to model the discontinuities 

that are a natural, but often ignored, feature of the data.

However, we must be careful only to apply the COGARCH model to 

a stationary time series. This may require preprocessing the data as we 

did in Section 3.2, before the COGARCH model can be used. The PML 

method that we employed for fitting the COGARCH to the S&P500 data 

is applicable in general to irregularly spaced data. In this way we can 

very easily deal with missing data, or transform to another time scale as 

needed, to reflect some special properties of the data. In our case, we were 
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able to account for the dependence of market activity on trading time. We 

have chosen to focus on modeling the volatility of the S&P500 due to its 

importance as a widely followed measure of the market. Its component 

stocks are large and liquid, and as a consequence, it is reasonable to believe 

that the behavior of the S&P500 will not be greatly affected by nosynchro-

nous trading, or nontrading, of its constituent securities. Nonetheless, the 

premises of COGARCH suggest that it appropriately accounts for such 

microstructure issues. Analysis of COGARCH in microstructure research 

for stocks where discontinuities arise due to nontrading offers interesting 

and potentially insightful research opportunities.

Although many aspects of the COGARCH have already been inves-

tigated, it remains an area of active research. We have demonstrated its 

implementation and applicability to an important financial time series. 

While we have used high-frequency data to demonstrate the potential 

of COGARCH, we do not wish to suggest that its only application is in 

microstructure research. We are confident that the technique will become 

an important and well-known tool for research in financial economics.
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Price Volatility in the Context 
of Market Microstructure

Peter Lerner and Chunchi Wu*

3.1 INTRODUCTION
Microstructure theories provide an answer to the question of why secu-

rity prices change in the absence of new information announcements and 

why they can differ from the volatility of the underlying asset even for 

the 100% equity firm. Two well-known approaches, which analyze the 

asymmetric information trading problem are Kyle (1985) and Glosten and 

Milgrom (1985), are dissimilar in mathematical formalism, yet provide  

similar answers to this question.
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Microstructure theories regard the market as interplay of heteroge-

neous agents, each with peculiar beliefs about the security’s intrinsic value. 

Typically, agents have no information about one another’s expectations, 

but they can adjust their preferences by observing the prices and trading 

volumes. For instance, a random fall in stock price can attract value inves-

tors, thus creating a bounce-back. Revision of preferences may contribute 

to price volatility even in the absence of economic events.

Informed trading theory has been applied and tested mostly for the 

stock and futures markets (Strother et al., 2002; Stoll, 2003; Hasbrouck, 

2007). However, corporate or emerging market bonds seem to be more 

suitable targets of empirical study for the following reasons. Unlike stocks, 

most risky bonds are traded in large blocks between relatively sophisti-

cated traders (large investment banks, pension funds, and insurance 

companies), bid-offer spreads are large, and the impact of a single trade 

is noticeable.

In this chapter, we explain the dependence of price volatility on market 

frictions based on a market microstructure theory. Conventional features 

of securities—prices, returns, and volatilities—are linked to asset volatil-

ity by the trading parameters, such as trader participation rate and granu-

larity (decimal) of quotations. Because the participation rate of insiders 

depends on market frictions, such as a market tick, we expect volatility 

changes to be associated with changes in tick size.

3.2 HEURISTIC EXPLANATION OF THE EFFECT 
OF FRICTIONS ON VOLATILITY

All informed trading models explain market movements by the interac-

tion of at least three types of agents: informed traders who have inside 

information on the true price of an asset; liquidity or noise traders, who 

trade for reasons unrelated to trading returns; and finally, a market maker, 

who cannot distinguish between informed and uninformed traders and 

who sets the clearing price according to the orders she receives from the 

previous two groups of agents. This market maker can be an individual 

(NYSE) or virtual (electronic trading platform). The only essential feature 

of the market maker is that she allows for market clearing according to the 

law of supply and demand.

Below, we list typical features of microstructure models. First, in the 

long run, only informed traders contribute to volatility because unin-

formed traders always have an opportunity to trade at the historical average  
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price. In the absence of intervening economic events, uninformed (liquid-

ity) traders will eventually converge on a true price by the law of large 

numbers. Therefore, asymptotic volatility for pure liquidity trading 

is always zero. Zero volatility in the end of each trading session (Kyle’s  

Σ( ) → 0, → 1) was first observed by Kyle (1985).

Second, in the absence of frictions, informed traders always have an 

incentive to execute the trade: to sell if they feel the asset is overpriced and 

to buy if they feel it is underpriced. If frictions are present, insiders must 

predict not only the direction of the price movement but also its relative 

magnitude. Even if the price moves in the trader’s direction (with respect 

to her net inventory), she must be assured that the movement will be large 

enough to cover the friction-mediated losses.

Market tick is a specific form of market friction. Bid and ask prices can 

move only in discrete increments of the tick. When the tick is small, prices 

adjust almost continuously. When the tick is large, there is a discernible 

jump. When the bid and ask prices are observed with noise, observable 

bid-ask spreads increase as well.

Third, the average (i.e., long-term) security price changes only in trans-

actions between informed and uninformed traders. Upward and down-

ward bids by liquidity traders on the average offset one another. Informed 

traders know the true price, and their bids must be equal to offers unless 

they have information about one another’s inventory.

Heuristic equilibrium supply and demand curves, which follow from 

this picture of informed trading theory, are displayed in Figures 3.1 and 

3.2. All our diagrams presume that an insider is a buyer and uninformed 

traders are sellers.* The informed trader always bids at the true price of 

an asset. In Figure 3.1, the preferences of the liquidity traders have a sto-

chastic distribution, which is schematically presented as an envelope of 

numerous supply curves.

In Figure 3.1, we show the influence of frictions. In our stylized two-

dimensional static setting, informed trader executes outside of the market 

maker window at slight variance with the original Kyle model. Through 

observation of our heuristic supply-demand curves, one might notice that 

the price range of execution increases in the case of diminishing frictions 

and decreases otherwise.

Static displays of Figures 3.1 and 3.2 are based on the presumption of 

only one insider who always bids for an optimum quantity. There is no true 

* The diagrams for the opposite case are quite similar.
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price volatility in such a model even for a volatile asset because all the bids 

converge on a uniform true price 0. To obtain the relationship between 

price and asset volatility, we need to derive the equilibrium arrival rate of 

informed traders for an exogenously given spread.

3.3 PARTICIPATION OF INFORMED 
TRADERS AND SPREADS

Market equilibrium in an ordinary sense in informed trading models is 

generally achievable only for a very special set of parameters. However, 

one can define the equilibrium rate of market arrival for informed and 

uninformed traders conditional on an imperfection.

Insiders know the true value of an asset  and if expected profit does 

not exceed the bid-ask spread, they will abstain from trading. Liquidity 

Q 

P  

P0 D 

S 

Distribution of uninformed 
preferences 

Price range of 

informed trader  

Q 

price 

vol.    

S1

S2

S3 

E 

A 

FIGURE 3.1 Equilibrium supply and demand curves for informed and 

uninformed traders in the case of a frictionless market. The true asset price 

is 0. The informed trader is the buyer. The double arrow shows an accept-

able range of execution from an informed trader’s standpoint, who always 

bids at or below the true price. Lines S1, S2, and S3 schematically represent 

fluctuating beliefs of liquidity traders. Point A indicates the average execu-

tion price. Point E indicates the limit order price for the most pessimistic 

liquidity traders. Market price bounces between points A and E.
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FIGURE 3.2 Supply and demand curves of the market with frictions given 

an informed buyer, an uninformed seller, and exogenously given bid-ask 

spread. (a) The acceptable execution range BE for an informed trader 

shrinks because the market maker reduces the payout to liquidity traders.  

Volatility follows suit. (b) If the bid-ask spread becomes too large, the 

informed trader cannot buy the optimal quantity Q* at all because even 

the most pessimistic uninformed trader puts higher valuation on the 

security than P0  ½ × (bid-ask spread).
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traders, however, participate in the market for reasons unrelated to 

adverse selection because the market maker is quasi-monopolist. 

Participation of insiders does not depend on the relative size of an 

order; the trade is either profitable or not given the bid-ask spread and 

the market price. To describe the insider dropout, we present the equa-

tion for the proportion of insider trades, which we call the 

. The participation ratio can be determined from a particular 

pricing model through the Proposition 1 (for the proof, see Lerner and 

Wu, 2005).

/ ,

[max( , )]
[max( , )]

0

0

0
0

Ξ

The equation above can be interpreted as follows. If the insider trader 

believes that a security in her possession will appreciate, she might exploit 

this superior information by selling a call option on an asset with a strike 

price 0—the natural price of the asset and replace it with a (cheaper) 

call option on the same asset with a strike price ( 0 Ξ). The share of 

insiders in the trading is , which is the probability of this trade. When 

we replace a current price with its expected value at the time , we obtain 

the above result.

We can compute the participation ratio from the linear equation for  

if we choose a particular pricing model. The graph of  as a function of 

parameter [Ξ2]/ 2 (   volatility) is given in Figure 3.3 for the Vasiček 

model (Hull, 1997).

Even in this simplest case, an analytic expression for parameter  is 

cumbersome and we do not provide it here. However, in principle, the 

equation for  can be evaluated for any model for which a closed-form 

solution for the asset price process is available. We observe that the larger 

the spread, the lower the number of informed traders. Therefore, insiders 

lower their participation in batch auctions in response to increased market  

frictions. Because they are the only purveyors of information in the 

informed trading format, asymptotic volatility must decrease.
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3.4 MARKET VOLATILITY IN THE CONTEXT 
OF INFORMED TRADING THEORY

The system of Equations (3.1) (Easley et al., 1996) determines the dynam-

ics of the bids and offers, if the processes for update of prices and prob-

abilities are known. For the period  1, we get

 

1 1

1

1

1 1( | ) ( (
,

,

|| ))

( | ) (,

,

1 1

1

1

1 (( | ))1

 

(3.1)

where ,  are ask and bid quotes, respectively, , , ,  are the respective 

probabilities of bad and good news, and  and  are the rates of arrival of 

liquidity and insider traders on the market.  and  are the prices of an 

asset contingent on good and bad news, and ( | )1  is an expected asset 

price given all the information at time .

In such a general setting one cannot deduce any closed-form expressions 

for the bid and ask prices. For instance, we did not specify any asset pro-

cess. However, if we assume that we can neglect moments higher than the 

second (Gaussian approximation), and that good and bad news arrive with 

a similar frequency, we can characterize the dynamics in rather simple  

terms. The following two propositions summarize the results.

FIGURE 3.3 The participation ratio of informed traders ρ as a function of 

the spread Ξ in units of volatility , E[Ξ2]/ 2 for the Vasiček model.
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Proofs of Propositions 2 and 3 can be viewed in the web version of the 

working paper (Lerner and Wu, 2005).

Equation (3.4) expresses asymptotic market price volatility  through 

asset volatility 0, and the  of microstructure parameters, such as 

average frequency of bad and good news ( , ) and the rate of arrival 

of informed ( ) and uninformed ( ) traders on the market. We observe 

that asymptotic volatility has a highly nonlinear dependence on the ratio 

between informed and uninformed traders in the market.

Equation (3.4) cannot be tested directly because the rates of arrival of 

informed and uninformed traders are not observable. However, we can 

infer that if the market friction suddenly increases, the participation ratio 

of informed traders will decline according to Proposition 1 and volatility 

will also decrease with it. This relation can be seen more clearly if we fur-

ther simplify the formula in Equation (3.4) by assuming that >> , i.e., 

that the numbers of informed traders are much smaller than the liquidity 



Price Volatility in the Context of Market Microstructure < 59

traders, there is no neutral news, and good and bad news are equally prob-

able. It can be shown that under these conditions 2 2 4
0
2 22 1 32/ ( / ).  

Thus, the higher the participation ratio of informed traders, the higher is 

the price volatility.

3.5 SIMULATED MODEL FOR THE  
TIME EVOLUTION OF PRICES

Despite its seeming simplicity, the EKHP model of Equation (3.1) is very 

general. In particular, the strategy for liquidity traders can be arbitrary. In 

our simplified model, we assume that liquidity traders always bid at the 

historical average price. Surprisingly, our model displays all the impor-

tant qualitative features of EKHP with only two arbitrary parameters. We 

specify our model as follows.

There are two types of traders: informed and uninformed. Informed 

traders always bid at the true price, which changes according to the rule

0 (3.5)

where ~ ( , )0 0 . Uninformed investors, however, bid at the historical 

average price, with normally distributed error terms:

 

1

1  
(3.6)

~ ( , )0 2 . Naturally, we assume that 2
0 . The market clearing 

price is a linear combination of the price bids by the informed and unin-

formed traders,

 
( )1  (3.7)

There is no ask price  but it can be incorporated into this framework at 

the expense of transparency. In Figure 3.4, we compare the results of our 

simulation to the much more sophisticated model of Bayesian learning of 

a Vasiĉek price process (Lerner and Wu, 2005).

Bid prices converge to the true price of an asset; i.e., uninformed inves-

tors learn from history. The higher is the correlation between their guesses 

and the true price ( ), the faster the learning process for the investors.

However, quicker learning is accompanied by higher volatility 

(Figure 3.5). Despite its simplicity, the model of Equations (3.5) to (3.7) 
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FIGURE 3.4 Distribution of the bids by uninformed investors. (a) Initial 

bid price is 0 = 0, true price of the asset is 0 = 1. Learning coefficient is 

equal to  = 0.1. The volatility of an asset is Σ0 = 0.1, the volatility of beliefs 

of outside investors is 0 = 5 Σ0. The curves represent evolution of the nor-

malized learning distribution as a function of  = – :  = {1 (black, short 

dash), 0.3 (gray, long dash), 0.25 (gray, solid), 0.15 (gray, short dash), 0.05 

(gray, long dash), and 0 (black, solid)}. (b) The histogram of price distribu-

tions from the numerical model of Section 3.5 at  = 100 (gray),  = 1,100 

(white),  = 3,700 (black).
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FIGURE 3.5 Evolution of the volatility according to the model in Section 

3.5. Parameter  changes at = 2,000 (midpoint). Fundamental price ( = 1)  

and intrinsic volatility of an asset remain unchanged. Higher , despite 

producing higher volatility, also leads to more accurate convergence to 

the true price. Change of volatility on parameter increases.  is computed 

as a standard deviation of fifty past returns. (a) Parameter  increases 

from = 0.3 to = 0.9. (b) Parameter  decreases from = 0.3 to = 

0.1. Fundamental price ( = 1) and intrinsic volatility of an asset remain 

unchanged.
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provides a remarkably good approximation to true behavior according to 

EKHP Equation (3.1).

3.6 EMPIRICAL EVIDENCE OF VOLATILITY 
DEPENDENCE ON THE TICK SIZE

An important implication of Propositions 1 to 3 is that price volatility is 

negatively related to the magnitude of tick size, as well as other frictions 

that are positively correlated with observed bid-ask spreads. Positive cor-

relation of a tick size with an observed bid-ask spread can be proven in 

several analytical contexts and is, in fact, a consequence of general signal 

processing considerations (Caraiscos and Liu, 1984).*

The schematic dependence of the spread on the mismatch  between 

an exact and digitized quote is shown in Figure 3.6. For small  it grows 

like a square root of . For large ticks it is approximately proportional to 

, but overall dependence of the observed spread on the market tick is 

highly nonlinear.

Therefore, as tick size increases, price volatility will decrease. On the 

contrary, if tick size becomes smaller, this will attract more frequent par-

ticipation of informed traders and volatility will increase.

In the aftermath of the 2000 decimation of the U.S. markets, insti-

tutional investors and portfolio managers were indeed expressing these  

worries. Their large trades were often facing considerable price uncertainty 

at execution. Because the market depth was lowered after decimation, large 

market participants had to break their orders into several small orders to 

complete their trades. When price volatility is generally high, large traders 

incur significant price risk. Therefore, it appears that the lower bid-ask spread 

came at the expense of higher price uncertainty after decimation.

The above argument has been articulately rendered by Gibson et al. 

(2003). They stated, “It is unclear whether the incentives for gathering 

information will increase, or decrease under decimal pricing. A bid-ask 

spread that is too large not only imposes a greater fixed cost on informed 

traders but also increases the probability of the spread straddling the effi-

cient price, thus reducing traders’ incentives for obtaining information. 

Hence, any decrease in the spread swing to decrease market maker rents 

under decimal pricing ought to increase informed trading.” An even more 

* We provide these proofs in Lerner (2007). For the present empirical status of the connection 

of the tick size and the bid-ask spread, see Ronen and Weaver (2001), Gibson et al. (2003), and 

Bollen et al. (2004).
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laconic formulation was produced by L. Harris in his 1997 congressional 

testimony: “If the tick is too small, front-runners will exploit investors 

who offer to trade.… Estimates of the benefits to the public from decimal-

ization … do not estimate the increased costs that large traders will pay to 

avoid front-runners” (Gibson et al., 2003).

Yet, for all the prognostications surrounding decimalization, empirical 

evidence on the influence of the changeover on American stock markets 

was decidedly mixed. Bessembinder (1999) and Ronen and Weaver (2001) 

argue for the diminishing volatility, Chakravarty et al. (2004) for a modest  

increase, while Gibson et al. (2003) and, recently, Boehmer et al. (2007) 

find no significant difference. One of the empirical difficulties in uncover-

ing of the effect is that the influence of adverse selection on the bid-ask 

spread is mixed up with the influence of inventory maintenance costs.

We provide another empirical test for the tick-volatility relation in the 

situation of a one-stage drastic change in quotation where the inventory 

maintenance should not have influenced the results because the securi-

ties were denominated in U.S. dollars. Our choice of emerging market 

Eurobonds is prompted by the following considerations. Emerging market 

bonds in the 1990s had large bid-ask spreads. They were traded infre-

quently, in relatively large blocks and between sophisticated traders, such 

d

( - min)
1/2

FIGURE 3.6 Symbolic dependence of the signal error induced by digitiza-

tion according to Caraiscos and Liu (1984). On the horizontal axis, we 

plot , a standard deviation of the digitization-induced noise, and on the 

vertical axis, the square root of the mean square error contributed by digi-

tization. min is the spread under exact quotation.
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as large investment banks and hedge funds. Consequently, we have a  

better chance to uncover the effects of informed trading in fledgling 

emerging markets with limited liquidity.*

After a period of high inflation (1992–1995), the Russian ruble became 

substantially devalued. When inflation subsided, there was a decision to 

redenominate the currency by striking off three zeroes from ruble-denomi-

nated money instruments.† The replacement of bank notes with three zeroes 

stricken was widely publicized in advance and was not accompanied by any 

open-market actions. In our empirical investigation, we examine bond yields 

that are not sensitive to exchange rates.‡ However, the effective market tick 

size changed after redenomination. We can consider the redenomination as 

equivalent to the changing of the tick by an order of magnitude. Below, we 

show a domestic currency quotation of an imaginary security with the price 

in a near-dollar range in the old and new units (1 new = 1,000 old).

In other words, a round-off error acted in a similar fashion to the dec-

imalization of the U.S. indexes, only in reverse and on an unparalleled 

scale. After the changeover, round-off error increased as a percentage ratio 

to the security price. We presume that the bid-ask spread after the round-

off followed the suit.

Our inspection of six Russian Federation bonds with different maturi-

ties showed that their yields were roughly comparable (10–11% during the 

period surrounding New Year’s Eve). All yields were dominated at the time 

by expectations of default, which finally happened on August 17, 1998, and 

the difference in maturity between the bonds was hardly an important 

* The signaling role of the emerging markets sovereign bonds with respect to other securities of the 

same domicile have been recently explored by Dittmar and Yuan (2005). Their study suggests an 

important role of sovereign bond issues as providers of liquidity for the entire national markets.
† For an institutional description of Russian Federation debt and the 1990s economic situation 

in general, see Gaidar (2003).  The exchange rate in 1997 was 5,000 to 6,000 rubles per dollar, 

before the redenomination. After the redenomination the ruble started to be quoted at a rate 

of roughly 6 RU/$1.
‡ Russian bonds were originally denominated in U.S. dollars or Deutschemarks.

5,364 5,374 10 5.36 5.37 0.01
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driver of these spreads. Therefore, we analyzed yield to maturity and the 

differenced yield as proxies for asset price.

Worthy of note is that bonds were originally denominated in dollars, 

and the changeover was announced long in advance. In an efficient market, 

quotation of the ruble exchange rate could not influence the yields because 

it did not change the fundamentals. However, if we believe that volatility 

is induced by information dissemination from informed trades, enhanced 

tick size will reduce their frequency. Insiders will abstain from trading until 

they can expect profits to compensate them for the increased spreads.

We tested yields of the two series of Russian Federation bonds: Minfin 

10% 10-year bond (issued on June 26, 1997) and Minfin 9.25% 5-year bond 

(issued on November 27, 1996). We examined the period of 90–100 trading 

days evenly split between 1997 and 1998, the duration being chosen on the 

basis of bid-ask spread autocorrelations (Lerner and Wu, 2005). Longer sam-

ples were likely to be confounded with the August 1998 default, a momen-

tous credit event, which would certainly obscure any microstructure-related 

changes.

In quantitative terms, we conducted an F-test of variances for two 50-day 

samples. We performed the F-test with the original yields and with the  

residuals for the Ordinary Linear Squares (OLS) regression on the calendar 

dummy, equal to 0 before the New Year and to 1 after the New Year (Table 3.1). 

The second sample was designed to eliminate effects of unobserved, but 

TABLE 3.1 Variance F-test for the Yields of Two Russian Bonds

Minfin 10% Minfin 9.25%

Pre-event 11.35% 0.0115 9.78% 0.0100

Post-event 11.24% 0.0054 9.92% 0.0065

Pre-event 0.00% 0.0115 0.00% 0.0100
Post-event 0.00% 0.0054 0.00% 0.0065

 

   Ten-year Minfin 10% maturing on June 26, 2007, and 5-year Minfin 9.25% matur-

ing on November 27, 2001. F-statistic was estimated using two 50-trading-day 

samples (pre-event, beginning on October 20, 1997, and post-event, starting on 

December 31, 1997, respectively). F-statistic for the OLS residuals of the regression 

on the dummy, equal to 0 for the period October 27, 1997 to December 31, 1998, 

and 1 for the period January 1, 1998 to March 16, 1998, is highlighted in gray. 

Average yields for the de-trended samples are zero. Both tests reject the hypothesis 

of identical volatility for the pre-event and the post-event sample. Boldfaced is 

F-statistic rejecting equal variance of samples at 1%.
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possible change in Russian economic fundamentals around the New Year, 

unrelated to microstructure phenomena. None of the original de-trending 

OLS regressions on a calendar dummy are significant by themselves ( 2 ≈ 0),  

which confirms the absence of fundamental events around the New Year. 

Furthermore, the sample residual averages differ insignificantly from zero, 

which indicates successful de-trending. Yet, our results demonstrate a signifi-

cant (Prob(Null) < 1%) decline of volatility between the pre-event and the post-

event samples for both the original and the de-trended sample (Table 3.1).

In another test, we show the Chow statistic (see Greene, 2000) for the 

breakpoints 25, 50, and 75 days into the 100-day sample, which we per-

form for both the yields and the first-stage OLS residuals (Table 3.2). The 

results indicate a statistically significant breakpoint between 50 and 75 

days into the sampled period. We view the existence of a structural break 

as additional confirmation of microstructure-induced regime change. 

Both above tests confirm that the pre-event and post-event samples cor-

respond to a significant decline in price volatility.

In the case, our OLS de-trending was not sophisticated enough to detect 

macroeconomic changes unrelated to the change of quote on January 1, 

1998; we tested GARCH volatility of the three 46-day samples for the same 

bonds, chosen as in Figure 3.7. To measure potential change in asymp-

totic volatility, we use as a proxy the unconditional volatility ∞, which is 

defined by the equation (Tsay, 2002)

 
2

0 0 01/( )  (3.8)

In Equation (3.8), 0, 0, and 0 are the parameters of GARCH(1,1) 

approximation. Test results are given in Table 3.3. For five out of six 

TABLE 3.2 Chow Breakpoint Statistic for the Yields of Minfin 10% and Minfin 9.25%

Minfin 10% Minfin 9.25% 

25 0.22/0.61 0.638/0.436 5.38*/3.25 0.023*/0.075

50 0.38/0.01 0.540/0.938 0.77/0.00 0.382/0.987

75 /6.68* 0.011*

 

  Chow statistic for yields and OLS de-trended yields indicates a breakpoint between 

50 and 75 days into the 100-day sample. Boldfaced is Chow statistic rejecting the 

absence of a breakpoint at 1%. Asterisk marks the Chow statistic, which rejects 

breakpoint at 5%.
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samples, yields between samples do not change significantly, which makes 

an explanation of an abrupt change in fundamentals highly unlikely. For 

both bonds, Table 3.3 shows decline in volatility after the changeover, yet 

as a rule, unconditional GARCH volatility is not statistically significant.

In Figure 3.7, we show the conditional GARCH variance of the three 

46-day samples. The first sample precedes the event by 46 days, the second 

TABLE 3.3 GARCH Statistics

Minfin 10% (1) 0.115 (89.5) 0.179 (1.93) 0.00 (–0.00) 6.00%

Minfin 10% (2) 0.117 (203) 0.430 (1.60) 0.00 (–0.00) 1.09%

Minfin 10% (3) 0.112 (197) 0.010 (0.68) 0.671 (1.50) 0.280 (0.72) 1.03%

Minfin 9 ¼% (1) 0.099 (106) 0.00 (–0.00) 5.59%

Minfin 9 ¼% (2) 0.105 (278) 0.833 (1.81) 0.046 (0.29) 1.18%

Minfin 9 ¼% (3) 0.105 (255) 0.025 (1.44) 0.107 (0.39) 2.25%
 

  Parameters for GARCH(1,1) unconditional volatility of the yields on two Russian 

Minfin bonds (see description to Table 3.1) with Student t in parentheses. The 

tendency of volatility to decrease after December 31, 1997 serves as an indicator of 

diminishing volatility as the effect of change in quotation. Nonintercept coeffi-

cients significant at 5% are boldfaced.

2.52E-05

2.53E-05

2.54E-05

2.55E-05

2.56E-05

2.57E-05

2.58E-05

2.59E-05

2.60E-05

1 21 41 61 81

Trading days

Annualized
GARCH(1,1)

variance 
of bond yields 

Re-denomination of the
Russian ruble

Mid-period sample

Post-event sample 

Pre-event  sample

FIGURE 3.7 GARCH(1,1) volatility of the two Russian bonds of the three 

46-day samples. Light gray shading indicates pre-event, gray shading indicates 

mid-term, and dark shading indicates post-event samples, respectively.
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includes 23 trading days before the event (mid-period, or mid-term) and 

23 trading days after the changeover, and the third follows the event (post-

event sample). The change in volatility becomes immediately visible.

3.7 CONCLUSION
Discrete tick size, or any other friction that is positively correlated with 

the spread, reduces market volatility when compared to the frictionless 

case. Because price volatility, in the long run, is determined by informed 

traders, it might change due to regulatory or other noneconomic events, 

because they accelerate or impede dissemination of insider information 

through limit orders.

We expressed price volatility through volatility for an underlying 

asset and microstructure parameters: participation rates of insider and 

liquidity traders. Equilibrium participation of insiders is governed by our 

Proposition 1, which can be evaluated analytically for any closed-form 

solution for the asset price process.

If there were no information asymmetry, a higher-liquidity premium 

extracted by a market maker (bid-ask spread) would not influence volatil-

ity because everyone has the same information concerning orders. In a 

frictionless market with asymmetry, insiders have an incentive to trade 

at every opportunity, because they can always use their superior knowl-

edge to benefit at the expense of liquidity traders. Again, they would not 

change their trading practices because of noneconomic events. In the 

market with frictions, however, the insiders will trade only if they per-

ceive the momentum in asset prices to be large enough to justify their 

rents paid to a market maker. Changes in insider participation affect price 

volatility in the same direction as the changes in bid-ask spread, but in a 

highly nonlinear fashion.

We observed declining volatility of Russian Federation bonds around 

the 1,000-fold denomination of the Russian currency. Emerging markets 

are especially good candidates for testing microstructure events because 

the market is shallow and is dominated by sophisticated traders. Our 

results support the contention that an increase in bid-ask spreads after the 

redenomination of the Russian ruble reduced informed traders’ activity 

and lowered return volatility.

An increase in  bid-ask spread because of quotation tick is an 

important consequence of the lack of possibility, for the traders, to observe 

limit orders in their entirety. One can only hypothesize what would  
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happen, if an exchange were to adopt immediate public disclosure of all 

limit orders. If our last statement is of any guidance, the adverse selection 

component of the spread will (almost) disappear, but at the expense of 

drastically increased volatility.
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4.1 INTRODUCTION
The autoregressive conditional heteroskedastic (ARCH) model was 

first introduced by Engle (1982) to examine how the variance of inf la-

tion evolves over time, and it was quickly extended to the generalized 

ARCH (GARCH) model by Bollerslev (1986). During the past two 

decades, the GARCH model has become an important component in 

the tool kit of business, economic, and financial analysts, researchers,  

and policy makers. The World Wide Web reveals that over 115,000 arti-

cles refer to or use GARCH modeling techniques, over 3,000 articles 

use the term  in their titles, and over 30 articles about GARCH 

have been cited more than 100 times. Within the finance literature, 

GARCH modeling is central to asset and derivative pricing, investment 

analysis, and risk management, and it is now the standard methodol-

ogy in modeling the causes, transmission, and effects of stock market 

volatility. The success of the GARCH methodology stems from its par-

simonious representation of conditional variance in a manner that is 

consistent with the stylized facts of many financial time series, such 

as nonnormality of conditional densities, persistence in variance, and 

volatility clustering.

Previous authors have surveyed the econometric theory of GARCH 

(Engle, 1991; Bera and Higgins, 1993; Bollerslev et al., 1994; Bauwens 

et al., 2006; Teräsvirta, 2006; Silvennoinen and Teräsvirta, 2007) and 

their applications in financial markets (Bollerslev et al., 1992). In this 

chapter, we review the most commonly used univariate and multivariate 

GARCH models for stock market volatility. In so doing, we provide an 

easy-to-read, notationally consistent, and logically structured descrip-

tion of the most popular variants of the models, to guide financial ana-

lysts and researchers through the literature and help with the selection 

of the most appropriate variants for particular contexts. We begin in 

Section 4.2 by summarizing the essential characteristics of stock return 

volatilities that GARCH models should ideally capture. This serves as 

the benchmark to describe the basic univariate GARCH model and its 

many extensions. In Section 4.3, we review the important multivariate 

GARCH models. In Section 4.4, we discuss the most commonly used 

estimation procedures, and in Section 4.5 we review their applications 

in modeling stock market volatility. Our summary and conclusions are 

presented in Section 4.6.
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4.2 UNIVARIATE GARCH MODELS
The important characteristics of stock return volatility are described 

below, many of which have been discussed by Bollerslev et al. (1994) and 

others. The GARCH models that we describe in this section have been 

designed to capture particular sets of these characteristics.

1.  Return distributions tend to be leptokurtic 

with fat tails and excess peakedness at the means relative to the 

normal distribution.

 2.  When volatility is disturbed, it tends to 

return to its normal level, which may itself vary over time.

 3.  Large (small) changes in returns tend to be fol-

lowed by large (small) changes of either sign.

 4.  Volatilities within and across stock 

markets tend to move together in response to common underlying 

factors.

 5.  Volatility and the serial correlation 

of returns tend to be negatively correlated.

 6. ff  Changes in stock prices tend to be negatively 

correlated with changes in volatility, so that volatility tends to rise 

more following large price declines rather than increases of the 

same magnitude.

 7.  Riskier stocks with greater variance in returns 

tend to have higher rates of return.

 8.  Information accumulates slower when markets 

are closed than when they are open; it accumulates when they are 

closed, and tends to be reflected in prices when they reopen. Return 

variances tend to be greater following weekends and holidays.

 9.  Anticipated releases of public information and 

earnings announcements are associated with  volatility.

 10.  Macroeconomic uncer-

tainty causes stock market volatility.
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GARCH processes have zero mean and are serially uncorrelated with 

nonconstant variances conditional on the past, but with constant uncon-

ditional variances. The dependent variable, , is expressed in terms of ,  

the information set available at time , with  denoting the conditional 

variance. The error or innovation term can be specified as

 
{ | }1  (4.1)

where is a random, unobservable variable with mean and variance condi-

tional on . The GARCH model for  has { | }1 0 and { | }2
1  

and is decomposed as

 
1 2/  (4.2)

The sequence { } is an independent, identically distributed sequence of 

random variables with mean zero and unit variance. The GARCH model 

allows the conditional variance to depend on its own lags and lags of the 

squared error terms. The GARCH( , ) model can be written as

 

0
2

11  

(4.3)

The conditional variance, , is a weighted function of its long-run value 

(dependent on 0), information about volatility during previous periods, 
2 , and the fitted variance from previous periods, . The model 

is subject to nonnegativity constraints, 0 > 0, 0 for = 1, ,  and 

0 for  = 1,…, , to ensure that the variance is strictly positive. The 

log-likelihood function is

2
2

1

2

1

2

2

11

log( ) log( )  (4.4)

Engle (1982) derived procedures for maximizing the likelihood function. 

As  and  are asymptotically independent, the likelihood can be maxi-

mized separately.

The basic GARCH model described above has many appealing features 

that have secured its popularity and usefulness. For example, it can parsi-

moniously capture leptokurtosis, volatility clustering, nontrading periods, 
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forecastable events, and the relation between macroeconomic uncertainty 

and stock market volatility. It has, however, three main limitations. First, 

it is restricted by nonnegativity constraints that necessitate the imposi-

tion of artificial constraints. Second, it cannot capture the leverage effect 

because the conditional variance depends on the magnitude of lagged 

residuals and not their signs. Third, it does not allow for feedback from 

the conditional variance and the conditional mean. The many extensions 

of the basic GARCH model have been proposed to overcome these limita-

tions. Table 4.1 summarizes the main extensions of the univariate GARCH 

model that we discuss here.

4.2.1 Nonnormal Conditional Distribution

The unconditional distribution corresponding to the GARCH( , ) model 

with conditionally normal errors is leptokurtic, but it is not clear whether 

the model sufficiently accounts for the observed leptokurtosis in finan-

cial time series. Bollerslev (1987) proposed a GARCH( , ) model with 

conditionally t-distributed errors and found that the kurtosis of the stan-

dardized residuals approximates that of a t-distribution. As the degrees 

of freedom approach infinity, the t-distribution approaches the normal, 

but the t-distribution allows for heavier tails. Hansen (1994) proposed the 

autoregressive conditional density (ARCD) model to allow for both time-

varying skewness and kurtosis.

TABLE 4.1 Univariate GARCH Models

GARCH 4.3 2 0 Free 0

GJR-GARCH 4.12 2 0 (1 4

TGARCH 4.14 1 0 Free 0

GTARCH 4.13 1 0 Free | | ≤ 1

NGARCH 4.15 Free 0 Free 0

PGARCH 4.16 Free 0 Free 0

APGARCH 4.16 Free 0 Free | | ≤ 1

IGARCH 4.10 2 1 Free 0

FIGARCH 4.10 2 | | ≤ 1 Free 0
 

 The models in column 1 are described in the text. The “Equation” column 

gives the equation number,  is the power term,  is the order of integration, 

and  and  are parameters.



76 < Rachael Carroll and Colm Kearney

4.2.2 GARCH-in-Mean

Engle et al. (1987) proposed the ARCH-in-mean (ARCH-M) model for 

estimating time-varying risk premiums with time-varying variances. 

The GARCH-M version of this model is more commonly used, and is 

specified as

 1  (4.5)

 0 1 1
2

1  (4.6)

When is significantly positive, a higher conditional variance leads to a 

rise in the mean return. The  term represents the risk premium, and it 

captures the stylized fact that stocks with greater variance in their returns 

tend to have higher mean rates of return.

4.2.3 Exponential GARCH

Nelson (1991) proposed the exponential GARCH (EGARCH) model to 

allow the conditional variance to depend on both the size and sign of the 

lagged residuals. Its conditional variance is

 

ln( ) ln( )0 1
1

1

1

1

2
 (4.7)

The logarithmic specification of the EGARCH model ensures the 

conditional variance is always positive without imposing nonnegativ-

ity constraints. It therefore overcomes the first limitation of the basic 

GARCH model. The term captures the effect of prior variance terms 

on the current conditional variance, and the  term captures the sign 

of the lagged error term. The EGARCH model also allows asymme-

tries. If there is a negative relation between returns and volatility,  

 will be negative. The absolute value of the standardized error terms, 
1

1
, have an expected value 2  assuming the standardized errors are 

distributed as a (0,1). If the absolute standardized errors are greater 

(less) than expected, the conditional variance will rise (fall). Hence, 

the fourth term in the model captures the magnitude of the lagged 

error terms.
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4.2.4 Integrated GARCH

Engle and Bollerslev (1986) introduced the integrated GARCH (IGARCH) 

model for cases in which the multistep forecasts of variance do not 

approach the unconditional variance. Consider the GARCH( , ) model:

 

0
2

11
 (4.8)

where 0 0, 0  and 0   and , and the polynomial 1
1
 

1
0  has  > 0 unit roots and max{ , }  roots outside the 

unit circle. Engle and Bollerslev (1986) describe this as integrated in vari-

ance of order  if 0 = 0, and integrated in variance of order  with trend 

if 0 > 0. For the GARCH( , ) model to be integrated in variance, the  

and the  values must sum to 1. IGARCH models are persistent in vari-

ance because current information remains important for forecasts of the 

conditional variance for all horizons. Given the IGARCH (1,1) model 
2

11( ) , where 0 1, it follows that ( ) 1  and the 

conditional variance one step ahead is the same as the conditional vari-

ance  steps ahead, so today’s information remains important and shocks 

to the system have permanent effects.

The concept of persistence in variance is more complex than persistence 

in the mean for linear models, because even strictly stationary ARCH mod-

els do not always possess finite moments. Chou (1988) showed that temporal 

aggregation reduces measured persistence in GARCH models. Lamoureux 

and Lastrapes (1990) suggested that the apparent appearance of high persis-

tence in variance could be due to time-varying parameters, and they proposed 

a variation of the model that allows for structural shifts in the unconditional 

variance. Baillie et al. (1996) introduced the fractionally integrated GARCH 

(FIGARCH) model to encompass the possibility of persistent but not neces-

sarily permanent shocks to volatility. In contrast to the GARCH and IGARCH 

models, where shocks to the conditional variance either dissipate exponen-

tially or persist indefinitely, the FIGARCH model allows  to take a value 

between 0 and 1, so the response of the conditional variance to past shocks 

can decay slowly.

Bollerslev and Mikkelsen (1996) extended this model to a fraction-

ally integrated exponential ARCH (FIEGARCH) model. Writing the 

GARCH( , ) model as

 
( ) ( )2  (4.9)
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where  is the backshift operator, Equation (4.9) can be written as an  

infinite-order ARCH( ) process, ( )( ) [ ( )]( )1 12 2  and 

( ) [ ( ) ( )]1 . The IGARCH and FIGARCH models can then be 

written as

 
( )( ) [ ( )]1 12 2

 (4.10)

For the GARCH model  = 0, for IGARCH = 1, and for FIGARCH  

0 <  < 1.

4.2.5 Other Univariate GARCH Models

The quadratic ARCH (QARCH) model introduced by Sentana (1995) can 

be interpreted as a second-order Taylor approximation to the conditional 

variance, or as the quadratic projection of the square innovation on the 

information set. The conditional variance takes the following form:

 0 1 1
2

1 1  (4.11)

The GJR-GARCH model proposed by Glosten et al. (1993) also allows 

for asymmetry in the GARCH process. The conditional variance of this 

model is expressed as

 0 1 1
2

1 1
2

1
_  (4.12)

where 1 1  if 1 0 , and 1 0  if 1 0.

The threshold ARCH (TARCH) model proposed by Zakoian (1994) is 

similar in structure to the GJR-GARCH, but it models the conditional 

standard deviation instead of the conditional variance. The conditional 

standard deviation is given by

 0 1 1 1 1 1 1| |  (4.13)

where 1 1 if 1 0, and 1 0  if 1 0.

Taylor (1986) introduced a class of GARCH models that relates the 

conditional standard deviation of a series to lagged absolute residuals and 
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past standard deviations, where the conditional standard deviation can be 

specified as

 0 1 1 1 1| |  (4.14)

Higgins and Bera (1992) proposed the nonlinear ARCH (NARCH) 

model, which can be extended to a nonlinear GARCH model in which 
2, the second moment, can be expressed as

 0 1 1 1| |  (4.15)

4.2.6 Power GARCH

Ding et al. (1993) proposed the asymmetric power GARCH (APGARCH) 

model to estimate the optimal power term when the second moment can 

be specified as

 

0

1 1

(| | )
 

(4.16)

The power term, , captures the conditional standard deviation when  = 1  

and the conditional variance when = 2. Asymmetry is captured by the 

 term. The NGARCH model is an APARCH model without the leverage 

effect. Ding et al. (1993) and Hentschel (1995) show that the APGARCH 

model nests several other GARCH models by specifying the permissible 

values for , , , and . Standard GARCH models impose a squared term 

in the second-moment equation. The Taylor (1986) class of GARCH mod-

els specifies a power term if = 1. Any positive value can be used to spec-

ify the second-moment equation. Brooks et al. (2000) explain that this is 

because of volatility clustering, and the inclusion of the power term accen-

tuates periods of relative tranquility and volatility by magnifying the out-

liers. The squared term is particularly suitable when the data are normally 

distributed, because in this case the distribution can be fully character-

ized by its first two moments and the squared term reflects the assumption 

of normality applied to the data. When the data are not normally distrib-

uted, higher-order moments need to be considered to adequately describe 

it, the superiority of the squared term is lost, and other power transforma-

tions might be appropriate. The significance of the restrictions required to 

nest these models can be tested with the likelihood ratio procedure.
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4.3 MULTIVARIATE GARCH MODELS
Financial time series are usually interrelated, and the multivariate 

GARCH model caters for this by specifying equations for how the covari-

ances and correlations between a number of variables move over time. 

There are three main types of multivariate GARCH models. The first 

type models the conditional covariance matrix directly, and includes the  

vectorized* (VEC) and diagonal VEC models of Bollerslev et al. (1988), 

and the BEKK model of Engle and Kroner (1995). The second type models 

a parsimonious representation of the covariance matrix and includes the 

factor GARCH (FGARCH) model of Engle et al. (1990) and the orthogo-

nal GARCH (OGARCH) model of Alexander and Chibumba (1997). The 

third type models the conditional covariance matrix directly and includes 

the constant conditional correlation (CCC) model of Bollerslev (1990), the 

generalized dynamic covariance (GDC) model of Kroner and Ng (1998), 

and the dynamic conditional correlation (DCC) models of Engle (2002) 

and Tse and Tsui (2002). Table 4.2 summarizes the main features of these 

* See (Bollerslev, 2008) for a glossary of GARCH

TABLE 4.2 Multivariate GARCH Models

VEC ( , ) Stacks lower triangular elements 

of matrix as a vector
N(N  1)(N(N  1)  1)2

DVEC ( , ) VEC matrices are diagonal N(N  5)/2

BEKK ( , , ) Matrix is positive definite by 

construction
N(5N  1)/2

Factor GARCH ( , , ) Observations are generated by 

common factors that may be 

correlated

N(N  5)/2

OGARCH ( , , ) Observations are linearly 

transformed into uncorrelated 

components by means of 

orthogonal matrix

N(N  5)/2

CCC Conditional correlations are 

constant
N(N  5)/2

DCC Conditional correlations are 

time dependent
(N  1)(N  4)/2

GDC Captures asymmetry and 

encompasses DVEC, BEKK, 

FGARCH, CCC, and DCC

[N(7N – 1)  4]/2

 

  The number of parameters estimated assumes that  =  =  =  = 1 and the condi-

tional variances are specified by a GARCH(1,1) for the CCC, DCC, and GDC.
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models, which encounter three main challenges. The first is identifying 

suitable conditions to ensure the variance-covariance matrix, , is posi-

tive definite. The second is that identifying conditions for the weak sta-

tionarity of the process can be difficult, and the third is that the models’ 

high dimensionality can make them infeasible to estimate. The descrip-

tion here follows the notation used by Bauwens et al. (2006).

4.3.1 VEC-GARCH

If the time series ( , . . . , )1  is an   1 vector, it can be expressed 

as a multivariate GARCH model in the general form

 | ~ ( , )  (4.17)

where  is an   1 vector and  is an    conditional variance- 

covariance matrix. The VEC specification of Bollerslev et al. (1988) is applied 

to the upper or lower triangular elements of a symmetric matrix that stacks 

each element into a vector with a single column.  can be written as

 

( ) ( ) ( )'

111

 (4.18)

where | ~ ( , )1 0 , where ( , . . . , )1  is the N  1 innovation 

vector,  is an N(N  1)/2  1 vector, and  and  are N(N  1)/2   

N(N  1)/2 matrices. In the VEC model, each element of the  matrix 

depends on the lagged squared residuals and past variances of all variables 

in the model as in Equation (4.18). The VEC model is very flexible, but it 

requires restrictive conditions for  to be positive definite for all , and the 

number of estimated parameters is large. For example, the simplest bivari-

ate model requires the estimation of twenty-one parameters.

4.3.2 Diagonal VEC GARCH

To economize on the number of parameters requiring estimation in  

the VEC model, Bollerslev et al. (1988) simplified their VEC model to the 

diagonal VEC. This reduces the number of parameters by allowing the 

conditional variance to depend only on its own lagged squared residuals 

and lagged values. The  and  matrices become diagonal, and only nine 

parameters need to be estimated in the bivariate case. With  =  = 1, the 

diagonal VEC is

 o o( )1 1 1 (4.19)
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The symbol o denotes the Hadamard product. The variance-covariance 

matrix has positive numbers on its leading diagonal and is symmet-

rical around this diagonal. Estimation is less onerous than the VEC 

model because each equation can be separately estimated. Bera and 

Higgins (1993) point out that the positive definiteness of the matrix 

is difficult to impose during estimation and not easy to check, and that 

no interaction is captured between the different conditional variances 

and covariances.

4.3.3 BEKK GARCH

The BEKK model of Engle and Kroner (1995) ensures that the variance-

covariance matrix is positive definite. It is described as

 

* * * * *

11

*

11
 

(4.20)

where * , * , and * are ×  matrices but *  is upper triangular. The 

BEKK model is a special case of the VEC model. If * is positive defi-

nite, so is the   matrix. For the bivariate case, the BEKK model requires 

the estimation of eleven parameters.

4.3.4 Factor GARCH

Laloux et al. (1999) applied the theory of random matrices to the S&P500 

stock returns and showed that since the majority of the eigenvalues cannot 

be distinguished from the eigenvalues of a random matrix, only a small 

number of the eigenvalues of the covariance matrix carry information. By 

imposing appropriate constraints on the matrix entries, the estimation of 

large covariance matrices becomes less noisy, and techniques such as factor 

analysis and principal components analysis become useful. The FGARCH 

model proposed by Engle et al. (1990) assumes that the co-movements of 

returns are driven by a small number of common factors with GARCH-

type structures.  is assumed to be generated by  underlying factors. 

The FGARCH model takes the following form:

 

* * ( )

1

1
2

1  
(4.21)

where  and  are  × 1 vectors, and and  are scalars. If  

and  the BEKK model is equivalent to the FGARCH model.
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4.3.5 Orthogonal GARCH

The OGARCH model proposed by Alexander and Chibumba (1997) 

assumes that the observations are generated by an orthogonal transfor-

mation of  univariate GARCH models. The linear transformation matrix 

is the orthogonal matrix of eigenvectors of the unconditional covariance 

matrix of returns. The  matrix is generated by  ≤  univariate GARCH 

models. The OGARCH(1,1, ) model is defined as

 
1 2/  (4.22)

where ( , , . . . , )1 2 , with  being the population variance of ,
 

 is the    matrix given by ( ... )/ /
1
1 2 1 2 , 1 0...  

are the  largest eigenvalues of the correlation matrix of , and  is the  

   matrix of associated orthogonal eigenvectors. The vector  is a 

random process where the variance of its components can be expressed as 

a GARCH model. The covariance matrix can be specified as

 1
1 2 1 2( ) / /  (4.23)

4.3.6 Constant Conditional Correlation Model

Bollerslev (1990) proposed the CCC model with time-varying conditional 

variances and covariances, but with constant conditional correlations. 

The variances and covariances can be modeled separately using univariate 

models to allow different specifications. Based on these conditional vari-

ances, the conditional correlation matrix can subsequently be modeled. 

Assuming constant conditional correlations implies that the conditional 

covariances are proportional to the product of the corresponding condi-

tional standard deviations, and this reduces the number of parameters to 

be estimated. The CCC model is defined as

 
 

(4.24)

where ( , . . . , )/ /
11
1 2 1 2 ,  can be any univariate GARCH process, 

and ( ) is the constant correlation matrix, where 1, . is pos-

itive definite if all conditional variances are well defined and  is posi-

tive definite.
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4.3.7 Dynamic Conditional Correlation Model

Engle (2002) proposed the DCC model to combine the flexibility of uni-

variate GARCH models with parsimonious parametric models for the 

correlations. Although nonlinear, they can often be estimated using uni-

variate or two-step methods based on the likelihood function. The DCC 

model is written as

  (4.25)

where { }, , 1 1  is the correlation matrix,

 11
1 2 1 2

11
1 2

,
/

,
/

,
/K KK ,

/1 2  (4.26)

the  ×  symmetric positive definite matrix ( ),  is given by

 
( )1 1 1 1  (4.27)

 are the standardized residuals, and is the   unconditional vari-

ance matrix of . Relaxing the constraint of constant correlations is a 

very significant step forward, but it creates the difficulty that the time- 

dependent conditional correlation has to be positive definite. The DCC 

model guarantees this condition is satisfied.

4.3.8 Generalized Dynamic Covariance Model

Kroner and Ng (1998) proposed the GDC model to include asymmetric 

effects while nesting many other multivariate GARCH models as special 

cases. The GDC model is written as

 
o  (4.28)

where  = ( ),  = , 0, , and ( ), and can be 

specified as a BEKK model. The GDC model has two components. The 

first term, , is similar to the CCC model, but the variance func-

tions are given by the BEKK model. The second term, o , has zero 

diagonal elements, but has off-diagonal elements given by the BEKK-

type covariance functions, scaled by the 
 
parameters. This model 

encompasses the VEC, BEKK, FGARCH, CCC, and DCC models. The 

asymmetric dynamic correlation (ADC) matrix model is an extension 

of the GDC model that permits asymmetric effects in both variances 

and covariances.
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4.4 ESTIMATING GARCH MODELS
GARCH models are usually estimated using numerical procedures to 

maximize the likelihood function, which produces the most likely values 

of the parameters given the data. It is important to be aware that the likeli-

hood function can have multiple local maxima, and different algorithms 

can lead to different parameter estimates and standard errors. Good ini-

tial estimates of the parameters are useful to ensure the global maximum 

is reached. It is also important to be aware that the log-likelihood func-

tion can be relatively flat in the region of its maximum value, and in this 

case different parameter values can lead to similar values of the likelihood 

function, making it difficult to select an appropriate value.

Most GARCH models are estimated using the Berndt-Hall-Hall-

Hausman (BHHH) (1974) algorithm. This algorithm obtains the first 

derivatives of the likelihood function with respect to the numerically 

calculated parameters, and approximations to the second derivative are 

subsequently calculated. Computational speed is increased by not calcu-

lating the actual Hessian matrix at each iteration for each time step, but 

the approximation can be weak when the likelihood function is far from 

its maximum, thus requiring more iterations to reach the optimum.

The Broyden-Fletcher-Goldfarb-Shanno (BFGS) method solves uncon-

strained nonlinear optimization problems by calculating the likelihood 

function gradient in the same way as the BHHH, but it differs in its con-

struction of the Hessian matrix of second derivatives. The BFGS and 

BHHH are asymptotically equivalent, but can lead to different estimates 

of the standard errors in small samples. Press et al. (1992) discuss optimi-

zation methods in detail. Brooks et al. (2003) review the software packages 

that are commonly used to estimate GARCH models—EVIEWS, GAUSS-

FANPAC, RATS, and SAS—pointing out how different results can be 

obtained from the alternative packages.

4.5 APPLICATIONS TO STOCK MARKET VOLATILITY
Given the very extensive literature on GARCH modeling of stock mar-

ket volatility, it is clearly impossible for us to provide a complete review. 

Instead, we provide a summary review of which models have been used 

in various contexts. It is appropriate to commence this review by noting 

that most applications of the GARCH( , ) model use low orders for the 

lag lengths  and , and the GARCH(1,1) is generally found to be the most 

appropriate for forecasting stock market returns. For example, Corhay and 
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Rad (1994) fitted various GARCH models to stock returns in European 

countries and found the GARCH(1,1) model is the most appropriate for 

forecasting returns. Engle (2004) describes the GARCH(1,1) model as the 

workhorse of financial applications and claims it can describe the volatil-

ity dynamics of stock returns on most developed and emerging markets 

and most indices of equity returns. In many cases, a slightly better model 

may be found, but the GARCH(1,1) model usually provides a good start-

ing point.

The GARCH-M model has been used by French et al. (1987) to model 

the daily S&P index, by Attanasio and Wadhwani (1989) to model monthly 

and annual returns on UK and U.S. stock indices, and by Friedman and 

Kuttner (1992) on quarterly U.S. stock indices. They all find positive esti-

mates of the risk aversion parameter with values ranging between 1 and 

4.5. More recently, Tsouma (2007) investigated return dynamics in twenty- 

one mature and twenty emerging markets using an extended AR(1)-

GARCH-M model. They show volatility transmission from the leading 

markets to the others, and allowing for potential structural breaks in 

mean and variance, they investigated the impact of the October 1997 East 

Asian financial crisis. The EGARCH model has been used by Nelson (1991) 

to examine the relation between the level of market risk and returns. In 

so doing, he showed how positive and negative returns affect conditional 

variance, how these effects can persist over time, and the implications of 

thick-tailed conditional distributions of returns. The IGARCH model has 

been applied to Canadian and Italian returns by Corhay and Rad (1994) 

and Calvet and Rahman (1995). Bollerslev and Mikkelsen (1996) argue 

that finding a unit root in variances could reflect restrictive specifica-

tions, and they report that U.S. stock market volatility is best modeled by 

a mean-reverting FIGARCH process.

Brooks et al. (2000) estimated an asymmetric power GARCH model 

for ten national stock market index returns and a world index. Most of 

the estimated power terms were between 1.0 and 1.5. They conclude that 

strong leverage effects are present, and when modeled in a GARCH frame-

work, including a power term is a worthwhile addition to the specification 

of the model. Ané and Ureche-Rangau (2006) applied a regime switch-

ing power GARCH (RS-APGARCH) model to allow heteroskedasticity 

to vary across regimes together with within-regime volatility persistence. 

They report that the explosive variance often obtained with GARCH mod-

els might result from using single-regime models to capture multiregime 

processes. This model also allows within-regime asymmetric response to 
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news, and although the leverage effect holds in both regimes, the asym-

metric response to news is stronger in the low-volatility regime.

Multivariate GARCH models can be used to evaluate how returns in 

one stock market influence those in another. Hamao et al. (1990) used the 

multivariate GARCH model to demonstrate price and volatility spillovers 

between Japan and the United States, and found that shocks that origi-

nate in the United States are larger and more persistent. Karolyi (1995) 

examined the dynamic relation between Canadian and U.S. returns and 

volatilities using the BEKK and CCC models. Ramchand and Susmel 

(1998) used a bivariate switching ARCH (SWARCH) model to test for dif-

ferences in correlations across variance regimes. They found that correla-

tions between U.S. and other world markets are significantly greater when 

the U.S. market is in a high-variance rather than a low-variance regime. 

Ng (2000) constructed a bivariate GARCH(1,1) model that replicates the 

GDC model originally proposed by Kroner and Ng (1998) and that nests 

within it the VEC, BEKK, and CCC models. He found that U.S. shocks 

have larger effects than Japanese shocks on Asian stock markets. Kanas 

(2000) applied the bivariate EGARCH model to investigate volatility 

transmission between stock returns and exchange rates in six countries, 

and found symmetric spillovers from the former to the latter in all but 

one country. Kearney and Patton (2000) estimated three-, four-, and five-

variable GARCH models of exchange rate volatility transmission across 

the important European Monetary System currencies. They demonstrated 

that temporal aggregation reduces observed volatility transmission, and 

that specification robustness checks should be integral to multivariate 

GARCH modeling. Engle (2002) applied the DCC model to investigate 

time-varying correlations between the Dow Jones and the NASDAQ and 

between stocks and bonds. He found that the DCC models are superior 

to moving average methods and competitive with other multivariate 

GARCH specifications. Yang (2005) also used the DCC model to exam-

ine international stock market correlations between Asian stock markets, 

showing that the correlations fluctuate over time and rise during periods 

of high market volatility.

4.6 CONCLUSION
In this chapter, we have summarily reviewed the many variations of uni-

variate and multivariate GARCH models that have been applied to study 

the evolution of the first two moments of financial and other time series. 

The discovery that it was possible to formally model many of the stylized 
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facts of stock market behavior constituted a major breakthrough in finan-

cial econometrics. The ability of the GARCH model in its many forms to 

encompass the important stylized facts of equity returns guarantees that 

it will remain central to modeling the causes and transmission of stock 

market volatility for the foreseeable future.
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5.1 INTRODUCTION
It is now well established in the minds of investors, commentators, and aca-

demic researchers that financial markets follow up-and-down cycles that 

involve both mean and volatility of asset returns. Both the popular press and 

the empirical finance literature refer to the former phenomenon using catchy 

expressions, such as bull and bear markets, and to the latter phenomenon by 

writing about periods of financial turmoil to be contrasted to quiet times. 

Recently, many empirical finance researchers have also noticed that the cor-

relations between returns on different assets often undergo massive changes, 

even shifting from negative to positive territory, i.e., from an average ten-

dency of prices to move in opposite directions to a tendency to co-move.

As a result of this increasing awareness of the potential for means, 

variances, and covariances of asset returns to change over time, an ever- 

increasing and powerful array of econometric tools have been introduced 

that allow quantitative analysts to make inferences and predictions on the 

current and future means, variances, and covariances of asset returns. The 

first step in this direction was taken in the literature on time-varying volatil-

ity, a phenomenon commonly termed conditional heteroskedasticity (CH), 

a term borrowed from the statistical literature to indicate that the variances 

and covariances of the series of interest may change as a function of current 

information on the state of the economy or the financial markets. Since the 

seminal work by Robert Engle (see, e.g., Engle et al., 1987), we know that for 

most financial return series and frequencies, simple time-series models of 

the autoregressive moving average (ARMA) type may be used to success-

fully model and forecast time variation in financial volatility. In practice, this 

means that asset returns are much riskier at some times than others. As early 

as in the late 1980s, the literature on models of conditional variances has been 

extended to encompass multivariate applications in which ARMA models 

are adopted to describe and predict the dynamics of conditional covariances 

and hence correlations (see Bollerslev et al., 1988, for an early attempt).

During the 1990s another, different strand of the empirical finance lit-

erature developed that—initially borrowing ideas and techniques originally 

proposed in the macroeconomics literature by James Hamilton (see, e.g., 

Hamilton, 1989)—proposes that the dynamics over time of financial returns 

might be fruitfully modeled as mixtures (i.e., weighted combinations with 

weights represented by probability measures) of different but simpler con-

ditional distribution. For instance, conditional normal densities with high 

mean returns and moderate variance would characterize the so-called bull 
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markets, while conditional normal densities with low (or negative) mean 

returns and high variance should be used to characterize the bear states; the 

mixing would be governed by simple, finite-memory (Markov) unobserv-

able state variables describing whether markets are in bull or bear condi-

tions. Both bull and bear markets would be relatively persistent over time. 

After the seminal applications by Turner et al. (1989) to univariate contexts, 

the literature has more recently shifted toward multivariate applications 

(see, e.g., Ang and Bekaert, 2002; Guidolin and Timmermann, 2006) to find 

that Markov switching models may be helpful to understand the dynam-

ics of markets and—so it is contended in some of these papers (see, e.g., 

Guidolin and Timmermann, 2007)—to time financial markets, allowing an 

investor to build portfolios that exploit the presence of (nonlinear) predict-

ability patterns that Markov switching frameworks could reveal.

Our chapter proposes to bring these two strands of the literature together 

on an important financial application—modeling and predicting means, 

variances, and correlations for U.S. stock and bond returns—and proceeds 

to describe and estimate Markov switching (MS), vector autoregressive 

(VAR), autoregressive conditional heteroskedastic (ARCH) models for the 

bivariate conditional density of U.S. financial returns on post-WWII data. 

These means that we shall investigate in depth the empirical performance 

of dynamic time-series models that can be placed at the intersection of 

the two literatures we have reviewed—on multivariate ARCH models to 

capture volatility clustering and time-varying correlations, and on multi-

variate MS models to capture bull and bear market dynamics—to study 

a key portfolio choice problem, i.e., the strategic asset allocation between 

stocks and bonds for a domestic U.S. investor. In fact, our plan is to pro-

ceed to review some basic stylized facts of both data series (i.e., stock and 

long-term bond monthly returns) under investigation at the univariate as 

well as bivariate level, before gearing up to specify and estimate a variety 

of MS VAR ARCH models.

One small literature exists that has proposed and estimated MS ARCH 

models before. In fact, although generalized ARCH (GARCH) models 

driven by normally distributed innovations and their numerous extensions 

can account for substantial portions of both volatility clustering and the 

excess kurtosis in financial returns, GARCH-type models are usually unable 

to produce filtered residuals (i.e., residuals that discount time variation in 

volatility and covariances) that fail to exhibit clear-cut signs of nonnormal-

ity. At the same time, it has been observed that especially with reference to 

acute crises periods, GARCH models would display less than commendable 
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forecasting performance (e.g., Lamoureux and Lastrapes, 1993). As a result, 

a number of researchers have suggested that this lack of performance of stan-

dard GARCH models may be related to the presence of structural instability 

in the ARCH process. Hamilton and Susmel (1994) stress that ARCH mod-

els often impute a lot of persistence to stock volatility and yet give relatively 

poor forecasts. One explanation is that extremely large shocks, such as the 

October 1987 crash, may have arisen from quite different causes and have 

different consequences for subsequent volatility than do small shocks. As 

a result, they propose and develop a  (Markov) switching ARCH 

model that separates out high- from low-variance periods.*

We depart from the existing literature in two ways. First, to our knowl-

edge this is a first attempt at understanding and forecasting the dynamic 

properties of U.S. stock and long-term bond returns using models in the 

MS VAR ARCH class. Given that the recent interest in the literature for 

the strategic asset allocation decision across stocks and bonds (see, e.g., 

Campbell et al., 2003; Guidolin and Timmermann, 2007) has been cen-

tered around simpler, relatively unsophisticated VAR and MS VAR mod-

els, this seems to be an interesting effort. Second, we do not limit our 

efforts to a plain analysis of in- and out-of-sample properties of MS VAR 

ARCH models, but we also proceed to quantify the value of modeling and 

predicting regimes in ARCH dynamics by using a simple mean-variance 

portfolio problem that allows us to compute and report a measure of eco-

nomic value. To our knowledge, both contributions are novel.

We obtain two main empirical results. First, we report strong and 

unequivocal evidence that regime switching in CH dynamics ought to 

be carefully modeled to obtain a good fit to U.S. excess stock and bond 

returns. We find evidence of three separate CH regimes. Regime 1 is a 

mildly persistent state in which bond premia are relatively high but equity 

premia are negative; the volatility of both excess stock and bond returns 

is high, while their correlation is zero; and the ARCH process is rather 

persistent for excess bond returns, weaker for excess stock returns, and 

practically absent in the covariance. Regime 2 is a persistent state that 

captures bull markets and periods of economic expansions: the equity 

premium is high, bond premia are negative, while excess bond returns 

become unpredictable, and excess equity returns are predictable using 

* Recently, Haas et al. (2004a, 2004b) proposed finite mixtures of conditional distributions—

also extended to include MS GARCH models—that appear flexible enough to include both 

normal and nonnormal (with thicker tails) distribution for the innovations terms. However, 

their focus has remained mostly of a univariate type.
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lags of excess bond returns. Volatility almost completely evaporates, while 

the stock-bond correlation turns negative. Regime 3 can be interpreted 

as a normal, highly persistent state in which the equity premium is posi-

tive and statistically significant, the bond premium is positive but modest, 

excess stock and bond returns are hardly predictable, and ARCH effects 

are moderate. When we test for the presence of leverage effects in CH, the 

null of no leverage cannot be rejected in a bivariate setup.

Second, we find that a three-state t-Student ARCH model provides a 

superior forecasting performance than a number of natural competitors (a 

single-state bivariate t-Student ARCH, a pair of Markov switching t-Student 

ARCH models that imposes a constant correlation, and a simple indepen-

dent, identically distributed (IID) homoskedastic model with constant 

means, variances, and stock-bond covariance). In a recursive, pseudo out-

of-sample 1983:12–2007:11 exercise, we find that the 1-month-ahead mean, 

variance, and covariance predictions from the three-state model generally 

outperform all other candidates. In particular, the three-state ARCH model 

produces the minimum root-mean-square forecast error (RMSFE) for excess 

stock return variance. This is a consequence of the lower volatility of the MS 

forecast errors. In general, the constant variance benchmark tends to be the 

second best model. The fact that a richly parameterized MS t-Student ARCH 

model outperforms a simple IID homoskedastic benchmark with only five 

parameters is very interesting. The results for excess bond return variance are 

similar, if not better: the three-state model displays the lowest RMSFE.

The rest of the chapter is organized as follows. Section 5.2 introduces 

Markov switching ARCH models and reviews a few details on structure 

and estimation. Section 5.3 introduces the main features of U.S. stock and 

bond excess returns data, shows the presence of persistence and predict-

ability in both variances and covariances, and provides initial, motivating 

evidence of structural change and instability in CH dynamics. Section 5.4 

reports the main empirical results of the chapter. Section 5.5 analyzes the 

1-month-ahead forecasting performance of alternative models for means, 

variance, and the stock-bond covariance. Section 5.6 concludes.

5.2 MARKOV SWITCHING ARCH MODELS
5.2.1 General, Multivariate Case

Let  be a N  vector of (excess) asset returns, in our application the 

returns of a broad equity index and long-term government bonds in excess 

of 1-month T-bills. Denote  as an unobserved latent random variable that 
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can take on the values 1, 2,    and—for the sake of concreteness—let 

us suppose that  can be described by an irreducible, first-order Markov 

chain with time-homogeneous transition probabilities:

 
Pr( | , , , , , , ) Pr1 2 1 2 0K K (( | ) ,1

for , ,  = 1 2, , . The variable  may be used to capture the nature of 

the state in which the markets are in at time , for instance, to distinguish 

between bull and bear market states or quiet and volatile periods. We can 

write this dependence as stating that the conditional density of returns 

data at time  will depend on at most a finite number of lags,  ≥ 1, of the 

Markov state variable :

 
( | , , , , , , , ),1 1 2 0K K  (5.1)

where 0 is assumed to be fixed and known.* It is often convenient to col-

lect the transition probabilities in a   (constant, time-invariant) tran-

sition matrix  in which the generic [   ] element is the probability , i.e., 

. † Notice that this specification assumes that if markets were in a 

given state last period, the probability of switching to a different state does not 

depend on how long markets have been in the current state or on any other 

features of recent market behavior (like recent mean returns or volatility).

In the empirical literature, it is typical to replace the general specifica-

tion in Equation (5.1) with simple vector autoregressive frameworks that 

allow for ARCH( ) effects in which—at least in principle—all the matrices 

collecting parameters may become a function of the Markov state :‡

1

, ,( , ; ), [ ] [ ] ,

, , ,0 0

11 1

1 2

( ) (, , ,e
,

) ,

  (5.2)

* The assumption of  finite in Equation (5.1) provides a rather general framework but con-

strains the type of conditional heteroskedastic models to be embedded within the Markov 

switching framework to the original Engle ARCH( ) (1982) type and prevents modeling 

regime shifts in Bollerslev (1986) type GARCH processes.
† Here  is a  1 vector with zeros everywhere and a 1 in its -th position; therefore, e  

simply selects the element in row  and column  of the matrix . Correspondingly,  shall be 

defined as a  1 vector that collects 1s in all of its elements.
‡ In the expression that follows, Ádenotes the element-by-element (Hadamard) product. Given two 

conformable matrices  and  the generic element ← ,  of Á  is  ◊ The conditional mean 

function is of the standard Markov switching VAR( ) case, as in Guidolin and Ono (2005).
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where is the time conditional covariance matrix of dimension , 

( ; )denotes a generic density function parameterized by the vector 

, the (regime-dependent) matrices 0, , , , and , are matrices of 

rank up to , and the matrices  are selector matrices with generic ele-

ment 1 0 0if ,, , and 0 otherwise.

The reason why the parameter matrices all appear in the outer prod-

uct format (e.g., 0 0, , instead of 0, ) is to ensure that the resulting 

covariance matrix , be positive-definite within each regime. In words, 

at each lag 1 2, , ,K
 the matrices select elements of , ,  

that are associated with pairs of negative return shocks only. As it is well 

known from the literature (see Engle and Ng, 1993) that this effect ought 

to capture the existence of leverage (asymmetries) in asset returns, i.e., the 

fact that negative return shocks (or interactions of negative shocks) ought 

to increase variance and covariances more than positive return news 

does. Equation (5.2) is in fact a version of Bollerslev et al.’s (1988) mul-

tivariate VECH GARCH model, with the peculiarity that Equation (5.2)  

fails to include a GARCH component, while it is extended to model lever-

age effects, of order 2. Of course, Equation (5.2) also generalizes the 

VECH ARCH( 1, 2 ) to the Markov switching case. Because , 1, and 2 

are all finite, the condition that the conditional density  ought at most 

to depend on a finite number of lags of the history of  itself is satisfied. 

In most applications, ( ; ) is either a multivariate Gaussian density  

(in which case is empty, which means it can be set to 1 and this object 

is irrelevant in the estimation) or a multivariate Student t, in which case

collects to the degrees of freedom parameters.

5.2.2 Special Cases

Several cases of interest—which have often attracted the attention of 

researchers—can be derived by imposing restrictions on Equation (5.2). 

One application that has been considered since Hamilton and Susmel 

(1994) is univariate financial return series, i.e., 1. In this contingency, 

Equation (5.2) simplifies to a simple Markov switching AR( ) asymmetric 

ARCH( 1, 2) model with shocks drawn from a generic density ( ; ). 

 

1

0: ( , ; ), [ ] 00

0

1

2

1

, [ ]

, ,

11

0
2

2

{ } .

 

(5.3)
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However, Hamilton and Susmel (1994) argue that in many applications 

Equation (5.2) is likely to be difficult to estimate and possibly overparam-

eterized. They propose instead a much simpler framework in which the only 

influence of the Markov switching state variable manifests itself through
% , which now enters the conditional mean function in place of ,

while is a regime-specific scale factor that will have the role of globally 

scaling up and down the level of conditional variance at a given time :

 

1 1

% ( , ; )

{

0

0

1

2

1

1 2

00
2

} .  

Usually, is normalized to equal 1 in the first state, 1 1, while 1 

for 2, , .K
If on the contrary we set 1 2 0 in Equation (5.2), we obtain a sim-

ple Markov switching VAR( ) model with regime-dependent covariance 

matrix, as in Guidolin and Timmermann (2006, 2007):

 1

0 0, , ,
( , ; ).

When 0, is regime independent, then the model is a Markov switching, 

homoskedastic VAR.

One last special case of a multivariate model (in fact, bivariate) has been 

popularized by Hamilton and Lin (1996) and can be written as (in its sim-

plest form)

 1 ( , ; ),  (5.4)

where is a diagonal matrix with

 
0 1 1

2
01, { }, , ,1

2  (5.5)

and 1 1, 1 for 2.

5.2.3 Estimation

All of the models discussed in Sections 5.2.1 and 5.2.2 may be represented 

in terms of particular parameterization for the conditional log-density of 

the return vector . For instance, when ( | , , , , )1 2 0K is multivari-

ate Gaussian, then

 
ln ( | , , , , ) ln( ) ln1 2

1

2
2

1

2
K || |, ,

1

2
1
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where and , are defined as in Equation (5.2), and max{ , }.1 2  

When the conditional density is multivariate t-Student, we have:

 

ln ( | , , , , ) ln1 2

2

K
//

( ) ( )

l

/ /

2

2
2

22

1

2

nn| | ( )

ln

,

,

1

2

1
1

2
1 ,

where is a regime-dependent (scalar) degree of freedom parameter, to 

be estimated, and and , have identical definitions as in the Gaussian 

case. Given the conditional density and the parameters of the Markov 

transition matrix  for the overall Markov state variable , it is possible to 

evaluate the log-likelihood function of the observed data using the meth-

ods described in Hamilton (1994).*

5.3 THE DATA
We use monthly data on U.S. excess stock and long-term government bond 

returns for the 55-year-long period 1953–2007. Excess returns are computed 

as the difference between total returns and 1-month Treasury bill (T-bill) 

yields, as common in the empirical finance literature. Stock, bond, and 

T-bill returns (yields) are obtained from the Chicago Research Center in 

Security Prices (CRSP). CRSP equity data refer to a value-weighted index 

that aggregates NYSE, AMEX, and (after December 1972) NADSAQ prices 

and distributions. CRSP long-term government bond return data are instead 

constructed by choosing at the end of each month a valid issue that falls 

closer (in terms of residual time to maturity) to the selected 10-year term.

Table 5.1 reports basic summary statistics for the data under investiga-

tion. In order for us to be able to introduce the issue of structural insta-

bility in the dynamic time-series properties of stock and bond returns, 

* Numerical optimization is performed using the steepest ascent method and then switching 

to the BFGS algorithm in the final step of the maximization. For all models we have gener-

ated at least fifty different starting values to check whether the maximum found could only 

have local nature. Additional details on estimation and inference can be found in Hamilton 

and Susmel (1994, with explicit reference to the univariate case) and Guidolin and Ono 

(2005, with explicit reference to Markov switching models).



100 < Massimo Guidolin

TA
B

LE
 5

.1
 

Su
m

m
ar

y 
St

at
is

ti
cs

 f
o

r 
U

.S
. S

to
ck

 a
n

d
 L

o
n

g-
T

er
m

 G
o

ve
rn

m
en

t 
B

o
n

d
 R

et
u

rn
s

E
xc

es
s 

st
o

ck
 r

et
u

rn
s

0.
56

5
4.

21
5

13
.4

05
0.

90
8

−
0.

51
2

5.
01

4
14

0.
30

9.
30

2
29

.7
81

(0
.0

01
)

(0
.0

00
)

(0
.0

00
)

(0
.0

00
)

(0
.0

00
)

(0
.0

04
)

(0
.0

00
)

(0
.6

77
)

(0
.0

0
3

)

E
xc

es
s 

b
o

n
d

 r
et

u
rn

s
0.

11
4

2.
12

7
5.

36
0

0.
02

0
0.

27
3

4.
55

4
74

.6
21

13
.3

66
2

0
0

.5
3

(0
.1

69
)

(0
.0

00
)

(0
.0

43
)

(0
.3

51
)

(0
.1

34
)

(0
.0

48
)

(0
.0

00
)

(0
.3

43
)

(0
.0

0
0

)

E
xc

es
s 

st
o

ck
 r

et
u

rn
s

0.
67

9
3.

69
7

18
.3

66
1.

08
5

−
0.

41
3

3.
19

0
6.

45
8

20
.6

66
18

.1
40

(0
.0

08
)

(0
.0

00
)

(0
.0

00
)

(0
.0

01
)

(0
.0

39
)

(0
.7

46
)

(0
.0

40
)

(0
.0

55
)

(0
.1

1
2

)

E
xc

es
s 

b
o

n
d

 r
et

u
rn

s
−

0.
07

5
1.

75
4

−
4.

27
6

−
0.

14
4

0.
57

5
6.

10
4

98
.6

06
16

.7
45

6
8

.1
7

4

(0
.5

29
)

(0
.0

00
)

(0
.6

79
)

(0
.1

28
)

(0
.0

39
)

(0
.7

46
)

(0
.0

00
)

(0
.1

59
)

(0
.0

0
0

)

E
xc

es
s 

st
o

ck
 r

et
u

rn
s

0.
36

8
4.

85
9

7.
57

4
0.

30
9

−
0.

40
2

5.
58

8
66

.1
04

9.
94

2
6.

99
6

(0
.2

67
)

(0
.0

00
)

(0
.0

73
)

(0
.1

61
)

(0
.0

34
)

(0
.0

00
)

(0
.0

00
)

(0
.6

21
)

(0
.8

5
8

)

E
xc

es
s 

b
o

n
d

 r
et

u
rn

s
0.

12
2

2.
61

9
4.

65
8

0.
03

0
0.

36
0

3.
84

0
10

.9
99

13
.8

24
5

5
.0

2
8

(0
.4

93
)

(0
.0

00
)

(0
.1

40
)

(0
.8

16
)

(0
.0

94
)

(0
.1

43
)

(0
.0

04
)

(0
.3

12
)

(0
.0

0
0

)

E
xc

es
s 

st
o

ck
 r

et
u

rn
s

0.
64

5
4.

02
6

16
.0

21
1.

09
3

−
0.

65
9

4.
08

7
27

.7
20

6.
43

0
35

.1
38

(0
.0

16
)

(0
.0

00
)

(0
.0

00
)

(0
.0

02
)

(0
.0

00
)

(0
.0

01
)

(0
.0

00
)

(0
.8

93
)

(0
.0

0
0

)

E
xc

es
s 

b
o

n
d

 r
et

u
rn

s
0.

28
6

1.
91

3
14

.9
50

0.
32

5
−

0.
25

8
3.

55
5

5.
44

1
9.

00
1

1
1

.0
0

4

(0
.0

25
)

(0
.0

00
)

(0
.0

00
)

(0
.0

12
)

(0
.1

60
)

(0
.2

94
)

(0
.0

66
)

(0
.7

03
)

(0
.5

2
5

)
 



Detecting and Exploiting Regime Switching ARCH Dynamics < 101

Table 5.1 reports customary statistics not only with reference to the overall 

1953–2007 sample period, but also for three subperiods of 18 years each: 

1953–1970, 1971–1988, and 1989–2007. The basic properties of the series 

at hand are well known: equities offer on average a premium over short-

term, relatively riskless T-bills of approximately 6.8% per annum, with an 

annualized volatility of 14.6%; the corresponding monthly Sharpe ratio is 

of 13% and is statistically significant. However, excess stock returns also 

display strong and persistent departures from normality. Their uncondi-

tional distribution is skewed to the left and has much thicker tails than a 

Gaussian benchmark. The left skewness is consistent with the observation 

that the median of excess equity returns is almost the double their mean. 

Overall, the Jarque-Bera test rejects the null of normality. While stock 

returns appear not to be serially correlated, their squares are strongly seri-

ally correlated, which is generally taken as an indication of volatility clus-

tering. Long-term bonds pay on average a premium over short-term bonds 

of almost 136 basis points in annualized terms. The annualized volatility 

of excess bond returns is instead 7.4%, i.e., roughly half the volatility of 

stocks. The bond Sharpe ratio, however, is a less generous 5.4%, although 

this is statistically significant. Also, excess bond returns display significant 

departures from normality: their unconditional distribution is skewed to 

the right and has tails thicker than a Gaussian. Even though skewness 

is not excessive, the Jarque-Bera test rejects the null of normality with a 

-value that is essentially zero. Once more, bond returns appear not to 

be serially correlated but show the typical signs of ARCH because their 

squares are strongly serially correlated at all lags.

The table reports basic summary statistics for U.S. stock and (long-term 

government) bond excess returns. Excess returns are computed as differ-

ences between stock and bond returns and 1-month T-bill yields. In the 

table, statistics in parentheses are the -values associated with the null 

hypothesis of a zero value for the parameter or statistic under investiga-

tion. When possible, the -values are computed for two-tailed tests of 

hypothesis. In the case of kurtosis, the null hypothesis is of a kurtosis that 

equals the Gaussian benchmark of 3. Jarque-Bera is a test of distributional 

normality based on deviations of skewness and kurtosis coefficients from 

the null of normality. LB(12) is the Ljung-Box test for zero serial correla-

tion up to order 12 for levels and squared returns, respectively.

Table 5.1 proceeds then to split up our sample in the way described. 

Strikingly, all the features we have presented as typical and that have been 

widely documented in the literature tend to disappear in at least one of the 
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subsamples. To start from a property of direct interest for our purposes, it 

is clear that while excess stock returns are characterized by strong ARCH 

in the more recent 1989–2007 period, this is not the case for the preced-

ing 36 years. On the opposite, bond returns show volatility clustering in 

two subperiods (the initial years 1953–1988) but not in the most recent 

period. This is rough, but powerful evidence that proposing time-series 

models with variable intensity for ARCH effects may have considerable 

value. In a similar way, while the equity premium appears to be definitely 

positive and statistically significant in the 1953–1970 and 1989–2007 peri-

ods, it is positive but rather modest (4.4%) and not statistically significant 

in the 1971–1988 period. While in general the serial correlation structure 

of excess equity returns does not allow one to accurately forecast, in the 

1953–1970 there are signs of a precisely estimated correlation structure. 

Remarks of the same type apply also to bond returns. Therefore, it appears 

that bear-bull-type models that imply time-varying conditional means 

may also have some value in forecasting and portfolio choice. However, 

one feature exists that reliably persists over the entire sample period: both 

series and the overall subsample present strong departures from normality, 

as shown by the Jarque-Bera tests. Interestingly, this is once more consis-

tent with the presence of bull-bear dynamics, ARCH, as well as structural 

instability of ARCH features through the entire sample period.

Figure 5.1 strengthens these impressions of pervasive instability by 

plotting 3-year rolling window sample estimates (i.e., based on moving 

windows of thirty-six observations) for mean excess returns, volatilities, 

and the equity-bond correlation coefficient. The first panel shows pro-

nounced swings in the equity premium estimates, which in fact reaches 

negative values for two prolonged periods, 1974–1976 (the first, big oil 

shock) and then 2001–2004 (the dot.com bubble burst and the 2001–2002 

U.S. recession). Periods of euphoric (if not bubbly) stock markets are also 

evident, such as the mid-1950s, the mid-1980s, and especially the 1996–

2000 period, with average premia in excess of 12–20% per annum for peri-

ods of 3–4 consecutive years. Interestingly, the most recent, 2006–2007, 

has been a period of bullish stock markets, with premia of approximately 

12% per annum. Swings in bond premia are less visible but  even 

more persistent than equity oscillations. In practice, bond premia were nil 

or slightly negative on average over the long 1953–1982 period, and then 

become positive and relatively high (300–400 basis points per year) over 

the subsequent 1983–2007 sample. Of course, consistently with common 

empirical observations, even during the last 25 years, the yield curve has 
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3-Year Rolling Window (Monthly) Mean Excess Returns
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FIGURE 5.1 Three-year rolling window estimates of mean excess returns, 

volatilities, and correlations.
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recurrently become flat or even downward sloping during recessions, such 

as 1990, 2001, and late 2007.

The second panel of Figure 5.1 shows rolling window volatility estimates. 

Consistent with Table 5.1, equity volatility tends to be double the bond vola-

tility. However, the two series tend to approximately swing together, with 

an overall correlation of 0.38. Equity volatility oscillates between minima of 

10–12% per year over calm periods—such as the late 1950s, the mid-1960s, 

1993–1998, and the recent 2005–2007 period—and maxima in excess of 

20% over the turbulent periods—such as the mid-1970s, 1987–1991, and 

1999–2003. Interestingly, some of these periods also correspond to bear 

regimes, as shown by the first panel. Bond volatility presents instead two 

large historical spikes, 1970–1973 and 1982–1986, when it exceeded 7% in 

annualized terms; one trough in the mid-1960s, when volatility almost dis-

appeared; and one long, protracted plateau at a moderate level of 5–6% per 

annum between 1992 and 2002. This plot provides additional, powerful evi-

dence of the presence of regimes in the volatility of U.S. financial returns. 

The last panel of Figure 5.1 depicts instead time variation in the stock-bond 

correlation coefficient. There are three main regimes: in the early part of the 

sample (1953–1965), the correlation is slightly negative but trends up over 

time; in the central part of the sample (1966–1997), the correlation oscillates 

between zero and relatively high levels of up to 0.65; and in the final part of 

the sample (1998–2007), correlation falls again to negative territory, touch-

ing –0.60 around 2004, even though correlation appears to be again trend-

ing up between 2006 and 2007.

5.3.1 Preliminary Evidence of Instability in Conditional  
Heteroskedasticity

Figure 5.2 provides a powerful display of the presence of conditional het-

eroskedasticity in U.S. stock and bond monthly return data consists of plots 

of the squares of stock and bond returns. These show the classical signs of 

volatility clustering: in most periods, large squared returns tend to be fol-

lowed by (many) other large squared returns, and vice versa, i.e., quiet peri-

ods tend to persist over time. At least visually, this effect seems to be more 

pronounced for bond returns, when volatility seems to almost completely 

evaporate between 1963 and 1966, and then again between 1973 and 1980. 

These two facts indeed match our comments on the features of the bond 

volatility series in Figure 5.1. This means that ARCH effects may be stronger 

for bond than for stock returns. The last panel of Figure 5.2 also shows the 

product of stock and bond returns, which is a raw measure of  for 
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FIGURE 5.2 Plots of squared returns and of return products.



106 < Massimo Guidolin

a pair of series in the same way in which squared returns are a raw measure 

of  for each individual series. The presence of some degree of covari-

ance clustering is as evident as in the first two panels of the figure, at least in 

the sense that quiet periods in which the return product gravitates around 

zero tend to be persistent. Consistently with Figure 5.1, the period 2001–

2003 is mostly characterized by large and negative return products, leading 

to negative (for the period 2002–2004) correlations. This shows that ARCH-

like effects are likely to extend beyond variances, to affect covariances.

One aspect of ARCH behavior the literature has been concerned with 

since the seminal paper by Engle and Ng (1993) is the presence of leverage 

(asymmetric) effects in conditional heteroskedasticity, i.e., the fact that nega-

tive returns (shocks) tend to induce to a larger, subsequent volatility reaction 

than equally sized positive returns (shocks). We pursue a similar empirical 

hypothesis and plot rolling window volatilities and average excess returns for 

both stocks and bonds. Even though this is not exactly the formulation pop-

ular in the empirical finance literature (see Section 5.2.1 for details), using 

the average quantities in Figure 5.1 will give us some ideas for the phenom-

enon. In the case of stocks, it is clear that there is considerable leverage: large 

and negative equity premia are associated with much higher volatilities than 

large and positive premia; in fact, the relationship seems to be approximately 

linear and negative (the correlation between the two rolling window sample 

statistics is 0.46). However, in the case of bonds there is no strong evidence 

of leverage: the relationship seems to describe an approximately symmetric 

U shape in which negative and positive premia seem to have the same effect 

on volatility; the correlation between risk premia and volatility is a modest 

0.15. We also tried to build a similar picture with reference to return prod-

ucts. It plots the signed product of stock and bond premia versus rolling win-

dow stock-bond correlations. The signing of return products is performed by 

appending a minus sign when either stock or bond premia are negative for a 

given period. Here the evidence of a leverage effect is weak at best. However, 

it is clear that while large positive product of premia may be associated with 

both positive and negative correlations, large negative products of premia 

may only lead to zero or negative correlations. Overall, although for stock 

returns there is evidence of leverage, it remains to be seen whether these 

asymmetries derive from specific features of the CH dynamics followed by 

excess asset returns or whether—on the contrary—they are one result of the 

presence of structural instability in simpler CH functions.

As a way to introduce the issue of structural instability in CH, we com-

pute the estimates of a simple bivariate VAR(2) VECH t-Student ARCH(3) 
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with leverage for stock and bond returns with reference to the overall sam-

ple period and for two subsamples, 1953–1980 and 1981–2007.* It turns out 

that cross-asset and other asset effects in the CH equations all turn out to 

be insignificant and can be dropped from the model.† The full sample esti-

mates produce results that are in general agreement with our comments 

to Figures 5.1 through 5.3. There is some mild, pure VAR predictability 

of excess returns, with pseudo 2s in the order of 1.9–2.1%. In particular, 

as it is well known since Fama and French (1989), a positively sloped term 

structure at time 1 forecasts higher subsequent excess equity returns at 

both time and 1, while excess bond returns are simply serially corre-

lated. However, the corresponding coefficients are small in economic terms, 

and they command rather negligible 2s if compared to those typical in 

the literature based on monthly returns.‡ ARCH effects are rather strong 

and statistically significant in excess bond returns, and weaker for excess 

stock returns. However, excess stock returns offer unequivocal evidence of 

leverage effects. In fact—rather oddly—a time 1 shock to equity return

( ), 1 induces effects on time  equity variance only if negative, so to acti-

vate the ARCH effect through { } ,,
.

1 0 1
2  There is rather modest evidence 

of ARCH in the covariance, and while last month shocks do not seem to 

affect the current level of the conditional covariance, when the distance in 

time equals 2 or 3 months, the effect is positive and statistically significant. 

Finally, the estimated process implies unconditional means, volatilities, and 

correlations that are all rather sensible and closely match the full-sample 

statistics reported in Table 5.1. The estimate of the (common, for simplic-

ity) t-Student degree of freedom parameter (8.00) illustrates that—even after 

accommodating for ARCH effects—some residual need for modeling tails 

thicker than a simple bivariate Gaussian density does remain.

* The VAR(2) VECH t-Student ARCH(3) has been selected to represent a single-state coun-

terpart to the MS ARCH models estimated and commented on in Section 5.4.2. However, 

we notice that a thorough model specification search among single-state models reveals a 

need to use such a framework along all the information criteria.
† These cross-asset and other asset effects simply measure the effects of shocks to bond (stock) 

returns on the conditional variance of bond (stock returns), and the impact of terms obtained 

as the product of bond and stock shocks on the conditional variance of both bond and stock 

returns.
‡ For instance, a one standard deviation increase in the excess bond return at time  1 (this 

is a 2.13% increase) induces an increase in the excess stock return of 0.34% the following 

month, which is only 8% of a one standard deviation increase. This is, of course, the cause of 

the rather small 2s in Table 5.2.
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FIGURE 5.3 Smoothed state probabilities from bivariate, three-state 

Markov switching VAR(2) VECH t-Student ARCH(3) model for U.S. stock 

and bond excess returns.
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It is also of interest to notice that the two lower panels of Table 5.2 display 

of important instabilities in parameter estimates. Although the conditional 

mean estimates change somewhat (but this hardly affects the resulting 2 , 

which remain between 1.5 and 2.8% and seem only marginally higher for the 

pre-1981 sample), the most important breaks in estimated parameters con-

cern the CH process. In practice, there is little evidence of ARCH in equity 

returns in the first part of the sample, apart from an oddly isolated leverage 

effect (i.e., it seems that only negative equity return shocks affect subsequent 

variance), while equity ARCH effects appear in the post-1981 sample. Excess 

bond returns exhibit ARCH in both subsamples, although the evidence is 

stronger in the early sample. ARCH in the covariance is mild in both samples, 

but the parameter estimates change substantially, while there is evidence of 

a leverage in covariance in the 1953–1980 subsample only. There seems to be 

sufficient evidence of structural instability in CH to motivate a formal Markov 

switching approach to bivariate ARCH in excess stock and bond returns.

5.4 EMPIRICAL RESULTS
In this section we try to summarize the conclusions reached after estimat-

ing hundreds of (restricted and unrestricted, as explained in Section 5.2)  

MS ARCH models in the attempt to isolate a model at the same time feasible 

and with sufficient promise in terms of forecasting performance and as a 

support to portfolio decisions. To gain some additional insights incremental 

to Table 5.2, we have first proceeded to estimate a relatively wide range of 

univariate MS ARCH models for excess stock and bond returns, respec-

tively. The underlying idea is that a bivariate MS ARCH model will be justi-

fied only when the underlying series contain MS ARCH in the first instance. 

Moreover, the univariate MS ARCH properties may give us insights on the 

main properties of an adequate bivariate model. The cost of focusing on 

univariate series is obvious: we will be lacking a model for the CH dynamics 

of the covariance and therefore of correlations. In unreported results, we 

find a strong need for MS ARCH models. In particular, there seems to be 

little doubt left that U.S. excess equity return data contain strong evidence of 

regimes in their variance process, consistent with that reported by Hamilton 

and Susmel (1994). In the case of excess bond returns, the evidence leans in 

favor of larger, three- or even four-state ARCH models.

5.4.1 Bivariate Model Selection

Table 5.2 reports results for a bivariate specification search involv-

ing excess stock and bond returns. Besides reporting parameters that 
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identify the basic model features (such as , 1, and 2,  and the fact that 

 is either finite—in which case  has a conditional t-Student density—or  

infinite—which is equivalent to the state where  has a conditional Gaussian  

density), the table shows the negative of the final, maximized log- 

likelihood, three information criteria now standard in the literature on 

nonlinear time series (see Guidolin and Ono, 2005, for a discussion), two 

regime classification measures, and the pseudo 2 that gives some infor-

mation on the fit of the conditional mean function.

A few remarks are in order. Reporting the negative of the final, maximized 

log-likelihood implies that  values of such a measure are to be preferred 

to higher values. This is commonly done to make the logics of comparison 

across log-likelihood values similar to that which applies to the information 

criteria. In our case we report the Akaike (AIC), the Bayes-Schwartz (BIC), 

and the Hannan-Quinn (H-Q) criteria. It is well known that each of these is 

decreasing in the negative of the final log-likelihood, l K( , , , ; ),1 2 and 

increasing in the number of parameters to be estimated. Therefore, better-

fitting models (i.e., that return a lower value for l K( , , , ; )1 2  and more 

parsimonious models that imply a lower number of parameters to be esti-

mated will yield lower values of each of three information criteria. In this 

sense, information criteria do trade off fit against parsimony. Numerous 

studies have shown that information criteria (especially BIC) may in some 

sense be predictors of good out-of-sample forecasting performance, as they 

could avoid an excessive preference on overparameterized models that may 

fit adequately in sample, but are unlikely to perform well out-of-sample. As 

a result, models are ranked in the sense that the best are the ones that offer 

the lowest values for most or all these information criteria.

Regime classification measures have been popularized since the early 

work on MS models by Hamilton (1988) and propose a rather intuitive 

idea: a well-specified MS model ought to be able to accurately predict in 

which state the system is at each point in time. Equivalently, a MS model 

that is always able to indicate which of the  regimes would be prevailing 

now, at some time origin , is to be preferred to another model that offers 

imprecise indications on the nature of the current state. In simple two-

regime frameworks, the early work by James Hamilton offered a rather 

intuitive regime classification measure:

 

1

2

1 1

1 2100 Pr( | , , , ; ),K
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i.e., the sample average of the products of the smoothed state probabili-

ties. Clearly, when a MS model offers precise indications on the nature of 

the regime at each time , the implication is that for at least one value of 

1, , ,K 1 1 2 0Pr( | , , , ; )K ; *

 
because most other smoothed 

probabilities are zero. Therefore, a good MS model will imply 1 0; . 

Table 5.2 does report the values of 1 for each estimated model pro-

vided 1. However, when applied to models such that 2, 1 has 

one obvious disadvantage: a model can imply an enormous degree of uncer-

tainty on the current regime, but still have 1 1 2 0Pr | , , , ;K ;  

for most values of . As a result, it is rather common to witness that as  

exceeds 2, almost all MS models (good and bad) will automatically imply 

values of 1 that decline toward 0. One alternative measure that may 

shield against this type is:

 

2

2

2

1 1

1100 1
1

1

( )
Pr( | , 22

2
1

, , ; ) .K

One can easily show that 2 0 100[ , ].

In Table 5.2 we report statistics and summary measures useful to select 

a bivariate MS VAR(2) VECH ARCH( 1) model of the type (5.2), includ-

ing the single-state benchmark   1, and allowing the possibility that  

2  0, 1 (i.e., leverage) and that  be finite (i.e., a bivariate t-Student density 

for the errors, with common degrees of freedom parameters). For simplic-

ity, we do not perform any specification search involving the conditional 

mean function and instead set the VAR order to   2. Importantly, here 

the Markov switching also involves all the parameters entering the con-

ditional mean function, i.e., the constants as well as the VAR matrix coef-

ficients in (5.2). Clearly, there is overwhelming evidence of regimes. For 

instance, the (negative of the) log-likelihood function approximately drops 

from a level of 3,175–3,267 in the   1 case to a range of 2,893–2,910 in 

the case   2. This corresponds to a likelihood ratio test statistic in excess 

of 500, which—even with a number of restrictions ranging from 8 to 

27—commands a -value that is essentially zero. This is confirmed by all 

the information criteria dropping by at least 10% when going from  = 1  

to   2. However, it is now obvious that the number of parameters to be 

estimated grows more than proportionally relative to , reaching levels 

* On the opposite, the worst possible MS model implies Pr(  = 1| 1, 2, ; ) = Pr 

(  = | 1, 2, ; ) = 1/  so that   =1Pr(  = 1 | 1, 2, T; ) =1/ 2 and 1 = 100. 

Therefore 1 [0,100] and lower values are to be preferred to higher.
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easily in excess of 60 for  = 3, 4. In fact, despite that the log-likelihood  

function keeps declining as the number of regimes is increased, the informa-

tion criteria all indicate that a three-state MS ARCH(3) model with no lever-

age and t-Student shocks achieves the best possible trade-off between fit and 

parsimony. The absence of leverage effects does not come as a complete sur-

prise, because in Section 5.3.1 we had noticed already that asymmetries are 

weak at best in the case of excess bond returns. In the bivariate case 2 is 

minimized by a three-state model, although of a different type (i.e., including 

leverage effects) when compared to the model that minimizes the informa-

tion criteria (the model that excludes leverage has 2 = 29.5). The minimal 

value of 20.3 reached by 2 again points to the existence of difficulties in 

precisely classifying the current regime at all times, although this does mean 

that model forecasting performance or economic value have to be considered 

 inadequate. However, the addition of MS effects to the conditional 

mean function—in short, the fact that bull and bear markets are explicitly 

allowed by making the process followed by the conditional mean a function 

of the current state—tremendously increases the pseudo 2  achieved. The 2 

is 23% for equities and 15% for bonds under the three-state model selected by 

the information criteria, although higher 2  of approximately 29% (for both 

assets) can be achieved using different models. The three-state MS ARCH(3) 

model with no leverage and t-Student errors implies the need to estimate sev-

enty-two parameters and, as such, a saturation ratio of 18.2, which is around 

the boundary of what is commonly considered acceptable.

We also compute unreported estimates for a number of restricted models. 

The restrictions are imposed along the lines illustrated by Hamilton and Lin 

(1996) and lead to the bivariate Equations (5.4) and (5.5), with 1 1, 1

for 2. Clearly, imposing these restrictions enormously reduces the num-

ber of parameters to be estimated, often by a factor as large as 4. However, 

the restrictions severely degrade the quality of the fit provided: while the 

unrestricted models can take the information criteria down to levels of 7 or 

even lower, when restrictions are present (and despite the fact that the num-

ber of estimated parameters collapses), the minima information criteria fall 

at around 8.6. All in all, we find no reason to believe that both in-sample 

and out-of-sample, a restricted model may provide better guidance than the 

unrestricted but larger models in Table 5.2.

5.4.2 Estimation Results

Table 5.3 reports parameter estimates for the best (in the information 

criteria metrics) model from Table 5.2, a MS VAR(2) VECH t-Student 
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FIGURE 5.4 One-month-ahead forecasts of excess stock and bond returns 

from a bivariate, three-state Markov switching VAR(2) VECH t-Student 

ARCH(3) model.

symmetric ARCH(3) model (i.e., with no leverage). Figure 5.2 shows the 

smoothed probabilities of each of the three alternative regimes. Figure 5.3 

shows the 1-month-ahead predictions for excess stock and bond returns, 

while Figure 5.4 shows 1-month-ahead predictions for equity and bond 

volatilities as well as the stock-bond correlation. In fact, the figures are 
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FIGURE 5.5 One-month-ahead forecasts of volatilities and correlation of 

excess stock and bond returns from a bivariate, three-state Markov switch-

ing VAR(2) VECH t-Student ARCH(3) model.
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used to aid our effort of interpretation of the estimates presented in 

Table 5.3. In fact, here forecasts are used to assist our efforts to understand 

the properties of the models under consideration, while in Section 5.4, 

these forecasts are analyzed in terms of their accuracy.

Table 5.3 confirms the evidence reported in Section 5.3.2 and shows 

that structural instability is pervasive, affecting both parameters in the 

conditional mean and CH functions. Regime 1 is a mildly persistent state 

(the average duration is over 9 months) in which bond premia are rela-

tively high (31 basis points per month) but equity premia are negative and 

rather large (–1.4% per month; in this case annualizing would be incor-

rect, as the regime has a duration inferior to 1 year). Equity returns are 

quite predictable, especially using one lag of the bond term premium and 

with a coefficient (positive) that is both typical in the literature and eco-

nomically nonnegligible.

In unconditional terms (as implied by the regime-specific ARCH pro-

cess), the volatility of both excess stock and bond returns is rather high, 

4.7% and 4.3% per month, respectively, while correlation is essentially 

zero. The ARCH process is rather persistent for excess bond returns, and 

weaker for excess stock returns. Notice that this association between bear 

market periods and relatively high variance for both stocks and bonds also 

represents a type of leverage effect, able to explain the presence of pro-

nounced asymmetries in the unconditional distribution of asset returns. 

Although there is some evidence of ARCH in the covariance, the effect 

is mild (the coefficient is 0.147 only at lag 1, and the other coefficients are 

practically zero). The regime-specific estimate of (9.97) implies mild 

departures from normality, with slightly thicker tails in spite of having 

accommodated ARCH effects. Overall, this is a bear/recession regime of 

declining equity prices, declining interest rates (hence, of positive bond 

returns in excess of short-term rates), high volatility, and modest cova-

riation (indeed) between shocks to stock and bond markets. In fact, this 

regime also holds all the features that have been previously identified with 

flight to quality phenomena in the literature: bond and stock markets seem 

to be affected by a different sentiment dynamics. Figure 5.2 corroborates 

our interpretation and shows spikes of regime 1 smoothed state proba-

bilities in correspondence to a few major recession periods (1974–1976, 

1979–1980, 1990–1991, 2001–2002, and late 2007), as well as to other spells 

of unrest or turmoil in the U.S. stock market (1987, 1998, 2000–2001, and 

again, late 2007).
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Regime 2 is a persistent state (with average duration in excess of 11 

months) that represents bull markets and periods of economic expansions 

typical of the early stages of good times. In (within-regime) unconditional 

terms, the equity premium is high and positive (14.1% in annualized terms), 

and bond premia are negative (but small, –0.82% in annualized terms) 

and indicate an essentially flat term structure with interest rates slowly 

increasing. While excess bond returns (apart from a small AR(1) compo-

nent) become essentially unpredictable, excess equity returns are strongly 

predictable using lags of excess bond returns and with sensible coefficients 

(i.e., higher excess returns on long-term bonds forecast higher excess risk 

premia). Volatility almost completely evaporates from the financial mar-

kets, with levels of 13.5% in the equity market and 5% in the bond market 

(both in annualized terms), while the stock-bond correlation turns negative 

(albeit small, –0.14). Interestingly, the stock-bond covariance becomes com-

pletely unpredictable. Also in this regime, an estimate of that equals 8.8  

indicates only moderate departures from conditional bivariate normal-

ity. Figure 5.2 shows that this bull/stable (low volatility) regime fits market 

dynamics in correspondence of the early 1950s, the early 1960s and 1970s, 

the 1977–1978 economic rebound after the first oil shock, and the recent 

2005–2006 period. Interestingly, while the probability of entering a bull/

stable period leaving the bear state is nonnegligible (0.074), once the system 

enters this state there is equal probability of leaving it to step back in a bear 

state (as happened during 2007) or to switch to the roaring third regime.

Regime 3 has interesting features on its own, but it can be best inter-

preted as a normal (one would like to add, textbook), highly persistent 

(average duration is 21 months) state in which the equity premium is posi-

tive and statistically significant (16.5% per annum), the bond premium is 

positive but modest (about 1% per annum), excess stock and bond returns 

are hardly predictable (i.e., their conditional mean function is approxi-

mately constant), and ARCH effects are moderate but conform to the gen-

eral idea that the variance and covariance of financial returns are generally 

predictable using their own lagged values. Volatility is relatively high for 

both stocks (a textbook 16% per annum) and bonds (8%), and matches 

typical values reported in the literature as benchmarks. The unconditional 

correlation returns back to zero. The estimate of  also shows nonnegli-

gible departures from bivariate normality, even after accommodating for 

ARCH. Figure 5.2 simply shows that the U.S. markets are roughly half 

of the time in this state (which is actually quite good news for long-run 
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equity investors), with long spells of as many as 7 years during the late 

1960s, most of the 1980s (but after 1983), and especially the stock mar-

ket boom of 1992–1999 (with a short break in the summer of 1998, when 

regime 1 picks up the effects of the so-called Asian flu crises). In fact, the 

ergodic (long-run, steady-state) probabilities of the three regimes are 0.14, 

0.33, and 0.53, respectively.

Figure 5.3 shows 1-month-ahead predictions for excess stock and bond 

returns obtained from the model estimated in Table 5.3. As a benchmark, we 

also plot predictions from the single-state VAR(2) VECH t-Student ARCH(3) 

model in Table 5.2, i.e., a framework that cannot infer from the data any 

differences between bull and bear regimes. Clearly, the two forecasts tend to 

somewhat co-move (their correlation is 0.61), although their variability dif-

fers considerably (the standard deviation of the single-state forecast is 0.53% 

versus 1.00% for the three-state forecasts). This depends on the fact that a MS 

model is able to capture the presence of instability in the conditional mean 

function, something impossible for a single-state framework. In particular, 

while the single-state forecast of the equity premium is positive most of the 

time, the three-state predictions often become and stay negative for a few 

consecutive months (e.g., in 2001–2002). From Figure 5.1 we know that even 

long periods of negative average excess equity returns have been typical of the 

U.S. financial history. Similar comments apply to one-step-ahead forecasts of 

excess bond returns, although in this case both forecasts oscillate around the 

zero axis, which is consistent with the basic properties of the data; in spite of 

their positive correlation (0.67), it remains true that three-state forecasts are 

much more volatile (0.54%) than single-state ones (0.37%).

Figure 5.4 depicts instead the 1-month-ahead forecasts of volatility and 

correlation produced by the single- and three-state models. In this case, the 

differences are rather important. As far as equity volatility is concerned, 

we immediately notice that while the single-state volatility has in practice 

a lower bound at around 3.4% per month, this is not the case for the three-

state model. This is important, because Figure 5.1 has shown that historical 

periods exist (essentially, mid-1960s and then mid-1990s) in which equity 

volatility has fallen below the threshold of 3% per month (i.e., an annual-

ized 10%). Otherwise, the two forecasts appear once more highly correlated 

(0.65), with a much higher standard deviation for the MS forecasts (1.4 ver-

sus 1%). In the case of bond volatility, the main difference lies in the hetero-

geneous level of the forecast series in the periods 1953–1970 and 1989–2007, 

when single-state forecasts are considerably lower (although they still 
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strongly co-move, the overall correlation is 0.69), at around 2%, than three-

state forecasts, which oscillate around 2.5%. Finally, the panel devoted to 

correlation predictions offers an unusual perspective: in this case, single-

state forecasts are in fact more volatile (0.21) than three-state ones (0.14), as 

the latter tend to simply oscillate in a narrow range around zero with only 

two exceptions—the late 1980s and early 1990s, when predicted correlation 

becomes positive and averages almost 0.2, and 2000–2004, when the pre-

dicted correlations turn negative and gravitate around –0.2. Interestingly, 

both facts are consistent with Figure 5.1. The single-state forecasts gyrate 

much more but seem to have problems in reproducing these stylized facts. 

However, and consistent with the evidence in both Sections 5.3 and 5.4.1, 

it is once more clear that—with or without regimes—ARCH effects in cor-

relation coefficients are rather modest for the series at hand.

5.5 FORECASTING PERFORMANCE
Ultimately, what matters of a model is not (or not mainly) its ability to pro-

duce an accurate in-sample fit, but especially its out-of-sample forecasting 

performance. In fact, when the models are flexible enough thanks to the 

presence of a high number of parameters, accuracy of fit is relatively not 

surprising. However, rich parameterizations are also well known to intro-

duce large amounts of estimation uncertainty, which normally end up dete-

riorating the out-of-sample performance. To assess whether a three-state 

MS ARCH model offers any useful prediction performance, we implement 

the following pseudo out-of-sample recursive strategy. We obtain recursive 

parameter estimates over expanding samples starting with 1953:05–1983:12, 

1953:05–1984:01, etc., up to 1953:05–2007:11, for the three-state bivariate MS 

ARCH model as well as for three sets of benchmarks:

 1. A single-state VAR(2) VECH t-Student ARCH(3) model.

 2. Two separate, univariate MS VAR(2) t-Student ARCH(3) models for 

excess stock and bond returns, respectively; the MS model for excess 

stock returns is a two-state one, while the MS model for excess bond 

returns is a four-state one, consistent with the indications of Section 5.4.

 3. A constant mean and constant variance model with Gaussian IID 

shocks, which in practice corresponds to a random walk with drift, 

homoskedastic benchmark for bond and stock prices (also assuming 

a constant short-term interest rate).
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 This gives a sequence of 288 sets of parameter estimates specific to each  

of the models.* For instance, the MS ARCH (2) model generates 288 sets 

of regime-specific intercepts, VAR coefficients, ARCH coefficients, t-Student 

degrees of freedom parameters, and transition matrices. At each final date in 

the expanding sample, i.e., on 1983:12, 1984:01, etc., up to 2007:11, we calculate 

1-month-ahead forecasts for (mean) excess stock and bond returns, their vari-

ance, and their covariance. We call ˆ ,,
( ˆ ) ,,

2  and ˆ the forecast generated 

by model  at time ,  = stock, bond. Finally, we evaluate the accuracy of 

the resulting forecasts, by calculating the resulting forecast errors defined as 

1 1, ,
ˆ , 1 1

2 2
, ,( ˆ ) , and 1 1 1, ,

ˆ . In the fol-

lowing, we refer to forecast errors generically as 1 , where 1 coincides with

1 in the case of levels (means), with 1 in the case of variances, and with 1

when covariances are concerned. Of course, our chapter has devoted most of 

its attention to modeling MS dynamics in second moments, and much less 

care in producing accurate models for conditional means. However, we deem 

of a certain importance to also report information on the predictive accuracy 

of our models for the levels of excess stock and bond returns, especially in the 

light of the noncompletely disappointing in-sample 2 in Table 5.3.

Table 5.4 reports summary statistics concerning the quality of the relative 

forecasting performance. In particular, we report three statistics illustrat-

ing predictive accuracy: the root mean-squared forecast error (RMSFE),
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* The starting date at 1983:12 corresponds to the need to have at least ten observations per 

parameter available for the initial estimation exercise in the case of the least parsimonious, 

three-state ARCH(3) model with seventy-two parameters. In fact, in correspondence of the 

initial 1953:05–1983:12 period, the saturation ratio is 10.22. Since our entertaining of a richly 

parameterized bivariate three-state MS ARCH model implies a considerable loss of data for 

out-of-sample evaluation, we also propose measures of forecast performance starting with the 

1953:05–1974:12 period, but rely on final parameter estimates and smoothed state probabilities 

in the case of the three-state MS ARCH model, for a total of 396 sequential forecasts.
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Notice that the three statistics are not independent, as it is well known 

that [ ] [ ] ,2 2 i.e., the MSFE can be decomposed in the 

contribution of bias and variance of the forecast errors.

As discussed in Hamilton and Susmel (1994), the root MSFE may often 

be an unfair standard for data. Even though all of our estimates have pro-

duced values of the t-Student degrees of freedom parameter—which is well 

known to correspond to the highest existing moment under a t-Student 

distribution—it may be prudent to also evaluate forecasting accuracy for 

second moments using three alternative loss functions, the mean absolute 

forecast error (MAE),
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Table 5.4 reports summaries of forecasting performance for means 

(levels), variances, covariances, and excess stock and bond returns, sepa-

rately. Besides the recursive, pseudo out-of-sample 1983:12–2007:11 exer-

cise, the table also shows results for a longer 1974:12–2007:11 recursive 

exercise in which—because otherwise the number of available observa-

tions would become insufficient—the three-state model is implemented 

using final parameter estimates and simply updating the state prob-

abilities using smoothed state probabilities, which imparts a forward- 

looking bias to the forecasts. Panel A shows that a three-state VAR  

t-Student ARCH model produces an interesting predictive performance as 

far as the mean of excess stock returns is concerned. Even though RMSFEs 

of 3.7% per month are just below the monthly volatility of equity returns, 

it is well known that stock returns are very hard to accurately predict. 

In this sense, in line with earlier results by Guidolin and Timmermann 

* Both  and  are of course defined for variances only, because ln( +1 +1) 

need not be defined.
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(2006) and Guidolin and Ono (2005), MS proves useful by allowing one 

to model bull and bear states as different statistical regimes. Interestingly, 

this performance remains good when a MAE criterion is employed, while 

the (bias2  variance) decomposition shows that the relatively low RMSFE 

for the three-state model mostly comes from a reduction in variance, 

which seems to be typical of forecasts from mixture distributions (see 

Guidolin and Ono, 2005, for similar remarks). Although differences are 

small, it seems that after the MS three-state model, the next best thing 

is to use a single-state VAR t-Student ARCH bivariate model, which—by 

comparison to the univariate model performance—confirms the impor-

tance of modeling multivariate relationships and capturing the presence 

of predictability in covariances. These findings fully extend to the lon-

ger 1974–2007 period, although one should be reminded that in this case 

the three-state model is used on the basis of full-sample estimates and 

state probabilities, and therefore suffers from a substantial look-ahead 

bias. Results are considerably more mixed for the mean of excess bond 

returns: in this case, a three-state model produces the lowest MAE, but 

not the lowest RMSFE; in a RMSFE metric, it seems that a simple, con-

stant means, variances, and covariances benchmark may actually do bet-

ter (this is similar to a standard finding that a random walk model wins 

in out-of-sample experiments). Also in this case, results hardly change 

for the longer sample period. However, it must also be stressed that in 

this case all the measured performances are rather close and hard to tell 

apart. For instance, on the 1983–2007 out-of-sample period, the random 

walk model produces a RMSFE of 1.91% against a RMSFE of 1.92% for 

the three-state model, while forecasts have typical standard deviations of 

1.9%. So we read the part of panel A of Table 5.4 as mostly indicating that 

models are very similar in their predictive performance for mean excess 

bond returns.

Panel B of Table 5.4 focuses instead on the recursive, 1-month-ahead 

prediction of variances. In this case, besides RMSFE and MAE, we also 

report the two additional and measures we have introduced. 

In both samples, the three-state ARCH model produces the minimum 

RMSFE for excess stock return variance. This is a consequence of the lower 

volatility of the MS forecast errors (but the bias tends to be rather large 

and negative, i.e., the model tends to overshoot the forecast of variance, 

on average). In the truly out-of-sample exercise, the three-state model 

also delivers the lowest measure, although differences are small. 

Interestingly, and despite the look-ahead bias, the three-state model does 
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not return the lowest and in the 1974–2007 exercise. In gen-

eral, the constant variance benchmark tends to be the second best model. 

The fact that a richly parameterized MS t-Student ARCH model outper-

forms a simple IID homoskedastic benchmark with only five parameters is 

very interesting, almost surprising. The results for excess bond return vari-

ance are similar, if not better. In the truly out-of-sample recursive exercise, 

the three-state model displays the lowest RMSFE and MAE; in the longer 

sample, the performance is even superior, since the three-state model also 

shows minimum values for bias and standard deviation of forecast errors. 

Interestingly, in this case the second best is represented by a univariate 

t-Student ARCH model, and not by the random walk, which represents 

a fundamental difference between equity and bond variance dynamics. 

However, the homoskedastic benchmarks fare rather well in the

and metrics.

Finally, panel C reports performance measures related to covariances. 

There is some tension between RMSFE and MAE results. Under the for-

mer criterion, a three-state model turns out to be superior to the remaining 

benchmarks in the horse race. Once more, this is due to the fact that MS 

forecast errors show the minimum standard deviation among all forecast 

functions. However, the MAE favors the constant covariance benchmark, 

even though results are very close (e.g., 5.31 under constant covariance 

versus 5.39 under the three-state model). Also in this case, results are the 

same when a longer sample is employed.

5.6 CONCLUSION
This chapter has investigated the presence of Markov regimes in the con-

ditional heteroskedastic (i.e., ARCH effects in variances and covariances) 

dynamics for U.S. excess stock and bond returns. We found strong evidence 

in favor of a three-state model in which the regimes are persistent and corre-

spond to easily interpretable market states, as defined by conditional means, 

volatility, and the possibility to predict mean returns. Additionally, all attempts 

at simplifying the model, either by imposing tight parameter restrictions or 

by constraining the Markovian probabilistic structure of regimes in equity 

and bond markets, have led to rejections. However, persistence and predict-

ability in the stock-bond covariance tend to be weak in at least two states out 

of three. We find that the three-state model outperforms a number of bench-

marks in out-of-sample prediction tests concerning means, variances, and 

covariances.
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It would be interesting to extend Guidolin and Timmermann (2007) 

results on optimal strategic asset allocation between stocks and bonds to 

the MS ARCH case. For instance, one could compute the (pseudo) out-

of-sample, 1-month portfolio performance of the three-state model ver-

sus a set of sensible benchmarks under different levels of the risk aversion 

parameter that trades off expected portfolio returns and variance. We 

leave this extension for future work.
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6C H A P T E R  

A DCC-VARMA Model 
of Portfolio Risk
A Simple Approach to the Estimation 
of the Variance-Covariance Matrix 
of Large Stock Portfolios

Valerio Potì

6.1 INTRODUCTION
Forecasts of asset volatilities and correlations are required inputs for the 

estimation of portfolio value-at-risk (VaR) (for a discussion, see Szego, 

2002), for portfolio optimization and for the construction of optimal hedge 

ratios. Because of their clustering behavior, asset volatilities and especially 

the volatility of stocks and portfolios of stocks typically exhibit high per-

sistence (Engle and Patton, 2001), especially at relatively high frequencies 

(such as weekly, daily, and higher-frequency data). Engle (2002), among 

others, argues that this is often the case of asset correlations. Volatilities 
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and correlations, especially in stock portfolios, are therefore natural can-

didates to be modeled using conditional autoregressive specifications such 

as ARCH and GARCH models.

One of the advantages of univariate models is their ease of estimation 

relative to more complex multivariate specifications. Univariate exponen-

tial moving averages (EWMAs) and generalized conditional heteroske-

dasticity (GARCH) models are therefore routinely used in the financial 

industry to estimate the VaR of portfolios of stocks over a given time hori-

zon (see, for example, Bauwens et al., 2003). The univariate model, how-

ever, must be reestimated every time portfolio weights change. This can 

be a serious drawback if the portfolio contains large positions in financial 

instruments with nonlinear payoffs, payoffs that depend on the correlation 

structure of asset returns, and instruments that require time-consuming 

numerical procedures for their pricing. This problem does not arise, or it 

is considerably milder, if estimates of the full variance-covariance matrix 

are available. The elements of the latter can be directly used to compute 

the portfolio variance and hence VaR for any set of asset weights.

One of the advantages of multivariate models is that they provide esti-

mates of such a matrix. Another advantage is that suitable restrictions can 

be imposed to make sure that the estimated variance-covariance matrix is 

positive-definite, as in the well-known BEKK model put forth by Engle and 

Kroner (1995). In fact, the correlation matrix used in VaR estimates should 

be positive-definite to ensure that pair-wise correlations lie between 1  

and 1, and that every subportfolio of assets under consideration has a cor-

relation that lies between 1 and 1 with any other subportfolio. Imposing 

the further requirement that volatilities are nonnegative ensures that the 

variance-covariance matrix is positive semidefinite. This is a desirable prop-

erty of any estimate of the variance-covariance matrix of asset returns, as 

it ensures that the variance of every variable and of every combination of 

the variables is always nonnegative. This rules out the often counterfactual 

possibility that investors can enjoy “free lunches” by forming risk-free pos-

itive-expected return arbitrage portfolios. Positive-definiteness of the vari-

ance-covariance matrix is more restrictive, and it ensures that the latter is 

invertible, thus making it possible to use it further in econometric (such as a 

weighting matrix in weighted least squares regressions) and financial (nota-

bly in asset pricing and portfolio optimization algorithms) applications.

Multivariate models, however, have the drawback of being com-

putationally very intensive. As a consequence, a number of industry 

applications impose heavy restrictions on the structure of the variance-
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covariance matrix to curb computational requirements. For example, in 

JP Morgan’s RiskMetrics™ procedure, each element of the conditional 

variance-covariance matrix is estimated, using exponential smoothing, as 

a univariate EWMA. Such a procedure, however, when viewed as a data 

generating process as opposed to a filter, is formally degenerate (Nelson, 

1990). Alternatively, in the spirit of orthogonal factor models, many finan-

cial institutions adopt the simplifying assumption that most of the varia-

tion of asset returns is generated by a limited number of common factors, 

whereas the residual variation is attributable to purely idiosyncratic (and 

hence negligible) sources of variability. However, as Campbell et al. (2001) 

and Kearney and Potì (2008) show for portfolios of U.S. stocks and Euro-

area stocks, respectively, this can be in many circumstances a somewhat 

heroic assumption, as the idiosyncratic portion is the main component 

of total volatility, and the number of stocks needed to diversify it away is 

large and tends to increase at times of market distress.

To reduce the computational burden while retaining the appeal of mul-

tivariate variance-covariance estimates, Engle and Sheppard (2001) and 

Engle (2002) proposed the dynamic conditional correlation (DCC) GARCH 

model. Engle and Sheppard (2001) use the DCC-GARCH model to esti-

mate the conditional variance-covariance matrix of up to 100 assets repre-

sented by S&P sector indices and Dow Jones Industrial Average stocks and 

conduct specification tests using JP Morgan’s RiskMetrics industry stan-

dard EWMA as a benchmark. They show that the DCC-GARCH model 

captures important empirical features of the conditional variances and 

covariances of the stock indices considered in their analysis. Morillo and  

Pohlman (2002) estimate the variance-covariance matrix of daily and 

weekly returns on the twenty-four largest international stock market indi-

ces included in the MSCI World Index using sample unconditional estima-

tors and various conditional models. They use their variance-covariance 

matrix estimates in a portfolio optimization exercise, and report that the 

optimal portfolio based on DCC-GARCH estimates dominates the opti-

mal portfolios based on all the other estimates.

While the DCC-GARCH model is less computationally demanding 

than other multivariate models, the two-step procedure recommended by 

Engle (2002) for its estimation can still pose substantial challenges in most 

financial industry applications, as the number of stocks included in finan-

cial institutions’ and investors’ portfolios can be very large. We thus pro-

pose a simpler way to estimate this model. To this end, we first show that 

its parameters can be derived from the estimated parameters of an ARMA 
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model of the average conditional correlation process. With estimates of 

these parameters in hand, one can very simply recover the dynamics of 

the full conditional correlation and variance-covariance matrices. In 

the remainder of this chapter, we first provide a brief but formal outline 

of the DCC-GARCH model. We then recast this model in terms of the 

DCC-VARMA model and show how the parameters of the former can be 

very simply recovered by estimating the parameters of the latter. Finally, 

to demonstrate how the DCC-VARMA model can be used to recover the 

parameters of the DCC-GARCH model, we present an empirical applica-

tion to a portfolio of forty-two stocks included in the Eurostoxx50 index.

6.2 THE DCC-GARCH MODEL
Engle and Sheppard (2001) and Engle (2002) formulate the DCC-

GARCH model as a two-step estimator of conditional variances and 

correlations. The first step entails the estimation of the mean model for 

each asset in the portfolio under consideration, nested in a univariate 

GARCH model of the asset conditional variance. These univariate vari-

ance estimates are used to standardize the zero-mean return innova-

tions for each asset. In the second step, a model of the first moments 

of the standardized zero-mean return innovations, nested in a scalar 

multivariate GARCH model of conditional second moments, is esti-

mated. Engle and Sheppard (2001) show that this two-step procedure 

produces consistent maximum-likelihood parameter estimates. More 

formally, consider the following specification of the multivariate pro-

cess of returns:

 
| ~ ( , )1 0  (6.1)

and

  (6.2)

Here,  is the 1 vector of zero-mean return innovations conditional on 

Ω –1, the information set available at time  1,  is the  conditional 

correlation matrix, and  is a  diagonal matrix. The elements on its 

main diagonal are the conditional standard deviations of the returns on 

each asset. Therefore:

 [ ]   
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and

 [ ]   ,    

 [ ]   ,   0      ≠ 
(6.3)

Notice that, from Equations (6.1) and (6.2), ( | ), ,

, , ,1 . Possible 

simple specifications for the GARCH processes followed by 2  and  are 

the following:

2 2
1 1 1

21( ) ( ) (6.4)

( )1 1 1 1 (6.5)

The expressions  and  in Equation (6.4) are  diagonal coefficient 

matrices. In Equation (6.5), and  are scalar matrices with all the ele-

ments on the main diagonal equal to  and , respectively.  is a  

matrix with ones on the main diagonal. It represents the long-run, baseline 

level to which conditional correlations mean-revert. Engle and Sheppard 

(2001) and Engle (2002) propose to estimate Equation (6.2) in two steps. 

The first step entails the estimation of univariate models* of the return 

on each asset nested in a GARCH model, described by Equation (6.4), of 

its conditional variance. This yields consistent, time-varying estimates of 

the parameters of the process followed by 2 . Then, Engle and Sheppard 

(2001) and Engle (2002) suggest to estimate the parameters of the process 

of , conditional on the estimated . This entails standardizing  by the 

estimated  to obtain the 1 vector . The parameters of the process 

followed by  are found by estimating a multivariate model of  nested 

in a multivariate scalar GARCH model, provided by Equation (6.5), of its 

conditional second moments.

6.3 THE DCC-VARMA MODEL
We now introduce an alternative and much simpler estimation procedure 

of the parameters of the DCC-GARCH model. Rewrite Equation (6.5) as

 
( ) ( ) (1 1 1 1 1 1 ) ( )  (6.6)

* The presence of an intercept term ensures that the estimated residuals are zero-mean ran-

dom variables.
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or equivalently,

( ) ( ) [1 1 1 1 1 (( )]

[ ( )]

1 1

 ( ) ( )1 1 1 1  (6.7)

where

  ( )   

Equations (6.6) and (6.7) show that we can rewrite the multivariate con-

ditional correlation process in ARMA(1,1) form. For each pair of assets  

and , the elements  of the residual matrices are martingale differences 

by construction.* Therefore, they are stationary and serially uncorrelated,† 

thus satisfying the requirements of standard inference procedures. This 

was already shown by Bollerslev, Engle, and Nelson (1994) in a univariate 

setting. Consider now the following transformation  of Equation 

(6.7) from  to 1. As shown in the appendix,

   ( )1   ( ) 1 1
  

1
   (6.8)

with

     

1 1

,   

1 1

( ), , , (6.9)

Then

 

( ) =

1 1 1

( ) [, ( )]

1

* In fact, if Ω   { , –1, –1, , …, } denotes information available at time , (  Ω –1)   

by Equations (6.1), (6.2), and (6.5)   and   [1, 2, …, ]. Therefore, ( ,  Ω –1)   

[ ( ) –  Ω –1]  0, thus satisfying the definition of martingale difference. For further 

details and references on relevant asymptotic results, see Hamilton (1994).
† The martingale difference condition is stronger than absence of serial correlation but weaker 

than independence, since it does not rule out the possibility that higher moments might 

depend on past realizations. See Hamilton (1994).
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In Equation (6.8),  is a 1  vector. If  is chosen to be a vector of 

fixed weights, then Equation (6.8) provides an ARMA(1,1) model for  

the weighted average of conditional correlations across all the assets in the  

sample. Therefore, using Equation (6.8), the parameters and  of the con- 

ditional correlation process can be estimated by fitting a univariate 

ARMA(1,1) model to the observations on  transformed using the 

weights vector . By Equation (6.5), ( ) . Therefore, we can write:*

 

( ) =

1 1

0( )

 

(6.10)

Moreover,

 
( ) = 2 { [ ( )] ( ) }

 
(6.11)

By Equations (6.7) and (6.11), we can rewrite ( ) as follows:

( )  ( ) ( )2 22  (6.12)

By Equation (6.5), depends on 1 1  but not on . Therefore, we 

can rewrite Equation (6.12) as follows:

( ) ( ) ( )2 2  (6.13)

From Equation (6.9), the variable  is a weighted average of the random 

variables , ,  [1, , ] and   [1, , ]. Under the null implied by Equation 

(6.7), i.e., the null that 1 1 1 1( ),  is a martingale difference 

by construction with zero mean and variance as in Equation (6.13). Moreover, 

if we further assume all the , ,  terms to be independently distributed 

across all the pairs of assets  and  in the sample (i.e., ( , ,   , , )  0,   

and  ≠  and ),  is a sum of independently distributed random variables, 

and therefore, if the number of assets  is large (above thirty should suf-

fice), it can be considered to be normally distributed (by the weak law of 

large numbers). The residuals in Equation (6.8) thus satisfy the assumptions 

about the error term typical of a standard ARMA model. As a consequence, 

we can use the familiar standard test statistics that have been developed 

by the econometric literature on ARMA models in order to test hypoth-

eses about the parameters of Equation (6.8). Note that the variance of  is 

* Notice also that  does not depend on  but only on its lagged value.
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the variance of the transformation of the correlation process defined by the 

operation of pre- and postmultiplication by , i.e., the variance of the aver-

age correlation estimator. Also, the assumption that ,  is independently 

distributed across the assets in the sample implies that the second moments 

of the asset return process are independently distributed. In other words, we 

exclude that there is a correlation* of the correlations (or of the variances). 

This is fully consistent with the scalar structure of the variance-covariance 

matrix of the DCC-GARCH model. This explains why, under the null that 

the DCC-GARCH(1,1) model in Equation (6.5) adequately represents the 

correlation in the data, follows the ARMA(1,1) process described 

by Equation (6.8), and its error term  satisfies the assumptions of classi-

cal inference procedures. In other words, the assumption that the , ,  are 

independently distributed for each pair of  and  assets in the sample means 

that, while we remove the assumption of independently distributed errors 

at the level of the mean Equation (6.1) by explicitly modeling correlations, 

we make this assumption at the level of the correlation matrix. Somewhat 

technically, in order to guarantee that  is normally distributed, we assume 

that, while ( , )0 , with  not necessarily diagonal,

( ) ( )/1 2 ( ( ), [ ] )( )/1 2

where (.) is the operator that stacks the off-diagonal elements of the 

argument matrix in a conformable vector and Φ is some distribution (with 

finite variance). In the scalar standardized multivariate specification of 

the DCC-GARCH provided by Equation (6.5),   1,    .

6.4 EUROSTOXX50 INDEX STOCKS 
CONDITIONAL CORRELATIONS

To demonstrate how to use the DCC-VARMA model to recover the DCC-

GARCH model, we estimate the parameters of the process followed by 

the daily conditional correlations among the returns on forty-two stocks 

* Notice that, strictly speaking, there can be no correlation of correlations because the latter 

have not been defined as random variables, but rather as deterministic quantities that change 

over time, according to the dynamics specified by Equation (6.5), of the multivariate asset 

returns stochastic process. Instead, using a formally valid but slightly boring and less effec-

tive formulation, we should say that we exclude that standardized asset returns squares and 

cross-products are correlated.
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included in the Eurostoxx50 index (the leading stock market index in the 

Euro area) using both the DCC-GARCH in Equation (6.5) and the DCC-

VARMA model in Equation (6.8). The results are reported in Table 6.1. The 

expression in Equations (6.5) and (6.8) is set equal to the unconditional 

sample correlation matrix. Notice that in order to constraint the ARMA(1,1) 

process in Equation (6.8) to mean-revert to ( )1 , we need an esti-

mate of the sum of the  and  parameters. This sum can be recovered from 

the estimation of Equation (6.8) with no restriction on the constant term.* 

All the parameters of the DCC-GARCH model are identified in the esti-

mation that uses the DCC-VARMA model, with the exception of the stan-

dard error of . This seems to be a minor shortcoming of the DCC-VARMA 

procedure, more than compensated by far greater speed and simplicity. 

There is a slight difference between the DCC-GARCH parameter estimates 

obtained by first estimating the DCC-VARMA model and then solving for 

the parameters of the DCC-GARCH model (   0.0364,   0.9621) and 

those obtained by direct estimation of the latter (   0.0020,   0.9899). We 

tend to consider the former more reliable, since the direct estimation of the 

DCC-GARCH model relies on a numerical optimization procedure that, 

in turn, is heavily influenced by the value of the initial guesses and by the 

shape and local behavior of regions of the likelihood function.

* I also iterated this procedure. I set  and  in equal to their point estimates from the 

restricted estimation of Equation (6.8) and reestimated. The parameter estimates converged 

to the reported values after just two iterations.

TABLE 6.1 DCC-GARCH and DCC-VARMA

ffi
ffi

DCC-VARMA

–. . .

ffi
.0364 — — —

.9621 .0065 148.62 .000

DCC-GARCH .0020 .0001 18.05 .000

.9899 .0007 1,351.75 .000
 

 This table reports the estimated coefficients, standard errors, and -values for the 

DCC-GARCH and DCC-VARMA models of the monthly correlations among 

forty-two stocks from the Eurostoxx50 index over the period February 12, 

1993–November 23, 2001.
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6.5 FINAL REMARKS AND CONCLUSIONS
Modeling time-varying correlations among the assets included in large 

portfolios can be a difficult and computationally demanding task. Yet, in 

many portfolio and risk management applications, it is an essential one. 

In this chapter, to reduce the computational burden, we proposed a simple 

approach to the estimation of the essential parameters of the DCC-GARCH 

model. Further research might fruitfully attempt to apply this approach to 

more general versions of such model, for example DCC-GARCH specifi-

cations that allow for asymmetric reactions of the estimated volatility and 

correlation processes to positive and bad news, as in Cappiello, Engle and 

Sheppard (2006) and Kearney and Potì (2006).

APPENDIX
Consider the transformation of Equation (6.7) from  to 1:

 [ ( )1 ( ) 1 1 ( )1  ( )]

 ( )1 ( ) 1 1 ( )1 ( )

 ( )1 ( ) 1 1 ( )1  ( )

  ( )1 ( ) 1 1 1
 (6.A1)

with

 

[ ( )] ,

1 1 1

,

1 1 1 1

, ,

11 1

( ), , ,

 

(6.A2)

then

 

( ) =

1 1 1

( ) [, ( )]

1

(6.A3)
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The Economic Implications 
of Volatility Scaling by the 
Square-Root-of-Time Rule

Craig Ellis and Maike Sundmacher

7.1 INTRODUCTION
Traditional models of financial asset returns are based on a number of 

simplifying assumptions. Among these is the primary assumption that 

consecutive price changes (returns) follow a standard Brownian motion 

process, i.e., a Gaussian random walk. One critical feature of standard 

Brownian motions is the relationship between moments of the distribu-

tion over different time intervals. For instance, when returns follow a 

Gaussian random walk the temporal dimension of volatility is irrelevant, 

meaning that the volatility of returns measured over one time interval can 

be precisely estimated by linearly rescaling the volatility of returns over 

any other time interval using the square-root-of-time rule (√ ).

CONTENTS
7.1 Introduction 147

7.2 Linear Rescaling and Volatility 149

7.2.1 Example: Scaled Equity Returns 150

7.3 Scaling Stock Market Volatility 152

7.3.1 Data and Sample 153

7.3.2 Some Economic Implications of Scaling Market 

Volatility 154

7.4 Conclusion 159

References 160



148 < Craig Ellis and Maike Sundmacher

One common application of volatility scaling laws in financial eco-

nomics is the estimation of long-horizon volatility in models such as the 

capital asset pricing model (CAPM) and the Black-Scholes option pricing 

model, both of which are typically estimated on the basis of annual equiv-

alent measures of asset return and volatility. Investors wishing to price 

positions based on a target level of volatility and preferred investment 

horizon also typically assume a Gaussian random walk when scaling short- 

horizon volatility to estimate long-horizon volatility (Celati, 2004).

When asset returns do not follow a Gaussian random walk, how-

ever, annualizing volatility by the square root of time will not correctly 

estimate the real level of risk associated with an investment. The mis- 

estimation of volatility has distinct implications for modeling risk/return 

relations. One implication for investors discussed by Holton (1992) is that 

investment risk is a function not only of the type of asset being consid-

ered, but also of the investor’s preferred investment horizon. Mandelbrot 

(1971) argues, however, that statistical nonrandomness would only yield 

economically significant outcomes when investors have infinitely long 

investment horizons.

Volatility scaling laws for Gaussian processes have been previously 

examined by Batten and Ellis (2001), and for different financial time series 

using a variety of techniques by Mantegna and Stanley (1995), Mandelbrot 

(1997), Canning et al. (1998), and Gençay et al. (2001). Despite the wide-

spread practice of linearly rescaling risk by the square root of time, 

Diebold et al. (1988) argue strongly against this on the basis that the pro-

cedure overestimates long-horizon volatility. Müller et al. (1990) alterna-

tively show that intra-day foreign exchange volatility scales faster than the 

square root of time. Peters (1994) similarly finds the same result for the 

volatility of daily foreign exchange returns.

The objective of research in this chapter is to demonstrate the implica-

tions for scaling financial asset risk when long-term returns do not follow 

a Gaussian random walk. Using a selection of Australian Stock Exchange 

(ASX) Top 50 equities, volatility at horizons ranging from 1 day to 1 year 

is measured directly and for longer time horizons, by linearly rescaling 

short-horizon volatility. The research shows that even small deviations 

from pure random behavior can lead investors to significantly mis- 

estimate their real level of risk.

The remainder of the chapter is structured as follows: Section 7.2 

provides an overview of linear rescaling and its applications in finance. 
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Section 7.3 describes the data and research methodology, and summarizes 

the results. Section 7.4 provides some concluding remarks.

7.2 LINEAR RESCALING AND VOLATILITY
Under the assumption that a time series is independent and identically dis-

tributed (IID), the temporal dimension of risk is irrelevant, such that the 

volatility of asset returns calculated over one time interval (e.g., annual) 

can be estimated from the volatility of returns over any other interval (e.g., 

monthly or weekly). According to the square-root-of-time rule the volatil-

ity of annual returns should, for example, be √12 times the volatility of 

monthly returns and √52 times that of weekly returns for a Gaussian ran-

dom walk. Stated mathematically, linear rescaling implies that the volatil-

ity of returns  should scale as

 

2
0 5

2
1(log log ) (log log

.

))

( )

.

.
.

0 5

0 5 2
0 5

 

(7.1)

where  and 1 are the current and last price for the asset, –  is the 

price  periods previous to , and  is the asset return. Introducing a scale 

exponent , which denotes the rate at which volatility scales over time, 

Equation (7.1) can be generalized to give
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where  and are positive constants ≥1.

The value of the scale exponent in Equation (7.2) is = 0.5 for a Gaussian 

time series and implies that the volatility of returns should scale precisely 

linearly with the square root of time. Estimating the implied volatility 

of annual returns from the observed volatility of monthly returns using 

Equation (7.2), for example, would require  = 252 and = 21. Using 

observed weekly volatilities would alternatively require = 252 and = 

5. For time series that exhibit dependence—that is, long-run autocorre-

lation—the exponent value is 0 ≤ ≤ 1;  ≠ 0.5. For functions exhibiting 

positive long-term dependence, the value of the exponent will be  > 0.5. 

Negative long-term dependent functions are alternatively characterized by 

exponent values of < 0.5. The volatility of returns for series characterized 
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by  > 0.5 should be expected to scale faster than √T, and slower than √T 

for series characterized by  < 0.5.

7.2.1 Example: Scaled Equity Returns

The process of linear rescaling and some basic implications for the mis-

estimation of implied volatility may be illustrated by the comparison of 

real asset returns versus a simulated Gaussian random walk. For the pur-

poses of this example we have selected three stocks from our portfolio of 

ASX equities: Alumina* (exhibiting long-term negative dependent returns), 

Macquarie Group† (exhibiting near Gaussian returns), and Telstra‡ (exhibit-

ing long-term positive dependent returns). Returns for each equity series 

and their volatility are calculated for intervals of = 1, 2, , 252 periods  

(1 day, 2 days, , 1 year). Implied volatilities are then estimated by rescaling 

observed -interval volatilities (  < ,  = ,  > ) as per Equation (7.2) using 

the Gaussian exponent 0.5. A summary of observed volatilities versus 

implied volatilities for each equity series over selected return intervals is 

provided in Table 7.1. Volatility scale exponents—the value of exponent  in 

Equation (7.2) for which implied -interval returns exactly equal observed 

-interval returns—are also calculated. These are provided in Table 7.2. For 

returns series that conform to a Gaussian random walk, implied -interval 

volatilities should exactly equal observed -interval volatilities and the vola-

tility scale exponent should be  = 0.5. The general findings presented in this 

example are characteristic of the behavior of all the equities in our sample; 

that is, none of the equity return series conform to a strict Gaussian random 

walk. The discussion of these outcomes provides the basis of our later analy-

sis of scaling stock market volatility in Section 7.3.

Values along the diagonal (in bold) in Table 7.1 show the observed - 

interval volatility of returns for each equity series. Off-diagonal values show 

implied -interval volatilities from observed -interval volatilities using 

Equation (7.2) given = 0.5. Reading down each column in the table, the 

extent to which rescaled short-interval volatilities mis-estimate observed 

long-interval volatilities is evident. Reading across each row in the table 

similarly shows the extent to which rescaled long-interval volatilities mis-

estimate observed short-interval volatilities. For Alumina returns exhibiting 

negative long-term dependence, linearly rescaled short-interval volatilities 

* Alumina specializes in bauxite mining, alumina refining, and aluminum smelting.
† Macquarie Group is a nonoperating holding group and the parent entity of various banking 

and nonbanking organizations.
‡ Telstra is a telecommunications and information products and services provider.
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consistently overestimate observed long-interval volatilities, and rescaled 

long-interval volatilities consistently underestimate observed short-interval 

volatilities. For Telstra returns exhibiting positive long-term dependence, the 

reverse is true. In the case of Macquarie Group, with near Gaussian returns, 

observed long- and short-interval returns neither consistently under- nor 

overestimate observed short- and long-interval returns. This outcome is con-

sistent across all combinations of return interval ,  = {1, 2, , 252}.

Rearranging Equation (7.2) to solve for the volatility scale exponent yields 

the value of  for which scaled -interval volatility (i.e., implied volatility) 

exactly equals the observed -interval volatility. The emerging interest in and 

significance of volatility scale exponents is discussed by Bouchaud (2002) in his 

review of stylized facts concerning financial time-series data. Volatility scale 

exponents for the three equities in this example are provided in Table 7.2.

TABLE 7.1 Observed versus Scaled Volatility

1 0.0187 0.0175 0.0166 0.0159 0.0135

5 0.0413 0.0390 0.0371 0.0355 0.0302

21 0.0847 0.0856 0.0761 0.0728 0.0619

63 0.1467 0.1483 0.1386 0.1262 0.1072

126 0.2074 0.2097 0.1960 0.1864 0.1516

252 0.2934 0.2965 0.2771 0.2636 0.2523

1 0.0178 0.0167 0.0175 0.0165 0.0161

5 0.0394 0.0373 0.0391 0.0369 0.0361

21 0.0808 0.0817 0.0801 0.0756 0.0739

63 0.1399 0.1415 0.1323 0.1309 0.1280

126 0.1978 0.2000 0.1871 0.1962 0.1811

252 0.2798 0.2829 0.2645 0.2775 0.2619

1 0.0133 0.0142 0.0149 0.0162 0.0182

5 0.0303 0.0317 0.0333 0.0363 0.0406

21 0.0621 0.0610 0.0682 0.0744 0.0833

63 0.1076 0.1057 0.1124 0.1288 0.1442

126 0.1522 0.1495 0.1589 0.1669 0.2040

252 0.2152 0.2114 0.2247 0.2361 0.2577
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Consistent with the above described outcome from Table 7.1—that 

short-interval volatilities rescaled by the square root of time consistently 

overestimate observed long-interval volatilities when returns are long-

term negative dependent, and vice versa when returns are long-term posi-

tive dependent—scale exponents for the volatility of Alumina returns in 

Table 7.2 are less than = 0.5, and are greater than = 0.5 for Telstra. 

Characteristic of compounding in the estimation error over time, it is 

further noted that scale exponents in Table 7.2 diverge from  = 0.5 as  

 increases relative to  and as the values of both and increase. Overall 

these results highlight the failure of the square-root-of-time rule in gen-

eral, and specifically its failure for scaling short-interval volatilities to esti-

mate implied long-interval volatilities.

7.3 SCALING STOCK MARKET VOLATILITY
In the previous section we examined some of the statistical implications 

of linearly rescaling volatility by the square-root-of-time rule using indi-

vidual equities by way of example. We now turn attention to some of the 

TABLE 7.2 Volatility Scale Exponents

5 0.5066

21 0.4813 0.4529

63 0.4741 0.4535 0.4543

126 0.4688 0.4500 0.4476 0.4370

252 0.4432 0.4172 0.3966 0.3509       0.2647

5 0.5069

21 0.4816 0.4532

63 0.4980 0.4924 0.5436

126 0.4863 0.4761 0.4944 0.4163

252 0.4840 0.4746 0.4869 0.4419     0.4675

5 0.4887

21 0.5141 0.5426

63 0.5223 0.5436 0.5449

126 0.5372 0.5614 0.5764 0.6263

252 0.5530 0.5793 0.6006 0.6446   0.6629
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economic implications of volatility scaling for portfolio selection as a test-

able analog for scaling relations in market volatility.

7.3.1 Data and Sample

For the purposes of this analysis we employ equities listed in the S&P/

ASX Top 50 Index.* The sample data comprise daily closing prices for 

thirty equities from the index over the 20 years to March 7, 2008. As 

of March 7, 2008, the total capitalization of the S&P/ASX Top 50 was 

USD 269,332,273.37 (AUD 289,978,761.17). The largest company in the 

index—BHP Billiton—had capitalization of USD 60,714,614.00 (AUD 

65,368,878.12), and the smallest—Bendigo Bank—capitalization of USD 

1,024,316.03 (AUD 1,102,838.10). Summary analysis of daily returns for 

all equities in the sample, including the moments of the distribution, 

indicates that all the series are highly non-Gaussian. Both the Anderson-

Darling and Ryan-Joiner -values reject the null hypothesis of normality 

for all series. This result is not surprising since leptokurtic, nonnormal 

distributions are common in financial time series (Pagan, 1996). Unit root 

tests are also conducted for each series. The results of these tests show 

that all the difference series are stationary. Test results for the log levels of 

each series were not able to reject the unit root null hypothesis.† While the 

random walk model assumes the presence of a single unit root, such that 

the time series being observed can be decomposed into a set of station-

ary increments, the test results for the log levels data do not prove that 

the returns series were random. Overall, these results suggest that scaling 

short-interval volatility by the square root of time should yield inaccurate 

estimates of long-interval volatility.

For the purposes of our analysis of stock market volatility scaling laws, 

we consider two portfolios of equities: one low capitalization and one high 

capitalization portfolio. The ranking of equities by capitalization in this 

study follows from Hawawini (1983), who presents evidence that systematic 

volatilities for smaller than average capitalization equities are expected to 

increase as the time horizon over which they are measured (daily, weekly, 

etc.) increases. Systematic volatilities for equities with higher than aver-

age capitalization are alternatively expected to decline as the time horizon 

* Representing approximately 75% of total equity market capitalization, the S&P/ASX 50 com-

prises the fifty largest shares—by capitalization—on the Australian Stock Exchange (ASX). 

The S&P/ASX 50 is also included as part of the S&P Global 1200 Index.
† Full test results and summary statistics for individual equities are available on request.
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increases. The low capitalization portfolio herein comprises the bottom 

50% of S&P/ASX Top 50 Index equities studied, and the high capitaliza-

tion, the top 50%. The total capitalization of the low capitalization portfolio 

is USD 25,118,339.31 (AUD 27,043,862.31), and USD 179,495,798.82 (AUD 

193,255,597.35) for the high capitalization portfolio.* Summary statistics 

for the volatility of high and low capitalization equities over intervals of 1 

day (  = 1) to 1 year (  = 252) are provided in Table 7.3.

While observed -interval volatilities for high capitalization equities 

are consistently larger than for low capitalization equities at all intervals, 

the difference is not statistically significant at the 0.10 level. That volatil-

ity scale exponents using Equation (7.3) for low versus high capitalization 

equities are not statistically different, and that they are not significantly 

different from the Gaussian null  = 0.5, suggests that capitalization in 

itself bears no consistent relation to scaled volatility.

7.3.2 Some Economic Implications of Scaling Market Volatility

Under the assumption that the underlying returns series conforms to a 

Gaussian random walk, the relation described by Equation (7.2) gives rise 

to the concept of the temporal irrelevance of volatility, following which 

the length of the investor’s investment horizon is irrelevant, such that for 

a given level of volatility all investors are rewarded with an identical risk 

* Capitalization as of March 7, 2008.

TABLE 7.3 Observed -Interval Volatilities

Mean 0.0178 0.0382 0.0736 0.1243 0.1790 0.2636

Standard error of mean 0.0013 0.0028 0.0054 0.0088 0.0129 0.0197

Maximum 0.0291 0.0627 0.1193 0.1932 0.2814 0.4216

Minimum 0.0130 0.0269 0.0493 0.0867 0.1258 0.1736

Mean scale exponent 0.4963

Standard error of mean 0.0100

Mean 0.0161 0.0361 0.0705 0.1182 0.1674 0.2360

Standard error of mean 0.0007 0.0017 0.0035 0.0062 0.0105 0.0213

Maximum 0.0202 0.0459 0.0958 0.1627 0.2473 0.3977

Minimum 0.0117 0.0267 0.0520 0.0872 0.1096 0.1413

Mean scale exponent 0.4754

Standard error of mean 0.0126
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premium whether they are investing over the short term or the long term. 

What are some of the implications for investors, however, if volatility does 

not scale according to the Gaussian null?

Consider the case of a long-term versus a short-term investment in a 

single (homogeneous) asset where the risk premium is determined using a 

CAPM-type model by the asset’s total risk and the market risk premium. 

Assuming that the returns conform to a Gaussian random walk, the tem-

poral dimension of volatility is irrelevant and the annualized risk pre-

mium is the same at both investment horizons, short term and long term. 

In the case, however, where asset returns are negative long term dependent 

with < 0.5, investments held in the long term are relatively less risky and 

investments held in the short term are relatively more risky than predicted 

by the square-root-of-time rule. Alternatively, where asset returns are pos-

itive long term dependent with > 0.5, investments held in the short term 

are relatively less risky and investments held in the long term are relatively 

more risky than predicted by the square-root-of-time rule. Since the rela-

tive volatility of the investment depends on the investor’s horizon, how do 

we determine which investment (short-term or long-term) should offer the 

highest return?

Within the context of the CAPM, Figure 7.1 uses the Sharpe ratio 

(the slope of the capital market line) to demonstrate the relative level of 

mispricing to investors from rescaling short-interval volatility for equal 

weighted portfolios of low capitalization and high capitalization equities. 

Herein observed -interval volatilities are annualized using Equation (7.2) 

given = 0.5—the square root of time—and the difference in Sharpe ratios 

using the observed annual volatility and -interval annualized volatilities 

is recorded.

Consistent with the earlier suggestion that series exhibiting long-term 

negative dependence appear relatively less risky in the long run, results for 

both portfolios show that linearly rescaled short-interval (1-day, 1-week, 

1-month) volatility consistently understates the observed annual volatil-

ity, and hence the Sharpe ratio. Furthermore, the degree of mispricing 

increases with increasing values of the market risk premium, . In 

strong contrast, however, to the prior finding of no significant difference 

in mean volatility scale exponents of low versus high capitalization equi-

ties, results in the figure indicate highly significant differences in relative 

error for low versus high capitalization portfolios.

As is well known for portfolio volatility in general, this latter result 

suggests that portfolio volatility scale exponents likewise depend on the 
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covariance of equity pairs, or more specifically on how equity covariances 

scale over different interval lengths, i.e., the covariance scale exponent(s). 

That is, the portfolio volatility scale exponent (0.4805 and 0.4897 for equal 

weighted low and high capitalization portfolios, respectively) is not simply 

the weighted sum of the equity volatility scale exponents.

Incorporating equity covariance, we now turn to consider the impli-

cations of volatility scaling for estimating efficient portfolios using 

Markowitz portfolio theory (Markowitz, 1952). Using observed -interval 

returns  = 1, 2, , 252, we estimate the minimum variance set (MVS) 

and identify the minimum variance portfolio (MVP). The MVS and MVP 

are then reestimated using annualized -interval returns, volatilities, and 

covariances. Summary findings for return intervals of = 1, 5, 21, and 252 

periods are provided in the following tables and figures. Tables 7.4 and 7.5 

present the mean, volatility, and volatility scale exponent (measured over 

all intervals) for the MVP comprising low capitalization equities and high 

capitalization equities, respectively. Figures 7.2 and 7.3 meanwhile show 

the relative positions of the MVSs calculated on the basis of annualized 

Relative error 
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FIGURE 7.1 Sharpe ratios for equal weighted portfolios. (a) Low capitaliza-

tion. (b) High capitalization.
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mean returns, volatility, and covariances for portfolios of low and high 

capitalization equities, respectively.

Relative to minimum variance portfolios estimated from observed 

-interval returns, annualized MVPs in Table 7.4 exhibit significantly 

overstated levels of both mean return and volatility. The coefficient of vari-

ation for annualized MVPs can be shown, however, to be approximately 

equal to the annualized coefficient of variation of MVPs estimated from 

observed -interval returns, suggesting that while rescaling by the square 

root of time does significantly overstate the real risk of the portfolio, it 

does not necessarily mis-state the level of return received per unit of vola-

tility borne by the investor.* That the trade-off between return and volatil-

ity remains proportionate, not only at the MVP but for all points along 

the MVS, can be inferred from comparison of the slopes of the annualized 

MVSs in Figure 7.2.

Given the mean volatility scale exponent for low capitalization equities 

in Table 7.3, linearly rescaled -interval volatilities (  < 252) are expected to 

produce close estimates of the observed annual volatility of low capitalization 

minimum variance portfolios. That linearly rescaled -interval volatilities 

are significantly different from the observed annual volatility for all lengths 

of demonstrates the additional contribution to mispricing of rescaled short-

interval covariances when used in conjunction with rescaled short-interval 

volatility for the purposes of estimating long-term portfolio volatility.

The volatility of annualized high capitalization MVPs in Table 7.5 con-

sistently overestimates observed annual volatility by a higher amount rela-

tive to the estimation error for low capitalizations MVPs in Table 7.4. This 

* Using values from the table,  ,

,

252 indicating both mean returns and volatility are 

equally overstated.

TABLE 7.4 Mean Return and Volatility of Low Capitalization 

Minimum Variance Portfolios

Mean return 0.0002 0.0010 0.0044 0.0658

Volatility 0.0074 0.0151 0.0289 0.0612

Mean return 0.0514 0.0519 0.0533 0.0658

Volatility 0.1179 0.1075 0.1002 0.0612

Scale exponent 0.3945
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result is contrary to that for equal weighted portfolios in Figure 7.1, wherein 

high capitalization portfolios demonstrated a lower relative forecast error 

than low capitalization portfolios. The result is consistent, though, with 

the lower relative volatility scale exponent for high capitalization MVPs 

TABLE 7.5 Mean Return and Volatility of High Capitalization Minimum 

Variance Portfolios

Mean return 0.0003 0.0017 0.0090 0.1540

Volatility 0.0082 0.0179 0.0358 0.0654

Mean return 0.0779 0.0843 0.1075 0.1540

Volatility 0.1305 0.1271 0.1241 0.0654

Scale exponent 0.3755
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FIGURE 7.2 Low capitalization efficient portfolios. (a) Using annualized 

daily volatility. (b) Using annualized weekly volatility. (c) Using annual-

ized monthly volatility. (d) Using observed annual volatility.
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(0.3755 in Table 7.5 versus 0.3945 in Table 7.4), suggesting that different 

equity weights may intensify the aforementioned impact of rescaled vola-

tilities and covariances on estimates of long-term portfolio volatility.

As is the case for low capitalization MVPs, the coefficient of variation 

for annualized high capitalization MVPs in Table 7.5 is not significantly 

different from the annualized coefficient of variation of MVPs estimated 

from observed -interval returns. Irrespective then of differences in capi-

talization, equity weightings, covariances, and equity scale exponents, the 

level of portfolio return received per unit of volatility borne by the investor 

is largely invariant to errors due to the inappropriate scaling of short- 

horizon volatility.

7.4 CONCLUSION
Traditional financial modeling predicts that all investors are mean-variance 

optimizers and, in sharing a common economic view of the world, value 

investments identically irrespective of their individual preferred investment 
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FIGURE 7.3 High capitalization efficient portfolios. (a) Using annualized 

daily volatility. (b) Using annualized weekly volatility. (c) Using annual-

ized monthly volatility. (d) Using annualized annual volatility.
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horizons. When asset returns conform to a Gaussian random walk the vol-

atility of an asset over a long return interval can be precisely calculated 

by scaling the observed volatility from shorter return intervals using the 

square-root-of-time rule. However, since the traditional measure of volatil-

ity used in portfolio selection models (i.e., standard deviation) transpires 

from the Gaussian distribution, it fails to account for dependence in returns 

and the actual volatility of long-horizon returns may be misspecified.

This chapter examines some of the implications of statistical long-

term dependence for scaling volatility at different investment horizons. 

Having formally defined the concept of linear rescaling and shown 

by way of example the implications of long-term dependence for scal-

ing equity volatilities, we examine the scaling properties of portfolios 

comprising equities included in the S&P/ASX Top 50 Index. The gen-

eral results for all the equity series indicated that the equity returns 

series did not follow a Gaussian random walk. That rescaled volatilities 

tended to overestimate the true level of risk is consistent with the equity 

series scaling at less than the square root of time. While contrary to 

prior research by Müller et al. (1990) and Peters (1994), our findings are 

consistent with those of Diebold et al. (1988) and suggest the presence 

of structured short-term dependence (e.g., GARCH) as well as possible 

long-term dependence. With respect to the implications for investors, 

the use of rescaled volatility estimates in various models of financial 

risk and return implies that any rankings derived from these models 

would depend on time horizon used to annualize the observed short-

horizon volatility.
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8C H A P T E R  

Jumps and Microstructure 
Noise in Stock Price Volatility

Rituparna Sen

8.1 INTRODUCTION
Accurate specification of volatility is of crucial importance in several finan-

cial and economic decisions, such as portfolio allocation, risk management 

using measures like value at risk, and pricing and hedging of derivative 

securities. In the past, squared returns have been a frequently used proxy 

for volatility. However, as pointed out in Andersen and Bollerslev (1998), 

squared returns are a very noisy estimate for volatility. Another candidate 

is implied volatility, which is obtained by inverting option prices. But it 
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is model dependent and incorporates some price of risk, since it actually 

measures expected future volatility.

Hence, there is a need for accurate model free measures of volatil-

ity. Note that the volatility of a price process is fairly model free. “Any 

log-price process subject to a no-arbitrage condition and weak auxiliary 

assumptions will constitute a semi-martingale that may be decomposed 

into a locally predictable mean component and a martingale with finite 

second moment” (Andersen et al., 2005). The predictable quadratic varia-

tion of the martingale is the volatility.

A new proxy for volatility, termed realized volatility, has been intro-

duced concurrently in Andersen et al. (2003b) and Barndorff-Nielsen 

and Shephard (2004). If prices have continuous paths and are not con-

taminated by microstructure noise, then realized volatility is a consistent 

estimator of daily integrated volatility. Andersen et al. (2004) show that 

simple reduced-form time-series models for realized volatility using high-

frequency data outperform the commonly used GARCH and related sto-

chastic volatility models in forecasting future volatility.

It is believed, though, that log price processes may display jumps, due to, 

for example, macroeconomic and financial announcement effects. Recent 

studies have highlighted the significance of allowing different treatments 

of the jump and continuous sample path components, in estimating para-

metric stochastic volatility models (e.g., Andersen et al., 2002; Chernov  

et al., 2003; Eraker et al., 2003; Ait-Sahalia, 2004), in nonparametric real-

ized volatility modeling (e.g., Andersen et al., 2003a; Barndorff-Nielsen 

and Shephard, 2004, 2006; Huang and Tauchen, 2005), and in empirical 

option pricing (e.g., Bates, 1991). More specifically, in the stochastic volatil-

ity and realized volatility literatures, the jump component is observed to be 

significantly less predictable than the continuous sample path component, 

evidently demonstrating separate roles for these in a forecasting context. 

Barndorff-Nielsen and Shephard (2004) have recently introduced a new real-

ized measure, called bipower variation, which is consistent for integrated 

volatility when the underlying price process exhibits occasional jumps.

The problem arises when we observe data at high frequency and micro-

structure noise becomes important. So, in most cases, even though data 

are available tick by tick, current practice is to use a moderate number of 

intraday returns, e.g., 30 or 5 minutes in computing realized volatility. This 

has two problems. First, we are throwing away a lot of the data. Second, 

sampling at log horizons may limit the value of the asymptotic approxi-

mations derived under the assumption of an infinite number of intraday 
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returns. Zhang et al. (2005) have suggested a new realized measure that is 

consistent for integrated volatility when the prices are contaminated by 

microstructure noise. However, how this measure performs in the pres-

ence of jumps has not been studied.

The contribution of this chapter is twofold. For the first time we provide 

a method to deal with both microstructure noise and jumps in the same 

framework. We demonstrate, using simulated and real data, that trying to 

predict jumps by ignoring the noise can lead to unrealistic results. On the 

other hand, it is not clear how to incorporate jumps into other estimation 

methods that do take care of noise. Second, our method enables us to sepa-

rate the smooth noise and jump components of volatility, as well as the part 

of drift that contributes to volatility for finite frequency. This separation can 

lead to better understanding and prediction of the components separately.

The rest of the chapter is organized as follows. In Section 8.2 we 

present a brief review of functional data analysis and outline how  

we apply this technique to data on stock price processes. In Section 8.3 

we describe the method for detecting jumps using the functional data 

analysis (FDA) technique and study the performance of this method 

with simulated and real data. In Section 8.4 we use this method to sepa-

rate and study the components of volatility. Finally, in Section 8.5 we 

present our conclusions.

8.2 FDA OF VOLATILITY PROCESS
Muller et al. (2007) introduce the functional volatility process as a tool 

for modeling volatility trajectories. Consider the volatility trajectory of 

each day to be a realization from the distribution of functions resulting 

from a smooth functional volatility process in combination with a mul-

tiplicative white noise. The proposed nonparametric approach requires 

no assumptions from the functional volatility process beyond smooth-

ness and integrability. An important tool for the analysis of trajectories 

of volatility within the framework of functional data analysis (FDA) is 

functional principal component analysis (Castro et al., 1986; Rice and 

Silverman, 1991). Functional volatility processes can be characterized by 

their mean function and the eigenfunctions of the autocovariance opera-

tor. This is a consequence of the Karhunen-Loève representation of the 

functional volatility process. Individual trajectories of volatility can then 

be represented by their functional principal component scores. One can 

then use the functional principal component scores for subsequent statis-

tical analysis. The rest of this section describes this procedure. For a more 
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detailed exposition of this material and asymptotic results, refer to Muller 

et al. (2007).

8.2.1 The Model

We consider the following underlying model with random drift and vola-

tility functions for the stock price process  ( , ):

 d log ( , ) ( , ) ( , ) ( , ), [ , ]0   (8.1)

Here ( , ), ( , )  and ( , )  are independent stochastic processes, 

none of them necessarily stationary, where both the drift (.)  and the 

volatility (.) are assumed to have smooth (twice differentiable) sample 

paths. This is a generalization of the Black-Scholes model. Suppose the 

price process is observed at times 1 , ,K , which are at regular intervals 

 apart for  days. Let ( ) denote the price for the -th day at time . 

Define the scaled log returns  as

 

1
1 1log

( )

( )
, , , , ,K K,,

  

(8.2)

We allow for the presence of multiplicative errors in the transaction 

recordings. Specifically, transaction recordings are assumed to be con-

taminated by independent nonnegative errors 0  with the properties

 
log , log2 2

2

0  (8.3)

in such a way that the contaminated observations are

 

1
1log

( )

( )
, , , ,K 11, ,K

 

(8.4)

In addition, on a small fraction of days there are big jumps in the price 

process. That is, for certain days,

 

1
1log

( )

( )
, , ,, ,K

 

(8.5)

where  is the set of days on which jumps happen. Our aim is to identify 

these days.
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8.2.2 Separating the Drift

The first step is to decompose noisy functional data into a smooth random 

process %  and additive noise :

 

% K K( ) , , , , , ,1 1

 

(8.6)

,
 
are independent for all , E var( ) , ( )0 12 . Note that  

the noise within the same subject or item may be correlated. 

We estimate individual drifts % ( ) , by smoothing scatter plots 

{( , ), , ,[ / ]}1K , for each fixed 1 . For the initial smoothing 

step we used a cross-validation bandwidth choice. Denoting the smoothed 

trajectories obtained from this smoothing step by ˆ ( ), which are substi-

tuted for % ( ) , one then forms ˆ ( ). This is a finite sample 

correction and is necessary only because the price process is not observed 

at all points of time but on a discrete grid. The contribution of the drift 

term to the realized volatility goes away in the limit as the grid size  

grows smaller.

8.2.3 Modeling the Noise Component

We now work with the estimated noise  obtained from Section 8.2.2. We 

model the noise component as

 

log { } ( )2
0  

(8.7)

where  is the functional variance process, which is smooth; i.e., it has a 

smooth mean function  and a smooth covariance structure

 
( , ) ( ), ( )), , [ , ]cov( 0

  (8.8)

The are white noise:

 

E( ) 0, var( for) , ,2 ,,
 

(8.9)

Note that the adjustment by the constant 0 1 27.  has the consequence 

that E( ( )) 0 for all , while Cov( ( ), ( )) 0 for | |  (inde-

pendent increments property). The smooth functional volatility process  

does not depend on . This decomposition implies

 
E( E() ( )) ( )

 (8.10)
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cov( cov, ) ( ( ), ( )) ( , ),

 (8.11)

for the functional variance process . The autocovariance operator associ-

ated with the symmetric kernel  has smooth eigenfunctions  with 

nonnegative eigenvalues  and implies that we have representations

 

( , ) ( ) ( ), ,

 

(8.12)

 

( ) ( ) ( )

 
(8.13)

with functional principal component (FPC) scores , 1  with E( ) ,0  
var( k ) , 0 ( ( ) ( )) ( ) ,  uncorrelated, .

8.2.4 Estimation of Model Components

Apply functional principal component analysis (principal analysis of ran-

dom trajectories (PART) algorithm) to the sample of transformed residu-

als : 

Estimate mean function  (smoothing of cross-sectional averages).

Estimate smooth covariance surface by smoothing of empirical 

covariances (omitting the diagonal).

Obtain eigenvalues/eigenfunctions, choosing number of components 

 by cross-validation.

From diagonal of covariance surface, obtain var( ) 2 .

Obtain individual FPC scores  by integration.

8.3 JUMP DETECTION
8.3.1 The Method

For each day  we calculate

 

exp{ exp{} }

[

1
2

2

1

// ]

 
(8.14)
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Conditioning on the . process and using the independence of  and  

processes and the delta method we obtain

 

E(

Var( exp( exp( Var(

i )

) ) )

0

4

4

))
 

(8.15)

Var( can be estimated using 
2[ / ]

, where is the tripower variation 

defined in Barndorff-Nielsen and Shephard (2006) as follows:

 

4 3
3

2
4 3

1
4 3

2/ ,
/

,
/

,| | | | | |44 3

3

/

 

(8.16)

E(|Z|a ) is a normalizing constant where  is the standard nor-

mal random variable, [ ]  is the number of intervals in a day, and 

, , is the log return for the -th interval of the -th day. As  goes 

to zero, under the null hypothesis of no jumps, the asymptotic distribu-

tion of

 

exp( exp() )
[ / ]

4

8
 

(8.17)

is standard normal. The proof goes in the lines of Barndorff-Nielsen and 

Shephard (2002, 2003). We compute this quantity for each day. Those days 

for which this quantity exceeds a preset quantile of the standard normal 

distribution are detected to have jumps.

8.3.2 Empirical Application

The first data set consists of 5- and 1-minute data on the S&P500 index from 

November 11, 1997 to March 3, 2006 (see Figure 8.1). We have eliminated 

days when trading was thin or the market was open for a shortened ses-

sion. Huang and Tauchen (2005) study the same instruments over a period 

from 1997 to 2002. They use 5-minute data after applying an adjustment 

that consists of the following: Regress 5-minute absolute returns on the 

time dummies. Then keep the predicted absolute returns and call them ˆ.  

Divide the original 5-minute returns by the corresponding ˆ. Scale the 

adjusted data to have variance 1.
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It is unclear how to incorporate this adjustment into the general setting of 

Barndorff-Nielsen and Shephard (2004). In Figure 8.2 we present the distri-

bution of the test statistics for both methods along with the standard normal 

density functions for sampling frequencies at 1 and 5 minutes. It is clear 
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FIGURE 8.1 Density estimate of superimposed with standard normal den-

sity for S&P500. The top panel uses FDA. The bottom panel uses bipower 

variation. The figures on the top are for 5-minute data, and those on the 

bottom are for 1-minute data.
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from these plots that our method is more consistent with the result that 

the statistics has a standard normal distribution on most days, and there 

are a few high values on days when there are jumps. The sampling distribu-

tion of the statistics obtained by the Huang-Tauchen method using bipower 

variation has a large positive bias. This becomes more pronounced when the 

sampling frequency is higher. For our method, the sampling frequency does 
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FIGURE 8.2 Density estimate of superimposed with standard normal den-

sity for Japanese yen–U.S. dollar exchange rate. The top panel uses FDA. 

The bottom panel uses bipower variation. The figures on the top are for 

5-minute data, and those on the bottom are for 1-minute data.
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not affect the distribution too much, which should be the case. We carry out 

the same exercise with two other data sets: the Japanese yen–to–U.S. dollar 

exchange rate and the euro–to–U.S. dollar exchange rate.

The results are displayed in Figure 8.3. It is very similar to Figure 8.2 

and strengthens our point that we cannot ignore microstructure noise 

while detecting jumps. The Barndorff-Nielsen and Shephard (2004) 
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FIGURE 8.3 Density estimate of superimposed with standard normal den-

sity for Euro–U.S. dollar exchange rate. The top panel uses FDA. The bottom 

panel uses bipower variation. The figures on the top are for 5-minute data, 

and those on the bottom are for 1-minute data.
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methodology does not account for microstructure noise. Realized vari-

ance measures the combination of volatility, microstructure noise, and 

jumps, while bipower variance measures volatility. Hence, the difference, 

which is the test statistic used in Huang and Tauchen (2005), is not a mea-

sure of jump, but of jump and microstructure noise.

8.4 COMPONENTS OF REALIZED VOLATILITY
Realized volatility can be split up into four components: the part due to 

drift, smooth time-varying volatility, microstructure noise, and jump. Our 

approach enables us to separate these four components. Drift is the compo-

nent we are not worried about, because it should go away in the limit and 

not affect the volatility of interest in other spheres, like option pricing. The 

smooth time-varying volatility part is predictable from previous observa-

tions. The microstructure noise is not predictable, but has a more or less 

fixed level. The jump component can be modeled separately as in Tauchen 

and Zhou (2005). Methods that ignore noise essentially put noise and jump 

components together (e.g., Huang and Tauchen, 2005; Fan and Wang, 2007).  

However, these have entirely different dynamics. Both have low predict-

ability. While noise is at a fixed level every day, jumps are rare and large 

and might be accompanied by arbitrage opportunities if detected early.

8.4.1 Methodology

Realized volatility is defined as the sum of squared returns. Hence, in the 

notation of Section 8.2.1, realized volatility equals 2 . The part of this 

that is attributable to drift is

 

Vol %2

which is an estimate for 2 2( ), and hence converges to zero as  goes 

to zero. The remaining part is

 

2
0 0exp( exp( exp() exp ) ) eexp( )

 
(8.18)

Since the and  processes are independent, this approximately equals 

the product of

 
Vol exp( )
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and

 

Vol exp( exp(0 ) )/

The former is the part due to the smooth underlying volatility process, and 

the latter is due to the microstructure noise and jumps. We use the procedure 

outlined in Section 8.3.1 to detect the days that have jumps. The contribu-

tion of jumps to realized volatility for such days is estimated by subtracting 

the average level of microstructure noise from Volnoise  and equals

 

Vol exp( ) exp( )/0

2

1
2

8.4.2 Size of the Components in Empirical Data

We present the statistics of the four components computed for the three 

real data sets under consideration in Tables 8.1 to 8.3. We observe that the 

noise is much higher (high mean) than the smooth part of volatility, but 

TABLE 8.1 Statistics of the Four Components for S&P500 1-Minute Data

Drift
Mean 2.5369 1.1224 1.3190 0.6408

Median 1.4711 0.7003 1.3171 5.0815

Standard 3.4629 1.2234 0.1988 1.8752

Min 0.1745 0.0789 0.8055 –50.2395

Max 48.7390 12.0745 2.3703 20.9168

Skewness 5.5209 3.1719 0.1599 –0.4981

Kurtosis 51.3136 17.5904 1.1064 2.8732
 

TABLE 8.2 Statistics of the Four Components for JPYA0 1-Minute Data

Drift
Mean 0.0122 0.6423 1.9972 1.1777

Median 0.0062 0.5652 1.9972 6.8208

Standard 0.0159 0.3632 0.5849 15.1604

Min 0.0001 0.1013 1.0185 –28.3315

Max 0.1143 2.3059 6.6730 28.8391

Skewness 2.8278 1.2346 1.0465 –0.0277

Kurtosis 13.4732 4.9742 7.6253 0.4697
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is less variable (low standard deviation). On the whole, the two exchange 

rates have pretty similar behavior, while the index is very different from 

either of them. The relative contribution of drift to the total volatility 

is higher for the index. There are fewer jumps, and the size of jumps is 

smaller for the index. The relative level of noise is much lower for the 

index than for the exchange rates. As expected, for all the data sets, the 

level of noise has very little variability, whereas that of jumps has very 

high variability.

8.5 CONCLUSION
We present a procedure, based on principal component analysis of func-

tional data, to detect days on which a price process displays jumps. This 

procedure takes into account microstructure noise and performs better 

than existing methods that ignore the noise. Andersen et al. (2002) esti-

mate jumps happen three to four times a year, which is consistent with our 

findings. Since the microstructure noise level goes to infinity, the other 

methods will ultimately recognize all days as having jumps. In practice, 

when information arrives, there is not one single big jump, but a series of 

small jumps. These have a cumulative effect that is higher than the micro-

structure noise level, though they might not be very big individually. Our 

method can capture this kind of behavior, while other methods, like Fan 

and Wang (2007), cannot. Our procedure provides a tool for separating 

the different components that contribute to the total volatility. Thus, we 

can study these components separately and make better predictions.

TABLE 8.3 Statistics of the Four Components for EURA0 1-Minute Data

Drift
Mean 0.0179 0.6161 1.7776 0.9931

Median 0.0070 0.5643 1.7777 7.1392

Standard 0.0329 0.3229 0.3752 12.2518

Min 0.0004 0.0719 1.0122 –26.9250

Max 0.3726 1.8916 3.3409 23.2150

Skewness 6.1082 0.9309 0.3047 –0.1023

Kurtosis 58.5171 3.8252 1.5363 0.5176
 



176 < Rituparna Sen

REFERENCES
Ait-Sahalia, Y. (2004). Disentangling diffusion from jumps. 

 74:487–528.
Andersen, T. G., L. Benzoni, and J. Lund. (2002). An empirical investigation of 

continuous-time equity return models.  57:1239–84.
Andersen, T. G., and T. Bollerslev. (1998). Answering the skeptics: Yes, standard 

volatility models do provide accurate forecasts. 
 39:885–905.

Andersen, T. G., T. Bollerslev, P. F. Christoffersen, and F. X. Diebold. (2005). 
Volatility forecasting. In , ed. G. Elliott, C. 
W. J. Granger, and A. Timmermann. Amsterdam: North Holland 778–878.

Andersen, T. G., T. Bollerslev, and F. X. Diebold. (2003a). Some like it smooth, 
and some like it rough: Untangling continuous and jump components in 
measuring, modeling, and forecasting asset return volatility. Working paper, 
Duke University, Durham, NC.

Andersen, T. G., T. Bollerslev, F. X. Diebold, and P. Labys. (2003b). Modeling and 
forecasting realized volatility. 71:579–625.

Andersen, T. G., T. Bollerslev, and N. Meddahi. (2004). Analytical evaluation of 
volatility forecasts. 45:1079–110.

Barndorff-Nielsen, O. E., and N. Shephard. (2002). Econometric analysis of real-
ized volatility and its use in estimating stochastic volatility models. 

64B:253–80.
Barndorff-Nielsen, O. E., and N. Shephard. (2003). Realized power variation and 

stochastic volatility.  9:243–65.
Barndorff-Nielsen, O. E., and N. Shephard. (2004). Power and bipower variation 

with stochastic volatility and jumps [with discussion]. 
2:1–48.

Barndorff-Nielsen, O. E., and N. Shephard. (2006). Econometrics of testing for 
jumps in financial economics using bipower variation. 

4:1–30.
Bates, D. S. (1991). The crash of ’87: Was it expected? The evidence from options 

markets. 46:1009–44.
Castro, P. E., W. H. Lawton, and E. A. Sylvestre. (1986). Principal modes of variation 

for processes with continuous sample curves. 28:329–37.
Chernov, M., A. R. Gallant, E. Ghysels, and G. Tauchen. (2003). Alternative mod-

els of stock price dynamics.  116:225–57.
Eraker, B., M. Johannes, and N. Polson. (2003). The impact of jumps in volatility 

and returns. 58:1269–300.
Fan, J., and Y. Wang. (2007). Multi-scale jump and volatility analysis for high-

frequency financial data. 
102:1349–62.

Huang, X., and G. Tauchen. (2005). The relative contribution of jumps to total 
price variation. 3:456–99.

Muller, H. G., R. Sen, and U. Stadtmuller. (2007). Functional data analysis for vola-
tility process. Working paper, University of California, Davis.



Jumps and Microstructure Noise in Stock Price Volatility < 177

Rice, J. A., and B. W. Silverman. (1991). Estimating the mean and covariance 
structure non-parametrically when the data are curves. 

53B:233–43.
Tauchen, G., and H. Zhou. (2005). Identifying realized jumps on financial mar-

kets. Working paper, Federal Reserve Board, Washington, DC.
Zhang, L., P. A. Mykland, and Y. Ait-Sahalia. (2005). A tale of two time scales: 

Determining integrated volatility with noisy high-frequency data.
100:1394–411.





II
Portfolio Management and 

Hedge Fund Volatility





9C H A P T E R  

Mean-Variance versus 
Mean-VaR and Mean-
Utility Spanning

Laurent Bodson and Georges Hübner

9.1 INTRODUCTION
Since the seminal mean-variance ( ) framework of Markowitz (1952) 

appeared, a large part of the financial literature has investigated new 

approaches to capture the non-Gaussian distribution of financial asset 

returns. Indeed, Samuelson (1970) has given prominence to the devia-

tion from the normal distribution of different classes of financial assets. 

Frequently, the optimal allocations deduced from the Markowitz frame-

work differ largely from the optimal allocations obtained using a risk mea-

sure that integrates higher-moment estimates. Nowadays, practitioners do 

not integrate systematically the impact of extreme risks on the optimal 
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allocations of their portfolios. Generally, the implications of the extreme 

risks treatment are not well followed by portfolio managers, and the recent 

financial crises are good proofs of this observation.

In order to adjust the Markowitz framework, some authors have devel-

oped specific risk metrics that take into consideration the higher moments 

of the return distributions. One interesting measure, proposed by Favre 

and Galeano (2002), is the modified value-at-risk ( ) that corrects the 

quantile estimate used in the formulation of the Gaussian VaR.

One of the drawbacks of the  and the  is that they do not 

integrate the investor’s preferences and perception of risk. It is generally 

approved that the  permits to consider different risk aversion of 

the investor through the confidence interval chosen (alpha), but this risk 

measure assumes that all investors have the same vision of risk, or more 

precisely, the same compromise between higher statistical moments.

In this chapter, we propose to analyze the empirical effects of the risk 

measure choice on the efficient frontiers (in a risk-return framework) and 

the impacts of tradable hedge fund strategies on these specific efficient 

sets of portfolios. We focus our analysis on three major risk measures: the 

 (Markowitz, 1952) and two risk measures based on the higher-order 

moments, the  (Favre and Galeano, 2002) and a utility-based risk 

( ) measure (Bell, 1988). We compare the efficient frontiers deduced for 

each risk metric (with and without hedge funds) over two distinct periods, 

a bear market period (from January 2000 to December 2002, a total of 36 

months) and a bull market period (from January 2003 to December 2005, 

also a total of 36 months).

The chapter proceeds as follows. In Section 9.2, we describe the risk 

measures implemented to construct the different efficient frontiers. We 

introduce in Section 9.3 the data set and develop our methodology.  

Section 9.4 presents the empirical results, and Section 9.5 concludes.

9.2 RISK MEASURES
9.2.1 Variance

The risk measure chosen by Markowitz is the  of the portfolio  return 

( ). The major disadvantage of this risk measure is its indifference 

between downside risk and upside potential. In other words, this metric 

penalizes upside potential, which is implicitly recognized as not relevant 

to investor behavior.
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9.2.2 Modified Value-at-Risk

Contrarily to the , the  takes only into consideration the 

downside risk of the portfolio. The  of a portfolio  is defined 

as the portfolio value-at-risk where the quantile used to calculate the  

value-at-risk of the portfolio has been adjusted (using the Cornish-

Fisher expansion (1937)) to the higher moments of the portfolio return 

distribution. In fact, the Gaussian value-at-risk assumes that the returns 

are normally distributed, and therefore, the skewness is null and the 

standardized kurtosis is equal to 3. However, the return distributions 

of several financial assets generally exhibit large deviations from these 

Gaussian values of the skewness and the kurtosis. For this reason, Favre 

and Galeano (2002) propose to adjust the quantile used in the traditional 

Gaussian value-at-risk.

In this chapter, we only focus on the risk part of the . More 

precisely, we do not integrate the expected return in the formulation 

of the portfolio . Indeed, we want to separate clearly the first 

moment of the return distribution from the three other moments (the 

variance, the skewness, and the kurtosis) of the portfolio return dis-

tribution. The expression of the  of portfolio  at the confidence 

level  (over the investment horizon defined by the frequency of the 

returns) is defined by

 

1

6
1

1

24
3

1

36
22 3* * 3 2 0 55 * .

  

  (9.1)

where  is the normal quantile value such as ( )  (knowing that 

 follows a standard normal distribution (i.e., a mean equal to 0 and a stan-

dard deviation of 1)), *  is the standardized skewness (i.e., the third centered 

moment divided by the third power of the portfolio standard deviation), * 

is the standardized excess kurtosis (i.e., the fourth centered moment divided 

by the fourth power of the standard deviation, this quotient minus 3), and 

 is the variance of the portfolio return distribution.

9.2.3 Utility-Based Risk

The  measure that we use in our empirical comparison is the risk mea-

sure inferred from Bell’s linear and exponential (linex) utility functions 

(1988, 1995). After some mathematical manipulations and integrating the 



184 < Laurent Bodson and Georges Hübner

Taylor series expansion, we obtain from Bell’s utility functions the follow-

ing  for a portfolio :

 

1

2 6 24

2

 
(9.2)

where is the global risk perception of the investor,* is the portfolio return 

variance, is the skewness of the portfolio return distribution, and is the 

kurtosis of the portfolio return distribution. Note that we use for this  

measure the basic centered moments and not the standardized ones.

The intuition underlying this risk metric is quite simple. Investors with 

high s put more emphasis on the possibility of bad outcomes than inves-

tors with low s.

9.3 DATA AND METHODOLOGY
We propose to compare the different efficient frontiers built from a set 

of industry portfolios and from the same set of portfolios augmented by 

global hedge fund indices. For each risk measure, the optimal allocation is 

computed minimizing the risk measure of the portfolio ( , ,  

and ) for a given average return. We consider in our analysis that 

the weights of the portfolio components add up to 1 and that they are not 

negative (i.e., short positions are not allowed). We compute the efficient 

frontiers for each risk measure and for the two sets of securities (with and 

without hedge funds) over two subperiods.

We consider the monthly returns of each security from January 2000 to 

December 2005. In order to study the sensitivity of the optimal allocations 

to different market conditions, we distinguish the bearish and the bullish 

subperiods of our sample. We divide our period of analysis in the follow-

ing way: a first bearish subperiod covering the 3 years from January 2000 

to December 2002 and a second bullish subperiod including the 3 sub-

sequent years from January 2003 to December 2005. Indeed, if we look, 

for instance, at the S&P 500 evolution (in Figure 9.1) from January 2000 

to December 2005, we observe that this period exhibits two main market 

trends: a first bear market period (from January 2000 to December 2002) 

and a second bull market period (from January 2003 to December 2005).

To represent the equity universe of securities available over the 

two subperiods, we take the forty-eight industry portfolios proposed 

* The range of this parameter depends on the asset classes analyzed and the risk aversion of the 

investor.



Mean-Variance versus Mean-VaR and Mean-Utility Spanning < 185

on Kenneth R. French’s website.* The hedge funds benchmarks are rep-

resented by the thirty-seven HFRX global indices.†

9.4 EMPIRICAL RESULTS
First, we optimize the portfolio allocation minimizing the  of the 

portfolio return for a given average return with the two constraints on the 

optimal weights exposed supra (sum up to 1 and not negative). Figure 9.2 

shows the results of this optimization for the two sets of assets (the indus-

try portfolios with and without the hedge funds indices) and for the two 

subperiods. Obviously, the upper efficient frontier is always the efficient 

frontier integrating the hedge fund indices because the optimization has a 

larger set of potential assets.

We observe in Figure 9.2 that in bear market conditions, the integration of 

hedge funds does not permit the investor to get a better portfolio diversifica-

tion. Effectively, the difference between the two efficient frontiers is almost 

nonexistent. The major reason is that in bear market conditions, the asset 

returns exhibit higher correlation. Therefore, the diversification effect is more 

limited. In bull market conditions, investors have the opportunity to diversify 

their portfolios using hedge funds to take advantage of better allocations.

* http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.
† www.hedgefundresearch.com.

2500

2000

1500

1000

500

0
January 2000 to December 2002 January 2003 to December 2005

FIGURE 9.1 Historical value (in US$) of the S&P 500 Composite (total 

return) Index from January 2000 to December 2005 and presentation of 

the two subperiods of analysis.
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Second, we compute the efficient frontiers minimizing the   

of the portfolio ( ). We fix  at its traditional value of 1%. 

Figure 9.3 exhibits the efficient frontiers for the two sets of assets (with 

and without hedge funds) for the two subperiods such that the optimal 

allocation obtained minimizes the portfolio  and respects the 

two constraints on the optimal weights exposed supra (sum up to 1 and 

not negative).
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FIGURE 9.2 Efficient frontiers (including or not the hedge fund class) 

based on the portfolio variance for the bear market and bull market 

subperiods.
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Figure 9.3 shows that the efficient portfolios obtained using the  
as risk measure instead of the  are completely different. The possibility 

to benefit from the diversification opportunity is more pronounced using 

the . The  succeeds in capturing the upside potential of hedge 

funds, differentiating clearly the efficient frontier without hedge funds 

indices from the efficient frontier with hedge funds indices. The results in 

Figure 9.3 emphasize the fact that the  adjusts the risk measure to 

take notably into consideration the “good” extreme events.
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FIGURE 9.3 Efficient frontiers (including or not the hedge fund class) 

based on the portfolio modified value-at-risk (1%) for the bear market and 

bull market subperiods.
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Third, we build the efficient frontiers for each set of assets and for 

each subperiod minimizing the portfolio . For this last risk measure, 

we propose to take three different values for the parameter  (  = 0.5,  

 = 0.75, and  = 1) to take into consideration three different risk percep-

tion profiles of the investor. In Figures 9.4 to 9.6, we plot for each value 

of  the efficient frontiers of the two sets of data for the two subperiods 
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based on the portfolio utility-based risk (   0.5) for the bear market and 

bull market subperiods.
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minimizing the  of the portfolio and meeting the constraints on the 

optimal weights (sum up to 1 and not negative).

The results reported in Figures 9.4 to 9.6 demonstrate the obvious neces-

sity to integrate the risk perception of the investor in the portfolio optimi-

zation. Indeed, according to the risk perception profile of the investor, the 

efficient frontiers vary largely from the  or  optimizations but 

also between  optimizations.
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The efficient frontiers computed minimizing the  metric are more 

reliable because they integrate the investor profile. For different values of 

the parameter , we observe that the movement of the efficient frontier 

is really particular, and we also note a different treatment of the hedge 

fund opportunity. We note in this new framework (mean  ) that 

the separation theorem does not hold because the optimal combination 

of risky assets cannot be determined without knowledge of the investor 

risk perception.
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The shape of the efficient frontier is not exactly a robust test because we 

can have an identical shape with absolutely different optimal allocations. 

For this reason, we propose to compare the optimal allocations of a spe-

cific efficient portfolio. Based on our results, we propose to consider, for 

each case, the efficient portfolio that earns a constant rate of return in bear 

market conditions and the efficient portfolio that earns a higher constant 

rate of return in bull market conditions.

In Table 9.1, we compare the efficient portfolio compositions in each case, 

i.e., for each efficient frontier integrating the hedge fund indices presented 

in this chapter. We have only reported the results of the efficient frontiers 

with hedge funds to decompose the allocations in terms of equity and 

hedge funds parts. Indeed, we are forced to distinguish only two categories 

because we cannot report each equity weight (forty-eight industry portfo-

lios) and each hedge fund weight (thirty-seven HFRX global indices).

We also find that the  tend to produce lower hedge fund alloca-

tions in bear market conditions and slightly higher hedge fund allocations 

in bull market conditions than the mean-variance approach. 

According to the results reported in Table 9.1, the optimal alloca-

tion of the  is close to the optimal allocation of the 1  (high ),  

and the optimal allocation of the 1% is close to the optimal alloca-

tion of 0 5.  (low ). These observations show the importance of the 

 investor risk perception in the portfolio optimization. The  measure 

TABLE 9.1 Efficient Portfolio Allocation for Each Efficient Frontier  

(with Hedge Funds)

0.75

Equity 31.88% 63.87% 65.51% 43.16% 32.79%

HF 42.25% 15.20% 23.42% 35.78% 40.57%

0.05% 0.10% 0.14% 0.07% 0.05%

1% 4.75% 3.69% 8.01% 4.98% 4.80%

Equity 13.88% 11.89% 72.20% 43.96% 23.67%

HF 86.12% 88.11% 27.79% 55.96% 76.33%

0.11% 0.11% 0.22% 0.16% 0.12%

1% 5.36% 5.00% 11.22% 8.21% 5.88%
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covers all the range of optimal allocations (in our case from the 1% 

to the  optimal allocations) simply defining the risk perception of 

the investor.

The results confirm the insights obtained from the previous graphs. 

In particular, the efficient allocations corresponding to the very same  

target—a mean return equal to a constant—feature dramatically different 

allocations. Furthermore, in bearish market conditions, one can see that 

a mean-variance investor or, quite similarly, an investor with a high  in 

the linex function will use more extensively the money market instrument 

(ca. 26–27% of the total allocation) than an investor who cares more about 

extreme risks. Under bullish market conditions, the risk-free rate logically 

vanishes from all efficient allocations.

Of course, the risk measure corresponding to each criterion is mini-

mized when the optimization is performed with that same criterion. 

For instance, optimized portfolios produce the lowest variance of 

all allocations. But the striking element to consider is the existence of a 

continuum of equity/hedge fund combinations that provide the same 

expected returns under the UBR. This finding is important, because one 

has to consider that the linex utility function represents much more ade-

quately the investors’ preferences than the MVaR, which is essentially an 

arbitrary risk measure, or the variance, which rests on unrealistic assump-

tions about investors’ preferences. In other words, any allocation between 

1 and 0 5.  likely represents the optimal portfolio for a type of rep-

resentative investor, under the very same market conditions. There is no 

such thing as a market portfolio, but a wide variety—and a large array—of 

market portfolios.

9.5 CONCLUSION
This chapter has examined the difference between three risk measures: the 

variance of the portfolio return ( ), the modified value-at-risk ( ) 

of the portfolio return, and a utility-based risk measure ( ) deduced 

from Bell’s utility function.

The higher-moments-based risk measures are coherent with the risk-

averse preferences of the investors and offer new tools for portfolio and risk 

managers. The adjustment of the risk introduced by the higher moments 

must be dependent of the investor risk perception, and the optimal alloca-

tions must finally reflect the investor’s preferences toward the risk-return 

trade-off.
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The piece of evidence presented in our analysis suggests that the util-

ity-based risk measure yields higher customized optimal allocation and 

integrates a fundamental element in the optimization algorithm, the risk 

perception of the investor. In other terms, a portfolio optimization cannot 

ignore the perception of the investor of the different facets of risk.

We consider our analysis as a rather illustrative comparison of three 

risk measures. It is not meant to present a robust statistical side but shows 

the impact and importance of the investor’s preferences toward risk and 

return in portfolio and risk management.

Future research should probably focus on the difference in statistical 

properties of these three measures and especially of the utility-based mea-

sure. Another approach would be the study of the stability and persistence 

of these risk measures.
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Cyclicality in Stock Market 
Volatility and Optimal 
Portfolio Allocation

Jason C. Hsu and Feifei Li*

10.1 CYCLICALITY IN MARKET VOLATILITY
In standard finance applications, asset class volatilities are usu-

ally assumed to be constant over time for simplicity. For example, 

Markowitz’s mean-variance optimization requires that asset class 

volatilities are known and constant over the holding horizon. While 

this simplifying assumption reduces the complexity of the models 

and their calculations, it could also lead to suboptimal portfolio and 

risk management solutions. If equity market volatility is time vary-

ing and is negatively correlated with equity market returns, ignoring 

* The authors acknowledge Micah Allred, Vitali Kalesnik, and Lillian Wu for their assistance 

in completing this chapter.
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this countercyclicality could lead to excess allocation to stocks when 

forward-looking risk for stocks is high. Furthermore, if equity mar-

ket volatility is positively correlated with the volatilities of other asset 

classes, ignoring this correlation would again lead to excess allocation 

to risky assets.

In Table 10.1, we show the U.S equity market volatility in an average 

bull market versus an average bear market. We use a classic bull/bear mar-

ket definition, where a bull market is defined as a period of general price 

appreciation, during which the cumulative market return exceeds 20%. 

A bear market, by contrast, is a period of price decline, during which the 

cumulative market negative return exceeds –20%. For simplicity, the mar-

ket is classified to be in either a bull or bear market phase. Additionally, we 

show the volatility of other mainstream asset classes over the same equity 

market cycles. Furthermore, to illustrate the robustness of the finding, we 

also show, in Table 10.2, the volatilities of these asset classes in different 

phases of the business cycle (expansion versus recession). We employ the 

National Bureau of Economic Research (NBER) definitions for expan-

sions and recessions, which uses GDP growth/decline and other macro-

economic factors to classify business cycles.

Notice that equity market volatility is significantly higher in bear mar-

kets and recessions. The increase in volatility in down/contracting mar-

kets can be attributed to a variety of reasons. Down/contracting markets 

may be triggered by instability in the macroeconomy. Under this assump-

tion, down/contracting markets are likely to be times where shocks to the 

productive factors in the economy are more severe and more frequent 

TABLE 10.1 Asset Class Volatilities over Equity Bull/Bear Market Cycles

U.S. equities (S&P 500) 13.33% 17.13%

International equities (MSCI EAFE) 15.54% 16.36%

Bond (Lehman Agg) 5.57% 6.92%

Commodities (DJ AIG) 11.76% 13.83%

Real estate (FTSE NAREIT) 13.01% 15.60%

U.S. equities (S&P 500) 21.09% –19.09%

International equities (MSCI EAFE) 20.45% –15.96%

Bond (Lehman Agg) 8.26% 11.29%

Commodities (DJ AIG) 5.14% –0.69%

Real estate (FTSE NAREIT) 16.57% 2.47%
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than usual. In down/contracting markets, leveraged investments are 

likely to face margin calls, which increase liquidity-driven asset sale; these 

liquidating transactions tend to induce additional price volatility. Lastly, 

market-making agents and noise traders who engage in market liquid-

ity provision, and who trade against informed flows, are likely to become 

more risk averse in down/contracting markets. In these markets, where 

market participants have experienced wealth decline, their ability to bear 

risks declines as a result (their local risk aversion increases).

From Figure 10.1, we observe that asset class volatilities appear to co-

move over time, suggesting that common macro factors may drive volatil-

ities for various risky assets. Specifically, we observe from Table 10.1 that 

the volatilities of other risky asset classes seem to also increase noticeably 

during equity bear markets. This increase in volatility suggests that the 

TABLE 10.2 Asset Class Volatilities over NBER Expansion/Recession Cycles

U.S. equities (S&P 500) 14.06% 19.00%

International equities (MSCI EAFE) 15.08% 23.24%

Bond (Lehman Agg) 4.84% 10.96%

Commodities (DJ AIG) 11.84% 13.83%

Real estate (FTSE NAREIT) 12.80% 18.84%

U.S. equities (S&P 500) 14.04% 11.59%

International equities (MSCI EAFE) 15.85% –2.16%

Bond (Lehman Agg) 7.55% 20.07%

Commodities (DJ AIG) 5.82% –9.46%

Real estate (FTSE NAREIT) 13.41% 22.25%
 

 A recession is a significant decline in economic activity spread across the economy, last-

ing more than a few months, normally visible in real GDP, real income, employment, 

industrial production, and wholesale-retail sales. A recession begins just after the econ-

omy reaches a peak of activity and  ends as the economy reaches its trough. Between 

trough and peak, the economy is in an expansion. Expansion is the normal state of the 

economy; most recessions are brief, and they have been rare in recent decades. The 

National Bureau’s Business Cycle Dating Committee places particular emphasis on 

two monthly measures of activity across the entire economy: (1) personal income less 

transfer payments, in real terms, and (2) employment. In addition, the committee 

refers to two indicators with coverage primarily of manufacturing and goods:  

(3) industrial production and (4) the volume of sales of the manufacturing and whole-

sale-retail sectors adjusted for price changes. The committee also looks at monthly 

estimates of real GDP such as those prepared by Macroeconomic Advisers (see http://

www.macroadvisers.com). Although these indicators are the most important mea-

sures considered by the NBER in developing its business cycle chronology, there is no 

fixed rule about which other measures contribute information to the process.
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increased shocks to equity valuation often spill over to other markets, and 

that liquidity-driven selling and the reduction in liquidity provision in the 

capital market are often systemic across various asset classes. Not surpris-

ingly, equity bear markets and recessions can often have significant over-

laps and have similar influences on asset return characteristics.

In this chapter, we argue that the countercyclical nature of equity market 

volatility (high volatility in down markets), combined with positive cor-

relations between asset class volatilities, has a significant impact on opti-

mal portfolio allocation. We first present a simple model of time-varying 

asset class volatilities. We then illustrate how to calibrate the model and 

integrate the method with the classic mean-variance approach. We com-

pare our proposed optimal portfolio solution to the standard static port-

folio solution where the time-varying volatility is ignored and argue that a 

dynamic mean-variance approach is superior to the standard approach.

10.2 LITERATURE REVIEW ON MARKET VOLATILITY
Before we introduce our model on cyclical equity market volatility, we 

explore the literature on market volatility and examine the drivers for the 

level and variation for market variance. Using a simple present value model, 

Shiller (1981) finds that the level of stock market volatility is too high rela-

tive to the variation in the underlying micro and macro fundamentals. 
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Specifically, he finds that the changes in real dividends and real interest 

rates cannot explain the level of market volatility. Studies that examine 

the variation in market volatility also conclude that standard macro fac-

tors and corporate characteristics cannot explain the time-varying nature 

of equity volatility. Specifically, Officer (1973), Black (1976), and Christie 

(1982) find that financial leverage only weakly explains the variation in 

market volatility. Schwert (1989) finds that standard macroeconomic vari-

ables, such as inflation, money growth, and industrial production, also do 

not sufficiently explain the variation in the market volatility. Therefore, 

nonfundamentally based volatility drivers likely exist and may have better 

explanatory powers.

Behavioral finance literature points to information herding (cascad-

ing), noise trading, and liquidity-driven transactions as potential rea-

sons for the higher level of market volatility, relative to the volatility in 

the underlying information flow. Theoretical work by Banerjee (1992) and 

Bikhchandani et al. (1992) suggests that information cascade can lead to 

price overshooting, which would inject additional volatility, in excess of  

the contribution from the existing volatility drivers. Campbell and Kyle 

(1993) and DeLong et al. (1990) study the effect of noninformed trading 

(uninformed speculation by noise trader or portfolio trading driven by 

liquidity shocks to the investor). They suggest that these uninformed trad-

ing activities create a new source of shocks to prices. This additionally 

creates excess equity market volatility.

The return predictability literature and the value premium literature 

offer rational pricing models as well as behavioral explanations for time-

varying market volatility. Ferson and Harvey (1991) find that expected stock 

market return and volatility vary over time in a predictable way. Lettau and 

Ludvigson (2001), Chordia and Shivakumar (2002), and Zhang (2005) offer 

models that relate variation in aggregate risk aversion to decline in aggre-

gate wealth. Intuitively, a period of negative returns driven by shocks to fun-

damentals will lead to aggregate wealth destruction; this can increase the 

aggregate risk aversion, which further decreases prices today and increases 

forward-looking return and increases volatility contemporaneously.

Equilibrium models of cyclical volatility are often difficult to apply; 

in addition, they often do not match well to data or offer insufficient 

degrees of freedom for empirical calibration. For this reason, statisti-

cal models are often relied upon for modeling stochastic volatility; these 

statistical models can be used with great flexibility for asset pricing or 

asset allocation exercises. Various statistical volatility models have been 
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developed specifically to capture and measure time-varying volatilities. 

Engle (1982) and Bollerslev (1986) provide the basic framework for such 

modeling with the ARCH/GARCH process (autoregressive conditional 

heteroskedasticity/generalized autoregressive conditional heteroskedas-

ticity). The technique has been applied widely to the estimation of the 

time-varying equity market volatility. Recent researches have proposed 

new techniques that could improve forecasting power through the usage 

of high-frequency tick-by-tick data. Anderson et al. (2001, 2003, 2005) 

use 5-minute realized volatility with a vector autoregessive model of log 

standard deviation, which eliminates much of the serial dependence in 

the volatilities and appears to outperform the traditional ARCH/GARCH 

specifications. Ghysels et al. (2006) also use higher-frequency data but 

propose a regression model using a beta weighting function to estimate 

and forecast volatility. Their model appears to be easier to parameterize 

and provides better forecasts against traditional ARCH/GARCH mod-

els. Vasilellis and Meade (1996) show that the implied stock volatil-

ity from option prices is an efficient forecast for future volatility. Poon 

and Granger (2003, 2005) show that option-implied volatility provides 

the best forecast for future volatility; they used option-implied volatility 

data from the last 20 years and compare against volatility models such 

as time-weighted volatility, rolling volatility, ARCH/GARCH, and other 

stochastic volatility models.

So why should we care about time-varying market volatility? If we do 

not properly characterize the time-varying nature of volatility and covari-

ance for the various capital markets we invest in, our asset pricing model 

would be flawed, our portfolio allocation would be suboptimal, and our 

 risk assessment would be incorrect. Bentz (2003) and Bollerslev et al. 

(1988) show that using a time-varying covariance estimate (beta estimate) 

can improve the application of the capital asset pricing model for fore-

casting returns. Horasanh and Fidan (2007) show that applying GARCH 

estimates for volatility can improve portfolio allocation efficiency. Blake 

and Timmermann (2002) find evidence that some pension funds seem to 

vary asset allocation to take advantage of time-varying asset class vola-

tilities and risk premia. Myers (1991) finds that using GARCH models 

can improve the effectiveness of hedging fixed-income exposure relative 

to traditional regression approach with constant variance. Baillie and 

Myers (1991) extend the study into the commodities market and find that 

GARCH-based hedging provides a substantial improvement in risk reduc-

tion effectiveness.
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10.3 A SIMPLE MODEL OF TIME-VARYING VOLATILITY
We introduce in this section a simple model that captures the counter-

cyclicality nature of asset class volatilities. This approach is more intui-

tive and more tractable than other models of time-varying volatilities and 

leads to greater intuition and ease of calibration. The world is assumed to 

follow a two-state, two-stage Markov chain. The world can either be in a 

bull market state (U for upmarkets) or in a bear market state (D for down-

markets) at time . For example, if we are currently in a bull market, for  

the next period, the economy can either transition into a bear market with 

the transition probability  or remain in the current bull state with 

probability  1  . If we transition to the bear market state at 

time  1, then for  2, we could transition to the bull market state with 

probability  or remain in the bear market state with probability 1  

. Figure 10.2 illustrates graphically this Markov process.

Following the empirical results shown in Tables 10.1 and 10.2, the bull 

market state (U) is characterized by lower volatilities and higher returns 

for the asset classes, while the bear market state (D) is characterized by 

high volatilities and lower returns. We let  denote the vector of bull 

market volatilities { 1 2, , ,K } and  denote the vector of bear mar-

ket volatilities { 1 2, , ,K }; note that we assume an investment oppor-

tunity set with assets. Similarly,  and  denote the vector of bull 

and bear market mean returns { 1 2, , ,K } and { 1 2, , ,K }.

Bull

Bear

Current state

Time 0 Time 1

Future state

PBull−>Bear

PBull−>Bear

PBull−>Bull

PBull−>Bull is the probability of starting in a bull market state and remaining in
the bull market state next period.

is the probability of starting in a bull market state and transitioning
to the bear market state next period.

or

FIGURE 10.2 A Markov two-state (bull/bear market) transition model.
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10.3.1 Model Parameter Calibration

We now illustrate how to calibrate this Markov model to data. First, we 

classify our time period into equity bull and bear market periods (using 

the common definitions of bull and bear markets presented earlier).  

For the data time span T, we decompose T into nonoverlapping bull/bear  

time segments as illustrated in Figure 10.3. We denote the bull market 

time segments as { 1 2, , ,K } and the bear market time segments as  

{ 1 2, , ,K }, where 1 1 . The average duration for an  

equity bull market is empirically estimated by 1
1 , and the 

average duration for a bear market is 1
1 . Using S&P 500 return 

data from January 1976 through June 2008, we have encountered four 

bear market cycles, each averaging about 17 months, whereas the four bull 

market cycles average about 81 months each.*

To compute the Markov transition probabilities  and ,  

we make use of the derived relationships, where 1 1  with 

* Certainly, the more data that are used in the estimation, the more reliable and robust the 

estimation. Because there have not been many bull/bear market cycles, the estimation error 

will always be a concern when applying this calibration exercise.

1

10

100

Jan-79 Jan-84 Jan-89 Jan-94 Jan-99 Jan-04

Log S&P 500 cumulative return

2000 Apr-
2002 Sep

1987 Sep-
1987 Nov

1980 Dec-
1982 Jul

D denotes a bear (down) market cycle

U denotes a bull (up) market cycle

τ3
D =

τ4
U

τ3
Uτ2

U

τ2
D =

τ1
U

τ1
D =

FIGURE 10.3 Identifying bear market periods (January 1979–December 

2007).
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1  and 1 1  with 1  (see Meyn and 

Tweedie (1993) for a complete theoretical treatment on Markov models). 

Again, using data from 1976 through June 2007, conditioning on start-

ing in a bull market, the probability for transitioning to a bear market 

by next year is 15%, and the probability for remaining in a bull 

market next year is 85% . Similarly, conditioning on starting in a 

bear market, the probability for remaining in a bear market next year is 

27%, and the probability for transitioning to a bull market next 

year is 73% .

For each asset class, the time series of returns  { 1 2, ,..., } is divided into 

bull market returns { , , }1 2 K  and bear market returns { , , }1 2 K .  

The return volatility and expected return corresponding to the bull and 

bear market cycles are then estimated by the subsample volatility and aver-

age return. Using S&P 500 data from 1976 through 2007, the bull market 

volatility is 13% while the bear market volatility is 17%. The bull market 

average return is 21% versus 19% for the bear market average.

10.4 OPTIMAL PORTFOLIO ALLOCATION
With the economy characterized and calibrated as a two-state Markov 

chain, we are now ready to examine the optimal portfolio exercise. Like 

the classic Markowitz portfolio analysis, we are seeking a set of portfo-

lio weights that maximize the portfolio expected return given a volatil-

ity constraint. The portfolio optimization requires that we supply the 

expected returns for all of the assets in the investment opportunity set and 

the covariance matrix governing returns. In the context of our two-state 

Markov model, first, we must determine the current state of the economy 

before we can compute these asset return moments. This can be a difficult 

exercise, as we need to identify whether we are currently in a bull or bear 

market state; there may be no clear evidence suggesting a bull or bear mar-

ket condition. In the next section, we discuss how to refine the model to 

overcome this uncertainty in our knowledge regarding the current state of 

the economy. We continue with the basic model for the time being.

Next, we need to use the calibrated model parameters from the previ-

ous section to compute the moments required for mean-variance optimi-

zation. Again, recall that we have  assets. In our simple model, we have 

two possible future states with conditional probability  of transition-

ing to a bull market from the current state  and  of transitioning to 

a bear market. The expected return vector and covariance matrix depends 

upon the future regime. Let  and  each be a 1  vector of expected 
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returns, and  and be the covariance matrix for the bull and bear 

states, respectively  The vector of expected asset returns given that we are 

in state  is ( ) .

The derivation of the covariance term is a bit more complex. We are 

interested in computing ( ) [( ) ( )| ]. From the law of iter-

ated expectations:

 [( ) ( )| ]

 = [( ) ( )| ] [( ) ( )| ]

 = [( ) ( )| ] [( ) ( ))| ]

To simplify the above expression, we note

 
[( ) ( )| ]

 = [( ( )) ( ( ))]]

 = 2 ( ) ( )

The covariance matrix then becomes:

 
( ) ( ) ( )2

        
2 ( ) ( )

The mean-variance optimal portfolio is then determined by the standard 

Markowitz optimal portfolio solution taking ( ) and ( ) as inputs. 

Since the expected returns and volatilities are assumed to be time varying, 

the portfolio optimization exercise needs to be revisited frequently as the 

current state of the market changes. The resulting mean-variance optimal 

portfolio is then state dependent rather than static (as in the traditional 

solution). In particular, when the economy transitions from a bull market 

phase with low volatility to a bear market phase with high volatility, the 

optimal portfolio will also change and will shift to reduce risk in the bear 

market state.

10.5 SIMPLE MODEL EXTENSION
We noted previously that it may be difficult to determine exactly the 

current state of the economy. Generally, one does not know with a high 

degree of certainty whether one is in a bull market or bear market state 
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(until after the market has fully run its course, which would eliminate the 

information advantage of this approach).

The lack of perfect knowledge about the current state means that we 

need to adjust for this uncertainty in our calculation. Hsu and Kalesnik 

(2008) show the benefits of properly adjusting for model uncertainty in 

portfolio construction and risk management. Suppose that there is a prob-

ability that we are in a bull market environment, and 1  that we 

are in a bear market environment. These probabilities will likely depend 

on a set of macroeconomic observables; as the macro variables change over 

time, the probabilities will also shift. The computation of the asset class 

return moments becomes more involved now; first, we need to repeat the 

exercise described in the last section for the bull and bear market states 

independently. Then we formulate a model for characterizing  and .  

The uncertainty-adjusted moments for the mean-variance optimization 

are then computed as ( ) ( ) and ( ) ( ). 

Finally, the mean-variance optimal portfolio is determined by the stan-

dard Markowitz optimal portfolio solution.

Since the probabilities  and  change in response to the changes 

in the macroeconomy, the optimal portfolio also changes with observed 

changes in the macro variables. As we observe signs that suggest greater 

likelihood that we have entered a bear market,  will increase and the 

optimal portfolio will take on a lower risk posture given the potentially 

higher volatility and lower forward returns.

10.6 CONCLUSION
Equity market volatility is time varying, as is the equity risk premium. 

Additionally, other risky asset volatilities appear to also be time varying 

and positively correlated with equity market volatility. Specifically, we find 

that volatilities for various risky asset classes tend to be low in equity bull 

markets and high in equity bear markets. Capturing this time-varying 

characteristic of joint asset class volatilities is important in order to prop-

erly execute mean-variance portfolio optimization.

We introduce in this chapter a simple and intuitive model of time- 

varying volatility and risk premia using the Markov state switching 

modeling technique. In our simple model, the state of economy switches 

between bull and bear markets. Asset classes have distinct volatility and 

risk premium characteristics in the two states of the market. By properly 

formulating the conditional moments, the traditional mean-variance 

optimization becomes a conditional optimization, and the traditional 
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static optimal portfolio solution becomes a dynamic one. This results in a 

more efficient asset allocation, which takes advantage of the time-varying 

nature of market risk characteristics.

Applying this simple modeling technique improves portfolio charac-

teristics over time. In the traditional constant volatility and risk premium 

model, optimal portfolio allocation remains constant over time. The state 

switching modeling approach has significant advantages when market 

volatilities and risk premia are time varying. Specifically, when we are in a 

state of bull equity market, where volatility has been low, properly assess-

ing the probability for transitioning into a bear equity market, where the 

volatility would be substantially higher, would lead to a risk reduction 

portfolio. Reciprocally, in a bear market state, this approach would sug-

gest greater risk taking. Relative to classic constant volatility models and 

static portfolio solutions, the time-varying approach with its associated 

dynamic optimal portfolio solution leads to better long-term portfolio 

efficiency and therefore a higher portfolio Sharpe ratio.
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11.1 INTRODUCTION
The application of portfolio optimization according to Markowitz (1952, 

1959) traditionally proceeds as follows. In a first step, input parameters of the 

optimization algorithm (expected returns and covariance matrix) are esti-

mated from a time series of historical returns (i.e., sample means and cova-

riances). The second step then applies these estimates in the mean-variance 

optimization in order to obtain optimal portfolio holdings. It is well known 

that using sample estimates of the mean and covariance to obtain optimal 

portfolio allocations over a large number of assets is problematic (Michaud, 

1989; Green and Hollifield, 1992; Britten Jones, 1999). The resulting portfo-

lios usually contain extreme long and short positions, are poorly diversified, 

and produce a poor out-of-sample performance. Michaud (1989) argues that 

the mean-variance optimization has a tendency to maximize the effects of 

errors in input parameters. Moreover, small changes in input parameters 

(in particular in expected returns) can lead to large changes in optimal 

portfolio weights (e.g., Jobson and Korkie, 1980; Chopra and Ziemba, 1993). 

Within the mean-variance framework, several methods have been proposed 

to reduce the sensitivity of optimal portfolio weights with respect to varia-

tions of input parameters. The first line of research modifies the estima-

tion procedure for input parameters (e.g., Jorion, 1986; Black and Litterman,

1992). The second line adjusts the selection procedure for optimal security 

weights of the mean-variance optimization method, for example, by impos-

ing financially meaningful constraints (Frost and Savarino, 1988).

This chapter contributes to the first line. We argue that the cause for the 

potential contradiction between the theoretical recommendation of quite 

sensitive portfolio weights and the practical finding of their comparatively 

high stability does not lie in properties of the Markowitz portfolio the-

ory in itself. In contrast, this contradiction can be resolved, when return 

expectations are treated as endogenous in mean-variance optimization. 

Endogenous returns are then modeled on the basis of an inverted divi-

dend discount model. Mean-variance optimization can then account for 

changes in return expectations that are either common knowledge (endog-

enous expectations) or insider knowledge (exogenous expectations). This 

should have a different impact on both the investor’s optimal portfolio 

and the market portfolio. In addition to these two extreme cases, there 

might be situations termed as mixed cases, with the investor’s expecta-

tions being only partially reflected by corresponding changes in dividend 

expectations of the capital market as a whole.
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Our approach leads to several conclusions. First, we show that real-

life sensitivity of portfolio weights can be explained by investors acting 

according to the Markowitz portfolio theory, with their changes in return 

expectations being reflected by altered market expectations to a good deal. 

Thus, investors’ expectations seem to reflect market’s expectations to some 

extent. Second, volatility of investors’ portfolio weights is still greater than 

seems to be reasonable. The higher volatility is caused by investors’ divi-

dend expectations that deviate from market expectations (but need not 

be of superior quality). The reason for the higher volatility of portfolio 

weights is, however, not the application of the classical Markowitz portfo-

lio optimization per se. We show this by introducing an indicator variable

 in the dividend discount model, with  > 1 (  < 1) characterizing situ-

ations in which an investor is more (less) confident than the market as a 

whole regarding future dividends. Third, we are able to utilize this indica-

tor variable to define easy-to-follow portfolio selection timing strategies 

like momentum or contrarian behavior for asset allocation problems and 

apply them to the capital markets of Germany, Japan, the UK, and the 

United States.

The rest of our chapter is organized as follows. Section 11.2 reviews 

the common Markowitz optimization approach with exogenously given 

expected returns, derives the approach with endogenous returns, and 

presents the mixed case. Section 11.3 introduces the quantitative indicator 

variable , which may be used as a starting point for the adjustment of 

expectations. Section 11.4 presents numerical and empirical evidence that 

there is no contradiction between portfolio weight sensitivity implied by 

the simple Markowitz approach and real-life observable investor behav-

ior. Moreover, the efficiency of different timing strategies in asset alloca-

tion problems based on variations of  over time is examined for different 

national capital markets. Section 11.5 concludes the chapter.

11.2 PORTFOLIO SELECTION WITH EXOGENOUS 
RETURNS AND ENDOGENOUS RETURNS

11.2.1 The Exogenous Case

We consider an investor with preference function ( , ) .2 20 5  

defined in expected portfolio return  and corresponding return variance 
2. She invests her wealth for one period and can borrow or lend money at 

a certain interest rate  Additionally, she can invest in  risky assets with 
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expected one-period return  and risk  (  = 1, , ). Then, optimal 

portfolio weights are given by (e.g., Campbell and Viceira, 2002)

 

1
11

1

( ), , , ,K

 

(11.1)

with 1  being an element ( , ) of the inverse of the variance-covariance 

matrix of returns. 0 11 denotes the relative holding of the risk-

free asset  = 0. The pre fe rence parameter  enters the optimal portfolio 

only via the scalar term 1/ . In Equation (11.1), expected returns are given 

exogenously, and it is implicitly assumed that the supply of all assets is infi-

nitely elastic. A higher demand for asset  would thus not change expected 

one-period return .

To become more specific we relate expected returns to prices by the 

assumption that market participants form their return expectations accor-

ding to the cash flow (or dividend) discount model (e.g., Gordon, 1962):

 

ˆ
)

,
(

 
(11.2)

with ˆ  as the estimation for expected one-period return of risky security 

 (  = 1, , ), ( )  as the expected cash flow for the end of the period, 

 as the constant expected cash flow growth rate, and  as the price of 

security . One weakness of the dividend discount model (Equation (11.2)) 

is the assumption of a constant growth rate for dividends that could be 

relaxed by using the dynamic dividend discount model of Campbell and 

Shiller (1988).

We are particularly interested in the consequences of changing cash 

flow expectations. To this end, let cash flow expectations for security

 change from ( ) to ( ) ( ), with ( ) 1. Inserting 

Equation (11.2) in Equation (11.1) and replacing ( ) with ( ) ( ) 

yields

 

1
1

( ) ( )

1

1, , , .K

 

(11.3)

In order to reduce complexity we will mainly focus on the classical asset 

allocation problem with security  = 1 denoting stocks and security  = 2 

standing for risky bonds.
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Moreover, without loss of generality, we restrict ourselves to changes in 

cash flow expectations with respect to asset 1. As, for given prices, such a 

change in cash flow expectation immediately carries over to a change in 

return expectations 1, we look at the following derivatives for compara-

tive static analysis:

 

1

1
11

1 2
2

1
2

2
2

12
2

2

1

1 1
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1 1
021

1 12

1
2

2
2

12
2

,

 

(11.4)

with the latter inequality being valid in the (plausible) case of a positive 

return covariance 12 between asset classes 1 and 2, i.e., positively corre-

lated stock and bond returns. Not very surprisingly, better return expecta-

tions regarding stocks will  lead to a greater stock investment 

and reduced purchases of risky bonds.

11.2.2 The Endogenous Case

While the above approach can be followed by an individual investor, this 

usually does not hold true for a representative investor representing total 

capital market behavior, as market equilibrium conditions and counter-

vailing price-return effects due to investors’ demand have to be consid-

ered. Therefore, expected returns must be made endogenous.

Total initial wealth  is identical to total market capita liza tion of risky 

securities and the investment in the riskless asset. Capital market equilib-

rium requires ( ) ,  where ( )  denotes the market weight of asset 

  = 0, , . For each risky security  = 1, , , the total number of shares 

issued shall be one, while—for the sake of simplicity—we assume a net 

supply of the riskless asset of zero. Moreover, in equilibrium we thus must 

have : ( , , ) ,1 1K  since investors’ initial wealth is now 

determined by the current market value of all (risky) assets. Therefore, the 

equilibrium price of a share in security  is

 

( )

1  

(11.5)
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Moreover, we are once more especially interested in consequences of 

changing cash flow expectations ( ) 1. With this as well as Equations 

(11.2) and (11.5), Equation (11.1) becomes

 

( )

( )

( )

( )1
1

1

1

1, , , .K

 

(11.6)

In Equation (11.6), expected returns are determined endogenously, as 

a change in optimal portfolio weights affects expected returns through 

Equations (11.2) and (11.5) via .

Again, we focus on the simple two-asset case and allow only for 

alterations in cash flow expectations regarding security 1, i.e., stocks. 

We now look at changes of optimal portfolio holdings caused by modi-

fications in cash flow expectations. Thereby, these alterations in cash 

flow expectation are to be assumed in such a way so as to imply a new 

(equilibrium) value of 1 that is identical to a certain reference situation 

in the exogenous case with the same change in expected stock return. 

To be more precise, we thus look at two values for 1
( )  in the exog-

enous case and the endogenous case that lead to the same new expected 

stock return 1. For such a situation changes in portfolio holdings in 

the endogenous case are determined by the signs and scale of the fol-

lowing derivatives:
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(11.7)

In the endogenous case, we will typically have ∂ 2/∂ 1 > 0, as the price 

for risky bonds will  decrease if stock and bond returns 
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are sufficiently positively correlated so that both security classes inter-

act as substitutes. In fact, with a net supply of zero for the riskless asset 

we can immediately conclude that the partial derivatives 1 1
( )/  and 

2 1
( )/  must sum up to 1, as we always have 1 2 1( ) ( ) . From this 

and Equation (11.7) we can calculate ∂ 2/∂ 1 as
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(11.8)

with 12 as the correlation coefficient between stock and bond returns. 

Without loss of generality we may (reasonably) assume 1 > 2 so that the 

denominator of the last fraction in Equation (11.8) immediately becomes 

positive. Then, for sufficiently high positive correlation 12 (> 2/ 1) the 

corresponding numerator in Equation (11.8) gets negative, thus implying 

∂ 2/∂ 1 > 0.

The finding ∂ 2/∂ 1 > 0 for sufficiently high positive correlation between 

stock and bond returns indicates that, in such a situation, for constant 

prices increasing stock return expectations will result in an excess demand 

for stocks and an excess supply of risky bonds that lead to a falling price 2 

and a rising expected bond return 2. As a consequence, a certain change 

in expected security return 1 will lead to less sensitive reactions of optimal 

portfolio weights 1 1
( )  and 2 2

( ).  The economic intuition behind 

this finding is that an increasing expected return 2 due to a falling price 2 

weakens the incentive to portfolio revision in the wake of rising values 1. 

This effect should be distinguished from the straightforward countervail-

ing consequences of an increasing value 1 for a certain modification 1
( ) 

of expected cash flow on stocks in the endogenous case compared to the 

exogenous case with the same value 1
( ). Certainly, a  varia-

tion of stock cash flow expectations leads to smaller amounts of portfolio 

revisions in the endogenous case than in the exogenous one, as changes 

in expected stock returns now will differ in both situations. However, the 

derivatives according to Equation (11.7) imply the more interesting and 

practically relevant result that even for a given change in expected stock 
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return, portfolio revisions in the exogenous case will be more pronounced 

than in the endogenous one. We will illustrate this finding via a numerical 

example in Section 11.2.3.

11.2.3 The Mixed Case

The endogenous case can be interpreted as a situation where the investors’ 

cash flow expectations as represented by 1
( )  are identical to market cash 

flow expectations 1
( ) : 1 1

( ) ( ). On the contrary, the exogenous case 

can be described as a situation with 1 1( ) and 1 1( ) . Certainly, one can 

imagine mixed cases with 1 11 1
( ) ( ) .

In fact, one may think of investors’ expectations being the result of the 

aggregation of changes in autonomously expected dividends, 1
( ),  as well 

as changes in market expectations, 1
( ) . Let us assume the simple case of 

1
( )  being just a weighted arithmetic mean of 1

( )  and 1
( ):

 1 1 11( ) ( ) ( )( ) .  (11.9)

Apparently,  = 0 describes the endogenous case, while  = 1 in connec-

tion with 1 1( )  implies the exogenous case. However, based on Equation 

(11.9) it is possible to analyze mixed cases with only a fraction of the inves-

tor’s (original) expectation based on individual assessments, and the other 

fraction being based on market expectations.

In such a mixed case one has to proceed by two steps. First, Equations 

(11.5) and (11.6) (for  = 2) have to be used in order to determine new 

equilibrium holdings of stocks and bonds as well as their equilibrium 

prices. Thereby, 1
( )  in Equation (11.6) must be replaced with 1 1( )  

and 2
( )  is set to 1. Second, for these new equilibrium prices 1 and 2, 

Equation (11.3) of the exogenous case has to be applied. If we especially 

look at a situation with 1 1 1( ) ( ) , we will get greater individual stock 

holdings than in the purely endogenous case with the same value for 1
( )

but 1 1
( ) ( ).  The reason is that in the former case one can divide changes 

in dividend expectations into two terms 1
( )  and 1

( ).  Portfolio adjust-

ment induced by the first term in connection with the identical change 

in market expectations is determined by Equation (11.6), but additional 

individual portfolio changes as a consequence of 1
( )  follow according to 

Equation (11.4), thus leading to  greater stock holdings (and 

smaller bond holdings) than in the purely endogenous case.
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11.3 PORTFOLIO OPTIMIZATION  
AND INSIDER KNOWLEDGE

Obviously, the quotient

 

1 1 1
1

1

1: / ( )( ) ( )
( )

( )
 

(11.10)

can be interpreted as some measure of (subjectively felt) insider knowl-

edge on the investor’s side. While  = 0  1 = 1 stands for no insider 

knowledge at all, the relative importance of insider knowledge increases 

as  approaches 1, and 1 thus 1 1
( ) ( )/ .

 To be more precise: if we observe 

situations with 1 smaller than 1, an investor overestimates reductions in 

expected cash flows and underestimates increases in expected cash flows 

in comparison to the market assessments, and vice versa. In short, the 

greater the deviation of 1 from 1, the greater the relevance of the inves-

tor’s presumed insider knowledge compared to market expectations.

In fact, Equation (11.10) may be used as a starting point for a new kind 

of a portfolio management approach. Thereby, for the sake of generality, we 

define 2 for bonds in the same ways as 1 for stocks. Consider now a cer-

tain incoming information that may induce market participants to mod-

ify their cash flow expectations. The amount of this change in dividend 

expectation can be calculated from resulting price changes. To this end, for 

given new prices and thus market portfolio structure ( , , , )( ) ( )
1 2 1 2 ,  

it is only necessary to solve Equation (11.6) with respect to variables ( ) 

(that replace variables ( ) ).

In the special two-asset case we get
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( ) ( )

( )
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11
11
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2
1( ) ( , , 22, ).

  

  (11.11)

Taking the definitions of 1 and 2 into account and Equation (11.11) 

for stocks and bonds, Equation (11.3) becomes

 

i
1

1

2

1 2, , ,

 

(11.12)
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with parameter  being defined in the following way:
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(11.13)

Obviously, for given parameter values 1 and 2, optimal portfolio 

weights 1 and 2 for stocks and bonds can be determined independently 

of risk aversion parameter  and expected cash flows for stocks and divi-

dends. We just need estimators for return variances and the covariance 

and for growth rates of stock and bond cash flows in order to apply the 

portfolio selection rule according to Equation (11.12) by choosing investor-

specific values 1 and 2. In what follows, we consequently set 2 equal 

to 1, implicitly assuming that it is not possible to outperform the capital 

market with respect to bond cash flow estimates, as there is too little vola-

tility in the market (corresponding to our prior statement of being mainly 

interested in changing dividend expectations). The last assessment will be 

verified in the empirical part of our chapter, below.

However, we are able to construct strategies for time-varying deter-

minations of 1. In particular, as is well known from the empirical liter-

ature on asset pricing, capital markets may underreact in the short run, 

thus giving investors opportunities to follow a so-called momentum 

strategy (see, for example, Jegadeesh and Titman, 1993). The conceptual 

framework outlined in this paper now offers the option for a new kind 

of such a strategy. By the help of Equation (11.11), it is possible to com-

pute whether market cash flow estimations rise or fall from one period 

to another. To establish a momentum strategy, an investor should apply 



Robust Portfolio Selection with Endogenous Expected Returns < 219

1 > 1 in Equations (11.12) and (11.13) for rising market expectations 

and 1 < 1 for falling ones. Furthermore, by exchanging 1 > 1 with 

1 < 1 and vice versa, it is also possible to define a contrarian strategy 

that could also be advantageous for longer portfolio holding periods (see 

DeBondt and Thaler (1985) for the winner-loser effect and Lakonishok  

et al. (1994) for the glamour effect as possible theoretical backgrounds 

for contrarian strategies). Additionally, simple strategies with fixed val-

ues 1 ≠ 1 over all periods under consideration could be examined. In 

what follows we want to give numerical and empirical illustrations of all 

our results of Section 11.3. Thereby, we will also return to the analysis of 

the performance of momentum and contrarian strategies as defined in 

this subsection.

11.4 NUMERICAL AND EMPIRICAL ANALYSIS
11.4.1 Numerical Analysis

We start by analyzing the European capital market situation at the begin-

ning of November 2004 as our base scenario. The annual risk-free rate, 

approximated by the average 1-year yield of government bonds in the Euro 

area, was  = 2.3%. We consider two asset classes (  = 2):  = 1 denotes 

stocks and  = 2 denotes bonds in general. According to Datastream, the 

total market capitalization of traded stocks in Europe amounted up to 

€4,841 billion, while the total market capitalization of traded bonds was 

€2,990 billion. As pointed out earlier, for simplicity, we assume that the 

(net) investment in the risk-free asset is zero. Therefore, total initial wealth 

W in our base scenario equals €7,831 billion. Expected cash flows at the 

end of the period (November 2005) are assumed to be €152 billion for 

stocks and €115 billion for bonds (approximated from realized cash flows). 

Expected growth rates for dividends on stocks are set to 6% (approxi-

mated from the historical growth rate over the last 20 years). Expected 

growth rates for cash flows on bonds are assumed to be 0%. According 

to Equation (11.2), we estimate ˆ .1 9 14 % for stocks and ˆ .2 3 87 % for 

bonds. Risks of stocks and bonds are estimated by the implied volatility of 

option prices: 1 15 % (approximately the implied volatility of DJ Euro 

Stoxx 50 index options) and 2 4 % (approximately the implied volatil-

ity of Bund future options). Preference parameter  and covariance 12 

are implicitly calculated according to Equation (11.6) by assuming that the 

current capital market situation is in equilibrium. This yields a correlation 
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between stock and bond returns of 79.38% (greater then 2/ 1 = 26.67%) 

and a preference parameter  of 4.3497.

We now compare optimal portfolio weights given by Equations (11.1) and 

(11.6), respectively, by changing expected returns of stocks. We assume that 

investors form return expectations according to Equation (11.2). Thereby, 

the expected cash flow of stocks is varied by setting ( ) €1 152 billion, 

with    = {0.5, 0.8, 0.9, 1.1, 1.2, 1.5, 2}. For each    optimal port-

folio weights are calculated for the exogenous case (Equation (11.1)) and 

the endogenous case (Equation (11.6)). Panel A of Table 11.1 displays the 

results of the exogenous case. As expected, portfolio weights take extreme 

values and react in a very sensitive way to changes in expected returns. 

For example, if expected cash flows are estimated 100% higher than in 

the base scenario (resulting in an expected return of 12.28%), the optimal 

weights in stocks and bonds equal 148.53% and −219.96%, respectively. 

For the endogenous case, portfolio weights react by far less sensitively to 

changes in input parameter  (Panel B). If expected cash flows are esti-

mated 100% higher than in the base scenario, this leads to an optimal 

portfolio of 72.65% in stocks and 27.35% in bonds.

Certainly, one might deem the findings of Table 11.1 not to be too 

surprising, because it is straightforward to see that for given changes 

in  expectations the countervailing price effects of the endog-

enous case will partially undo changes in expected , and thus 

lead to more moderate portfolio adjustments than in the exogenous 

case. However, portfolio adjustments are actually more moderate in 

the endogenous case than in the exogenous one even if we examine the 

same change in expected stock return, as has been shown in general in 

Section 11.3. In fact, our numerical example might highlight this finding 

as well.

For example, in the exogenous case an expected stock return of 10.71% 

yields  = 1.5. In the endogenous scenario, the same expected stock 

return of 10.71% corresponds to  = 3.9765. Optimal shares of stocks 

and bonds amount to 82.16% and 17.84% (endogenous case) compared to 

105.17% and −90.88% in the exogenous case. Again, the endogenous case 

is accompanied with quite modest portfolio adjustments, while in the 

exogenous case extreme weights are observed. The cause for this discrep-

ancy in spite of an identical expected stock return lies in the alteration 

of expected bond returns. In the endogenous scenario, expected bond 

returns rise from 3.87% to 4.13% as a consequence of falling bond prices 
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in equilibrium, while in the exogenous case expected bond returns are 

not changed.

11.4.2 Empirical Analysis
11.4.2.1 The Efficiency of German Special Funds’ Portfolio Selection
Equation (11.7) implies that changes in portfolio weights should be more 

volatile for a portfolio manager with insider knowledge about future 

cash flows, and thus future returns and the standard deviation of port-

folio weights should be larger for a specific portfolio manager (or a 

group of specific managers) than for the market, i.e., ( ) ( )( ) ( ) ,  

where ( )( )  is the standard deviation of weights of portfolio manager P 

and ( )( )  is the standard deviation of weights of market . In addition 

to our numerical example we want to examine this implication for the 

European capital market empirically. We analyze portfolio weights for a 

specific group of German investors, in particular institutional investors 

that invest in special investment funds (Spezialfonds). We cover portfolio 

weights of special funds over the period 1973–2005, looking at yearly data 

(as of January 1). Data are provided by Deutsche Bundesbank. Portfolio 

weights for the market are approximated by Datastream Total Market 

Indexes, for both equities and bonds. Figure 11.1 displays the weights over 

the sample period. It can be seen that bond and stock weights of the mar-

ket and that of the special funds change in the same direction, although 

the average weight in stocks (bonds) is higher (lower) for special funds 
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FIGURE 11.1 Development of the market portfolio and portfolios held by 

managers of special funds over time.
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than for the market.* In fact, the average weight of stocks is 36.17% for 

special funds and only 22.70% for the market.

The time-series standard deviation suggests that special funds change 

their weights in a more volatile manner than the market. For the special 

funds, the standard deviation amounts to ( ) ( ) .( ) ( ) 7 11 %, for 

the market, and the standard deviation equals ( ) ( ) .( ) ( ) 5 40%.  

Nevertheless, these standard deviations are rather similar so that we might 

conjecture once again the higher relevance of the endogenous case than 

the exogenous one.

However, only if special funds indeed had superior forecasts of future 

returns (future cash flows) compared to the market would the higher 

volatility of portfolio weights according to Equation (11.7) be justified. To 

investigate this implication, we calculate the Sharpe ratio for returns pro-

duced by special funds and the market. Over the sample period, the aver-

age special fund has achieved an average yearly excess return of 2.30%; 

the average yearly excess return for the market is 2.00%. Thus, special 

funds achieve a higher expected excess return than the market. However, 

the higher excess return cannot be explained by a superior knowledge 

of special fund managers, but rather with a higher risk of the portfolio 

composition of special funds. In particular, the standard deviation of the 

excess return of a special fund is 10.99%, and thus substantially higher 

than that for the market, which is 7.87%. Hence, on average, special funds 

take on more equity risk than the market does. As a result, the Sharpe 

ratio for the market is almost five percentage points higher than the 

Sharpe ratio for the special fund (i.e., ( ) . %25 38  ( ) . %20 96 †).  

Although special funds adjust their portfolio weights with higher volatil-

ity than the market, they produce an inferior risk/return trade-off. As a 

* Investment in the risk-free asset has to be neglected, as data on investments in the money 

market (proxy for the risk-free investment) exist only since 1993. However, the investment 

in the money market is small (the portfolio weight never exceeds 0.5%), and therefore has a 

negligible impact on the standard deviation of stock and bond weights. The analysis is thus 

restricted to the sole comparison of risky subportfolios. Therefore, weights in bonds and 

stocks always add up to one. However, resulting Sharpe ratios computed below are inde-

pendent of the actual amount of riskless lending and borrowing.
† The z-statistic of Jobson and Korkie (1981), which has been corrected by Memmel (2003), has 

a value of 0.74, thus indicating that the difference in the Sharpe ratio is not significant even 

at a 10% significance level. However, it has already been noted by Jobson and Korkie (1981) 

that their test has only a very small power. According to them, for an underlying number of 

sixty portfolio optimizations, a difference of 0.1 between the two Sharpe ratios will lead to a 

rejection of the null hypothesis only in 10% of all cases.
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consequence, fund managers should be very careful when deciding to 

choose a parameter value 1 > 1, as their knowledge need not really be 

superior to that of the market. In any case, as highlighted by our theo-

retical considerations as well as our numerical and empirical examples 

so far, the reason for the excess volatility is not a potential shortcoming 

of the Markowitz portfolio theory, but investors seem to be too confident 

regarding the quality of their own forecasts. However, if used wisely, the 

variable 1 can be applied to more sophisticated asset allocation strate-

gies, as the following subsection will examine in more detail.

11.4.2.2 Portfolio Optimization for Different Values of Parameter ik1

Even if average values of 1 near to 1 seem to be favorable according 

to our analysis so far, there might be possibilities to exploit market 

inefficiencies by a more sophisticated approach for the determination 

of optimal risky portfolios. To this end, we monthly apply Equations 

(11.12) and (11.13) over the time period from January 1, 1973 to January 

1, 2006, for different strategies with respect to the (possibly time- 

dependent) choice of 1 for stocks. At each point in time we use the 

last thirty-six historical monthly excess return realizations to estimate 

return variances and covariances. Moreover, we hold annual growth 

rates of stock cash flows and bond cash flows constant at 6% and 0%, 

respectively. Current prices  as well as market portfolio weights are 

directly observable. Finally, we utilize 1-month interest rates from the 

German money market as proxies of the riskless interest rate. For any 

pair of parameter values 1 and 2 it is then possible to determine an 

investor’s optimal structure of risky securities. Moreover, we are able to 

compute the standard deviation of relative changes in 1
( )  and 2

( )  over 

time. We arrive at a standard deviation of 180.034% for stock parameter 

1
( )  and only of 6.138% for the bond parameter 2

( ). This confirms our 

implicit assumption of setting 2 = 1 for all portfolio selection prob-

lems under consideration.

However, with respect to 1 it pays to take a closer look at settings that 

imply deviations from market expectations. Table 11.2 gives an overview 

of our empirical results. Thus, besides strategies with a fixed value for 1 

over time, we also allow for strategies that distinguish between settings 

for 1 after a positive change in market cash flow expectation ( 1

( )
) and 

those after a corresponding negative change ( 1
( )). This enables us to 

examine the performance of several kinds of momentum and contrarian 

strategies. In line with our rolling-window approach, Sharpe ratios for all 
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strategies are estimated out of sample on the basis of the actually resulting 

portfolio returns at future times   1 for fixed portfolios at times . This 

means that we get 396 out-of-sample monthly return realizations from 

January 1, 1973 to January 1, 2006, for each strategy under consideration. 

For 1 not being constant, Table 11.2 additionally gives the average value 

of 1 (avg( 1)) over the whole time period under consideration. In total, 

Table 11.2 explicitly presents ten different asset allocation strategies and 

their resulting Sharpe ratios based on monthly return data as well as stan-

dard deviations ( )1  of monthly stock holdings.

As a first result for fixed values 1 ≠ 1, moderate deviations from  

1 = 1 (i.e., from Equation (11.3)) between 0.5 and 1.5 lead only to fluctua-

tions of stock holdings over time that are of similar magnitude as those 

of the whole market. This finding is supported by the fact that a setting 

of 1 = 1.6702 over the whole time period under consideration exactly 

reproduces the volatility of stock holdings of special funds as presented 

in the preceding subsection. Moreover, the resulting annual Sharpe ratio 

of this strategy (computed in the same way as that of the special funds 

in the preceding section) is 19.4609%, and thus almost identical to the 

empirically observable one. This gives additional evidence that portfolio 

managers’ reactions to changing market expectations are too strong in 

the case of bullish market expectations, but too weak in the case of a 

bear market just expressing some kind of overconfidence. Nevertheless, 

portfolio managers’ reactions are far from the extreme consequences as 

TABLE 11.2 Monthly Performance (Sharpe Ratio) and Standard Deviation (σ( 1)) of 

Monthly Stock Holdings in Germany for Different Portfolio Selection Strategies and 

the Time Period from January 1, 1973 to January 1, 2006

1 
( ) 0.1 0.5 1 1.5 10

1 
( ) 0.1 0.5 1 1.5 10

Sharpe ratio 0.099730 0.109401 0.090151 0.071347 0.027115

σ( 1) 0.086834 0.064789 0.051228 0.062810 0.684987

1 
( ) 1.6702 0.5 1.5 0.5 1

1 
( ) 1.6702 1.5 0.5 1 0.5

avg( 1) 1.6702 0.9685 1.0315 0.7343 0.7657

Sharpe ratio 0.066596 0.121149 0.041166 0.122044a 0.072374

σ( 1) 0.071098 0.179324 0.169891 0.104995 0.094959

 
a Significantly different from the Sharpe ratio of strategy (3) on the 10% level.
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implied by the exogenous case of Section 11.3.1, which are approximated 

in Table 11.2 by setting 1 = 10.

Other constant values 1 > 1 lead to poorer performance outcomes than 

that of the market as well according to Table 11.2, while for moderate set-

tings 1 < 1 an improvement in the Sharpe ratio can be obtained (with the 

best performance of a Sharpe ratio of 10.9923% for a setting 1 = 0.373).

The last finding hints at the possibility that market reactions themselves 

are too strong in the case of rising expectations or too weak in the case of 

decreasing cash flow expectations. This supposition is verified by the perfor-

mance of momentum strategies characterized by 1 1( )  and 1 1( ) ,  

which is far better than those of contrarian strategies (that is, strategies 

with 1 1( )  and 1 1( ) ).  Nevertheless, a semi-mo men tum strategy 

with 1

( ) = 1 and 1
( ) = 0.5 turns out to be even more successful. In 

fact, a maximum Sharpe ratio of 13.7314% could be achieved for the rather 

extreme timing strategy 1

( ) = 1 and 1
( ) = 0. Such semi-momentum 

strategies are based on the assumption that market reactions in phases of 

rising cash flow expectations are nearly adequate, while falling market 

expectations tend to underestimate real decreases in cash flow expecta-

tions. The special setting 1

( ) = 1 and 1
( ) = 0 implicitly recommends 

to refrain from any stock holding at all when market cash flow expecta-

tions are declining, and to reproduce the market portfolio in situations 

with rising market expectations. In contrast, certainly, it is not too surpris-

ing that a semi-contrarian strategy leads to rather poor performance.

Moreover, from all values in Table 11.2, only the Sharpe ratio of the 

semi-momentum strategy (Equation (11.9)) is significantly different from 

the Sharpe ratio of the market portfolio on a 10% basis. The concept 

developed in this section can thus even be applied to practical problems 

of portfolio selection. Certainly, as suggested by Table 11.2, there may be 

timing strategies that are able to outperform the market, but this finding 

is only helpful if successful timing strategies do not vary much across time 

and space. To elaborate on these aspects somewhat further, we reexamine 

Equations (11.7) to (11.10) of Table 11.2 for the time period from February 1,  

1985 to January 1, 2006. Moreover, for this time period, we are able to 

account additionally for Japan, the UK, and the United States. As a proxy 

for the riskless interest rate we use the respective 1-month money market 

rate for each country as provided by Datastream (due to data availabil-

ity before 1993, the Japanese riskless interest rate is approximated by the 

Japanese monetary policy rate). Portfolio weights for the market (equities 

and bonds) are approximated by Datastream Total Market Indexes.
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As can be seen in Table 11.3, the semi-momentum strategy performs 

quite well in Germany even for this restricted time period, suggesting a 

rather high stability of our findings for Germany. However, in Japan, it 

would have been best to choose both parameters 1

( )  and 1
( ) consid-

erably smaller than 1, which means to take a much more pessimistic view 

than the market with respect to future returns even in bullish periods. 

TABLE 11.3 Monthly Performance (Sharpe Ratio) and Standard Deviation (σ( 1))  

of Monthly Stock Holdings in Germany, Japan, the UK, and the United States for 

Different Portfolio Selection Strategies and the Time Period from February 1, 1985  

to January 1, 2006

1 
( ) 0 1 0.5 1.5 0.5 1

1 
( ) 1.3674 1 1.5 0.5 1 0.5

avg( 1) 0.67285 1 0.99206 1.00794 0.74603 0.75397

Sharpe 

ratio

0.197791 0.135280 0.184589 0.058852 0.176691a 0.093194

σ( 1) 0.221317 0.051094 0.167599 0.158318 0.095312 0.088255

1 
( ) 0.3418 1 0.5 1.5 0.5 1

1 
( ) 0.3618 1 1.5 0.5 1 0.5

avg( 1) 0.3515 1 0.9841 1.0159 0.7421 0.75397

Sharpe 

ratio

0.112316 0.064547 0.053782 0.055358 0.076603 0.075461

σ( 1) 0.071716 0.120202 0.432921 0.403499 0.095312 0.205508

1 
( ) 1.0986 1 0.5 1.5 0.5 1

1 
( ) 0.4299 1 1.5 0.5 1 0.5

avg( 1) 0.7444 1 1.0296 0.9704 0.7648 0.7352

Sharpe 

ratio

0.125657 0.102374 0.049007 0.123265 0.074609 0.124945

σ( 1) 0.439007 0.073818 0.607292 0.622367 0.31071 0.49636

1 
( ) 1.0642 1 0.5 1.5 0.5 1

1 
( ) 0.7120 1 1.5 0.5 1 0.5

avg( 1) 0.8672 1 1.0595 0.9405 0.7798 0.7202

Sharpe 

ratio

0.168519 0.163614 0.124871 0.160098 0.140373 0.165679

σ( 1) 0.190741 0.113234 0.444754 0.452217 0.237370 0.245028

 
a Significantly different from the Sharpe ratio of the market strategy on the 10% level.
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In fact, it would have been even better to choose the higher value 1

( )  

only if both 1 and 2 had been increased. For such a strategy (with 1

( ) = 

0.8347 and 1
( ) = 0.3118) it would be possible to reach a quite impres-

sive Sharpe ratio of 13.2277%, which beats the market performance on a 

significance level of 5%. Nevertheless, different national capital markets 

seem to behave quite differently, so that a certain timing strategy may 

work in one market but fail in another.

This conjecture is verified by the results in Table 11.3 for the British and 

American stock markets. In fact, based on the timing strategies considered 

in this section, it is not possible to outperform the UK or the U.S. capital 

market. We may interpret this as an indirect evidence of higher British 

and American stock market efficiency in comparison to that of Germany 

and Japan. Clearly, this finding might reflect the relative importance and 

size of the respective markets.

Summarizing, our approach helps to avoid portfolio selection strategies 

that imply overconfident behavior. Moreover, this approach may be utilized 

to employ certain timing strategies, like a semi-momentum one with the 

most extreme recommendations of abandoning all stock holdings in situ-

ations with falling market expectations and holding the market portfolio 

when aggregate expectations are improving. This may be regarded as a fur-

ther indirect indicator for the adequacy of the Markowitz portfolio selection 

approach even without additional  restrictions on portfolio weights 

in order to reduce portfolio sensitivity. Our approach may also be helpful in 

assessing the degree of inefficiency of different national stock markets.

11.5 CONCLUSION
It is often argued that applications of the Markowitz portfolio theory imply 

a sensitivity of portfolio weights with respect to changes in return expecta-

tions, which contradicts empirical evidence of actual investors’ behavior. 

We show that this contradiction results from the consideration of mean-

variance optimization problems with exogenously given expected returns. 

This exogenous case can be interpreted as a situation with new informa-

tion being private. Therefore, portfolio reactions are significantly more 

pronounced, as the investor tries to exploit her informational advantage. 

Given high-quality private information, the resulting extreme portfolio 

weights might actually be justified.
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The contradiction between theoretical recommendation and empirical 

finding vanishes if mean-variance optimization with endogenously given 

expected returns is assumed. In such a situation, all new information on 

return expectations is common knowledge. This setting leads to coun-

tervailing price-return effects when investors optimize their portfolio 

structures. As a consequence, reactions of optimal portfolios are far less 

sensitive than in the case of mean-variance optimization with exogenously 

given expected returns. This endogenous case seems to correspond fairly 

well with general real-life findings of robust portfolio structures.

To elaborate somewhat further on this issue, we introduced an indica-

tor variable  with  > 1 (  < 1) implying an investor to be more (less) 

confident with respect to future expected security cash flows than the 

market as a whole. We find that professional portfolio managers act in 

fact as if they set  > 1. Moreover, by varying  depending on current 

changes in market expectations we identified semi-momentum strate-

gies with  = 1 in periods with rising market expectations and  = 0 in 

periods with falling market expectations, leading to the highest attainable 

Sharpe ratio on the German capital market. This hints at the possibility 

that in Germany investors are overconfident in periods when cash flow 

expectations are falling. Resulting volatility in stock portfolio weights for 

this semi-momentum strategy nevertheless remains far from the values 

in the case of the exogenous situation, thus verifying once again that the 

Markowitz approach in itself does not lead necessarily to too sensitive 

portfolio weights. A similar (and even more pronounced) conclusion with 

respect to market overconfidence may be drawn from the analysis of the 

Japanese capital market. For the UK and the United States, however, no 

profitable timing strategies might be developed by the approach suggested 

in this chapter. This last finding can be interpreted as evidence for higher 

stock market efficiency in the UK and the United States than in Germany 

and Japan.
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12.1 INTRODUCTION
Value-at-Risk (VaR) and its variants, like conditional value-at-risk 

(CVaR), are very popular concepts for measuring the risk associated with 

a portfolio of securities. Extensive research has been performed on this 

subject, with much of the emphasis being placed on the CVaR model (see, 

e.g., Krokhmal et al., 2002). The CVaR is attractive for two main reasons: 

it displays nice financial properties—it is a coherent measure of risk as 

defined by Artzner et al. (1999)—and it is easier to compute than the 

VaR, which uses a quantile of the portfolio returns distribution. However, 

since the adoption of the Comprehensive Basel II Accord by the Bank for 

International Settlements (BIS, 2006), the role of the VaR has become 

more central for regulatory purposes. Financial institutions of BIS mem-

ber countries have to comply strictly with VaR requirements regarding 

credit risk, operational risk, and market risk management. Thus, limita-

tions in VaR exposures typically represent binding constraints for active 

portfolio management.

The extant literature on portfolio management with VaR requirements 

has mostly focused on  the VaR associated with a fi  

portfolio. However, this approach does not explicitly address the central 

problem of asset managers, whose objective is to account directly for VaR 

in the  of optimal complex portfolios.*

The main purpose of this chapter is to develop a model for the selec-

tion of an optimal portfolio of stocks and options subject to value-at-risk 

* Indeed, risk estimation methods based on analytical parametric estimation, such as 

RiskMetrics, on semiparametric approximation like the Cornish-Fisher formula, or on the 

extreme value theory (EVT), can be quite easily applied in linearly constrained optimization. 

In this context, there is not much innovation to be brought besides a precise estimation of 

the parameters entering the VaR. Yet, such conceptually simple methods cannot effectively 

handle strategies involving options. The behavior of these derivative instruments dramati-

cally changes over time, depending on the evolution of the underlying asset, and requires a 

dynamic treatment of return distributions.
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12.6 Conclusion 251
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constraints, to demonstrate the computational feasibility of the approach, 

and to show the performances of different strategies.

In general terms, we are interested in the following situation. A fund 

manager considers investing a total budget into a portfolio of stocks or 

options for a given horizon. The problem she faces is to select the quanti-

ties to be invested in each asset so as to optimize the expected value of the 

portfolio at the end of the horizon, while satisfying predetermined value-

at-risk constraints at the end of each subperiod.

Although this optimization problem is rather easily stated, modeling it 

in a rigorous and meaningful way turns out to be quite challenging. Assets 

under consideration in this chapter are stocks and options. We restrict here 

our attention to a one-period model. Even with only one period, the problem  

remains complex since the VaR cannot be computed a priori without know-

ing the probability distribution of the portfolio returns, because the distribu-

tion of the portfolio returns cannot be specified before selecting the optimal 

quantities of its components (and before specifying their respective prob-

ability distributions), and also because the optimal quantities must be set so 

as to satisfy the VaR requirement for the whole portfolio. This problem is 

therefore far more complex than computing the VaR associated with a 

fin  portfolio. The complexity is reinforced by the fact that we need to 

model simultaneously the future prices of several stocks and their deriva-

tives. The first part of the problem has been addressed by Schyns et al. (2008),  

and a special emphasis is set on the second part in this chapter.*

The inherent complexity of the model and of the optimization process 

justify our use of a methodology based on a . 

More precisely, the formulation of the model relies on a collection of sce-

narios that provide a representative sample of values for the returns of a 

market index.

We then consider factor models to define the stock prices for each sce-

nario. Three specifications are considered: the simple regression of the 

stock return on a proxy for market return, the capital asset pricing model, 

and the Fama and French model. Since the values of the options are indi-

rectly determined by the scenarios, this approach allows capturing com-

pletely the random nature of the problem.

* Note that adding more underlying assets would not really challenge the methodology pro-

posed hereafter, although it may drastically increase the size of the resulting optimization 

problem. Dealing with only one underlying asset simplifies and clarifies the construction of 

the model.
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In order to model the distribution of the market returns, we do not 

restrict ourselves to standard parametric statistical distributions (like the 

normal or the Student distribution), but we propose to sample from more 

general distributions of returns. This approach has the advantage of pro-

viding great flexibility in the construction of the model, allowing in par-

ticular integration of different types of distributions and various realistic 

constraints. We illustrate this with the computation of a distribution of 

returns implied by the prices of the options available on the market at the 

time of the investment.

All in all, our work appears to be unique in its simultaneous consider-

ation of multiperiod scenarios, of several stocks, of options, and of a broad 

range of realistic financial constraints, including the VaR measure. In the 

literature, these four features have been mostly developed in isolation, 

and so cannot provide reasonable insights into realistic portfolio selec-

tion problems. In particular, we pay special attention to the calibration of 

the parameters defining the tree of scenarios, an issue that turns out to be 

quite tricky, but extremely relevant when dealing with options and several 

stocks. Emphasis is put on the behavior of the model when the portfolio 

consists only in stocks such as to measure more precisely the impact of 

the factor models. The extension to options is briefly presented and tested. 

Detailed results for options written only on one underlying asset, the mar-

ket index, are available in Schyns et al. (2008). This chapter also presents 

extensions to a multiperiod model.

Our first goal is to show that this approach is valid and tractable in 

practice. But thanks to our integrative framework, we can also test it on 

real data and show the returns an investor could have reached.

The chapter is organized as follows. Section 12.2 presents the framework 

of the portfolio management problem with an emphasis on its main finan-

cial features and on trees of scenarios. Section 12.3 gives a complete descrip-

tion of the optimization model to be solved, which is formulated here as a 

mixed-integer linear programming problem, and Section 12.4 discusses 

the difficulties that arise when instantiating the set of scenarios. Section 

12.5 presents our case study. Finally, Section 12.6 draws the main conclu-

sions of our work and presents some perspectives for future research.

12.2 FRAMEWORK
Before presenting a mathematical formulation of the optimization model 

to be solved, we first discuss its various components.
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12.2.1 Risk Measure

The value-at-risk (VaR) of a portfolio at level  is defined as the maximal 

loss of the portfolio value with probability , over a specific horizon:

 Prob[ ≤ VaR] = 

or under slightly more general assumptions concerning the distribution 

of losses,

 VaR = min{  | Prob[ ≤ ] ≥  }

This risk measure, initially proposed by Edgeworth (1888), became 

popular when introduced by JP Morgan in RiskMetrics™ (1996). It has 

subsequently been proposed in the 1996 Amendment to the Basel I Capital 

Accord, included in the Comprehensive Basel II Accord, and is fully appli-

cable nowadays.

In addition to value-at-risk requirements, risk management systems 

often impose stop-loss procedures in order to limit the extent of the losses 

incurred on an individual position. This is equivalent to setting a guaran-

teed amount at the end of the investment horizon.* The same requirement 

is met for insured portfolios with the option-based portfolio insurance 

(OBPI) technique or the constant proportion portfolio insurance (CPPI) 

technique proposed by Black and Jones (1987), as the portfolio becomes 

entirely invested in risk-free securities when the loss incurred in the 

risky part reaches a given level (see Bertrand and Prigent, 2005, for a 

discussion).

12.2.2 Market

Many professionally managed equity portfolios involve optional securi-

ties. They allow traders or fund managers to shape the future payoff of 

their portfolios, for instance, to ensure a floor in the terminal payoff, 

which is easily achieved thanks to the intrinsic properties of options. We 

assume that the manager’s main goal is to maximize the expected value 

of the portfolio at the end of the investment horizon. To track real market 

* Note that the guarantee constraint is a special case of the value-at-risk constraint where the 

probability  is set to 100%. We could actually impose several VaR constraints in our model. 

The methodology would be similar for each of them, even if some simplifications could take 

place (indeed, several VaR constraints would imply overlapping lower bounds). Alternatively, 

the manager could impose a limit on the conditional value-at-risk (a.k.a. expected shortfall) 

beyond the VaR level. This requirement limits the extent of the expected losses when a disas-

ter occurs. We discuss the implications of this requirement in Section 12.5.
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conditions as closely as possible, we take into account the bid-ask spreads 

and transaction costs.

Our model is specially intended for large investments, and this allows 

us to formulate some simplifying hypotheses. In particular, if the initial 

budget is large, then the fixed commission cost is small with respect to the 

total invested amount, and it can be neglected in the model. Also, since 

the amount invested in each option can be assumed to be large, we can 

consider only one proportional tax rate, namely, the rate that applies to the 

largest trading amounts.

12.2.3 Multiperiod Trees of Scenarios

Trees of scenarios constitute a generic, relatively simple approach to rep-

resent future states of the world in stochastic optimization problems (see, 

e.g., Birge and Louveaux (1999) or Prekopa (1995) for a broad introduc-

tion to stochastic programming). In finance, such trees have been used 

in numerous computational models, both in applied and in theoretical 

frameworks, as in Dembo (1991), Dybvig (1988a, 1988b), Gülpinar et al. 

(2004), Larsen et al. (2002), Mulvey (1994), Muzzioli and Torricelli (2005),  

Rockafellar and Uryasev (2000), Rubinstein (1994, 1998), etc. Each node 

of a scenario tree represents a possible state of the world at a particular 

date; i.e., each node is explicitly associated with the value of the underly-

ing asset (but not with the portfolio value, since the composition of the 

portfolio is unknown at the outset). The intrinsic quality of a tree of sce-

narios depends on the process used to instantiate each node and on the 

number of nodes.

Grinold (1999) ponders some of the relative advantages and draw-

backs of scenario-based approaches versus mean-variance approaches 

when dealing with portfolio optimization problems. In Grinold’s view, 

scenario-based models are mostly useful—and even indispensable—or 

portfolio management problems involving options or assets with alter-

native distributions. They deal with the entire distribution of outcomes 

and thereby allow for a broad variety of objectives. However, they also 

have to respond to several major challenges. In particular, setting up 

a tree of scenarios requires the solution of several complex numerical 

problems, including the specification of the entire distribution of all 

assets.

In this chapter, we consider trees where each node (or scenario) corre-

sponds to a possible value of the market index at the end of a subperiod. The 

scenarios are viewed as equiprobable; i.e., they constitute a 
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, which can be obtained by sampling from the 

probability distribution function of the market values (see Section 12.4.1). 

It would be straightforward to extend the model to the case where the sce-

narios are not equiprobable. These values can be used, in turn, to price the 

stocks and options written on them. In order to price the stocks, we rely 

on classical factor models: OLS approach, capital asset pricing model, and 

Fama and French model.

All options considered here have a one-period maturity, i.e., a maturity 

coinciding with the horizon of investment.* For the first period, the initial 

characteristics of traded options are directly observable on the market. 

However, some adjustments could be required to avoid numerical difficul-

ties due to arbitrage opportunities.

12.3 MODEL
Informally, the manager’s problem is to select a portfolio with maximum 

expected value at the end of the horizon, under the following constraints:

Budget: The initial cost of settlement does not exceed the available 

budget. 

Guarantee: The value of the portfolio at the end of each period can-

not be less than a predefined fraction of the initial budget, under 

no circumstances.

Value-at-risk: With a predefined probability , the final value of the port-

folio cannot be less than a predefined fraction of the initial budget.

In this section, we turn to a mathematical formulation of this portfolio 

optimization problem.

12.3.1 Notations

We consider here a one-period tree. We denote by = 1, ,  the termi-

nal nodes of the tree, while node 0 corresponds to the initial state.

At each node , = 1, ,  stocks are available and each stock  serves as 

the underlying of a number of  options.

* Extensions to other maturities could be included in the model, but they complicate its for-

mulation as well as the interpretation of the results.
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For = 0, 1, , , = 1, , , and  = 1, ,  the parameters of 

the model are:

: the available budget

: the price of the market index at node 

S : the price of stock  at node 

: the strike price of option  written on stock 

: the initial ask price of option written on stock 

: the taxation rate

: the risk-free rate

Some of the main decision variables are:

: the (positive) quantity of stock 

: the (positive) quantity of option  written on stock 

: the amount invested in the risk-free asset at node 

12.3.2 Portfolio Value

The portfolio value can be easily determined at each node of the tree if 

we know the quantities invested in each security. Indeed, the portfolio 

value at a node is essentially the sum of the securities values weighted 

by the invested quantities. By construction of the tree, the value of each 

security at each node is known (see Section 12.4 for details). This general 

scheme just has to be slightly adapted to integrate the transactions costs, 

i.e., a given percentage of the option values, and the bid, ask, or maturity 

prices.

Mathematically, at maturity, the value of an option is given by

 

( , )

,

,

,0
 

(12.1)

where  is the underlying asset price and  is the option strike price.
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The final value of the portfolio composed at node  is therefore given by

 

( ) ( ) (, , ,1 1 ,, ),

11
 

(12.2)

Similarly, the cost incurred in order to initially compose the portfolio is 

given by

 

( ) , , ,1 0

11
 

(12.3)

The expected portfolio value is obtained as the sum of the portfolio 

value at each leaf, multiplied by the probability of the associated scenario.

12.3.3 Risk and Investment Limits

The VaR constraint can be redefined as a minimum payoff, denoted λ , 

to be reached with probability  (where λ is the percentage of the initial 

budget to preserve, and = 95% or = 99% is the usual value). A tree of 

scenarios is very convenient to model this constraint, if we consider that 

the set of leaves represents all the possible outcomes. The VaR constraint is 

then satisfied if and only if, for each second-period subtree, the value of the 

portfolio is greater than or equal to λ  in at least ( × ) scenarios, where 

 is the number of scenarios in each subtree. Of course, this requires that 

 must be large enough to faithfully represent all possible outcomes.

The model obtained when we impose a minimum portfolio value at 

each leaf, i.e., when = 100%, is easy to solve: indeed, it is a continuous 

linear programming problem. Our main challenge arises instead when  

is smaller than 1, i.e., when the threshold λ  must be achieved at a subset 

of the leaves only. This VaR constraint leads to a formulation involving 

binary variables that express that, for a given leaf, either the threshold 

is reached or not. The number of leaves where the threshold is reached 

must be larger than or equal to ( × ). This becomes a complex mixed-

integer programming (MIP) problem.

Since the guarantee constraint is the special case of the VaR con-

straint where  is equal to 1, we can use the same formulation in both 

cases and simply impose the minimum guarantee level at each leaf of 
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the tree. Note that the guarantee will only be satisfied in the future if a 

scenario happens exactly like it was defined. Note that if the tree does 

not represent faithfully the possible outcomes and no scenario finally 

corresponds to the reality, there is no guarantee that the portfolio value 

will be larger than the required threshold. Another approach, based 

on Dert and Oldenkamp’s paper (2000) and detailed in Schyns et al. 

(2008), could be adapted to reinforce the constraint. This could, how-

ever, increase drastically the size of the problem without providing a 

total guarantee.

VaR Model

 

1

1

( :)

( :) ..

(

1

::) ( ) ..

(

1 1

:) ( ) ..1 1

1

The core of the VaR optimization model can now be expressed as a 

VaR model, where  denotes the expected value of the portfolio,  is the 

percentage of the budget required at the end of the period, and  is the per-

centage of the budget required with probability . Each variable belongs 

to except for the variables , , which are binary variables with the 

interpretation that 0  if the value of the portfolio exceeds the VaR 

threshold  at node , and 1  otherwise. Note that when 1, the 

corresponding VaR constraint is implied by the guarantee constraints, as 

discussed above.

12.3.4 Extensions

The model VaR, based on a scenario tree, is a very general framework. It 

can easily be completed to integrate other financial realities. Short sales 

could be allowed by relaxing to  the quantity variables and by integrat-

ing bid option prices. A preliminary tuning process described in Schyns 
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et al. (2008) is, however, required to detect and avoid arbitrage oppor-

tunities.  and  could be restricted to  since real contracts deal 

with entire quantities. More advanced transaction cost schemes could 

also be incorporated, e.g., with minimal transaction costs. It is also easy 

to model minimal and maximal bounds on quantities of stocks or groups 

of stocks corresponding to different sectors. Similarly, we can impose a 

minimal number of different stocks in the portfolio to ensure diversi-

fication and at the same time set a maximal cardinality to avoid a too 

large fragmentation in small stock amounts. Since the factorial model 

presented below assumes diversification, this last constraint will be con-

sidered in the case study:

 

1

1
0

1

K

K
,

1  

(12.4)

where  are binary variables with the interpretation that 1  if the 

stock  belongs to the optimal portfolio and 0  otherwise. 
0,

 repre-

sents the largest quantity of stock  that could be obtained with the budget 

and is therefore the implied upper bound on the stock quantities.

Together with the previous constraints, we can impose a lower bound 

on the quantities in the case when the stock is purchased. Without this 

protection, some negligible quantities of stocks could be artificially added 

in the portfolio to satisfy the cardinality constraint. Moreover, it is coher-

ent with practice since it is not attractive to buy tiny quantities of a stock 

due to minimal transaction costs applied. This gives

 
min , ,1

where min  is the minimal quantity of stock  that must be considered in 

the case of a purchase.

The other propositions, while intrinsically interesting, do not funda-

mentally affect our approach and will not be discussed here.
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12.4 INSTANTIATION OF THE TREE OF SCENARIOS
In this section, we discuss a specific difficulty that arises when the VaR 

model described in Section 12.3 is to be instantiated: how to construct a 

representative tree of scenarios with a limited and computationally man-

ageable number of scenarios. This question must be answered before we 

can solve any instance of the VaR model.

12.4.1 Distribution of Asset Prices

Before generating the tree of scenarios, we first need to model the prob-

ability distribution of the values of the underlying assets. This important 

question is not exclusively linked to the VaR problem under consideration, 

but constitutes a broad topic in itself. The most usual way is to consider a 

normal distribution of the returns. The two first moments are extracted 

from past data, directly or using smoothing and predictive schemes. A 

first improvement is to consider generalized Student distributions to also 

take into account the skewness and the kurtosis. This is again a parametric 

approach where the four moments can be computed from historical data. 

In Schyns et al. (2005), we describe how to precisely construct these dis-

tributions. We also present a third attractive approach: the construction 

of an implied probability density function (pdf) derived from observed 

option prices.

The implied distribution approach is based on papers of Breeden and 

Litzenberger (1978) and Shimko (1993). This has the advantage of relying 

only on current pricing information, rather than requiring long, outdated 

time series, and to preserve consistency with the observed market prices. 

Practically, it has been applied to a market index for which several options 

were available. All information is extracted from options available on the 

market at the time of the investment and with a maturity corresponding 

to the horizon of the tree.

When a pdf has been computed, we use stratified sampling in order 

to obtain a sample of equiprobable states. Stratified sampling preserves 

information relative to the distributions in the parameterization of the 

tree. Thanks to this modeling choice, complex continuous problems can 

be faithfully represented by a relatively small number of nodes, which 

makes them computationally tractable.*

* See Schyns et al. (2005) for a complete description of the procedure for a one-period tree.



Alternative to the Mean-Variance Asset Allocation Analysis < 243

12.4.2 Factor Models

The previous section is dedicated to the construction of a specific tree of 

scenarios for one asset. However, in the VaR model we work simultane-

ously with  assets and the corresponding options. We are not interested 

in  trees but in a unique tree for which the prices of the  stocks are 

defined at each node. This is a far more complex problem.

The direct approach would be to consider every combination of the 

returns of the different stocks, i.e., to adjust at each node of the tree of a 

first stock, the tree for a second stock, and so on with all the other stocks. 

There are two main drawbacks with this approach. First, by construction, 

each scenario tree is equiprobable. The combination of such trees gives 

also an equiprobable tree. However, stocks prices are clearly not inde-

pendent. We should then recompute the probabilities of each final nodes 

according to joint probabilities of the stock distribution and it is not obvi-

ous. The second problem arises when a real-size case is considered. If 100 

scenarios are required to model faithfully the distribution of one stock, 

then the recombined tree for 200 stocks consists of 100200 nodes, which is 

computationally hard to manage.

Jamshidian and Zhu (1997) propose a multifactorial approach to try to 

overcome these two difficulties. They model the correlation between the 

assets, perform a principal component analysis (PCA), and use the princi-

pal eigenvectors to explain each stock return. They illustrate the approach 

for the computation of the yield curve using up to five principal factors. 

The depth of the tree is therefore reduced to a maximum of five levels. 

Moreover, since the eigenvectors are orthogonal to each other, each fac-

tor is independent. This greatly simplifies the computation of the node 

probabilities.

Jamshidian and Zhu then extend their methodology to a portfolio of 

a few assets. Note, however, that this approach is based on factors diffi-

cult to interpret, on a historical covariance matrix and based on normal-

ity assumptions. Moreover, the size of the final tree, even though it is far 

smaller than the one obtained with the basic approach, could remain large 

when lots of stocks are under consideration.

For the reasons mentioned above, we have decided in this chapter to 

focus on a one-factor approach. The goal is to construct a small tree such 

that the optimization problems keep reasonable dimensions, with a fac-

tor, are easily interpretable, and are instantiable with some flexibility. Of 

course, we also have to check that a one-factor model is accurate enough 
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to provide a sufficiently good representation of each stock return. Three 

variations of a linear one-factor model are considered in the following.

The factor selected is simply the market index, consistent with the capi-

tal asset pricing model, whose simplest empirical counterpart is the mar-

ket model. In its  form, the model is written as

 
( )  (12.5)

Current option prices can also be picked up in order to construct an 

instantaneous implied nonparametric distribution.

Consistent with the equilibrium framework underlying the CAPM, 

it is assumed that the unsystematic risk of the stock will fade away 

through a proper diversification of the portfolio. This assumption is 

important and should be taken into account in the main portfolio 

model we want to tackle in order to ensure a good representation of the 

scenario tree.

A first simple variant of the approach is to consider a more general 

regression scheme. In the  CAPM with excess returns, such as in 

Equation (12.5), there is only one parameter since the intercept is sup-

posed to be equal to . We could relax this financial assumption and com-

pute a second parameter, , for the linear model:

  (12.6)

Finally, we can wonder if this one-factor approach is not too basic. 

Ample empirical evidence suggests that the explanatory power of the 

CAPM could be greatly improved, especially when considering individual 

stocks. The R-squared fit of the regression is usually low with respect to 

statistical standards. We can still argue that the final goal is to construct 

a well-diversified portfolio, and that the lack of perfect representation at 

the stock level will be corrected at the portfolio level. We can, however, try 

to adjust the model and slightly alleviate this issue. To achieve this goal, 

we consider here the basic extension of the CAPM to size and value effects 

proposed by Fama and French (1992). They add two factors in the CAPM 

to provide a better estimation for small caps ( ) and for stocks with a 

high book-value-to-price ratio ( ):

 
( )  (12.7)
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Note that  is not equal to  since the two other factors also contrib-

ute to the estimation, but these two betas are usually close. The proposi-

tion now is not to construct a multivariate three-dimensional probability 

density function where each dimension would correspond to one factor. 

Indeed, we would again face difficulties similar to the ones mentioned at 

the beginning of this section. We would have first to find the adequate 

probability distribution to use, e.g., a multivariate normal distribution 

or a nonparametric kernel pdf. We can then only rely on historical data 

to instantiate it and not anymore on implied instantaneous informa-

tion. Finally, we must be able to sample faithfully this distribution into 

a reduced set of nodes. The probability of each node must be worked out. 

This is usually not trivial.

Our proposal is to use the two added factors for what they were ini-

tially basically designed for, as corrections of the CAPM estimates. We 

therefore proceed as follows. The four coefficients of Equation (12.7) are 

obtained for each stock by a regression on historical values. We still only 

build the scenario tree to represent the market index. We attach to each 

node of this tree the conditional expected values of the  and  

factors at the horizon of investment. It could be simply the last observed 

values, a simple regression with respect to the past, or a more advanced 

econometric model. Since the three factors are not independent, it is 

clear that any of these choices would represent a rough approximation. 

Yet, we contend that the error on (only) the adjustment terms of the 

Fama and French model certainly does not offset the benefit of these two 

terms with respect to the CAPM approach. It is particularly true when 

the expected values of  and  are carefully built. The empiri-

cal part of this chapter will compare the three approaches to check this 

assumption.

12.5 CASE STUDY
12.5.1 Experimental Settings

The theoretical model presented above is tested on a set of real-world 

option data. In order to check the stability and the quality of the approach, 

the same experiment was reproduced each month from January 1996 up to 

April 2007. Market and stock returns are already collected in the Thomson 

Datastream database, from January 1990 up to April 2008, i.e., 220 peri-

ods. The T-bill returns are also collected each month for the same period 

as a proxy of the risk-free rate.
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As a proxy of the market, we use the S&P 500 index. Its behavior is mod-

eled by a normal distribution and a skewed t distribution. For each experi-

ment, the parameters of the distributions are based on the S&P 500 returns 

for the 6 preceding years. They are computed until April 2007 to leave at 

least 1 year of observed returns to check the performance of the investments. 

It has proved to be impracticable to collect enough option prices to con-

struct the implied densities for the 136 resulting experiments we consider. 

Afterwards, the continuous pdfs are sampled in 80 discrete scenarios.

When the S&P 500 index is used as a proxy of the market, it is natu-

ral to consider the S&P 500 stocks as the set of representative securities. 

We have kept the 341 stocks for which there were no missing data for the 

whole period. For each of them and for the 136 months, the coefficients for 

the three regression models are computed.

The goal is to find the optimal portfolio of stocks at each period and 

then to look 1 and 2 years after what would have been the real returns. We 

assume a 1-year horizon of investment, an initial budget of US$500,000, 

and costs of transaction of 0.17%. For each of the 136 optimization prob-

lems, we require that the final portfolio value is at least at 99% of the initial 

budget (guarantee) and also above the risk-free return of the period with 

a probability of 95%. Note that the T-bill can belong to the optimal port-

folio, and this is generally the case in a large part when VaR constraints 

are under consideration. When a stock is incorporated in the portfolio, 

it must be an investment of at least 1% of the initial budget (taking into 

account the T-bill). In the first set of results, no constraints are applied on 

the number of stocks in the portfolio.

12.5.2 Experimental Results

The 1-year optimal investments for each of the 136 periods are computed 

for the three regression strategies. A first important result is about the 

composition of the portfolios. A large portion of the budget is invested 

in T-bills and the remaining in only a few stocks. This is not unusual for 

this kind of risk constraints. The T-bills ensure the guarantee level and the 

stocks allow us to reach the VaR level at least in 95% of cases. It implies 

also that with this kind of constraint, diversification is not naturally 

achieved. If we also compare the portfolios obtained when considering 

a normal distribution with respect to the one achieved with the skewed 

t density, there are few differences. Even while skewness and kurtosis are 

observed at each period, the two figures are not significantly different to 

imply highly different final portfolios most of the time. Therefore, in the 
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following discussions we only present results for the most general pdf, i.e., 

the skewed t one.

We also measure the performance of the optimal portfolios. First, we 

check the expected ones, and then the observed ones. Remember that the 

returns during these 18 years are far from being stationary. Risk-free rates 

have significantly decreased over time, and some events, like the dot com 

crisis, 9/11, and the subprime mortgage meltdown, had a large impact on 

the market at some specific periods. Therefore, we used a relative perfor-

mance indicator defined as the percentage of portfolio excess return with 

respect to the risk-free investment of each period:

 

( / )1

where  is the expected portfolio value obtained after 1 year with one of 

the three regression strategies.

Results for the skewed t distribution are represented by the box plots of 

Figure 12.1.

Each box plot represents the distribution of the excess returns. The 

bold horizontal line corresponds to the median value. The bottom and 

the top of the box indicate, respectively, the first and third quartiles. 

The lower (upper) whisker goes from the lower (upper) quartile up to 
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FIGURE 12.1 Distribution of the expected returns for the 136 periods.
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the smallest (largest) observation within a range of 1.5 times the inter-

quartile range. Excess returns that are outside of this range are repre-

sented by circles.

Not surprisingly, for the three strategies, positive excess returns are 

expected. It is in fact required by the VaR constraint. More interesting is 

the fact that the Fama and French approach leads usually to higher expected 

returns than the simple regression scheme, which itself already outperforms 

the CAPM strategy. The higher degree of sophistication of the Fama and 

French approach therefore appears to be valuable. We observe that while 

the guarantee and VaR constraints are quite conservative, the investor can 

expect most of the time at least 1.5 times the risk-free rate. This seems eco-

nomically very significant with so strict constraints, and without any par-

ticular managerial skill for the stock picking or market timing ability.

12.5.3 Observed Results

The previous results seem to outline the superiority of the Fama and French 

approach and the good performances of the methodology. However, we 

have not yet proven that the model itself is a good approximation of reality. 

Instead of computing an expected mean return over a whole set of theo-

retical scenarios, we can wonder what happens in reality when one specific 

scenario materializes. Therefore, we now measure the performance of the 

portfolio based on its observed value 1 year after the investment. Since 1 

year can be considered a rather short horizon, we also look at what hap-

pens when we keep the same portfolio during an additional year:

 

1
1

2

2

1

1 1

( / )

/

where 1 and 2 are the observed historical portfolio values 1 and 2 years 

after the initial investment, respectively.

The results (see Figure 12.2) are less appealing but look more realistic. 

Most of the time, a return larger than the risk-free rate is observed, while 

at the same time the possible loss remains very limited (guarantee con-

straint). The CAPM strategy is still outperformed by the other two regres-

sion approaches, but the domination of the Fama and French strategy is 

not obvious anymore.
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The complete distribution of absolute returns for the 2-year horizon is 

depicted in Figure 12.3. On each of the 124 dates of investment, the return 

we would have obtained by investing in the optimal portfolios is plot-

ted. It is interesting to note that something important seems to have hap-

pened around period 50. It corresponds to the beginning of the year 2000 

and the Internet bubble crisis. The CAPM strategy worked only before 

this period and not very well afterwards. The Fama and French model, 

and especially the regression model, worked fine around this period. The 

regression approach was more stable. During the year 2000, no strategy 

gives good results. This period is in fact too special to be correctly modeled 

by a classical parametric probability density function based on historical 

parameters. The tree of scenarios is not representative. A better alterna-

tive would probably be to use an implied distribution based on prevailing 

option prices during this period.
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12.5.4 Variations

As mentioned before, the optimal portfolio is not diversified. This property 

is, however, an assumption of the regression models. Therefore, we restart the 

same experiments but with an additional constraint on the number of stocks 

in the final portfolio. The optimal portfolios must contain at least ten stocks. 
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FIGURE 12.4 Distribution of the excess returns for the 136 periods.
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Since these problems are more constrained, the expected portfolio values 

should be lower. The question is to check if this extra care will lead to a better 

approximation of the portfolio expected values, and therefore to less risky 

investments. Figure 12.4, where the expected and observed excess returns are 

depicted, suggests that this variation has a very small impact on the results.

12.6 CONCLUSION
This chapter has developed a scenario tree method for a rather complex 

problem, namely, the computation of an optimal portfolio involving stocks 

and options, subject to value-at-risk (VaR) management constraints. We 

have shown that formulating this problem as a mathematical optimization 

problem requires some care, especially for the determination of scenarios 

and of associated option prices.

Our case study on the S&P 500 constituents tests the simultaneous 

account for strong VaR and guarantee constraints, on the one side, and the 

instantiation of the scenario tree with different asset pricing approaches on 

the other side. The results unambiguously suggest that the quality of the asset 

pricing approach provides a substantial—and economically significant— 

improvement of the performance of the optimal portfolio strategy. This 

intersection between asset pricing and constrained optimal asset allocation 

opens up the way for a set of practical applications of advances in asset pric-

ing models into institutional portfolio management applications, for which 

VaR and guarantee constraints are common features.
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Higher Moments
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13.1 INTRODUCTION
The Black-Litterman asset allocation model gained a wide consensus in 

several financial applications after its publication in 1990. Black and 

Litterman developed a model that “provides the flexibility to combine the 

market equilibrium with additional market views of the investor. (...) In the 
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Black-Litterman model, the user inputs any number of views or statements 

about the expected returns of arbitrary portfolios, and the model combines 

the views with equilibrium, producing both the set of expected returns of 

assets as well as the optimal portfolio weights” (He and Litterman, 1999).

A substantial difference with the traditional mean-variance approach is 

that the user inputs a complete set of expected returns (views), and the port-

folio optimizer generates the optimal portfolio weights. The Black-Litterman 

model was developed to provide a systematic resolution to the necessity to 

consider specific investor’s insights; in particular, the optimal portfolio 

weights are moved in the direction of assets favored by the investor.

Another difficulty arises when considering funds of hedge funds. Both 

the Markowitz approach and the original Black and Litterman approach 

have been conceived in a mean-variance world, in which risk premium is 

generated by exposition to variance only. This is a serious limitation for 

hedge funds, which are typically characterized by dynamic management 

strategies that sometimes employ a multitude of complex products, which 

makes them difficult to capture with the linear models that are classically 

used in finance (Martellini and Ziemann, 2005).

It has generally been recognized that financial asset returns are non-

normal. Strong empirical evidence suggests that returns are driven by 

asymmetric and fat-tailed distributions (Jondeau and Rockinger, 2004).

In particular, hedge fund returns display peculiarities that are not com-

monly associated with traditional investment vehicles. Specifically, hedge 

funds seem more inclined to produce return distributions with signifi-

cantly nonnormal skewness (downside risk) and kurtosis (fat tails).

In our study we consider the problem of portfolio allocation in which the 

underlying investment instruments are hedge funds. We provide evidence that 

the extending to four moments is a substantial improvement to the classic Black 

and Litterman model (Jondeau and Rockinger, 2004; Martellini et al., 2005).

In the Black and Litterman model, equilibrium expected returns are 

adjusted to reflect the investor’s view about the potential performance 

(absolute or relative) of one or more hedge funds. The adjustment should 

reflect the confidence that the manager has in his views (Idzorek, 2004).

13.2 THE BLACK AND LITTERMAN FRAMEWORK 
AND THE EXTENSION TO FOUR MOMENTS

In this section we introduce the Black-Litterman formula and provide 

a brief description of its components. In what follows, the number of 

views is given by  and the number of assets is given by . The Black and 
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Litterman formula is

 
( ) 1 1

1 1 1

 

(13.1)

where ( ) is the combined equilibrium return vector ( column 

vector);  is the historical covariance matrix of excess returns (

matrix); is a scalar that expresses the relative weight of the historical 

covariance matrix with respect to the covariance of the views, also known 

as the shrinkage parameter; is a matrix that identifies the assets involved 

in the views ( matrix); Ω is the diagonal covariance matrix of the 

expressed views representing the uncertainty in each view (   matrix); 

Π is the implied equilibrium return vector (   1 column vector); and is 

the view vector (   1 column vector).

In the Black and Litterman model, the implied equilibrium return 

vector Π is determined using reverse engineering. In the classical model, 

reverse engineering is performed using the mean-variance equation

  
(13.2)

where Π is the implied excess equilibrium return vector (   1 column 

vector);  is the risk aversion coefficient;  is the historical covariance 

matrix of excess returns (    matrix); and  is the market capitaliza-

tion weight (   1 column vector) of hedge funds.

The determination of Π using the above formula implies a two- 

moments CAPM equilibrium in which the risk premium is determined by 

variance only. Unfortunately, hedge funds seem more inclined to produce 

return distributions with significantly nonnormal skewness and kurtosis, 

which are likely to appear in the risk premium.

In order to preserve the Black-Litterman framework and adapt it to 

the case of allocation in hedge funds, it is advisable to consider higher 

moments in the equilibrium return vector equation. In other words, we 

explicitly involve skewness and kurtosis as additional risk measures.* 

In this respect, we follow the approaches of Hwang and Satchell (1999), 

Jondeau and Rockinger (2004), and Martellini et al. (2005).

* In what follows, we assume that investors prefer lower variance and kurtosis, and higher 

skewness.
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We assume that the investor utility function is given by

 ( )  (13.3)

The pricing equation we use is then

 1 2 32 3 4( ) ( ) ( )
 

(13.4)

where

 

( )
( )

( )
( )

( )2 3 4
2 3 4( )

 

(13.5)

Ω is the vector of co-skewness for the weighting vector; Ψ is the vector of 

co-kurtosis for the weighting vector; 2, 3, and 4 are the portfolio second, 

third, and fourth moments, respectively:

 2 3 4  
(13.6)

and the sensitivities  are given by
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2
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(13.7)

where
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2
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3
3
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4( ) ( ) ( )

 
(13.8)

The factors  have the same interpretation of the  of the CAPM, but in 

this case they measure the exposure to systematic skewness and system-

atic kurtosis, respectively, and as we shall see, they are natural measures 

of systematic risk, or exposure, of an asset to market variance, skew-

ness, and kurtosis. The variables  can be interpreted as the risk premia 

associated with covariance, co-skewness, and co-kurtosis, respectively. 

Hence, we obtain a four-moment Black and Litterman model (Hwang 

and Satchell, 1999; Martellini et al., 2005; Jondeau and Rockinger, 2005).

The pricing formula, Equation (13.4), can be used in two directions. 

Given the equilibrium portfolio weights (typically, the average mar-

ket allocation), it can be used to obtain the implied equilibrium average 

returns. These returns can be used in the Black and Litterman formula, 
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Equation (13.4), together with specific views, to obtain the adjusted equi-

librium returns ( ). Finally, Equation (13.4) can be inverted to get the 

portfolio weights that generate the returns ( ). This inversion can be 

accomplished by solving numerically the system of  equations and  

unknowns represented by Equation (13.5). These portfolio weights are 

the target allocation, which is a modification of the market equilibrium 

returns compatible with specific views, and which takes properly into 

account the skewness and the kurtosis of the portfolio.

13.3 APPLICATION
In our application, we consider the problem of allocating wealth among 

nine hedge fund indices, specifically the CSFB/Tremont Hedge Fund indi-

ces. The nine indices are constructed by using the different fund strategies, 

and they are convertible arbitrage, equity market neutral, event driven, 

fixed income arbitrage, global macro, equity long/short, managed futures, 

emerging markets, and dedicated short bias.

The data set is composed by the time-series monthly expected excess 

return* of the hedge funds, from December 1993 to January 2007, for a 

total of 158 observations. We set the risk aversion parameter  equal to 3, 

and the shrinkage  equal to 0.02, and first use the time series of return to 

compute the sample variance, skewness, and kurtosis matrices.

Table 13.1 reports summary statistics on the moments of the nine indi-

ces. All numbers are expressed on a monthly basis. The most performing 

indices have been the global macro and the equity long/short, and not 

surprisingly, the least performing has been the dedicated short bias, which 

is anticorrelated with the others. Regarding all indices, the values of skew-

ness and excess kurtosis document a substantial departure from normal-

ity, which might be a concern for a risk-averse manager.

For our application, we need starting equilibrium weights. To attain real-

istic equilibrium returns, we need an allocation that is representative of the 

market preferences. To obtain these market weights, we regress the global HFI 

index on the nine indices, and we use as weights the (normalized) absolute 

values of the regression coefficients on each index. Obtained market weights 

are reported in the first column of Table 13.2. Almost 80% of the market 

portfolio is allocated in the global macro and equity long/short indices.

Now we can determine the implied excess return Π needed to obtain 

the equilibrium returns that represent a useful neutral starting point for 

* Excess returns are computed by difference with the 3-month U.S. Treasury bill rates.
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the Black and Litterman model. Using the market weights and the moment 

matrices, we get an estimate of the market equilibrium returns using 

Equation (13.4) when considering the two-moments Black and Litterman 

framework, and Equation (13.1) when considering the four-moments Black 

and Litterman framework. The market weights and the obtained equilib-

rium returns in the two cases are displayed in Table 13.2. The negative  

value of the dedicated short bias equilibrium return depends on the very 

little allocation of the market weight (only 0.11%). In both the two-mo-

ments and the four-moments equilibrium, this little allocation can be 

explained only by a very bad expected performance of the dedicated short 

bias index. This is also consistent with the positive performance expected 

by the equity long/short index, which has a well-documented long bias, 

and thus is negatively correlated with the dedicated short bias index.

TABLE 13.1 Mean, Skewness, and Kurtosis of Monthly Expected Excess Return  

of the Hedge Funds

HFI convertible arbitrage 0.48% 0.018% –1.38 3.42

HFI equity market neutral 0.54% 0.007% 0.34 0.45

HFI event driven 0.69% 0.026% –3.46 25.16

HFI fixed income 0.27% 0.011% –3.12 17.23

HFI global macro 0.85% 0.096% 0.03 3.17

HFI equity long/short 0.74% 0.084% 0.21 4.07

HFI managed futures 0.33% 0.116% 0.02 0.41

HFI emerging markets 0.58% 0.212% –0.70 4.94

HFI dedicated short bias –0.34% 0.239% 0.84 2.16

TABLE 13.2 Market Weights, Two and Four Moments Implied Equilibrium 

Return Vectors

HFI convertible arbitrage 6.32% 0.0345% 0.0355%

HFI equity market neutral 5.01% 0.0188% 0.0183%

HFI event driven 10.44% 0.0677% 0.0700%

HFI fixed income 1.69% 0.0291% 0.0300%

HFI global macro 39.76% 0.1672% 0.1666%

HFI equity long/short 30.95% 0.1457% 0.1456%

HFI managed futures 1.54% 0.0344% 0.0310%

HFI emerging markets 4.18% 0.1901% 0.1929%

HFI dedicated short bias 0.11% –0.1520% –0.1550%
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As previously discussed, the Black-Litterman approach combines equi-

librium returns with an explicit set of views. Expected returns can be 

interpreted as a Bayesian weighted average of the equilibrium returns and 

investors’ views. We will then focus on the importance of the confidence in  

the view, by introducing a bold and a mild view, and the ability of the four-

moments extension to penalize allocation in indices with high kurtosis 

and negative skewness.

For simplicity, we introduce only one view at time, and we assume that 

the manager has a single specific view on HFI event driven (the fund with 

higher kurtosis and lower skewness) or, alternatively, on HFI equity market 

neutral (a fund close to a normal distribution). In both cases the view is of 

1% monthly excess return, thus higher than the equilibrium mean. In case 

of the bold view, the manager is supposed to input a variance of 0.005% on 

the view; in the mild view, the manager is supposed to input a variance of 

0.05% (corresponding standard deviations are nearly 0.7% and 2.2%).

In our example we have 1 and 9; the view vector ( ) becomes 

a scalar value (0.01) as well as the covariance matrix (Ω) that represents 

the uncertainty of the view (0.005% and 0.05%, respectively). If the view is 

expressed on HFI event driven,  is the row vector (1  9):   [001000000]; if 

the view is expressed on the HFI equity market neutral,   [010000000].

Corresponding asset allocation for the two-moments and four- 

moments equilibrium are reported in Table 13.3, when the view is expressed 

on HFI event driven, and Table 13.4 when the view is expressed on HFI 

TABLE 13.3 View on the HFI Event Driven

HFI convertible 

arbitrage

–1.38 3.42 6.32% 2.97% 5.63% 3.53% 5.73%

HFI equity market 

neutral

0.34 0.45 5.01% 2.35% 4.46% 4.87% 4.84%

HFI event driven –3.46 25.16 10.44% 57.92% 20.25% 47.79% 18.66%

HFI fixed income –3.12 17.23 1.69% 0.80% 1.51% 3.39% 1.81%

HFI global macro 0.03 3.17 39.76% 18.68% 35.40% 19.68% 35.63%

HFI equity long/short 0.21 4.07 30.95% 14.54% 27.56% 16.79% 27.94%

HFI managed futures 0.02 0.41 1.54% 0.73% 1.37% 1.92% 1.53%

HFI emerging markets –0.70 4.94 4.18% 1.97% 3.73% 2.08% 3.76%

HFI dedicated short bias 0.84 2.16 0.11% 0.05% 0.10% –0.06% 0.09%
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equity market neutral. The results confirm our intuitions and highlight 

the importance of including higher moments in the pricing equation. The 

view on HFI event driven is placed on a fund with high kurtosis and large 

negative skewness. If we use the classic two-moments Black and Litterman 

approach, the allocation in that index would be nearly 60% for the bold view 

and 20% for the mild view. If we include the third and fourth moments, 

these numbers decrease to nearly 48% and 18%, respectively: it is clear that 

the allocation in this fund has been penalized by its higher moments.

On the contrary, if the manager has a view on HFI equity market neu-

tral, a fund with return distribution close to a normal one, the allocation 

in the case of two moments and four moments is almost unchanged, for 

both the bold and the mild view. There is instead a marginal increase, 

which is due to the positive skewness of this fund, which is favored by the 

risk properties of an investor with utility ( ) .

13.4 HOW TO IMPLEMENT BLACK-LITTERMAN 
FINANCIAL FORECASTS

In order to put into practice the Black-Litterman model the analyst should 

generate a vector of forecasts expressed in two different ways: (1) in absolute 

terms for a single asset class and (2) in relative terms, with an asset class com-

pared to another one. In case of hedge fund strategies, most of them require 

the same ability to forecast changes in economies, typically depending upon 

shifts in economic and monetary policies. This implies the knowledge of fun-

damental and logic relations among the real and the financial system.

TABLE 13.4 View on the Equity Market Neutral

HFI convertible 

arbitrage

–1.38 3.42 6.32% 2.78% 5.59% 2.48% 5.53%

HFI equity market 

neutral

0.34 0.45 5.01% 58.22% 15.97% 58.41% 16.07%

HFI event driven –3.46 25.16 10.44% 4.59% 9.23% 3.61% 9.03%

HFI fixed income –3.12 17.23 1.69% 0.74% 1.50% 1.32% 1.62%

HFI global macro 0.03 3.17 39.76% 17.49% 35.17% 17.68% 35.16%

HFI equity long/short 0.21 4.07 30.95% 13.61% 27.38% 13.72% 27.38%

HFI managed futures 0.02 0.41 1.54% 0.68% 1.37% 0.77% 1.38%

HFI emerging markets –0.70 4.94 4.18% 1.84% 3.70% 1.81% 3.68%

HFI dedicated short bias 0.84 2.16 0.11% 0.05% 0.10% 0.19% 0.13%
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First, analysts look at the interventions of the central banks, which 

should be coherent with their purposes in terms of inflation, growth, or 

unemployment. Second, to anticipate other players’ choices, a large use 

of leading indicators has been recently done. In the following sections 

we find out central banks’ strategies and styles, then variables devoted 

to efficiently forecast in financial markets and put into action the Black-

Litterman model.

13.4.1 Central Banks’ Strategies and Styles

Monetary policy authorities are oriented to pursue the economic sys-

tem welfare.

In the long run, the central bank cannot influence economic 

growth by changing the money supply. Related to this is the asser-

tion that inflation is ultimately a monetary phenomenon. Indeed, 

prolonged periods of high inflation are typically associated with 

high monetary growth. While other factors (such as variations 

in aggregate demand, technological changes or commodity price 

shocks) can influence price developments over shorter horizons, 

over time their effects can be offset by some degree of adjustment 

of the money stock. In this sense, the longer-term trends of prices 

or inflation can be controlled by central banks. (European Central 

Bank, 2004, 42)

Within the Eurosystem, this purpose is codified in Article 2 of the 

Maastricht Treaty: “to promote economic and social progress and a high 

level of employment and to achieve balanced and sustainable development, 

in particular through the creation of an area without internal frontiers, 

through the strengthening of economic and social cohesion and through 

the establishment of economic and monetary union.”

Thus, the three final purposes quoted by Article 2 are growth, price 

stability, and employment. Internal equilibrium should be added as an 

external variable, such as balance of payments or the exchange rate sta-

bility. The decisions of authorities are not always characterized by disclo-

sure, due to potential mechanism conflicts, elections, and financial crises. 

This ambiguity is amplified by the incompatibility among final targets, 

in particular between growth and unemployment on one side, and infla-

tion on the other. This relation (Phillips, 1958) has been proved in many 

cases (United Kingdom during 1861–1957; United States for the1960s and 
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1970s, while after 1984 it is weakened). In the United States, the Federal 

Reserve changes its policy priority depending on the economic situation, 

passing from a growth- to a price stability–oriented strategy (Atkeson and 

Ohanian, 2001).

According to Rumler (2005), the Phillips curve is on the basis of the 

decision to make the price stability the priority of the monetary policy, 

explicated in Article 105 of the Maastricht Treaty: “The primary objective 

of the ESCB shall be to maintain price stability. Without prejudice to the 

objective of price stability, the ESCB shall support the general economic 

policies in the Community with a view to contributing to the achievement 

of the objectives of the Community as laid down in Article 2.”

The European Central Bank justifies its priority as follows:

First, price stability makes it easier for people to recognise changes 

in relative prices, since such changes are not obscured by fluctua-

tions in the overall price level. As a result, firms and consumers do 

not misinterpret general price level changes as being relative price 

changes and can make better informed consumption and invest-

ment decisions  . Second, if creditors can be sure that prices will 

remain stable in the future, they will not demand an “inflation risk 

premium” to compensate them for the risks associated with holding 

nominal assets over the longer term  . Third, the credible main-

tenance of price stability also makes it less likely that individuals 

and firms will divert resources from productive uses in order to 

hedge against inflation  . Fourth, tax and welfare systems can cre-

ate perverse incentives which distort economic behaviour  . Fifth, 

inflation acts as a tax on holdings of cash. This reduces household 

demand for cash and consequently generates higher transaction 

costs. Sixth, maintaining price stability prevents the consider-

able and arbitrary redistribution of wealth and income that arises 

in inflationary as well as deflationary environments, where price 

trends change in unpredictable ways. (European Central Bank, 

2004, 42–43)

Once a central bank will define the inflation target, the spread between 

the target and the actual trend suggests the authority behavior: restricting 

when the actual value is higher than the target, expansive in the opposite 
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case. In order to forecast the scenario, the analyst should anticipate the 

variable trend.

In case of the Euro area, the

strategy is based on a quantitative definition of price stabil-

ity, namely that an annual increase in the Harmonised Index of 

Consumer Prices (HICP) of below 2% can be considered as being 

compatible with this primary objective of monetary policy .   

The phrase “below 2%” clearly delineates the upper bound for the  

rate of measured inflation in the HICP which is consistent with 

price stability. At the same time, the use of the word “ ” in 

the definition clearly signals that deflation, i.e. prolonged declines 

in the level of the HICP index, would not be deemed consistent 

with price stability. (European Central Bank, 1999, 9 and 46)

This target has never been corrected.

Correlation between interest and inflation rates in the Euro area can be 

seen in Figure 13.1. The three circles in the figure show inflationary peri-

ods. The reader must consider that all the inflation values higher than 2% 

will generate an expectation of higher interest rates.

Albeit the HICP dynamics depends upon various factors, the ECB 

makes its forecasts modeling interest rates, exchange rates, oil price, and 

the public deficit national policies. Table 13.5 shows forecasts and actual 

values for GDP and inflation.

The same process must be implemented with different countries when 

the target is the growth or some other variable. The forecasting ability, 

especially for the U.S. GDP, declined during these last years. According to 
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Euribor 3 month offered rate
Ea annual inflation rate eurozone

FIGURE 13.1 CPI and interest rates in the Euro area (1999–2007). (From ECB.) 
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D’Agostino et al., (2006), the relative MSFE* from 1985 to 1999 increased 

for two relevant forecasters: the Federal Reserve and the Survey of 

Professional Forecasters of the Philadelphia FRB. The random walk fore-

casts show a higher magnitude of error.

13.4.2 Leading Indicators

The fundamental analysis rarely is able to generate a forecast when it is 

useful in order to put into practice the Black-Litterman model, since most 

of the variables are lagged. This is directly stated in the first strategic docu-

ment written in January 1999 by the European Central Bank:

Although the monetary data contain information vital to 

informed monetary policymaking, on their own they will not 

constitute a complete summary of all the information about the 

economy required to set an appropriate monetary policy for the 

* The relative MSFE is:

 

Relative MSFE 1

2
2

, |

1

2

0

2

, |

 where , | is the out-of-sample forecast and 0, | is the benchmark forecast over the 

same period, and 1 and 2 –  are the first and last date, respectively, of the out-of-sample 

period.

TABLE 13.5 Forecasts and Actual Values for GDP and Inflation (2003–2006)

nfl

Dec-03 0.2–0.6 1.1–2.1 1.9–2.9 2.0–2.2 1.3–2.3 1.0–2.2

Jun-04 0.5 1.4–2.0 1.7–2.7 2.1 1.9–2.3 1.1–2.3

Sep-04 0.5 1.6–2.2 1.8–2.8 2.1 2.1–2.3 1.3–2.3

Dec-04 1.6–2.0 1.4–2.4 1.7–2.7 2.1–2.3 1.5–2.5 1.0–2.2

Mar-05 1.8 1.2–2.0 1.6–2.6 2.1 1.6–2.2 1.0–2.2

Jun-05 1.8 1.1–1.7 1.5–2.5 2.1 1.8–2.2 0.9–2.1

Sep-05 1.8 1.0–1.6 1.3–2.3 2.1 2.1–2.3 1.4–2.4

Dec-05 1.2–1.6 1.4–2.4 1.4–2.4 2.1–2.3 1.6–2.6 1.4–2.6

Mar-06 1.4 1.7–2.5 1.5–2.5 2.2 1.9–2.5 1.6–2.8

Jun-06 1.4 1.8–2.5 1.3–2.3 2.2 2.1–2.5 1.6–2.8
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maintenance of price stability. Therefore, in parallel with the 

analysis of monetary growth in relation to the reference value, a 

broadly based assessment of the outlook for price developments 

and the risks to price stability in the euro area will play a major 

role in the Eurosystem’s strategy. This assessment will be made 

using a wide range of economic indicators. This wide range of 

indicators will include many variables that have leading indica-

tor properties for future price developments. (European Central 

Bank, 1999, 49).

First, analysts should check a set of data that, even though not lead-

ing, can define target variables more precisely (Jones and Ferris, 1993), as 

shown in Table 13.6.

Some other variables, known as leading indicators, help the market 

analyst to estimate the phenomenon dynamics (Table 13.7).

The ability to anticipate the target variables depends on many factors 

(Lahiri and Moore, 1991), such as the ability to elaborate and connect data 

to each other. This way, it is possible to recognize the information useful to 

the portfolio manager so she takes the right financial position.

There are three leading indicator categories (Niemira and Klein, 1994):

1. Pressure indicators (Pericoli and Sbracia, 2003)

 2. Diffusion indicators (Burns, 1969)

 3. Synthetic indicators

TABLE 13.6 Indicators Useful to Identify Target Variables 

(Not Comprehensive)

Economic growth Industrial production

Private and public consumption

Real investments

Supply change

Employment New working places

Hourly earnings

Working cost per production unit

Unemployment subsidy

Inflation GDP deflator

Wholesale inflation

Foreign equilibrium Commercial trade balance/GDP

International capital flows
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They can be useful for the Black-Litterman model and portfolio manage-

ment. The underlying hypothesis is that the economic and financial cycles 

are multifactorial events. Basis indicators should be selected as follows:

1. Through causal relations, statistically robust and economically logical

 2. With high-frequency data

 3. Choice of data with time series deep enough

 4. Eliminating autocorrelation phenomenon

The most used and simple method to build up the synthetic indicator 

(IS) is

 1

where is the weight of the basic indicator (IB); is the correlation factor 

needed to standardize the different measure units; and is the total num-

ber of basic indicators.

In the United States, from 1960 to 2005, six recessions have been expe-

rienced (Table 13.8).

Table 13.9 shows the same forecasting for eight countries.

In case of the Black-Litterman model, leading indicators are particu-

larly useful when they help to forecast financial market data, especially 

TABLE 13.7 Indicators Useful to Forecast Target Variables (Not Comprehensive)

Economic growth Manufacturers’ new orders for consumer goods and materials

The vendor performance component of the ISM index

The average level of weekly initial claims for unemployment insurance

Building permits

Index of consumer expectations

Manufacturers’ new orders for nondefense capital goods

Employment The average manufacturing workweek; demographic dynamics

Inflation* Consumer price by sector and region

Commodities’ prices

Money change (M2 and M3)†

 
* Among the leading inflation indices we mind the Commodity Research Bureau Index, the 

Journal of Commerce Index, the Center for International Business Cycle Research Index, 

and the Paine Webber Index. See (Garner, 1995).
† See Becketti and Morris (1992) and Hetzel (1992).
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for equity indices. Since in some cases (e.g., United States) the equity 

index is considered a leading indicator, there is a risk of loop in the 

analysis.

For the United States, United Kingdom, Italy, and Europe, during the 

period January 1998–June 2006 we compare the consumer expectations 

and the manufacturing change in order to evaluate the forecasting capa-

bility for the equity index.

In the U.S. analysis (Figure 13.2) there is a significant coincidence 

among the changing points of equity and consumer indices, while the 

manufacturing one was able to anticipate both the 2000 and the 2002 cri-

ses, 18 months before.

In Italy, the equity and consumer indices showed a negative correla-

tion (–0.27505), whereas the manufacturing investments led 10 months 

before the beginning of the crisis and 12 months before the upturn 

(Figure 13.3).

TABLE 13.8 Forecasting Capacity of the Composite Index 

of Leading Indicators for the United States (1960–2005, in months)

1960 11 3

1970   8 7

1974   9 2

1980 15 3

1981–1982   3 8

1990–1991   6 2

TABLE 13.9 Forecasting Capacity of the Composite Index of Leading 

Indicators for Different Countries (1960–2005, in months)

United States 9 9   6 11   8

Canada 2 2 14 12 13

Germany 4 4 10 10 10

France 4 4   2   9   6

United Kingdom 3 3 13 20 17

Italy 3 2 11 12 11

Switzerland 4 4 15 13 14

Japan 2 3 12 10 11
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In the United Kingdom, the equity market was anticipated by the con-

sumer index of 1 and 5 months, respectively (Figure 13.4). The investment 

index is coincident in the 2000 crisis and anticipates (18 months) the 2003 

crisis.

Finally, the European index seems not to be anticipated in the case 

of the 2000 downturn. In fact, the consumer index changed its direc-

tion 2 months later, and the manufacturing investments 5 months 
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later. Better was the 2003 performance, led 1 month before using the 

consumer variable and 16 months before by means of the manufactur-

ing index.

Our empirical analysis makes evident that some real indicators lead 

financial markets indices too. Analysts must supervise their performance 

during the different changing points in order to make the forecasting 

model more effective.
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13.5 CONCLUSION
In this chapter, we extend the Black and Litterman model to four moments, 

explicitly involving skewness and kurtosis as additional risk measures, and 

we show how this can generate significant benefits in the context of hedge 

fund investing. The results confirm our intuitions and highlight the impor-

tance of including higher moments in the pricing equation. Extending to 

four moments, the allocation on a high-kurtosis fund decreases from 60% 

to 48%; for a normally distributed fund it remains stable. Our results can 

potentially be used for other nonnormally distributed assets, as commodi-

ties single stocks.
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14C H A P T E R  

Dampening Hedge 
Fund Volatility through 
Funds of Hedge Funds

Jodie Gunzberg and Audrey Wang

14.1 INTRODUCTION
In this chapter, the authors focus the discussion on annualized volatil-

ity and dispersion of volatility over different time periods, strategies, and 

number of funds in a fund of hedge funds. First, the data universes will be 

described followed by the methodology used to arrive at the conclusions. 

The authors evaluated the simulations measuring the median annualized 

volatility and dispersion of volatility over 3, 5, 7, and 10 years for each 

strategy’s individual hedge funds as well as for funds of funds within those 

strategies. Next, a similar exercise was performed to examine the volatility 

reduction by combining strategies.
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There are a few key takeaways to point out regarding the analysis of the 

simulation results.

When evaluating hedge funds or funds of hedge funds within a strat-

egy, the minimum track record will have little influence on the volatil-

ity of the average fund. However, there is evidence of a higher-volatility 

period included in the 10-year annualized volatility numbers that drops 

off as time decreases. So, one must be careful to consider the track record 

length when thinking about the possible dispersion in volatility. One may 

expand the analysis of return history by representing the distribution as 

a combination of peaceful times and eventful, more volatile times with 

greater correlation among strategies that occur during crises (Till and 

Gunzberg, 2005).

Although volatility of funds of hedge funds varies widely within the 

directional space, there is a general pattern among all the strategies of 

decreasing volatility as the number of funds increases. The most dramatic 

reduction occurs when moving from one fund to five funds. Further, there 

is support for combining up to fifteen hedge funds within a strategy, but 

minimal benefit is obtained by further additions. However, one must 

consider return when making an investment decision, and according to 

a study by Patel (2008), forty hedge fund managers are sufficient to consis-

tently beat a benchmark of T-bills  2.5% over 5 years.

When evaluating funds of hedge funds equally weighted across strat-

egies, the results show that levels of annualized volatility depend much 

more on strategy weighting than on number of funds. Heavier weightings 

in directional strategies yield higher volatility and dispersion in volatility.

Lastly, there is a qualitative review of considerations that fund of hedge 

fund managers should take into account when selecting hedge funds. The 

authors conclude with a review of the portfolio construction methodol-

ogy and statistics of closely followed funds of hedge funds at the Marco 

Consulting Group.

14.2 DATA UNIVERSE
The initial data universe consisted of all hedge funds in the Hedge Fund 

Research (HFR) database of approximately 5,000 funds as of March 31, 

2008. The hedge funds were then separated into three broad strategy uni-

verses: directional, event driven, and relative value. The directional uni-

verse consisted of hedge funds in the HFR categories equity hedge, equity 

manager, equity nonhedge, and short selling. The event-driven universe 

consisted of hedge funds in the HFR categories event driven, distressed 
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securities, and merger arbitrage. The relative value universe consisted of 

hedge funds in the HFR categories relative value arbitrage, convertible 

arbitrage, fixed income, and equity market neutral.

Each strategy universe was split into four sets by a screen for at least 

a full 10-, 7-, 5-, and 3-year track record, and then further narrowed to 

funds with at least $100 million in assets under management (AUM). The 

screen for funds with at least $100 million in assets narrowed the uni-

verse considerably. Table 14.1 shows the numbers of hedge funds in each 

universe. As the track record length requirement increased, naturally the 

number of funds diminished. Also, the universe for directional funds was 

largest, followed by event driven, then relative value.

14.3 SIMULATION METHODOLOGY
First, within each of the strategy universes, directional, event driven, and 

relative value, and in each of the minimum track record periods, 10, 7, 5, 

and 3 years, the annualized returns and annualized standard deviations 

were measured for each hedge fund. For the sets limited by a minimum 

10-year track record, the 10-, 7-, 5-, and 3-year annualized returns and 

annualized standard deviations were measured; for the sets limited by a 

minimum 7-year track record, the 7-, 5-, and 3-year annualized returns 

TABLE 14.1 Universe Composition 

(with $100 Million or More in AUM)

Directional   68

Event driven   29

Relative value   56

Directional 142

Event driven   51

Relative value 112

Directional 223

Event driven   85

Relative value 180

Directional 332

Event driven 108

Relative value 247
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and annualized standard deviations were measured; for the sets limited by 

a minimum 5-year track record, the 5- and 3-year annualized returns and 

annualized standard deviations were measured; and for the sets limited 

by a minimum 3-year track record, only the 3-year annualized returns 

and annualized standard deviations were measured. Next, the returns and 

standard deviations were divided into 95th, 90th, 75th, 50th, 25th, 10th, 

and 5th percentiles, and the dispersion between each percentile and the 

5th percentile was calculated and evaluated.

Next, for each of the strategy universes in each of the minimum track 

record periods, the authors simulated portfolios of fund of funds using 

different numbers of underlying funds. Ten thousand sets of funds of 5, 

10, 15, 20, and 25 equally weighted hedge funds were created (for a total 

of 50,000 per strategy per minimum track record). Going forward these 

universes will be referenced to as funds of 5, 10, 15, 20, or 25 hedge funds. 

First, the strategy was selected, followed by the minimum track record 

length, and then the number of hedge funds to be included in the fund 

of hedge funds. The annualized rates of return as well as the annualized 

standard deviations were calculated for each of the funds of hedge funds 

within the strategy universe. Then, the returns and standard deviations 

(within each strategy and time period and number of underlying funds) 

were divided into 95th, 90th, 75th, 50th, 25th, 10th, and 5th percentiles, 

and the dispersion between each percentile and the 5th percentile was cal-

culated and evaluated.

The number of combinations available was determined by the choose 

function,  choose :

 ( , )  !/(( !)*(  – )!)

where   the number of funds available and   the number of funds 

chosen for the fund of hedge funds.

While some actual funds of hedge funds have more than twenty-five 

underlying managers, the authors chose 25 as the maximum number of 

underlying funds because there were only twenty-nine hedge funds in the 

event-driven strategy with at least 10-year track records and $100 million 

of AUM.

All of the above data were then used to determine the reduction in vola-

tility and the reduction in dispersion of volatility as the number of funds 

to be combined within a strategy universe and minimum track record 

increased. The second step was creating multistrategy funds of funds by 

equally weighting underlying funds from the directional, event-driven, 
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and relative value categories, in order to measure how volatility and the 

dispersion of volatility behaved in a multistrategy context.

To create multistrategy funds of funds, all of the hedge funds were 

grouped by strategy and by minimum track record length. Within each 

track record length (minimum 10, 7, 5, and 3 years), 10,000 funds of 15, 30, 

45, 60, and 75 hedge funds each (for a total of 50,000) were randomly sam-

pled from ( , ) samples, where the number of hedge funds chosen from 

each strategy was equal. Equally weighting across strategies neutralizes the 

significantly larger number of directional hedge funds in the universe. So, 

for example, each of the 10,000 funds of 15 hedge funds constructed with 

a minimum 10-year track record consisted of 5 directional, 5 event-driven, 

and 5 relative value funds, each with a minimum 10-year track record. 

Again, annualized returns and annualized standard deviations were cal-

culated for each multistrategy fund of hedge funds and divided into 95th, 

90th, 75th, 50th, 25th, 10th, and 5th percentiles. The dispersion between 

each percentile and the 5th percentile was also calculated and evaluated. 

Then, the statistics from the multistrategy funds of fifteen hedge funds 

with a minimum 10-year track record were compared with the single-

strategy funds of five hedge funds with minimum 10-year track records.

14.4 SIMULATION RESULTS
First, the difference in annualized 3-year volatility at the 50th percentile 

among hedge funds with at least 10-, 7-, 5-, or 3-year minimum track 

records was examined. The conclusion is that the difference is mini-

mal, with the greatest being about 50 basis points between funds with 

10-year and 3-year track records in the relative value strategy, as shown in 

Table 14.2. This is important because in the analysis later in this chapter, 

TABLE 14.2 Annualized 3-Year Volatility at 50th Percentile

1 10.0% 10.0% 10.1% 10.6% 6.9% 6.9% 6.8% 6.7% 5.3% 5.4% 5.2% 4.9%

5   8.0% 8.1% 8.3% 7.9% 5.6% 5.4% 5.2% 5.2% 3.7% 3.9% 3.8% 3.2%

10   7.7% 7.8% 7.9% 7.3% 5.1% 5.1% 5.0% 4.8% 3.3% 3.5% 3.4% 2.7%

15   7.6% 7.7% 7.7% 7.1% 5.0% 4.9% 4.9% 4.7% 3.1% 3.3% 3.2% 2.6%

20   7.5% 7.6% 7.7% 7.0% 4.9% 4.9% 4.9% 4.6% 3.0% 3.2% 3.2% 2.5%

25   7.5% 7.5% 7.6% 7.0% 4.8% 4.8% 4.8% 4.6% 2.9% 3.1% 3.1% 2.4%
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where levels of volatility are measured as the number of funds increase, 

only the minimum 10-year track record universes will be used to display 

the results for 10-, 7-, 5-, and 3-year annualized volatility.

Next, the dispersion in annualized 3-year volatility between the 5th 

and 95th percentiles among hedge funds with at least 10-, 7-, 5-, or 3-year 

minimum track records was examined. While the level of volatility differs 

very little depending on the minimum track record, the dispersion in vol-

atility varies pretty significantly, where the dispersion is greater for funds 

with shorter minimum track records, as illustrated in Table 14.3. However, 

the pattern of decreasing dispersion is similar for each of the minimum 

track records, so again the results for only the minimum 10-year track 

record will be displayed.

The key takeaway is that when evaluating hedge funds or funds of hedge 

funds within a strategy, the minimum track record will have little influ-

ence on how volatile the average fund is. Nonetheless, one must be care-

ful to consider the track record length when thinking about the possible 

dispersion in volatility.

In Figures 14.1 to 14.3 annualized volatility levels at the 50th percentile over 

3-, 5-, 7-, and 10-year periods ending on March 31, 2008 will be examined for 

each of the strategies. While there is a general pattern among all of the strate-

gies of decreasing volatility as the number of funds increase, the most dra-

matic reduction occurs when moving from one fund to five funds. Also, there 

is evidence of a higher-volatility period included in the 10-year annualized 

volatility numbers that drops off as time is decreased. In the following evalu-

ation, there is support for combining up to fifteen hedge funds, but minimal 

benefit through reduction in volatility is obtained by further additions.

TABLE 14.3 Annualized 3-Year Volatility Dispersion between the 5th and 95th Percentiles

1 16.1% 16.3% 15.8% 10.7% 14.1% 11.6% 8.0% 8.3% 16.3% 18.8% 20.1% 10.0%

5 7.5% 7.3% 7.1% 6.1% 4.5% 4.2% 4.4% 2.8% 4.6% 4.9% 5.3% 3.0%

10 5.1% 4.8% 4.9% 4.5% 2.8% 2.6% 2.6% 1.7% 3.1% 3.3% 3.7% 2.0%

15 4.1% 3.9% 3.9% 3.5% 2.1% 2.0% 1.9% 1.2% 2.4% 2.6% 2.9% 1.6%

20 3.5% 3.3% 3.3% 3.0% 1.7% 1.6% 1.5% 0.8% 2.1% 2.2% 2.5% 1.3%

25 3.1% 2.9% 2.9% 2.5% 1.5% 1.4% 1.3% 0.5% 1.8% 2.0% 2.1% 1.1%
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FIGURE 14.1 Directional strategy, funds of hedge funds with 10-year 

minimum track records, period ending March 31, 2008, 50th percentile 

volatility.
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FIGURE 14.2 Event-driven strategy, funds of hedge funds with 10-year 

minimum track records, period ending March 31, 2008, 50th percentile 

volatility.
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In the directional strategy depicted in Figure 14.1, when moving from 

one to five funds, the volatility is reduced by 2.7%, 2.2%, 3.3%, and 4.7% 

annualized over 3, 5, 7, and 10 years, respectively. Diversifying to ten hedge 

funds reduces annualized volatility by about another 50 basis points over 

3, 5, and 7 years, and 90 basis points annualized over 10 years. Beyond that 

the annualized volatility reduction is minimal, where adding another ten 

hedge funds for a total of twenty funds only reduces annualized volatil-

ity by 30, 30, 40, and 60 basis points annualized over 3, 5, 7, and 10 years, 

respectively. Finally, adding another five hedge funds for a total of twen-

ty-five funds does not reduce the volatility for any periods except for by  

10 basis points annualized over 10 years.

Next, the results of the event-driven strategy showed a similar pattern of 

annualized volatility reduction, where the most reduction occurred when 

moving from one hedge fund to five hedge funds. However, the annual-

ized volatility savings over 10 years had the least reduction, whereas it had 

the most reduction in the directional strategy, as illustrated by the rela-

tively flat slope of the 10 years line in Figure 14.2. This may be due to the 

payoff distributions that are discontinuous and skewed within the strategy 

that the volatility alone cannot measure. A value-at-risk (VAR) measure 
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FIGURE 14.3 Relative value strategy, funds of hedge funds with 10-year 

minimum track records, period ending March 31, 2008, 50th percentile 

volatility.
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that summarizes a forward-looking distribution of portfolio profits and 

losses based on current positions by estimating the probability of success 

for each deal, the payoffs from success and failure, and the joint correla-

tions across deals would be more sufficient (Jorion, 2008).

Increasing the number of hedge funds from one to five reduced annu-

alized volatility over 3, 5, 7, and 10 years by 1.5%, 1.5%, 1.8%, and 0.6%, 

respectively. Adding five more hedge funds saved another 30 to 40 basis 

points of annualized volatility; however, there were almost no incremental 

volatility reductions by having more than ten funds.

As consistent with the directional and event-driven strategies, the rela-

tive value strategy shows the most reduction in annualized volatility by 

increasing the number of hedge funds from one to five. However, on a 

relative basis, the annualized volatility from increasing the number of 

hedge funds from one to five reduces the level by about 40%, which is 

much greater than for directional and event driven, where the reduction is 

about 25%. On an absolute basis, the annualized volatility over 3, 5, 7, and 

10 years for the relative value strategy was reduced by 1.7%, 1.8%, 2.1%, 

and 2.5%, respectively. Further increasing the number of hedge funds to 
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FIGURE 14.4 Directional strategy, funds of hedge funds with 10-year  

minimum track records, period ending March 31, 2008, 5th–95th percen-

tile volatility dispersion (Marco Consulting Group, 2008).
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FIGURE 14.5 Event-driven strategy, funds of hedge funds with 10-year 

minimum track records, period ending March 31, 2008, 5th–95th percen-

tile volatility dispersion (Marco Consulting Group, 2008).
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tile volatility dispersion (Marco Consulting Group, 2008).
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ten funds reduced the annualized volatility over 3, 5, 7, and 10 years by 50, 

40, 50, and 70 basis points, respectively. Adding more hedge funds to get 

totals of 15 and 20 funds reduced the annualized volatility another 20 and 

10 basis points, but there was no volatility-dampening benefit by adding 5 

more hedge funds for a total of 25.

Next, the dispersion of annualized volatility between the 5th and 95th 

percentiles over 3-, 5-, 7-, and 10-year periods ending on March 31, 2008, 

will be discussed. As one would expect, the dispersion of volatility is far 

greater for single hedge funds than for funds of hedge funds. The widest 

dispersion among hedge funds is within the directional strategy, which 

might also be expected given it is the strategy with the highest volatility. 

In fact, even with twenty-five funds there may still be between a 2.5% and 

4% discrepancy in annualized volatility from the 5th to 95th percentiles 

over 3, 5, 7, and 10 years. However, it is a different story for the dispersion 

of annualized volatility in the event-driven and relative value strategies, 

where beyond ten funds there is very little dispersion of 2% or less (with 

the exception of the 3% annualized 10-year dispersion in event driven). 

The conclusion is that funds of hedge funds volatility can vary widely 

within the directional space and not as much in the other categories.

In the next part of the analysis, the combination of strategies to create 

a fund of hedge funds equally weighted by underlying fund and strategy 

will be examined. As illustrated in Figure 14.7, there is almost no differ-

ence in annualized volatility at the 50th percentile in equally weighted 

funds of hedge funds with minimum 10-year track records, no matter 

how many funds are included. There is only marginally higher volatility of  

50 basis points or less for a fund of fifteen hedge funds.

Another consistent theme when analyzing the levels of annualized vol-

atility between funds of hedge funds within a strategy and multistrategy 

funds of hedge funds was that the annualized volatility of multistrategy 

funds of hedge funds, labeled “ALL” in Figure 14.8, always fell in between 

directional and relative value, somewhere near event driven. This was true 

regardless of how many funds were used in the strategy and minimum 

track record universes. The conclusion is that levels of annualized volatil-

ity are affected more by strategy weighting than by number of funds.

Contrary to the level of annualized volatility, shown in Figure 14.7, 

Figure 14.9 shows that the dispersion in volatility based on the number 

of funds is reduced by more than half when moving between fifteen and  

seventy-five funds. However, with the exception of the funds of fifteen 

funds, the dispersion of annualized volatility is never much greater than 2%.  
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FIGURE 14.7 Equally weighted funds of hedge funds, 10-year minimum 

track records, period ending March 31, 2008, 50th percentile volatility.
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The greatest dispersion in annualized volatility occurs over a 10-year period, 

which makes sense given the higher volatility exhibited over that period by 

all of the strategies.

Figures 14.10 and 14.11 show the dispersion in annualized volatility of 

the funds of hedge funds combined across strategies (multistrategy) versus 

the single-strategy funds of funds. Although these charts include the set of 

equally weighted funds of seventy-five hedge funds, the results are simi-

lar despite the number of funds. The multistrategy funds of hedge funds 

with minimum track records of 10 years have annualized volatility disper-

sion just above the event-driven and relative value strategies. The point of 

interest is that in the 10-year minimum track record universe, directional 

volatility dispersion is significantly greater than the other strategies, so 

even though two-thirds of the “ALL” funds of funds is comprised of event 

driven and relative value, the combined dispersion is still wider than the 

dispersion of each strategy.

As opposed to the 10-year minimum track record universe, combining 

funds with a minimum track record of 7 years adds the benefit of reduced 
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FIGURE 14.11 Equally weighted funds of seventy-five hedge funds, 7-year 

minimum track records, period ending March 31, 2008, 5th–95th percen-

tile volatility dispersion.
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annualized volatility dispersion. This volatility reduction is expected given 

that the lower dispersion over 10 years is higher for the directional strategy. 

Also, the difference in volatility dispersion between strategies is much less 

within the 7-year minimum track record universe, so the combination cre-

ates funds of “ALL” hedge funds with lower dispersion than any of the indi-

vidual strategies. The lower dispersion may be rationalized by recent rises 

in correlations among hedge fund returns that are explained by declines in 

overall volatility associated with average covariance (Adrian, 2007).

14.5 FUND OF HEDGE FUNDS PORTFOLIO 
CONSTRUCTION

Investors in funds of hedge funds must evaluate each fund of funds man-

ager and its investment process, including strategy and manager selection, 

portfolio construction, risk management, and monitoring. Fund of funds 

managers typically first form a top-down view of the global economy 

and markets, focusing on major secular trends and their macroeconomic 

outlook. These managers also attempt to discover market inefficiencies, 

such as a supply/demand imbalance in commodities, and tilt the portfolio 

toward the strategies expected to outperform. A top-down view is often a 

starting point in a fund of fund’s investment process, but it often makes up 

only a small portion of the manager’s process.

The bottom-up analysis, or manager selection, is where the typical 

fund of funds manager spends most of her time. The initial universe of 

investable hedge funds is sourced from a variety of venues, including the 

firm’s network of industry contacts, current underlying managers, prime 

brokers, and public databases. Then the manager will separate the hedge 

funds into broad strategy categories, such as directional, event driven, and 

relative value. Depending on the risk and return goals, the underlying 

managers are analyzed based on qualitative and quantitative measures to 

form a universe of targeted managers. In most cases, the 20–30% of the 

funds with the extreme returns account for 80% of the total return varia-

tion within each style, whereas the 70–80% of funds in the bulk of the dis-

tribution account for only around 20% of the variation in total returns in 

each style (Mackey, 2006). The final bottom-up step, due diligence, is at the 

core of the process, where the firm will evaluate in detail each underlying 

hedge fund manager’s strategy and investment process, risk management, 

back office capabilities, and documentation.

To construct funds of hedge funds managers must pay close attention to 

exposures such as sector and regional allocations, and also risk measures 
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beyond volatility, such as drawdowns, beta, skewness, and kurtosis. In 

fact, failure to account for skewness and kurtosis can result in suboptimal 

performance, as shown by the domination over the mean-variance opti-

mal portfolio of a portfolio optimization that maximizes the probabil-

ity of a benchmark return and minimizes the expected shortfall (Popova  

et al., 2007). There are also many other optimization techniques managers 

use along with liquidity considerations to create the best portfolio. Once 

portfolio construction is completed, monitoring the underlying managers 

is an ongoing and continual process that consists of revisiting and review-

ing each manager’s status.

Investing via a fund of hedge funds gives investors access to a diversified 

allocation across broad strategies as well as substrategies and underlying 

managers. This is important because the cross-sectional variation and the 

range of individual hedge fund returns are far greater than they are for tra-

ditional asset classes. Thus, investors in hedge funds take on a substantial 

risk of selecting a dismally performing fund or, worse, a failing one (Malkiel 

and Saha, 2005). Multistrategy fund of funds portfolios are often preferred 

as the initial allocation for an institution investing in hedge funds for the 

first time. Strategy-specific funds of funds can be another way to diversify 

an investor’s allocation via a core-satellite approach. Investors in a fund of 

funds will want to evaluate the manager’s ability to implement the afore-

mentioned investment process and portfolio construction. Investors should 

evaluate the manager’s ability to select the appropriate strategy allocations/

tilts and best-in-class managers, as well as their ability to perform high-

quality risk management, portfolio construction, and monitoring of the 

underlying managers. Investors should seek portfolios that are diversified 

by strategy and number of funds, with low to moderate volatility profiles.

Based on the Marco Consulting Group’s universe of approved and pro-

spective (closely monitored) multistrategy funds of funds, standard devia-

tion on a 5-year basis (for those funds that have 5-year track records ending 

March 31, 2008) ranges from 2.25% to 5.8%. On a 3-year basis, volatility 

ranges from 2.5% to 7.5%, and on a 2-year basis from 2.9% to 8.4%. The 

portfolios with volatility above 5% on a 3- and 5-year basis tend to have 

larger allocations to directional and certain event-driven strategies. On a 

2-year basis, volatility has been skewed by the heightened volatility that 

the overall markets have experienced since mid-2007. Three-year Sharpe 

ratios range from –0.2 to 1.8. These portfolios range in diversification, 

from twenty to seventy-five underlying funds.
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14.6 CONCLUSION
In this chapter, the authors have attempted to convey the dampening of 

hedge fund volatility through investing in a fund of hedge funds by eval-

uating multiple simulated portfolios of unbiased and randomly selected 

hedge funds. The authors measured the median annualized volatility and 

dispersion of volatility over 10-, 7-, 5-, and 3-year periods for individual 

hedge funds as well as for fund of funds within each broad strategy cat-

egory of directional, event driven, and relative value.

Although the minimum track records of hedge funds must be consid-

ered when analyzing volatility, the authors found that the difference in 

volatility and dispersion in volatility among funds with 10-, 7-, 5-, and 

3-year minimum track records was minimal, and thus displayed only 

the minimum 10-year track record results in this chapter. Contrary to 

the belief that some investors may have about younger hedge funds being 

more volatile, the minimum track record of a hedge fund will have little 

influence on how volatile the average fund is.

The rule of diversification applies to funds of hedge funds in that, gen-

erally, adding more hedge funds to a portfolio decreases the volatility of 

that portfolio, which is most noticeable when comparing an investor’s 

portfolio of one fund to five funds. However, the authors found that the 

added benefit of diversification to the dampening of volatility is minimal 

as one combines more than five funds, and the effect is even less so as one 

combines more than fifteen funds. The large reduction in volatility from 

one to five funds is especially notable in relative value, where the volatility 

level was reduced by about 40%, which was much greater than for direc-

tional and event driven, where the reduction was only about 25%.

By comparing the dispersion between the strategy-specific funds of 

hedge funds and the multistrategy funds of hedge funds, the authors also 

conclude that the volatility of a portfolio will largely be determined by 

strategy weightings rather than the degree of diversification among funds. 

The higher the weighting in directional strategies, typically the higher the 

volatility of the overall fund of hedge funds will be. Of course, most actual 

funds of hedge funds that exist in the industry are actively managed and 

not portfolios of randomly selected funds. Therefore, if an investor’s objec-

tive is to select a conservative, low-volatility fund of funds, many factors 

other than diversification must be considered, including the manager’s 

ability to make top-down and bottom-up as well as quantitative and quali-

tative decisions.
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15.1 INTRODUCTION
Considerable evidence exists that information flow, as proxied by stock 

return correlations, transcends national boundaries. The works of Robichek 

et al. (1972), Ripley (1973), and Panton et al. (1976) have all pointed to 
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significant informational relationships between equity markets. In con-

trast, Granger and Morgenstern (1970), Agmon (1972), Hilliard (1979), and 

others have presented evidence of poor information flow across countries.

With respect to international volatility transmission, Eun and Shim 

(1989), Hamao et al. (1990), Theodossiou and Lee (1993), Lin et al. (1994), 

Koutmos and Booth (1995), and Koutmos (1996) have all reported strong 

spillovers in volatility across global equity markets. Prior research has 

examined the transmission of volatility based on local, regional, and global 

spillovers and then expanded the scope of their study to other markets. For 

example, Koch and Koch (1991) suggest that regional interdependencies 

have grown over time. Bakaert and Harvey (1997) distinguish between 

global and local shocks in emerging stock markets, while Ng (2000) iden-

tified Japan (the United States) as a regional (global) contributor to world 

equity market volatility.

The main focus of existing research has been to examine information 

transmission between markets of the same asset class. However, very little 

work has investigated information flows, in particular volatility spillovers, 

between markets of different asset classes. To illustrate why this would be 

of interest, consider the relationship between debt and equity securities. 

Equities require accurate information on the cost of capital and interest 

rates. Likewise, when the stock market produces any abnormal return, 

investors may rebalance their portfolio to achieve such a return. If there is 

transmission of information between stock and bond markets, investors 

should pay attention to their interaction, and it is of interest to under-

stand this dynamic interdependence. Understanding the transmission of 

volatility between complementary assets such as stocks and bonds allows 

portfolio investors to diversify their portfolio more effectively. The ben-

efits of diversification for bonds are often overstated, especially within the 

mean-variance approach (Fang, 2005). Given the possibility of stock and 

bond information flows, it is incumbent upon investors to pay attention to 

the pricing and volatility relationships between both markets.

The purpose of this chapter is to investigate the dynamic interdepen-

dence of domestic stock and bond markets. Six research questions are con-

sidered. First, are there volatility spillovers across domestic stock and bond 

markets? As discussed above, scant evidence of this cross-market spillover 

is available. Second, what is the direction of the transmission? Third, do the 

currency markets affect volatility spillovers? We do this by investigating the 

sensitivity of the empirical results to the use of alternative currency denom-

inations. When a common currency (the U.S. dollar) is used, it is likely that 
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some of the co-movement observed among returns in different markets 

is caused by changes in the fundamentals driving the exchange rates of 

the dollar.* Fourth, do the volatility spillover coefficients vary significantly 

across time? The nature of any linkage over time is one factor bearing on 

asset allocation decisions. Fifth, are spillovers more prevalent in certain 

geographical regions? Monetary policy cooperation between national gov-

ernments in the form of economic agreements may produce interesting 

dynamics in information spillovers. Lastly, what are the determinants of 

volatility spillovers? Knowing the explanatory factors of information flow 

can assist investors in the construction of financial portfolios.

Our study presents an empirical framework for analyzing return and 

volatility spillovers across equity and bond markets of twelve countries 

over a 15-year period between January 1990 and December 2004. The 

empirical analysis employs generalized autoregressive conditional het-

eroskedastic (GARCH) models.

We make four main empirical contributions to the literature. First, 

we examine the interaction of volatility spillovers across domestic 

stock and bond markets. Second, the analysis spans all the major geo-

graphical market regions of the world. The advantage of this is that 

macroeconomic factors contributing to information transmission 

can be cogently examined. Third, the role of currency f luctuations is 

investigated to ascertain the effect of foreign exchange on informa-

tion transmission across markets. Fourth, we assess whether macro-

economic factors inf luence the strength of information transmission 

across asset classes.

The results confirm the view that information transmission is important 

in international equity and bond markets. Volatility spillovers are bidirec-

tional for both equity and debt markets and the results are not sensitive 

to the currency base. However, in general, we detect that equity markets 

tend to export volatility to the debt markets (once the covariance between 

equity and debt market returns is incorporated into the analysis). From 

an intertemporal perspective, volatility spillover coefficients do not vary 

over time. While information flow from bonds to stocks does not differ 

in each region, the flow from stocks to bonds does present some regional 

differences. Finally, from panel data analysis, the information linkages 

between the two asset markets are higher in countries with low economic 

* Hamao et al. (1990), Koch and Koch (1992), Lau and Diltz (1994), and Lee et al. (2004) also 

analyzed the stock market interdependencies in both USD and local currency.
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risk (high GDP per capita) and higher financial market integration (high 

percentage of foreign debt per GDP).

The outline of the chapter is as follows: In Section 15.2 we describe our 

model of information transmission across asset classes and data. The empir-

ical findings are discussed in Section 15.3, and Section 15.4 concludes.

15.2 MODEL AND DATA
15.2.1 Bivariate GARCH Model

The multivariate model jointly describes the volatility of several time 

series, and the general model for a -dimensional process ( , , )1 K  

is expressed as 1 2/ , where  is a -dimensional i.i.d. process with 

mean zero and covariance matrix equal to the identity matrix.

To complete the -dimensional multivariate model, the parameter-

ization for  different mean estimates,  conditional variance equations, 

and the 
2

2
 conditional covariance matrix needs to be specified. In our 

case, we focus on the diagonal BEKK model since it guarantees a positive- 

definite covariance matrix.*
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where an  ( ) subscript represent stocks (bonds).

15.2.2 Data

The data used in this study are the daily local closing figures of the aggre-

gate stock and DataStream bond indices for twelve countries in four geo-

graphical regions. These are North America (Canada and the United States), 

Western Europe (Austria, France, Ireland, Italy, Spain, Sweden, Portugal, 

* To test the asymmetric effect of shocks, most studies have used a bivariate or multivariate EGARCH 

model. However, the bivariate EGARCH model with both markets failed to converge, and as a 

result, we focused on the GJR-GARCH model.
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and the United Kingdom), Southeast Asia (Japan), and Africa (Israel). The 

countries are chosen on the basis of bond and equity data availability.

The stock indices are the TSE60 (Canada), S&P500 Composite (United 

States), ATE (Austria), CAC40 (France), ISEQ Overall (Ireland), MIB 

General (Italy), Madrid SE (Spain), OMX Stockholm (Sweden), Lisbon 

PSI General (Portugal), FTSE-All Share Index (UK), Nikkei 225 (Japan), 

and Israel General (Israel). All bond indices are generated by DataStream. 

The sample period ranges from January 2, 1990 to December 31, 2004, for 

most data, except for the DataStream bond indices of Portugal, of which 

the availability starts from December 31, 1992.

Table 15.1 presents several statistics for daily domestic returns on the 

stock indices (Panel A) and bond indices (Panel B), both denominated 

in the domestic currency. They include the annualized mean, annualized 

standard deviation, skewness, and kurtosis. For stock indices, the annual-

ized means for all markets, except Japan, are positive and range between 

1.07 (Austria) and 15.00 (Ireland). The annualized standard deviations of 

returns vary between 13.67 (Portugal) and 37.55 (Austria). The skewness 

and kurtosis indicate that daily stock returns are not normally distrib-

uted. Most stock returns present negative skewness. In local currency, only 

Sweden and Japan show positive skewness. The distribution of returns for 

all stock markets is leptokurtotic relative to the normal distribution.

For bond indices (Panel B), the annualized means for all markets are 

positive and range between 0.72 (United States) and 9.10 (Israel). The stan-

dard deviations of returns vary between 2.49 (Austria) and 5.14 (UK). Only 

one country (Sweden) in local currency shows positive skewness, while 

three countries from Western Europe (Austria, France, and Portugal) and 

the countries in Asia/Pacific in USD have positive skewness. Like stock 

indices, all bond indices have a distribution of returns that is leptokurtotic 

relative to the normal distribution.

15.3 EMPIRICAL ANALYSIS
15.3.1 Joint Estimation of Return and Volatility Spillovers

We first estimate the bivariate VAR-GARCH model for each debt and 

equity market within a country. The coefficients and test statistics are pre-

sented in Table 15.2 (local currency) and Table 15.3 (USD). The principal 

idea behind this model is to consider the conditional covariance between 

the stock and bond market, while simultaneously estimating the GARCH 

model. Also, the recent past return of the other market is included as an 

independent variable in the conditional mean equation.
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TABLE 15.1 Preliminary Statistics Based on Local Currency

Canada 3,914 6.08 15.32 –0.62 11.19

United States 3,914 7.88 16.06 –0.10 6.89

Austria 3,914 1.07 37.55 –16.66 680.06

France 3,914 4.13 21.26 –0.09 5.83

Ireland 3,914 8.03 15.33 –0.33 7.86

Italy 3,914 4.88 19.30 –0.44 6.26

Spain 3,914 7.50 18.89 –0.25 6.61

Sweden 3,914 8.10 23.34   0.20 6.69

Portugal 3,914 5.45 13.67 –0.38 12.94

United Kingdom 3,914 4.43 14.64 –0.14 6.59

fi
Japan 3,914 –7.80 23.36  0.20 6.35

Israel 3,914 15.00 20.96 –0.55 9.49

Canada 3,914 1.02   4.99 –0.38 6.30

United States 3,914 0.72   4.43 –0.34 4.89

Austria 3,914 1.12   2.49 –0.61 10.33

France 3,914 1.38   3.48 –0.22 5.82

Ireland 3,914 2.24   4.20 –0.12 10.83

Italy 3,914 1.96   3.48 –0.54 10.45

Spain 3,914 1.93   3.04 –0.35 7.77

Sweden 3,914 1.50   4.84   0.70 35.75

Portugal 3,131 1.56   2.98 –0.54 12.45

United Kingdom 3,914 1.29   5.14 –0.03 6.59

fi
Japan 3,914 1.00   3.06 –0.46 6.93

Israel 3,914 9.10   3.44 –0.65 33.33

  This table reports descriptive statistics for our data set. Panels A and B report the 

statistics for stock indices and bond indices, respectively. The sample period is 

January 2, 1990 to December 31, 2004 (except for Portugal’s bond index: December 

31, 1992 to December 31, 2004).
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The results are striking. Almost all return and volatility spillover coef-

ficients are statistically significant. Volatility spillovers from stock to bond 

markets are found in almost every country (exceptions are Sweden and 

Japan) in local currency and all countries in USD. The reciprocal trans-

mission of information from bond to stock markets is not so strong, with 

only six countries experiencing transmission in this direction in local cur-

rency and nine countries in USD.

Overall, the results indicate that almost every stock market exports its 

volatility to the bond market. In sum, when the interaction between stock 

and bond market is taken into account, recent return and volatility inno-

vations in both markets have a significant impact on its current volatility.

15.3.2 Are Volatility Spillovers Time Varying?

Volatility spillovers may change over time. To test for time-varying char-

acteristics of volatility spillover, the bivariate GARCH model is run for 

each month and each year, and the coefficients of volatility spillover are 

analyzed using analysis of variance (ANOVA). The hypothesis is that the 

means of volatility spillover coefficients in each month/year are equal.

The results are reported in Panel A of Table 15.4. From the table it can 

be seen that none of the tests show significant differences—either across 

months or across years. In other words, the volatility spillover of each 

month and each year does not vary significantly over time.

15.3.3 Are There Regional Effects in Volatility Spillovers?

The degree of stock and bond market development in each region is dif-

ferent. As a result, the level of information transmission may differ also. 

In other words, the volatility spillover may differ according to the location 

of market. The z-test of ANOVA will be used to test whether the means of 

volatility spillover coefficients differ between different regions. To perform 

this test, the volatility spillover coefficients are obtained from the bivariate 

GARCH models, which are estimated from a sample of every month. The 

hypothesis is that all of the means of the volatility spillover coefficients in 

each region are equal. Generally, we find that from bonds to stocks, there 

is no difference in means among the four regions. Likewise, in general, 

volatility spillovers from stocks to bonds do not differ across regions.

Panel B of Table 15.4 reports tests of pairwise differences in volatility 

spillover coefficients between regions. When the pairwise analysis of two 

regions is applied, the means of volatility spillover coefficients from bond 

to stock markets are not significantly different. However, the pairwise 
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TABLE 15.4 Tests for the Difference of Mean of Volatility Spillovers

Austria 0.979 1.252 1.469 0.481

Canada 0.998 1.150 1.001 1.415

France 1.025 1.212 1.017 0.266

Ireland 0.953 0.782 0.896 0.868

Israel 0.998 0.325 1.069 0.263

Italy 0.962 0.725 0.982 0.983

Japan 1.012 1.061 0.975 0.162

Portugal 0.997 0.832 0.719 0.667

Spain 1.046 0.996 0.957 0.935

Sweden 1.486 0.888 1.184 0.795

United Kingdom 1.017 1.391 0.992 1.183

United States 0.983 0.878 0.983 1.733

acifi

Western Europe 1.105

Asia/Pacific 1.114 0.130

Africa/Middle East 1.094 –0.305 –0.284

Among four regions 1.948

Western Europe –0.631

Asia/Pacific 0.988 2.298 **

Africa/Middle East –0.026 0.970 –2.465 ***

Among four regions 0.400

  This table presents summary statistics of the difference in the mean of volatility spill-

over coefficient estimates of different months and years (Panel A) and of different 

regions (Panel B), based on ANOVA analysis. The sample period is January 2, 1990 to 

December 31, 2004 (except for Portugal: December 31, 1992 to December 31, 2004). 

The volatility spillover parameters are estimated from bivariate GARCH within each 

month: 

 1 = 2 = … , : 

Not all population means of volatility spillover coefficients in each month/year/

region are equal.

*, **, *** indicate the rejection of the null hypothesis at the 10, 5, and 1% levels of signifi-

cance, respectively.
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analysis of volatility spillover mean coefficients from stock to bond mar-

kets shows a difference in two cases: Western Europe versus Asia/Pacific, 

and Asia/Pacific versus Africa/Middle East. Specifically, while the mean 

spillover coefficients from stock to bonds of any region cannot be rejected 

to differ from those of North America, the means of both Western Europe 

and Africa/Middle East are significantly higher than that of Asia/Pacific.

In sum, the information transmission from bond to stock markets is 

likely the same in each pair of regions, whereas the transmission from 

stock to bond markets is statistically similar to that of North America. 

The mean of spillover coefficients in the Asia/Pacific group from stock to 

bond markets is the lowest. In the Asia/Pacific group, Japan is the largest 

in terms of market capitalization and the most active.

15.3.4 What Are the Determinants of Volatility Spillovers?

It is well known that individual asset prices are influenced by a wide vari-

ety of unanticipated events and that some events have a more pervasive 

effect on asset prices than do others (Chen et al., 1986). Importantly, asset 

prices are commonly believed to react sensitively to the arrival of eco-

nomic news. The theory of efficient markets and rational expected inter-

temporal asset pricing suggests that asset prices should depend on their 

exposures to the state variables describing the economy (Merton, 1974; 

Cox et al., 1985; Ross, 1976).

Accordingly, in this section the volatility spillover coefficients from the 

bivariate GARCH model will be related to a set of economic and finan-

cial variables that may influence the spillover effect. In prior literature (for 

example, Chen et al., 1986), several economic variables are found to be 

significant in explaining expected stock returns when the market is highly 

volatile. In general, stock markets seem less affected by macroeconomic 

news than bond markets (McQueen and Roley, 1993). Nevertheless, should 

the volatility spillover from bond to stock market be significant, it is worth 

investigating the relevant economic variables influencing the information 

linkage between those markets.

A number of economic variables are considered. First is the ratio of 

equity market capitalization to GDP (MCAPG). The MCAPG ratio is 

often used as proxy for equity market development (Baele, 2005). Theory 

does not provide either a unique concept or a common measure of stock 

market development to guide empirical research (Demirguc-Kunt and 

Levine, 1995). The characteristics of stock market development may be 

related to size, activity, or integration. In this study, the size of stock 
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market is used because of the availability of data comparison with earlier 

work. The assumption is that the size of the stock market is positively cor-

related with the ability to mobilize capital and diversify risk. Information 

is likely to flow more actively in developed financial markets, which are, 

on average, more liquid, diversified, and better integrated with each other 

(Bekaert and Harvey, 1995; Ng, 2000). Specifically, in larger stock markets, 

a recently informed investor will find it easier to trade at quoted prices 

(Grossman and Stiglitz, 1980; Kyle, 1984; Holmstrom and Tirole, 1994). 

Therefore, equity market development is expected to be positively related 

to volatility spillover.

Second is the ratio of current account to GDP (CAG). The CAG ratio 

is normally viewed as a proxy for economic integration (Rivera and 

Romer, 1990). Economic integration means increasing not only trade, 

but also the flow of ideas between two different economies. Countries 

with heavier bilateral trade with a region also tend to have higher return 

correlations with that region (Chen and Zhang, 1997) and are gener-

ally better integrated with world capital markets overall (Bakaert and 

Harvey, 1995). The more economies are linked, the more they will be 

exposed to common shocks, and the more companies’ cash flows will be 

correlated. In other words, the movement of capital due to market inte-

gration may alter the information flow between asset classes in the capi-

tal market. CAG is thus expected to be positively related to the strength 

of volatility spillovers.

The remainder of the variables are employed by rating agencies to set 

country risk ratings. Country risk reflects the ability and willingness of a 

country to service its foreign financial obligations. All essential features 

of country risk are a function of a number of interrelated and dynamic 

structural factors (Carment, 2001), and they may be prompted by country-

specific and regional economic, financial, political, and composite factors 

(Hoti, 2005).

The factors include GDP per head of population, GDPC (a measure of 

the country’s productivity); the percentage of budget balance per GDP, 

BUDG; the percentage of foreign debt per GDP, FDG (gross foreign debt 

in a given year as a percentage of the gross domestic product); and interna-

tional liquidity, LIQ (total official reserves for a given year divided by the 

average monthly merchandise import cost). The GDP per head of popula-

tion and budget balance per GDP reflect the economic risk components, 

whereas foreign debt per GDP and net liquidity proxy for financial risk 

components.
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In summary, the panel data equation that we estimate is given by

             

, , , , ,

  , , ,  (15.6)

The hypothesis is that there is a positive relationship between tentative 

explanatory variable and the strength of volatility spillovers between bond 

and stock markets. The results are reported in Table 15.5.

TABLE 15.5 A Test of the Determinants of Volatility Spillovers

GDPC 0.365 ** 0.271 *

(2.41) (1.8)

MCAPG 0.002 0.001

(1.21) (0.98)

CAG 0.034 0.020

(0.92) (0.67)

BUDG 0.038 * 0.027

(2.05) (1.46)

FDG 0.009 *** 0.010 **

(3.27) (2.7)

LIQ 0.009 –0.010

( 0.97) (–0.94)

Constant 0.004 ** –3.020 *

( 2.54) (–1.9)

F-statistic 2.30 * 2.50 *

   This table reports estimation results for a model of the potential determinants of 

volatility spillover between stock and bond markets:

 , , , , , , , ,

The volatility spillover parameters (VSpill) are estimated from bivariate GARCH 

within each year. The independent variables are GDP per capita (GDPC), equity 

market capitalization per GDP (MCAPG), the percentage of current account per 

GDP (CAG), the percentage of budget balance per GDP (BUDG), the percentage 

of foreign debt per GDP (FDG), and international liquidity (LIQ) (the official 

reserves of the individual countries including the official gold reserves calculated 

at current free market prices but excluding the use of IMF credits and the foreign 

liabilities of the monetary authorities). The source of these data is the interna-

tional country risk guide. The sample period is January 2, 1990 to December 31, 

2004 (except for Portugal: December 31, 1992 to December 31, 2004). The t-sta-

tistics are shown in parentheses. ***, **, and * indicate the statistical significance 

at the 1%, 5%, and 10% levels, respectively.
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Interestingly, the surrogates of equity market development (equity mar-

ket capitalization to GDP) and the indicator of market integration (current 

account to GDP) are not statistically significant in both directions. The 

percentage change in GDP per capita and the percentage of foreign debt 

per GDP are common factors for the information transmission between 

stock and bond market. Additionally, volatility spillovers from bonds to 

stocks are also determined by the percentage of budget balance per GDP. 

All the significant signs of coefficients are positive, as expected.

15.4 CONCLUSION
In this study, we have tested for volatility spillovers between debt and equity 

markets within twelve countries: Canada, the United States, Austria, France, 

Ireland, Italy, Spain, Sweden, Portugal, the United Kingdom, Japan, and Israel. 

The test covers the period from January 2, 1990 to December 31, 2004.

The dynamic transmission of volatility between debt and equity mar-

kets exists in most countries in our sample. Evidence on the direction of 

transmission suggests that information flows more readily from stock to 

bond markets. Spillovers between equities and debt take place through-

out the world, and market location is not particularly important. Instead, 

country risk and development may be more important in predicting the 

extent of volatility spillovers between asset classes. In conclusion, inves-

tors should consider volatility between stock and bond markets in addi-

tion to common factors in returns when forming financial portfolios.
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16C H A P T E R  

Predictability of 
Risk Measures 
in International 
Stock Markets

Turan G. Bali and K. Ozgur Demirtas

16.1 INTRODUCTION
Predictability of risk during normal and highly volatile periods of the stock 

market has important implications in both asset pricing and risk manage-

ment. Although there is some work regarding the persistency of variance 

estimates in the U.S. stock market (see, e.g., Bali et al., 2007), there is lack 

of evidence in international stock markets. Furthermore, modern risk 

management requires a solid understanding of higher-order moments and 

the tails of empirical return distributions. Therefore, persistency of tail 

risk measures such as value-at-risk (VaR) needs to be examined.

This chapter investigates the predictability of variance and VaR in inter-

national stock markets. We use daily stock index returns for G7 countries 
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(the United States, the United Kingdom, Germany, Japan, Canada, France, 

and Italy) and generate the realized variance and VaR estimates. We then 

compute the proportion of the 1-month-ahead variance and VaR mea-

sures that can be explained by the lagged variance and VaR obtained from 

the past 1 to 6 months of daily data to determine the predictability of these 

risk parameters.

We find that for all G7 countries considered in the chapter, persis-

tency in variance is significantly higher than the persistency in VaR. 

Variance of the stock market indices for Germany and Italy has the high-

est persistence, whereas the persistence is low for the United States and 

Canada. However, different than the case of variance, the strongest pre-

dictability of VaR is obtained for Japan. We conclude that although the 

second moment of the stock return distribution is highly predictable for 

Germany and Italy, the left tail of the return distribution is more persis-

tent for Japan.

Specifically, the U.S. variance estimates computed using the past 1 to  

6 months of daily data explain between 4.5% and 6% of the monthly real-

ized variance. This ratio is much higher for Germany and Italy: between 

16.8% and 25.1% of the monthly variance can be explained by the inde-

pendent variables for Germany, and the corresponding figures are similar 

for Italy. We conclude that autocorrelations of the second-order moment 

of return distributions show some similarity according to their proximity 

in geographic locations. These autocorrelation patterns provide striking 

resemblance for the United States and Canada (low), and they are also 

similar within European countries (high). Overall, the result provides 

support for the integration and significant linkages among stock market 

volatility of industrialized countries.

Although variance is the most commonly used risk parameter, nonnor-

mality of stock returns all over the world and the nonquadratic utility prefer-

ences of market participants make the higher-order moments of the return 

distributions an essential part of the asset allocation and risk management 

decisions. Hence, we repeat our analysis for the value-at-risk and find that 

the predictability of VaR in general is lower, which gives us the expected 

result that the extreme events are harder to predict. Moreover, Japan stands 

out as the country with the strongest predictability of tail risk.

Finally, although not reported in the chapter, findings of predictability 

in variance and VaR are similar when we control for the variables associ-

ated with the business cycles (such as term and default premium, aggre-

gate dividend yield, and stochastically detrended riskless rate).
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The chapter is organized as follows. Section 16.2 describes the meth-

odology used to obtain the volatility and VaR estimates. Section 16.3 pro-

vides the summary statistics of the data. Section 16.4 presents the empirical 

results, and Section 16.5 concludes the chapter.

16.2 METHODOLOGY
We follow French et al. (1987), Schwert (1989), Goyal and Santa-Clara 

(2003), and Bali et al. (2005) when we compute the monthly variance of a 

market index:

 
, , , ,

2 2

1

1

1

2

 

(16.1)

Specifically, we use within-month daily return data to compute the 

monthly variance of the index returns for country , denoted by ,
2 .  

is the number of trading days in month , and ,  is the portfolio’s return 

on day . The second term on the right-hand side adjusts for the autocor-

relation in daily returns using the approach of French et al. (1987). Note 

that the realized variance measure given in Equation (16.1) is not, strictly 

speaking, a variance measure since daily returns are not demeaned before 

taking the expectation. However, as pointed out by French et al. (1987) 

and Goyal and Santa-Clara (2003), the impact of subtracting the means is 

trivial for short holding periods.

We use nonparametric VaR as a measure of tail risk. VaR determines 

“how much the value of a portfolio could decline over a given period of 

time with a given probability as a result of changes in market rates. For 

example, if the given period of time is one day and the given probability is 

1%, the VaR measure would be an estimate of the decline in the portfolio 

value that could occur with a 1% probability over the next trading day” 

(Hendricks, 1996).

We compute nonparametric VaR as the lowest daily return observed 

in a certain period; hence we use different probability levels. For example, 

each month is assumed to have 21 trading days, which implies about 5% 

VaR (5% = 1/21) when daily returns over the past 1 month are used to 

measure downside risk, about 2.5% VaR (2.5% = 1/42) when daily returns 

over the past 2 months are used to measure downside risk, and about 1.5% 

VaR (1.5% = 1/63) when daily returns over the past 3 months are used to 

measure downside risk, etc.
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After we obtain the realized variance and VaR measures as just 

described, we run the following regressions:

 

, ,

, ,

2 2

 

(16.2)

where  changes from 1 to 6, and  and  measure the persistence in 

variance and VaR estimates, respectively.

16.3 DATA
We obtain daily stock index return data for G7 countries: the United 

States, the United Kingdom, Germany, Japan, Canada, France, and Italy. 

For comparison we use the same sample period for all countries: from 

January 1973 through February 2005.

Table 16.1 reports the descriptive statistics for daily and monthly stock 

returns. As explained above, daily returns are directly used to compute 

the risk parameters. Although monthly returns are not directly used in 

the chapter, we report the corresponding statistics to observe the nonnor-

mality in different frequencies. We report the mean, median, 25th percen-

tile, 75th percentile, standard deviation, skewness, and kurtosis statistics 

for the daily and monthly returns.

Both daily and monthly returns for all countries show excess kurtosis, 

and although monthly kurtosis levels are more subtle (due to time diversi-

fication), they are still above their normal values. Furthermore, return dis-

tributions are generally skewed to the left. These results once more show 

that empirical return distributions are far from normal. This finding, 

combined with the existence of loss-averse investors, indicates the impor-

tance of tail risk in asset pricing. Next, we discuss the empirical findings.

16.4 EMPIRICAL RESULTS
We first examine the significance of persistence in realized variance esti-

mates by regressing the 1-month-ahead variance on the lagged variance 

estimates for all G7 countries. Table 16.2 reports the parameter estimates 

from these regressions. In each panel,  denotes the number of months 

used to compute the realized variance estimates. Each month is assumed 
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to have 21 days. For each of the seven countries, we report the coefficient 

estimates and the Newey-West (1987) adjusted t-statistics. To correct for 

the autocorrelation and heteroskedasticity in standard errors, we use the 

number of overlapping periods plus 1 as the optimal lag in Newey-West 

estimation (further robustness checks indicate that our conclusions do not 

change when different lags are used in Newey-West estimation). For each 

estimation we also report the R-square and the number of observations.

For the United States, a small proportion of the monthly variance can 

be explained by the lagged variance estimates. Specifically, the R-squares 

range from 4.5% to 6.01%. The Newey-West adjusted t-statistics are 

high, and except for the 1-month horizon, the coefficient estimates are 

TABLE 16.1 Descriptive Statistics

United States 0.332 0.114 –4.567 5.263 9.874 –0.802 22.641

UK 0.375 0.296 –5.199 5.999 10.037 –0.080 10.818

Germany 0.256 0.069 –4.429 5.429 9.925 –0.505 10.283

Japan 0.204 0.000 –4.329 4.789 10.215 –0.145 14.213

Canada 0.320 0.275 –3.520 4.475 8.186 –0.592 16.121

France 0.410 0.053 –5.347 6.532 11.415 –0.233 7.567

Italy 0.468 0.000 –5.183 7.204 13.284 –0.145 7.535

United States 7.180 9.288 –18.939 38.203 45.125 –0.346 4.787

UK 8.713 11.207 –18.657 38.506 59.690 1.280 17.690

Germany 5.860 8.106 –22.921 38.025 51.857 –0.503 5.121

Japan 4.593 4.467 –24.439 34.664 50.944 –0.013 4.312

Canada 7.289 8.654 –18.595 35.204 45.625 –0.544 5.560

France 9.396 12.152 –31.820 48.207 61.374 –0.101 4.026

Italy 11.863 3.980 –35.613 54.048 72.975 –0.596 4.649
 

  This table reports the summary statistics for daily and monthly stock index returns for 

all G7 countries considered in the chapter. We report the mean, median, 25th percen-

tile, 75th percentile, standard deviation, skewness, and kurtosis statistics for the daily 

and monthly returns. The countries considered are the United States, the United 

Kingdom, Germany, Japan, Canada, France, and Italy. Mean, median, 25th percentile, 

75th percentile, and standard deviation are multiplied by a thousand before 

presentation.
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TABLE 16.2 Predictability of Variance

Coefficient

t-statistic (2.07) (2.69) (3.25) (3.07) (3.11) (3.38)

square

No. of observations 385 384 383 382 381  380

Coefficient

t-statistic (5.70) (5.97) (5.55) (4.14) (3.55) (3.15)

square

No. of observations 385 384 383 382 381  380

Coefficient

t-statistic (8.01) (6.03) (5.84) (6.58) (7.13) (7.28)

square

No. of observations 385 384 383 382 381  380

Coefficient

t-statistic (5.49) (6.36) (7.55) (7.45) (6.84) (5.94)

square

No. of observations 385 384 383 382 381  380

Coefficient

t-statistic (4.62) (4.09) (3.95) (3.60) (3.38) (3.40)

square

No. of observations 385 384 383 382 381  380

Coefficient

t-statistic (7.15) (9.43) (7.44) (7.24) (6.16) (5.85)

square

No. of observations 385 384 383 382 381  380
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significantly different from zero with very small -values. Hence, for the 

United States, we conclude that the realized variance shows statistically 

significant persistence; however, the economic significance of this persis-

tence is rather low. A similar pattern is observed for Canada. This finding, 

combined with our later discussions, points to a geographical tie.

In the case of Germany and Italy, predictability of variance is significant 

both statistically and economically. For example, in the case of Italy, the 

R-squares range from 10% (for the 6-month horizon) to 26.58% (for the 

1-month horizon). This means that past months’ variance explains 26% of 

the variance of the current month’s variance. Thus, we conclude that there 

is a significant persistence in variance across all G7 countries considered 

in the chapter. However, this persistence is stronger mainly in countries 

that are not located in the North American continent.

As discussed earlier, (1) the existence of loss-averse investors who feel 

a greater pain from losses than the utility they obtain from gains of the 

same magnitude and (2) nonnormal asset distributions make the predic-

tion of tails risk an essential part of asset allocation and risk management. 

Therefore, we examine the predictability of VaR for G7 countries as well.

As shown in Equation (16.2), Table 16.3 presents the parameter esti-

mates from the regressions of 1-month-ahead VaR on the lagged tail risk 

measures. Similar to Table 16.2, in each panel,  denotes the number of 

months used to compute the VaR estimates.

TABLE 16.2 Predictability of Variance ( )

Coefficient

t-statistic (3.61) (4.35) (4.41) (3.92) (3.19) (2.77)

square

No. of observations 385 384 383 382 381  380

 
 This table reports the parameter estimates from the regressions of 1-month-ahead 

realized variance on the lagged variance estimates. As described in Section 16.2, 

realized variance in a certain period is computed by using the daily returns in 

that period.  denotes the number of months used to compute the variance esti-

mates. Each month is assumed to have 21 days. For each of the G7 countries, we 

report the coefficient estimates and the Newey-West (1987) adjusted t-statistics. 

To correct for the autocorrelation and heteroskedasticity in standard errors, we 

use the number of overlapping periods plus 1 as the optimal lag in Newey-West 

estimation. For each estimation, we also report the -squares and the number of 

observations.
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TABLE 16.3 Predictability of Value at Risk

Coefficient

t-stat (2.07) (2.69) (3.25) (3.07) (3.11) (3.38)

-square

No. of observations 385 384 383 382 381  380

Coefficient

t-stat (5.79) (5.26) (3.70) (3.39) (3.21) (2.73)

-square

No. of observations 385 384 383 382 381  380

Coefficient

t-stat (3.21) (2.74) (2.59) (2.54) (2.17) (2.06)

-square

No. of observations 385 384 383 382 381  380

Coefficient

t-stat (5.04) (5.02) (4.24) (3.36) (2.84) (2.42)

R-Square

No. of observations 385 384 383 382 381  380

Coefficient

t-stat (6.63) (5.99) (7.47) (5.92) (5.31) (4.56)

-square

No. of observations 385 384 383 382 381  380

Coefficient

t-stat (5.53) (3.56) (3.49) (3.45) (2.97) (2.53)

-square

No. of observations 385 384 383 382 381  380
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Our first observation is that the persistence in VaR is lower than the 

persistence in variance across all countries. Hence, as expected, extreme 

events (or higher-order moments) are harder to predict.

Similar to the variance analysis, the R-squares are lower for the United 

States: they range from 4.79% to 6.78%. However, in contrast to the vari-

ance analysis, Japan stands out in terms of the persistency in tail risk. As 

shown in Table 16.3, in the case of Japan, the R-squares range from 6.47% 

to 15.41%. Also, as opposed to Table 16.2, all the parameter estimates are 

not statistically significant. For example, nonparametric VaR that is esti-

mated using the past 5 to 6 months of daily data cannot significantly fore-

cast the monthly future VaRs.

Finally, although not reported in the chapter, we repeat our analysis in 

a multivariate setting by using control variables that are related to the U.S. 

business cycle. After controlling for the term premium, default premium, 

aggregate dividend yield, and the stochastically detrended riskless rate, we 

find that our conclusions do not change.

16.5 CONCLUSION
We investigate the predictability of variance and value-at-risk in interna-

tional stock markets. Monthly variance and nonparametric VaR obtained 

from the daily stock index returns of the United States, the United Kingdom, 

TABLE 16.3 Predictability of Value at Risk ( )

Coefficient

t-stat (3.61) (4.35) (4.41) (3.92) (3.19) (2.77)

-square

No. of observations 385 384 383 382 381  380

 

 This table reports the parameter estimates from the regressions of 1-month-

ahead realized VaR on the lagged VaR estimates. As described in Section 16.2, 

realized VaR in a certain period is computed by using the daily returns in that 

period.  denotes the number of months used to compute the VaR estimates. 

Each month is assumed to have 21 days. For each of the G7 countries, we report 

the coefficient estimates and the Newey-West (1987) adjusted t-statistics. To 

correct for the autocorrelation and heteroskedasticity in standard errors, we use 

the number of overlapping periods plus 1 as the optimal lag in Newey-West 

estimation. For each estimation, we also report the -squares and the number 

of observations.
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Germany, Japan, Canada, France, and Italy are used in our estimations. 

We find that for all G7 countries considered in the chapter, persistency in 

variance is significantly higher than the persistency in VaR. For the United 

States, we conclude that the realized variance shows statistically significant 

persistence; however, the economic significance of its persistence is rather 

low, whereas the variance of the stock market indices for Germany and Italy 

has the highest persistence, which is both statistically and economically sig-

nificant. Finally, in contrast to the variance analysis, the strongest predict-

ability of VaR is obtained for Japan. We conclude that although the second 

moment of the stock return distributions is highly predictable for Germany 

and Italy, the tails of the distribution are more persistent for Japan.
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Appeal of Bank Stocks in Canada

Christian Calmès and Raymond Théoret

17.1 INTRODUCTION
It is widely believed that bank stock is a relatively safe asset from the 

standpoint of the risk-return trade-off. However, it was also thought 

that the process of banking deregulation, which began in the 1980s, in 
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both Canada and the United-States,* by allowing banks to engage in new 

activities (such as off-balance sheet (OBS) activities), would give rise to 

important diversification effects (Rose, 1989; Saunders and Walter, 1994). 

Indeed, traditional finance predicts that these effects would reduce bank 

stock volatility. Although these conjectures are at odds with the facts, 

in both Canada and the United States, researchers have shown that 

OBS activities triggered a substantial increase in the volatility of bank 

net operating revenue growth (Stiroh, 2004, 2006a; Stiroh and Rumble, 

2006; Calmès and Liu, 2007). However, this volatility surge is not associ-

ated with risk-adjusted accounting measures of bank returns (e.g., the 

return on assets and the return on equity). Incidentally, these measures 

might have decreased, following the upward trend of the share of nonin-

terest income in banks’ net operating revenue. Given the influence of the 

accounting measures of bank performance on the level and the volatility 

of bank market returns, these developments are obviously problematic 

for the investor.

In this chapter, we provide new complementary evidence about the 

detrimental effects of the increase in the relative importance of nonin-

terest income on the performance of the Canadian banking sector. Our 

contribution is to demonstrate that the surging volatility of bank rev-

enues has given rise to a risk premium as measured with various account-

ing returns, as was suggested, but not tested, by DeYoung and Roland 

(2001).

This chapter is organized as follows. Section 17.2 provides an over-

view of the existing literature on the effects of the increase of the non-

interest income share on banks’ net operating revenue. In Section 17.3, 

we provide some stylized facts related to the surge of OBS activities 

in the North American banking industry and we run regressions to 

document the impact of the growing share of noninterest income on 

Canadian banks’ performance. Also in this section we test for the pres-

ence of a risk premium related to the increasing volatility of the growth 

of banks’ net operating revenue. In Section 17.4, we formulate a conjec-

ture about the decreasing diversification of the Canadian banking sec-

tor, which may be explained by the development of a herding behavior 

in this industry.

* For the deregulation process in Canada, see Théoret (1999) and Calmès (2004).
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17.2 LITERATURE REVIEW
Financial deregulation in Canada and the United States has allowed banks 

to move toward more market-based activities (Calmès, 2004). Banks can 

now underwrite securities for their customers and pool some of their loans 

for securitization. In addition, deregulation has also allowed Canadian 

banks to offer fiduciary services and portfolio advice to investors.

New bank activities resulting from the banking deregulation process 

are mainly classified as OBS activities that generate noninterest income, 

as opposed to interest income, the revenue associated with the traditional 

lending activity of banks. Noninterest income is a heterogeneous aggre-

gate that includes different components: trading income, gains (losses) on 

instruments held for other than trading purposes, fiduciary income, ser-

vice fees, insurance, other fees, and commissions.

The valuation of OBS activities presents many measurement problems 

(Calmès, 2004), but we can tackle them by resorting to the method sug-

gested by Boyd and Gertler (1994), who propose to compute an asset-

equivalent measure of OBS activities. Let be the mean return on balance 

sheet activities,  be the value of balance sheet assets, and  the net 

revenue associated with balance sheet activities. We have:

 

therefore,

 
The balance sheet assets are thus the capitalization, at the rate, of the 

net revenue generated by these assets. Similarly, we can write

 
where  is the asset-equivalent of OBS activities,  is the net revenue 

associated with OBS activities, and  is the mean return on OBS activi-

ties. Assume that
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is the capitalization rate of balance sheet assets and is the same as the  

capitalization rate of OBS assets. We can thus write

 

/

/

where  stands for net operating revenue. We measure respectively the 

ratio ( / ) by the share of noninterest income and the ratio ( /

) by the share of net interest income in net operating revenue. We 

thus arrive at the following measure of OBS activities, used for the eight 

Canadian domestic banks. For example, for the fourth quarter of 2007, we 

have

 

0 55

0 45
2283 2790

.

.

where  represents the share of noninterest income, and  the share 

of net interest income. According to the asset equivalent computation, the 

assets related to Canadian banks OBS activities are equal to $2,790 billion,  

or approximately 122% larger than the level of balance sheet assets, but 

by comparison, they only represented 39% of balance sheet assets in 

1988. Similarly to the United States banks, Canadian banks’ activities are 

increasingly dominated by OBS activities.

Figure 17.1 shows the growing importance of the share of noninterest 

income in bank net operating revenue. The upward trend began in 1992 

and lasted until the bursting of the market bubble at the beginning of the 

second millennium. By 2000, noninterest income accounted for 57% of 
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FIGURE 17.1 The growing share of noninterest income in eight Canadian 

domestic banks from 1988 to 2007.
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net operating revenue, up from only 25% in 1988. This ratio recovered 

after the market turmoil in the first few years of the millennium and cul-

minated to 60% in the first quarter of 2006, before decreasing thereafter 

as a result of the weakening of financial markets. Note also that fluctua-

tions of the share of noninterest income are much larger after 1997 than 

before. Indeed, this share became increasingly sensitive to the fluctuations 

of financial markets (Calmès, 2004; Calmès and Liu, 2007).

As shown in Figure 17.2, the growing share of noninterest income has 

boosted the bank ratio of noninterest income to balance sheet assets. 

Excluding the collapse of this ratio during the 1998 financial crisis (related 

to the Russian debt), this ratio increased progressively from 1.13% in 1988 

to 2.32% in 2001. It decreased steeply during the collapse of the financial 

markets at the beginning of the second millennium, and it did not recover 

thereafter, fluctuating around 2%. Similarly to the share of noninterest 

income, this ratio has also been increasingly dependent on financial mar-

kets fluctuations.

Activities related to noninterest income are much more volatile than 

those associated with net interest income (Stiroh, 2004; Calmès and Liu, 

2007). Their direct contribution is to increase the volatility of the bank’s 

net operating revenue growth. There is actually a diversification effect due 

to the fact that the correlation between interest and noninterest income 

is less than 1, but this indirect effect is quite low in comparison with  

the direct effect (Calmès and Liu, 2007). Moreover, the correlation between 

these two forms of income is quite unstable. Hence, the direct contribution 
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FIGURE 17.2 Noninterest income per $100 of assets for the eight Canadian 

domestic banks from 1988 to 2007.
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of noninterest income to the volatility of net operating revenue growth 

dominates largely. Increasing the operating leverage magnifies the volatil-

ity of profits growth (De Young and Roland, 2001).

Following Stiroh (2004) and Calmès and Liu (2007), we decompose 

the net operating revenue growth with a portfolio approach to analyze its 

volatility with two components: volatility of net interest income growth 

and volatility of noninterest income growth. The growth of net operating 

revenue ( ) is computed as

 

ln( ) ln ln( ) ln(
1

1 )

Its variance may thus be decomposed as

 

ln( ) ln( ) ln( )( )2 2 2 2 21

2 ( )cov( ln( ), ln( ))1

where  stands for noninterest income, and  for net inter-

est income, and where , the share of noninterest income in 

the bank’s net operating revenue. The direct contribution of noninterest 

income to ln( )
2  is given by 2 2

ln( ), while the contribution of net 

interest income to ln( )
2  is equal to ( ) ln( )1 2 2 . Since noninterest 

income is more volatile than net interest income, the growing importance 

of noninterest income in bank net operating revenue directly increases 

ln( )
2

. Nonetheless, as long as the correlation between the growth rates 

of noninterest income and net interest income is not equal to 1, the trade-

off between net operating revenue growth and volatility can improve.

Table 17.1 reports the variance decomposition of net operating revenue 

growth over subperiods ranging from 1988 to 2007 with time intervals 

corresponding to different legislative periods. In the subperiods 1988–

1992 and 1993–1997, noninterest income seems to help reduce net operat-

ing revenue variance below what it would have been if banks relied solely 

on interest income. For example, in the 1988–1992 period, net operating 

revenue variance was 14.2, which was lower than the 16.9 variance of net 

interest income. From 1993 to 1997, there were diversification benefits, 

with net interest income volatility being higher than net operating rev-

enue, and the correlation between the two components of net operating 

revenue being negative.
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However, the two following subperiods are quite different. During 

both subperiods, the variance of net operating revenue growth is sig-

nificantly higher than the variance of net interest income growth, 

implying that noninterest income growth increased substantially the 

volatility of net operating revenue growth. The variance of net operat-

ing revenue growth has also jumped compared to the previous subpe-

riods. The subperiod 1998–2002, plagued by excessive financial market 

fluctuations, is particularly symptomatic. The variance of noninter-

est income growth jumped to 212.3, and was less than 40 prior to this 

period. During this subperiod, income from trading and investment 

activities was one of the major contributors to noninterest income vola-

tility both in Canada (Calmès and Liu, 2007) and in the United States 

(Stiroh, 2004).

TABLE 17.1 Decomposition of the Variance of Net Operating Revenue Growth, Before 

Provisions, Canadian Banks from 1988 to 2007

  

Net 

operating 

revenue

14.2 9.4

Net interest 

income

0.70 16.9 8.4 0.64 9.8 4.0

Noninterest 

income

0.30 30.2 2.6 0.36 40.4 5.3

Covariance 7.5 3.1 –0.9 –0.4

Correlation 0.33 –0.04

Net 

operating 

revenue

57.4 22.3

Net interest 

income

0.49 9.7 2.3 0.45 13.6 2.8

Noninterest 

income

0.51 212.3 55.9 0.55 75.7 22.6

Covariance 6.1 3.0 –4.2 –2.1
Correlation  0.14    –0.13
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During the subperiod 2003–2007, the volatility of net operating revenue 

growth receded, but it remained much higher than prior to the 1998–2002 

financial crisis. In fact, the volatility of noninterest income growth approx-

imately doubled with respect to its level before the 1998–2002 subperiod. 

However, during this subperiod the correlation between net interest and 

noninterest income growth became negative, a new situation that contrib-

uted to the dampening of the direct pervasive impact of noninterest income 

on the volatility of net operating revenue growth. In addition, the volatility 

of noninterest income growth is increasingly related to the one of income 

from trading and investment activities, the highest among the components 

of noninterest income, a worrying situation from the standpoint of the risk-

return trade-off.

In other respects, even if noninterest income increases the volatility 

of bank net operating revenue growth, that might be compensated by an 

increase in expected profitability, as measured by the return on assets 

( ) or return on equity ( ). A priori, accounting reasoning suggests 

that OBS activities should tend to increase these profitability measures. 

For instance, removing assets from the balance sheet should increase 

. Furthermore, OBS activities are a source of capital relief for a bank 

and should thus increase . We also know that ( )1 ,  being 

a measure of leverage equal to ( / ), where  denotes the level of bal-

ance sheet assets, and  the level of shareholder equity. According to this 

formula, if OBS activities reduce bank leverage, growing OBS activities 

should also increase . But data reveal that the relationship between 

OBS activities and leverage is not clear, as banks can use up the leeway 

resulting from these activities in shifting to riskier mixes of activities 

instead of holding less equity.

Hence, the usual accounting logic is at odds with the facts. Recent studies 

(Stiroh, 2004, 2006a; Calmès and Liu, 2007) have shown that an increase 

in the share of noninterest income tends to depress profitability measures, 

especially when expressed on a risk-adjusted basis. Besides considerations 

related to the optimality of bank activities, the higher volume of noninter-

est income has clear negative implications for supervisors, shareholders, 

managers, and borrowers, all of whom care about the mean and volatility 

of bank profits.

Section 17.3 features an empirical model testing the impact of the grow-

ing share of noninterest income in net operating revenue on the aggre-

gated measures of performance constructed with a pool of eight Canadian 
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domestic banks. We also run these regressions, individually, on three 

Canadian banks differing in size.

17.3 EMPIRICAL RESULTS
17.3.1 The Model

To test for the impact of the growing share of noninterest income on 

bank performance, researchers (Stiroh, 2004; Calmès and Liu, 2007) have 

resorted to an empirical model taking the following form:*

 0 1 1 2 3  (17.1)

where  is a bank performance measure,  is the share of noninter-

est income in net operating revenue, is a vector of control variables, and 

 is the innovation or error term. For instance, the vector may control 

for bank size, for the riskiness of loans, for asset growth, or for any other 

factor that may impact on bank performance. Following Calmès and Liu 

(2007), we retain only the ratio of loan loss provisions to total assets as a 

control variable because the other ones were found not significant.

After Stiroh (2004) and Calmès and Liu (2007), we also estimate Equation 

(17.1) on a risk-adjusted basis by dividing by a four-quarter moving aver-

age of the standard deviation of . We also introduce a new measure of 

risk, deflating  by its conditional volatility as measured by a GARCH(1,1) 

model. We tested for other well-known econometric specifications of con-

ditional volatility, like GARCH(p,q), TARCH, EGARCH, and PARCH, 

using also different distributions for the error term (normal, Student, and 

generalized error (GED)), but the GARCH(1,1) specification was the best 

measure of conditional volatility based on traditional measures of econo-

metric model evaluation, such as the Akaike and Schwarz criterions.

Our main contribution is to introduce a risk measure directly in 

Equation (17.1). Indeed, according to DeYoung and Roland (2001), the 

surging volatility of bank revenues gave rise to the incorporation of a risk 

premium in various measures of bank accounting returns. However, the 

authors did not test this conjecture.

The relationship between expected return and risk is in line with basic 

finance. Traditional finance establishes a risk-return trade-off such that

 
1 2

* For an alternative model of bank performance see Théoret (1991).
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where  stands for return, is a risk measure, and  is the innovation. 

We introduce risk in Equation (17.1) by resorting to an ARCH-M model,* 

that is:

 0 1 1 2 3 4 ,  (17.2)

where , , the conditional volatility, is computed using the following equation

 , ,
2

0 1 1
2

2 1
2

The ARCH-M procedure is very appealing to estimate the risk premium 

because it directly incorporates the conditional volatility, chosen as a mea-

sure of risk, in the return equation.

17.3.2 Results

Table 17.2 reports the estimation of Equations (17.1) and (17.2) for the pool 

of the eight major Canadian domestic banks for the period running from 

the first quarter of 1988 to the fourth quarter of 2007. Data come from 

the Canadian Bankers Association and the Office of the Superintendent 

of Financial Institutions (Canada). Unit root tests suggest that all data are 

stationary, so they are modeled in levels.

Estimation of Equation (17.1) for the ratios  and  gives very 

satisfying results in terms of adjusted 2, which is equal to 0.72 for both 

ratios. Before adjustment for risk, estimation of Equation (17.1) reveals 

that the coefficient of the share of noninterest income is significantly nega-

tive for both performance ratios. This suggests that OBS activities reduce 

the performance of Canadian banks, while they also increase the volatil-

ity of bank net operating revenue growth. These findings cast doubt on 

the belief that noninterest income activities can lead to better bank per-

formance through diversification activities (reduction in risk or higher 

returns). Moreover, consistent with expectations that loan loss provisions 

lower profits, the coefficient of the ratio of loan loss provisions to total 

assets is negative in all equations. Since this ratio jumps during recessions, 

that accentuates the procyclicality of  and , which have yet been 

made more procyclical following the banks increasing involvement in 

OBS activities.

* The ARCH-M model is due to Engle et al. (1986).
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Regressing Equation (17.1) using risk-adjusted performance ratios leads 

to a decrease of adjusted 2, due to the fact that the scaling factor fluctu-

ates greatly from one period to another. Results tend to improve when 

using conditional volatility instead of the historical one, to scale the per-

formance ratios, especially for , where the adjusted 2 increases from 

0.15 to 0.70 when shifting from historical to conditional volatility. In other 

respects, the results are similar to those obtained for the regressions with-

out risk adjustment.

We also consider the estimation of Equation (17.2) with the ARCH-M 

procedure, a new feature for investigating bank performance in this 

framework. This equation incorporates a risk premium to account for the 

increasing volatility of bank revenues. We first observe that the introduc-

tion of a risk premium in the equations of  and  results in a jump 

of the adjusted 2. It increases from 0.72 to 0.80 when regressing Equation 

(17.2) instead of Equation (17.1) using  as the dependent variable, and 

from 0.72 to 0.83 when using  as the dependent variable. We may thus 

observe that the risk premium has an important impact on  and . 

Note also that, for both ratios, the risk premium is significant at the 1% 

level. We thus conclude that banks have reacted to the increasing volatil-

ity of their net operating revenue growth by adding a risk premium to the 

return of their OBS activities, a quite rational, and reassuring, behavior.

We also estimate Equation (17.2) for three individual Canadian banks 

differing by size: a relatively small-sized bank, the National Bank of 

Canada (NBC); a medium-sized bank, the Toronto-Dominion Bank (TD); 

and a large-sized bank, the Royal Bank of Canada (RBC). Let us note 

that the NBC is very involved in OBS activities in spite of its relatively 

small size, its share of noninterest income being as high as 0.70 by the 

end of 2007. Otherwise, the shares of RBC and TD banks were respec-

tively 0.67 and 0.50 for the same period. The share of noninterest income 

in net operating revenue does not seem to be correlated to bank size in 

Canada, contrary to what is observed in the United States (Houston and 

Stiroh, 2006). Figure 17.3 provides a comparison of the evolution of the 

noninterest income share for the three banks and for the total of the eight 

Canadian domestic banks. We note that the behavior of the RBC’s share is 

much more stable than that of the other two banks and is in constant pro-

gression over the 1988–2007 period, although it has increased at a slower 

pace since 2003. In addition, RBC has a weight of 26% in Canadian banks 

total assets, which is a good benchmark to test the impact of the growing 

share of noninterest income on the accounting measures of bank returns. 



Surging OBS Activities and Bank Revenue Volatility < 335

NBC’s and TD’s shares have become very volatile since the financial cri-

sis of 1997. While NBC’s share has remained on an upward trend before 

collapsing in the fourth quarter of 2007, TD’s share has decreased sub-

stantially since 2000. The dispersion between banks’ proportions has also 

greatly increased since 1997.

Table 17.3 provides our results for the chosen Canadian banks. We sus-

pect that the substantial reduction of the 2 observed with the disaggre-

gation of the sample stems from the presence of a high idiosyncratic risk 

at the individual level. Being the largest Canadian bank, RBC estimated 

equations of  and  are quite similar to the aggregate, except for 

TABLE 17.3 Profitability of Three Canadian Banks versus Noninterest Income 

Share from 1988 to 2007

2.88*** 0.98*** 0.10*** 0.48*** –0.03 0.34***

–1 –0.02 –0.07 –0.04 0.06** 0.77*** 0.68***

–0.06*** –0.23** 0.13*** 0.12 –0.05*** –0.28***

–0.06*** –0.37*** –0.08*** –0.55*** –0.02*** –0.23***

–0.01 0.03 –0.01 –0.03** –0.02*** –0.08***

–0.01*** 0.02 –0.01 –0.02 –0.02*** –0.04***

–0.01*** –0.04 –0.01 –0.03** –0.01*** –0.03***

, 0.37*** 0.56*** 0.75*** 1.99*** 29.10*** 0.38***

Adjusted 2 0.46 0.39 0.10 0.48 0.10 0.14
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FIGURE 17.3 Share of noninterest income, three Canadian domestic banks 

from 1988 to 2007.
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the adjusted 2 which is somewhat smaller, 0.46 for the  and 0.39 for 

the . These 2 values remain acceptable, for regressions run on indi-

vidual bank performance ratios. The share of noninterest income has a 

significant negative impact on both performance ratios (significant at the 

99% confidence level for the  ratio). On the other hand, the risk pre-

mium is relatively high and significant at the confidence level of 99% for 

both ratios. Finally, the ratio of loan loss provisions impacts negatively 

and significantly both ratios, especially the  one.

As expected, the results are not so satisfying for the other two banks 

retained for this analysis. For NBC, the coefficients associated with 

the conditional volatility and the ratio of loan loss provisions have the 

right sign and are significant at the 99% confidence level. But the coef-

ficient of the share of noninterest income is positive. NBC bank thus 

seems to have benefited from its increasing involvement in OBS activi-

ties, which, as mentioned earlier, is much larger than the average for 

Canadian banks. Perhaps its OBS activities are better priced than those 

of other banks. Or perhaps there is more synergy between the compo-

nents of these activities. However, we note that the explanatory power 

of Equation (17.2), as measured by adjusted 2, is low for the  ratio, 

and moderate for the  one, the adjusted 2 for these ratios being, 

respectively, 0.10 and 0.48.

Finally, the performance of Equation (17.2) is low for explaining the 

 and  ratios of the TD bank, even if the estimated coefficients 

of the explanatory variables have all the right signs and are, for most of 

them, significant at the 99% confidence level. The poor performance of the 

regressions run with the TD sample may be explained by the presence of 

outliers and idiosyncratic risk. In fact, over the estimation period, the TD 

bank has been implied in important transactions that had major repercus-

sions on its financial results.

17.3.3 Concluding Remarks

Surging bank OBS activities are associated with an important increase in 

the ratio of direct to indirect finance, and therefore to more complete finan-

cial markets and a more market-oriented financial industry (Calmès, 2004). 

In fact, Canadian firms increasingly fund their investments by resorting 

to financial markets, issuing bonds and equity, instead of taking out bank 

loans. This new financing regime was fostered by the amendments made 

to the Canadian Bank Act in 1987, which allowed banks to be involved 

in investment banking activities such as underwriting securities. Instead 
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of issuing loans directly and cashing interest income, banks cash income 

fees by structuring bonds and stocks issues. These operations allow them 

to save capital for other purposes. Securitization is another OBS activity 

used by Canadian banks since the early 1990s, which is also linked to a 

move toward a more market-based financial system. Securitization can 

facilitate the trading of previously illiquid loans. Securitization activity 

has also strengthened the capacity of banks to supply new loans to house-

holds and firms for a given amount of funding (Altunbas et al., 2007).

But these developments are obviously very problematic for the pro-

tagonists of free markets and for central banks, which aim at preserving 

financial stability. Indeed, our empirical work shows that the jump in OBS 

activities increases the volatility of bank net operating revenue growth. 

Moreover, these activities tend to depress the accounting measures of 

bank returns. Even if they give rise to a risk premium that is a partial 

compensation for their increasing volatility, the fact remains that OBS 

activities, the product of a more market-oriented economy, increase the 

risk of banks operations—and this was not the expected result associated 

with increased markets completion.

17.3.3.1 The Credit Channel
Referring to Calmès’ paper (2004), Roldos (2006) noted that there were 

structural breaks in the response of the Canadian economy to monetary 

shocks in the 1980s and 1990s associated with key changes in the Bank 

Act. These structural changes gave rise to a weakening of the credit chan-

nel, a very important link in the traditional monetary policy transmission 

mechanism. Monetary policy was perhaps a destabilizing factor when its 

credit channel was stronger. We know that the financial accelerator was an 

important link of the credit channel. It is possible that the financial acceler-

ator was amplifying fluctuations of macroeconomic aggregates, even caus-

ing overshooting on a large scale. The idiosyncratic shocks associated with 

the credit channel were probably destabilizing the economy. The financial 

deepening* resulting from the deregulation process seems to have led to 

a decrease in the volatility of key macroeconomic variables like GDP or 

productivity. The Canadian and American economies have become more 

stable, while the traditional credit channel of monetary policy was losing 

its steam. For instance, we note an important decrease of output volatility 

since 1984 in the United States (Stiroh, 2006b; Ozenbas and San Vincente 

* Associated with an increase of the ratio of direct to indirect finance.
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Portes, 2006), a trend also shared by other macroeconomic time series such 

as inflation. These developments are called the great moderation. In their 

conclusions, Calmès and Liu (2007) have even made the conjecture that 

the new trend in dampened inflation volatility might be partly explained 

by the fact that Canadian firms tend to rely increasingly on financial mar-

kets rather than contracting loans. According to this conjecture, inflation 

control has lessened the contribution of monetary policy.

17.4 REVENUE VOLATILITY, BANK HERDING BEHAVIOR, 
AND AGGREGATE RISK: A CONJECTURE

The developments related to surging OBS banks’ activities are also wor-

rying from another macroeconomic standpoint. According to Houston 

and Stiroh (2006), aggregate risk has increased in the American banking 

sector since 1990 while idiosyncratic risk has receded.

We thus conjecture that net interest income, being related to physi-

cal stocks, e.g. loans, would mainly respond to idiosyncratic shocks, 

like borrower default, whereas noninterest income, being related 

to flows, e.g. service fees and trading revenues, would respond to 

aggregate shocks, like unexpected changes in stock market indi-

ces and macroeconomic aggregates. Since the former shocks are 

diversifiable and the latter are not, this conjecture complements the 

idea that the changing structure of bank revenues is associated with 

increasingly volatile equity market returns which follows. (Calmès, 

2004; Calmès and Liu, 2007)

Following their growing involvement in OBS activities, Canadian banks 

are thus increasingly exposed to aggregate shocks.

Being exposed to aggregate shocks, banks are also more likely to have 

similar reactions to economic events, which increase banking risk. Bank 

herding, i.e., a tendency for banks to move together in periods of economic 

uncertainty, which has been observed in the United States (Baum et al., 

2002) and in Canada (Calmès and Salazar, 2006), seems symptomatic of the 

greater exposure of banks to aggregate shocks. Incidentally, Quagliariello 

(2006) notes that, to the best of his knowledge, there were only two papers 

that investigated the issue of the link between uncertainty regarding future 

macroeconomic conditions and bank herding behavior (Baum et al., 2005; 

Calmès and Salazar, 2006). He reports that Canadian intermediaries show 

herding behavior when they deal with more pronounced aggregate uncer-

tainty. Quagliariello (2006) observes a similar herding behavior for the 
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Italian banks. His contribution is to distinguish aggregate uncertainty from 

the idiosyncratic one. In the case of Italian banks, he notes that the herding 

behavior is at play when macroeconomic or aggregate uncertainty increases. 

However, when idiosyncratic risk increases, banks behave heterogeneously. 

According to Quagliariello (2006), this last observation would be due to the 

competitive advantage of better informed banks behaving in a different way 

compared to poorly informed intermediaries.

Hence, if aggregate shocks were increasingly important in the Canadian 

banking system, and since, according to our conjecture, the exposure of 

banks to those shocks would rise due to the increasing portion of their 

OBS activities, bank herding could appear more a structural and not just 

a cyclical phenomenon as previously thought, which would then trans-

late into an increased correlation between banks accounting and equity 

returns—bad news for the investors in search of portfolio diversification. 

Indeed, herding is at the antipodes of diversification, and it threatens the 

stability of any banking system. Traditionally, a portfolio pooling many 

different bank stocks was seen as a relatively safe investment, but if this 

conjecture proved to be right, this would no longer be the case because of 

this systemic herding regime.

17.5 CONCLUSION
The Canadian banking sector, which is traditionally considered relatively 

safe, is becoming increasingly risky as banks progressively shift their oper-

ations toward OBS activities. An important question from the standpoint 

of the optimality of banking operations remains to be answered: Is this 

move exogenous or endogenous to the banking sector? It may be viewed as 

exogenous if we note that the growth of the volume of traditional banking 

activities such as lending, but also the return or margin on these activities, 

was steeply trending downward during the 1980s and 1990s due to the 

exacerbating competition between banks, while the traditional four pil-

lars of the Canadian financial system were eroding. The branch network 

of Canadian banks was no longer profitable, and the banking system once 

based on bricks and mortar disappeared. Perfect competition reduces eco-

nomic profit on traditional activities near zero. In this context, Canadian 

banks have no choice but to increasingly rely on OBS activities. According 

to this reasoning, the increasing weight of OBS activities in banks’ total 

operations may be viewed as exogenous.

But this move may also be viewed as endogenous if it was originated 

by banks themselves. Under this scenario, banks fostered the financial 
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deregulation process by shifting their activities toward a priori more prof-

itable ones like underwriting and securitization. To do so, they would 

even have encouraged their customers to be more market oriented by 

substituting direct securities issues to loans. But, if this is the case, the 

optimality of such a move has to be questioned because according to our 

empirical work, OBS activities decreased the accounting measures of bank 

returns and increased the volatility of the growth of net bank operating 

revenue, a very unfavorable evolution from the standpoint of the risk- 

return trade-off. However, our contribution in this chapter is to show that 

such a detrimental evolution gave rise to a partial compensation for banks 

in the form of the addition of a risk premium to the accounting measures 

of returns.

Being riskier, the Canadian banking system is now more sensitive 

to aggregate shocks, which seem to have increased in the financial sec-

tor since the beginnings of the 1990s. Bank stock returns could thus be 

increasingly volatile, bad news for risk-averse investors who consider bank 

stock a relatively safe value. Regulators should also be more aware of the 

fact that the risk in the banking sector increases as banks seem increas-

ingly exposed to common aggregate shocks, a conjecture still to be con-

firmed. This is left for future work.
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18C H A P T E R  

Usage of Stock 
Index Options
Evidence from the Italian Market

Rosa Cocozza

18.1 INTRODUCTION
The usage of the stock index options is increasing at a fast pace in many 

industrialized countries because of their wide application in many complex 

portfolios. This trend in Italy had a dramatic peak over the last years (IDEM, 

2006). Although it is easy to ascribe this increase to the growing complexity 

of financial products and to the corresponding increasing involvedness of 

the management process, the way traders use the stock index option within 

a specific market has not yet formally been investigated. A very wide and 

well-known literature deals with the pricing and the value management 

of option portfolios, starting from the seminal work of Black and Scholes 

(1973), Merton (1973), and Cox et al. (1979). Another rich area of literature 

regards the behavior of the traders with special reference to the sentiment 

of the market as defined by technical analysis practices. Relatively little is 
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known about the trading of this important class of securities. With this 

respect, an important paper is that by Lakonishok et al. (2004), where a full 

analysis of the investor behavior was performed with the aim of document-

ing major empirical facts about the option market activity of different types 

of investor on the Chicago Board of Trade.

This chapter tries to investigate which kind of strategy is prevailing 

on the Italian stock exchange as far as the stock index option market is 

concerned. Given the possibility of using the option for both directional 

strategies and volatility strategies, the main answer we are looking for 

concerns firstly the existence of a prevailing behavior on the market and 

secondly, given a positive answer to the first question, which one is the 

most popular. The analysis is performed by a graphical analysis and by 

using an official data set of the clearing house of the Italian stock exchange 

from December 2007 to May 2008. With respect to the previous literature, 

our study is aimed at verifying which strategy prevails in the Italian mar-

ket, since there is a fundamental connection between the exploitation of 

volatility strategies and the complexity of the reference financial markets. 

The main finding, at least with reference to the period under observation, 

confirms the prevalence of directional strategies and of a certain mixture 

of volatility and directional strategies. Very rarely we found evidence of 

strong exploitation of volatility trading.

The remainder of the chapter is organized as follows. Section 18.2 intro-

duces the Option Strategy Matrix as an instrument of market analysis. 

Section 18.3 explains the fundamentals of the reference market data set. 

Section 18.4 reports the empirical analysis. Section 18.5 concludes.

18.2 RISK AND VALUE DRIVERS IN OPTION TRADING
As known, options are financial instruments that convey the right, but not 

the obligation, to engage in a future transaction on some underlying secu-

rity. The holder of a call (put) has the right to buy (sell) a specified quantity 

of a security at a set strike price at some time on (European option) or 

before (American option) expiration. Upon the option holder’s choice to 

exercise the option, the party who sold, or wrote, the option must fulfill 

the terms of the contract.

Therefore, the theoretical value of an option is conceptually the present 

value of the future cash flow arising from the agreement: for a call option 

it is positively linked to the difference between the price of the underlying 

at the exercise time and the strike price (  – ), while for a put option it is 

positively related to the opposite (  – ). As the agreement is not binding 
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for the holder, the payoff is kept positive by setting the maximum value 

between 0 and the relevant difference. Therefore, the holder of a call (put) 

option will gain a profit if the price of the underlying rises (falls) with 

respect to the strike. From the viewpoint of the buyer of the option, once 

the price of the option is paid, the contract has only upside potential. 

Conversely, the seller of the option obtains the premium immediately, and 

then faces the risk of losses upon option exercise. Option contracts are 

unique insofar as one side (the buyer) has a nonbinding option of going 

through with a defined transaction, while the other party (the writer) has 

no such flexibility. This flexibility is valuable: as a consequence, the row 

differences between the current and the strike price are not able to capture 

all the elements influencing the value of an option contract. Even on an 

intuitive basis, the crucial point is the probability of the underlying to 

reach the strike price. The formalization of the relevant probability distri-

bution was the key to the closed solution provided by Black and Scholes 

(1973) for the pricing of the European options (plain vanilla). The Black 

and Scholes formulation provides a pricing formula as a function of the 

underlying instrument ( ) and of the valuation time , given the strike 

price ( ), the spot risk-free rate ( ), the volatility of the underlying instru-

ment ( ), and the expiration date ( ). Formally,  being the price of a call 

option and  being the price of a put option at time , we have

 

( , | , , , )

( , | , , , ).

Both the call and the put options are sensitive to the same explana-

tory variables; nevertheless, the way the option price reacts to the vari-

ation of the independent variables is somehow different for the two 

contracts. Since in the Black and Scholes environment, the risk-free rate 

and the volatility of the underlying instrument are assumed to be con-

stant, there are three basic partial derivatives that we can appraise for 

the sensitivity analysis:

 1. the first derivative of the price with respect to the underlying ( / , 

/ )

 2. the second derivative of the price with respect to the underlying  

( 2 2/ , 2 2/ )

 3. the derivative of the price with respect to the time ( / , / )



346 < Rosa Cocozza

The first two, respectively delta and gamma,* are widely used to set 

the option strategies and to enhance the potential of option trading. 

As known, the delta, by measuring the price sensitivity to a change in 

the value of the underlying instrument, is able to quantify the increase/

decrease in the value of the option due to a directional change in the price 

. In this perspective, it is intuitive to say that the delta of a call option—

for the holder of the option—must be positive since the contract gains 

value when the underlying rises with respect to the strike price; similarly, 

the delta of a put option—in the holder perspective—must be negative 

since the contract loses value when rises.† The option writer is in the 

mirror position and face deltas multiplied by 1. The gamma measures 

the sensitivity of the price to a quadratic change in the price of the under-

lying instrument and is able to indirectly quantify the increase in the 

option value—from the holder’s standpoint—due to a volatility change of 

. It is possible to show that the gamma is always positive for the holder 

of both call and put options, while it is always negative for the writer of 

the contracts.‡

Since any changing parameter in a pricing formula is a risk driver as 

well as a value driver, the delta and the gamma dynamics confirm that 

option trading can gain value with reference to both directional and vola-

tility changes of the underlying instrument. With respect to this, if the 

trader focuses on the directional changes, he or she will go for a long call 

(or even a short put) in the case of bullish expectations, while he or she 

will go for a long put (or even a short call) in the case of bearish prospects.§  

* The notation in the pricing formula suggests that the partial derivatives themselves are func-

tions of the explanatory variables. Hence, one may envisage some further, high-order par-

tials. The traditional Black and Scholes vanilla option pricing environment uses the three we 

mentioned in the text. Nevertheless, further partial derivatives are brought into picture as 

the Black and Scholes assumptions are relaxed gradually. For details see Hull (2006), Neftci 

(2004), Wilmott (2007).
† The delta of a call option takes values between 0 and 1, while the delta of a put option takes 

values between 1 and 0. The limitation of the value array accounts for the asymmetry of the 

instrument.
‡ This property accounts for the convexity of the contract. For details see, among others, Hull 

(2006).
§ The asymmetry of the option contract naturally determines a substantial difference 

between the adoption of a long or a short position. The possibility to consider the short 

position on a call (put) as an alternative to the long position on a put (call) is linked to two 

practical observations: the eventual limited variance interval of the underlying and the 

opportunity to combine this product in a complex portfolio through the call-put parity 

relationship.
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As far as the volatility scenario is concerned, the expectation of ris-

ing unpredictability forces the trader toward long positions, while the 

expectation of a decreasing instability drives toward short positions, as 

shown by the Option Strategy Matrix (OSM) represented by Figure 18.1.

The OSM provides for a complete and useful map of portfolio potential/

effective strengths and weaknesses, at least in terms of directional and 

volatility strategies. The matrix can be used as a strategy selection tool 

according to the expectations toward price and volatility development, but 

also as an explanatory map of the market behavior. In this perspective, if 

the OSM is applied to the option market as a unique entity, the number 

of contracts in each quadrant offers a depiction of prevailing strategies. 

As it can be easily appreciated, if the contracts cluster along the vertical 

axis, there is a considerable usage of directional strategies, according to 

the market prevailing sentiment about price movements, while if they 

concentrate along the horizontal axis, there is an extensive implementa-

tion of volatility strategies, according to the sentiment regarding volatility 

expectations. If there is a mixture of the two strategies, the contracts will 

gather in the center of the map.

18.3 THE REFERENCE MARKET
The analysis applies to the S&P/MIB index that is the benchmark for the 

Italian market. This index measures the performance of forty stocks listed 

on the markets organized by the Italian Stock Exchange (Borsa Italiana) 

and is the only Italian equity index that relies on Standard & Poor’s world-

renowned approach to index construction. It features free-float adjustment, 

Long put Long call

Short call Short put

Underlying price
V

o
la

ti
li

ty

FIGURE 18.1 The Option Strategy Matrix.
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high liquidity, and broad representation of market performance based on 

the leading companies in the leading industries.*

Option contracts are the highest-growing products of the Italian 

Derivatives Market (IDEM). The IDEM is an order-driven market where 

transactions are anonymous. During continuous trading the execution of 

contracts occurs, for the quantities available, by automatic matching of 

proposals from opposite sides present in the market book. Confirmation 

of all trades is given automatically. Liquidity is supported by the presence 

of more than twenty market makers quoting continuously or responding 

to request for quotes. Market makers are granted a reduction in trading 

fees. They are also provided with a quicker market access and a mass quo-

tation functionality, which allows market makers to send to the market up 

to 100 quotations simultaneously in just one transaction.

The IDEM is guaranteed by a central counterparty (CCP) guaran-

tee system that takes the counterparty risk starting from the conclu-

sion of the contracts. The CCP service is carried out by CC&G (Cassa di 

Compensazione e Garanzia), which manages the clearing and guarantee 

function for the IDEM.

The IDEM currently trades S&P/MIB index options, which were intro-

duced on March 22, 2004, and replaced the MIB30 index options, which 

were in turn excluded from the list on September 17, 2004. The S&P/MIB 

index option showed for the current year a total turnover in millions of 

euro equal to 133,294.5, accounting for approximately 25% of the total 

IDEM market (Borsa Italiana, 2008).

Index options are European-style options with an underlying notional 

value equal to the current level of the S&P/MIB index multiplied by 

* The S&P/MIB index is derived from the universe of stocks trading on the Italian stock 

exchange main equity market. The index has been created to be suitable for futures and 

options trading, as a benchmark index for exchange traded funds, and for tracking large 

capitalization stocks in the Italian market. It is calculated in real time at 30’’ (09:05–17:31 

CET), from the continuous trading phase in the blue-chip segment of electronic shares mar-

ket (MTA and MTAX), using the last price of each constituent. The S&P/MIB index pro-

vides diversity over ten economic sectors by adhering to the Global Industry Classification 

Standard, or GICS2. Launched in 1999 by Standard & Poor’s and Morgan Stanley Capital 

International (MSCI), GICS has become the industry standard, providing the financial com-

munity with one complete set of global sector and industry definitions. The ten GICS sec-

tors that underlie the S&P/MIB index are consumer discretionary, consumer staples, energy, 

financials, health care, industrials, information technology, materials, telecommunication 

services, and utilities. 
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2.5 euro. Many expirations are available, and quite a few number of strikes 

are quoted. The complete contract specifications are reported in the  

following box (IDEM, 2006).

THE S&P/MIB INDEX OPTION CONTRACT SPECIFICATIONS

Exercise: S&P/MIB Index Options are exercisable only on their expiration day.
Contract size: Each S&P/MIB Index Option represents a notional value of 

2.5 euro per index point. This means that if the index value equals 
30,000, each contract has an underlying value of 75,000 euro.

Expirations up to 12 months: Six expirations are always available for trading: 
four quarterly (March, June, September, and December) expirations, 
plus the two nearest nonquarterly calendar months.

Expirations beyond 12 months up to 36 months: Four 6-month expirations are 
always available (June and December). For each maturity up to 12 
months (monthly and 3-month maturities), at least fifteen exercise prices 
shall be traded for both the call and the put series, with intervals of 500 
index points. For the four 6-month maturities more than 12 months, 
at least twenty-one exercise prices shall be listed for both the call and 
the put series, with intervals of 1,000 index points. But when 6-month 
maturities fall within the 12 months, new exercise prices shall be intro-
duced with intervals of 500 index points, up to at least fifteen exercises 
prices shall be traded for both the call and put series, with intervals of 
500 index points.

At the end of each trading day, all of the maturities of the following option 
series shall be excluded from listing:

call series whose exercise price, with respect to that of the at-the-
money series, is higher than the 10th out-of-the-money exercise price 
or lower than the 10th in-the-money exercise price; or
put series whose exercise price, with respect to that of the at-the-money 
series, is lower than the 10th out-of-the-money exercise price or higher 
than the 10th in-the-money exercise price; and
for which the following conditions are simultaneously satisfied:

there is no open interest
the open interest of the put (call) with the same exercise price and 
maturity is zero
the open interest of all the call and put series with exercise price fur-
thest from the at-the-money price, with respect to that of the series 
to be excluded, is zero
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New exercise prices shall be introduced where the reference value of the 
S&P/MIB Index of the preceding trading day is:

for call options, higher (lower) than the average of the at-the-money 
price and the first out-of-(in-)the-money price
for put options, higher (lower) than the average of the at-the-money 
price and the first in-(out-of-)the-money price

Borsa Italiana may introduce additional strike prices with respect to those 
referred to when it is necessary to ensure regular trading, with account taken 
of the performance of the underlying index. The strike prices will be gener-
ated with the interval specified in paragraph 4 or their multiples for call and 
put options.

Premiums: The premiums of S&P/MIB Index Options are quoted in index 
points. The level of an Index Option’s premium also determines the 
minimum price movement for the Index Option as follows:

SOURCE: HTTP://WWW.BORSAITALIANA.IT

18.4 THE EMPIRICAL EVIDENCE
Since the analysis was aimed at evaluating the usage of stock index option, 

we had to select a definite risk horizon. For the sake of the efficiency of 

the data set, such risk horizon was set moderately short: the closest expi-

ration contract was selected for each day. Therefore, the maximum risk 

horizon is no longer than 20 working days. The data derive directly from 

the Italian CC&G database.* The specific information retrieved from the 

database are:

 1. the closing prices of the underlying stock index for the option (index 

points)

 2. the annualized historical volatility calculated as the standard devia-

tion of the daily log returns of the index over the preceding 21 work-

ing days multiplied by 252

* The database can be requested directly to the academic service of Borsa Italiana.

Option Price Min. Tick Value

Less than 100 index points 1 index point
Between 102 and 500 index points 2 index points
Above 505 index points 5 index points
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 3. the open interests of the next closer maturity put and call contract 

(all strikes), that is, the total number of options contracts that are not 

closed or delivered at the end of the day

 4. the implied volatility for each contract, as given by the CC&G system*

The time period selected is able to cover a full cycle for both S&P/MIB 

index price and the historical volatility as can be easily appreciated by 

Figure 18.2, reporting the daily S&P/MIB closing values and the corre-

sponding historical volatility.

For each trading day we built a bubble plot of the implied volatil-

ity against the corresponding strike prices for both call and put option, 

where the size of the single bubble is proportional to the open interest of 

the selected contract. By this representation it is possible to graphically 

evaluate the area with higher density. The four quadrants of this coordi-

nate system are made up by the intersection of the day closing S&P/MIB 

value (index points) with the corresponding historical volatility value. The 

results of this graphical analysis are reported in the charts in Figures 18.1–

18.11, where daily plots were grouped on a monthly basis, with blank spaces 

for holidays.

* The implied volatility is calculated by a recursive procedure. The clearing house applies for 

the risk-free rate, the Euribor rate (Euro Interbank Offered Rate) referred to the same matu-

rity of the option if available, or to an interpolated value between the two closer maturities 

if not directly available. As far as the dividend correction is concerned, a calibrated estimate 

of the dividend of the underlying stock basket is applied. Technical details can be obtained 

directly from CC&G (http://www.ccg.it/) or Borsa Italiana (http://www.borsaitaliana.it/).
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A synthetic depiction of the prevailing strategy can be gained by 

the analysis of the ratio of the daily correlation coefficient between the 

implied volatility and the corresponding strike price to the put-call, i.e. 

the Strategy Index (SI), given by

 
 

(   ;   )

    /     

The daily series of the SI is reported by Figure 18.3.

A positive value of the index accounts for a positive relationship between 

volatility and price expectations. In this case the market will express a pref-

erence for call options in the long position and put options in the short 

position or for short call and long put. Therefore, the positive value of the 

strategy index is able to signal a prevailing volatility trading. This is the case, 

for example, of January 23, which exhibits the maximum value of the SI and 

whose OSM is reported by Figure 18.4.

A negative value of the index accounts for a negative relationship between 

volatility and price expectations. In this case the market will express a pref-

erence for long put and short call or long call and short put. Therefore, the 

negative value of the strategy index is able to signal a prevailing directional 

strategy. This is the case, for example, of April 28, which exhibits the mini-

mum value of the SI and whose OSM is reported by Figure 18.5.

A null value of the SI is able to account for no strong relationships 

between volatility and price expectations. In this case the market will not 

express a prevailing strategy. This is the case of March 13, which exhibits a 

null value of the SI and whose OSM is reported by Figure 18.6.
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FIGURE 18.3 Strategy Index (21/12/2007 – 16/05/2007).
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18.5 CONCLUSION
As it can be easily appreciated by the SI evolution (Figure 18.3), the Italian 

market for the S&P/MIB stock index option is generally prone, at least 

with reference to the selected data set, to directional strategies. Very rarely 

the market shows volatility trading. The results obtained therefore con-

firm a pragmatic intuition: the usage of the stock index option is mainly 

related to immunization objectives. Certainly, these results could be dif-

ferent if we extended the time period and the number of expirations under 

consideration. There is also some seasonal effect in the behavior that could 

be further exploited, especially with reference to a higher number of expi-

rations for each observation date.

From a methodological standpoint, the Option Strategy Matrix and the 

Strategy Index appear to be two useful instruments for a general analysis 

of the market.
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Cross-Sectional Return 
Dispersions and Risk in 
Global Equity Markets
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19.1 INTRODUCTION
Investors have long considered the behavior of stock return volatility as 

an important factor in forming their portfolio decisions. For instance, in 

the mean-variance framework, expectations about the volatility of returns 

influence portfolio choice through investors’ demand for a required rate of 
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return and their attitude toward risk. From a market perspective, the mag-

nitude of stock market volatilities also provides information for assessing 

the economy, since periods of high volatility tend to coincide with down-

ward market movements (Ang et al., 2006). The financial crisis literature 

suggests that in an integrated capital market, stock return volatility in 

one market tends to spill over to other asset markets through a contagion 

effect, causing widespread financial market instability. Thus, understand-

ing the behavior of volatility and its relationship to stock returns is crucial 

to investors and government policy makers/regulatory agencies.

In his seminal paper, Merton (1973) presents a theoretical analysis of 

the expected stock return in relation to risk. He postulates a positive rela-

tion between expected excess returns and risk. Following Merton’s (1973, 

1980) theoretical prediction, voluminous studies have been devoted to 

investigating this risk-return hypothesis. For instance, French et al. (1987) 

find evidence that the expected market return is positively related to the 

predicted volatility of stock returns. Similar findings are shown in the 

research papers by Baillie and DeGennaro (1990), Ghysels et al. (2005), 

and Bali and Peng (2006), among others.

However, Glosten et al. (1993) and Koopman and Uspensky (2002) doc-

ument different results and find evidence of a negative relation between 

stock return and the predicted volatility. Thus, the empirical evidence on 

the risk-return trade-off is inconclusive. In reviewing the existing liter-

ature, it appears that the sign of the return-risk relation is conditioned 

on the models being used, the time horizons of the sample under study,  

and the way risk is being measured, among other factors (Backus and 

Gregory, 1993; Bali and Peng, 2006).

Since stock returns are observed to be stochastic and the evolution of 

stock return volatility displays a clustering phenomenon, over the last two 

decades, the GARCH-type models proposed by Engle and his associates 

have been considered the most popular approach for modeling the time-

varying risk process, including the studies in the above-mentioned litera-

ture. The beauty of a GARCH-in-mean model is that it allows researchers 

to estimate the return and conditional variance simultaneously, so that 

the link between stock returns and their predicted variance can be estab-

lished. Using this model, financial economists can conduct empirical 

analyses for testing the return-risk trade-off hypothesis. Collectively, the 

work by Engle (1995) and the survey by Bollerslev et al. (1992) summarize 

the applications of GARCH models in the finance literature.



Cross-Sectional Return Dispersions and Risk in Global Equity Markets < 363

Despite its powerful capacity for capturing the time-series proper-

ties of volatility, the GARCH model fails to capture the risk reflected in 

the cross-sectional data. The purpose of this paper is to use the cross- 

sectional return dispersion as an incremental variable for the risk fac-

tor to explain stock return. We demonstrate that the return dispersions 

contain information on excess volume, excess market conditions, and 

outliers. Thus, by including the return dispersion, the test equation for 

conditional variance is able to outperform a simple conditional time-se-

ries variance model.

The remainder of the chapter is organized as follows: Section 19.2 

describes the model, sample data, and variable measurements. Section 19.3 

presents the empirical evidence on the risk-return relation using a sim-

ple GARCH-M model and augmented GARCH-M model incorporating 

return dispersions. Section 19.4 presents the information content of cross-

sectional return dispersions. Section 19.5 contains conclusions.

19.2 MODEL, SAMPLE DATA DESCRIPTION, 
AND VARIABLE MEASUREMENTS

19.2.1 The AGARCH-M Model

It is convenient to start with a simple asymmetric GARCH(1,1)-M model 

that will serve as a basis for comparison. The model can be expressed by

 
1  

(19.1)

 
0 1 1

2
2 1 1

2
3 10[ ]

 
(19.2)

where is the stock return;  is the conditional variance; , , , and 

( , , , )0 1 2 3and  are constant parameters; is an indicator variable, 

 = 1 if 1  < 0, and = 0, otherwise; and  is a random error term.

Equation (19.1) is the mean equation, which is assumed to follow an AR(1) 

process, reflecting nonsynchronous trading (Lo and MacKinlay, 1990), par-

tial adjustment (Koutmos, 1998), or the presence of positive-feedback trad-

ing (Sentana and Wadhwani, 1992; Antoniou et al., 2005). The term  is 

the conditional standard error, which is used to proxy for measuring risk. 
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Thus, a positive value and statistical significance on  from a regression test 

would be evidence supporting the return-risk trade-off hypothesis.*

Equation (19.2) describes an evolutionary process of conditional vari-

ance, , which is assumed to be dependent on past shocks squared and an 

AR(1) term of variance. We assume that the conditional variance follows a 

GARCH (1,1) process based on the parsimonious principle popularized by 

Bollerslev et al. (1992). In this model, we also include an indicator variable, , 

 = 1 if 1 < 0, and 0 otherwise, to reflect the asymmetric responses of the 

conditional variance to previous shocks (Glosten et al., 1993; Chiang and 

Doong, 2001).† It follows that good news, 1 > 0, and bad news, 1< 0, have 

differential effects on the conditional variance; good news has an impact 

of 1 , while bad news has an impact of 1 2. If 2 0, the evidence 

suggests that bad news aggravates volatility. Therefore, if 2 0 is rejected 

from a regression estimation, we would conclude that the impact of news is 

asymmetric. Thus, this AGARCH model is appealing, since the return and 

variance processes are estimated jointly and the variance is characterized by 

time-varying and asymmetric responses to previous shocks.

19.2.2 The Data

To estimate the model, we use daily stock price indices for five major 

markets from January 4, 1990 through December 31, 2006. The data con-

sist of both sector stock indices and market price indices. The samples 

cover Hong Kong (HK), Japan (JP), Germany (GR), the United Kingdom 

(UK), and the United States (US). The industrial data set for each market 

contains 156 sectors. Following the conventional approach, we calculate 

stock return as ( ) ,1 100  where and  1 are the natural 

logarithms of a stock index for each market or sector at time and   1. 

All of the data were taken from Datastream International.

19.2.3 Evidence of the AGARCH-M Model

Table 19.1 reports the regression estimates of Equations (19.1) and (19.2). 

Consistent with the partial adjustment hypothesis (Koutmos, 1998) or the 

* In the literature, both the standard error of stock returns and the variance of stock returns 

have been used to proxy for risk (see French et al., 1987). Here we report only the results from 

using the standard error to save space.
† A number of conditional variance models in the GARCH family have been proposed in the 

literature. We refer to Engle (1995) or the paper by Cappiello et al. (2006) for details.
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presence of nonsynchronous trading (Lo and MacKinlay, 1990), all of the 

coefficients of the AR(1) term are positive, lying between zero and unity, 

and statistically significant.

While testing the return-risk trade-off hypothesis, we cannot find evi-

dence that the estimated coefficient on the conditional standard error term, 

, is statistically significant. This indicates the weakness of the return-risk 

trade-off hypothesis, since none of the markets offer supportive evidence 

in their daily data. Nevertheless, we should be more prudent in drawing a 

conclusion based on this preliminary model. Two related issues are worth 

considering. First, it is important to ask whether the mean equation is 

correctly specified, since a misspecification of the mean equation could 

generate a misleading error term, which could in turn distort the measure 

of the conditional variance. Second, the variance in Equation (19.2) may 

well capture its time-series pattern based on a specific dynamic process. 

However, other information, such as macroeconomic risk factors or cross-

sectional variations revealed in the market data, is excluded from the 

model. Since most macroeconomic fundamental variables are not avail-

able on a daily basis, this leads us to focus on the second issue and ask 

whether the conditional variance equation is correctly specified. We shall 

return to this issue later.

Checking the variance equation, the evidence shows that all of the 

coefficients in the GARCH(1,1) equations are statistically significant, 

indicating that stock-return volatilities are characterized by a heteroske-

dastic process with a clustering phenomenon. Since the sum of the 

coefficients on the variance equation is close to unity, we find that the 

volatility is highly persistent. A special feature emerging from the vari-

ance equation is that the coefficient of the asymmetric term, 2, is posi-

tive and highly significant. This holds true for all of the markets. We can 

conclude that the asymmetric effect is present in all of the stock return 

series, demonstrating that volatility is higher in a falling market than it 

is in a rising market.

19.3 THE ROLE OF CROSS-SECTIONAL 
RETURN DISPERSION

19.3.1 Stock Returns and Cross-Sectional Return Dispersion

As we argued in the previous section, the failure to confirm the return-

risk trade-off hypothesis using data from the five markets mentioned 
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previously may be due to the fact that conditional variance based on a uni-

variate GARCH specification may not sufficiently capture the information 

on risk, and hence lacks the power to measure risk. As noted by Pagan and 

Ullah (1988), in the GARCH-M model, the estimates of the parameters in 

the conditional mean equation are not asymptotically independent of the 

estimates of the parameters in the conditional variance; hence, any mis-

specification in the variance equation generally leads to biased and incon-

sistent estimates of the parameters in the mean equation. In this section, 

we shall use the cross-sectional return dispersion ( ) as an incremental 

variable to explain stock returns.

In the literature, the dispersion of stock returns may project a depressed 

state of the economy, signifying higher risk for holding stocks in a portfolio. 

For instance, Loungani et al. (1990) examine data on U.S. monthly stocks 

and discover that stock return dispersion leads to unemployment. Christie 

and Huang (1995) find that the dispersion is higher during recessions and 

positively covaries with the yield spread between high- and low-rated 

corporate bonds. Connolly and Stivers (2006) find that the daily return 

dispersion contains information about the future volatility of portfolio 

returns. In general, higher return dispersion may represent less agreement 

among investors concerning the outcomes of market returns (Connolly 

and Wang, 2003). It is in this sense that return dispersion reflects different 

beliefs, indicating more risk aversion toward the stock market.

Chang et al. (2000) and Duffee (2001) use the cross-sectional absolute 

deviation to measure return dispersion because it is less sensitive to outli-

ers. Specifically,  is defined as

 

1

1

| |, ,

 

(19.3)

where  is measured by the average of the cross-sectional absolute 

deviation from the market return on a particular trading day,  is the 

stock return for sector  ( = 1, 2, 3, , 156), and  is the mean value of the 

156 industrial stock returns for each national market. As we argued ear-

lier,  may have substantial information content for measuring risk. A 

simple way to test its significance is to add the  term to the right-hand 

side of the mean equation as expressed by

 
1  

(19.4)
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where can be viewed as an incremental variable for explaining stock 

returns. Equations (19.4) and (19.2) are estimated jointly, and the results 

are reported in Table 19.2.*

The estimates in Table 19.2 suggest that the coefficients of the vari-

ance equation and the AR(1) term produce results very similar to those 

we achieved earlier. Although some of the coefficients on  are statis-

tically significant, the sign is negative. Thus, no evidence is found to 

support the return-risk trade-off hypothesis. However, there is an inter-

esting finding for the coefficient of . That is, the coefficient of   

shows a positive value and is statistically significant for all of the mar-

kets. From this perspective, we find some evidence of a positive rela-

tionship between stock returns and risk. The evidence tends to point in 

the direction of having more information content for explaining 

stock returns.

19.3.2 Conditional Variance and Cross-Sectional Return Dispersion

Instead of placing  in the mean equation, we attempt to use  to 

model the conditional variance. In particular, we write:

 
1 ,  (19.5)

 
, , ,1

2
1 1

2
1  (19.6)

where ,  in Equation (19.6) is the full information estimator of variance 

based on the conditional variance  in Equation (19.2) plus the risk infor-

mation denoted by  and –1. Thus, the risk factor in the mean 

Equation (19.5) as measured by 
,

 contains the information derived 

from both the time-series pattern of the variance and the cross-sectional 

dispersions. The estimations of Equations (19.5) and (19.6) are reported in 

Table 19.3.

By checking the estimates in Table 19.3 and comparing them with 

those reported in Table 19.1, where the information contained in  

was excluded from the conditional variance, we find that the coefficients 

* Alternatively, we can use the cross-sectional standard deviation ( ) to calculate return 

dispersion (Christie and Huang, 1995), expressed as ( ( ) /( )) ,, ,
/

1
2 1 21

where  is the number of sectors in the portfolio, ,  is the observed stock return of industry 

 at time , and ,  is the cross-sectional average stock of  returns in the portfolio at time . 

Since the results are similar, we do not report them in Table 19.2.
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of the AR(1) term in the mean equation, , and in the variance equation, 

3, are highly significant. This is understandable, since the lagged depen-

dent variable has the capacity to summarize the historical information, 

including the missing values for longer lags of the explanatory variables. 

The statistics from Table 19.3 also support the hypothesis that volatility 

responds asymmetrically to previous shocks, as evidenced by the statisti-

cal significance of 2.

The results shown in Table 19.3 demonstrate three significant changes 

compared with those in Table 19.1. First, none of the lagged shock squared 

terms in the variance equation are found to be statistically significant at the 

5% level, which means that the information content in the ARCH compo-

nent has been vanishing. Second, the coefficients for both and 1 

are highly significant, suggesting that the ARCH effect has been overtaken 

by the cross-sectional return dispersion. Third, and more important, the 

estimated values on  are all positive and statistically significant at the 1% 

level. This finding suggests that higher return is associated with a higher 

risk, supporting the return-risk trade-off hypothesis. The validity of this 

finding is rooted in the measure of the risk variable, , , which is not only 

evolving with its time-series dynamics, but also influenced by the cross-

sectional dispersions. The latter appears to be more significant. The next 

question then is: What information lies behind ? We shall answer 

this in the next section.

19.4 WHAT EXPLAINS THE CROSS-SECTIONAL 
RETURN DISPERSIONS?

It has been observed that fear rises and risk increases when the market 

undergoes extreme movements. This phenomenon often shows up in 

excess trading volumes. Clark (1973) documents that the variances of 

stock returns and trading volumes are both driven by the same latent 

variable. In their study of U.S. stocks, Lamoureux and Lastrapes (1990) 

demonstrate that trading volume has significant explanatory power for 

stock returns. They show that when the volume variable is included in the 

estimated equation, the GARCH effect is weakened. Wagner and Marsh 

(2005) extend the Lamoureux and Lastrapes (1990) model by considering 

an asymmetric GARCH-in-mean specification. They contend that surprise 

volume (unexpected above-average trading volume) provides a superior 

model fit and helps to explain the persistence of volatility as well as excess 

kurtosis. Following this line of argument, we set up the cross-sectional 
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return dispersion as a function of excess trading volume and market stock 

return squared. Specifically, we write:

 

0 1 2
2

1

5

,

 

(19.7)

where  is excess trading volume, which is calculated by subtracting nor-

mal volume from actual volume. Following Wagner and Marsh’s (2005) 

model, normal volume is obtained using the Hodrick-Prescott (1997) 

filtering method.*,† The ,
2  term is the market return squared to reflect 

extreme market conditions (Chang et al., 2000). In Equation (19.7), we 

also include five dummy variables to insulate the contamination of outli-

ers that may distort the estimated results (Tsay, 1988; Peña, 2001).

Table 19.4 reports the regression estimates of the cross-sectional return 

dispersion equation. Two significant results are worth noting. First, with 

the exception of the UK market, the excess volume variable is highly sig-

nificant, meaning that the return dispersion reflects the market activity of 

excess trading. Second, the return dispersion is positively correlated with 

the market return squared and all of the coefficients are significant at the 

1% level. This finding suggests that when the market undergoes extreme 

movements, the market return dispersions are expected to be more diverse, 

which may reflect more profound fear and risk aversion. Given the infor-

mation content of Equation (19.7), we can link it to Equation (19.6), which 

helps us to understand the predictive power of return dispersion in the 

variance equation. Because of this information content, we find evidence 

to support the return-risk trade-off hypothesis.

19.5 CONCLUSION
This chapter examines the relation between stock return and risk by apply-

ing the data from five major global markets: Hong Kong, Japan, Germany, 

the United Kingdom, and the United States. Testing the hypothesis by 

using a standard asymmetric GARCH(1,1) model, we cannot find any 

* The natural logarithm of trading volume is used to restrict the volume to be nonnegative.
† As expounded by Longin (1997), return volatility, volume, and liquidity are all positively 

related to each other, although these variables may be associated with different trading pro-

cesses. To some extent, the volume can be set up as a proxy of liquidity, which has the advan-

tage of being easy to measure. Based on the information we observed, it is appealing to use 

excess trading volume to explain .
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supporting evidence for the return-risk trade-off hypothesis, although a 

substantial clustering of volatility is present.

We then construct the cross-sectional return dispersions (CRD) based 

on 156 sectors for each market and use CRD as an independent argument 

for explaining the stock return for each market. It turns out that there is a 

significant relation between stock return and CRD. This finding suggests 

that using a univariate specification of the AGARCH model may not suffi-

ciently capture all of the information pertinent to explaining the variance 

evolution. Our empirical test indicates that by including cross-sectional 

return dispersions in the prediction of the conditional variance, we find 

evidence supporting the return-risk trade-off hypothesis.

Further testing the information content underlying cross-sectional 

return dispersions, we find evidence to suggest that the CRD is positively 

correlated with excess trading volume and market return squared. This 

implies that when the market experiences excessive trading volume and 

extreme market conditions, risk tends to be higher, which in turn gives 

rise to a higher return to compensate investors.
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20.1 INTRODUCTION
Numerous studies find that the return variances over periods when the 

exchanges are open significantly exceed those over periods when the exchanges 

are closed (e.g., Fama, 1965; Oldfield and Rogalski, 1980; French and Roll, 

1986; Barclay et al., 1990; Stoll and Whaley, 1990). Three potential expla-

nations for the phenomenon have been offered in the literature: (1) more 

public information reaches the marketplace during normal business hours;  

(2) the trading activity of informed investors reveals their private infor-

mation, inducing greater return variance; and (3) the process of trading 

itself introduces noise into stock prices and returns as investors overre-

act to other’s trades, leading to more volatile returns over trading periods. 

The literature generally concludes that although there is some evidence of 

noise-induced trading return volatility (e.g., French and Roll (1986) offer 

an estimate of 4% to 12% of the daily return variance), the bulk of the dif-

ference between variances of trading and nontrading windows is attribut-

able to the trading of informed market participants.

I show that the natural experiment approach utilized in the extant stud-

ies to control for public information may not be appropriate to the extent 

that information arrival itself is a function of trading. I provide a direct 

empirical test of the competing hypotheses by analyzing the volatility of 

close-to-open and open-to-close returns for NASDAQ securities with and 

without active extended-hours trading, while jointly and explicitly con-

trolling for the firm-specific contemporaneous public information flow. 

My methodology disentangles the effects of noise, public information, and 

private information on stock return volatility. I also contribute to the bur-

geoning literature analyzing trading activity and return characteristics in 

the quickly growing extended-hours market.

By comparing the variances over multiday windows spanning days 

when the exchanges are closed, with single-day close-to-close variances, 

existing studies make inferences about the volatilities over trading and 

nontrading periods. For example, French and Roll (1986) investigate 

return behavior around weekends and business days when the NYSE and 

AMEX were closed. Barclay et al. (1990) examine returns on weeks when 

the Tokyo Stock Exchange was open on Saturdays. By assuming that the 

characteristics of the flow of public information on a business day when 

the exchanges are closed or on a Saturday when they are open are simi-

lar to those of a typical business day or typical Saturday, respectively, the 

authors draw conclusions about the impact of public information flow 
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on return variances. However, an inevitable assumption in these studies 

is that the incidence of news releases is exogenously determined. While 

seemingly innocuous, one can offer several likely scenarios of how this 

conjecture might be violated. For example, a number of theoretical and 

empirical studies indicate that corporations strategically time informa-

tion releases conditionally upon the presence of trading, as opposed to 

merely based on the business hours cycle.* By obtaining a comprehensive 

measure of firm-specific time-stamped information releases over the con-

current time window, I am able to control directly for the effects of pub-

lic information flow, and for the possible information endogeneity issues, 

avoiding such potentially biasing assumptions.

The literature on return volatility largely ignores trades that take place 

outside regular trading hours (currently 9:30 a.m. to 4:00 p.m. Eastern 

Time.) Yet, a number of studies suggest that trading activity in after-

hours and especially in premarket sessions, although low in volume, is 

dominated by informed participants (e.g., Barclay and Hendershott, 2003; 

Chan, 2002). Thus, I posit that stocks with more active extended-hours 

trading will, , have greater overnight return variances. 

Furthermore, if after-hours and premarket trading convey private infor-

mation, a shift in the timing of price discovery will occur, reducing the 

volatility of the subsequent open-to-close returns.† Alternatively, if trading 

only introduces additional noise, an increase in extended-hours volume 

will lead to greater overnight volatility and will not affect that of the sub-

sequent regular trading session.‡

I find that the effects of after-hours and premarket trading on return 

volatility are markedly different. The less informed order flow in after-

hours sessions is associated with little price impact and appears to 

be greatest on low information asymmetry days. The volatilities of 

close-to-open and open-to-close returns are negatively related to after-

hours volume, and the volatility ratio is unaffected by such volume. 

* For example, see Patell and Wolfson (1982), Gennotte and Trueman (1996), Baginski et al. 

(1996), Bushee et al. (2004), and Libby et al. (2002).
† Although the terms aft  and  are sometimes used interchangeably, 

formally, the extended-hours window encompasses all transactions outside of the regu-

lar 9:30 a.m.–4:00 p.m. session and can be broken into aft  (the period starting at 

4:00 p.m. and generally extending until 8:00 p.m.) and  (generally accepted as the 

7:00–9:30 a.m. period.) See http://www.nasdaq.com/reference/glossary.stm.
‡ Utilizing extended-hours trades also allows me to avoid potential confounding effects of the 

home bias likely present in the analyses of internationally listed securities.
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Conversely, higher trading volume in the premarket session, typically 

composed predominantly of anonymous information-based trades, is 

associated with greater overnight and lower subsequent regular session 

volatility, indicating that price discovery shifts toward the premarket 

hours. Consequently, the volatility ratios decrease in premarket trad-

ing volume.

Unlike the existing studies, I offer evidence in support of the public 

information hypothesis. Greater flow of public information over trading 

(nontrading) hours increases the open-to-close (close-to-open) return 

volatility, and the ratio of return volatilities is directly related to the news 

flow differential.

The rest of the chapter is organized as follows: Section 20.2 offers an 

overview of the existing literature and the development of hypotheses. 

Section 20.3 presents the data and methodology. Section 20.4 contains the 

empirical results, and Section 20.5 concludes.

20.2 LITERATURE REVIEW AND HYPOTHESIS  
DEVELOPMENT

20.2.1 Variance Ratios, Information Flow, and Trading Noise

Several studies find that stock returns are more volatile over exchange 

trading hours than they are over nontrading periods. French and Roll 

(1986) analyze equity return behavior around business days when NYSE 

and AMEX were closed. The authors assume that the flow of public infor-

mation is not affected by exchange closures but is rather a by-product 

of the business hours activities. Since private information is conveyed 

through trading of the informed investors, and assuming this trading 

occurs only during the regular trading session hours, French and Roll 

(1986) conclude that it is the trading of the informed investors that leads to 

the bulk of variance differences. Similarly, Barclay et al. (1990) investigate 

equity returns during the period when the Tokyo Stock Exchange (TSE) 

was open on Saturdays. The authors assume that by analyzing weeks with 

and without Saturday trading, the effects of the flow of public information 

are held constant. Their analysis shows that during weeks with Saturday 

trading, weekend variance almost doubles, weekly volume goes up, but 

weekly variance is unaffected. The higher weekend variance is offset by 

lower variances on subsequent days as informed traders accelerate their 

trading. The study concludes that the results support the rational trad-

ing models based on private information and are inconsistent with public 

information or noise hypotheses.
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The existing analyses lack a direct test of the effects of public informa-

tion. While indeed some public information may be a by-product of busi-

ness activities, and its arrival would thus largely coincide with the timing 

of the exchange operations, other research shows that the news release 

policy frequently contains an element of strategic timing, one of the critical 

parameters of which is the presence (or absence) of trading.* For example, 

Baginski et al. (1996) find that, consistent with voluntary disclosure predic-

tions of Diamond (1985) and King et al. (1990), management strategically 

releases larger earnings surprises outside of the regular trading session 

hours. Similarly, Gennotte and Trueman (1996) suggest that management 

will prefer to issue negative information in extended hours and positive 

news during normal trading hours. Consistent with this, Patell and Wolfson 

(1982) and Francis et al. (1992) demonstrate that negative announcements 

tend to cluster outside of the normal exchange trading hours. Libby et al. 

(2002) present evidence of overnight news releases being more significant. 

Bushee et al. (2004) show that, subsequent to the Regulation Fair Disclosure 

(FD) requiring equal investor access to material information, firms tend to 

host their conference calls in extended hours to discourage trading by the 

less sophisticated investors during the calls, and thereby lower the excess 

volatility it induces. Lastly, the Securities and Exchange Commission 

appears to exhibit a preference that firms make corporate announcements 

during periods without an available trading venue.†

To the extent that the arrival of firm-specific information releases is 

potentially conditional on the presence of trading, the natural experiment 

approach of earlier studies may underestimate the effects of public infor-

mation. It is important to control directly for the flow of contemporaneous 

firm-specific news in testing the effects of public information on equity 

return variances.

20.2.2 Evidence of Informed Trading in Extended Hours

Rational trading models (e.g., Kyle, 1985; Admati and Pfleiderer, 1988), 

predict that it is optimal for traders with private information to trade when 

the liquidity traders are most active. However, such models assume that the 

informed agents have a sufficiently low information decay rate. In many 

instances, the informational advantage is short-lived. The preponderance 

* Note also that the overlap between business and trading hours will be a function of the time 

zone.
† Special study: Electronic Communication Networks and After-Hours Trading, Division of 

Market Regulation, June 2000. See http://www.sec.gov/news/studies/ecnafter.htm.
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of traders participating in the extended-hours sessions plausibly either 

have or believe to have such a short-lived advantage. Indeed, given signifi-

cantly greater extended-hours transactions costs, agents with long-lived 

information would likely delay their trades until the more liquid regular 

sessions.

Barclay and Hendershott (2003) present compelling evidence that such 

trades are substantially more informed and lead to significant price dis-

covery, despite considerably higher spreads and generally low extended-

hours volume. The average trade size is two to three times larger, due to 

lack of retail orders outside of the regular session.* A related study (SEC, 

2000) finds that although the extended-hours session is more a market of 

stocks than a stock market, trading is relatively active for stocks subject to 

major corporate news announcements issued outside of the regular session 

hours.

The extant rational trading models suggest that prices will be most 

informative at times of high trading volume due to the high numbers of 

privately informed traders. However, although the absolute number of 

informed participants is likely lower in extended-hours trading, their rela-

tive number is potentially substantially higher, as discretionary transaction-

cost-elastic liquidity traders opt to defer their trades until the less costly 

regular session. The lower proportion of liquidity and retail traders and, 

consequently, a greater ratio of informed to uninformed participants will 

result in a more informed order flow. Barclay and Hendershott (2003) 

demonstrate that while volatility per unit of time is generally lower in 

extended hours than it is during the trading day, volatility per trade is 

higher. The authors conclude that when trading is conducted by the most 

informed market participants, significant price discovery can occur even 

on low trading volume.†

* Until fairly recently, extended-hours trading was available almost exclusively only to institu-

tional and professional traders. Although the advent and expansion of electronic communi-

cation networks (ECNs) has enabled individual investors to place anonymous orders eligible 

for execution in extended hours, the existing empirical and anecdotal evidence suggests 

their activities outside of the regular session hours remain immaterial. Under the existing 

NASD rules 2110 and 2210, member firms have an obligation to disclose the material risks of 

extended-hours trading to their retail customers before permitting customers to engage in 

this activity.
† Similarly, Barclay et al. (2001, 2002) develop and empirically confirm a theoretical model 

that predicts a higher percentage of informed traders on ECNs. They show that although 

ECN trading volume is lower, it has a substantially greater permanent price impact and 

explains approximately two-thirds more price volatility than market-maker trades.
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20.2.3 Overnight Price Discovery

Greene and Watts (1996) and Masulis and Shivakumar (1999) show that 

stock price reactions to overnight earnings news and seasoned equity 

offerings, respectively, are significantly faster on NASDAQ. Bacidore and 

Lipson (2001) find that the overnight price discovery for NASDAQ secu-

rities is much larger than it is for securities listed on the NYSE, and that 

this difference appears to be an increasing function of firm size. They also 

find that a greater percentage of the daily volume is executed at the open 

on NYSE compared to NASDAQ. It is reasonable to hypothesize that this 

is attributable to substantially greater volume of extended-hours trading 

in NASDAQ securities.*

Hong and Wang (2000) develop a theoretical model that shows how the 

incidence of periodic market closures alone can generate empirical pat-

terns, including higher volatility over trading periods than over nontrad-

ing periods, even assuming constant information flow. Thus, insofar as 

extended-hours trading diminishes this closure effect, one can expect the 

disparity in volatilities of returns over close-to-open and open-to-close 

windows to be smaller for stocks with more active trading outside of the 

regular session, .

20.2.4 Hypotheses

If return variances are caused by the arrival of public information, then:

The close-to-open and open-to-close 

return volatilities will be positively related to the public informa-

tion flow over the respective time periods.

If return variances are caused by trading of informed market participants, 

the volatility of overnight returns will increase in extended-hours trading 

volume. Furthermore, if the rise in close-to-open variance is due to the 

greater amount of private information impounded through such trading, the 

* For example, Barclay and Hendershott (2001) find that such volume accounts for almost 4% 

of daily trading volume on NASDAQ and only 0.5% on NYSE, and that it is positively related 

to daily volume (and therefore firm size). Indeed, the authors note that given this difference 

in extended-hours volume, the studies investigating the speed with which information is 

incorporated into the opening prices across markets are problematic.
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timing of price discovery will shift and the volatility of open-to-close returns 

will correspondingly decline. More formally:

 The close-to-open (open-to-close) 

return volatility will be increasing (decreasing) in the extended-

hours trading volume.

Barclay and Hendershott (2003) and Chan (2002) show that whereas most 

order flow in after-hours is relatively uninformed and represents position 

adjustment and hedging, the premarket session trading is primarily infor-

mation based. Consequently, the hypothesized private information effects 

are expected to be especially prominent for premarket trading volume.

If, on the other hand, trading only induces noise as investors overreact 

to each other’s actions, no shift in the timing of price discovery will occur. 

The extended-hours trading will cause additional overnight return vari-

ance and will not affect the open-to-close returns. Thus:

 The close-to-open (open-to-close) return volatility 

will be increasing in (independent of) the extended-hours trading 

volume.

20.3 DATA AND METHODOLOGY
20.3.1 Sample Selection

I start with all NASDAQ securities covered by the Center for Research in 

Security Prices (CRSP) during the 2000–2001 period. I limit my sample to 

NASDAQ securities for a number of reasons. Many existing studies show that 

the trading mechanism has significant effects on stock return behavior (e.g., 

Amihud and Mendelson, 1987; Miller, 1989; Stoll and Whaley, 1990; Bacidore 

and Lipson, 2001). Thus, by restricting the sample to NASDAQ, I avoid the 

potential confounding effects caused by the institutional and procedural dif-

ferences. Second, the volume and cross-sectional variation of extended-hours 

trading in NYSE securities is relatively small. Third, and perhaps most impor-

tant, the premarket trades for NYSE securities are not captured by the NYSE 

Trade and Quote (TAQ) database during my sample period.

The sample is then restricted to stocks that never trade at prices below 

$5 per share during this period, yielding 1,571 securities. I leave out penny 

stocks due to their extreme percentage price swings in extended hours (e.g., 

see SEC, 2000). I further require at least ten trades on at least 250 days over 

the 2-year window spanning exactly 500 trading days. This screen reduces 
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the sample to 1,094 firms. I am able to locate TAQ data for 1,001 of these 

firms. Data on capitalization are obtained from CRSP as of the last trading 

day of 2001. I impose the usual screens for out-of-sequence, nonstandard 

delivery, and erroneous trade prints and obtain all TAQ transactions for 

each sample firm-day over the 7:30 a.m.–7:00 p.m. window.*

To obtain a proxy for public information flow, I use a Web crawler to 

search CBS.MarketWatch.com and its twenty news sources for all firm-

specific information released over the 2000–2001 window. The list of news 

providers contains Reuters, BusinessWire, PR Newswire, Market Wire, 

Edgar Online, CNET News.com, CBS News, Knight Ridder, $ TheStreet.com, 

RealTime Headlines, TV & Radio, New York Times, FT.com, Market Pulse, 

and United Press Intl., among others, and represents a broad array of cov-

erage sources. Conducting the search electronically allows me to have a 

substantially larger sample and a much more extensive list of news provid-

ers than prior studies analyzing the effects of public information flow. I 

download up to the last 100 news releases going back from December 31, 

2001. The number of news items per firm is bounded from above at 100 due 

to search constraints imposed by CBS.MarketWatch.com. This constraint 

is binding for 132 companies.† For 949 companies, I am able to locate the 

ticker in the CBS.MarketWatch.com database. For eleven of these compa-

nies, not a single news release is located. For the remainder of the sample 

the search generates 40,694 news items time-stamped to the minute. The 

mean (median) number of news releases per company is 43.38 (33).

20.3.2 Calculation of Variance and Information Flow Ratios

I compute return moments for the following intervals: close-to-close, close-

to-open, and open-to-close. Not all stocks in the sample necessarily trade 

every day when the exchange is open. In computing the moments listed 

above, I omit the days where the exchange is open but the stock does not 

trade according to TAQ. The classification for such windows as trading or 

nontrading is at best ambiguous, and therefore, I opt to omit them from the 

* I require TAQ correction codes of 1 or 0, condition of Regular Way (Blank or*) or T for 

extended-hours trades, and trade size and price above zero.
† Admittedly, this proxy for public information flow is not perfect (e.g., I expect some news 

releases to be stale or noninformative). However, these criticisms plague most investigations 

dealing with news flow data, and insofar as they equally apply to releases made during and 

outside of the regular trading session, no bias is expected for my results. Also note that to the 

extent the truncated 100 releases obtained are representative of the full population (within 

and outside of the normal trading hours), no bias is introduced by this constraint for the 132 

firms for which is it binding. The results are not sensitive to exclusion of these firms.
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analysis. Instead, nontrading period returns are computed as the change in 

price from the close of a trading day with executed transactions to the open 

of the next such adjacent trading day without any trading days with zero 

trades in between.* The volatility ratio on a per-hour basis is calculated as 

follows:

 

2

2

2

/

/
 

(20.1)

where 2  is the time-series variance of open-to-close returns for security ; 
2  is the time-series variance of close-to-open returns for security ; 

and   and  are the average time lengths of the open-

to-close and close-to-open periods in hours for security .†

To explicitly control for the flow of public information over close-to-

open and open-to-close periods, I allocate all news releases into these two 

groups for each security according to their time stamps. A news flow ratio 

is calculated as follows:

 

/

/
 

(20.2)

where  and  represent the number of news items released 

over the open-to-close periods and close-to-open periods for security , 

and  and  are as defined above.

20.4 EMPIRICAL ANALYSIS
20.4.1 Intraday Dynamics of Trading Activity

Figure 20.1 presents an intraday distribution of the trading volume. 

Consistent with prior literature (e.g., Foster and Viswanathan, 1993; 

Harris, 1986), I find evidence of a U-shaped pattern in trading volume 

during the regular trading session both in dollar terms and in the number 

of trades. As in Barclay and Hendershott (2003), the bulk of extended-

hours trading volume occurs around the opening and closing of the regu-

lar trading session. I find that after-hours volume substantially exceeds 

* All but 266 sample firms trade every day. The results are not sensitive to exclusion of these 

firms.
† The average lengths of these periods are calculated to account for their variation across secu-

rities. For example, due to more omitted trading days with no trades for some sample firms, 

they may have relatively more Friday-close-to-Monday-open nontrading returns or a differ-

ent number of shortened trading days (e.g., due to exchange holidays).
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premarket volume: while the total extended-hours dollar volume repre-

sents 4.24% of the aggregate daily volume, more than three-quarters of it 

is transacted in after-hours.

Figure 20.2 shows the dynamics of the mean and median trade size 

across intraday time increments in dollar terms. The average trade size in 

extended hours is significantly higher than that in normal trading hours. 

The average trade size in the premarket window starts out at a level com-

parable to that during the regular session and then dramatically surges 

during the 8:00–8:30 a.m. interval, far exceeding the levels during the rest 

of the day. This spike is most likely attributable to the fact that although 

some ECNs begin operating as early as 7:00 a.m., the majority of brokers 

offer premarket trading starting at 8:00 a.m. Thus, this time effectively 

represents the first opportunity to act on new private or public informa-

tion for the bulk of traders. The trade size abruptly rises after the end of 

the regular session and peaks around 5:00 p.m.
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FIGURE 20.1 Intraday Distribution of trading volume. This graph dem-

onstrates the dynamics of the number of trades and dollar volume over 

extended-hours and regular trading session subintervals.
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20.4.2 Analysis of Public Information Flow

Table 20.1 presents descriptive statistics on the flow of public informa-

tion. The average number of informational releases per firm is 43.38, out of 

which 13.84 and 29.54 occur during and outside of the regular session trad-

ing hours, respectively. Unlike Berry and Howe (1994), Patell and Wolfson 

TABLE 20.1 Information Flow Statistics

NofNewsAll 938 43.38 33.00 33.77        1.00 100.00

NewsTr 938 13.84 10.00 12.25        0.00 77.00

NewsNTr 938 29.54 22.00 24.46        0.00 90.00

NewsRatio 938 0.35 0.32 0.20        0.00 1.00

PerHourNewsRatio 918 3.04 1.98 4.37        0.00 61.41

  This table summarizes average per-firm per-day news release statistics. Time-stamped 

news releases are obtained by a computerized search of cbs.marketwatch.com database. 

, , and denote all news releases, trading, and nontrading 

news releases, respectively;  is the ratio of the number of releases made over 

trading hours to the total. is the ratio of the per-hour number of 

news releases over trading hours to the per-hour news releases over nontrading hours.
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(1982), and Francis et al. (1992), I find that in aggregate, there are fewer 

information releases during trading hours than outside of them—35% 

versus 65%. Berry and Howe (1994) document that for the universe- 

aggregated information flow, the per-hour volume of releases made during 

normal trading hours exceeds that outside such hours by a factor of 3. In 

my case, using the aggregated procedure of Berry and Howe yields a ratio 

of only 1.26. The discrepancy appears to indicate a general shift of public 

information flow toward nontrading hours.

Interestingly, however, the mean (median) per-hour news ratio across 

firms is considerably higher at 3.04 (1.98), indicating that the aggregated 

results obscure the effects of less informationally intensive firms. While 

the overall volume of releases for these companies is low (thus having a 

minor effect on the aggregated ratio), such firms appear to have relatively 

more news during trading hours.

In results not reported here, I show that there appears a clear upward 

trend in the amount of available public information, starting with a spike 

in October 2000.* Interestingly, this coincides with the passage of the 

Securities and Exchange Commission Regulation Fair Disclosure. While 

this evidence is intended as suggestive only, it indicates that contrary to 

the suggestion of the opponents of Regulation FD that the quantity of 

information reaching the market will decline, companies appear to have 

substituted public communication channels for private venues and the 

flow of public information has increased since October 2000.†

Berry and Howe (1994) document that on a typical day, information 

flow (as proxied by Reuters News Service) begins to substantially increase 

around 8:30 a.m., continues to build until noon, and then shows a lull. 

The flow then rises again during the remainder of the trading session and 

peaks between 4:30 and 5:00 p.m.

Figure 20.3 plots the intraday distribution of the number of news 

releases in 30-minute increments. Panel 1 examines the flow of informa-

tion on trading days and shows a pattern generally resembling that found 

in Berry and Howe (1994) with several key differences. First, the flow of 

information begins to rise considerably earlier. There is a sharp surge in 

the number of news items starting at 6:00 a.m. The volume of information 

continues to climb steeply until the beginning of regular session trading at 

* This result is not sensitive to exclusion of the 132 firms for which the number of news is trun-

cated at 100.
† This is consistent with the findings of Heflin et al. (2003), who show that the quantity of 

firms’ voluntary disclosures increased post–Regulation FD.
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FIGURE 20.3 Intraday flow of public information. Panel 1 presents the 

number of news releases in 30-minute intraday increments for all trad-

ing days during the 2000–2001 period. Panel 2 displays the releases for 

all nontrading days in the sample. Panel 3 plots the intraday releases for 5 

trading days with shortened regular trading sessions (1:00 p.m. close).
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9:30 a.m. Information flow begins to abate thereafter, gradually diminish-

ing until the end of regular session trading at 4:00 p.m. However, immedi-

ately after the end of normal trading hours, the rate of information arrival 

more than quadruples, peaking at 3,224 releases and declining monotoni-

cally until 9:00 p.m. Interestingly, no similar patterns are observed for 

nontrading days, where the rate of information arrival generally increases 

with time until midday and declines thereafter (Panel 2). Examining the 

flow of news announcements on 5 trading days in my sample when the 

U.S. exchanges close at 1:00 p.m. (Panel 3), it becomes clear that the flow of 

public information is indeed closely linked to exchange operating hours. 

The sharp increase in news volume that is observed at 4:00 p.m. for normal 

trading days shifts to 1:00 p.m. for trading days when the exchanges close 

at this hour. The effect is statistically significant at conventional levels.

Several conclusions can be drawn from this evidence. First, compared 

to the results of the earlier studies, there seems to have been a general 

shift of information flow away from regular trading hours. More impor-

tantly, the pattern of information arrival is clearly tied to the boundaries 

of the normal exchange trading hours, casting doubt on the assumption 

that information flow is not a function of trading activity, implicitly used 

in prior return volatility studies, and further corroborating the need for 

direct control for the effects of public information.

20.4.3 Univariate Variance Analysis

Table 20.2 summarizes the effects of news flow on return volatility and 

variance ratios. Several results stand out. Consistent with the public infor-

mation hypothesis, overnight return volatility for companies with lower 

per-hour news ratio (i.e., greater flow of news overnight relative to that 

during regular session hours) significantly exceeds that of firms with the 

news ratio above the sample median. Open-to-close and close-to-close 

variances are not affected, and the variance ratios are consequently lower. 

These results appear independent of the potentially related volume effects, 

since the premarket, after-hours, and regular session volumes are not sig-

nificantly different across the high and low news ratio subsets.

Results of the univariate effects of extended-hours volume are pre-

sented in Table 20.3. The average per-hour volatility ratio is 15.95 and is 

comparable to those of prior studies (e.g., Oldfield and Rogalski (1980), 

French and Roll (1986), and Stoll and Whaley (1990) report average ratios 

of 12.78, 13.20, and 16.20, respectively). Consistent with both the private 

information and the noise hypotheses, the overnight variance increases 
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in relative extended-hours dollar volume. The open-to-close and close-

to-close variances are also higher for firms with greater overnight dol-

lar volume. Although this result appears to be contrary to the predictions 

of the private information hypothesis, it can be potentially attributable 

to the fact that companies with greater relative extended-hours volume 

also generally have greater regular session volume (as is clearly seen in 

Table 20.6), and the latter in turn leads to greater open-to-close vari-

ances. Furthermore, since the extended-hours volume is composed of the 

after-hours and premarket volume, and to the extent that these sessions 

appear to exhibit markedly different trading processes with regard to the 

informativeness of the order flow (e.g., see Barclay and Hendershott, 2003; 

Chan, 2002), one needs to examine their effects separately.

Several additional interesting results are worth noting. First, consis-

tent with Patell and Wolfson (1982) and Francis et al. (1992), the skewness 

of overnight returns is negative and further declines in extended-hours 

volume, indicating that the information made public or revealed through 

trading during this window tends to be of a negative nature. Second, stocks 

TABLE 20.2 Effects of News on Return Volatility

PerHourNewsRatio 1.1720 4.8991 0.0011

VAR_Ratio 15.7304 16.6056 0.0693

ClClVar, % 0.2585 0.2450 0.2402

ClOpVar, % 0.0708 0.0671 0.0000

OpClVar, % 0.2161 0.2022 0.1305

NofNewsAll 47.8388 40.5926 0.0011

NewsTr 10.7015 17.3551 0.0000

NewsNTr 37.1373 23.2375 0.0000

RELEH, % 0.0702 0.0628 0.1848

RELAH, % 0.0561 0.0496 0.1143

RELPM, % 0.0141 0.0131 0.5740

RELREG, % 1.4861 1.3492 0.3716

N 459 459

  is the per-hour ratio of open-to-close variances to close-to-open vari-

ances; , , and denote close-to-close, close-to-open, and 

open-to-close variances, respectively; , and denote all 

news releases, trading, and nontrading news releases, respectively; , ,

, and represent extended-hours, after-hours, premarket, and regu-

lar session volume scaled by firm capitalization. Average numbers are given for sam-

ple subsets composed of stocks with the per-hour ratios of the number of news items 

over trading periods to number of news items over nontrading periods above and 

below the median level, respectively.
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with more active extended-hours trading sessions open and close the regu-

lar sessions considerably closer to the official 9:30 a.m.–4:00 p.m. bounds. 

This effect is significant at conventional levels and holds after controlling 

for firm size (not reported). Stoll and Whaley (1990) examine NYSE stocks 

for years 1982–1986 and show that for more (less) actively traded firms a 

delay at the open leads to greater (lower) overnight volatility. The authors 

suggest that opening delays for actively traded stocks imply large order 

imbalances at the open, whereas for less active stocks the delays merely 

denote absence of orders. In results available upon request, I show that the 

opening delays are associated with lower overnight variances regardless 

of firm size. However, it should be noted that overnight trading is largely 

nonexistent during the sample period analyzed in Stoll and Whaley (1990) 

and is smaller for NYSE securities than for NASDAQ stocks in general. 

Consequently, if trading in after-hours and premarket sessions alleviates 

potential imbalances at the open and helps establish the new opening 

TABLE 20.3 Effects of Extended-Hours Volume

VAR_Ratio 15.95 14.75 17.16 0.00

ClClVar, % 0.25 0.14 0.35 0.00

ClOpVar, % 0.07 0.05 0.09 0.00

OpClVar, % 0.21 0.13 0.26 0.00

SkewnessClOp –2.10 –1.09 –3.12 0.00

SkewnessOpCl 0.46 0.48 0.44 0.38

PerHourNewsRatio 3.04 3.83 2.31 0.00

NewsTr 13.84 7.43 19.93 0.00

NewsNTr 29.54 14.71 43.64 0.00

RegNofTrades 1,477 211 2,741 0.00

AHNofTrades 16.31 3.16 29.43 0.00

PMNofTrades 10.43 1.19 19.66 0.00

Cap (thousands) 2,346,305 1,425,569 3,265,203 0.05

RELEH, % 0.06 0.02 0.11 0.00

RELAH, % 0.05 0.02 0.09 0.00

RELPM, % 0.01 0.00 0.02 0.00

RELREG, % 1.36 0.30 2.43 0.00

OpenTime 9:42:53 9:53:53 9:31:54 0.00

CloseTime 15:46:05 15:35:52 15:56:17 0.00

OpenTradeSize 434.60 496.65 372.67 0.00

CloseTradeSize 856.49 831.60 881.33 0.03

N 1001 500 501

 The averages are presented for firms with relative extended-hours volume below and 

above the sample median and for the overall sample.



394 < Vladimir Zdorovtsov

price (see, e.g., Chan, 2002), then one can argue that stocks with inflows 

of significant private or public overnight information that would have had 

large opening imbalances, longer opening delays, and greater overnight 

variances in years without a relatively active extended-hours market, will 

now have greater extended-hours volume, greater overnight volatility, and 

shorter opening delays. Yielding additional support to this argument is 

the fact that the average size of the first regular session trade decreases in 

extended-hours volume.

In results available upon request, I find that the effects of the extend-

ed-hours dollar volume on the close-to-open, open-to-close, and close-

to-close return variances, and on the variance ratios, are not monotonic. 

As the extended-hours dollar volume as a fraction of firm capitalization 

increases to about the sample median level, there appears to be no effect 

on the overnight (i.e., close-to-open) return variance. On the other hand, 

the open-to-close variance steadily increases, and as a result, the close-

to-close variance and the per-hour variance ratios go up. Increases in the 

extended-hours volume beyond the median level lead to greater overnight, 

open-to-close, and close-to-close variances. The rising overnight volatil-

ity more than offsets increasing open-to-close volatility and the variance 

ratios steeply decline. This indicates that, consistent with Barclay et al. 

(1990), a significant volume of extended-hours trading needs to exist 

before overnight variances are affected.* A likely explanation for the rising 

open-to-close volatility is that, since extended-hours volume is strongly 

correlated with open-to-close volume, increases in the former (while not 

necessarily sufficient to induce a noticeable effect on the overnight vari-

ance) are related to increases in the latter, which in turn result in greater 

open-to-close and close-to-close variances and higher variance ratios. 

Thus, it is critical to control for the related effects of regular session vol-

ume in analyzing those of the extended-hours volume.

Table 20.4 examines the effects of premarket, after-hours, and total 

extended-hours relative volume on variance ratios by regular session vol-

ume quintiles. The effects of the premarket and after-hours volume appear 

to be different. Within the extended-hours volume, it is the premarket vol-

ume that tends to lead to greater overnight variances and lower variance 

ratios. The result is less significant for lower regular volume quintiles and is 

reversed for the lowest quintile. Again, to the extent that premarket volume 

* Similarly, Forster and George (1995) find that for cross-listed stocks, foreign trading facili-

tates price discovery if there is sufficient trading volume in the foreign market.
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is correlated with regular session volume, this indicates that substantial 

trading activity needs to exist for the overnight variances to be affected.

20.4.4 Regression Analysis

The evidence presented above indicates that the effects of private informa-

tion, public information, and noise need to be analyzed jointly. Also, since 

open-to-close volatility is linked to open-to-close volume (e.g., see Stoll 

and Whaley, 1990), and because regular session volume and extended-

hours volume are correlated, one needs to control for the effects of the reg-

ular session volume in determining those of the extended-hours volume.

I address these concerns within a two-way fixed effects OLS regression 

framework and estimate the following models:*

, , ,0 1 2 3

4 5

,

, ,  ,  

  

(20.3)

, , ,0 1 2 33

4 5

,

, ,  ,  
(20.4)

     

, , ,0 1 2 3 ,

, ,  4  
(20.5)

* Random effects estimations yield similar results. Fixed effects results are presented based on 

the Hausman specification test.

TABLE 20.4 Effects of Extended-Hours Volume on Variance Ratios by Regular 

Session Volume

Lowest   9.97 13.39 0.00   9.74 13.63 0.00   9.66 13.71 0.00

2 16.12 15.69 0.72 13.22 18.59 0.00 13.71 18.10 0.00

3 20.08 18.47 0.30 18.80 19.75 0.54 18.66 19.89 0.43

4 19.68 16.25 0.01 17.39 18.54 0.39 17.89 18.04 0.91

Highest 16.92 12.99 0.00 15.65 14.25 0.14 16.42 13.49 0.00

 , , , and represent extended-hours, after-hours, pre-

market, and regular session volume scaled by firm capitalization.



396 < Vladimir Zdorovtsov

where

 

,

,

,
 

(20.6)

Similarly,  is the natural logarithm of the absolute value of 

the per-hour open-to-close return;  is the difference between 

 and ;  and  are the numbers 

of trading and nontrading hours news items, respectively; LAG  is 

the number of news releases over the regular trading hours of the preced-

ing trading day;  is the prior trading day’s after-hours dollar 

volume scaled by capitalization;  and  are the premarket 

and regular session dollar volumes scaled by capitalization;  

is the prior trading day’s regular session dollar volume scaled by capital-

ization; iff  is the difference between  and ;*  

, and  are the error terms; and  [1,1001] and  [1,499] denote the 

firm and the trading day, respectively.

Table 20.5 summarizes the results. Several key conclusions emerge. 

Consistent with prior literature and the results shown earlier, I find that 

the after-hours and premarket trading volume exhibit different effects. 

Specifically, greater premarket volume leads to substantially higher (lower) 

close-to-open (open-to-close) return volatility and to considerably lower 

volatility ratios. This result supports the private information hypothesis 

and shows that indeed the premarket trading volume is largely composed 

of information-motivated trades. Greater informed trading in the premar-

ket session shifts price discovery toward the close-to-open period, increas-

ing volatility of the overnight returns, reducing that of the open-to-close 

returns, and leading to lower volatility ratios.

Conversely, the after-hours volume is negatively related to the over-

night and open-to-close volatility. This evidence is consistent with the 

suggestion of Barclay and Hendershott (2003) that large liquidity- 

motivated after-hours trades are more likely to execute on low informa-

tion asymmetry days and are associated with little price impact. Unlike 

the premarket volume, after-hours volume is not significantly related to 

volatility ratios.

* Given the high frequency of zero news volume, using a ratio leads to a considerable reduction 

in sample size.
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Contrary to the conclusions of the earlier studies, the evidence on the 

effects of news flow yields credence to the public information hypothe-

sis. Higher volume of public information released outside regular trad-

ing hours leads to higher close-to-open return volatility. Consistent with 

overnight releases being more significant, there is evidence of a spillover 

TABLE 20.5 Regression Analysis

–9.438 0.000 –5.683 0.000 3.792 0.0001

NewsTr  0.099 0.000  

LAGNewsTr –0.023 0.001    

NewsNTr 0.196 0.000 0.057 0.000  

LAGRELAH –1.573 0.003 –4.140 0.000 –0.868 0.209

RELPM 39.790 0.000 –14.386 0.000 –42.994 0.000

RELREG  3.117 0.000     1.342 0.000

LAGRELREG 0.232 0.000    

NewsDiff    0.075 0.000

N 400,857 429,387  383,188

Adj-Rsqr 0.335  0.164  0.187

  The following two-way fixed effects models are estimated by OLS:

 

, , ,0 1 2 3

4 5

,

, ,  ,

, ,0 1 2 , ,

, 

3

4 5 , ,

, 0 1 , , ,

,

2 3

4 ,

where  and  are the natural logarithms of the absolute val-

ues of the close-to-open and open-to-close returns on a per-hour basis, respectively; 

 is the difference between  and ;  is the 

number of news releases over regular trading session hours;  is the number 

of news items released between the end of the previous trading day’s regular session 

and the beginning of the current trading day’s regular session;  is the 

number of news releases over the regular trading hours of the preceding trading day; 

 is the prior trading day’s after-hours dollar volume scaled by capitaliza-

tion;  and  are the premarket and regular session dollar volumes 

scaled by capitalization;  is the prior trading day’s regular session dol-

lar volume scaled by capitalization; ff  is the difference between  and 

;  , and  are the error terms; and  [1,1001] and  [1,499] denote 

the firm and the trading day, respectively.
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of volatility into the subsequent regular session.* Greater volume of public 

information reaching the market during regular trading hours leads to 

higher open-to-close volatility. Interestingly, not only is there no spillover 

of volatility into the subsequent overnight period, but the volatility of the 

latter appears to decline. This indicates that the typically less influential 

daytime releases are completely priced in during normal trading hours, 

causing the degree of information asymmetry and price uncertainty to 

decline. Lending further support to the public information hypothesis is 

the significant positive relation between the volatility ratio and the news 

flow differential. In other words, greater flow of public information over 

trading hours versus nontrading hours is associated with higher ratios of 

open-to-close to close-to-open volatilities.

A theoretical model developed in Holden and Subrahmanyam (1992) 

shows that aggressive competition among the informed traders leads to 

faster revelation of their information. Thus, if this competition is greater 

in extended hours due to a higher proportion of informed agents, trading 

during this period will impound information into prices faster. This pre-

diction, combined with the fact that there are fewer short-selling restric-

tions in extended hours, leads one to expect the link between information 

and volatility to be stronger for overnight return windows.† The results 

in Table 20.5 are generally consistent with this conjecture. Indeed, while 

the rate of overnight information arrival is strongly related to overnight 

return variability, the link is more economically pronounced over close-

to-open periods.

One potential criticism of the news flow data is the possible presence of 

redundant news releases merely reiterating the subject matter of an ear-

lier story from a different (or the same) source. To check the sensitivity 

of the above results to such noninformative releases, I repeat the estima-

tions with the news volume variables replaced by dummy variables equal 

to 1 for windows with one or more releases and 0 otherwise. The news 

differential in these specifications is computed as the difference between 

the values of such dummy variables. The results (not reported) are quali-

tatively and quantitatively similar.

* Note that this is contrary to He and Wang (1995), who develop a rational expectations model 

predicting that public information has a rather short-lived effect and leads to trading only in 

the contemporaneous period.
† Although some ECNs do not allow short-sale transactions at prices below the close of the 

previous regular session, the NASD’s short-sale rule is not applicable outside of regular mar-

ket hours during my sample window (NASD Notice to Members 94–68).
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To further check the robustness of the preceding analysis, I also esti-

mate cross-sectional models relating time-series return variances to mea-

sures of information flow and trading volume aggregated at the firm level. 

The qualitative results available upon request remain largely unchanged. 

Not surprisingly, the statistical significance declines as power is lost in the 

aggregation process.*

20.4.5 Within-Firm Effects of Trading Volume and Information Flow

One advantage of the natural experiment approach employed in the prior 

studies is the implicit control for the firm-specific characteristics that can 

potentially affect return volatility, since the same securities are investi-

gated across different time periods. To examine the sensitivity of the above 

results to the effects of potentially omitted variables, the following proce-

dure is performed: I locate firms that trade every day and have 100 news 

releases with at least 100 days between the dates of the first and last news 

item. These selection screens yield a sample of 107 companies. For each 

firm, the trading days spanned by the news data are subdivided into high 

premarket volume, low premarket volume, high after-hours volume, low 

after-hours volume, high news difference, and low news difference, based 

on the respective mean levels. Table 20.6 reports average ratios of the abso-

lute value of the per-hour open-to-close return to the absolute value of 

the per-hour close-to-open return for the corresponding subsamples, the 

number of firms for which the difference in average ratios across such sub-

samples is positive and negative, as well as the number of firms for which 

such differences are significant at the 10% level.

The findings are in agreement with the conclusions of the preceding 

analysis. Specifically, consistent with the private information hypothesis, 

days with the premarket dollar volume above the mean level have lower 

volatility ratios for 92 of the 107 examined firms. For the overwhelming 

majority of such companies the difference is significant at the 10% level. 

Unlike the premarket volume, the less informed after-hours dollar volume 

exhibits no clear link to the volatility ratios. Consistent with the public 

information hypothesis, days with greater arrival of news over regular trad-

ing hours versus nontrading hours are accompanied by higher volatility 

* Because the dependent variables in these estimations (close-to-open or open-to-close vari-

ance) have nonnegative domains, I repeat the analysis using Tobit regressions as well as using 

OLS after taking the natural logarithm of the respective dependent variables. The results are 

qualitatively and quantitatively unchanged.
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ratios for seventy-seven of the firms. The relation is significant in thirty-

six cases. In only two instances the difference is significantly negative.

20.5 CONCLUSION
I reexamine the puzzling phenomenon of greater stock return volatility 

over trading periods versus nontrading periods. Data on order flow in the 

after-hours, premarket, and regular trading sessions, along with a unique 

extensive data set covering the concurrent firm-specific public informa-

tion flow for a large sample of NASDAQ securities over the 2000–2001 

period, allow me to carry out a direct test of the competing hypotheses 

and to offer new evidence on the determinants of return volatility.

Consistent with the existing studies, my results support the private 

information hypothesis. Higher trading volume in the premarket session, 

composed predominantly of anonymous information-based ECN trades, 

is associated with greater overnight return volatility and lower regular ses-

sion volatility, indicating that price discovery shifts toward the premarket 

hours. Consequently, the volatility ratios decrease in premarket trading 

volume. Consistent with previous research, I show that the volume in 

after-hours is associated with little price impact and appears to be great-

est on low information asymmetry days. The volatility of close-to-open 

and open-to-close returns is negatively related to after-hours volume, and 

volatility ratios are unaffected by such volume.

Unlike the existing studies, however, I also offer evidence consistent 

with the public information hypothesis. Greater flow of public informa-

tion over trading (nontrading) hours increases the open-to-close (close-

to-open) return volatility, and the ratio of return volatilities increases in 

the news flow differential.

The evidence on information spillover effects confirms the findings 

of prior studies that public information released outside regular trading 

hours tends to be of greater economic significance.

The analysis also presents new evidence on the trading processes in the 

rapidly growing extended-hours session and on the dynamics of public 

information flow.
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The Correlation of a 
Firm’s Credit Spread 
with Its Stock Price
Evidence from Credit Default Swaps

Martin Scheicher

21.1 INTRODUCTION
The market developments surrounding the declining credit quality of 

General Motors (GM) highlight the interdependence between equity and 

corporate debt markets. In March 2003, when GM was still an investment-

grade debtor, its stock cost US$34 and the quoted premium on credit 

default swaps (CDS) was 365 basis points. Two years later, market partici-

pants’ increasing concerns about GM’s financial situation had raised the 

premium to more than 550 basis points, while the stock price had declined 
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to below US$30. In November 2005, following successive downgrades by 

the major rating agencies, the market quote for the CDS premium now 

exceeded 1,000 basis points and the stock price was around US$23. This 

simultaneous comovement of the stock price and the CDS premium raises 

the following question: What are the general nature and determinants of 

the correlation between the equity and corporate debt market?

This chapter conducts an empirical analysis of the linkages between the 

equity and corporate debt markets. These are the two markets that firms 

use for raising capital. So far, there is little empirical evidence on linkages 

between the two markets. In the model of Merton (1974), corporate debt 

and equity represent alternative claims on a firm’s assets. The two securities’ 

common dependence on the firm asset value may create measurable link-

ages between the market prices of a firm’s stock and its corporate bonds.

The strong growth of credit derivatives in the last few years has significantly 

simplified the trading of credit risk.* The most commonly used credit deriva-

tive is the credit default swap, which functions like a traded insurance contract 

against the losses arising to its creditors from a firm’s default. Standardized 

contracts, low transaction costs, and a large and heterogeneous set of market 

participants have helped credit default swaps to hold the benchmark function 

for the price discovery process in the corporate debt markets.

The use of CDS–stock price pairs reduces differences in the information 

content of the two market prices. In particular, the CDS market quote is the 

cleanest available measure for the risk premium that investors require to bear 

corporate default risk. Historically, the diversity of individual bond features 

such as seniority, coupon structure, and embedded options, and the fact 

that many investors follow a buy-and-hold strategy, all have contributed to 

comparatively low liquidity in the corporate bond market. In contrast, the 

homogeneity and standardization of CDS contracts have supported the devel-

opment of an active market, therefore reducing the liquidity premia observed 

in corporate bond spreads.† In addition, using CDS data removes the need to 

specify a risk-free term structure in order to calculate credit spreads.

The correlation of stock prices and credit spreads is an important vari-

able in corporate finance decision making and in banks’ risk management 

models. In a corporate finance context, the comovement of the two vari-

ables affects industrial firms’ cost of capital, and thus influences how firms 

* In this chapter, default risk is defined as the exposure to losses arising from a borrower’s 

default, whereas credit risk also captures the losses arising from a borrower’s downgrading.
† Blanco et al. (2005) document that CDS premia lead bond spreads and are taking an increas-

ingly important role in the price discovery process.
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choose the mix of equity and debt financing in order to optimize their 

capital structure. In a risk management context, this chapter’s methodol-

ogy is specifically relevant for the recently popular trading strategy of capi-

tal structure arbitrage. This strategy relies on relative pricing differences 

between a firm’s debt and equity and is commonly used by hedge funds. 

Value-at-risk (VaR) modeling for this trading strategy requires an analysis 

of the CDS-equity comovement.

Few papers have so far directly studied the comovement of the market 

prices of stocks and corporate debt. For a sample from 1986 to 1990, Kwan 

(1996) finds significant negative unconditional correlations of stock returns 

and the changes in corporate bond yields. Norden and Weber (2008) show 

that in the period from 2000 to 2002, stock returns have led CDS premia. 

However, they use a rather restricted methodology that does not allow for 

time variation, and they do not study the determinants of the linkages. 

Schaefer and Strebulaev (2004) study the linkage between stocks and cor-

porate bonds in order to evaluate the hedging performance of structural 

models. They find that the Merton model provides a good prediction of 

the sensitivity of corporate bond returns to stock returns. Another related 

study is Acharya and Johnson (2007) on insider trading in the CDS mar-

ket. Using news reflected in equity prices as a benchmark for public infor-

mation, they find incremental information revelation in the CDS market, 

providing evidence consistent with the occurrence of insider trading.

This chapter estimates the correlation of the log differences of stock 

prices and CDS premia of 240 major European and North American com-

panies. The sample consists of CDS-stock price pairs for actively traded 

firms for the period from March 2003 to November 2005. I measure the 

linkage between the CDS premium and the stock price by means of the 

firm-specific conditional correlation in log differences, because a panel 

approach cannot simultaneously capture the considerable time variation 

(e.g., during the market turbulence in May 2005) as well as the cross- 

sectional variation from AA-rated firms to those in Chapter 11. I estimate 

the conditional correlation by means of a simplified bivariate generalized 

autoregressive conditional heteroskedasticity (GARCH) model.

My main finding is a statistically significant negative linkage between 

log changes in individual stock prices and CDS premia. Correlations are 

largest for high-yield firms, but the difference to the investment-grade 

category is weaker in Europe than North America. Furthermore, condi-

tional correlations are characterized by sizable time variation, and among 

individual firms there is limited homogeneity. These empirical results 
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illustrate the advantages of a conditional firm-specific correlation model 

because only this methodology can detect periods of significant comove-

ment of stock returns and log differences of CDS premia such as the mar-

ket turbulence in May 2005.

The rest of this chapter is organized as follows. In Section 21.2, I describe 

the mechanism of credit default swaps, the sample, and the correlation 

model. Section 21.3 details the empirical analysis. Section 21.4 concludes 

the chapter by summarizing the main results.

21.2 SAMPLE AND METHODOLOGY
21.2.1 Sample Construction

Credit default swaps are the most commonly traded credit derivatives. They 

transfer the risk that a certain individual entity defaults from the “protec-

tion buyer” to the “protection seller” in exchange for the payment of a pre-

mium. Commonly, CDS have a maturity of 1 to 10 years, with most of the 

liquidity concentrated on the 5-year horizon (see Longstaff et al., 2005).

A major step in the evolution of the credit risk transfer market has been 

the launch of harmonized CDS indices. In June 2004 a new family of indi-

ces was introduced, namely iTraxx in Europe and Asia and CDX in North 

America. This harmonization has led to generally accepted benchmarks 

for the credit market, therefore increasing market transparency and mar-

ket liquidity.

The composition of this index family provides the basis for the selec-

tion of my sample. In the investment-grade corporate segment, the indices 

contain the equally weighted CDS premia of the 125 most liquid firms. 

Selection of index constituents is based on a semiannual poll of the main 

CDS dealers, which then leads to an update of the index composition in 

March and September of each year.

My analysis comprises individual European and U.S. firms in both 

the investment-grade and high-yield segments. The sample is designed 

to be representative across ratings and across industry sectors, covering 

financial firms as well as industrial firms. The starting point for the firm 

selection is the set of firms in the iTraxx Europe and Dow Jones CDX NA 

investment-grade index and the iTraxx Europe Crossover* and Dow Jones 

CDX NA high-yield index,† with the composition as of October 2005.

* This index contains the thirty most liquid nonfinancial names from Europe that are rated 

Baa3 or lower and are on a negative outlook.
† This index contains the 100 most liquid nonfinancial North American names that are rated 

Baa3 or lower and are on a negative outlook.
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To construct the sample I match the CDS data and the stock price data 

of the iTraxx and CDX member firms in Bloomberg. Using a weekly fre-

quency and a sample period start of March 2003, my sample consists of 111 

European and 129 North American companies. The sample is diversified 

across sectors, as it contains energy firms, industrial entities, consumer 

cyclical and noncyclical firms, insurance companies, banks, telecoms, as 

well as automobile firms. The ratings at the end of the sample range from 

AA to D, therefore covering the entire spectrum of credit quality. There 

are two defaulted firms. Delphi filed for bankruptcy on October 8, 2005. 

Furthermore, Dana, another manufacturer of automobile components, 

went into the Chapter 11 procedure on March 3, 2006, i.e., shortly after 

the end of the sample period. Overall, most of the observations come from 

the rating categories between AA and BB.

21.2.2 Sample Description

The sample period is characterized by a steady decline in CDS premia and by a 

period of market turmoil. Figure 21.1 plots the time series of weekly premia.
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A downward trend in the CDS premia is common for both regions. 

Among the main factors behind this decline in risk premia was a benign 

macroeconomic environment, low equity market volatility, and the “hunt 

for yield.” This phenomenon describes institutional investors’ strong 

demand for higher-yielding assets in the aftermath of the collapse of stock 

prices, which had started in March 2000.* This search for higher-yielding 

assets manifested itself in many asset classes. In the credit markets, this 

demand pressure together with low default rates and the steadily declining 

equity market volatility contributed to a sharp decline in credit risk pre-

mia. For instance, in March 2003, the median CDS premium for European 

firms was around 80 basis points, whereas it measured around 35 basis 

points in November 2005.

An upward jump in CDS premia is observed in May 2005 after S&P 

downgraded Ford and General Motors to the high-yield segment of the 

credit market. The market turbulence following this announcement drove 

CDS premia up for a limited period. The market turmoil at that time had 

an adverse impact on the functioning of the credit derivatives market, 

reportedly causing large losses among some hedge funds.

In both samples, the median premium is around 50 basis points and the 

standard deviation equals 140 basis points. As regards the extreme values, 

the maximum of 2,500 basis points is observed in the iTraxx sample for 

Corus in March 2003, and the minimum of 7.75 basis points is recorded 

for Barclays Bank in September 2004. In the CDX data set, the maximum 

is observed for Delphi in October 2005 with 3,144 basis points, and the 

minimum is recorded for Wal-Mart in March 2005.

21.2.3 The Estimation of the Conditional Correlation

Before estimating the firm-specific correlations, I need to decide whether 

to use the levels of the variables or the first log differences of CDS premia 

or stock prices. In order to find the appropriate specification of the vari-

ables I apply an augmented Dickey-Fuller test with five lags and an intercept. 

At the 5% level, the null hypothesis of a unit root cannot be rejected for 

95 European and 100 North American CDS premia. Therefore, all further 

analysis is based on weekly log differences of CDS premia and stock prices.

Among the alternative parameterizations for the conditional covariance 

matrix offered in the literature (see Bauwens et al. (2006) for a survey on 

GARCH-based conditional correlation models), I choose the exponentially 

* See Chapter VI in BIS (2004) for a discussion of the search for yield.
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weighted moving average (EWMA) model. This model, introduced by JP 

Morgan in its RiskMetrics methodology, combines a flexible parameter-

ization of the second moments with a comparatively low computational 

burden. These properties are important criteria in model selection, as the 

sample composition requires estimating 240 bivariate GARCH models.

The EWMA specification describes the time-varying behavior of 

second moments by means of a simple specification, where the same 

parameter determines the persistence of both variances and the covari-

ance. Motivated by computational tractability, this approach relies on the 

assumption that there are no cross-sectional differences in the determi-

nants of time variation in individual firms’ second moments:
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where  is the stock price and is the premium on the credit default 

swap.

The selection of the EWMA is supported by the empirical results of 

Ferreira and Lopez (2005), who find that its performance is not necessarily 

inferior relative to more complex multivariate GARCH models.

21.3 EMPIRICAL RESULTS
Before presenting the correlation estimates I discuss the estimates of 

the two conditional volatilities. Figure 21.2 plots the aggregate time 

series of EWMA volatilities. The graphs show that stock return volatil-

ity has declined strongly in the period from March 2003 to November 

2005, whereas the downward trend in the CDS volatility is considerably 

weaker. The levels of the two volatilities are quite different. On average, 

median stock return volatility is 25%, about half the CDS volatility of 50%. 

Furthermore, stock return volatility never exceeds CDS volatility. During 

the market turbulence in May 2005, the CDS volatility almost doubled, 

whereas the return volatility did not change to such a large extent.
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Summary measures of the conditional correlations are given in 

Table 21.1, and Figure 21.3 plots the time series of the cross-sectional aver-

ages. As a categorization scheme for the total sample, I group the 240 firms 

according to their geographic region and their credit rating in November 

2005 (obtained from the Fitch Ratings database).

Four observations emerge from the time-series plots and the descrip-

tive statistics. First, across rating categories the mean correlations between 

stock returns and CDS changes range between 0.2 and 0.4, indicating 

an almost continuous decline in the correlation from A-rated firms* to the 

high-yield segment of the market. Relying on the credit rating as a proxy 

for firms’ default risk,† this result indicates that declining credit quality is 

indeed linked to a higher correlation in absolute value. Overall, the rating 

category with the strongest correlation (mean value of .048) is the North 

American D segment, which comprises Delphi and Dana. This value is 

three times the correlation in the CDX A-rated segment.

* Among the A-rated iTraxx segment, Siemens, Deutsche Bank, and Muenchner Rueck-

versicherung all have a mean correlation of around –0.4.
† This analysis neglects rating migrations (see Longstaff et al. (2005) for a similar approach).

0

10

20

30

40

50

60

70

80
VOLA CDS CDX
VOLA CDS ITRX
VOLA EQ CDX
VOLA EQ ITRX

03/0
5/0

3

5/2
8/2

003

8/2
0/2

003

11/1
2/0

3

02/0
4/0

4

4/2
8/2

004

7/2
1/2

004

10/1
3/2

004

01/0
5/0

5

3/3
0/2

005

6/2
2/2

005

9/1
4/2

005

FIGURE 21.2 Time-series plots of CDS and equity volatilities. (Data: 

Bloomberg, author’s calculations.) 
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TABLE 21.1 Descriptive Statistics of Estimated Correlations

Mean –0.26 –0.20 –0.22 –0.29 –0.31

Min –0.68 –0.87 –0.88 –0.71 –0.68

Max 0.39 0.51 0.92 0.60 0.17

SD 0.20 0.21 0.22 0.21 0.19

N 1,846 5,538 6,532 1,420 426

Mean –0.16 –0.19 –0.17 –0.29 –0.43 –0.48

Min 0.22 0.57 0.88 0.34 0.48 –0.18

Max –0.82 –0.88 –0.85 –0.86 –0.89 –0.86

SD 0.18 0.19 0.22 0.19 0.24 0.15

N 661 5114 7647 1638 1086 249

 Bloomberg, author’s calculations.

  This table reports the descriptive statistics of the conditional correlations estimated 

from the EWMA model across rating categories (with the Fitch rating as of 

November 2005). SD is the standard deviation and N is the number of observations 

in each rating category. The sample contains weekly observations from March 2003 

to November 2005 for the 111 iTraxx firms and the 129 CDX firms.

–0.4

–0.35

–0.3

–0.25

–0.2

–0.15

–0.1

–0.05

0
Correlation CDX sample
Correlation ITRAXX sample

3/1
9/2

003

06/1
1/2

003

09/0
3/2

003

11/2
6/2

003

2/1
8/2

004

05/1
2/2

004

08/0
4/2

004

10/2
7/2

004

1/1
9/2

005

4/1
3/2

005

07/0
6/2

005

9/2
8/2

005

FIGURE 21.3 Time series of conditional correlations. (Data: Bloomberg, 

author’s calculations.) 



414 < Martin Scheicher

Second, the time series of correlations are characterized by sizable varia-

tion. For example, for the European data set, annual average conditional 

correlations are strongest in 2004, with a value of 0.27. In 2003, the average 

conditional correlations were around 0.16, and in 2005 they were around 

–0.21. This pattern is valid for all rating categories and particularly strong 

for the BB-rated segment, where the value for 2004 is recorded at 0.38.

Third, the standard deviation of the conditional correlation is larger 

than 0.18 for all rating categories, but there are no clear common features 

in the movement across rating categories. As regards the extreme values, 

the range of correlations increases with declining ratings. In particular, the 

maximum and minimum are, e.g., 0.39 and 0.68 for European A-rated 

firms but 0.60 and 0.71 for European BB-rated firms.

Finally, the turmoil in the credit market in May 2005 significantly 

affected the movement of the conditional correlations. In absolute value, 

the correlation increased during May 2005. As an example for this change, 

for A-rated iTraxx firms the mean correlation declined from 0.25 to 

0.40. During this episode of market turbulence, comovement between 

the stock market and the credit market hence became stronger. Thus, a 

market participant with a long position in both risk categories would have 

seen an increase in aggregate portfolio risk.

My finding of stronger linkages between debt and equity for firms 

with lower credit quality has been documented by other papers. In a 

regression framework, Huang and Kong (2003) find for bond-based 

credit spreads that the sensitivity to the stock price increases with a 

firm’s credit risk.

There is little evidence of common patterns among individual firms’ 

correlation series. As an example, Figure 21.4 plots the correlations for 

four firms: Deutsche Bank, France Telecom, GM, and Delphi. These firms 

are chosen to represent the diversity in sectors as well as in credit quality, 

which is present in my sample. Figure 21.4 shows that the range of the 

correlation estimates differs across the firms, with France Telecom also 

recording positive correlations in the first half of the sample. Thus, there 

was an episode where both the CDS premium and the stock price rose. 

This situation could arise potentially due to an increase in leverage, which 

raises the profitability of the firm as well as its credit risk.

For GM and Delphi, the strongest correlations are observed during 

May 2005, with a value around –0.9. Given the close linkages between 

the two firms, the time-series movement of their correlations is similar. 

Before Delphi entered the Chapter 11 procedure, its correlation amounted 
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to 0.62. At the same time, the correlation for GM was 0.55. During 

October 2005, it then fell to end the month also at 0.62.

Standard deviations of the correlation vary considerably across firms. 

Computing individual firms’ t-statistics, I find that for 39 iTraxx and 36 

CDX firms, the mean firm-specific conditional correlation of returns and 

first differences of CDS premia is significantly different from zero at the 

5% level. In all of these cases, the mean correlation is negative.

In summary, individual firms’ conditional correlations are quite vol-

atile over time, mostly negative, and show limited homogeneity in the 

cross section.

21.4 CONCLUSION
For a sample of 240 firms, this chapter conducts a study of the linkages 

between stock returns and the changes in CDS premia. Using a bivariate 

EWMA model, I find that average conditional correlations are around 0.2. 

In absolute terms, the correlations strongly increase during periods of market 

turbulence, such as May 2005. Among individual firms, there is considerable 

volatility and little homogeneity in the correlation variation. The estimation 

results for GM and Delphi provide an additional perspective on the strength 
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of the CDS-equity comovement. For these two firms, correlations are around 

0.9 during May 2005. Comparing results for the North American and 

European samples, I find that the differences are rather limited.

Overall, the results indicate a negative linkage between individual stock 

returns and first differences of CDS premia. Thus, I confirm the results 

of Kwan (1996), who documented significantly negative linkages between 

stock prices and corporate bonds. My results also suggest that the linkage 

between stock returns and first differences of CDS premia is clearly mea-

surable, but it is characterized by sizable time variation. Furthermore, this 

linkage is existent for both the investment-grade as well as the high-yield 

segment of the credit market. In particular, the existence of credit-equity 

linkages also for the upper segment of the credit market has so far not 

been documented in the literature.

These results have implications for risk modeling, in particular with 

respect to the interaction of credit and market risk in risk models. 

According to the empirical findings presented here, the linkages between 

the two risk categories increase in times of market turbulence, such as in 

May 2005. For the modeling of portfolio risk, this finding implies that 

diversification benefits between the two markets may be limited in volatile 

periods. For a bank using separate value-at-risk models to measure market 

and credit risk, the comovement documented here may lead to a misspeci-

fication of her overall VaR model and, in this manner, affect the accuracy 

of her estimates for overall required capital.

The empirical findings are particularly relevant for the recently popular 

trading strategy of capital structure arbitrage, where debt and equity are 

traded in relative value terms. Another application is the trading of con-

vertible bonds, where again both credit risk and market risk components 

are present in the risk profile.
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22.1 INTRODUCTION
The availability of ultra-high-frequency stock market data and the sub-

sequent introduction of realized volatility measures enabled the develop-

ment of new econometric models of volatility (Andersen and Bollerslev, 

1998) featuring more precise parametric models of time-varying volatility. 

One such measure, the realized variance, is defined as the sum of squared 

intraday returns sampled at a sufficiently high frequency, consistently 

approximating the integrated variance over the fixed interval where the 

observations are summed. Realized volatility is the squared root of the 

realized variance. In practice, high-frequency measures do suffer some 

contamination from microstructure noise such as bid-ask bounce, etc. 

(see Biais et al., 2005). This  volatility measure can be modeled as an 

observable variable (see Andersen et al. (2003) and Barndorff-Nielsen and 

Shephard (2002) for the theoretical foundations of realized volatility (RV)). 

Several recent papers have proposed corrections to estimation of RV in 

order to take the microstructure noise into account (see McAleer and 

Medeiros (2008b) and Gatheral and Oomen (2007) for reviews).

In this chapter we refer to realized volatility as a consistent estimator 

of the squared root of the integrated variance and model the volatility 

of the FTSE100 index using high-frequency data sets in a period includ-

ing the onset of the subprime mortgage debacle in the United States. We 

show that the presence of high and time-varying volatility of volatility is 

a fundamental stylized fact of stock market volatility, bringing additional 

uncertainty in the tails of the distribution of asset returns, explaining 

why events of several standard deviations may be observed, and rendering 

point forecasts of realized volatility a very poor measure of risk during 

critical moments of the financial crisis. We argue that higher moments of 

returns should be modeled to deal with this problem and show that the 

volatility of volatility is subject to strong leverage effects and is strongly 

and positively related to the level of volatility. In this chapter, we give a 

brief introduction on how this can be done within a realized volatility 

framework and explain how the daily distribution of returns (from which 

value-at-risk, expected shortfall, and other measures of interest can be 

extracted) can be forecasted from the model.

Our results suggest that the use of point forecasts of volatility is insuf-

ficient for obtaining adequate coverage and systematically underestimates 

the VaR intervals, but the introduction of a Monte Carlo method–based 

density forecast based on a specification that takes into account the vola-

tility of volatility corrects this failure in the lower tail. Moreover, results 



Modeling the Volatility < 421

are improved when intraday volatility feedback effects, which skew the 

 distribution of the returns, are taken into account. In the case of 

expected shortfall, our method significantly improves forecasts and the 

results strongly favor specifications with time-varying volatility of vola-

tility and asymmetric effects. These results are stronger than the ones 

obtained by Corsi et al. (2008) in that we argue that ignoring time-varying 

volatility of volatility and intraday leverage effects renders risk measures 

strongly biased and density forecasts inaccurate.

22.2 REVIEW OF PRIOR WORK
Empirical work on the characteristics of asset returns suggested that both 

fractional integration and structural changes can describe the volatility of 

asset returns (Lobato and Savin, 1998; Martens et al., 2004; Beltratti and 

Morana, 2006; Morana and Beltratti, 2004; Hyung and Franses, 2002). 

Some researchers have applied simpler time-series models that are con-

sistent with high persistence in relevant horizons, even though they do 

not rigorously exhibit long memory (hence their label as quasi-long-memory 

models). Some examples are the mixed data sample (MIDAS; see, for 

example, Ghysels et al., 2007) and heterogeneous autoregressive (HAR; 

Corsi, 2004) models, both of which explore data sampled at different fre-

quencies, and the unobserved ARMA component (UC) of Koopman et al. 

(2005). Other contributions to the realized volatility modeling and fore-

casting literature are by Martens et al. (2004), who develop a nonlinear 

(ARFIMA) model to accommodate level shifts, day-of-the-week effects, 

leverage effects, and volatility level effects; Andersen et al. (2007); and 

Tauchen and Zhou (2005), who argue that the inclusion of jump com-

ponents significantly improves forecasting performance. McAleer and 

Medeiros (2008a) extend the HAR model to account for nonlinearities, 

while Hillebrand and Medeiros (2007) also consider nonlinear models 

and evaluate the benefits of bootstrap aggregation (bagging) for volatil-

ity forecasting. Ghysels et al. (2007) argue that realized absolute values 

outperform square return-based volatility measures in predicting future 

increments in quadratic variation. Scharth and Medeiros (2006) introduce 

multiple regime models linked to asymmetric effects.

22.3 OUR APPROACH TO MODELING VOLATILITY
Given the variety of approaches evident in the literature, we commence 

by considering what the characteristics of realized volatility series are that 

can have significant impact for risk management and other applications. 
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We argue that a basic property of the observed realized volatility series 

is that they exhibit a very large degree of volatility themselves, and that 

this volatility of volatility is itself time varying; periods of stable and more 

predictable volatility alternate with episodes where the series display large 

swings and assume values within a potentially broad range. This has 

important implications for the tails of the distribution of returns.

We will give next a qualitative discussion of this claim. First, the pres-

ence of high and time-varying volatility of volatility means high uncer-

tainty in the tails of the distribution of daily returns. If the volatility in 

the next day is relatively unpredictable, then a conditional expectation 

of this variable will not contain much information about what might 

happen in terms of very negative or very positive returns. Even though 

returns standardized by ( ) quadratic variation measures are nearly 

Gaussian, returns standardized by fitted or predicted values of time-series 

volatility models are far from normal. Given the uncertainty in volatility, 

this is expected and should not be seen as evidence against those models; 

explicitly modeling the higher moment is necessary. Second, forecasting 

improvements brought by the body of work discussed previously are mar-

ginal and swamped by the size of the volatility of volatility. In an extreme 

example, Scharth and Medeiros (2006) calculate that even a simple expo-

nentially weighted moving average (EWMA) of realized volatility deliv-

ers predictions that are very close to ARFIMA and HAR specifications; 

it is crucial to account for the fact that the series is highly persistent, but 

the way this is done has very little economic relevance. Hence, it is very 

easy to predict the level of volatility in relation to the history of the series, 

but there is not much relevant information to it given the uncertainty in 

the variable. We thus take the view that even though point forecasts have 

been the main output from which volatility models in general have been 

evaluated (extensive comparisons of forecasting performance like the 

one performed by Hansen and Lunde (2005) are common in the litera-

ture), those statistics do not necessarily convey much information about 

the relative economic significance of the volatility models (see Fleming  

et al., 2001, 2003; Chan and Kalimipalli, 2006). In particular, and perhaps 

not surprisingly, small and possibly statistically insignificant forecasting 

performance differences may overshadow important relative modeling 

qualities.

When high-frequency data were not widely available, the volatility 

of volatility could not be observed, and latent volatility models were the 
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only available option, the typical solution of the literature for volatility 

models that did not generate normally distributed standardized returns 

was to assume an  distribution for returns conditional on volatility 

that would sufficiently inflate the tails. The implications of the volatility 

of volatility for the tails of returns were understood, and this modifi-

cation could account in part for the mixing properties of volatility and 

returns. However, this is not entirely satisfactory when the volatility of 

volatility is time varying with nonconstant size of the tails. Hence, we 

begin by analyzing the time-series properties of the volatility of volatility 

of the FTSE100 index. To do so, we use the concept of realized quarticity 

(see Barndorff-Nielsen and Shephard, 2002, 2004, 2006; Andersen et al., 

2007), which can be seen as an estimate for the variance of the return 

variation, suggesting that the volatility of volatility is characterized by 

long-memory properties, strong leverage effects, short-lived explosive 

regimes, and high correlation with the level of volatility. To the best of 

our knowledge, the last three of these characteristics have not been docu-

mented in the literature so far.

The next step is to directly model both the volatility and the vol-

atility of volatility. We propose that the informative but noisy real-

ized quarticity series be combined with the latent variable approach 

implemented by Corsi et al. (2008), the first to consider the volatility 

of volatility and who extended the framework for modeling volatility 

by specifying a GARCH process to allow for clustering in the squared 

residuals of those realized volatility models and assumed a normal 

inverse Gaussian (NIG) distribution to accommodate fat tailedness 

and skewness in the distribution of the residuals. We suggest, how-

ever, that this approach should be extended to make use of the greater 

volume of information available in the context of high-frequency data. 

In particular, modeling the (possibly nonlinear) relation between the 

volatility of volatility and the level of volatility seems to improve the 

model. With the assumptions for the realized volatility process and 

following the evidence in assuming that returns conditional volatil-

ity are normally distributed, we have a mixing hypothesis that will 

enable us to propose a straightforward two-step Monte Carlo method 

for calculating value-at-risk, expected shortfall, and other density- 

related measures for returns. The procedure consists in first simulat-

ing realized volatility and then using each of these simulated values to 

simulate returns. The empirical distribution function of the simulated 
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returns can then be used for obtaining a prediction of value-at-risk and 

other density-related measures of interest.

22.4 EMPIRICAL SETUP
22.4.1 Data and Realized Volatility Measurement

The empirical analysis focuses on the realized volatility of the FTSE100 

index, which is plotted on Figure 22.1. The raw intraday quote data were 

obtained from the TaqTiq/SIRCA (Securities Industry Research Centre of 

Asia-Pacific) database. The period of analysis starts on January 2, 1996, 

and ends on December 28, 2007, providing a total of 3,001 trading days. 

We start by removing nonstandard quotes, computing mid-quote prices, 

filtering possible errors, and obtaining 1-second returns for trading hours. 

Following the results of Hansen and Lunde (2006), we adopt the previous 

tick method for determining prices at precise time marks.

To measure the realized volatility, we turn to the theory developed by 

Barndorff-Nielsen et al. (2005, 2007a, 2007b) and implement a subsampled 
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realized kernel estimator based on 1-minute returns and the modified Tukey-

Hanning kernel, which is consistent in the presence of microstructure noise.

22.4.2 Modeling Realized Volatility

Our general specification is given by

 
( )( ) ( ( )) ( , ),1 1 1  (22.1)

where here denotes the fractional differencing parameter, the lag oper-

ator,  is independent and identically distributed (i.i.d.) with ( ) 0,  

( ) is a polynomial of order , is a vector of variables affecting the mean 

of ,  is a vector of explanatory variables, and  is a vector of variables 

that may affect the volatility of volatility. We discuss below the specification 

for the conditional mean of volatility and the distribution of the errors; we 

postpone the analysis of heteroskedasticity for subsequent subsections.

22.4.3 Autoregressive Fractionally Integrated Specification

When 0:5    0:5, we have a stationary autoregressive fractionally inte-

grated model for the realized volatility. After running a battery of specifi-

cation tests centered on the Schwarz information criterion, we set ( )  

(1  ) (that is, an ARFIMA(1, , 0) model) for all our estimations. Such 

models have been extensively estimated for realized volatility, for example, 

in Andersen et al. (2003), Areal and Taylor (2002), Beltratti and Morana 

(2005), Deo et al. (2006), Martens et al. (2004), and Thomakos and Wang 

(2003), among others.

22.4.4 Heterogenous Autoregressive (HAR) Specification

The heterogeneous autoregressive (HAR) model proposed by Corsi (2004) 

is an unfolding of the heterogeneous ARCH (HARCH) model developed 

by Müller et al. (1997). It is specified as a multicomponent volatility model 

with an additive hierarchical structure, leading to an additive time-series 

model of the realized volatility that specifies the volatility as a sum of vola-

tility components over different horizons.

Turning to our general specification, let 0 (underlining the view that 

the model does not genuinely exhibit long memory) and

( ) 1 3

1

22

1

5
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Furthermore, consider the notation , ,1 / , which will be 

used extensively in this chapter. We can then write our HAR model with 

daily, weekly, and monthly components as

 
( ) ,1 1 2 2 3 1 5 4 1,, ( )22  

  (22.2)

We can see that the HAR specification is an AR, Equation (22.2), model 

rendered parsimonious by several parameter restrictions. Simulations 

reported in Corsi (2004) show that the generous number of autoregressive 

lags renders the HAR model capable of reproducing the observed hyper-

bolic decay of the sample autocorrelations of realized volatility series over 

not too long horizons. Moreover, the model displays forecasting perfor-

mance that is similar to that of ARFIMA models, which is generally true 

for any model that exhibits high persistence (and not necessarily authentic 

long-memory properties). For its estimation simplicity, the HAR-RV has 

been commonly favored in the high-frequency econometrics literature 

(e.g., Andersen et al., 2007). Nevertheless, it is difficult to further justify 

the HAR model. One of its drawbacks is that it tends to estimate param-

eters that are generally inconsistent with each other when different direct 

forecasting estimations are implemented.

22.4.5 Asymmetric Effects and Jumps

Bollerslev et al. (2006) and Scharth and Medeiros (2006) highlight the 

impact of leverage effects on the dynamics of realized volatility. The latter 

argue for the existence of regime switching behavior in volatility, with 

large falls (rises) in prices being associated with persistent regimes of 

high (low) variance in stock returns. The authors show that the incorpo-

ration of cumulated daily returns as a explanatory variable brings mod-

eling advantages by capturing this effect, which can be quite large; after 

analyzing certain stocks in the Dow Jones Index, the authors document 

that falls in the horizon of less than 2 months are associated with vola-

tility levels that are up to 60% higher than the average of periods with 

stable or rising prices. We estimate models with and without such effects. 

Moreover, we consider jump components that have been receiving grow-

ing attention in the realized volatility literature. Building on theoretical 

results for bipower variation measures, articles such as Andersen et al. 

(2007), Tauchen and Zhou (2005), and Barndorff-Nielsen and Shephard 

(2006) established related frameworks for the nonparametric estimation 



Modeling the Volatility < 427

of the jump component in asset return volatility by explicitly consider-

ing the presence of less persistent elements in the volatility of stocks in 

contrast with the smooth and very slowly mean-reverting part associated 

with long-memory properties. In this chapter, we follow Ghysels et al. 

(2007) and take the realized absolute variation (denoted ), calculated 

as the sum of intraday absolute returns as a more robust measure of the 

persistent component in volatility, thus separating the effect of jumps. We 

find only the first lag of this variable to be significant, yielding in the least 

parsimonious case:*

1 1 1 2 1 1 30 0( ) ( ) ( 11 5 1 5

4 1 5 1 5 5 1

0

0

, ,

, , ,

)

( ) ( 222 1 22 6 1 22 1 22

7

0 0) ( ), , ,

11 0 0( )( ) ( )( )/ /
 

(22.3)

where the indicator functions have been included to reinforce the asym-

metry between the effect of positive and negative returns and /  is 

to be interpreted as an exogenous shock following the standard normal 

distribution.

22.4.6 The Distribution of t

To account for the non-Gaussianity of the error terms we follow Corsi 

et al. (2008) and assume that the (unconditional) i.i.d. innovations  are 

distributed normal inverse Gaussian (NIG), which is flexible enough to 

allow for excessive kurtosis and skewness and reproduce a number of 

symmetric and asymmetric distributions (including the normal itself). 

The density of the NIG distribution is given by

 

( , , , , )

1

2

2

1

1

eexp 2 2

 

  
(22.4)

where ( ) is the modified Bessel function of the second kind with 

index ,  denotes the location parameter, 0 the scale, 0 the  

* In what follows, we will make use of the abbreviations AE, VF, and RAV in the acronyms of 

the models that contain asymmetric effects, intraday volatility feedback effects, and jumps, 

respectively (for example, an HAR/AE model).
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shape, and ,  the skewness parameter. Mean and variance are 

given by

 

( ) ( )
2 2

2

2 2
3

 

(22.5)

So that the distribution is standardized by setting

2

2

and
2

3

2 2 3 2

2

( ) /

22.4.7 Estimation

The parameters are estimated by maximizing the log-likelihood function:

l K K K( ˆ , ˆ , ˆ , ˆ, , , ) log( ˆ ) lo1 1 1 gg( )

  log ˆ , ˆ ˆ

 

/

1

1
2

1 2
1

00 5 1

1

2 2 2 1 2. log ˆ ˆ( ˆ ˆ )

  ˆˆ ˆ

/

0 5

11

1 2. log ˆ /

   

(22.6)

In the case of the ARFIMA model, we employ a two-step estimation. In 

the first we apply the widely used log periodogram estimator (GPH) of 

Geweke and Porter-Hudak (1983) to filter the data. The number of ordi-

nates used in each regression is selected by the plug-in method of Hurvich 

and Deo (1999). We then apply the maximum likelihood estimator above 

for the filtered series.

22.5 EMPIRICAL RESULTS AND INTRODUCING 
TIME-VARYING VOLATILITY OF VOLATILITY

22.5.1 The Ex Ante Distribution of the FTSE100 Returns

With our basic time-series model for the realized volatility defined, we 

are ready to state the empirical problem at the center of our analysis. 

Even though it has been long recognized that the distributions of the 

stock returns scaled by realized standard deviations are approximately 
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Gaussian (e.g., Andersen et al., 2001), Table 22.1 and Figure 22.2 (which 

illustrate how the point forecasts tend to fall short of the realized volatil-

ity by as far as 50% exactly on the riskiest days) reveal that this is far from 

the case when we scale returns by the in-sample predicted values of our 

best-fitting model in terms of in-sample forecasts (the HAR model with 

leverage effects and the square root of the realized absolute variation as 

explanatory variables).

TABLE 22.1 FTSE100 Daily Returns Standardized 

by the Fitted Values of a Typical Realized Volatility 

Time Series Model (1996 2007)

Mean –0.001

Median  0.05

Maximum  3.88

Minimum –4.60

Standard deviation  1.03

Skewness –0.23

Kurtosis  3.89
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Despite the sizable forecasting gains made possible by volatility mod-

els based on high-frequency data, our descriptive results can be directly 

related to the failure of GARCH volatility models to completely account for 

the excess kurtosis of returns (see, for example, Malmsten and Teräsvirta, 

2004, Carnero et al., 2004). The researcher or practitioner interested in 

evaluating the density of returns from the perspective of a time-series 

model still lives in a fat-tailed world, and models of the conditional expec-

tation of volatility have little to say about it. In this chapter, we do not 

interpret those facts as evidence against those models, but as a conse-

quence of high day-to-day unpredictability of the shocks that affect the 

volatility (excessive kurtosis) and the intraday correlation between those 

shocks and returns (negative skewness). We argue that an adequate vola-

tility model for return density forecasting and risk management in this 

setting should illuminate the dynamics of the higher moments. To pursue 

this objective, we will turn to the idea of time-varying volatility of realized 

volatility (Corsi et al., 2008), which will allow for time-varying kurtosis on 

the general model introduced previously.

22.5.2 Incorporating Time-Varying Volatility of Volatility  
into the Time-Series Model

To account for the dynamic properties of the volatility of volatility, we 

follow Corsi et al. (2008) and initially specify a GARCH(1,1) model for 

the conditional heteroskedasticity of the realized volatility. Recalling 

Equation (22.1), we have that in this case the conditional variance of the 

realized volatility follows:

 0 1 1 2 1
2

 (22.7)

However, our empirical estimations (which we omit here for concise-

ness) indicated that there is a substantial degree of positive correlation 

between the level of realized volatility and the volatility of volatility, 

so that a more empirically relevant and better-fitting specification is 

given by

 0 1 1 2 1
2

3 4
2% %

 
(22.8)

where denotes the conditional mean of the realized volatility. 

Surprisingly, the presence of this variable renders the GARCH coefficients 

almost insignificant. The estimated volatility of volatility for the FTSE 

data using Equation (22.8) is displayed by Figure 22.3. It can be seen that 
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in line with the realized volatility the variable displays a marked crisis 

behavior during the Asian, Russian, Internet, 2002, and subprime crises 

and other episodes. As we shall illustrate, this stylized fact has important 

consequences for issues of risk management.

22.5.3 Density Forecasting

A density forecast for the stock index returns, which can be used for cal-

culating a number of risk measures, can be calculated from our model by 

Monte Carlo as follows:

 1. In the first step, the functional form of Equation (22.1) is used for the 

evaluation of predictions of the realized volatility and the volatility 

conditional on past realized volatility observations, returns, the esti-

mated volatility of volatility series and shocks, and other variables.

 2. We randomly generate  shocks distributed as the standardized 

NIG with the parameters estimated from the data, which multiplied 
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by 1 2/

 
and added to  originate a vector of  simulated realized 

volatilities for day , where %  denotes a prediction of a generic vari-

able  for day .

 3. Under the hypothesis that standardized returns are normally dis-

tributed, we employ each of these  simulated volatilities to simulate 

 associated returns. The empirical density function of the set of 

  simulated returns yield our final density forecast.

22.5.4 Some Illustrative Out-of-Sample Results

Even though in the introduction to this chapter we argued that point fore-

casting may not be a powerful tool for comparing volatility models, pre-

dictions have been the main basis of comparison in the volatility literature 

and are the subject of extensive analysis. Therefore, we start by analyzing 

the performance of the models described previously in this aspect as a 

first layer of comparison. The evaluation of forecasts is based on the mean 

absolute error (MAE), the root mean squared error (RMSE), and the 2 of 

a regression of the observed realized volatility on the forecasts. A formal 

test of the forecasting differences is given by the superior predictive ability 

(SPA) test developed by Hansen (2005). The null hypothesis is that a given 

model is not inferior to any other competing models in terms of a given 

loss function.

The forecasting statistics are displayed in Table 22.2. The results sug-

gest that whenever cumulated returns are included in the conditional 

mean specification, the respective model fares unambiguously better than 

TABLE 22.2 Point Forecasts for 2007

HAR 0.438 0.295 0.210 0.002 0.104

HAR/AE 0.484 0.272 0.191 0.832 0.787

HAR-GARCH 0.413 0.296 0.209 0.001 0.027

HAR/AE-GARCH 0.447 0.283 0.200 0.005 0.032

HAR/AE/RAV-GARCH 0.451 0.284 0.201 0.000 0.022

ARFIMA 0.341 0.303 0.198 0.004 0.006

ARFIMA/AE 0.384 0.291 0.187 0.059 0.016

ARFIMA-GARCH 0.340 0.303 0.198 0.009 0.009

ARFIMA/AE-GARCH 0.367 0.296 0.194 0.037 0.022

HAR/AE/VF-GARCH 0.455 0.273 0.173 0.876 0.036

HAR/AE-Aug.GARCH 0.447 0.275 0.174 0.762 0.216
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its counterpart without leverage effects (on all criteria). Nevertheless, the 

results support our previous claims: the differences in performance are 

economically small and swamped by the size of the volatility of volatility; 

the benefits of the increased efficiency of alternative conditional variance 

specifications fail to materialize in this context.

We now proceed to analyze the ability of different models and the Monte 

Carlo method in forecasting adequate quantiles over the lower tail of the 

return distribution and the whole density. The first is illustrated by the pro-

portion of returns that exceed the 2.5% value-at-risk forecast (we use this 

interval and not the more traditional 1% one so as to have more violations 

to examine), which is analyzed by means of the likelihood ratio tests for 

unconditional coverage (UC) developed by Christoffersen (1998). To evalu-

ate the accuracy of the whole density forecasts we rely on the theory of den-

sity evaluation developed by Diebold et al. (1998). Below the Monte Carlo 

method is compared with the results obtained when only the point forecasts 

are taken into account in predicting the densities.

The results are organized in Table 22.3. As expected, the method of 

calculating VaR values based only on the point forecast of volatility is 

strongly biased toward underestimating the value-at-risk, failing to provide 

TABLE 22.3 Value-at-Risk and Density Forecasting Results for 2007

HAR 0.036 0.306 0.000 0.028 0.781 0.183

HAR/AE 0.040 0.168 0.000 0.032 0.510 0.203

HAR-GARCH 0.040 0.168 0.000 0.040 0.168 0.251

HAR/AE-GARCH 0.044 0.086 0.000 0.032 0.510 0.247

HAR/AE/

RAV-GARCH

0.044 0.086 0.000 0.032 0.510 0.249

ARFIMA 0.075 0.000 0.000 0.064 0.001 0.000

ARFIMA/AE 0.075 0.000 0.000 0.064 0.001 0.000

ARFIMA-GARCH 0.075 0.000 0.000 0.056 0.007 0.000

ARFIMA/

AE-GARCH

0.068 0.000 0.000 0.060 0.003 0.000

HAR/AE/

VF-GARCH

0.060 0.003 0.000 0.032 0.510 0.210

HAR/AE-Aug.

GARCH

0.060 0.003 0.000 0.032 0.510 0.233
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adequate coverage. For this reason, the whole density forecasts are also 

strongly rejected in this case (for example, the point forecast method indi-

cates that the probability of the two lowest returns on the data set—August 

10, 2007, 3.55%, and August 16, 2007, 3.82%—was less than 1 in 20,000). On 

the other hand, the table provides evidence that taking the time-varying 

volatility of volatility into account importantly mitigates or eliminates this 

problem. Even though a complete and more rigorous analysis is out of the 

scope of this chapter, these results illustrate our main point: it is funda-

mental to take into account the high unpredictability in the volatility in 

performing this type of risk analysis. In doing so, we rule out implausible 

results for our data set.

22.6 CONCLUSION
We have used higher moments of volatility and leverage effects to dem-

onstrate that it is possible to achieve more accurate estimates of relevant 

 risk measures based on realized volatility by incorporating these 

components into our model.
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Economic Integration on 
the China Stock Market, 
before and after the 
Asian Financial Crisis

Jack Penm and R. D. Terrell

23.1 INTRODUCTION
Since 1980, China’s economy has gradually developed under the influence 

of Deng Xiaoping’s philosophy. Following a series of reforms that opened 

its socialist market economy, China has steadfastly developed foreign 

trade and actively attracted foreign investment. China’s trade value ranks 

fifth in the world. Its foreign capital attraction has been measured as the 

foremost among all the developing countries, with annual foreign direct 

investment (FDI) inflows of about US$72.41 billion and US$69.47 billion 

in 2005 and 2006, respectively. Reform and opening up have not only pro-

moted the sustained, swift, and sound development of China’s national 

economy, but also helped restructure its economic system.
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The economy of modern China has been well integrated into the global 

economy, especially with the United States, United Kingdom, Japan, 

Taiwan, Hong Kong, and Singapore. For example, bilateral trade turnover 

(the sum of exports and imports) between China and the United States 

reached US$389.7 billion in 2007, over 150 times that of 1979. In 2007, 

exports from the UK to China were less than US$18.5 billion, and the 

imports from China were US$31.7 billion, while the exports and imports 

between China and Japan were US$102.1 billion and US$134.0 billion, 

respectively. In 2007, Taiwan’s exports to and imports from Mainland 

China were US$101 billion and US$24.5 billion respectively. At the same 

time, Hong Kong’s exports to and imports from Mainland China were 

US$12.8 billion and US$184.4 billion, respectively. On the other hand, in 

2007 the bilateral trade volume between China and Singapore was US$47.2 

billion.

Chinese stock markets have developed rapidly especially in recent years. 

By 2007, the total market capitalization of the Shanghai Stock Exchange 

(SHSE) was US$2.38 trillion. The Shanghai Composite Index was compiled 

to reflect the stock price movements in SHSE. It is a weighted average stock 

price index, with the weighting being determined by the number of shares 

issued by all listed companies. It used December 19, 1990, as the base day 

and has been officially published since July 15, 1991 ( ).

Having entered the World Trade Organization (WTO), China has fur-

ther opened its capital markets. Whether the degree of correlation between 

the returns of market indices in China and major developed countries or 

regional economies will correctly reflect the integration between econo-

mies, and whether investment in Chinese stock markets can diversify 

the risk of portfolio investment, will attract global investors’ attention. 

Our hypothesis is that Chinese stock markets may have low-correlation 

relationships with major developed countries and regional counterparts. 

Hence, investment in Chinese stock markets can represent a feasible ele-

ment of their portfolio to enhance the reward-to-volatility ratio even 

though China is interacting into the global economy gradually. Findings 

of a differential impact of the Chinese stock markets on the other six stock 

markets can lead to further insights into socioeconomic connections. 

Specifically, the investigation of co-movement relationships will provide 

useful information for both domestic and foreign investors.

The benefit of international diversification, however, is limited when 

national equity markets are cointegrated, because the presence of com-

mon factors limits the amount of independent variation. Cointegration 
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among national equity markets implies that there are fewer assets avail-

able to investors for portfolio diversification than a simple count of the 

number of stocks. Moreover, cointegration would also mean Granger cau-

sality in levels, and hence would be suggestive of inefficiency in the market 

(Penm et al., 2003).

This chapter contributes to the literature by investigating whether stock 

co-movements exist between China and the three world leaders, the United 

States, UK, and Japan, and between China and three regional counterparts, 

Taiwan, Hong Kong, and Singapore, before and after the Asian financial 

crisis. It is observed that before the crisis is the most volatile period in the 

stock markets involved, and markets became less volatile after the crisis. 

We first examine co-movements between China and these six stock mar-

kets by employing the Engle-Granger (1987) two-step cointegration tech-

nique. Next, we employ the minimum final prediction error criterion to  

determine the optimum lag structures (Hsiao, 1981). Finally, we use the 

error correction model (ECM) or vector autoregressive (VAR) models to 

find the causal relationship between the Chinese stock market and the 

other six stock markets. Our results provide evidence that only Japan and 

Taiwan were cointegrated with the Chinese stock market before the crisis. 

However, after the crisis, all six stock markets became cointegrated with 

the Chinese stock market. Moreover, the Chinese stock market is more 

cointegrated with the three regional counterparts than the three world 

leaders. Their close socioeconomic, trade, and cultural relationships with 

China emphasize this important feature for global investors.

The rest of the chapter is organized as follows. Section 23.2 provides a 

literature review. Section 23.3 presents the data and methodology used. 

Section 23.4 discusses the empirical findings and interpretation of the 

results. Section 23.5 provides a conclusion.

23.2 LITERATURE REVIEW
A number of studies have examined co-movements of international stock 

markets. A considerable amount of work has been done on the interre-

lationships among the world equity markets, especially focusing on the 

major developed markets like the United States and Japan. The presence 

of strong co-movements among national stock markets limits the benefit 

of international diversification.

The performance of developed markets was the focus of world atten-

tion before and after the crash of 1987. The crash of October 1987 made 

people realize that most national equity markets are closely integrated. 
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The developed markets, notably that of the United States, exert a strong 

influence on other, smaller markets. Lee and Kim (1994), using a correla-

tion approach, examine the effect of the October 1987 crash on the co-

movements among national stock markets. “They find that national stock 

markets became more interrelated after the crash, and the strengthening 

co-movements among national stock markets continued for a long period 

after the crash. In addition, it is shown that the co-movements among 

national stock markets were stronger when the U.S. stock markets became 

more volatile” (Lee and Kim, 1994). There is also focus in the literature 

on price discovery in world markets in investigating international co-

movements. Naturally, cointegration and error correction modeling pro-

vide a useful framework for analyzing price adjustments in internationally 

linked markets.

In recent years new capital markets have emerged in many parts of 

the world, and foreign capital controls have also been relaxed to a certain 

extent. With this relaxation of capital controls there has been an increase 

in investors’ interest in international diversification, as it allows investors 

to have a larger basket of foreign securities to choose from and to add to 

their portfolio assets to diversify investment risk. A number of studies have 

examined co-movements in stock returns with reference to the expected 

return and diversification benefits of emerging-market investments.

Asian capital markets are key players among the emerging markets. 

Many studies have been done in the 1990s and thereafter to study the co-

movements between Asian markets and the stock markets in developed 

countries. Kwan et al. (1995) study the stock markets of Australia, Hong 

Kong, Japan, Singapore, South Korea, Taiwan, the UK, the United States, 

and Germany, and suggest that these markets are not weak form efficient, 

as they find significant lead-lag relationships between these equity markets. 

Palac-McMiken (1997) employ monthly ASEAN market indices (Indonesia, 

Malaysia, Philippines, Singapore, and Thailand) from the 1987–1995 period 

and discover that with the exception of Indonesia, all markets are connected 

with one another and jointly they are not efficient. The author proposes 

that there still exists some leeway for diversification across these markets 

even though there is proof of interdependence among ASEAN stock mar-

kets. Johnson and Soenen (2002) examine the equity market integration 

of the Japanese stock market and twelve other equity markets in Asia. The 

authors conclude that equity markets in Australia, Hong Kong, Malaysia, 

New Zealand, and Singapore are extremely integrated with the Japanese 

stock market. It appears that previous empirical studies on the relationship 
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between world stock markets do not provide consistent results. The reasons 

for the inconsistent results are numerous, including the choice of markets, 

different sample periods, different frequency of observations, and the dif-

ferent methodologies employed. Looking at the increasing importance and 

integration of the Chinese economy in the world economy, this study takes 

China into account, where it has not previously been examined. The pur-

pose of assessing co-movements between China and the six stock markets 

is unique to this study.

23.3 DATA AND METHODOLOGY
We use weekly stock indices of the major stock exchanges in China 

(Shanghai Composite), the United States (S&P 500), the UK (FTSE 100), 

Japan (Nikkei 225 Stock Average), Taiwan (Taiwan SE Weighted), Hong 

Kong (Hang Seng), and Singapore (Straits Times Index). All the indices 

are expressed in terms of local currencies and obtained from DataStream. 

Our sample covers the period from January 1, 1991 through December 

31, 2007. Weekly indices are used to avoid representation bias from some 

thinly traded stocks, i.e., the problem of nonsynchronous trading. In 

addition, we use Wednesday indices to avoid the day-of-the-week effect 

of stock returns (Lo and MacKinlay, 1988). We divided our sample into 

two periods to look at the effect of the Asian financial crisis: January 1, 

1991–December 31, 1996 (before crisis) and January 1, 1997–December 31, 

2007 (after crisis).

To examine the co-movements between the stock indices in China and 

the six markets with three developed world leaders—the United States, the 

UK, and Japan—and three regional counterparts—Taiwan, Hong Kong, 

and Singapore—we study the relationship

  (23.1)

where  denotes the Chinese stock index; denotes the index of any of 

the six other countries (the United States, the UK, Japan, Taiwan, Hong 

Kong, or Singapore); and  denotes the error term. As the stock indices are 

likely to be nonstationary, the statistical concept of cointegration plays a 

major role in determining the validity and reliability of the relationship.

Cointegration tests, which are important in determining the presence 

and nature of an equilibrium economic relation, were first introduced by 

Granger (1981) and later developed by Granger (1987). A detailed descrip-

tion of cointegration can be found in Brailsford et al. (2008). Before testing 
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for cointegration, a unit root test has to be performed to test for nonsta-

tionarity for both endogenous and exogenous variables.

Cointegration tests in this paper consist of two steps. The first step is 

to examine the stationarity properties of the various stock indices in our 

study. If a series, say , has a stationary, invertible, and stochastic ARMA 

representation after differencing  times, it is said to be integrated of order 

, and denoted as  ( ). To test the null hypothesis 0:  (1) versus 

the alternative hypothesis 1:  (0), we apply the Dickey-Fuller (1981) 

unit root test procedure based on the OLS regression

 0 0 1 1  (23.2)

or apply the augmented Dickey-Fuller (ADF) test based on the OLS 

regression

 
0 0 1 1

1  

(23.3)

where  1 and  can be  or as defined in Equation (23.1). 

The regressions in Equations (23.2) and (23.3) allow for a drift term ( 0) 

and a deterministic trend ( 0). The regression in Equation (23.3) allows 

a stochastic structure in the error term, , while  is chosen in Equation 

(23.3) to achieve white noise residuals. Testing the null hypothesis of the 

presence of a unit root in  is equivalent to testing the hypothesis that  

1  0 in Equations (23.2) and (23.3). If 1 is significantly less than zero, the 

null hypothesis of a unit root is rejected. When 0, the test is known 

as the Dickey-Fuller (DF) test. This test assumes that the residuals 1 are 

independently and identically distributed. If serial correlation exists in the 

residuals, then  0 and the ADF test must be applied.

In addition, we test the hypothesis that is a random walk with drift, 

i.e., ( 0, 0, 1)  ( 0,0,0), and is random walk without drift, ( 0, 0, 1)  

(0,0,0), using Equation (23.2). The test statistics are the likelihood ratios 

3 or 2 found in Dickey and Fuller (1981). Following Wong et al. (2005a), 

if the hypotheses that 1  0, ( 0, 0, 1)  ( 0,0,0), or ( 0, 0, 1)  (0,0,0) are 

accepted, we can conclude that  is (1). If we cannot reject the hypotheses 

that is (1), we need to further test the null hypothesis 0:  (2) versus 

the alternative hypothesis 1:  (1) Note that most nonstationary series 

are integrated of order one If both  and  are of the same order, say ( ), 

with  0, we then estimate the cointegrating parameter of (1) by OLS 
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regression. If the residuals of Equation (23.1) are stationary, the two series, 

and , are said to be cointegrated. Otherwise,  and  are not cointe-

grated. The most common tests for stationarity of estimated residuals are 

Dickey-Fuller (CRDF) and augmented Dickey-Fuller (CRADF) tests based 

on the OLS regression

 

ˆ ˆ ˆ
1 1

1  

(23.4)

should be employed, where  are residuals from the cointegrating regres-

sion in Equation (23.1) and  is chosen to achieve empirical white noise 

residuals.

Engle and Granger (1987) pointed out that when a set of variables 

is cointegrated, a vector autoregression in first differences will be 

misspecified, and any potentially important long-term relation-

ship between the variables will be unclear. Thus, inferences based 

on vector autoregression in first differences may lead to incorrect 

conclusions (Sims et al., 1990). However, there exists an alterna-

tive representation, an error correction representation of such vari-

ables, which takes account of a short- and long-run equilibrium 

relationship shared by those variables. (Wong et al., 2005b)

Once the cointegration relationship between the Chinese stock market 

and the markets of other countries has been decided, we can adopt the bivar-

iate VAR model to test for Granger causality. If the cointegration does not 

exist between the two markets, following Granger et al. (2000), we employ

 

0 1

1

2

1

1

00 1

1

2

1

2

 

(23.5)

where   and  represent the indices of the Chinese stock market and any 

of these six stock markets, respectively,  and  are the optimum lags, 

and 1  and 2  are the error terms. We test the null hypothesis, 0: 21  

22    2   0, which implies that any of these six stock markets do  
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not Granger-cause the Chinese stock market. Similarly, we test 0: 21   

22    2   0 to confirm that the Chinese stock market does not 

Granger-cause any of these six stock markets.

If the series are cointegrated, there is a long-term, or equilibrium, 

relationship among the series. Their dynamic structure can be 

exploited for further investigation. An error correction model 

(ECM) abstracts the short- and long-run information in the mod-

eling process. The ECM proposed by Engle and Granger (1987) 

corrects for disequilibrium in the short run. Engle and Granger 

(1987) show that cointegration is implied by the existence of an 

error correction representation of the indices involved. An impor-

tant theorem, known as the Granger representation theorem, states 

that if two variables Y and X are cointegrated, then their relation-

ship can be expressed as an ECM (Wong et al., 2005a, p. 8).

In this situation, an error correction term ( )1 1 1
 is added to 

the equation to test for Granger causality.

 

0 1 1

1

2

1

1

0 1 1

1

2

1

2

 

(23.6)

The existence of cointegration implies causality among the set of vari-

ables as manifested by |a|  |b|  0;  and  denote speeds of adjustment 

(Engle and Granger, 1987). If we do not reject 0: 21  22    2   0 

and  0, then none of these six stock markets (either the United States, 

the UK, Japan, Taiwan, Hong Kong, or Singapore) Granger-cause the 

Chinese stock market. Similarly, not to reject 0: 21  22    2   0  

and  0 suggests that the Chinese stock market does not Granger-cause 

any of the other six stock markets individually (Granger et al., 2000).

To test the hypothesis 0: 21  22    2   0, we find the sum of 

square of residuals for both the full regression, , and the restricted 

regression, , in Equation (23.6) and apply the test:

 

( )

( )

/

/ 2
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where is the number of observations, and and  are defined in 

Equation (23.5) or Equation (23.6). If 0 is true,  is distributed as ( , 

– – – 2). Hence, the hypothesis 0 is rejected at the  level of signifi-

cance if   ( ; ,   – – – 2) and the reduced model is accepted if 0 

is not rejected. Similarly, we can test for the hypothesis 0: 21  22    

2   0 and then make decisions on causality. We apply the usual simple 

statistics to test 0:  0 and 0:  0.

The minimum final prediction error criterion (Hsiao, 1981) is used to 

determine the optimum lag structures in the regressions of Equations 

(23.5) and (23.6), where and are the maximum lags of the correspond-

ing variables to be used in the right-hand side of Equations (23.5) and 

(23.6), and 1  and 2  are disturbance terms obeying the assumptions of 

the classical linear regression model. The final prediction error statistic of 

, with  lags of  and lags of , is

 
( , )

( ) ( ˆ )

( )

1

1

2

where  is the number of observations. The FPE statistic for  is found 

in the same way. To determine the minimum , the first step is to run 

the regression in the first part of Equation (23.5), excluding , and with 

only lags of  to be included. We start from  0 and  1 and calcu-

late (1,0). We proceed with the same step until  n*, where FPE is 

minimized for  0. Then by holding  n*, we systematically lag  until 

 m* minimizes the FPE. The same procedure is repeated with the second 

part of Equation (23.5), where  n** and  m** minimize ( , ).

23.4 EMPIRICAL RESULTS AND INTERPRETATION
Table 23.1 shows the results of testing the order of integration of the seven 

series for the two periods before and after the Asian financial crisis. We do 

not reject that all seven stock indices are (1) in our sample at the 5% signif-

icance level for both periods. Our findings show that there exists no strong 

lead-lag effects in testing lead-lag effects by using both daily and weekly 

data. Thus, the results originally obtained are a good measure for testing 

co-movement between stock indices between China and other markets.

Having established that the stock indices in our study are all (1), we 

then estimate the cointegrating Equation (23.1). We conduct the unit root 

test on the residuals from Equation (23.4) to test the cointegration. Panel 

A of Table 23.2 shows that in the period before the Asian financial crisis 
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(from 1991 to 1996), only Japan and Taiwan are cointegrated with the 

Chinese stock market at the 5% significance level, and Japan is also cointe-

grated with China at the 1% significance level. However, in the period after 

the Asian financial crisis (from 1997 to 2007), Panel B of Table 23.2 shows 

that all six stock markets are cointegrated with the Chinese stock market 

at the 5% significance level. Furthermore, the three regional counterparts, 

Taiwan, Hong Kong, and Singapore, are cointegrated with China at the 

1% significance level. This suggests that since the Asian financial crisis, 

the Chinese stock market has been more closely integrated into the global 

economy, especially with its regional counterparts. These closer relation-

ships could be related to geographical proximity, partnerships in trade, 

and cultural and historical similarities. Yang et al. (2003) point out that 

the Asian financial crisis altered the degree of market integration in the 

region over time, though China was not included in their study, and our 

findings extend their approach to include China.

One possible explanation for the existence of cointegration between the 

Chinese stock market and all others is that it is the outcome of Chinese 

economic reform and its open-door policy. Since 1997, the Chinese 

economy has been gradually integrated into the global economy, espe-

cially with world leaders like the United States, the UK, and Japan, and 

TABLE 23.1 Unit Root Test Results for the Weekly Indices in the Chinese Stock 

Market and the Other Six Stock Markets

China 1991–1996 –1.82 –1.82 0.92 2.28

Shanghai SE Composite 1997–2007 –1.89 –1.89 0.99 2.80

United States 1991–1996 –1.74 –1.74 4.62 1.64

S&P 500 Composite 1997–2007 –2.00 –2.00 1.35 3.74

UK 1991–1996 –3.34 –3.34 2.00 5.60

FTSE 100 1997–2007 –2.10 –2.02 1.25 3.80

Japan 1991–1996 –2.14 –2.14 0.28 2.46

Nikkei 225 Stock Average 1997–2007 –2.00 –2.00 0.93 2.07

Taiwan 1991–1996 –2.10 –2.10 0.30 2.31

Taiwan SE Weighted 1997–2007 –2.68 –2.68 0.16 3.71

Hong Kong 1991–1996 –2.41 –2.41 3.64 3.25

Hang Seng 1997–2007 –1.65 –1.79 0.12 1.38

Singapore 1991–1996 –2.08 –2.08 2.05 2.70

Straits Times 1997–2007 –1.62 –1.66 0.21 1.33

  DF is the Dickey-Fuller t-statistic; ADF is the augmented Dickey-Fuller statistic. Φ2 

and Φ3 are the Dickey-Fuller likelihood ratios. *,  0.05; **,   0.01.
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the regional counterparts such as Taiwan, Hong Kong, and Singapore. 

China’s comprehensive national purchasing power has been remarkably 

strengthened, with high GDP growth. China is now the seventh largest 

trading nation in the world. The Chinese government has reduced the tar-

iff rate and expanded the opening of trade in goods and services. China 

is progressively liberalizing its service sectors, like finance, insurance, 

TABLE 23.2 Cointegration Results for the Chinese Stock Market and the Other  

Six Stock Markets

United States Y(China)  –4.6332  1.7756Y(US)

      (–4.63) (10.94)

0.2780 –1.74 –1.74

UK Y(China)  –11.3909  2.2106Y(UK)

       (–7.39) (11.49)

0.2980 –1.76 –1.76

Japan Y(China)  38.959 – 3.2994Y(Japan)

     (18.94) (–15.87)

0.4475 –2.61** –2.61**

Taiwan Y(China)  6.1897  0.0147Y(Taiwan)

     (3.87) (0.08)

0.0000 –2.13* –2.13*

Hong Kong Y(China)  –4.4922  1.2157Y(HK)

      (–7.70)  (18.55)

0.5252 –1.91 –1.91

Singapore Y(China)  –4.3212  1.45Y(Singapore)

     (–4.23)  (10.41)

0.2582 –1.74 –1.74

ft

United States Y(China)  3.4549  0.5497Y(US)

     (9.18) (10.25)

0.2377 –2.06* –2.06*

UK Y(China)  4.6906  0.3053Y(UK)

     (8.40) (4.69)

0.0613 –2.16* –2.16*

Japan Y(China)  9.3015 – 0.2086Y(Japan)

     (23.83) (–5.10)

0.0717 –2.19* –2.42*

Taiwan Y(China)  10.1419 – 0.3224Y(Taiwan)

     (28.69)   (–8.01)

0.1600 –2.55* –2.71**

Hong Kong Y(China)  4.1844  0.333Y(HK)

     (8.92) (6.67)

0.1165 –2.69** –2.69**

Singapore Y(China)  5.4315  0.2536Y(Singapore)

     (14.44) (5.00)

0.0690 –2.67** –2.67**

  CRDF is the cointegration regression Dickey-Fuller statistic for stationarity of the 

estimated residuals. CRADF is the comparable test statistic for the augmented 

Dickey-Fuller. *,  0.05, **,  0.01.
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telecommunication, transportation, and tourism. With greater economic 

integration with the world, the Chinese stock market cannot be isolated 

from world stock markets. All these fundamental economic factors are 

reflected in the performance of the Chinese stock market.

We further test the Granger causality relationship among the seven 

countries. Since all the other six markets are cointegrated with China after 

the crisis, ECM is employed to test for the Granger causality in the period 

after the crisis. ECM only applied to Japan and Taiwan in the period 

before the crisis due to their cointegration relationship. The other markets 

are tested by VAR as they are not cointegrated. The significance of  ≠ 0 

in Table 23.3 leads us to reject the null hypotheses that any other stock 

market does not Granger-cause the Chinese stock market. However, the 

results lead us to accept the null hypotheses that the Chinese stock market 

does not Granger-cause any other stock market. Therefore, the outcomes 

indicate that unilateral causality arises from any of these six stock mar-

kets, except Japan, to the Chinese stock market, especially in the period 

after the crisis. Several explanations may account for the causal relation-

ships between any two equity markets. They include economic relation-

ships, regulatory structures, exchange rate policies, and trade flows.

The above outcomes reflect the existence of a Granger causality among 

the five stock markets other than Japan and the Chinese stock market, but 

this does not explain why the direction is unilateral. Our results in Panel B 

of Table 23.3 show that we fail to reject 0: 21  22    2   0 and  0 

for the second period, except for Japan. This implies that the Chinese stock 

market does not Granger-cause any of these stock markets. One possible 

reason is that the Chinese stock market is a policy market. According to a 

study conducted in China (Wang et al., 2006), nearly 50% of the significant 

market movements were caused by changes in trading rules or changes in 

policies. Changes in rules in China could influence the movement of the 

Chinese stock market, but should not have any effect on its influence upon 

other markets. If this view is correct, the Chinese stock market does not 

Granger-cause other stock markets. Also, there is evidence of a discon-

nection between stock returns and real economic growth in China. For 

instance, the annual return of the Shanghai Composite Index was 4% in 

1998, while the GDP growth rate for China for that year was 7.8%. In 2000, 

due to a policy shift that was favorable to the stock market, the annual return 

of the index achieved a staggering 52%, even though the GDP growth for 

that year was 8%. In 2001, the return of the index swung to 21%, when the 

government sold a huge number of state-owned shares in the secondary 
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market, while the GDP was 7.3% in that time. Further, in 2006 the return 

of the index surged 130%, while the GDP rose 10.7%. Another likely reason 

is the speculative nature of the Chinese stock market. Stock prices often do 

not really reflect the underlying assets of the firms. Thus, the Chinese stock 

TABLE 23.3 Granger Causality Results for the Chinese Stock Market 

and the Other Six Stock Markets

United States (us) us  cn 1 1 0.3777 n.a.

cn  us 6 1 0.4077 n.a.

UK (uk) uk  cn 1 2 0.2165 n.a.

cn  uk 2 6 0.0326* n.a.

Japan (jp) jp  cn 1 1 0.1381 0.0385*

cn  jp 1 3 0.0259* 0.4765

Taiwan (tw) tw  cn 1 1 0.4489 0.0376*

cn  tw 6 1 0.9294 0.3985

Hong Kong (hk) hk  cn 1 2 0.0355* n.a.

cn  hk 1 1 0.4569 n.a.

Singapore (sg) sg  cn 1 3 0.0361* n.a.

cn  sg 5 1 0.6111 n.a.

ft

United States (us) us  cn 6 1 0.9444 0.0086**

cn  us 1 1 0.3155 0.7970

UK (uk) uk  cn 6 1 0.6545 0.0070**

cn  uk 4 1 0.3337 0.2238

Japan (jp) jp  cn 6 1 0.6805 0.0140*

cn  jp 1 3 0.0043** 0.7686

Taiwan (tw) tw  cn 6 1 0.0762 0.0122*

cn  tw 1 1 0.6683 0.5896

Hong Kong (hk) hk  cn 6 1 0.3382 0.0006**

cn  hk 4 1 0.1183 0.5979

Singapore (sg) sg  cn 6 1 0.2163 0.0007**

cn  sg 5 1 0.5607 0.3510

  n.a. means ECM not applicable in the model due to no cointegration between the 

two variables.  implies Granger cause, e.g., us  cn implies the United States 

Granger-causes China. *,  0.05; **,  0.01.
a -values of F test on 0: 21  22    2   0 or 0: 21  22    2   0.
b -values of t test on 0:  0 or 0:  0 in ECM model.
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market is still in the developing stage, and is not yet sufficiently mature to 

Granger-cause other markets in the world.

23.5 CONCLUSION
The economies of China and the United States, the UK, Japan, Taiwan, 

Hong Kong, and Singapore have become increasingly integrated with 

growing bilateral trade and direct investments. The purpose of this study 

is to see whether growing economic integration is reflected in the stock 

price movements between the Chinese stock market and these six mar-

kets. Our results show that cointegration exists significantly between the 

Chinese stock market and each of these six stock markets, between China 

and the three regional markets together, and the three world markets 

together, and all six markets together after the Asian financial crisis. Our 

results also show that cointegration does not exist between the Chinese 

stock market and the markets of the United States, the UK, Hong Kong, 

and Singapore, but does exist between China and the three regional mar-

kets together, and the three world leaders together, and all six markets 

together before the Asian financial crisis. This implies that economic inte-

gration has been incorporated into the performance of stock markets in 

the long term, especially after the Asian financial crisis. It also confirms 

that higher levels of cointegration are typically associated with lower levels 

of market volatility. Furthermore, we find that the three regional coun-

terparts, Taiwan, Hong Kong, and Singapore, are more cointegrated with 

China after the Asian financial crisis. This significant closer relationship 

could be related to geographical proximity, partnerships in trade, and cul-

tural and historical similarities. Our results are robust to the exchange 

rate effect when the Chinese Yuan is pegged to the U.S. dollar. We also 

find that all these stock markets, except Japan, Granger-cause the Chinese 

stock market, but not vice versa. This unilateral causal relationship may 

be due to the economic relationships, regulatory structures, exchange rate 

policy, and trade flows between the countries. In addition to their reflec-

tion in policy or regulatory changes, the Chinese stock market is still in 

the developing stage in terms of Granger-causing others in the world.
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24.1 INTRODUCTION
The emergence and rapid development of the Chinese capital market has 

attracted considerable interest from investors, policy makers, and academics 

alike. Among other issues, the integration of China into the world financial 

* I thank Lynne Evans for her helpful suggestions. All remaining errors are my own 

responsibility.

CONTENTS
24.1 Introduction 457

24.2 The Chinese Stock Markets 459

24.3 Reasons for Spillovers between A and B Markets 462

24.4 Previous Studies on Causality in China 464

24.5 Methodology 465

24.6 Data 468

24.7 Results 469

24.8 Conclusion 476

References 478



458 < Bartosz Gebka

system and the efficiency of its domestic stock markets have been intensively 

investigated and discussed. This chapter contributes to the knowledge of 

the functioning of the Chinese capital market, as well as that of investors 

operating on the Shanghai and Shenzhen stock exchanges. Special atten-

tion is given to the issue of informational efficiency of these two trading 

venues, the behavior of domestic and foreign investors in China, and the 

lessons policy makers and investors can learn from our observations.

For a long time a distinctive feature of the Chinese capital market was 

the existence of two types of stocks: class A stocks, available exclusively to 

domestic investors, and class B stocks, which could be traded only by for-

eigners. Given the existence of two trading locations for stocks in China, i.e., 

Shanghai and Shenzhen, this results in four different stock markets: class A 

and B stock markets, in both Shanghai and Shenzhen. Consequently, infor-

mation about the Chinese corporate sector relevant for asset pricing could 

reach investors through one of these four markets. This would result in an 

immediate price reaction in one of them and a subsequent adjustment in 

the remaining ones, i.e., in information spillovers, or causality, across mar-

kets. Even if financial system reforms in the 2001–2002 period relaxed some 

restrictions by allowing some domestic (foreign) investors to trade in B (A) 

stocks, a partial separation still exists: trading in A (B) stocks is dominated 

by domestic (foreign) investors. Hence, investigating spillovers between A 

and B markets (as well as between Shanghai and Shenzhen) enables us to 

draw conclusions concerning the differences in efficiency across markets 

and in informativeness of trades by domestic and foreign investors.

The issue of cross-market differences in efficiency can be approached 

by analyzing information spillovers in returns and volatility. Spillovers in 

returns (in volatility) take place if returns on stocks traded in one market 

change as a reaction to changing returns (volatility) in another market. 

The existence of return spillovers implies predictability in returns, which 

could be exploited by traders to realize abnormal profits. In addition, the 

existence of linkages between markets in the form of return spillovers 

could be utilized to benefit from portfolio diversification.

Causality in volatility captures another dimension of cross-market 

efficiency. From a theoretical perspective, changes in volatility have been 

argued to reveal arrivals of news and its assimilation by market participants 

(Ross, 1989; Engle et al., 1990). In the case of agents holding heterogeneous 

beliefs, their updating in response to news can generate correlation in vola-

tility over time (Shalen, 1993). Hence, the cross-market causality in volatility 

indicates information transmission between markets, especially for markets 
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with different sets of investors, i.e., with different information endowment 

and beliefs. Knowledge about the existence of causality in volatility between 

markets can be utilized by investors to better understand the issue of risk 

(Merton, 1980), i.e., to obtain superior estimates and forecasts of risks of 

assets. It can be used in the valuation of financial products such as deriva-

tives, and in hedging techniques (Ng, 2000). The linkages in volatility can 

also allow for more accurate estimates and forecasts of variance-covariance 

matrices, benefiting investors seeking diversification opportunities.

Given the theoretical and practical relevance of spillovers, it should be 

no surprise that there exists a vast number of studies on spillovers between 

national capital markets. Emerging markets are generally found to be 

driven by developed ones (e.g., Bekaert et al., 2005), but some studies indi-

cate that spillovers in returns from emerging to developed countries exist 

during the turbulent periods (e.g., Gebka and Serwa, 2006). Spillovers in 

volatility seem to be a rarer phenomenon; e.g., Bekaert and Harvey (1997) 

and Ng (2000) find the volatility in Pacific Basin countries to be only 

weakly, but increasingly, dependent on volatility in mature markets, and 

Kim (2005) argues that strong spillovers from the United States to Asia 

emerged only after the 1997 crisis.

In addition to spillovers from mature markets, several studies report 

linkages in returns and volatilities between emerging markets, located 

both in one region and on different continents. The general conclusions 

are that substantial spillovers in returns, and to a smaller extent in vol-

atility, can exist between emerging markets located in the same region. 

Linkages between countries from different regions, however, are found 

to be substantially weaker (Edwards and Susmel, 2001; Sola et al., 2002;  

Fuji, 2005; Gebka and Serwa, 2007).

This chapter is organized as follows. We describe the history and insti-

tutional features of the Chinese markets in Section 24.2. Section 24.3 

reviews the hypotheses about the causality between Chinese markets, and 

previous empirical findings are reported in Section 24.4. Methodology to 

test for causality is described in Section 24.5, and data used in this study in 

Section 24.6. We proceed with the presentation of results and their inter-

pretation in Section 24.7. Section 24.8 concludes.

24.2 THE CHINESE STOCK MARKETS
Stock exchanges in China opened in the early 1990s in two locations: 

Shanghai Stock Exchange (SSE) was established in the largest Chinese 

city and an important commercial center in December 1990, followed by 
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the Shenzhen Stock Exchange (SZSE), which opened in the first special 

economic zone in July 1991. SSE started its operations with eight stocks, 

with an annual turnover of US$857 million, and market capitalization of  

US$552 million in 1991. On the SZSE, six companies were initially listed, 

with a total market value of US$1,495 millions, and annual value of trades 

of US$667 million in 1991. Shares of Chinese companies can be issued in 

two forms: nonnegotiable, nontradable shares and negotiable ones, trad-

able on a stock exchange. A substantial fraction of shares are nonnego-

tiable (59% of total equity as of August 2007*). The nonnegotiable shares 

can be further divided into sponsor shares (46% of total equity), shares 

held by the legal persons, and shares owned by the employees (marginal 

fractions). The largest part of nonnegotiable shares is sponsor shares, the 

government being the largest shareholder.

As for the tradable shares, they can be issued as class A, B, or H shares. 

The latter category encompasses shares issued by Chinese companies and 

traded in Hong Kong from 1993 onward. Class A shares are ordinary equity 

shares that until 2002 were available exclusively to Chinese investors and 

traded mostly by individuals in Shanghai or Shenzhen. Companies going 

public are required to issue at least 25% of their equity as tradable A shares 

(Sun and Tong, 2000). B shares are traded either on the SSE (denominated 

in U.S. dollars) or on the SZSE (in HK dollars) and until 2001 could have 

been traded exclusively by foreign inventors. The rights and obligations of 

holders of A and B class shares are identical, as explicitly recognized by 

the passage of the Securities Law of China on June 1, 1999 (Karolyi and 

Li, 2003).

In addition, Chinese companies can issue class S shares tradable in 

Singapore and class N shares tradable at the New York Stock Exchange 

(Chen et al., 2006). Lastly, there are partially state-owned companies 

incorporated and listed in Hong Kong, with the bulk of their businesses 

based in China, referred to as the red chips (Sun and Tong, 2000).

On February 19, 2001, a major reform of the Chinese capital market 

took place, whereby the Securities Regulatory Commission announced 

that Chinese domestic investors with foreign currency accounts would 

be allowed to invest in B stocks previously available only to foreign trad-

ers. Following a suspension of trading and reopening on February 28, a 

surge in the number of investors resulted, thus increasing the trading vol-

ume and prices of class B shares (Karolyi and Li, 2003). Initially, domestic 

* The latest figures are available from the China Securities Regulatory Commission website.
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investors were allowed to buy B shares only if they had had accounts 

denominated in foreign currencies before the opening announcement was 

made. However, this restriction was temporary and was lifted on June 1,  

2001. Due to the nonconvertibility of the Chinese national currency, 

Renminbi, the availability of class B shares traded in foreign currencies 

to Chinese investors is still partially limited. China also introduced the 

Qualified Foreign Institutional Investor (QFII) system in November 2002. 

Effective from December 1, 2002, approved foreign institutional inves-

tors are allowed to trade on China’s domestic capital markets, including A 

markets (Chen et al., 2006).

In 2006, there were 886 and 621 companies listed on the SSE and 

SZSE, respectively (see Table 24.1). Class B stocks constituted only 1.5% 

(3%) of this number for the SSE (SZSE). The total value of companies 

listed in Shanghai was around US$900 billion, of which US$200 billion  

was tradeable. The fraction of B shares in capitalization was 0.7% and 

TABLE 24.1 Shanghai (SSE) and Shenzhen (SZSE) Stock Exchange in 2006

No. stocks 

listed

1,028,393.00 1,012,427.92 15,965.49 586,129.22 568,433.40 17,695.27

No. stocks 

traded (in 

millions)

725,225.34 718,056.78 7,168.56 409,575.59 401,042.34 8,533.13

Value of 

trades in 

stocks (in 

USD 

millions)

206,069.56 199,867.68 6,201.88 107,564.80 97,806.54 9,758.26

Market 

value of 

tradable 

stocks (in 

USD 

millions)

898,273.38 892,071.46 6,201.88 223,168.77 209,427.22 9,978.48

Market 

value of all 

stocks (in 

USD 

millions)

1,028,393.00 1,012,427.92 15,965.49 586,129.22 568,433.40 17,695.27

 
   Shenzhen Stock Exchange Handbook 2006 and Shanghai Stock Exchange 

Handbook 2006, www.sse.com.cn.



462 < Bartosz Gebka

3%, respectively. For the SZSE, the total capitalization amounted to  

US$223 billion, with half of it being the market value of tradable shares. 

The fraction of B shares was higher, at 4.5% and 9%, respectively. The 

number of stocks traded in Shanghai was around 1,000 billion (Shenzhen: 

586 billion), the majority of trades carried out in A stocks (98.5% for SSE 

and 97% for SZSE). The total value of trades was US$5,780 billion in 

Shanghai and US$3,265 billion in Shenzhen, mostly in A stocks (99% 

and 98%).

24.3 REASONS FOR SPILLOVERS BETWEEN 
A AND B MARKETS

The literature identifies several differences between A and B markets that 

potentially result in different speeds of price reactions to news. First, as 

stated above, A shares are traded by Chinese domestic, mostly individ-

ual, investors, whereas the majority of trades in B shares are conducted 

by foreign, institutional investors. Second, trading volume in B shares 

is a fraction of the A market’s volume, making differences in efficiency 

more likely. In addition, trading location can matter, as stocks traded 

in Shanghai are issued by large companies with the bulk of their busi-

ness conducted in mainland China, whereas the B market is dominated 

by small, export-oriented companies (Wang et al., 2004). These differ-

ences could result in different patterns of price behavior across trading 

locations.

There is no agreement in the literature on which market, A or B, is more 

efficient. Some studies argue that foreign investors may receive news about 

the Chinese economy faster than domestic Chinese investors due to the 

information barriers that exist within China (Chui and Kwok, 1998; Xu, 

2000). This would imply quicker adjustment of B prices to news and an 

unidirectional causality from B to A markets. In addition, as trading in A 

(B) stocks is dominated by individual (institutional) investors and stocks 

with high (low) institutional ownership have been shown to lead those 

with high individual ownership (Badrinath et al., 1995), B stocks would be 

expected to lead A stocks.

On the other hand, various studies document the existence of a dis-

count in prices of B shares, especially prior to the 2001 reform (Karolyi 

and Li (2003) report it to be over 75% before February 2001 and to 

have declined to 8% a few months later). It prevailed despite the fact 

that for many Chinese companies listed simultaneously as both class A 

and B shares, both shareholder groups had equal rights to the future 
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cash flows. Various explanations have been given for this phenomenon. 

Foreign investors were argued to have an information disadvantage over 

Chinese firms, relative to local investors, due to language barriers, dif-

ferent accounting standards, and a lack of reliable information sources 

(Brennan and Cao, 1997). Chakravarty et al. (1998) offer a theoretical 

framework that explains the existence of the B price discount with seg-

mentation of A and B markets and the information advantage of domestic 

Chinese investors. In line with theoretical predictions, recent empirical 

studies document the information asymmetry between A and B mar-

kets, with trades in A stocks being more likely to be driven by informa-

tion (Karolyi and Li, 2003; Chan et al., 2008). This would imply causality 

from A to B stock returns and volatilities. Lastly, whereas foreign inves-

tors with access to the world market are well diversified, portfolios of 

domestic investors contain a large fraction of A shares. Consequently, 

developments on the A markets are more important to the total wealth 

of Chinese investors, which generates a stronger incentive for them to 

obtain and quickly react to news. This further suggests higher informa-

tion content of A markets.

As for the liquidity aspect, there is evidence that stocks with higher 

trading volume react more quickly to market-wide information, in 

both mature (Chordia and Swaminathan, 2000) and emerging markets 

(Gebka, 2008). Applied to Chinese data, this effect would be expected 

to result in information spillovers from highly liquid A to less liquid 

B markets, and from SSE to SZSE. On the other hand, higher trading 

volume can be generated by investors trading on noise rather than infor-

mation, potentially resulting in lower information content of trades on 

the market with higher liquidity and in causality from the less (class B 

or SZSE) to more (class A or SSE) liquid market. Indeed, studies on the 

behavior of domestic Chinese investors dominating the A market show 

that they engage in short-term speculations, lack investment knowl-

edge and skills, and consequently underestimate risk and suffer from 

overconfidence (Sun and Tong, 2000; Chen et al., 2004; Mei et al., 2005; 

Wang et al., 2006).

The differences in capitalization can also generate spillovers between 

Shanghai and Shenzhen. Large cap stocks have been shown to lead small 

cap stocks in other countries due to their quicker adjustment to market-

wide news (Chordia and Swaminathan, 2000; Gebka, 2008) and to higher 

quality of cash flow information (Yu and Wu, 2001). Hence, we could 

expect returns and volatility of relatively larger Shanghai-listed companies 
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to have higher information content and to lead stocks issued by smaller 

companies listed in Shenzhen.

24.4 PREVIOUS STUDIES ON CAUSALITY IN CHINA
Depending on the sample period, studies on spillovers between Chinese 

markets fall into three categories. Interestingly, most of the empirical evi-

dence comes from studies investigating an early period of the Chinese 

market development, i.e., 1990–1997. Most authors report the markets for 

B shares to be more informative and lead the A shares in returns (Chui and 

Kwok, 1998; Sjoo and Zhang, 2000; Laurence et al., 1997; Kim and Shin, 

2000). However, the overall evidence is far from conclusive, with returns on 

Shanghai A stocks found to contain information on future returns on other 

stocks (Laurence et al., 1997; Lee and Rui, 2000), especially before 1996 (Kim 

and Shin, 2000). This leadership of one market suggests an informational 

disadvantage of investors trading on a foreign market. The evidence on the 

relative informativeness of the trading locations is also mixed: Laurence et al. 

(1997), Lee and Rui (2000), and Kim and Shin (2000) suggest that Shanghai 

was leading Shenzhen, but Fung et al. (2000) report the opposite. As for the 

volatility spillovers in this early period, Su and Fleisher (1999) find that A 

markets receive more news and react more strongly and more persistently 

to it than B markets. Hence, the higher informational content of trading in 

A shares could imply spillovers in volatility from A to B markets. However, 

empirical studies report no spillovers in volatility between A and B stocks: 

Lee and Rui (2000) find bidirectional volatility spillovers only between B 

shares traded in Shanghai and Shenzhen, and in A stocks from Shanghai 

to Shenzhen. Hu et al. (1997) investigate A shares only and find volatilities 

in both locations to be contemporaneously correlated, but no evidence for 

lagged spillovers between trading venues.

Another set of studies focuses on an extended sample period, i.e., end-

ing after 2000. Chiang et al. (2008) report spillovers in returns from A to B 

markets weaken after 2001, and Wang and Di Iorio (2007) find that A and 

B markets become increasingly integrated after 2000. These results sug-

gest that contemporaneous linkages between A and B stocks increased but 

lagged spillovers became weaker, implying an increase in the efficiency. 

Qiao et al. (2008) also report lagged causality to be less pronounced after 

the 2001 reform. The finding of decreasing informational advantage of the 

A market is in line with the findings of Mei et al. (2005), who suggest that 

domestic Chinese investors trading in A shares speculate more; conse-

quently, their trades are less informative. Chelley-Steeley and Qian (2005) 
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find volatilities of A and B stocks to be contemporaneously correlated, 

but little evidence for integration of A and B markets in general. The evi-

dence on volatility spillovers between Shanghai and Shenzhen is mixed: 

Fabozzi et al. (2004) find volatilities across locations to be independent 

from each other, whereas Zhu et al. (2004) report a causal relation in vola-

tilities in both directions. Qiao et al. (2008) observe nonlinear causality 

in returns from B to A markets before 2001 and in the opposite direction 

after liberalization.

Lastly, studies describing the Chinese markets from the late 1990s 

onward find domestic Chinese investors trading in A shares to be better 

informed and A markets to be more informationally efficient (Fifield and 

Jetty, 2008; Karolyi and Li, 2003), implying that spillovers from A to B 

shares should be observed. However, Yang (2003) reports the B stocks 

traded in Shanghai lead all other markets in returns, whereas spillovers in 

returns from A stocks are limited to the Shanghai market influencing the 

A market in Shenzhen. Accordingly, He et al. (2003) find higher volatility 

of B stocks to be a result of higher informed trading in B stocks.

In summary, the results on spillovers between Chinese markets (A and  

B shares and Shanghai and Shenzhen) are inconclusive. However, a con-

clusion can be drawn that spillovers in returns are observed more fre-

quently than in volatilities. This is a surprising finding, given that the 

theory indicates that volatility should spill over due to differences in infor-

mation availability and prior beliefs. The findings reported in previous 

studies further seem to depend on the methodology used and the sample 

investigated. The latter might suggest that the informational leadership 

can be time varying. In addition, the increasing efficiency of the Chinese 

markets could have resulted in the disappearance of lagged linkages and 

an increase in the contemporaneous linkages between returns and vola-

tility of stocks traded in different locations and by different investors, as 

their prices adjust to news instantaneously rather than with a lag.

24.5 METHODOLOGY
To test for causality in returns and volatility between Chinese markets, we 

employ the procedure of Cheung and Ng (1996). This test is conducted in 

two steps. First, returns on each Chinese market are modeled separately. 

Second, the causality statistics are calculated. Index returns for each 

market (A and B markets in Shanghai and Shenzhen) are modeled as an 

autoregressive process with autoregressive conditional heteroskedasticity 
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(ARCH) in disturbances (Engle, 1982).* Additionally, a variable  repre-

senting external shocks is included into the mean and variance equation. 

Hence, the model is
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where  is the log index return on a Chinese market and  is a mea-

sure of external shocks. These shocks are proxied by index returns from 

a developed market, the choice of which is discussed in the next section. 

Sluggish adjustment to past shocks originating at home is accounted for 

by lagged values of the local stock index returns, . Tests of Engle and 

Granger (1987) and Johansen (1991) show that variables  and  are 

cointegrated for all markets—hence we include an error correction term, 

1, into Equation (24.1). The conditional variance of the error term, , is 

described by an autoregressive conditional heteroskedastic (ARCH) pro-

cess. The error term  represents the component of index returns inde-

pendent of past shocks originating on this market and abroad. They are 

assumed to be independently, identically, and normally distributed with 

zero mean and unit variance.†

The second part of this procedure is a test of causality (spillovers, link-

ages) between returns on indices from Chinese markets. For each of the 

four markets, we estimate the model—Equations (24.1) to (24.3). Next, 

standardized innovations, , are derived. For two markets with index 

returns 1,  and 2, , innovations 1,  and 2,  capture unsystematic return  

components (i.e., independent from past shocks and external effects) 

and are denoted t  and , respectively. They are further used to test for  

* Engle and Ng (1993) tests reject the hypothesis of asymmetric impact of news on volatility for 

all markets analyzed.
† The maximum-likelihood estimates are asymptotically consistent even for nonnormal stan-

dardized innovations (Bollerslev et al., 1994). Moreover, the causality test applied here is 

robust against the nonnormality of error terms.
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causality in returns between markets. The test of Cheung and Ng 

(1996) employed here utilizes the estimations of the cross-correlation  

functions, denoted r, for standardized residuals. Under the null hypoth-

esis no causality between the two markets is present. In particular, there 

is no causality in returns when residuals from the first market, , are 

uncorrelated with residuals from the second market, , at all leads and 

lags ( 0 1 2,, K). The test for the hypothesis of no causality at all 

lags from  to  is performed using the test statistic

 

( , ) ( )2

 

(24.4)

The alternative hypothesis is of causality in returns at some lag .  is 

the sample size and ( )  and ( )  are proxied by the sample cross-

correlation functions. Under the null hypothesis of no causality Equation 

(24.4) has asymptotic 2 distribution with ( 1) degrees of freedom. 

Additionally, the statistic ( , ), i.e., ( , ) for , can be calculated 

to test for causality at a certain lag . The hypothesis of causality in returns 

at the selected lag  is that market 1 ( 1, ) causes market 2 ( 2, ) or mar-

ket 2 ( 2, ) causes market 1 ( 1, ) (for 0).

To test for causality in volatility, Equations (24.1) to (24.3), are reesti-

mated, with lagged returns from another Chinese market as additional 

explanatory variables in Equation (24.1) if the test for causality in returns 

reveals the existence of such causality at any lag . Next, squared innova-

tions for both markets are calculated as 2  and 2. Causality 

in volatility is not present when squared shocks,  and , are uncor-

related at all leads and lags ( 0 1 2,, K ). The null hypothesis of no 

causality in volatility at all lags from  to  is tested using the statistic

 

( , ) ( )2

 

(24.5)

against the alternative hypothesis of causality in volatility at some lag . 

Under the null hypothesis, Equation (24.5) follows asymptotic 2 distri-

bution with ( 1) degrees of freedom. Additionally, to test for causal-

ity at a certain lag , statistics ( , ), i.e., (   , ) for , are used. 

If the statistic S ( , ) exceeds its critical value for a selected lag , then 

market 1 ( 1, ) causes market 2 ( 2, ) or market 2 ( 2, ) causes market 1 

( 1, ) in volatility (for 0).
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The causality in returns (in volatility) reveals that movements in returns 

(volatility of returns) on one market are transferred to returns (volatility) on 

another market. For both tests, contemporaneous (lagged) causality occurs 

when the alternative hypothesis is true for 0  ( 0 ). The approach of 

Cheung and Ng (1996) was demonstrated to have good empirical power 

and size properties. The testing procedure is independent from the speci-

fication of the model and is robust to asymmetric and leptokurtic errors. 

Therefore, it is more robust against misspecification problems that reduce 

the power of tests based on multivariate GARCH models (Hafner and 

Herwartz, 2004). Hong (2001) argued that the Cheung and Ng approach 

suffers from lower power for large lag values . However, we tested for a 

maximum of five lags, which were shown to reduce the test’s power only 

marginally. Also, it has been argued (Van Dijk et al., 2005) that the pres-

ence of specific breaks in volatility decreases the power of the Cheung-Ng 

test. To account for this effect, we use time-varying conditional volatility  

and the moving window estimates with window-specific volatilities.

24.6 DATA
We perform our analysis of daily data on indices for four Chinese stock 

markets, class A and B stocks listed in Shanghai and Shenzhen, obtained 

from Datastream. The sample period is January 1997 to March 2008 and 

excludes the early, most volatile period in the history of these markets. 

Daily index returns are computed as differences in log index values. All 

indices are measured in a common currency (USD). Econometric tests 

reveal that all returns series are stationary.* To obtain an optimal mea-

sure of global shocks, , we estimate Equations (24.1) to (24.3) for each 

Chinese market using different proxies of : returns on Nikkei 500, Hang 

Seng, S&P500, and the MSCI WORLD index (the two latter ones with a 

lag of 1 day). Based on the values of the log-likelihood functions, we infer 

that the Hang Seng index best captures the global shocks in returns and 

volatilities; hence, it is used as variable  in further analysis. The number 

of lags in Equations (24.1) and (24.3) is set to be equal to 5, i.e., = = 

= = 5, to allow for sluggish adjustment to news and to account for day-

of-the-week effects.

* We use the augmented Dickey and Fuller (1979) test, the Philips and Perron (1988) test, and 

the augmented weighted symmetric test (Pantula et al., 1994) to test for the presence of unit 

roots.
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24.7 RESULTS
Results from tests for causality in returns after controlling for the impact of 

global shocks are reported in Table 24.2, Panel A. The numbers reported 

indicate the lag at which causality is present, e.g., for spillovers from Shanghai 

A to Shenzhen B, numbers 0, 1, and 4 indicate that there were significant 

links between these markets at lag 0, and lagged causality from Shanghai A to 

Shenzhen B with a 1- and 4-day delay (test statistic given by Equation (24.4) is 

significant at lags (= = ) equal to 0, 1, and 4). In addition, the notation 1–5 

indicates that the test for joint lagged causality in returns (lags 1 to 5) reports a 

significant result (test statistic given by Equation (24.4) is significant at lags = 

1 to = 5), and hence lagged causality from Shanghai A to Shenzhen B exists.

TABLE 24.2 Results from Causality in Returns and Causality in Variance Tests

Shanghai A 0***, 1*, 3** 0*** 0***, 1**, 4*

1–5* 1–5*

Shanghai B 0*** 0*** 0***, 3*, 4**

1–5*

Shenzhen A 0*** 0***, 3* 0***, 1*

Shenzhen B 0*** 0*** 0***

Shanghai A 0***, 3* 0*** 0***

Shanghai B 0*** 0*** 0***, 3**, 5*

1–5*

Shenzhen A 0*** 0***, 3* 0***

Shenzhen B 0***, 4* 0*** 0***

ft

Shanghai A 0*** 0*** 0***, 1*

Shanghai B 0*** 0*** 0***, 4**

Shenzhen A 0*** 0*** 0***

Shenzhen B 0*** 0*** 0***
 

 ***, **, and * indicate significance at the 1%, 5%, and 10% levels, respectively.
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For the whole sample, significant contemporaneous causality (i.e., at lag 

 = 0) in returns is present for all market pairs. However, the direction 

of causality cannot be detected here, as it might indicate reactions of one 

market to shocks originating in another, or from bidirectional causality. 

Significant contemporaneous causality could have been expected as prices 

of Chinese companies, regardless of their listing venue and form (A- or 

B-type share), should react to the same macroeconomic news about the 

Chinese economy. It is also possible that the intraday adjustment speed to 

news differs across markets, but it cannot be investigated using daily data.

Turning our attention to return spillovers at higher lags, the following 

observations can be made. First, there are several instances of causality 

from A to B markets, but no lagged causality in the opposite direction. 

This finding can imply that the A markets are more informationally effi-

cient than the B ones and adjust quickly to new information, whereas 

prices of B stocks require several days to incorporate the same news. 

Hence, the lead-lag relationship between A and B stocks emerges. Second, 

instances of news originating in Shanghai and spilling over to Shenzhen 

with a time-lag seem to be more numerous than instances of news being 

transmitted from Shenzhen to Shanghai. In particular, the highest num-

ber of significant spillovers originates on the Shanghai A market, whereas 

B stocks listed in Shenzhen seem to be most sensitive to spillovers from 

other markets. In addition, there is significant causality from B stocks 

traded in Shanghai to B stocks in Shenzhen, indicating that the Shanghai 

market is more efficient than the Shenzhen one.

We also compare the causality results for two subsamples, for the peri-

ods prior to and following the reform of February 19, 2001, when domestic 

investors were allowed to trade in B shares in addition to A shares. The 

results are reported in Table 24.2, Panels B and C. For the period prior 

to the reform, we find spillovers in returns from A to B shares to be more 

numerous than in the opposite direction, suggesting greater informational 

efficiency of the A markets. Furthermore, the Shenzhen traded stocks 

appear to be slightly more informative for the Shanghai traded ones than 

vice versa. The Shanghai B segment is sensitive to changes in stock prices 

elsewhere on A markets, but leads the Shenzhen B market itself.

After the 2001 reform, several changes in cross-market causality 

occurred. First, after allowing domestic Chinese investors to trade in 

B shares, the causality from A to B markets seems to have become less 

pronounced: Shanghai B market is not driven by the A markets and 

Shenzhen B stocks started to react to returns on the SSE A index instead. 
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This may be due to the fact that trades by Chinese investors, which are 

more informative, have partially moved from A to B markets, so that A 

markets lost some of the informational advantage over B markets that 

they used to have when domestic and foreign investors were separated. 

Another change is that the informational leadership of Shanghai over 

Shenzhen seems to have risen, as there are no lagged spillovers from 

Shenzhen to Shanghai following the 2001 reform. The overall evidence 

also suggests that efficiency increased in the 2001 onward period, as 

indicated by the smaller number of lagged linkages between the mar-

kets. A possible interpretation of this finding is that each market reacts 

to news originating on other markets within a day rather than with a 

time lag, and hence hardly any causality beyond the contemporaneous 

linkages can be observed.

We also conduct tests for spillovers in volatility between Chinese 

markets, while controlling for spillovers in returns as identified before, 

and for the impact of global shocks in both returns, , and volatility, 
2 . We find significant contemporaneous linkages in volatility for all 

market pairs. For lagged causality in volatility, however, no significant 

results can be observed. These patterns of causality are further identical 

for the pre- and postreform period. This finding corresponds to previ-

ous studies reporting significant lagged spillovers in returns but failing 

to find significant cross-market lagged causality in volatility. The over-

all evidence may indicate that information transmitted via volatilities is 

accommodated quickly by other markets, but it can take more than one 

day for those aspects of news carried over by returns to be priced.

To further investigate the changes in causality in returns and volatil-

ity between the Chinese stock markets, we conduct the analysis using the 

Cheung and Ng (1996) methodology for a moving annual estimation win-

dow. Specifically, we estimate Equations (24.1) to (24.3) and test for causality 

in both returns and volatility for a window of 250 days (corresponding to 1 

year), and moving this window by 21 days (roughly 1 month) in each step. 

This procedure results in a time series representing the values of Cheung and 

Ng’s (1996) test statistics given by Equations (24.4) and (24.5). Specifically, 

we are interested in the contemporaneous causality (captured by ( , )0 0  

and ( , )0 0 ) and joint lagged causality (captured by ( , )1 5  and ( , )1 5 )  

for each pair of the Chinese markets. To formally analyze the changes of 

causality over time, we estimate two types of regressions:

 0 1  (24.6)
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and

 0 1 2 3  (24.7)

where  is one of the causality statistics, i.e., { ( , )0 0 , ( , )0 0 , 

( , )1 5 , ( , )1 5 }, and captures the strength of the contemporaneous or 

lagged causality (as measured by the statistics S(0,0) and S(1,5), respec-

tively).  is a dummy variable that equals 0 prior to the February 19, 2001, 

reform and 1 thereafter, and t is the time trend. Hence, Equation (24.6) 

measures the difference in the average strength of causality between each 

market prior to and following the reform: ˆ
0  describes the average causal-

ity strength before the reform, ˆ ˆ
0 1 thereafter, and ˆ

1
 indicates how the 

causality changed due to the reform. Equation (24.7) allows the causality 

to evolve over time, and allows this evolution to change around the reform 

date. The trend before the reform is described by ˆ ˆ
0 2 , with ˆ

2  being 

the estimate of the speed in changes of causality between two markets. 

After the reform, this trend is allowed to change to (ˆ ˆ ) (ˆ ˆ )0 1 2 3 ,  

with the postreform speed being equal to ˆ ˆ
2 3  and ˆ

3  capturing the 

impact of the reform on the speed of changes in causality.

Given the increasing volume of trading and quality of information avail-

able to more sophisticated investors, one could expect the market efficiency 

to improve over time. Specifically, the strength of contemporaneous cau-

sality, S(0,0), should increase over time, hence ˆ
1  and both ˆ

2 and ˆ ˆ
2 3  

would be positive and significant. Further, lagged causality, S(1,5), could 

have decreased or increased. The former effect potentially occurs if informa-

tion adjustment speeds up and causality recorded at higher lags at the begin-

ning of the sample tends to occur during the same day as time proceeds. The 

latter is possible if causality is slow at first and tends to occur at lags higher 

than 5 but speeds up later on and is captured by the statistic for lags 1 to 5.

In addition, if the reform had improved informational efficiency of 

one market (e.g., B markets due to increased trading by better informed 

domestic Chinese investors), we would expect the informational content 

of, and hence causality by, other markets to be less pronounced in the 

period after February 19, 2001. Hence, a shift in causality from lagged to 

a contemporaneous one should be observed, resulting in positive ˆ
1  in 

regressions with S(0,0) as the dependent variable. Further, if the reform 

increased at the speed at which the markets’ efficiency increases, ˆ
3  in 

regressions with S(0,0) should be positive as well.

The results for changes in contemporaneous causality in returns and 

volatility over time are reported in Table 24.3. In panel A, the results for 
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Equation (24.6) for causality in returns at lag 0 (denoted S(0,0)) and 1–5 

(denoted X to Y and Y to X) are presented. A and B markets in Shanghai 

and Shenzhen are denoted as SHA, SZA, SHB, and SZB, respectively. For 

the contemporaneous causality in returns, all but one ˆ
1  parameter are 

positive and significant, indicating that the strength of contemporane-

ous linkages increased for all market pairs following the reform of 2001. 

Hence, Chinese markets seem to have become more informationally effi-

cient. For causality at lags 1–5, only five results are significant, and all of 

them negative. This indicates that lagged causality decreased, which can 

be interpreted as evidence of improving efficiency. The results further sug-

gest that returns on SSE A index partially lost their information content 

(as other markets depend on them to a smaller extent), and that SSE B 

market’s efficiency increased (as it depends less on other markets). This is 

in line with a decreasing information advantage of A markets as reported 

in Table 24.2.

Table 24.4, Panel A reports estimation results for Equation (24.7) 

for causality in returns at lags 0 and 1–5. For the prereform era, we can 

observe an upward trend in the strength of contemporaneous causality 

between Chinese markets, as indicated by the positive and significant ˆ
2.  

However, negative and significant ˆ
3  indicates that this effect became less 

pronounced after the reform. Hence, although the reform was aimed at 

increasing the efficiency of the Chinese stock markets, the growth rate in 

efficiency actually diminished. However, this result might be due to the fact 

that the efficiency level was relatively high prior to 2001, so that additional 

improvement was more difficult to achieve. With no reform, the growth 

in efficiency could have been even slower. Further, even if weaker, the 

postreform growth in efficiency is still positive in most cases ( ˆ ˆ
2 3  > 0).  

When looking at changes in efficiency at lags 1–5, however, we discover 

five significant cases of increasing lagged adjustment speed ( ˆ
3  > 0). 

Combined with decreasing speed at lag 0, this finding could suggest that 

the overall efficiency of mostly B markets started improving in the postre-

form period, as they were increasingly more able to predict A markets at 

lags higher than 0. However, given the fact that most lagged causalities are 

insignificant in the postreform era, this effect does not seem to be of any 

economic relevance. To summarize, the findings indicate slower but still 

positive improvements in efficiency of Chinese markets following the 2001 

reform, especially of class B stocks.

We also analyze changes in causality in variance over time, with results 

for Equation (24.6) estimated for causality in variance at lags 0 and 1–5 
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shown in Table 24.3, Panel B. Contemporaneous causality between all but 

one market pair improved after the 2001 reform, as indicated by positive 

and significant parameters ˆ
1. As for the differences in lagged causality, 

the results for most market pairs are insignificant. Hence, the overall evi-

dence is that of increased efficiency of the Chinese markets, as they rely 

less on the lagged volatility of their counterparts.

Table 24.4, Panel B reports estimation results for Equation (24.7) for 

causality in volatility at lags 0 and 1–5. In the prereform era, most of the 
ˆ

2  estimates in regressions with S(0,0) as a dependent variable are posi-

tive and significant, suggesting that there was an increase in the strength 

of contemporaneous causality in volatility over time. Further, this trend 

seems to have continued after February 19, 2001, as all but one ˆ
3  estimate 

are insignificant. Only for the causality between Shanghai and Shenzhen 

A markets can we observe a decline in contemporaneous linkages and 

an increase in lagged volatility causality following the reform, suggest-

ing deteriorating efficiency of these two biggest Chinese markets. A closer 

look at the time series behavior of test statistics S(0,0) and S(1,5) reveals 

that the increase in the latter is due to its high values at the sample’s end. 

This might be due to the arrival of uninformed speculators and a loss in 

informational content of prices resulting therefrom. However, the over-

all lagged causality in volatility is not significant, as reported above, so 

these effects are of marginal magnitude. Overall, the evidence suggests 

that linkages in volatility at lag 0 have been improving over time, but the 

2001 reform had no noticeable impact on this process.

24.8 CONCLUSION
The results presented in this chapter allow us several insights into the 

functioning and evolution of the Chinese stock markets. First, there is sub-

stantial evidence of the causality in returns, with A markets, dominated 

by domestic individual Chinese investors, being more informationally 

efficient than their B-type counterparts, which are dominated by foreign 

institutional investors. In addition, the overall evidence suggests that the 

efficiency of both market types is improving over time. Further, B markets 

seem to be losing their informational disadvantage as compared to the A 

markets, which coincides with the reform of 2001 allowing Chinese inves-

tors to trade in B-type shares. The location of trades also seems to matter, 

with returns on stocks traded at the SSE having more predictive power 

for the SZSE-listed stocks than vice versa in the post-2001 reform era 

(and the opposite effect before). Lastly, the results indicate that causality 
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in volatility takes place within 1 trading day for all market pairs and is 

improving over time.

These findings indicate that the Chinese domestic investors trading 

predominantly in class A stocks have had an informational advantage 

over foreigners trading in B stocks, as the returns on the former lead those 

on the latter. This is in line with findings by Karolyi and Li (2003), Chan 

et al. (2008), and others. Even if foreign investors are mostly institutions 

and domestic ones are individuals, and institutional investors have been 

shown to be better informed (Badrinath et al., 1995), these results indicate 

that the location of an investor and knowledge of local language can also 

matter. Further, markets with higher capitalization and liquidity (class 

A and the SSE) lead those with a lower total value of assets and trading, 

despite documented irrationality of Chinese traders. Hence, the findings 

reported from other countries that size and liquidity improve efficiency 

are confirmed for the Chinese markets. Moreover, the predictive power 

of Shanghai over Shenzhen-listed companies could be due to the fact that 

the latter are export oriented and less sensitive to the domestic events, and 

hence the fact that their holders pay less attention to China-specific news 

and react to it with a time lag. Lastly, only contemporaneous causality in 

volatility was found, suggesting that traders acting on different markets 

differ in their beliefs and knowledge but learn quickly from other inves-

tors’ reactions to news.

The existence of spillovers in returns, mostly from the SSE-listed 

and class A stocks, indicates that returns of B shares and those traded 

in Shenzhen are partially predictable. This finding could be of interest 

to portfolio investors, as it creates potential for obtaining excess returns. 

Also, these slower than instantaneous adjustments of asset prices across 

markets suggest that return correlation is less than perfectly positive. 

Hence, when investing in Chinese companies, potential diversification 

benefits are possible by spreading the capital widely across class A and B 

stocks and the SSE and SZSE, rather than investing in only one type of 

shares listed on one stock exchange. As the linkages in volatility are con-

temporaneous, no predictability is possible, although causality at higher 

frequencies (intradaily) could still be possible. However, the knowledge 

of significant correlations in volatilities across markets implies the exis-

tence of commonalities in risk, and could be utilized for improved esti-

mation of asset risk, to be used in the valuation of assets themselves, e.g., 

in the CAPM type of models, and of derivatives. Further, it could help in 

the estimation of variance-covariance matrices used in statistical testing 
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procedures. However, investors should also be aware of the time-varying 

nature of the causality among the Chinese markets.

The results show that the efficiency of the Chinese markets has been 

increasing over time, which can be at least partially attributed to the liberal-

ization process, including the 2001 reform. This confirms that the legislative 

changes have been heading in the right direction, as they have improved the 

allocation of scarce financial resources within the Chinese economy. The 

existence of lagged causality in returns suggests that the adjustment of prices 

to news is still sluggish, and hence further reforms are necessary. Educational 

measures to increase investors’ knowledge, and hence reduce noise trading, 

could also contribute to the goal of improved market efficiency.
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25C H A P T E R  

Optimal Settlement Lag 
for Securities Transactions
An Application to Southeast 
Stock Exchanges

Marco Rossi and Raphael W. Lam

25.1 INTRODUCTION
An asset is considered liquid either if it trades in a market with a suffi-

cient number of participants to allow purchases and sales on short notice 

at prices near the contemporaneous equilibrium value of the instrument, 

or if the asset’s equilibrium value is unlikely to change substantially over a 

given time interval. Trading costs potentially affect the investor’s capacity 

to convert a certain asset, as cheaply and risklessly as possible, into a means 

of payment whose wide acceptability can ensure finality of payment. In 

short, these costs reduce, , assets’ liquidity, and can therefore 
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substantially affect an investment strategy, including the optimal portfolio 

turnover and trade location.

The microstructure of equity markets is key in assessing the size of 

trading costs and determining the liquidity of a given asset. This chapter 

focuses on one specific feature of the microstructure of equity transac-

tions: settlement.* With the surge in trading activities, including cross-

border, since the early 1980s, increasing attention was paid to managing 

risks in clearing and settlement systems, which had become more complex, 

particularly in the aftermath to the October 1987 market break. Several  

recommendations—most notably by the Group of Thirty (G-30, 1989)—

started to be implemented in the early 1990s to facilitate the setting of 

industry standards, including guidelines about position limits, collateral 

and mark-to-market requirements, netting procedures, borrowing and 

lending facilities, guarantee/clearing funds, and finality of transaction. 

Technological advances and the recognition that the efficiency and secu-

rity of the clearing and settlement mechanism affect the attractiveness of 

national financial centers and their ability to compete with other centers 

in the region have moved stock exchanges toward settlement systems, 

which incorporate many of the recommended features and, in particular 

from this chapter’s perspective, the requirement that delivery and payment 

occur simultaneously and with short delays, generally a few days.

Immediacy, however, while an effective risk reduction tool, may also 

entail costs, as a participant’s ability to settle depends on its liquidity posi-

tion at any point in time, which in turn is affected by its trading activities, the 

liquidity of the local interbank market, and its ability to tap it efficiently. 

This chapter develops an analytical framework to assess the optimal delay 

to settle securities transactions, where  means that a longer (shorter) 

delay would generate too high risks (costs). It points out that credit and 

liquidity risks, stock price volatility, and money markets liquidity are all ele-

ments of a cost-risk trade-off. As an application of the framework to the spe-

cifics of local markets, the chapter reports illustrative numerical examples 

for several stock exchanges in the Asian and Pacific region (Table 25.1).

The chapter is organized as follows. Section 25.2 discusses the various 

risks associated with securities trading, and the costs involved in mitigat-

ing these risks. Section 25.3 presents an analytical framework to consider 

the trade-off between risks and costs and shows that the optimal settlement 

* Dealing costs, information disclosure requirements, research, and other services are important 

factors in attracting securities transactions to a particular stock exchange.
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lag for securities transactions ultimately depends on the parameters that 

characterize that trade-off. The numerical examples reported in Section 

25.4 show that different settlement lags across stock exchanges are war-

ranted by the specifics of the local capital market. Section 25.5 concludes.

25.2 RISKS AND COSTS IN SECURITIES 
SETTLEMENT SYSTEMS

Trading is a process that involves a series of specific risks and costs. The 

process is relatively straightforward. First, two counterparts, willing to 

trade, agree on the terms of the transaction. Then, trade matching and its 

confirmation by market makers’ clients prepare the ground to trade clear-

ance, and the respective obligations of counterparts to deliver the asset or 

settle the transaction on a certain date are determined. Finally, the dis-

charge of those obligations occurs with the final transfer of securities from 

the seller to the buyer (delivery) and the final transfer of funds from the 

buyer to the seller (payment). Settlement lag refers to the time interval 

between when the trade is confirmed and when it is settled.

TABLE 25.1 Settlement Systems in Selected Asia-Pacific Stock Exchanges

Australia Australian Securities Exchange (ASX) T  3

China Shanghai Stock Exchange (SSE) T  3

Shenzhen Stock Exchange T  3

Hong Kong SAR Hong Kong Stock Exchange (HKSE) T  2

India Bombay Stock Exchange Limited (BSE) T  3

National Stock Exchange of India (NSE) T  3

Indonesia Indonesia Stock Exchange (IDX) or 

Jakarta Stock Exchange
T  4

Korea Korea Stock Exchange (KRX) T  2

Malaysia Malaysia Exchange (MYX) or Kuala 

Lumpur Stock Exchange
T  3

Singapore Singapore Exchange (SGX) T  3

Taiwan, Province of China Taiwan Stock Exchange (TSE) T  2

Thailand Stock Exchange of Thailand (SET) T  3

United Kingdom London Stock Exchange T  3

United States New York Stock Exchange (NYSE) T  3

Nasdaq Stock Exchange T  3

Japan Tokyo Stock Exchange T  3

 Rhee (2000); various stock exchanges.

T refers to the date of the transaction.
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Settling securities transactions takes time, and therefore involves risks 

between the moment the transaction is effected and the moment it is set-

tled.* Only when delivery and payment have occurred is the trading process 

completed, the uncertainty about the “good end” of the transaction resolved, 

and risks eliminated. These risks include operational risk (the risk of a tech-

nical break-down), third-party credit risk (the risk that a third party to a  

transaction—a settlement bank or agent—fails during the settlement process), 

and counterparty risk (the risk of a party to the transaction to fail to deliver 

either the securities or the funds at time of settlement). This latter is the focus of 

this chapter, as counterparty risk is what risk management systems are designed 

to contain more specifically in view of its potential systemic consequences.†

The types and sources of risks to counterparts in securities transactions 

are very much the same as those arising from foreign exchange trades. If 

an obligation is not settled for full value, the counterparts to the transac-

tion incur a credit loss. Credit risk in settlement systems comprises (1) the 

risk of loss on unrealized gains (replacement cost risk) and (2) the risk of 

loss of securities delivered or funds paid to the defaulting party just before 

the failure is detected (principal risk).

Replacement cost risk refers to the possibility that a defaulting participant 

can produce losses to his counterpart by forcing the latter to sell or buy securi-

ties at the market price instead of at the contract price previously agreed. For 

example, the seller is exposed to a replacement cost loss if, in case the original 

transaction fails to settle properly, the market price at which he or she would 

need to sell the securities is lower than the original contract price. In this 

example, the buyer would profit as the market has moved in his or her favor 

since the original transaction failed to settle. Losses on unrealized gains on 

unsettled transactions clearly depend on the behavior of market prices (price 

volatility), and therefore the time necessary to complete settlement.

Principal risk is the risk that a buyer makes the payment but does not 

receive delivery of the securities, or that a seller delivers the securities but 

does not receive payment for them. In other words, it stems from unsyn-

chronized payment and delivery. Failure to settle would imply the loss of 

the full value of securities or funds (value of the transaction) that have 

been transferred to the defaulting party.‡

* See Bank for International Settlements (1992) for a discussion of the types and sources of 

risks in settling securities transactions. Also see Bank for International Settlements (2006).
† See Organization for Economic Cooperation and Development (1991).
‡ Analogous to principal risk is cross-currency settlement risk in foreign exchange settlement, 

or Herstatt risk from the failure of Bankhaus Herstatt in 1974.
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Reasons may vary as to why a party may not be able to settle an agreed 

transaction fully at the agreed time. It could be the case that a party’s inability 

to settle is technical and temporary (liquidity shortage) or permanent (sol-

vency). Irrespective of the reason, unwinding a transaction is costly.* Even in 

the arguably unlikely situation in which it is possible to clearly and immedi-

ately determine that illiquidity is the cause of the failed transaction (hence, 

avoiding systemic consequences), traders would still need to restart the pro-

cess, that is, to find a third party and complete the intended transaction on 

newly agreed terms. As this takes time and the result is uncertain, traders—at 

least one side to the trade—are likely to bear some costs, including replacement 

and liquidity costs, the latter referring to the fact that the liquidity expected to 

be obtained through the failed trade would need to be raised elsewhere.

One way to reduce these risks and costs has been to shorten the settle-

ment lag, which, however, imposes other costs on traders. As settlement 

of securities trades implies a transfer of funds and securities from one 

account to another, there is a need for traders to maintain cash and securi-

ties balances, or to be able to tap a well-functioning local interbank market 

efficiently. An effort to reduce the opportunity cost of maintaining high 

cash/securities balances to support a given level of transactions or an illiq-

uid interbank market could result in higher rates of failed transactions. 

Transactions failures would, in turn, increase replacement cost and liquid-

ity risks by randomizing the expected funds/securities balances at the end 

of the settlement process. A trade-off between the costs of reducing the 

settlement lag and those implied by a settlement failure clearly emerges.

In addition to the risks and costs for the individual trader, one party’s 

failure to settle a transaction may generate risks and costs of a systemic 

proportion as the other party to the transaction may fail to settle other 

transactions and trigger a typical domino reaction. Below, the focus is on 

the risks and costs of settling transactions for an individual party rather 

than for the system as a whole.

25.3 THE ANALYTICAL FRAMEWORK
This section, which builds on Rossi (1994), brings together the various ele-

ments of risks and costs involved in settling securities transactions into an 

analytical framework that could be used to derive the optimal settlement 

* Some stock exchanges require all transactions to be unwound in case of a settlement 

failure.
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lag, that is, the time interval that minimizes the costs associated with the 

settlement process.

The first step is to define the probability, ( ), that a party to a trans-

action fails to settle—becoming illiquid or insolvent—after a transaction 

has been agreed, since most of the costs discussed above are contingent 

on such an event. This probability is likely increasing in the settlement lag 

and can be expressed as

( )  1  (1  )  (25.1)

where 0    1 is the instantaneous probability of default. The longer 

the settlement lag, the higher the probability that a default event occurs 

stemming from a party’s other trading and financial activities or from the 

impact of other parties’ defaults.

The replacement cost is computed by comparing the contract price of a secu-

rity with its market price. Losses on unrealized gains depend on the behavior 

of spot prices during the settlement period. As typical in the literature, market 

prices are assumed to follow a geometric Brownian motion with drift:

     (25.2)

where  is a Wiener process. It is possible to show that ( ) is described by a 

lognormal distribution whose expected value and variance are, respectively:

[ ( )]    (25.3)

 [ ( )] ( )2 2 2
1  (25.4)

where , the expected rate of return, and , the standard deviation, are 

both constant.

The replacement cost is measured as the variance of the difference 

between the contract price (0) at the time,  0, the trader decides to 

effect the transaction and the market spot price ( ) realized on that trade 

at the time of settlement .*

[ ( )  (0)] (25.5)

Given Equation (25.4), the replacement cost is

 ( ) ( )[ ( )]2 2 2
1  

(25.6)

*  indicates the length of time between execution and settlement of the transaction,   0 

being the execution date.
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The cost associated with principal risk can be measured by

  ( )  (25.7)

where  is the value of the transaction.*

The cost associated with credit risk is the sum of replacement cost and 

the cost associated with principal risk:

 ( ) ( )[ ( )]2 2 2
1  

(25.8)

which is an increasing function of the settlement lag , both directly and 

through the probability of default ( ).

To reduce the probability of being unable to settle a transaction, trad-

ers maintain cash and securities balances at a cost (opportunity cost). The 

more quickly traders are able to tap the money and securities lending mar-

kets at reasonable terms, the weaker the need to maintain such balances, 

hence reducing the transaction cost associated with settlement. The longer 

the settlement lag, the easier liquidity can be obtained even in relatively 

illiquid money markets, and the lower the cost of holding reserves.

The cost of holding reserves can therefore be expressed as a declining 

function of the settlement lag:

 
( )

1  
(25.9)

where  is a constant term.

The optimal settlement lag for securities transactions can be derived by 

minimizing the total cost of settlement—obtained as the sum of the vari-

ous cost items discussed above (Panel 1 in Figure 25.1)—with respect to .

     
( ) [ ( ) ][ ( )]1 1 12 2 2

1  
(25.10)

The first-order condition with respect to  is

        

2 2 21 1 2 2
2 2

[ ( ) ][ ] ( )a 0

1 1 1 02 2 2
( ) ln( )[ ( ) ] ( )

 

b

(( )
( )

1
0

2
c

 

(25.11)

* See Angelini and Giannini (1993) and Stevens (1998).
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The sign of this partial derivative changes over the domain for . There 

exists a trade-off between the credit risk and liquidity risk components. For 

small , the opportunity cost effect ( ) offsets the credit risk cost ( ) and 

( ), implying a negative relationship between the total cost and the settle-

ment lag. However, as  increases, the opportunity cost effect ( ) becomes 

more negligible and dominated by the rising credit risk cost, implying the 

Settlement lag

Costs

Total settlement cost
Replacement cost
Opportunity cost

Panel 1: 
Settlement cost and its component

Panel 2: 
Effect of a rise in default probability (q)

Settlement lag

Costs

Total settlement cost

Replacement
cost

Opportunity cost

T**            T*

Settlement lag

Costs

Total settlement cost

Replacement cost

Opportunity cost

T**              T* Settlement lag

Costs

Opportunity costReplacement
cost

Total settlement
cost 

T**         T*

Panel 4: 
Effect of a rise in expected return (μ)
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Replacement
cost

Opportunity cost

T**             T*

Panel 5: 
Effect of a rise in volatility (σ)

Settlement lag
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Opportunity cost
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T*         T**

Panel 3: 
Effect of a rise in value of transaction (P)

Panel 6: 
Effect of a rise in opp. cost (A)

Source: Authors’ calculations.

FIGURE 25.1 Settlement costs, settlement lag, and comparative statics.



Optimal Settlement Lag < 491

marginal settlement cost is rising with the settlement dates. The optimal 

settlement lag * may be solved by setting Equation (25.11) equal to zero.

A rise in the value of transaction ( ), probability of default ( ), stock price 

( ), expected return ( ), and the spot price volatility  increases, 

, the cost components of the total settlement cost related to credit risk. An 

increase in , on the other hand, increases the opportunity cost component 

of the total settlement cost. This is shown by the first partial derivatives:

 

[ ( ) ]

[ ( ) ][

1 1 0

1 1 2 2 ( )]

[ ( ) ][ (

2

2

1 0

1 1 2 12 ))]

[ ( ) ][ ( ) ]

0

1 1 1 2 02 2 2

2

2 21 1 0

1

1

2
[ ( ) ][ ]

00
 

(25.12)

The impact of the probability of default ( ), the value of the transaction ( ), 

the expected rate of return ( ), and the spot price volatility ( ) on the opti-

mal settlement lag ( *) and the settlement lag ( ) can be obtained using 

the implicit function theorem. These comparative statics effects are shown 

in Panels 2–6 in Figure 25.1. An increase in , , , and  will increase 

credit risk, and hence the total settlement cost. As long as the marginal 

increase in credit risk is increasing with settlement time, it reduces the 

optimal settlement lag from * to ** (the total cost function shifts left-

ward). By contrast, an increase in  lengthens the optimal lag from * to 
** (the total cost function shifts rightward).

25.4 AN APPLICATION TO STOCK EXCHANGES 
IN THE ASIAN AND PACIFIC REGION

The surge in cross-border transactions and integration of financial mar-

kets across the Asian and Pacific region have made investors more aware 

that operational support systems, like clearing and settlement mecha-

nisms, form a critical part of the effective capital market.
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Rhee (2000) provides a comprehensive survey of the risk management 

systems of clearing and settlement mechanisms in equity markets across 

the Asian and Pacific region, but does not provide an analytical framework 

in addressing the optimal settlement process across stock exchanges.

Braeckevelt (2006) observes that the clearing and settlement infrastruc-

ture in Asia is very fragmented. The infrastructure is not cost-efficient and 

does not mitigate risks in the settlement process in a comprehensive man-

ner. He also suggests that given capacity constraints, Asian stock mar-

kets may need to introduce a gradual rationalization of the domestic and 

regional infrastructure to develop fully integrated U.S.- or European-style 

clearing and settlement systems.

The analytical framework proposed in the previous section is used 

here to provide optimal settlement lags for twelve stock exchanges in the 

region, including both industrialized economies and emerging markets 

(Table 25.2). The numerical examples illustrate that the optimal settlement 

lags in these stock exchanges may vary depending on the volatility of stock 

prices, trading costs, and market liquidity.

Data to estimate the few parameters that are necessary to produce 

these numerical examples are collected from CEIC, Datastream, and the 

International Financial Statistics. The data on stock exchanges contain 

market indices, market capitalization, trading volumes, and the num-

ber of existing and newly listed securities over the sample period from 

January 1990 through March 2008. The data indicate that average returns 

and volatility vary remarkably across stock exchanges. For example, 

stock markets in Shanghai and Shenzhen recorded an average return of 

over 25% during 2000–2007, which was more than double the average 

returns for the industrialized economies. The average annual growth in 

market capitalization exceeded 17%, with the value of transactions ris-

ing at a similar pace. The default or fail transactions rate has remained 

low during the sample period, at less than 5% on average, according to 

the BIS (2002, 2006).

In the numerical examples, a probability of default of 1% for industrial-

ized countries and 5% for emerging market economies are used. Parameters 

on return ( ), volatility ( ), and the value of transaction ( ) are proxied by 

averages calculated for each stock exchange. The opportunity cost of hold-

ing cash/securities balances ( ) is proxied by the average deposit rate.* This 

* See Bekaert et al. (2007) and Aitkena and Comerton-Forde (2003) on different measures  

of liquidity.
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rate remained low at about 2.2%, except in India and Indonesia, where it 

is above 6%. The interbank rates at short maturity across economies were 

about 3%, where the interbank rate for India has been at 7% on average. 

For each stock exchange, Table 25.3 reports the estimates that are used to 

proxy the parameters of the analytical framework.

The numerical results, reported in Table 25.4, suggest that the optimal 

settlement lags for securities transactions at these twelve stock exchanges 

in the Asian and Pacific region are broadly in line with international 

best practices. In particular, the optimal settlement lags range from 2.7 

to 4.6 days, with generally longer lags for securities transactions affected 

in emerging markets economies. These illustrative results show that 

local practices—most of the twelve stock exchanges have already imple-

mented the T  3 or less settlement practice—may be more ambitious than  

TABLE 25.2 List of Selected Asia-Pacific Stock Exchanges

Australia Australian Securities Exchange 

(ASX)

S&P/ASX 200

China Shanghai Stock Exchange (SSE) Shanghai Composite Index

Shenzhen Stock Exchange Shenzhen blue-chip composite 

index

Hong Kong SAR Hong Kong Stock Exchange (HKSE) Hang Seng Index

India Bombay Stock Exchange Limited 

(BSE)

BSE SENSEX

National Stock Exchange of India 

(NSE)

Standard & Poor’s CRISIL NSE 

Index 50 (S&P CNX Nifty)

Indonesia Indonesia Stock Exchange (IDX) 

or Jakarta Stock Exchange

JSX Composite

Korea Korea Stock Exchange (KRX) Korean Composite Stock Price 

Index (KOSPI)

Malaysia Malaysia Exchange (MYX) 

or Kuala Lumpur Stock Exchange

Kuala Lumpur Composite Index 

(KLCI)/FTSE Bursa Malaysia 

Index

Singapore Singapore Exchange (SGX) Straits Times Index

Taiwan, Province 

of China

Taiwan Stock Exchange (TSE) Taiwan Capitalization Weighted 

Stock Index

Thailand Stock Exchange of Thailand (SET) Stock Exchange of Thailand 

(SET) Index

 Various stock exchanges.
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warranted by the reality of local markets and the trade-off between credit 

risk and opportunity cost (Panel 1 in Figure 25.2).

The numerical results also suggest that, across stock exchanges, credit 

risk is a significant component of the total settlement cost, while the 

opportunity cost accounts only for between 10% (industrialized econo-

mies) and 26% (emerging markets economies) of the total settlement cost, 

as the former have generally more liquid money markets.

Despite the relatively small share of opportunity costs in total settle-

ment costs, shortening the settlement lag appears optimal only if it is 

accompanied by a reduction in the cost of liquidity. In particular, Panel 2 

in Figure 25.2 shows that higher opportunity costs lengthen the optimal 

settlement lags, . Stock exchanges in locations with limited 

TABLE 25.3 Parameters Used in the Numerical Examplea

Australia 0.01 9.61 11.87 1.85 n.a.

China—Shanghai 0.05 28.85 75.54 2.12 1.58

China—Shenzhen 0.05 26.64 65.49 0.91 1.58

Hong Kong SAR 0.01 13.43 27.72 n.a. 2.71

India—Bombay 0.05 16.16 41.90 2.57 8.83

India—National 0.05 15.13 39.51 2.19 8.83

Indonesia 0.05 15.16 26.92 n.a. 6.02

Korea 0.01 11.85 40.15 3.13 2.68

Malaysia 0.05 7.02 30.27 0.86 3.18

Singapore 0.01 9.00 28.31 2.75 1.66

Taiwan, Province 

of China 0.01 5.07 28.06 n.a. 1.50

Thailand 0.05 5.63 30.10 0.89 n.a.

Industrialized 

economies 0.01 9.17 28.20 — 2.27

Emerging markets 0.05 16.82 44.50 — 4.42

 CEIC, Datastream, and BIS.
a  Industrialized economies include Australia, Hong Kong SAR, Korea, Singapore, and 

Taiwan, Province of China. The rest are considered emerging markets.
b Estimates of default probability range from 1% to over 5% (BIS, 2002).
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liquidity, especially during periods of market distress, are likely to see a 

surge in the risk of a settlement failure. Panel 3 in Figure 25.2 shows a 

sharp rise in the rate of settlement failures if settlement is shortened, as 

the potential benefits from a reduction in the replacement risk cost are 

relatively small.

Finally, the optimal settlement lag is inversely related to stock prices 

volatility (Panel 4 in Figure 25.2), as an increase in  would increase 

replacement cost risk, albeit at a decreasing rate. A closer look at stock 

price data shows that volatility has decreased over time in most of the 

stock exchanges included in the sample (at 5% statistical significance 

level), suggesting that, , more mature markets may afford 

relatively longer settlement lags. The data also show that, as one can 

expect, volatility at times of financial turmoil is higher, underscoring the 

potential for settlement failure for given settlement mechanisms during 

such times.

TABLE 25.4 The Optimal Settlement Lag: Numerical Examplesa

Australia 3.33 85.63 14.37

China—Shanghai 3.40 82.34 17.66

China—Shenzhen 4.18 76.52 23.48

Hong Kong SAR 2.82 88.88 11.12

India—Bombay 3.20 83.71 16.29

India—National 3.88 78.81 21.19

Indonesia 4.55 73.74 26.26

Korea 2.57 90.36 9.64

Malaysia 2.88 85.94 14.06

Singapore 2.97 87.97 12.03

Taiwan, Province of China 4.09 80.01 19.99

Thailand 3.88 78.81 21.19

Industrialized economies 2.69 89.67 10.33

Emerging markets 3.62 80.72 19.28

 Authors’ calculations.
a Industrialized economies include Australia, Hong Kong SAR, Korea, Singapore, 

and Taiwan, Province of China. The rest are considered emerging markets.
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25.5 CONCLUSION
Transaction costs can substantially impact actual portfolio performance 

and, more generally, an investment strategy, including the optimal port-

folio turnover and trade location. The microstructure of equity markets is 

key in assessing the size of trading costs and determining the liquidity of 

a given asset. This chapter focuses on one feature of the microstructure of 

equity transactions: settlement.
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The rise of emerging markets, and increasing integration of financial 

markets across the globe, has made the settlement process considerably 

more complex. Investors and supervisors have become more aware of the 

potential disruption stemming from settlement failures, and of the need 

to develop strong support mechanisms to foster the effectiveness of the 

international financial system. In the aftermath of the October 1987 mar-

ket break, the Group of Thirty recommended the reduction of the settle-

ment lag for securities transactions to 3 days.

While the recommendation has been supported both by traders and by 

stock exchanges and central banks, less attention has been paid to its prac-

ticality, particularly in markets where deep money and securities markets 

have not yet fully developed. This chapter proposes an analytical frame-

work to derive the optimal settlement lag, that is, the optimal time period 

between the moment a transaction is effected and the moment it is settled, 

taking into account risks and costs involved in the settlement process.

The framework identifies the main risks and costs involved in settling 

securities transactions and shows that the optimal settlement lag for secu-

rities transactions depends on a series of parameters that characterize 

the local financial market, such as stock price volatility, rate of return, 

money and securities markets liquidity, and the probability of a credit 

event. The numerical examples for twelve stock exchanges in the Asian 

and Pacific region illustrate that the optimal settlement lag, albeit varying 

across stock exchanges, is broadly in line with international best practices. 

They also show, however, that the specifics of the local financial market 

matter when establishing settlement practices, as there is likely a trade-off 

between shortening the settlement lag and the opportunity cost of ensur-

ing that settlement failure is averted.
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26C H A P T E R  

Seasonality and the 
Relation between 
Volatility and Returns

Evidence from Turkish 
Financial Markets

Oktay Taş, Cumhur Ekinci, and Zeynep İltüzer Samur

26.1 INTRODUCTION
Over the past decades many studies have provided evidence of seasonal 

anomalies in asset returns in stock, fixed-income, or foreign exchange 

markets. The anomalies mentioned in the literature mainly are periodical 

movements like the time-of-the-day, the day-of-the-week, and the month-

of-the-year effects. The day-of-the-week effect has been investigated by Cross 

(1973), French (1980), Gibbons and Hess (1981), Jaffe and Westerfield (1985), 

Aggarwal and Rivoli (1989), Keim and Stambaugh (1984), Lakonishok and 
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Levi (1982), and Lakonishok and Smidt (1988), among others. These empir-

ical papers mostly find that Monday returns are significantly negative and 

Friday returns are higher than on the other days of the week. However, 

they differ in the time periods and the stock markets they cover as well as 

the number of firms and their characteristics. For example, Aggarwal and 

Rivoli studied the turn-of-the-year effect and the weekend effect in four 

emerging markets and provided evidence of high January returns and low 

Monday returns, similarly to the findings on developed countries’ equity 

markets. While Cross (1973), French (1980), Gibbons and Hess (1981), and 

Keim and Stambaugh (1984) studied the day-of-the-week anomalies in 

U.S. stock markets and found that Friday return is the highest and Monday 

return is the lowest, Jaffe and Westerfield (1985) examined the U.S., UK, 

Canada, Japan, and Australia stock markets and documented that Thursday 

return is the lowest in Japan and Australia stock markets. After an analysis 

on the Center for Research in Security Prices (CRSP) equally weighted and 

value-weighted indices for the period of 1964–1974, Lakonishok and Levi 

(1982) concluded Monday and Friday effects disappeared by the mid-1970s. 

On the other hand, Lakonishok and Smidt (1988) examined the seasonal 

anomalies in Dow Jones Industrial Average by using 90-year daily data and 

found significantly negative Monday returns.

Monthly seasonality has also drawn a great deal of attention. Keim (1983) 

provided evidence that small firms showed higher returns in January than 

large firms do, and that the majority of high returns in January occur dur-

ing the first week. Ariel (1987) studied the seasonalities within a month. 

Accordingly, mean return is positive in the first half of the month and 

insignificant the rest of the month. Jones et al. (1987) questioned whether 

the underlying cause of the January effect is the tax-motivated transactions. 

That is, investors seek to reduce their tax expenses by closing their bad 

positions (realizing losses) at the end of the year, which implies a decline 

in stock price. However, they found that the January effect is not related 

to these sales for tax advantage, but rather to the small-firm effect, as in 

Keim. Lakonishok and Smidt (1984) documented the turn-of-the-year sea-

sonality in small firms. Gültekin and Gültekin (1983) studied the monthly 

seasonality for the major equity markets and stated that the January effect 

is common to all except the UK market, in which April is the month with 

the highest returns. Kato and Schallheim (1985) studied the month-of-

the-year effect in the Japanese stock market and reported the January and 

June anomalies. They grounded their findings on the fact that the Japanese 

employees used to invest in equities the bonuses they receive in June.
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As clear from the literature review, almost all the studies provide evi-

dence of seasonal anomalies, though for different countries, time periods, 

or firm sizes. Findings vary across studies, whereas high January returns 

and negative Monday returns remain common. As a result, we observe 

that except the two anomalies above, the nature of the seasonal anomalies 

depends on the country or the market.

A parallel research area that reports more heterogeneous results involves 

the relation between stock returns and their volatility. For instance, French 

et al. (1987) reported a positive relation between stock returns and volatil-

ity. In contrast, Nelson (1991) and Glosten et al. (1993) found a negative 

relation. Baillie and Degennaro (1990) studied the relation between the 

returns and volatility of a stock portfolio and, interestingly, could not find 

any relation. They concluded that traditional two-parameter model relat-

ing volatility and return is inappropriate and other measures of risk are 

needed. By the same token, Theodossiou and Lee (1995) and Corhay and 

Rad (1994) reported an insignificant relation between returns and their 

volatility for ten and three countries, respectively.

The analysis of seasonal anomalies in volatility also receives attention. 

Balaban et al. (2001) studied the relation between returns and volatility 

of nineteen countries by adding the day-of-the-week effect in the model. 

They reported that only three of the nineteen countries show a positive 

relation between return and volatility, while the rest show a zero rela-

tion. Moreover, seven countries show the day-of-the-week effect in mean 

returns, six countries show the day-of-the-week effect in conditional vola-

tility, and two countries show the day-of-the-week effect in both return 

and volatility. The nature and direction of the effect are not the same 

for all the countries that show seasonal anomalies. Glosten et al. (1993) 

developed a new way by integrating seasonality in volatility estimation in 

an application on CRSP value-weighted index. They reported significant 

October and January effects in volatility.

For the Turkish stock market, there are also a few papers studying sea-

sonalities on a varying basis. Demirer and Karan (2002) reported a signifi-

cant Friday effect but no clear evidence of a Monday effect in the Istanbul 

Stock Exchange (ISE) returns for the 1988–1996 period. Karan and Uygur 

(2001) investigated the day-of-the-week effect in portfolios composed of 

stocks selected according to market value for the 1991–1999 period. They 

reached the same conclusion as Demirer and Karan. Additionally, they 

found a January effect for ISE stocks. Bildik (2004) examined the daily 

seasonality in stock market and found that returns are significantly higher 
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in the second part of the week (especially on Friday) and lower in the first 

two days of the week (especially on Tuesday) by using 11-year index data 

from 1988 to 1999. The study also revealed that the volatility of the ISE100 

index was highest on Monday and lowest on Friday. It also supported the 

evidence of the January effect found by Karan and Uygur. Oğuzsoy and 

Güven (2003) investigated the daily seasonality of the ISE100 index as well 

as the ISE30 index firms for the same period as in Bildik. They found the 

same evidence for the index. As to stock-based analysis, they confirmed 

that most index stocks show high (low) returns on Friday (Monday and 

Tuesday) and that volatility is highest on Monday.

This chapter first tries to detect some daily and monthly anomalies in 

returns and volatilities of the ISE100 index and the dollar/new Turkish 

lira exchange rate (US$/TRY), and then seeks whether there remains any 

relation between volatility and returns when these are deseasonalized 

from the calendar effects. This also makes sense in that it contributes to 

our understanding of the relation between risk and return in the context 

of asset pricing. To the best of our knowledge, this is the first ever study 

to include a seasonality analysis on conditional variance in addition to 

mean returns in Turkish financial markets. Our results show some cal-

endar anomalies, but do not confirm a relation between volatility and 

returns.

The remainder of the chapter proceeds as follows. Section 26.2 describes 

the data and the methodology, Section 26.3 explores empirical results, and 

Section 26.4 concludes.

26.2 DATA AND METHODOLOGY
Our data set includes the daily ISE100 index obtained from the ISE website 

and the US$/TRY exchange rate obtained from the Central Bank of Turkey 

website for a period of January 3, 2001 to March 1, 2007. This makes 1,731 

(1,770) working days for the index (exchange rate). Based on these series, 

we calculate logarithmic returns.

To test for difference between the mean rates of return across the days of 

the week and the months of the year, we perform the following Ordinary 

Least Squares (OLS) regressions as widely used in literature.

           1 1 2 2 3 3 4 4 5 5  (26.1)

                      1 1 2 2 12 12L
 (26.2)
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where   ( ) is the rate of return of either ISE100 or US$/TRY on day 

 (month ), and  ( ),   1,2 5 (   1,2 12), is a dummy variable 

that equals 1 if trading day  is a Monday, Tuesday, Wednesday, Thursday, 

or Friday (trading month  is January, February, , December), respec-

tively, and 0 otherwise.

For the analysis of the relation between volatility and returns, we use a 

GARCH-M model. This model adds extra parameters, like seasonal effects 

in our case, to the dependent variable, to the explanatory variables, or 

both. Although each variable can be best modeled by different lag values, 

GARCH (1,1) is predominantly the most widely used. Consequently, as a 

first step, we define the relation between volatility and returns as in Model 1 

below:

   2

2
0 1 1

2
1 1

2

20, (26.3)

where  is the dummy for either the days of the week ( , 

  1,2 5) or the months of the year ( ,   1,2 12),  is a function of 

variance,* and , called the risk premium, explains the relation between 

conditional volatility and returns, both refined from seasonal effects.

Model 1 is the standard model used to eliminate seasonal anomalies 

(see, for instance, Balaban, 2001; Seyyed et al., 2005). Nevertheless, it does 

not take into account the asymmetry in return innovation. Therefore, as 

an alternative method, we run the regressions in Model 2 that assume 

positive and negative return innovations can affect the conditional volatil-

ity differently:

   2

2
0 1 1

2
1 1

2
2 1

2
1

20,

(26.4)

where, in addition to the variables defined above, the dummy variable 1 

takes the value of 1 if the return innovation 1 is negative, and 0 if the 

return innovation 1 is positive.

* We assume three versions of volatility funtion, i.e., f can be equal to , 2, or ln( 2).
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26.3 EMPIRICAL RESULTS
This section gives our empirical results in two main subsections. First, we 

present the evidence for daily and monthly seasonal anomalies. Then, we deter-

mine how effective volatility is on returns, after refined from seasonality.

26.3.1 Seasonal Anomalies

In the search of seasonal anomalies, we refer to the descriptive statistics 

and regression statistics of daily returns and volatility across the days of 

the week (Table 26.1) and the months of the year (Table 26.2). In Table 26.1, 

we observe that both ISE100 and US$/TRY mean returns are negative on 

Monday. They become positive in the last two days of the week for ISE100 

and in the middle days for US$/TRY. An interesting observation is that on 

Friday, standard deviations are strikingly lower for ISE100 and higher for 

US$/TRY.

A more pertinent analysis can be done by looking at the -values of 

the regression coefficients given by Equation 26.1. In what follows, ISE100 

returns are significantly negative on Monday and positive on Thursday and 

Friday at 1%. By comparison, US$/TRY returns are negative on Monday 

and positive on Tuesday and Thursday, but only at a 10% level of signifi-

cance. As to a joint test, both parametric (F) and nonparametric (KW) 

tests strongly reject the null hypothesis that all the days of the week have 

the same returns, though somewhat less obvious for US$/TRY (F 2.32) 

than ISE100 (F 6.42).

A third analysis is on the anomalies in volatility. For this purpose, we 

investigate the equality of variances through Bartlett (B), Levene (L), and 

Brown-Forythe (BF) tests. Under the null hypothesis, each day of the week 

has the same variance. Table 26.1 reveals that we reject the null for ISE100 

by all the tests at 5% and for US$/TRY by Bartlett test (B). However, one can 

argue that the B-test is not so powerful since it tests whether the variance-

covariance matrix equals the identity matrix. That is why we rather refer to 

the other two test statistics. These cannot reject the null for US$/TRY.

Analogously to Table 26.1, Table 26.2 shows the statistics of daily returns 

and volatility for the months of the year. Accordingly, April and October 

(February and March) have significantly higher rates of return than other 

months for ISE100 (US$/TRY). However, the evidence is weaker than in 

the previous results since -values are lower than 0.05 for all the months 

except October for ISE100. Moreover, F and KW statistics indicate that 

the null hypothesis of no significant month-of-the-year effect cannot be 

rejected at 5%, but only at 10% and uniquely for US$/TRY.
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Contrary to returns, volatility is more dispersed across the months 

of the year. For instance, standard deviations are particularly high in 

February and December and low in August for ISE100, while February 

appears to be the only month where volatility is particularly higher than 

the others for US$/TRY. One can notice that the B, L, and BF tests all very 

strongly reject the null hypothesis of equal variances.

TABLE 26.1 Daily Percentage Returns According to the Days of the Week

Nb Obs  335  350  348  353  345

Max 10.09 17.77 17.09 11.79 12.68

Min –15.80 –9.44 –19.97 –10.37 –9.44

Mean –0.56 –0.04 0.00 0.45 0.37

Std Dev 2.85 2.59 2.78 2.78 2.33

-value 0.000 0.727 0.954 0.002 0.008

ffi

Stat 6.42 31.79 17.38 2.66 2.60

-value 0.000 0.000 0.002 0.031 0.035

Nb Obs  350  354  355  357  354

Max 11.34  8.82 10.05 6.00 33.47

Min –5.38 –12.56 –4.33 –8.36 –2.89

Mean –0.12  0.13  0.08  0.12  0.04

Std Dev 1.14 1.26 1.12 1.01 1.98

-value 0.083 0.057 0.210 0.082 0.549

ffi

Stat 2.32 30.13 227.68 0.63 0.65

-value 0.041 0.000 0.000 0.639 0.626

   ISE100 (US$/TRY) data were obtained from www.imkb.gov.tr (www.tcmb.gov.tr). 

Returns are calculated according to the following formula: ln( / 1), where  

is either ISE100 or US$/TRY and ln is natural log.

 Fisher (F), Kruskal-Wallis (KW).

 Bartlett (B), Levene (L), Brown-Forsythe (BF)
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26.3.2 The Relation between Volatility and Returns

This section gives the empirical results about the relation between volatil-

ity and returns based on the models given by Equations 26.3 and 26.4. 

Dummy variables in GARCH equations are selected according to the 

results of the previous subsection. More explicitly, for mean equations, 

we selected as dummy the variables with 10% significant coefficients if 

the null hypothesis was rejected by both F and KW tests, and for variance 

equations, the outliers if the null hypothesis was rejected by the B, L, and 

BF tests. These are summarized in Table 26.3.

The mathematical representation of the models can be found in the 

notes below Table 26.4 to Table 26.7. Table 26.4 reports the parameter esti-

mates for the models, including the day-of-the-week effects for ISE100. 

Accordingly, for all regressions in the table, the coefficient  is insignifi-

cant, indicating no systematic movement in daily returns; 2 is positive 

and significant at 1%, while 1 is negative and significant only at 10%, and 

3 is insignificant, revealing a strong Thursday effect and weak negative 

Monday effect in ISE100 returns. If  is negative, it is far from being sig-

nificant. Hence, we fail to reject the idea that volatility has an impact on 

returns. In the variance equation, constant term 0 is insignificant, so we 

cannot determine any given level of daily volatility. Other estimates on the 

variance equation are more significant and homogeneous across the mod-

els. For instance, 1 is 0.9, and this is a sign of high positive autocorrelation 

in volatility, i.e., volatility clusters. 1 is also positive and quite significant, 

so we deduce residuals are heteroskedastic and innovation (news) has an 

impact on volatility. The coefficient 2, too, is positive and significant at 

1%. This means that a decrease in prices (bad news) affects the market 

more than an increase in prices (good news). Finally, 1 is also positive and 

partially significant at 5% or 10%. This is weak evidence of high volatility 

on Monday compared to other days.

TABLE 26.3 Day and Month Dummies Used in GARCH Equations

Mon Mon Mon Feb Feb

Thu Tue Dec

Fri Thu
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The interpretation of the parameters for US$/TRY in Table 26.5 is 

analogous. Contrary to ISE100,  is significantly negative, which means 

that, if we ignore other effects, US$/TRY slightly decreases (TRY appreci-

ates) day by day. The results about  are diverse.  is significantly posi-

tive in the SQRT(GARCH) and the LOG(GARCH) versions of Model 1, 

while significantly negative in the SQRT(GARCH) version of Model 2 and 

insignificant for the GARCH version of Model 1.* So, there seems to be 

a negative relation between volatility and returns, but we are unable to 

generalize the findings with certainty. 2 and 3 are positive and quite sig-

nificant, while 1 is positive and partially significant at 5%. These indicate 

strong Tuesday and Thursday effects and a weak Monday effect in US$/

TRY returns. Unlike for the ISE100 analysis above, 0 is significantly posi-

tive. This shows that the FX market has a certain intrinsic volatility. The 

signs of 1, 1, and 2 are positive, like the ones for ISE100. However, an 

interesting remark is that both 1 and 2 are larger than in the ISE100 

analysis, while 1 is smaller. This means there is a weaker autocorrelation 

in exchange rate volatility, but the impact of innovation is larger.

Table 26.6 presents the results of the regressions, including the month-

of-the-year effect for ISE100. According to this table, the results about  are 

quite heterogeneous across the models. For instance,  is positive for the 

SQRT(GARCH) model and negative for the LOG(GARCH) model at nearly 

a 5% level of significance.  is negative and partially significant at 5%. This is 

weak evidence of a negative relation between volatility and returns. 0, 1, 1, 

2, and 1 are all positive and significant at 1%, and 2 is negative and signifi-

cant at 5%. Positive 0 signifies that there is a certain level of daily volatility 

in the stock market. Similarly to the results in Table 26.4, volatility cluster-

ing is high with a 1 of nearly 0.89. Both 1 and 2 are significantly posi-

tive, implying that innovation has an impact on volatility and that negative 

returns (bad news) have a larger impact than positive returns (good news). 

Significantly positive 1 (negative 2) indicates that daily ISE100 volatility is 

higher in February (lower in December) than in other months.

Finally, Table 26.7 gives the parameter estimates of the same regres-

sions, but for US$/TRY. In what follows,  is slightly negative but insig-

nificant. , too, is insignificant, so that we cannot find a relation between 

volatility and returns. However, all the remaining coefficients except 2 

are positive and significant at 1%, providing results similar to the previous 

* In fact, we cannot rely on the results provided by Model 1 since, technically speaking, the 

model requires 1  1  1. However, this is not satisfied in the first four rows of Table 26.5.
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ones. For instance, positive 0 reveals that a certain level of intrinsic vola-

tility exists; a 1 of nearly 0.8 indicates a high autocorrelation in volatility; 

a positive 1 shows innovation has an impact on volatility; and a positive 

1 implies US$/TRY volatility is higher in February than in other months. 

By contrast, 2 is significantly negative. This means an innovation due to 

negative returns (appreciation of TRY) has a lower impact on volatility 

than an innovation due to positive returns (depreciation of TRY).

Based on the findings above, we can summarize and generalize our 

results, as given in Table 26.8, in the following way:*

: Somewhat negative daily returns in US$/TRY, inconclusive for ISE100.

: Mostly negative for ISE100, although the evidence is quite weak and 

insignificant for US$/TRY.

: There are positive Thursday returns in ISE100 and positive Tuesday 

and Thursday returns in US$/TRY.

0: There is a given level of volatility in the market.

1:  There is a strong positive autocorrelation in volatility in both mar-

kets, i.e., volatility persists.

1:  There is a strong heteroskedasticity in both ISE100 and US$/TRY 

returns.

2: Bad news affects volatility more than good news for ISE100.

:  There is strong evidence of higher volatility in February for both 

ISE100 and US$/TRY and lower volatility in December for ISE100.

26.4 CONCLUSION
Based on daily data, we analyze in this paper the day-of-the-week and 

month-of-the-year effects in Turkish financial markets, more specifically 

in ISE100, the main index in Istanbul Stock Exchange and in US$/TRY 

exchange rate, in both mean and conditional variance. If these effects are 

well understood, they can help investors in deciding the timing of their 

investments† or in developing appropriate pricing methods. Our main 

* For simplicity, the parameter for all the seasonal dummies in returns (conditional volatility) 

is indicated by  ( ).
† Certainly, one should make several other analyses like the one on transaction costs and 

liquidity conditions before such a decision.
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focus, however, is to investigate, with a GARCH-M (1,1) model and vari-

ous versions of volatility function (logarithmic, exponential, etc.), whether 

there is a relation between volatility and returns after filtering from sea-

sonal effects rather than explaining the reasons for seasonality. To the best 

of our knowledge, this is the first ever study of this kind on Turkish finan-

cial markets, in particular, to filter from seasonality both mean and condi-

tional volatility.

Our results can be summarized as follows: We find significantly nega-

tive returns on Monday and positive returns on Thursday and Friday 

for ISE100 and, to a lesser extent (at 10%), negative returns on Monday 

and positive returns on Tuesday and Thursday for US$/TRY. On the 

other hand, we cannot find any significant difference in daily returns 

across the months of the year. However, volatility is particularly high in 

February for both ISE100 and US$/TRY and low in August for ISE100. 

Interestingly, no January effect, as mentioned in the literature, was 

detected. With the GARCH specification, however, we can only confirm 

higher Thursday returns for ISE100 and higher Tuesday and Thursday 

returns for US$/TRY. In addition, higher February volatility is obvious 

for both ISE100 and US$/TRY and lower December volatility is detected 

for ISE100.

A relation between volatility (i.e., conditional variance) and returns 

after controlling for day-of-the-week or month-of-the-year effects is not 

obvious. We can only partially find some evidence of a negative relation 

in ISE100.

Secondary but more evident findings include a high level of vola-

tility as well as volatility clustering in both ISE100 and US$/TRY; the 

heteroskedastic nature of the error terms; and asymmetry in positive 

and negative shocks. More precisely, the latter indicates negative shocks 

in ISE100 have a higher impact on volatility than positive shocks. This 

asymmetry is in line with previous findings in the literature and shows 

the market is more sensitive to risky situations. This idea works for US$/

TRY; i.e., negative shocks in US$/TRY (in cases where TRY depreciates 

vis-à-vis US$)* have a higher impact on volatility only in the specification 

with monthly dummies.

* This is a little tricky because a negative shock in US$/TRY return normally is a downward 

movement in the exchange rate, i.e., an appreciation of TRY vis-à-vis US$. However, for most 

market participants, a negative shock in the exchange rate designates a depreciation of TRY. 

That is why here we define a negative shock as a situation where US$/TRY suddenly rises. 

This distinction is important for the interpretation of the results concerning 2.
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Our results partially confirm previous studies on the Istanbul Stock 

Exchange in that we find negative returns on Monday and positive returns 

on Thursday and Friday in ISE100. Nevertheless, we cannot find any 

significant January effect. This may be due to the newer data set we use. 

Alternatively, one can argue that investors have learned about these calen-

dar anomalies and these effects have been disappearing through time.

This research can be extended, first by adding a third major instrument, 

namely, a fixed-income indicator such as a bond market index. Second, 

these three can be linked to each other in a vector autoregression (VAR) 

setup. These constitute potential research topics.
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the Stock Market Volatility? 
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27.1 INTRODUCTION
The volatility of stock market returns is important for many reasons. For 

a risk-averse investor, an increase in the return volatility indicates a risk-

ier environment with a possible consequence of lower investment. This 

change, as discussed by Schwert (1989), should influence capital invest-

ment decisions, consumption decisions, and even some other business 

cycle variables. There is empirical evidence suggesting that the stock 
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market volatility increases at downturns of business cycles (for instance, 

see Errunza and Hogan, 1998; Hamilton and Lin, 1996). Moreover, the 

source of the return volatility reveals whether the changes in volatility 

are caused by temporary factors (perhaps, because of irrational investor 

behavior) or by the underlying fundamental factors. If the large part of 

return volatility is explained by these fundamentals, this should lower 

investor concerns on irrational behavior (Liljeblom and Stenius, 1997; 

Binder and Merges, 2001).*

Nevertheless, there have not been many studies investigating the rela-

tionship between stock market volatility and underlying fundamentals. 

While Schwert (1989) finds weak evidence for the relationship between 

stock market volatility and macroeconomic variables,† Liljeblom and 

Stenius (1997) report a statistically significant impact of several macro-

economic variables on stock market volatility, though only a small per-

centage of the volatility is reported to be explained by macroeconomic 

fundamentals. On the other hand, Abugri (2008), for Latin American 

markets, shows that stock market volatility is influenced consistently and 

significantly by global factors, but the impact of local factors is not consis-

tent among markets.

For the Australian market, Kearney and Daly (1998) conclude that 

return volatility is influenced by macroeconomic variables, and in partic-

ular volatility of inflation and interest rates becomes important. Similarly, 

Binder and Merges (2001) show that economic factors explain a significant 

percentage of the variation in stock market volatility. In an intertemporal 

asset pricing model, Rodriguez et al. (2002) show that observed volatility 

of asset returns can be predicted by real fundamentals. For a cross sec-

tion of countries, Diebold and Yılmaz (2007) find a positive relationship 

between stock market volatility and volatility of fundamental variables. 

In addition, Pierdzioch et al. (2008) find a link between business cycle 

variables and stock market volatility. Moreover, different from other men-

tioned studies, they show that this link is independent of whether revised 

or real-time macroeconomic data are utilized.

* It can be shown theoretically that volatility of real economic factors impacts stock market 

volatility through their effect on stock prices, which reflects claims on future profits of the 

corporations. In a discounted present value model, a change in the volatility of real economic 

factors will cause a change in the discount rate and the volatility of future expected cash 

flows (see Schwert, 1989; Liljeblom and Stenius, 1997).
† However, he finds stronger evidence when the causal relationship runs from financial vola-

tility to macroeconomic volatility.
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This study also investigates the relationship between stock market vola-

tility and macroeconomic variables using a low-frequency monthly data 

set for an emerging market, Turkey. The Turkish capital markets have, to 

some extent, been harmonized with the EU acquis as well as other inter-

national standards, through the introduction of new regulations, intended 

to restore confidence particularly for financial investors* (SPO, 2006). 

Since several studies find that business cycles impact stock market volatil-

ity, we try to identify breaks or volatility shifts in data. However, rather 

than using our own judgment or experience, where both are subjective, 

we prefer to employ the ICSS algorithm introduced by Inclan and Tiao 

(1994). It should be kept in mind that the Turkish capital market is still at 

its early years, with characteristic low saving ratios, less developed capital 

market culture, and limited variety of financial instruments. However, its 

integration with international markets seems to have improved consider-

ably judging from the fact that the share of foreign investors in the ISE has 

exceeded two-thirds of the total market value of all stocks traded. Hence, 

to take into account the effect of foreign investors’ behavior, we also con-

sider the volatility of the S&P500 index.

The rest of the chapter is organized as follows: In Section 27.2, we discuss 

stock market volatility and volatility estimation along with data. The ICSS 

algoritm and our estimation methodology will be discussed in Section 

27.3. Results will be presented in Section 27.4. Our concluding remarks 

and suggestions for further research are left for the last section.

27.2 VOLATILITY ESTIMATION
Although we investigate the link between return volatility and macroeco-

nomic variables, the return volatility is not directly observable, and hence 

it needs to be proxied by alternative measures. A common measure used 

in this particular literature is the standard deviation of returns in a cer-

tain time period. Some other measures are the sum of the squared daily 

returns, a measure based on GARCH(1,1), and a measure based on daily 

high and low prices (for example, see Schwert, 1989; Binder and Merges, 

2001; Liljeblom and Stenius, 1997).

* The new legislations intended to bring about investors’ confidence consisted of the establish-

ment of the Investors’ Protection Fund, the transition to the registry system in stocks and 

bonds, the establishment of Turkish Derivative Exchange (TurkDEX), and the implemen-

tation of International Financial Reporting Standards all for transparency and corporate 

governance whose stocks are traded in the Istanbul Stock Exchange.
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To test the robustness of the findings, some studies employ several mea-

sures of volatility (e.g., Binder and Merges, 2001; Liljeblom and Stenius, 1997). 

We follow a similar approach and select several volatility measures. In choos-

ing the measures, we depend on this particular literature as well as the litera-

ture investigating the predictive power of alternative volatility measures (see 

West and Cho, 1995; Jorion, 1995; Pagan and Schwert, 1990; Brooks, 2002). 

Table 27.1 presents the measures of volatility used in this study. The market 

portfolio we select is the ISE100 index, which is a value-weighted index com-

promising 100 companies listed at the Istanbul Stock Exchange. The source 

of the data is the official web page of the Istanbul Stock Exchange.*

First and second measures are commonly known and do not require 

explanations.† For the other measures, though, a brief explanation could 

be useful. The third measure, a recursive variance estimate, gives the 

sample variance at time . In calculating the sample variance, the starting 

date does not move together with the end date. In other words, the sample 

window does not move as  moves, as in moving average measures. As a 

* http://www.imkb.gov.tr.
† ARCH-GARCH type measures are introduced by Engle (1982) and Bollerslev (1986).

TABLE 27.1 Measures of Exchange Rate Risk

(1)
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12

/
Rolling variance of monthly 

returns (12 months)
V1

(2) 1
2

1
GARCH(1,1) V2

(3)

 

/ ( 1)2

1

t
Recursive variance estimate with  

wt = 1, t
V3

(4)

 

2

1

Nonparametric estimate of 

conditional variance
V4

(5)

 

(1- )

0

1 2( ) Exponentially weighted moving 

average (  = 0.94)
V5

(6)

 

1

1

min(( ), )0 2 Downside risk (semivariance) V6

 
 The variable  represents monthly return,  represents the volatility estimate, 

and μ is the mean of the return series.
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result, this measure estimates the unconditional variance at each time , 

but when observed for the entire sample, it is a measure of conditional 

variance at time .

For volatility measure 4 (V4) in Table 27.1, we used a nonparametric 

estimator as defined by the following equation:

 

ˆ 2 2

1

,

1

1

 

The weights, w , are chosen to depend on information sets  and  in such a  

way that, if  and  are far apart,  is close to zero. This makes the 

estimate equivalent to the sample variance of ˆ2  using only the obser-

vations that are close to . The weights are calculated by the following  

formula:

 

/ and ) exp 0.5(

1

2 0.5(2 ) /2 2

where  is the Gaussian kernel and has the properties that it is nonzero, 

integrates to unity, and is symmetric. The bandwidths, , are set to ˆ 1/5,  

where ˆ is the sample standard deviation of . As in West and Cho (1995) 

and Pagan and Schwert (1990), we did not try any other kernel or experi-

ment with different bandwidths and weighting schemes.

The fifth measure is the exponentially weighted moving average measure 

with the decay factor set equal to 0.94, as recommended by RiskMetrics 

(Brooks, 2002). The last measure of volatility is concerned only with a decline 

in the value of a portfolio for an investor. Hence, the relevant measure of 

risk, one can argue, should be the downside risk. Hence, as a last measure, 

a semivariance estimate is included to measure the downside risk.*

We estimated all measures of volatility between January 1990 and June 

2007. For all measures, the starting value is set equal to 0.1 for January 

1990. Table 27.2 provides some descriptive statistics and the bivariate  

correlations among these six measures.

As it is clear from the table, the measures of volatility all behave as if 

they have a different data generating process. For instance, volatility mea-

sures V1 and V2 (rolling variance estimate and variance prediction from 

a GARCH(1,1) process) have a negative correlation. Moreover, the highest 

* For an application of downside risk, see Ang et al. (2006).
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positive correlation is 0.614 between V1 and V5, which is far below one 

expects. Hence, it should not be surprising to observe mixed findings in 

the related literature. In addition, along with the effect of the volatility 

measure selected, the country level factors will also be important for the 

results, as shown by Abugri (2008).

27.3 MODEL SPECIFICATION AND IMPLEMENTATION
Our analysis is performed using monthly data between January 1990 and 

June 2007. The source for ISE100, as indicated earlier, is Istanbul Stock 

Exchange. For the macroeconomic variables, we used IMF’s International 

Financial Statistics, Central Bank of Turkey, and Statistical Institute of 

Turkey.* The S&P500 monthly index values are obtained from yahoo.com/

finance web page. Following the literature on this area, we select the fol-

lowing macroeconomic variables: industrial production index, M2 defini-

tion of money supply, interest rates as measured by the weighted 3-month 

time deposit rates, exchange rates as defined by the price of the U.S. dollar 

* The web addresses are www.tcmb.gov.tr and www.tuik.gov.tr for the Central Bank and 

Statistical Institute of Turkey, respectively.

TABLE 27.2 Descriptive Statistics and Bivariate Correlations

Mean 0.05447 0.15354 0.07058 0.00048 0.11890 7.50801

Median 0.04519 0.15952 0.06590 0.00000 0.11747 7.91624

Max 0.14932 0.17040 0.12160 0.10000 0.29299 14.26745

Min 0.00416 0.01204 0.05433 0.00000 0.02482 0.05353

Stdev 0.03471 0.01993 0.01430 0.00690 0.04940 2.44170

Skewness 0.83795 –3.61987 1.54956 14.38750 0.61189 –1.08639

Kurtosis 3.05936 20.85892 4.75960 208.00170 3.91714 5.09260

Jargue-Bera 24.6063 3249.3550   374970.0 111.1311 20.4644 79.6248

Probability 0.00001 0.00000 0.00000 0.00000 0.00004 0.00000

      

V1 1.00000 –0.55624 0.54960 0.09173 0.61419 –0.13059

V2  1.00000 –0.35263 –0.18751 –0.47792 0.10474

V3   1.00000 0.14392 0.06178 –0.11777

V4    1.00000 –0.02670 –0.21129

V5     1.00000 0.20662

V6      1.00000
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in terms of local currency, and terms of trade as measured by the ratio of 

unit price index for exports and imports. The S&P500 index is chosen to 

represent the global factors’ impact on ISE100 to capture the change in 

foreign (and perhaps the domestic) investor behavior.

During the analysis window, both the Turkish economy and the rest of 

the world have gone through several important economic and financial 

events, such as the Asian crisis in 1997,* the burst of the stock bubble in 

the United States in 2000, the September 11 terrorist attacks, and particu-

larly for Turkey, the severe financial crisis in the 2000 –2001 period, with 

many banks going into bankruptcy or taken over by the Saving Deposits 

Insurance Fund. Therefore, we believe the size and the significance of 

the association between stock market volatility and macro factors can be 

influenced by the structural breaks. As mentioned earlier, we use the ICSS 

algorithm introduced by Inclan and Tiao (1994) to detect multiple break-

points in a time series by testing for volatility shifts.

To briefly explain the algorithm, lets assume  is the series in question 

with zero mean and 2 as the unconditional variance. Let us define cumu-

lative sum of squares between time 1 and  as

 

2

1

, where 1, , and 1, ,K K

The centered and normalized cumulative sum of squares until time  is 

represented by the  statistics:

 

, with 00

If there is no volatility shift in the series, the plot of  against  will oscil-

late around zero. On the other hand, with a volatility shift, we will observe 

 statistics drifting away from zero. The asymptotic critical value of 

1.358 can be used to create boundaries to identify the point in time with 

a volatility shift.† Figure 27.1 presents  statistics and identified breaks 

using market portfolio return from the Istanbul Stock Exchange.

* Also known as the IMF crises.
† Critical values are calculated from the distribution of  under the the null hypothesis of 

homogeneous variance. One can use the critical values to obtain upper and lower boundaries 

to detect volatility shifts. For details on the ICSS algorithm and some uses, see Inclan and 

Tiao (1994), Ewing and Malik (2005), and Marcelo et al. (2008).
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The ICSS algorithm identifies two shifts in volatility between January 

1990 and June 2007. The first break is determined as July 1998, whereas the 

second break is determined as January 2004. Hence, our sample period is 

divided into three subperiods. The second subperiod, between July 1998 

and January 2004, represents a volatile environment with several local 

and global crises influencing the Istanbul Stock Exchange and Turkish 

economy. The last subperiod, on the other hand, corresponds to a stable 

environment. The first subperiod is not as stable as the last subperiod, but 

it is also not as volatile as the second subperiod.

27.4 ESTIMATION RESULTS AND DISCUSSION
We estimated the following model to evaluate the effect of macro variables 

on stock market volatility. Although we utilize several measures of volatil-

ity, we only consider monthly standard deviations of macro variables to 

estimate fundamental volatilities.* In calculating volatilities, monthly per-

centage changes are used. The relationship between stock market volatility 

and macro factors is investigated using the following equation:

 

0 1 2 3 4 4

5

2

7 500

* Since we use generated variables as our dependent variables, this approach will lead to inef-

ficient but still unbiased and consistent estimates.
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where SMV is a measure of stock market volatility, IR is the interest rate, 

M2 is the M2 definition of money supply, TOT is a measure of the terms 

of trade calculated as the ratio of export unit price index to import unit 

price index, INF stands for inflation based on the consumer price index, 

ER is the exchange rate as measured by the price of US$ in terms of local 

currency, and IP is the industrial production index. We use SP500 as an 

additional variable to account for the impact of foreign investor behaviors 

on volatility.* Results for the full sample are presented in Table 27.3.†

F-statistics for all models, except for V4 (nonparametric measure of 

volatility), indicate that the regressions have overall significance. In other 

words, the stock market volatility is explained sufficiently by the variables 

* As discussed in Abugri (2008), the selection of variables in the model is criticized for being 

subjective and it is unavoidable.
† For all estimations, we used White’s heteroskedasticity consistent coefficient covariance 

matrix.

TABLE 27.3 Coefficient Estimates: 1990:M01 2007:M06

 

Constant 0.0129 0.1617*** 0.0535*** 0.0030 0.0613*** 3.9410***

 (.0083) (.0072) (.0045) (.003) (.0124) (.9014)

IR 0.0016*** –0.0007*** –0.0002*** 0.00001 0.0033*** –0.0074

 (.0003) (.0002) (.0001) (.) (.0003) (.0123)

M2 –0.0007** 0.0002 –0.0008*** –0.0001 –0.0017*** –0.0375

 (.0003) (.0002) (.0002) (.0001) (.0004) (.0277)

TOT –0.0048** 0.0014 –0.0017 –0.0002 –0.0034 –0.3940*

 (.0023) (.0016) (.0012) (.0002) (.0029) (.2264)

CPI 0.0182*** –0.0043** 0.0087*** 0.0004 0.0149*** –0.2908

 (.0032) (.0019) (.0015) (.0004) (.0039) (.3185)

US$ –0.0076*** 0.0027*** –0.0019*** –0.0002 –0.0073*** 0.2737***

 (.0011) (.0007) (.0004) (.0002) (.0014) (.083)

IP 0.0016* –0.0002 0.0025*** –0.0003 0.0015 0.4306***

 (.0009) (.0007) (.0005) (.0003) (.0013) (.1007)

SP500 0.0099*** –0.0027*** 0.0015*** –0.00003 0.0124*** 0.5123***

 (.001) (.0006) (.0004) (.0001) (.0015) (.0892)

F stat 38.74*** 6.22*** 19.93*** 0.276 39.06*** 9.78***

Adj R2 0.5583 0.149 0.388 –0.0248 0.5604 0.2272

 
 Standard errors are provided in parentheses.

fi
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we use in the model. The adjusted R2 ranges from 15% to 56% for the sig-

nificant models. Although Table 27.3 reports significant coefficient esti-

mates for macro factors, we should be cautious since the direction of the 

influence shifts from volatility measure to measure. For example, infla-

tion volatility influences stock market volatility positively under volatility 

measure V1. On the other hand, under volatility measure V2, the influ-

ence is negative. This finding shows that the effect of inflation volatility on 

stock market volatility is fragile if we use the definition of robustness or 

fragility of Leamer (1985) and Leamer and Leonard (1983). For M2, TOT, 

and IP, the effect seems to be robust, independent of the volatility measure 

chosen. Can fragility be caused by the volatility shifts that exist in the full 

sample? To answer this question, we report the regression results for three 

subperiods separately in Tables 27.4 to 27.6.

The results presented in Table 27.4 cover the first subperiod, January 

1990 to June 1998. The Turkish economy experienced one major crisis in 

TABLE 27.4 Coefficient Estimates: 1990:M01–1998:M06

Constant 0.1204*** 0.1059*** 0.1148*** 0.0236 0.0752*** –4.1348

 (.0212) (.0307) (.0117) (.0228) (.0148) (2.4926)

IR 0.0051*** –0.0025 0.0023*** 0.0013 –0.0051*** –0.5214***

 (.0015) (.0019) (.0007) (.0013) (.0013) (.1436)

M2 –0.0183*** 0.0061 –0.0138*** –0.0031 0.0139*** 0.1115

 (.0038) (.005) (.0019) (.003) (.0033) (.3233)

TOT –0.0111*** 0.0081** –0.0081*** –0.0021 –0.0056* 1.2086***

 (.0035) (.0033) (.0014) (.0021) (.0032) (.4047)

CPI –0.0009 0.0094* 0.0061*** –0.0042 0.0009 2.3715**

 (.0054) (.0055) (.0022) (.0042) (.0043) (.9472)

US$ 0.0027 –0.0033 0.0017 0.0013 0.0018 –0.2814

 (.0019) (.0021) (.0013) (.0013) (.0015) (.3172)

IP –0.0042*** 0.0018 0.0006 –0.0013 0.0026** 0.8161***

 (.0013) (.0016) (.0006) (.0012) (.0013) (.1327)

SP500 0.0163*** –0.0061*** 0.0059*** 0.0017 0.0004 –0.4615**

 (.002) (.002) (.0008) (.0016) (.0016) (.2304)

F stat 18.14*** 3.52*** 46.65*** 1.40 5.28*** 10.85***

Adj R2 0.5429 0.1486 0.7598 0.0273 0.2288 0.4056

 
 Standard errors are provided in parentheses.

fi
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1994 after continuous growth rates for almost a decade. Our first period 

sliced by the ICSS, January 1990 to June 1998, has overall significance again 

(even at  = 1%) except for volatility measure V4. The macro variables as a 

set are able to explain volatility sufficiently. Unfortunately, signs continue 

to shift, indicating fragility of the parameter estimates. The specification 

with V1 indicates that all macro variables except inflation and exchange 

rate are significant. Specification of V3 is similar in that this model has 

the same significant variables. The highest overall belongs to this model: 

76% of the variation in volatility is explained by the macro covariates. The 

specification with the greatest number of significant variables is the regres-

sion of V6 on the regressors. The only insignificant variable according to 

this model is the exchange rate. The poorest model according to overall 

significance is the regression with the dependent variable of V4.

TABLE 27.5 Coefficient Estimates: 1998:M07–2003:M12

 

Constant –0.0320 0.1171** 0.0616*** 0.0123 0.0970 8.4205***

 (.05) (.0468) (.0038) (.0066) (.079) (1.0068)

IR 0.0013* –0.0008* 0.0001* 0.0001 0.0019** 0.0373**

 (.0008) (.0005) (.) (.0001) (.0008) (.0167)

M2 –0.0083 –0.0044 –0.0008 –0.0011 –0.0027 –0.2856

 (.0074) (.0071) (.0005) (.0009) (.0111) (.2497)

TOT 0.0132 0.0068 –0.0007 0.0018 0.0178 0.0858

 (.01) (.0098) (.0008) (.0018) (.0159) (.2679)

CPI 0.0305*** 0.0037 0.0020*** –0.0005 0.0124 –0.1694

 (.0079) (.008) (.0006) (.0012) (.0102) (.181)

US$ –0.0083*** 0.0022 0.0002 –0.0005 –0.0056** 0.0904*

 (.0024) (.0018) (.0001) (.0002) (.0025) (.0526)

IP 0.0098** 0.0030 0.0006* –0.0005 0.0085 –0.1397

 (.0039) (.0027) (.0003) (.0006) (.0062) (.0959)

SP500 0.0062 0.0022 0.0000 0.0004 –0.0040 0.2789

 (.0048) (.0049) (.0004) (.0007) (.0088) (.1747)

F stat 11.00*** 1.48 13.61*** 1.36 8.33*** 9.79***

Adj R2 0.5186 0.0492 0.5758 0.0371 0.4413 0.4864

 
 Standard errors are provided in parentheses.

fi
a Both coefficient estimates and standard errors reported are multiplied by 10,000 due to 

their small size.
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Table 27.5 reports the regression results for the second subperiod with 

global and local crises affecting the stock market. The local crisis of the 

2000–2001 period decreased the Turkish GDP from $204 billion to $148 

billion in 2001. This was the greatest crisis of the last half decade. Inflation 

and exchange rate are the two variables that appeared the most signifi-

cant in this period. Interestingly, S&P500 does not play any important role 

as identified by insignificant coefficients under all volatility measures. In 

addition, compared to Tables 27.3 and 27.4, there is a large decline in the 

number of significant coefficients. That is, we do not expect to observe eco-

nomic and financial processes parallel to the theoretical background since 

this is a transitory period of the economy. The model with V3 has the highest 

overall significance, whereas the models with V1 and V4 do not even qual-

ify to be significant. This point is important since it indicates that the mea-

sure of volatility preferred is substantially influential. Specification with 

V1 has the highest number of significant macro variables: 4. The interest  

TABLE 27.6 Coefficient Estimates: 2004:M01–2007:M06

 

Constant –0.0617*** 0.1931*** 0.0384*** 0.0056* –0.1275*** 4.6895***

 0.0098 0.0054 0.0028 0.0031 0.0195 0.4259

IR 0.0027*** –0.0009*** 0.0005* 0.0004*** 0.0034* 0.0711

 0.0004 0.0003 0.0003 0.0001 0.0019 0.0440

M2 0.0004*** –0.0001 0.0000 0.0000 0.0004 0.0056

 0.0001 0.0001 0.0000 0.0000 0.0003 0.0071

TOT 0.0081** 0.0002 0.0030** 0.0001 0.0225** 0.4916**

 0.0035 0.0023 0.0012 0.0012 0.0082 0.1904

CPI 0.0236** –0.0238*** 0.0066** –0.0006 0.0711*** 1.0628***

 0.0091 0.0048 0.0025 0.0029 0.0173 0.3828

US$ –0.0026*** 0.0007* –0.0009*** –0.0005*** –0.0060** –0.1444**

 0.0007 0.0004 0.0003 0.0002 0.0023 0.0540

IP 0.0034*** –0.0004 0.0004 –0.0001 0.0051*** 0.0563

 0.0006 0.0004 0.0002 0.0002 0.0014 0.0347

SP500 0.0136*** –0.0033** 0.0053*** 0.0011* 0.0395*** 0.8474***

 0.0025 0.0014 0.0008 0.0006 0.0055 0.1266

F stat 23.09*** 9.14*** 20.89*** 2.48** 25.11*** 22.16***

Adj R2 0.7904 0.5814 0.7725 0.2015 0.8046 0.7832

 
 Standard errors are provided in parentheses.

fi
a Both coefficient estimates and standard errors reported are multiplied by 10,000 due to 

their small size.
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rate appears to be the significant variable in almost all specifications. It is 

interesting to note that money supply, terms of trade, and S&P500 do not 

appear significant in any model.

The last period specified by the ICSS starts in January 2004 and contin-

ues to the time where our data set is available. This is the period of political 

stability, which in turn brought the economic stability. Turkey achieved 

high growth rates in these years and the economy functioned very well. 

Results for this period are reported in Table 27.6. This is the period with the 

highest overall significance, even for the volatility measure 4. The macro 

variables as a set are able to explain 20% to 80% of the variation in stock 

market volatility, depending on the volatility measure chosen. Except for 

V2, higher return volatility in US$ causes a higher return volatility in 

Turkey. Exchange rate is significant in all specifications, and interest rate 

and inflation are significant in all but one specification. Macro variables 

in the models with V1, V3, V5, and V6 explain about 80% of the variation 

in volatility. If we exclude the measure V2, we notice robust estimates for 

the significant results, with volatility of M2 growth being the least signifi-

cant. As a result, we can argue that, under stable economic and political 

conditions, there should not be a concern that volatility is largely driven 

by irrational investor behavior.

27.5 CONCLUSION
In this study, we examine the link between macroeconomic factors and 

stock market volatility for an emerging market. Stock market volatility is 

proxied by six different measures. To take into account the effect of for-

eign investor behavior and global factors, the return volatility of S&P500 

index is also included as an explanatory variable. Furthermore, the shifts 

in volatility are identified using the ICSS algorithm leads to three subpe-

riods, with the second subperiod being a severe crisis period and the last 

one being a stable environment.

Overall, we find that macro factors explain a significant amount of the 

variability in stock market volatility, lowering the role of irrational investor 

behavior. However, under unstable environment as defined by the second 

subperiod, the size and significance of macro factors, along with global fac-

tors, decline significantly. As indicated by the last subperiod with stable eco-

nomic and political environment, a large part of the changes in stock market 

volatility can be explained by macroeconomic and global factors together.

However, the direction of the influence of macro factors on the stock 

market volatility is not robust across measures of volatility, though the 
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signs are consistent for most measures. Thus, a test of robustness or fragil-

ity, perhaps using extreme bound analysis, can improve our understanding 

of the link between macro factors and stock market volatility. Moreover, 

the global factors, as proxied by the return volatility of the S&P500 index, 

influences return volatility of the ISE100 index significantly. In particular 

for the last period, this can be due to the existence of foreign investors in 

the Istanbul Stock Exchange.*

All in all, our study presents some empirical evidence that macro vari-

ables do have influence on stock market volatility, in particular under a 

stable economic environment. Also, we show that the size, the signifi-

cance, and even the direction of the influence are impacted by the choice 

of the volatility measure.
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28C H A P T E R  

Forecasting Default 
Probability without 
Accounting Data
Evidence from Russia

Dean Fantazzini

28.1 INTRODUCTION
Prediction of a firm’s bankruptcy risk has been an active research area in 

finance for the last 40 years. We can identify at least two distinct litera-

tures: The first relies on accounting-based measures as predictor variables. 

Included in this literature are Altman (1968), Altman et al. (1977), Ohlson 

(1980), Zmijewski (1984), and Lau (1987), and most recently Shumway 

(2001), with Altman (1968) and Shumway (2001) being the most popu-

lar. We categorize those studies as statistical approaches since they are 

based on established statistical methods. For example, Altman (1968) uses 
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discriminative analysis; Shumway (2001) uses the hazard model. The sec-

ond strand of literature predicts bankruptcies using a structural approach, 

where we assume that we can observe values of a firm’s underlying assets 

and treat its equity either as a standard call option (Merton, 1974; Moody’s 

KMV*—see Crosbie and Bohn, 2001; Vassalou and Xing, 2004) or a barrier 

option (see Leland, 1994; Brockman and Turtle, 2003; Reisz and Perlich, 

2007). The essential difference between a barrier (down-and-out) call 

option and a standard call option is that the former is a path-dependent 

derivative while the latter is not. Recently, Hao (2006) performed an exten-

sive out-of-sample forecasting exercise and found that overall the struc-

tural approach has better accuracy than the statistical approach, whereas 

the standard call option has the best accuracy among all models.

However, all the previous approaches rely on the basic assumption that 

financial statements are reliable: unfortunately, the recent defaults of busi-

ness giants such as Enron, Parmalat, and Worldcom clearly show how 

accountancy data can be misleading and far from the true financial situ-

ation of a company, even for financial markets subject to strict business 

regulations and controls such as the American markets.

Given this evidence, we propose here a novel approach for default fore-

casting that considers stock prices only, and is able to model nonnormali-

ties, too. We justify this proposal, as a vast literature has shown how quoted 

prices are mostly driven by private information, and therefore should be 

closer to the true values than accountancy data. The importance of private 

information in price determination was first highlighted by French and 

Roll (1986) in a theoretical study on the volatility of stock returns in trading 

days and nontrading days, as well as in open-market hours versus closed-

market hours. They showed evidence that most stock returns volatility is 

caused by informed traders, whose private information is incorporated 

into prices when financial markets are open. The increasing availability of 

high-frequency data has later allowed us to conduct more precise tests on 

microstructural models. Hausbrouck (1988), Madhavan and Smith (1991), 

Hasbrouk and Sofianos (1993), and Madhavan and Sofianos (1997), just to 

name a few, showed the importance of asymmetric private information for 

stock prices and futures dynamics (see Biais et al. (2005) and Hansbrouck 

(2007) for recent surveys about market microstructure studies).

* KMV LLC was founded in the early 1990s and was the first company to sell default probabili-

ties by using the Merton’s structural credit model. KMV LLC was later acquired by Moody’s 

Investors Service in 2002.
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Starting from simple financial identities based on the true accounting 

figures, we show how the null price can be used as a barrier to separate an 

operative firm from a defaulted one, and to estimate its default probability 

by using stock prices only. Besides, little effort has been made in financial 

studies to estimate the variability of computed default probabilities. The 

classical way is to produce asymptotic standard errors based on the second 

derivatives of the objective function that is going to be minimized. However, 

due to the complicated form of the parametric models, this is a cumbersome 

task, while the first-order Taylor expansion that is used to approximate the 

expectations can be misleading. In addition, since default probabilities are 

usually very small numbers, overflow problems may occur.

In this chapter we provide an alternative way for estimating the con-

fidence bands of the default probabilities by utilization of a parametric 

bootstrap approach. This leads to more flexible inference and overcomes 

problems related to the calculations involved in asymptotic standard 

errors. These bands may exhibit asymmetry and also allow for compari-

son between different computed probabilities.

We compare the KMV-Merton model with our approach by using the 

historical prices of some of the most traded Russian stocks, and we show 

how the former model may suffer from numerical instabilities and provide 

unreasonable results, as already highlighted in Crosbie and Bohn (2001), 

Bharath and Shumway (2008), and Hao (2006). We then consider five 

famous American, Italian, and Russian defaulted stocks whose financial 

statements were found to be irregular and therefore do not allow use of 

standard structural or statistical approaches. By using our approach and 

parametric bootstrap methods, we find that these stocks show a default 

probability statistically higher than 50% already a couple of months in 

advance of the default event, whereas the KMV-Merton model tends to 

jump only a couple of days before the default, when it is already too late.

The chapter proceeds as follows. Section 28.2 reviews the KMV-Merton 

model. Section 28.3 presents our novel approach for estimating default 

probabilities and shows how to construct bootstrap confidence bands. 

Section 28.4 discusses an empirical example with American, Italian, and 

Russian stocks. We conclude in Section 28.5.

28.2 THE KMV-MERTON MODEL: A REVIEW
Merton-type models (or structural models) base the evaluation of firm-

related securities on the structural firm variables, i.e., the firm’s assets and 

liabilities values. Those models date from the early 1970s (see Merton, 1970, 
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1977). The classic papers by both Black and Scholes (1973) and Merton 

(1974) point out that the liabilities of a corporate firm may be priced as 

plain vanilla options. Needless to say, the straightforward use of the Black-

Scholes valuation formulas requires some basic assumptions on the behav-

ior of assets, no-arbitrage opportunities, and continuous hedging.

A very common assumption in Merton-type models (e.g., see Ingersoll, 

1987; Mason and Merton, 1985; Merton 1977) is that the value  of the 

firm follows a geometric Brownian motion:

 d  =   d  +   d  (28.1)

where is a Wiener process and the drift and volatility coefficients  

and do not depend on the capital structure of the firm  = / , i.e., 

on how the assets value  is split into equity value  and bonds value . 

The independence of ( , ) on  simply translates the Miller-Modigliani 

theorem (see Miller and Modigliani, 1958, 1961).

Another basic assumption is that the assets value is exogenous, so it can 

be treated as the underlying in an option pricing framework. This means 

that the assets value does not depend on the dynamics of the firm-related 

securities, and therefore the equity has a residual value. Thus, the equity 

value satisfies

 = ( 1) − ( 2) (28.2)

where  is the market value of the firm’s equity,  is the face value of the 

firm debt,  is the risk-free rate, (·) is the cumulative standard normal 

distribution function, and 1 is given by

 

1

20 5log( / ) .

 

(28.3)

while 2 = 1 −  . Under the Merton model assumptions the volatility 

of the equity is

 

( )1

 
(28.4)

The underlying variable in the Merton model cannot be directly 

observed. To overcome this problem, the KMV-Merton model (see 

also Ronn and Verma, 1986; Crosbie and Bohn, 2001) makes use of the 

two nonlinear formulas, Equations (28.2) and (28.4), and solves them 

numerically for and . Once this numerical solution is obtained, the 
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distance to default can be calculated as 2, while the implied probability 

of default is

 Pr [ ≤ ] = (– 2) (28.5)

28.3 A NEW APPROACH: THE ZERO PRICE PROBABILITY
The previous KMV-Merton model as well as other structural and sta-

tistical approaches for default forecasting assume that the accountancy 

data represent the true picture of the company financial situation. With 

regard to the KMV-Merton model, the accountancy data used is the book 

face value of the firm’s total liabilities. The usual practice considers for 

total liabilities the sum of short-term liabilities plus one-half of long-term 

liabilities. This assumption, which is made by Moody’s KMV for North 

American firms, ensures that the firm’s liabilities are not overstated (see 

also Vassalou and Xing, 2004; Hao, 2006). Even though Vassalou and 

Xing (2004) state that using different percentages for long-term liabili-

ties is not deemed to alter the main qualitative results, such an approach 

may not be robust to “window dressing” policies made to improve the 

financial score of a company or, in the worst case, to financial frauds. 

Besides, KMV itself admits that “in practice the market leverage moves 

around far too much for [Equation (28.4)] to provide reasonable results” 

and particular iterative methods have to be used instead (see Crosbie 

and Bohn, 2001).

The recent default of the food giant Parmalat in 2003 clearly showed 

how the debts reported in the certified balanced sheet can represent 

only a part of the true debt figures. Summarizing this financial story, in 

February 2003,

the chief financial officer (CFO) Fausto Tonna unexpectedly 

announced a new €500 million bond issue. This came as a surprise 

both to the markets and to the CEO, Calisto Tanzi. Tanzi fired Tonna 

and replaced him as CFO with Alberto Ferraris. According to an 

interview he later gave  Ferraris was surprised to dis-

cover that, though now CFO, he still didn’t have access to some of the 

corporate books, which were being handled by chief accounting offi-

cer Luciano Del Soldato. (http://www.wikipedia.org/wiki/Parmalat)

[so] Ferraris asked two trusted members of his staff to mount a 

quiet investigation. After calling around Parmalat’s worldwide 
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operations, they came back with shocking news: a total debt esti-

mate of €14 billion, more than double that on the balance sheet. 

(Gumbel, 2004)

The crisis became public in November 2003 when questions were 

raised about transactions with the mutual fund Epicurum, a Cayman-

based company linked to Parmalat causing its stock to plummet. Ferraris 

resigned less than a week later and was replaced by Del Soldato. In 

December, Del Soldato resigned, unable to get cash from the Epicurum 

fund, needed to pay debts and make bond payments. Tanzi himself 

resigned as chairman and CEO as the 7 billion euros hole was discovered 

in Parmalat’s accounting records: Parmalat’s bank, Bank of America, 

later released a document showing €3.95 billion in Bonlat’s bank account 

as a forgery (in 1999, Parmalat set up a subsidiary in the Cayman Islands 

called Bonlat).

Calisto Tanzi was detained hours after the firm was declared offi-

cially insolvent and eventually charged with financial fraud and 

money laundering. Among the questionable accounting practices 

used by Parmalat: it sold itself credit linked notes, in effect placing a 

bet on its own credit worthiness in order to conjure up an asset out 

of thin air. (http://www.wikipedia.org/wiki/Parmalat)

For more details, see the full article reported in  (Gumbel, 

2004) and Castri and Benedetto (2006).

The previous short description of the Parmalat scandal clearly high-

lights that using accounting data to infer the firm’s default probability 

can be misleading and result in a very poor estimate. In order to avoid 

such problems, we propose here a novel approach that uses the null 

price as a default barrier to separate an operative firm from a defaulted 

one, and to estimate its default probability without resorting to accoun-

tancy data.

Let us consider the following two financial identities based on the true 

accountancy data at time :

 
( )

and consider the financial meanings and signs of  and  according to 

the situation faced by the firm:
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Table 28.1 shows that the quantity  is negative when the firm 

defaults as it represents the loss given default for debtholders, while it 

is positive when the firm is operative, representing the equity belong-

ing to shareholders instead. A negative value for is a direct con-

sequence of the limited liability now in place in all modern Western 

legislations. Besides, losses can be theoretically infinite, like profits: 

just think of the effects of the September 11, 2001, attacks on airline 

companies or of the mad cow and bird f lue diseases on agriculture 

companies. Therefore, we can resort to probability density functions 

with negative domain, too.

The main consequence of the previous discussion is that we can esti-

mate the distance to default simply by using , instead of 2 as in Merton’s 

framework, and the default probability by Pr[  ≤ 0], as the firm defaults 

when  is zero or negative. Furthermore, given that =  × , where 

 is the quoted stock price at time and  is the number of shares, the 

default probability of a firm can be retrieved by estimating Pr[ ≤ 0], that 

is, by using the ( ). While the quoted price is 

a truncated variable that cannot be negative, the quantity  has no lower 

bound, as it has a different financial meaning whether the firm is operative 

or defaulted: in the former case  is computed daily in (electronic) finan-

cial markets, whereas in the latter case the loss given default is computed 

in bankruptcy courts.

Stock prices are usually nonstationary (1) variables, and it is common 

to model their dynamics by considering the log-returns, so that the prices 

are guaranteed to be positive. However, we are interested in finding Pr[  

≤ 0], since we have just shown that the null price can be used as a default 

barrier. A straightforward way to do that is to consider a conditional 

model for the ff ,  =  − 1, instead of differ-

ences in log-prices.

An analytical close-form solution for Pr[  ≤ 0] is available for a few 

special and unrealistic cases, such as normally distributed prices with 

homoskedastic variance. When this is not the case, simulation methods 

TABLE 28.1 Financial Meaning and Signs of  and 

Operative Equity belonging to shareholders (+) Asset value (+)

Defaulted Loss given default for debtholders (−) Equity belonging to debtholders (+)
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are required. If we are at time and want to estimate the default probabil-

ity at time , we can use the following general algorithm:

ff
    − –  fi

 

[ | ]

, . . .( , )/1 2 0 1:
 

(28.6)

1/2 .

This method entails a number of important benefits:

1. We only need the stock prices.

 2. We do not need either any firm’s volatility  or the debt face value, 

like in Merton-style models.

 3. We can consider more realistic distributions than the log-normal.

 4. We can estimate the default probability for any given time horizon  

 + T.

 5. We can screen the default risk daily or even intradaily. The ZPP can 

therefore be used as a tool for risk management.

 6. The ZPP can be used as an early warning system for financial default 

in general, since it can be estimated with any financial time series.

28.3.1 Bootstrap Confidence Bands

The bootstrap (Efron and Tibshirani, 1993) was first used to investigate 

the reproducibility of certain features of phylogenetic trees by Felsenstein 
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(1985). Efron and Tibshirani (1998) later looked up this problem more 

generally and termed it the problem of regions. They also link this con-

fidence measure, in certain settings, to frequentist -values and Bayesian 

posterior probabilities. Bootstrap techniques have expanded the ability for 

statistical inferences in certain circumstances where classical inferential 

procedures face problems. Bootstrap estimates of the standard errors for 

the parameters of a model are useful counterparts when the direct calcu-

lation of the standard errors (asymptotic or not) is troublesome (see, e.g., 

Efron and Tibshirani, 1993). In addition, bootstrap standard errors can 

better reflect small sample properties of the estimates.

To date, little work has been done to quantify the uncertainty around 

the computed default probabilities, since the main interest has lain in the 

point estimate. Instead, if we look at other fields of research that deal with 

computed probabilities, Van der Laan and Bryan (2001) used the para-

metric bootstrap in a biostatistics work to determine the single-gene prob-

abilities and their distribution. Karlis and Kostaki (2002) used a similar 

approach for mortality rates in human populations. Zwane and Van der 

Heijden (2003) presented an algorithm for the parametric bootstrap that 

can be used in log-linear modeling when there are continuous covariates. 

In a following paper, Zwane et al. (2004) proposed the parametric boot-

strap to construct a confidence interval for multiple-record systems esti-

mators when registrations refer to different but overlapping populations.

Besides, several authors have used the nonparametric bootstrap in 

log-linear modeling (see, for example, Huggins, 1989; Tilling and Sterne, 

1999; Tilling et al., 2001). But as noted by Norris and Pollock (1996), 

the nonparametric bootstrap results in a variance estimate that is likely 

to be smaller than the true variance, because it conditions on the data 

being observed. This is in line with a simulation conducted by Tilling 

and Sterne (1999), which showed that the nonparametric bootstrap has a 

coverage consistently lower than the nominal coverage. Similar findings 

were reported by Zwane and Van der Heijden (2003), too. “Besides, the 

parametric bootstrap is asymptotically valid under relatively mild condi-

tions compared to those required by the nonparametric bootstrap” (Gine 

and Zinn, 1990).

In general, the asymptotic validity of the parametric bootstrap requires 

that the chosen parametric model be correct. However, for the case of the 

truncated multivariate normal, Van der Laan and Bryan (2001) show that 

as long as the parametric model places no constraints on the parameters, 

even when it is incorrect, the parametric bootstrap will still consistently 
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estimate the degenerate limit distribution. Given this literature back-

ground, we resort here to parametric bootstrap methods.

The whole procedure to construct confidence bands around the esti-

mated default probabilities is as follows:

: Draw a T × 1 vector of standardized innovations  from the 

considered marginal density used in Equation (28.6), for example, 

Student’s t.

: Create an artificial history for the random variable , by replac-

ing all parameters in Equation (28.6) with their estimated counter-

parts, together with the standardized innovations  drawn in the 

previous step.

: Estimate the conditional Equation (28.6) using the data from the 

artificial history.

: Calculate a bootstrap estimate of the ZPP using the previous 

estimates performed on the artificial history.

: Repeat the above four steps for a large number of times , in order 

to get a numerical approximation to the distribution of the ZPP.

This distribution forms the basis for computing the bootstrap confi-

dence intervals around the default probabilities.

28.4 EMPIRICAL ANALYSIS
We first analyze the daily data of the five most traded Russian stocks: 

Gazprom, Lukoil, Norilsk Nickel, Sberbank and United Energy. We then 

consider five well-known American, Italian, and Russian defaulted stocks 

whose financial statements were found to be irregular and therefore do not 

allow use of standard approaches.

28.4.1 Russian Not-Defaulted Stocks

We consider both the standard KMV-Merton approach that makes use of 

the nonlinear Equations (28.2) and (28.4) and our approach described in 

Section 28.3. In the former case, the liabilities are the sum of short-term 

liabilities plus one-half of long-term liabilities, as previously discussed. In 

the latter case, we consider an AR(1)-threshold-GARCH(1,1) model for 

the differences in prices levels,  =  − 1, together with a Student’s  
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distribution to take the leverage effect as well as leptokurtosis in the data 

into account (for more details, see Glosten et al., 1993):

 

1 1

0 1, . . .( , ):

1
2

1
2

1 1  

(28.7)

where 1 = 1 if 1 < 0. We choose such a specification given its past suc-

cess in modeling financial variables (see Tsay, 2002; Hansen and Lunde, 

2005, and references therein). As for the number  of simulated price tra-

jectories to estimate the ZPP, we set  = 5,000.

We test for unit roots in the financial variables under scrutiny by using 

the Dickey-Fuller test with GLS detrending (DF-GLS) by Elliott et al. 

(1996) and the test by Kwiatkowski et al. (1992), which is based on the null 

of covariance stationarity rather than integratedness. A careful analysis 

of the levels and of the first differences of the prices series, reported in 

Table 28.2, shows that nonstationarity is the main feature of the variables 

over the observation period 2002–2008.

We then tested the goodness of fit of the AR(1)-T-GARCH(1,1) models 

employed for the conditional marginal distributions by using Ljung-Box 

tests on the standardized residuals in levels ˆ  and squares ˆ 2  to test 

the null of no autocorrelation in the mean and in the variance, together 

with the specification tests discussed in Granger et al. (2006). We used 

the Kolmogorov-Smirnov test for density specification, together with the 

“hit” test in order to test jointly for the adequacy of the dynamics and 

the density specifications in the marginal distribution models, where the 

null hypothesis is that the density model is well specified. The latter test 

TABLE 28.2 Unit Root Tests for the Five Russian Nondefaulted Stocks

t Diff t Diff
Gazprom 0.048 –26.170 (**) 4.479 (**) 0.168

Lukoil –0.615 –43.822 (**) 4.647 (**) 0.049

Norilsk Nickel 0.595 –46.843 (**) 4.144 (**) 0.245

Sberbank –0.196 –39.150 (**) 4.135 (**) 0.229

United Energy –0.779 –41.649 (**) 4.162 (**) 0.169
 

 *, significant at the 5% level; **, significant at the 1% level.
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divides the support of the density into five regions and then applies inter-

val forecast evaluation techniques to each region separately, and then to all 

regions jointly (for more details, see Granger et al., 2006). For sake of space 

and interest, we report in Table 28.3 only the -values of each test. The full 

set of results is available from the author upon request.

All the marginal models passed the tests (at least) at the 0.01 level, thus 

highlighting that they are correctly specified. Overall, the previous tables 

point out that the AR(1)-TGARCH(1,1) model with a Student’s t distribu-

tion is a proper choice for our financial variables.

To estimate the default probabilities, we consider a 1-year-ahead hori-

zon. The initialization sample considers prices between January 8, 2002 

and April 19, 2006, for a total of 1,000 observations: at the -th iteration, 

where  goes from April 20, 2006 to April 23, 2008 (for a total of 500 obser-

vations), the estimation sample is augmented to include one more obser-

vation, and this procedure is iterated until all days have been included in 

the estimation sample. Figures 28.1 and 28.2 show the default probabilities 

computed by using the KMV-Merton model and the ZPP, with a range 

between 0 and 50%, while Figure 28.3 shows two special cases.

The previous figures highlight some elements of sure interest:

1. The default probabilities estimated with the ZPP are usually higher 

than the ones obtained by using Merton’s model. Such a result may be 

due to both the log-normality assumption in the Merton model and to 

incorrect financial statements made to “window dress” the financial 

health of a company. Regarding this issue, it is possible to show that in 

the Merton model the default probability rises quickly only when the 

equity-to-debt ratio is very low, everything else kept fixed.

 2. The KMV-Merton model shows some numerical instability prob-

lems with noisy data and from the jumps in the debt values at book 

TABLE 28.3 -values for the Specification Tests

Gazprom 0.281 0.066 0.021 0.075

Lukoil 0.334 1.000 0.604 0.032

Norilsk Nickel 0.734 1.000 0.353 0.081

Sberbank 0.632 0.987 0.107 0.056

United Energy 0.854 0.331 0.282 0.074
 



Forecasting Default Probability without Accounting Data < 547

closure dates at the end of the year: this produces the 1-day peaks 

shown in Figure 28.3 (Gazprom and Lukoil).

We remark that Ketz (2003) discusses a wide variety of techniques to hide 

debts and financial risk. This explains why the Merton’s default probabilities 

and firm values are usually underestimated with respect to the ZPP. Besides, 

the log-normal is not an appropriate distribution for price dynamics since 

it underestimates the tail of the distribution. Increasing volatility and lepto-

kurtosis can also be interpreted as a sign of informed trading (see Biais et al., 

2005; Hansbrouck, 2007): just see the difference in Figure 28.1 before and 

after the Gazprom CEO was nominated as candidate for the Russian presi-

dency. Political risk is not accounted for by the KMV-Merton model.

28.4.2 Defaulted Stocks with Irregular Financial Statements

We now consider the last 1,000 trading days of five famous defaulted stocks 

whose financial statements were found to be irregular by justice probes and 

therefore do not allow use of standard approaches. Instead, we pursue the 
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FIGURE 28.1 Estimated default probability: Gazprom and Lukoil.
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use of our methodology described in Section 28.3, since a vast literature 

has shown how quoted prices are mostly driven by private information, and 

therefore they should be closer to the true values than accountancy data (see 

the discussion in the introduction). These five stocks are:

1. September 24, 1999 to July 24, 2003. Second largest default in 

the European food sector.

2. January 20, 1998 to January 10, 2002. Second largest default 

in American history.
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3.  February 22, 2000 to December 22, 2003. Largest default 

in European history.

4. July 16, 1998 to July 12, 2002. Largest default in 

American history.

5. July 3, 2000 to June 30, 2004. Largest default in Russian history.

Similarly to Section 28.4.1, we employ AR(1)-T-GARCH(1,1) models 

with a Student’s t distribution to model leptokurtosis in the price differ-

ences . Tests for unit roots reported in Table 28.4 show the five series 

are (1) variables, while the specification tests in Table 28.5 highlight no 

significant misspecification in the model dynamics and marginal distri-

butions. The latter evidence is important, as it allows us to use parametric 

bootstrap procedures to construct confidence intervals around the com-

puted default probabilities.

TABLE 28.4 Unit Root Tests for the Five Defaulted Stocks

t Diff t Diff
Cirio –2.083 –20.583 (**) 0.486 (*) 0.065

Parmalat –1.372 –12.395 (**) 0.768 (**) 0.045

Enron –2.620 –38.785 (**) 0.453 (*) 0.022

Worldcom –1.359 –34.876 (**) 0.833 (**) 0.057

Yukos –0.238 –28.006 (**) 3.672 (**) 0.021
 

 *, significant at the 5% level; **, significant at the 1% level.

KMV–Merton default probabilities: GAZPROM
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FIGURE 28.3 Problems with KMV-Merton’s model: Numerical instability 

(GAZPROM, LUKOIL).
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Figures 28.4 and 28.5 show the last 1,000 end-of-day quoted prices 

before default (500 days for Yukos), together with the computed default 

probabilities and the 90% confidence bands.

A first interesting thing to note is that the confidence intervals show 

a certain degree of asymmetry. Moreover, we observe a strong difference 

between American and Italian stocks. The computed 1-year-ahead default 

probabilities for Enron and Worldcom are higher than 50% a couple of 

months in advance of the default event. As for the Italian stocks, instead, 

it is interesting to observe that already 2 to 3 years in advance the com-

puted probabilities are above 50%. This evidence seems consistent with 

preliminary justice probes, which highlight that financial distress was 

already known to the two Italian company managements in the 1990s. 

Besides, while the large confidence bands suggest we should consider the 

computed default probabilities with some care (particularly for Parmalat), 

nevertheless they can also be interpreted as a strong sign of market uncer-

tainty about the future of the company.

As for Yukos, the biggest Russian default so far, the market seemed to 

price the difficulties regarding this company already a couple of months in 

advance of the arrest of Yukos’ CEO in October 2003.

Overall, the previous figures seem to highlight a different degree of effi-

ciency between the Italian market and the American market in the case 

of financial frauds. Some episodes concerning the Enron and Parmalat 

defaults may help to shed some light over this different behavior: the wife of 

Enron CEO, Lisa Lay, has been accused of selling 500,000 shares of Enron 

stock totaling $1.2 million on November 28, 2001. Records show that Mrs. 

Lay placed the sale order sometime between 10:00 and 10:20 a.m. News of 

Enron’s problems, including the millions of dollars in losses it had been 

hiding, went public about 10:30 that morning, and the stock price soon fell 

to below $1. Similarly, former Enron executive Paula Rieker was charged  

TABLE 28.5 -values for the Specification Tests

Cirio 0.112 0.182 0.018 0.017

Enron 0.953 0.096 0.380 0.837

Parmalat 0.906 0.971 0.091 0.530

Worldcom 0.167 0.758 0.435 0.057

Yukos 0.263 0.405 0.556 0.237
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with criminal insider trading. Rieker obtained 18,380 Enron shares for 

$15.51 a share, and she sold that stock for $49.77 a share in July 2001, a week 

before the public was told what she already knew about a $102 million loss. 

She pleaded guilty. As for Parmalat, instead, the financial police found that 

a sum between 1 and 2 billion euros was distracted from Parmalat bank 

accounts to tourist societies and other firms belonging to the Tanzi family 

(yet external to the food group giant) between 1993 and 2003. Therefore, the 

two defaults seem not of the same kind: while the information that Enron 

was collapsing was already known to Enron executives for over a year, the 

Price cirio – last 1000 trading days before default
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last-minute timeline of their sales seems to show that “they left the ship 

before it sank.” The case for Parmalat is rather different; instead, the man-

agement seems to have organized a precise illegal system to drain money 

out of the company in a systematic way. The ongoing justice probe and the 

following trial will, hopefully, clarify these points.

Instead, the Yukos case is very interesting because it is the first default 

of such large dimensions in the Russian Federation, and it highlights a 

certain degree of market inefficiency, given that the implied default prob-

ability was higher than 20% well in advance of the main public events. 

However, given the peculiarities of this default, some caution should be 

taken before retrieving any lessons from this case.

28.5 CONCLUSION
In this chapter we described a new methodology to assess the default 

probability of a quoted firm, together with parametric bootstrap meth-

ods to build confidence intervals around the computed probabilities. 

Our approach needs neither any firm’s volatility nor the debt face value, 

like in Merton-style models. Moreover, we can consider more realistic 
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distributions than the log-normal one. Besides, Merton’s default prob-

abilities and firm values may be largely underestimated in the presence 

of financial fraud or window dressing. Similarly, political risk is not 

accounted for by the KMV-Merton model, as the case of Gazprom and 

Yukos clearly highlighted.

The empirical analysis showed that the numerical stability of our 

approach is much better than Merton’s. Furthermore, by using five 

defaulted stocks whose balance sheets were irregular, we found that the 

Italian market seemed much less efficient than the American market in 

case of financial frauds. Particularly, estimated default probabilities in the 

former market were well above 50% already a couple of years before the 

defaults, while in the latter markets this phenomenon took place only in 

the last 100 trading days. As for Russian markets, the ZPP showed that 

we are able to take political and financial factors into account, delivering 

much more reliable estimates of the default probability than the KMV-

Merton model. However, more future research is needed before drawing 

any lessons.

An avenue for further research is to perform a back-testing analysis with 

larger data sets so that we can sharpen the comparison between American, 

Italian, and Russian markets in terms of efficiency and forecasting per-

formances. Besides, given the strong interdependencies in world financial 

markets, a multivariate extension of our approach is called for.
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Recent Assessments 
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in the Middle East 
Stock Markets
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29.1 INTRODUCTION
There has been a considerable amount of attention devoted to the 

predictability of stock returns. However, many studies (for example, 

Campbell and Perron, 1991; Ferson et al., 2003) have cast serious doubt 

on the predictive power of variables believed to forecast stock returns 

in long-horizon regressions. Finance practitioners and academics have 

always questioned the long-run time-series properties of equity prices 

while paying attention to whether the motion of stock prices can be 

characterized as a random walk or as a mean reverting process. If the 

dynamics of stock prices over time are mean reverting, then there exists 
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a tendency for the price level to return to its trend path over time, and 

investors may be able to forecast future returns by using in formation on 

past returns. On the other hand, a random walk process implies that any 

shock to stock prices is permanent, and that there is no tendency for the 

price level to revisit a specific trend or path over time. In other words, 

histori cal observations become totally irrelevant for the purpose of fore-

casting future returns. The random walk property also implies that the 

volatility of stock prices can grow without a bound in the long run. Aside 

from being an interest by themselves, these time-series properties have 

important implications for asset pricing. The evidence of mean rever-

sion was first documented for the U.S. market. Using U.S. individual 

firm-level data, DeBondt and Thaler (1985) first report that past losing 

stocks over the previous 3–5 years significantly outperform past winning 

stocks over a 3–5 years holding period. Their results indicate that stock 

prices do not follow a random walk, but contain a strong mean revert-

ing component. Fama and French (1988) also re port mean reversion in 

U.S. equity market using long-horizon regressions, and Poterba and 

Summers (1988) document evidence of mean reversion using the vari-

ance ratio test. Recently, researchers have also tested for mean reversion 

in equity prices using interna tional data. For example, Richards (1997) 

reports evidence of long-term winner-loser re versals for equity indexes 

for sixteen countries. Balvers, Wu and Gilliland (2000) find significant 

evidence of mean reversion across eighteen developed equity markets 

and demonstrate that one can exploit the property of mean reversion 

to predict equity returns using a parametric contrarian investment 

strategy. Other researchers, however, report conflicting results against 

mean reversion. For example, Lo and MacKinlay (1988) report some 

evidence against mean reversion in weekly U.S. data. Kim, Nelson and 

Startz (1991) show that mean reversion exists only in pre-war U.S. data, 

while Richardson and Stock (1989) and Richardson (1993) argue that the 

results from Fama and French (1988) and Poterba and Summers (1988) 

are not robust because of small-sample biases. (Chaudhuri and Wu, 2003)

test for mean reversion for emerging market stock prices and find that the 

null hypothesis of no mean reversion cannot be rejected in gen eral using 

the standard unit-root test. They argue, however, that emerging markets 

may be subject to structural changes, and if a structural break is explicitly 

taken into account in the regression, mean reversion can be detected in 

fourteen out of seventeen countries. In the context of MENA countries, 

Hakim and Neaime (2003) indicate evidence of mean reversion in the 
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more mature stock markets of Egypt, Jordan, Turkey, and Morocco, but 

the sample period was relatively short (at most 5 years in some countries). 

More recently, Assaf (2006) uses a rescaled variance statistic to investigate 

the long memory demonstrated in the stock price series of the same four 

preceding countries. Despite the limited period (5 years) of his analysis, 

his findings suggest that a significant long-term memory exists, contrary 

to the hypothesis of market efficiency.

Chaudiri and Wu (2002) state that “Much of the controversy on the 

issue of mean reversion arises because the speed of reversion may be 

slow and standard econometric tests do not have suffi cient power to dis-

criminate a mean reversion process from a random walk process. In this 

chapter, we test for mean reversion in stock price indexes of five emerg-

ing markets in the Middle East using monthly data from January 1996 

through April 2008. Our results provide useful information from this 

independent sample, and complement the existing studies on stock mar-

ket efficiency in the Middle East and North Africa (MENA). Chaudhuri 

and Wu (2002) state that “To overcome the power deficiency problem, 

we conduct the test in a panel framework. We pool data of five neigh-

boring countries in the Gulf region and utilize the information on the 

cross-sectional varia tions in equity returns to increase the power of 

the test so that mean reversion can be more easily detected. To further 

improve estimation efficiency, we estimate the system of equations using 

the seemingly unrelated regression (SUR) technique. We find that the 

null hypothesis of a random walk can be rejected in favor of mean rever-

sion for two stock index prices.

The remainder of the chapter is organized as follows. Section 29.2 reviews 

the historical background of the equity markets in the Gulf Cooperation 

Council countries of the Middle East. Section 29.3 presents the empiri cal 

methodology. Section 29.4 describes the data. The empirical results are 

reported in Sec tion 29.5, and Section 29.6 concludes the chapter.

29.2 BACKGROUND OF THE GULF COOPERATION 
COUNCIL STOCK MARKETS

Compared to other emerging markets, the stock markets of the MENA region 

have enjoyed faster price gains over the past decade. The average annual 

rise in the stock markets of countries such as Saudi Arabia, Qatar, and Abu 

Dhabi exceeded 200% during each of the last 10 years. The fastest-growing 
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MENA stock market since 2001 was Abu Dhabi, where the index rose by a 

remarkable 237%. Furthermore, this unprecedented price growth has been 

accompanied by a sharp jump in market capitalization. The fastest capital-

ization growth in the MENA region has been realized in the stock mar-

kets of Gulf Cooperation Council (GCC) countries, where their combined 

market capitalization increased from $120 billion in 2000 to $1.5 trillion  

in 2006. Despite this impressive growth, the MENA stock markets are still 

small in international terms and relative to other emerging markets.

Several factors are behind this rapid growth. The surge in oil revenues of 

MENA oil-exporting countries has fueled an economic boom that has cre-

ated many profitable business opportunities for private firms. Companies 

involved in real estate, banking, and telecommunications have done 

particularly well over the past 3 years, and these good performances are 

reflected in their stock prices. Also, Arabs are now showing more interest 

in regional investment opportunities. Traditionally, Arab investors and 

financial institutions showed a strong preference for investing in U.S. and 

West European financial markets, but since the tragedy of September 11,  

they have increased their holdings of Middle Eastern financial assets. 

Finally, the recent spate of economic reforms and privatization across the 

region has created many new investment opportunities for the private sec-

tor. Several countries privatized their telecom industries over last 5 years, 

and these new firms have done well in the stock market. While oil assets 

are expected to remain fully under government control, Saudi Arabia is 

privatizing one of its petrochemical companies, which might set a prec-

edent for other oil-exporting countries.

Since 2003, the rapid rise in oil prices has fueled an unprecedented rise 

in the GCC stock markets. This increase has worried investors that equi-

ties were being overvalued and eventually led to a sharp market correction 

and tremendous price volatility. A sharp decline in petroleum prices could 

trigger another market correction, but the likelihood of such an event 

occurring seems small given that the oil futures for the next 10 years are 

well above $100 per barrel.

29.3 EMPIRICAL METHODOLOGY
We adopt and reproduce the methodology from Chaudhuri and Wu  

(2003, 580):

Our primary interest in this study is to test whether stock prices 

in GCC markets fol low random walk or mean-reverting processes. 
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Let be the natural logarithm of country ’s stock-price index  

with dividends reinvested at time , and 1 be its con-

tinuously compounded return. Let be the sample size. Consider 

the following process:

1 (29.1)

where is a constant parameter and  is a stationary process that 

is allowed to be serially correlated,  =      =    . If  

 = 1, the equity price follows a random walk; while if  < 1, the 

equity price is mean reverting.

The most widely used and accepted tests for the random walk hypoth-

esis are the augmented Dickey and Fuller (1979, 1981; ADF) tests and the 

Phillips and Perron (1988; PP) tests. For the ADF tests, one subtracts 1

from both sides of Equation (29.1) to obtain

 
1 11( )

 (29.2)

To conduct the tests, it is common to add lagged terms of the dependent 

variable and obtain the following equation:

 

1

1  

(29.3)

where (  1). Equation (29.3) tests for the null hypothesis of a random 

walk against a mean station ary alternative.

Similar to Chaudhuri and Wu (2003, 580), the 

The extra regressors are added to eliminate possible nuisance- 

parameter dependencies in the asymptotic distributions of the test 

sta tistics caused by serial correlation in the error terms. For a given 

sample, if the estimate of  is not significantly different from unity, 

then the null hypothesis of a random walk can not be rejected. On 

the other hand, if one finds that  < 1, then the alternative hypoth-

esis of mean reversion is supported. The PP tests work in a simi-

lar way except that the extra regressors are not included in the 

regressions, but the serial correlation of the re siduals is corrected 

via a non-parametric approach. One significant drawback of the 

popular ADF and PP tests is that they have low power against the 
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alternative of slow-speed mean reversion in small samples (see 

Camp bell and Perron (1991), Cochrane (1991), and DeJong et al. 

(1992), among others). Therefore, failure to reject the null hypothe-

sis may not be interpreted as decisive evi dence against mean rever-

sion. Because of this inherent problem, researchers have advo cated 

pooling data and testing the hypothesis in a panel framework to 

gain test power. Our study follows this approach. We pool data of 

five stock markets to estimate the speed of reversion ,  1, 2, ,

5. To improve estimation effi ciency and gain statistical power, we 

exploit the information in the cross-country correla tion of returns 

and estimate the system using the seemingly unrelated regression 

(SUR) technique. The panel-based test for the null hypothesis of 

no mean reversion (   1) is based on the estimated coefficients   

( 1) from Equation (29.3) and the -statistic ( 1) ( ),  

where is the panel estimate of from either ordinary least squares 

(OLS) or SUR, and ( ) is the standard error of . It is well known 

that under the null hypothesis of   1, the ADF and the PP sta-

tistics do not follow limiting normal distributions. We will there-

fore generate appropriate critical values for our exact sample size 

through Monte-Carlo simulations.

We describe the simulation procedure below, which is based on the test 

of Levin and Lin (1992).

First, we estimate Equation (29.3) using ordinary least squares under the 

null hypothesis by restricting  to zero. Following Rapach (2002), by using 

the restricted OLS estimate, we simulate a panel series of 100 obser-

vations for , , and , random draws from a (0, 2), where 2 is the 

restricted OLS estimate of 2, and setting the initial 1 and  to zero. An 

additional 100 observations are generated but discarded to avoid initial value 

bias. This process is generated 2,000 times so as to achieve the 2,000 simu-

lated panel series. We calculate and store the statistics of the OLS panel test 

for each simulated panel and then order the simulated  statistics such that 

the 20th and 200th values are the 1% and 10% critical values, respectively.

A common problem with the preceding OLS-based procedure is it 

ignores the cross-sectional dependence. One way of addressing the cross-

country stock market dependence is by estimating Equation (29.3) using a 

SUR estimator. The SUR estimator is basically a multivariate generalized 

least squares, using an estimate of the contemporaneous variance-cova-

riance matrix of the disturbances obtained using the OLS residuals from 
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Equation (29.1). Following Rapach (2002), we estimate Equation (29.3) for 

the panel data using SUR and restricting  to zero. We generate the 2,000 

simulated panel series of 100  observations using the restricted SUR 

parameter estimates of and , random draws from a (0, ), where  

is the restricted SUR estimate of contemporaneous covariance matrix for 

the disturbances, and the initial 1 and  are set to zero. We drop the 

first 100 observations to yield simulated panel series of  observations. We 

calculate and store the statistics of the SUR panel test for each simulated 

panel and then order the simulated  statistics such that the 20th and 

200th values are the 1% and 10% critical values, respectively.

29.4 THE DATA
The data used in this paper are obtained from the Bloomberg database on 

the Middle East. The sample period is monthly from January 1996 to April 

2008, with 148 observations of the stock-price indexes for the following 

five countries: Saudi Arabia, Kuwait, the Sultanate of Oman, Qatar, and 

the United Arab Emirates. These indexes include dividends and capital 

gains and are end-of-month quotes.

29.5 EMPIRICAL RESULTS
Table 29.1 reports the descriptive statistics of the monthly returns of the 

five stock markets in the sample. The table also provides the coefficient of 

variation (COF) for each stock market index, which represents the ratio 

of the standard deviation to the mean. The COF is a useful statistic for 

comparing the degrees of variation of each market, even if the means are 

drastically different from each other. In terms of risk per unit of return, 

Oman ranks the best and Kuwait is the least attractive.

Most distributions exhibit some degree of skewness but with signifi-

cant variability in kurtosis. The skewness ( ) and kurtosis ( ) are com-

puted as follows:

 

1
3

3

( )

and

 

1
4

4

( )
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where ,  represent the return in week  and the average return for the 

series, respectively. For a normal distribution,  and  are 0 and 3, respec-

tively. Clearly, most markets exhibit substantial departures from normal-

ity. We formally tested for normality of the return distributions using the 

Jarque-Bera statistic (JB). Under the null hypothesis of normality, JB is 

distributed χ2
 with 2 degrees of freedom. JB is defined as

 6

1

4
32 2( )

where  and represent the skewness and kurtosis. With the exception of 

Qatar, it appears that returns in all four GCC stock markets are not normal.

Table 29.2 reports the monthly cross-correlation in returns among the 

five stock markets. All of the cross-correlations are positive, and indeed 

TABLE 29.1 Descriptive Statistics of Monthly Stock Market Returns in Five GCC 

Countries

Mean 0.014 0.020 0.009 0.016 0.019

Median 0.015 0.014 0.006 0.016 0.009

Maximum 0.162 0.215 0.209 0.184 0.359

Minimum –0.268 –0.210 –0.151 –0.129 –0.191

Std. dev. 0.070 0.073 0.061 0.049 0.079

Skewness –0.756 0.164 0.565 0.182 0.848

Kurtosis 4.7 3.8 4.0 4.0 7.2

Coefficient of variation 0.194 0.277 0.146 0.330 0.243

Jarque-Bera 32.3 3.3 11.6 7.5 67.1

-value 0 0.189 0.003 0.023 0

No. of monthly obs. 147 112 119 147 79
 

  The sample period is from January 1996 through April 2008 for Saudi Arabia and 

Kuwait. Other countries are observed over a shorter period because their stock 

markets are relatively new.

TABLE 29.2 Cross Correlation of Monthly Stock Market Returns in Five GCC 

Countries

Saudi Arabia 1    

Qatar 0.2483 1   

Oman 0.3520 0.2970 1  

Kuwait 0.2775 0.1069 0.3158 1

Abu Dhabi 0.3727 0.3995 0.4090 0.3241 1
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some of them are as high as 41% (e.g., Oman with Abu Dhabi). These 

relatively high cross-sectional correlations motivate the use of the SUR 

estimation technique. It appears that Abu Dhabi shows the highest cor-

relations, with an average of 37.6% with its neighbors. It is followed by 

Oman, Saudi Arabia, Qatar, and then Kuwait.

For the purpose of comparison, we first apply the standard ADF and PP 

tests to each country and report the results in Table 29.3. For the tests, two 

lag lengths are chosen (1 and 3) because it is known that the test results 

may be sensitive to the choice of the lag length. Using the critical values* 

from Mackinnon (1991), we find that the null hypothesis of random walk 

can be rejected in favor of mean reversion at the 1% significance only in 

the case of the Omani stock market.

It is well known that the distribution of the test statistics for the ADF and 

the PP tests is nonnormal. To address this shortcoming, we compute actual 

critical values for the exact sample size using Monte Carlo simulation with 

2,000 replications under the null hypothesis of no mean reversion ( = 1) 

with independent and identically distributed (iid) normal innovations. To 

that end, we estimate Equation (29.3) using ordinary least squares under the 

null hypothesis by restricting  to zero and simulate 2,000 panel series of 

* The critical values vary slightly across countries because the number of observations is not 

identical for all five countries.

TABLE 29.3 ADF and PP Tests for Random Walk in the GCC Stock Market Prices 

Using Mackinnon Critical Values

Months 148 116 148 121 80

Lag length = 1 1.79 0.01 0.96 4.49** 1.07

Lag length = 3 1.45 0.02 1.05 2.95* 1

Trun. lag = 1 2.32 0.23 0.86 5.00** 0.96

Trun. lag = 3 2.03 0.23 0.95 4.32** 1.04

Mackinnon 1% critical value –3.48 –3.49 –3.48 –3.49 –3.52

Mackinnon 10% critical value –2.58 –2.58 –2.58 –2.58 –2.59

 
 This table reports augmented Dickey-Fuller (ADF) and Phillips-Perron (PP) tests 

for the random walk hypothesis for five stock markets in the GCC. Two lag lengths 

and truncation lags for the ADF and PP tests are selected.

Statistically significant at 10% (*), or 5% (**)
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observations for  by using the restricted OLS estimate of and , random 

draws from a (0, 2) where 2 is the restricted OLS estimate of 2, and set-

ting the initial 1 and  to zero. The calculated statistics of the OLS pan-

els test yields the 1% and 10% critical values, which we report in Table 29.4.

Next, we further exploit the information on the cross-country correla-

tions of returns and estimate the system of five equations using a SUR 

setup. The bottom part of Table 29.4 reports the esti mation and testing 

results. The critical values obtained from the Monte Carlo simulation of 

the SUR model are significantly lower than the ones obtained from the 

OLS-based simulation because of the increase in estimation efficiency, 

which improves the test power. The results suggest that in addition to 

Oman, the null hypothesis of random walk can also be rejected in Kuwait, 

albeit at the 10% significance. Table 29.4 also reports the speed of reversion 

and implied half-life for each stock market. The speed is calculated as the 

parameter  obtained after estimating the coefficient  in the SUR model 

ran on Equation (29.3). The speed of mean reversion is also reported for 

TABLE 29.4 Monte Carlo Simulation of Critical Values for the ADF and PP Tests for 

Random Walk in the GCC Stock Market Prices

Lag length = 1 1.79 0.01 –0.96 4.49** –1.07

Lag length = 3 1.45 –0.02 –1.05 2.95** –1

Trun. lag = 1 2.32* 0.23 –0.86 5.00** –0.96

Trun. lag = 3 2.03 0.23 –0.95 4.32** –1.04

     10%—OLS model 14.96 6.74 9.29 11.95 9.56

     1%—OLS model 16.13 7.37 10.09 13.19 10.62

     10%—SUR model 2.22 2.24 2.17 2.19 2.21

     1%—SUR model 2.94 2.92 3.07 2.95 2.92

Implied half-life 7.7 9.2 1.4 5.0 5.2

Speed of mean reversion 0.91 0.93 0.60 0.87 0.88

No. of observations 148 116 148 121 80

 
 This table reports augmented Dickey-Fuller (ADF) and Phillips-Perron (PP) tests 

for the random walk hypothesis for five stock markets in the GCC. Two lag lengths 

and truncation lags for the ADF and PP tests are selected.

Statistically significant at 10% (*), or 5% (**)
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the unit root countries even though there is no evidence of mean reversion 

in their stock markets. A transitory deviation reverses to the trend path at 

a speed that varies between 0.60% and 0.93% per month with a wide range 

of half-lives that vary between 1.4 and 9.2 months. For Oman and Kuwait, 

the speeds are 0.91% and 0.87%, respectively, and are quoted per month. 

The implied half-life is calculated as log(1/2)/log( ), which translates to 

7.7 months for Kuwait and 5 months for Oman. The half-life measures the 

time taken by the price to revert halfway to its long-term trend if no more 

shocks arrive. The half-life is a gauge of the speed of the mean reversion 

process. These half-lives are smaller than in more mature markets (see, for 

example, Balvers et al., 2000; Hakim and Neaime, 2003), suggesting that 

the adjustment process in these two countries requires proportionately 

less time than in developed markets.

29.6 CONCLUSION
A key area of research in the financial economics literature has focused 

on the mean reversion in stock prices. Regardless of the overabundance of 

studies since the 1960s, the existing literature has not attained a consen-

sus on whether stock prices follow a unit root process. This information is 

crucial for investors, for if stock prices follow a random walk, then shocks 

to prices have a permanent effect. Stock prices will achieve a new equi-

librium and potential returns cannot be based on past historical move-

ments in stock prices. This also opens up the possibility that volatility in 

stock markets will increase in the long run without bound. However, if 

the prices of stocks are mean reverting, then random shocks to prices will 

only be temporary. This guarantees that investors may be able to predict 

future movements in stock prices based on past performance and create 

new trading strategies to produce abnormal returns.

This chapter considered mean reversion in five Middle Eastern coun-

tries’ stock price indices by employing panel unit root testing approaches 

on monthly data over the period 1996–2008. We used three different panel 

unit root tests: the ADF, PP, and Monte Carlo simulations. It is known 

that the traditional tests, such as ADF and PP, for a random walk in 

stock prices do not have enough power when compared to other hypoth-

eses of mean reversion in small samples. Due to the 12 years of data in 

our study, the power issue is of concern. Consequently, we combine data 

from five countries and apply a panel-based test. The test utilizes cross- 

country information and increases the efficiency of estimation. This allows 

us to recognize a slow mean reverting constituent in equity prices and 
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significantly increases the power. The tests suggest that the stock prices for 

Saudi Arabia, Kuwait, and Abu Dhabi follow a random walk and are char-

acterized by a unit root, consistent with the efficient market hypothesis. 

However, there is evidence of mean reversion in Kuwait and Oman. The 

gain in test power permits us to discard the random walk hypothesis and 

support for mean reversion at conservative significance levels for Oman

We estimate the half-lives for Oman and Kuwait to be between 5 and 8 

months, which are faster than those found in developed markets.
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30.1 INTRODUCTION
One of the main pillars of the process of global integration is the rapid 

rise in the volume of cross-border capital flows since the early 1990s, and 

an important aspect of this phenomenon is the significant increase in the 

flow of portfolio investment in emerging market securities. Gross portfolio 

investment in emerging markets increased from USD 12.57 billion in 1990 to 
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USD 213.39 billion in 2006.* The main beneficiaries of this increase were the 

emerging Asian economies, whose share of these flows increased from 9.5% 

to 67.4% over the same period. A significant proportion of this investment 

was in equities, the proportion being as high as 90% in countries like India.

However, investment in emerging market equities is fraught with risk. 

To begin with, there is exchange rate risk. In the absence of institutions 

like clearing houses, counterparty risk can be significant as well. Finally, 

foreign investors in emerging equity markets are exposed to substantial 

market risk. There are numerous sources for this market risk. Emerging 

equity markets are often thin. This, by itself, can add to volatility of stock 

prices and returns, given the negative relationship between trading vol-

umes and volatility that has been estimated in several contexts (e.g., Pyun 

et al., 2000), and this volatility can be further increased if trading in these 

thin markets is dominated by large institutional investors (Gabaix et al., 

2006). Lack of adequate liberalization of capital markets might itself be 

a source of excess volatility in these contexts (Bekaert and Harvey, 1997; 

Huang and Yang, 2000). In particular, in the absence of appropriate reg-

ulations, the market can be destabilized by phenomena such as insider 

trading (Du and Wei, 2004). It has also been hypothesized that invest-

ment by foreign investors might itself increase the volatility of emerging 

stock markets, but there is as yet no empirical evidence in support of this 

hypothesis (e.g., Choe et al., 1999).

Despite the rising portfolio investment in emerging markets, and the 

market risk associated with such investments, however, there have been 

few attempts, if any, to quantify this risk. In this chapter, we address this 

lacuna in the empirical literature, by estimating value-at-risk (VaR) of 

three important (and widely cited) market indices at the Bombay Stock 

Exchange (BSE). The choice of the Indian equity market is easily justi-

fied. Starting in the early 1990s, the Indian capital market witnessed the  

creation of institutions like screen-based trading, clearing houses, demate-

rialized transactions, and a market regulator in the form of the Securities 

and Exchange Board of India (SEBI). Weeklong trading cycles have been 

abandoned in favor of  rolling settlement, derivatives trading on mar-

ket indices and individual stocks has been introduced, and short selling 

has been legalized. Finally, as highlighted in Figure 30.1, there has been a 

significant inflow of foreign portfolio investment in India since 2003–04. 

* Source: International Monetary Fund (http://www.imf .org/externa l/pubs/ft/weo/2007/02/c 

1/FIG1_15.csv).
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Our results suggest that the 5% VaR of these indices is significantly larger 

than the average returns, implying that the market risk is significant. 

There is also evidence to suggest that there was a decline in the market 

risk (or VaR) after the introduction of derivatives trading at BSE.

The rest of the chapter is structured as follows: In Section 30.2, we 

discuss the measure of market risk, namely, VaR. The data are discussed 

in Section 30.3, and the modeling of the data generating process of the 

returns in Section 30.4. The VaR estimates are reported in Section 30.5, 

and Section 30.6 concludes.

30.2 VALUE-AT-RISK
In the context of asset prices, the VaR is defined as the estimated loss of 

value of the asset over a given time period with a very high probability, .  

Conversely, any actual loss of value of the asset would exceed the VaR 

with a very small probability, 1  . A fairly widely used value of  is 0.95. 

As explained by Füss et al. (2007), under the assumption that the asset 

returns are normally distributed, VaR of an asset is given by

 ( . )   (30.1)

where  is the density function of the aforementioned distribution, with 

a standard deviation  and a mean . To recapitulate, 2 or variance is a 

stylized measure of volatility.

In principle, it is possible to measure volatility using simple measures of 

dispersion such as standard deviation (of returns), and more sophisticated 

measures would then involve the use of rolling standard deviations such 

that market risk on any one day is measured as the dispersion in returns 

over the previous  days (e.g., Bhaumik and Coondoo, 2003). However, it 

Net FII investment in equity (US$ Mln)
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is now well known that volatility of asset returns is fairly persistent, such 

that the volatility experienced on a given day is influenced or conditioned 

by the volatility experienced during the previous days. On account of this 

observation, presently, stylized modeling of the data generating process of 

asset returns involves the use of ARCH (autoregressive conditional het-

eroskedasticity). The ARCH model, first proposed by Engle (1982), is char-

acterized by the following:

 

0

11  
(30.2)

 
 (30.3)

 
0 1 1

2

 (30.4)

where Equation (30.2) suggests that the returns follow a ARMA( , ) 

process,  is the conditional variance of the error term, and  is an 

 term that has a standard normal distribution with zero mean and 

a variance of 1. The ARMA characterization of the mean equation is 

necessitated by the possibility of serial dependence in the series of asset 

returns.

Bollerslev (1986) extended and generalized Engle’s specification by 

restating Equation (30.4) as follows:

 

0 1 1
2

2 1  (30.5)

Equations (30.2), (30.3), and (30.5) together constitute the generalized 

ARCH (or GARCH) model. In our illustration, we have outlined the com-

monly used ARCH(1) and GARCH(1,1) models. However, in principle, 

ARCH( ) and GARCH( , ) models can be of higher orders, i.e., > 1 and 

 > 1. The choice between AR( ) and GARCH( , ) models can be made on 

the basis of information criteria. Typically, GARCH(1,1) is found to be a 

reasonable generalization of higher-order ARCH( ) models.

Once a GARCH model has been estimated, the estimated conditional 

standard deviation, , can be used to replace , the unconditional 
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standard deviation, in Equation (30.1), thereby yielding a more accurate 

estimation of VaR (Füss et al., 2007). In other words, we have

 

.
 

(30.6)

In this chapter, we use this refined measure of VaR.

30.3 DATA
The data for the analysis were collected from the publicly available archives 

of Bombay Stock Exchange (BSE), whose thirty-stock market index, the 

Sensex, is the face of India’s capital market to the rest of the world. As 

highlighted in Panel 2.A of Figure 30.2, trading at BSE has grown steadily 

since the initiation of the reform of the Indian capital market in the early 

1990s, shaking off the impact of the financial crisis in Southeast Asia, the 

sanctions imposed by much of the industrialized world in response to the 

nuclear tests of 1998, and a mini-war with Pakistan in 1999. The exponen-

tial growth in both dollar-denominated volumes and number of trades was 

stalled or reversed in 2001–02,* in the aftermath of the bursting of the dot-

com bubble and 9/11. However, after steady yet unremarkable growth for 

4 years, growth in dollar-denominated volumes and trades has once again 

been exponential since 2005–06. As highlighted in Panel 2.B of the figure, 

the growth in volumes and trades since the turn of this century has also 

coincided with an exponential growth in BSE’s market capitalization.

In this chapter, we examine the VaR of three market indices at BSE: the 

aforementioned Sensex, the 100-stock BSE100, and the 200-stock BSE200. 

Since the average liquidity of the underlying stocks of the three indices 

differ, with the average liquidity of the Sensex stocks being the highest and 

that of BSE200 stocks being the lowest, it would allow us to examine the 

impact of liquidity on VaR. In Panel 3.A of Figure 30.3, we highlight the 

trends in the three market indices. In keeping with the trend in market 

capitalization, the BSE indices have risen sharply since April 2004, i.e., 

since the 2004–05 financial year, and series look correlated. The decline 

in the indices during the second half of 2007–08 was on account of the 

widely anticipated slowdown in the global economy that has been brought 

about by the subprime crisis and high commodity prices. In Panel 3.B, we 

* India’s financial year runs from April of one calendar year to March of the following calen-

dar year.
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highlight the returns to the 30-stock Sensex, when returns are computed 

as the difference in the logarithm of the index in two successive trading 

days. A visual examination of the returns suggests that, with the excep-

tion of 2007–08, volatility of returns has been lower since 2001–02. Since 

trading in stock index futures was introduced at the BSE in June 2000, a 

plausible interpretation is that derivatives trading has helped reduce cash 

market volatility at the exchange.

Annual volume turnover (US$ Bln) & no.of trades on BSE ('000s)
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In Table 30.1, we report the descriptive statistics for the data. Given 

our observation about the likely impact of derivatives trading on market 

risk at BSE, we treat the introduction of equity derivatives trading at the 

exchange (i.e., June 2000) as the natural break point in our data, and hence 

report the summary statistics for returns for the pre- and post-derivatives 

periods. It can be seen that the mean and, especially, median returns 

were significantly higher after June 2000, while market risk, as measured 

by standard deviation, was noticeably lower. This is consistent with our 

observation based on Panel 3.B of Figure 30.3. The summary statistics also 

suggest that the distribution of returns in both time periods is leptokurtic 

and nonnormal.
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We have tested for unit roots and signs of autocorrelation in the data, 

using the augmented Dickey-Fuller (ADF) statistic and the Ljung-Box 

( ) statistic, respectively. Estimates of these statistics are reported in 

Table 30.2; the -values of the statistics are reported within parentheses. 

The ADF test statistics suggest that the null hypothesis of unit root can be 

rejected at the 1% level for returns to all three market indices. Estimates of 

the  statistic, on the other hand, indicate the presence of autocorrelation 

in returns as well as squared returns. This, in turn, implies that the use of 

ARMA might be appropriate for modeling these returns. We shall discuss 

this in greater detail in the next section.

30.4 MODELING RETURNS
As mentioned in the previous section, the returns to the three BSE indi-

ces chosen for analysis are autocorrelated, and the series do not have unit 

roots. Hence, an ARMA( , ) specification can be used to model the 

underlying data generating process. The usual practice is to fit a number 

of ARMA models, for different values of  and , and then to choose 

one on the basis of information criteria and properties of the estimated 

TABLE 30.2 Unit Root and Autocorrelation Tests

ADF test statistics –50.825 (0.000) –49.051 (0.000) –48.666 (0.000)

Q(2) 16.098 (0.000) 32.954 (0.000) 38.659 (0.000)

Q(5) 20.063 (0.001) 34.996 (0.000) 41.159 (0.000)

Q2(2) 284.71 (0.000) 440.42 (0.000) 528.84 (0.000)

Q2(5) 442.61 (0.000) 640.98 (0.000) 706.14 (0.000)

 

TABLE 30.1 Descriptive Statistics

 Mean 0.023 0.065 0.029 0.069 0.026 0.074

 Median 0.030 0.141 0.025 0.199 0.006 0.195

 Std. dev. 1.863 1.517 1.846 1.600 1.774 1.589

 Skewness 0.030 –0.626 –0.037 –0.754 –0.049 –0.899

 Kurtosis 5.031 7.430 5.179 7.814 5.154 8.725

 Jarque-Bera 174.678 1733.134 200.940 2081.797 196.707 2945.781

 Observations 1015 1963 1015 1963 1015 1963
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residuals. Thereafter, one has to test for ARCH effects that are characteris-

tic of financial time-series data.

In order to capture a specific aspect of the Indian stock market, and 

on the basis of our casual observation of the returns data highlighted in 

Figure 30.3 (Panel 3.B), we extend the ARMA specification in Equation 

(30.2) to include a dummy variable that takes the value unity for all trad-

ing days from June 2000. The dummy variable captures the marginal 

effect of the introduction of derivatives trading at BSE. In other words, 

our ARMA specification is

 

0

11  

(30.7)

The estimates of the ARMA model are reported in Table 30.3; the -values 

for the estimated coefficients and test statistics are reported within paren-

theses. For each series, we report the estimates of only the model that 

has the best fit, as indicated by Akaike’s (AIC) and Schwarz’s (SIC) infor-

mation criteria. Interestingly, MA(1), i.e., the choice of  = 0 and 1,  

provides the best fit for all three data series. Earlier research on stock 

returns in India had found that AR(4) fits data on stock returns in India 

well (Bhaumik and Bose, 2008). Since MA(1) is a parsimonious equivalent 

of higher-order AR( ) models, our results are consistent with those in the 

existing research.

TABLE 30.3 ARMA Modeling of the Returns

Constant 0.032 (0.558) 0.039 (0.499) 0.035 (0.539)

Derivatives 0.029 (0.674) 0.025 (0.732) 0.033 (0.643)

MA(1) 0.073 (0.000) 0.109 (0.000) 0.120 (0.000)

AIC 3.827 3.874 3.832

SIC 3.833 3.880 3.838

Q(2) 2.089 (0.148) 0.714 (0.398) 1.444 (0.229)

Q(5) 5.694 (0.223) 2.521 (0.641) 3.709 (0.447)

Q2(2) 308.75 (0.000) 467.84 (0.000) 565.86 (0.000)

Q2(5) 470.33 (0.000) 674.09 (0.000) 755.72 (0.000)

ARCH LM(2) 254.00 (0.000) 363.74 (0.000) 431.74 (0.000)

ARCH LM(5) 296.66 (0.000) 397.22 (0.000) 453.08 (0.000)
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The Ljung-Box (or ) statistics indicate that the residuals of the MA(1) 

model are not autocorrelated, but that the squared residuals are correlated. 

Further, the residuals are leptokurtic. These suggest that there are possible 

ARCH effects that have to be taken into account, and this is verified by 

the statistics of Lagrange multiplier (LM) tests that reject the null hypoth-

esis of no ARCH. The existence of ARCH effects is consistent with our 

methodology for estimating VaR, which replaces unconditional volatility 

of returns with conditional GARCH volatility.

The generalized form of the model that should therefore be estimated 

is as follows:

 

0

11

 

 

0 1

2

2

 

(30.8)

when 1  capture the ARCH effects and 2  capture the GARCH effects. 

In keeping with the existing literature (Bhaumik and Bose, 2008), as well 

as the summary statistics reported in Table 30.1, we posit that structural 

changes like the introduction of derivatives trading at BSE would affect not 

only the mean returns but also the (stochastic) volatility of these returns.

Next, one has to choose among ARCH( ) and GARCH( , ) models, i.e., the 

appropriate values of  and , and as before, the choice is made on the basis of 

information criteria and properties of the residuals. In Table 30.4, we report 

only the estimates of the model that best fit the data, as indicated by AIC and 

BIC. It can be seen that GARCH(1,1), which is a parsimonious approximation 

of higher-order ARCH models, provides the best fit for the data for all three 

indices, and this is consistent with experiences of other attempts to model 

financial time series both in the Indian context and elsewhere. The  and 

LM statistics for the GARCH(1,1) models indicate that there is no remaining 

autocorrelation within residuals and that there are no ARCH effects.

An interesting aspect of the results is that while the introduction of 

derivatives trading has had no impact on the returns themselves, it has 

significant reduced volatility of the returns to all three market indices. 

This is consistent with the evidence that suggests that, by and large, trad-

ing in futures contracts based on market indices and individual stocks, 

which constitute the overwhelming majority of the derivatives traded at 



Stock Market Volatility and Market Risk in Emerging Markets < 581

BSE, reduces volatility in cash markets (see Gulen and Mayhew, 2001). The 

implication is that market risk at BSE has been reduced by the introduc-

tion of derivatives trading, and provides  justification for the intro-

duction of derivatives products at Indian stock exchanges.

To summarize, our analysis indicates that all three market indices of 

BSE, namely, BSE30 (or Sensex), BSE100, and BSE200, have a data gener-

ating process that is captured best by a MA(1)-GARCH(1,1) model. The 

similarity across the indices is not surprising, given the similarity in the 

movements of the indices over time. Importantly, the GARCH model gen-

erates estimates of conditional variance that can be used to compute val-

ues of VaR for the market indices over the 12-year period.

30.5 VALUE-AT-RISK 
The 5% VaR for the three market indices is generated for each trading day,* 

using Equation (30.7), and from the daily VaR estimates, monthly aver-

ages were computed. The monthly averages of VaR and the returns to the 

* The loss on account of decline in stock prices will exceed this VaR with only a 5% 

probability.

TABLE 30.4 GARCH Modeling of Returns

Constant 0.099 (0.107) 0.126 (0.035) 0.118 (0.042)

Derivatives 0.044 (0.522) 0.027 (0.688) 0.039 (0.560)

MA(1) 0.102 (0.000) 0.129 (0.000) 0.137 (0.000)

Constant 0.317 (0.000) 0.267 (0.000) 0.253 (0.000)

Derivatives –0.185 (0.000) –0.128 (0.000) –0.116 (0.000)

ARCH(1) 0.148 (0.000) 0.170 (0.000) 0.172 (0.000)

GARCH(1) 0.785 (0.000) 0.771 (0.000) 0.769 (0.000)

AIC 3.631 3.641 3.598

SIC 3.645 3.655 3.612

Q(2) 1.091 (0.296) 1.861 (0.173) 1.742 (0.187)

Q(5) 10.395 (0.034) 11.778 (0.019) 13.015 (0.011)

Q2(2) 0.455 (0.500) 1.178 (0.278) 1.178 (0.278)

Q2(5) 2.5614 (0.634) 2.250 (0.690) 2.729 (0.604)

ARCH LM(2) 0.451 (0.799) 1.180 (0.555) 1.180 (0.554)

ARCH LM(5) 2.526 (0.773) 2.254 (0.813) 2.761 (0.737)
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indices are highlighted in Figure 30.4. Two things are immediately obvious: 

First, the daily values of the 5% VaR are large relative to the daily returns 

to the indices, bringing into question the nature of the Sharpe’s ratio for 

BSE, and hence the rationale for the significant increase in portfolio flows 

into India since 2003–04. Second, on average, VaR values were lower for 

2001–02 and beyond, relative to the pre-2001 values. Even though deriva-

tives trading commenced at BSE in June 2000, allowing for a gestation 

period for enhancement of the maturity and depth of the market, and tak-

ing into consideration the coefficient estimates of the GARCH model, it is 

reasonable to conclude that the decline in VaR roughly coincided with the 

introduction of derivatives trading. Interestingly, the significant increase 

in inflow of overseas portfolio investment did not add to VaR from after 

2003–04, indicating that, contrary to apprehensions in certain quarters, 

foreign portfolio flows have not destabilized the Indian stock markets by 

adding to market risk.

In order to further emphasize the reduction in market risk in India 

since the early years of this decade, we report the distributions of VaR of 

the pre- and post-derivatives years for all three indices. The distributions 

are highlighted in Figure 30.5. It is easily seen that the likelihood of the 

VaR being 4% or less is much higher in the post-derivatives period than 

in the pre-derivatives period. Indeed, while a significant proportion of the 

post-derivatives VaR values are of the order of magnitude of 2%, none of 

the pre-derivatives VaR values are of that magnitude.

Note that even though the VaR values of the market indices have 

declined since 2001–02, market risk was very high during some of the 

months. However, each of these episodes of large VaR in the post-2001–02 

period can be explained by large shocks, suggesting that the spikes in the 

VaR values were on account of exogenous factors rather than on account 

of exchange-specific factors like noise trading. For instance, the spike in 

March 2001 was caused by events surrounding revelations that unscrupu-

lous brokers were manipulating prices and a media exposure of govern-

ment corruption in defense deals. The heightened risk in May 2004 was 

engendered by political instability in India with uncertainty over govern-

ment formation following inconclusive election results. The sharp rise in 

volatility in June 2006 was caused by turmoil in international financial 

markets, especially in other emerging markets, and finally, March 2008 

witnessed fears arising out of the collapse of Bear Stearns and the U.S. feds’  

emergency cut in discount rate. In fact, the VaR values for the market indi-

ces have increased considerably since 2007–08, highlighting the impact of 
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the global credit crisis and prospects of higher (and sustained) inflation on 

investors in Indian stocks.

30.6 CONCLUSION 
Since the second half of the 1990s, there has been a significant increase in 

the flow of portfolio capital into emerging markets. However, while the 

returns from these markets have been attractive, and while the returns 

often reflect the sound growth potential of the real sectors of these coun-

tries, market risk associated with portfolio investment in emerging mar-

kets can be significant. Yet, there have been few attempts, if any, to quantify 

the extent of the market risk. In this chapter, we addressed this lacuna in 

the literature, using three different market indices from BSE, one of the 

largest—and certainly the best known—stock exchanges in India, a coun-

try that has witnessed very significant inflows of portfolio capital over the 

past decade.

Our results indicate that while the 5% VaR values of returns for all 

three indices are skewed toward the lower tail of the distribution, the 

magnitude of the VaR is quite large in relation to the returns themselves. 

This brings into question the efficacy of portfolio investment in emerging 

markets, and raises concerns about the extent to which market risk is fac-

tored into decisions to invest in these markets. We also demonstrate that 

the returns have increased, on average, and the VaR has declined signifi-

cantly since the introduction of equity derivatives—stock index futures 

being the most frequently traded instrument—at BSE. In other words, 

the risk-to-return ratio for equity investment at BSE has improved since 

the introduction of derivatives trading, and this has obvious implications 

for financial development in emerging markets that aim to attract greater 

portfolio investment.
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31C H A P T E R  

Stock Market Volatility 
and Political Risk 
in Latin America
The Case of Terrorism in Colombia

Ignacio Olmeda and Daniel Sotelsek

31.1 INTRODUCTION
Stock markets are probably the most efficient markets in the world for 

pricing news, whether intrinsic (e.g., earning announcements of compa-

nies) or external (e.g., a climate catastrophe). Several episodes confirm this 

view; as an example, one might remember that levels of oil prices are hardly 

anticipated by policy markers, while stock markets are able to predict well 

in advance a consistent increase in such prices. Keynes (1936) coined the 

term “animal spirits” as an explanation of wild movements in stock mar-

ket prices that were not explained by fundamentals. Maybe animal spirits 
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only live in stock markets, and for this reason, only stock markets are able 

to evaluate how to assign an economic value to news.

In the context of this chapter, virtually every citizen of some (ideal) 

country would declare a clear rejection of terrorism, and probably also 

everyone, and with the same determination, would express his convic-

tion that a terrorist act would have immediate negative consequences for 

the economy (causing, for example, a downturn of the stock market). It is 

obvious that both opinions are perfectly respectable, but it is also obvious 

that the second one is a consequence of the first and translates to the real 

world the ethical biases of the individual. In the context of stock markets, 

one would argue that the second opinion should at least be tested since 

animal spirits could determine the irrelevance of such an incident.

In recent times, the empirical investigation in economics and finance 

is paying more attention to political and social issues that might condi-

tion the behavior of markets. For example, some authors (Kurtzman et al.,  

2004) have demonstrated that  (defined as the degree to which 

countries lack clear, accurate, easily discernible and widely accepted prac-

tices governing the relationships among businesses, investors, and gov-

ernments) has a clear impact on the economic activity; for example, they 

show that every 1-point increase in the opacity index lowers GDP per cap-

ita by about US$1,000 and decreases market capitalization by about 1%. 

Following similar lines of research, and from a macroeconomic viewpoint, 

some authors (e.g., Alesina and Perroti, 1996) analyze political instability 

and show that it has a direct effect on the economy, lowering growth and 

investment rates.

Intuitively, political phenomena such as terrorism would affect more 

rapidly markets where sentiment can have an immediate effect on supply 

and demand (for example, a tourist may cancel his reservations in the case 

that the destination is affected by any kind of terrorist event, affecting 

prices on the tourism products of the destination, such as hotel rates). The 

stock market is paradigmatic since investors may take buying and selling 

decisions in a fast and relatively cheap way so that, again intuitively, one 

would expect an immediate reaction of the stock market behavior to par-

ticular news.

Surprisingly, the analysis on the influence of terrorism on the stock 

market is quite recent (Karolyi, 2006), particularly since the attacks of 

2001, and references in this area are still scarce. Among them, Abadie and 

Gardeazabal (2003) analyzed the effects of terrorism in Spain and showed 

that market capitalization is negatively affected by terrorism of ETA. 
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Guidolin and La Ferrara (2005) analyzed data of internal conflicts for 

over 30 years and showed that they produce a significant impact both on 

stock markets indexes and on commodity prices, and Karolyi and Martell 

(2006) found a negative reaction of stock prices of firms that have suffered 

some terrorist attack. Nevertheless, as we mention, this area of study is 

relatively unexplored, and this motivates our study.

In this chapter we analyze one aspect of political fragility in Latin 

America and its incidence on the stock market. Specifically, we will try to 

determine how news related to terrorism affects the volatility level of the 

Colombian stock market. The choice of this market was for several rea-

sons, with two being the most important. First, the Colombian stock mar-

ket is developed enough to permit conducting empirical analyses; without 

such a degree of maturity, it would be impossible to determine whether 

external factors produce a particular reaction, or if it is due to microstruc-

tural biases typically present in underdeveloped markets. Second, in the 

Colombian case terrorism is, unfortunately, a structural problem; it is so 

frequent and permanent in time that it permits the building of a complete 

database of terrorist episodes, which can be employed to evaluate empiri-

cally their economic consequences under different scenarios.

The rest of the chapter is organized as follows: In Section 31.2 we provide 

a brief introduction to the phenomenon of terrorism in the Colombian 

case; we motivate its significance and the economic consequences that have 

been pointed out in some studies. In Section 31.3 we provide a description 

of the Colombian stock market, which has experienced tremendous devel-

opment and which has consistently been positioned, until recent times, as 

one of the best investment alternatives in the world. Section 31.4 is devoted 

to empirical analyses. After describing the main patterns of volatility in 

the Colombian stock market, we estimate multivariate ARCH models to 

evaluate the effect of news related to terrorism in stock market’s volatility. 

Our main conclusion is that terrorism does not seem to affect the levels 

of risk in the market. This conclusion is stable along the period of study, 

which expands along more than 12 years, and after controlling for other 

factors, such as the level of volatility in the stock markets in the area. A brief 

recapitulation of the main findings and conclusions close the chapter.

31.2 TERRORISM IN COLOMBIA
Colombia has had the misfortune, for several years, to lead the world rank-

ing in terms of homicides and kidnappings. Terrorism is so deeply imbri-

cated in the Colombian society that it would be impossible to understand 
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the country without a reference to the phenomenon. The Colombian case 

is particularly complex for several reasons; among them, terrorism is 

strongly linked to other forms of crime that affects severely the economy. 

Smuggling, drug trafficking, and money laundering are immediate con-

sequences of terrorism.* Colombian terrorism is also quite idiosyncratic, 

since it involves several groups with quite different motivations and social 

support (e.g., the guerrillas versus the paramilitaries).

As we have just mentioned, terrorism in Colombia is, sadly, so fre-

quent and ubiquitous that it would be a futile task to try to produce here a 

coherent description of the problem. Since the period of extreme violence 

known as  (1948), where about 200,000 people were killed, 

Colombia has submerged on the drama of terrorism. It has produced 

thousands of deaths, and newspapers are full of news related to the phe-

nomenon. As an intuition of the intensity of the problem, the database 

used in this paper includes more than 500 news items related to terror-

ism just for the period of study (1996–2008). In Table 31.1 we provide 

an incomplete chronology of some landmarks in the recent history of 

Colombian terrorism.

The economic impact of terrorism in Colombia has been analyzed in 

a number of papers that, from a macroeconomic viewpoint, have shown 

that terrorism has damaged quite severely the Colombian economy. For 

example, Cárdenas (2007) shows that crime that, as we mentioned, is 

closely related to terrorism in the Colombian case, implied a reduction 

of the output per worker at a rate of about 1% per year during the 1980s. 

At the microeconomic level, as an example, Pshisva and Suarez (2006) 

show that terrorist kidnappings that directly target firms have a signifi-

cant effect on corporate investment. The curse of terrorism in Colombia is, 

then, clear and reveals one point of relative weakness when compared to 

the main countries on the LATAM area. In Table 31.2 we show how some 

factors related to terrorism affect the business climate using estimations of 

the World Economic Forum (2007). Note that, by far, Colombia shows the 

worst performance of the countries in the area.

To our knowledge, no study has ever analyzed how such an important 

idiosyncratic phenomenon affects the Colombian stock market. This is sur-

prising since it is known that the development of the Colombian economy 

(and especially the development of its small and medium enterprises (SMEs) 

* The United Nations calculates that about 60% of the cocaine in the world comes from coca 

leaf cultivated in Colombia.
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TABLE 31.1 Brief Chronology of Terrorism Landmarks, 1996–2008

1996 March: Ernesto Samper Pizano (elected president) has been charged of 

receiving drug cartel money for his election campaign, and he declared that 

he is willing to leave office before the end of his term, as a way to resolve the 

political crisis caused by the investigation of the 8,000 process.

1997 July: President Samper’s finance campaign treasurer, Guillermo Palomari, 

confessed to get US$6 millions from the the Cali Cartel as donations for his 

campaign. October: Two members of the OAS and an official of Human 

Rights Watch were kidnapped.

1998 March: FARC guerrilla kidnapped two French citizens and an American citizen. 

July: Andres Pastrana Arango, the elected president, begins peace talks with 

guerrillas. August: Rebels from de FARC guerrilla attacked an antinarcotics 

base in Guaviare, killing 40 policemen and kidnapping other 56. October: 

President Pastrana grants FARC a safe haven the size of Switzerland in the 

southeast to help move peace talks along. The zone is off-limits to the army.

1999 January: Peace talks formally launched but proceed in stop-start fashion. 

Pastrana and FARC leader Manuel “Tirofijo” Marulanda meet. February: 

Two Americans working with the Indians of the Colombian forest were 

kidnapped and killed by the FARC guerrilla. April: An airplane of Avianca 

was kidnapped, with some foreign citizens from the United States and Italy. 

May: ELN rebels kidnapped 160 people in a church in Cali.

2000 August: Congressman Óscar Tulio Lizcano was kidnapped by rebels of the 

FARC. September: Government freezes talks; alleges FARC harbored hijacker 

of plane forced to land in safe haven. Later, FARC refuses to resume talks, 

accuses Pastrana of not stopping paramilitary groups. December: Ex-minister 

Fernando Araújo was kidnapped by rebels of the FARC guerrilla.

2001 February: The FARC return to peace talks after meeting between Tirofijo and 

Pastrana. Pastrana extends demilitarized area for 8 months. June: FARC rebels 

free 359 police and troops in exchange for 14 captured rebels. FARC accused of 

using safe haven to rearm, prepare attacks, and conduct drug trade. October: 

Government and FARC sign San Francisco agreement, committing themselves 

to negotiate cease-fire. Pastrana extends life of safe haven until January 2002. 

November: The U.S. State Department included the guerrillas of FARC and 

ELN and the paramilitars of the AUC in its list of terrorist groups.

2002 January: Pastrana accepts FARC cease-fire timetable after a period of extended 

crisis in the process, and extends safe haven until April. February: Pastrana 

breaks off three of tortuous peace talks with FARC rebels, says hijacking of 

aircraft hours earlier is final straw. He orders rebels out of demilitarized zone. 

Government declares war zone in south after rebels step up attacks. 

Presidential candidate Ingrid Betancourt and her vice president candidate were 

kidnapped by rebels of the FARC guerrilla, while visiting the rebels in the safe 

haven. August: Moments before Alvaro Uribe is sworn in as president, 

suspected FARC explosions rock Bogota. Twenty people are killed. Days later, 

Uribe declares state of emergency. September: Ex-minister Consuelo Araújo 

Noguera is kidnapped by the FARC guerrilla and later killed.

 
( )
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TABLE 31.1 Brief Chronology of Terrorism Landmarks, 1996–2008 ( )

2003 February: A car bomb exploded in a social club in Bogota. An airplane was 

crashed by the FARC guerrilla and 3 American contractors were kidnapped. 

May: Governor Gaviria and Ex-minister Echeverri were killed during a 

rescue attempt. November: Fighters from right-wing United Self-Defence 

Forces of Colombia (AUC) begin to disarm. December: The Department of 

Security captured Wilmar Antonio Marín Cano, chief of an important 

FARC faction and responsible for most of the kidnappings from the FARC.

2004 January: Simon Trinidad, one of the chief leaders of the FARC guerrillas, was 

captured by the national army and the national police. February: President 

Uribe asks the European Parliament to proclaim the guerrillas of ELN 

terrorist groups. July: Right-wing AUC and government begin peace talks. 

AUC leaders address Congress. December: Rodrigo Granda, a very 

important leader of the FARC guerrilla, was captured in Venezuela. 

Salvatore Mancuso, the paramilitary chief, disarmed 1,400 men and women 

of his own soldiers, and starts the peace process execution. Venezuela and 

Colombia break their diplomatic relations, and the frontiers are closed.

2005 January: Bitter 15-day dispute with Venezuela over the capture of a FARC 

leader on Venezuelan soil. The affair is resolved at talks in Caracas in 

February. February: Crisis with Venezuela comes to an end, thanks to the 

intervention and mediation of Cuba, Brazil, and Peru. December: 

Exploratory peace talks with the second biggest left-wing rebel group, the 

National Liberation Army (ELN), begin in Cuba.

2006 January: Seven hundred forty-two soldiers of the paramilitary group start 

getting into the peace process and give up their arms. February: Diplomatic 

crisis with Ecuador, after some declarations of President Uribe, accusing 

Ecuador of letting FARC rebels cross the border. August: Carlos Castaño, 

leader of the paramilitars, was killed by his own peers. September: A list of 

politicians who are supposed to be linked with the paramilitary is revealed. 

October: The computer of Jorge 40 reveals some links between the Security 

Department and the paramilitars.

2007 January: The Ralito Pact, a deal between paramilitars and politicians, is 

revealed, and many politicians are on it. June: Government releases dozens 

of jailed FARC guerrillas, in the hope that rebels will reciprocate by 

releasing hostages. FARC rejects the move, saying it will only free hostages 

if the government pulls back troops and sets up a demilitarized zone. 

Twelve deputees held hostage since 2002 die on a rescue attempt. 

September: In his role as mediator, Venezuelan President Hugo Chavez 

agrees to invite rebels for talks on hostage release deal. November: 

Colombia sets deadline of December 31 for President Chavez to reach deal 

with rebels on prisoner swap. Venezuelan President Hugo Chavez 

withdraws his country’s ambassador to Bogotá in a row over his role in 

negotiations between the Colombian government and rebel forces. 

December: FARC announces the release of some hostages, to prove 

mediation of President Chavez was a good tool to negotiate with the 

guerrilla.
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requires a sound and sustained development of the stock market to channel 

funds to the productive sector.

31.3 THE COLOMBIAN STOCK MARKET
The Colombian stock market is relatively young, particularly since 2001 

a number of important measures were adopted that, jointly with the fan-

tastic dynamism of the Colombian economy in the last few years,* led 

to a significant expansion. Even so, the Colombian stock market is still 

in its infancy, less than 100 (88) mostly illiquid companies are traded, 

compared to 400 for Brazil, 368 for Mexico, 239 for Chile, 231 for Peru, 

and 111 for Argentina.† In terms of capitalization Colombia occupies a 

modest position with 99.923 million US$ (MUS$) after Brazil (1,348,569 

MUS$), Mexico (393,568 MUS$), and Chile (215,852 MUS$), and only pre-

ceding Peru (68,022 MUS$) and Argentina (55,478 MUS$); moreover, in 

terms of relative size against the GNP, the Colombian stock market has 

one of the lowest ratios (40% compared to 120% for Chile), only higher  

* In 2006 Colombia showed an increase of about 6.8% in GNP with a low inflation rate of 4.3% 

and strong foreign investment.
† The stock market data reported here are taken from the last bulletin of the World Federation 

of Exchanges.

TABLE 31.1 Brief Chronology of Terrorism Landmarks, 1996–2008 ( )

2008 January: The FARC releases two high-profile hostages, Clara Rojas and 

Consuelo Gonzalez, as a result of Mr. Chavez’s mediation. Mr. Chavez calls 

on the U.S. and European governments to stop considering Colombian 

left-wing rebel groups as terrorists, but Mr. Uribe rejects the idea. February: 

Four ex-congressmen and women were released by the FARC guerrilla, after 

6 years of being held hostage. March: A Colombia cross-border strike into 

Ecuador kills senior FARC rebel Raul Reyes, sparking a diplomatic crisis. 

Venezuela and Ecuador cut ties with Colombia and order troops to their 

borders. Venezuela orders the expulsion of the Colombian ambassador, and 

announced the cut of diplomatic ties with Colombia, because of the 

Ecuadorian incident. Nicaragua cuts ties with Colombia because of the 

Ecuadorian incident. Ivan Rios, another leader of the FARC guerrilla, was 

killed by the army. Relations between Colombia, Venezuela, and Nicaragua 

are going back to normal, while the situation with Ecuador is still on the 

line of crisis. April: The political crisis gets aggravated by the fact that 20% 

of the Congress is under investigation, of their possible ties with the 

paramilitary movement. Ecuador continues with the idea of recognizing the 

political status of the Colombian FARC guerrilla, keeping the relations 

under crisis.
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than Argentina (20%). Domestically, equity represents only about 2% of 

the total trade, which is a marginal figure compared to the 96% of trading 

in fixed income. These and other figures suggest that there is still a long 

way for the development of the Colombian stock market.

In terms of performance, the Colombian stock market is probably one of 

the most interesting in the world. To give a view of this, in Table 31.3 we show 

several performance measures (Sharpe’s ratio, excess return, semivariance, 

TABLE 31.3 Performance of the LATAM Markets, 2001–2008

–0.4624 –0.8711 –0.5877 0.4070 0.4704

Sharpe ratio

0.9556 –1.2176 –0.9103 –1.3069 –0.6042 1.1002

2.2979 2.2491 2.4807 3.1042 1.0456 2.6995

0.7787 0.8364 1.1794 2.0270 0.1367

1.6158 1.4217 1.0090 1.8827 1.0119

0.2768 1.5052 0.7835 1.3026 0.9375 1.1228

0.3066 –0.4599 1.3940 0.5395 0.2011 1.7907

0.6766 0.6906 0.5955 0.2667 0.7754

–0.2194 –0.303 –0.1044 0.1041 0.0754

Excess return

0.1785 –0.8155 –0.3747 –0.2349 –0.156 0.2145

0.3975 0.624 0.6295 0.5238 0.191 0.5542

0.2314 0.2467 0.2028 0.3558 0.0371

0.4402 0.4026 0.1456 0.3488 0.2167

0.1207 0.4598 0.2421 0.1978 0.2468 0.3346

0.0717 –0.1174 0.4879 0.1165 0.0509 0.5543

0.2643 0.2438 0.2926 0.1823 0.0851 0.2656

0.0159 0.0992 0.0680 0.0186 0.0354 0.0140

Semivariance

0.0178 0.3029 0.0798 0.0174 0.0318 0.0220

0.0453 0.0343 0.0152 0.0192 0.0221

0.0344 0.0479 0.0520 0.0167 0.0180 0.0395

0.0339 0.0417 0.0467 0.0123 0.0183 0.0256

0.1064 0.0496 0.0554 0.0132 0.0372 0.0508

0.0336 0.0380 0.0713 0.0276 0.0365 0.0582

0.0254 0.0378 0.0176 0.0195 0.0246

0.0793 0.0701 0.0377 0.0423 0.0331

VaR

0.1801 0.0665 0.0305 0.0485 0.0447

0.0292 0.0471 0.0439 0.0245 0.0296 0.0315

0.0449 0.0545 0.0532 0.0285 0.0286 0.0478

0.0412 0.0426 0.0475 0.0264 0.0301 0.0355

0.0917 0.0510 0.0542 0.0252 0.0474 0.0444

0.0471 0.0406 0.0627 0.0456 0.0453 0.0515

0.0535 0.0502 0.0354 0.0500 0.0407
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and 1-day VaR computed at the 99% level*) for the main LATAM markets 

and for the years 2001–2008. We denote boldface when, for a particular 

year and performance measure, the Colombian stock market dominates 

the others. Note that about 40% of the time the Colombian stock market 

has the best performance. It should also be pointed out that, in terms of 

return, most of the LATAM stock markets (with the exception of Argentina 

and Chile) show returns along the period between 400% and 600% approx-

imately, making them some of the most profitable in the world.

31.4 EMPIRICAL RESULTS 
In our context of analysis, it is important to determine whether terrorism 

may add extra challenges to the development of the still weak Colombian 

market. In the short term, terrorism news might cause some shock in both 

returns and volatilities, while on the mean and long term their influence is 

less clear and would depend on the constraints that investors of a particu-

lar country may face to diversify away this kind of risk.

In this chapter we focus on the effect of terrorism on short-term volatil-

ity. This issue is important because to the extent that terrorist episodes are 

frequent and economically significant, they could provoke risk to reach 

a level where investors (demanding a higher compensation for risk) and 

companies (incapable of providing such compensation) are unable to 

reach equilibrium. We will analyze the nature of this relationship along 

the recent history of Colombia. The period of study (January 1, 1996–April 

31, 2008) is chosen because of the availability of high-quality stock market 

data as well as compiled records of news related to terrorism.

Since we are interested in this relationship along a relatively long period 

of time there are some problems with the use of the IGBC (Colombia’s 

stock market general index). For this reason, we employ in our analyses the 

MSCI index, in U.S. dollars, of Colombia. Since the MSCI indexes are well 

known, we do not provide a description here.† To give a clearer view of our 

results we analyze each of the years separately. Table 31.4 shows the main 

characteristics of the series for each of the years in the period of study; as 

it can be seen, for most of the years the returns are skewed and show evi-

dent kurtosis, nonnormality (tested with the Jarque-Bera test (JB)), auto-

correlation (Ljung-Box test (LB)), and heteroskedasticity (according to the  

* We employ the 3-month Treasury bills yield as the risk-free rate.
† The data employed here were generously provided by MSCI Barra; we refer the reader to their 

website to find a description of the indexes employed.
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LB test on squared returns (LB2)). In the table we use boldface in the cases 

where we fail to reject the null.

To analyze the effect of terrorism on market volatility, we built a database 

of news related to terrorism by reviewing the main Colombian newspapers 

as well as by using other well-known sources, such as the chronology of 

terrorist incidents of  of the U.S. Department 

of Defense. Obviously our database is quite subjective since, in our view, it 

would be impossible to exactly determine when news is important enough 

to be considered. Moreover, in the Colombian case the phenomenon of 

terrorism is ubiquitous, and in many cases it can be hardly determined 

whether particular news has some relation to terrorism.

As a previous analysis, we tried to measure the level and persistence of 

volatility in the Colombian stock market. To analyze the degree of per-

sistence in volatility, in Figure 31.1 we plot the sum of coefficients of the 

conditional variance of an ARMA(1,1)-GARCH(1,1) model:

 

1 1

2
1

2

0, ( , )

1
2

 

(31.1)

500 1000 1500 2000 2500
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Sum of ARCH Coefficients

FIGURE 31.1 Decreasing persistence of volatility.
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which is fitted using a rolling window of 5 years along the period of study. 

Note that after a transient period, the process is close to being integrated in 

variance ( 1) but then persistence declines monotonically to reach 

0.85, a figure similar to the one found in many other stock markets. This 

reduction of persistence is consistent with an increase in the efficiency of 

the market, which adjusts more rapidly to the news.

Respecting the level of volatility of the Colombian stock market, we find 

that it has increased along time. In Figure 31.2 we plot the estimated con-

ditional volatility using Equation (31.1); note that the volatility by the end 

of the period is 60% higher than at the beginning of the period. As a con-

clusion of these preliminary analyses we can say that the volatility of the 

Colombian stock market has increased in recent times, which is consistent 

with the high returns experienced by the market, but that its level of persis-

tence has decreased, which is consistent with increasing efficiency levels. In 

our view, we would expect that news specifically related to terrorism would 

have a decreasing level of importance since other information might be 

present and spikes in volatility would be rapidly absorbed by the market.

To analyze the effects of news related to terrorism on volatility we used 

expanded ARCH models that take into account other variables that might 

500 1000 1500 2000 2500

0.01

0.011

0.012

0.013

0.014

0.015

Mean Volatility

FIGURE 31.2 Increasing levels of volatility.
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affect volatility. First, since we want to be sure that fluctuations on vola-

tility are exclusively due to news related to terrorism, we have to control 

for higher levels of volatility due to general and not intrinsic conditions. 

To do so, we build an equally weighted portfolio of the MSCI indexes of 

Argentina, Brazil, Chile, Mexico, and Peru and compute the volatility of 

this equally weighted portfolio, which is used as a proxy of the general 

level of volatility of the area. To control for levels of volatility outside the 

LATAM market we consider the Spanish MSCI index. The Spanish stock 

market is the natural link of LATAM stock markets to developed markets, 

since it is highly integrated with the most important capital markets in 

the world.

In Figure 31.3 we show an example of the behavior of returns, volatility, 

and news related to terrorism for the year 1998. We plot the volatilities of 

the Colombian, LATAM, and Spanish markets computed along the last 5 

trading days. In the figure we also plot a grey dot on the mean volatility level 

the days that news related to terrorism is found. To the extent that terror-

ism affects the volatility levels one should expect a sudden spike or a change 

in level in volatilities the days following the news. Even though we only 

show an example, for all the years the behavior was quite similar to that 

shown here. Note that around observation 160 we find such a spike, and 

50 100 150 200 250 

0.01 

0.02 

0.03 

0.04 

0.05 

0.06 

0.07 

Mean volatility (5 sessions), year 1998  COLOMBIA (solid)
SPAIN (dotted) LATAM (gray)

FIGURE 31.3 Incidence of terrorism news on volatility.
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we also find a higher level of volatility after the news. However, the same 

spike appears in the LATAM as well as in the Spanish case, so that one has 

to conclude that, in this example, either the news shocked these markets  

(a conclusion that seems quite implausible) or the higher level on volatility is 

due to international market instability and not to Colombian terrorism.

Though illustrative, obviously this approach is too simple to reach con-

clusions. For this reason we employ a more formal procedure to evaluate 

the incidence of terrorism. First, for each one of the years we estimate a 

series of ARMA(p,q)-GARCH-M(r,s) models of the form:

 

1 1

0, ( , )

2 2

1

2
1

2

1

2
2

 

(31.2)

where is a dummy variable that takes a value equal to 1 when there is 

news related to terrorism and 0 otherwise, and 2 and 2  are the 

volatility levels of the LATAM portfolio and Spain MSCI index, respec-

tively, which are used to control for international instability. Note that if 

terrorism affects volatility, increasing its level, , should be positive and 

statistically different from zero. Note also that since we compute positive 

and negative news, the value of  can be either positive, negative, or zero.

Since we analyze each of the years separately we have to keep the mod-

els as parsimonious as possible; for this reason, we select the models by 

increasing the number of lags until the LB test does not reject the null of 

no autocorrelation in the residuals and squared residuals of the model, 

keeping , , , 2. In the case that the model fails to pass the LB test 

for either the residuals or squared residuals, we employ the most par-

simonious model that provides similar results. In most of the cases an 

AR(1)-GARCH(1,1) model was enough to capture dependence in mean 

and variance; only in two cases (years 1998 and 2006) were we unable to 

remove all the structure in the returns and volatilities series.

In Table 31.5 we show the results obtained in each of the estimations as 

well as the -value of the corresponding parameters; we denote in boldface 

the statistics that are significant at a 10% level. Note that the parameter 

corresponding to the dummy of terrorism is significant at a 10% level only 

in three cases (years 1999, 2000, and 2003), and it is never significant at 
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a 5% level. These results seem to indicate that stock market volatility is 

not affected by news related to terrorism. An explanation of this fact is 

that investors consider these acts normal and not structural in the sense 

that they do not have a clear impact on the economy or permit changed 

expectations of future terrorism activity. Our results are consistent with 

other authors (e.g., Zussman and Zussman, 2006) who show that the stock 

market does not react to terrorism-related news when it does not imply 

either an increase or a decrease in terrorism levels.

An interesting conclusion is that news related to terrorism does not 

even seem to affect returns since the corresponding coefficient of the 

mean equation is never significant. This lack of relationship is surpris-

ing in some cases: for example, in 1996 (Table 31.6), all the news of the 

year cannot be interpreted as positive since it does not indicate the reso-

lution of a particular conflict. Overall, returns on the days that the news 

impacted the market were positive; this explains the positive coefficient 

in the regression (significant at the 10% level). Similar unexpected results 

have been found by other authors, such as Pagano and Strother (2007), 

who report that the S&P500 index responds positively to an increase in the 

threat of a terrorist attack.

31.5 CONCLUSION 
We have analyzed the effect of news related to terrorism on the levels of 

volatility of the Colombian stock market. Our results suggest that this 

kind of news does not seem to affect the risk level faced by investors.  

TABLE 31.6 News and Stock Market Return, 1996

Jan. 19 An American citizen is kidnapped. –0.34%

Feb. 6 Three foreign engineers and a Colombian citizen are 

kidnapped by the ELN.

–0.12%

Feb. 16 One American citizen is kidnapped by the ELN. –0.06%

March 25-  

April 13

Samper’s crisis 0.94%

July 14 An Italian citizen is kidnapped. –0.02%

Aug. 9 An Italian citizen is kidnapped. 0.54%

Aug. 14 Two Brazilian engineers are kidnapped. –0.76%

Aug. 21 An Italian citizen is kidnapped. 0.82%

Oct. 28 A convoy is attacked and two engineers are kidnapped. 0.54%

Dec. 11 An American geologist is kidnapped. 0.21%
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A possible explanation is that terrorism in Colombia, though dramatic, is 

considered a variable that does not condition economic activity. On the 

other hand, one could argue that terrorism news or acts are so common 

that they do not seem to affect the sentiment of investors.

Our results must be taken with extreme caution since a more sound 

methodology for categorizing news related to terrorism is needed. 

Specifically, it would be interesting to discern between positive and nega-

tive news, since they might have different effects of volatility. Moreover, 

even among negative news it would be interesting to differentiate between 

those news items that are too specific to impact markets as a whole (for 

example, the kidnapping of a worker of a specific foreign company) and 

those that might interfere with the normal economic activity by eroding 

confidence in the institutional system (such as the detention of politicians 

linked to terrorist groups). These and other extensions of the present work 

are under current investigation.
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