

Welcome To GetPedia.com
The Online Information Resource Providing You the Most Unique Content and Genuine Articles in the most Widest
range categories. Browse and discover Information in each and every category.
There are currently more than 500,000 articles to browse for.

 Business

Advertising
Branding
Business Management
Business Ethics
Careers, Jobs & Employment
Customer Service
Marketing
Networking
Network Marketing
Pay-Per-Click Advertising
Presentation
Public Relations
Sales
Sales Management
Sales Telemarketing
Sales Training
Small Business
Strategic Planning
Entrepreneur
Negotiation Tips
Team Building
Top Quick Tips

 Internet & Businesses Online

Affiliate Revenue
Blogging, RSS & Feeds
Domain Name
E-Book
E-commerce
Email Marketing
Ezine Marketing
Ezine Publishing
Forums & Boards
Internet Marketing
Online Auction
Search Engine Optimization
(SEO)
Spam Blocking
Streaming Audio & Online
Music
Traffic Building
Video Streaming
Web Design
Web Development
Web Hosting
Web Site Promotion

 Finance

Credit
Currency Trading
Debt Consolidation
Debt Relief
Loan
Insurance
Investing
Mortgage Refinance
Personal Finance
Real Estate
Taxes
Stocks & Mutual Fund
Structured Settlements
Leases & Leasing
Wealth Building

 Communications

Broadband Internet
Mobile & Cell Phone
VOIP
Video Conferencing
Satellite TV

 Reference & Education

Book Reviews
College & University
Psychology
Science Articles

 Food & Drinks

Coffee
Cooking Tips
Recipes & Food and Drink
Wine & Spirits

 Home & Family

Crafts & Hobbies
Elder Care
Holiday
Home Improvement
Home Security
Interior Design & Decorating
Landscaping & Gardening
Babies & Toddler
Pets
Parenting
Pregnancy

 News & Society

Dating
Divorce
Marriage & Wedding
Political
Relationships
Religion
Sexuality

 Computers & Technology

Computer Hardware
Data Recovery & Computer
Backup
Game
Internet Security
Personal Technology
Software

 Arts & Entertainment

Casino & Gambling
Humanities
Humor & Entertainment
Language
Music & MP3
Philosophy
Photography
Poetry

 Shopping & Product Reviews

Book Reviews
Fashion & Style

 Health & Fitness

Acne
Aerobics & Cardio
Alternative Medicine
Beauty Tips
Depression
Diabetes
Exercise & Fitness
Fitness Equipment
Hair Loss
Medicine
Meditation
Muscle Building &
Bodybuilding
Nutrition
Nutritional Supplements
Weight Loss
Yoga

 Recreation and Sport

Fishing
Golf
Martial Arts
Motorcycle

 Self Improvement & Motivation

Attraction
Coaching
Creativity
Dealing with Grief & Loss
Finding Happiness
Get Organized - Organization
Leadership
Motivation
Inspirational
Positive Attitude Tips
Goal Setting
Innovation
Spirituality
Stress Management
Success
Time Management

 Writing & Speaking

Article Writing
Book Marketing
Copywriting
Public Speaking
Writing

 Travel & Leisure

Aviation & Flying
Cruising & Sailing
Outdoors
Vacation Rental

 Cancer

Breast Cancer
Mesothelioma & Asbestos
Cancer

Copyright © 2006

GetPedia

GetPedia : Get How Stuff Works!GetPedia : Get How Stuff

Works!

http://www.getpedia.com/showarticles.php?cat=101
http://www.getpedia.com/showarticles.php?cat=114
http://www.getpedia.com/showarticles.php?cat=176
http://www.getpedia.com/showarticles.php?cat=144
http://www.getpedia.com/showarticles.php?cat=118
http://www.getpedia.com/showarticles.php?cat=130
http://www.getpedia.com/showarticles.php?cat=177
http://www.getpedia.com/showarticles.php?cat=189
http://www.getpedia.com/showarticles.php?cat=188
http://www.getpedia.com/showarticles.php?cat=202
http://www.getpedia.com/showarticles.php?cat=205
http://www.getpedia.com/showarticles.php?cat=203
http://www.getpedia.com/showarticles.php?cat=212
http://www.getpedia.com/showarticles.php?cat=213
http://www.getpedia.com/showarticles.php?cat=214
http://www.getpedia.com/showarticles.php?cat=215
http://www.getpedia.com/showarticles.php?cat=222
http://www.getpedia.com/showarticles.php?cat=227
http://www.getpedia.com/showarticles.php?cat=143
http://www.getpedia.com/showarticles.php?cat=187
http://www.getpedia.com/showarticles.php?cat=233
http://www.getpedia.com/showarticles.php?cat=235
http://www.getpedia.com/showarticles.php?cat=103
http://www.getpedia.com/showarticles.php?cat=112
http://www.getpedia.com/showarticles.php?cat=138
http://www.getpedia.com/showarticles.php?cat=139
http://www.getpedia.com/showarticles.php?cat=140
http://www.getpedia.com/showarticles.php?cat=142
http://www.getpedia.com/showarticles.php?cat=146
http://www.getpedia.com/showarticles.php?cat=147
http://www.getpedia.com/showarticles.php?cat=151
http://www.getpedia.com/showarticles.php?cat=168
http://www.getpedia.com/showarticles.php?cat=106
http://www.getpedia.com/showarticles.php?cat=219
http://www.getpedia.com/showarticles.php?cat=219
http://www.getpedia.com/showarticles.php?cat=224
http://www.getpedia.com/showarticles.php?cat=107
http://www.getpedia.com/showarticles.php?cat=107
http://www.getpedia.com/showarticles.php?cat=236
http://www.getpedia.com/showarticles.php?cat=239
http://www.getpedia.com/showarticles.php?cat=242
http://www.getpedia.com/showarticles.php?cat=243
http://www.getpedia.com/showarticles.php?cat=244
http://www.getpedia.com/showarticles.php?cat=221
http://www.getpedia.com/showarticles.php?cat=127
http://www.getpedia.com/showarticles.php?cat=129
http://www.getpedia.com/showarticles.php?cat=133
http://www.getpedia.com/showarticles.php?cat=134
http://www.getpedia.com/showarticles.php?cat=174
http://www.getpedia.com/showarticles.php?cat=166
http://www.getpedia.com/showarticles.php?cat=169
http://www.getpedia.com/showarticles.php?cat=183
http://www.getpedia.com/showarticles.php?cat=194
http://www.getpedia.com/showarticles.php?cat=208
http://www.getpedia.com/showarticles.php?cat=232
http://www.getpedia.com/showarticles.php?cat=226
http://www.getpedia.com/showarticles.php?cat=229
http://www.getpedia.com/showarticles.php?cat=173
http://www.getpedia.com/showarticles.php?cat=241
http://www.getpedia.com/showarticles.php?cat=116
http://www.getpedia.com/showarticles.php?cat=182
http://www.getpedia.com/showarticles.php?cat=240
http://www.getpedia.com/showarticles.php?cat=238
http://www.getpedia.com/showarticles.php?cat=216
http://www.getpedia.com/showarticles.php?cat=110
http://www.getpedia.com/showarticles.php?cat=122
http://www.getpedia.com/showarticles.php?cat=206
http://www.getpedia.com/showarticles.php?cat=217
http://www.getpedia.com/showarticles.php?cat=121
http://www.getpedia.com/showarticles.php?cat=123
http://www.getpedia.com/showarticles.php?cat=209
http://www.getpedia.com/showarticles.php?cat=246
http://www.getpedia.com/showarticles.php?cat=125
http://www.getpedia.com/showarticles.php?cat=141
http://www.getpedia.com/showarticles.php?cat=159
http://www.getpedia.com/showarticles.php?cat=160
http://www.getpedia.com/showarticles.php?cat=161
http://www.getpedia.com/showarticles.php?cat=167
http://www.getpedia.com/showarticles.php?cat=170
http://www.getpedia.com/showarticles.php?cat=109
http://www.getpedia.com/showarticles.php?cat=196
http://www.getpedia.com/showarticles.php?cat=193
http://www.getpedia.com/showarticles.php?cat=204
http://www.getpedia.com/showarticles.php?cat=132
http://www.getpedia.com/showarticles.php?cat=137
http://www.getpedia.com/showarticles.php?cat=178
http://www.getpedia.com/showarticles.php?cat=200
http://www.getpedia.com/showarticles.php?cat=210
http://www.getpedia.com/showarticles.php?cat=211
http://www.getpedia.com/showarticles.php?cat=220
http://www.getpedia.com/showarticles.php?cat=158
http://www.getpedia.com/showarticles.php?cat=131
http://www.getpedia.com/showarticles.php?cat=131
http://www.getpedia.com/showarticles.php?cat=152
http://www.getpedia.com/showarticles.php?cat=218
http://www.getpedia.com/showarticles.php?cat=195
http://www.getpedia.com/showarticles.php?cat=223
http://www.getpedia.com/showarticles.php?cat=119
http://www.getpedia.com/showarticles.php?cat=162
http://www.getpedia.com/showarticles.php?cat=163
http://www.getpedia.com/showarticles.php?cat=171
http://www.getpedia.com/showarticles.php?cat=186
http://www.getpedia.com/showarticles.php?cat=197
http://www.getpedia.com/showarticles.php?cat=198
http://www.getpedia.com/showarticles.php?cat=199
http://www.getpedia.com/showarticles.php?cat=110
http://www.getpedia.com/showarticles.php?cat=148
http://www.getpedia.com/showarticles.php?cat=100
http://www.getpedia.com/showarticles.php?cat=102
http://www.getpedia.com/showarticles.php?cat=104
http://www.getpedia.com/showarticles.php?cat=111
http://www.getpedia.com/showarticles.php?cat=135
http://www.getpedia.com/showarticles.php?cat=136
http://www.getpedia.com/showarticles.php?cat=145
http://www.getpedia.com/showarticles.php?cat=150
http://www.getpedia.com/showarticles.php?cat=156
http://www.getpedia.com/showarticles.php?cat=180
http://www.getpedia.com/showarticles.php?cat=181
http://www.getpedia.com/showarticles.php?cat=117
http://www.getpedia.com/showarticles.php?cat=117
http://www.getpedia.com/showarticles.php?cat=190
http://www.getpedia.com/showarticles.php?cat=231
http://www.getpedia.com/showarticles.php?cat=245
http://www.getpedia.com/showarticles.php?cat=249
http://www.getpedia.com/showarticles.php?cat=149
http://www.getpedia.com/showarticles.php?cat=154
http://www.getpedia.com/showarticles.php?cat=179
http://www.getpedia.com/showarticles.php?cat=185
http://www.getpedia.com/showarticles.php?cat=105
http://www.getpedia.com/showarticles.php?cat=120
http://www.getpedia.com/showarticles.php?cat=126
http://www.getpedia.com/showarticles.php?cat=155
http://www.getpedia.com/showarticles.php?cat=157
http://www.getpedia.com/showarticles.php?cat=191
http://www.getpedia.com/showarticles.php?cat=172
http://www.getpedia.com/showarticles.php?cat=184
http://www.getpedia.com/showarticles.php?cat=165
http://www.getpedia.com/showarticles.php?cat=201
http://www.getpedia.com/showarticles.php?cat=153
http://www.getpedia.com/showarticles.php?cat=164
http://www.getpedia.com/showarticles.php?cat=225
http://www.getpedia.com/showarticles.php?cat=228
http://www.getpedia.com/showarticles.php?cat=230
http://www.getpedia.com/showarticles.php?cat=234
http://www.getpedia.com/showarticles.php?cat=248
http://www.getpedia.com/showarticles.php?cat=113
http://www.getpedia.com/showarticles.php?cat=124
http://www.getpedia.com/showarticles.php?cat=207
http://www.getpedia.com/showarticles.php?cat=247
http://www.getpedia.com/showarticles.php?cat=108
http://www.getpedia.com/showarticles.php?cat=128
http://www.getpedia.com/showarticles.php?cat=192
http://www.getpedia.com/showarticles.php?cat=237
http://www.getpedia.com/showarticles.php?cat=115
http://www.getpedia.com/showarticles.php?cat=175
http://www.getpedia.com/showarticles.php?cat=175

JavaScript™ Bible
5th Edition

Danny Goodman with Michael Morrison
With a foreword by Brendan Eich, JavaScript’s creator

Praise for Danny Goodman’s JavaScript™ Bible
“JavaScript™ Bible is the definitive resource in JavaScript programming. I am never more
than three feet from my copy.”

— Steve Reich, CEO, PageCoders

“This book is a must-have for any web developer or programmer.”
— Thoma Lile, President, Kanis Technologies, Inc.

“Outstanding book. I would recommend this book to anyone interested in learning to
develop advanced Web sites. Mr. Goodman did an excellent job of organizing this book
and writing it so that even a beginning programmer can understand it.”

— Jason Hensley, Director of Internet Services, NetVoice, Inc.

“Goodman is always great at delivering clear and concise technical books!”
— Dwayne King, Chief Technology Officer, White Horse

“JavaScript™ Bible is well worth the money spent!”
— Yen C.Y. Leong, IT Director, Moo Mooltimedia, a member of SmartTransact Group

“A must-have book for any internet developer.”
— Uri Fremder, Senior Consultant, TopTier Software

“I love this book! I use it all the time, and it always delivers. It’s the only JavaScript
book I use!”

— Jason Badger, Web Developer

“Whether you are a professional or a beginner, this is a great book to get.”
— Brant Mutch, Web Application Developer, Wells Fargo Card Services, Inc.

“I never thought I’d ever teach programming before reading your book [JavaScript™
Bible]. It’s so simple to use — the Programming Fundamentals section brought it all back!
Thank you for such a wonderful book, and for breaking through my programming block!”

— Susan Sann Mahon, Certified Lotus Instructor, TechNet Training

“Danny Goodman is very good at leading the reader into the subject. JavaScript™ Bible
has everything we could possibly need.”

— Philip Gurdon

“An excellent book that builds solidly from whatever level the reader is at. A book that is
both witty and educational.”

— Dave Vane

“I continue to use the book on a daily basis and would be lost without it.”
— Mike Warner, Founder, Oak Place Productions

“JavaScript™ Bible is by far the best JavaScript resource I’ve ever seen (and I’ve seen
quite a few).”

— Robert J. Mirro, Independent Consultant, RJM Consulting

JavaScript™ Bible
5th Edition

Danny Goodman with Michael Morrison
With a foreword by Brendan Eich, JavaScript’s creator

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: WHILE THE PUBLISHER AND AUTHOR HAVE USED THEIR BEST
EFFORTS IN PREPARING THIS BOOK, THEY MAKE NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE
ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS BOOK AND SPECIFICALLY DISCLAIM ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED
OR EXTENDED BY SALES REPRESENTATIVES OR WRITTEN SALES MATERIALS. THE ADVICE AND STRATEGIES
CONTAINED HEREIN MAY NOT BE SUITABLE FOR YOUR SITUATION. YOU SHOULD CONSULT WITH A
PROFESSIONAL WHERE APPROPRIATE. NEITHER THE PUBLISHER NOR AUTHOR SHALL BE LIABLE FOR ANY LOSS
OF PROFIT OR ANY OTHER COMMERCIAL DAMAGES, INCLUDING BUT NOT LIMITED TO SPECIAL, INCIDENTAL,
CONSEQUENTIAL, OR OTHER DAMAGES.

JavaScript™ Bible, 5th Edition

Published by:
Wiley Publishing, Inc.
10475 Crosspoint Blvd.
Indianapolis, Indiana 46256
www.wiley.com

Copyright © 2004 Danny Goodman. All rights reserved.

Library of Congress Control Number: 2004101606

ISBN: 0-7645-5743-2

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

5B/RY/QS/QU/IN

Published by Wiley Publishing, Inc., Indianapolis, Indiana
Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of
the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through
payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923,
(978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the Legal Department,
Wiley Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4447, E-mail:
permcoordinator@wiley.com.

For general information on our other products and services please contact our Customer Care Department within the
United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Trademarks: Wiley and the Wiley Publishing logo are trademarks or registered trademarks of John Wiley & Sons, Inc.
and/or its affiliates. JavaScript is a trademark or registered trademark of Sun Microsystems, Inc. All other trademarks are
the property of their respective owners. Wiley Publishing, Inc., is not associated with any product or vendor mentioned in
this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in
electronic books.

About the Authors
Danny Goodman is the author of numerous critically acclaimed and best-selling books, includ-
ing The Complete HyperCard Handbook, Danny Goodman’s AppleScript Handbook, Dynamic
HTML: The Definitive Reference, and JavaScript & DHTML Cookbook. He is a renowned authority
and expert teacher of computer scripting languages. His writing style and pedagogy continue to
earn praise from readers and teachers around the world. To help keep his finger on the pulse of
real-world programming challenges, Goodman frequently lends his touch as consulting pro-
grammer and designer to leading-edge World Wide Web and intranet sites from his home base
in the San Francisco area.

Michael Morrison is a writer, developer, toy inventor, and author of a variety of books cover-
ing topics such as Java, Web scripting, game development, ActiveX, and Pocket PCs. Some of
Michael’s notable writing projects include Faster Smarter HTML and XML, Teach Yourself XML
in 24 Hours, and The Complete Idiot’s Guide to Java 2. Michael is also the founder of Stalefish
Labs (www.stalefishlabs.com), an entertainment company specializing in traditional
games and toys.

Credits
Vice President and
Executive Group Publisher
Richard Swadley

Vice President and
Executive Publisher
Robert Ipsen

Vice President and Publisher
Joseph B. Wikert

Acquisitions Editor
Debra Williams Cauley

Production Editor
Angela Smith

Copy Editor
Kim Cofer

Permissions Editor
Laura Moss

Media Development Specialist
Travis Silvers

Project Coordinator
Ryan Steffen

Graphics and Production Specialists
Karl Brandt
Amanda Carter
Lauren Goddard
Denny Hager
Joyce Haughey
Jennifer Heleine
Michael Kruzil
Heather Ryan
Mary Gillot Virgin

Quality Control Technician
Carl William Pierce

Proofreading and Indexing
TECHBOOKS Production Services

Foreword

As JavaScript’s creator, I would like to say a few words about where JavaScript has been,
where it is going, and how the book you’re holding will help you to make the most of the

language.

JavaScript was born out of a desire to let HTML authors write scripts directly in their docu-
ments. This may seem obvious now, but in the spring of 1995 it was novel and more than a lit-
tle at odds with both the conventional wisdom (that HTML should describe static document
structure only) and the Next Big Thing (Java applets, which were hyped as the one true way
to enliven and extend Web pages). Once I got past these contentions, JavaScript quickly
shaped up along the following lines:

✦ “Java-lite” syntax. Although the “natural language” syntax of HyperTalk was fresh in my
mind after a friend lent me The Complete HyperCard Handbook by some fellow named
Goodman, the Next Big Thing weighed heavier, especially in light of another goal: script-
ing Java applets. If the scripting language resembled Java, then those programmers who
made the jump from JavaScript to Java would welcome similarities in syntax. But insist-
ing on Java’s class and type declarations, or on a semicolon after each statement when a
line ending would do, were out of the question — scripting for most people is about writ-
ing short snippets of code, quickly and without fuss.

✦ Events for HTML elements. Buttons should have onClick event handlers. Documents load
and unload from windows, so windows should have onLoad and onUnload handlers.
Users and scripts submit forms: thus the onSubmit handler. Although not initially as flexi-
ble as HyperCard’s messages (whose handlers inspired the onEvent naming convention),
JavaScript events let HTML authors take control of user interaction from remote servers
and respond quickly to user gestures and browser actions. With the adoption of the W3C
DOM Level 2 event handling recommendations, JavaScript in modern browsers has fully
flexible control over events.

✦ Objects without classes. The Self programming language proved the notion of prototype-
based inheritance. For JavaScript, I wanted a single prototype per object (for simplicity
and efficiency), based by default on the function called using the new operator (for
consonance with Java). To avoid distinguishing constructors from methods from func-
tions, all functions receive the object naming them as the property that was called in
the parameter. Although prototypes didn’t appear until Navigator 3, they were prefigured
in Version 2 by quoted text being treated as an object (the Strong object prototype, to
which users could attach methods).

✦ Generated HTML. Embedding JavaScript in HTML gave rise to a thought: Let the script
speak HTML, as if the emitted text and markup were loaded in place of the script itself.
The possibilities went beyond automating current or last-modified dates, to computing
whole trees of tables where all the repeated structure was rolled up in a scripted loop,
while the varying contents to be tabulated came in minimal fashion from JavaScript
objects forming a catalog or mini-database.

At first, I thought JavaScript would most often find use in validating input to HTML forms. But
before long, I was surprised to see how many Web designers devised compelling applications
by way of script-generated HTML and JavaScript objects. It became clear from user demon-
stration and feedback that Web designers sought to build significant applications quickly and
effectively with just a few images, HTML, and JavaScript. Eventually they demanded that the
browser support what is now known as “Dynamic HTML” (one fun link: http://www.
javascript-games.org/).

As legions of Web authors embraced the authoring power of JavaScript, they, in turn, demon-
strated the crucial advantages of a scripting environment over old-school application devel-
opment. Not only were the HTML and JavaScript languages comparatively easy to use, but
development did not require the programming expertise needed to light all pixels and handle
all events as in a big, traditional application.

The primacy of JavaScript on the Web today vindicates our early belief in the value of a
scripting language for HTML authors. By keeping the “pixel-lighting” bar low, HTML with
images has made Web designers out of millions of people. By keeping the “event-handling”
bar low, JavaScript has helped many thousands of those designers become programmers.
Perhaps the ultimate example of Web development’s convergence with application develop-
ment is the Mozilla browser, wherein all of the user-interface and even some custom widgets
and modular components are implemented entirely using JavaScript, Cascading Style Sheets
(CSS), custom XML-based markup languages, and images.

JavaScript is also a general language, useful apart from HTML and XML. It has been embedded
in servers, authoring tools, browser plug-ins, and other kinds of browsers (for such things as 3D
graphical worlds). Its international standard, ECMA-262 (ISO 16262), has advanced to a Third
Edition. But compared to languages such as Perl and even Java, it is still relatively young. Work
toward a Fourth Edition of the language, supporting optional types, classes, and versioning
facilities progresses within the ECMA technical committee (see the “JS2” proposal to the ECMA
technical committee documented at http://www.mozilla.org/js/language/js20/).

It is clear to me that JavaScript would not have survived without a creative, loyal, and patient
community of developers; I owe them each a huge debt of thanks. Those developers who
took up the beta releases of Navigator 2, and disseminated vital workarounds and feature
requests by e-mail and net-news, are the language’s godparents. Developer support and feed-
back continue to make JavaScript the eclectic, rambunctious success it is.

The book in your hands compiles thousands of those “developer miles” with the insight of an
expert guide and teacher. Danny didn’t know at the time how much inspiration I found in his
HyperCard book, but it was on my desk throughout the development of JavaScript in 1995.
His energy, compassion, and clear prose helped me keep the goal of “a language for all” in
mind. It is enormously gratifying to write the foreword to the fourth edition of this book,
which has earned so many “satisfied reader miles.”

I highly recommend Danny Goodman’s JavaScript Bible to anyone who wants to learn JavaScript,
and especially to those HTML authors who’ve so far written only a few scripts or programs —
you’re in for a lifetime of fun on the “scripting road” with a trusty guide at your side.

Brendan Eich
The Mozilla Organization (http://www.mozilla.org)

viii Foreword

Preface

For over 20 years, I have written the books I wished had already been written to help me
learn or use a new technology. Whenever possible, I like to get in at the very beginning of

a new authoring or programming environment, feel the growing pains, and share with readers
the solutions to my struggles. This fifth edition of the JavaScript™ Bible represents knowledge
and experience accumulated over eight years of daily work in JavaScript and a constant moni-
toring of newsgroups for questions, problems, and challenges facing scripters at all levels.
My goal is to help you avoid the same frustration and head scratching I and others have
experienced through multiple generations of scriptable browsers.

While the earliest editions of this book focused on the then predominant Netscape Navigator
browser, the swing of the browser market share pendulum currently favors Microsoft Internet
Explorer on the Windows platform. But the more important trend is the Web developer commu-
nity’s demand for browser compliance with a growing body of industry standards. Potential con-
flicts arise when the dominant browser on the Internet does not fully support existing standards,
but instead provides proprietary alternatives. The job of a book claiming to be the “bible” is not
only to present both the standard and proprietary details when they diverge, but also to show
you how to write scripts that blend the two so that they work on as many browsers as possible.
Empowering you to design and write good scripts is my passion, regardless of browser. It’s true
that my bias is toward industry standards, but not to the exclusion of proprietary features that
may be necessary to get your content and scripting ideas flowing equally well on today’s and
tomorrow’s browsers.

Organization and Features of This Edition
Like the previous fourth and Gold editions of the JavaScript Bible, this fifth edition contains far
more information than can be printed and bound into a single volume. The complete contents
can be found in the electronic version of this book (in Adobe Acrobat form) on the CD-ROM
that accompanies the book. This new edition is structured in such a way as to supply the most
commonly needed information in its entirety in the printed portion of the book. Thus, numer-
ous complete code listings, which had been diverted to CD-ROM in the previous editions, are
now readily available in the printed pages. Content that you use to learn the fundamentals of
JavaScript and reference frequently are at your fingertips in the printed version, while chapters
with advanced content are in the searchable electronic version on the CD-ROM. Here are some
details about the book’s structure.

x Preface

Part I
Part I of the book begins with a chapter that shows how JavaScript compares with Java and dis-
cusses its role within the rest of the World Wide Web. The Web browser and scripting world
have undergone significant changes since JavaScript first arrived on the scene. That’s why
Chapter 2 is devoted to addressing challenges facing scripters who must develop applications
for both single- and cross-platform browser audiences amid rapidly changing standards
efforts. Chapter 3 provides the first foray into JavaScript, where you get to write your first
practical script.

Part II
All of Part II is handed over to a tutorial for newcomers to JavaScript. Nine lessons provide
you with a gradual path through browser internals, basic programming skills, and genuine
browser scripting with an emphasis on industry standards as supported by most of the
scriptable browsers in use today. Exercises follow at the end of each lesson to help reinforce
what you just learned and challenge you to use your new knowledge (you’ll find answers to
the exercises in Appendix C). The goal of the tutorial is to equip you with sufficient experi-
ence to start scripting simple pages right away while making it easier for you to understand
the in-depth discussions and examples in the rest of the book. By the end of the final lesson,
you’ll know how to create the mouse-rollover image swapping effect that is popular in a lot of
Web pages these days, and modify the content of a Web page dynamically.

Part III
Part III, the largest section of the book, provides in-depth coverage of the document object
models as implemented in today’s browsers. In all reference chapters, a compatibility chart
indicates the browser version that supports each object and object feature. One chapter in
particular, Chapter 15, contains reference material that is shared by most of the remaining
chapters of Part III. To help you refer back to Chapter 15 from other chapters, a dark tab
along the outside edge of the page shows you at a glance where the chapter is located.
Additional navigation aids include guide words near the tops of most pages to indicate which
object and object feature is covered on the page.

Part IV
Reference information for the core JavaScript language fills Part IV. As with reference chapters
of Part III, the JavaScript chapters display browser compatibility charts for every JavaScript
language term. Guide words near the tops of pages help you find a particular term quickly.

Part V
Several appendixes at the end of the book provide helpful reference information. These
resources include a JavaScript and Browser Objects Quick Reference in Appendix A, a list of
JavaScript reserved words in Appendix B, answers to Part II’s tutorial exercises in Appendix C,
and Internet resources in Appendix D. In Appendix E, you also find information on using the
CD-ROM that comes with this book, which includes numerous bonus chapters and examples.

xiPreface

CD-ROM
The CD-ROM is a gold mine of information. It begins with an Adobe Acrobat (PDF) version of
the entire contents of this fifth edition of the JavaScript Bible. This version includes not only
the unprinted advanced material from Parts III and IV, but also 23 bonus chapters covering:

✦ Advanced DOM, XML, and JavaScript objects

✦ Dynamic HTML, data validation, plug-ins, and security

✦ Techniques for developing and debugging professional Web-based applications

✦ Nine full-fledged JavaScript real-world applications

Another treasure trove on the CD-ROM is the Listings folder where you’ll find over 300 ready-
to-run HTML documents that serve as examples of most of the document object model and
JavaScript vocabulary words in Parts III and IV. All of the bonus chapter example listings are
also included. You can run these examples with your JavaScript-enabled browser, but be sure
to use the index.html page in the Listings folder as a gateway to running the listings. This
page shows you the browsers that are compatible with each example listing. I could have
provided you with humorous little sample code fragments out of context, but I think that
seeing full-fledged HTML documents (simple though they may be) for employing these con-
cepts is important. I intentionally omitted the script listings from the tutorial part (Part II) of
this book to encourage you to type the scripts. I believe you learn a lot, even by aping listings
from the book, as you get used to the rhythms of typing scripts in documents.

Be sure to check out the Chapter 13 listing file called evaluator.html. Many segments of
Parts III and IV invite you to try out an object model or language feature with the help of an
interactive workbench, called The Evaluator — a JavaScript Bible exclusive! You see instant
results and quickly learn how the feature works.

The Quick Reference from Appendix A is in PDF format on the CD-ROM for you to print out
and assemble as a handy reference, if desired. Adobe Acrobat Reader is also included on the
CD-ROM, in case you don’t already have it, so that you can read both of these PDF files.

Prerequisites to Learning JavaScript
Although this book doesn’t demand that you have a great deal of programming experience
behind you, the more Web pages you’ve created with HTML, the easier you will find it to
understand how JavaScript interacts with the familiar elements you normally place in your
pages. Occasionally, you will need to modify HTML tags to take advantage of scripting. If you
are familiar with those tags already, the JavaScript enhancements will be simple to digest.

Forms and their control elements (text fields, buttons, and selection lists) play an especially
important role in much of typical JavaScript work. You should be familiar with these elements
and their HTML attributes. Fortunately, you won’t need to know about server scripting or
passing information from a form to a server. The focus here is on client-side scripting, which
operates independently of the server after the JavaScript-enhanced HTML page is fully
loaded into the browser.

xii Preface

The basic vocabulary of the current HTML standard should be part of your working knowl-
edge. You should also be familiar with some of the latest document markup standards, such
as XHTML and Cascading Style Sheets (CSS). You don’t need to be an expert, by any means.
Web searches for these terms will uncover numerous tutorials on the subjects.

If you’ve never programmed before
To someone who learned HTML from a slim guidebook a few years ago, the size of this book
must be daunting. JavaScript may not be the easiest language in the world to learn, but
believe me, it’s a far cry from having to learn a full programming language, such as Java or C.
Unlike developing a full-fledged monolithic application (such as the productivity programs
you buy in the stores), JavaScript lets you experiment by writing small snippets of program
code to accomplish big things. The JavaScript interpreter built into every scriptable browser
does a great deal of the technical work for you.

Programming, at its most basic level, consists of nothing more than writing a series of instruc-
tions for the computer to follow. We humans follow instructions all the time, even if we don’t
realize it. Traveling to a friend’s house is a sequence of small instructions: Go three blocks
that way; turn left here; turn right there. Amid these instructions are some decisions that we
have to make: If the stoplight is red, then stop; if the light is green, then go; if the light is yel-
low, then floor it. Occasionally, we must repeat some operations several times (kind of like
having to go around the block until a parking space opens up). A computer program not only
contains the main sequence of steps, but it also anticipates what decisions or repetitions may
be needed to accomplish the program’s goal (such as how to handle the various states of a
stoplight or what to do if someone just stole the parking spot you were aiming for).

The initial hurdle of learning to program is becoming comfortable with the way a programming
language wants its words and numbers organized in these instructions. Such rules are called
syntax, the same as in a living language. Because computers generally are dumb electronic
hulks, they aren’t very forgiving if you don’t communicate with them in the specific language
they understand. When speaking to another human, you can flub a sentence’s syntax and still
have a good chance of the other person’s understanding you fully. Not so with computer pro-
gramming languages. If the syntax isn’t perfect (or at least within the language’s range of
knowledge that it can correct), the computer has the brazenness to tell you that you have
made a syntax error.

The best thing you can do is to just chalk up the syntax errors you receive as learning experi-
ences. Even experienced programmers make them. Every syntax error you get — and every
resolution of that error made by rewriting the wayward statement — adds to your knowledge
of the language.

If you’ve done a little programming before
Programming experience in a procedural language, such as BASIC, may almost be a hindrance
rather than a help to learning JavaScript. Although you may have an appreciation for preci-
sion in syntax, the overall concept of how a program fits into the world is probably radically
different from JavaScript. Part of this has to do with the typical tasks a script performs (car-
rying out a very specific task in response to user action within a Web page), but a large part
also has to do with the nature of object-oriented programming.

xiiiPreface

In a typical procedural program, the programmer is responsible for everything that appears
on the screen and everything that happens under the hood. When the program first runs, a
great deal of code is dedicated to setting up the visual environment. Perhaps the screen con-
tains several text entry fields or clickable buttons. To determine which button a user clicks,
the program examines the coordinates of the click and compares those coordinates against a
list of all button coordinates on the screen. Program execution then branches out to perform
the instructions reserved for clicking in that space.

Object-oriented programming is almost the inverse of that process. A button is considered an
object — something tangible. An object has properties, such as its label, size, alignment, and
so on. An object may also contain a script. At the same time, the system software and browser,
working together, can send a message to an object — depending on what the user does — to
trigger the script. For example, if a user clicks in a text entry field, the system/browser tells
the field that somebody has clicked there (that is, has set the focus to that field), giving the
field the task of deciding what to do about it. That’s where the script comes in. The script is
connected to the field, and it contains the instructions that the field carries out after the user
activates it. Another set of instructions may control what happens when the user types an
entry and tabs or clicks out of the field, thereby changing the content of the field.

Some of the scripts you write may seem to be procedural in construction: They contain a
simple list of instructions that are carried out in order. But when dealing with data from form
elements, these instructions work with the object-based nature of JavaScript. The form is an
object; each radio button or text field is an object as well. The script then acts on the prop-
erties of those objects to get some work done.

Making the transition from procedural to object-oriented programming may be the most diffi-
cult challenge for you. When I was first introduced to object-oriented programming a number of
years ago, I didn’t get it at first. But when the concept clicked — a long, pensive walk helped —
so many light bulbs went on inside my head that I thought I might glow in the dark. From then
on, object orientation seemed to be the only sensible way to program.

If you’ve programmed in C before
By borrowing syntax from Java (which, in turn, is derived from C and C++), JavaScript shares
many syntactical characteristics with C. Programmers familiar with C will feel right at home.
Operator symbols, conditional structures, and repeat loops follow very much in the C tradi-
tion. You will be less concerned about data types in JavaScript than you are in C. In JavaScript,
a variable is not restricted to any particular data type.

With so much of JavaScript’s syntax familiar to you, you will be able to concentrate on docu-
ment object model concepts, which may be entirely new to you. You will still need a good
grounding in HTML to put your expertise to work in JavaScript.

If you’ve programmed in Java before
Despite the similarity in their names, the two languages share only surface aspects: loop and
conditional constructions, C-like “dot” object references, curly braces for grouping state-
ments, several keywords, and a few other attributes. Variable declarations, however, are quite
different, because JavaScript is a loosely typed language. A variable can contain an integer
value in one statement and a string in the next (though I’m not saying that this is good style).
What Java refers to as methods, JavaScript calls methods (when associated with a predefined

xiv Preface

object) or functions (for scripter-defined actions). JavaScript methods and functions may
return values of any type without having to state the data type ahead of time.

Perhaps the most important aspects of Java to suppress when writing JavaScript are the
object-oriented notions of classes, inheritance, instantiation, and message passing. These
aspects are simply non-issues when scripting. At the same time, however, JavaScript’s design-
ers knew that you’d have some hard-to-break habits. For example, although JavaScript does
not require a semicolon at the end of each statement line, if you type one in your JavaScript
source code, the JavaScript interpreter won’t balk.

If you’ve written scripts (or macros) before
Experience with writing scripts in other authoring tools or macros in productivity programs
is helpful for grasping a number of JavaScript’s concepts. Perhaps the most important con-
cept is the idea of combining a handful of statements to perform a specific task on some data.
For example, you can write a macro in Microsoft Excel that performs a data transformation
on daily figures that come in from a corporate financial report on another computer. The
macro is built into the Macro menu, and you run it by choosing that menu item whenever a
new set of figures arrives.

Some modern programming environments, such as Visual Basic, resemble scripting environ-
ments in some ways. They present the programmer with an interface builder, which does
most of the work or displaying screen objects with which the user will interact. A big part of
the programmer’s job is to write little bits of code that are executed when a user interacts
with those objects. A great deal of the scripting you will do with JavaScript matches that pat-
tern exactly. In fact, those environments resemble the scriptable browser environment in
another way: They provide a finite set of predefined objects that have fixed sets of properties
and behaviors. This predictability makes learning the entire environment and planning an
application easier to accomplish.

Formatting and Naming Conventions
The script listings and words in this book are presented in a monospace font to set them
apart from the rest of the text. Because of restrictions in page width, lines of script listings
may, from time to time, break unnaturally. In such cases, the remainder of the script appears
in the following line, flush with the left margin of the listing, just as they would appear in a
text editor with word wrapping turned on. If these line breaks cause you problems when you
type a script listing into a document yourself, I encourage you to access the corresponding
listing on the CD-ROM to see how it should look when you type it.

As soon as you reach Part III of this book, you won’t likely go for more than a page before read-
ing about an object model or language feature that requires a specific minimum version of one
browser or another. To make it easier to spot in the text when a particular browser and browser
version is required, most browser references consist of an abbreviation and a version number.
For example, WinIE5 means Internet Explorer 5 for Windows; NN6 means Netscape Navigator 6
for any operating system; Moz stands for the relatively new browsers now under the steward-
ship of The Mozilla Foundation; and Safari is Apple’s own browser for MacOS X. If a feature is
introduced with a particular version of browser and is supported in subsequent versions, a
plus symbol (+) follows the number. For example, a feature marked WinIE5.5+ indicates that
Internet Explorer 5.5 for Windows is required at a minimum, but the feature is also available in

xvPreface

WinIE6 and probably future WinIE versions. Occasionally, a feature or some highlighted behav-
ior applies to only one browser. For example, a feature marked NN4 means that it works only in
Netscape Navigator 4.x. A minus sign (e.g., WinIE-) means that the browser does not support
the item being discussed.

The format of HTML and code listings in this edition has changed radically from previous
editions. To emphasize the Web developer community’s trend toward the latest Web stan-
dards, the HTML examples in this edition follow XHTML coding conventions, which dictate
all-lowercase tag and attribute names, as well as self-closing tags that do not act as containers
(such as the XHTML
 tag in place of the HTML
 tag). Another pervasive style change
is the explicit inclusion of semicolons at the end of JavaScript statement lines. Semicolons are
still optional in the language, but I have changed my personal coding style, as demonstrated
throughout this book.

Note, Tip, and Caution icons occasionally appear in the
book to flag important points.

CautionTipNote

Acknowledgments

Bringing this 1750-page edition up to the current state of the art was a task greater than
one author could possibly handle in a timely manner. While I busied myself with updat-

ing the tutorial and validating terminology and listings with the latest browsers, I was fortu-
nate to have the tireless help of Michael Morrison — a first-rate author in his own right — who
carefully pruned obsolete content, modernized tens of thousands of lines of code, restored
linearity to the previous edition’s maze, and kept the project on track at a breakneck pace.
David Wall, a long-time JavaScript Bible helper, thankfully contributed his time and expertise
to this effort as well. Many thanks to the hard-working folks at Wiley Publishing: Debra
Williams Cauley, Mary Beth Wakefield, Angela Smith. Above all, I want to thank the many
readers of the earlier editions of this book for investing in this ongoing effort. I wish I had the
space here to acknowledge by name so many who have sent e-mail notes and suggestions:
Your input has been most welcome and greatly appreciated.

Contents at a Glance
Foreword . vii
Preface . ix
Acknowledgments . xvii

PART I: Getting Started with JavaScript . 1
Chapter 1: JavaScript’s Role in the World Wide Web and Beyond 3
Chapter 2: Authoring Challenges Amid the Browser Wars . 9
Chapter 3: Your First JavaScript Script . 17

PART II: JavaScript Tutorial . 25
Chapter 4: Browser and Document Objects . 27
Chapter 5: Scripts and HTML Documents . 47
Chapter 6: Programming Fundamentals, Part I . 59
Chapter 7: Programming Fundamentals, Part II . 69
Chapter 8: Window and Document Objects . 83
Chapter 9: Forms and Form Elements . 97
Chapter 10: Strings, Math, and Dates . 111
Chapter 11: Scripting Frames and Multiple Windows . 121
Chapter 12: Images and Dynamic HTML . 131

PART III: Document Objects Reference . 141
Chapter 13: JavaScript Essentials . 143
Chapter 14: Document Object Model Essentials . 163
Chapter 15: Generic HTML Element Objects . 201
Chapter 16: Window and Frame Objects . 359
Chapter 17: Location and History Objects . 485
Chapter 18: The Document and Body Objects . 509
Chapter 19: Link and Anchor Objects . 591
Chapter 20: Image, Area, and Map Objects . 601
Chapter 21: The Form and Related Objects . 629
Chapter 22: Button Objects . 651
Chapter 23: Text-Related Form Objects . 673
Chapter 24: Select, Option, and FileUpload Objects . 695
Chapter 25: Event Objects . 719
Chapter 26: Style Sheet and Style Objects . 793

PART IV: JavaScript Core Language Reference 847
Chapter 27: The String Object . 849
Chapter 28: The Math, Number, and Boolean Objects . 877
Chapter 29: The Date Object . 891
Chapter 30: The Array Object . 909
Chapter 31: Control Structures and Exception Handling . 931
Chapter 32: JavaScript Operators . 961
Chapter 33: Functions and Custom Objects . 981
Chapter 34: Global Functions and Statements . 1009
Chapter 35: Body Text Objects . 1023

PART V: Appendixes . 1105
Appendix A: JavaScript and Browser Object Quick Reference 1107
Appendix B: JavaScript Reserved Words . 1121
Appendix C: Answers to Tutorial Exercises . 1123
Appendix D: JavaScript and DOM Internet Resources . 1139
Appendix E: What’s on the CD-ROM . 1143

Index . 1147
End-User License Agreement . 1243

PART VI: Bonus Chapters . On the CD-ROM
Chapter 36: HTML Directive Objects
Chapter 37: Table and List Objects
Chapter 38: The Navigator and Other Environment Objects
Chapter 39: Positioned Objects
Chapter 40: Embedded Objects
Chapter 41: XML Objects
Chapter 42: The Regular Expression and RegExp Objects
Chapter 43: Data-Entry Validation
Chapter 44: Scripting Java Applets and Plug-Ins
Chapter 45: Debugging Scripts
Chapter 46: Security and Netscape Signed Scripts
Chapter 47: Cross-Browser Dynamic HTML Issues
Chapter 48: Internet Explorer Behaviors
Chapter 49: Application: Tables and Calendars

Chapter 50: Application: A Lookup Table
Chapter 51: Application: A “Poor Man’s” Order Form
Chapter 52: Application: Outline-Style Table of Contents
Chapter 53: Application: Calculations and Graphics
Chapter 54: Application: Intelligent “Updated” Flags
Chapter 55: Application: Decision Helper
Chapter 56: Application: Cross-Browser DHTML Map Puzzle
Chapter 57: Application: Transforming XML Data

Contents
Foreword . vii

Preface . ix

Acknowledgments . xvii

Part I: Getting Started with JavaScript 1

Chapter 1: JavaScript’s Role in the World Wide Web and Beyond 3
Competing for Web Traffic . 4
Other Web Technologies . 4
JavaScript: A Language for All . 6
JavaScript: The Right Tool for the Right Job . 8

Chapter 2: Authoring Challenges Amid the Browser Wars 9
Leapfrog . 9
Duck and Cover . 10
Compatibility Issues Today . 11
Developing a Scripting Strategy . 14

Chapter 3: Your First JavaScript Script . 17
The Software Tools . 17
Setting Up Your Authoring Environment . 18
What Your First Script Will Do . 20
Entering Your First Script . 21
Examining the Script . 22
Have Some Fun . 24

Part II: JavaScript Tutorial 25

Chapter 4: Browser and Document Objects 27
Scripts Run the Show . 27
JavaScript in Action . 28
The Document Object Model . 34
When a Document Loads . 36
Object References . 39
Node Terminology . 41
What Defines an Object? . 42
Exercises . 46

xxii Contents

Chapter 5: Scripts and HTML Documents . 47
Where Scripts Go in Documents . 47
JavaScript Statements . 51
When Script Statements Execute . 51
Viewing Script Errors . 54
Scripting versus Programming . 55
Exercises . 56

Chapter 6: Programming Fundamentals, Part I 59
What Language Is This? . 59
Working with Information . 59
Variables . 60
Expressions and Evaluation . 62
Data Type Conversions . 64
Operators . 66
Exercises . 67

Chapter 7: Programming Fundamentals, Part II 69
Decisions and Loops . 69
Control Structures . 70
About Repeat Loops . 71
Functions . 72
About Curly Braces . 76
Arrays . 76
Exercises . 80

Chapter 8: Window and Document Objects 83
Top-Level Objects . 83
The window Object . 84
Window Properties and Methods . 87
The location Object . 89
The navigator Object . 90
The document Object . 90
Exercises . 95

Chapter 9: Forms and Form Elements . 97
The form Object . 97
Form Controls as Objects . 100
The Button Object . 102
The Checkbox Object . 102
The Radio Object . 103
The select Object . 104
Passing Form Data and Elements to Functions . 106
Submitting and Prevalidating Forms . 108
Exercises . 110

xxiiiContents

Chapter 10: Strings, Math, and Dates . 111
Core Language Objects . 111
String Objects . 111
The Math Object . 115
The Date Object . 116
Date Calculations . 117
Exercises . 119

Chapter 11: Scripting Frames and Multiple Windows 121
Frames: Parents and Children . 121
References among Family Members . 123
Frame Scripting Tips . 125
About iframe Elements . 125
Controlling Multiple Frames — Navigation Bars . 126
References for Multiple Windows . 128
Exercises . 130

Chapter 12: Images and Dynamic HTML . 131
The Image Object . 131
The javascript: Pseudo-URL . 137
Popular Dynamic HTML Techniques . 137
Exercises . 140

Part III: Document Objects Reference 141

Chapter 13: JavaScript Essentials . 143
JavaScript Versions . 143
Core Language Standard — ECMAScript . 144
Embedding Scripts in HTML Documents . 144
Browser Version Detection . 148
Designing for Compatibility . 155
Language Essentials for Experienced Programmers 158
Onward to Object Models . 161

Chapter 14: Document Object Model Essentials 163
The Object Model Hierarchy . 163
How Document Objects Are Born . 165
Object Properties . 166
Object Methods . 167
Object Event Handlers . 168
Object Model Smorgasbord . 169
Basic Object Model . 170
Basic Object Model Plus Images . 171
Navigator 4–Only Extensions . 171
Internet Explorer 4+ Extensions . 173
Internet Explorer 5+ Extensions . 177
The W3C DOM . 177

xxiv Contents

Mixing Object Models . 192
Standards Compatibility Modes (DOCTYPE Switching) 198
Where to Go from Here . 199

Chapter 15: Generic HTML Element Objects 201
Generic Objects . 201

Chapter 16: Window and Frame Objects . 359
Window Terminology . 359
Frames . 359
window Object . 366
frame Element Object . 462
frameset Element Object . 468
iframe Element Object . 474
popup Object . 480

Chapter 17: Location and History Objects 485
location Object . 485
history Object . 501

Chapter 18: The Document and Body Objects 509
document Object . 510
body Element Object . 576
TreeWalker Object . 586

Chapter 19: Link and Anchor Objects . 591
Anchor, Link, and a Element Objects . 592

Chapter 20: Image, Area, and Map Objects 601
Image and img Element Objects . 601
area Element Object . 621
map Element Object . 624

Chapter 21: The Form and Related Objects 629
The Form in the Object Hierarchy . 629
form Object . 630
fieldset and legend Element Objects . 646
label Element Object . 648

Chapter 22: Button Objects . 651
The button Element Object, and the Button, Submit, and Reset Input Objects . . . 651
checkbox Input Object . 656
radio Input Object . 663
image Input Object . 669

xxvContents

Chapter 23: Text-Related Form Objects . 673
Text Input Object . 674
password Input Object . 689
hidden Input Object . 689
textarea Element Object . 690

Chapter 24: Select, Option, and FileUpload Objects 695
select Element Object . 695
option Element Object . 713
optgroup Element Object . 714
file Input Element Object . 717

Chapter 25: Event Objects . 719
Why “Events”? . 719
Event Propagation . 721
Referencing the event object . 740
event Object Compatibility . 741
Dueling Event Models . 742
Event Types . 745
NN4 event Object . 747
IE4+ event Object . 753
NN6+/Moz/Safari event Object . 773

Chapter 26: Style Sheet and Style Objects 793
Making Sense of the Object Names . 794
Imported Stylesheets . 795
Reading Style Properties . 795
style Element Object . 796
styleSheet Object . 798
cssRule and rule Objects . 807
currentStyle , runtimeStyle , and style Objects . 810
filter Object . 837

Part IV: JavaScript Core Language Reference 847

Chapter 27: The String Object . 849
String and Number Data Types . 849
String Object . 851
String Utility Functions . 873
URL String Encoding and Decoding . 876

Chapter 28: The Math, Number, and Boolean Objects 877
Numbers in JavaScript . 877
Math Object . 883
Number Object . 886
Boolean Object . 890

xxvi Contents

Chapter 29: The Date Object . 891
Time Zones and GMT . 891
The Date Object . 892
Validating Date Entries in Forms . 904

Chapter 30: The Array Object . 909
Structured Data . 909
Creating an Empty Array . 910
Populating an Array . 911
JavaScript Array Creation Enhancements . 911
Deleting Array Entries . 912
Parallel Arrays . 912
Multidimensional Arrays . 915
Simulating a Hash Table . 916
Array Object Properties . 916
Array Object Methods . 918

Chapter 31: Control Structures and Exception Handling 931
If and If. . .Else Decisions . 931
Conditional Expressions . 936
Repeat (for) Loops . 936
The while Loop . 940
The do-while Loop . 942
Looping through Properties (for-in) . 942
The with Statement . 943
Labeled Statements . 944
The switch Statement . 946
Exception Handling . 948
Using try-catch-finally Constructions . 950
Throwing Exceptions . 953
Error Object . 957

Chapter 32: JavaScript Operators . 961
Operator Categories . 961
Comparison Operators . 962
Equality of Disparate Data Types . 963
Connubial Operators . 965
Assignment Operators . 967
Boolean Operators . 968
Bitwise Operators . 972
Object Operators . 973
Miscellaneous Operators . 976
Operator Precedence . 978

Chapter 33: Functions and Custom Objects 981
Function Object . 981
Function Application Notes . 988
Custom Objects . 994

xxviiContents

Object-Oriented Concepts . 1003
Object Object . 1006

Chapter 34: Global Functions and Statements 1009
Functions . 1010
Statements . 1016

Chapter 35: Body Text Objects . 1023
blockquote and q Element Objects . 1023
br Element Object. 1024
font Element Object. 1025
h1...h6 Element Objects . 1028
hr Element Object. 1029
label Element Object . 1033
marquee Element Object . 1034
Methods . 1038
Event Handlers . 1039
Range Object. 1039
selection Object . 1061
Text and TextNode Objects . 1068
TextRange Object . 1074
TextRectangle Object . 1101

Part V: Appendixes 1105

Appendix A: JavaScript and Browser Object Quick Reference 1107

Appendix B: JavaScript Reserved Words . 1121

Appendix C: Answers to Tutorial Exercises 1123

Appendix D: JavaScript and DOM Internet Resources 1139

Appendix E: What’s on the CD-ROM . 1143

Index . 1147

End-User License Agreement . 1243

Part VI: Bonus Chapters On the CD-ROM

Chapter 36: HTML Directive Objects

Chapter 37: Table and List Objects

xxviii Contents

Chapter 38: The Navigator and Other Environment Objects

Chapter 39: Positioned Objects

Chapter 40: Embedded Objects

Chapter 41: XML Objects

Chapter 42: The Regular Expression and RegExp Objects

Chapter 43: Data-Entry Validation

Chapter 44: Scripting Java Applets and Plug-Ins

Chapter 45: Debugging Scripts

Chapter 46: Security and Netscape Signed Scripts

Chapter 47: Cross-Browser Dynamic HTML Issues

Chapter 48: Internet Explorer Behaviors

Chapter 49: Application: Tables and Calendars

Chapter 50: Application: A Lookup Table

Chapter 51: Application: A “Poor Man’s” Order Form

Chapter 52: Application: Outline-Style Table of Contents

Chapter 53: Application: Calculations and Graphics

Chapter 54: Application: Intelligent “Updated” Flags

Chapter 55: Application: Decision Helper

Chapter 56: Application: Cross-Browser DHTML Map Puzzle

Chapter 57: Application: Transforming XML Data

Getting Started
with JavaScript

✦ ✦ ✦ ✦

In This Part

Chapter 1
JavaScript’s Role in the
World Wide Web and
Beyond

Chapter 2
Authoring Challenges
Amid the Browser Wars

Chapter 3
Your First JavaScript
Script

✦ ✦ ✦ ✦

P A R T

II

JavaScript’s Role
in the World Wide
Web and Beyond

Many of the technologies that make the World Wide Web possi-
ble have far exceeded their original goals. Envisioned at the

outset as a medium for publishing static text and image content
across a network, the Web is forever being probed, pushed, and
pulled by content authors. By taking for granted so much of the
“dirty work” of conveying the bits between server and client comput-
ers, content developers and programmers dream of exploiting that
connection to generate new user experiences and practical applica-
tions. It’s not uncommon for a developer community to take owner-
ship of a technology and mold it to do new and exciting things. But
with so many Web technologies — especially browser programming
with JavaScript — being within reach of everyday folks, we have wit-
nessed an unprecedented explosion in turning the World Wide Web
from a bland publishing medium into a highly interactive, operating
system–agnostic authoring platform.

The JavaScript language, working in tandem with related browser fea-
tures, is a Web-enhancing technology. When employed on the client
computer, the language can help turn a static page of content into an
engaging, interactive, and intelligent experience. Applications can be
as subtle as welcoming a site’s visitor with the greeting “Good morn-
ing!” when it is morning in the client computer’s time zone — even
though it is dinnertime where the server is located. Or applications
can be much more obvious, such as delivering the content of a slide
show in a one-page download while JavaScript controls the sequence
of hiding, showing, and “flying slide” transitions while navigating
through the presentation.

Of course, JavaScript is not the only technology that can give life to
drab Web content. Therefore, it is important to understand where
JavaScript fits within the array of standards, tools, and other tech-
nologies at your disposal. The alternative technologies described in
this chapter are HTML, Cascading Style Sheets (CSS), server pro-
grams, and plug-ins. In most cases, JavaScript can work side by side
with these other technologies, even though the hype around some
make them sound like one-stop shopping places for all your interac-
tive needs. That’s rarely the case. Finally, you learn about the origins
of JavaScript and what role it plays in today’s advanced Web
browsers.

11C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

How JavaScript blends
with other Web-
authoring technologies

The history of JavaScript

What kinds of jobs you
should and should not
entrust to JavaScript

✦ ✦ ✦ ✦

4 Part I ✦ Getting Started with JavaScript

Competing for Web Traffic
Web page publishers revel in logging as many visits to their sites as possible. Regardless of
the questionable accuracy of Web page hit counts, a site consistently logging 10,000 dubious
hits per week is clearly far more popular than one with 1,000 dubious hits per week. Even if
the precise number is unknown, relative popularity is a valuable measure. Another useful
number is how many links from outside pages lead to a site. A popular site will have many
other sites pointing to it — a key to earning high visibility in Web searches.

Encouraging people to visit a site frequently is the Holy Grail of Web publishing. Competition
for viewers is enormous. Not only is the Web like a fifty million–channel television, but the
Web competes for viewers’ attention with all kinds of computer-generated information. That
includes anything that appears onscreen as interactive multimedia.

Users of entertainment programs, multimedia encyclopedias, and other colorful, engaging, and
mouse finger-numbing actions are accustomed to high-quality presentations. Frequently, these
programs sport first-rate graphics, animation, live-action video, and synchronized sound. In
contrast, the lowest common denominator Web page has little in the way of razzle-dazzle.
Even with the help of Dynamic HTML and stylesheets, the layout of pictures and text is highly
constrained compared with the kinds of desktop publishing documents you see all the time.
Regardless of the quality of its content, an unscripted, vanilla HTML document is flat. At best,
interaction is limited to whatever navigation the author offers in the way of hypertext links
or forms whose filled-in content magically disappears into the Web site’s server.

Other Web Technologies
With so many ways to spice up Web sites and pages, you can count on competitors for your
site’s visitors to do their darndest to make their sites more engaging than yours. Unless you
are the sole purveyor of information that is in high demand, you continually must devise
ways to keep your visitors coming back and entice new ones. If you design for an intranet,
your competition is the drive for improved productivity by colleagues who use the internal
Web sites for getting their jobs done.

These are all excellent reasons why you should care about using one or more Web technolo-
gies to raise your pages above the noise. Let’s look at the major technologies you should
know about.

Hypertext Markup Language (HTML and XHTML)
As an outgrowth of SGML (Standard Generalized Markup Language), HTML is generally viewed
as nothing more than a document formatting, or tagging, language. The tags (inside <> delim-
iter characters) instruct a viewer program (the browser or, more generically, the client) how
to display chunks of text or images.

Relegating HTML to the category of a tagging language does disservice not only to the effort
that goes into fashioning a first-rate Web page, but also to the way users interact with the
pages. To my way of thinking, any collection of commands and other syntax that directs the
way users interact with digital information is programming. With HTML, a Web page author
controls the user experience with the content just as the engineers who program Microsoft
Excel craft the way users interact with spreadsheet content and functions.

Version 4.0 and later of the published HTML standards endeavor to define the purpose of HTML
as assigning context to content, leaving the appearance to a separate standard for stylesheets.
In other words, it’s not HTML’s role to signify that some text is italic, but rather to signify why

5Chapter 1 ✦ JavaScript’s Role in the World Wide Web and Beyond

it is italic. For example, you would tag a chunk of text that conveys emphasis (via the
tag) regardless of how the stylesheet or browser sets the appearance of that emphasized text.

XHTML is a more recent adaptation of HTML that adheres to stylistic conventions established
by the XML (eXtensible Markup Language) standard. No new tags come with XHTML, but it
reinforces the notion of tagging to denote a document’s structure and content.

Cascading Style Sheets (CSS)
Specifying the look and feel of a Web page via stylesheets is a major trend taking over the
modern Web. The basic idea is that given a document’s structure spelled out by its HTML or
XHTML, a stylesheet defines the layout, colors, fonts, and other visual characteristics to pre-
sent the content. Applying a different set of CSS definitions to the same document can make
it look entirely different, even though the words and images are the same.

Mastery of the fine points of CSS takes time and experimentation, but the results are worth
the effort. The days of using HTML tables and transparent “spacer” images to generate elabo-
rate multicolumn layouts are on the wane. Every Web developer should have a solid ground-
ing in CSS.

Server scripting
Web sites that rely on database access or change their content very frequently incorporate
programming on the server that generates the HTML output for browsers and/or processes
forms that site visitors fill out on the page. Even submissions from a simple login or search
form ultimately trigger some server process that sends the results to your browser. Server
programming takes on many guises, the names of which you may recognize from your surfing
through Web development sites. PHP, ASP, .Net, JSP, and Coldfusion are among the most pop-
ular. Associated programming languages include Perl, Python, Java, C++, C#, Visual Basic,
and even server-side JavaScript in some environments.

Whatever language you use, the job definitely requires the Web page author to be in control
of the server, including whatever back-end programs (such as databases) are needed to sup-
ply results or massage the information coming from the user. Even with the new, server-based
Web site design tools available, server scripting often is a task that a content-oriented HTML
author will need to hand off to a more experienced programmer.

As powerful and useful as server scripting can be, it does a poor job of facilitating interactiv-
ity in a Web page. Without the help of browser scripting, each change to a page must be pro-
cessed on the server, causing delays for the visitor and an extra burden on the server for
simple tasks. This wastes desktop processing horsepower, especially if the process running
on the server doesn’t need to access big databases or other external computers.

Of helpers and plug-ins
In the early days of the World Wide Web, a browser needed to present only a few kinds of
data before a user’s eyes. The power to render text (tagged with HTML) and images (in popu-
lar formats such as GIF and JPEG) was built into browsers intended for desktop operating sys-
tems. Not wanting to be limited by those data types, developers worked hard to extend
browsers so that data in other formats could be rendered on the client computer. It was
unlikely, however, that a browser would ever be built that could download and render, say,
any of several sound file formats.

One way to solve the problem was to allow the browser, upon recognizing an incoming file
of a particular type, to launch a separate application on the client machine to render the

6 Part I ✦ Getting Started with JavaScript

content. As long as this helper application was installed on the client computer (and the asso-
ciation with the helper program set in the browser’s preferences), the browser would launch
the program and send the incoming file to that program. Thus, you might have one helper
application for a MIDI sound file and another for an animation file.

Beginning with Netscape Navigator 2 in early 1996, software plug-ins for browsers enabled
developers to extend the capabilities of the browser without having to modify the browser.
Unlike a helper application, a plug-in can enable external content to blend into the document
seamlessly.

The most common plug-ins are those that facilitate the playback of audio and video from the
server. Audio may include music tracks that play in the background while visiting a page or
live (streaming) audio, similar to a radio station. Video and animation can operate in a space
on the page when played through a plug-in that knows how to process such data.

Today’s browsers tend to ship with plug-ins that decode the most common sound file types.
Developers of plug-ins for Internet Explorer for the Windows operating system commonly
implement plug-ins as ActiveX controls — a distinction that is important to the underpinnings
of the operating system but not to the user.

Plug-ins and helpers are valuable for more than just audio and video playback. A popular
helper application is the Adobe Acrobat Reader, which displays Acrobat files that are format-
ted just as if they were being printed. But for interactivity, developers today frequently rely
on Macromedia Corporation’s Flash plug-in. Created using the Macromedia Flash authoring
environment, a Flash document can have active clickable areas and draggable elements.
Some authors even simulate artistic video games and animated stories in Flash. A browser
equipped with the Flash plug-in displays the content in a rectangular area embedded within
the browser page.

One potential downside for authoring interactive content in Flash or similar environments is
that if the user does not have the correct plug-in version installed, it can take some time to
download the plug-in (if the user even wants to bother). Moreover, once the plug-in is
installed, highly graphic and interactive content can take longer to download to the client
(especially on a dial-up connection) than some users are willing to wait. This is one of those
situations in which you must balance your creative palette with the user’s desire for your
interactive content.

Another client-side technology — the Java applet — was popular for a while in the late 1990s
but has fallen out of favor for a variety of reasons (some technical, some corporate-political).
But this has not diminished the use of Java as a language for server and even cellular tele-
phone programming, extending well beyond the scope of the language’s founding company,
Sun Microsystems.

JavaScript: A Language for All
Sun’s Java language is derived from C and C++, but it is a distinct language. Its main audience
is the experienced programmer. That leaves out many Web page authors. I was dismayed at
this situation when I first read about Java’s preliminary specifications in 1995. I would have
preferred a language that casual programmers and scripters who were comfortable with
authoring tools, such as Apple’s once-formidable HyperCard and Microsoft’s Visual Basic,
could adopt quickly. As these accessible development platforms have shown, nonprofes-
sional authors can dream up many creative applications, often for very specific tasks that no
professional programmer would have the inclination to work on. Personal needs often drive
development in the classroom, office, den, or garage. But Java was not going to be that kind
of inclusive language.

7Chapter 1 ✦ JavaScript’s Role in the World Wide Web and Beyond

My spirits lifted several months later, in November 1995, when I heard of a scripting language
project brewing at Netscape Communications, Inc. Initially born under the name LiveScript,
this language was developed in parallel with a new version of Netscape’s Web server soft-
ware. The language was to serve two purposes with the same syntax. One purpose was as a
scripting language that Web server administrators could use to manage the server and con-
nect its pages to other services, such as back-end databases and search engines for users
looking up information. Extending the “Live” brand name further, Netscape assigned the
name LiveWire to the database connectivity usage of LiveScript on the server.

On the client side — in HTML documents — authors could employ scripts written in this new
language to enhance Web pages in a number of ways. For example, an author could use
LiveScript to make sure that the user had filled in a required text field with an e-mail address
or credit card number. Instead of forcing the server or database to do the data validation
(requiring data exchanges between the client browser and the server), the user’s computer
handles all the calculation work — putting some of that otherwise wasted computing horse-
power to work. In essence, LiveScript could provide HTML-level interaction for the user.

LiveScript becomes JavaScript
In early December 1995, just prior to the formal release of Navigator 2, Netscape and Sun
Microsystems jointly announced that the scripting language thereafter would be known as
JavaScript. Though Netscape had several good marketing reasons for adopting this name,
the changeover may have contributed more confusion to both the Java and HTML scripting
worlds than anyone expected.

Before the announcement, the language was already related to Java in some ways. Many of
the basic syntax elements of the scripting language were reminiscent of the Java style. For
client-side scripting, the language was intended for very different purposes than Java —
essentially to function as a programming language integrated into HTML documents rather
than as a language for writing applets that occupy a fixed rectangular area on the page (and
that are oblivious to anything else on the page). Instead of Java’s full-blown programming
language vocabulary (and conceptually more difficult to learn object-oriented approach),
JavaScript had a small vocabulary and a more easily digestible programming model.

The true difficulty, it turned out, was making the distinction between Java and JavaScript
clear to the world. Many computer journalists made major blunders when they said or
implied that JavaScript provided a simpler way of building Java applets. To this day, some
new programmers believe JavaScript is synonymous with the Java language: They post Java
queries to JavaScript-specific Internet newsgroups and mailing lists.

The fact remains that client-side Java and JavaScript are more different than they are similar.
The two languages employ entirely different interpreter engines to execute their lines of code.

Enter Microsoft and others
Although the JavaScript language originated at Netscape, Microsoft acknowledged the poten-
tial power and popularity of the language by implementing it (under the JScript name) in
Internet Explorer 3. Even if Microsoft might prefer that the world use the VBScript (Visual
Basic Script) language that it provides in the Windows versions of IE, the fact that JavaScript
is available on more browsers and operating systems makes it the client-side scripter’s
choice for anyone who must design for a broad range of users.

With scripting firmly entrenched in the mainstream browsers from Microsoft and Netscape,
newer browser makers automatically provided support for JavaScript. Therefore, you can
count on fundamental scripting services in browsers such as Opera or the Apple Safari

8 Part I ✦ Getting Started with JavaScript

browser (the latter built upon an Open Source browser called KHTML). Not that all browsers
work the same way in every detail — a significant challenge for client-side scripting that is
addressed throughout this book.

JavaScript: The Right Tool for the Right Job
Knowing how to match an authoring tool to a solution-building task is an important part of
being a well-rounded Web site author. A Web designer who ignores JavaScript is akin to a
plumber who bruises his knuckles by using pliers instead of the wrench from the bottom of
the toolbox.

By the same token, JavaScript won’t fulfill every dream. The more you understand about
JavaScript’s intentions and limitations, the more likely you will be to turn to it immediately
when it is the proper tool. In particular, look to JavaScript for the following kinds of solutions:

✦ Getting your Web page to respond or react directly to user interaction with form ele-
ments (input fields, text areas, buttons, radio buttons, checkboxes, selection lists) and
hypertext links

✦ Distributing small collections of database-like information and providing a friendly
interface to that data

✦ Controlling multiple-frame navigation, plug-ins, or Java applets based on user choices
in the HTML document

✦ Preprocessing data on the client before submission to a server

✦ Changing content and styles in modern browsers dynamically and instantly in response
to user interaction

At the same time, it is equally important to understand what JavaScript is not capable of
doing. Scripters waste many hours looking for ways of carrying out tasks for which JavaScript
was not designed. Most of the limitations are designed to protect visitors from invasions of
privacy or unauthorized access to their desktop computers. Therefore, unless a visitor uses a
modern browser and explicitly gives you permission to access protected parts of his or her
computer, JavaScript cannot surreptitiously perform any of the following actions:

✦ Setting or retrieving the browser’s preferences settings, main window appearance fea-
tures, action buttons, and printing

✦ Launching an application on the client computer

✦ Reading or writing files or directories on the client or server computer

✦ Capturing live data streams from the server for retransmission

✦ Sending secret e-mails from Web site visitors to you

Web site authors are constantly seeking tools that will make their sites engaging (if not
“cool”) with the least amount of effort. This is particularly true when the task is in the hands
of people more comfortable with writing, graphic design, and page layout than with hard-core
programming. Not every Webmaster has legions of experienced programmers on hand to
whip up some special, custom enhancement for the site. Nor does every Web author have
control over the Web server that physically houses the collection of HTML and graphics files.
JavaScript brings programming power within reach of anyone familiar with HTML, even when
the server is a black box at the other end of a telephone line.

✦ ✦ ✦

Authoring
Challenges Amid
the Browser Wars

If you are starting to learn JavaScript at this point in the brief his-
tory of scriptable browsers, you have both a distinct advantage

and disadvantage. The advantage is that you have the wonderful
capabilities of mature browser offerings from Microsoft, Netscape,
The Mozilla Foundation, Apple, and others at your bidding. The dis-
advantage is that you have not experienced the painful history of
authoring for older browser versions that were buggy and at times
incompatible with one another due to a lack of standards. You have
yet to learn the anguish of carefully devising a scripted application
for the browser version you use only to have site visitors sending you
voluminous e-mail messages about how the page triggers all kinds of
script errors when run on a different browser brand, generation, or
operating system platform.

Welcome to the real world of scripting Web pages with JavaScript.
Several dynamics are at work to help make an author’s life difficult if
the audience for the application uses more than a single type of
browser. This chapter introduces you to these challenges before you
type your first word of JavaScript code. My fear is that the subjects I
raise may dissuade you from progressing further into JavaScript and
its powers. But as a developer myself — and as someone who has
been using JavaScript since the earliest days of its public prerelease
availability — I dare not sugarcoat the issues facing scripters today.
Instead, I want to make sure you have an appreciation of what lies
ahead to assist you in learning the language. I believe if you under-
stand the big picture of the browser-scripting world as it stands in
the year 2004, you will find it easier to target JavaScript usage in your
Web application development and be successful at it.

Leapfrog
Browser compatibility has been an issue for authors since the earli-
est days of the Web gold rush — long before JavaScript. Despite the
fact that browser developers and other interested parties voiced
their opinions during formative stages of standards development,
HTML authors could not produce a document that appeared the
same pixel by pixel on all client machines. It may have been one thing
to establish a set of standard tags for defining heading levels and line

22C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

How leapfrogging
browser developments
hurt Web developers

Separating the core
JavaScript language
from document objects

The importance of
developing a cross-
browser strategy

✦ ✦ ✦ ✦

10 Part I ✦ Getting Started with JavaScript

breaks, but it was rare for the actual rendering of content inside those tags to look identical
on different brands of browsers on different operating systems.

Then, as the competitive world heated up — and Web browser development transformed
itself from a volunteer undertaking into profit-seeking businesses — creative people defined
new features and new tags that helped authors develop more flexible and interesting looking
pages. As happens a lot in any computer-related industry, the pace of commercial develop-
ment easily surpassed the studied progress of standards. A browser maker would build a new
HTML feature into a browser and only then propose that feature to the relevant standards
body. Web authors were using these features (sometimes for prerelease browser versions)
before the proposals were published for review.

When the deployment of content depends almost entirely on an interpretive engine on the
client computer receiving the data — the HTML engine in a browser, for example — authors
face an immediate problem. Unlike a standalone computer program that can extend and even
invent functionality and have it run on everyone’s computer (at least for a given operating
system), Web content providers must rely on the functionality built into the browser. This led
to questions such as, “If not all browsers coming to my site support a particular HTML fea-
ture, then should I apply newfangled HTML features for visitors only at the bleeding edge?”
and “If I do deploy the new features, what do I do for those with older browsers?”

Authors who developed pages in the earliest days of the Web wrestled with these questions
for many HTML features that we today take for granted. Tables and frames come to mind.
Eventually, the standards caught up with the proposed HTML extensions — but not without a
lot of author woe along the way.

Despite the current dominance of Microsoft’s Internet Explorer browser on the dominant
Windows operating system, the number of browsers that people use is not shrinking. Several
recent browsers, including the modern Netscape 7 and Firebird browsers, are based on an
Open Source browser called Mozilla. The Macintosh operating system now includes its own
Apple-branded browser, Safari (released in 2003). And the independent Opera browser also
has a home on some users’ computers. All of these non-Microsoft browser makers obviously
believe that they bring improvements to the world to justify their development — building
better mousetraps you might say.

Duck and Cover
Today’s browser wars are fought on different battlegrounds than in the early days of the Web.
The breadth and depth of established Web standards have substantially fattened the browser
applications — and books that developers read to exploit those standards for their content.
On the one hand, most developers clamor for deeper standards support in new browser ver-
sions. On the other hand, everyday users care little about standards. All they want is to have
an enjoyable time finding the information they seek on the Web. Most users are slow to
upgrade their browsers, holding out until their favorite sites start breaking in their ancient
browsers.

Industry standards don’t necessarily make the Web developer’s job any easier. For one thing,
the standards are unevenly implemented across the latest browsers. Some browsers go further
in their support than others. Then there are occasional differences in interpretation of vague
standards details. And sometimes the standards don’t provide any guidance in areas that are
vital to content developers. At times we are left to the whims of browser makers who fill the
gaps with proprietary features, in the hope that those features will become de facto standards.

As happens in war, civilian casualties mount when the big guns start shooting. The browser
battle lines shifted dramatically in only a few years. The huge market share territory once

11Chapter 2 ✦ Authoring Challenges Amid the Browser Wars

under Netscape’s command now lies in Microsoft hands. The Netscape brand, itself, is fading
as a result of corporate dealings; but the spirit continues in the populist, Open Source Mozilla
effort. While a fair amount of authoring common ground exists between the latest versions of
today’s browsers, uneven implementation of the newest features causes the biggest problems
for authors wishing to deploy on all browsers. Trying to define the common denominator
may be the toughest part of the authoring job.

Compatibility Issues Today
Allow me to describe the current status of the compatibility situation among the top three
browser families: Microsoft’s Internet Explorer, browsers based on Mozilla, and Apple’s Safari.
The discussion in the next few sections intentionally does not get into specific scripting tech-
nology very deeply — some of you may know very little about programming at this point. In
many chapters throughout Parts III and IV, I offer scripting suggestions to accommodate a
variety of browsers.

Separating language from objects
Although early JavaScript authors initially treated client-side scripting as one environment
that permitted the programming of page elements, the scene has changed as the browsers
have matured. Today, a clear distinction exists between specifications for the core JavaScript
language and for the elements you script in a document (for example, buttons and fields in
a form).

On one level, this separation is a good thing. It means that one specification exists for basic
programming concepts and syntax, which could become the programming language in any
number of other environments. You can think of the core language as basic wiring. Once
you know how electric wires work, you can connect them to all kinds of electrical devices.
Similarly, JavaScript today is used to wire together elements in an HTML document.
Tomorrow, operating systems could use the core language to enable users to wire together
desktop applications that need to exchange information automatically.

At the ends of today’s JavaScript wires are the elements on the page. In programming jargon,
these items are known as document objects. By keeping the specifications for document
objects separate from the wires that connect them, you can use other kinds of wires (other
languages) to connect them. It’s like designing telephones that can work with any kind of
wire, including a type of wire that hasn’t been invented yet. Today the devices can work with
copper wire or fiber optic cable. You get a good picture of this separation in Internet Explorer,
whose set of document objects can be scripted with JavaScript or VBScript. They’re the same
objects, just different wiring.

The separation of core language from document objects enables each concept to have its
own standards effort and development pace. But even with recommended standards for each
factor, each browser maker is free to extend the standards. Furthermore, authors may have to
expend more effort to devise one version of a page or script that plays on multiple browsers
unless the script adheres to a common denominator (or uses some other branching tech-
niques to let each browser run its own way).

Core language standard
Keeping track of JavaScript language versions requires a brief history lesson. The first ver-
sion of JavaScript (in Netscape Navigator 2) was Version 1.0, although that numbering was
not part of the language usage. JavaScript was JavaScript. Version numbering became an

12 Part I ✦ Getting Started with JavaScript

issue when Navigator 3 was released. The version of JavaScript associated with that
Navigator version was JavaScript 1.1. The first appearance of the Navigator 4 generation
increased the language version one more notch with JavaScript 1.2.

Microsoft’s scripting effort contributes confusion for scripting newcomers. The first version
of Internet Explorer to include scripting was Internet Explorer 3. The timing of Internet
Explorer 3 was roughly coincidental to Navigator 3. But as scripters soon discovered,
Microsoft’s scripting effort was one generation behind. Microsoft did not license the
JavaScript name. As a result, the company called its language JScript. Even so, the HTML tag
attribute that lets you name the language of the script inside the tags could be either JScript
or JavaScript for Internet Explorer. Internet Explorer 3 could understand a JavaScript script
written for Navigator 2.

During this period of dominance by Navigator 3 and Internet Explorer 3, scripting newcomers
were often confused because they expected the scripting languages to be the same.
Unfortunately for the scripters, there were language features in JavaScript 1.1 that were not
available in the older JavaScript version in Internet Explorer 3. Microsoft improved JavaScript
in IE3 with an upgrade to the .dll file that gives IE its JavaScript syntax. However, it’s hard to
know which .dll is installed in any given visitor’s IE3. The situation smoothed out for Internet
Explorer 4. Its core language was essentially up to the level of JavaScript 1.2 as in early
releases of Navigator 4. Microsoft still officially called the language JScript. Almost all lan-
guage features that were new in Navigator 4 were understood when you loaded the scripts
into Internet Explorer 4.

While all of this jockeying for JavaScript versions was happening, Netscape, Microsoft, and
other concerned parties met to establish a core language standard. The standards body is a
Switzerland-based organization originally called the European Computer Manufacturer’s
Association and now known simply as ECMA (commonly pronounced ECK-ma). In mid-1997,
the first formal language specification was agreed on and published (ECMA-262). Due to
licensing issues with the JavaScript name, the body created a new name for the language:
ECMAScript.

With only minor and esoteric differences, this first version of ECMAScript was essentially the
same as JavaScript 1.1 found in Navigator 3. Both Navigator 4 and Internet Explorer 4 offi-
cially supported the ECMAScript standard. Moreover, as happens so often when commerce
meets standards bodies, both browsers went beyond the ECMAScript standard. Fortunately,
the common denominator of this extended core language is broad, lessening authoring
headaches on this front.

JavaScript version 1.3 was implemented in Netscape Navigator 4.06 through 4.7x. This lan-
guage version is also the one supported in IE 5, 5.5, and 6. A few new language features are
incorporated in JavaScript 1.5, as implemented in Mozilla-based browsers (including
Navigator 6 and later).

In practice, so many browsers in use today support all but a few leading-edge features of the
Mozilla browsers that JavaScript version numbers are mostly irrelevant. Other compatibility
issues with older browsers will likely get in your way before core language problems. The
time has come to forget about elaborate workarounds for inadequacies of the oldest
browsers.

Document object model
If prevalent browsers have been close to each other in core JavaScript language compatibil-
ity, nothing could be further from the truth when it comes to the document objects. Internet
Explorer 3 based its document object model (DOM) on that of Netscape Navigator 2, the same

13Chapter 2 ✦ Authoring Challenges Amid the Browser Wars

browser level it used as a model for the core language. When Netscape added a couple of new
objects to the model in Navigator 3, the addition caused further headaches for neophyte
scripters who expected those objects to appear in Internet Explorer 3. Probably the most
commonly missed object in Internet Explorer 3 was the image object, which lets scripts swap
the image when a user rolls the cursor atop a graphic — mouse rollovers, they’re commonly
called.

In the Level 4 browsers, however, Internet Explorer’s document object model jumped way
ahead of the object model that Netscape implemented in Navigator 4. The two most revolu-
tionary aspects of IE4 were the ability to script virtually every element in an HTML document
and the instant reflow of a page when the content changed. This opened the way for HTML
content to be genuinely dynamic without requiring the browser to fetch a rearranged page
from the server. NN4 implemented only a small portion of this dynamism, without exposing
all elements to scripts or reflowing the page. It introduced a proprietary layering concept that
was abandoned in future Navigator versions. Inline content could not change in NN4 as it
could in IE4. Suffice it to say IE4 was an enviable implementation.

At the same time, a DOM standard was being negotiated under the auspices of the World Wide
Web Consortium (W3C). The hope among scripters was that once a standard was in place, it
would be easier to develop dynamic content for all browsers that supported the standard. The
resulting standard — the W3C DOM — formalized the notion of being able to script every ele-
ment on the page, as in IE4. But it also invented an entirely new object syntax that no browser
had used previously. The race was on for browsers to support the W3C DOM standards.

An arm of the Netscape company, called Mozilla.org, was formed to create an all-new browser
dedicated to supporting industry standards. The engine for the Mozilla browser became the
foundation for the all-new Navigator 6. It incorporated all of the W3C DOM Level 1 and a good
chunk of Level 2. Mozilla 1.01 became the basis for the Netscape 7 browser, while Netscape
7.1 was built on the Mozilla 1.4 generation. In the summer of 2003, Netscape’s parent com-
pany, AOL Time Warner, decided to end further Netscape-branded browser development. The
work on the underlying Mozilla browser, however, continues under an independent organiza-
tion called The Mozilla Foundation. Mozilla-branded browsers, and others using the same
engine, continue to be upgraded and released to the public. The Mozilla engine offers
arguably the most in-depth support for the W3C DOM Level 2 standard.

Even though Microsoft participated in the W3C DOM standards development, IE5 and 5.5
implemented only some of the W3C DOM standard — in some cases, just enough to allow sim-
ple cross-browser scripting that adheres to the standard. Microsoft further filled out W3C
DOM support in IE6, but chose to omit several important parts. DOM support in Apple’s
Safari 1.0 lies in between that of Mozilla and IE6. Of course, the standard is not perfect either,
lacking some practical features that IE offered back in IE4.

Despite this seemingly tortuous history of DOM development and browser support, you may
wonder how anyone can approach DOM scripting with hope of success. Yet you’d be amazed
at how much you can accomplish with today’s browsers. You’ll certainly encounter compati-
bility issues along the way, but this book will guide you through the most common problems
and equip you to tackle others.

Cascading Style Sheets
Navigator 4 and Internet Explorer 4 were the first browsers to claim compatibility with a
W3C recommendation called Cascading Style Sheets Level 1 (CSS1). This specification provided
designers an organized way to customize the look and feel of a document (and thus minimized
the HTML in each tag). As implementations go, NN4 had a lot of rough edges, especially when

14 Part I ✦ Getting Started with JavaScript

trying to mix stylesheets and tables. But IE4 was no angel, either, especially when comparing
the results of stylesheet assignments as rendered in the Windows and Macintosh versions
of the browser (developed by two separate teams).

CSS Level 2 adds more style functionality to the standard, and IE6, Mozilla-based browsers,
and Safari support a good deal of Level 2 (albeit unevenly). Rendering of styled content is
more harmonious among browsers, largely thanks to guidelines about how styles should ren-
der. Complex layouts, however, still need careful tweaking from time to time because of differ-
ent interpretations of the standard.

JavaScript plays a role in stylesheets in IE4+, Mozilla, and Safari because those browsers’
object models permit dynamic modification to styles associated with any content on the
page. Stylesheet information is part of the object model and is therefore accessible and modi-
fiable from JavaScript.

Dynamic HTML
Perhaps the biggest improvements to the inner workings of the Level 4 browsers from both
Netscape and Microsoft revolved around a concept called Dynamic HTML (DHTML). The ulti-
mate goal of DHTML was to enable scripts in documents to control the content, content posi-
tion, and content appearance in response to user actions. To that end, the W3C organization
developed another standard for the precise positioning of HTML elements on a page as an
extension of the CSS standards effort. The CSS-Positioning recommendation was later blended
into the CSS standard, and both are now part of CSS Level 2. With positioning, you can define
an exact location on the page where an element should appear, whether the item should be
visible, and what stacking order it should take among all the items that might overlap it.

IE4+ adheres to the positioning standard syntax and makes positionable items subject to
script control. Navigator 4 followed the standard from a conceptual point of view, but it
implemented an alternative methodology involving an entirely new, and eventually unsanc-
tioned, tag for layers. Such positionable items were scriptable in Navigator 4 as well, although
a lot of the script syntax differed from that used in Internet Explorer 4. Fortunately for
DHTML authors, Mozilla, by its adherence to the CSS standard, is more syntactically in line
with DHTML style properties employed in IE4+. Numerous issues still surround the IE imple-
mentation because of Microsoft’s shift with IE6 to a more accurate interpretation of certain
measurement systems in CSS. The new system can be switched on in IE6 to be more in sync
with the CSS standard as implemented in Mozilla and Safari browsers. Cross-browser DHTML
scripting can be challenging, yet it is certainly possible if you understand the limitations
imposed by following a common denominator.

Developing a Scripting Strategy
Browsers representing the latest generation contain a hodgepodge of standards and propri-
etary extensions. Even if you try to script to a common denominator among today’s
browsers, your code probably won’t take into account the earlier versions of both the
JavaScript core language and the browser document object models.

The true challenge for authors these days is determining the audience for which scripted
pages are intended. You learn techniques in Chapter 13 that enable you to redirect users
to different paths in your Web site based on their browser capabilities. In Chapter 14, you
discover the alternatives you can take depending on the object model version(s) and
specific features you need to support. Each new browser generation not only brings with
it new and exciting features you are probably eager to employ in your pages, it also adds

15Chapter 2 ✦ Authoring Challenges Amid the Browser Wars

to the fragmentation of the audience visiting a publicly accessible page. With each new
browser upgrade, fewer existing users are willing to download megabytes of browser merely
to have the latest and greatest browser version. For many pioneers — and certainly for most
nontechie users — there is a shrinking imperative to upgrade browsers, unless that browser
comes via a new computer or operating system upgrade.

At this stage in the history of scriptable browsers, I take the stand that we should assume
that a Web surfer arrives with a browser equipped with support for at least simple W3C DOM
and DHTML capabilities. That certainly won’t be the case 100 percent of the time, so it is also
your obligation to apply scripting in an additive, or value-added manner. By this I mean that
your pages should convey their primary information to the most brain-dead browser; but
visitors with recent scriptable browsers will have a more enjoyable experience — better
interactivity, faster performance, and a more engaging presentation. You will not only be
contributing to the state of the art, but also carrying on the original vision of scripting in
the browser.

✦ ✦ ✦

Your First JavaScript
Script

In this chapter, you set up a productive scriptwriting and preview-
ing environment on your computer, and then you write a simple

script whose results you can see in your JavaScript-compatible
browser.

Because of differences in the way various personal computing operat-
ing systems behave, I present details of environments for two popular
variants: Windows (95 through XP) and MacOS X. For the most part,
your JavaScript authoring experience is the same regardless of the
operating system platform you use — including Linux or UNIX.
Although there may be slight differences in font designs depending
on your browser and operating system, the information remains the
same. Most illustrations of browser output in this book are made
from the Windows XP version of Internet Explorer 6. If you run
another browser or version, don’t fret if every pixel doesn’t match
with the illustrations in this book.

The Software Tools
The best way to learn JavaScript is to type the HTML and scripting
code into documents in a text editor. Your choice of editor is up to
you, although I provide you with some guidelines for choosing a text
editor in the next section.

Choosing a text editor
For the purposes of learning JavaScript in this book, avoid WYSIWYG
(What You See Is What You Get) Web-page authoring tools, such as
FrontPage and DreamWeaver, for now. These tools certainly will come
in handy afterward when you can productively use those facilities for
molding the bulk of your content and layout. But the examples in this
book focus more on script content (which you must type in anyway),
so there isn’t much HTML that you have to type. Files for all complete
Web page listings in this book (except for the tutorial chapters) also
appear on the companion CD-ROM.

An important factor to consider in your choice of editor is how easy
it is to save standard text files with an .html filename extension. In
the case of Windows, any program that not only saves the file as text
by default but also enables you to set the extension to .htm or .html
prevents a great deal of problems. If you use Microsoft Word, for

33C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

How to choose basic
JavaScript authoring
tools

How to set up your
authoring environment

How to enter a simple
script to a Web page

✦ ✦ ✦ ✦

18 Part I ✦ Getting Started with JavaScript

example, the program tries to save files as binary Word files — something that no Web
browser can load. To save the file initially as a text or .html extension file requires mucking
around in the Save As dialog box. This requirement is truly a nuisance.

Nothing’s wrong with using bare-essentials text editors. In Windows, that includes the
WordPad program or a more fully featured product such as the shareware editor called
TextPad. For MacOS X, TextEdit is also fine. A favorite among Mac HTML authors and
scripters is BBEdit (Bare Bones Software), which includes a number of useful aids for
scripters, such as optional line numbers (which help in debugging JavaScript).

Choosing a browser
The other component that is required for learning JavaScript is the browser. You don’t have
to be connected to the Internet to test your scripts in the browser. You can perform all testing
offline. This means you can learn JavaScript and create cool, scripted Web pages with a lap-
top computer — even on a boat in the middle of an ocean.

The browser brand and version you use is up to you. Because the tutorial chapters in this
book teach the W3C DOM syntax, you should be using a recent browser. Any of the following
will get you through the tutorial: Internet Explorer 5 or later (Windows or Macintosh); any
Mozilla-based browser (including Netscape 7 and later); and Apple Safari.

Many example listings in Parts III and IV of this book demonstrate language or document
object model (DOM) features that work on only specific browsers and versions. Check the
compatibility listing for that language or DOM feature to make sure you use the right browser
to load the page.

Setting Up Your Authoring Environment
To make the job of testing your scripts easier, make sure that you have enough free memory
in your computer to let both your text editor and browser run simultaneously. You need to be
able to switch quickly between editor and browser as you experiment and repair any errors
that may creep into your code. The typical workflow entails the following steps:

1. Enter HTML and script code into the source document in the text editor.

2. Save the latest version to disk.

3. Switch to the browser.

4. Do one of the following: If this is a new document, open the file via the browser’s Open
menu. If the document is already loaded, reload the file into the browser.

Steps 2 through 4 are the key ones you will follow frequently. I call this three-step sequence
the save-switch-reload sequence. You will perform this sequence so often as you script that
the physical act quickly will become second nature to you. How you arrange your application
windows and effect the save-switch-reload sequence varies according to your operating
system.

Windows
You don’t have to have either the editor or browser window maximized (at full screen) to
take advantage of them. In fact, you may find them easier to work with if you adjust the size

Note

19Chapter 3 ✦ Your First JavaScript Script

and location of each window so both windows are as large as possible while still enabling you
to click a sliver of the other’s window. Or, you can leave the taskbar visible so you can click
the desired program’s button to switch to its window (see Figure 3-1). A monitor that displays
more than 800 × 600 pixels certainly helps in offering more screen real estate for the windows
and the taskbar.

Figure 3-1: Editor and browser window arrangement in Windows XP.

In practice, however, the Windows Alt+Tab task-switching keyboard shortcut makes the job
of the save-switch-reload steps outlined earlier a snap. If you run Windows and also use a
Windows-compatible text editor (which more than likely has a Ctrl+S file-saving keyboard
shortcut), you can effect the save-switch-reload sequence from the keyboard all with the left
hand: Ctrl+S (save the source file); Alt+Tab (switch to the browser); Ctrl+R (reload the saved
source file).

As long as you keep switching between the browser and text editor via Alt+Tab task switch-
ing, either program is always just an Alt+Tab away.

MacOS X
In MacOS X you can change between your text editor and browser applications via the Dock
or, more conveniently, by typing Ô-Tab. As long as you stay strictly in those two applications,
the other program is only one Ô-Tab away (see Figure 3-2).

With this setup, the save-switch-reload sequence is a simple affair:

1. Press Ô-S (save the source file).

2. Press Ô-Tab (switch to the browser).

3. Press Ô-R (reload the saved source file).

To return to editing the source file, press Ô-Tab again.

20 Part I ✦ Getting Started with JavaScript

Figure 3-2: Editor and browser window arrangement on the Macintosh screen.

Reloading issues
For the most part, a simple page reload is enough to let you test a revised version of a script
right away. But sometimes the browser’s cache (with its default settings) can preserve parts
of the previous page’s attributes when you reload, even though you have changed the source
code. To perform a more thorough reload, hold down the Shift key while clicking the
browser’s Reload/Refresh button. Alternatively, you can turn off the browser’s cache in the
preferences area, but that setting may negatively affect the overall performance of the
browser during your regular Web surfing.

What Your First Script Will Do
For the sake of simplicity, the kind of script you look at in the next section is the kind that
runs automatically when the browser loads the HTML page. Although all scripting and brows-
ing work done here is offline, the behavior of the page is identical if you place the source file
on a server and someone accesses it via the Web.

Figure 3-3 shows the page as it appears in the browser after you’re finished. (The exact word-
ing differs slightly if you run your browser on an operating system platform other than
Windows XP or if you use a browser other than Internet Explorer.) The part of the page that is
defined in regular HTML contains nothing more than an <h1>-level header with a horizontal
rule under it. If someone does not use a JavaScript-equipped browser, all he or she sees is the
header and horizontal rule (unless that person has a truly outmoded browser, in which case
some of the script words appear in the page).

Below the rule, the script displays plain body text that combines static text with informa-
tion about the browser you use to load the document. The script writes a stream of HTML

21Chapter 3 ✦ Your First JavaScript Script

information to the browser, including a tag that applies a stylesheet to render a portion of the
information in boldface. Even though two lines of code are writing information to the page,
the result is rendered as one line — just as it is when all the text is hard-coded in HTML.

Figure 3-3: The finished page of your first JavaScript script.

Entering Your First Script
It’s time to start creating your first JavaScript script. Launch your text editor and browser. If
your browser offers to dial your Internet service provider (ISP) or begins dialing automati-
cally, cancel or quit the dialing operation. If the browser’s Stop button is active, click it to halt
any network searching it may try to do. You may receive a dialog box message or page indi-
cating that the URL for your browser’s home page (usually the home page of the browser’s
publisher — unless you’ve changed the settings) is unavailable. That’s fine. You want the
browser open, but you needn’t be connected to your ISP. If you’re automatically connected to
the Internet via a local area network in your office or school, or via cable modem or DSL,
that’s also fine. However, you don’t need the network connection for now. Next, follow these
steps to enter and preview your first JavaScript script:

1. Activate your text editor and create a new, blank document.

2. Type the script into the window exactly as shown in Listing 3-1.

Listing 3-1: Source Code for script1.html

<html>
<head>
<title>My First Script</title>
<style type=”text/css”>
.highlight {font-weight: bold}
</style>
</head>

Continued

22 Part I ✦ Getting Started with JavaScript

Listing 3-1 (continued)

<body>
<h1>Let’s Script...</h1>
<hr>
<script type=”text/javascript”>
<!-- hide from old browsers
document.write(“This browser is version “ + navigator.appVersion);
document.write(“ of ” + navigator.appName + “.”);
// end script hiding -->
</script>
</body>
</html>

3. Save the document with the name script1.html.

4. Switch to your browser.

5. Choose Open (or Open File on some browsers) from the File menu and select
script1.html. (On some browsers, you have to click a Browse button to reach the File
dialog box.)

If you typed all lines as directed, the document in the browser window should look like the
one in Figure 3-3 (with minor differences for your computer’s operating system and browser
version). If the browser indicates that a mistake exists somewhere as the document loads,
don’t do anything about it for now. (Click the OK button if you see a script error dialog box.)
Let’s first examine the details of the entire document so you understand some of the finer
points of what the script is doing.

Examining the Script
You do not need to memorize any of the commands or syntax discussed in this section.
Instead, relax and watch how the lines of the script become what you see in the browser.
In Listing 3-1, all of the lines up to the <script> tag are very standard HTML with one
Cascading Style Sheet (CSS) rule in the head portion.

The <script> tag
Any time you include JavaScript verbiage in an HTML document, you must enclose those
lines inside a <script>...</script> tag pair. These tags alert the browser program to
begin interpreting all the text between these tags as a script. Because other scripting lan-
guages (such as Microsoft’s VBScript) can take advantage of these script tags, you must spec-
ify the kind of language in which the enclosed code is written. Therefore, when the browser
receives the signal that your script is of the type text/javascript, it employs its built-in
JavaScript interpreter to handle the code. You can find parallels to this setup in real life:
If you have a French interpreter at your side, you need to know that the person with whom
you’re conversing also knows French. If you encounter someone from Russia, the French
interpreter can’t help you. Similarly, if your browser has only a JavaScript interpreter inside,
it can’t understand code written in VBScript.

23Chapter 3 ✦ Your First JavaScript Script

Now is a good time to instill an aspect of JavaScript that will be important to you throughout
all your scripting ventures: JavaScript is case-sensitive. Therefore, you must enter any item in
your script that uses a JavaScript word with the correct uppercase and lowercase letters.
Your HTML tags (including the <script> tag) can be in the case of your choice, but every-
thing in JavaScript is case-sensitive.1 When a line of JavaScript doesn’t work, look for the
wrong case first. Always compare your typed code against the listings printed in this book
and against the various vocabulary entries discussed throughout it.

A script for all browsers
The next line after the <script> tag in Listing 3-1 appears to be the beginning of an HTML
comment tag. It is, but the JavaScript interpreter treats comment tags in a special way.
Although JavaScript dutifully ignores a line that begins with an HTML comment start tag, it
treats the next line as a full-fledged script line. In other words, the scripting machinery inside
the browser begins interpreting the next line after a comment start tag. If you want to put a
comment inside JavaScript code, the comment must start with a double slash (//). Such a
comment may go near the end of a line (such as after a JavaScript statement that is to be
interpreted by the browser) or on its own line. In fact, the latter case appears near the end of
the script. The comment line starts with two slashes.

Step back for a moment and notice that the entire script (including comments) is contained
inside a standard HTML comment tag (<!--comment-->). The value of this containment is
not clear until you see what happens to your scripted HTML document in a non-JavaScript-
compatible browser. Such a browser blows past the <script> tag as being an advanced tag it
doesn’t understand. But it treats a line of script as regular text to be displayed in the page. If
you enclose script lines between HTML comment tags, most older browsers don’t display the
script lines.

Remember, too, that some users don’t have access to modern browsers or graphical
browsers. (They use the Lynx text-oriented UNIX Web reader software or lightweight
browsers in handheld computers.) By embracing your script lines within these comments,
your Web pages don’t look completely broken in relatively modern, non-JavaScript browsers.

Notice that the comment lines that shield older browsers from your scripts go inside the
<script>...</script> tags. Do not put these comment lines above the <script> tag
or below the </script> tag and expect them to work.

One more issue about the script-hiding comment lines in this book. To save space on the
page, most examples do not have comment lines inserted in them. But as you can see in the
full-fledged application examples from Chapters 48 through 57 on the CD-ROM, the comment
lines are where they should be. For any pages you produce for public consumption, always
encase your script lines inside these comments.

Displaying some text
Both script lines in Listing 3-1 use one of the possible actions a script can ask a document to
perform (document.write(), meaning display text in the current document). You learn more
about the document object in Chapter 18.

1 XHTML style, if you intend to follow its conventions, requires all lowercase tags and attribute names.
This is the style observed throughout this book.

Note

24 Part I ✦ Getting Started with JavaScript

Whenever you ask an object (a document in this case) to perform a task for you, the name
of the task is always followed by a set of parentheses. In some cases — the write() task, for
example — JavaScript needs to know what information it should act on. That information
(called a parameter) goes inside parentheses after the name of the task. Thus, if you want to
write the name of the first U.S. president to a document, the command to do so is

document.write(“George Washington”);

The line of text that the script writes starts with some static text (“This browser is version”)
and adds some evaluated text (the version of the browser) to it. The writing continues with
more static text that includes an HTML tag (“ of ”), more
evaluated text (the name of the browser application), and an HTML closing tag and the sen-
tence’s period (“.”). JavaScript uses the plus symbol (+) to join (concatenate) text
components into a larger, single string of text characters to be written by the document.
Neither JavaScript nor the + symbol knows anything about words and spaces, so the script
is responsible for making sure that the proper spaces are passed along as part of the param-
eters. Notice, therefore, that an extra space exists after the word “version” in the first
document.write() parameter, and extra spaces exist on both sides of “of” in the second
document.write() parameter.

To fetch the information about the browser version and name for your parameters, you call
upon JavaScript to extract the corresponding properties from the navigator object. You
extract a property by appending the property name to the object name (navigator in this
case) and separating the two names with a period. If you’re searching for some English to
mentally assign to this scheme as you read it, start from the right side and call the right item
a property “of” the left side: the appVersion property of the navigator object. This dot syn-
tax looks a great deal like the document.write() task, but a property name does not have
parentheses after it. In any case, the reference to the property in the script tells the
JavaScript interpreter to insert the value of that property in the spot where the call is made.
For your first attempt at the script, JavaScript substitutes the internal information about the
browser as part of the text string that gets written to the document.

Finally, notice the semicolon characters at the end of each JavaScript statement. Trailing
semicolons are purely optional. There is no penalty for leaving them out. If you intend to
investigate other programming languages, such as Java or C++, for example, you’ll find those
semicolons are required. Program listings in this book use semicolons.

Have Some Fun
If you encounter an error in your first attempt at loading this document into your browser, go
back to the text editor and check the lines of the script section against Listing 3-1, looking
carefully at each line in light of the explanations. There may be a single character out of
place, a lowercase letter where an uppercase one belongs, or a quote or parenthesis missing.
Make necessary repairs, switch to your browser, and click Reload.

To see how dynamic the script in script1.html is, go back into the text editor and replace
the word “browser” with “client software.” Save, switch, and reload to see how the script
changes the text in the document. Feel free to substitute other text for the quoted text in the
document.write() statement. Or, add more text with additional document.write() state-
ments. The parameters to document.write() are HTML text, so you can even write “
”
to make a line break. Always be sure to save, switch, and reload to see the results of your
handiwork.

✦ ✦ ✦

JavaScript Tutorial

✦ ✦ ✦ ✦

In This Part

Chapter 4
Browser and Document
Objects

Chapter 5
Scripts and HTML
Documents

Chapter 6
Programming
Fundamentals, Part I

Chapter 7
Programming
Fundamentals, Part II

Chapter 8
Window and
Document Objects

Chapter 9
Forms and Form
Elements

Chapter 10
Strings, Math, and
Dates

Chapter 11
Scripting Frames and
Multiple Windows

Chapter 12
Images and
Dynamic HTML

✦ ✦ ✦ ✦

P A R T

IIII

Browser and
Document Objects

This chapter marks the first of nine tutorial chapters tailored to Web
authors who have at least basic grounding in HTML concepts. In

particular, you should already be familiar with common HTML tags
and their attributes, as well as the fundamentals of Cascading Style
Sheets (CSS). In this chapter, you see several practical applications
of JavaScript and begin to see how a JavaScript-enabled browser
turns familiar HTML elements into objects that your scripts control.
This tutorial teaches concepts and terminology that apply to modern
browsers with special focus on standards-compatibility to equip you
to work with today’s and tomorrow’s browsers. You should study this
tutorial in conjunction with any of the following browsers: Internet
Explorer 5 or later (Windows or Macintosh), any Mozilla-based
browser, or Apple’s Safari.

Scripts Run the Show
If you have authored Web pages with HTML, you are familiar with
how HTML tags influence the way content is rendered on a page
when viewed in the browser. As the page loads, the browser recog-
nizes angle-bracketed tags as formatting instructions. Instructions
are read from the top of the document downward, and elements
defined in the HTML document appear onscreen in the same order in
which they appear in the document’s source code. As an author, you
do a little work one time and up front — adding the tags to text
content — and the browser does a lot more work every time a visitor
loads the page into a browser.

Assume for a moment that one of the elements on the page is a text
input field inside a form. The user is supposed to enter some text in
the text field and then click the Submit button to send that informa-
tion back to the Web server. If that information must be an Internet
e-mail address, how do you ensure the user includes the “@” symbol
in the address?

One way is to have a Common Gateway Interface (CGI) program on
the server inspect the submitted form data after the user clicks
the Submit button and the form information is transferred to the
server. If the user omits or forgets the “@” symbol, the CGI program
sends the page back to the browser — but this time with an instruc-
tion to include the symbol in the address. Nothing is wrong with this

44C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

What client-side scripts
do

What happens when a
document loads

How the browser
creates objects

How scripts refer to
objects

What distinguishes one
object from another

✦ ✦ ✦ ✦

28 Part II ✦ JavaScript Tutorial

exchange, but it means a significant delay for the user to find out that the address does not
contain the crucial symbol. Moreover, the Web server has to expend some of its resources to
perform the validation and communicate back to the visitor. If the Web site is a busy one, the
server may try to perform hundreds of these validations at any given moment, probably slow-
ing the response time to the user even more.

Now imagine that the document containing that text input field has some intelligence built
into it that makes sure the text field entry contains the “@” symbol before ever submitting
one bit (literally!) of data to the server. That kind of intelligence would have to be embedded
in the document in some fashion — downloaded with the page’s content so it can stand ready
to jump into action when called upon. The browser must know how to run that embedded
program. Some user action must start the program, perhaps when the user clicks the Submit
button. If the program runs inside the browser and detects a lack of the “@” symbol, an alert
message should appear to bring the problem to the user’s attention. The same program also
should be capable of deciding if the actual submission can proceed or if it should wait until a
valid e-mail address is entered into the field.

This kind of pre-submission data entry validation is but one of the practical ways JavaScript
adds intelligence to an HTML document. Looking at this example, you might recognize that a
script must know how to look into what is typed in a text field; a script must also know how
to let a submission continue or how to abort the submission. A browser capable of running
JavaScript programs conveniently treats elements such as the text field as objects. A
JavaScript script controls the action and behavior of objects — most of which you see on the
screen in the browser window.

JavaScript in Action
By adding lines of JavaScript code to your HTML documents, you control onscreen objects in
whatever way your applications require. To give you an idea of the scope of applications you
can create with JavaScript, I show you several applications on the CD-ROM (in the Listings
folders for Chapters 48 through 57). I strongly suggest you open the applications and play
with them in your browser as they are described in the next several pages. You can find links
to the application files for these chapters via the index.html file located in the Listings
folder on the CD-ROM.

Interactive user interfaces
HTML hyperlinks do a fine job, but they’re not necessarily the most engaging way to present
a table of contents for a large site or document. With a bit of JavaScript, you can create an
interactive, expandable table of contents listing that displays the hierarchy of a large body of
material (see Figure 4-1). Just like the text listings (or tree views) in operating system file man-
agement windows, the expandable table of contents lets the user see as much or as little as
possible while displaying the big picture of the entire data collection.

Click a gray widget icon to expand the items underneath. An endpoint item has an orange and
black widget icon. Items in the outline can be links to other pages or descriptive information.
You also maintain the same kind of font control over each entry, as expected from HTML.
While such outlines have been created with the aid of server programs in the past, the
response time between clicks is terribly slow. By placing all of the smarts behind the outline
inside the page, it downloads once and runs quickly after each click.

29Chapter 4 ✦ Browser and Document Objects

Figure 4-1: An expandable table of contents.

Small data lookup
A common application on the Web is having a server program present a page that visitors use
to access large databases on the server. Large data collections are best left on the server
where search engines and database technologies are the best fit. But if your page acts as a
front end to a small data collection lookup, you can consider embedding that data collection
in the document (out of view) and letting JavaScript act as the intermediary between user
and data.

I do just that in a Social Security prefix lookup system shown in Figure 4-2. I convert a printed
table of about 55 entries into a JavaScript list that occupies only a few hundred bytes. When
the visitor types the three-character prefix of his or her Social Security number into the field
and clicks the Search button, a script behind the scenes compares that number against the 55
or so ranges in the table. When the script finds a match, it displays the corresponding state of
registration in a second field.

If the application were stored on the server and the data stored in a server database, each
click of the Search button would mean a delay of many seconds as the server processed the
request, got the data from the database, and reformulated the page with the result for the
user. Built instead as a JavaScript application, once the page downloads the first time, scripts
perform all lookups instantaneously.

30 Part II ✦ JavaScript Tutorial

Figure 4-2: Looking up data in a small table.

Forms validation
I’ve already used data entry form validation as an example of when JavaScript is a good fit.
In fact, the data entry field in the Social Security lookup page (see Figure 4-2) includes script-
ing to check the validity of the entered number. Just as a server program for this task has to
verify that the entry is a three-digit number, so, too, must the JavaScript program verify the
entered value. If a mistake appears in the entry — perhaps a finger slips and hits a letter
key — the visitor is advised of the problem and directed to try another entry. The validation
script even preselects the text in the entry field for the visitor so that typing a new value
replaces the old one.

Interactive data
JavaScript opens opportunities for turning static information into interactive information.
Figure 4-3 shows a graphical calculator for determining the value of an electrical component
(called a resistor) whose only markings are colored bars.

31Chapter 4 ✦ Browser and Document Objects

Figure 4-3: An interactive graphical calculator.

The image in the bottom half of the page is composed of seven images in vertical slices all
bunched up against each other. Four slices display the colored bands, while the remaining
three slices contain the ends of the resistor and the spacer between groups of bands. As the
visitor selects a color from a pop-up list near the top, the associated image slice changes to
the selected color and the resistance value is calculated and displayed.

Again, once the page is loaded, response time is instantaneous. Conversely, a server-based
version of this calculator would take many seconds between color changes. Moreover,
JavaScript provides the power to preload all possible images into the browser cache while
the main page loads. Therefore, with only a slight extra delay to download all images with the
page, no further delay occurs when a visitor chooses a new color. Not only is the application
practical (for its intended audience), but it’s just plain fun to play with.

Multiple frames
While frames are the domain of HTML, they suddenly become more powerful with some
JavaScript behind them. The Decision Helper application shown in Figure 4-4 takes this
notion to the extreme.

The Decision Helper is a full-fledged application that includes four input screens and one
screen that displays the results of some fairly complex calculations based on the input
screens. Results are shown both in numbers and in a bar graph form, as displayed in
Figure 4-4.

32 Part II ✦ JavaScript Tutorial

Figure 4-4: The Decision Helper.

Interaction among the three frames requires JavaScript. For example, suppose the user clicks
one of the directional arrows in the top-left frame. Not only does the top-right frame change
to another document, but the instructions document in the bottom frame also shifts to the
anchor point that parallels the content of the input screen. Scripting behind the top-right
frame documents uses various techniques to preserve entry information as the user navi-
gates through the sequence of input pages. These are the same techniques you might use to
build an online product catalog and shopping cart — accumulating the customer’s selections
from various catalog pages and then bringing them together in the checkout order form.

Certainly you could fashion this application out of a CGI program on the server. But the high
level of interaction and calculation required would turn this now speedy application into a
glacially slow exchange of information between user and server.

Dynamic HTML
Starting with the version 4 browsers from both Netscape and Microsoft, you can modify more
and more content on the page with the help of client-side scripts. In Figure 4-5, for example,
scripts in the page control the dragging of map pieces in the puzzle. Highlighted colors
change as you click the state maps, instruction panels fly in from the edge of the screen, and
another item appears when you place all the states in their proper positions.

Applying scripts to modify HTML content or position on the fly is commonly called Dynamic
HTML (DHTML). JavaScript becomes the vital connection between the user and dynamically
respositionable elements on the screen. Not even a program on the server could help this
application because you need immediate programmatic control in the page to respond to
user mouse motion and instantaneous changes to screen elements.

33Chapter 4 ✦ Browser and Document Objects

Figure 4-5: A map game in scriptable Dynamic HTML.

When to use JavaScript
The preceding examples demonstrate a wide range of applications for JavaScript, but by no
means do they come close to exhausting JavaScript’s possibilities. When faced with a Web
application task, I look to client-side JavaScript for help with the following requirements:

✦ Data entry validation: If form fields need to be filled out for processing on the server, I
let client-side scripts prequalify the data entered by the user.

✦ Serverless CGIs: I use this term to describe processes that, were it not for JavaScript,
would be programmed as CGIs on the server, yielding slow performance because of the
interactivity required between the program and user. This includes tasks such as small
data collection lookup, modification of images, and generation of HTML in other frames
and windows based on user input.

✦ Dynamic HTML interactivity: It’s one thing to use DHTML’s capabilities to position ele-
ments precisely on the page — you don’t need scripting for that. But if you intend to
make the content dance on the page, scripting makes that happen.

✦ CGI prototyping: Sometimes you may want a CGI program to be at the root of your
application because it reduces the potential incompatibilities among browser brands
and versions. It may be easier to create a prototype of the CGI in client-side JavaScript.
Use this opportunity to polish the user interface before implementing the application
as a CGI.

✦ Offloading a busy server: If you have a highly trafficked Web site, it may be beneficial
to convert frequently used CGI processes to client-side JavaScript scripts. Once a page

34 Part II ✦ JavaScript Tutorial

is downloaded, the server is free to serve other visitors. Not only does this lighten
server load, but users also experience quicker response to the application embedded
in the page.

✦ Adding life to otherwise dead pages: HTML by itself is pretty “flat.” Adding a blinking
chunk of text doesn’t help much; animated GIF images more often distract from, rather
than contribute to, the user experience at your site. But if you can dream up ways to
add some interactive zip to your page, it may engage the user and encourage a recom-
mendation to friends or repeat visits.

✦ Creating “Web pages that think”: If you let your imagination soar, you may develop
new, intriguing ways to make your pages appear “smart.” For example, in the applica-
tion Intelligent “Updated” Flags (Chapter 54 on the CD-ROM), you see how (without a
server CGI or database) an HTML page can “remember” when a visitor last came to the
page. Then any items that have been updated since the last visit — regardless of the
number of updates you’ve done to the page — are flagged for that visitor. That’s the
kind of subtle, thinking Web page that best displays JavaScript’s powers.

The Document Object Model
Before you can truly start scripting, you should have a good feel for the kinds of objects you
will be scripting. A scriptable browser does a lot of the work of creating software objects that
generally represent the visible objects you see in an HTML page in the browser window.
Obvious objects include form controls (text boxes and buttons) and images. However, there
may be other objects that aren’t so obvious by looking at a page but which make perfect
sense when you consider the HTML tags used to generate a page’s content — paragraph
objects or frames of a frameset, for example.

To help scripts control these objects — and to help authors see some method to the madness
of potentially dozens of objects on a page — the browser makers define a document object
model (DOM). A model is like a prototype or plan for the organization of objects on a page.

Evolution of browser DOMs has caused much confusion and consternation among scripters
due to a lack of compatibility across succeeding generations and brands of browsers.
Fortunately, the DOM world is stabilizing around a formal specification published by the
World Wide Web Consortium (W3C). Today’s modern browsers continue to support some of
the “old ways” of the earliest DOM because so much existing script code on the Web relies on
these traditions continuing to work (you’ll see some of these in Chapter 9). But with the vast
majority of browsers in use today supporting the basic W3C DOM syntax and terminology,
scripters should aim toward standards compatibility whenever possible.

HTML structure and the DOM
An important trend in HTML markup is applying markup solely to define the structure of a
document and the context of each piece of content in the document. The days of using HTML
tags solely to influence the appearance of a chunk of text are drawing to a close. It is no longer
acceptable to enclose a line of text in, say, an <h1> tag because you want the line to appear in
the text size and weight that browsers automatically apply to text tagged in that way. An <h1>
element has a special context within a document’s structure: a first-level heading. In today’s
HTML world, if you wish to display a standalone line of text with a particular style, the text
would likely be in a simple paragraph (<p>) tag; the precise look of that paragraph would be

35Chapter 4 ✦ Browser and Document Objects

under the control of a Cascading Style Sheet (CSS) rule. Current practice even frowns upon
the application of and <i> tags to assign boldface and italic styles to a span of text.
Instead surround the text in a contextual tag (such as the element to signify emphasis)
and define the CSS style you wish applied to any emphasized text in the document.

The result of applying strict structural design to your HTML tagging is a document that has a
well-defined hierarchy of elements based on their nesting within each other. For example, an
empty HTML document has the following minimum elements:

<html>
<head></head>
<body></body>

</html>

The html element contains two nested elements, head and body. The hierarchy of elements
can be charted like a corporate organizational chart, as shown in Figure 4-6. For the sake of
upcoming terminology lessons, however, it is more convenient to visualize the chart in Figure
4-6 as a family tree — except that, unlike most real family trees each point that spawns chil-
dren is a single-parent. In the empty HTML document, the html element is the parent of two
child elements: head and body. The html element is, in turn, a child of the document.

Figure 4-6: Element hierarchy of an empty HTML
document.

The DOM in a browser window
As its name implies, the formal Document Object Model focuses primarily on the HTML docu-
ment and the content nested inside it. From a practical standpoint, however, scripters often
need to control the environment that contains the document: the window. The window object
is the top of the hierarchy that browser scripts work with. The basic structure of the object
model in modern browsers (given an empty HTML document) is shown in Figure 4-7.

Figure 4-7: Basic object model for all modern browsers.

window

document

navigator screen history location

document

html

head body

36 Part II ✦ JavaScript Tutorial

It’s not important to memorize the model. But to give you a sense of the relationships among
these top-level objects, the following describes their respective roles:

✦ window object: At the very top of the hierarchy is the window. This object represents
the content area of the browser window where HTML documents appear. In a multiple-
frame environment, each frame is also a window (but don’t concern yourself with this
just yet). Because all document action takes place inside the window, the window is the
outermost element of the object hierarchy. Its physical borders contain the document.

✦ navigator object: This is the closest your scripts come to accessing the browser pro-
gram, primarily to read the brand and version of browser that holds the current docu-
ment. This object is read-only, protecting the browser from inappropriate access by
rogue scripts.

✦ screen object: Another read-only object lets scripts learn about the physical environ-
ment in which the browser is running. For example, this object reveals the number of
pixels high and wide available in the monitor.

✦ history object: While the browser maintains internal details about the browser’s recent
history (such as the list available under the Back button), scripts have no access to the
details. At most this object assists a script in simulating a click of the Back or Forward
button.

✦ location object: This object is the primary avenue to loading a different page into the
current window or frame. URL information about the window is available under very
controlled circumstances so that scripts cannot track access to other Web sites.

✦ document object: Each HTML document that gets loaded into a window becomes a
document object. The document object contains the content that you are likely to
script. Except for the html, head, and body element objects that are found in every
HTML document, the precise makeup and structure of the element object hierarchy of
the document depends on the content you put into the document.

When a Document Loads
Programming languages, such as JavaScript, are convenient intermediaries between your
mental image of how a program works and the true inner workings of the computer. Inside
the machine, every word of a program code listing influences the storage and movement of
bits (the legendary 1s and 0s of the computer’s binary universe) from one RAM storage slot
to another. Languages and object models are inside the computer (or, in the case of
JavaScript and the DOM, inside the browser’s area of the computer) to make it easier for pro-
grammers to visualize how a program works and what its results will be. The relationship
reminds me a lot of knowing how to drive an automobile from point A to point B without
knowing exactly how an internal combustion engine, steering linkages, and all that other
internal “stuff” works. By controlling high-level objects such as the ignition key, gearshift, gas
pedal, brake, and steering wheel, I can get the results I need.

Of course, programming is not exactly like driving a car with an automatic transmission. Even
scripting requires the equivalent of opening the hood and perhaps knowing how to check the
transmission fluid or change the oil. Therefore, now it’s time to open the hood and watch
what happens to a document’s object model as a page loads into the browser.

37Chapter 4 ✦ Browser and Document Objects

A simple document
Figure 4-8 shows the HTML and corresponding object model for a document that I’ll be
adding to in a moment. The figure shows only the document object portion — the window
object and its other top-level objects (including the document object) are always there, even
for an empty document. When this page loads, the browser maintains in its memory a map of
the objects generated by the HTML tags in the document. At this point, only three objects
exist, one for the outermost html element and its two nested elements.

Figure 4-8: Object map of an empty document.

Add a paragraph element
Now, I modify the HTML file to include an empty paragraph element and reload the docu-
ment. Figure 4-9 shows what happens to both the HTML (changes in boldface) and the object
map as constructed by the browser. Even though no content appears in the paragraph, the
<p> tags are enough to tell the browser to create that p element object. Also note that the p
element object is contained by the body element object in the hierarchy of objects in the cur-
rent map. In other words, the p element object is a child of the body element object. The
object hierarchy matches the HTML tag containment hierarchy.

Figure 4-9: Adding an empty paragraph element.

document

html

head body

p

<html>
 <head></head>
 <body>
 <p></p>
 </body>
</html>

document

html

head body

<html>
 <head></head>
 <body></body>
</html>

38 Part II ✦ JavaScript Tutorial

Add paragraph text
I modify and reload the HTML file again, this time inserting the text of the paragraph between
the element’s start and end tags, as shown in Figure 4-10. A run of text extending between
tags is a special kind of object in the DOM, called a text node. A text node always has an ele-
ment acting as its container. Applying the official genealogy metaphor to this structure, the
text node is a child of its parent p element. We now have a branch of the document object
tree that runs several generations: document->html->body->p->text node.

Figure 4-10: Adding a text node to the p element object.

Make a new element
The last modification I make to the file is to wrap a portion of the paragraph text in an
tag to signify emphasis for the enclosed text. This insertion has a large effect on the hierarchy
of the p element object, as shown in Figure 4-11. The p element goes from having a single (text
node) child to having three children: two text nodes with an element between them. In the
W3C DOM, a text node cannot have any children and therefore cannot contain an element
object. The bit of the text node now inside the em element is no longer a child of the p ele-
ment, but rather a child of the em element. That text node is now a grandchild of the p ele-
ment object.

Now that you see how objects are created in memory in response to HTML tags, the next step
is to figure out how scripts can communicate with these objects. After all, scripting is mostly
about controlling these objects.

document

html

head body

p

“This is the one and only paragraph.”

<html>
 <head></head>
 <body>
 <p>This is the one and
 only paragraph.</p>
 </body>
</html>

39Chapter 4 ✦ Browser and Document Objects

Figure 4-11: Inserting an element into a text node.

Object References
After a document is loaded into the browser, all of its objects are safely stored in memory in
the containment hierarchy structure specified by the browser’s document object model. For
a script to control one of those objects, there must be a way to communicate with an object
and find out something about it such as, “Hey, Mr. Text Field, what did the user type?” To let
your scripts “talk to” an object, you need a way to refer to that object. That is precisely what
an object reference in a script does for the browser.

Object naming
The biggest aid in creating script references to objects is assigning a name to every scriptable
object in your HTML. In the W3C DOM (and current HTML specification), the way to assign a
name to an element is by way of the id attribute. This attribute is optional, but if you plan to
use scripts to access an element in the page, it is most convenient to assign a name to that
element’s id attribute directly in the HTML code. Here are some examples of id attributes
added to typical tags:

<p id=”firstParagraph” >

<div class=”draggable” id=”puzzlePiece”>

document

html

head body

p

“ one and only ”

<html>
 <head></head>
 <body>
 <p>This is the one and
 only paragraph .</p>
 </body>
</html>

em “ paragraph .”“ This is the ”

40 Part II ✦ JavaScript Tutorial

The only rules about object IDs (also called identifiers) are that they

✦ May not contain spaces

✦ Should not contain punctuation except for the underscore character

✦ Must be inside quotes when assigned to the id attribute

✦ Must not start with a numeric character

✦ May not occur more than once in the same document

Think of assigning IDs as the same as sticking nametags on everyone attending a conference
meeting. To find a particular conference attendee whose name you know, you could wait at
the entrance and scan each nametag until you find the name you’re looking for; or you could
bump around the attendees at random in the hope that you’ll find a known name. But it
would be more efficient if you had a way to immediately target an attendee by name — like
broadcasting the name on the public address system to the whole crowd.

Referencing a particular object
The W3C DOM provides that kind of instant access to any named element in the document.
If you haven’t programmed before, the syntax for this access command may be intimidating
by its length — a hazard when a standard such as the W3C DOM is designed by programmers.
Like it or not, we’re stuck with this syntax. Here is the syntax you will use frequently in your
browser scripting:

window.document.getElementById(“elementID”)

You substitute the ID of the element you wish to reference for elementID. For example, if
you want to reference the paragraph element whose ID is firstParagraph, the reference
would be:

window.document.getElementById(“firstParagraph”)

Be careful! JavaScript is case-sensitive. Be sure you use uppercase for the three uppercase
letters in the command, and use a lowercase “d” at the end, and that you capitalize the
ID accurately as well.

The getElementById() command belongs to the document object, meaning that the
entire document’s collection of elements is subject to this instantaneous search for a match-
ing ID. The dot — a traditional period character — is the JavaScript way of indicating that the
item to the left of the dot (the document object here) has the item to the right of the dot
(getElementById() here) as a resource to call upon whenever needed. Each type of object
has a list of such resources, as you’ll see in a moment (and as summarized in Appendix A).

id versus name Attributes

Prior to the HTML 4.0 specification’s introduction of the id attribute, scripts could access a hand-
ful of elements that also supported the name attribute. Elements supporting the name attribute
are predominantly related to forms, images, and frames. You will see how name attributes work
in forms in Chapter 9. In fact, most browsers still require the name attribute for forms and form
controls (text fields, buttons, and select lists) for their data to be submitted to a server. It is per-
missible to assign the same identifier to both the id and name attributes of an element.

41Chapter 4 ✦ Browser and Document Objects

Node Terminology
W3C DOM terminology uses metaphors to assist programmers in visualizing the containment
hierarchy of a document and its content. One concept you should grasp early in your learning
is that of a node; the other concept is the family relationship among objects in a document.

About nodes
While the English dictionary contains numerous definitions of “node,” the one that comes
closest to its application in the W3C DOM is the one that implies a knob or bump on a tree
branch. Such nodules on a branch usually lead to one of two things: a leaf or another branch.
A leaf is a dead end in that no further branches emanate from the leaf; but the branch kind of
node leads to a new branch that can, itself, have further nodes, whether they be leaves or
more branches. When you define the structure of an HTML document, you also define a node
structure (also called a node tree) whose placement of branches and leaves depends entirely
on your HTML elements and text content.

In the W3C DOM, the fundamental building block is a simple, generic node. But inside an
HTML document, we work with special kinds of nodes that are tailored to HTML documents.
The two types of nodes that scripts touch most often are element nodes and text nodes.
These node types correspond exactly to HTML elements and the text that goes between an
element’s start and end tags. You’ve been working with element and text nodes in your HTML
authoring, and you didn’t even know it.

Look again at the simple document assembled earlier, along with its containment hierarchy
diagram in Figure 4-12. All of the boxes representing HTML elements (html, head, body, p,
and em) are element nodes; the three boxes containing actual text that appears in the ren-
dered document are text nodes. You saw in the transition from one long text node (Figure 4-10)
to the insertion of the em element (Figure 4-11) that the long text node divided into three
pieces. Two text node pieces stayed in the same position in the hierarchy relative to the con-
taining p element. The new em element bullied its way into the tree between the two text
nodes, and shifted the third text node one level away from the p element.

Figure 4-12: A simple HTML document node tree.

document

html

head body

p

“ one and only ”

<html>
 <head></head>
 <body>
 <p>This is the one and
 only paragraph .</p>
 </body>
</html>

em “ paragraph .”“ This is the ”

42 Part II ✦ JavaScript Tutorial

Parents and children
Looking more closely at the p element and its content in Figure 4-12, you can see that element
has three child nodes. The first and last are of the text node type, while the middle one is an
element node. When an element contains multiple child nodes, the sequence of child nodes is
entirely dependent upon the HTML source code order. Thus, the first child node of the p ele-
ment is the text node containing the text “This is the “. In the case of the em element, a single
child text node is the sole descendant of the element.

Element node children are not always text nodes, nor do branches always end in text nodes.
In Figure 4-12, the html element has two child nodes, both of which are element nodes; the
body element has one child node, the p element. Even though the head element node appears
to be at the end of a branch, it is still an element node because it is capable of containing
other nodes (such as a title element). A tag in the HTML indicates an element node,
whether or not it has any child nodes. In contrast, a text node can never contain another
node — it’s one of those dead-end leaf type of nodes.

Notice that a child node is always contained by one element node. That container is the par-
ent node of its child or children. For example from the point of view of the em element node, it
has both one child (a text node) and one parent (the p element node). A fair amount of W3C
DOM terminology (which you’ll meet in Chapter 14) concerns itself with assisting scripts to
start at any point in a document hierarchy and obtain a reference to a related node if neces-
sary. For instance, if a Dynamic HTML script wants to modify the text inside the em element of
Figure 4-12, it would typically do so by starting with a reference to the em element via the
document.getElementById() command (assuming the em element has an ID assigned to it)
and then modifying the element’s child node.

In case you’re wondering, the document object at the top of the node tree is, itself, a node.
Its place in the tree is special and is called, simply, the document node. Each document con-
tains a single document node, and that node becomes the scripter’s gateway to the rest of
the document’s nodes. It’s no accident that the syntax for referencing an element node —
document.getElementById()— begins with a reference to the document object.

What Defines an Object?
When an HTML tag defines an object in the source code, the browser creates a slot for that
object in memory as the page loads. But an object is far more complex internally than, say,
a mere number stored in memory. The purpose of an object is to represent some “thing.” In
the browser and its Document Object Model, the most common objects are those that corre-
spond to elements, such as a text input form field, a table element, or the whole HTML docu-
ment. Outside of the pared-down world of the DOM, an object can also represent abstract
entities, such as a calendar program’s appointment entry or a layer of graphical shapes in a
drawing program. It is common for your browser scripts to work with both DOM objects and
abstract objects of your own design.

Every type of DOM object is unique in some way, even if two or more objects look identical to
you in the browser. Three very important facets of an object define what it is, what it looks
like, how it behaves, and how scripts control it. Those three facets are properties, methods,
and event handlers. They play such key roles in your future DOM scripting efforts that the
Object Quick Reference in Appendix A summarizes the properties, methods, and event han-
dlers for each object in the object models implemented in various browser generations.

43Chapter 4 ✦ Browser and Document Objects

Properties
Any physical object you hold in your hand has a collection of characteristics that defines it. A
coin, for example, has shape, diameter, thickness, color, weight, embossed images on each
side, and any number of other attributes that distinguish it from, say, a feather. Each of those
features is called a property. Each property has a value of some kind attached to it (even if the
value is empty or null). For example, the shape property of a coin might be “circle” — in this
case, a text value. In contrast, the denomination property is most likely a numeric value.

You may not have known it, but if you’ve written HTML for use in a scriptable browser, you
have set object properties without writing one iota of JavaScript. Tag attributes are the most
common way to set an HTML element object’s initial properties. For example, the following
HTML tag defines an input element object that assigns four property values:

<input type=”button” id=”clicker” name=”clicker” value=”Hit Me...”>

In JavaScript parlance, then, the type property holds the word “button,” the id and name
properties hold the same word, “clicker,” and the value property is the text that appears on
the button label, “Hit Me. . . .” In truth, a button input element has more properties than just
these, but you don’t have to set every property for every object. Most properties have
default values that are automatically assigned if nothing special is set in the HTML or later
from a script.

The contents of some properties can change after a document has loaded and the user inter-
acts with the page. Consider the following text input tag:

<input type=”text” id=”entry” name=”entry” value=”User Name?”>

The id and name properties of this object are the same word, “entry.” When the page loads,
the text of the value attribute setting is placed in the text field — the automatic behavior of
an HTML text field when the value attribute is specified. But if a user enters some other text
into the text field, the value property changes — not in the HTML, but in the memory copy of
the object model that the browser maintains. Therefore, if a script queries the text field about
the content of the value property, the browser yields the current setting of the property —
which isn’t necessarily the one specified by the HTML.

To gain access to an object’s property, you use the same kind of dot notation addressing
scheme you saw earlier for objects. A property is a resource belonging to its object, so the
reference to it consists of the reference to the object plus one more extension naming the
property. Therefore, for the button and text object tags just shown, references to various
properties are

document.getElementById(“clicker”).name
document.getElementById(“clicker”).value
document.getElementById(“entry”).value

You may wonder what happened to the window part of the reference. It turns out that there
can be only one document contained in a window, so references to objects inside the docu-
ment can omit the window portion and start the reference with document. You cannot omit
the document object, however, from the reference.

44 Part II ✦ JavaScript Tutorial

Methods
If a property is like a descriptive adjective for an object, then a method is a verb. A method is
all about action related to the object. A method either does something to the object or with
the object that affects other parts of a script or document. They are commands of a sort, but
whose behaviors are tied to a particular object.

An object can have any number of methods associated with it (including none at all). To set a
method into motion (usually called invoking a method), a JavaScript statement must include a
reference to it — via its object with a pair of parentheses after the method name — as in the
following examples:

document.getElementById(“orderForm”).submit()
document.getElementById(“entry”).focus()

The first is a scripted way of sending a form (named orderForm) to a server. The second
gives focus to a text field named entry.

Sometimes a method requires that you send additional information with it so that it can do its
job. Each chunk of information passed with the method is called a parameter or argument
(you can use the terms interchangeably). You saw examples of passing a parameter in your
first script in Chapter 3. Two script statements invoked the write() method of the document
object:

document.write(“This browser is version “ + navigator.appVersion)
document.write(“ of ” + navigator.appName + “.”)

As the page loaded into the browser, each document.write() method sent whatever text
was inside the parentheses to the current document. In both cases, the content being sent as
a parameter consisted of straight text (inside quotes) and the values of two object properties:
the appVersion and appName properties of the navigator object.

Some methods require more than one parameter. If so, the multiple parameters are separated
by commas. For example, version 4 and later browsers support a window object method that

Internet Explorer References

Before the W3C DOM came into existence, Microsoft had created its own way of referencing ele-
ment objects by way of their id attributes. You will find many instances of this syntax in existing
code that has been written only for Internet Explorer 4 or later. The syntax uses a construction
called document.all. Although there are a few different ways to use this construction, the most
commonly applied way is to continue the dot notation to include the ID of the element. For
example, if a paragraph element’s ID is myParagraph, the IE-only reference syntax is:

document.all.myParagraph

You can also completely omit the lead-in parts of the reference, and simply refer to the ID of the
element:

myParagraph

Be aware, however, that none of these approaches is supported in the W3C DOM standard. Both
the IE-specific and W3C DOM reference syntax styles are implemented in IE5 or later. Going for-
ward, you should migrate existing code to the W3C DOM style to be compatible with more
browsers.

45Chapter 4 ✦ Browser and Document Objects

moves the window to a particular coordinate point on the screen. A coordinate point is
defined by two numbers that indicate the number of pixels from the left and top edges of the
screen where the top-left corner of the window should be. To move the browser window to a
spot 50 pixels from the left and 100 pixels from the top, the method is:

window.moveTo(50,100)

As you learn more about the details of JavaScript and the document objects you can script,
pay close attention to the range of methods defined for each object. They reveal a lot about
what an object is capable of doing under script control.

Event handlers
One last characteristic of a DOM object is the event handler. Events are actions that take place
in a document, usually as the result of user activity. Common examples of user actions that
trigger events include clicking a button or typing a character into a text field. Some events,
such as the act of loading a document into the browser window or experiencing a network
error while an image loads, are not so obvious.

Almost every DOM object in a document receives events of one kind or another — summa-
rized for your convenience in the Object Quick Reference of Appendix A. What determines
whether the object does anything in response to the event is an extra attribute you enter into
the object’s HTML definition. The attribute consists of the event name, an equal sign (just like
any HTML attribute), followed by instructions about what to do when the particular event
fires. Listing 4-1 shows a very simple document that displays a single button with one event
handler defined for it.

Listing 4-1: A Simple Button with an Event Handler

<html>
<body>
<form>
<input type=”button” value=”Click Me” onclick=”window.alert (‘Ouch!’)”>
</form>
</body>
</html>

The form definition contains what, for the most part, looks like a standard input element.
But notice the last attribute, onclick=”window.alert(‘Ouch!’)”. Button input objects, as
you see in their complete descriptions in Chapter 22, react to mouse clicks. When a user
clicks the button, the browser sends a click event to the button. In this button’s definition,
the attribute says that whenever the button receives that event, it should invoke one of the
window object’s methods, alert(). The alert() method displays a simple alert dialog box
whose content is whatever text is passed as a parameter to the method. Like most arguments
to HTML attributes, the attribute setting to the right of the equal sign goes inside quotes. If
additional quotes are necessary, as in the case of the text to be passed along with the event
handler, those inner quotes can be single quotes. In actuality, JavaScript doesn’t distinguish
between single or double quotes but does require that each pair be of the same type.
Therefore, you can write the attribute this way:

onclick=’alert(“Ouch!”)’

46 Part II ✦ JavaScript Tutorial

Exercises
1. Which of the following applications are well suited to client-side JavaScript? Why or

why not?

a. Music jukebox

b. Web-site visit counter

c. Chat room

d. Graphical Fahrenheit-to-Celsius temperature calculator

e. All of the above

f. None of the above

2. Which of the following object names are valid in JavaScript? For each one that is
invalid, explain why.

a. lastName

b. company_name

c. 1stLineAddress

d. zip code

e. today’s_date

3. Using the diagram from Figure 4-12 for reference, draw a diagram of the object model
containment hierarchy that the browser would create in its memory for the following
HTML. Write the script reference to the second paragraph element using W3C DOM
syntax.

<html>
<head>
<title>Search Form</title>
</head>
<body>
<p id=”logoPar”><img src=”images/logo.jpg” height=”90” width=”300”
alt=”Logo” /></p>
<p id=”formPar”>
<form name=”searchForm” action=”cgi-bin/search.pl” method=”POST”>
Search for: <input type=”text” name=”searchText” />
<input type=”submit” value=”Search” />
</form>
</p>
</body>
</html>

4. Describe at least two characteristics that a text node and an element node have in
common; describe at least two characteristics that distinguish a text node from an
element node.

5. Write the HTML tag for a button input element named “Hi,” whose visible label reads
“Howdy” and whose onclick event handler displays an alert dialog box that says
“Hello to you, too!”

✦ ✦ ✦

Scripts and HTML
Documents

In this chapter’s tutorial, you begin to see how scripts are embed-
ded within HTML documents and what comprises a script state-

ment. You also see how script statements can run when the
document loads or in response to user action. Finally, you find out
where script error information is hiding.

Where Scripts Go in Documents
Chapter 4 did not thoroughly cover what scripts look like or how you
add them to an HTML document. That’s where this lesson picks up
the story.

The <script> tag
To assist the browser in recognizing lines of code in an HTML docu-
ment as belonging to a script, you surround lines of script code with
a <script>...</script> tag set. This is common usage in HTML
where start and end tags encapsulate content controlled by that tag,
whether the tag set is for a form or a paragraph.

Depending on the browser, the <script> tag has a variety of
attributes you can set that govern the script. One attribute, type,
advises the browser to treat the code within the tag as JavaScript.
Some other browsers accept additional languages (such as
Microsoft’s VBScript in Windows versions of Internet Explorer). The
following setting is one that all scriptable browsers accept:

<script type=”text/javascript”>

Be sure to include the ending tag for the script. Lines of JavaScript
code go between the two tags:

<script type=”text/javascript”>
one or more lines of JavaScript code here

</script>

If you forget the closing script tag, the script may not run properly
and the HTML elsewhere in the page may look strange.

Although you don’t work with it in this tutorial, another attribute
works with more recent browsers to blend the contents of an exter-
nal script file into the current document. An src attribute (similar to

55C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Where to place scripts
in HTML documents

What a JavaScript
statement is

What makes a script
run

Viewing script errors

✦ ✦ ✦ ✦

48 Part II ✦ JavaScript Tutorial

the src attribute of an tag) points to the file containing the script code. Such files must
end with a .js extension. The tag set looks like the following:

<script type=”text/javascript” SRC=”myscript.js”></script>

All script lines are in the external file, so no script lines are included between the start and
end script tags in the document.

Tag positions
Where do these tags go within a document? The answer is, anywhere they’re needed in the
document. Most of the time it makes sense to include the tags nested within the
<head>...</head> tag set; other times it is essential that you drop the script into a very spe-
cific location in the <body>...</body> section.

In the following four listings, I demonstrate — with the help of a skeletal HTML document —
some of the possibilities of <script> tag placement. Later in this lesson, you see why scripts
may need to go in different places within a page depending on the scripting requirements.

Listing 5-1 shows the outline of what may be the most common position of a <script> tag set
in a document: in the <head> tag section. Typically, the Head is a place for tags that influence
noncontent settings for the page — so-called HTML “directive” elements, such as <meta> tags
and the document title. It turns out that this is also a convenient place to plant scripts that
are called on in response to user action.

Listing 5-1: Scripts in the Head

<html>
<head>
<title>A Document</title>
<script type=”text/javascript”>

//script statement(s) here
...

</script>
</head>
<body>
</body>
</html>

The Old language Attribute

Another <script> tag attribute, language, used to be the way to specify the scripting language
for the enclosed code. That attribute allowed scripters to specify the language version. For
example, if the scripts included code that required JavaScript syntax available only in version 4
browsers (which implemented JavaScript version 1.2), the <script> tag used to be written as
follows:

<script language=”JavaScript1.2”>...</script>

The language attribute was never part of the HTML 4.0 specification, and is now falling out of
favor. If W3C validation is one of your development concerns, the attribute does not validate in
strict versions of HTML 4.01 or XHTML 1.0. Older browsers that do not know the type attribute
automatically default to JavaScript anyway. Use only the type attribute.

49Chapter 5 ✦ Scripts and HTML Documents

On the other hand, if you need a script to run as the page loads so that the script generates
content in the page, the script goes in the <body> portion of the document, as shown in
Listing 5-2. If you check the code listing for your first script in Chapter 3, you see that the
script tags are in the Body because the script needs to fetch information about the browser
and write the results to the page as the page loads.

Listing 5-2: A Script in the Body

<html>
<head>
<title>A Document</title>
</head>
<body>
<script type=”text/javascript”>

//script statement(s) here
...

</script>
</body>
</html>

It’s also good to know that you can place an unlimited number of <script> tag sets in a docu-
ment. For example, Listing 5-3 shows a script in both the Head and Body portions of a docu-
ment. Perhaps this document needs the Body script to create some dynamic content as the
page loads, but the document also contains a button that needs a script to run later. That
script is stored in the Head portion.

Listing 5-3: Scripts in the Head and Body

<html>
<head>
<title>A Document</title>
<script type=”text/javascript”>

//script statement(s) here
...

</script>
</head>
<body>
<script type=”text/javascript”>

//script statement(s) here
...

</script>
</body>
</html>

You also are not limited to one <script> tag set in either the Head or Body. You can include
as many <script> tag sets in a document as are needed to complete your application. In
Listing 5-4, for example, two <script> tag sets are located in the Body portion, with some
other HTML between them.

50 Part II ✦ JavaScript Tutorial

Listing 5-4: Two Scripts in the Body

<html>
<head>
<title>A Document</title>
</head>
<body>
<script type=”text/javascript”>

//script statement(s) here
...

</script>
<more html>
<script type=”text/javascript”>

//script statement(s) here
...

</script>
</body>
</html>

Handling non-JavaScript browsers
Only browsers that include JavaScript in them know to interpret the lines of code between
the <script>...</script> tag pair as script statements and not HTML text for display in
the browser. This means that a pre-JavaScript browser or a simplified browser in a cell phone
not only ignores the tags, but it also treats the JavaScript code as page content. The results
can be disastrous to a page.

You can reduce the risk of non-JavaScript browsers displaying the script lines by playing a
trick. The trick is to enclose the script lines between HTML comment symbols, as shown in
Listing 5-5. Most nonscriptable browsers completely ignore the content between the <!--
and --> comment tags, whereas scriptable browsers ignore those comment symbols when
they appear inside a <script> tag set.

Listing 5-5: Hiding Scripts from Most Old Browsers

<script type=”text/javascript”>
<!--

//script statement(s) here
...

// -->
</script>

The odd construction right before the ending script tag needs a brief explanation. The two
forward slashes are a JavaScript comment symbol. This symbol is necessary because
JavaScript otherwise tries to interpret the components of the ending HTML symbol (-->).
Therefore, the forward slashes tell JavaScript to skip the line entirely; a nonscriptable
browser simply treats those slash characters as part of the entire HTML comment to be
ignored.

51Chapter 5 ✦ Scripts and HTML Documents

Despite the fact that this technique is often called hiding scripts, it does not disguise the
scripts entirely. All client-side JavaScript scripts are part of the HTML document and down-
load to the browser just like all other HTML. Furthermore, you can view them as part of the
document’s source code. Do not be fooled into thinking that you can hide your scripts
entirely from prying eyes.

JavaScript Statements
Virtually every line of code that sits between a <script>... </script> tag pair is a
JavaScript statement. To be compatible with habits of experienced programmers, JavaScript
accepts a semicolon at the end of every statement (the computer equivalent of a period at
the end of a sentence). Fortunately for newcomers, this semicolon is optional: The carriage
return at the end of a statement suffices for JavaScript to know the statement has ended. It is
possible that in the future the semicolon will be required, so it’s a good idea to get into the
semicolon habit now.

A statement must be in the script for a purpose. Therefore, every statement does “some-
thing” relevant to the script. The kinds of things that statements do are

✦ Define or initialize a variable

✦ Assign a value to a property or variable

✦ Change the value of a property or variable

✦ Invoke an object’s method

✦ Invoke a function routine

✦ Make a decision

If you don’t yet know what all of these mean, don’t worry — you will by the end of this tuto-
rial. The point I want to stress is that each statement contributes to the scripts you write. The
only statement that doesn’t perform any explicit action is the comment. A pair of forward
slashes (no space between them) is the most common way to include a comment in a script.
You add comments to a script for your benefit. They usually explain in plain language what a
statement or group of statements does. The purpose of including comments is to remind you
six months from now how your script works.

When Script Statements Execute
Now that you know where scripts go in a document, it’s time to look at when they run.
Depending on what you need a script to do, you have four choices for determining when a
script runs:

✦ While a document loads

✦ Immediately after a document loads

✦ In response to user action

✦ When called upon by other script statements

The determining factor is how the script statements are positioned in a document.

52 Part II ✦ JavaScript Tutorial

While a document loads — immediate execution
Your first script in Chapter 3 (reproduced in Listing 5-6) runs while the document loads into
the browser. For this application, it is essential that a script inspects some properties of the
navigator object and includes those property values in the content being rendered for the
page as it loads. It makes sense, therefore, to include the <script> tags and statements in
the Body portion of the document. I call the kind of statements that run as the page loads
immediate statements.

Listing 5-6: HTML Page with Immediate Script Statements

<html>
<head>
<title>My First Script</title>
<style type=”text/css”>
.highlight {font-weight: bold}
</style>
</head>

<body>
<h1>Let’s Script...</h1>
<hr>
<script type=”text/javascript”>
<!-- hide from old browsers
document.write(“This browser is version “ + navigator.appVersion);
document.write(“ of ” + navigator.appName + “.”);
// end script hiding -->
</script>
</body>
</html>

Deferred scripts
The other three ways that script statements run are grouped together as what I call deferred
scripts. To demonstrate these deferred script situations, I must introduce you briefly to a con-
cept covered in more depth in Chapter 7: the function. A function defines a block of script
statements summoned to run some time after those statements load into the browser.
Functions are clearly visible inside a <script> tag because each function definition begins
with the word function followed by the function name (and parentheses). Once a function is
loaded into the browser (commonly in the Head portion so it loads early), it stands ready to
run whenever called upon.

One of the times a function is called upon to run is immediately after a page loads. The
window object has an event handler called onload. Unlike most event handlers, which are
triggered in response to user action (for example, clicking a button), the onload event han-
dler fires the instant that all of the page’s components (including images, Java applets, and
embedded multimedia) are loaded into the browser. The onload event handler goes in the
<body> tag, as shown in Listing 5-7. Recall from Chapter 4 (Listing 4-1) that an event handler
can run a script statement directly. But if the event handler must run several script state-
ments, it is usually more convenient to put those statements in a function definition and then
have the event handler invoke that function. That’s what happens in Listing 5-7: When the
page completes loading, the onload event handler triggers the done() function. That func-
tion (simplified for this example) displays an alert dialog box.

53Chapter 5 ✦ Scripts and HTML Documents

Listing 5-7: Running a Script from the onload Event Handler

<html>
<head>
<title>An onload script</title>
<script type=”text/javascript”>
<!--
function done() {

alert(“The page has finished loading.”);
}
// -->
</script>
</head>
<body onload=”done()”>
Here is some body text.
</body>
</html>

Don’t worry about the curly braces or other oddities in Listing 5-7 that may cause you con-
cern at this point. Focus instead on the structure of the document and the flow. The entire
page loads without running any script statements, although the page loads the done() func-
tion in memory so that it is ready to run at a moment’s notice. After the document loads, the
browser fires the onload event handler, which causes the done() function to run. Then the
user sees the alert dialog box.

Getting a script to execute in response to a user action is very similar to the preceding exam-
ple for running a deferred script right after the document loads. Commonly, a script function
is defined in the Head portion, and an event handler in, say, a form element calls upon that
function to run. Listing 5-8 includes a script that runs when a user clicks a button.

Listing 5-8: Running a Script from User Action

<html>
<head>
<title>An onclick script</title>
<script type=”text/javascript”>
<!--
function alertUser() {

alert(“Ouch!”);
}
// -->
</script>
</head>
<body>
Here is some body text.
<form>

<input type=”text” name=”entry”>
<input type=”button” name=”oneButton” value=”Press Me!”

onclick=”alertUser()”>
</form>
</body>
</html>

54 Part II ✦ JavaScript Tutorial

Not every object must have an event handler defined for it in the HTML, as shown in
Listing 5-8 — only the ones for which scripting is needed. No script statements execute in
Listing 5-8 until the user clicks the button. The alertUser() function is defined as the page
loads, and it waits to run as long as the page remains loaded in the browser. If it is never
called upon to run, there’s no harm done.

The last scenario for when script statements run also involves functions. In this case, a func-
tion is called upon to run by another script statement. Before you see how that works, it
helps to read through the next lesson (Chapter 6). Therefore, I will hold off on this example
until later in the tutorial.

Viewing Script Errors
In the early days of JavaScript in browsers, script errors displayed themselves in very obvi-
ous dialog boxes. These boxes were certainly helpful for scripters who wanted to debug their
scripts. However, if a bug got through to a page served up to a non-technical user, the error
alert dialog boxes were not only disruptive, but also scary. To prevent such dialog boxes from
disturbing unsuspecting users, the browser makers tried to diminish the visual impact of
errors in the browser window. Unfortunately for scripters, it is often easy to overlook the fact
that your script contains an error because the error is not so obvious. Recent browser ver-
sions have different ways of letting scripters see the errors.

In IE5+, you can set its preferences so that scripts do not generate error dialog boxes (go to
Tools ➪ Internet Options ➪ Advanced ➪ Browsing and find the check-box entry that says
“Display a notification about every script error”). Even with error dialog boxes turned off,
error indications are displayed subtly at the left edge of the browser window’s status bar. An
alert icon and message (“Error on page.”) appear in the status bar. If you double-click the
icon, the error dialog box appears (see Figure 5-1). Be sure to expand the dialog box by click-
ing the Show Details button. Unless you turn on script error dialog boxes and keep them com-
ing, you have to train yourself to monitor the status bar when a page loads and after each
script runs.

Figure 5-1: The expanded IE error dialog box.

For Mozilla-based browsers, choose Tools ➪ Web Development ➪ JavaScript Console. The
JavaScript console window (a separate window from the Java console) opens to reveal the
error message details (see Figure 5-2). You can keep this window open all the time if you like.
Unless you clear the window, subsequent error messages are appended to the bottom of the
window.

55Chapter 5 ✦ Scripts and HTML Documents

Figure 5-2: The Mozilla 1.4 JavaScript console window.

Safari 1.0 records script errors, but it’s not obvious how to read them. You must first enable
Safari’s Debug menu by typing the following command in the Terminal application:

defaults write com.apple.Safari IncludeDebugMenu 1

Then, each time you launch Safari, choose the Log JavaScript Exceptions item in the Debug
menu. Open the MacOS X Console application window, where JavaScript error messages
appear amid other Console logging messages. With luck, future versions will be more
developer-friendly.

Understanding error messages and doing something about them is a very large subject,
reserved for advanced discussion in Chapter 45 on the CD-ROM. During this tutorial, how-
ever, you can use the error messages to see if you have perhaps mistyped a script from a list-
ing in the book.

Scripting versus Programming
You may get the impression that scripting is easier than programming. “Scripting” simply
sounds easier or more friendly than “programming.” In many respects, this is true. One of my
favorite analogies is the difference between a hobbyist who builds model airplanes from
scratch and a hobbyist who builds model airplanes from commercial kits. The “from scratch”
hobbyist carefully cuts and shapes each piece of wood and metal according to very detailed
plans before the model starts to take shape. The commercial kit builder starts with many pre-
fabricated parts and assembles them into the finished product. When both builders are fin-
ished, you may not be able to tell which airplane was built from scratch and which one came
out of a box of components. In the end, both builders used many of the same techniques to
complete the assembly, and each can take pride in the result.

As you’ve seen with the Document Object Model, the browser gives scripters many prefabri-
cated components with which to work. Without the browser, you’d have to be a pretty good
programmer to develop from scratch your own application that served up content and

56 Part II ✦ JavaScript Tutorial

offered user interaction. In the end, both authors have working applications that look equally
professional.

Beyond the DOM, however, “real programming” nibbles its way into the scripting world.
That’s because scripts (and programs) work with more than just objects. When I said earlier
in this lesson that each statement of a JavaScript script does something, that “something”
involves data of some kind. Data is the information associated with objects or other pieces of
information that a script pushes around from place to place with each statement.

Data takes many forms. In JavaScript, the common incarnations of data are numbers; text
(called strings); objects (both from the object model and others you can create with scripts);
and true and false (called Boolean values).

Each programming or scripting language determines numerous structures and limits for each
kind of data. Fortunately for newcomers to JavaScript, the universe of knowledge necessary
for working with data is smaller than in a language such as Java. At the same time, what you
learn about data in JavaScript is immediately applicable to future learning you may undertake
in any other programming language — don’t believe for an instant that your efforts in learning
scripting will be wasted.

Because deep down scripting is programming, you need to have a basic knowledge of funda-
mental programming concepts to consider yourself a good JavaScript scripter. In the next two
lessons, I set aside most discussion about the DOM and focus on the programming principles
that will serve you well in JavaScript and future programming endeavors.

Exercises
1. Write the complete script tag set for a script whose lone statement is

document.write(“Hello, world.”);

2. Build an HTML document and include the answer to the previous question such that
the page executes the script as it loads. Open the document in your browser to test the
results.

3. Add a comment to the script in the previous answer that explains what the script does.

4. Create an HTML document that displays an alert dialog box immediately after the page
loads and displays a different alert dialog box when the user clicks a form button.

5. Carefully study the document in Listing 5-9. Without entering and loading the docu-
ment, predict

a. What the page looks like

b. How users interact with the page

c. What the script does

Then type the listing into a text editor as shown (observe all capitalization and punctu-
ation). Do not type a carriage return after the “=” sign in the upperMe function state-
ment; let the line word-wrap as it does in the following listing. It’s okay to use a
carriage return between attribute name/value pairs, as shown in the first <input> tag.
Save the document as an HTML file, and load the file into your browser to see how well
you did.

57Chapter 5 ✦ Scripts and HTML Documents

Listing 5-9: How Does This Page Work?

<html>
<head>
<title>Text Object Value</title>
<script type=”text/javascript”>
<!--
function upperMe() {

document.getElementById(“output”).value =
document.getElementById(“input”).value.toUpperCase();
}
// -->
</script>
</head>

<body>
Enter lowercase letters for conversion to uppercase:

<form name=”converter”>

<input type=”text” name=”input” id=”input”
value=”sample” onchange=”upperMe()” />

<input type=”text” name=”output” id=”output” value=”” />
</form>
</body>
</html>

✦ ✦ ✦

Programming
Fundamentals,
Part I

The tutorial breaks away from HTML and documents for a while as
you begin to learn programming fundamentals that apply to prac-

tically every scripting and programming language you will encounter.
Here, you start learning about variables, expressions, data types, and
operators — things that might sound scary if you haven’t pro-
grammed before. Don’t worry. With a little practice, you will become
quite comfortable with these terms and concepts.

What Language Is This?
The language you’re studying is called JavaScript. But the language
has some other names that you may have heard. JScript is
Microsoft’s name for the language. By leaving out the “ava,” the com-
pany doesn’t have to license the “Java” name from its trademark
owner: Sun Microsystems.

A standards body called ECMA (pronounced ECK-ma) now governs
the specifications for the language (no matter what you call it). The
document that provides all of the details about the language is known
as ECMA-262 (it’s the 262nd standard published by ECMA). Both
JavaScript and JScript are ECMA-262 compatible. Some earlier
browser versions exhibit very slight deviations from ECMA-262 (which
came later than the earliest browsers). The most serious discrepan-
cies are noted in the core language reference in Part IV of this book.

Working with Information
With rare exception, every JavaScript statement you write does
something with a hunk of information — data. Data may be text infor-
mation displayed on the screen by a JavaScript statement or the
on/off setting of a radio button in a form. Each single piece of infor-
mation in programming is also called a value. Outside of program-
ming, the term value usually connotes a number of some kind; in the
programming world, however, the term is not as restrictive. A string

66C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

What variables are and
how to use them

Why you must learn
how to evaluate
expressions

How to convert data
from one type to
another

How to use basic
operators

✦ ✦ ✦ ✦

60 Part II ✦ JavaScript Tutorial

of letters is a value. A number is a value. The setting of a checkbox (whether it is checked
or not) is a value.

In JavaScript, a value can be one of several types. Table 6-1 lists JavaScript’s formal data
types, with examples of the values you will see displayed from time to time.

Table 6-1: JavaScript Value (Data) Types

Type Example Description

String “Howdy” A series of characters inside quote marks

Number 4.5 Any number not inside quote marks

Boolean true A logical true or false

Null null Completely devoid of any content, but a value just the same

Object A software “thing” that is defined by its properties and methods
(arrays are also objects)

Function A function definition

A language that contains these few data types simplifies programming tasks, especially those
involving what other languages consider to be incompatible types of numbers (integers ver-
sus real or floating-point values). In some definitions of syntax and parts of objects later in
this book, I make specific reference to the type of value accepted in placeholders. When a
string is required, any text inside a set of quotes suffices.

You will encounter situations, however, in which the value type may get in the way of a
smooth script step. For example, if a user enters a number into a form’s text input field, the
browser stores that number as a string value type. If the script is to perform some arithmetic
on that number, you must convert the string to a number before you can apply the value to
any math operations. You see examples of this later in this lesson.

Variables
Cooking up a dish according to a recipe in the kitchen has one advantage over cooking up
some data in a program. In the kitchen, you follow recipe steps and work with real things: car-
rots, milk, or a salmon fillet. A computer, on the other hand, follows a list of instructions to
work with data. Even if the data represents something that looks real, such as the text
entered into a form’s input field, once the value gets into the program, you can no longer
reach out and touch it.

In truth, the data that a program works with is merely a collection of bits (on and off states)
in your computer’s memory. More specifically, data in a JavaScript-enhanced Web page occu-
pies parts of the computer’s memory set aside for exclusive use by the browser software. In
the olden days, programmers had to know the numeric address in memory (RAM) where a
value was stored to retrieve a copy of it for, say, some addition. Although the innards of a pro-
gram have that level of complexity, programming languages such as JavaScript shield you
from it.

The most convenient way to work with data in a script is to first assign the data to a variable.
It’s usually easier to think of a variable as a basket that holds information. How long the vari-
able holds the information depends on a number of factors. But the instant a Web page clears
the window (or frame), any variables it knows about are immediately discarded.

61Chapter 6 ✦ Programming Fundamentals, Part I

Creating a variable
You have a couple of ways to create a variable in JavaScript, but one covers you properly in
all cases. Use the var keyword, followed by the name you want to give that variable.
Therefore, to declare a new variable called myAge, the JavaScript statement is

var myAge;

That statement lets the browser know that you can use that variable later to hold information
or to modify any of the data in that variable.

To assign a value to a variable, use one of the assignment operators. The most common one by
far is the equal sign. If I want to assign a value to the myAge variable at the same time I declare
it (a combined process known as initializing the variable), I use that operator in the same
statement as the var keyword:

var myAge = 45;

On the other hand, if I declare a variable in one statement and later want to assign a value to
it, the sequence of statements is

var myAge;
myAge = 45;

Use the var keyword only for declaration or initialization — once for the life of any variable
name in a document.

A JavaScript variable can hold any value type. Unlike many other languages, you don’t have
to tell JavaScript during variable declaration what type of value the variable will hold. In fact,
the value type of a variable can change during the execution of a program. (This flexibility
drives experienced programmers crazy because they’re accustomed to assigning both a data
type and a value to a variable.)

Variable names
Choose the names you assign to variables with care. You’ll often find scripts that use vague
variable names, such as single letters. Other than a few specific times where using letters is a
common practice (for example, using i as a counting variable in repeat loops in Chapter 7), I
recommend using names that truly describe a variable’s contents. This practice can help you
follow the state of your data through a long series of statements or jumps, especially for com-
plex scripts.

A number of restrictions help instill good practice in assigning names. First, you cannot use
any reserved keyword as a variable name. That includes all keywords currently used by the
language and all others held in reserve for future versions of JavaScript. The designers of
JavaScript, however, cannot foresee every keyword that the language may need in the future.
By using the kind of single words that currently appear in the list of reserved keywords (see
Appendix B), you always run a risk of a future conflict.

To complicate matters, a variable name cannot contain space characters. Therefore, one-word
variable names are fine. Should your description really benefit from more than one word, you
can use one of two conventions to join multiple words as one. One convention is to place an
underscore character between the words; the other is to start the combination word with a
lowercase letter and capitalize the first letter of each subsequent word within the name —
I refer to this as the interCap format. Both of the following examples are valid variable names:

my_age
myAge

62 Part II ✦ JavaScript Tutorial

My preference is for the second version. I find it easier to type as I write JavaScript code and
easier to read later. In fact, because of the potential conflict with future one-word keywords,
using multiword combinations for variable names is a good idea. Multiword combinations are
less likely to appear in the reserved word list.

Variable names have a couple of other important restrictions. Avoid all punctuation symbols
except for the underscore character. Also, the first character of a variable name cannot be a
numeral. If these restrictions sound familiar, it’s because they’re identical to those for HTML
element identifiers described in Chapter 4.

Expressions and Evaluation
Another concept closely related to the value and variable is expression evaluation — perhaps
the most important concept of learning how to program a computer.

We use expressions in our everyday language. Remember the theme song of The Beverly
Hillbillies?

Then one day he was shootin’ at some food

And up through the ground came a-bubblin’ crude

Oil that is. Black gold. Texas tea.

At the end of the song, you find four quite different references (“crude,” “oil,” “black gold,”
and “Texas tea”). They all mean oil. They’re all expressions for oil. Say any one of them and
other people know what you mean. In our minds, we evaluate those expressions to mean one
thing: oil.

In programming, a variable always evaluates to its contents, or value. For example, after
assigning a value to a variable, such as

var myAge = 45;

any time the variable is used in a statement, its value (45) is automatically applied to what-
ever operation that statement calls. Therefore, if you’re 15 years my junior, I can assign a
value to a variable representing your age based on the evaluated value of myAge:

var yourAge = myAge – 15;

The variable, yourAge, evaluates to 30 the next time the script uses it. If the myAge value
changes later in the script, the change has no link to the yourAge variable because myAge
evaluated to 45 when it was used to assign a value to yourAge.

Expressions in script1.htm
You probably didn’t recognize it at the time, but you saw how expression evaluation came in
handy in your first script of Chapter 3. Recall the second document.write() statement:

document.write(“ of “ + navigator.appName + “.”);

The document.write() method (remember, JavaScript uses the term method to mean com-
mand) requires a parameter in the parentheses: the text string to be displayed on the Web
page. The parameter here consists of one expression that joins three distinct strings:

“ of “
navigator.appName
“.”

63Chapter 6 ✦ Programming Fundamentals, Part I

Testing JavaScript Evaluation

You can begin experimenting with the way JavaScript evaluates expressions with the help of The
Evaluator Jr. (seen in the following figure), an HTML page you can find on the companion
CD-ROM. (I introduce the Senior version in Chapter 13.) Enter any JavaScript expression into the
top text box, and either press Enter/Return or click the Evaluate button.

The Evaluator Jr. for testing expression evaluation.

The Evaluator Jr. has 26 variables (lowercase a through z) predefined for you. Therefore, you can
assign values to variables, test comparison operators, and even do math here. Using the age vari-
able examples from earlier in this chapter, type each of the following statements into the upper
text box and observe how each expression evaluates in the Results field. Be sure to observe case-
sensitivity in your entries. The trailing semicolons are optional in The Evaluator.

a = 45;
a;
b = a – 15;
b;
a – b;
a > b;

To start over, click the Reload button.

64 Part II ✦ JavaScript Tutorial

The plus symbol is one of JavaScript’s ways of joining strings. Before JavaScript can display
this line, it must perform some quick evaluations. The first evaluation is the value of the
navigator.appName property. This property evaluates to a string of the name of your
browser. With that expression safely evaluated to a string, JavaScript can finish the job of
joining the three strings in the final evaluation. The evaluated string expression is what ulti-
mately appears on the Web page.

Expressions and variables
As one more demonstration of the flexibility that expression evaluation offers, this section
shows you a slightly different route to the document.write() statement. Rather than join
those strings as the direct parameter to the document.write() method, I can gather the
strings in a variable and then apply the variable to the document.write() method. Here’s
how that sequence looks, as I simultaneously declare a new variable and assign it a value:

var textToWrite = “ of “ + navigator.appName + “.”;
document.write(textToWrite);

This method works because the variable, textToWrite, evaluates to the combined string. The
document.write() method accepts that string value and does its display job. As you read a
script or try to work through a bug, pay special attention to how each expression (variable,
statement, object property) evaluates. I guarantee that as you learn JavaScript (or any lan-
guage), you will end up scratching your head from time to time because you haven’t stopped
to examine how expressions evaluate when a particular kind of value is required in a script.

Data Type Conversions
I mentioned earlier that the type of data in an expression can trip up some script operations
if the expected components of the operation are not of the right type. JavaScript tries its best
to perform internal conversions to head off such problems, but JavaScript cannot read your
mind. If your intentions differ from the way JavaScript treats the values, you won’t get the
results you expect.

A case in point is adding numbers that may be in the form of text strings. In a simple arith-
metic statement that adds two numbers together, you get the expected result:

3 + 3 // result = 6

But if one of those numbers is a string, JavaScript leans toward converting the other value to
a string — thus turning the plus sign’s action from arithmetic addition to joining strings.
Therefore, in the statement

3 + “3” // result = “33”

the “string-ness” of the second value prevails over the entire operation. The first value is
automatically converted to a string, and the result joins the two strings. Try this yourself in
The Evaluator Jr.

If I take this progression one step further, look what happens when another number is added
to the statement:

3 + 3 + “3” // result = “63”

This might seem totally illogical, but there is logic behind this result. The expression is evalu-
ated from left to right. The first plus operation works on two numbers, yielding a value of 6.

65Chapter 6 ✦ Programming Fundamentals, Part I

But as the 6 is about to be added to the “3,” JavaScript lets the “string-ness” of the “3” rule.
The 6 is converted to a string, and two string values are joined to yield “63.”

Most of your concern about data types will focus on performing math operations like the
ones here. However, some object methods also require one or more parameters of particular
data types. While JavaScript provides numerous ways to convert data from one type to
another, it is appropriate at this stage of the tutorial to introduce you to the two most com-
mon data conversions: string to number and number to string.

Converting strings to numbers
As you saw in the last section, if a numeric value is stored as a string — as it is when entered
into a form text field — your scripts may have difficulty applying that value to a math opera-
tion. The JavaScript language provides two built-in functions to convert string representa-
tions of numbers to true numbers: parseInt() and parseFloat().

There is a difference between integers and floating-point numbers in JavaScript. Integers are
always whole numbers, with no decimal point or numbers to the right of a decimal. Floating-
point numbers, on the other hand, have fractional values to the right of the decimal. By and
large, JavaScript math operations don’t differentiate between integers and floating-point num-
bers: A number is a number. The only time you need to be cognizant of the difference is when
a method parameter requires an integer because it can’t handle fractional values. For exam-
ple, parameters to the scroll() method of a window require integer values of the number of
pixels vertically and horizontally you want to scroll the window. That’s because you can’t
scroll a window a fraction of a pixel on the screen.

To use either of these conversion functions, insert the string value you wish to convert as a
parameter to the function. For example, look at the results of two different string values when
passed through the parseInt() function:

parseInt(“42”) // result = 42
parseInt(“42.33”) // result = 42

Even though the second expression passes the string version of a floating-point number to
the function, the value returned by the function is an integer. No rounding of the value occurs
here (although other math functions can help with that if necessary). The decimal and every-
thing to its right are simply stripped off.

The parseFloat() function returns an integer if it can; otherwise, it returns a floating-point
number as follows:

parseFloat(“42”) // result = 42
parseFloat(“42.33”) // result = 42.33

Because these two conversion functions evaluate to their results, you simply insert the entire
function wherever you need a string value converted to a number. Therefore, modifying an
earlier example in which one of three values was a string, the complete expression can evalu-
ate to the desired result:

3 + 3 + parseInt(“3”) // result = 9

Converting numbers to strings
You’ll have less need for converting a number to its string equivalent than the other way
around. As you saw in the previous section, JavaScript gravitates toward strings when faced

66 Part II ✦ JavaScript Tutorial

with an expression containing mixed data types. Even so, it is good practice to perform data
type conversions explicitly in your code to prevent any potential ambiguity. The simplest way
to convert a number to a string is to take advantage of JavaScript’s string tendencies in addi-
tion operations. By adding an empty string to a number, you convert the number to its string
equivalent:

(“” + 2500) // result = “2500”
(“” + 2500).length // result = 4

In the second example, you can see the power of expression evaluation at work. The paren-
theses force the conversion of the number to a string. A string is a JavaScript object that has
properties associated with it. One of those properties is the length property, which evalu-
ates to the number of characters in the string. Therefore, the length of the string “2500” is 4.
Note that the length value is a number, not a string.

Operators
You will use lots of operators in expressions. Earlier, you used the equal sign (=) as an assign-
ment operator to assign a value to a variable. In the preceding examples with strings, you
used the plus symbol (+) to join two strings. An operator generally performs some kind of cal-
culation (operation) or comparison with two values (the value on each side of an operator is
called an operand) to reach a third value. In this lesson, I briefly describe two categories of
operators — arithmetic and comparison. Chapter 32 covers many more operators, but once
you understand the basics here, the others are easier to grasp.

Arithmetic operators
It may seem odd to talk about text strings in the context of “arithmetic” operators, but you
have already seen the special case of the plus (+) operator when one or more of the operands
is a string. The plus operator instructs JavaScript to concatenate (pronounced kon-KAT-en-
eight), or join, two strings together precisely where you place the operator. The string con-
catenation operator doesn’t know about words and spaces, so the programmer must make
sure that any two strings to be joined have the proper word spacing as part of the strings —
even if that means adding a space:

firstName = “John”;
lastName = “Doe”;
fullName = firstName + “ “ + lastName;

JavaScript uses the same plus operator for arithmetic addition. When both operands are
numbers, JavaScript knows to treat the expression as an arithmetic addition rather than a
string concatenation. The standard math operators for addition, subtraction, multiplication,
and division (+, -, *, /) are built into JavaScript.

Comparison operators
Another category of operator helps you compare values in scripts — whether two values are
the same, for example. These kinds of comparisons return a value of the Boolean type —true
or false. Table 6-2 lists the comparison operators. The operator that tests whether two
items are equal consists of a pair of equal signs to distinguish it from the single equal sign
assignment operator.

67Chapter 6 ✦ Programming Fundamentals, Part I

Table 6-2: JavaScript Comparison Operators

Symbol Description

== Equals

!= Does not equal

> Is greater than

>= Is greater than or equal to

< Is less than

<= Is less than or equal to

Where comparison operators come into greatest play is in the construction of scripts that
make decisions as they run. A cook does this in the kitchen all the time: If the sauce is too
watery, add a bit of flour. You see comparison operators in action in the next chapter.

Exercises
1. Which of the following are valid variable declarations or initializations? Explain why

each one is or is not valid. If an item is invalid, how do you fix it so that it is?

a. my_name = “Cindy”;

b. var how many = 25;

c. var zipCode = document.getElementById(“zip”).value

d. var 1address = document.(“address1”).value;

2. Assume that the following statements operate rapidly in sequence, where each state-
ment relies on the result of the one before it. For each of the statements in the
sequence, write down how the someVal expression evaluates after the statement exe-
cutes in JavaScript.

var someVal = 2;
someVal = someVal + 2;
someVal = someVal * 10;
someVal = someVal + “20”;
someVal = “Robert”;

3. Name the two JavaScript functions that convert strings to numbers. How do you give
the function a string value to convert to a number?

4. Type and load the HTML page and script shown in Listing 6-1. Enter a three-digit num-
ber into the top two fields and click the Add button. Examine the code and explain
what is wrong with the script. How do you fix the script so the proper sum is displayed
in the output field?

68 Part II ✦ JavaScript Tutorial

Listing 6-1: What’s Wrong with This Page?

<html>
<head>
<title>Sum Maker</title>
<script type=”text/javascript”>
<!--
function addIt() {

var value1 = document.getElementById(“inputA”).value;
var value2 = document.getElementById(“inputB”).value;
document.getElementById(“output”).value = value1 + value2;

}
// -->
</script>
</head>

<body>
<form name=”adder”>
<input type=”text” name=”inputA” id=”inputA” value=”0” size=”4” />

<input type=”text” name=”inputB” id=”inputB” value=”0” size=”4” />
<input type=”button” value=”Add” onclick=”addIt()”>
<p>____________</p>
<input type=”text” name=”output” id=”output” size=”6” />
</form>
</body>
</html>

5. What does the term concatenate mean in the context of JavaScript programming?

✦ ✦ ✦

Programming
Fundamentals,
Part II

Your tour of programming fundamentals continues in this chapter
with subjects that have more intriguing possibilities. For exam-

ple, I show you how programs make decisions and why a program
must sometimes repeat statements over and over. Before you’re fin-
ished here, you will learn how to use one of the most powerful infor-
mation holders in the JavaScript language: the array.

Decisions and Loops
Every waking hour of every day you make decisions of some kind —
most of the time you probably don’t even realize it. Don’t think so?
Well, look at the number of decisions you make at the grocery store,
from the moment you enter the store to the moment you clear the
checkout aisle.

No sooner do you enter the store than you are faced with a decision.
Based on the number and size of items you intend to buy, do you pick
up a hand-carried basket or attempt to extricate a shopping cart from
the metallic conga line near the front of the store? That key decision
may have impact later when you see a special offer on an item that is
too heavy to put into the hand basket.

Next, you head for the food aisles. Before entering an aisle, you com-
pare the range of goods stocked in that aisle against items on your
shopping list. If an item you need is likely to be found in this aisle,
you turn into the aisle and start looking for the item; otherwise, you
skip the aisle and move to the head of the next aisle.

Later, you reach the produce section in search of a juicy tomato.
Standing in front of the bin of tomatoes, you begin inspecting them
one by one — picking one up, feeling its firmness, checking the color,
looking for blemishes or signs of pests. You discard one, pick up
another, and continue this process until one matches the criteria you
set in your mind for an acceptable morsel. Your last stop in the store
is the checkout aisle. “Paper or plastic?” the clerk asks. One more
decision to make. What you choose impacts how you get the gro-
ceries from the car to the kitchen as well as your recycling habits.

77C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

How control structures
make decisions

How to define functions

Where to initialize
variables efficiently

What those darned
curly braces are all
about

The basics of data
arrays

✦ ✦ ✦ ✦

70 Part II ✦ JavaScript Tutorial

In your trip to the store, you go through the same kinds of decisions and repetitions that your
JavaScript programs also encounter. If you understand these frameworks in real life, you can
now look into the JavaScript equivalents and the syntax required to make them work.

Control Structures
In the vernacular of programming, the kinds of statements that make decisions and loop
around to repeat themselves are called control structures. A control structure directs the exe-
cution flow through a sequence of script statements based on simple decisions and other
factors.

An important part of a control structure is the condition. Just as you may travel different
routes to work depending on certain conditions (for example, nice weather, nighttime, attend-
ing a soccer game), so, too, does a program sometimes have to branch to an execution route
if a certain condition exists. Each condition is an expression that evaluates to true or
false— one of those Boolean data types mentioned in Chapter 6. The kinds of expressions
commonly used for conditions are expressions that include a comparison operator. You do
the same in real life: If it is true that the outdoor temperature is less than freezing, you put on
a coat before going outside. In programming, however, the comparisons are strictly compar-
isons of values.

JavaScript provides several kinds of control structures for different programming situations.
Three of the most common control structures you’ll use are if constructions, if...else
constructions, and for loops.

Chapter 31 covers in great detail other common control structures you should know. For this
tutorial, however, you need to learn about the three common ones just mentioned.

if constructions
The simplest program decision is to follow a special branch or path of the program if a cer-
tain condition is true. Formal syntax for this construction follows. Items in italics get replaced
in a real script with expressions and statements that fit the situation.

if (condition) {
statement[s] if true

}

Don’t worry about the curly braces yet. Instead, get a feel for the basic structure. The key-
word, if, is a must. In the parentheses goes an expression that evaluates to a Boolean value.
This is the condition being tested as the program runs past this point. If the condition evalu-
ates to true, one or more statements inside the curly braces execute before continuing on
with the next statement after the closing brace. If the condition evaluates to false, the state-
ments inside the curly braces are ignored and processing continues with the next statement
after the closing brace.

The following example assumes that a variable, myAge, has had its value set earlier in the
script (exactly how is not important for this example). The condition expression compares
the value myAge against a numeric value of 18.

if (myAge < 18) {
alert(“Sorry, you cannot vote.”);

}

71Chapter 7 ✦ Programming Fundamentals, Part II

In this example, the data type of the value inside myAge must be a number so that the proper
comparison (via the < comparison operator) does the right thing. For all instances of myAge
less than 18, the nested statement inside the curly braces runs and displays the alert to the
user. After the user closes the alert dialog box, the script continues with whatever statement
follows the entire if construction.

if . . . else constructions
Not all program decisions are as simple as the one shown for the if construction. Rather
than specifying one detour for a given condition, you might want the program to follow either
of two branches depending on that condition. It is a fine, but important, distinction. In the
plain if construction, no special processing is performed when the condition evaluates to
false. But if processing must follow one of two special paths, you need the if...else con-
struction. The formal syntax definition for an if...else construction is as follows:

if (condition) {
statement[s] if true

} else {
statement[s] if false

}

Everything you know about the condition for an if construction applies here. The only differ-
ence is the else keyword, which provides an alternate path for execution to follow if the con-
dition evaluates to false.

As an example, the following if...else construction determines how many days are in
February for a given year. To simplify the demo, the condition simply tests whether the year
divides equally by 4. (True testing for this value includes special treatment of end-of-century
dates, but I’m ignoring that for now.) The % operator symbol is called the modulus operator
(covered in more detail in Chapter 32). The result of an operation with this operator yields
the remainder of division of the two values. If the remainder is zero, the first value divides
evenly by the second.

var febDays;
var theYear = 2004;
if (theYear % 4 == 0) {

febDays = 29;
} else {

febDays = 28;
}

The important point to see from this example is that by the end of the if...else construc-
tion, the febDays variable is set to either 28 or 29. No other value is possible. For years evenly
divisible by 4, the first nested statement runs. For all other cases, the second statement runs.
Processing then picks up with the next statement after the if...else construction.

About Repeat Loops
Repeat loops in real life generally mean the repetition of a series of steps until some condition
is met, thus enabling you to break out of that loop. Such was the case earlier in this chapter
when you looked through a bushel of tomatoes for the one that came closest to your ideal
tomato. The same can be said for driving around the block in a crowded neighborhood until a
parking space opens up.

72 Part II ✦ JavaScript Tutorial

A repeat loop lets a script cycle through a sequence of statements until some condition is
met. For example, a JavaScript data validation routine might inspect every character that you
enter into a form text field to make sure that each one is a number. Or if you have a collection
of data stored in a list, the loop can check whether an entered value is in that list. Once that
condition is met, the script can then break out of the loop and continue with the next state-
ment after the loop construction.

The most common repeat loop construction used in JavaScript is called the for loop. It gets
its name from the keyword that begins the construction. A for loop is a powerful device
because you can set it up to keep track of the number of times the loop repeats itself. The for-
mal syntax of the for loop is as follows:

for ([initial expression]; [condition]; [update expression]) {
statement[s] inside loop

}

The square brackets mean that the item is optional. However, until you get to know the for
loop better, I recommend designing your loops to utilize all three items inside the parenthe-
ses. The initial expression portion usually sets the starting value of a counter variable. The
condition — the same kind of condition you saw for if constructions — defines the condition
that forces the loop to stop going around and around. Finally, the update expression is a state-
ment that executes each time all of the statements nested inside the construction complete
running.

A common implementation initializes a counting variable, i, increments the value of i by one
each time through the loop, and repeats the loop until the value of i exceeds some maximum
value, as in the following:

for (var i = startValue; i <= maxValue; i++) {
statement[s] inside loop

}

Placeholders startValue and maxValue represent any numeric values, including explicit
numbers or variables holding numbers. In the update expression is an operator you have not
seen yet. The ++ operator adds 1 to the value of i each time the update expression runs at
the end of the loop. If startValue is 1, the value of i is 1 the first time through the loop, 2
the second time through, and so on. Therefore, if maxValue is 10, the loop repeats itself 10
times (in other words, as long as i is less than or equal to 10). Generally speaking, the state-
ments inside the loop use the value of the counting variable in their execution. Later in this
lesson, I show how the variable can play a key role in the statements inside a loop. At the
same time, you will see how to break out of a loop prematurely and why you may need to do
this in a script.

Functions
In Chapter 5, you saw a preview of the JavaScript function. A function is a definition of a set of
deferred actions. Functions are invoked by event handlers or by statements elsewhere in the
script. Whenever possible, good functions are designed for reuse in other documents. They
can become building blocks you use over and over again.

If you have programmed before, you can see parallels between JavaScript functions and other
languages’ subroutines. But unlike some languages that distinguish between procedures
(which carry out actions) and functions (which carry out actions and return values), only one

73Chapter 7 ✦ Programming Fundamentals, Part II

classification of routine exists for JavaScript. A function is capable of returning a value to the
statement that invoked it, but this is not a requirement. However, when a function does
return a value, the calling statement treats the function call like any expression — plugging in
the returned value right where the function call is made. I will show some examples in a
moment.

Formal syntax for a function is as follows:

function functionName ([parameter1]...[,parameterN]) {
statement[s]

}

Names you assign to functions have the same restrictions as names you assign to HTML ele-
ments and variables. You should devise a name that succinctly describes what the function
does. I tend to use multiword names with the interCap (internally capitalized) format that
start with a verb because functions are action items, even if they do nothing more than get or
set a value.

Another practice to keep in mind as you start to create functions is to keep the focus of each
function as narrow as possible. It is possible to generate functions that are literally hundreds
of lines long. Such functions are usually difficult to maintain and debug. Chances are that you
can divide the long function into smaller, more tightly focused segments.

Function parameters
In Chapter 5, you saw how an event handler invokes a function by calling the function by
name. Any call to a function, including one that comes from another JavaScript statement,
works the same way: a set of parentheses follows the function name.

You also can define functions so they receive parameter values from the calling statement.
Listing 7-1 shows a simple document that has a button whose onclick event handler calls a
function while passing text data to the function. The text string in the event handler call is in
a nested string — a set of single quotes inside the double quotes required for the entire event
handler attribute.

Listing 7-1: Calling a Function from an Event Handler

<html>
<head>
<script type=”text/javascript”>
function showMsg(msg) {

alert(“The button sent: “ + msg);
}
</script>
</head>
<body>
<form>

<input type=”button” value=”Click Me”
onclick=”showMsg(‘The button has been clicked!’)”>

</form>
</body>
</html>

74 Part II ✦ JavaScript Tutorial

Parameters (also known as arguments) provide a mechanism for “handing off” a value from
one statement to another by way of a function call. If no parameters occur in the function def-
inition, both the function definition and call to the function have only empty sets of parenthe-
ses (as shown in Chapter 5, Listing 5-8).

When a function receives parameters, it assigns the incoming values to the variable names
specified in the function definition’s parentheses. Consider the following script segment:

function sayHiToFirst(a, b, c) {
alert(“Say hello, “ + a);

}
sayHiToFirst(“Gracie”, “George”, “Harry”);
sayHiToFirst(“Larry”, “Moe”, “Curly”);

After the function is defined in the script, the next statement calls that very function, passing
three strings as parameters. The function definition automatically assigns the strings to vari-
ables a, b, and c. Therefore, before the alert() statement inside the function ever runs, a
evaluates to “Gracie,” b evaluates to “George,” and c evaluates to “Harry.” In the alert()
statement, only the a value is used and the alert reads

Say hello, Gracie

When the user closes the first alert, the next call to the function occurs. This time through,
different values are passed to the function and assigned to a, b, and c. The alert dialog box
reads

Say hello, Larry

Unlike other variables that you define in your script, function parameters do not use the var
keyword to initialize them. They are automatically initialized whenever the function is called.

Variable scope
Speaking of variables, it’s time to distinguish between variables that are defined outside and
those defined inside of functions. Variables defined outside of functions are called global vari-
ables; those defined inside functions with the var keyword are called local variables.

A global variable has a slightly different connotation in JavaScript than it has in most other
languages. For a JavaScript script, the “globe” of a global variable is the current document
loaded in a browser window or frame. Therefore, when you initialize a variable as a global
variable, it means that all script statements in the page (including those inside functions)
have direct access to that variable value. Statements can retrieve and modify global variables
from anywhere in the page. In programming terminology, this kind of variable is said to have
global scope because everything on the page can “see” it.

It is important to remember that the instant a page unloads itself, all global variables defined
in that page disappear from memory forever. If you need a value to persist from one page to
another, you must use other techniques to store that value (for example, as a global variable
in a framesetting document, as described in Chapter 16; or in a cookie, as described in
Chapter 18). While the var keyword is usually optional for initializing global variables, I
strongly recommend you use it for all variable initializations to guard against future changes
to the JavaScript language.

In contrast to the global variable, a local variable is defined inside a function. You already saw
how parameter variables are defined inside functions (without var keyword initializations).
But you can also define other variables with the var keyword (absolutely required for local

75Chapter 7 ✦ Programming Fundamentals, Part II

variables or they become recognized as global variables). The scope of a local variable is
only within the statements of the function. No other functions or statements outside of func-
tions have access to a local variable.

Local scope allows for the reuse of variable names within a document. For most variables, I
strongly discourage this practice because it leads to confusion and bugs that are difficult to
track down. At the same time, it is convenient to reuse certain kinds of variable names, such
as for loop counters. These are safe because they are always reinitialized with a starting
value whenever a for loop starts. You cannot, however, nest one for loop inside another
without specifying a different loop counting variable in the nested loop.

To demonstrate the structure and behavior of global and local variables — and show you why
you shouldn’t reuse most variable names inside a document — Listing 7-2 defines two global
and two local variables. I intentionally use bad form by initializing a local variable that has
the same name as a global variable.

Listing 7-2: Global and Local Variable Scope Demonstration

<html>
<head>
<script type=”text/javascript”>
var aBoy = “Charlie Brown”; // global
var hisDog = “Snoopy”; // global
function demo() {

// using improper design to demonstrate a point
var hisDog = “Gromit”; // local version of hisDog
var output = hisDog + “ does not belong to “ + aBoy + “.
”;
document.write(output);

}
</script>
</head>
<body>
<script type=”text/javascript”>
demo(); // runs as document loads
document.write(hisDog + “ belongs to “ + aBoy + “.”);
</script>
</body>
</html>

When the page loads, the script in the Head portion initializes the two global variables (aBoy
and hisDog) and defines the demo() function in memory. In the Body, another script begins
by invoking the function. Inside the function, a local variable is initialized with the same name
as one of the global variables —hisDog. In JavaScript, such a local initialization overrides the
global variable for all statements inside the function. (But note that if the var keyword is left
off of the local initialization, the statement reassigns the value of the global version to
“Gromit.”)

Another local variable, output, is merely a repository for accumulating the text that is to be
written to the screen. The accumulation begins by evaluating the local version of the hisDog
variable. Then it concatenates some hard-wired text (note the extra spaces at the edges of
the string segment). Next comes the evaluated value of the aBoy global variable — any global

76 Part II ✦ JavaScript Tutorial

not overridden by a local is available for use inside the function. The expression is accumu-
lating HTML to be written to the page, so it ends with a period and a
 tag. The final state-
ment of the function writes the content to the page.

After the function completes its task, the next statement in the Body script writes another
string to the page. Because this script statement is executing in global space (that is, not
inside any function), it accesses only global variables — including those defined in another
<script> tag set in the document. By the time the complete page finishes loading, it contains
the following text lines:

Gromit does not belong to Charlie Brown.
Snoopy belongs to Charlie Brown.

About Curly Braces
Despite the fact that you probably rarely — if ever — use curly braces ({ }) in your writing,
there is no mystery to their usage in JavaScript (and many other languages). Curly braces
enclose blocks of statements that belong together. While they do assist humans who are read-
ing scripts in knowing what’s going on, curly braces also help the browser to know which
statements belong together. You always must use curly braces in matched pairs.

You use curly braces most commonly in function definitions and control structures. In the
function definition in Listing 7-2, curly braces enclose four statements that make up the func-
tion definition (including the comment line). The closing brace lets the browser know that
whatever statement comes next is a statement outside of the function definition.

Physical placement of curly braces is not critical (nor is the indentation style you see in the
code I provide). The following function definitions are treated identically by scriptable
browsers:

function sayHiToFirst(a, b, c) {
alert(“Say hello, “ + a);

}

function sayHiToFirst(a, b, c)
{

alert(“Say hello, “ + a);
}

function sayHiToFirst(a, b, c) {alert(“Say hello, “ + a);}

Throughout this book, I use the style shown in the first example because I find that it makes
lengthy and complex scripts easier to read — especially scripts that have many levels of
nested control structures.

Arrays
The JavaScript array is one of the most useful data constructions you have available to you.
You can visualize the structure of a basic array as if it were a single-column spreadsheet. Each
row of the column holds a distinct piece of data, and each row is numbered. Numbers
assigned to rows are in strict numerical sequence, starting with zero as the first row (pro-
grammers tend to start counting with zero). This row number is called an index. To access an

77Chapter 7 ✦ Programming Fundamentals, Part II

item in an array, you need to know the name of the array and the index for the row. Because
index values start with zero, the total number of items of the array (as determined by the
array’s length property) is always one more than the highest index value of the array.
More advanced array concepts enable you to create the equivalent of an array with
multiple columns (described in Chapter 30). For this tutorial, I stay with the single-
column basic array.

Data elements inside JavaScript arrays can be any data type, including objects. And, unlike a
lot of other programming languages, different rows of the same JavaScript array can contain
different data types.

Creating an array
An array is stored in a variable, so when you create an array you assign the new array object
to the variable. (Yes, arrays are objects, but they belong to the core JavaScript language
rather than the document object model.) A special keyword —new— preceding a call to the
JavaScript function that generates arrays creates space in memory for the array. An optional
parameter to the Array() function enables you to specify at the time of creation how many
elements (rows) of data eventually will occupy the array. JavaScript is very forgiving about
this because you can change the size of an array at any time. Therefore, if you omit a parame-
ter when generating a new array, your script incurs no penalty.

To demonstrate the array creation process, I create an array that holds the names of the
50 states plus the District of Columbia (a total of 51). The first task is to create that array
and assign it to a variable of any name that helps me remember what this collection of data
is about:

var USStates = new Array(51);

At this point, the USStates array is sitting in memory like a 51-row table with no data in it. To
fill the rows, I must assign data to each row. Addressing each row of an array requires a spe-
cial way of indicating the index value of the row: square brackets after the name of the array.
The first row of the USStates array is addressed as

USStates[0]

To assign the string name of the first state of the alphabet to that row, I use a simple assign-
ment operator:

USStates[0] = “Alabama”;

To fill in the rest of the rows, I include a statement for each row:

USStates[1] = “Alaska”;
USStates[2] = “Arizona”;
USStates[3] = “Arkansas”;
...
USStates[50] = “Wyoming”;

Therefore, if you want to include a table of information in a document from which a script
can look up information without accessing the server, you include the data in the document
in the form of an array creation sequence. When the statements run as the document loads,
by the time the document finishes loading into the browser, the data collection array is built
and ready to go. Despite what appears to be the potential for a lot of statements in a docu-
ment for such a data collection, the amount of data that must download for typical array

78 Part II ✦ JavaScript Tutorial

collections is small enough not to severely impact page loading — even for dial-up users at
28.8 Kbps. In Chapter 30, you also see some syntax shortcuts for creating arrays that reduce
source code character counts.

Accessing array data
The array index is the key to accessing an array element. The name of the array and an index
in square brackets evaluates to the content of that array location. For example, after the
USStates array is built, a script can display an alert with Alaska’s name in it with the follow-
ing statement:

alert(“The largest state is “ + USStates[1] + “.”);

Just as you can retrieve data from an indexed array element, so can you change the element
by reassigning a new value to any indexed element in the array.

Parallel arrays
Now I show you why the numeric index methodology works well in JavaScript. To help with
the demonstration, I generate another array that is parallel with the USStates array. This
new array is also 51 elements long, and it contains the year in which the state in the corre-
sponding row of USStates entered the Union. That array construction looks like the
following:

var stateEntered = new Array(51);
stateEntered [0] = 1819;
stateEntered [1] = 1959;
stateEntered [2] = 1912;
stateEntered [3] = 1836;
...
stateEntered [50] = 1890;

In the browser’s memory, then, are two data tables that you can visualize as looking like the
model in Figure 7-1. I can build more arrays that are parallel to these for items such as the
postal abbreviation and capital city. The important point is that the zeroth element in each of
these tables applies to Alabama, the first state in the USStates array.

Figure 7-1: Visualization of two related parallel data tables.

"Alabama"

"Alaska"

"Arizona"

"Arkansas"

"Wyoming"

1819

1959

1912

1836

1890

[0]

[1]

[2]

[3]

[50]

stateEnteredUSStates

....
....

....

79Chapter 7 ✦ Programming Fundamentals, Part II

If a Web page included these data tables and a way for a user to look up the entry date for a
given state, the page would need a way to look through all of the USStates entries to find the
index value of the one that matches the user’s entry. Then, that index value could be applied
to the stateEntered array to find the matching year.

For this demo, the page includes a text entry field in which the user types the name of the
state to look up. In a real application, this methodology is fraught with peril unless the script
performs some error checking in case the user makes a mistake. But for now, I assume that
the user always types a valid state name. (Don’t ever make this assumption in your Web site’s
pages.) An event handler from either the text field or a clickable button calls a function that
looks up the state name, fetches the corresponding entry year, and displays an alert message
with the information. The function is as follows:

function getStateDate() {
var selectedState = document.getElementById(“entry”).value;
for (var i = 0; i < USStates.length; i++) {

if (USStates[i] == selectedState) {
break;

}
}
alert(“That state entered the Union in “ + stateEntered[i] + “.”);

}

In the first statement of the function, I grab the value of the text box and assign the value to a
variable, selectedState. This is mostly for convenience because I can use the shorter vari-
able name later in the script. In fact, the usage of that value is inside a for loop, so the script
is marginally more efficient because the browser doesn’t have to evaluate that long reference
to the text field each time through the loop.

The key to this function is in the for loop. Here is where I combine the natural behavior of
incrementing a loop counter with the index values assigned to the two arrays. Specifications
for the loop indicate that the counter variable, i, is initialized with a value of zero. The loop is
directed to continue as long as the value of i is less than the length of the USStates array.
Remember that the length of an array is always one more than the index value of the last
item. Therefore, the last time the loop runs is when i is 50, which is both less than the length
of 51 and equal to the index value of the last element. Each time after the loop runs, the
counter increments by one.

Nested inside the for loop is an if construction. The condition tests the value of an element
of the array against the value typed in by the user. Each time through the loop, the condition
tests a different row of the array starting with row zero. In other words, this if construction
can be performed dozens of times before a match is found, but each time the value of i is one
larger than the previous try.

The equality comparison operator (==) is strict when it comes to comparing string values.
Such comparisons respect the case of each letter. In our example, the user must type the
state name exactly as it is stored in the USStates array for the match to be found. In Chapter
10, you learn about some helper methods that eliminate case and sensitivity in string
comparisons.

When a match is found, the statement nested inside the if construction runs. The break
statement is designed to help control structures bail out if the program needs it. For this
application, it is imperative that the for loop stop running when a match for the state name

80 Part II ✦ JavaScript Tutorial

is found. When the for loop breaks, the value of the i counter is fixed at the row of the
USStates array containing the entered state. I need that index value to find the correspond-
ing entry in the other array. Even though the counting variable, i, is initialized in the for
loop, it is still “alive” and in the scope of the function for all statements after the initialization.
That’s why I can use it to extract the value of the row of the stateEntered array in the final
statement that displays the results in an alert message.

This application of a for loop and array indexes is a common one in JavaScript. Study the
code carefully and be sure you understand how it works. This way of cycling through arrays
plays a role not only in the kinds of arrays you create in your code, but also with the arrays
that browsers generate for the document object model.

Document objects in arrays
If you look at the document object portions of the Quick Reference in Appendix A, you can
see that the properties of some objects are listed with square brackets after them. These are,
indeed, the same kind of square brackets you just saw for array indexes. That’s because when
a document loads, the browser creates arrays of like objects in the document. For example, if
your page includes two <form> tag sets, then two forms appear in the document. The
browser maintains an array of form objects for that document. References to those forms are

document.forms[0]
document.forms[1]

Index values for document objects are assigned according to the loading order of the objects.
In the case of form objects, the order is dictated by the order of the <form> tags in the docu-
ment. This indexed array syntax is another way to reference forms in an object reference. You
can still use a form’s identifier if you prefer — and I heartily recommend using object names
wherever possible because even if you change the physical order of the objects in your
HTML, references that use names still work without modification. But if your page contains
only one form, you can use the reference types interchangeably, as in the following examples
of equivalent references to the length property of a form’s elements array (the elements
array contains all the form controls in the form):

document.getElementById(“entryForm”).elements.length
document.forms[0].elements.length

In examples throughout this book, you can see that I often use the array type of reference to
simple forms in simple documents. But in my production pages, I almost always use named
references.

Exercises
1. With your newly acquired knowledge of functions, event handlers, and control struc-

tures, use the script fragments from this chapter to complete the page that has the
lookup table for all of the states and the years they entered into the Union. If you do
not have a reference book for the dates, use different year numbers starting with 1800
for each entry. In the page, create a text entry field for the state and a button that trig-
gers the lookup in the arrays.

81Chapter 7 ✦ Programming Fundamentals, Part II

2. Examine the following function definition. Can you spot any problems with the defini-
tion? If so, how can you fix the problems?

function format(ohmage) {
var result;
if ohmage >= 1e6 {

ohmage = ohmage / 1e6;
result = ohmage + “ Mohms”;

} else {
if (ohmage >= 1e3)

ohmage = ohmage / 1e3;
result = ohmage + “ Kohms”;

else
result = ohmage + “ ohms”;

}
alert(result);

3. Devise your own syntax for the scenario of looking for a ripe tomato at the grocery
store, and write a for loop using that object and property syntax.

4. Modify Listing 7-2 so it does not reuse the hisDog variable inside the function.

5. Given the following table of data about several planets of our solar system, create a
Web page that enables users to enter a planet name and, at the click of a button, have
the distance and diameter appear either in an alert box or (as extra credit) in separate
fields of the page.

Planet Distance from the Sun Diameter

Mercury 36 million miles 3,100 miles

Venus 67 million miles 7,700 miles

Earth 93 million miles 7,920 miles

Mars 141 million miles 4,200 miles

✦ ✦ ✦

Window and
Document
Objects

Now that you have exposure to programming fundamentals,
it is easier to demonstrate how to script objects in documents.

Starting with this lesson, the tutorial turns back to the document
object model, diving more deeply into each of the objects you will
place in many of your documents.

Top-Level Objects
As a refresher, study the hierarchy of top-level objects in Figure 8-1.
This chapter focuses on objects of this level that you’ll frequently
encounter in your scripting: window, location, navigator, and
document. The goal is not only to equip you with the basics so you
can script simple tasks, but also to prepare you for in-depth examina-
tions of each object and its properties, methods, and event handlers
in Part III of this book. I introduce only the basic properties, methods,
and event handlers for objects in this tutorial — you can find far
more in Part III. Examples in that part of the book assume you know
the programming fundamentals covered in previous chapters.

88C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

What the window
object does

How to access key
window object
properties and methods

How to trigger script
actions after a
document loads

The purposes of the
location and
history objects

How the document
object is created

How to access key
document object
properties and methods

✦ ✦ ✦ ✦

84 Part II ✦ JavaScript Tutorial

Figure 8-1: The top-level browser object model for all scriptable browsers.

The window Object
At the very top of the object hierarchy is the window object. This object gains that exalted
spot in the object food chain because it is the master container for all content you view in the
Web browser. As long as a browser window is open — even if no document is loaded in the
window — the window object is defined in the current model in memory.

In addition to the content part of the window where documents go, a window’s sphere of
influence includes the dimensions of the window and all of the “stuff” that surrounds the con-
tent area. The area where scrollbars, toolbars, the status bar, and (non-Macintosh) menu bar
live is known as a window’s chrome. Not every browser has full scripted control over the
chrome of the main browser window, but you can easily script the creation of additional win-
dows sized the way you want and that have only the chrome elements you wish to display in
the subwindow.

Although the discussion about frames comes in Chapter 11, I can safely say now that each
frame is also considered a window object. If you think about it, that makes sense because
each frame can hold a different document. When a script runs in one of those documents, it
regards the frame that holds the document as the window object in its view of the object
hierarchy.

As you learn in this chapter, the window object is a convenient place for the document object
model to attach methods that display modal dialog boxes and adjust the text that displays in
the status bar at the bottom of the browser window. A window object method enables you to
create a separate window that appears on the screen. When you look at all of the properties,
methods, and event handlers defined for the window object (see Chapter 16), it should be
clear why they are attached to window objects — visualize their scope and the scope of a
browser window.

Accessing window properties and methods
You can word script references to properties and methods of the window object in several
ways, depending more on whim and style than on specific syntactical requirements. The most
logical and common way to compose such references includes the window object in the
reference:

window.propertyName
window.methodName([parameters])

window

document

navigator screen history location

85Chapter 8 ✦ Window and Document Objects

A window object also has a synonym when the script doing the referencing points to the win-
dow that houses the document. The synonym is self. Reference syntax then becomes

self.propertyName
self.methodName([parameters])

You can use these initial reference object names interchangeably, but I tend to reserve the
use of self for more complex scripts that involve multiple frames and windows. The self
moniker more clearly denotes the current window holding the script’s document. It makes
the script more readable — by me and by others.

Back in Chapter 4, I indicated that because the window object is always “there” when a script
runs, you could omit it from references to any objects inside that window. Therefore, the fol-
lowing syntax models assume properties and methods of the current window:

propertyName
methodName([parameters])

In fact, as you will see in a few moments, some methods may be more understandable if you
omit the window object reference. The methods run just fine either way.

Creating a window
A script does not create the main browser window. A user does that by virtue of launching
the browser or by opening a URL or file from the browser’s menus (if the window is not
already open). But a script can generate any number of subwindows once the main window is
open (and that window contains a document whose script needs to open subwindows).

The method that generates a new window is window.open(). This method contains up to
three parameters that define window characteristics, such as the URL of the document to
load, its name for target attribute reference purposes in HTML tags, and physical appear-
ance (size and chrome contingent). I don’t go into the details of the parameters here (they’re
covered in great depth in Chapter 16), but I do want to expose you to an important concept
involved with the window.open() method.

Consider the following statement that opens a new window to a specific size and with an
HTML document from the same server directory that holds the current page:

var subWindow = window.open(“define.html”,”def”,”height=200,width=300”);

The important thing to note about this statement is that it is an assignment statement.
Something gets assigned to that variable subWindow. What is it? It turns out that when the
window.open() method runs, it not only opens up that new window according to specifica-
tions set as parameters, but it also evaluates to a reference to that new window. In program-
ming parlance, the method is said to return a value — in this case, a genuine object reference.
The value returned by the method is assigned to the variable.

Your script can now use that variable as a valid reference to the second window. If you need
to access one of its properties or methods, you must use that reference as part of the com-
plete reference. For example, to close the subwindow from a script in the main window, use
this reference to the close() method for that subwindow:

subWindow.close();

86 Part II ✦ JavaScript Tutorial

If you issue window.close(), self.close(), or just close() in the main window’s script,
the method closes the main window (after confirming with the user) and not the subwindow.
To address another window, then, you must include a reference to that window as part of the
complete reference. This has an impact on your code because you probably want the variable
holding the reference to the subwindow to be valid as long as the main document is loaded
into the browser. For that to happen, the variable has to be initialized as a global variable,
rather than inside a function (although you can set its value inside a function). That way, one
function can open the window while another function closes it.

Listing 8-1 is a page that has a button for opening a blank, new window and closing that win-
dow from the main window. To view this demonstration, shrink your main browser window to
less than full screen. Then when the new window is generated, reposition the windows so you
can see the smaller, new window when the main window is in front. (If you “lose” a window
behind another, use the browser’s Window menu to choose the hidden window.) The key
point of Listing 8-1 is that the newWindow variable is defined as a global variable so that both
the makeNewWindow() and closeNewWindow() functions have access to it. When a variable is
declared with no value assignment, its initial value is null. A null value is interpreted to be
the same as false in a condition, while the presence of any non-zero value is the same as
true in a condition. Therefore, in the closeNewWindow() function, the condition tests
whether the window has been created before issuing the subwindow’s close() method.
Then, to clean up, the function sets the newWindow variable to null so that another click of
the Close button doesn’t try to close a nonexistent window.

Listing 8-1: References to Window Objects

<html>
<head>
<title>Window Opener and Closer</title>
<script type=”text/javascript”>
var newWindow
function makeNewWindow() {

newWindow = window.open(“”,””,”height=300,width=300”);
}
function closeNewWindow() {

if (newWindow) {
newWindow.close();
newWindow = null;

}
}
</script>
</head>

<body>
<form>
<input type=”button” value=”Create New Window” onclick=”makeNewWindow()”>
<input type=”button” value=”Close New Window” onclick=”closeNewWindow()”>
</form>
</body>
</html>

87Chapter 8 ✦ Window and Document Objects

Window Properties and Methods
The one property and three methods for the window object described in this section have an
immediate impact on user interaction. They work with all scriptable browsers. You can find
extensive code examples in Part III for each property and method. You can also experiment
with the one-statement script examples by entering them in the top text box of The Evaluator
Jr. (from Chapter 6).

window.status property
The status bar at the bottom of the browser window normally displays the URL of a link when
you roll the mouse pointer atop it. Other messages also appear in that space during docu-
ment loading, Java applet initialization, and the like. However, you can use JavaScript to dis-
play your own messages in the status bar at times that may be beneficial to your users. For
example, rather than display the URL of a link, you can display a friendlier, plain-language
description of the page at the other end of the link (or a combination of both to accommo-
date both newbies and geeks).

You can assign the window.status property some other text at any time. To change the sta-
tus bar text of a link as the cursor hovers atop the link, you trigger the action with an
onmouseover event handler of a link object.

Due to the simplicity of setting the window.status property, it is most common for the script
statements to run as inline scripts in the event handler definition. This is handy for short
scripts because you don’t have to specify a separate function or add <script> tags to your
page. You simply add the script statements to the <a> tag:

<a href=”http://www.microsoft.com” onmouseover=
“window.status=’Visit the Microsoft Home page (microsoft.com)’”> Microsoft

Look closely at the script statement assigned to the onmouseover event handler:

window.status=’Visit the Microsoft Home page (microsoft.com)’

The entire statement is surrounded by double quotes (“...”). To nest the string being
assigned to the window.status property inside the double-quoted script, you surround the
string with single quotes (‘...’). You get a big payoff for a little bit of script when you set
the status bar. The downside is that scripting this property is how those awful status bar
scrolling banners are created. Yech!

window.alert() method
I have already used the alert() method many times so far in this tutorial. This window
method generates a dialog box that displays whatever text you pass as a parameter (see
Figure 8-2). A single OK button (whose label you cannot change) enables the user to dismiss
the alert.

Figure 8-2: A JavaScript alert dialog box (old style).

88 Part II ✦ JavaScript Tutorial

The appearance of this and two other JavaScript dialog boxes (described next) has changed
since the first scriptable browsers. In older browser versions (as shown in Figure 8-2), the
browser inserted words clearly indicating that the dialog box was a “JavaScript Alert.”
Different browsers display different title bars whose content cannot be altered by script. You
can change only the other message content.

All three dialog box methods are good cases for using a window object’s methods without the
reference to the window. Even though the alert() method is technically a window object
method, no special relationship exists between the dialog box and the window that generates
it. In production scripts, I usually use the shortcut reference:

alert(“This is a JavaScript alert dialog.”);

window.confirm() method
The second style of dialog box presents two buttons (Cancel and OK in most versions on
most platforms) and is called a confirm dialog box (see Figure 8-3). More importantly, this is
one of those methods that returns a value: true if the user clicks OK, false if the user clicks
Cancel. You can use this dialog box and its returned value as a way to have a user make a
decision about how a script progresses.

Figure 8-3: A JavaScript confirm dialog box
(IE6/WinXP style).

Because the method always returns a Boolean value, you can use the evaluated value of the
entire method as a condition statement in an if or if...else construction. For example, in
the following code fragment, the user is asked about starting the application over. Doing so
causes the default page of the site to load into the browser.

if (confirm(“Are you sure you want to start over?”)) {
location.href = “index.html”;

}

window.prompt() method
The final dialog box of the window object, the prompt dialog box (see Figure 8-4), displays a
message that you set and provides a text field for the user to enter a response. Two buttons,
Cancel and OK, enable the user to dismiss the dialog box with two opposite expectations:
canceling the entire operation or accepting the input typed into the dialog box.

Figure 8-4: A JavaScript prompt dialog box
(IE6/WinXP style).

89Chapter 8 ✦ Window and Document Objects

The window.prompt() method has two parameters. The first is the message that acts as a
prompt to the user. You can suggest a default answer in the text field by including a string as
the second parameter. If you don’t want any default answer to appear, include an empty
string (two double quotes without any space between them).

This method returns one value when the user clicks either button. A click of the Cancel but-
ton returns a value of null, regardless of what the user types into the field. A click of the OK
button returns a string value of the typed entry. Your scripts can use this information in con-
ditions for if and if...else constructions. A value of null is treated as false in a condi-
tion. It turns out that an empty string is also treated as false. Therefore, a condition can
easily test for the presence of real characters typed into the field to simplify a condition test,
as shown in the following fragment:

var answer = prompt(“What is your name?”,””);
if (answer) {

alert(“Hello, “ + answer + “!”);
}

The only time the alert() method is called is when the user enters something into the
prompt dialog box and clicks the OK button.

onload event handler
The window object reacts to several system and user events, but the one you will probably
use most often is the event that fires as soon as everything in a page finishes loading. This
event waits for images, Java applets, and data files for plug-ins to download fully to the
browser. It can be dangerous to script access to elements of a document object while the
page loads because if the object has not loaded yet (perhaps due to a slow network connec-
tion or server), a script error results. The advantage of using the onload event to invoke
functions is that you are assured that all document objects are in the browser’s document
object model. Window event handlers are placed inside the <body> tag. Even though you will
come to associate the <body> tag’s attributes with the document object’s properties, it is the
window object’s event handlers that go inside the tag.

The location Object
Sometimes an object in the hierarchy represents something that doesn’t seem to have the
kind of physical presence that a window or a button does. That’s the case with the location
object. This object represents the URL loaded into the window. This differs from the docu-
ment object (discussed later in this lesson) because the document is the real content; the
location is simply the URL.

Unless you are truly Web-savvy, you may not realize a URL consists of many components that
define the address and method of data transfer for a file. Pieces of a URL include the protocol
(such as http:) and the hostname (such as www.example.com). You can access all of these
items as properties of the location object. For the most part, though, your scripts will be
interested in only one property: the href property, which defines the complete URL.

Setting the location.href property is the primary way your scripts navigate to other pages:

location.href = “http://www.dannyg.com”;

90 Part II ✦ JavaScript Tutorial

You can generally navigate to a page in your own Web site by specifying a relative URL (that
is, relative to the currently loaded page) rather than the complete URL with protocol and
host information. For pages outside of the domain of the current page, you need to specify
the complete URL.

If the page to be loaded is in another window or frame, the window reference must be part of
the statement. For example, if your script opens a new window and assigns its reference to a
variable named newWindow, the statement that loads a page into the subwindow is

newWindow.location.href = “http://www.dannyg.com”;

The navigator Object
Despite a name reminiscent of the Netscape Navigator branded browser, the navigator object
is implemented in all scriptable browsers. All browsers also implement a handful of properties
that reveal the same kind of information that browsers send to servers with each page request.
Thus, the navigator.userAgent property returns a string text with numerous details about
the browser and operating system. For example, a script running in Internet Explorer 6 in
Windows XP receives the following value for the navigator.userAgent property:

Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; Q312461)

The same script running in Mozilla 1.4 on a Macintosh reveals the following userAgent
details:

Mozilla/5.0 (Macintosh; U; PPC Mac OS X Mach-O; en-US; rv:1.4) Gecko/20030624

You have already used two other navigator properties (navigator.appVersion and
navigator.appName) in your first script of Chapter 3. See Chapter 38 on the CD-ROM for
more details about this object and the meaning of the values returned by its properties.
It was once used extensively to branch script execution according to various browser ver-
sions. Chapter 14 describes more modern ways to accomplish browser version detection.

The document Object
The document object holds the real content of the page. Properties and methods of the docu-
ment object generally affect the look and content of the document that occupies the window.
All W3C DOM-compatible browsers (and IE4) allow script access to the text con-tents of a
page once the document has loaded. However, as you saw in your first script of Chapter 3,
the document.write() method lets a script dynamically create content as the page loads on
any browser. Many document object properties are arrays of other objects in the document,
which provide additional ways to reference these objects (over and above the document
.getElementById() method).

Accessing a document object’s properties and methods is straightforward, as shown in the
following syntax examples:

[window.]document.propertyName
[window.]document.methodName([parameters])

The window reference is optional when the script is accessing the document object that con-
tains the script. If you want a preview of the long list of document object properties of the
browser you’re using, enter document into the bottom text box of The Evaluator Jr. and press
Enter/Return. The object’s properties and current values appear in the Results box. Following
are some of the most commonly used properties and methods of the document object.

91Chapter 8 ✦ Window and Document Objects

document.forms[] property
It is convenient that the document object contains a property —document.forms—
whose value is an array of all form element objects in the document. As you recall from the
discussion of arrays in Chapter 7, an index number inside an array’s square brackets points
to one of the elements in the array. To find out how many form objects are in the current
document, use

document.forms.length

To access the first form in a document, for example, the reference is

document.forms[0]

As a further convenience, all scriptable browsers let you reference a form more directly by
its name (that is, the identifier assigned to the name attribute of the <form> tag) in one of
two ways. The first way is via array syntax, applying the form’s name as a string index value
of the array:

document.forms[“formName”]

You will see in future chapters that scripts sometimes have only the string name of the form
to work with. To derive a valid reference to the form object indicated by that name, use this
string index form with the array.

The second, even shorter way to reference a form object by name is to append the name as a
property of the document object, as in

document.formName

Either methodology reaches the same object. You will see many instances of the shortcut
approach in form-related example scripts throughout this book (including in the next chapter
when working with form controls). Although this syntax dates back to the earliest scriptable
browsers, it is still valid in the most modern versions.

document.images[] property
Just as a document keeps track of forms in an array property, so does the document object
maintain a collection (array) of images inserted into the document by way of tags.
Images referenced through the document.images array may be reached either by numeric or
string index of the img element’s name. Just like forms, the name attribute value is the identi-
fier you use for a string index.

The presence of the document.images property indicates that the browser supports image
swapping. You can therefore use the existence of the property as a controller to make sure
the browser supports images as objects before attempting to perform any script action on an
image. To do so, surround statements that deal with images with an if construction that veri-
fies the property’s existence, as follows:

if (document.images) {
// statements dealing with img objects

}

Older browsers skip over the nested statements, preventing them from displaying error mes-
sages to their users.

92 Part II ✦ JavaScript Tutorial

document.write() method
The document.write() method operates in both immediate scripts to create content in
a page as it loads and in deferred scripts that create new content in the same or different
window. The method requires one string parameter, which is the HTML content to write to
the window or frame. Such string parameters can be variables or any other expressions that
evaluate to a string. Very often, the written content includes HTML tags.

Bear in mind that after a page loads, the browser’s output stream automatically closes. After
that, any document.write() method issued to the current page opens a new stream that
immediately erases the current page (along with any variables or other values in the original
document). Therefore, if you wish to replace the current page with script-generated HTML,
you need to accumulate that HTML in a variable and perform the writing with just one docu-
ment.write() method. You don’t have to explicitly clear a document and open a new data
stream; one document.write() call does it all.

One last piece of housekeeping advice about the document.write() method involves its
companion method, document.close(). Your script must close the output stream when
it finishes writing its content to the window (either the same window or another). After
the last document.write() method in a deferred script, be sure to include a document
.close() method. Failure to do this may cause images and forms not to appear. Also, any
document.write() method invoked later will only append to the page, rather than clear the
existing content to write anew. To demonstrate the document.write() method, I show two
versions of the same application. One writes to the same document that contains the script;
the other writes to a separate window. Type in each document in a new text editor document,
save it with an .html filename extension, and open it in your browser.

Listing 8-2 creates a button that assembles new HTML content for a document, including
HTML tags for a new document title and color attribute for the <BODY> tag. An operator in
the listing that may be unfamiliar to you is +=. It appends a string on its right side to whatever
string is stored in the variable on its left side. This operator is a convenient way to accumulate
a long string across several separate statements. With the content gathered in the newContent
variable, one document.write() statement blasts the entire new content to the same docu-
ment, obliterating all vestiges of the content of Listing 8-2. The document.close() statement,
however, is required to close the output stream properly. When you load this document and
click the button, notice that the document title in the browser’s title bar changes accordingly.
As you click back to the original and try the button again, notice that the dynamically written
second page loads much faster than even a reload of the original document.

Listing 8-2: Using document.write() on the Current Window

<html>
<head>
<title>Writing to Same Doc</title>
<script type=”text/javascript”>
function reWrite() {

// assemble content for new window
var newContent = “<html><head><title>A New Doc</title></head>”;
newContent += “<body bgcolor=’aqua’><h1>This document is brand new.</h1>”;
newContent += “Click the Back button to see original document.”;
newContent += “</body></html>”;
// write HTML to new window document
document.write(newContent);
document.close(); // close layout stream

}

93Chapter 8 ✦ Window and Document Objects

</script>
</head>
<body>
<form>
<input type=”button” value=”Replace Content” onclick=”reWrite()”>
</form>
</body>
</html>

In Listing 8-3, the situation is a bit more complex because the script generates a subwindow
to which is written an entirely script-generated document. To keep the reference to the new
window alive across both functions, the newWindow variable is declared as a global variable.
As soon as the page loads, the onload event handler invokes the makeNewWindow() function.
This function generates a blank subwindow. I added a property to the third parameter of the
window.open() method that instructs the status bar of the subwindow to appear.

A button in the page invokes the subWrite() method. The first task it performs is to check
the closed property of the subwindow. This property (which exists only in newer browser
versions) returns true if the referenced window is closed. If that’s the case (if the user manu-
ally closed the window), the function invokes the makeNewWindow() function again to reopen
that window.

With the window open, new content is assembled as a string variable. As with Listing 8-2, the
content is written in one blast (although that isn’t necessary for a separate window), followed
by a close() method. But notice an important difference: both the write() and close()
methods explicitly specify the subwindow.

Listing 8-3: Using document.write() on Another Window

<html>
<head>
<title>Writing to Subwindow</title>
<script type=”text/javascript”>
var newWindow;
function makeNewWindow() {

newWindow = window.open(“”,””,”status,height=200,width=300”);
}

function subWrite() {
// make new window if someone has closed it
if (newWindow.closed) {

makeNewWindow();
}
// bring subwindow to front
newWindow.focus();
// assemble content for new window
var newContent = “<html><head><title>A New Doc</title></head>”;
newContent += “<body bgcolor=’coral’><h1>This document is brand new.</h1>”;
newContent += “</body></html>”;
// write HTML to new window document
newWindow.document.write(newContent);
newWindow.document.close(); // close layout stream

Continued

94 Part II ✦ JavaScript Tutorial

Listing 8-3 (continued)

</script>
</head>
<body onload=”makeNewWindow()”>
<form>
<input type=”button” value=”Write to Subwindow” onclick=”subWrite()”>
</form>
</body>
</html>

document.createElement() and
document.createTextNode() methods
The document.write() method works on a piece of a Web page only while the page is load-
ing into the browser the first time. Any subsequent invocation of the method erases the page
and writes a new page. But if you want to add to or modify a page that has already loaded,
you need to call upon the Dynamic HTML capabilities of W3C DOM-compatible browsers.
Your goal will be to add to, delete from, or replace sections of the node hierarchy of the docu-
ment. Most element objects have methods to perform those actions (see more in-depth dis-
cussion in Chapter 14). But if you need to add content, you’ll have to create new element or
text nodes. The document object has the methods to do that.

The document.createElement() method lets you create in the browser’s memory a brand
new element object. To specify the precise element you wish to create, pass the tag name of
the element as a string parameter of the method:

var newElem = document.createElement(“p”);

You may also wish to add some attribute values to the element, which you may do by assign-
ing values to the newly created object’s properties, even before the element becomes part of
the document.

As you saw in Chapter 4’s object hierarchy illustrations, an element object frequently needs
text content between its start and end tags. The W3C DOM way to create that text is to gener-
ate a brand new text node via the document.createTextNode() method, and populate the
node with the desired text. For example:

var newText = document.createTextNode(“Greetings to all.”);

The act of creating an element or text node does not, by itself, influence the document node
tree. You must invoke one of the various insertion or replacement methods (see Chapter 14)
to place the new text node into its element and place the element into the document. You
learn how to do this in the last tutorial chapter (Chapter 12).

document.getElementById() method
You met the document.getElementById() method in Chapter 4 when learning about the syntax
for referencing element objects. This W3C DOM method is one you will use a lot. Get to know
its finger-twisting name well. Be sure to honor the upper- and lowercase spelling of this all-
important method.

95Chapter 8 ✦ Window and Document Objects

The sole parameter of this method is a quoted string containing the ID of the element you
wish to reference. The method returns a value, which you typically preserve in a variable for
use by subsequent script statements:

var oneTable = document.getElementById(“salesResults”);

After the assignment statement, the variable represents the element object, allowing you to
get and set its properties or invoke whatever methods belong to that type of object.

The next logical step past the document level in the object hierarchy is the form. That’s
where you will spend the next lesson.

Exercises
1. Which of the following references are valid and which are not? Explain what is wrong

with the invalid references.

a. window.document.form[0]

b. self.entryForm.submit()

c. document.forms[2].name

d. document.getElementByID(“firstParagraph”)

e. newWindow.document.write(“Howdy”)

2. Write the JavaScript statement that displays a message in the status bar welcoming vis-
itors to your Web page.

3. Write the JavaScript statement that executes while the page loads to display the same
message from question 2 to the document as an <h1>-level headline on the page.

4. Create a page that prompts the user for his or her name as the page loads (via a dialog
box) and then welcomes the user by name in the body of the page.

5. Create a page with any content you like, but one that automatically displays a dialog
box after the page loads to show the user the URL of the current page.

✦ ✦ ✦

Forms and Form
Elements

Most interactivity between a Web page and the user takes place
inside a form. That’s where a lot of the interactive HTML stuff

lives for every browser: text fields, buttons, checkboxes, option lists,
and so on.

As described in earlier chapters, you may use the modern DOM
document.getElementById() method to reference any element,
including forms and form controls. But this chapter focuses on an
older, yet equally valid way of referencing forms and controls. It’s
important to be familiar with this widely used syntax so that you can
understand existing JavaScript source code written according to the
original (and fully backward-compatible) form syntax — the so-called
DOM Level 0 syntax.

The form Object
Using the original DOM Level 0 syntax, you can reference a form
object either by its position in the array of forms contained by a doc-
ument or by name (if you assign an identifier to the name attribute
inside the <form> tag). If only one form appears in the document, it is
still a member of an array (a one-element array) and is referenced as
follows:

document.forms[0]

Or use the string of the element’s name as the array index:

document.forms[formName]

Notice that the array reference uses the plural version of the word,
followed by a set of square brackets containing the index number
(zero is always first) or name of the element. Alternatively, you can
use the form’s name (not as a quoted string) as if it were a property
of the document object:

document.formName

99C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

What the form object
represents

How to access key
form object properties
and methods

How text, button, and
select objects work

How to submit forms
from a script

How to pass
information from form
elements to functions

✦ ✦ ✦ ✦

98 Part II ✦ JavaScript Tutorial

Form as object and container
Unlike the modern DOM’s ID reference model — which lets a script dive anywhere into a docu-
ment to grab an element object reference — DOM Level 0 form syntax imposes a hierarchical
approach. It treats the form object as a container whose contents consist of the form control
element objects (input, select, and textarea elements). Figure 9-1 shows the structure of
this hierarchy and its place relative to the document object. You’ll see the effect this struc-
ture has on the way you reference form control elements in a moment. This structure echoes
perfectly the HTML tag organization within the <form> and </form> tag “bookends.”

In addition to a large collection of properties and methods it has in common with all HTML
element objects, the form object features a number of items that are unique to this object.
Almost all of these unique properties are scripted representations of the form element’s
attributes. Scriptable browsers allow scripts to change these properties under script control,
which gives your scripts potentially significant power to direct the behavior of a form sub-
mission in response to user selections on the page.

Figure 9-1: DOM Level 0 hierarchy for forms and controls.

text radio button

form

document

window

select

textarea checkbox

password submit

reset option

99Chapter 9 ✦ Forms and Form Elements

Accessing form properties
Forms are created entirely from standard HTML tags in the page. You can set attributes for
name, target, action, method, and enctype. Each of these is a property of a form object,
accessed by all lowercase versions of those words, as in

document.forms[0].action
document.formName.action

To change any of these properties, simply assign new values to them:

document.forms[0].action = “http://www.giantco.com/cgi/login.pl”;

form.elements[] property
In addition to keeping track of each type of element inside a form, the browser also maintains
a list of all control elements within a form. This list is another array, with items listed accord-
ing to the order in which their HTML tags appear in the source code. It is generally more effi-
cient to create references to elements directly, using their names. However, sometimes a
script needs to look through all of the elements in a form. This is especially true if the content
of a form changes with each loading of the page because the number of text fields changes
based on the user’s browser type. (For example, a script on the page uses document.write()
to add an extra text box for information required only from Windows users.)

The following code fragment shows the form.elements[] property at work in a for repeat
loop that looks at every element in a form to set the contents of text fields to an empty string.
The script cannot simply barge through the form and set every element’s content to an empty
string because some elements may be types (for example, a button) whose value properties
have different purposes.

var form = window.document.forms[0];
for (var i = 0; i < form.elements.length; i++) {

if (form.elements[i].type == “text”) {
form.elements[i].value = “”;

}
}

In the first statement, I create a variable —form— that holds a reference to the first form of
the document. I do this so that when I make many references to form elements later in the
script, the typical length of each reference is much shorter (and marginally faster). I can use
the form variable as a shortcut to building references to items more deeply nested in the
form.

Next, I start looping through the items in the elements array for the form. Each form element
has a type property, which reveals what kind of form control it is: text, button, radio, check-
box, and so on. I’m interested in finding elements whose type is text. For each of those, I set
the value property to an empty string.

I return to forms later in this chapter to show you how to submit a form without a Submit but-
ton and how client-side form validation works.

100 Part II ✦ JavaScript Tutorial

Form Controls as Objects
Three kinds of HTML elements nested inside a <form> tag become scriptable objects in all
browser document object models. Most of the objects owe their existence to the <input> tag
in the page’s source code. Only the value assigned to the type attribute of an <input> tag
determines whether the element is a text box, password entry field, hidden field, button,
checkbox, or radio button. The other two kinds of form controls, textarea and select, have
their own tags.

To reference a particular form control as an object in DOM Level 0 syntax, you build the
reference as a hierarchy starting with the document, through the form, and then to the con-
trol. You’ve already seen how many ways you can reference merely the form part — all of
which are valid for building form control references. But if you were using only the identifiers
assigned to the form and form control elements (that is, none of the associated arrays of
elements), the syntax is as follows:

document.formName.controlName

For example, consider the following simple form:

<form name=”searchForm” action=”cgi-bin/search.pl”>
<input type=”text” name=”entry”>
<input type=”submit” name=”sender” value=”Search”>

</form>

The following sample references to the text input control are all valid:

document.searchForm.entry
document.searchForm.elements[0]
document.forms[“searchForm”].elements[“entry”]
document.forms[“searchForm”].entry

While form controls have several properties in common, some properties are unique to a par-
ticular control type or related types. For example, only a select object offers a property that
reveals which item in its list is currently selected. But checkboxes and radio buttons both
have a property that indicates whether the control is currently set to “on.” Similarly, all text-
oriented controls operate the same way for reading and modifying their content.

Having a good grasp of the scriptable features of form control objects is important to your
success with JavaScript. In the next sections, you meet the most important form control
objects and see how scripts interact with them.

Text-related objects
Each of the four text-related HTML form elements —input elements of the text, password,
and hidden types, plus the textarea element — is an element in the document object hierar-
chy. All but the hidden object display themselves in the page, enabling users to enter infor-
mation. These objects also display text information that changes in the course of using a page
(although browsers capable of modern Dynamic HTML also allow the scripted change of
other body text in a document).

To make these form control objects scriptable in a page, you do nothing special to their nor-
mal HTML tags — with the possible exception of assigning a name attribute. I strongly recom-
mend assigning unique names to every text-related form control element if your scripts will
be getting or setting properties or invoking their methods. Besides, if the form is actually sub-
mitted to a server program, the name attributes must be assigned in order for the server to
receive the element’s data.

101Chapter 9 ✦ Forms and Form Elements

For the visible objects in this category, event handlers are triggered from many user actions,
such as giving a field focus (getting the text insertion pointer in the field) and changing text
(entering new text and leaving the field). Most of your text field actions are triggered by the
change of text (the onchange event handler). In modern browsers, event handlers fire in
response to individual keystrokes as well.

Without a doubt, the single most used property of a text-related element is the value prop-
erty. This property represents the current contents of the text element. A script can retrieve
and set its content at any time. Content of the value property is always a string. This may
require conversion to numbers (see Chapter 6) if text fields are used to enter values for some
math operations.

To demonstrate how a text field’s value property can be read and written, Listing 9-1 pro-
vides a complete HTML page with a single-entry field. Its onchange event handler invokes the
upperMe() function, which converts the text to uppercase. In the upperMe() function, the
first statement assigns the text object reference to a more convenient variable: field. A lot
goes on in the second statement of the function. The right side of the assignment statement
performs a couple of key tasks. The reference to the value property of the object
(field.value) evaluates to whatever content is in the text field at that instant. That string is
then handed over to one of JavaScript’s string functions, toUpperCase(), which converts the
value to uppercase. The evaluated result of the right-side statement is then assigned to the
second variable: upperCaseVersion. Nothing has changed yet in the text box. That comes in
the third statement where the value property of the text box is assigned whatever the
upperCaseVersion variable holds. The need for the second statement is more for learning
purposes, so you can see the process more slowly. In practice, you can combine the actions
of steps two and three into one power-packed statement:

field.value = field.value.toUpperCase();

Text Object Behavior

Many scripters look to JavaScript to solve what are perceived as shortcomings or behavioral
anomalies with text-related objects in forms. I want to single these out early in your scripting
experience so that they do not confuse you later.

First, only the most recent browsers let scripts reliably alter the font, font size, font style, and text
alignment of a text object’s content. You can access changes through the element’s style-related
properties (see Chapter 26).

Second, most browser forms practice a behavior that was recommended long ago as an informal
standard by Web pioneers. When a form contains only one text input object, a press of the
Enter/Return key while the text object has focus automatically submits the form. For two or more
fields in browsers other than IE5/Mac and Safari, you need another way to submit the form (for
example, a Submit button). This one-field submission scheme works well in many cases, such as
the search page of most Web search sites. But if you are experimenting with simple forms con-
taining only one field, you can submit the form with a press of the Enter/Return key. Submitting
a form that has no other action or target specified means the page performs an unconditional
reload — wiping out any information entered into the form. You can, however, cancel the submis-
sion through an onsubmit event handler in the form, as shown later in this chapter. Also, start-
ing with version 4 browsers, you can script the press of the Enter/Return key in any text field to
submit a form (see Chapter 25).

102 Part II ✦ JavaScript Tutorial

Listing 9-1: Getting and Setting a Text Object’s value Property

<html>
<head>
<title>Text Object value Property</title>
<script type=”text/javascript”>
function upperMe() {

var field = document.forms[0].converter;
var upperCaseVersion = field.value.toUpperCase();
field.value = upperCaseVersion;

}
</script>
</head>
<body>
<form onsubmit=”return false”>
<input type=”text” name=”converter” value=”sample” onchange=”upperMe()”>
</form>
</body>
</html>

Later in this chapter, I show you how to reduce even further the need for explicit references
in functions such as upperMe() in Listing 9-1. In the meantime, notice for a moment the
onsubmit event handler in the <form> tag. I delve more deeply into this event handler later
in this chapter, but I want to point out the construction that prevents a single-field form from
being submitted when you press the Enter key. If the event handler weren’t there, a press of
the Enter key would reload the page, returning the field to its original text. Try it!

The Button Object
I have used the button-type input element in many examples up to this point in the tutorial.
The button is one of the simplest objects to script. In the simplified object model of this tuto-
rial, the button object has only a few properties that are rarely accessed or modified in day-
to-day scripts. Like the text object, the visual aspects of the button are governed not by
HTML or scripts, but by the operating system and browser that the page visitor uses. By far,
the most useful event handler of the button object is the onclick event handler. It fires when-
ever the user clicks the button. Simple enough. No magic here.

The Checkbox Object
A checkbox is also a simple element of the form object, but some of the properties may not
be intuitive entirely. Unlike the value property of a plain button object (the text of the button
label), the value property of a checkbox is any other text you want associated with the
object. This text does not appear on the page in any fashion, but the property (initially set via
the value attribute) might be important to a script that wants to know more about the pur-
pose of the checkbox within the form.

The key property of a checkbox object is whether or not the box is checked. The checked
property is a Boolean value: true if the box is checked, false if not. When you see that a
property is a Boolean value, it’s a clue that the value might be usable in an if or if...else
condition expression. In Listing 9-2, the value of the checked property determines which alert
box the user sees.

103Chapter 9 ✦ Forms and Form Elements

Listing 9-2: The Checkbox Object’s checked Property

<html>
<head>
<title>Checkbox Inspector</title>
<script type=”text/javascript”>
function inspectBox() {

if (document.forms[0].checkThis.checked) {
alert(“The box is checked.”);

} else {
alert(“The box is not checked at the moment.”);

}
}
</script>
</head>
<body>
<form>
<input type=”checkbox” name=”checkThis”>Check here

<input type=”button” value=”Inspect Box” onclick=”inspectBox()”>
</form>
</body>
</html>

Checkboxes are generally used as preferences setters, rather than as action inducers. While a
checkbox object has an onclick event handler, a click of a checkbox should never do any-
thing drastic, such as navigate to another page.

The Radio Object
Setting up a group of radio objects for scripting requires a bit more work. To let the browser
manage the highlighting and unhighlighting of a related group of buttons, you must assign the
same name to each of the buttons in the group. You can have multiple groups within a form,
but each member of the same group must share the same name.

Assigning the same name to a form element forces the browser to manage the elements differ-
ently than if they each had a unique name. Instead, the browser maintains an array list of
objects with the same name. The name assigned to the group becomes the name of the array.
Some properties apply to the group as a whole; other properties apply to individual buttons
within the group and must be addressed via array index references. For example, you can find
out how many buttons are in a group by reading the length property of the group:

document.forms[0].groupName.length

If you want to find out if a particular button is currently highlighted — via the same checked
property used for the checkbox — you must access the button element individually:

document.forms[0].groupName[0].checked

Listing 9-3 demonstrates several aspects of the radio button object, including how to look
through a group of buttons to find out which one is checked and how to use the value
attribute and corresponding property for meaningful work.

The page includes three radio buttons and a plain button. Each radio button’s value
attribute contains the full name of one of the Three Stooges. When the user clicks the button,

104 Part II ✦ JavaScript Tutorial

the onclick event handler invokes the fullName() function. In that function, the first state-
ment creates a shortcut reference to the form. Next, a for repeat loop looks through all of the
buttons in the stooges radio button group. An if construction looks at the checked prop-
erty of each button. When a button is highlighted, the break statement bails out of the for
loop, leaving the value of the i loop counter at the number where the loop broke ranks. The
alert dialog box then uses a reference to the value property of the ith button so that the full
name can be displayed in the alert.

Listing 9-3: Scripting a Group of Radio Objects

<html>
<head>
<title>Extracting Highlighted Radio Button</title>
<script type=”text/javascript”>
function fullName() {

var form = document.forms[0];
for (var i = 0; i < form.stooges.length; i++) {

if (form.stooges[i].checked) {
break;

}
}
alert(“You chose “ + form.stooges[i].value + “.”);

}
</script>
</head>

<body>
<form>
<p>Select your favorite Stooge:
<input type=”radio” name=”stooges” value=”Moe Howard” checked>Moe
<input type=”radio” name=”stooges” value=”Larry Fine”>Larry
<input type=”radio” name=”stooges” value=”Curly Howard”>Curly

<input type=”button” name=”Viewer” value=”View Full Name...”
onclick=”fullName()”></p>
</form>
</body>
</html>

The select Object
The most complex form control to script is the select element object. As you can see from
the DOM Level 0 form object hierarchy diagram (see Figure 9-1), the select object is really a
compound object: an object that contains an array of option objects. Moreover, you can
establish this object in HTML to display itself as either a pop-up list or a scrolling list — the
latter configurable to accept multiple selections by users. For the sake of simplicity at this
stage, this lesson focuses on deployment as a pop-up list that allows only single selections.

Some properties belong to the entire select object; others belong to individual options
inside the select object. If your goal is to determine which item the user selects, and you
want the code to work on the widest range of browsers, you must use properties of both the
select and option objects.

105Chapter 9 ✦ Forms and Form Elements

The most important property of the select object itself is the selectedIndex property,
accessed as follows:

document.form[0].selectName.selectedIndex

This value is the index number of the currently selected item. As with most index counting
schemes in JavaScript, the first item (the one at the top of the list) has an index of zero. The
selectedIndex value is critical for enabling you to access properties of the selected option.
Two important properties of an option item are text and value, accessed as follows:

document.forms[0].selectName.options[n].text
document.forms[0].selectName.options[n].value

The text property is the string that appears onscreen in the select object. It is unusual for
this information to be exposed as a form object property because in the HTML that generates
a select object, the text is defined as an <option> tag’s nested text. But inside the <option>
tag, you can set a value attribute, which, like the radio buttons shown earlier, enables you to
associate some hidden string information with each visible entry in the list.

To read the value or text property of a selected option most efficiently for all browsers, you
can use the select object’s selectedIndex property as an index value to the option.
References for this kind of operation get pretty long, so take the time to understand what’s
happening here. In the following function, the first statement creates a shortcut reference to
the select object. The selectedIndex property of the select object is then substituted for
the index value of the options array of that same object:

function inspect() {
var list = document.forms[0].choices;
var chosenItemText = list.options[list.selectedIndex].value;

}

To bring a select object to life, use the onchange event handler. As soon as a user makes a
new selection in the list, this event handler runs the script associated with that event han-
dler. Listing 9-4 shows a common application for a select object. Its text entries describe
places to go in and out of a Web site, while the value attributes hold the URLs for those
locations. When a user makes a selection in the list, the onchange event handler triggers a
script that extracts the value property of the selected option and assigns that value to the
location.href object property to effect the navigation. Under JavaScript control, this kind
of navigation doesn’t need a separate Go button on the page.

Listing 9-4: Navigating with a select Object

<html>
<head>
<title>Select Navigation</title>
<script type=”text/javascript”>
function goThere() {

var list = document.forms[0].urlList;
location.href = list.options[list.selectedIndex].value;

}
</script>
</head>

Continued

106 Part II ✦ JavaScript Tutorial

Listing 9-4 (continued)

<body>
<form>
Choose a place to go:
<select name=”urlList” onchange=”goThere()”>

<option selected value=”index.html”>Home Page
<option value=”store.html”>Shop Our Store
<option value=”policies.html”>Shipping Policies
<option value=”http://www.google.com”>Search the Web

</select>
</form>
</body>
</html>

Recent browsers also expose the value property of the selected option item by way of the
value property of the select object. This is certainly a logical and convenient shortcut, and
you can use it safely if your target browsers include IE, Mozilla-based browsers, and Safari.

There is much more to the select object, including the ability to change the contents of a list
in newer browsers. Chapter 24 covers the select object in depth.

Passing Form Data and Elements to Functions
In all of the examples so far in this lesson, when an event handler invokes a function that
works with form elements, the form or form control is explicitly referenced in the function.
But valuable shortcuts exist for transferring information about the form or form control
directly to the function without dealing with those typically long references that start with
the window or document object level.

JavaScript features a keyword —this— that always refers to whatever object contains the
script in which the keyword is used. Thus, in an onchange event handler for a text field, you
can pass a reference to the text object to the function by inserting the this keyword as a
parameter to the function:

<input type=”text” name=”entry” onchange=”upperMe(this)”>

At the receiving end, the function defines a parameter variable that turns that reference into a
variable that the rest of the function can use:

function upperMe(field) {
statement[s]

}

The name you assign to the function’s parameter variable is purely arbitrary, but it is helpful
to give it a name that expresses what the reference is. Importantly, this reference is a “live”
connection back to the object. Therefore, statements in the script can get and set property
values of the object at will.

Note

107Chapter 9 ✦ Forms and Form Elements

For other functions, you may wish to receive a reference to the entire form, rather than just
the object calling the function. This is certainly true if the function needs to access other ele-
ments of the same form. Because every form control object contains a property that points to
the containing form, you can use the this keyword to reference the current control, plus its
form property as this.form, as in

<input type=”button” value=”Click Here” onclick=”inspect(this.form)”>

The function definition should then have a parameter variable ready to be assigned to the
form object reference. Again, you decide the name of the variable. I tend to use the variable
name form as a way to remind me exactly what kind of object is referenced.

function inspect(form) {
statement[s]

}

Listing 9-5 demonstrates passing both an individual form element and the entire form in the
performance of two separate acts. This page makes believe it is connected to a database of
Beatles songs. When you click the Process Data button, it passes the form object, which the
processData() function uses to access the group of radio buttons inside a for loop.
Additional references using the passed form object extract the value properties of the
selected radio button and the text field.

The text field has its own event handler, which passes just the text field to the verifySong()
function. Notice how short the reference is to reach the value property of the song field
inside the function.

Listing 9-5: Passing a Form Object and Form Element to Functions

<html>
<head>
<title>Beatle Picker</title>
<script type=”text/javascript”>
function processData(form) {

for (var i = 0; i < form.Beatles.length; i++) {
if (form.Beatles[i].checked) {

break
}

}
// assign values to variables for convenience
var beatle = form.Beatles[i].value
var song = form.song.value
alert(“Checking whether “ + song + “ features “ + beatle + “...”)

}

function verifySong(entry) {
var song = entry.value
alert(“Checking whether “ + song + “ is a Beatles tune...”)

}
</script>
</head>

Continued

108 Part II ✦ JavaScript Tutorial

Listing 9-5 (continued)

<body>
<form onsubmit=”return false”>
<p>Choose your favorite Beatle:
<input type=”radio” name=”Beatles” value=”John Lennon” checked>John
<input type=”radio” name=”Beatles” value=”Paul McCartney”>Paul
<input type=”radio” name=”Beatles” value=”George Harrison”>George
<input type=”radio” name=”Beatles” value=”Ringo Starr”>Ringo</p>

<p>Enter the name of your favorite Beatles song:

<input type=”text” name=”song” value = “Eleanor Rigby”
onchange=”verifySong(this)”>
<input type=”button” name=”process” value=”Process Request...”
onclick=”processData(this.form)”</p>
</form>
</body>
</html>

Get to know the usage of the this keyword in passing form and form element objects to
functions. The technique not only saves you typing in your code, but it also ensures accuracy
in references to those objects.

Submitting and Prevalidating Forms
The scripted equivalent of submitting a form is the form object’s submit() method. All you
need in the statement is a reference to the form and this method:

document.forms[0].submit();

Before you get ideas about having a script silently submit a form to a URL bearing the
mailto: protocol, forget it. Because such a scheme could expose visitors’ e-mail addresses
without their knowledge, mailto: submissions are either blocked or revealed to users as a
security precaution.

Before a form is submitted, you may wish to perform some last-second validation of data in
the form or in other scripting (for example, changing the form’s action property based on
user choices). You can do this in a function invoked by the form’s onsubmit event handler.
Specific validation routines are beyond the scope of this tutorial (but are explained in sub-
stantial detail in Chapter 43 on the CD-ROM), but I want to show you how the onsubmit event
handler works.

You can let the results of a validation function cancel a submission if the validation shows
some incorrect data or empty fields. To control submission, the onsubmit event handler
must evaluate to return true (to allow submission to continue) or return false (to cancel
submission). This is a bit tricky at first because it involves more than just having the function
called by the event handler return true or false. The return keyword must be part of the
final evaluation.

109Chapter 9 ✦ Forms and Form Elements

Listing 9-6 shows a page with a simple validation routine that ensures all fields have some-
thing in them before allowing submission to continue. (The sample form has no action
attribute, so this sample form doesn’t get sent to the server.) Notice how the onsubmit event
handler (which passes a reference to the form object as a parameter — in this case the this
keyword points to the form object because its tag holds the event handler) includes the
return keyword before the function name. When the function returns its true or false
value, the event handler evaluates to the requisite return true or return false.

Listing 9-6: Last-Minute Checking Before Form Submission

<html>
<head>
<title>Validator</title>
<script type=”text/javascript”>
function checkForm(form) {

for (var i = 0; i < form.elements.length; i++) {
if (form.elements[i].value == “”) {

alert(“Fill out ALL fields.”);
return false;

}
}
return true;

}
</script>
</head>

<body>
<form onsubmit=”return checkForm(this)”>
Please enter all requested information:

First Name:<input type=”text” name=”firstName”>

Last Name:<input type=”text” name=”lastName”>

Rank:<input type=”text” name=”rank”>

Serial Number:<input type=”text” name=”serialNumber”>

<input type=”submit”>
</form>
</body>
</html>

One quirky bit of behavior involving the submit() method and onsubmit event handler
needs explanation. While you might think (and logically so, in my opinion) that the submit()
method would be the exact scripted equivalent of a click of a real Submit button, it’s not. The
submit() method does not cause the form’s onsubmit event handler to fire at all. If you want
to perform validation on a form submitted via the submit() method, invoke the validation in
the script function that ultimately calls the submit() method.

So much for the basics of forms and form controls. In the next chapter, you step away from
HTML for a moment to look at more advanced JavaScript core language items: strings, math,
and dates.

110 Part II ✦ JavaScript Tutorial

Exercises
1. Rework Listings 9-1, 9-2, 9-3, and 9-4 so that the script functions all receive the most

efficient form or form element references directly from the invoking event handler.

2. For the following form (assume it’s the only form on the page), write at least 10 ways to
reference the text input field as an object in all modern scriptable browsers.

<form name=”subscription” action=”cgi-bin/maillist.pl” method=”post”>
<input type=”text” id=”email” name=”email”>
<input type=”submit”>

</form>

3. In the following HTML tag, what kind of information do you think is being passed with
the event handler? Write a function that displays in an alert dialog box the information
being passed.

<input type=”text” name=”phone” onchange=”format(this.value)”>

4. A document contains two forms named specifications and accessories. In the
accessories form is a field named acc1. Write at least two different statements that
set the contents of that field to Leather Carrying Case.

5. Create a page that includes a select object to change the background color of the cur-
rent page. The property that you need to set is document.bgColor, and the three val-
ues you should offer as options are red, yellow, and green. In the select object, the
colors should display as Stop, Caution, and Go.

✦ ✦ ✦

Strings, Math,
and Dates

For most of the lessons in the tutorial so far, the objects at the cen-
ter of attention belong to the document object model. But as indi-

cated in Chapter 2, a clear dividing line exists between the document
object model and the JavaScript language. The language has some of
its own objects that are independent of the document object model.
These objects are defined such that if a vendor wished to implement
JavaScript as the programming language for an entirely different kind
of product, the language would still use these core facilities for han-
dling text, advanced math (beyond simple arithmetic), and dates.
You can find formal specifications of these objects in the ECMA-262
recommendation.

Core Language Objects
It is often difficult for newcomers to programming — or even experi-
enced programmers who have not worked in object-oriented worlds
before — to think about objects, especially when attributed to
“things” that don’t seem to have a physical presence. For example, it
doesn’t require lengthy study to grasp the notion that a button on a
page is an object. It has several physical properties that make perfect
sense. But what about a string of characters? As you learn in this
chapter, in an object-based environment such as JavaScript, every-
thing that moves is treated as an object — each piece of data from a
Boolean value to a date. Each such object probably has one or more
properties that help define the content; such an object may also have
methods associated with it to define what the object can do or what
you can do to the object.

I call all objects that are not part of the document object model core
language objects. You can see the full complement of them in the
Quick Reference in Appendix A. In this chapter, I focus on the String,
Math, and Date objects.

String Objects
You have already used String objects many times in earlier lessons.
A string is any text inside a quote pair. A quote pair consists of either
double quotes or single quotes. This allows one string to nest inside

1010C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

How to modify strings
with common string
methods

When and how to use
the Math object

How to use the Date
object

✦ ✦ ✦ ✦

112 Part II ✦ JavaScript Tutorial

another, as often happens in event handlers. In the following example, the alert() method
requires a quoted string as a parameter, but the entire method call also must be inside
quotes:

onclick=”alert(‘Hello, all’)”

JavaScript imposes no practical limit on the number of characters that a string can hold.
However, most older browsers have a limit of 255 characters in length for a script statement.
This limit is sometimes exceeded when a script includes a lengthy string that is to become
scripted content in a page. You need to divide such lines into smaller chunks using tech-
niques described in a moment.

You have two ways to assign a string value to a variable. The simplest is a basic assignment
statement:

var myString = “Howdy”;

This works perfectly well except in some exceedingly rare instances. Beginning with
Navigator 3 and Internet Explorer 4, you can also create a string object using the more formal
syntax that involves the new keyword and a constructor function (that is, it “constructs” a
new object):

var myString = new String(“Howdy”);

Whichever way you use to initialize a variable with a string, the variable receiving the assign-
ment can respond to all String object methods.

Joining strings
Bringing two strings together as a single string is called concatenating strings, a term you
learned in Chapter 6. String concatenation requires one of two JavaScript operators. Even in
your first script in Chapter 3, you saw how the addition operator (+) linked multiple strings
together to produce the text dynamically written to the loading Web page:

document.write(“ of ” + navigator.appName + “.”);

As valuable as that operator is, another operator can be even more scripter friendly. This
operator is helpful when you are assembling large strings in a single variable. The strings may
be so long or cumbersome that you need to divide the building process into multiple state-
ments. The pieces may be combinations of string literals (strings inside quotes) or variable
values. The clumsy way to do it (perfectly doable in JavaScript) is to use the addition opera-
tor to append more text to the existing chunk:

var msg = “Four score”;
msg = msg + “ and seven”;
msg = msg + “ years ago,”;

But another operator, called the add-by-value operator, offers a handy shortcut. The symbol
for the operator is a plus and equal sign together (+=). This operator means “append the stuff
on the right of me to the end of the stuff on the left of me.” Therefore, the preceding sequence
is shortened as follows:

var msg = “Four score”;
msg += “ and seven”;
msg += “ years ago,”;

113Chapter 10 ✦ Strings, Math, and Dates

You can also combine the operators if the need arises:

var msg = “Four score”;
msg += “ and seven” + “ years ago”;

I use the add-by-value operator a lot when accumulating HTML text to be written to the cur-
rent document or another window.

String methods
Of all the core JavaScript objects, the String object has the most diverse collection of meth-
ods associated with it. Many methods are designed to help scripts extract segments of a
string. Another group, rarely used and now obsolete in favor of CSS, wraps a string with one
of several style-oriented tags (a scripted equivalent of tags for font size, style, and the like).

To use a string method, the string being acted upon becomes part of the reference followed
by the method name. All methods return a value of some kind. Most of the time, the returned
value is a converted version of the string object referred to in the method call — but the origi-
nal string is still intact. To capture the modified version, you need to assign the results of the
method to a variable:

var result = string.methodName();

The following sections introduce you to several important string methods available to all
browser brands and versions.

Changing string case
Two methods convert a string to all uppercase or lowercase letters:

var result = string.toUpperCase();
var result = string.toLowerCase();

Not surprisingly, you must observe the case of each letter of the method names if you want
them to work. These methods come in handy when your scripts need to compare strings that
may not have the same case (for example, a string in a lookup table compared with a string
typed by a user). Because the methods don’t change the original strings attached to the
expressions, you can simply compare the evaluated results of the methods:

var foundMatch = false;
if (stringA.toUpperCase() == stringB.toUpperCase()) {

foundMatch = true;
}

String searches
You can use the string.indexOf() method to determine if one string is contained by
another. Even within JavaScript’s own object data, this can be useful information. For exam-
ple, the navigator.userAgent property reveals a lot about the browser that loads the page.
A script can investigate the value of that property for the existence of, say, “Win” to deter-
mine that the user has a Windows operating system. That short string might be buried some-
where inside a long string, and all the script needs to know is whether the short string is
present in the longer one — wherever it might be.

114 Part II ✦ JavaScript Tutorial

The string.indexOf() method returns a number indicating the index value (zero based) of
the character in the larger string where the smaller string begins. The key point about this
method is that if no match occurs, the returned value is -1. To find out whether the smaller
string is inside, all you need to test is whether the returned value is something other than -1.

Two strings are involved with this method: the shorter one and the longer one. The longer
string is the one that appears in the reference to the left of the method name; the shorter
string is inserted as a parameter to the indexOf() method. To demonstrate the method in
action, the following fragment looks to see if the user is running Windows:

var isWindows = false;
if (navigator.userAgent.indexOf(“Win”) != -1) {

isWindows = true;
}

The operator in the if construction’s condition (!=) is the inequality operator. You can read
it as meaning “is not equal to.”

Extracting copies of characters and substrings
To extract a single character at a known position within a string, use the charAt() method.
The parameter of the method is an index number (zero based) of the character to extract.
When I say extract, I don’t mean delete, but rather grab a snapshot of the character. The origi-
nal string is not modified in any way.

For example, consider a script in a main window that is capable of inspecting a variable,
stringA, in another window that displays map images of different corporate buildings. When
the window has a map of Building C in it, the stringA variable contains “Building C.” The
building letter is always at the tenth character position of the string (or number 9 in a zero-
based counting world), so the script can examine that one character to identify the map cur-
rently in that other window:

var stringA = “Building C”;
var bldgLetter = stringA.charAt(9);

// result: bldgLetter = “C”

Another method —string.substring()— enables you to extract a contiguous sequence of
characters, provided you know the starting and ending positions of the substring of which
you want to grab a copy. Importantly, the character at the ending position value is not part of
the extraction: All applicable characters, up to but not including that character, are part of
the extraction. The string from which the extraction is made appears to the left of the method
name in the reference. Two parameters specify the starting and ending index values (zero
based) for the start and end positions:

var stringA = “banana daiquiri”;
var excerpt = stringA.substring(2,6);

// result: excerpt = “nana”

String manipulation in JavaScript is fairly cumbersome compared to some other scripting
languages. Higher-level notions of words, sentences, or paragraphs are completely absent.
Therefore, sometimes it takes a bit of scripting with string methods to accomplish what
seems like a simple goal. And yet you can put your knowledge of expression evaluation to
the test as you assemble expressions that utilize heavily nested constructions. For example,
the following fragment needs to create a new string that consists of everything from the
larger string except the first word. Assuming the first word of other strings can be of any
length, the second statement utilizes the string.indexOf() method to look for the first
space character and adds 1 to that value to serve as the starting index value for an outer

115Chapter 10 ✦ Strings, Math, and Dates

string.substring() method. For the second parameter, the length property of the string
provides a basis for the ending character’s index value (one more than the actual character
needed).

var stringA = “The United States of America”;
var excerpt = stringA.substring(stringA.indexOf(“ “) + 1, stringA.length);

// result: excerpt = “United States of America”

Creating statements like this one is not something you are likely to enjoy over and over again,
so in Chapter 27 I show you how to create your own library of string functions you can reuse
in all of your scripts that need their string-handling facilities. More powerful string-matching
facilities are built into today’s browsers by way of regular expressions (see Chapter 27 and
Chapter 42 on the CD-ROM).

The Math Object
JavaScript provides ample facilities for math — far more than most scripters who don’t have a
background in computer science and math will use in a lifetime. But every genuine program-
ming language needs these powers to accommodate clever programmers who can make win-
dows fly in circles on the screen.

The Math object contains all of these powers. This object is unlike most of the other objects
in JavaScript in that you don’t generate copies of the object to use. Instead your scripts sum-
mon a single Math object’s properties and methods. (One Math object actually occurs per
window or frame, but this has no impact whatsoever on your scripts.) Programmers call this
kind of fixed object a static object. That Math object (with an uppercase M) is part of the refer-
ence to the property or method. Properties of the Math object are constant values, such as pi
and the square root of two:

var piValue = Math.PI;
var rootOfTwo = Math.SQRT2;

Math object methods cover a wide range of trigonometric functions and other math functions
that work on numeric values already defined in your script. For example, you can find which
of two numbers is the larger:

var larger = Math.max(value1, value2);

Or you can raise one number to a power of 10:

var result = Math.pow(value1, 10);

More common, perhaps, is the method that rounds a value to the nearest integer value:

var result = Math.round(value1);

Another common request of the Math object is a random number. The Math.random()
method returns a floating-point number between 0 and 1. If you design a script to act like a
card game, you need random integers between 1 and 52; for dice, the range is 1 to 6 per die.
To generate a random integer between zero and any top value, use the following formula:

Math.floor(Math.random() * (n + 1))

where n is the top number. (Math.floor returns the integer part of any floating-point num-
ber.) To generate random numbers between 1 and any higher number, use this formula:

Math.floor(Math.random() * n) + 1

116 Part II ✦ JavaScript Tutorial

where n equals the top number of the range. For the dice game, the formula for each die is

newDieValue = Math.floor(Math.random() * 6) + 1;

To see this, enter the right-hand part of the preceding statement in the top text box of The
Evaluator Jr. and repeatedly click the Evaluate button.

One bit of help JavaScript doesn’t offer except in IE5.5+ and Mozilla-based browsers is a way
to specify a number-formatting scheme. Floating-point math can display more than a dozen
numbers to the right of the decimal. Moreover, results can be influenced by each operating
system’s platform-specific floating-point errors, especially in earlier versions of scriptable
browsers. For other browsers you must perform any number formatting — for dollars and
cents, for example — through your own scripts. Chapter 28 provides an example.

The Date Object
Working with dates beyond simple tasks can be difficult business in JavaScript. A lot of the
difficulty comes with the fact that dates and times are calculated internally according to
Greenwich Mean Time (GMT) — provided the visitor’s own internal PC clock and control panel
are set accurately. As a result of this complexity, better left for Chapter 29, this section of the
tutorial touches on only the basics of the JavaScript Date object.

A scriptable browser contains one global Date object (in truth, one Date object per window)
that is always present, ready to be called upon at any moment. The Date object is another
one of those static objects. When you wish to work with a date, such as displaying today’s
date, you need to invoke the Date object constructor function to obtain an instance of a Date
object tied to a specific time and date. For example, when you invoke the constructor without
any parameters, as in

var today = new Date();

the Date object takes a snapshot of the PC’s internal clock and returns a date object for that
instant. Notice the distinction between the static Date object and a Date object instance,
which contains an actual date value. The variable, today, contains not a ticking clock, but a
value that you can examine, tear apart, and reassemble as needed for your script.

Internally, the value of a Date object instance is the time, in milliseconds, from zero o’clock
on January 1, 1970, in the Greenwich Mean Time zone — the world standard reference point
for all time conversions. That’s how a Date object contains both date and time information.

You can also grab a snapshot of the Date object for a particular date and time in the past or
future by specifying that information as parameters to the Date object constructor function:

var someDate = new Date(“Month dd, yyyy hh:mm:ss”);
var someDate = new Date(“Month dd, yyyy”);
var someDate = new Date(yy,mm,dd,hh,mm,ss);
var someDate = new Date(yy,mm,dd);
var someDate = new Date(GMT milliseconds from 1/1/1970);

If you attempt to view the contents of a raw Date object, JavaScript converts the value to the
local time zone string as indicated by your PC’s control panel setting. To see this in action,
use The Evaluator Jr.’s top text box to enter the following:

new Date();

Your PC’s clock supplies the current date and time as the clock calculates them (even
though JavaScript still stores the date object’s millisecond count in the GMT zone). You can,

117Chapter 10 ✦ Strings, Math, and Dates

however, extract components of the Date object via a series of methods that you apply to a
Date object instance. Table 10-1 shows an abbreviated listing of these properties and infor-
mation about their values.

Table 10-1: Some Date Object Methods

Method Value Range Description

dateObj.getTime() 0-... Milliseconds since 1/1/70 00:00:00 GMT

dateObj.getYear() 70-... Specified year minus 1900; four-digit year for
2000+

dateObj.getFullYear() 1970-... Four-digit year (Y2K-compliant); version 4+
browsers

dateObj.getMonth() 0-11 Month within the year (January = 0)

dateObj.getDate() 1-31 Date within the month

dateObj.getDay() 0-6 Day of week (Sunday = 0)

dateObj.getHours() 0-23 Hour of the day in 24-hour time

dateObj.getMinutes() 0-59 Minute of the specified hour

dateObj.getSeconds() 0-59 Second within the specified minute

dateObj.setTime(val) 0-... Milliseconds since 1/1/70 00:00:00 GMT

dateObj.setYear(val) 70-... Specified year minus 1900; four-digit year for
2000+

dateObj.setMonth(val) 0-11 Month within the year (January = 0)

dateObj.setDate(val) 1-31 Date within the month

dateObj.setDay(val) 0-6 Day of week (Sunday = 0)

dateObj.setHours(val) 0-23 Hour of the day in 24-hour time

dateObj.setMinutes(val) 0-59 Minute of the specified hour

dateObj.setSeconds(val) 0-59 Second within the specified minute

Be careful about values whose ranges start with zero, especially the months. The
getMonth() and setMonth() method values are zero based, so the numbers are one less
than the month numbers you are accustomed to working with (for example, January is 0,
December is 11).

You may notice one difference about the methods that set values of a Date object. Rather
than returning some new value, these methods actually modify the value of the Date object
referenced in the call to the method.

Date Calculations
Performing calculations with dates frequently requires working with the millisecond values of
the Date objects. This is the surest way to compare date values. To demonstrate a few Date
object machinations, Listing 10-1 displays the current date and time as the page loads.
Another script shows one way to calculate the date and time seven days from the current
date and time value.

Caution

118 Part II ✦ JavaScript Tutorial

Listing 10-1: Date Object Calculations

<html>
<head>
<title>Date Calculation</title>
<script type=”text/javascript”>
function nextWeek() {

var todayInMS = today.getTime();
var nextWeekInMS = todayInMS + (60 * 60 * 24 * 7 * 1000);
return new Date(nextWeekInMS);

}
</script>
</head>

<body>
Today is:
<script type=”text/javascript”>
var today = new Date();
document.write(today);
</script>

Next week will be:
<script type=”text/javascript”>
document.write(nextWeek());
</script>
</body>
</html>

In the Body portion, the first script runs as the page loads, setting a global variable (today)
to the current date and time. The string equivalent is written to the page. In the second Body
script, the document.write() method invokes the nextWeek() function to get a value to dis-
play. That function utilizes the today global variable, copying its millisecond value to a new
variable: todayInMS. To get a date seven days from now, the next statement adds the number
of milliseconds in seven days (60 seconds times 60 minutes times 24 hours times seven days
times 1000 milliseconds) to today’s millisecond value. The script now needs a new Date
object calculated from the total milliseconds. This requires invoking the Date object con-
structor with the milliseconds as a parameter. The returned value is a Date object, which is
automatically converted to a string version for writing to the page.

To add or subtract time intervals from a Date object, you can use a shortcut that doesn’t
require the millisecond conversions. By combining the date object’s set and get methods, you
can let the Date object work out the details. For example, in Listing 10-1 you could eliminate
the function entirely, and let the following two statements in the second Body script obtain
the desired result:

today.setDate(today.getDate() + 7);
document.write(today);

Because JavaScript tracks the date and time internally as milliseconds, the accurate date
appears in the end, even if the new date is into the next month. JavaScript automatically
takes care of figuring out how many days there are in a month as well as in leap years.

Many other quirks and complicated behavior await you if you script dates in your page. As
later chapters demonstrate, however, the results may be worth the effort.

119Chapter 10 ✦ Strings, Math, and Dates

Exercises
1. Create a Web page that has one form field for entry of the user’s e-mail address and a

Submit button. Include a pre-submission validation routine that verifies that the text
field has the @ symbol found in all e-mail addresses before you allow submission of the
form.

2. Given the string “Internet Explorer”, fill in the blanks of the string.substring()
method parameters here that yield the results shown to the right of each method call:

var myString = “Internet Explorer”;
myString.substring(___,___) // result = “Int”
myString.substring(___,___) // result = “plorer”
myString.substring(___,___) // result = “net Exp”

3. Fill in the rest of the function in the listing that follows so that it looks through every
character of the entry field and counts how many times the letter “e” appears in the
field. (Hint: All that is missing is a for repeat loop.)

<html>
<head>
<title>Wheel o’ Fortuna</title>
<script type=”text/javascript”>
function countE(form) {

var count = 0;
var inputString = form.mainstring.value.toLowerCase();
missing code
var msg = “The string has “ + count;
msg += “ instances of the letter e.”;
alert(msg);

}
</script>
</head>

<body>
<form>
Enter any string: <input type=”text” name=”mainstring” size=”30”>

<input type=”button” value=”Count the Es”
onclick=”countE(this.form)”>
</form>
</body>
</html>

4. Create a page that has two fields and one button. The button should trigger a function
that generates two random numbers between 1 and 6, placing each number in one of
the fields. (Think of using this page as a substitute for rolling a pair of dice in a board
game.)

5. Create a page that displays the number of days between today and next Christmas.

✦ ✦ ✦

Scripting Frames
and Multiple
Windows

One of the attractive aspects of JavaScript for some applications
on the client is that it allows user actions in one frame or win-

dow to influence what happens in other frames and windows. In this
section of the tutorial, you extend your existing knowledge of object
references to the realm of multiple frames and windows.

Frames: Parents and Children
You’ve see in earlier top-level hierarchy illustrations (such as
Figure 4-1) that the window object is at the very top of the chart.
The window object also has several synonyms, which stand in for
the window object in special cases. For instance, in Chapter 8, you
learned that self is synonymous with window when the reference
applies to the same window that contains the script’s document. In
this lesson, you learn the roles of three other references that point
to objects behaving as windows —frame, top, and parent.

Loading an ordinary HTML document into the browser creates a
model in the browser that starts out with one window object and the
document it contains. (The document likely contains other elements,
but I’m not concerned with that stuff yet.) The top rungs of the hier-
archy model are as simple as can be, as shown in Figure 11-1. This is
where references begin with window or self (or with document
because the current window is assumed).

The instant a framesetting document loads into a browser, the
browser starts building a slightly different hierarchy model. The pre-
cise structure of that model depends entirely on the structure of the
frameset defined in that framesetting document. Consider the follow-
ing skeletal frameset definition:

<html>
<frameset cols=”50%,50%”>

<frame name=”leftFrame” src=”somedoc1.html”>
<frame name=”rightFrame” src=”somedoc2.html”>

</frameset>
</html>

1111C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Relationships among
frames in the browser
window

How to access objects
and values in other
frames

How to control
navigation of multiple
frames

Communication skills
between separate
windows

✦ ✦ ✦ ✦

122 Part II ✦ JavaScript Tutorial

Figure 11-1: Single-frame window and document
hierarchy.

This HTML splits the browser window into two frames side by side, with a different document
loaded into each frame. The model is concerned only with structure — it doesn’t care about
the relative sizes of the frames or whether they’re set up in columns or rows.

Framesets establish relationships among the frames in the collection. Borrowing terminology
from the object-oriented programming world, the framesetting document loads into a parent
window. Each of the frames defined in that parent window document is a child frame. Figure
11-2 shows the hierarchical model of a two-frame environment. This illustration reveals a lot
of subtleties about the relationships among framesets and their frames.

Figure 11-2: Two-frame window and document
hierarchy.

123Chapter 11 ✦ Scripting Frames and Multiple Windows

It is often difficult at first to visualize the frameset as a window object in the hierarchy.
After all, with the exception of the URL showing in the Location/Address field, you don’t see
anything about the frameset in the browser. But that window object exists in the object
model. Notice, too, that in the diagram the framesetting parent window has no document
object showing. This may also seem odd because the window obviously requires an HTML
file containing the specifications for the frameset. In truth, the parent window has a document
object associated with it, but it is omitted from the diagram to better portray the relation-
ships among parent and child windows. A frameset parent’s document cannot contain most
of the typical HTML objects such as forms and controls, so references to the parent’s docu-
ment are rarely, if ever, used.

If you add a script to the framesetting document that needs to access a property or method
of that window object, references are like any single-frame situation. Think about the point of
view of a script located in that window. Its immediate universe is the very same window.

Things get more interesting when you start looking at the child frames. Each of these frames
contains a document object whose content you see in the browser window. And the structure
is such that each frame’s document is entirely independent of the other. It is as if each docu-
ment lived in its own browser window. Indeed, that’s why each child frame is also a window
type of object. A frame has the same kinds of properties and methods of the window object
that occupies the entire browser.

From the point of view of either child window in Figure 11-2, its immediate container is the
parent window. When a parent window is at the very top of the hierarchical model loaded in
the browser, that window is also referred to as the top object.

References among Family Members
Given the frame structure of Figure 11-2, it’s time to look at how a script in any one of those
windows can access objects, functions, or variables in the others. An important point to
remember about this facility is that if a script has access to an object, function, or global vari-
able in its own window, that same item can be reached by a script from another frame in the
hierarchy (provided both documents come from the same Web server).

A script reference may need to take one of three possible routes in the two-generation hierar-
chy described so far: parent to child; child to parent; or child to child. Each of the paths
between these windows requires a different reference style.

Parent-to-child references
Probably the least common direction taken by references is when a script in the parent
document needs to access some element of one of its frames. The parent contains two or
more frames, which means the parent maintains an array of the child frame objects. You
can address a frame by array syntax or by the name you assign to it with the name attribute
inside the <frame> tag. In the following examples of reference syntax, I substitute a placeholder
named ObjFuncVarName for whatever object, function, or global variable you intend to access
in the distant window or frame. Remember that each visible frame contains a document object,
which is generally the container of elements you script — be sure references to the elements
include document. With that in mind, a reference from a parent to one of its child frames fol-
lows any of these models:

124 Part II ✦ JavaScript Tutorial

[window.]frames[n].ObjFuncVarName
[window.]frames[“frameName”].ObjFuncVarName
[window.]frameName.ObjFuncVarName

Numeric index values for frames are based on the order in which their <frame> tags appear
in the framesetting document. You will make your life easier, however, if you assign recogniz-
able names to each frame and use the frame’s name in the reference.

Child-to-parent references
It is not uncommon to place scripts in the parent (in the Head portion) that multiple child
frames or multiple documents in a frame use as a kind of script library. By loading in the
frameset, these scripts load only once while the frameset is visible. If other documents from
the same server load into the frames over time, they can take advantage of the parent’s
scripts without having to load their own copies into the browser.

From the child’s point of view, the next level up the hierarchy is called the parent. Therefore,
a reference from a child frame to items at the parent level is simply

parent.ObjFuncVarName

If the item accessed in the parent is a function that returns a value, the returned value tran-
scends the parent/child borders down to the child without hesitation.

When the parent window is also at the very top of the object hierarchy currently loaded into
the browser, you can optionally refer to it as the top window, as in

top.ObjFuncVarName

Using the top reference can be hazardous if for some reason your Web page gets displayed in
some other Web site’s frameset. What is your top window is not the master frameset’s top
window. Therefore, I recommend using the parent reference whenever possible (unless you
want to blow away an unwanted framer of your Web site).

Child-to-child references
The browser needs a bit more assistance when it comes to getting one child window to com-
municate with one of its siblings. One of the properties of any window or frame is its parent
(whose value is null for a single window). A reference must use the parent property to work
its way out of the current frame to a point that both child frames have in common — the par-
ent in this case. Once the reference is at the parent level, the rest of the reference can carry
on as if starting at the parent. Thus, from one child to one of its siblings, you can use any of
the following reference formats:

parent.frames[n].ObjFuncVarName
parent.frames[“frameName”].ObjFuncVarName
parent.frameName.ObjFuncVarName

A reference from the other sibling back to the first looks the same, but the frames[] array
index or frameName part of the reference differs. Of course, much more complex frame hier-
archies exist in HTML. Even so, the object model and referencing scheme provide a solution
for the most deeply nested and gnarled frame arrangement you can think of — following the
same precepts you just learned.

125Chapter 11 ✦ Scripting Frames and Multiple Windows

Frame Scripting Tips
One of the first mistakes that frame scripting newcomers make is writing immediate script
statements that call upon other frames while the pages load. The problem here is that you
cannot rely on the document loading sequence to follow the frameset source code order. All
you know for sure is that the parent document begins loading first. Regardless of the order of
<frame> tags, child frames can begin loading at any time. Moreover, a frame’s loading time
depends on other elements in the document, such as images or Java applets.

Fortunately, you can use a certain technique to initiate a script once all of the documents in
the frameset are completely loaded. Just as the onload event handler for a document fires
when that document is fully loaded, a parent’s onload event handler fires after the onload
event handler in its child frames is fired. Therefore, you can specify an onload event handler
in the <frameset> tag. That handler might invoke a function in the framesetting document
that then has the freedom to tap the objects, functions, or variables of all frames throughout
the object hierarchy.

Make special note that a reference to a frame as a type of window object is quite separate
from a reference to the frame element object. An element object is one of those DOM element
nodes in the document node tree (see Chapter 4). The properties and methods of this node
differ from the properties and methods that accrue to a window-type object. It may be a diffi-
cult distinction to grasp, but it’s an important one. The way you reference a frame — as a win-
dow object or element node — determines which set of properties and methods are available
to your scripts. See Chapter 15 for a more detailed introduction to element node scripting.

If you start with a reference to the frame element object, you can still reach a reference to the
document object loaded into that frame. But the syntax is different depending on the browser.
IE4+ and Safari let you use the same document reference as for a window; Mozilla-based
browsers follow the W3C DOM standard more closely, using the contentDocument property
of the frame element. To accommodate both syntaxes you can build a reference as follows:

var docObj;
var frameObj = document.getElementById(“myFrame”);
if (frameObj.contentDocument) {

docObj = frameObj.contentDocument;
} else {

docObj = frameObj.document;
}

About iframe Elements
The iframe element is supported as a scriptable object in IE4+, Mozilla-based browsers, and
Safari (among other modern browsers). It is often used as a way to fetch and load HTML or
XML from a server without disturbing the current HTML page. Therefore it’s not uncommon
for an iframe to be hidden from view, while scripts handle all of the processing between it
and the main document.

An iframe element becomes another member of the current window’s frames collection.
But you may also reference the iframe as an element object through W3C DOM document.
getElementById() terminology. As with the distinction between the traditional frame-as-
window object and DOM element object, a script reference to the document object within an
iframe element object needs special handling. See Chapter 16 for additional details.

126 Part II ✦ JavaScript Tutorial

Controlling Multiple Frames — Navigation Bars
If you are enamored of frames as a way to help organize a complex Web page, you may find
yourself wanting to control the navigation of one or more frames from a static navigation
panel. Here, I demonstrate scripting concepts for such control using an application called
Decision Helper (which you can find in Chapter 55 on the CD-ROM). The application consists
of three frames (see Figure 11-3). The top-left frame is one image that has four graphical but-
tons in it. The goal is to turn that image into a client-side image map and script it so the pages
change in the right-hand and bottom frames. In the upper-right frame, the script loads an
entirely different document along the sequence of five different documents that go in there. In
the bottom frame, the script navigates to one of five anchors to display the segment of
instructions that applies to the document loaded in the upper-right frame.

Listing 11-1 shows a slightly modified version of the actual file for the Decision Helper appli-
cation’s navigation frame. The listing contains a couple of new objects and concepts not yet
covered in this tutorial. But as you will see, they are extensions to what you already know
about JavaScript and objects. To help simplify the discussion here, I remove the scripting and
HTML for the top and bottom button of the area map. In addition, I cover only the two naviga-
tion arrows.

Figure 11-3: The Decision Helper screen.

127Chapter 11 ✦ Scripting Frames and Multiple Windows

Listing 11-1: A Graphical Navigation Bar

<html>
<head>
<title>Navigation Bar</title>
<script type=”text/javascript”>
<!-- start
function goNext() {

var currOffset = parseInt(parent.currTitle);
if (currOffset < 5) {

currOffset += 1;
parent.entryForms.location.href = “dh” + currOffset + “.htm”;
parent.instructions.location.hash = “help” + currOffset;

} else {
alert(“This is the last form.”);

}
}
function goPrev() {

var currOffset = parseInt(parent.currTitle);
if (currOffset > 1) {

currOffset -= 1;
parent.entryForms.location.href = “dh” + currOffset + “.htm”;
parent.instructions.location.hash = “help” + currOffset;

} else {
alert(“This is the first form.”);

}
}
// end -->
</script>
</head>
<body bgColor=”white”>
<map name=”navigation”>
<area shape=”rect” coords=”25,80,66,116” href=”javascript:goNext()”>
<area shape=”rect” coords=”24,125,67,161” href=”javascript:goPrev()”>
</map>

</body>
</html>

Look first at the HTML section for the Body portion. Almost everything there is standard stuff
for defining client-side image maps. The coordinates define rectangles around each of the
arrows in the larger image. The href attributes for the two areas point to JavaScript functions
defined in the Head portion of the document (the javascript: pseudo-URL is covered in the
next chapter).

In the frameset that defines the Decision Helper application, names are assigned to each
frame. The upper-right frame is called entryForms; the bottom frame is called
instructions.

128 Part II ✦ JavaScript Tutorial

Knowing that navigation from page to page in the upper-right frame requires knowledge of
which page is currently loaded there, I build some other scripting into both the parent docu-
ment and each of the documents that loads into that frame. A global variable called
currTitle is defined in the parent document. Its value is an integer indicating which page of
the sequence (1 through 5) is currently loaded. An onload event handler in each of the five
documents (named dh1.htm, dh2.htm, dh3.htm, dh4.htm, and dh5.htm) assigns its page
number to that parent global variable. This arrangement allows all frames in the frameset to
share that value easily.

When a user clicks the right-facing arrow to move to the next page, the goNext() function is
called. The first statement gets the currTitle value from the parent window and assigns it to
a local variable: currOffset. An if...else construction tests whether the current page
number is less than five. If so, the add-by-value operator adds one to the local variable so I
can use that value in the next two statements.

In those next two statements, I adjust the content of the two right frames. Using the parent
reference to gain access to both frames, I set the location.href property of the top-right
frame to the name of the file next in line (by concatenating the number with the surrounding
parts of the filename). The second statement sets the location.hash property (which con-
trols the anchor being navigated to) to the corresponding anchor in the instructions frame
(anchor names help1, help2, help3, help4, and help5).

A click of the left-facing arrow reverses the process, subtracting 1 from the current page num-
ber (using the subtract-by-value operator) and changing the same frames accordingly.

The example shown in Listing 11-1 is one of many ways to script a navigation frame in
JavaScript. Whatever methodology you use, much interaction occurs among the frames in the
frameset.

References for Multiple Windows
In Chapter 8, you saw how to create a new window and communicate with it by way of the
window object reference returned from the window.open() method. In this section, I show
you how one of those subwindows can communicate with objects, functions, and variables in
the window or frame that creates the subwindow.

Every window object has a property called opener. This property contains a reference to the
window or frame that held the script whose window.open() statement generated the subwin-
dow. For the main browser window and frames therein, this value is null. Because the
opener property is a valid window reference, you can use it to begin the reference to items in
the original window — just like a script in a child frame uses parent to access items in the
parent document. The parent-child terminology doesn’t apply to subwindows, however.

Listings 11-2 and 11-3 contain documents that work together in separate windows. Listing
11-2 displays a button that opens a smaller window and loads Listing 11-3 into it. The main
window document also contains a text field that gets filled in when you enter text into a cor-
responding field in the subwindow.

In the main window document, the newWindow() function generates the new window.
Because no other statements in the document require the reference to the new window just
opened, the statement does not assign its returned value to any variable. This is an accept-
able practice in JavaScript if you don’t need the returned value of a function or method.

129Chapter 11 ✦ Scripting Frames and Multiple Windows

Listing 11-2: A Main Window Document

<html>
<head>
<title>Main Document</title>
<script type=”text/javascript”>
function newWindow() {

window.open(“subwind.htm”,”sub”,”height=200,width=200”);
}
</script>
</head>

<body>
<form>
<input type=”button” value=”New Window” onclick=”newWindow()”>

Text incoming from subwindow:
<input type=”text” name=”entry”>
</form>
</body>
</html>

All of the action in the subwindow document comes in the onchange event handler of the text
field. It assigns the subwindow field’s own value to the value of the field in the opener win-
dow’s document. Remember that the contents of each window and frame belong to a docu-
ment. So even after your reference targets a specific window or frame, the reference must
continue helping the browser find the ultimate destination, which is generally some element
of the document.

Listing 11-3: A Subwindow Document

<html>
<head>
<title>A SubDocument</title>
</head>
<body>
<form onsubmit=”return false”>
Enter text to be copied to the main window:
<input type=”text”
onchange=”opener.document.forms[0].entry.value = this.value”>
</form>
</body>
</html>

Just one more lesson to go before I let you explore all the details elsewhere in the book. I use
the final tutorial chapter to show you some fun things you can do with your Web pages, such
as changing images when the user rolls the mouse atop a picture.

130 Part II ✦ JavaScript Tutorial

Exercises
Before answering the first three questions, study the structure of the following frameset for a
Web site that lists college courses:

<frameset rows=”85%,15%”>
<frameset cols=”20%,80%”>

<frame name=”mechanics” src=”history101M.html”>
<frame name=”description” src=”history101D.html”>

</frameset>
<frameset cols=”100%”>

<frame name=”navigation” src=”navigator.html”>
</frameset>

</frameset>
</html>

1. Each document that loads into the description frame has an onload event handler in
its <body> tag that stores a course identifier in the framesetting document’s global
variable called currCourse. Write the onload event handler that sets this value to
“history101”.

2. Draw a block diagram that describes the hierarchy of the windows and frames repre-
sented in the frameset definition.

3. Write the JavaScript statements located in the navigation frame that loads the file
“french201M.html” into the mechanics frame and the file “french201D.html” into
the description frame.

4. While a frameset is still loading, a JavaScript error message suddenly appears saying
that “window.document.navigation.form.selector is undefined.” What do you think is
happening in the application’s scripts, and how can you solve the problem?

5. A script in a child frame of the main window uses window.open() to generate a second
window. How can a script in the second window access the location object (URL) of
the top (framesetting) window in the main browser window?

✦ ✦ ✦

Images and
Dynamic HTML

The previous eight lessons have been intensive, covering a lot of
ground for both programming concepts and JavaScript. Now it’s

time to apply those fundamentals to the learning of more advanced
techniques. I cover two areas here. First, I show you how to imple-
ment the ever-popular mouse rollover in which images swap when the
user rolls the cursor around the screen. Then I introduce you to tech-
niques for modifying a page’s content after the page has loaded.

The Image Object
One of the objects contained by the document is the image object —
supported in all scriptable browsers since the days of NN3 and IE4.
Image object references for a document are stored in the object
model as an array belonging to the document object. You can there-
fore reference an image by array index or image name. Moreover, the
array index can be a string version of the image’s name. Thus, all of
the following are valid references to an image object:

document.images[n]
document.images[“imageName”]
document.imageName

If your goal is to support scriptable images for browsers such as NN3
and NN4, you must be aware of image object limitations for those
browsers. In particular, the range of scriptable properties is limited,
although the all-important src property is accessible. Also, no
mouse-related event handlers are affiliated with the image object
(until you get to IE4+ and NN6+). If you want to make an image a
clickable item in older browsers, surround it with a link (and set
the image’s border to zero) or attach a client-side image map to it.
The combination of a link and image is how you make a backward-
compatible clickable image button.

Interchangeable images
The advantage of having a scriptable image object is that a script can
change the image occupying the rectangular space already occupied
by an image. In IE4+ and NN6+, the images can even change size, with
surrounding content automatically reflowing around the resized image.

1212C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

How to precache
images

How to swap images
for mouse rollovers

Assigning scripts as tag
attribute URLs

Modifying Body content
dynamically

✦ ✦ ✦ ✦

132 Part II ✦ JavaScript Tutorial

The script behind this kind of image change is simple enough. All it entails is assigning a new
URL to the image object’s src property. The size of the image on the page is governed by the
height and width attributes set in the tag as the page loads. The most common image
rollovers use the same size image for each of the rollover states.

Precaching images
Images take extra time to download from a Web server until the images are stored in the
browser’s cache. If you design your page so that an image changes in response to user action,
you usually want the same fast response that users are accustomed to in other programs.
Making the user wait seconds for an image to change can severely detract from enjoyment of
the page.

JavaScript comes to the rescue by enabling scripts to load images into the browser’s memory
cache without displaying the image, a technique called precaching images. The tactic that
works best is to preload the image into the browser’s image cache while the page initially
loads. Users are less impatient for those few extra seconds as the main page loads than wait-
ing for an image to download in response to some mouse action.

Precaching an image requires constructing an image object in memory. An image object cre-
ated in memory differs in some respects from the document image object that you create
with the tag. Memory-only objects are created by script, and you don’t see them on
the page at all. But their presence in the document code forces the browser to load the
images as the page loads. The object model provides an Image object constructor function to
create the memory type of image object as follows:

var myImage = new Image(width, height);

Parameters to the constructor function are the pixel width and height of the image. These
dimensions should match the tag’s width and height attributes. Once the image
object exists in memory, you can then assign a filename or URL to the src property of that
image object:

myImage.src = “someArt.gif”;

When the browser encounters a statement assigning a URL to an image object’s src property,
the browser fetches and loads that image into the image cache. All the user sees is some
extra loading information in the status bar, as if another image were in the page. By the time
the entire page loads, all images generated in this way are tucked away in the image cache.
You can then assign your cached image’s src property or the actual image URL to the src
property of the document image created with the tag:

document.images[0].src = myImage.src;

The change to the image in the document is instantaneous.

Listing 12-1 is a simple listing for a page that has one tag and a select list that enables
you to replace the image in the document with any of four precached images (including the
original image specified for the tag). If you type this listing — as I strongly recommend — you
can obtain copies of the four image files from the companion CD-ROM in the Chapter 12 direc-
tory of listings (you must still type the HTML and code, however).

133Chapter 12 ✦ Images and Dynamic HTML

Listing 12-1: Precaching Images

<html>
<head>
<title>Image Object</title>
<script type=”text/javascript”>
// initialize empty array
var imageLibrary = new Array();
// pre-cache four images
imageLibrary[“image1”] = new Image(120,90);
imageLibrary[“image1”].src = “desk1.gif”;
imageLibrary[“image2”] = new Image(120,90);
imageLibrary[“image2”].src = “desk2.gif”;
imageLibrary[“image3”] = new Image(120,90);
imageLibrary[“image3”].src = “desk3.gif”;
imageLibrary[“image4”] = new Image(120,90);
imageLibrary[“image4”].src = “desk4.gif”;

// load an image chosen from select list
function loadCached(list) {

var img = list.options[list.selectedIndex].value;
document.thumbnail.src = imageLibrary[img].src;

}
</script>
</head>

<body >
<h2>Image Object</h2>

<form>
<select name=”cached” onchange=”loadCached(this)”>
<option value=”image1”>Bands
<option value=”image2”>Clips
<option value=”image3”>Lamp
<option value=”image4”>Erasers
</select>
</form>
</body>
</html>

As the page loads, it executes several statements immediately. These statements create an
empty array that is populated with four new memory image objects. Each image object has a
filename assigned to its src property. These images are loaded into the image cache as the
page loads. Down in the Body portion of the document, an tag stakes its turf on the
page and loads one of the images as a starting image.

A select element lists user-friendly names for the pictures while housing the names of image
objects already precached in memory. When the user makes a selection from the list, the
loadCached() function extracts the selected item’s value — which is a string index of the
image within the imageLibrary array. The src property of the chosen image object is
assigned to the src property of the visible image object on the page, and the precached
image appears instantaneously.

134 Part II ✦ JavaScript Tutorial

Creating image rollovers
A favorite technique to add some pseudo-excitement to a page is to swap button images as
the user rolls the cursor atop them. The degree of change to the image is largely a matter of
taste. The effect can be subtle — a slight highlight or glow around the edge of the original
image — or drastic — a radical change of color. Whatever your approach, the scripting is the
same.

When several of these graphical buttons occur in a group, I tend to organize the memory
image objects as arrays and create naming and numbering schemes that facilitate working
with the arrays. Listing 12-2 shows such an arrangement for four buttons that control a juke-
box. The code in the listing is confined to the image-swapping portion of the application. This
is the most complex and lengthiest listing of the tutorial, so it requires a bit of explanation as
it goes along.

Listing 12-2: Image Rollovers

<html>
<head>
<title>Jukebox/Image Rollovers</title>
<script type=”text/javascript”>

Only browsers capable of handling image objects should execute statements that precache
images. Therefore, the entire sequence is nested inside an if construction that tests for the
presence of the document.images array. In older browsers, the condition evaluates to “unde-
fined,” which an if condition treats as false.

if (document.images) {

Image precaching starts by building two arrays of image objects. One array stores informa-
tion about the images depicting the graphical button’s “off” position; the other is for images
depicting their “on” position. These arrays use strings (instead of integers) as index values.
The string names correspond to the names given to the visible image objects whose tags
come later in the source code. The code is clearer to read (for example, you know that the
offImgArray[“play”] entry has to do with the Play button image). Also, as you see later in
this listing, rollover images don’t conflict with other visible images on the page (a possibility
if you rely exclusively on numeric index values when referring to the visible images for the
swapping).

After creating the array and assigning new blank image objects to the first four elements of
the array, I go through the array again, this time assigning file pathnames to the src property
of each object stored in the array. These lines of code execute as the page loads, forcing the
images to load into the image cache along the way.

// precache all ‘off’ button images
var offImgArray = new Array();
offImgArray[“play”] = new Image(75,33);
offImgArray[“stop”] = new Image(75,33);
offImgArray[“pause”] = new Image(75,33);
offImgArray[“rewind”] = new Image(86,33);

135Chapter 12 ✦ Images and Dynamic HTML

// off image array -- set ‘off’ image path for each button
offImgArray[“play”].src = “images/playoff.jpg”;
offImgArray[“stop”].src = “images/stopoff.jpg”;
offImgArray[“pause”].src = “images/pauseoff.jpg”;
offImgArray[“rewind”].src = “images/rewindoff.jpg”;

// precache all ‘on’ button images
var onImgArray = new Array();
onImgArray[“play”] = new Image(75,33);
onImgArray[“stop”] = new Image(75,33);
onImgArray[“pause”] = new Image(75,33);
onImgArray[“rewind”] = new Image(86,33);

// on image array -- set ‘on’ image path for each button
onImgArray[“play”].src = “images/playon.jpg”;
onImgArray[“stop”].src = “images/stopon.jpg”;
onImgArray[“pause”].src = “images/pauseon.jpg”;
onImgArray[“rewind”].src = “images/rewindon.jpg”;

}

As you can see in the following HTML, when the user rolls the mouse atop any of the visible
document image objects, the onmouseover event handler (from the link object surrounding
the image in the document) invokes the imageOn() function, passing the name of the particu-
lar image. The imageOn() function uses that name to synchronize the document.images
array entry (the visible image) with the entry of the in-memory array of “on” images from the
onImgArray array. The src property of the array entry is assigned to the corresponding doc-
ument image src property.

// functions that swap images & status bar
function imageOn(imgName) {

if (document.images) {
document.images[imgName].src = onImgArray[imgName].src;

}
}

The same goes for the onmouseout event handler, which needs to turn the image off by invok-
ing the imageOff() function with the same index value.

function imageOff(imgName) {
if (document.images) {

document.images[imgName].src = offImgArray[imgName].src;
}

}

Both the onmouseover and onmouseout event handlers set the status bar to prevent the ugly
javascript: URL (described later) from appearing there as the user rolls the mouse atop
the image. The onmouseout event handler sets the status bar message to an empty string.

function setMsg(msg) {
window.status = msg;
return true;

}

For this demonstration, I disable the functions that control the jukebox. But I leave the empty
function definitions here so they catch the calls made by the clicks of the links associated
with the images.

136 Part II ✦ JavaScript Tutorial

// controller functions (disabled)
function playIt() {
}
function stopIt() {
}
function pauseIt(){
}
function rewindIt() {
}
</script>
</head>

<body>
<center>
<form>
Jukebox Controls

I surround each image in the document with a link because the link object has the event han-
dlers needed to respond to the mouse rolling over the area for compatibility back to NN3.
Each link’s onmouseover event handler calls the imageOn() function, passing the name of the
image object to be swapped. Because both the onmouseover and onmouseout event handlers
require a return true statement to work in older browsers, I combine the second function
call (to setMsg()) with the return true requirement. The setMsg() function always
returns true and is combined with the return keyword before the call to the setMsg() func-
tion. It’s just a trick to reduce the amount of code in these event handlers.

If you are typing this listing to try it out, be sure to keep each entire <a> tag and its attributes
in one unbroken line; or insert a carriage return before any event handler name.

<a href=”javascript:playIt()”
onmouseover=”imageOn(‘play’); return setMsg(‘Play the selected tune’)”
onmouseout=”imageOff(‘play’); return setMsg(‘’)”>

<a href=”javascript:stopIt()”

onmouseover=”imageOn(‘stop’); return setMsg(‘Stop the playing tune’)”
onmouseout=”imageOff(‘stop’); return setMsg(‘’)”>

<a href=”javascript:pauseIt()”

onmouseover=”imageOn(‘pause’); return setMsg(‘Pause the playing tune’)”
onmouseout=”imageOff(‘pause’); return setMsg(‘’)”>

<a href=”javascript:rewindIt()”

onmouseover=”imageOn(‘rewind’); return setMsg(‘Rewind back to the
beginning’)”

onmouseout=”imageOff(‘rewind’); return setMsg(‘’)”>

</form>
</center>
</body>
</html>

Note

137Chapter 12 ✦ Images and Dynamic HTML

You can see the results of this lengthy script in Figure 12-1. As the user rolls the mouse atop
one of the images, it changes from a light to dark color by swapping the entire image. You can
access the image files on the CD-ROM, and I encourage you to enter this lengthy listing and
see the magic for yourself.

Figure 12-1: Typical mouse rollover image swapping.

The javascript: Pseudo-URL
You have seen several instances in this and previous chapters of applying what is called the
javascript: pseudo-URL to href attributes of <a> and <area> tags. This technique should
be used sparingly at best, especially for public Web sites that may be accessed by users with
non-scriptable browsers (for whom the links will be inactive).

The technique was implemented to supplement the onclick event handler of objects that act
as hyperlinks. Especially in the early scripting days, when elements such as images had no
event handlers of their own, hyperlinked elements surrounding those inactive elements
allowed users to appear to interact directly with elements such as images. When the intended
action was to invoke a script function (rather than navigate to another URL, as is usually the
case with a hyperlink), the language designers invented the javascript: protocol for use in
assignments to the href attributes of hyperlink elements (instead of leaving the required
attribute empty).

When a scriptable browser encounters an href attribute pointing to a javascript: pseudo-
URL, the browser executes the script content after the colon when the user clicks on the ele-
ment. For example, near the end of Listing 12-2, all four <a> tags point to javascript:
pseudo-URLs that invoke script functions on the page, such as

Be aware that unless you override the status bar text with mouse event handlers (as shown
in Listing 12-2), the pseudo-URL appears in the status bar for the user to see (and perhaps be
frightened). More importantly, however, remember that this URL is to be used only for assign-
ment to href attributes. Do not use it with event handlers.

Popular Dynamic HTML Techniques
Because today’s scriptable browsers uniformly permit scripts to access each element of the
document and automatically reflow the page’s content when anything changes, a much

138 Part II ✦ JavaScript Tutorial

higher degree of dynamism is possible in your applications. Dynamic HTML is a very deep
subject, with lots of browser-specific peculiarities. In this final section of the tutorial, you
will learn techniques that work in all W3C DOM-compatible browsers. I’ll focus on two of the
most common tasks for which DHTML is used: changing element styles and modifying Body
content.

Changing stylesheet settings
Each element that renders on the page (and even some that don’t) has a property called
style. This property provides script access to all Cascading Style Sheet (CSS) properties
supported for that element by the current browser. Property values are the same as those
used for CSS specifications — frequently a different syntax than similar settings that used to
be made by HTML tag attributes. For example, if you wish to set the text color of a quote ele-
ment whose ID is FranklinQuote, the syntax is

document.getElementById(“FranklinQuote”).style.color = “rgb(255, 255, 0)”;

Because the CSS color property accepts other ways of specifying colors (such as the tradi-
tional hexadecimal triplet —#ffff00), you may use those as well.

Some CSS property names, however, do not conform to JavaScript naming conventions.
Several CSS property names contain hyphens. When that occurs, the scripted equivalent of
the property compresses the words together and capitalizes the start of each word. For
example, the CSS property font-weight would be set in script as follows:

document.getElementById(“highlight”).style.fontWeight = “bold”;

A related technique puts more of the design burden on the CSS code. For example, if you
define CSS rules for two different classes, you can simply switch the class definition being
applied to the element by way of the element object’s className property. For example, let’s
say you define two CSS class definitions with different background colors:

.normal {background-color: #ffffff}

.highlighted {background-color: #ff0000}

In the HTML page, the element first receives its default class assignment as follows:

<p id=”news” class=”normal”>...</p>

A script statement can then change the class of that element object so that the highlighted
style applies to it:

document.getElementById(“news”).className = “highlighted”;

Restoring the original class name also restores its look and feel. This approach is also a quick
way to change multiple style properties of an element with a single statement.

Dynamic content via W3C DOM nodes
In Chapter 8 you met the document.createElement() and document.createTextNode()
methods. These methods create new DOM objects out of thin air, which you may then modify
by setting properties (attributes) prior to plugging the new stuff into the document tree for
all to see.

As an introduction to this technique, I’ll demonstrate the steps you would go through to
add an element and its text to a placeholding span element on the page. In this example, a

139Chapter 12 ✦ Images and Dynamic HTML

paragraph element belonging to a class called centered will be appended to a span whose ID
is placeholder. Some of the text for the content of the paragraph comes from a text field in a
form (the visitor’s first name). Here is the complete sequence:

var newElem = document.createElement(“p”);
newElem.className = “centered”;
var newText = document.createTextNode(“Thanks for visiting, “ +

document.forms[0].firstName.value);
// insert text node into new paragraph
newElem.appendChild(newText);
// insert completed paragraph into placeholder
document.getElementById(“placeholder”).appendChild(newElem);

The W3C DOM approach takes a lot of tiny steps to create, assemble, and insert the pieces
into their destinations. After creating the element and text nodes, the text node must be
inserted into the element node. Because the new element node is empty when it is created,
the DOM appendChild() method plugs the text node into the element (between its start and
end tags, if you could see the tags). With the paragraph element assembled, it then gets
inserted at the end of the initially empty span element. Additional W3C DOM methods
(described in Chapters 15 and 16) provide more ways to insert, remove, and replace nodes.

Dynamic content via the innerHTML property
Prior to the W3C DOM specification, Microsoft invented a property of all element objects:
innerHTML. This property first appeared in IE4, and became popular due to its practicality.
The property’s value is a string containing HTML tags and other content, just as it would
appear in an HTML document inside the current element’s tags. Even though the W3C DOM
working group did not implement this property for the published standard, the property
proved to be too practical and popular for modern browser makers to ignore. You can find it
implemented as a de facto standard in Mozilla-based browsers and Safari, among others.

To show you the difference in the approach, the following code example shows the same con-
tent creation and insertion as shown in the previous W3C DOM section, but this time with the
innerHTML property:

// accumulate HTML as a string
var newHTML = “<p class=’centered’>Thanks for visiting, “;
newHTML += document.forms[0].firstName.value;
newHTML += “</p>”;
// blast into placeholder element’s content
document.getElementById(“placeholder”).innerHTML = newHTML;

While the innerHTML version seems more straightforward — and it makes it easier for HTML
coders to visualize what’s being added — the more code-intensive DOM node approach is
more efficient when the Body modification task entails lots of content. Extensive string con-
catenation operations can slow down browser script processing. Sometimes the shortest
script is not necessarily the fastest.

And so ends the final lesson of the JavaScript Bible, Fifth Edition tutorial. If you have gone
through every lesson and tried your hand at the exercises, you are now ready to dive into the
rest of the book to learn the fine details and many more features of both the document object
model and the JavaScript language. You can work sequentially through the chapters of Parts
III and IV, but before too long, you should also take a peek at Chapter 45 on the CD-ROM to
learn some debugging techniques that help the learning process.

140 Part II ✦ JavaScript Tutorial

Exercises
1. Explain the difference between a document image object and the memory type of image

object.

2. Write the JavaScript statements needed to precache an image file named jane.jpg that
later will be used to replace the document image defined by the following HTML:

<img name=”people” src=”john.jpg” height=”120” width=”100”
alt=”people”>

3. With the help of the code you wrote for question 2, write the JavaScript statement that
replaces the document image with the memory image.

4. Backward-compatible document image objects do not have event handlers for mouse
events. How do you trigger scripts needed to swap images for mouse rollovers?

5. Assume that a table element contains an empty table cell (td) element whose ID is
forwardLink. Using W3C DOM node creation techniques, write the sequence of script
statements that create and insert the following hyperlink into the table cell:

Next Page

✦ ✦ ✦

Document Objects
Reference

✦ ✦ ✦ ✦

In This Part

Chapter 13
JavaScript Essentials

Chapter 14
Document Object Model
Essentials

Chapter 15
Generic HTML Element
Objects

Chapter 16
Window and Frame
Objects

Chapter 17
Location and History
Objects

Chapter 18
The Document and
Body Objects

Chapter 19
Link and Anchor Objects

Chapter 20
Image, Area, and
Map Objects

Chapter 21
The Form and
Related Objects

Chapter 22
Button Objects

Chapter 23
Text-Related Form Objects

Chapter 24
Select, Option, and
FileUpload Objects

Chapter 25
Event Objects

Chapter 26
Style Sheet and
Style Objects

✦ ✦ ✦ ✦

P A R T

IIIIII

JavaScript
Essentials

Whenever JavaScript is discussed in the context of the Web
browser environment, it is sometimes difficult to distinguish

between JavaScript the scripting language and the objects that you
use the language to control. Even so, it’s important to separate the
language from the object model just enough to help you make impor-
tant design decisions when considering JavaScript-enhanced pages.
You may come to appreciate the separation in the future if you use
JavaScript for other object models, such as server-side programming.
All the basics of the language are identical. Only the objects differ.

This chapter elaborates on many of the fundamental subjects about
the core JavaScript language raised throughout the tutorial (Part II),
particularly as they relate to deploying scripts in a world in which
visitors to your pages may use a wide variety of browsers. Along the
way, you receive additional insights into the language itself. You can
find details about the JavaScript core language syntax in Part IV.

JavaScript Versions
The JavaScript language has its own numbering system, which is com-
pletely independent of the version numbers assigned to browsers. The
language’s creator, Netscape, historically has had the most influence
on the numbering system.

The first version, logically enough, was JavaScript 1.0. This was the
version implemented in Navigator 2 and the first release of Internet
Explorer 3. As the language evolved with succeeding browser versions,
the JavaScript version number incremented in small steps. Internet
Explorer 6 and Mozilla-based browsers support JavaScript 1.5.

Each successive generation of JavaScript employs additional language
features. For example, in JavaScript 1.0, arrays were not developed
fully, causing scripted arrays to not track the number of items in the
array. JavaScript 1.1 filled that hole by providing a constructor func-
tion for generating arrays and an inherent length property for any
generated array.

1313C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

How to separate the
language from the
document object model

Where scripts go in
your documents

JavaScript language
versions

Language highlights
for experienced
programmers

✦ ✦ ✦ ✦

144 Part III ✦ Document Objects Reference

The JavaScript version implemented in a browser is not always a good predictor of core lan-
guage features available for that browser. For example, while JavaScript 1.2 (as implemented
by Netscape in NN4) included broad support for regular expressions, not all of those features
appeared in Microsoft’s corresponding JScript implementation in IE4. By the same token,
Microsoft implemented try-catch error handling in its JScript in IE5, but Netscape didn’t
include that feature until the Mozilla-based NN6 implementation of JavaScript 1.5. Therefore,
the language version number is far less important than the browser version in determining
which language features are available for you to use.

Core Language Standard — ECMAScript
Although Netscape first developed the JavaScript language, Microsoft incorporated the language
in Internet Explorer 3. Microsoft did not want to license the “Java” name from its trademark
owner (Sun Microsystems), which is why the language became known in the IE environment as
JScript. Except for some very esoteric exceptions and the pace of newly introduced features, the
two languages are essentially identical. The levels of compatibility between browser brands for a
comparable generation are remarkably high for the core language (unlike the vast disparities in
object model implementations discussed in Chapter 14).

As mentioned in Chapter 2, standards efforts have been under way to create industry-wide
recommendations for browser makers to follow (to make developers’ lives easier). The core
language was among the first components to achieve standard status. Through the European
standards body called ECMA, a formal standard for the language has been agreed to and pub-
lished. The first specification for the language, dubbed ECMAScript by the standards group,
was roughly the same as JavaScript 1.1 in Netscape Navigator 3. The standard defines how
various data types are treated, how operators work, what a particular data-specific syntax
looks like, and other language characteristics. A newer version (called version 3) adds many
enhancements to the core language (version 2 was version 1 with errata fixed). You can view
the current version of the ECMA-262 specification at http://www.ecma-international.org/.
If you are a student of programming languages, you will find the document fascinating; if you
simply want to script your pages, you will probably find the minutia mind-boggling.

Both Netscape and Microsoft have pledged to make their browsers compliant with the ECMA
standard. The vast majority of the ECMAScript standard has appeared in Navigator since
version 3 and Internet Explorer since version 4. And, as new features are added to the ECMA
standard, they tend to find their way into newer browsers as well. The latest version of
ECMAScript is version 3, which is supported in JavaScript 1.5 (Moz1) and JScript in IE6.

Version 4 of ECMAScript is currently in the works, along with comparable implementations of
JavaScript (2.0) and JScript by The Mozilla Foundation and Microsoft, respectively.

Embedding Scripts in HTML Documents
Scriptable browsers offer several ways to include scripts or scripted elements in your HTML
documents. Not all approaches are available in all versions of every browser, but you have
sufficient flexibility starting with Navigator 3 and some versions of Internet Explorer 3. When
you consider that the vast majority of computer users are now using at least version 4
browsers, it’s safe to assume a core level of script support among Web users. Exceptions to
this rule include users who have specifically turned off scripting in their browsers, some
organizations that install browsers with scripting turned off, and users with physical disabili-
ties who require specialized browsers.

Note

145Chapter 13 ✦ JavaScript Essentials

<script> tags
The simplest and most compatible way to include script statements in an HTML document is
inside a <script>. . .</script> tag set that specifies the scripting language via the type
attribute. You can have any number of such tag sets in your document. For example, you can
define some functions in the Head section to be called by event handlers in HTML tags within
the Body section. Another tag set can reside within the Body to write part of the content of
the page as the page loads. Place only script statements and comments between the start and
end tags of the tag set. Do not place any HTML tags inside unless they are part of a string
parameter to a document.write() statement that creates content for the page.

Every opening <script> tag should specify the type attribute. Because the <script> tag is a
generic tag indicating that the contained statements are to be interpreted as executable
script and not renderable HTML, the tag is designed to accommodate any scripting language
the browser knows.

Specifying the language version
Browsers starting with IE5 and Moz1 support the type attribute of the <script> tag. This
attribute accepts the type of a script as a MIME type. For example, the MIME type of
JavaScript is specified as type=”text/javascript”. So, a <script> block for JavaScript
is coded as follows:

<script type=”text/javascript”>...</script>

The type attribute is required for the <script> tag as of HTML 4. Earlier versions of HTML,
and therefore earlier browsers, recognize the language=”JavaScript” attribute setting as
opposed to type. The language attribute allows the scripter to write for a specific minimum
version of JavaScript or, in the case of Internet Explorer, other languages such as VBScript.
For example, the JavaScript interpreter built into Navigator 3 knows the JavaScript 1.1 ver-
sion of the language; Navigator 4 and Internet Explorer 4 include the JavaScript 1.2 version.
For versions beyond the original JavaScript, you may specify the language version by append-
ing the version number after the language name without any spaces, as in

<script language=”JavaScript1.1”>...</script>

<script language=”JavaScript1.2”>...</script>

It’s important to note that the language attribute was deprecated in HTML 4, with the type
attribute being the recommended way of specifying the scripting language for <script> tags.
However, only IE5+ and W3C DOM-compatible browsers recognize this attribute, and JavaScript
versions are not taken into account with this methodology. To be both backward compatible
and forward looking, you can specify both the language and type attributes in your <script>
tags because older browsers ignore the type attribute. Following is an example of how you
might do this:

<script type=”text/javascript” language=”JavaScript 1.2”>...</script>

<script for> tags
IE4+ browsers offer a variation on the <script> tag that binds a <script> tag’s statements
to a specific object and event generated by that object. In addition to the language specifica-
tion, the tag’s attributes must include for and event attributes (not part of the HTML 4.0
specification). The value assigned to the for attribute is a reference to the desired object.
Most often, this is simply the identifier assigned to the object’s id attribute (IE4+ enables you
to reference an object by either document.all.objectID or just objectID). The event
attribute is the event handler name that you wish the script to respond to. For example, if

146 Part III ✦ Document Objects Reference

you design a script to perform some action upon a mousedown event in a paragraph whose ID
is myParagraph, the script statements are enclosed in the following tag set:

<script for=”myParagraph” event=”onmousedown” type=”text/javascript”>
...
</script>

Statements inside the tag set execute only upon the firing of the event. No function definitions
are required.

This way of binding an object’s event to a script means that there is no event handler defined
in the element’s tag. Therefore, it guarantees that only IE4 or later can carry out the script
when the event occurs. But the tag and attributes contain a lot of source code overhead for
each object’s script, so this is not a technique that you should use for script statements that
need to be called by multiple objects.

Also be aware that you cannot use this tag variation if non-IE or pre-IE4 browsers load the
page. In such browsers, script statements execute as the page loads, which certainly causes
script errors.

Hiding script statements from older browsers
The number of people using old Web browsers that don’t support scripting languages has
diminished considerably in the past few years. However, new devices, such as mobile phones
and pocket-sized computers, often employ compact browsers that don’t have built-in
JavaScript interpreters.

Nonscriptable browsers do not know about the <script> tag. Normally, browsers ignore tags
they don’t understand. That’s fine when a tag is just one line of HTML, but a <script> tag
sets off any number of script statement lines in a document. Old and compact browsers don’t
know to expect a closing </script> tag. Therefore, their natural inclination is to render any
lines they encounter after the opening <script> tag. Unfortunately, this places script code
squarely in the document — surely to confuse anyone who sees such gibberish on the page.

You can, however, exercise a technique that tricks most nonscriptable browsers into ignor-
ing the script statements: surround the script statements — inside the <script> tag set —
with HTML comment markers. An HTML comment begins with the sequence <!-- and ends
with -->. Therefore, you should embed these comment sequences in your scripts according
to the following format:

<script type=”text/javascript”>
<!--
script statements here
//-->
</script>

JavaScript interpreters know to ignore a line that begins with the HTML beginning comment
sequence, but they need a little help with the ending sequence. The close of the HTML com-
ment starts with a JavaScript comment sequence (//). This tells JavaScript to ignore the line;
but a nonscriptable browser sees the ending HTML symbols and begins rendering the page
with the next HTML tag or other text in the document. An older browser doesn’t know what
the </script> tag is, so the tag is ignored and rendering begins after that.

If you design your pages for public access, it’s still a good idea to include these HTML com-
ment lines in all your <script> tag sets. Make sure they go inside the tags, not outside. Also
note that most of the script examples in this book do not include these comments for the
sake of saving space in the listings.

147Chapter 13 ✦ JavaScript Essentials

Hiding scripts entirely?
It may be misleading to say that this HTML comment technique “hides” scripts from older
browsers. In truth, the comments hide the scripts from being rendered by the browsers. The
tags and script statements, however, are still downloaded to the browser and appear in the
source code when viewed by the user.

A common wish among authors is to truly hide scripts from visitors to a page. Client-side
JavaScript must be downloaded with the page and is, therefore, visible in the source view of
pages. There are, of course, some tricks you can implement that may disguise client-side
scripts from prying eyes. The most easily implemented technique is to let the downloaded
page contain no visible elements, only scripts that assemble the page that the visitor sees.
Source code for such a page is simply the HTML for the page. But that page is not interactive
because no scripting is attached unless it is written as part of the page — defeating the goal
of hiding scripts. Any scripted solution for disguising scripts is immediately defeatable by
the user turning off scripting temporarily before downloading the page. All of your code is
ready for source view.

If you are worried about other scripters “stealing” your scripts, your best protection is to
include a copyright notification in your page’s source code. Not only are your scripts visible
to the world, but so, too, are a thief’s scripts. This way you can easily see when someone lifts
your scripts verbatim.

One other option for minimizing other people “borrowing” your JavaScript code is to use
a JavaScript obfuscator, which is a special application that scrambles your code and
makes it much harder to read and understand. The code still works fine but it is very hard
to modify in any way. You would use an obfuscator just before placing your code online,
making sure to keep the original version for making changes. One JavaScript obfuscator
that has been available for several years is a shareware program called JavaScript
Scrambler (http://www.quadhead.de/).

Script libraries (.js files)
If you do a lot of scripting or script a lot of pages for a complex Web application, you will cer-
tainly develop some functions and techniques that you can use for several pages. Rather than
duplicate the code in all of those pages (and go through the nightmare of making changes to
all copies for new features or bug fixes), you can create reusable script library files and link
them to your pages.

Such an external script file contains nothing but JavaScript code — no <script> tags, no
HTML. The script file you create must be a text-only file, but its filename must end with the
two-character extension .js. To instruct the browser to load the external file at a particular
point in your regular HTML file, you add an src attribute to the <script> tag as follows:

<script type=”text/javascript” src=”hotscript.js”></script>

This kind of tag should go at the top of the document so it loads before any other in-document
<script> tags load. If you load more than one external library, include a series of these tag sets
at the top of the document.

Take notice of two features about this external script tag construction. First, the <script>
</script> tag pair is required, even though nothing appears between them. You can mix
<script> tag sets that specify external libraries with in-document scripts in the same docu-
ment. Second, avoid putting other script statements between the start and end tags when the
start tag contains an src attribute.

Note

148 Part III ✦ Document Objects Reference

How you reference the source file in the src attribute depends on its physical location and
your HTML coding style. In the preceding example, the .js file is assumed to reside in the
same directory as the HTML file containing the tag. But if you want to refer to an absolute
URL, the protocol for the file is http:// (just like with an HTML file):

<script type=”text/javascript” src=”http://www.cool.com/hotscript.js”></script>

A very important prerequisite for using script libraries with your documents is that your
Web server software must know how to map files with the .js extension to a MIME type of
application/x-javascript. If you plan to deploy JavaScript in this manner, be sure to
test a sample on your Web server beforehand and arrange for any necessary server config-
uration adjustments.

When a user views the source of a page that links in an external script library, code from the
.js file does not appear in the window even though the browser treats the loaded script as
part of the current document. However, the name or URL of the .js file is plainly visible (dis-
played exactly as it appears in your source code). Anyone can then turn off JavaScript in the
browser and open that file (using the http:// protocol) to view the .js file’s source code. In
other words, an external JavaScript source file is no more hidden from view than JavaScript
embedded directly in an HTML file.

Browser Version Detection
Without question, the biggest challenge facing many client-side scripters is how to program
an application that accommodates a wide variety of browser versions and brands, each one
of which can bring its own quirks and bugs. Happy is the intranet developer who knows for a
fact that the company has standardized its computers with a particular brand and version of
browser. But that is a rarity, especially in light of the concept of the extranet— private corporate
networks and applications that open up for access to the company’s suppliers and customers.

Having dealt with this problem since the original scripted browser (NN2) had to work along-
side a hoard of nonscriptable browsers, I have identified several paths that an application
developer can follow. Unless you decide to be autocratic about browser requirements for
using your site, you must make compromises in desired functionality or provide multiple
paths in your Web site for two or more classes of browsers. In this section, I give you several
ideas about how to approach development in a fragmented browser world.

While JavaScript support has stabilized to some degree when it comes to desktop Web
browsers, the popularity of mobile phone and handheld Web browsers has complicated the
matter; few compact Web browsers support JavaScript as of yet.

Is JavaScript on?
Very often, the first decision an application must make is whether the client accessing the
site is JavaScript-enabled. Non-JavaScript-enabled browsers fall into two categories: a)
JavaScript-capable browsers that have JavaScript turned off in the preferences; and b)
browsers that have no built-in JavaScript interpreter.

Using the <noscript> tag
Except for some of the earliest releases of NN2, all JavaScript-capable browsers have a prefer-
ences setting to turn off JavaScript (and a separate one for Java). You should know that even

Note

149Chapter 13 ✦ JavaScript Essentials

though JavaScript is turned on by default in most browsers, many institutional deployments
turn it off when the browser is installed on client machines. The reasons behind this MIS
deployment decision vary from scares about Java security violations incorrectly associated
with JavaScript, valid JavaScript security concerns on some browser versions, and the fact
that some firewalls try to filter JavaScript lines from incoming HTML streams.

All JavaScript-capable browsers include a set of <noscript>. . .</noscript> tags to balance
the <script>. . .</script> tag set. If one of these browsers has JavaScript turned off, the
<script> tag is ignored but the <noscript> tag is observed. As with the <noframes> tag, you
can use the body of a <noscript> tag set to display HTML that lets users know JavaScript is
turned off, and therefore the full benefit of the page isn’t available unless they turn on JavaScript.
Listing 13-1 shows a skeletal HTML page that uses these tags.

Listing 13-1: Employing the <noscript> Tag

<html>
<head>

<title>Some Document</title>
<script type=”text/javascript”>

// script statements
</script>

</head>

<body>
<noscript>Your browser has JavaScript turned off.

You will experience a more enjoyable time at this Web site if you
turn JavaScript on.
<hr /></noscript>

<h2>The body of your document.</h2>
</body>
</html>

You can display any standard HTML within the <noscript> tag set. An icon image is a color-
ful way to draw the user’s attention to the special advice at the top of the page. If your docu-
ment is designed to create content dynamically in one or more places in the document, you
may have to include a <noscript> tag set after more than one <script> tag set to let users
know what they’re missing. Do not include the HTML comment tags that you use in hiding
JavaScript statements from older browsers. Their presence inside the <noscript> tags pre-
vents the HTML from rendering.

Other nonscriptable browsers
At this juncture, I must point out that newcomers to scripting frequently want to know what
script to write to detect whether JavaScript is turned on. Because scripters are so ready to write
a script to work around all situations, it takes some thought to realize that a non-JavaScript
browser cannot execute such a script: If no JavaScript interpreter exists in the browser (or it is
turned off), the script is ignored. I suppose that the existence of a JavaScript-accessible method
for Java detection — the navigator.javaEnabled() method — promises a parallel method for
JavaScript. But logic fails to deliver on that unspoken promise.

150 Part III ✦ Document Objects Reference

Another desire is to have JavaScript substitute document content when the browser is
JavaScript-enabled. Only in IE4+ and W3C DOM-compatible browsers can a script replace
regular HTML with scripted content. If you develop content that must be backward compat-
ible with older browsers, remember that all HTML in a document appears in the browser
window, while scripted content can be additive only.

You can use this additive scripting to create unusual effects when displaying different links
and (with a caveat) body text for scriptable and nonscriptable browsers. Listing 13-2 shows a
short document that uses HTML comment symbols to trick nonscriptable browsers into dis-
playing a link to Netscape’s Web site and two lines of text. A scriptable browser takes advan-
tage of a behavior that allows only the nearest <a> tag to be associated with a closing
tag. Therefore, the Microsoft link isn’t rendered at all, but the link to my Web site is. For the
body text, the script assigns the same text color to a segment of HTML body text as the docu-
ment’s background. While the colored text is camouflaged in a scriptable browser (and some
other text written to the document), the “hidden” text remains invisible in the document.
HTML fans frown upon this kind of element spoofing, which will likely run afoul of HTML val-
idators. However, it can be fun to play with.

Listing 13-2: Rendering Different Content for Scriptable and
Nonscriptable Browsers

<html>
<head>

<title></title>
</head>

<body bgcolor=”#FFFFFF”>

<script type=”text/javascript”>
<!--
document.writeln(“”)
//-->
</script> Where?
<hr />
<script type=”text/javascript”>
<!--
document.write(“Howdy from the script!”)
//-->
</script>If you can read this, JavaScript is not available.
<script type=”text/javascript”>
<!--
document.write(“<\/font>”)
//-->
</script>

Here’s some stuff afterward.

</body>
</html>

Scripting for different browsers
A number of solutions exist for accommodating different client browsers because the spe-
cific compatibility need might be as simple as letting a link navigate to a scripted page for

151Chapter 13 ✦ JavaScript Essentials

script-enabled browsers, as involved as setting up distinct areas of your application for dif-
ferent browser classes, or any degree in between. The first step in planning for compatibil-
ity is determining what your goals are for various visitor classes.

Establishing goals
Once you map out your application, you must then look at the implementation details to see
which browser is required for the most advanced aspect of the application. For example, if
the design calls for image swapping on mouse rollovers, that feature requires NN3+ and IE4+,
which is a relatively safe assumption these days. In implementing Dynamic HTML features,
you have potentially three different ways to implement tricks (such as movable elements or
changeable content) because the document object models require different scripting (and
sometimes HTML) for NN4, IE4+, and the W3C DOM implemented in Moz1+, IE5+, Safari, and
other recent browsers.

In an ideal scenario, you have an appreciation for the kinds of browsers that your visitors
use. For example, if you want to implement some DHTML features, but NN4 usage is only a
small and decreasing percentage of hits, you can probably get by with designing for the IE4+
and W3C DOM. Or you may wish to forget the past and design your DHTML exclusively for
W3C DOM-compatible browsers. If your Web hosting service maintains a log of visitor activity
to your site, you can study the browsers listed among the hits to see which browsers your
visitors use.

After you determine the lowest common denominator for the optimum experience, you then
must decide how gracefully you want to degrade the application for visitors whose browsers
do not meet the common denominator. For example, if you plan a page or site that requires a
W3C DOM-compatible browser for all the bells and whistles, you can provide an escape path
with content in a simple format that every browser from Lynx to IE4 and NN4 can view. You
might even provide for users of handheld devices a third offering with limited or no script-
ability that is designed specifically for a constrained user interface.

Creating an application or site that has multiple paths for viewing the same content may
sound good at the outset, but don’t forget that maintenance chores lie ahead as the site
evolves. Will you have the time, budget, and inclination to keep all paths up to date?
Despite whatever good intentions a designer of a new Web site may have, in my experience
the likelihood that a site will be maintained properly diminishes rapidly with the complex-
ity of the maintenance task.

Implementing a branching index page
If you decide to offer two or more paths into your application or content, one place you can
start visitors down their individual paths is at the default page for your site. Numerous tech-
niques are available that can redirect visitors to the appropriate perceived starting point of
the site.

One design to avoid is placing the decision about the navigation path in the hands of the visi-
tor. Offering buttons or links that describe the browser requirements may work for users who
are HTML and browser geeks, but average consumers surfing the Web these days likely don’t
have a clue about what level of HTML their browsers support or whether they are JavaScript-
enabled. It is incumbent upon the index page designer to automate the navigation task as
much as possible.

A branching index page has almost no content. It is not the “home page” per se of the site, but
rather a gateway to the entire Web site. Its job is to redirect users to what appears to be the
home page for the site. Listing 13-3 shows what such a branching index page looks like.

152 Part III ✦ Document Objects Reference

Listing 13-3: A Branching Index Page

<html>
<head>

<title>GiantCo On The Web</title>
<script type=”text/javascript”>
<!--
window.location = “home1.html”
//-->
</script>
<meta http-equiv=”REFRESH” content=
“0; URL=http://www.giantco.com/home2.html”>

</head>

<body>
<center>

<img src=”images/giantcoLogo.gif” height=
“60” width=”120” border=”0” alt=”Go To GiantCo Home Page” />

</center>
</body>
</html>

Notice that the only visible content is an image surrounded by a standard link. The <body>
tag contains no background color or art. A single script statement is located in the Head. A
<meta> tag is also in the Head to automate navigation for some users. To see how a variety of
browsers respond to this page, here are what three different classes of browser do with
Listing 13-3:

✦ A JavaScript-enabled browser. Although the entire page may load momentarily (at most,
flashing the company logo for a brief moment), the browser executes the script state-
ment that loads home1.html into the window. In the meantime, the image is preloaded
into the browser’s memory cache. This image should be reused in home1.html so the
download time isn’t wasted on a one-time image. If your pages require a specific browser
brand or minimum version number, this is the place to filter out browsers that don’t
meet the criteria (which may include the installation of a particular plug-in). Use the
properties of the navigator object (Chapter 38 on the CD-ROM) to write a browser sniffer
script that allows only those browsers meeting your design minimum to navigate to the
scripted home page. All other browsers fall through to the next execution possibility.

✦ A modern browser with JavaScript turned off or missing. Several modern browsers
recognize the special format of the <meta> tag as one that loads a URL into the current
window after a stated number of seconds. In Listing 13-3, that interval is zero seconds.
The <meta> tag is executed only if the browser ignores the <script> tag. Therefore, any
scriptable browser that has JavaScript turned off or any browser that knows <meta> tags
but no scripting follows the refresh command for the <meta> tag. If you utilize this tag, be
very careful to observe the tricky formatting of the content attribute value. A semicolon
and the subattribute url follow the number of seconds. A complete URL for your non-
scriptable home page version is required for this subattribute. Importantly, the entire
content attribute value is inside one set of quotes.

✦ Older graphical browsers, compact PDA browsers, and Lynx. The last category
includes graphical browsers with limited capabilities, as well as intentionally stripped-
down browsers. Lynx is designed to work in a text-only VT-100 terminal screen; mobile
phones, personal digital assistants (PDAs), and handheld computers have browsers

153Chapter 13 ✦ JavaScript Essentials

optimized for usage through relatively slow network connections and viewing on small
screens. Numerous other browsers are designed to provide Web accessibility for users
with disabilities through technologies such as speech synthesis and touch screens (see
http://www.w3.org/WAI). If such browsers do not understand the <meta> tag for
refreshing content, they land at this page with no further automatic processing. But by
creating an image that acts as a link, the user will likely click (or tap) on it to continue.
The link then leads to the nonscriptable home page. Also note that the alt attribute for
the image is supplied. This takes care of Lynx and compact browsers (with image load-
ing off) because these browsers show the alt attribute text in lieu of the image. Users
click or tap on the text to navigate to the URL referenced in the link tag.

I have a good reason to keep the background of the branching index page plain. For those
whose browsers automatically lead them to a content-filled home page, the browser window
flashes from a set background color to the browser’s default background color before the new
home page and its background color appear. By keeping the initial content to only the com-
pany logo, less screen flashing and obvious navigation are visible to the user.

One link — alternate destinations
Another filtering technique is available directly from links. With the exceptions of NN2 and
IE3, a link can navigate to one destination via a link’s onclick event handler and to another
via the href attribute if the browser is not scriptable.

The trick is to include an extra return false statement in the onclick event handler. This
statement cancels the link action of the href attribute. For example, if a nonscriptable
browser should go to one version of a page at the click of a link and the scriptable browser
should go to another, the link tag is as follows:

<a href=”nonJSCatalog.html” onclick=”location.href=’JSCatalog.html’;return
false”>Product Catalog

Only nonscriptable browsers, NN2, and IE3 go to the nonJSCatalog.html page; all others go
to the JSCatalog.html page.

Object detection
The final methodology for implementing browser version branching is known as object detec-
tion. The principle is simple: If an object type exists in the browser’s object model, it is safe to
execute script statements that work with that object.

Perhaps the best example of object detection is the way scripts can swap images on a page in
newer browsers without tripping up on older browsers that don’t implement images as objects.
In a typical image swap, onmouseover and onmouseout event handlers (assigned to a link sur-
rounding an image, to be backward compatible) invoke functions that change the src property
of the desired image. Each of those functions is invoked for all scriptable browsers, but you
want them to run their statements only when images can be treated as objects.

Object models that implement images always include an array of image objects belonging to
the document object. The document.images array always exists, even with a length of zero
when no images are on the page. Therefore, if you wrap the image swapping statements
inside an if construction that lets browsers pass only if the document.images array exists,
older browsers simply skip over the statements:

function imageSwap(imgName, url) {
if (document.images) {

document.images[imgName].src = url;
}

}

154 Part III ✦ Document Objects Reference

Object detection works best when you know for sure how all browsers implement the object. In
the case of document.images, the implementation across browsers is identical, so it is a very
safe branching condition. That’s not always the case, and you should use this feature with care-
ful thought. For example, IE4 introduced a document object array called document.all, which
is used very frequently in building references to HTML element objects. NN4, however, did not
implement that array, but instead had a document-level array object called layers, which was
not implemented in IE4. Unfortunately, many scripters used the existence of these array objects
as determinants for browser version. They set global variables signifying a minimum version of
IE4 if document.all existed and NN4 if document.layers existed. This is most dangerous
because there is no way of knowing if a future version of a browser may adopt the object of the
other browser brand or eliminate a language feature. For example, Opera in its native setting
supports the document.all array. But if you expect that browser to support every detail of the
IE4 browser, scripts will break left and right.

This is why I recommend object detection not for browser version sniffing but for object avail-
ability branching, as shown previously for images. Moreover, it is safest to implement object
detection only when all major browser brands (and the W3C DOM recommendation) have
adopted the object so that behavior is predictable wherever your page loads in the future.

Techniques for object detection include testing for the availability of an object’s method. A
reference to an object’s method returns a value, so such a reference can be used in a condi-
tional statement. For example, the following code fragment demonstrates how a function can
receive an argument containing the string ID of an element and convert the string to a valid
object reference for three different document object models:

function myFunc(elemID) {
var obj;
if (document.getElementById) {

obj = document.getElementById(elemID);
} else if (document.all) {

obj = document.all(elemID);
} else if (document.layers) {

obj = document.layers[elemID];
}
if (obj) {

// statements that work on the object
}

}

With this object detection scheme, it no longer matters which browser brand, operating sys-
tem, and version supports a particular way of changing an element ID to an object reference.
Whichever of the three document object properties or method is supported by the browser
(or the first one, if the browser supports more than one), that is the property or method
used to accomplish the conversion. If the browser supports none of them, no further state-
ments execute.

If your script wants to check for the existence of an object’s property or method, you may
also have to check for the existence of the object beforehand if that object is not part of all
browers’ object models. An attempt to reference a property of a non-existent object in a con-
ditional expression generates a script error. To avoid the error, you can cascade the condi-
tional tests with the help of the && operator. The following fragment tests for the existence of
both the document.body object and the document.body.style property:

if (document.body && document.body.style) {
// statements that work on the body’s style property

}

155Chapter 13 ✦ JavaScript Essentials

If the test for document.body fails, JavaScript bypasses the second test.

One potential “gotcha” to using conditional expressions to test for the existence of an object’s
property is that even if the property exists but its value is zero or an empty string, the condi-
tional test reports that the property does not exist. To work around this potential problem, the
conditional expression can examine the data type of the value to ensure that the property gen-
uinely exists. A nonexistent property for an object reports a data type of undefined. Use the
typeof operator (see Chapter 32) to test for a valid property:

if (document.body && typeof document.body.scroll != “undefined”) {
// statements that work on the body’s scroll property

}

Object detection is the wave of the future, and I wholeheartedly recommend designing your
scripts to take advantage of it in lieu of branching on particular browser name strings and
version numbers. Scriptable features are gradually finding their way into browsers embedded
in a wide range of non-traditional computing devices. These browsers may not go by the
same names and numbering systems that we know today, yet such browsers may be able to
interpret your scripts. By testing for browser functionality, your scripts will likely require less
maintenance in the future. You can see more object detection at work in Chapters 47 and 56
on the CD-ROM.

Designing for Compatibility
Each new major release of a browser brings compatibility problems for page authors. It’s not
so much that old scripts break in the new versions (well-written scripts rarely break in new
versions with the rare exception of the jump from NN4 to the new browser engine in Mozilla).
No, the problems center on the new features that attract designers when the designers forget
to accommodate visitors who have not yet advanced to the latest and greatest browser ver-
sion or who don’t share your browser brand preference.

Catering only to the lowest common denominator can more than double your development
time due to the expanded testing matrix necessary to ensure a good working page in all operat-
ing systems and on all versions. Decide how important the scripted functionality you employ in
a page is for every user. If you want some functionality that works only in a later browser, you
may have to be a bit autocratic in defining the minimum browser for scripted access to your
page — any lesser browser gets shunted to a simpler presentation of your site’s data.

Another possibility is to make a portion of the site accessible to most, if not all, browsers, and
restrict the scripting to only the occasional enhancement that nonscriptable browser users
won’t miss. Once the application reaches a certain point in the navigation flow, the user needs a
more capable browser to get to the really good stuff. This kind of design is a carefully planned
strategy that lets the site welcome all users up to a point, but then enables the application to
shine for users of, say, W3C DOM-compatible browsers.

The ideal page is one that displays useful content on any browser, but whose scripting enhances
the experience of the page visitor — perhaps by offering more efficient site navigation or interac-
tivity with the page’s content. That is certainly a worthy goal to aspire to. But even if you can
achieve this ideal on only some pages, you will reduce the need for defining entirely separate,
difficult-to-maintain paths for browsers of varying capabilities.

Regardless of your specific browser compatibility strategy, the good news is that time tends to
minimize the problem. Web standards have solidified greatly in the past few years, and browser
vendors are finally making a more serious effort to support those standards. Furthermore,
as more of the Web community upgrades to modern browsers, the issue of supporting old
browsers becomes less and less significant. Bottom line — there is light at the end of the tunnel.

156 Part III ✦ Document Objects Reference

Dealing with beta browsers
If you have crafted a skillfully scripted Web page or site, you may be concerned when a pre-
release (or beta) version of a browser available to the public causes script errors or other
compatibility problems to appear on your page. Do yourself a favor — don’t overreact to
bugs and errors that occur in prerelease browser versions. If your code is well written, it
should work with any new generation of browser. If the code doesn’t work correctly, con-
sider the browser to be buggy. Report the bug (preferably with a simplified test case script
sample) to the browser maker.

The exception to the “it’s a beta bug” rule arose in the transition from NN4 to the new Mozilla
engine (first released as NN6). As you learn in Chapter 14, a conscious effort to eliminate a
proprietary NN4 feature (the <layer> tag and corresponding scriptable object) caused many
NN4 scripts to break on Moz1 betas (and final release). Had scripters gone to report the prob-
lem to the new browsers’ developer (Mozilla), they would have learned of the policy change,
and planned for the new implementation. It is extremely rare for a browser to eliminate a pop-
ular feature so quickly, but it can happen.

It is often difficult to prevent yourself from getting caught up in browser makers’ enthusiasm
for a new release. But remember that a prerelease version is not a shipping version. Users
who visit your page with prerelease browsers should know that there may be bugs in the
browser. That your code does not work with a prerelease version is not a sin, nor is it worth
losing sleep over. Just be sure to connect with the browser’s maker either to find out if the
problem will continue in the final release or to report the bug so the problem doesn’t make it
into the release version.

The Evaluator Sr.
In Chapter 6, you were introduced to a slimmed-down version of The Evaluator Jr., which pro-
vides an interactive workbench to experiment with expression evaluation and object inspec-
tion. At this point, you should meet The Evaluator Sr., a tool you will use in many succeeding
chapters to help you learn both core JavaScript and DOM terminology.

Figure 13-1 shows the top part of the page. Two important features differentiate this full ver-
sion from the Jr. version in Chapter 6.

IE Browser Version Headaches

As described more fully in the discussion of the navigator object in Chapter 38 on the
CD-ROM, your scripts can easily determine which browser is the one running the script. However,
the properties that reveal the version don’t always tell the whole story about Internet Explorer.

As you can see in detail in Chapter 38 on the CD-ROM, the navigator.appVersion property for
IE5, 5.5, and 6 for Windows reports version 4 (the same as IE4). You can still “sniff” for versions
5 and 6 (you can find the designation MSIE 5 or MSIE6 in the navigator.userAgent property),
but the process is not as straightforward as it could be. The best advice is to be vigilant when
new browsers come on the scene or adopt object detection techniques in your scripts.

157Chapter 13 ✦ JavaScript Essentials

Figure 13-1: The Evaluator Sr.

First, you can try some Netscape/Mozilla secure features if you have Code Base Principles
turned on for your browser (Chapter 46 on the CD-ROM) and you check the Use Code Base
Security checkbox (NN4+ only). Second, the page has several HTML elements preinstalled,
which you can use to explore DOM properties and methods. As with the smaller version, a set
of 26 one-letter global variables (a through z) are initialized and ready for you to assign val-
ues for extended evaluation sequences.

You should copy the file evaluator.html from the companion CD-ROM to a local hard disk
and set a bookmark for it in all of your test browsers. Feel free to add your own elements to
the bottom of the page to explore other objects. I describe a version of The Evaluator for
embedding in your projects as a debugging tool in Chapter 45 on the CD-ROM, where you can
learn more built-in functionality of The Evaluator.

Compatibility ratings in reference chapters
With the proliferation of scriptable browser versions since Navigator 2, it is important to
know up front whether a particular language or object model object, property, method, or
event handler is supported in the lowest common denominator for which you are designing.
Therefore, beginning with Chapter 15 of this reference part of the book, I include frequent
compatibility ratings, such as the following example:

Compatibility: WinIE5+, MacIE5+, NN4+, Moz1.01+, Safari1+

158 Part III ✦ Document Objects Reference

A plus sign after a browser version number means that the language feature was first imple-
mented in the numbered version and continues to be supported in succeeding versions. A
minus sign means that the feature is not supported in that browser. The browsers tested for
compatibility include Internet Explorer for Windows and Macintosh, Netscape Navigator,
Mozilla (including all browsers based on the Mozilla engine), and Apple’s Safari. I also recom-
mend that you print the JavaScript and Browser Objects Quick Reference file shown in
Appendix A. The file is on the companion CD-ROM in Adobe Acrobat format. This quick refer-
ence clearly shows each object’s properties, methods, and event handlers, along with keys to
the browser version in which each language item is supported. You should find the printout
to be valuable as a day-to-day resource.

Language Essentials for Experienced Programmers
In this section, experienced programmers can read the highlights about the core JavaScript
language in terms that may not make complete sense to those with limited or no scripting
experience. This section is especially for you if you found the tutorial of Part II rudimentary.
Here, then, is the quick tour of the essential issues surrounding the core JavaScript language:

✦ JavaScript is a scripting language. The language is intended for use in an existing host
environment (for example, a Web browser) that exposes objects whose properties and
behaviors are controllable via statements written in the language. Scripts execute
within the context of the host environment. The host environment controls what, if any,
external environmental objects may be addressed by language statements running in
the host environment. For security and privacy reasons, Web browsers generally afford
little or no direct access via JavaScript to browser preferences, the operating system,
or other programs beyond the scope of the browser. The exception to this rule is that
modern browsers allow deeper client access (with the user’s permission) through trust
mechanisms such as signed scripts (Netscape) or trusted ActiveX controls (Microsoft).

✦ JavaScript is object-based. Although JavaScript exhibits many syntactic parallels with
the Java language, JavaScript is not as pervasively object-oriented as Java. The core lan-
guage includes several built-in static objects from which working objects are generated.
Objects are created via a call to a constructor function for any of the built-in objects plus
the new operator. For example, the following expression generates a String object and
returns a reference to that object:

new String(“Hello”);

Table 13-1 lists the built-in objects with which scripters come in contact.

Table 13-1: JavaScript Built-In Objects

Array1 Boolean Date Error2

EvalError2 Function1 Math Number1

Object1 RangeError2 ReferenceError2 RegExp3

String1 SyntaxError2 TypeError2 URIError2

1Although defined in ECMA Level 1, was first available in NN3 and IE3/J2.
2Defined in ECMA Level 3; implemented in Moz1.
3Defined in ECMA Level 3; implemented fully in NN4 and IE6.

159Chapter 13 ✦ JavaScript Essentials

✦ JavaScript is loosely typed. Variables, arrays, and function return values are not
defined to be of any particular data type. In fact, an initialized variable can hold differ-
ent data type values in subsequent script statements (obviously not good practice, but
possible nonetheless). Similarly, an array may contain values of multiple types. The
range of built-in data types is intentionally limited:

• Boolean (true or false)

• Null

• Number (double-precision 64-bit format IEEE 734 value)

• Object (encompassing the Array object)

• String

• Undefined

✦ The host environment defines global scope. Web browsers traditionally define a
browser window or frame to be the global context for script statements. When a doc-
ument unloads, all global variables defined by that document are destroyed.

✦ JavaScript variables have either global or local scope. A global variable in a Web
browser is typically initialized in var statements that execute as the document loads.
All statements in that document can read or write that global variable. A local variable
is initialized inside a function (also with the var operator). Only statements inside that
function may access that local variable.

✦ Scripts sometimes access JavaScript static object properties and methods. Some
static objects encourage direct access to their properties or methods. For example, all
properties of the Math object act as constant values (for example, Math.PI).

✦ You can add properties or methods to working objects at will. To add a property to
an object, simply assign a value of any type to it. For example, to add an author prop-
erty to a string object named myText, use:

myText.author = “Jane”;

Assign a function reference to an object property to give that object a new method:

// function definition
function doSpecial(arg1) {

// statements
}
// assign function reference to method name
myObj.handleSpecial = doSpecial;
...
// invoke method
myObj.handleSpecial(argValue);

Inside the function definition, the this keyword refers to the object that owns the
method.

✦ JavaScript objects employ prototype-based inheritance. All object constructors cre-
ate working objects whose properties and methods inherit the properties and methods
defined for the prototype of that object. Starting with NN3 and late versions of IE3,
scripts can add and delete custom properties and/or methods associated with the
static object’s prototype so that new working objects inherit the current state of the

160 Part III ✦ Document Objects Reference

prototype. Scripts can freely override prototype property values or assign different
functions to prototype methods in a working object if desired without affecting the
static object prototype. But if inherited properties or methods are not modified in the
current working object, any changes to the static object’s prototype are reflected in the
working object. (The mechanism is that a reference to an object’s property works its
way up the prototype inheritance chain to find a match to the property name.)

✦ JavaScript includes a large set of operators. You can find most operators that you are
accustomed to working with in other languages.

✦ JavaScript provides typical control structures. All versions of JavaScript offer if,
if-else, for, and while constructions. JavaScript 1.2 (NN4+ and IE4+) added
do-while and switch constructions. Iteration constructions provide break and
continue statements to modify control structure execution.

✦ JavaScript functions may or may not return a value. There is only one kind of
JavaScript function. A value is returned only if the function includes a return keyword
followed by the value to be returned. Return values can be of any data type.

✦ JavaScript functions cannot be overloaded. A JavaScript function accepts zero or more
arguments, regardless of the number of parameter variables defined for the function. All
arguments are automatically assigned to the arguments array, which is a property of a
function object. Parameter variable data types are not predefined.

✦ Values are passed “by reference” and “by value.” An object passed to a function is
actually a reference to that object, offering full read/write access to properties and meth-
ods of that object. But other types of values (including object properties) are passed by
value, with no reference chain to the original object. Thus, the following nonsense frag-
ment empties the text box when the onchange event fires:

function emptyMe(arg1) {
arg1.value = “”;

}
...
<input type=”text” value=”Howdy” onchange=”emptyMe(this)”>

But in the following version, nothing happens to the text box:

function emptyMe(arg1) {
arg1 = “”;

}
...
<input type=”text” value=”Howdy” onchange=”emptyMe(this.value)”>

The local variable (arg1) simply changes from “Howdy” to an empty string.

✦ Error trapping techniques depend on JavaScript version. There is no error trapping
in NN2 or IE3. Error trapping in NN3, NN4, and IE4 is event-driven in the Web browser
object model. JavaScript, as implemented in IE5+ and Moz1+, Safari, and other recent
browsers, supports try-catch and throw statements, as well as built-in error objects
that are not dependent on the host environment.

✦ Memory management is not under script control. The host environment manages
memory allocation, including garbage collection. Different browsers may handle mem-
ory in different ways.

✦ White space (other than a line terminator) is insignificant. Space and tab characters
may separate lexical units (for example, keywords, identifiers, and so on).

161Chapter 13 ✦ JavaScript Essentials

✦ A line terminator is usually treated as a statement delimiter. Except in very rare con-
structions, JavaScript parsers automatically insert the semicolon statement delimiter
whenever they encounter one or more line terminators (for example, carriage returns
or line feeds). A semicolon delimiter is required between two statements on the same
physical line of source code. Moreover, string literals may not have carriage returns in
their source code (but an escaped newline character (\n) may be a part of the string).

Onward to Object Models
The core language is only a small part of what you work with while scripting Web pages. The
bulk of your job entails understanding the ins and outs of document object models as imple-
mented in several generations of browsers. That’s where the next chapter picks up the
“essentials” story.

✦ ✦ ✦

Document Object
Model Essentials

Without question, the biggest challenge facing client-side Web
scripters is the sometimes-baffling array of document object

models that have competed for our attention throughout the short his-
tory of scriptable browsers. Netscape got the ball rolling in Navigator 2
with the first object model. By the time the version 4 browsers came
around, the original object model had gained not only some useful
cross-browser features, but also a host of features that were unique to
only Navigator or Internet Explorer. The object models were diverging,
causing no end of headaches for page authors whose scripts had to
run on as many browsers as possible. A ray of hope emerged from the
standards process of the World Wide Web Consortium (W3C) in the
form of a document object model (DOM) recommendation. The DOM
brought forward much of the original object model, plus new ways of
addressing every object in a document. The goal of this chapter is to
put each of the object models into perspective and help you select the
model(s) you intend to support in your Web applications. But before
we get to those specifics, let’s examine the role of the object model in
designing scripted applications.

The Object Model Hierarchy
In the tutorial chapters of Part II, you were introduced to the funda-
mental ideas behind a document object hierarchy in scriptable
browsers. In other object-oriented environments, object hierarchy
plays a much greater role than it does in JavaScript-able browsers.
(In JavaScript, you don’t have to worry about related terms, such as
classes, inheritance, and instances.) Even so, you cannot ignore the
hierarchy concept because much of your code relies on your ability
to write references to objects that depend on their positions within
the hierarchy.

Calling these objects “JavaScript objects” is not entirely correct. These
are really browser document objects: you just happen to use the
JavaScript language to bring them to life. Some scripters of Microsoft
Internet Explorer use the VBScript language to script the very same
document objects. Technically speaking, JavaScript objects apply to
data types and other core language objects separate from the docu-
ment. The more you can keep document and core language objects
separate in your head, the more quickly you can deal with browser
brand compatibility issues.

1414C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Object models versus
browser versions

Proprietary model
extensions

Structure of the
W3C DOM

Mixing object models in
a single document

✦ ✦ ✦ ✦

164 Part III ✦ Document Objects Reference

Hierarchy as road map
For the programmer, the primary role of the document object hierarchy is to provide scripts
with a way to reference a particular object among all the objects that a browser window can
contain. The hierarchy acts as a road map the script can use to know precisely which object
to address.

Consider, for a moment, a scene in which you and your friend Tony are in a high school class-
room. It’s getting hot and stuffy as the afternoon sun pours in through the wall of windows on
the west side of the room. You say to Tony, “Would you please open a window?” and motion
your head toward a particular window in the room. In programming terms, you’ve issued a
command to an object (whether or not Tony appreciates the comparison). This human inter-
action has many advantages over anything you can do in programming. First, by making eye
contact with Tony before you speak, he knows that he is the intended recipient of the com-
mand. Second, your body language passes along some parameters with that command, point-
ing ever so subtly to a particular window on a particular wall.

If, instead, you are in the principal’s office using the public address system, and you broad-
cast the same command, “Would you please open a window?,” no one knows what you mean.
Issuing a command without directing it to an object is a waste of time because every object
thinks, “That can’t be meant for me.” To accomplish the same goal as your one-on-one com-
mand, the broadcast command has to be something like, “Would Tony Jeffries in Room 312
please open the middle window on the west wall?”

Let’s convert this last command to JavaScript dot syntax form (see Chapter 4). Recall from the
tutorial that a reference to an object starts with the most global point of view and narrows to
the most specific point of view. From the point of view of the principal’s office, the location
hierarchy of the target object is

room312.Jeffries.Tony

You can also say that Tony’s knowledge about how to open a window is one of Tony’s meth-
ods. The complete reference to Tony and his method then becomes

room312.Jeffries.Tony.openWindow()

Your job isn’t complete yet. The method requires a parameter detailing which window to
open. In this case, the window you want is the middle window of the west wall of Room 312.
Or, from the hierarchical point of view of the principal’s office, it becomes

room312.westWall.middleWindow

This object road map is the parameter for Tony’s openWindow() method. Therefore, the
entire command that comes over the PA system is

room312.Jeffries.Tony.openWindow(room312.westWall.middleWindow)

If, instead of barking out orders while sitting in the principal’s office, you attempt the same
task via radio from an orbiting space shuttle to all the inhabitants on Earth, imagine how
laborious your object hierarchy is. The complete reference to Tony’s openWindow() method
and the window that you want opened has to be mighty long to distinguish the desired
objects from the billions of objects within the space shuttle’s view.

The point is that the smaller the scope of the object-oriented world you’re programming, the
more you can assume about the location of objects. For client-side JavaScript, the scope is no
wider than the browser itself. In other words, every object that a JavaScript script can work

165Chapter 14 ✦ Document Object Model Essentials

with resides within the browser application. With few exceptions, a script does not access
anything about your computer hardware, operating system, other applications, desktop, or
any other stuff beyond the browser program.

The browser document object road map
Figure 14-1 shows the lowest common denominator document object hierarchy that is imple-
mented in all scriptable browsers. Notice that the window object is the topmost object in the
entire scheme. Everything you script in JavaScript is in the browser’s window.

Figure 14-1: The lowest common denominator
browser document object hierarchy.

Pay attention to the shading of the concentric rectangles. Every object in the same shaded
area is at the same level relative to the window object. When a line from an object extends to
the next darker shaded rectangle, that object contains all the objects in darker areas. There
exists, at most, one of these lines between levels. The window object contains the document
object; the document object contains a form object; a form object contains many different
kinds of form control elements.

Study Figure 14-1 to establish a mental model for the basic scriptable elements of a Web
page. Models of more recent browsers have more objects in their hierarchies, but the fun-
damental organization remains. After you script these objects several times, the object
hierarchy will become second nature to you — even if you don’t necessarily remember
every detail (property, method, and event handler) of every object. At least you know
where to look for information.

How Document Objects Are Born
Most of the objects that a browser creates for you are established when an HTML document
loads into the browser. The same kind of HTML code you use to create links, anchors, and
input elements tells a JavaScript-enhanced browser to create those objects in memory. The
objects are there whether or not your scripts call them into action.

window
frame self top parent

history document location

text radio button select

textarea checkbox reset option

link form anchor

password submit

166 Part III ✦ Document Objects Reference

The only visible differences to the HTML code for defining those objects are the one or more
optional attributes specifically dedicated to JavaScript. By and large, these attributes specify
the event you want the user interface element to react to and what JavaScript should do
when the user takes that action. By relying on the document’s HTML code to perform the
object generation, you can spend more time figuring out how to do things with those objects
or have them do things for you.

Bear in mind that objects are created in their load order. And if you create a multiframe envi-
ronment, a script in one frame cannot communicate with another frame’s objects until both
frames load. This trips up a lot of scripters who create multiframe and multiwindow sites
(more in Chapter 16).

Object Properties
A property generally defines a particular current setting of an object. The setting may
reflect a visible attribute of an object, such as the state of a checkbox (checked or not); it
may also contain information that is not so obvious, such as the action and method of a
submitted form.

Document objects have most of their initial properties assigned by the attribute settings of
the HTML tags that generate the objects. Thus, a property may be a word (for example, a
name) or a number (for example, a size). A property can also be an array, such as an array
of images contained by a document. If the HTML does not include all attributes, the
browser usually fills in a default value for both the attribute and the corresponding
JavaScript property.

When used in script statements, property names are case-sensitive. Therefore, if you see a
property name listed as bgColor, you must use it in a script statement with that exact
combination of lowercase and uppercase letters. But when you set an initial value of a
property by way of an HTML attribute, the attribute name (like all of HTML) is not case-
sensitive. Thus, <BODY BGCOLOR=”white”> and <body bgcolor=”white”> both set the
same bgColor property value. Although XHTML won’t validate correctly if you use any-
thing but lowercase letters for tag and attribute names, most browsers continue to be
case-insensitive for markup, regardless of the HTML or XHTML version you specify for the
page’s DOCTYPE. The case for property names is not influenced by the case of the markup
attribute name.

Each property determines its own read/write status. Some properties are read-only, whereas
you can change others on the fly by assigning a new value to them. For example, to put some
new text into a text box object, you assign a string to the object’s value property:

document.forms[0].phone.value = “555-1212”;

Once an object contained by the document exists (that is, its HTML is loaded into the docu-
ment), you can also add one or more custom properties to that object. This can be helpful if
you wish to associate some additional data with an object for later retrieval. To add such a
property, simply specify it in the same statement that assigns a value to it:

document.forms[0].phone.delimiter = “-”;

Any property you set survives as long as the document remains loaded in the window and
scripts do not overwrite the object. Be aware, however, that reloading the page usually
destroys custom properties.

167Chapter 14 ✦ Document Object Model Essentials

Object Methods
An object’s method is a command that a script can give to that object. Some methods return
values, but that is not a prerequisite for a method. Also, not every object has methods
defined for it. In a majority of cases, invoking a method from a script causes some action to
take place. The resulting action may be obvious (such as resizing a window) or something
more subtle (such as sorting an array in memory).

All methods have parentheses after them, and they always appear at the end of an object’s
reference. When a method accepts or requires parameters, the parameter values go inside
the parentheses (with multiple parameters separated by commas).

While an object has its methods predefined by the object model, you can also assign one or
more additional methods to an object that already exists (that is, after its HTML is loaded
into the document). To do this, a script in the document (or in another window or frame
accessible by the document) must define a JavaScript function and then assign that function
to a new property name of the object. In the following example written to take advantage of
version 4 or later browser features, the fullScreen() function invokes one window object
method and adjusts two window object properties. By assigning the function reference to the
new window.maximize property, I define a maximize() method for the window object. Thus,
a button’s event handler can call that method directly.

// define the function
function fullScreen() {

this.moveTo(0,0);
this.outerWidth = screen.availWidth;
this.outerHeight = screen.availHeight;

}
// assign the function to a custom property
window.maximize = fullScreen;
...
<!-- invoke the custom method -->
<input type=”button” value=”Maximize Window” onclick=”window.maximize()” />

A Note to Experienced Object-Oriented Programmers

Although the basic object model hierarchy appears to have a class/subclass relationship, many of
the traditional aspects of a true, object-oriented environment don’t apply to the model. The orig-
inal JavaScript document object hierarchy is a containment hierarchy, not an inheritance hierar-
chy. No object inherits properties or methods of an object higher up the chain. Nor is there any
automatic message passing from object to object in any direction. Therefore, you cannot invoke
a window’s method by sending a message to it via the document or a form object. All object ref-
erences must be explicit.

Predefined document objects are generated only when the HTML code containing their defini-
tions loads into the browser. You cannot modify many properties, methods, and event handlers
in early object models once you load the document into the browser. In Chapter 33, you learn
how to create your own objects, but those objects do not present new visual elements on the
page that go beyond what HTML, Java applets, and plug-ins can portray.

Inheritance does play a role, as you will see later in this chapter, in the object model defined by
the W3C. The new hierarchy is of a more general nature to accommodate requirements of XML
as well as HTML. But the containment hierarchy for HTML objects, as described in this section, is
still valid in W3C DOM-compatible browsers.

168 Part III ✦ Document Objects Reference

Object Event Handlers
An event handler specifies how an object reacts to an event that is triggered by a user
action (for example, a button click) or a browser action (for example, the completion of a
document load). Going back to the earliest JavaScript-enabled browser, event handlers
were defined inside HTML tags as extra attributes. They included the name of the attribute,
followed by an equal sign (working as an assignment operator) and a string containing the
script statement(s) or function(s) to execute when the event occurs (see Chapter 5). Event
handlers also have other forms. In NN3+ and IE4+, event handlers have corresponding
methods for their objects and every event handler is a property of its object.

Event handlers as methods
Consider a button object whose sole event handler is onclick. This means whenever the but-
ton receives a click event, the button triggers the JavaScript expression or function call
assigned to that event handler in the button’s HTML definition:

<input type=”button” name=”clicker” value=”Click Me” onclick=”doIt()” />

Normally, that click event is the result of a user physically clicking the button in the page. In
NN3+ and IE4+, you can also trigger the event handler with a script by calling the event han-
dler as if it were a method of the object:

document.formName.clicker.onclick();

Invoking an event handler this way is different from using a method to simulate the physical
action denoted by the event. For example, imagine a page containing three simple text fields.
One of those fields has an onfocus event handler defined for it. Physically tabbing to or click-
ing in that field brings focus to the field and thereby triggers its onfocus event handler. If the
field does not have focus, a button can invoke that field’s onfocus event handler by referenc-
ing it as a method:

document.formName.fieldName.onfocus();

This scripted action does not bring physical focus to the field. The field’s own focus()
method, however, does that under script control.

A byproduct of an event handler’s capability to act like a method is that you can define the
action of an event handler by defining a function with the event handler’s name. For example,
instead of specifying an onload event handler in a document’s <body> tag, you can define a
function like this:

function onload() {
statements

}

This capability is particularly helpful if you want event handler actions confined to a script
running in NN3, IE4, or later. Your scripts don’t require special traps for Navigator 2 or
Internet Explorer 3.

Event handlers as properties
Although event handlers are commonly defined in an object’s HTML tag, you also have the
power in NN3+ and IE4+ to assign or change an event handler just like you assign or change
the property of an object. The value of an event handler property looks like a function defini-
tion. For example, given this HTML definition:

169Chapter 14 ✦ Document Object Model Essentials

<input type=”text” name=”entry” onfocus=”doIt()” />

the value of the object’s onfocus (all lowercase) property is

function onfocus() {
doIt();

}

You can, however, assign an entirely different function to an event handler by assigning a
function reference to the property. Such references don’t include the parentheses that are
part of the function’s definition. (You see this again much later in Chapter 33 when you assign
functions to object properties.)

Using the same text field definition you just looked at, you can assign a different function to
the event handler because based on user input elsewhere in the document you want the field
to behave differently when it receives the focus. If you define a function like this:

function doSomethingElse() {
statements

}

you can then assign the function to the field with this assignment statement:

document.formName.entry.onfocus = doSomethingElse;

Because the new function reference is written in JavaScript, you must observe case for the func-
tion name. Although NN4 accepts interCap versions of the event handler names, you are best
served across all browsers by sticking with all lowercase event handler names as properties.

Be aware, however, that as with several settable object properties that don’t manifest them-
selves visually, any change you make to an event handler property disappears with a docu-
ment reload. Therefore, I advise you not to make such changes except as part of a script that
also invokes the event handler like a method: Any gap in time leaves room for users to
reload the page accidentally or intentionally.

If your scripts create new element objects dynamically, you can assign event handlers to
these objects by way of event handler properties. For example, the following code uses W3C
DOM syntax to create a new button input element and assign an onclick event handler that
invokes a function defined elsewhere in the script:

var newElem = document.createElement(“input”);
newElem.type = “button”;
newElem.value = “Click Here”;
newElem.onclick = doIt;
document.forms[0].appendChild(newElem);

Because every event handler operates as both property and method, I don’t list these proper-
ties and methods as part of each object’s definition in the next chapters. You can be assured
this feature works for every JavaScript object that has an event handler starting with
Navigator 3 and Internet Explorer 4.

Object Model Smorgasbord
A survey of the entire evolution of scriptable browsers from NN2 and IE3 through IE6 and
Moz1 reveals six (yes, six!) distinct document object model families. Even if your job entails
developing content for just one current browser version, you may be surprised that family
members from more than one document object model inhabit your authoring space.

Caution

170 Part III ✦ Document Objects Reference

Studying the evolution of the object model is extremely valuable for newcomers to scripting.
It is too easy to learn the latest object model gadgets in your current browser, only to dis-
cover that your heroic scripting efforts are lost on earlier browsers accessing your pages.
Therefore, take a look at the six major object model types and how they came into being.
Table 14-1 lists the object model families (in chronological order of their release) and the
browser versions that support them. Later in this chapter are some guidelines you can follow
to help you choose the object model(s) that best suit your users’ “appetites.”

Table 14-1: Object Model Families

Model Browser Support

Basic Object Model NN2, NN3, IE3/J1, IE3/J2, NN4, IE4, IE5, IE5.5, IE6, Moz1, Safari1

Basic Plus Images NN3, IE3.01 (Mac only), NN4, IE4, IE5, IE5.5, IE6, Moz1, Safari1

NN4 Extensions NN4

IE4 Extensions IE4, IE5, IE5.5, IE6 (some features in all versions require Win32 OS)

IE5 Extensions IE5, IE5.5, IE6 (some features in all versions require Win32 OS)

W3C DOM (I and II) IE5 (partial), IE5.5 (partial), IE6 (partial), Moz1 (most), Safari 1 (partial)

Basic Object Model
The first scriptable browser, Netscape Navigator 2, implemented a very basic document
object model. Figure 14-1 provides a visual guide to the objects that were exposed to
scripting. The hierarchical structure starts with the window and drills inward toward the
document, forms, and form control elements. A document is a largely immutable page on
the screen. Only elements that are by nature interactive — links and form elements such as
text fields, buttons, and so on — are treated as objects with properties, methods, and
event handlers.

The heavy emphasis on form controls opened up numerous possibilities that were radical
ideas at the time. Because a script could inspect the values of form controls, forms could be
pre-validated on the client. If the page included a script that performed some calculations,
data entry and calculated results were displayed via editable text fields.

Additional objects that exist outside of the document —window, history, and location
objects — provide scriptable access to simple yet practical properties of the browser that
loads the page. The most global view of the environment is the navigator object, which
includes properties about the browser brand and version.

When Internet Explorer 3 arrived on the scene, the short life of Navigator 2 was nearing its
end. Even though NN3 was already widely available in prerelease form, IE3 implemented the
basic object model from NN2 (plus one window object property from NN3). Therefore, despite
the browser version number discrepancy, NN2 and IE3 are essentially the same with respect
to their document object models. For a brief moment in Internet Time, there was nearly com-
plete harmony between Microsoft and Netscape document object models — albeit at a very
simple level.

171Chapter 14 ✦ Document Object Model Essentials

Basic Object Model Plus Images
A very short time after IE3 was released, Netscape released Navigator 3 with an object model
that built upon the original version. A handful of existing objects — especially the window
object — gained new properties, methods, and/or event handlers. Scripts could also commu-
nicate with Java applets as objects. But the biggest new object on the scene was the Image
object and the array of image objects exposed to the document object.

Most of the properties for an NN3 image object gave read-only access to values typically
assigned to attributes in the tag. But you could modify one property — the src
property — after the page loaded. Scripts could swap out images within the fixed image
rectangle. Although these new image objects didn’t have mouse-related event handlers,
nesting an image inside a link (which had onmouseover and new onmouseout event han-
dlers) let scripts implement “image rollovers” to liven up a page.

As more new scripters investigated the possibilities of adding JavaScript to their pages, frus-
tration ensued when the image swapping they implemented for NN3 failed to work in IE3.
Although you could easily script around the lack of an image object to prevent script errors
in IE3 (see Chapter 12), the lack of this “cool” page feature disappointed many. Had they also
taken into account the installed base of NN2 in the world, they would have been disappointed
there, too. To confuse matters even more, the Macintosh version of IE 3.01 (the second
release of the IE3/Mac browser) implemented scriptable image objects.

Despite these rumblings of compatibility problems to come, the object model implemented in
Navigator 3 eventually became the baseline reference for future document object models.
With few exceptions, code written for this object model runs on all browsers from NN3 and
IE4 through the latest versions of both brands. Exceptions primarily involve Java applet
object support in non-Windows versions of IE4+.

Navigator 4–Only Extensions
The next browser released to the world was Netscape Navigator 4. Numerous additions to
the existing objects put more power into the hands of scripters. You could move and resize
browser windows within the context of script-detectable screen object properties (for exam-
ple, how big the user’s monitor screen was). Two concepts that represented new thinking
about the object model were an enhanced event model and the layer object.

Event capture model
Navigator 4 added many new events to the repertoire. Keyboard events and more mouse
events (onmousedown and onmouseup) allowed scripts to react to more user actions on form
control elements and links. All of these events worked as they did in previous object models
in which event handlers were typically assigned as attributes to an element’s tag (although
you could also assign event handlers as properties in script statements). To facilitate some of
the Dynamic HTML potential in the rest of the Navigator 4 object model, the event model was
substantially enhanced.

At the root of the system is the idea that when a user performs some physical action on an
event-aware object (for example, clicking a form button), the event reaches that button from
top down through the document object hierarchy. If you have multiple objects that share the

172 Part III ✦ Document Objects Reference

same event handler, it may be more convenient to capture that event in just one place — the
window or document object level — rather than assigning the same event handler to all the
elements. The default behavior of Navigator 4 allowed the event to reach the target object,
just as it had in earlier browsers. But you could also turn on event capture in the window,
document, or layer object. Once captured, the event could be handled at the upper level,
preprocessed before being passed onto its original target, or redirected to another object
altogether.

Whether or not you capture events, the Navigator 4 event model produces an event object
(lowercase “e” to distinguish from the static Event object) for each event. That object con-
tains properties that reveal more information about the specific event, such as the keyboard
character pressed for a keyboard event or the position of a click event on the page. Any event
handler can inspect event object properties to learn more about the event and process the
event accordingly.

Layers
Perhaps the most radical addition to the NN4 object model was a new object that reflected an
entirely new HTML element, the layer element. A layer is a container that is capable of hold-
ing its own HTML document, yet it exists in a plane in front of the main document. You can
move, size, and hide a layer under script control. This new element allowed, for the first time,
overlapping elements in an HTML page.

To accommodate the layer object in the document object hierarchy, Netscape defined a nest-
ing hierarchy such that a layer was contained by a document. As the result, the document
object acquired a property (document.layers) that was an array of layer objects in the doc-
ument. This array exposed only the first level of layer(s) in the current document object.
References to a layer in the main document started with any one of the following:

document.layerName
document.layers[n]
document.layers[layerName]

Each layer had its own document object because each layer could load an external HTML
document if desired. Thus, if a script needed access to, say, a form control element inside a
layer, the reference would begin:

document.layerName.document.forms[0]....

If a layer contained yet another layer, the reference grew even longer:

document.outerLayerName.document.innerLayerName.document.forms[0]...

As a positionable element, a layer object had numerous properties and methods that allowed
scripts to move, hide, show, and change its stacking order.

Unfortunately for Netscape, the W3C did not agree to make the <layer> tag a part of the
HTML 4.0 specification. As such, it is an orphan element that exists only in Navigator 4 (not
implemented in Moz1 or later). The same goes for the scripting of the layer object and its
nested references. Navigator 4 does, however, implement a little bit of the HTML 4.0 and CSS
specifications for positionable elements because you can assign Cascading Style Sheets (with
the position and related attributes) to div and span elements in NN4. Navigator treats posi-
tioned div or span elements as near equivalents of layer objects for scripting purposes. This
means, however, that even if you can get the HTML to work the same across browsers (not
always guaranteed due to occasionally different rendering characteristics of positioned div

173Chapter 14 ✦ Document Object Model Essentials

elements in NN4 and IE4), the scripting for NN4 must adhere to the layer syntax, which differs
from the IE4 CSS syntax.

Internet Explorer 4+ Extensions
Microsoft broke important new ground with the release of IE4, which came several months
after the release of NN4. The main improvements were in the exposure of all HTML elements,
scripted support of CSS, and a new event model. Some other additions were available only on
Windows 32-bit operating system platforms.

HTML element objects
The biggest change to the object model world was that every HTML element became a
scriptable object, while still supporting the original object model. Microsoft invented the
document.all array (also called a collection). This array contains references to every ele-
ment in the document, regardless of element nesting. If you assign an identifier (name) to
the id attribute of an element, you can reference the element by the following syntax:

document.all.elementID

In most cases, you can also drop the document.all. part of the reference and begin with
only the element ID.

Every element object has an entirely new set of properties and methods that give scripters a
level of control over document content unlike anything seen before. Table 14-2 shows the
properties and methods that all HTML element objects have in common in IE4 (properties fol-
lowed by brackets are arrays).

Table 14-2: IE4 HTML Element Features in Common

Properties Methods

all[] click()
children[] contains()
className getAttribute()
document insertAdjacentHTML()
filters[] insertAdjacentText()
id removeAttribute()
innerHTML scrollIntoView()
innerText setAttribute()
isTextEdit
lang
language
offsetHeight
offsetLeft
offsetParent

Continued

174 Part III ✦ Document Objects Reference

Table 14-2 (continued)

Properties Methods

offsetTop
offsetWidth
outerHTML
outerText
parentElement
parentTextEdit
sourceIndex
style
tagName
title

You can find details for all of the items listed in Table 14-2 in Chapter 15. But several groups of
properties deserve special mention here.

Four properties (innerHTML, innerText, outerHTML, and outerText) provide read/write
access to the actual content within the body of a document. This means that you no longer
must use text boxes to display calculated output from scripts. You can modify content inside
paragraphs, table cells, or anywhere on the fly. The browser’s rendering engine immediately
reflows a document when the dimensions of an element’s content change. That feature puts
the “Dynamic” in “Dynamic HTML.” To those of us who scripted the static pages of earlier
browsers, this feature — now taken for granted — was nothing short of a revelation.

The series of “offset” properties are related to the position of an element on the page. These
properties are distinct from the kind of positioning performed by CSS. Therefore, you can get
the dimensions and location of any element on the page, making it easier to move position-
able content atop elements that are part of the document and may appear in various loca-
tions due to the browser window’s current size.

Finally, the style property is the gateway to CSS specifications defined for the element.
Importantly, the script can modify the numerous properties of the style object. Therefore,
you can modify font specifications, colors, borders, and the positioning properties after the
page loads. The dynamic reflow of the page takes care of any layout changes that the alter-
ation requires (for example, adjusting to a bigger font size).

Element containment hierarchy
While IE4 still recognizes the element hierarchy of the original object model (see Figure 14-1),
the document object model for IE4 does not extend this kind of hierarchy fully into other ele-
ments. If it did, it would mean that td elements inside a table might have to be addressed via
its next outer tr or table element (just as a form control element must be addressed via its
containing form element). Look at Figure 14-2 to see how all HTML elements are grouped
together under the document object. The document.all array flattens the containment hier-
archy as far as referencing object goes. A reference to the most deeply nested TD element is
still document.all.cellID. The highlighted pathway from the window object is the predomi-
nant reference path used when working with the IE4 document object hierarchy.

175Chapter 14 ✦ Document Object Model Essentials

Figure 14-2: The IE4 document object hierarchy.

Element containment in IE4, however, is important for other reasons. Because an element can
inherit some stylesheet attributes from an element that contains it, you should devise a docu-
ment’s HTML by embedding every piece of content inside a container. Paragraph elements
are text containers (with start and end tags), not tall line breaks between text chunks. IE4
introduced the notion of a parent-child relationship between a container and elements nested
within it. Also, the position of an element may be calculated relative to the position of its next
outermost positioning context.

The bottom line here is that element containment doesn’t have anything to do with object ref-
erences (like the original object model). It has everything to do with the context of an element
relative to the rest of the page’s content.

Cascading Style Sheets
By arriving a bit later to market with its version 4 browser than Netscape, Microsoft benefited
from having the CSS Level 1 specification more fully developed before the browser’s release.
Therefore, the implementation is far more complete than that of NN4 (but it is not 100 per-
cent compatible with the standard).

I should point out that the scriptability of stylesheet properties is a bit at odds with the first-
generation CSS specification, which seemed to ignore the potential of scripting styles with
JavaScript. Many CSS attribute names are hyphenated words (for example, text-align,
z-index). But hyphens are not allowed in identifier names in JavaScript. This necessitated
conversion of the multiword CSS attribute names to interCap JavaScript property names.
Therefore, text-align becomes textAlign and z-index becomes zIndex. You can access
all of these properties through an element’s style property:

document.all.elementID.style.stylePropertyName

One byproduct of the scriptability of stylesheets in IE4 and later is what some might call the
phantom page syndrome. This occurs when the layout of a page is handled after the primary
HTML for the page has downloaded to the browser. As the page loads, not all content may be
visible, or it may be in a visual jumble. An onload event handler in the page then triggers
scripts to set styles and/or content for the page. Elements jump around to get to their final
resting places. This may be disconcerting to some users who at first see a link to click; but by

window
frame self top parent

text radio button select

password submit

textarea checkbox reset option

link styleSheets applets form images plugins embeds all

navigator screen history document location event

[elements]

style

anchor

selection

176 Part III ✦ Document Objects Reference

the time the cursor reaches the click location, the page has reflowed, thereby moving the link
to somewhere else on the page.

For Internet Explorer users with 32-bit Windows operating systems, IE4 includes some
extra features in the object model that can enhance presentations. Filters are stylesheet
additives that offer a variety of visual effects on body text. For example, you can add a drop
shadow or a glowing effect to text by simply applying filter styles to the text, or you can cre-
ate the equivalent of a slide presentation by placing the content of each slide in a posi-
tioned div element. Although filters follow the CSS syntax, they are not a part of the W3C
specification.

Event bubbling
Just as Netscape invented an event model for NN4, so, too, did Microsoft invent one for IE4.
Unfortunately for cross-browser scripters, the two event models are quite different. Instead of
events trickling down the hierarchy to the target element, an IE event starts at the target ele-
ment and, unless instructed otherwise, “bubbles up” through the element containment hier-
archy to eventually reach the window object. At any object along the way, an event handler
can perform additional processing on that event if desired. Therefore, if you want a single
event handler to process all click events for the page, assign the event handler to the body or
window object so the events reach those objects (provided the event bubbling isn’t cancelled
by some other object along the containment hierarchy).

IE also has an event object (a property of the window object) that contains details about
the event, such as the keyboard key pressed for a keyboard event and the location of a
mouse event. Names for these properties are entirely different from the event object prop-
erties of NN4.

Despite what seems like incompatible, if not completely opposite, event models in NN4 and
IE4, you can make a single set of scripts handle events in both browsers (see Chapter 25 and
Chapter 56 on the CD-ROM for examples). In fact, the two event models are made to work
together in the W3C DOM Level 2 specification, described later in this chapter.

Event binding of scripts
IE4 introduced an additional way of binding events to objects via a <script> tag that has two
additional, non-W3C attributes: for and event (see a syntax example in Chapter 13 in the
section titled “<script for> tags”). The value assigned to the for attribute is the ID of an ele-
ment object for which the script is intended; the value of the event attribute is the name of
the event handler (for example, onclick) by which the script statements within the tag are
to be triggered.

Inside the tags are straight script statements, but when the browser sees the special
attributes, execution is deferred until the event fires for the designated object. The instant
the event fires for the object, the script statements inside the tag execute. This special form
of script tag takes the place of a function definition assigned to the event handler by other
means. This technique appears to have been a “dry run” for what eventually became DHTML
behaviors in IE5/Windows (see the following section).

You can use this binding method only if you run the page inside IE4+. All other browsers,
including IE3, ignore the special attributes and treat the statements inside the tags as state-
ments to execute as the page loads.

Note

177Chapter 14 ✦ Document Object Model Essentials

Internet Explorer 5+ Extensions
With the release of IE5, Microsoft built more onto the proprietary object model it launched in
IE4. Although the range of objects remained pretty much the same, the number of properties,
methods, and event handlers for the objects increased dramatically. Some of those additions
were added to meet some of the specifications of the W3C DOM (discussed in the next sec-
tion), occasionally causing a bit of incompatibility with IE4. But Microsoft also pushed ahead
with efforts for Windows users only that may not necessarily become industry standards:
DHTML behaviors and HTML applications.

A DHTML behavior is a chunk of script — saved as an external file — that defines some action
(usually a change of one or more style properties) that you can apply to any kind of element.
The goal is to create a reusable component that you can load into any document whose ele-
ments require that behavior. The behavior file is known as an HTML component, and the file
has an .htc extension. Components are XML documents whose XML tags specify events and
event-handling routines for whatever element is assigned that behavior. Script statements in
.htc documents are written inside <script> tag sets just as in regular, scriptable HTML doc-
uments. As an example of a DHTML behavior, you can define a behavior that turns an ele-
ment’s text to red whenever the cursor rolls atop it and reverts to black when the cursor rolls
out. When you assign the behavior to an element in the document (via CSS-like rule syntax),
the element picks up that behavior and responds to the user accordingly. You can apply that
same behavior to any element(s) you like in the document. (Microsoft has submitted behav-
iors to the W3C for possible inclusion into CSS Level 3.) You can see an example of a DHTML
behavior in Chapter 15’s description of the addBehavior() method and read an extended
discussion in Chapter 47 on the CD-ROM.

HTML applications (HTAs in Microsoft parlance) are HTML files that include an XML element
known as the hta:application element. You can download an HTA to IE5+ from the server
as if it were a Web page (although its file extension is .hta rather than .htm or .html). A user
can also install an HTA on a client machine so it behaves very much like an application with a
Desktop icon and significant control over the look of the window. HTAs are granted greater
security privileges on the client so that this “application” can behave more like a regular pro-
gram. In fact, you can elect to turn off the system menu bar and use DHTML techniques to
build your own menu bar for the application. Implementation details of HTAs are beyond the
scope of this book, but you should be aware of their existence. More information is available
at http://msdn.microsoft.com.

The W3C DOM
Conflicting browser object models from Netscape and Microsoft made life difficult for devel-
opers. Scripters craved a standard that would serve as a common denominator much like
HTML and CSS standards did for content and styles. The W3C took up the challenge of creat-
ing a document object model standard, the W3C DOM.

The charter of the W3C DOM working group was to create a document object model that
could be applied to both HTML and XML documents. Because an XML document can have
tags of virtually any name (as defined by the Document Type Definition), it has no intrinsic
structure or fixed vocabulary of elements like an HTML document does. As a result, the DOM
specification had to accommodate the known structure of HTML (as defined in the HTML 4.0
specification) as well as the unknown structure of an XML document.

178 Part III ✦ Document Objects Reference

To make this work effectively, the working group divided the DOM specification into two sec-
tions. The first, called the Core DOM, defines specifications for the basic document structure
that both HTML and XML documents share. This includes notions of a document containing
elements that have tag names and attributes; an element is capable of containing zero or
more other elements. The second part of the DOM specification addresses the elements and
other characteristics that apply only to HTML. The HTML portion “inherits” all the features of
the Core DOM, while providing a measure of backward compatibility to object models already
implemented in legacy browsers and providing a framework for new features.

It is important for veteran scripters to recognize that the W3C DOM does not specify all fea-
tures from existing browser object models. Many features of the IE4 (and later) object model
are not part of the W3C DOM specification. This means that if you are comfortable in the IE
environment and wish to shift your focus to writing for the W3C DOM spec, you have to change
some practices as highlighted in this chapter. Navigator 4 page authors lose the <layer> tag
(which is not part of HTML 4.0 and likely will never see the light of day in a standard) as well as
the layer object. In many respects, especially with regard to Dynamic HTML applications, the
W3C DOM is an entirely new DOM with new concepts that you must grasp before you can suc-
cessfully script in the environment.

By the same token, you should be aware that whereas Mozilla-based browsers go to great
lengths to implement all of DOM Level 1 and most of Level 2, Microsoft (for whatever reason)
features only a partial implementation of the W3C DOM through IE5.5. Although IE6 imple-
ments more W3C DOM features, some important parts, notably W3C DOM events, are miss-
ing. Other modern browsers, such as Safari, provide basic W3C DOM support, but have not
yet caught up with Mozilla levels of DOM support.

DOM levels
Like most W3C specifications, one version is rarely enough. The job of the DOM working
group was too large to be swallowed whole in one sitting. Therefore, the DOM is a continually
evolving specification. The timeline of specification releases rarely coincides with browser
releases. Therefore, it is very common for any given browser release to include only some of
the most recent W3C version.

The first formal specification, DOM Level 1, was released well after NN4 and IE4 shipped.
The HTML portion of Level 1 includes DOM Level 0. This is essentially the object model as
implemented in Navigator 3 (and for the most part in Internet Explorer 3 plus image objects).
Perhaps the most significant omission from Level 1 is an event model (it ignores even the
simple event model implemented in NN2 and IE3).

DOM Level 2 builds on the work of Level 1. In addition to several enhancements of both the
Core and HTML portions of Level 1, Level 2 adds significant new sections (published as sepa-
rate modules) on the event model, ways of inspecting a document’s hierarchy, XML names-
paces, text ranges, stylesheets, and style properties. Work on Level 3 is under way, but very
little of it has yet reached browsers.

What stays the same
By adopting DOM Level 0 as the starting point of the HTML portion of the DOM, the W3C pro-
vided a way for a lot of existing script code to work even in a W3C DOM-compatible browser.
Every object you see in the original object model starting with the document object (see
Figure 14-1) plus the image object are in DOM Level 0. Almost all of the same object proper-
ties and methods are also available.

179Chapter 14 ✦ Document Object Model Essentials

More importantly, when you consider the changes to referencing other elements in the W3C
DOM (discussed in the next section), we’re lucky that the old ways of referencing objects
such as forms, form control elements, and images still work. Had the working group been
planning from a clean slate, it is unlikely that the document object would have been given
properties consisting of arrays of forms, links, and images.

The only potential problems you could encounter with your existing code have to do with a
handful of properties that used to belong to the document object. In the new DOM, four
style-related properties of the document object (alinkColor, bgColor, linkColor, and
vlinkColor) become properties of the body object (referenced as document.body). In addi-
tion, the three link color properties pick up new names in the process (aLink, link, vLink).
It appears, however, that for now, IE6 and Moz1 maintain backward compatibility with the
older document object color properties.

Also, note that the DOM specification concerns itself only with the document and its content.
Objects such as window, navigator, and screen are not part of the DOM specification through
Level 2. Scripters are still at the mercy of browser makers for compatibility in these areas, but
the window object (or its equivalent) likely will be added to the W3C DOM Level 3.

What isn’t available
As mentioned earlier, the W3C DOM is not simply a restatement of existing browser specifica-
tions. Many convenience features of the IE and NN object models do not appear in the W3C
DOM. If you develop Dynamic HTML content in IE4+ or NN4, you have to learn how to get
along without some of these conveniences.

Navigator 4’s experiment with the <layer> tag was not successful in the W3C process. As a
result, both the tag and the scripting conventions surrounding it do not exist in the W3C DOM.
To some scripters’ relief, the document.layerName referencing scenario (even more complex
with nested layers) disappears from the object model entirely. A positioned element is treated
as just another element that has some special stylesheet attributes that enable you to move it
anywhere on the page, stack it amid other positioned elements, and hide it from view.

Among popular IE4+ features missing from the W3C DOM are the document.all collection of
HTML elements and four element properties that facilitate dynamic content: innerHTML,
innerText, outerHTML, and outerText. A new W3C way provides for acquiring an array of
all elements in a document, but generating HTML content to replace existing content or be
inserted in a document requires a tedious sequence of statements (see the section “New
DOM concepts” later in this chapter). Mozilla, however, has implemented the innerHTML
property for HTML element objects in Mozilla-based browsers (Moz1+).

“New” HTML practices
Exploitation of Dynamic HTML possibilities in both IE4+ and the W3C DOM relies on some
HTML practices that may be new to long-time HTML authors. At the core of these practices
(espoused by the HTML 4.0 specification) is making sure that all content is within an HTML
container of some kind. Therefore, instead of using the <p> tag as a separator between blocks
of running text, surround each paragraph of the running text with a <p>...</p> tag set. If
you don’t do it, the browser treats each <p> tag as the beginning of a paragraph and ends the
paragraph element just before the next <p> tag or other block-level element.

While recent browsers continue to accept the omission of certain end tags (for td, tr, and li
elements, for instance), it is best to get in the habit of supplying these end tags. If for no other
reason, they help you visualize where an element’s sphere of influence truly begins and ends.

180 Part III ✦ Document Objects Reference

Any element that you intend to script — whether to change its content or its style — should
have an identifier assigned to the element’s id attribute. Form control elements still require
name attributes if you submit the form content to a server. But you can freely assign a differ-
ent identifier to a control’s id attribute. Scripts can use either the id or the document.
formReference.elementName reference to reach a control object. Identifiers are essen-
tially the same as the values you assign to the name attributes of form and form input ele-
ments. Following the same rules for the name attribute value, an id identifier must be a
single word (no white space), it cannot begin with a numeral (to avoid conflicts in
JavaScript), and it should avoid punctuation symbols except for the underscore. While an
element can be accessed by numeric index within the context of some surrounding element
(such as the body), this is a risky practice when content is under construction. Unique
identifiers make it much easier for scripts to reference objects and are not affected by
changes in content order.

New DOM concepts
With the W3C DOM come several concepts that may be entirely new to you unless you have
worked extensively with the terminology of tree hierarchies. Concepts that have the most
impact on your scripting are new ways of referencing elements and nodes.

Element referencing
Script references to objects in the DOM Level 0 are observed in the W3C DOM for backward
compatibility. Therefore, a form input element whose name attribute is assigned the value
userName is addressed just like it always is:

document.forms[0].userName

or

document.formName.userName

But because all elements of a document are exposed to the document object, you can use the
new document object method to access any element whose ID is assigned. The method is
document.getElementById(), and the sole parameter is a string version of the identifier of
the object whose reference you wish to get. To help put this in context with what you may
have used with the IE4 object model, consider the following HTML paragraph tag:

<p id=”myParagraph”>...</p>

In IE4+, you can reference this element with

var elem = document.all.myParagraph;

Although the document.all collection is not implemented in the W3C DOM, use the new
document object method (available in IE5+, Moz1+, Safari, and others) that enables you to
access any element by its ID:

var elem = document.getElementById(“myParagraph”);

Unfortunately for scripters, this method is difficult to type since it is case-sensitive, so watch
out for that ending lowercase “d”.

A hierarchy of nodes
The issue surrounding containers (described earlier) comes into play for the underlying
architecture of the W3C DOM. Every element or freestanding chunk of text in an HTML (or
XML) document is an object that is contained by its next outermost container. Let’s look at a

181Chapter 14 ✦ Document Object Model Essentials

simple HTML document to see how this system works. Listing 14-1 is formatted to show the
containment hierarchy of elements and string chunks.

Listing 14-1: A Simple HTML Document

<html>
<head>

<title>
A Simple Page

</title>
</head>

<body>
<p id=”paragraph1”>

This is the
<em id=”emphasis1”>

one and only

paragraph on the page.

</p>
</body>

</html>

What you don’t see in the listing is a representation of the document object. The document
object exists automatically when this page loads into a browser. Importantly, the document
object encompasses everything you see in Listing 14-1. Therefore, the document object has a
single nested element: the html element. The html element, in turn, has two nested elements:
head and body. The head element contains the title element, while the title element con-
tains a chunk of text. Down in the body element, the p element contains three pieces: a string
chunk, the em element, and another string chunk.

According to W3C DOM terminology, each container, standalone element (such as a br ele-
ment), or text chunk is known as a node — a fundamental building block of the W3C DOM.
Nodes have parent-child relationships when one container holds another. As in real life,
parent-child relationships extend only between adjacent generations, so a node can have zero
or more children. However, the number of third-generation nodes further nested within the
family tree does not influence the number of children associated with a parent. Therefore, in
Listing 14-1, the html node has two child nodes, head and body, which are siblings that share
the same parent. The body element has one child (p) even though that child contains three
children (two text nodes and an em element node).

If you draw a hierarchical tree diagram of the document in Listing 14-1, it should look like the
illustration in Figure 14-3.

If the document’s source code contains a Document Type Definition (in a DOCTYPE element)
above the <html> tag, the browser treats that DOCTYPE node as a sibling of the HTML ele-
ment node. In that case, the root document node contains two child nodes.

The W3C DOM (through Level 2) defines 12 different types of nodes, 7 of which have direct
application in HTML documents. These seven types of nodes appear in Table 14-3 (the rest
apply to XML). Of the 12 types, the three most common are the document, element, and text
types. All W3C DOM browsers (including IE5+, Moz1, Safari, and others) implement the three
common node types, while Moz1 implements all of them.

Note

182 Part III ✦ Document Objects Reference

Figure 14-3: Tree diagram of nodes
for the document in Listing 14-1.

Table 14-3: W3C DOM HTML-Related Node Types

Type Number nodeName nodeValue Description IE5+ Moz1 Safari1

Element 1 tag name null Any HTML Yes Yes Yes
or XML
tagged
element

Attribute 2 attribute attribute A name- No1 Yes Yes
name value value

attribute
pair in an
element

Text 3 #text text A text Yes Yes Yes
content fragment

contained
by an
element

Comment 8 #comment comment HTML No1 Yes No
text comment

Document 9 #document null Root No1 Yes Yes
document
object

DocumentType 10 DOCTYPE null DTD No Yes No
specification

Fragment 11 #document- null Series of No1 Yes Yes
fragment one or

more nodes
outside
of the
document

1Implemented in IE6.

document
+--<html>
 +--<head>
 | +--<title>
 | +--"A Simple Page"
 +--<body>
 +--<p ID="paragraph1">
 +--"This is the "
 +--<em ID="emphasis1">
 | +--"one and only"
 +--" paragraph on the page."

183Chapter 14 ✦ Document Object Model Essentials

Applying the node types of Table 14-3 to the node diagram in Figure 14-3, you can see that the
simple page consists of one document node, six element nodes, and four text nodes.

Node properties
A node has many properties, most of which are references to other nodes related to the cur-
rent node. Table 14-4 lists all properties shared by all node types in DOM Level 2.

Table 14-4: Node Object Properties (W3C DOM Level 2)

Property Value Description IE5Win+ IE5Mac+ Moz1 Safari1

nodeName String Varies with node type Yes Yes Yes Yes
(see Table 14-3)

nodeValue String Varies with node type Yes Yes Yes Yes
(see Table 14-3)

nodeType Integer Constant representing Some Yes Yes Yes
each type

parentNode Object Reference to next Yes Yes Yes Yes
outermost container

childNodes Array All child nodes in source Yes Yes Yes Yes
order

firstChild Object Reference to first child Yes Yes Yes Yes
node

lastChild Object Reference to last child Yes Yes Yes Yes
node

previousSibling Object Reference to sibling Yes Yes Yes Yes
node up in source order

nextSibling Object Reference to sibling Yes Yes Yes Yes
node next in source
order

attributes NodeMap Array of attribute nodes No Yes Yes Yes

ownerDocument Object Containing document No Yes Yes Yes
object

namespaceURI String URI to namespace No No Yes Yes
definition (element and
attribute nodes only)

prefix String Namespace prefix No No Yes Yes
(element and attribute
nodes only)

localName String Applicable to No No Yes Yes
namespace-affected
nodes

You can find all of the properties shown in Table 14-4 that also show themselves to be
implemented in IE5+ or Moz1 in Chapter 15’s listing of properties that all HTML element
objects have in common. That’s because an HTML element, as a type of node, inherits all of
the properties of the prototypical node.

Note

184 Part III ✦ Document Objects Reference

To help you see the meanings of the key node properties, Table 14-5 shows the property val-
ues of several nodes in the simple page shown in Listing 14-1. For each node column, find the
node in Figure 14-3 and then follow the list of property values for that node, comparing the
values against the actual node structure in Figure 14-3.

Table 14-5: Properties of Selected Nodes for a Simple HTML Document

Properties Nodes

document html p “one and only”
nodeType 9 1 1 3
nodeName #document html p #text
nodeValue null null null “one and only”
parentNode null document body em
previousSibling null null null null
nextSibling null null null null
childNodes html head “This is the “ (none)

body em
“ paragraph on the page.”

firstChild html head “This is the “ null
lastChild html body “ paragraph on the null

page.”

The nodeType property is an integer that is helpful in scripts that iterate through an
unknown collection of nodes. Most content in an HTML document is of type 1 (an HTML ele-
ment) or 3 (a text node), with the outermost container, the document, of type 9. A node’s
nodeName property is either the name of the node’s tag (for an HTML element) or a constant
value (preceded by a # [hash mark] as shown in Table 14-3). And, what may surprise some,
the nodeValue property is null except for the text node type, in which case the value is the
actual string of text of the node. In other words, for HTML elements, the W3C DOM does not
expose a container’s HTML as a string.

It is doubtful that you will use all of the relationship-oriented properties of a node, primarily
because there is some overlap in how you can reach a particular node from any other. The
parentNode property is important because it is a reference to the current node’s immediate
container. While the firstChild and lastChild properties point directly to the first and last
children inside a container, most scripts generally use the childNodes property with array
notation inside a for loop to iterate through child nodes. If there are no child nodes, the
childNodes array has a length of zero.

Node methods
Actions that modify the HTML content of a node in the W3C DOM world primarily involve the
methods defined for the prototype Node. Table 14-6 shows the methods and their support in
the W3C DOM–capable browsers.

185Chapter 14 ✦ Document Object Model Essentials

Table 14-6: Node Object Methods (W3C DOM Level 2)

Method Description IE5+ Moz1 Safari1

appendChild(newChild) Adds child node to end of current node Yes Yes Yes

cloneNode(deep) Grabs a copy of the current node (optionally Yes Yes Yes
with children)

Continued

The Object-Oriented W3C DOM

If you are familiar with concepts of object-oriented (OO) programming, you will appreciate the
OO tendencies in the way the W3C defines the DOM. The Node object includes sets of properties
(see Table 14-4) and methods (see Table 14-6) that are inherited by every object based on the
Node. Most of the objects that inherit the Node’s behavior have their own properties and/or
methods that define their specific behaviors. The following figure shows (in W3C DOM terminol-
ogy) the inheritance tree from the Node root object. Most items are defined in the Core DOM,
while items shown in boldface are from the HTML DOM portion.

W3C DOM Node object inheritance tree.

You can see from the preceding figure that individual HTML elements inherit properties and
methods from the generic HTML element, which inherits from the Core Element object, which,
in turn, inherits from the basic Node.

It isn’t important to know the Node object inheritance to script the DOM. But it does help explain
the ECMA Script Language Binding appendix of the W3C DOM recommendation, as well as explain
how a simple element object winds up with so many properties and methods associated with it.

Node
+--Document
| +--HTMLDocument
+--CharacterData
| +--Text
| | +--CDATASection
| +--Comment
+--Attr
+--Element
| +--HTMLElement
| +-- (Each specific HTML element)
+--DocumentType
+--DocumentFragment
+--Notation
+--Entity
+--Entity Reference
+--ProcessingInstruction

186 Part III ✦ Document Objects Reference

Table 14-6 (continued)

Method Description IE5+ Moz1 Safari1

hasChildNodes() Determines whether current node has Yes Yes Yes
children (Boolean)

insertBefore(new, ref) Inserts new child in front of another child Yes Yes Yes

removeChild(old) Deletes one child Yes Yes Yes

replaceChild(new, old) Replaces an old child with a new one Yes Yes Yes

isSupported(feature, Determines whether the node supports a No Yes Yes
version) particular feature

The important methods for modifying content are appendChild(), insertBefore(),
removeChild(), and replaceChild(). Notice, however, that all of these methods assume
that the point of view for the action is from the parent of the nodes being affected by the
methods. For example, to delete an element (using removeChild()), you don’t invoke that
method on the element being removed, but rather on its parent element. This leaves open the
possibility for creating a library of utility functions that obviate having to know too much
about the precise containment hierarchy of an element. A simple function that lets a script
appear to delete an element actually does so from its parent:

function removeElement(elemID) {
var elem = document.getElementById(elemID);
elem.parentNode.removeChild(elem);

}

If this seems like a long way to go to accomplish the same result as setting the outerHTML
property of an IE4+ object to empty, you are right. While some of this convolution makes
sense for XML, unfortunately the W3C working group doesn’t seem to have HTML scripters’
best interests in mind. All is not lost, however, as you see later in this chapter.

Generating new node content
The final point about the node structure of the W3C DOM focuses on the similarly gnarled
way scripters must go about generating content they want to add or replace on a page. For
text-only changes (for example, the text inside a table cell), there is both an easy and a hard
way to perform the task. For HTML changes, there is only the hard way (plus a handy
workaround discussed later). Let’s look at the hard way first and then pick up the easy way
for text changes.

To generate a new node in the DOM, you look to the variety of methods that are defined for
the Core DOM’s document object (and are therefore inherited by the HTML document object).
A node creation method is defined for nearly every node type in the DOM. The two important
ones for HTML documents are createElement() and createTextNode(). The first gener-
ates an element with whatever tag name (string) you pass as a parameter; the second gener-
ates a text node with whatever text you pass.

When you first create a new element, it exists only in the browser’s memory and not as part
of the document containment hierarchy. Moreover, the result of the createElement()
method is a reference to an empty element except for the name of the tag. For example, to
create a new p element, use

var newElem = document.createElement(“p”);

187Chapter 14 ✦ Document Object Model Essentials

The new element has no ID, attributes, or any content. To assign some attributes to that ele-
ment, you can use the setAttribute() method (a method of every element object) or assign
a value to the object’s corresponding property. For example, to assign an identifier to the new
element, use either

newElem.setAttribute(“id”, “newP”);

or

newElem.id = “newP”;

Both ways are perfectly legal. Even though the element has an ID at this point, it is not yet
part of the document so you cannot retrieve it via the document.getElementById()
method.

To add some content to the paragraph, you next generate a text node as a separate object:

var newText = document.createTextNode(“This is the second paragraph.”);

Again, this node is just sitting around in memory waiting for you to apply it as a child of some
other node. To make this text the content of the new paragraph, you can append the node as
a child of the paragraph element that is still in memory:

newElem.appendChild(newText);

If you were able to inspect the HTML that represents the new paragraph element, it would
look like the following:

<p id=”newP”>This is the second paragraph.</p>

The new paragraph element is ready for insertion into a document. Using the document
shown in Listing 14-1, you can append it as a child of the body element:

document.body.appendChild(newElem);

At last, the new element is part of the document containment hierarchy. You can now refer-
ence it just like any other element in the document.

Replacing node content
The addition of the paragraph shown in the last section requires a change to a portion of
the text in the original paragraph (the first paragraph is no longer the “one and only” para-
graph on the page). As mentioned earlier, you can perform text changes either via the
replaceChild() method or by assigning new text to a text node’s nodeValue property.
Let’s see how each approach works to change the text of the first paragraph’s em element
from “one and only” to “first.”

To use replaceChild(), a script must first generate a valid text node with the new text:

var newText = document.createTextNode(“first”);

The next step is to use the replaceChild() method. But recall that the point of view for this
method is the parent of the child being replaced. The child here is the text node inside the
em element, so you must invoke the replaceChild() method on the em element. Also, the
replaceChild() method requires two parameters: the first is the new node; the second is a
reference to the node to be replaced. Because the script statements get pretty long with the
getElementById() method, an intermediate step grabs a reference to the text node inside
the em element:

var oldChild = document.getElementById(“emphasis1”).childNodes[0];

188 Part III ✦ Document Objects Reference

Now the script is ready to invoke the replaceChild() method on the em element, swapping
the old text node with the new:

document.getElementById(“emphasis1”).replaceChild(newText, oldChild);

If you want to capture the old node before it disappears entirely, be aware that the
replaceChild() method returns a reference to the replaced node (which is only in mem-
ory at this point, and not part of the document node hierarchy). You can assign the method
statement to a variable and use that old node somewhere else, if needed.

This may seem like a long way to go; it is, especially if the HTML you are generating is com-
plex. Fortunately, you can take a simpler approach for replacing text nodes. All it requires is a
reference to the text node being replaced. You can assign that node’s nodeValue property its
new string value:

document.getElementById(“emphasis1”).childNodes[0].nodeValue = “first”;

When an element’s content is entirely text (for example, a table cell that already has a text node
in it), this is the most streamlined way to swap text on the fly using W3C DOM syntax. This
doesn’t work for the creation of the second paragraph text earlier in this chapter because the
text node did not exist yet. The createTextNode() method had to explicitly create it.

Also remember that a text node does not have any inherent style associated with it. The style
of the containing HTML element governs the style of the text. If you want to change not only
the text node’s text but also how it looks, you have to modify the style property of the text
node’s parent element. Browsers that perform these kinds of content swaps and style
changes automatically reflow the page to accommodate changes in the size of the content.

To summarize, Listing 14-2 is a live version of the modifications made to the original docu-
ment shown in Listing 14-1. The new version includes a button and script that makes the
changes described throughout this discussion of nodes. Reload the page to start over.

Listing 14-2: Adding/Replacing DOM Content

<html>
<head>

<title>A Simple Page</title>
<script type=”text/javascript”>
function modify() {

var newElem = document.createElement(“p”);
newElem.id = “newP”;
var newText = document.createTextNode(“This is the second paragraph.”);
newElem.appendChild(newText);
document.body.appendChild(newElem);
document.getElementById(“emphasis1”).childNodes[0].nodeValue = “first”;

}
</script>

</head>

<body>
<button onclick=”modify()”>Add/Replace Text</button>

<p id=”paragraph1”>This is the <em id=”emphasis1”>one and
only paragraph on the page.</p>

</body>
</html>

189Chapter 14 ✦ Document Object Model Essentials

Chapter 15 details node properties and methods that are inherited by all HTML elements.
Most are implemented in both IE5+ and W3C DOM browsers. Also look to the reference mate-
rial for the document object in Chapter 18 for other valuable W3C DOM methods.

A de facto standard: innerHTML
Microsoft was the first to implement the innerHTML property of all element objects starting
with IE4. While the W3C DOM has not supported this property, scripters frequently find it
more convenient to modify content dynamically by way of a string containing HTML markup,
rather than creating and assembling element and text nodes. As a result, most modern W3C
DOM browsers, including Moz1 and Safari1, support the read/write innerHTML property of all
element objects as a de facto standard.

When you assign a string containing HTML markup to the innerHTML of an existing element,
the browser automatically inserts the newly rendered elements into the document node tree.
You may also use innerHTML with unmarked text to perform the equivalent of the IE-only
innerText property.

Despite the apparent convenience of the innerHTML property compared to the step-by-step
process of manipulating element and text node objects, browsers operate on nodes much
more efficiently than on assembly of long strings. This is one case where less JavaScript code
does not necessarily translate to greater efficiency.

Static W3C DOM HTML objects
The Moz1 DOM (but unfortunately not IE5+) adheres to the core JavaScript notion of prototype
inheritance with respect to the object model. When a page loads into Moz1, the browser creates
HTML objects based on the prototypes of each object defined by the W3C DOM. For example, if
you use The Evaluator Sr. (Chapter 13) to see what kind of object the myP paragraph object is
(enter document.getElementById(“myP”) into the top text box and click the Evaluate button),
it reports that the object is based on the HTMLParagraphElement object of the DOM. Every
“instance” of a p element object in the page inherits its default properties and methods from
HTMLParagraphElement (which, in turn, inherits from HTMLElement, Element, and Node
objects — all detailed in the JavaScript binding appendix of the W3C DOM specification).

You can use scripting to add properties to the prototypes of some of these static objects. To
do so, you must use new features added to Moz1. Two new methods —__defineGetter__()
and __defineSetter__()— enable you to assign functions to a custom property of an
object.

These methods are Mozilla-specific. To prevent their possible collision with standardized
implementations of these features in future implementations of ECMAScript, the underscore
characters on either side of the method name are pairs of underscore characters.

The functions execute whenever the property is read (the function assigned via the
__defineGetter__() method) or modified (the function assigned via the __defineSetter
__() method). The common way to define these functions is in the form of an anonymous
function (see Chapter 33). The formats for the two statements that assign these behaviors
to an object prototype are as follows:

object.prototype.__defineGetter__(“propName”, function([param1[,...[,paramN]]])
{
// statements
return returnValue;

})

Note

190 Part III ✦ Document Objects Reference

object.prototype.__defineSetter__(“propName”, function([param1[,...[,paramN]]])
{
// statements
return returnValue;

})

The example in Listing 14-3 demonstrates how to add a read-only property to every HTML
element object in the current document. The property, called childNodeDetail, returns an
object; the object has two properties, one for the number of element child nodes and one for
the number of text child nodes. Note that the this keyword in the function definition is a ref-
erence to the object for which the property is calculated. And because the function runs each
time a script statement reads the property, any scripted changes to the content after the page
loads are reflected in the returned property value.

Listing 14-3: Adding a Read-Only Prototype Property to All HTML
Element Objects

<script type=”text/javascript”>
if (HTMLElement) {

HTMLElement.prototype.__defineGetter__(“childNodeDetail”, function() {
var result = {elementNodes:0, textNodes:0 }
for (var i = 0; i < this.childNodes.length; i++) {

switch (this.childNodes[i].nodeType) {
case 1:

result.elementNodes++;
break;

case 3:
result.textNodes++;
break;

}
}
return result;

})
}
</script>

To access the property, use it like any other property of the object. For example:

var BodyNodeDetail = document.body.childNodeDetail;

The returned value in this example is an object, so you use regular JavaScript syntax to
access one of the property values:

var BodyElemNodesCount = document.body.childNodeDetail.elementNodes;

Bidirectional event model
Despite the seemingly conflicting event models of NN4 (trickle down) and IE4 (bubble up),
the W3C DOM event model (defined in Level 2) manages to employ both event propagation
models. This gives the scripter the choice of where along an event’s propagation path the
event gets processed. To prevent conflicts with existing event model terminology, the W3C
model invents many new terms for properties and methods for events. Some coding probably
requires W3C DOM–specific handling in a page aimed at multiple object models.

191Chapter 14 ✦ Document Object Model Essentials

The W3C event model also introduces a new concept called the event listener. An event lis-
tener is essentially a mechanism that instructs an object to respond to a particular kind of
event — very much like the way the event handler attributes of HTML tags respond to events.
But the DOM recommendation points out that it prefers use of a more script-oriented way of
assigning event listeners: the addEventListener() method available for every node in the
document hierarchy. Through this method, you advise the browser whether to force an event
to bubble up the hierarchy (the default behavior that is also in effect if you use the HTML
attribute type of event handler) or to be captured at a higher level.

Functions invoked by the event listener receive a single parameter consisting of the event
object whose properties contain contextual details about the event (details such as the posi-
tion of a mouse click, character code of a keyboard key, or a reference to the target object).
For example, if a form includes a button whose job is to invoke a calculation function, the
W3C DOM prefers the following way of assigning the event handler:

document.getElementById(“calcButton”).addEventListener(“click”, doCalc, false);

The addEventListener() method takes three parameters. The first parameter is a string of
the event to listen for; the second is a reference to the function to be invoked when that event
fires; and the third parameter is a Boolean value. When you set this Boolean value to true, it
turns on event capture whenever this event is directed to this target. The function then takes
its cue from the event object passed as the parameter:

function doCalc(evt) {
// get shortcut reference to input button’s form
var form = evt.target.form;
var results = 0;
// other statements to do the calculation //
form.result.value = results;

}

To modify an event listener, you use the removeEventListener() method to get rid of the
old listener and then employ addEventListener() with different parameters to assign the
new one.

Preventing an event from performing its default action is also a different procedure in the
W3C event model than in IE. In IE4 (as well as NN3 and NN4), you can cancel the default
action by allowing the event handler to evaluate to return false. While this still works in
IE5+, Microsoft includes another property of the window.event object, called returnValue.
Setting that property to false anywhere in the function invoked by the event handler also
kills the event before it does its normal job. But the W3C event model uses a method of the
event object, preventDefault(), to keep the event from its normal task. You can invoke this
method anywhere in the function that executes when the event fires.

Detailed information about an event is contained in an event object that must be passed to an
event handler function where details may be read. If you assign event handlers via the W3C
DOM addEventListener() method or an event handler property, the event object is passed
automatically as the sole parameter to the event handler function. Include a parameter vari-
able to “catch” the incoming parameter:

function swap(evt) {
// statements here to work with W3C DOM event object

}

But if you assign events via a tag attribute, then you must explicitly pass the event object in
the call to the function:

192 Part III ✦ Document Objects Reference

Unfortunately, neither IE5 through IE6 on Windows nor IE5 for Macintosh implements the
W3C DOM event model. You can, however, make the two event models work together if you
assign event handlers by way of object properties or tag attributes, and throw in a little
object detection described later in this chapter and in more detail in Chapter 25.

Mixing Object Models
The more browsers that your audience uses, the more likely you will want to make your pages
work on as many browsers as possible. You’ve seen in this chapter that scripts written for older
browsers, such as Navigator 2 and Internet Explorer 3, tend to work in even the latest browsers
without modification. But aiming at that compatibility target doesn’t let you take advantage of
more advanced features, in particular Dynamic HTML. You must balance the effort required to
support as many as four classifications of browsers (non-DHTML, NN4, IE4/5, and W3C DOM
common denominator in IE6 and Moz1) against the requirements of your audience. Moreover,
those requirements can easily change over time. For example, the share of the audience using
non-DHTML and NN4 browsers will diminish over time, while the installed base of browsers
capable of using the Microsoft IE DOM (for IE4+) and the W3C DOM (IE6+ and Moz1+) will
increase. If the percentage of visitors using NN4 is not significant at this point, you may well
decide to not worry about implementing DHTML features for that browser and lump NN4
together with the rest of the non-DHTML browsers.

For any given application or Web site, it is important to develop a strategy to apply to the
deployment of scripted features. But be aware that one strategy simply cannot fit all situa-
tions. The primary considerations are the breadth of browser versions reaching your site
(many for public sites; perhaps only one for a tightly controlled intranet) and the amount of
DHTML you intend to implement.

In the rest of this section, you see three scenarios and strategies employed to meet the devel-
oper’s requirements. Although they are labeled as three different levels of aggressiveness, it
is likely that you can apply individual techniques from each of the levels in establishing a
strategy of your own.

The conservative approach
In the first scenario, the content requires a modest level of data entry interaction with a user
via a form as well as image rollovers. Supported browsers encompass the entire range of non-
scriptable and scriptable browsers, with one version of each page to serve all visitors.

If the form gathers information from the user for submission to a server CGI that stores the
data in a database or performs a search based on user-supplied criteria, the obvious mode
of entry is through traditional form control elements. Scriptable browsers can perform pre-
submission validations to hasten the correction of any improperly formatted fields. Event
handlers attached to the text fields (onchange event handlers) and an onsubmit event han-
dler for the form itself can do the validation on the client. Nonscriptable browsers ignore the
event handlers, and the form is submitted as usual, relying on server-side validation of input
data (and the slow back-and-forth processing that this entails when there is an error or miss-
ing field data).

For image rollovers, links surround the image elements. The onmouseover and onmouseout
event handlers for the links trigger functions that swap images. By wrapping the statements
in the event handler functions in if constructions that test for the presence of the document
.images array, first-generation scriptable browsers that don’t implement images as objects
perform no action:

193Chapter 14 ✦ Document Object Model Essentials

function imageOn(imgName) {
if (document.images) {

document.images[imgName].src = onImages[imgName].src;
}

}

The same goes for script statements in the Head that precache the swappable images as the
page loads:

if (document.images) {
var onImages = new Array();
onImages[“home”] = new Image(50,30);
onImages[“home”].src = “images/homeOn.gif”;
...

}

This scenario can also provide added content on the page for scriptable browser users by
embedding scripts within the body that use document.write() to generate content as the
page loads. For example, the page can begin with a time-sensitive greeting (“Good Morning,”
“Good Afternoon,” and so on), while nonscriptable browser users see a standard greeting
inside the <noscript> tag pair.

Middle ground
The second scenario includes pages that employ stylesheets. The goal again is to support all
browser users with the same HTML pages, but also provide users of modern browsers with
an enhanced experience. Where supported by the browser, styles of objects change in
response to user action (for example, links highlight with a special font color and background
during rollover). One of the design elements on the page is a form within a table. As users
enter values into some text boxes, calculated results appear at the bottom of the table,
preferably as regular content within a table cell (otherwise in another text box).

This scenario requires browser version branching in several places to allow for variations in
browser treatment of the features and to avoid problems with older scriptable browsers and
nonscriptable browsers alike. You can (and should) perform some (if not all) of the branching
via object detection, as you will see in a moment. Table 14-7 highlights the major feature
requirements for this scenario and describes the browser support for each.

Table 14-7: Features and Support for a Typical “Middle Ground” Scenario

Feature Support and Approach

Dynamic Styles IE4+ and W3C DOM browsers through the style property of any HTML
element object.

Form Calculations Unless requiring regular expression parsing of input, should work with all
scriptable browsers without any branching required.

Dynamic Content IE4+ and W3C DOM browsers support Dynamic HTML content within a cell, but
MS and W3C object models require different ways of changing a table cell’s
content. (Or you can use the nonstandard, but convenient, innerHTML
property of the cell.) For older scriptable browsers, the cell should contain a
text box to display the results; for nonscriptable browsers, the cell should
contain a button that submits the form to a server CGI to process the
calculation and return a new page with the results.

194 Part III ✦ Document Objects Reference

Dynamic styles
For dynamic styles, both the IE4+ and W3C object models provide access to stylesheet set-
tings via the style property of any HTML element. This simplifies matters because you can
wrap modifications to style properties inside if clauses that check for the existence of the
style property for the specified object:

function hilite(elem) {
if (elem.style) {

elem.style.fontWeight = “bold”;
}

}

If the event handler that triggers the change can be localized to the affected element (for
example, an onmouseover event handler for a span element surrounding some text), the
event doesn’t fire in browsers that don’t also support the style property. (By good fortune,
browsers that implement the style property also expose all elements to the object model.)
To compensate for the differences in object references between the IE4+ and W3C models,
you can pass the object as a parameter to event handler functions:

<span onmouseover=”hilite(this)” onmouseout=”revert(this)”
onclick=”go(‘...’)>...

This technique obviates the need to use browser version detection because the functions
invoked by the event handlers do not have to build DOM-specific references to the objects to
adjust the style.

Branching variables
If, for now, you continue to be more comfortable with browser version detection than object
detection, you can apply version detection for this “middle ground” scenario by establishing
branches for the IE4+ and W3C object models. Global variables that act as flags elsewhere in
your page’s scripts are still the primary mechanism. For this scenario, you can initialize two
global variables as follows:

function getIEVersion() {
var ua = navigator.userAgent;
var IEoffset = ua.indexOf(“MSIE “);
return parseFloat(ua.substring(IEoffset+5, ua.indexOf(“;”, Ieoffset)));

}

var isIE4 = ((navigator.appName.indexOf(“Microsoft”) == 0 &&
parseInt(getIEVersion()) >= 4));

var isW3C = (document.documentElement) ? true : false;

Notice how the getIEVersion() function digs out the precise IE version from deep within
the navigator.userAgent property. Both global variables are Boolean values. While each
variable conveys valuable information on its own, the combination of the two reveals even
more about the browser environment if necessary. Figure 14-4 shows the truth table for using
the AND (&&) operator in a conditional clause with both values. For example, if you need a
branch that works only in IE4, the if clause is

if (isIE4 && !isW3C) {...}

The overlap between MS and the W3C object models in IE5+ means that you need to deter-
mine for each branch which model to use when the script is running. This governs the order
of nested if conditions when they arise. If you trap for the W3C version first, IE5+ runs the
branch containing the W3C DOM syntax.

195Chapter 14 ✦ Document Object Model Essentials

Figure 14-4: Truth table for two browser version
ariables with the AND operator.

Dynamic content
Once you have the branching variables in place, your scripts can use them for executing func-
tions invoked by event handlers as well as for scripts that run while the page loads. The
importance of the second type comes when you want a page to display one kind of HTML for
one class of browsers and other HTML for other classes (or all of the rest). The design for the
current scenario calls for a table cell to display the results of a form’s calculation in HTML
where capable. In lesser scriptable browsers, the results should appear in a text box in the
table. Nonscriptable browsers should display a button to submit the form.

In the Body of the page, a script should take over and use document.write() for the td ele-
ment that is to show the results. Buggy behavior in early versions of Navigator require that at
least the entire td element be written dynamically, instead of just the cell’s content. The
structure of such a form and table is as follows:

...
<form name=”calculator” action=”http://xxx/cgi-bin/calculate.pl”
onsubmit=”return false”>
<table>
...
<tr>

<td>...</td>
<script type=”text/javascript”>
if (isIE4 || isW3C) {

document.write(“<td id=’result’>0</td>”);
} else {

document.write(“<td>”);
document.write(“<input type=’text’ name=’result’ size=’10’ value=’0’ />”);
document.write(“</td>”);

}
</script>
<noscript>

<td>Click ‘Submit’ for Results</td>
</noscript>

</tr>
</table>
<noscript>

<input type=”submit” />
</noscript>
</form>
...

isIE4 isIE4 && isW3C

true

true

false

false

isW3C

true

false

true

false

IE5+

IE4 Only

Non-IE W3C Only

Older browser

196 Part III ✦ Document Objects Reference

The preceding code assumes that other table cells contain text boxes whose onchange event
handlers trigger a calculation script. That calculation script must also branch for the two
classes of scriptable browser so that results are displayed to fit the browser’s object model:

function calculate(form) {
var results;
...
// statements here that perform math and stuff answer into ‘results’ variable
...
if (isIE4) {

document.all.result.innerText = results;
} else if (isW3C) {

document.getElementById(“result”).childNodes[0].nodeValue = results;
} else {

document.calculator.result.value = results;
}

}

Adding dynamic content for NN4 requires a little more planning. The technique usually
involves nesting an absolute-positioned div inside a relative-positioned span. Scripts can
then use document.write() to create new content for the deeply nested div element.
Pulling this off successfully entails pretty complex references through multiple layers and
their documents. But no matter what lengths you go to in an effort to employ dynamic con-
tent in NN4, the new content does not automatically resize the table or cell to accommo-
date larger or smaller chunks of text. Without automatic reflow of the page, as is found in
IE4+ and most W3C DOM browsers, writing to an NN4 positioned layer does not force other
page content to move.

A radical approach
By “radical,” I mean that the page content is designed to employ extensive DHTML features,
including positioned (if not flying) elements on the page. Perhaps some clicking and dragging
of elements can add some fun to the page while you’re at it.

Employing these kinds of features requires some extensive forethought about your audience
and the browsers they use. While some aspects of DHTML, such as CSS, degrade gracefully in
older browsers (the content is still presented, although not in optimum font display perhaps),
positioned elements do not degrade well at all. The problem is that older browsers ignore the
CSS attributes that control positioning, stacking order, and visibility. Therefore, when the page
loads in a pre-version 4 browser, all content is rendered in source code order. Elements that
are supposed to be positioned, hidden, or overlapped are drawn on the page in “old-fashioned”
rendering.

To use element positioning for the greatest effect, your Web site should preexamine the
browser at some earlier page in the navigation sequence to reach the DHTML-equipped page.
Only browsers capable of your fancy features should be allowed to pass onto the “cool”
pages. All other browsers get diverted to another page or pathway through your application
so they can at least get the information they came for, if not in the most lavish presentation.
Techniques detailed in Chapter 13 demonstrate how to make a branching index page.

By filtering out non-DHTML-capable browsers, some of your job is easier — but not all. On the
plus side, you can ignore a lot of weirdness that accrues to scripting bugs in earlier browsers.
But you must still decide which of the three element positioning models to follow: IE4+, NN4,
or W3C. Chances are that you will want to support at least two of the three unless you are in
the luxurious position of designing for a single browser platform (or have taken a stand that
you will support only one DOM, probably the newer W3C).

197Chapter 14 ✦ Document Object Model Essentials

Of the three models, NN4’s DOM is the trickiest one to deal with at the HTML level. While it
may be possible that your content design will look the same using positioned div and span
elements in all DHTML-capable browsers, often the appearance in NN4 is unacceptable. At
that point, you will probably have to use scripts in your Body to dynamically generate HTML,
specifying the <layer> tag for NN4 and positioned <div> elements for the rest.

Although IE4+ can use the same basic Microsoft object model, not all DHTML code renders
the same on both generations of browsers. Microsoft made some changes here and there
to the way some style attributes are rendered so that IE5.x comes into better compliance
with the CSS recommendation, while IE6 is in full compliance with CSS Level 1 when you
specify a complete DOCTYPE element pointing to URLs of the DTDs for HTML 4.0 or later and
XHTML.

Using script libraries
As long as you plan to use scripts to dynamically generate HTML for the page, you might con-
sider creating separate, external .js libraries for each of the object models you want to sup-
port for the page. Scripts in each library contain code for both the HTML accumulation (for
use with document.write() in the main page) and for processing user interaction. Assuming
that only DHTML-capable browsers reach the page, branching is required only at the begin-
ning of the document where an object model–specific library is loaded:

var isIE4 = ((navigator.appName.indexOf(“Microsoft”) == 0 &&
parseInt(navigator.appVersion) == 4));

var isW3C = (document.documentElement) ? true : false;
if (isW3C) {

// give priority to W3C model for IE5+
document.write(“<script type=’text/javascript’ src=’page3_W3C.js’><” +

“\/script>”);
} else if (isIE4) {

document.write(“<script type=’text/javascript’ src=’page3_IE4.js’><” +
“\/script>”);

} else {
document.write(“<script type=’text/javascript’ src=’page3_generic.js’><” +

“\/script>”);
}

Each of the statements that writes the <script> tag includes a workaround that is required
on some browsers (NN4 especially) to facilitate using document.write() to write script tags
to the page.

Once these libraries are specified for the page, script statements anywhere later in the page
can invoke functions defined in each library to generate a particular element or set of ele-
ments in the object model HTML optimized for the current browser. Of course, it’s not neces-
sary to have one library devoted to each object model. You might find it more convenient for
authoring and maintenance to keep all the code in one library that has numerous internal
branchings for browser versions. Branches in a library can use the version-sniffing global
variables defined in the main HTML page’s scripts. Better still, a library can be entirely self-
contained by using object detection.

Handling events
Thanks to the W3C DOM’s event model implementing a similar event bubbling scheme as
IE4+, you can apply that event propagation model to IE4+ and W3C DOM browsers. There are
differences in the details, however. IE’s approach does not pass the event object as a parame-
ter to a function invoked by an event handler. Instead, the IE event object is a property of the

Note

198 Part III ✦ Document Objects Reference

window object. Therefore, your functions have to look for the passed parameter and substi-
tute the window.event object in its place for IE:

function calculate(evt) {
evt = (evt) ? evt : window.event;
// more statements to handle the event //

}

Additional branching is necessary to inspect many details of the event. For example, IE calls
the object receiving the event the srcElement, while the W3C DOM calls it the target.
Canceling the default behavior of the event (for example, preventing a form’s submission if it
fails client-side validation) is also different for the models (although the “old-fashioned” way
of letting HTML-type event handlers evaluate to return false still works). You can find more
event object details in Chapter 25.

Standards Compatibility Modes
(DOCTYPE Switching)

Both Microsoft and Netscape/Mozilla discovered that they had, over time, implemented CSS
features in ways that ultimately differed from the published standards that came later (usu-
ally after much wrangling among working group members). To compensate for these differ-
ences and make a clean break to be compatible with the standards, the major browser
makers decided to let the page author’s choice of <!DOCTYPE> header element details deter-
mine whether the document was designed to follow the old way (sometimes called “quirks
mode”) or the standards-compatible way. The tactic, known informally as DOCTYPE switch-
ing, is implemented in WinIE6, MacIE5, and all Mozilla-based browsers.

While most of the differences between the two modes are small, there are some significant
differences between the two modes in WinIE6, particularly when styles or Dynamic HTML
scripts rely on elements designed with borders, margins, and padding. Microsoft’s original
“box model” measured the dimensions of elements in a way that differed from the eventual
CSS standard.

To place the affected browsers into CSS standards-compatible mode, you should include a
<!DOCTYPE> element at the top of every document that specifies any of the following details:

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.0 Transitional//EN”
“http://www.w3.org/TR/REC-html40/loose.dtd”>

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.0 Frameset//EN”
“http://www.w3.org/TR/REC-html40/frameset.dtd”>

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.0//EN”
“http://www.w3.org/TR/REC-html40/strict.dtd”>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Frameset//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd”>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

199Chapter 14 ✦ Document Object Model Essentials

Be aware, however, that older versions of WinIE, such as WinIE5 or WinIE5.5, are ignorant of
the standards-compatible mode, and will use the old Microsoft quirks mode, regardless of
<!DOCTYPE> setting. But using the standards-compatible mode DOCTYPE is more likely to
force your content and stylesheets to render more similarly across the latest browsers.

Where to Go from Here
These past two chapters provided an overview of the core language and object model issues
that anyone designing pages that use JavaScript must confront. The goal here is to stimulate
your own thinking about how to embrace or discard levels of compatibility with your pages
as you balance your desire to generate “cool” pages and serve your audience. From here on,
the difficult choices are up to you.

To help you choose the objects, properties, methods, and event handlers that best suit your
requirements, the rest of the chapters in Part III and all of Part IV provide in-depth references
to the document object model and core JavaScript language features. Observe the compatibil-
ity ratings for each language term very carefully to help you determine which features best
suit your audience’s browsers. Most example listings are complete HTML pages that you can
load in various browsers to see how they work. Many others invite you to explore how things
work via The Evaluator Sr. (see Chapter 13). Play around with the files, making modifications
to build your own applications or expanding your working knowledge of JavaScript in the
browser environment.

The language and object models have grown in the handful of years they have been in exis-
tence. The amount of language vocabulary has increased astronomically. It takes time to
drink it all in and feel comfortable that you are aware of the powers available to you. Don’t
worry about memorizing the vocabulary. It’s more important to acquaint yourself with the
features, and then come back later when you need the implementation details.

Be patient. Be persistent. The reward will come.

✦ ✦ ✦

Generic HTML
Element Objects

The object model specifications implemented in Internet Explorer
4+ and Mozilla-based browsers (including Netscape 6 and 7) fea-

ture a large set of scriptable objects that represent what we often call
“generic” HTML elements. Generic elements can be divided into two
groups. One group, such as the b and strike elements, define font
styles to be applied to enclosed sequences of text. The need for these
elements (and the objects that represent them) is receding as more
page designers use stylesheets. The second group of elements
assigns context to content within their start and end tags. Examples
of contextual elements include h1, blockquote, and the ubiquitous p
element. While browsers sometimes have consistent visual ways of
rendering contextual elements by default (for example, the large,
bold font of an <h1> tag), the specific rendering is not the intended
purpose of the tags. No formal standard dictates that text within an
em element must be italicized: the style simply has become the cus-
tom since the very early days of browsers.

All of these generic elements share a large number of scriptable prop-
erties, methods, and event handlers. The sharing extends not only
among generic elements, but also among virtually every renderable
element — even if it has additional, element-specific properties, meth-
ods, and/or event handlers that I cover in depth in other chapters of
this reference. Rather than repeat the details of these shared proper-
ties, methods, and event handlers for each object throughout this ref-
erence, I describe them in detail only in this chapter (unless there is a
special behavior, bug, or trick associated with the item in some
object described elsewhere). In succeeding reference chapters, each
object description includes a list of the object’s properties, methods,
and event handlers, but I do not list shared items over and over (mak-
ing it hard to find items that are unique to a particular element).
Instead, you see a pointer back to this chapter for the items in com-
mon with generic HTML element objects.

Generic Objects
Table 15-1 lists all of the objects that I treat in this reference as
“generic” objects. All of these objects share the properties, methods,
and event handlers described in succeeding sections and have no
special items that require additional coverage elsewhere in this book.

1515C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Working with HTML
element objects

Common properties and
methods

Event handlers of all
element objects

✦ ✦ ✦ ✦

202 Part III ✦ Document Objects Reference

Table 15-1: Generic HTML Element Objects

Formatting Objects Contextual Objects

b acronym
big address
center cite
i code
nobr dfn
rt del
ruby div
s em
small ins
strike kbd
sub listing
sup p
tt plaintext
u pre
wbr samp

span
strong
var
xmp

Properties Methods Event Handlers

accessKey addBehavior() onactivate
all[] addEventListener() onbeforecopy
attributes[] appendChild() onbeforecut
behaviorUrns[] applyElement() onbeforedeactivate
canHaveChildren attachEvent() onbeforeeditfocus
canHaveHTML blur() onbeforepaste
childNodes[] clearAttributes() onblur
children click() onclick
className cloneNode() oncontextmenu
clientHeight componentFromPoint() oncontrolselect
clientLeft contains() oncopy
clientTop detachEvent() oncut
clientWidth dispatchEvent() ondblclick
contentEditable fireEvent() ondeactivate
currentStyle focus() ondrag
dataFld getAdjacentText() ondragend
dataFormatAs getAttribute() ondragenter
dataSrc getAttributeNode() ondragleave

elementObject

203Chapter 15 ✦ Generic HTML Element Objects

Properties Methods Event Handlers

dir getAttributeNodeNS() ondragover
disabled getAttributeNS() ondragstart
document getBoundingClientRect() ondrop
filters[] getClientRects() onfilterchange
firstChild getElementsByTagName() onfocus
height getElementsByTagNameNS() onhelp
hideFocus getExpression() onkeydown
id hasAttribute() onkeypress
innerHTML hasAttributeNS() onkeyup
innerText hasAttributes() onlosecapture
isContentEditable hasChildNodes() onmousedown
isDisabled insertAdjacentElement() onmouseenter
isMultiLine insertAdjacentHTML() onmouseleave
isTextEdit insertAdjacentText() onmousemove
lang insertBefore() onmouseout
language item() onmouseover
lastChild isSupported() onmouseup
length mergeAttributes() onpaste
localName normalize() onpropertychange
namespaceURI releaseCapture() onreadystatechange
nextSibling removeAttribute() onresize
nodeName removeAttributeNode() onresizeend
nodeType removeAttributeNS() onresizestart
nodeValue removeBehavior() onselectstart
offsetHeight removeChild()
offsetLeft removeEventListener()
offsetParent removeExpression()
offsetTop removeNode()
offsetWidth replaceAdjacentText()
outerHTML replaceChild()
outerText replaceNode()
ownerDocument scrollIntoView()
parentElement setActive()
parentNode setAttribute()
parentTextEdit setAttributeNode()
prefix setAttributeNodeNS()
previousSibling setAttributeNS()
readyState setCapture()
recordNumber setExpression()
runtimeStyle swapNode()
scopeName tags()
scrollHeight urns()

Continued

elementObject

204 Part III ✦ Document Objects Reference

Properties Methods Event Handlers

scrollLeft
scrollTop
scrollWidth
sourceIndex
style
tabIndex
tagName
tagUrn
title
uniqueID

Syntax
To access element properties or methods, use this:

(IE4+) [document.all.]objectID.property | method([parameters])
(IE5+/W3C) document.getElementById(objectID).property | method([parameters])

About these objects
All objects listed in Table 15-1 are DOM representations of HTML elements that influence
either the font style or the context of some HTML content. The large set of properties,
methods, and event handlers associated with these objects also applies to virtually every
other DOM object that represents an HTML element. Discussions about object details in
this chapter apply to dozens of other objects described in succeeding chapters of this ref-
erence section.

Properties
accessKey

Value: One-character string. Read/Write
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-

For many elements, you can specify a keyboard character (letter, numeral, or punctuation
symbol) that, when typed as an Alt+key combination (on the Win32 OS platform) or Ctrl+key
combination (on the MacOS), brings focus to that element. An element that has focus is the
one that is set to respond to keyboard activity. If the newly focused element is out of view in
the document’s current scroll position, the document is scrolled to bring that focused ele-
ment into view (also see the scrollIntoView() method). The character you specify can be
an uppercase or lowercase value, but these values are not case-sensitive. If you assign the
same letter to more than one element, the user can cycle through all elements associated
with that accessKey value.

Internet Explorer gives some added powers to the accessKey property in some cases. For
example, if you assign an accessKey value to a label element object, the focus is handed to
the form element associated with that label. Also, when elements such as buttons have focus,
pressing the spacebar acts the same as clicking the element with a mouse.

elementObject

205Chapter 15 ✦ Generic HTML Element Objects

Although W3C DOM browsers, such as Mozilla and Safari, expose this property for some ele-
ment types (notably a, area, button, input, label, legend, and textarea), these browsers
do not respond to scripted changes of the property.

Exercise some judgment in selecting characters for accessKey values. If you assign a letter
that is normally used to access one of the Windows version browser’s built-in menus (for
example, Alt+F for the File menu), that accessKey setting overrides the browser’s normal
behavior. To users who rely on keyboard access to menus, your control over that key combi-
nation can be disconcerting.

Example
Listing 15-1 shows an example of how to use the accessKey property to manipulate the key-
board interface for navigating a Web page. When you load the script in Listing 15-1, adjust the
height of the browser window so that you can see nothing below the second dividing rule.
Enter any character into the Settings portion of the page and press Enter. (The Enter key may
cause your computer to beep.) Then hold down the Alt (Windows) or Ctrl (Mac) key while
pressing the same keyboard key. The element from below the second divider should come
into view.

Listing 15-1: Controlling the accessKey Property

<html>
<head>

<title>accessKey Property</title>
<script type=”text/javascript”>
function assignKey(type, elem) {

if (window.event.keyCode == 13) {
switch (type) {

case “button”:
document.forms[“output”].access1.accessKey = elem.value;
break;

case “text”:
document.forms[“output”].access2.accessKey = elem.value;
break;

case “table”:
document.getElementById(“myTable”).accessKey = elem.value;

}
return false;

}
}
</script>

</head>
<body>

<h1>accessKey Property Lab</h1>
<hr />
Settings:

<form name=”input”>

Assign an accessKey value to the Button below and press Return: <input
type=”text” size=”2” maxlength=”1”
onkeypress=”return assignKey(‘button’, this)” />

Assign an accessKey value to the Text Box below and press Return:
<input type=”text” size=”2” maxlength=”1”
onkeypress=”return assignKey(‘text’, this)” />

Assign an accessKey value to the Table below (IE5.5+ only) and press

Continued

elementObject.accessKey

206 Part III ✦ Document Objects Reference

Listing 15-1 (continued)

Return: <input type=”text” size=”2” maxlength=”1”
onkeypress=”return assignKey(‘table’, this)” />

</form>

Then press Alt (Windows) or Control (Mac) + the key.

Size the browser window to view nothing lower than this line.
<hr />
<form name=”output” onsubmit=”return false”>

<input type=”button” name=”access1” value=”Standard Button” /> <input
type=”text” name=”access2” />

</form>
<table id=”myTable” cellpadding=”10” border=”2”>

<tr>
<th>Quantity</th>
<th>Description</th>
<th>Price</th>

</tr>
<tbody bgcolor=”red”>

<tr>
<td width=”100”>4</td>
<td>Primary Widget</td>
<td>$14.96</td>

</tr>
<tr>

<td>10</td>
<td>Secondary Widget</td>
<td>$114.96</td>

</tr>
</tbody>

</table>
</body>

</html>

Related Item: scrollIntoView() method.

all[]
Value: Array of nested element objects. Read-Only
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-

The all property is a collection (array) of every HTML element and (in IE5+) XML tag within
the scope of the current object. Items in this array appear in source-code order, and the array
is oblivious to element containment among the items. For HTML element containers, the
source-code order is dependent on the position of the start tag for the element — end tags are
not counted. But for XML tags, end tags appear as separate entries in the array.

Every document.all collection contains objects for the html, head, title, and body element
objects even if the actual HTML source code omits the tags. The object model creates these
objects for every document that is loaded into a window or frame. While the document.all
reference may be the most common usage, the all property is available for any container ele-
ment. For example, document.forms[0].all exposes all elements defined within the first
form of a page.

elementObject.accessKey

207Chapter 15 ✦ Generic HTML Element Objects

You can access any element that has an identifier assigned to its id attribute by that identifier
in string form (as well as by index integer). Rather than use the performance-costly eval()
function to convert a string to an object reference, use the string value of the name as an array
index value:

var paragraph = document.all[“myP”];

Internet Explorer enables you to use either square brackets or parentheses for single collec-
tion index values. Thus, the following two examples evaluate identically:

var paragraph = document.all[“myP”];
var paragraph = document.all(“myP”);

In the rare case that more than one element within the all collection has the same ID, the
syntax for the string index value returns a collection of just those identically named elements.
But you can use a second argument (in parentheses) to signify the integer of the initial collec-
tion and thus single out a specific instance of that named element:

var secondRadio = document.all(“group0”,1);

As a more readable alternative, you can use the item() method (described later in this chap-
ter) to access the same kinds of items within a collection:

var secondRadio = document.all.item(“group0”,1);

Also see the tags() method (later in this chapter) as a way to extract a set of elements from
an all collection that matches a specific tag name.

Although a few non-IE browsers support the all collection, a better choice for future compat-
ibility is the document.getElementById() method described in Chapter 18.

Example
Use The Evaluator (Chapter 13) to experiment with the all collection. Enter the following
statements one at a time into the lower text box, and review the results in the text area for
each.

document.all
myTable.all
myP.all

If you encounter a numbered element within a collection, you can explore that element to see
which tag is associated with it. For example, if one of the results for the document.all collec-
tion says document.all.8=[object], enter the following statement into the topmost text
box:

document.all[8].tagName

Related Items: item(), tags(), document.getElementById() methods.

attributes[]
Value: Array of attribute object references. Read-Only
Compatibility: WinIE5+, MacIE5+, NN6+, Moz1+, Safari1+

The attributes property consists of an array of attributes specified for an element. In IE5+, the
attributes array contains an entry for every possible property that the browser has defined
for its elements — even if the attribute is not set explicitly in the HTML tag. Also, any attributes
that you add later via script facilities such as the setAttribute() method are not reflected in
the attributes array. In other words, the IE5+ attributes array is fixed, using default values
for all properties except those that you explicitly set as attributes in the HTML tag.

elementObject.attributes

208 Part III ✦ Document Objects Reference

Mozilla browsers’ attributes property returns an array that is a named node map (in W3C
DOM terminology) — an object that has its own properties and methods to read and write
attribute values. For example, you can use the getNamedItem(attrName) and item(index)
methods on the array returned from the attributes property to access individual attribute
objects via W3C DOM syntax.

IE5+ and Moz1+ have different ideas about what an attribute object should be. Table 15-2
shows the variety of properties of an attribute object as defined by the two object models.
The larger set of properties in Moz1+ reveals its dependence on the W3C DOM node inheri-
tance model discussed in Chapter 14.

Table 15-2: Attribute Object Properties

Property IE5+ Moz1+ Description

attributes No Yes Array of nested attribute objects (null)

childNodes No Yes Child node array

firstChild No Yes First child node

lastChild No Yes Last child node

localName No Yes Name within current namespace

name No Yes Attribute name

nameSpaceURI No Yes XML namespace URI

nextSibling No Yes Next sibling node

nodeName Yes Yes Attribute name

nodeType No Yes Node type (2)

nodeValue Yes Yes Value assigned to attribute

ownerDocument No Yes document object reference

ownerElement No Yes Element node reference

parentNode No Yes Parent node reference

prefix No Yes XML namespace prefix

previousSibling No Yes Previous sibling node

specified Yes Yes Whether attribute is explicitly specified (Boolean)

value No Yes Value assigned to attribute

The most helpful property of an attribute object is the Boolean specified property. In IE, this
lets you know whether the attribute is explicitly specified in the element’s tag. Because Moz1
returns only explicitly specified attributes in the attributes array, the value in Moz1 is always
true. Most of the time, however, you’ll probably use an element object’s getAttribute() and
setAttribute() methods to read and write attribute values.

Example
Use The Evaluator (Chapter 13) to examine the values of the attributes array for some of
the elements in that document. Enter each of the following expressions into the lower text
field, and see the array contents in the Results text area for each:

document.body.attributes
document.getElementById(“myP”).attributes
document.getElementById(“myTable”).attributes

elementObject.attributes

209Chapter 15 ✦ Generic HTML Element Objects

If you have both IE5+ and a W3C DOM-compatible browser, compare the results you get for
each of these expressions. To view the properties of a single attribute in WinIE5+, enter the
following statement into the bottom text field:

document.getElementById(“myP”).attributes[“class”]

For W3C browsers and MacIE5, use the W3C DOM syntax:

document.getElementById(“myP”).attributes.getNamedItem(“class”)

Related Items: getAttribute(), mergeAttributes(), removeAttribute(),
setAttribute() methods.

behaviorUrns[]
Value: Array of behavior URN strings. Read-Only
Compatibility: WinIE5+, MacIE-, NN-, Moz-, Safari-

The behaviorUrns property is designed to provide a list of addresses, in the form of URNs
(Uniform Resource Names), of all behaviors assigned to the current object. If there are no behav-
iors, the array has a length of zero. In practice, however, IE5+ always returns an array of empty
strings. Perhaps the potential exposure of URNs by script was deemed to be a privacy risk.

Example
The following function is embedded within a more complete example of WinIE HTML behav-
iors (Listing 15-19 in this chapter). It reports the length of the behaviorUrns array and
shows — if the values are returned — the URL of the attached behavior.

function showBehaviors() {
var num = document.getElementById(“myP”).behaviorUrns.length;
var msg = “The myP element has “ + num + “ behavior(s). “;
if (num > 0) {

msg += “Name(s): \r\n”;
for (var i = 0; i < num; i++) {

msg += document.getElementById(“myP”).behaviorUrns[i] + “\r\n”;
}

}
alert(msg);

}

Related Item: urns() method.

canHaveChildren
Value: Boolean. Read-Only
Compatibility: WinIE5+, MacIE-, NN-, Moz-, Safari-

Useful in some dynamic content situations, the canHaveChildren property reveals whether a
particular element is capable of containing a child (nested) element. Most elements that have
start and end tags (particularly the generic elements covered in this chapter) can contain
nested elements. A nested element is referred to as a child of its parent container.

Example
Listing 15-2 shows an example of how to use the canHaveChildren property to visually
identify elements on a page that can have nested elements. This example uses color to
demonstrate the difference between an element that can have children and one that cannot.
The first button sets the color style property of every visible element on the page to red.

elementObject.canHaveChildren

210 Part III ✦ Document Objects Reference

Thus, elements (including the normally non-childbearing ones such as hr and input) are
affected by the color change. But if you reset the page and click the largest button, only
those elements that can contain nested elements receive the color change.

Listing 15-2: Reading the canHaveChildren Property

<html>
<head>

<title>canHaveChildren Property</title>
<script type=”text/javascript”>
function colorAll() {

var elems = document.getElementsByTagName(“*”);
for (var i = 0; i < elems.length; i++) {

elems[i].style.color = “red”;
}

}

function colorChildBearing() {
var elems = document.getElementsByTagName(“*”);
for (var i = 0; i < elems.length; i++) {

if (elems[i].canHaveChildren) {
elems[i].style.color = “red”;

}
}

}
</script>

</head>
<body>

<h1>canHaveChildren Property Lab</h1>
<hr />
<form name=”input”>

<input type=”button” value=”Color All Elements”
onclick=”colorAll()” />

<input type=”button” value=”Reset” onclick=”history.go(0)” />

<input type=”button”
value=”Color Only Elements That Can Have Children”
onclick=”colorChildBearing()” />

</form>

<hr />
<form name=”output”>

<input type=”checkbox” checked=”checked” />Your basic checkbox <input
type=”text” name=”access2” value=”Some textbox text.” />

</form>
<table id=”myTable” cellpadding=”10” border=”2”>

<tr>
<th>Quantity</th>
<th>Description</th>
<th>Price</th>

</tr>
<tbody>

<tr>
<td width=”100”>4</td>
<td>Primary Widget</td>
<td>$14.96</td>

elementObject.canHaveChildren

211Chapter 15 ✦ Generic HTML Element Objects

</tr>
<tr>

<td>10</td>
<td>Secondary Widget</td>
<td>$114.96</td>

</tr>
</tbody>

</table>
</body>

</html>

Related Items: childNodes, firstChild, lastChild, parentElement, parentNode
properties; appendChild(), hasChildNodes(), removeChild() methods.

canHaveHTML
Value: Boolean. Read-Only
Compatibility: WinIE5.5+, MacIE-, NN-, Moz-, Safari-

While most HTML elements are containers of HTML content, not all are. The canHaveHTML
property lets scripts find out whether a particular object can accept HTML content, such as
for insertion or replacement by object methods. The value for a p element, for example, is
true. The value for a br element is false.

Example
Use The Evaluator (Chapter 13) to experiment with the canHaveHTML property. Enter the fol-
lowing statements into the top text field and observe the results:

document.getElementById(“input”).canHaveHTML
document.getElementById(“myP”).canHaveHTML

The first statement returns false because an input element (the top text field in this case) can-
not have nested HTML. But the myP element is a p element that gladly accepts HTML content.

Related Items: appendChild(), insertAdjacentHTML(), insertBefore() methods.

childNodes[]
Value: Array of node objects. Read-Only
Compatibility: WinIE5+, MacIE5+, NN6+, Moz1+, Safari1+

The childNodes property consists of an array of node objects contained by the current
object. Note that child nodes consist of both element objects and text nodes. Therefore,
depending on the content of the current object, the number of childNodes and children col-
lections may differ.

If you use the childNodes array in a for loop that iterates through a sequence of HTML (or
XML) elements, watch out for the possibility that the browser treats source code whitespace
(blank lines between elements and even simple carriage returns between elements) as text
nodes. This potential problem affects MacIE5 and Moz1. If present, these extra text nodes
occur primarily surrounding block elements.

Most looping activity through the childNodes array aims to examine, count, or modify ele-
ment nodes within the collection. If that is your script’s goal, then test each node returned by

Caution

elementObject.childNodes

212 Part III ✦ Document Objects Reference

the childNodes array, and verify that the nodeType property is 1 (element) before process-
ing that node. Otherwise, skip over the node. The skeletal structure of such a loop follows:

for (var i = 0; i < myElem.childNodes.length; i++) {
if (myElem.childNodes[i].nodeType == 1) {

statements to work on element node i
}

}

The presence of these “phantom” text nodes also impacts the nodes referenced by the
firstChild and lastChild properties, described later in this chapter.

Example
Listing 15-3 contains an example of how you might code a function that “walks” the child
nodes of a given node. The walkChildNodes() function shown in the listing accumulates and
returns a hierarchical list of child nodes from the point of view of the document’s HTML ele-
ment (the default) or any element whose ID you pass as a string parameter. This function is
embedded in The Evaluator so that you can inspect the child node hierarchy of that page or
(when using evaluator.js for debugging as described in Chapter 45 on the CD-ROM) the
node hierarchy within any page you have under construction. Try it out in The Evaluator by
entering the following statements into the top text field:

walkChildNodes()
walkChildNodes(getElementById(“myP”))

The results of this function show the nesting relationships among all child nodes within the
scope of the initial object. It also shows the act of drilling down to further childNodes collec-
tions until all child nodes are exposed and catalogued. Text nodes are labeled accordingly.
The first 15 characters of the actual text are placed in the results to help you identify the
nodes when you compare the results against your HTML source code.

Listing 15-3: Collecting Child Nodes

function walkChildNodes(objRef, n) {
var obj;
if (objRef) {

if (typeof objRef == “string”) {
obj = document.getElementById(objRef);

} else {
obj = objRef;

}
} else {

obj = (document.body.parentElement) ?
document.body.parentElement : document.body.parentNode;

}
var output = “”;
var indent = “”;
var i, group, txt;
if (n) {

for (i = 0; i < n; i++) {
indent += “+---”;

}
} else {

n = 0;
output += “Child Nodes of <” + obj.tagName;

elementObject.childNodes

213Chapter 15 ✦ Generic HTML Element Objects

output += “>\n=====================\n”;
}
group = obj.childNodes;
for (i = 0; i < group.length; i++) {

output += indent;
switch (group[i].nodeType) {

case 1:
output += “<” + group[i].tagName;
output += (group[i].id) ? “ ID=” + group[i].id : “”;
output += (group[i].name) ? “ NAME=” + group[i].name : “”;
output += “>\n”;
break;

case 3:
txt = group[i].nodeValue.substr(0,15);
output += “[Text:\”” + txt.replace(/[\r\n]/g,”<cr>”);
if (group[i].nodeValue.length > 15) {

output += “...”;
}
output += “\”]\n”;
break;

case 8:
output += “[!COMMENT!]\n”;
break;

default:
output += “[Node Type = “ + group[i].nodeType + “]\n”;

}
if (group[i].childNodes.length > 0) {
output += walkChildNodes(group[i], n+1);

}
}
return output;

}

Related Items: nodeName, nodeType, nodeValue, parentNode properties; cloneNode(),
hasChildNodes(), removeNode(), replaceNode(), swapNode() methods.

children
Value: Array of element objects. Read-Only
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-

The children property consists of an array of element objects contained by the current
object. Unlike the childNodes property, children does not take into account text nodes but
rather focuses strictly on the HTML (and XML) element containment hierarchy from the point
of view of the current object. Children exposed to the current object are immediate children
only. If you want to get all element objects nested within the current object (regardless of
how deeply nested they are), use the all collection instead.

Example
Listing 15-4 shows how you can use the children property to “walk” the child nodes of a
given node. This function accumulates and returns a hierarchical list of child elements from
the point of view of the document’s HTML element (the default) or any element whose ID
you pass as a string parameter. This function is embedded in The Evaluator so that you can
inspect the parent–child hierarchy of that page or (when using evaluator.js for debugging
as described in Chapter 45 on the CD-ROM) the element hierarchy within any page you have

elementObject.children

214 Part III ✦ Document Objects Reference

under construction. Try it out in The Evaluator in IE5+ by entering the following statements
into the top text field:

walkChildren()
walkChildren(“myP”)

The results of this function show the nesting relationships among all parent and child ele-
ments within the scope of the initial object. It also shows the act of drilling down to further
children collections until all child elements are exposed and catalogued. The element tags
also display their id and/or name attribute values if any are assigned to the elements in the
HTML source code.

Listing 15-4: Collecting Child Elements

function walkChildren(objRef, n) {
var obj;
if (objRef) {

if (typeof objRef == “string”) {
obj = document.getElementById(objRef);

} else {
obj = objRef;

}
} else {

obj = document.body.parentElement;
}
var output = “”;
var indent = “”;
var i, group;
if (n) {

for (i = 0; i < n; i++) {
indent += “+---”;

}
} else {

n = 0;
output += “Children of <” + obj.tagName;
output += “>\n=====================\n”;

}
group = obj.children;
for (i = 0; i < group.length; i++) {

output += indent + “<” + group[i].tagName;
output += (group[i].id) ? “ ID=” + group[i].id : “”;
output += (group[i].name) ? “ NAME=” + group[i].name : “”;
output += “>\n”;
if (group[i].children.length > 0) {

output += walkChildren(group[i], n+1);
}

}
return output;

}

Related Items: canHaveChildren, firstChild, lastChild, parentElement properties;
appendChild(), removeChild(), replaceChild() methods.

elementObject.children

215Chapter 15 ✦ Generic HTML Element Objects

className
Value: String. Read/Write
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

A class name is an identifier that is assigned to the class attribute of an element. To associ-
ate a CSS rule with several elements in a document, assign the same identifier to the class
attributes of those elements, and use that identifier (preceded by a period) as the CSS rule’s
selector. An element’s className property enables the application of different CSS rules to
that element under script control. Listing 15-5 shows an example of such a script.

Example
The style of an element toggles between “on” and “off” in Listing 15-5 by virtue of setting the
element’s className property alternatively to an existing stylesheet class selector name and
an empty string. When you set the className to an empty string, the default behavior of the
h1 element governs the display of the first header. A click of the button forces the stylesheet
rule to override the default behavior in the first h1 element.

Listing 15-5: Working with the className Property

<html>
<head>

<title>className Property</title>
<style type=”text/css”>
.special {font-size:16pt; color:red}
</style>
<script type=”text/javascript”>
function toggleSpecialStyle(elemID) {

var elem = (document.all) ? document.all(elemID) :
document.getElementById(elemID);

if (elem.className == “”) {
elem.className = “special”;

} else {
elem.className = “”;

}
}
</script>

</head>
<body>

<h1>className Property Lab</h1>
<hr />
<form name=”input”>

<input type=”button” value=”Toggle Class Name”
onclick=”toggleSpecialStyle(‘head1’)” />

</form>

<h1 id=”head1”>ARTICLE I</h1>
<p>Congress shall make no law respecting an establishment of religion, or

prohibiting the free exercise thereof; or abridging the freedom of
speech, or of the press; or the right of the people peaceably to
assemble, and to petition the government for a redress of
grievances.</p>

<h1>ARTICLE II</h1>

Continued

elementObject.className

216 Part III ✦ Document Objects Reference

Listing 15-5 (continued)

<p>A well regulated militia, being necessary to the security of a free
state, the right of the people to keep and bear arms, shall not be
infringed.</p>

</body>
</html>

You can also create multiple versions of a style rule with different class selector identifiers
and apply them at will to a given element.

Related Items: rule, stylesheet objects (Chapter 26); id property.

clientHeight
clientWidth

Value: Integer. Read-Only
Compatibility: WinIE4+, MacIE4+, NN7, Moz1+, Safari1+

These two properties by and large reveal the pixel height and width of the content within an
element whose stylesheet rule includes height and width settings. In theory, these measures
do not take into account any margins, borders, or padding that you add to an element by
way of stylesheets. In practice, however, different combinations of borders, margins, and
padding influence these values in unexpected ways. One of the more reliable applications of
the clientHeight property enables you to discover, for example, where the text of an over-
flowing element ends. To read the rendered dimensions of an element, you are better served
across browsers with the offsetHeight and offsetWidth properties.

For the document.body object, the clientHeight and clientWidth properties return the
inside height and width of the window or frame (plus or minus a couple of pixels). These take
the place of desirable, but nonexistent, window properties in IE.

Internet Explorer 5+ expands the number of objects that employ these properties to include
virtually all objects that represent HTML elements. For IE4, these properties apply only to the
following objects: body, button, caption, div, embed, fieldset, legend, marquee, table,
td, textarea, th, and tr.

Values for these properties in Mozilla-based browsers are zero, except for document.body,
which measures the browser’s current content area.

Example
Listing 15-6 for IE includes an example of how to dynamically size content on a page based
upon the client area width and height. This example calls upon the clientHeight and
clientWidth properties of a div element that contains a paragraph element. Only the width
of the div element is specified in its stylesheet rule, which means that the paragraph’s text
wraps inside that width and extends as deeply as necessary to show the entire paragraph.
The clientHeight property describes that depth. The clientHeight property then calcu-
lates where a logo image should be positioned immediately after div, regardless of the length
of the text. As a bonus, the clientWidth property helps the script center the image horizon-
tally with respect to the paragraph’s text.

elementObject.className

217Chapter 15 ✦ Generic HTML Element Objects

Listing 15-6: Using clientHeight and clientWidth Properties

<html>
<head>

<title>clientHeight and clientWidth Properties</title>
<script type=”text/javascript”>
function showLogo() {

var paragraphW = document.getElementById(“myDIV”).clientWidth;
var paragraphH = document.getElementById(“myDIV”).clientHeight;
// correct for Windows/Mac discrepancies
var paragraphTop = (document.getElementById(“myDIV”).clientTop) ?

document.getElementById(“myDIV”).clientTop :
document.getElementById(“myDIV”).offsetTop;

var logoW = document.getElementById(“logo”).style.pixelWidth;
// center logo horizontally against paragraph
document.getElementById(“logo”).style.pixelLeft =

(paragraphW-logoW) / 2;
// position image immediately below end of paragraph
document.getElementById(“logo”).style.pixelTop =

paragraphTop + paragraphH;
document.getElementById(“logo”).style.visibility = “visible”;

}
</script>

</head>
<body>

<button onclick=”showLogo()”>Position and Show Logo Art</button>
<div id=”logo” style=”position:absolute; width:120px; visibility:hidden”>

</div>
<div id=”myDIV” style=”width:200px”>

<p>Lorem ipsum dolor sit amet, consectetaur adipisicing elit, sed do
eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim
adminim veniam, quis nostrud exercitation ullamco laboris nisi ut
aliquip ex ea commodo consequat. Duis aute irure dolor in
reprehenderit involuptate velit esse cillum dolore eu fugiat nulla
pariatur. Excepteur sint occaecat cupidatat non proident.</p>

</div>
</body>

</html>

To assist in the vertical positioning of the logo, the offsetTop property of the div object
provides the position of the start of the div with respect to its outer container (the body).
Unfortunately, MacIE uses the clientTop property to obtain the desired dimension. That
measure (assigned to the paragraphTop variable), plus the clientHeight of the div, pro-
vides the top coordinate of the image.

Related Items: offsetHeight, offsetWidth properties.

clientLeft
clientTop

Value: Integer. Read-Only
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-

elementObject.clientLeft

218 Part III ✦ Document Objects Reference

The purpose and names of the clientLeft and clientTop properties are confusing at best.
Unlike the clientHeight and clientWidth properties, which apply to the content of an
element, the clientLeft and clientTop properties return essentially no more information
than the thickness of a border around an element — provided the element is positioned. If
you do not specify a border or do not position the element, the values are zero (although
the document.body object can show a couple of pixels in each direction without explicit
settings). If you are trying to read the left and top coordinate positions of an element, the
offsetLeft and offsetTop properties are more valuable in WinIE; as shown in Listing 15-6,
however, the clientTop property returns a suitable value in MacIE. Virtually all elements
have the clientLeft and clientTop properties in IE5+; in IE4, the properties apply only to
the body, button, caption, embed, fieldset, legend, marquee, and textarea objects.

Related Items: offsetLeft, offsetTop properties.

contentEditable
Value: Boolean. Read/Write
Compatibility: WinIE5.5+, MacIE-, NN-, Moz-, Safari-

IE5.5 introduced the concept of editable HTML content on a page. Element tags can include a
contenteditable attribute, whose value is echoed via the contentEditable property of
the element. The default value for this property is inherit, which means that the property
inherits whatever setting this property has in the hierarchy of HTML containers outward to
the body. If you set the contentEditable property to true, that element and all nested ele-
ments set to inherit the value become editable; conversely, a setting of false turns off the
option to edit the content.

Example
Listing 15-7 demonstrates how to use the contentEditable property to allow a piece of text
to be edited. When you click the button of a freshly loaded page, the toggleEdit() function
captures the opposite of the current editable state via the isContentEditable property of
the div that is subject to edit. You switch on editing for that element in the next statement by
assigning the new value to the contentEditable property of the div. For added impact, turn
the text of the div to red to provide additional user feedback about what is editable on the
page. You can also switch the button label to one that indicates the action invoked by the
next click on it.

Listing 15-7: Using the contentEditable Property

<html>
<head>

<style type=”text/css”>
.normal {color: black}
.editing {color: red}
</style>
<script type=”text/javascript”>
function toggleEdit() {

var newState = !editableText.isContentEditable;
editableText.contentEditable = newState;
editableText.className = (newState) ? “editing” : “normal”;
editBtn.innerText = (newState) ? “Disable Editing” : “Enable Editing”;

}
</script>
<title>
</title>

elementObject.clientLeft

219Chapter 15 ✦ Generic HTML Element Objects

</head>
<body>

<h1>Editing Contents</h1>
<hr />
<p>Turn on editing to modify the following text:</p>
<div id=”editableText”>

Edit this text on the fly....
</div>
<p><button id=”editBtn” onclick=”toggleEdit()”

onfocus=”this.blur()”>Enable Editing</button></p>
</body>

</html>

Related Item: isContentEditable property.

currentStyle
Value: style object. Read-Only
Compatibility: WinIE5+, MacIE5+, NN-, Moz-, Safari-

Every element has style attributes applied to it, even if those attributes are the browser’s
default settings. Because an element’s style object reflects only those properties whose cor-
responding attributes are explicitly set via CSS statements, you cannot use the style prop-
erty of an element object to view default style settings applied to an element. That’s where
the currentStyle property comes in.

This property returns a read-only style object that contains values for every possible style
property applicable to the element. If a style property is explicitly set via CSS statement or
script adjustment, the current reading for that property is also available here. Thus, a script
can inquire about any property to determine if it should change to meet some scripted design
goal. For example, if you surround some text with an tag, the browser by default turns
that text into an italic font style. This setting is not reflected in the element’s style object
(fontStyle property) because the italic setting was not set via CSS; in contrast, the element
object’s currentStyle.fontStyle property reveals the true, current fontStyle property of
the element as italic.

Example
To change a style property setting, access it via the element’s style object. Use The
Evaluator (Chapter 13) to compare the properties of the currentStyle and style objects of
an element. For example, an unmodified copy of The Evaluator contains an em element whose
ID is “myEM”. Enter document.getElementById(“myEM”).style into the bottom property
listing text box and press Enter. Notice how most of the property values are empty. Now enter
document.getElementById(“myEM”).currentStyle into the property listing text box and
press Enter. Every property has a value associated with it.

Related Items: runtimeStyle, style objects (Chapter 26); window.getComputedStyle()
for W3C DOM browsers (Chapter 16).

dataFld
dataFormatAs
dataSrc

Value: String. Read/Write
Compatibility: WinIE4+, MacIE5, NN-, Moz-, Safari-

elementObject.dataFld

220 Part III ✦ Document Objects Reference

The dataFld, dataFormatAs, and dataSrc properties (along with more element-specific
properties such as dataPageSize and recordNumber) are part of the Internet Explorer data-
binding facilities based on ActiveX controls. The Win32 versions of IE4 and later have several
ActiveX objects built into the browsers that facilitate the direct communication between a
Web page and a data source. Data sources include text files, XML data, HTML data, and exter-
nal databases (MacIE supports text files only). Data binding is a very large topic, much of
which extends more to discussions about Microsoft Data Source Objects (DSOs), ODBC, and
JDBC — subjects well beyond the scope of this book. But data binding is a powerful tool and
can be of use even if you are not a database guru. Therefore, this discussion of the three pri-
mary properties —dataFld, dataFormatAs, and dataSrc— briefly covers data binding
through Microsoft’s Tabular Data Control DSO. This allows any page to access, sort, display,
and filter (but not update) data downloaded into a Web page from an external text file (com-
monly comma- or tab-delimited data).

You can load data from an external text file into a document with the help of the Tabular Data
Control (TDC). You retrieve the data by specifying the TDC object within an <object> tag set
and specifying additional parameters such as the URL of the text file and field delimiter char-
acters. The object element can go anywhere within the body of your document. (I tend to
put it at the bottom of the code so that all normal page rendering happens before the control
loads.) Retrieving the data simply brings it into the browser and does not, on its own, render
the data on the page.

If you haven’t worked with embedded objects in IE, the classid attribute value might seem a
bit strange. The most perplexing part to some is the long value of numeric data signifying the
Globally Unique Identifier (GUID) for the object. You must enter this value exactly as shown
in the following example for the proper ActiveX TDC to run. The HTML syntax for this object
is as follows:

<object id=”objName” classid=”clsid:333C7BC4-460F-11D0-BC04-0080C7055A83”>
<param name=”DataURL” value=”URL”>
[additional optional parameters]

</object>

Table 15-3 lists the parameters available for the TDC. Only the DataURL parameter is required;
others — such as FieldDelim, UseHeader, RowDelim, and EscapeChar— may be helpful
depending on the nature of the data source.

Table 15-3: Tabular Data Control Parameters

Parameter Description

CharSet Character set of the data source file. Default is latin1.

DataURL URL of data source file (relative or absolute).

EscapeChar Character used to “escape” delimiter characters that are part of the data. Default
is empty. A common value is “\”.

FieldDelim Delimiter character between fields within a record. Default is comma (,). For a
Tab character, use a value of 	.

Language ISO language code of source data. Default is en-us.

TextQualifier Optional character surrounding a field’s data. Default is empty.

RowDelim Delimiter character between records. Default is newline (NL).

UseHeader Set to true if the first row of data in the file contains field names. Default is
false.

elementObject.dataFld

221Chapter 15 ✦ Generic HTML Element Objects

The value you assign to the object element’s id attribute is the identifier that your scripts
use to communicate with the data after the page and data completely load. You can therefore
have as many uniquely named TDCs loaded in your page as there are data source files you
want to access at once.

The initial binding of the data to HTML elements usually comes when you assign values to the
datasrc and datafld attributes of the elements. The datasrc attribute points to the dso
identifier (matching the id attribute of the object element, preceded with a hash symbol),
while the datafld attribute points to the name of the field whose data should be extracted.
When you use data binding with an interactive element such as a table, multiple records are
displayed in consecutive rows of the table (more about this in a moment).

Adjust the dataSrc and dataFld properties if you want the same HTML element (other than a
table) to change the data that it displays. These properties apply to a subset of HTML elements
that can be associated with external data: a, applet, body, button, div, frame, iframe, img,
input (most types), label, marquee, object, param, select, span, and textarea objects.

In some cases, your data source may store chunks of HTML-formatted text for rendering
inside an element. Unless directed otherwise, the browser renders a data source field as plain
text — even if the content contains HTML formatting tags. But if you want the HTML to be
observed during rendering, you can set the dataFormatAs property (or, more likely, the
dataformatas attribute of the tag) to HTML. The default value is text.

Example
Listing 15-8 is a simple document that has two TDC objects associated with it. The external files
are different formats of the U.S. Bill of Rights document. One file is a traditional, tab-delimited
data file consisting of only two records. The first record is a tab-delimited sequence of field
names (named “Article1”, “Article2”, and so on); the second record is a tab-delimited
sequence of article content defined in HTML:

<h1>ARTICLE I</h1><p>Congress shall make...</p>

The second file is a raw text file consisting of the full Bill of Rights with no HTML formatting
attached.

When you load Listing 15-8, only the first article of the Bill of Rights appears in a blue-bordered
box. Buttons enable you to navigate to the previous and next articles in the series. Because the
data source is a traditional, tab-delimited file, the nextField() and prevField() functions cal-
culate the name of the next source field and assign the new value to the dataFld property. All
of the data is already in the browser after the page loads, so cycling through the records is as
fast as the browser can reflow the page to accommodate the new content.

Listing 15-8: Binding Data to a Page

<html>
<head>

<title>Data Binding</title>
<style type=”text/css”>
#display {width:500px; border:10px ridge blue; padding:20px}
.hiddenControl {display:none}
</style>
<script type=”text/javascript”>
function nextField() {

Continued

elementObject.dataFld

222 Part III ✦ Document Objects Reference

Listing 15-8 (continued)

var elem = document.getElementById(“display”);
var fieldName = elem.dataFld;
var currFieldNum = parseInt(fieldName.substring(7,

fieldName.length),10);
currFieldNum = (currFieldNum == 10) ? 1 : ++currFieldNum;
elem.dataFld = “Article” + currFieldNum;

}
function prevField() {

var elem = document.getElementById(“display”);
var fieldName = elem.dataFld;
var currFieldNum = parseInt(fieldName.substring(7,

fieldName.length),10);
currFieldNum = (currFieldNum == 1) ? 10 : --currFieldNum;
elem.dataFld = “Article” + currFieldNum;

}

function toggleComplete() {
if (document.getElementById(“buttonWrapper”).className == “”) {

document.getElementById(“display”).dataSrc = “#rights_raw”;
document.getElementById(“display”).dataFld = “column1”;
document.getElementById(“display”).dataFormatAs = “text”;
document.getElementById(“buttonWrapper”).className =

“hiddenControl”;
} else {

document.getElementById(“display”).dataSrc = “#rights_html”;
document.getElementById(“display”).dataFld = “Article1”;
document.getElementById(“display”).dataFormatAs = “HTML”;
document.getElementById(“buttonWrapper”).className = “”;

}
}
</script>

</head>
<body>

<h1>U.S. Bill of Rights</h1>
<form>

<input type=”button” value=”Toggle Complete/Individual”
onclick=”toggleComplete()” /> <input
type=”button” value=”Prev” onclick=”prevField()” /> <input
type=”button” value=”Next” onclick=”nextField()” />

</form>
<div id=”display” datasrc=”#rights_html” datafld=”Article1”
dataformatas=”HTML”>
</div>
<object id=”rights_html”
classid=”clsid:333C7BC4-460F-11D0-BC04-0080C7055A83”>

<param name=”DataURL” value=”Bill of Rights.txt” />
<param name=”UseHeader” value=”True” />
<param name=”FieldDelim” value=”	” />

</object> <object id=”rights_raw”
classid=”clsid:333C7BC4-460F-11D0-BC04-0080C7055A83”>

<param name=”DataURL” value=”Bill of Rights (no format).txt” />
<param name=”FieldDelim” value=”\” />
<param name=”RowDelim” value=”\” />

</object>
</body>

</html>

elementObject.dataFld

223Chapter 15 ✦ Generic HTML Element Objects

Another button on the page enables you to switch between the initial piecemeal version of the
document and the unformatted version in its entirety. To load the entire document as a single
record, the FieldDelim and RowDelim parameters of the second object element eliminate their
default values by replacing them with characters that don’t appear in the document at all. And
because the external file does not have a field name in the file, the default value (column1 for the
lone column in this document) is the data field. Thus, in the toggleComplete() function, the
dataSrc property is changed to the desired object element ID, the dataFld property is set to
the correct value for the data source, and the dataFormatAs property is changed to reflect the
different intention of the source content (to be rendered as HTML or as plain text). When the dis-
play shows the entire document, you can hide the two radio buttons by assigning a className
value to the span element that surrounds the buttons. The className value is the identifier of
the class selector in the document’s stylesheet. When the toggleComplete() function resets
the className property to empty, the default properties (normal inline display style) take hold.

One further example demonstrates the kind of power available to the TDC under script con-
trol. Listing 15-9 displays table data from a tab-delimited file of Academy Award information.
The data file has eight columns of data, and each column heading is treated as a field name:
Year, Best Picture, Best Director, Best Director Film, Best Actress, Best Actress Film, Best
Actor, and Best Actor Film. For the design of the page, only five fields from each record
appear: Year, Film, Director, Actress, and Actor. Notice in the listing how the HTML for the
table and its content is bound to the data source object and the fields within the data.

The “dynamic” part of this example is apparent in how you can sort and filter the data, once
loaded into the browser, without further access to the original source data. The TDC object
features Sort and Filter properties that enable you to act on the data currently loaded in
the browser. The simplest kind of sorting indicates on which field (or fields via a semicolon-
delimited list of field names) the entire data set should be sorted. Leading the name of the
sort field is either a plus (to indicate ascending) or minus (descending) symbol. After setting
the data object’s Sort property, invoke its Reset() method to tell the object to apply the
new property. The data in the bound table is immediately redrawn to reflect any changes.

Similarly, you can tell a data collection to display records that meet specific criteria. In Listing
15-9, two select lists and a pair of radio buttons provide the interface to the Filter prop-
erty’s settings. For example, you can filter the output to display only those records in which
the Best Picture was the same picture of the winning Best Actress’s performance. Simple filter
expressions are based on field names:

dataObj.Filter = “Best Picture” = “Best Actress Film”;

Listing 15-9: Sorting Bound Data

<html>
<head>

<title>Data Binding - Sorting</title>
<script type=”text/javascript”>
function sortByYear(type) {

oscars.Sort = (type == “normal”) ? “-Year” : “+Year”;
oscars.Reset();

}
function filterInCommon(form) {

var filterExpr1 =
form.filter1.options[form.filter1.selectedIndex].value;

var filterExpr2 =

Continued

elementObject.dataFld

224 Part III ✦ Document Objects Reference

Listing 15-9 (continued)

form.filter2.options[form.filter2.selectedIndex].value;
var operator = (form.operator[0].checked) ? “=” : “<>”;
var filterExpr = filterExpr1 + operator + filterExpr2;
oscars.Filter = filterExpr;
oscars.Reset();

}
</script>

</head>
<body>

<h1>Academy Awards 1978-1997</h1>
<form>

<p>Sort list by year from
newest to oldest or from oldest to
newest.</p>

<p>Filter listings for records whose <select name=”filter1”
onchange=”filterInCommon(this.form)”>

<option value=”Best Picture”>Best Picture</option>
<option value=”Best Director Film”>Best Director’s Film</option>
<option value=”Best Actress Film”>Best Actress’ Film</option>
<option value=”Best Actor Film”>Best Actor’s Film</option>

</select> <input type=”radio” name=”operator” checked=”checked”
onclick=”filterInCommon(this.form)” />is <input type=”radio”
name=”operator” onclick=”filterInCommon(this.form)” />is not
<select name=”filter2” onchange=”filterInCommon(this.form)”>

<option value=”Best Picture”>Best Picture</option>
<option value=”Best Director Film”>Best Director’s Film</option>
<option value=”Best Actress Film”>Best Actress’ Film</option>
<option value=”Best Actor Film”>Best Actor’s Film</option>

</select></p>
</form>
<table datasrc=”#oscars” border=”1” align=”center”>

<thead style=”background-color:yellow; text-align:center”>
<tr>

<td>Year</td>
<td>Film</td>
<td>Director</td>
<td>Actress</td>
<td>Actor</td>

</tr>
</thead>
<tr>

<td><div id=”col1” datafld=”Year”></div></td>
<td><div id=”col2” datafld=”Best Picture”></div></td>
<td><div id=”col3” datafld=”Best Director”></div></td>
<td><div id=”col4” datafld=”Best Actress”></div></td>
<td><div id=”col5” datafld=”Best Actor”></div></td>

</tr>
</table>
<object id=”oscars” classid=”clsid:333C7BC4-460F-11D0-BC04-0080C7055A83”>

<param name=”DataURL” value=”Academy Awards.txt” />
<param name=”UseHeader” value=”True” />
<param name=”FieldDelim” value=”	” />

</object>
</body>

</html>

elementObject.dataFld

225Chapter 15 ✦ Generic HTML Element Objects

Related Items: recordNumber, table.dataPageSize properties.

dir
Value: “ltr” | “rtl” Read/Write
Compatibility: WinIE5+, MacIE5+, NN6+, Moz1+, Safari1+

The dir property (based on the dir attribute of virtually every text-oriented HTML ele-
ment) controls whether an element’s text is rendered left-to-right (the default) or right-to-
left. By and large, this property (and HTML attribute) is necessary only when you need to
override the default directionality of a language’s character set as defined by the Unicode
standard.

Example
Changing this property value in a standard U.S. version of a browser only makes the right
margin the starting point for each new line of text (in other words, the characters are not
rendered in reverse order). You can experiment with this in The Evaluator by entering the
following statements into the expression evaluation field:

document.getElementById(“myP”).dir = “rtl”

Related Item: lang property.

disabled
Value: Boolean. Read/Write
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

While some elements have a disabled property in IE4 and IE5, this property is associated with
every HTML element in IE5.5+. W3C DOM browsers apply the property only to form control and
style element objects. Disabling an HTML element (like form elements) usually gives the ele-
ment a “dimmed” look, indicating that it is not active. A disabled element does not receive any
events. It also cannot receive focus, either manually or by script (although disabled text fields
in MacIE4 errantly manage to receive focus). But a user can still select and copy a disabled
body text element.

If you disable a form control element, the element’s data is not submitted to the server with
the rest of the form elements. If you need to keep a form control “locked down,” but still
submit it to the server, use the form element’s onsubmit event handler to enable the form
control right before the form is submitted.

Example
Use The Evaluator (Chapter 13) to experiment with the disabled property on both form ele-
ments (IE4+ and W3C) and regular HTML elements (WinIE5.5+). For IE4+ and W3C browsers,
see what happens when you disable the output text area by entering the following statement
into the top text box:

document.forms[0].output.disabled = true

The text area is disabled for user entry, although you can still set the field’s value property
via script (which is how the true returned value got there).

If you have WinIE5.5+, disable the myP element by entering the following statement into the
top text box:

document.getElementById(“myP”).disabled = true

Note

elementObject.disabled

226 Part III ✦ Document Objects Reference

The sample paragraph’s text turns gray.

Related Item: isDisabled property.

document
Value: document object. Read-Only
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-

In the context of HTML element objects as exposed in IE4+, the document property is a refer-
ence to the document that contains the object. While it is unlikely that you will need to use this
property, document may come in handy for complex scripts and script libraries that handle
objects in a generic fashion and do not know the reference path to the document containing a
particular object. You might need a reference to the document to inspect it for related objects.
The W3C version of this property is ownerDocument.

Example
The following simplified function accepts a parameter that can be any object in a document
hierarchy. The script finds out the reference of the object’s containing document for further
reference to other objects:

function getCompanionFormCount(obj) {
var ownerDoc = obj.document;
return ownerDoc.forms.length;

}

Because the ownerDoc variable contains a valid reference to a document object, the return
statement uses that reference to return a typical property of the document object hierarchy.

Related Item: ownerDocument property.

filters[]
Value: Array. Read-Only
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-

Filters are IE-specific stylesheet add-ons that offer a greater variety of font rendering (such as
drop shadows) and transitions between hidden and visible elements. Each filter specification
is a filter object. The filters property contains an array of filter objects defined for the
current element. You can apply filters to the following set of elements: body, button, img,
input, li, marquee, ol, table, td, textarea, th, ul, and positioned div and span elements.
See Chapter 26 for details about stylesheet filters.

Related Item: filter object.

firstChild
lastChild

Value: Node object reference. Read-Only
Compatibility: WinIE5+, MacIE5+, NN6+, Moz1+, Safari1+

W3C DOM-based document object models are built around an architecture known as a node
map. Each object defined by HTML is a node in the map. A node has relationships with other
nodes in the document — relationships described in family terms of parents, siblings, and
children.

elementObject.disabled

227Chapter 15 ✦ Generic HTML Element Objects

A child node is an element that is contained by another element. The container is the parent
of such a child. Just as an HTML element can contain any number of child elements, so can a
parent object have zero or more children. A list of those children (returned as an array) can
be read from an object by way of its childNodes property:

var nodeArray = document.getElementById(“elementID”).childNodes;

While you can use this array (and its length property) to get a reference to the first or last
child node, the firstChild and lastChild properties offer shortcuts to those positions.
These are helpful when you wish to insert a new child before or after all of the others and you
need a reference point for the IE insertAdjacentElement() method or other method that
adds elements to the document’s node list.

Example
Listing 15-10 contains an example of how to use the firstChild and lastChild properties
to access child nodes. These two properties come in handy in this example, which adds and
replaces li elements to an existing ol element. You can enter any text you want to appear at
the beginning or end of the list. Using the firstChild and lastChild properties simplifies
access to the ends of the list. For the functions that replace child nodes, the example uses the
replaceChild() method. Alternatively for IE4+, you can modify the innerText property of
the objects returned by the firstChild or lastChild property. This example is especially
interesting to watch when you add items to the list: The browser automatically renumbers
items to fit the current state of the list.

See the discussion of the childNodes property earlier in this chapter about the presence of
“phantom” nodes in some browser versions. The problem may influence your use of the
firstChild and lastChild properties.

Listing 15-10: Using firstChild and lastChild Properties

<html>
<head>

<title>firstChild and lastChild Properties</title>
<script type=”text/javascript”>
// helper function for prepend() and append()
function makeNewLI(txt) {

var newItem = document.createElement(“li”);
newItem.innerHTML = txt;
return newItem;

}
function prepend(form) {

var newItem = makeNewLI(form.input.value);
var firstLI = document.getElementById(“myList”).firstChild;
document.getElementById(“myList”).insertBefore(newItem, firstLI);

}
function append(form) {

var newItem = makeNewLI(form.input.value);
var lastLI = document.getElementById(“myList”).lastChild;
document.getElementById(“myList”).appendChild(newItem);

}
function replaceFirst(form) {

var newItem = makeNewLI(form.input.value);
var firstLI = document.getElementById(“myList”).firstChild;

Continued

Caution

elementObject.firstChild

228 Part III ✦ Document Objects Reference

Listing 15-10 (continued)

document.getElementById(“myList”).replaceChild(newItem, firstLI);
}
function replaceLast(form) {

var newItem = makeNewLI(form.input.value);
var lastLI = document.getElementById(“myList”).lastChild;
document.getElementById(“myList”).replaceChild(newItem, lastLI);

}
</script>

</head>
<body>

<h1>firstChild and lastChild Property Lab</h1>
<hr />
<form>

<label>Enter some text to add to or replace in the OL
element:</label>

<input type=”text” name=”input” size=”50” />

<input type=”button” value=”Insert at Top”
onclick=”prepend(this.form)” /> <input type=”button”
value=”Append to Bottom” onclick=”append(this.form)” />

<input type=”button” value=”Replace First Item”
onclick=”replaceFirst(this.form)” /> <input type=”button”
value=”Replace Last Item” onclick=”replaceLast(this.form)” />

</form>
<ol id=”myList”>

Initial Item 1
Initial Item 2
Initial Item 3
Initial Item 4

</body>

</html>

Related Items: nextSibling, parentElement, parentNode, previousSibling properties;
appendChild(), hasChildNodes(), removeChild(), removeNode(), replaceChild(),
replaceNode() methods.

height
width

Value: Integer or percentage string. Read/Write and Read-Only
Compatibility: WinIE4+, MacIE4+, NN4+, Moz1+, Safari1+

The height and width properties described here are not the identically named properties that
belong to an element’s style. Rather, these properties reflect the values normally assigned to
height and width attributes of elements such as img, applet, table, and so on. As such, these
properties are accessed directly from the object (for example, document.getElementById
(“myTable”).width in IE4+) rather than through the style object (for example, document.
getElementById(“myDIV”).style.width). Only elements for which the HTML 4.x standard
provides height and width attributes have the corresponding properties.

elementObject.firstChild

229Chapter 15 ✦ Generic HTML Element Objects

Values for these properties are either integer pixel values (numbers or strings) or percent-
age values (strings only). If you need to perform some math on an existing percentage
value, use the parseInt() function to extract the numeric value for use with math calcula-
tions. If an element’s height and width attributes are set as percentage values, you can use
the offsetHeight and offsetWidth properties in many modern browsers to get the ren-
dered pixel dimensions.

Property values are read/write for the image object in most recent browser versions because
you can resize an image object in IE4+ and Moz1+ after the page loads. Properties are read/write
for some other objects (such as the table object) — but not necessarily all others that support
these properties.

In general, you cannot set the value of these properties to something less than is required to
render the element. This is particularly true of a table. If you attempt to set the height value to
less than the amount of pixels required to display the table as defined by its style settings, your
changes have no effect (even though the property value retains its artificially low value). For
other objects, however, you can set the size to anything you like and the browser scales the
content accordingly (images, for example). If you want to see only a segment of an element (in
other words, to crop the element), use a stylesheet to set the element’s clipping region.

Example
The following example demonstrates how to use the width property by increasing the width
of a table by 10 percent.

var tableW = parseInt(document.getElementById(“myTable”).width);
document.getElementById(“myTable”).width = (tableW * 1.1) + “%”;

Because the initial setting for the width attribute of the table element is set as a percentage
value, the script calculation extracts the number from the percentage width string value. In
the second statement, the old number is increased by 10 percent and turned into a percent-
age string by appending the percentage symbol to the value. The resulting string value is
assigned to the width property of the table.

Related Items: clientHeight, clientWidth properties; style.height, style.width
properties.

hideFocus
Value: Boolean. Read/Write
Compatibility: WinIE5.5+, MacIE-, NN-, Moz-, Safari-

In IE for Windows, button types of form controls and links display a dotted rectangle around
some part of the element whenever that element has focus. If you set the tabindex attribute
or tabIndex property of any other kinds of elements in IE5+, they, too, display that dotted
line when given focus. You can still let an element receive focus, but hide that dotted line by
setting the hideFocus property of the element object to true (default value is false).

Hiding focus does not disable the element. In fact, if the element about to receive focus is
scrolled out of view, the page scrolls to bring the element into view. Form controls that respond
to keyboard action (for example, pressing the spacebar to check or uncheck a checkbox con-
trol) also continue to work as normal. For some designers, the focus rectangle harms the design
goals of the page. The hideFocus property gives them more control over the appearance while
maintaining consistency of operation with other pages. There is no corresponding HTML
attribute for a tag, so you can use an onload event handler in the page to set the hideFocus
property of desired objects after the page loads.

elementObject.hideFocus

230 Part III ✦ Document Objects Reference

Example
Use The Evaluator (Chapter 13) to experiment with the hideFocus property in WinIE5.5+. Enter
the following statement into the top text field to assign a tabIndex value to the myP element so
that, by default, the element receives focus and the dotted rectangle:

document.getElementById(“myP”).tabIndex = 1

Press the Tab key several times until the paragraph receives focus. Now, disable the focus
rectangle:

document.getElementById(“myP”).hideFocus = true

If you now press the Tab key several times, the dotted rectangle does not appear around the
paragraph. To prove that the element still receives focus, scroll the page down to the bottom
so that the paragraph is not visible (you may have to resize the window). Click one of the
focusable elements at the bottom of the page, and then press the Tab key slowly until the
Address field toolbar has focus. Press the Tab key once. The page scrolls to bring the para-
graph into view, but there is no focus rectangle around the element.

Related Items: tabIndex property; srcollIntoView() method.

id
Value: String. (See text)
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

The id property returns the identifier assigned to an element’s id attribute in the HTML
code. A script cannot modify the ID of an existing element nor assign an ID to an element that
lacks one. But if a script creates a new element object, an identifier may be assigned to it by
way of the id property.

Example
Rarely do you need to access this property in a script — unless you write an authoring tool
that iterates through all elements of a page to extract the IDs assigned by the author. You can
retrieve an object reference once you know the object’s id property (via the document.
getElementById(elemID) method). But if for some reason your script doesn’t know the ID
of, say, the second paragraph of a document, you can extract that ID as follows:

var elemID = document.getElementsByTagName(“p”)[1].id;

Related Item: className property.

innerHTML
innerText

Value: String. Read/Write
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

One way that Internet Explorer exposes the contents of an element is through the innerHTML
and innerText properties. (Moz1+/NN6+ offer only the innerHTML property.) All content
defined by these “inner” properties consists of document data that is contained by an ele-
ment’s start and end tags, but not including the tags themselves (see outerText and
outerHTML properties). Setting these inner properties is a common way to modify a portion
of a page’s content after the page loads.

The innerHTML property contains not only the text content for an element as seen on the
page, but also every bit of HTML tagging that is associated with that content. (If there are no

elementObject.hideFocus

231Chapter 15 ✦ Generic HTML Element Objects

tags in the content, the text is rendered as is.) For example, consider the following bit of
HTML source code:

<p id=”paragraph1”>”How are you?” he asked.</p>

The value of the paragraph object’s innerHTML property
(document.getElementById(“paragraph1”).innerHTML) is:

“How are you?” he asked.

The browser interprets any HTML tags that you include in a string you assign to an element’s
innerHTML property as tags. This also means that you can introduce entirely new nested ele-
ments (or child nodes in the modern terminology) by assigning a slew of HTML content to an
element’s innerHTML property. The document’s object model adjusts itself to the newly
inserted content.

In contrast, the innerText property knows only about the text content of an element con-
tainer. In the example you just saw, the value of the paragraph’s innerText property (docu-
ment.getElementById(“paragraph1”).innerText) is:

“How are you?” he asked.

It’s important to remember that if you assign a string to the innerText property of an ele-
ment and that string contains HTML tags, the tags and their angle brackets appear in the ren-
dered page and are not interpreted as live tags.

Do not modify the innerHTML property to adjust the HTML for frameset, html, head, or title
objects. You may modify table constructions through either innerHTML or the various table-
related methods that create or delete rows, columns, and cells (see Chapter 37 on the CD-ROM).
It is also safe to modify the contents of a cell by setting its innerHTML or innerText properties.

When the HTML you insert includes a <script> tag, be sure to include the defer attribute to
the opening tag. This even goes for scripts that contain function definitions, which you might
consider to be deferred automatically.

Example
Listing 15-11 contains an example of how to use the innerHTML and innerText properties to
dynamically alter the content within a page. The page generated in the listing contains an h1
element label and a paragraph of text. The purpose is to demonstrate how the innerHTML
and innerText properties differ in their intent. Two text boxes contain the same combina-
tion of text and HTML tags that replaces the inner content of the paragraph’s label.

If you apply the default content of the first text box to the innerHTML property of the label1
object, the italic style is rendered as such for the first word. In addition, the text in parenthe-
ses is rendered with the help of the small stylesheet rule assigned by virtue of the surround-
ing tags. But if you apply that same content to the innerText property of the label
object, the tags are rendered as is.

Use this as a laboratory to experiment with some other content in both text boxes. See what
happens when you insert a
 tag within some text of both text boxes.

Listing 15-11: Using innerHTML and innerText Properties

<html>
<head>

<title>innerHTML and innerText Properties</title>

Continued

elementObject.innerHTML

232 Part III ✦ Document Objects Reference

Listing 15-11 (continued)

<style type=”text/css”>
h1 {font-size:18pt; font-weight:bold; font-family:”Comic Sans MS”, Arial,

sans-serif}
.small {font-size:12pt; font-weight:400; color:gray}
</style>
<script type=”text/javascript”>
function setGroupLabelAsText(form) {

var content = form.textInput.value;
if (content) {

document.getElementById(“label1”).innerText = content;
}

}
function setGroupLabelAsHTML(form) {

var content = form.HTMLInput.value;
if (content) {

document.getElementById(“label1”).innerHTML = content;
}

}
</script>

</head>
<body>

<form>
<p><input type=”text” name=”HTMLInput”

value=”<I>First</I> Article <SPAN
CLASS=’small’>(of ten)”
size=”50” /> <input type=”button” value=”Change Heading HTML”
onclick=”setGroupLabelAsHTML(this.form)” /></p>

<p><input type=”text” name=”textInput”
value=”<I>First</I> Article <SPAN
CLASS=’small’>(of ten)”
size=”50” /> <input type=”button” value=”Change Heading Text”
onclick=”setGroupLabelAsText(this.form)” /></p>

</form>
<h1 id=”label1”>

ARTICLE I
</h1>
<p>Congress shall make no law respecting an establishment of religion, or

prohibiting the free exercise thereof; or abridging the freedom of
speech, or of the press; or the right of the people peaceably to
assemble, and to petition the government for a redress of
grievances.</p>

</body>
</html>

Related Items: outerHTML, outerText properties; replaceNode() method.

isContentEditable
Value: Boolean. Read-Only
Compatibility: WinIE5.5+, MacIE-, NN-, Moz-, Safari-

The isContentEditable property returns a Boolean value indicating whether a particular
element object is set to be editable (see the preceding discussion of the contentEditable
property). This property is helpful because if a parent element’s contentEditable property

elementObject.innerHTML

233Chapter 15 ✦ Generic HTML Element Objects

is set to true, a nested element’s contentEditable property likely is set to its default value
inherit. But because its parent is editable, the isContentEditable property of the nested
element returns true.

Example
Use The Evaluator (Chapter 13) to experiment with both the contentEditable and
isContentEditable properties on the myP and nested myEM elements (reload the page to
start with a known version). Check the current setting for the myEM element by typing the
following statement into the top text field:

myEM.isContentEditable

This value is false because no element upward in the element containment hierarchy is set
to be editable yet. Next, turn on editing for the surrounding myP element:

myP.contentEditable = true

At this point, the entire myP element is editable because its child element is set, by default, to
inherit the edit state of its parent. Prove it by entering the following statement into the top
text box:

myEM.isContentEditable

While the myEM element is shown to be editable, no change has accrued to its
contentEditable property:

myEM.contentEditable

This property value remains the default inherit.

You can see an additional example of these two properties in use in Listing 15-7.

Related Item: contentEditable property.

isDisabled
Value: Boolean. Read-Only
Compatibility: WinIE5.5+, MacIE-, NN-, Moz-, Safari-

The isDisabled property returns a Boolean value that indicates whether a particular ele-
ment object is set to be disabled (see the preceding discussion of the disabled property).
This property is helpful; if a parent element’s disabled property is set to true, then a nested
element’s disabled property likely is set to its default value of false. But because its parent
is disabled, the isDisabled property of the nested element returns true. In other words, the
isDisabled property returns the actual disabled status of an element regardless of its dis-
abled property.

Example
Use The Evaluator (Chapter 13) to experiment with both the disabled and isDisabled
properties on the myP and nested myEM elements (reload the page to start with a known ver-
sion). Check the current setting for the myEM element by typing the following statement into
the top text field:

myEM.isDisabled

This value is false because no element upward in the element containment hierarchy is set
for disabling yet. Next, disable the surrounding myP element:

myP.disabled = true

elementObject.isDisabled

234 Part III ✦ Document Objects Reference

At this point, the entire myP element (including its children) is disabled. Prove it by entering
the following statement into the top text box:

myEM.isDisabled

While the myEM element is shown as disabled, no change has accrued to its disabled property:

myEM.disabled

This property value remains the default false.

Related Item: disabled property.

isMultiLine
Value: Boolean. Read-Only
Compatibility: WinIE5.5+, MacIE-, NN-, Moz-, Safari-

The isMultiLine property returns a Boolean value that reveals whether the element object
is capable of occupying or displaying more than one line of text. Importantly, this value does
not reveal whether the element actually occupies multiple lines; rather, it indicates the
potential of doing so. For example, a text input element cannot wrap to multiple lines, so its
isMultiLine property is false. However, a button element can display multiple lines of
text for its label, so it reports true for the isMultiLine property.

Example
Use The Evaluator (Chapter 13) to read the isMultiLine property for elements on that page.
Try the following statements in the top text box:

document.body.isMultiLine
document.forms[0].input.isMultiLine
myP.isMultiLine
myEM.isMultiLine

All but the text field form control report that they are capable of occupying multiple lines.

isTextEdit
Value: Boolean. Read-Only
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-

The isTextEdit property reveals whether an object can have a WinIE TextRange object
created with its content. (See the TextRange object in Chapter 35.) You can create
TextRange objects only from a limited selection of objects in IE4+ for Windows: body, but-
ton, text type input, and textarea. This property always returns false in MacIE.

Example
Good coding practice dictates that your script check for this property before invoking the
createTextRange() method on any object. A typical implementation is as follows:

if (document.getElementById(“myObject”).isTextEdit) {
var myRange = document.getElementById(“myObject”).createTextRange();
[more statements that act on myRange]

}

Related Items: createRange() method; TextRange object (Chapter 35).

elementObject.isDisabled

235Chapter 15 ✦ Generic HTML Element Objects

lang
Value: ISO language code string. Read/Write
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

The lang property governs the written language system used to render an element’s text con-
tent when overriding the default browser’s language system. The default value for this prop-
erty is an empty string unless the corresponding lang attribute is assigned a value in the
element’s tag. Modifying the property value by script control does not appear to have any
effect in the current browser implementations.

Example
Values for the lang property consist of strings containing valid ISO language codes. Such
codes have, at the minimum, a primary language code (for example, “fr” for French) plus an
optional region specifier (for example, “fr-ch” for Swiss French). The code to assign a Swiss
German value to an element looks like the following:

document.getElementById(“specialSpan”).lang = “de-ch”;

language
Value: String. Read/Write
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-

IE4+’s architecture allows for multiple scripting engines to work with the browser. Two
engines are included with the basic Windows version browser: JScript (compatible with
JavaScript) and Visual Basic Scripting Edition (VBScript). The default scripting engine is
JScript. But if you wish to use VBScript or some other scripting language in statements that
are embedded within event handler attributes of a tag, you can specifically direct the browser
to apply the desired scripting engine to those script statements by way of the language
attribute of the tag. The language property provides scripted access to that property. Unless
you intend to modify the event handler HTML code and replace it with a statement in
VBScript (or any other non-JScript-compatible language installed with your browser), you do
not need to modify this property (or read it, for that matter).

Valid values include JScript, javascript, vbscript, and vbs. Third-party scripting engines
have their own identifier for use with this value. Because the language attribute was also
used in the <script> tag, Internet Explorer 5 observes language=”xml” as well.

Related Item: script element object.

lastChild
(See firstChild)

length
Value: Integer. Read-Only and Read/Write
Compatibility: WinIE3+, MacIE3+, NN2+, Moz1+, Safari1+

The length property returns the number of items in an array or collection of objects. Its
most common application is as a boundary condition in a for loop. While arrays and collec-
tions commonly use integer values as index values (always starting with zero), the length
value is the actual number of items in the group. Therefore, to iterate through all items of the
group, the condition expression should include a less-than (<) symbol rather than a less-than-
or-equal (<=) symbol, as in the following:

for (var i = 0; i < someArray.length; i++) {...}

elementObjectCollection.length

236 Part III ✦ Document Objects Reference

For decrementing through an array (in other words, starting from the last item in the array
and working toward the first), the initial expression must initialize the counting variable as
the length minus one:

for (var i = someArray.length - 1; i >= 0; i--) {...}

For most arrays and collections, the length property is read-only and governed solely by the
number of items in the group. But in more recent versions of the browsers, you can assign
values to some object arrays (areas, options, and the select object) to create placeholders
for data assignments. See discussions of the area, select, and option element objects for
details. A plain JavaScript array can also have its length property value modified by script to
either trim items from the end of the array or reserve space for additional assignments. See
Chapter 30 for more about the Array object.

Example
You can try the following sequence of statements in the top text box of The Evaluator to see
how the length property returns values (and sets them for some objects). Note that some
statements work in only some browser versions.

(All browsers) document.forms.length
(All browsers) document.forms[0].elements.length
(NN3+, IE4+) document.images.length
(NN4+) document.layers.length
(IE4+) document.all.length
(IE5+, W3C) document.getElementById(“myTable”).childNodes.length

Related Items: area, select, option, and Array objects.

localName
namespaceURI
prefix

Value: String. Read-Only
Compatibility: WinIE-, MacIE-, NN6+, Moz1+, Safari1+

The three properties, localName, namespaceURI, and prefix, apply to any node in an XML
document that associates a namespace URI with an XML tag. Although NN6 exposes all three
properties for all element (and node) objects, the properties do not return the desired values.
However, Mozilla-based browsers remedy the situation. To better understand what values
these three properties represent, consider the following XML content:

<x xmlns:bk=’http://bigbooks.org/schema’>
<bk:title>To Kill a Mockingbird</bk:title>

</x>

The element whose tag is <bk:title> is associated with the Namespace URI defined for the
block, and the element’s namespaceURI property would return the string http:// bigbooks.
org/schema. The tag name consists of a prefix (before the colon) and the local name (after
the colon). In the above example, the prefix property for the element defined by the
<bk:title> tag would be bk, while the localName property would return title. The
localName property of any node returns the same value as its nodeName property value,
such as #text for a text node.

For more information about XML Namespaces, visit http://www.w3.org/TR/REC-xml-names.

Related Items: scopeName, tagUrn properties.

elementObjectCollection.length

237Chapter 15 ✦ Generic HTML Element Objects

nextSibling
previousSibling

Value: Object reference. Read-Only
Compatibility: WinIE5+, MacIE5+, NN6+, Moz1+, Safari1+

A sibling node is one that is at the same nested level as another node in the hierarchy of an
HTML document. For example, the following p element has two child nodes (the em and span
elements). Those two child nodes are siblings of each other.

<p>MegaCorp is the source of the hottest
gizmos.</p>

Sibling order is determined solely by the source code order of the nodes. Therefore, in the
previous example, the em node has no previousSibling property. Meanwhile, the span node
has no nextSibling property (meaning that these properties return null). These properties
provide another way to iterate through all nodes at the same level.

Example
The following function assigns the same class name to all child nodes of an element:

function setAllChildClasses(parentElem, className) {
var childElem = parentElem.firstChild;
while (childElem.nextSibling) {

childElem.className = className;
childElem = childElem.nextSibling;

}
}

This example is certainly not the only way to achieve the same results. Using a for loop to
iterate through the childNodes collection of the parent element is an equally valid approach.

Related Items: firstChild, lastChild, childNodes properties; hasChildNodes(),
insertAdjacentElement() methods.

nodeName
Value: String. Read-Only
Compatibility: WinIE5+, MacIE5+, NN6+, Moz1+, Safari1+

For HTML and XML elements, the name of a node is the same as the tag name. The nodeName
property is provided for the sake of consistency with the node architecture specified by the
formal W3C DOM standard. The value, just like the tagName property, is an all-uppercase
string of the tag name (even if the HTML source code is written with lowercase tags).

Some nodes, such as the text content of an element, do not have a tag. The nodeName prop-
erty for such a node is a special value: #text. Another kind of node is an attribute of an ele-
ment. For an attribute, the nodeName is the name of the attribute. See Chapter 14 for more
about Node object properties.

Example
The following function demonstrates one (not very efficient) way to assign a new class name
to every p element in an IE5+ document:

function setAllPClasses(className) {
for (var i = 0; i < document.all.length; i++) {

if (document.all[i].nodeName == “P”) {
document.all[i].className = className;

elementObject.nodeName

238 Part III ✦ Document Objects Reference

}
}

}

A more efficient approach uses the getElementsByTagName() method to retrieve a collec-
tion of all p elements and then iterate through them directly.

Related Item: tagName property.

nodeType
Value: Integer. Read-Only
Compatibility: WinIE5+, MacIE5+, NN6+, Moz1+, Safari1+

The W3C DOM specification identifies a series of constant values that denote categories of
nodes. Every node has a value that identifies its type, but not all browsers support the
nodeType property on all node types as objects. Table 15-4 lists the nodeType values imple-
mented in recent browsers; all of the values are considered part of the W3C DOM Level 2
specification.

Table 15-4: nodeType Property Values

Value Description WinIE MacIE NN/Moz Safari

1 Element node 5 5 NN6 1

2 Attribute node 6 5 NN6 1

3 Text (#text) node 5 5 NN6 1

4 CDATA section node - - - -

5 Entity reference node - - - -

6 Entity node - - - -

7 Processing instruction node - - - -

8 Comment node 6 5 NN6 -

9 Document node 5 5 NN6 1

10 Document type node - - NN6 1

11 Document fragment node 6 5 NN6 1

12 Notation node - - - -

The nodeType value is automatically assigned to a node, whether the node exists in the docu-
ment’s HTML source code or it is generated on the fly via a script. For example, if you create
a new element node through any of the ways available by script (for example, by assigning a
string encased in HTML tags to the innerHTML property or by explicitly invoking the document.
createElement() method), the new element assumes a nodeType of 1.

Mozilla-based browsers and Safari go one step further in supporting the W3C DOM specification
by implementing a set of Node object property constants for each of the nodeType values.
Table 15-5 lists the entire set as defined in the DOM Level 2 specification. Substituting these
constants for nodeType integers can improve readability of a script. For example, instead of

if (myElem.nodeType == 1) {...}

it is much easier to see what’s going on with

if (myElem.nodeType == Node.ELEMENT_NODE) {...}

elementObject.nodeName

239Chapter 15 ✦ Generic HTML Element Objects

Table 15-5: W3C DOM nodeType Constants

Reference nodeType Value

Node.ELEMENT_NODE 1
Node.ATTRIBUTE_NODE 2
Node.TEXT_NODE 3
Node.CDATA_SECTION_NODE 4
Node.ENTITY_REFERENCE_NODE 5
Node.ENTITY_NODE 6
Node.PROCESSING_INSTRUCTION_NODE 7
Node.COMMENT_NODE 8
Node.DOCUMENT_NODE 9
Node.DOCUMENT_TYPE_NODE 10
Node.DOCUMENT_FRAGMENT_NODE 11
Node.NOTATION_NODE 12

Example
You can experiment with viewing nodeType property values in The Evaluator. The p element
whose ID is myP is a good place to start. The p element itself is a nodeType of 1:

document.getElementById(“myP”).nodeType

This element has three child nodes: a string of text (nodeName #text); an em element (nodeName
em); and the rest of the text of the element content (nodeName #text). If you view the nodeType
of either of the text portions, the value comes back as 3:

document.getElementById(“myP”).childNodes[0].nodeType

Related Item: nodeName property.

nodeValue
Value: Number, string, or null. Read/Write
Compatibility: WinIE5+, MacIE5+, NN6+, Moz1+, Safari1+

For a text node, the nodeValue property consists of the actual text for that node. Such a node
cannot contain any further nested elements, so the nodeValue property offers another way
of reading and modifying what Internet Explorer implements as an element’s innerText prop-
erty (but in the W3C DOM you must reference the child text node of an element to get or set
its node value).

Of the node types implemented in the W3C DOM–capable browsers, only the text and attribute
types have readable values. An element’s node value returns a null value. For an attribute
node, the nodeValue property consists of the value assigned to that attribute. According to
the W3C DOM standard, attribute values should be reflected as strings. WinIE5, however,
returns values of type Number when the value is all numeric characters. Even if you assign a
string version of a number to such a nodeValue property, it is converted to a Number type
internally. NN6 and MacIE5 return nodeValue values as strings in all cases (and convert
numeric assignments to strings).

elementObject.nodeValue

240 Part III ✦ Document Objects Reference

Example
You can use the nodeValue property to carry out practical tasks. As an example, nodeValue
can be used to increase the width of a textarea object by 10 percent. The nodeValue is con-
verted to an integer before performing the math and reassignment:

function widenCols(textareaElem) {
var colWidth = parseInt(textareaElem.attributes[“cols”].nodeValue, 10);
textareaElem.attributes[“cols”].nodeValue = (colWidth * 1.1);

}

As another example, you can replace the text of an element, assuming that the element con-
tains no further nested elements:

function replaceText(elem, newText) {
if (elem.childNodes.length == 1 && elem.firstChild.nodeType == 3) {

elem.firstChild.nodeValue = newText;
}

}

The function builds in one final verification that the element contains just one child node and
that it is a text type. An alternative version of the assignment statement of the second exam-
ple uses the innerText property in IE with identical results:

elem.innerText = newText;

Related Items: attributes, innerText, nodeType properties.

offsetHeight
offsetWidth

Value: Integer. Read-Only
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

These properties, which ostensibly report the height and width of any element, have had a
checkered history due to conflicts between interpretations of the CSS “box model” by
Microsoft and the W3C. Both properties were invented by Microsoft for IE4. Although they are
not part of any W3C standard, other modern browsers, including Mozilla-based browsers and
Safari, implement the properties because they’re so valuable to scripters.

When IE6 is set to standards-compatible mode (by DOCTYPE switching described in Chapter
14), the properties measure the pixel dimensions of the element’s content, regardless of bor-
ders, margins, or padding. This is the W3C box model, which agrees with other W3C-compatible
browsers. But in IE6 quirks mode and all older versions of WinIE, the measures incorrectly
include border and padding thicknesses.

Be aware that for a normal block-level element whose height and width are not specified,
the offsetHeight is determined by the actual height of the content after all text flows. But
the offsetWidth always extends the full width of the containing element. Therefore, the
offsetWidth property does not reveal the rendered width of text content that is narrower
than the full parent element width. For example, a p element consisting of only a few words
may report an offsetWidth of many hundreds of pixels because the paragraph’s block
extends the full width of the body element that represents the containing parent of the p
element. To find out the actual width of text within a full-width, block-level element, wrap
the text within an inline element (such as a span) and inspect the offsetWidth property of
the span.

elementObject.nodeValue

241Chapter 15 ✦ Generic HTML Element Objects

Example
With IE4+, you can substitute the offsetHeight and offsetWidth properties for
clientHeight and clientWidth in Listing 15-6. The reason is that the two elements in ques-
tion have their widths hard-wired in stylesheets. Thus, the offsetWidth property follows
that lead rather than observing the default width of the parent (BODY) element.

With IE5+ and W3C browsers, you can use The Evaluator to inspect the offsetHeight and
offsetWidth property values of various objects on the page. Enter the following statements
into the top text box:

document.getElementById(“myP”).offsetWidth
document.getElementById(“myEM”).offsetWidth
document.getElementById(“myP”).offsetHeight
document.getElementById(“myTable”).offsetWidth

Related Items: clientHeight, clientWidth properties.

offsetLeft
offsetTop

Value: Integer. Read-Only
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

The offsetLeft and offsetTop properties can suffer from the same version vagaries that
afflict offsetHeight and offsetWidth properties when borders, margins, and padding are
associated with an element and DOCTYPE switching is a factor. However, the offsetLeft
and offsetTop properties are valuable in providing pixel coordinates of an element within
the positioning context of the parent element — even when the elements are not positioned
explicitly.

The offsetLeft and offsetTop properties for positioned elements in MacIE do not return
the same values as the style.left and style.top properties of the same element. See
Listing 39-17 on the CD-ROM for an example of how to correct these discrepancies without
having to hard-wire the precise pixel differences in your code.

The element used as a coordinate context for these properties is whatever element the
offsetParent property returns. This means that to determine the precise position of any
element, you may have to add some code that iterates through the offsetParent hierarchy
until that property returns null.

Although the offsetLeft and offsetTop properties are not part of the W3C DOM specifi-
cation, they are supported across most browsers because they are convenient for some
scriptable Dynamic HTML tasks. Through these two properties, a script can read the pixel
coordinates of any block-level or inline element. Measurements are made relative to the
body element, but this may change in the future. See the discussion later in this chapter
about the offsetParent property.

Example
The following IE script statements utilize all four “offset” dimensional properties to size and
position a div element so that it completely covers a span element located within a p ele-
ment. This can be for a fill-in-the-blank quiz that provides text entry fields elsewhere on the
page. As the user gets an answer correct, the blocking div element is hidden to reveal the
correct answer.

document.all.blocker.style.pixelLeft = document.all.span2.offsetLeft
document.all.blocker.style.pixelTop = document.all.span2.offsetTop

Note

elementObject.offsetLeft

242 Part III ✦ Document Objects Reference

document.all.blockImg.height = document.all.span2.offsetHeight
document.all.blockImg.width = document.all.span2.offsetWidth

Because the offsetParent property for the span element is the body element, the positioned
div element can use the same positioning context (it’s the default context, anyway) for setting
the pixelLeft and pixelTop style properties. (Remember that positioning properties belong
to an element’s style object.) The offsetHeight and offsetWidth properties can read the
dimensions of the span element (the example has no borders, margins, or padding to worry
about) and assign them to the dimensions of the image contained by the blocker div element.

This example is also a bit hazardous in some implementations. If the text of span2 wraps to a
new line, the new offsetHeight value has enough pixels to accommodate both lines. But the
blockImg and blocker div elements are block-level elements that render as a simple rectan-
gle. In other words, the blocker element doesn’t turn into two separate strips to cover the
pieces of span2 that spread across two lines.

Related Items: clientLeft, clientTop, offsetParent properties.

offsetParent
Value: Object reference. Read-Only
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

The offsetParent property returns a reference to the object that acts as a positioning con-
text for the current element. Values for the offsetLeft and offsetTop properties are mea-
sured relative to the top-left corner of the offsetParent object.

The returned object is usually, but not always, the next outermost block-level container. For
most document elements, the offsetParent object is the document.body object (with excep-
tions for some elements in some browsers).

Table cells, for example, have different offsetParent elements in different browsers:

Browser td offsetParent

WinIE4 tr
WinIE5+/NN7+/Moz1+ table
MacIE table
NN6 body

The property behaves predictably for positioned elements in most browsers. For example, a
first-level positioned element’s offsetParent element is the body; the offsetParent of a
nested positioned element (for example, one absolute-positioned div inside another) is the
next outer container (in other words, the positioning context of the inner element).

Example
You can use the offsetParent property to help you locate the position of a nested element on
the page. Listing 15-12 demonstrates how a script can “walk” up the hierarchy of offsetParent
objects in IE for Windows to assemble the location of a nested element on a page. The goal of the
exercise in Listing 15-12 is to position an image at the upper-left corner of the second table cell.
The entire table is centered on the page.

The onload event handler invokes the setImagePosition() function. The function first sets a
Boolean flag that determines whether the calculations should be based on the client or offset

elementObject.offsetLeft

243Chapter 15 ✦ Generic HTML Element Objects

sets of properties. WinIE4 and MacIE5 rely on client properties, while WinIE5+ works with the off-
set properties. The discrepancies even out, however, with the while loop. This loop traverses
the offsetParent hierarchy starting with the offsetParent of the cell out to, but not includ-
ing, the document.body object. The body object is not included because that is the positioning
context for the image. In IE5, the while loop executes only once because just the table element
exists between the cell and the body; in IE4, the loop executes twice to account for the tr and
table elements up the hierarchy. Finally, the cumulative values of left and top measures are
applied to the positioning properties of the div object’s style and the image is made visible.

Listing 15-12: Using the offsetParent Property

<html>
<head>

<title>offsetParent Property</title>
<script type=”text/javascript”>
function setImagePosition(){

var x = 0;
var y = 0;
var offsetPointer = document.getElementById(“myCell”); // cElement;
while (offsetPointer) {

x += offsetPointer.offsetLeft;
y += offsetPointer.offsetTop;
offsetPointer = offsetPointer.offsetParent;

}
// correct for MacIE body margin factors
if (navigator.userAgent.indexOf(“Mac”) != -1 &&

typeof document.body.leftMargin != “undefined”) {
x += document.body.leftMargin;
y += document.body.topMargin;

}
document.getElementById(“myDIV”).style.left = x + “px”;
document.getElementById(“myDIV”).style.top = y + “px”;
document.getElementById(“myDIV”).style.visibility = “visible”;

}
</script>

</head>
<body onload=”setImagePosition()”>

<h1>The offsetParent Property</h1>
<hr />
<p>After the document loads, the script positions a small image in the

upper left corner of the second table cell.</p>
<table border=”1” align=”center”>

<tr>
<td>This is the first cell</td>
<td id=”myCell”>This is the second cell.</td>

</tr>
</table>
<img id=”myDIV” alt=”image” src=”end.gif” height=”12” width=”12”

style=”position:absolute; visibility:hidden; height:12px;
width:12px” />

</body>
</html>

Related Items: offsetLeft, offsetTop, offsetHeight, offsetWidth properties.

elementObject.offsetParent

244 Part III ✦ Document Objects Reference

outerHTML
outerText

Value: String. Read/Write
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-

One way that Internet Explorer exposes an entire element to scripting is by way of the
outerHTML and outerText properties. The primary distinction between these two properties
is that outerHTML includes the element’s start and end tags whereas outerText includes
only rendered text that belongs to the element (including text from any nested elements).

The outerHTML property contains not only the text content for an element as seen on the
page, but also every bit of HTML tagging associated with that content. For example, consider
the following bit of HTML source code:

<p id=”paragraph1”>”How are you?” he asked.</p>

The value of the p object’s outerHTML property (document.all.paragraph1. outerHTML)
is exactly the same as that of the source code.

The browser interprets any HTML tags in a string that you assign to an element’s outerHTML
property. This means that you can delete (set the property to an empty string) or replace an
entire tag with this property. The document’s object model adjusts itself to whatever adjust-
ments you make to the HTML in this manner.

In contrast, the outerText property knows only about the text content of an element container.
In the preceding example, the value of the paragraph’s outerText property (document.all.
paragraph1.innerText) is:

“How are you?” he asked.

If this looks familiar, it’s because in most cases the innerText and outerText properties of
an existing element return the exact same strings.

Example
Listing 15-13 demonstrates how to use the outerHTML and outerText properties in IE to
access and modify Web page content dynamically. The page generated by Listing 15-13
(WinIE4+ only) contains an h1 element label and a paragraph of text. The purpose is to
demonstrate how the outerHTML and outerText properties differ in their intent. Two text
boxes contain the same combination of text and HTML tags that replaces the element that
creates the paragraph’s label.

If you apply the default content of the first text box to the outerHTML property of the label1
object, the h1 element is replaced by a span element whose class attribute acquires a different
stylesheet rule defined earlier in the document. Notice that the ID of the new span element is the
same as the original h1 element. This allows the script attached to the second button to address
the object. But this second script replaces the element with the raw text (including tags). The
element is now gone, and any attempt to change the outerHTML or outerText properties of the
label1 object causes an error because there is no longer a label1 object in the document.

Use this laboratory to experiment with some other content in both text boxes.

Listing 15-13: Using outerHTML and outerText Properties

<html>
<head>

elementObject.outerHTML

245Chapter 15 ✦ Generic HTML Element Objects

<title>outerHTML and outerText Properties</title>
<style type=”text/css”>
h1 {font-size:18pt; font-weight:bold; font-family:”Comic Sans MS”, Arial,

sans-serif}
.heading {font-size:20pt; font-weight:bold; font-family:”Arial Black”,

Arial, sans-serif}
</style>
<script type=”text/javascript”>
function setGroupLabelAsText(form) {

var content = form.textInput.value;
if (content) {

document.getElementById(“label1”).outerText = content;
}

}
function setGroupLabelAsHTML(form) {

var content = form.HTMLInput.value;
if (content) {

document.getElementById(“label1”).outerHTML = content;
}

}
</script>

</head>
<body>

<form>
<p><input type=”text” name=”HTMLInput”

value=”Article the
First”
size=”55” /> <input type=”button” value=”Change Heading HTML”
onclick=”setGroupLabelAsHTML(this.form)” /></p>

<p><input type=”text” name=”textInput”
value=”Article the
First”
size=”55” /> <input type=”button” value=”Change Heading Text”
onclick=”setGroupLabelAsText(this.form)” /></p>

</form>
<h1 id=”label1”>ARTICLE I</h1>
<p>Congress shall make no law respecting an establishment of religion, or

prohibiting the free exercise thereof; or abridging the freedom of
speech, or of the press; or the right of the people peaceably to
assemble, and to petition the government for a redress of
grievances.</p>

</body>
</html>

Related Items: innerHTML, innerText properties; replaceNode() method.

ownerDocument
Value: Document object reference. Read-Only
Compatibility: WinIE6+, MacIE5+, NN6+, Moz1+, Safari1+

The ownerDocument property belongs to any element or node in the W3C DOM. The prop-
erty’s value is a reference to the document node that ultimately contains the element or
node. If a script encounters a reference to an element or node (perhaps it has been passed as
a parameter to a function), the object’s ownerDocument property provides a way to build ref-
erences to other objects in the same document or to access properties and methods of the
document objects. IE’s proprietary version of this property is simply document.

elementObject.ownerDocument

246 Part III ✦ Document Objects Reference

Example
Use The Evaluator (Chapter 13) to explore the ownerDocument property. Enter the following
statement into the top text box:

document.body.childNodes[5].ownerDocument

The result is a reference to the document object. You can use that to inspect a property of the
document, as shown in the following statement you should enter into the top text box:

document.body.childNodes[5].ownerDocument.URL

This returns the document.URL property for the document that owns the child node.

Related Item: document object.

parentElement
Value: Element object reference or null. Read-Only
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-

The parentElement property returns a reference to the next outermost HTML element from
the current element. This parent–child relationship of elements is often, but not always, the
same as a parent–child node relationship (see parentNode property later in this chapter).
The difference is that the parentElement property deals only with HTML elements as
reflected as document objects, whereas a node is not necessarily an HTML element (for
example, an attribute or text chunk).

There is also a distinction between parentElement and offsetParent properties. The
latter returns an element that may be many generations removed from a given element
but is the immediate parent with regard to positioning context. For example, a td element’s
parentElement property is most likely its enclosing tr element, but a td element’s
offsetParent property is its table element.

A script can “walk” the element hierarchy outward from an element with the help of the
parentElement property. The top of the parent chain is the html element. Its parentElement
property returns null.

Example
You can experiment with the parentElement property in The Evaluator. The document con-
tains a p element named myP. Type each of the following statements from the left column into
the upper expression evaluation text box and press Enter to see the results.

Expression Result

document.getElementById(“myP”).tagName p
document.getElementById(“myP”).parentElement [object]
document.getElementById(“myP”).parentElement.tagName body
document.getElementById(“myP”).parentElement.parentElement [object]
document.getElementById(“myP”).parentElement.parentElement.tagName html
document.getElementById(“myP”).parentElement. null
parentElement.parentElement

Related Items: offsetParent, parentNode properties.

elementObject.ownerDocument

247Chapter 15 ✦ Generic HTML Element Objects

parentNode
Value: Node object reference or null. Read-Only
Compatibility: WinIE5+, MacIE5+, NN6+, Moz1+, Safari1+

The parentNode property returns a reference to the next outermost node that is reflected
as an object belonging to the document. For a standard element object, the parentNode
property is the same as IE’s parentElement because both objects happen to have a direct
parent–child node relationship as well as a parent–child element relationship.

Other kinds of content, however, can be nodes. This includes text fragments within an element.
A text fragment’s parentNode property is the next outermost node or element that encom-
passes that fragment. A text node object in IE does not have a parentElement property.

Example
Use The Evaluator to examine the parentNode property values of both an element and a non-
element node. Begin with the following two statements and watch the results of each:

document.getElementById(“myP”).parentNode.tagName
document.getElementById(“myP”).parentElement.tagName (IE only)

Now examine the properties from the point of view of the first text fragment node of the myP
paragraph element:

document.getElementById(“myP”).childNodes[0].nodeValue
document.getElementById(“myP”).childNodes[0].parentNode.tagName
document.getElementById(“myP”).childNodes[0].parentElement (IE only)

Notice (in IE) that the text node does not have a parentElement property.

Related Items: childNodes, nodeName, nodeType, nodeValue, parentElement properties.

parentTextEdit
Value: Element object reference or null. Read-Only
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-

Only a handful of objects in IE’s object model are capable of creating text ranges (see the
TextRange object in Chapter 35). To find an object’s next outermost container capable of
generating a text range, use the parentTextEdit property. If an element is in the hierarchy,
that element’s object reference is returned. Otherwise (for example, document.body
.parentTextEdit), the value is null. MacIE always returns a value of null because the
browser doesn’t support the TextRange object.

Example
Listing 15-14 contains an example that demonstrates how to use the parentTextEdit prop-
erty to create a text range. The page resulting from Listing 15-14 contains a paragraph of Latin
text and three radio buttons that select the size of a paragraph chunk: one character, one
word, or one sentence. If you click anywhere within the large paragraph, the onclick event
handler invokes the selectChunk() function. The function first examines which of the radio
buttons is selected to determine how much of the paragraph to highlight (select) around the
point at which the user clicks.

After the script employs the parentTextEdit property to test whether the clicked element
has a valid parent capable of creating a text range, it calls upon the property again to help
create the text range. From there, TextRange object methods shrink the range to a single
insertion point, move that point to the spot nearest the cursor location at click time, expand
the selection to encompass the desired chunk, and select that bit of text.

elementObject.parentTextEdit

248 Part III ✦ Document Objects Reference

Notice one workaround for the TextRange object’s expand() method anomaly: If you specify
a sentence, IE doesn’t treat the beginning of a p element as the starting end of a sentence
automatically. A camouflaged (white text color) period is appended to the end of the previous
element to force the TextRange object to expand only to the beginning of the first sentence
of the targeted p element.

Listing 15-14: Using the parentTextEdit Property

<html>
<head>

<title>parentTextEdit Property</title>
<style type=”text/css”>
p {cursor:hand}
</style>
<script type=”text/javascript”>
function selectChunk() {

var chunk, range;
for (var i = 0; i < document.forms[0].chunk.length; i++) {

if (document.forms[0].chunk[i].checked) {
chunk = document.forms[0].chunk[i].value;
break;

}
}
var x = window.event.clientX;
var y = window.event.clientY;
if (window.event.srcElement.parentTextEdit) {

range = window.event.srcElement.parentTextEdit.createTextRange();
range.collapse();
range.moveToPoint(x, y);
range.expand(chunk);
range.select();

}
}
</script>

</head>
<body bgcolor=”white”>

<form>
<p>Choose how much of the paragraph is to be selected when you click

anywhere in it:

<input type=”radio” name=”chunk” value=”character”
checked=”checked” />Character <input type=”radio” name=”chunk”
value=”word” />Word <input type=”radio” name=”chunk”
value=”sentence” />Sentence .</p>

</form>
<p onclick=”selectChunk()”>Lorem ipsum dolor sit amet, consectetaur

adipisicing
elit, sed do eiusmod tempor incididunt ut labore et dolore magna
aliqua. Ut
enim adminim veniam, quis nostrud exercitation ullamco laboris nisi ut
aliquip ex ea commodo consequat. Duis aute irure dolor in
reprehenderit involuptate velit esse cillum dolore eu fugiat nulla
pariatur. Excepteur sint occaecat cupidatat non proident, sunt in
culpa qui officia deserunt mollit anim id est laborum.</p>

</body>
</html>

elementObject.parentTextEdit

249Chapter 15 ✦ Generic HTML Element Objects

Related Items: isTextEdit property; TextRange object (Chapter 35).

previousSibling
(See nextSibling)

readyState
Value: String (integer for OBJECT object). Read-Only
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-

A script can query an element in IE to find out if it has loaded all ancillary data (for example,
external image files or other media files) before other statements act on that object or its
data. The readyState property lets you know the loading status of an element.

Table 15-6 lists the possible values and their meanings.

Table 15-6: readyState Property Values

HTML Value OBJECT Value Description

complete 4 Element and data fully loaded

interactive 3 Data may not be loaded fully, but user can interact with
element

loaded 2 Data is loaded, but object may be starting up

loading 1 Data is loading

uninitialized 0 Object has not started loading data yet

For most HTML elements, this property always returns complete. Most of the other states
are used by elements such as img, embed, and object, which load external data and even
start other processes (such as ActiveX controls) to work.

One word of caution: Do not expect the readyState property to reveal if an object exists yet
in the document (for example, uninitialized). If the object does not exist, it cannot have a
readyState property — the result is a script error for an undefined object. If you want to run
a script only after every element and its data are fully loaded, trigger the function by way of
the onload event handler for the body element or the onreadystatechange event handler
for the object (and check that the readyState property is complete).

Example
To witness a readyState property other than complete for standard HTML, you can try
examining the property in a script that immediately follows an tag:

...

<script type=”text/javaScript”>
alert(document.getElementById(“myImg”).readyState);
</script>
...

Putting this fragment into a document that is accessible across a slow network helps. If the
image is not in the browser’s cache, you might get the uninitialized or loading result.
The former means that the img object exists, but it has not started receiving the image data

elementObject.readyState

250 Part III ✦ Document Objects Reference

from the server yet. If you reload the page, chances are that the image will load instanta-
neously from the cache and the readyState property will report complete.

Related Items: onreadystatechange event handler.

recordNumber
Value: Integer or null. Read-Only
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-

Virtually every object has a recordNumber property, but it applies only to elements used in
Internet Explorer data binding to represent repeated data. For example, if you display 30
records from an external data store in a table, the tr element in the table is represented only
once in the HTML. However, the browser repeats the table row (and its component cells) to
accommodate all 30 rows of data. If you click a row, you can use the recordNumber property
of the tr object to see which record was clicked. A common application of this facility is in
data binding situations that allow for updating records. For example, script a table so that
clicking on an uneditable row of data displays that record’s data in editable text boxes else-
where on the page. If an object is not bound to a data source, or it is a non-repeating object
bound to a data source, the recordNumber property is null.

Example
Listing 15-15 shows how to use the recordNumber property to navigate to a specific record in
a sequence of data. The data source is a small, tab-delimited file consisting of 20 records of
Academy Award data. Thus, the table that displays a subset of the fields is bound to the data
source object. Also bound to the data source object are three span objects embedded within
a paragraph near the top of the page. As the user clicks a row of data, three fields from that
clicked record are placed into the bound span objects.

The script part of this page is a mere single statement. When the user triggers the onclick
event handler of the repeated tr object, the function receives as a parameter a reference to the
tr object. The data store object maintains an internal copy of the data in a recordset object.
One of the properties of this recordset object is the AbsolutePosition property, which is
the integer value of the current record that the data object points to (it can point to only one
row at a time, and the default row is the first row). The statement sets the AbsolutePosition
property of the recordset object to the recordNumber property for the row that the user
clicks. Because the three span elements are bound to the same data source, they are immedi-
ately updated to reflect the change to the data object’s internal pointer to the current record.
Notice, too, that the third span object is bound to one of the data source fields not shown in the
table. You can reach any field of a record because the Data Source Object holds the entire data
source content.

Listing 15-15: Using the Data Binding recordNumber Property

<html>
<head>

<title>Data Binding (recordNumber)</title>
<style type=”text/css”>
.filmTitle {font-style:italic}
</style>
<script type=”text/javascript”>
// set recordset pointer to the record clicked on in the table.
function setRecNum(row) {

elementObject.readyState

251Chapter 15 ✦ Generic HTML Element Objects

document.oscars.recordset.AbsolutePosition = row.recordNumber;
}
</script>

</head>
<body>

<p>Academy Awards 1978-1997 (Click on a table row to extract data
from one record.)</p>

<p>The award for Best Actor of <span datasrc=”#oscars”
datafld=”Year”>
 went to
 for his outstanding achievement in the film <span
class=”filmTitle”
datasrc=”#oscars” datafld=”Best Actor Film”>.</p>

<table border=”1” datasrc=”#oscars” align=”center”>
<thead style=”background-color:yellow; text-align:center”>

<tr>
<td>Year</td>
<td>Film</td>
<td>Director</td>
<td>Actress</td>
<td>Actor</td>

</tr>
</thead>
<tr id=”repeatableRow” onclick=”setRecNum(this)”>

<td><div id=”col1” datafld=”Year”></div></td>
<td><div class=”filmTitle” id=”col2” datafld=”Best
Picture”></div></td>
<td><div id=”col3” datafld=”Best Director”></div></td>
<td><div id=”col4” datafld=”Best Actress”></div></td>
<td><div id=”col5” datafld=”Best Actor”></div></td>

</tr>
</table>
<object id=”oscars” classid=”clsid:333C7BC4-460F-11D0-BC04-0080C7055A83”>

<param name=”DataURL” value=”Academy Awards.txt” />
<param name=”UseHeader” value=”True” />
<param name=”FieldDelim” value=”	” />

</object>
</body>

</html>

Related Items: dataFld, dataSrc properties; table, tr objects (Chapter 37 on the
CD-ROM).

runtimeStyle
Value: style object. Read-Only
Compatibility: WinIE5+, MacIE5+, NN-, Moz-, Safari-

You can determine the browser default settings for stylesheet attributes with the help of
the runtimeStyle property. The style object that this property returns contains all style
attributes and the default settings at the time the page loads. This property does not reflect
values assigned to elements by stylesheets in the document or by scripts. The default values
returned by this property differ from the values returned by the currentStyle property.
The latter includes data about values that are not assigned explicitly by stylesheets, yet are
influenced by the default behavior of the browser’s rendering engine. In contrast, the
runtimeStyle property shows unassigned style values as empty or zero.

elementObject.runtimeStyle

252 Part III ✦ Document Objects Reference

Example
To change a style property setting, access it via the element’s style object. Use The Evaluator
(Chapter 13) to compare the properties of the runtimeStyle and style objects of an element.
For example, an unmodified copy of The Evaluator contains an em element whose ID is “myEM”.
Enter both

document.getElementById(“myEM”).style.color

and

document.getElementById(“myEM”).runtimeStyle.color

into the top text field in turn. Initially, both values are empty. Now assign a color to the style
property via the upper text box:

document.getElementById(“myEM”).style.color = “red”

If you now type the two earlier statements into the upper box, you can see that the style
object reflects the change, while the runtimeStyle object still holds onto its original
(empty) value.

Related Items: currentStyle property; style object (Chapter 26).

scopeName
Value: String. Read-Only
Compatibility: WinIE5+, MacIE-, NN-, Moz-, Safari-

The scopeName property is associated primarily with XML that is embedded within a document.
When you include XML, you can specify one or more XML Namespaces that define the “owner”
of a custom tag name, thus aiming toward preventing conflicts of identical custom tags from dif-
ferent sources in a document. (See Chapter 41 on the CD-ROM for more about XML objects.)

The XML Namespace is assigned as an attribute of the <html> tag that surrounds the entire
document:

<html xmlns:fred=’http://www.someURL.com’>

After that, the Namespace value precedes all custom tags linked to that Namespace:

<fred:FIRST_Name id=”fredFirstName”/>

To find out the Namespace “owner” of an element, you can read the scopeName property of
that element. For the preceding example, the scopeName returns fred. For regular HTML ele-
ments, the returned value is always HTML. The scopeName property is available only in Win32
and UNIX flavors of IE5+. The comparable property in the W3C DOM is localName.

Example
If you have a sample document that contains XML and a namespace spec, you can use document.
write() or alert() methods to view the value of the scopeName property. The syntax is

document.getElementById(“elementID”).scopeName

Related Item: tagUrn property.

scrollHeight
scrollWidth

Value: Integer. Read-Only
Compatibility: WinIE4+, MacIE4+, NN7+, Moz1+, Safari1+

elementObject.runtimeStyle

253Chapter 15 ✦ Generic HTML Element Objects

The scrollHeight and scrollWidth properties contain the pixel measures of an object,
regardless of how much of the object is visible on the page. Therefore, if the browser window
displays a vertical scrollbar, and the body extends below the bottom of the viewable space in
the window, the scrollHeight takes into account the entire height of the body as if you were
to scroll downward and see the entire element. For most elements that don’t have their own
scrollbars, the scrollHeight and scrollWidth properties have the same values as the
clientHeight and clientWidth properties.

Example
Use The Evaluator (Chapter 13) to experiment with these two properties of the textarea
object, which displays the output of evaluations and property listings. To begin, enter the fol-
lowing into the bottom one-line text field to list the properties of the body object:

document.body

This displays a long list of properties for the body object. Now enter the following property
expression in the top one-line text field to see the scrollHeight property of the output
textarea when it holds the dozens of lines of property listings:

document.getElementById(“output”).scrollHeight

The result, some number probably in the hundreds, is now displayed in the output textarea.
This means that you can scroll the content of the output element vertically to reveal that
number of pixels. Click the Evaluate button once more. The result, 13 or 14, is a measure of
the scrollHeight property of the textarea that had only the previous result in it. The scrol-
lable height of that content was only 13 or 14 pixels, the height of the font in the textarea.
The scrollWidth property of the output textarea is fixed by the width assigned to the ele-
ment’s cols attribute (as calculated by the browser to determine how wide to make the text
area on the page).

Related Items: clientHeight , clientWidth properties; window.scroll() method.

scrollLeft
scrollTop

Value: Integer. Read-Only
Compatibility: WinIE4+, MacIE4+, NN7+, Moz1+, Safari1+

If an element is scrollable (in other words, it has its own scrollbars), you can find out how
far the element is scrolled in the horizontal and vertical direction via the scrollLeft and
scrollTop properties. These values are pixels. For non-scrollable elements, these values are
always zero — even if they are contained by elements that are scrollable. For example, if you
scroll a browser window (or frame in a multiframe environment) vertically, the scrollTop
property of the body object is whatever the pixel distance is between the top of the object
(now out of view) and the first visible row of pixels of the element. But the scrollTop value
of a table that is in the document remains at zero.

Netscape browsers prior to version 7 (Moz1) treat scrolling of a body element from the point
of view of the window. If you want to find out the scrolled offset of the current page in these
browsers, use window.scrollX and window.scrollY.

Scripts that involve tracking mouse events in IE need to take into account the scrollLeft
and scrollTop properties of the body to compensate for scrolling of the page. See the Event
object in Chapter 25.

elementObject.runtimeStyle

254 Part III ✦ Document Objects Reference

Example
Use The Evaluator (Chapter 13) to experiment with these two properties of the textarea
object, which displays the output of evaluations and property listings. To begin, enter the fol-
lowing into the bottom one-line text field to list the properties of the body object:

document.body

This displays a long list of properties for the body object. Use the textarea’s scrollbar to
page down a couple of times. Now enter the following property expression in the top one-line
text field to see the scrollTop property of the output textarea after you scroll:

document.getElementById(“output”).scrollTop

The result, some number, is now displayed in the output textarea. This means that the con-
tent of the output element was scrolled vertically. Click the Evaluate button once more. The
result, 0, is a measure of the scrollTop property of the textarea that had only the previous
result in it. There wasn’t enough content in the textarea to scroll, so the content was not
scrolled at all. The scrollTop property, therefore, is zero. The scrollLeft property of the
output is always zero because the textarea element is set to wrap any text that overflows
the width of the element. No horizontal scrollbar appears in this case, and the scrollLeft
property never changes.

Related Items: clientLeft, clientTop properties; window.scroll() method.

sourceIndex
Value: Integer. Read-Only
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-

The sourceIndex property returns the numeric index (zero-based) of the object within the
entire document, which is the group of all elements in the document.

Example
While the operation of this property is straightforward, the sequence of elements exposed by
the document.all property may not be. To that end, you can use The Evaluator (Chapter 13)
to experiment in IE4+ with the values that the sourceIndex property returns to see how the
index values of the document.all collection follow the source code.

To begin, reload The Evaluator. Enter the following statement in the top text box to set a
preinitialized global variable:

a = 0

When you evaluate this expression, a zero should appear in the Results box. Next, enter the
following statement into the top text box:

document.all[a].tagName + “ [“ + a++ + “]”

There are a lot of plus signs in this statement, so be sure you enter it correctly. As you suc-
cessively evaluate this statement (repeatedly click the Evaluate button), the global variable
(a) is incremented, thus enabling you to “walk through” the elements in source code order.
The sourceIndex value for each HTML tag appears in square brackets in the Results box.
You generally begin with the following sequence:

html [0]
head [1]
title [2]

elementObject.scrollLeft

255Chapter 15 ✦ Generic HTML Element Objects

You can continue until there are no more elements, at which point an error message appears
because the value of a exceeds the number of elements in the document.all array. Compare
your findings against the HTML source code view of The Evaluator.

Related Item: item() method.

style
Value: style object reference. Read/Write
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

The style property is the gateway to an element’s stylesheet settings. The property’s value
is a style object whose properties enable you to read and write the stylesheet settings for
the element. While scripts do not usually manipulate the style object as a whole, it is quite
common in a Dynamic HTML page for scripts to get or set multiple properties of the style
object to effect animation, visibility, and all appearance parameters of the element. Note that
style properties returned through this object are only those that are explicitly set by the ele-
ment’s style attribute or by script.

You can find significant differences in the breadth of properties of the style object in differ-
ent versions of IE and NN. See Chapter 26 for more details on the style object.

Example
Most of the action with the style property has to do with the style object’s properties, so you
can use The Evaluator here to simply explore the lists of style object properties available on as
many DHTML-compatible browsers as you have running. To begin, enter the following statement
into the lower, one-line text box to inspect the style property for the document.body object:

document.body.style

Now inspect the style property of the table element that is part of the original version of
The Evaluator. Enter the following statement into the lower text box:

document.getElementById(“myTable”).style

In both cases, the values assigned to the style object’s properties are quite limited by
default.

Related Items: currentStyle, runtimeStyle properties; style object (Chapter 26).

tabIndex
Value: Integer. Read/Write
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

The tabIndex property controls where in the tabbing sequence the current object receives
focus. This property obviously applies only to elements that can receive focus. IE5+ permits
giving focus to more elements than most other browsers; but for all browsers compatible
with this property, the primary elements for which you may want to control focus (namely
form input elements) are covered.

In general, browsers treat form elements as focusable elements by default. Nonform elements
usually don’t receive focus unless you specifically set their tabIndex properties (or tabindex
tag attributes). If you set the tabIndex property of one form element to 1, that element is first
in the tabbing order. Meanwhile, the rest fall into source code tabbing order on successive
presses of the Tab key. If you set two elements to, say, 1, the tabbing proceeds in source code
order for those two elements and then onto the rest of the elements in source code order start-
ing with the top of the page.

elementObject.tabIndex

256 Part III ✦ Document Objects Reference

In Internet Explorer, you can remove an element from tabbing order entirely by setting its
tabIndex property to -1. Users can still click those elements to make changes to form ele-
ment settings, but tabbing bypasses the element.

Example
Listing 15-16 contains a sample script that demonstrates how to control the tab order of a
form via the tabIndex property. This example not only demonstrates the way you can mod-
ify the tabbing behavior of a form on the fly but also how to force form elements out of the
tabbing sequence entirely in IE. In this page, the upper form (named lab) contains four ele-
ments. Scripts invoked by buttons in the lower form control the tabbing sequence. Notice
that the tabindex attributes of all lower form elements are set to -1, which means that these
control buttons are not part of the tabbing sequence in IE.

When you load the page, the default tabbing order for the lab form control elements (default
setting of zero) takes charge. If you start pressing the Tab key, the precise results at first
depend on the browser you use. In IE, the Address field is first selected; next the Tab sequence
gives focus to the window (or frame, if this page were in a frameset); finally the tabbing reaches
the lab form. Continue pressing the Tab key and watch how the browser assigns focus to each
of the element types. In NN6+, however, you must click anywhere on the content to get the Tab
key to start working on form controls.

The sample script inverts the tabbing sequence with the help of a for loop that initializes two
variables that work in opposite directions as the looping progresses. This gives the last element
the lowest tabIndex value. The skip2() function simply sets the tabIndex property of the
second text box to -1, removing it from the tabbing entirely (IE only). Notice, however, that you
can click in the field and still enter text. (See the disabled property earlier in this chapter to
see how to prevent field editing.) NN6+ does not provide a tabIndex property setting that
forces the browser to skip over a form control. You should disable the control instead.

Listing 15-16: Controlling the tabIndex Property

<html>
<head>

<title>tabIndex Property</title>
<script type=”text/javascript”>
function invert() {

var form = document.lab;
for (var i = 0, j = form.elements.length; i < form.elements.length;

i++, j--) {
form.elements[i].tabIndex = j;

}
}

function skip2() {
if (navigator.userAgent.indexOf(“MSIE”) != -1) {

document.lab.text2.tabIndex = -1;
} else {

alert(“Not available.”);
}

}

function resetTab() {
var form = document.lab;
for (var i = 0; i < form.elements.length; i++) {

elementObject.tabIndex

257Chapter 15 ✦ Generic HTML Element Objects

form.elements[i].tabIndex = 0;
}

}
</script>

</head>
<body>

<h1>tabIndex Property Lab</h1>
<hr />
<form name=”lab”>

Text box no. 1: <input type=”text” name=”text1” />

Text box no. 2: <input type=”text” name=”text2” />

<input type=”button” value=”A Button” />

<input type=”checkbox” />And a checkbox

</form>
<hr />
<form name=”control”>

<input type=”button” value=”Invert Tabbing Order” tabindex=”-1”
onclick=”invert()” />

<input type=”button” value=”Skip Text box no. 2 (IE Only)”
tabindex=”-1” onclick=”skip2()” />

<input type=”button” value=”Reset to Normal Order” tabindex=”-1”
onclick=”resetTab()” />

</form>
</body>

</html>

The final function, resetTab(), sets the tabIndex property value to zero for all lab form ele-
ments; this restores the default order.

Related Items: blur(), focus() methods.

tagName
Value: String. Read-Only
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

The tagName property returns a string of the HTML or XML tag name belonging to the object.
All tagName values are returned in all uppercase characters, even if the source code is written
in all lowercase or a mixture. This consistency makes it easier to perform string comparisons.
For example, you can create a generic function that contains a switch statement to execute
actions for some tags and not others. The skeleton of such a function looks like the following:

function processObj(objRef) {
switch (objRef.tagName) {
case “TR”:

[statements to deal with table row object]
break;

case “TD”:
[statements to deal with table cell object]
break;

case “COLGROUP”:
[statements to deal with column group object]
break;

default:
[statements to deal with all other object types]

}
}

elementObject.tagName

258 Part III ✦ Document Objects Reference

Example
You can also see the tagName property in action in the example associated with the
sourceIndex property discussed earlier. In that example, the tagName property is read from
a sequence of objects in source code order.

Related Items: nodeName property; getElementsByTagName() method.

tagUrn
(See scopeName)

title
Value: String. Read/Write
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

The W3C standard states that you should use the title property (and title attribute) in an
“advisory” role. Most browsers (although not Safari 1.0) interpret this role as text assigned to
tooltips that pop up momentarily while the cursor rests atop an element. The advantage of
having this property available for writing is that your scripts can modify an element’s tooltip
text in response to other user interaction on the page. A tooltip can provide brief help about
the behavior of icons or links on the page. It can also convey a summary of key facts from the
destination of a link, thus enabling a visitor to see vital information without having to navi-
gate to the other page.

As with setting the status bar, I don’t recommend using tooltips for conveying mission-critical
information to the user. Not all users are patient enough to let the pointer pause for the
tooltip to appear. On the other hand, a user may be more likely to notice a tooltip once it
appears rather than a status bar message (even though the latter appears instantaneously).

Example
Listing 15-17 provides a glimpse at how you can use the title property to establish tooltips
for a page. A simple paragraph element has its title attribute set to “First Time!”, which
is what the tooltip displays if you roll the pointer atop the paragraph and pause after the
page loads. But an onmouseover event handler for that element increments a global variable
counter in the script, and the title property of the paragraph object is modified with each
mouseover action. The count value is made part of a string assigned to the title property.
Notice that there is not a live connection between the title property and the variable;
instead, the new value explicitly sets the title property.

Listing 15-17: Controlling the title Property

<html>
<head>

<title>title Property</title>
<script type=”text/javascript”>
// global counting variable
var count = 0;

function setToolTip(elem) {
elem.title = “You have previously rolled atop this paragraph “ +

count + “ time(s).”;
}

function incrementCount(elem) {

elementObject.tagName

259Chapter 15 ✦ Generic HTML Element Objects

count++;
setToolTip(elem);

}
</script>

</head>
<body>

<h1>title Property Lab</h1>
<hr />
<p id=”myP” title=”First Time!” onmouseover=”incrementCount(this)”>Roll

the mouse over this paragraph a few times.

Then pause atop it to view the tooltip.</p>

</body>
</html>

Related Item: window.status property.

uniqueID
Value: String. Read-Only
Compatibility: WinIE5+, MacIE-, NN-, Moz-, Safari-

You can let the WinIE5+ browser generate an identifier (id property) for a dynamically gener-
ated element on the page with the aid of the uniqueID property. You should use this feature
with care because the ID it generates at any given time may differ from the ID generated the
next time the element is created in the page. Therefore, you should use the uniqueID prop-
erty when your scripts require an unknown element to have an id property but the algo-
rithms are not expecting any specific identifier.

To guarantee that an element gets only one ID assigned to it while the object exists in mem-
ory, assign the value via the uniqueID property of that same object — not some other object.
Once you retrieve the uniqueID property of an object, the property’s value stays the same no
matter how often you access the property again. In general, you assign the value returned by
the uniqueID property to the object’s id property for other kinds of processing. (For exam-
ple, the parameter of a getElementById() method requires the value assigned to the id
property of an object.)

Example
Listing 15-18 demonstrates the recommended syntax for obtaining and applying a browser-
generated identifier for an object. After you enter some text into the text box and click the but-
ton, the addRow() function appends a row to the table. The left column displays the identifier
generated via the table row object’s uniqueID property. IE5+ generates identifiers in the format
“ms__idn”, where n is an integer starting with zero for the current browser session. Because the
addRow() function assigns uniqueID values to the row and the cells in each row, the integer for
each row is three greater than the previous one. There is no guarantee that future generations of
the browser will follow this format, so do not rely on the format or sequence in your scripts.

Listing 15-18: Using the uniqueID Property

<html>
<head>

<title>Inserting an WinIE5+ Table Row</title>
<script type=”text/javascript”>

Continued

elementObject.uniqueID

260 Part III ✦ Document Objects Reference

Listing 15-18 (continued)

function addRow(item1) {
if (item1) {

// assign long reference to shorter var name
var theTable = document.getElementById(“myTable”);
// append new row to the end of the table
var newRow = theTable.insertRow(theTable.rows.length);
// give the row its own ID
newRow.id = newRow.uniqueID;

// declare cell variable
var newCell;

// an inserted row has no cells, so insert the cells
newCell = newRow.insertCell(0);
// give this cell its own id
newCell.id = newCell.uniqueID;
// display the row’s id as the cell text
newCell.innerText = newRow.id;
newCell.bgColor = “yellow”
// re-use cell var for second cell insertion
newCell = newRow.insertCell(1);
newCell.id = newCell.uniqueID;
newCell.innerText = item1;

}
}
</script>

</head>
<body>

<table id=”myTable” border=”1”>
<tr>

<th>Row ID</th>
<th>Data</th>

</tr>
<tr id=”firstDataRow”>

<td>firstDataRow</td>
<td>Fred</td>

</tr>
<tr id=”secondDataRow”>

<td>secondDataRow</td>
<td>Jane</td>

</tr>
</table>
<hr />
<form>

Enter text to be added to the table:

<input type=”text” name=”input” size=”25” />

<input type=’button’ value=’Insert Row’
onclick=’addRow(this.form.input.value)’ />

</form>
</body>

</html>

Related Items: id property; getElementById() method.

elementObject.uniqueID

261Chapter 15 ✦ Generic HTML Element Objects

Methods
addBehavior(“URL”)

Returns: Integer ID.
Compatibility: WinIE5+, MacIE-, NN-, Moz-, Safari-

The addBehavior() method imports an external Internet Explorer behavior and attaches it to
the current object, thereby extending the properties and/or methods of that object. See Chapter
48 on the CD-ROM for details on IE behaviors. The sole parameter of the addBehavior()
method is a URL pointer to the behavior component’s code. This component may be in an exter-
nal file (with an .htc extension), in which case the parameter can be a relative or absolute URL.
IE also includes a library of built-in (default) behaviors, whose URLs are in the following format:

#default#behaviorName

Here, behaviorName is one of the default behaviors (see Chapter 48 on the CD-ROM). If the
behavior is imported into the document via the object tag, the addBehavior() method
parameter is the ID of that element in the following format:

#objectID

When you add a behavior, the loading of the external code occurs asynchronously. This
means that even though the method returns a value instantly, the behavior is not necessarily
ready to work. Only when the behavior is fully loaded can it respond to events or allow
access to its properties and methods. Behaviors loaded from external files observe domain
security rules.

Example
Listing 15-19a shows what a behavior file looks like. It is the file used to demonstrate the
addBehavior() method in Listing 15-19b. The behavior component and the HTML page that
loads it must come from the same server and domain; they also must load via the same protocol
(for example, http://, https://, and file:// are mutually exclusive, mismatched protocols).

Listing 15-19a: The makeHot.htc Behavior Component

<PUBLIC:ATTACH EVENT=”onmousedown” ONEVENT=”makeHot()” />
<PUBLIC:ATTACH EVENT=”onmouseup” ONEVENT=”makeNormal()” />
<PUBLIC:PROPERTY NAME=”hotColor” />
<PUBLIC:METHOD NAME=”setHotColor” />
<SCRIPT LANGUAGE=”JScript”>
var oldColor;
var hotColor = “red”;

function setHotColor(color) {
hotColor = color;

}

function makeHot() {
if (event.srcElement == element) {

oldColor = style.color;
runtimeStyle.color = hotColor;

}
}

Continued

elementObject.addBehavior()

262 Part III ✦ Document Objects Reference

Listing 15-19a (continued)

function makeNormal() {
if (event.srcElement == element) {

runtimeStyle.color = oldColor ;
}

}
</SCRIPT>

The object to which the component is attached is a simple paragraph object, shown in Listing
15-19b. When the page loads, the behavior is not attached so clicking the paragraph text has
no effect.

When you turn on the behavior by invoking the turnOn() function, the addBehavior()
method attaches the code of the makeHot.htc component to the myP object. At this point,
the myP object has one more property, one more method, and two more event handlers that
are written to be made public by the component’s code. If you want the behavior to apply to
more than one paragraph in the document, you have to invoke the addBehavior() method
for each paragraph object.

After the behavior file is instructed to start loading, the setInitialColor() function is
called to set the new color property of the paragraph to the user’s choice from the select
list. But this can happen only if the component is fully loaded. Therefore, the function checks
the readyState property of myP for completeness before invoking the component’s function.
If IE is still loading the component, the function is invoked again in 500 milliseconds.

As long as the behavior is loaded, you can change the color used to turn the paragraph “hot.”
The function first ensures that the component is loaded by checking that the object has the
new color property. If it does, then (as a demonstration of how to expose and invoke a com-
ponent method) the method of the component is invoked. You can also simply set the prop-
erty value.

Listing 15-19b: Using addBehavior() and removeBehavior()

<html>
<head>

<title>addBehavior() and removeBehavior() Methods</title>
<script type=”text/javascript”>
var myPBehaviorID;

function turnOn() {
myPBehaviorID =

document.getElementById(“myP”).addBehavior(“makeHot.htc”);
setInitialColor();

}

function setInitialColor() {
if (document.getElementById(“myP”).readyState == “complete”) {

var select = document.forms[0].colorChoice;
var color = select.options[select.selectedIndex].value;
document.getElementById(“myP”).setHotColor(color);

} else {
setTimeout(“setInitialColor()”, 500);

elementObject.addBehavior()

263Chapter 15 ✦ Generic HTML Element Objects

}
}

function turnOff() {
document.getElementById(“myP”).removeBehavior(myPBehaviorID);

}

function setColor(select, color) {
if (document.getElementById(“myP”).hotColor) {

document.getElementById(“myP”).setHotColor(color);
} else {

alert(“This feature is not available. Turn on the Behavior
first.”);
select.selectedIndex = 0;

}
}

function showBehaviorCount() {
var num = document.getElementById(“myP”).behaviorUrns.length;
var msg = “The myP element has “ + num + “ behavior(s). “;
if (num > 0) {

msg += “Name(s): \r\n”;
for (var i = 0; i < num; i++) {

msg += document.getElementById(“myP”).behaviorUrns[i] + “\r\n”;
}

}
alert(msg);

}
</script>

</head>
<body>

<h1>addBehavior() and removeBehavior() Method Lab</h1>
<hr />
<p id=”myP”>This is a sample paragraph. After turning on the behavior, it

will turn your selected color when you mouse down anywhere in this
paragraph.</p>

<form>
<input type=”button” value=”Switch On Behavior” onclick=”turnOn()” />
Choose a ‘hot’ color: <select name=”colorChoice”
onchange=”setColor(this, this.value)”>

<option value=”red”>red</option>
<option value=”blue”>blue</option>
<option value=”cyan”>cyan</option>

</select>

<input type=”button” value=”Switch Off Behavior”
onclick=”turnOff()” />
<p><input type=”button” value=”Count the URNs”

onclick=”showBehaviorCount()” /></p>
</form>

</body>
</html>

To turn off the behavior, the removeBehavior() method is invoked. Notice that the
removeBehavior() method is associated with the myP object, and the parameter is the ID
of the behavior added earlier. If you associate multiple behaviors with an object, you can
remove one without disturbing the others because each has its own unique ID.

elementObject.addBehavior()

264 Part III ✦ Document Objects Reference

Related Items: readyState property; removeBehavior() method; behaviors (Chapter 48 on
the CD-ROM).

addEventListener(“eventType”, listenerFunc, useCapture)
removeEventListener(“eventType”, listenerFunc, useCapture)

Returns: Nothing.
Compatibility: WinIE-, MacIE-, NN6+, Moz1+, Safari1+

The W3C DOM’s event mechanism accommodates both event bubbling and trickling (see
Chapter 25). While the new mechanism supports the long-standing notion of binding an event
to an element by way of HTML attributes (for example, the old onclick event handler), it
encourages binding events by registering an event listener with an element. (In browsers that
support the W3C event model, other ways of binding events — such as event handler
attributes — are internally converted to registered events.)

To tell the DOM that an element should “listen” for a particular kind of event, use the
addEventListener() method on the element object. The method requires three parameters.
The first is a string version of the event type for which the element should listen. Event type
strings do not include the well-used “on” prefix of event handlers. Instead, the names consist
only of the event and are usually in all lowercase (except for some special system-wide events
preceded by DOM). Table 15-7 shows all the events recognized by the W3C DOM specification
(including some new DOM ones that are not yet implemented in browsers).

Table 15-7: W3C DOM Event Listener Types

abort error
blur focus
change load
click mousedown
DOMActivate mousemove
DOMAttrModified mouseout
DOMCharacterDataModified mouseover
DOMFocusIn mouseup
DOMFocusOut reset
DOMNodeInserted resize
DOMNodeInsertedIntoDocument scroll
DOMNodeRemoved select
DOMNodeRemovedFromDocument submit
DOMSubtreeModified unload

Note that the event types specified in the DOM Level 2 are more limited than the wide range
of events defined in IE4+. Also, the W3C temporarily tabled the issue of keyboard events until
DOM Level 3. Fortunately, most W3C-compatible browsers implement keyboard events in a
fashion that likely will appear as part of the W3C DOM Level 3.

The second parameter of the addEventListener() method is a reference to the JavaScript
function to be invoked. This is the same form used to assign a function to an event property
of an object (for example, objReference.onclick = someFunction), and it should not be a
quoted string. This approach also means that you cannot specify parameters in the function

elementObject.addEventListener()

265Chapter 15 ✦ Generic HTML Element Objects

call. Therefore, functions that need to reference forms or form control elements must build
their own references (with the help of the event object’s property that says which object is
the event’s target).

By default, the W3C DOM event model has events bubble upward through the element con-
tainer hierarchy starting with the target object of the event (for example, the button being
clicked). However, if you specify true for the third parameter of the addEventListener()
method, event capture is enabled for this particular event type whenever the current object
is the event target. This means that any other event type targeted at the current object bub-
bles upward unless it, too, has an event listener associated with the object and the third
parameter is set to true.

Using the addEventListener() method requires that the object to which it is attached
already exists. Therefore, you most likely will use the method inside an initialization function
triggered by the onload event handler for the page. (The document object can use
addEventListener() for the load event immediately because the document object exists
early in the loading process.)

A script can also eliminate an event listener that was previously added by script. The
removeEventListener() method takes the same parameters as addEventListener(),
which means that you can turn off one listener without disturbing others. In fact, because
you can add two listeners for the same event and listener function (one set to capture and
one not — a rare occurrence, indeed), the three parameters of the removeEventListener()
enable you to specify precisely which listener to remove from an object.

Unlike the event capture mechanism of NN4, the W3C DOM event model does not have a
“global” capture mechanism for an event type regardless of target. And with respect to
Internet Explorer, the addEventListener() method is closely analogous to the IE5+
attachEvent() method. Also, event capture in IE5+ is enabled via the separate
setCapture() method. Both the W3C and IE event models use their own syntaxes to bind
objects to event handling functions, so the actual functions may be capable of serving both
models with browser version branching required only for event binding. See Chapter 25 for
more about event handling with these two event models.

Example
Listing 15-20 provides a compact workbench to explore and experiment with the basic W3C
DOM event model. When the page loads, no event listeners are registered with the browser
(except for the control buttons, of course). But you can add an event listener for a click
event in bubble and/or capture mode to the body element or the p element that surrounds
the span holding the line of text. If you add an event listener and click the text, you see a
readout of the element processing the event and information indicating whether the event
phase is bubbling (3) or capture (1). With all event listeners engaged, notice the sequence of
events being processed. Remove listeners one at a time to see the effect on event processing.

Listing 15-20: W3C Event Lab

<html>
<head>

<title>W3C Event Model Lab</title>
<style type=”text/css”>
td {text-align:center}
</style>

Continued

elementObject.addEventListener()

266 Part III ✦ Document Objects Reference

Listing 15-20 (continued)

<script type=”text/javascript”>
// add event listeners
function addBubbleListener(elemID) {

document.getElementById(elemID).addEventListener(“click”, reportEvent,
false);

}
function addCaptureListener(elemID) {

document.getElementById(elemID).addEventListener(“click”, reportEvent,
true);

}
// remove event listeners
function removeBubbleListener(elemID) {

document.getElementById(elemID).removeEventListener(“click”,
reportEvent, false);

}
function removeCaptureListener(elemID) {

document.getElementById(elemID).removeEventListener(“click”,
reportEvent, true);

}
// display details about any event heard
function reportEvent(evt) {

var elem = (evt.target.nodeType == 3) ? evt.target.parentNode :
evt.target;

if (elem.id == “mySPAN”) {
var msg = “Event processed at “ + evt.currentTarget.tagName +
“ element (event phase = “ + evt.eventPhase + “).\n”;
document.controls.output.value += msg;

}
}
// clear the details textarea
function clearTextArea() {

document.controls.output.value = “”;
}
</script>

</head>
<body id=”myBODY”>

<h1>W3C Event Model Lab</h1>
<hr />
<p id=”myP”>This paragraph (a SPAN element nested
inside a P element) can be set to listen for “click” events.</p>
<hr />
<form name=”controls” id=”controls”>

<p>Examine click event characteristics: <input type=”button”
value=”Clear” onclick=”clearTextArea()” />

<textarea name=”output” cols=”80” rows=”6” wrap=”virtual”>
</textarea></p>

<table cellpadding=”5” border=”1”>
<caption style=”font-weight:bold”>Control Panel</caption>
<tr style=”background-color:#ffff99”>

<td rowspan=”2”>”Bubble”-type click listener:</td>
<td><input type=”button” value=”Add to BODY” onclick=

“addBubbleListener(‘myBODY’)” /></td>
<td><input type=”button” value=”Remove from BODY” onclick=

“removeBubbleListener(‘myBODY’)” /></td>
</tr>
<tr style=”background-color:#ffff99”>

elementObject.addEventListener()

267Chapter 15 ✦ Generic HTML Element Objects

<td><input type=”button” value=”Add to P” onclick=
“addBubbleListener(‘myP’)” /></td>

<td><input type=”button” value=”Remove from P” onclick=
“removeBubbleListener(‘myP’)” /></td>

</tr>
<tr style=”background-color:#ff9999”>

<td rowspan=”2”>”Capture”-type click listener:</td>
<td><input type=”button” value=”Add to BODY” onclick=

“addCaptureListener(‘myBODY’)” /></td>
<td><input type=”button” value=”Remove from BODY” onclick=

“removeCaptureListener(‘myBODY’)” /></td>
</tr>
<tr style=”background-color:#ff9999”>

<td><input type=”button” value=”Add to P” onclick=
“addCaptureListener(‘myP’)” /></td>

<td><input type=”button” value=”Remove from P” onclick=
“removeCaptureListener(‘myP’)” /></td>

</tr>
</table>

</form>
</body>

</html>

Related Items: attachEvent(), detachEvent(), dispatchEvent(), fireEvent(),
removeEventListener() methods.

appendChild(elementObject)
Returns: Node object reference.
Compatibility: WinIE5+, MacIE5+, NN6+, Moz1+, Safari1+

The appendChild() method inserts an element or text node (defined by other code that comes
before it) as the new, last child of the current element. Aside from the more obvious application
of adding a new child element to the end of a sequence of child nodes, the appendChild()
method is also practical for building element objects and their content before appending, replac-
ing, or inserting the element into an existing document. The document.createElement()
method generates a reference to an element of whatever tag name you assign as that method’s
parameter.

The appendChild() method returns a reference to the appended node object. This reference
differs from the object that is passed as the method’s parameter because the returned value
represents the object as part of the document rather than as a freestanding object in memory.

Example
Listing 15-21 contains an example that shows how to use the appendChild() method in con-
cert with removeChild() and replaceChild() to modify child elements in a document.
Because many W3C DOM browsers treat source code carriage returns as text nodes (and thus
child nodes of their parent), the HTML for the affected elements in Listing 15-21 is shown
without carriage returns between elements.

The append() function creates a new li element and then uses the appendChild() method to
attach the text box text as the displayed text for the item. The nested expression, document.
createTextNode(form.input.value), evaluates to a legitimate node that is appended to
the new li item. All of this occurs before the new li item is added to the document. In the
final statement of the function, appendChild() is invoked from the vantage point of the ul
element — thus adding the li element as a child node of the ul element.

elementObject.appendChild()

268 Part III ✦ Document Objects Reference

Invoking the replaceChild() method in the replace() function utilizes some of the same
code. The main difference is that the replaceChild() method requires a second parameter:
a reference to the child element to be replaced. This demonstration replaces the final child
node of the ul list, so the function takes advantage of the lastChild property of all elements
to get a reference to that final nested child. That reference becomes the second parameter to
replaceChild().

Listing 15-21: Various Child Methods

<html>
<head>

<title>appendChild(), removeChild(), and replaceChild() Methods</title>
<script type=”text/javascript”>
function append(form) {

if (form.input.value) {
var newItem = document.createElement(“LI”);
newItem.appendChild(document.createTextNode(form.input.value));
document.getElementById(“myUL”).appendChild(newItem);

}
}

function replace(form) {
if (form.input.value) {

var newItem = document.createElement(“LI”);
var lastChild = document.getElementById(“myUL”).lastChild;
newItem.appendChild(document.createTextNode(form.input.value));
document.getElementById(“myUL”).replaceChild(newItem, lastChild);

}
}

function restore() {
var oneChild;
var mainObj = document.getElementById(“myUL”);
while (mainObj.childNodes.length > 2) {

oneChild = mainObj.lastChild;
mainObj.removeChild(oneChild);

}
}
</script>

</head>
<body>

<h1>Child Methods</h1>
<hr />
Here is a list of items:
<ul id=”myUL”>First ItemSecond Item
<form>

Enter some text to add/replace in the list: <input type=”text”
name=”input” size=”30” />

<input type=”button” value=”Append to List”
onclick=”append(this.form)” /> <input type=”button”
value=”Replace Final Item” onclick=”replace(this.form)” /> <input
type=”button” value=”Restore List” onclick=”restore()” />

</form>
</body>

</html>

elementObject.appendChild()

269Chapter 15 ✦ Generic HTML Element Objects

The final part of the demonstration uses the removeChild() method to peel away all children of
the ul element until just the two original items are left standing. Again, the lastChild property
comes in handy as the restore() function keeps removing the last child until only two remain.

Related Items: removeChild(), replaceChild() methods; nodes and children (Chapter 14).

applyElement(elementObject[, type])
Returns: Nothing.
Compatibility: WinIE5+, MacIE-, NN-, Moz-, Safari-

The applyElement() method enables you to insert a new element as the parent or child of the
current object. An important feature of this method is that the new object is wrapped around the
current object (if the new element is to become the parent) or the current object’s content (if the
new element is to become a child). When the new element becomes a child, all previous children
are nested further by one generation to become immediate children of the new element. You can
imagine how the resulting action of this method affects the containment hierarchy of the current
element, so you must be careful in how you use the applyElement() method.

One parameter, a reference to the object to be applied, is required. This object may be gener-
ated from constructions such as document.createElement() or from one of the child or
node methods that returns an object. The second parameter is optional, and it must be one of
the following values:

Parameter Value Description

Outside New element becomes the parent of the current object

Inside New element becomes the immediate child of the current object

If you omit the second parameter, the default value (outside) is assumed. Listing 15-22
shows how the applyElement() method is used both with and without default values.

Example
To help you visualize the impact of the applyElement() method with its different parameter
settings, Listing 15-22 enables you to apply a new element (an em element) to a span element
inside a paragraph. At any time, you can view the HTML of the entire p element to see where
the em element is applied as well as its impact on the element containment hierarchy for the
paragraph.

After you load the page, inspect the HTML for the paragraph before doing anything else.
Notice the span element and its nested font element, both of which surround the one-word
content. If you apply the em element inside the span element (click the middle button), the
span element’s first (and only) child element becomes the em element; the font element is
now a child of the new em element.

Listing 15-22: Using the applyElement() Method

<html>
<head>

<title>applyElement() Method</title>

Continued

elementObject.applyElement()

270 Part III ✦ Document Objects Reference

Listing 15-22 (continued)

<script type=”text/javascript”>
function applyOutside() {

var newItem = document.createElement(“EM”);
newItem.id = newItem.uniqueID;
document.getElementById(“mySpan”).applyElement(newItem);

}

function applyInside() {
var newItem = document.createElement(“EM”);
newItem.id = newItem.uniqueID;
document.getElementById(“mySpan”).applyElement(newItem, “inside”);

}

function showHTML() {
alert(document.getElementById(“myP”).outerHTML);

}
</script>

</head>
<body>

<h1>applyElement() Method</h1>
<hr />
<p id=”myP”>A simple paragraph with a <font

size=”+1”>special word in it.</p>
<form>

<input type=”button” value=”Apply Outside”
onclick=”applyOutside()” /> <input type=”button”
value=”Apply Inside” onclick=”applyInside()” /> <input
type=”button” value=”Show <P> HTML...”
onclick=”showHTML()” />

<input type=”button” value=”Restore Paragraph”
onclick=”location.reload()” />

</form>
</body>

</html>

The visible results of applying the em element inside and outside the span element in this
case are the same. But you can see from the HTML results that each element impacts the ele-
ment hierarchy quite differently.

Related Items: insertBefore(), appendChild(), insertAdjacentElement() methods.

attachEvent(“eventName”, functionRef)
detachEvent(“eventName”, functionRef)

Returns: Boolean.
Compatibility: WinIE5+, MacIE-, NN-, Moz-, Safari-

The attachEvent() method is used primarily within code that specifies IE behaviors (see
Chapter 48 on the CD-ROM). But you can also use it in regular scripting as yet another way to
bind an event handler to an object. The following example characterizes the more typical
approach to assigning an event handler:

myObject.onmousedown = setHilite;

elementObject.applyElement()

271Chapter 15 ✦ Generic HTML Element Objects

The version with attachEvent() is as follows:

myObject.attachEvent(“onmousedown”, setHilite);

Both parameters are required. The first parameter is a string version (case-insensitive) of the
event name. The second is a reference to the function to be invoked when the event fires for
this object. A function reference is an unquoted, case-sensitive identifier for the function without
any parentheses (which also means that you cannot pass parameters in this function call).

There is a subtle benefit to using attachEvent() over the event property binding approach.
When you use attachEvent(), the method returns a Boolean value of true if the event bind-
ing succeeds. IE triggers a script error if the function reference fails, so don’t rely on a
returned value of false to catch these kinds of errors. Also, there is no validation that the
object recognizes the event name.

If you have used attachEvent() to bind an event handler to an object’s event, you can dis-
connect that binding with the detachEvent() method. The parameters are the same as for
attachEvent(). The detachEvent() method cannot unbind events whose associations are
established via tag attributes or event property settings.

The W3C DOM event model provides functionality similar to these IE-only methods:
addEventListener() and removeEventListener().

Example
Use The Evaluator (Chapter 13) to create an anonymous function that is called in response to
an onmousedown event of the first paragraph on the page. Begin by assigning the anonymous
function to global variable a (already initialized in The Evaluator) in the upper text box:

a = new Function(“alert(‘Function created at “ + (new Date()) + “‘)”)

The quote marks and parentheses can get jumbled easily, so enter this expression carefully.
When you enter the expression successfully, the Results box shows the function’s text. Now
assign this function to the onmousedown event of the myP element by entering the following
statement into the upper text box:

document.getElementById(“myP”).attachEvent(“onmousedown”, a)

The Results box displays true when successful. If you mouse down on the first paragraph, an
alert box displays the date and time that the anonymous function was created (when the new
Date() expression was evaluated).

Now, disconnect the event relationship from the object by entering the following statement
into the upper text box:

document.getElementById(“myP”).detachEvent(“onmousedown”, a)

Related Items: addEventListener(), detachEvent(), dispatchEvent(), fireEvent(),
removeEventListener() methods; Event binding (Chapter 14).

blur()
focus()

Returns: Nothing.
Compatibility: WinIE3+, MacIE3+, NN2+, Moz1+, Safari1+

The blur() method removes focus from an element, while the focus() method gives focus
to an element. Even though the blur() and focus() methods have been around since the
earliest scriptable browsers, not every focusable object has enjoyed these methods since the

elementObject.blur()

272 Part III ✦ Document Objects Reference

beginning. Browsers prior to IE4 and NN6 limited these methods primarily to the window
object and form control elements.

Windows
For window objects, the blur() method (NN3+, IE4+) pushes the referenced window to the
back of all other open windows. If other browser suite windows (such as e-mail or news
reader windows) are open, the window receiving the blur() method is placed behind these
windows as well.

The window.blur() method does not adjust the stacking order of the current window in
Mozilla-based browsers (thus the “Put Me in Back” button in Listing 15-23 doesn’t work in
those browsers). But a script in a window can invoke the focus() method of another window
to bring that other window to the front (provided a scriptable linkage, such as the window.
opener property, exists between the two windows).

The minute you create another window for a user in your Web site environment, you must
pay attention to window layer management. With browser windows so easily activated by the
slightest mouse click, a user can lose a smaller window behind a larger one in a snap. Most
inexperienced users don’t think to check the Windows taskbar or browser menu bar (if the
browser is so equipped) to see if a smaller window is still open and then activate it. If that
subwindow is important to your site design, then you should present a button or other
device in each window that enables users to safely switch among windows. The window.
focus() method brings the referenced window to the front of all the windows.

Rather than supply a separate button on your page to bring a hidden window forward, you
should build your window-opening functions in such a way that if the window is already
open, the function automatically brings that window forward (as shown in Listing 15-23). This
removes the burden of window management from your visitors.

The key to success with this method is making sure that your references to the desired win-
dows are correct. Therefore, be prepared to use the window.opener property to refer to the
main window if a subwindow needs to bring the main window back into focus.

Form control elements
The blur() and focus() methods apply primarily to text-oriented form controls: text input,
select, and textarea elements.

Just as a camera lens blurs when it goes out of focus, a text object “blurs” when it loses
focus — when someone clicks or tabs out of the field. Under script control, blur() deselects
whatever may be selected in the field, and the text insertion pointer leaves the field. The
pointer does not proceed to the next field in tabbing order, as it does if you perform a blur by
tabbing out of the field manually.

For a text object, having focus means that the text insertion pointer is flashing in that text
object’s field. Giving a field focus is like opening it up for human editing.

Setting the focus of a text field or textarea does not, by itself, enable you to place the cursor
at any specified location in the field. The cursor usually appears at the beginning of the text.
To prepare a field for entry to remove the existing text, use both the focus() and select()
methods in series.

There is a caveat about using focus() and select() together to preselect the content of a
text field for immediate editing: Many versions of Internet Explorer fail to achieve the desired
results due to an internal timing problem. You can work around this problem (and remain

Caution

elementObject.blur()

273Chapter 15 ✦ Generic HTML Element Objects

compatible with other browsers) by initiating the focus and selection actions through a
setTimeout() method. See Chapter 43 on the CD-ROM on data validation for an example.

A common design requirement is to position the insertion pointer at the end of a text field or
textarea so that a user can begin appending text to existing content immediately. This is
possible in IE4+ with the help of the TextRange object. The following script fragment moves
the text insertion pointer to the end of a textarea element whose ID is myTextarea:

var range = document.getElementById(“myTextarea”).createTextRange();
range.move(“textedit”);
range.select();

You should be very careful in combining blur() or focus() methods with onblur and
onfocus event handlers — especially if the event handlers display alert boxes. Many combi-
nations of these events and methods can cause an infinite loop in which it is impossible to
dismiss the alert dialog box completely. On the other hand, there is a useful combination for
older browsers that don’t offer a disabled property for text boxes. The following text field
event handler can prevent users from entering text in a text field:

onfocus = “this.blur()”;

Some operating systems and browsers enable you to give focus to elements such as buttons
(including radio and checkbox buttons) and hypertext links (encompassing both a and area
elements). Typically, once such an element has focus, you can accomplish the equivalent of a
mouse click on the element by pressing the spacebar on the keyboard. This is helpful for
accessibility to those who have difficulty using a mouse.

An unfortunate side effect of button focus in Win32 environments is that the focus highlight
(a dotted rectangle) remains around the button after a user clicks it and until another object
gets focus. You can eliminate this artifact for browsers and objects that implement the
onmouseup event handler by including the following event handler in your buttons:

onmouseup = “this.blur()”;

IE5.5+ recognizes the often undesirable effect of that dotted rectangle and lets scripts set the
hideFocus property of an element to true to keep that rectangle hidden while still giving the
element focus. It is a trade-off for the user, however, because there is no visual feedback
about which element has focus.

Other elements
For other kinds of elements that support the focus() method, you can bring an element into
view in lieu of the scrollIntoView() method. Link (a) and area elements in Windows ver-
sions of IE display the dotted rectangle around them after a user brings focus to them. To
eliminate that artifact, use the same

onmouseup = “this.blur()”;

event handler (or IE5.5+ hideFocus property) as just described for form controls.

Example
Listing 15-23 contains an example of using the focus() and blur() methods to tinker with
changing the focus of windows. This example creates a two-window environment; from each
window, you can bring the other window to the front. The main window uses the object
returned by window.open() to assemble the reference to the new window. In the subwindow
(whose content is created entirely on the fly by JavaScript), self.opener is summoned to
refer to the original window, while self.blur() operates on the subwindow itself. Blurring
one window and focusing on another window yields the same result of sending the window to
the back of the pile.

elementObject.blur()

274 Part III ✦ Document Objects Reference

Listing 15-23: The window.focus() and window.blur() Methods

<html>
<head>

<title>Window Focus() and Blur()</title>
<script type=”text/javascript”>
// declare global variable name
var newWindow = null;

function makeNewWindow() {
// check if window already exists
if (!newWindow || newWindow.closed) {

// store new window object in global variable
newWindow = window.open(“”,””,”width=250,height=250”);
// pause briefly to let IE3 window finish opening
setTimeout(“fillWindow()”,100);

} else {
// window already exists, so bring it forward
newWindow.focus();

}
}

// assemble new content and write to subwindow
function fillWindow() {

var newContent = “<html><head><title>Another Sub
Window<\/title><\/head>”;
newContent += “<body bgColor=’salmon’>”;
newContent += “<h1>A Salmon-Colored Subwindow.<\/h1>”;
newContent += “<form><input type=’button’ value=’Bring Main to Front’
onclick=’self.opener.focus()’>”;
newContent += “<form><input type=’button’ value=’Put Me in Back’
onclick=’self.blur()’>”;
newContent += “<\/form><\/body><\/html>”;
// write HTML to new window document
newWindow.document.write(newContent);
newWindow.document.close();

}
</script>

</head>
<body>

<h1>Window focus() and blur() Methods</h1>
<hr />
<form>

<input type=”button” name=”newOne” value=”Show New Window”
onclick=”makeNewWindow()” />

</form>
</body>

</html>

A key ingredient to the success of the makeNewWindow() function in Listing 15-23 is the first
conditional expression. Because newWind is initialized as a null value when the page loads,
that is its value the first time through the function. But after you open the subwindow the first
time, newWind is assigned a value (the subwindow object) that remains intact even if the user
closes the window. Thus, the value doesn’t revert to null by itself. To catch the possibility that

elementObject.blur()

275Chapter 15 ✦ Generic HTML Element Objects

the user has closed the window, the conditional expression also sees if the window is closed. If
it is, a new subwindow is generated, and that new window’s reference value is reassigned to the
newWind variable. On the other hand, if the window reference exists and the window is not
closed, the focus() method brings that subwindow to the front.

You can see the focus() method for a text object in action in Chapter 25’s description of the
select() method for text objects.

Related Items: window.open(), document.formObject.textObject.select() methods.

clearAttributes()
Returns: Nothing.
Compatibility: WinIE5+, MacIE-, NN-, Moz-, Safari-

The clearAttributes() method removes all attributes from an element except the name and
id values. Thus, styles and event handlers are removed, as are custom attributes assigned in
either the HTML source code or later by script. You should know that the clearAttributes()
method does not alter the length of the element’s attributes collection because the collection
always contains all possible attributes for an element. (See the attributes property for ele-
ments earlier in this chapter.)

This method is handy if you wish to construct an entirely new set of attributes for an element
and prefer to start out with a blank slate. Be aware, however, that unless your scripts immedi-
ately assign new attributes to the element, the appearance of the element reverts to its com-
pletely unadorned form until you assign new attributes. This means that even positioned
elements find their way back to their source code order until you assign a new positioning
style. If you simply want to change the value of one or more attributes of an element, it is
faster to use the setAttribute() method or adjust the corresponding properties.

To accomplish a result in NN6+/Moz1+ that simulates that of IE5+’s clearAttributes(),
you must iterate through all attributes of an element and remove those attributes (via the
removeAttribute() method) whose names are other than id and name.

Example
Use The Evaluator (Chapter 13) to examine the attributes of an element before and after you
apply clearAttributes(). To begin, display the HTML for the table element on the page by
entering the following statement into the upper text field:

myTable.outerHTML

Notice the attributes associated with the <table> tag. Look at the rendered table to see how
attributes such as border and width affect the display of the table. Now, enter the following
statement in the top text box to remove all removable attributes from this element:

myTable.clearAttributes()

First, look at the table. The border is gone, and the table is rendered only as wide as is neces-
sary to display the content with no cell padding. Finally, view the results of the
clearAttributes() method in the outerHTML of the table again:

myTable.outerHTML

The source code file has not changed, but the object model in the browser’s memory reflects
the changes you made.

Related Items: attributes property; getAttribute(), setAttribute(),
removeAttribute(), mergeAttributes(), and setAttributeNode() methods.

elementObject.clearAttributes()

276 Part III ✦ Document Objects Reference

click()
Returns: Nothing.
Compatibility: WinIE4+, MacIE4+, NN2+, Moz1+, Safari1+

The click() method lets a script perform nearly the same action as clicking an element.
Prior to NN4 and IE4, the click() method invoked on a button did not trigger the onclick
event handler for the object. This has significant impact if you expect the onclick event han-
dler of a button to function even if a script performs the “click.” For earlier browser versions,
you have to invoke the event handler statements directly. Also, just because a script is “click-
ing” a button, not all buttons in all platforms change their appearance in response. For exam-
ple, NN4 on the Mac does not change the state of a checkbox when clicked remotely.

If you want to script the action of “clicking” a button, you can safely invoke the resulting
event handler function directly. And if the element is a radio button or checkbox, handle the
change of state directly (for example, set the checked property of a checkbox) rather than
expect the browser to take care of it for you.

Example
Use The Evaluator (Chapter 13) to experiment with the click() method. The page includes
various types of buttons at the bottom. You can “click” the checkbox, for example, by enter-
ing the following statement in the topmost text field:

document.myForm2.myCheckbox.click()

If you use a recent browser version, you most likely can see the checkbox change states
between checked and unchecked each time you execute the statement.

Related Item: onclick event handler.

cloneNode(deepBoolean)
Returns: Node object reference.
Compatibility: WinIE5+, MacIE5+, NN6+, Moz1+, Safari1+

The cloneNode() method makes an exact copy of the current node object. This copy does not
have a parent node or other relationship with any element once the copy exists (of course, the
original node remains in place). The clone also does not become part of the document’s object
model (the node tree) unless you explicitly insert or append the node somewhere on the page.
The copy includes all element attributes, including the id attribute. Because the value returned
by the cloneNode() method is a genuine Node object, you can operate on it with any Node
object methods while it is still in the non-document object state.

The Boolean parameter of the cloneNode() method controls whether the copy of the node
includes all child nodes (true) or just the node itself (false). For example, if you clone a
paragraph element by itself, the clone consists only of the raw element (equivalent of the tag
pair, including attributes in the start tag) and none of its content. But including child nodes
makes sure that all content within that paragraph element is part of the copy. This parameter
is optional in IE5 (defaulting to false), but it is required in other W3C-compatible browsers.

Example
Use The Evaluator (Chapter 13) to clone, rename, and append an element found in The
Evaluator’s source code. Begin by cloning the paragraph element named myP along with all
of its content. Enter the following statement into the topmost text field:

a = document.getElementById(“myP”).cloneNode(true)

elementObject.click()

277Chapter 15 ✦ Generic HTML Element Objects

The variable a now holds the clone of the original node, so you can change its id attribute at
this point by entering the following statement:

a.setAttribute(“id”, “Dolly”)

If you want to see the properties of the cloned node, enter a into the lower text field. The pre-
cise listing of properties you see depends on the browser you’re using; in either case, you
should be able to locate the id property, whose value is now Dolly.

As a final step, append this newly named node to the end of the body element by entering the
following statement into the topmost text field:

document.body.appendChild(a)

You can now scroll down to the bottom of the page and see a duplicate of the content. But
because the two nodes have different id attributes, they cannot confuse scripts that need to
address one or the other.

Related Items: Node object (Chapter 14); appendChild(), removeChild(), removeNode(),
replaceChild(), and replaceNode() methods.

componentFromPoint(x,y)
Returns: String.
Compatibility: WinIE5+, MacIE-, NN-, Moz-, Safari-

The componentFromPoint() method assists in some event-related tasks. You can use it for a
kind of collision detection (in other words, to determine whether an event occurs inside or
outside of a particular element). If the element has scrollbars, the method can provide addi-
tional information about the event such as precisely which component of the scrollbar the
user activates.

A key aspect of this method is that you invoke it on any element that you want to use as the
point of reference. For example, if you want to find out if a mouseup event occurs in an ele-
ment whose ID is myTable, invoke the method as follows:

var result = document.getElementById(“myTable”).componentFromPoint(
event.clientX, event.clientY);

Parameters passed to the method are x and y coordinates. These coordinates do not have to
come from an event, but the most likely scenario links this method with an event of some
kind. Mouse events (other than onclick) work best.

The value returned by the method is a string that provides details about where the coordinate
point is with respect to the current element. If the coordinate point is inside the element’s rect-
angle, the returned value is an empty string. Conversely, if the point is completely outside of the
element, the returned value is the string “outside”. For scrollbar pieces, the list of possible
returned values is quite lengthy (as shown in Table 15-8).

Table 15-8: Returned Values for componentFromPoint()

Returned String Element Component at Coordinate Point

scrollbarDown Scrollbar down arrow

scrollbarHThumb Scrollbar thumb on horizontal bar

scrollbarLeft Scrollbar left arrow

Continued

elementObject.componentFromPoint()

278 Part III ✦ Document Objects Reference

Table 15-8 (continued)

Returned String Element Component at Coordinate Point

scrollbarPageDown Scrollbar page-down region

scrollbarPageLeft Scrollbar page-left region

scrollbarPageRight Scrollbar page-right region

scrollbarPageUp Scrollbar page-up region

scrollbarRight Scrollbar right arrow

scrollbarUp Scrollbar up arrow

scrollbarVThumb Scrollbar thumb on vertical bar

handleBottom Resize handle at bottom

handleBottomLeft Resize handle at bottom left

handleBottomRight Resize handle at bottom right

handleLeft Resize handle at left

handleRight Resize handle at right

handleTop Resize handle at top

handleTopLeft Resize handle at top left

handleTopRight Resize handle at top right

You do not have to use this method for most collision or event detection, however. The event
object’s srcElement property returns a reference to whatever object receives the event.

Example
Listing 15-24 demonstrates how the componentFromPoint() method can be used to determine
exactly where a mouse event occurred. As presented, the method is associated with a textarea
object that is specifically sized to display both vertical and horizontal scrollbars. As you click
various areas of the textarea and the rest of the page, the status bar displays information about
the location of the event with the help of the componentFromPoint() method.

The script utilizes a combination of the event.srcElement property and the
componentFromPoint() method to help you distinguish how you can use each one for differ-
ent types of event processing. The srcElement property is used initially as a filter to decide
whether the status bar will reveal further processing about the textarea element’s event
details.

The onmousedown event handler in the body element triggers all event processing. IE events
bubble up the hierarchy (and no events are cancelled in this page), so all mousedown events
eventually reach the body element. Then, the whereInWorld() function can compare each
mousedown event from any element against the text area’s geography.

Listing 15-24: Using the componentFromPoint() Method

<html>
<head>

<title>componentFromPoint() Method</title>
<script type=”text/javascript”>

elementObject.componentFromPoint()

279Chapter 15 ✦ Generic HTML Element Objects

function whereInWorld(elem) {
var x = event.clientX;
var y = event.clientY;
var component =

document.getElementById(“myTextarea”).componentFromPoint(x,y);
if (window.event.srcElement == document.getElementById(“myTextarea”)){

if (component == “”) {
status = “mouseDown event occurred inside the element”;

} else {
status = “mouseDown occurred on the element\’s “ + component;

}
} else {

status = “mouseDown occurred “ + component + “ of the element”;
}

}
</script>

</head>
<body onmousedown=”whereInWorld()”>

<h1>componentFromPoint() Method</h1>
<hr />
<p>Tracking the mouseDown event relative to the textarea object. View

results in status bar.</p>
<form>

<textarea name=”myTextarea” wrap=”off” cols=”12” rows=”4”>
This is Line 1
This is Line 2
This is Line 3
This is Line 4
This is Line 5
This is Line 6

</textarea>
</form>

</body>
</html>

Related Item: event object.

contains(elementObjectReference)
Returns: Boolean.
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-

The contains() method reports whether the current object contains another known object
within its HTML containment hierarchy. Note that this is not geographical collision detection
of overlapping elements, but rather the determination of whether one element is nested
somewhere within another.

The scope of the contains() method extends as deeply within the current object’s hierarchy
as is necessary to locate the object. In essence, the contains() method examines all of the
elements that are part of an element’s all array. Therefore, you can use this method as a
shortcut replacement for a for loop that examines each nested element of a container for the
existence of a specific element.

The parameter to the contains() method is a reference to an object. If you have only the ele-
ment’s ID as a string to go by, you can use the document.getElementById() method to gen-
erate a valid reference to the nested element.

elementObject.contains()

280 Part III ✦ Document Objects Reference

An element always contains itself.

Example
Using The Evaluator (Chapter 13), see how the contains() method responds to the object
combinations in each of the following statements as you enter them into the upper text box:

document.body.contains(document.all.myP)
document.all.myP.contains(document.all.item(“myEM”))
document.all.myEM.contains(document.all.myEM)
document.all.myEM.contains(document.all.myP)

Feel free to test other object combinations within this page.

Related Items: item(), document.getElementById() methods.

detachEvent()
(See attachEvent())

dispatchEvent(eventObject)
Returns: Boolean.
Compatibility: WinIE-, MacIE-, NN6+, Moz1+, Safari1+

The dispatchEvent() method allows a script to fire an event aimed at any object capable of
supporting that event. This is the W3C event model way of generalizing mechanisms that ear-
lier browsers sometimes mimic with object methods such as click() and focus().

The process of generating one of these events is similar to the way a script generates a new node
and inserts that node somewhere in the document object model. For events, however, the object
that is created is an Event object, which is generated via the document.createEvent()
method. An event generated in this manner is simply a specification about an event. Use
properties of an event object to supply specifics about the event, such as its coordinates or
mouse button. Then dispatch the event to a target object by invoking that target object’s
dispatchEvent() method and passing the newly created Event object as the sole parameter.

Interpreting the meaning of the Boolean value that the dispatchEvent() method returns is not
straightforward. The browser follows the dispatched event through whatever event propaga-
tion is in effect for that object and event type (either bubbling or capture). If any of the event
listener functions that are triggered by this dispatched event invoke the preventDefault()
method, the dispatchEvent() method returns false to indicate that the event did not trigger
the native action of the object; otherwise, the method returns true. Notice that this returned
value indicates nothing about propagation type or how many event listeners run as a result of
dispatching this event.

Although the dispatchEvent() method is implemented in NN6, the browser does not yet
provide a way to generate new events from scratch. And if you attempt to redirect an exist-
ing event to another object via the dispatchEvent() method, the browser is prone to
crashing. In other words, Mozilla-based browsers are much better candidates for scripts that
utilize dispatchEvent().

Example
Listing 15-25 demonstrates how to programmatically fire events using the W3C DOM
dispatchEvent() method. Notice the syntax in the doDispatch() function for creating and

Caution

Note

elementObject.contains()

281Chapter 15 ✦ Generic HTML Element Objects

initializing a new mouse event, supported most reliably in Mozilla-based browsers. The
behavior is identical to that of Listing 15-26, which demonstrates the IE5.5+ equivalent:
fireEvent().

Listing 15-25: Using the dispatchEvent() Method

<html>
<head>

<title></title>
<style type=”text/css”>
#mySPAN {font-style:italic}
</style>
<script type=”text/javascript”>
// assemble a couple event object properties
function getEventProps(evt) {

var msg = “”;
var elem = evt.target;
msg += “event.target.nodeName: “ + elem.nodeName + “\n”;
msg += “event.target.parentNode: “ + elem.parentNode.id + “\n”;
msg += “event button: “ + evt.button;
return msg;

}

// onClick event handlers for body, myP, and mySPAN
function bodyClick(evt) {

var msg = “Click event processed in BODY\n\n”;
msg += getEventProps(evt);
alert(msg);
checkCancelBubble(evt);

}
function pClick(evt) {

var msg = “Click event processed in P\n\n”;
msg += getEventProps(evt);
alert(msg);
checkCancelBubble(evt);

}
function spanClick(evt) {

var msg = “Click event processed in SPAN\n\n”;
msg += getEventProps(evt);
alert(msg);
checkCancelBubble(evt);

}

// cancel event bubbling if checkbox is checked
function checkCancelBubble(evt) {

if (document.controls.bubbleOn.checked) {
evt.stopPropagation();

}
}

// assign onClick event handlers to three elements
function init() {

document.body.onclick = bodyClick;
document.getElementById(“myP”).onclick = pClick;
document.getElementById(“mySPAN”).onclick = spanClick;

Continued

elementObject.dispatchEvent()

282 Part III ✦ Document Objects Reference

Listing 15-25 (continued)

}

// invoke fireEvent() on object whose ID is passed as parameter
function doDispatch(objID, evt) {

// create empty mouse event
var newEvt = document.createEvent(“MouseEvents”);
// initialize as click with button ID 3
newEvt.initMouseEvent(“click”, true, true, window, 0, 0, 0,

0, 0, false, false, false, false, 3, null);
// send event to element passed as param
document.getElementById(objID).dispatchEvent(newEvt);
// don’t let button clicks bubble
evt.stopPropagation();

}
</script>

</head>
<body id=”myBODY” onload=”init()”>

<h1>fireEvent() Method</h1>
<hr />
<p id=”myP”>This is a paragraph (with a nested

SPAN) that receives click events.</p>
<hr />
<p>Control Panel</p>
<form name=”controls”>

<p><input type=”checkbox” name=”bubbleOn”
onclick=”event.stopPropagation()” />Cancel event bubbling.</p>

<p><input type=”button” value=”Fire Click Event on BODY”
onclick=”doDispatch(‘myBODY’, event)” /></p>

<p><input type=”button” value=”Fire Click Event on myP”
onclick=”doDispatch(‘myP’, event)” /></p>

<p><input type=”button” value=”Fire Click Event on mySPAN”
onclick=”doDispatch(‘mySPAN’, event)” /></p>

</form>
</body>

</html>

Related Item: fireEvent() method.

fireEvent(“eventType”[, eventObjectRef])
Returns: Boolean.
Compatibility: WinIE5.5+, MacIE-, NN-, Moz-, Safari-

While some objects have methods that emulate physical events (for example, the click()
and focus() methods), WinIE5.5+ generalizes the mechanism by letting a script direct any
valid event to any object. The fireEvent() method is the vehicle.

One required parameter is the event type, formatted as a string. IE event types are coded just
like the property names for event handlers (for example, onclick, onmouseover, and so on).

A second, optional parameter is a reference to an existing event object. This object can be an
event that some user or system action triggers (meaning that the fireEvent() method is in a
function invoked by an event handler). The existing event can also be an object created by the
IE5.5+ document.createEventObject() method. In either case, the purpose of providing an

elementObject.dispatchEvent()

283Chapter 15 ✦ Generic HTML Element Objects

existing event object is to set the properties of the event object that the fireEvent() method
creates. The event type is defined by the method’s first parameter, but if you have other proper-
ties to set (for example, coordinates or a keyboard key code), then those properties are picked
up from the existing object. Here is an example of a sequence that creates a new mousedown
event, stuffs some values into its properties, and then fires the event at an element on the page:

var newEvent = document.createEventObject();
newEvent.clientX = 100;
newEvent.clientY = 30;
newEvent.cancelBubble = false;
newEvent.button = 1;
document.getElementById(“myElement”).fireEvent(“onmousedown”, newEvent);

Events generated by the fireEvent() method are just like regular IE window.event objects,
and they have several important event object properties that the browser presets. Importantly,
cancelBubble is set to false and returnValue is set to true— just like a regular user- or
system-induced event. This means that if you want to prevent event bubbling and/or prevent
the default action of the event’s source element, then the event handler functions must set
these event object properties just like normal event handling in IE.

The fireEvent() method returns a Boolean value that the returnValue property of the
event determines. If the returnValue property is set to false during event handling, the
fireEvent() method returns false. Under normal processing, the method returns true.

Although the W3C DOM Level 2 event model includes the dispatchEvent() method to
accommodate script-generated events (and Event object methods to create event objects),
Microsoft has so far elected to ignore the standard recommendation. While there is some sim-
ilarity between the basic operations of fireEvent() and dispatchEvent(), the two meth-
ods diverge significantly in advanced applications (for example, the way events can
propagate and the W3C notion of an Event object).

Example
Listing 15-26 contains script code that shows how to programmatically fire events using the
fireEvent() method. Three buttons in the example page enable you to direct a click event to
each of the three elements that have event handlers defined for them. The events fired this way
are artificial, generated via the createEventObject() method. For demonstration purposes,
the button property of these scripted events is set to 3. This property value is assigned to the
event object that eventually gets directed to an element. With event bubbling left on, the
events sent via fireEvent() behave just like the physical clicks on the elements. Similarly, if
you disable event bubbling, the first event handler to process the event cancels bubbling, and
no further processing of that event occurs. Notice that event bubbling is cancelled within the
event handlers that process the event. To prevent the clicks of the checkbox and action buttons
from triggering the body element’s onclick event handlers, event bubbling is turned off for the
buttons right away.

Listing 15-26: Using the fireEvent() Method

<html>
<head>

<title></title>
<style type=”text/css”>
#mySPAN {font-style:italic}
</style>

Continued

elementObject.fireEvent()

284 Part III ✦ Document Objects Reference

Listing 15-26 (continued)

<script type=”text/javascript”>
// assemble a couple event object properties
function getEventProps() {

var msg = “”;
var elem = event.srcElement;
msg += “event.srcElement.tagName: “ + elem.tagName + “\n”;
msg += “event.srcElement.id: “ + elem.id + “\n”;
msg += “event button: “ + event.button;
return msg;

}

// onClick event handlers for body, myP, and mySPAN
function bodyClick() {

var msg = “Click event processed in BODY\n\n”;
msg += getEventProps();
alert(msg);
checkCancelBubble();

}
function pClick() {

var msg = “Click event processed in P\n\n”;
msg += getEventProps();
alert(msg);
checkCancelBubble();

}
function spanClick() {

var msg = “Click event processed in SPAN\n\n”;
msg += getEventProps();
alert(msg);
checkCancelBubble();

}

// cancel event bubbling if checkbox is checked
function checkCancelBubble() {

event.cancelBubble = document.controls.bubbleOn.checked;
}

// assign onClick event handlers to three elements
function init() {

document.body.onclick = bodyClick;
document.getElementById(“myP”).onclick = pClick;
document.getElementById(“mySPAN”).onclick = spanClick;

}

// invoke fireEvent() on object whose ID is passed as parameter
function doFire(objID) {

var newEvt = document.createEventObject();
newEvt.button = 3;
document.all(objID).fireEvent(“onclick”, newEvt);
// don’t let button clicks bubble
event.cancelBubble = true;

}
</script>

</head>
<body id=”myBODY” onload=”init()”>

elementObject.fireEvent()

285Chapter 15 ✦ Generic HTML Element Objects

<h1>fireEvent() Method</h1>
<hr />
<p id=”myP”>This is a paragraph (with a nested

SPAN) that receives click events.</p>
<hr />
<p>Control Panel</p>
<form name=”controls”>

<p><input type=”checkbox” name=”bubbleOn”
onclick=”event.cancelBubble=true” />Cancel event bubbling.</p>

<p><input type=”button” value=”Fire Click Event on BODY”
onclick=”doFire(‘myBODY’)” /></p>

<p><input type=”button” value=”Fire Click Event on myP”
onclick=”doFire(‘myP’)” /></p>

<p><input type=”button” value=”Fire Click Event on mySPAN”
onclick=”doFire(‘mySPAN’)” /></p>

</form>
</body>

</html>

Related Item: dispatchEvent() method.

focus()
(See blur())

getAdjacentText(“position”)
Returns: String.
Compatibility: WinIE5+, MacIE-, NN-, Moz-, Safari-

The getAdjacentText() method enables you to extract copies of plain-text components of
an element object (in other words, without any HTML tag information). The sole parameter is
one of four case-insensitive string constant values that indicate from where, in relation to the
current object, the text should be extracted. The values are:

Parameter Value Description

beforeBegin Text immediately in front of the element’s tag, back to the preceding tag

afterBegin Text that begins inside the element tag, up to the next tag (whether it be a
nested element or the element’s end tag)

beforeEnd Text immediately in front of the element’s end tag, back to the preceding tag
(whether it be a nested element or the element’s start tag)

afterEnd Text immediately following the element’s end tag, forward until the next tag

If the current object has no nested elements, then the afterBegin and beforeEnd versions
both return the same as the object’s innerText property. When the current object is encased
immediately within another element (for example, a td element inside a tr element), there is
no text before the element’s beginning or after the element’s end so these values are returned
as empty strings.

elementObject.getAdjacentText()

286 Part III ✦ Document Objects Reference

The strings returned from this method are roughly equivalent to values of text fragment
nodes in the W3C DOM, but IE5+ treats these data pieces only as string data types rather than
as text node types. W3C DOM equivalents for the four versions are:

document.getElementById(“objName”).previousSibling.nodeValue
document.getElementById(“objName”).firstChild.nodeValue
document.getElementById(“objName”).lastChild.nodeValue
document.getElementById(“objName”).nextSibling.nodeValue

Example
Use The Evaluator (Chapter 13) to examine all four adjacent text possibilities for the myP and
nested myEM elements in that document. Enter each of the following statements into the
upper text box, and view the results:

document.getElementById(“myP”).getAdjacentText(“beforeBegin”)
document.getElementById(“myP”).getAdjacentText(“afterBegin”)
document.getElementById(“myP”).getAdjacentText(“beforeEnd”)
document.getElementById(“myP”).getAdjacentText(“afterEnd”)

The first and last statements return empty strings because the myP element has no text frag-
ments surrounding it. The afterBegin version returns the text fragment of the myP element
up to, but not including, the EM element nested inside. The beforeEnd string picks up after
the end of the nested EM element and returns all text to the end of myP.

Now, see what happens with the nested myEM element:

document.getElementById(“myEM”).getAdjacentText(“beforeBegin”)
document.getElementById(“myEM”).getAdjacentText(“afterBegin”)
document.getElementById(“myEM”).getAdjacentText(“beforeEnd”)
document.getElementById(“myEM”).getAdjacentText(“afterEnd”)

Because this element has no nested elements, the afterBegin and beforeEnd strings are
identical — the same value as the innerText property of the element.

Related Items: childNodes, data, firstChild, lastChild, nextSibling, nodeValue, and
previousSibling properties.

getAttribute(“attributeName”[, caseSensitivity])
Returns: See text.
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

The getAttribute() method returns the value assigned to a specific attribute of the current
object. You can use this method as an alternative to retrieving properties of an object, partic-
ularly when your script presents you with the attribute name as a string (in contrast to a fully
formed reference to an object and its property). Thus, the following example statements yield
the same data:

var mult = document.getElementById(“mySelect”).multiple;
var mult = document.getElementById(“mySelect”).getAttribute(“multiple”);

Returned value types from getAttribute() are either strings (including attribute values
assigned as unquoted numeric values) or Booleans (for example, the multiple property of a
select element object).

The W3C DOM Level 2 standard recommends getAttribute() and setAttribute() for
reading and writing element object attribute values, rather than reading and writing those
values by way of their corresponding properties. While using these methods is certainly
advisable for XML elements, the same DOM standard sends conflicting signals by defining all

Note

elementObject.getAdjacentText()

287Chapter 15 ✦ Generic HTML Element Objects

kinds of properties for HTML element objects. Browsers, of course, will support access via
properties well into the future, so don’t feel obligated to change your ways just yet.

All browsers that support the getAttribute() method require one parameter, which is a
string of the attribute name. By default, this parameter is not case-sensitive. Note that this
has impact on custom attributes that you might assign to HTML or XML elements in your
documents. Attribute names are automatically converted to lowercase when they are turned
into properties of the object. Therefore, you must avoid reusing attribute names, even if you
use different case letters in the source code assignments.

IE includes an optional extension to the method in the form of a second parameter that
enables you to be more specific about the case-sensitivity of the first parameter. The default
value of the second parameter is false, which means that the first parameter is not case-
sensitive. A value of true makes the first parameter case-sensitive. This matters only if you
use setAttribute() to add a parameter to an existing object and if the IE version of that
method insists on case-sensitivity. The default behavior of setAttribute() respects the
case of the attribute name. See also the discussion of the setAttribute() method later in
this chapter with regard to setAttribute()’s influence over the IE attributes property.

Example
Use The Evaluator (Chapter 13) to experiment with the getAttribute() method for the ele-
ments in the page. For IE4, use the document.all notation. IE5+ and W3C browsers under-
stand the W3C standard getElementById() method of addressing an element. You can enter
the following sample statements into the top text box to view attribute values.

IE4:

document.all.myTable.getAttribute(“width”)
document.all.myTable.getAttribute(“border”)

IE5+/W3C:

document.getElementById(“myTable”).getAttribute(“width”)
document.getElementById(“myTable”).getAttribute(“border”)

Related Items: attributes property; document.createAttribute(), setAttribute()
methods.

getAttributeNode(“attributeName”)
Returns: Attribute node object.
Compatibility: WinIE6+, MacIE-, NN6+, Moz1+, Safari1+

In the W3C DOM, an attribute is an object that inherits all the properties of a Node object (see
Chapter 14). As its name implies, an attribute object represents a name–value pair of an
attribute that is explicitly defined inside an element’s tag. The ability to treat attributes as node
objects is far more important when working with XML than HTML, but it is helpful to under-
stand attribute nodes within the context of the W3C DOM object-oriented view of a document.
Importantly, attribute nodes specifically are not recognized as nodes of a document hierarchy.
Therefore, an attribute node is not a child node of the element that defines the attribute.

The “nodeness” of attributes comes into play when addressing the contents of an object’s
attributes property. The W3C attributes property builds on the DOM’s formal structure
by returning an object known (internally) as a named node map. Like an array, the named
node map has a length property (facilitating for loop interation through the map), plus sev-
eral methods that allow for inserting, removing, reading, or writing attribute name–value
pairs within the node map.

elementObject.getAttributeNode()

288 Part III ✦ Document Objects Reference

An attribute object inherits all the properties of the Node object. Table 15-9 lists the proper-
ties of an attribute object.

Table 15-9: Attribute Object Properties
of W3C DOM–Compatible Browsers

attributes
childNodes
firstChild
lastChild
name
nextSibling
nodeName
nodeType
nodeValue
ownerDocument
parentNode
previousSibling
specified
Value

All of this is a long way to explain the W3C DOM getAttributeNode() method, which returns
a W3C DOM attribute object. The sole parameter of the method is a case-insensitive string ver-
sion of the attribute’s name. You can then use any of the properties shown in Table 15-9 to get
or set attribute values. Of course, HTML attributes are generally exposed as properties of
HTML elements, so it is usually easier to read or write the object’s properties directly.

Example
Use The Evaluator (Chapter 13) to explore the getAttributeNode() method in NN6. The
Results textarea element provides several attributes to check out. Because the method
returns an object, enter the following statements into the bottom text field so you can view
the properties of the attribute node object returned by the method:

document.getElementById(“output”).getAttributeNode(“cols”)
document.getElementById(“output”).getAttributeNode(“rows”)
document.getElementById(“output”).getAttributeNode(“wrap”)
document.getElementById(“output”).getAttributeNode(“style”)

All (except the last) statements display a list of properties for each attribute node object. The
last statement, however, returns nothing because the style attribute is not specified for the
element.

Related Items: attributes property; getAttribute(), removeAttributeNode(),
setAttributeNode() methods.

getAttributeNodeNS(“namespaceURI”, “localName”)
Returns: Attribute node object.
Compatibility: WinIE-, MacIE-, NN6+, Moz1+, Safari-

elementObject.getAttributeNode()

289Chapter 15 ✦ Generic HTML Element Objects

This method returns a W3C DOM attribute object. The first parameter of the method is a URI
string matching a URI assigned to a label in the document. The second parameter is the local
name portion of the attribute you are getting.

Related Items: attributes, namespaceURI, localName properties; getAttributeNode(),
setAttributeNodeNS() methods.

getAttributeNS(“namespaceURI”, “localName”)
Returns: See text.
Compatibility: WinIE-, MacIE-, NN6+, Moz1+, Safari-

This method returns the value assigned to a specific attribute of the current object when that
attribute’s name is defined by way of an XML namespace definition within the document. The
first parameter of the method is a URI string matching a URI assigned to a namespace label in
a tag defined earlier in the document. The second parameter is the local name portion of the
attribute whose value you are getting.

Returned value types from getAttributeNS() are either strings (including attribute values
assigned as unquoted numeric values) or Booleans (for example, the multiple property of a
select element object).

Related Items: attributes, namespaceURI, localName properties; getAttribute(),
getAttributeNodeNS(), setAttributeNodeNS() methods.

getBoundingClientRect()
Returns: TextRectangle object.
Compatibility: WinIE5+, MacIE-, NN-, Moz-, Safari-

IE5+ assigns to every content-holding element a rectangle that describes the space that
the element occupies on the page. This rectangle is called a bounding rectangle, and it is
expressed in the WinIE5+ object model as a TextRectangle object (even when the content
is an image or some other kind of object). A TextRectangle object has four properties
(top, left, bottom, and right) that are the pixel coordinates that define the rectangle.
The getBoundingClientRect() method returns a TextRectangle object that describes
the bounding rectangle of the current object. You can access an individual measure of an
object’s bounding rectangle, as in the following example:

var parTop = document.getElementById(“myP”).getBoundingClientRect().top;

For elements that consist of text, such as paragraphs, the dimensions of individual
TextRectangles for each line of text in the element influence the dimensions of the bounding
rectangle. For example, if a paragraph contains two lines, and the second line extends only
halfway across the width of the first line, the width of the second line’s TextRectangle object
is only as wide as the actual text in the second line. But because the first line extends close to
the right margin, the width of the encompassing bounding rectangle is governed by that wider,
first line TextRectangle. Therefore, an element’s bounding rectangle is as wide as its widest
line and as tall as the sum of the height of all TextRectangle objects in the paragraph.

Another method, getClientRects(), enables you to obtain a collection of line-by-line
TextRectangle objects for an element.

Example
Listing 15-27 employs both the getBoundingClientRect() and getClientRects() methods
in a demonstration of how they differ. A set of elements are grouped within a span element
named main. The group consists of two paragraphs and an unordered list.

elementObject.getBoundingClientRect()

290 Part III ✦ Document Objects Reference

Two controls enable you to set the position of an underlying highlight rectangle to any line of
your choice. A checkbox enables you to set whether the highlight rectangle should be only as
wide as the line or the full width of the bounding rectangle for the entire span element.

All the code is located in the hilite() function. The select and checkbox elements invoke
this function. Early in the function, the getClientRects() method is invoked for the main
element to capture a snapshot of all TextRectangles for the entire element. This array
comes in handy when the script needs to get the coordinates of a rectangle for a single line,
as chosen in the select element.

Whenever the user chooses a number from the select list and the value is less than the total
number of TextRectangle objects in clientRects, the function begins calculating the size
and location of the underlying yellow highlighter. When the Full Width checkbox is checked,
the left and right coordinates are obtained from the getBoundingClientRect() method
because the entire span element’s rectangle is the space you’re interested in; otherwise, you
pull the left and right properties from the chosen rectangle in the clientRects array.

Next comes the assignment of location and dimension values to the hiliter object’s style
property. The top and bottom are always pegged to whatever line is selected, so the
clientRects array is polled for the chosen entry’s top and bottom properties. The previ-
ously calculated left value is assigned to the hiliter object’s pixelLeft property, while the
width is calculated by subtracting the left from the right coordinates. Notice that the top
and left coordinates also take into account any vertical or horizontal scrolling of the entire
body of the document. If you resize the window to a smaller size, line wrapping throws off the
original line count. However, an invocation of hilite() from the onresize event handler
applies the currently chosen line number to whatever content falls in that line after resizing.

Listing 15-27: Using getBoundingClientRect()

<html>
<head>

<title>getClientRects() and getBoundClientRect() Methods</title>
<script type=”text/javascript”>
function hilite() {

var hTop, hLeft, hRight, hBottom, hWidth;
var select = document.forms[0].choice;
var n = parseInt(select.options[select.selectedIndex].value) - 1;
var clientRects = document.getElementById(“main”).getClientRects();
var mainElem = document.getElementById(“main”);
if (n >= 0 && n < clientRects.length) {

if (document.forms[0].fullWidth.checked) {
hLeft = mainElem.getBoundingClientRect().left;
hRight = mainElem.getBoundingClientRect().right;

} else {
hLeft = clientRects[n].left;
hRight = clientRects[n].right;

}
document.getElementById(“hiliter”).style.pixelTop =

clientRects[n].top + document.body.scrollTop;
document.getElementById(“hiliter”).style.pixelBottom =

clientRects[n].bottom;
document.getElementById(“hiliter”).style.pixelLeft =

hLeft + document.body.scrollLeft;
document.getElementById(“hiliter”).style.pixelWidth =

hRight - hLeft;
document.getElementById(“hiliter”).style.visibility = “visible”;

} else if (n > 0) {

elementObject.getBoundingClientRect()

291Chapter 15 ✦ Generic HTML Element Objects

alert(“The content does not have that many lines.”);
document.getElementById(“hiliter”).style.visibility = “hidden”;

}
}
</script>

</head>
<body onresize=”hilite()”>

<h1>getClientRects() and getBoundClientRect() Methods</h1>
<hr />
<form>

Choose a line to highlight: <select name=”choice” onchange=”hilite()”>
<option value=”1”>1</option>
<option value=”2”>2</option>
<option value=”3”>3</option>
<option value=”4”>4</option>
<option value=”5”>5</option>
<option value=”6”>6</option>
<option value=”7”>7</option>
<option value=”8”>8</option>
<option value=”9”>9</option>
<option value=”10”>10</option>
<option value=”11”>11</option>
<option value=”12”>12</option>
<option value=”13”>13</option>
<option value=”14”>14</option>
<option value=”15”>15</option>

</select>

<input name=”fullWidth” type=”checkbox” onclick=”hilite()” /> Full
Width (bounding rectangle)

</form>

<p>Lorem ipsum dolor sit amet, consectetaur adipisicing

elit, sed do eiusmod tempor incididunt ut labore et dolore magna
aliqua. Ut enim adminim veniam, quis nostrud exercitation
ullamco:</p>

laboris
nisi
aliquip ex ea commodo

<p>Duis aute irure dolor in reprehenderit involuptate velit esse cillum

dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non
proident, sunt in culpa qui officia deseruntmollit anim id est laborum
Et harumd und lookum like Greek to me, dereud facilis est er expedit
distinct.</p>

<div id=”hiliter”
style=”position:absolute; background-color:yellow; z-index:-1;
visibility:hidden”>
</div>

</body>
</html>

Because the z-index style property of the hiliter element is set to -1, the element always
appears beneath the primary content on the page. If the user selects a line number beyond
the current number of lines in the main element, the hiliter element is hidden.

Related Items: getClientRects() method; TextRectangle object (Chapter 35).

elementObject.getBoundingClientRect()

292 Part III ✦ Document Objects Reference

getClientRects()
Returns: Array of TextRectangle objects.
Compatibility: WinIE5+, MacIE-, NN-, Moz-, Safari-

The getClientRects() method returns an array of all TextRectangle objects that fall
within the current object the moment the method is invoked. Each TextRectangle object
has its own top, left, bottom, and right coordinate properties. You can then, for example,
loop through all objects in this array to calculate the pixel width of each line. If you want to
find out the aggregate height and/or maximum width of the entire collection, you can use the
getBoundingClientRect() method as a shortcut.

Example
See Listing 15-27, which demonstrates the differences between getClientRects() and
getBoundingClientRect() and shows how you can use the two together.

Related Items: getBoundingClientRect() method; TextRectangle object (Chapter 35).

getElementsByTagName(“tagName”)
Returns: Array of element objects.
Compatibility: WinIE5+, MacIE5+, NN6+, Moz1+, Safari1+

The getElementsByTagName() method returns an array of all elements contained by the cur-
rent object whose tags match the tag name supplied as the sole parameter to the method.
The tag name parameter must be in the form of a string and is case-insensitive. The group of
elements returned in the array includes only those elements that are within the containment
scope of the current object. Therefore, if you have two table objects in a document and you
invoke the getElementsByTagName(“td”) method on one of them, the list of returned table
cell elements is confined to those cells within the current table object. The current element is
not included in the returned array.

The method accepts a wildcard character (“*”) as a parameter to the getElementsByTag
Name() method. The resulting array of elements is nearly identical to what IE4+ returns via
the document.all collection.

Example
Use The Evaluator (Chapter 13) to experiment with the getElementsByTagName() method.
Enter the following statements one at a time into the upper text box and study the results:

document.body.getElementsByTagName(“div”)
document.body.getElementsByTagName(“div”).length
document.getElementById(“myTable”).getElementsByTagName(“td”).length

Because the getElementsByTagName() method returns an array of objects, you can use one
of those returned values as a valid element reference:

document.getElementsByTagName(“form”)[0].getElementsByTagName(“input”).length

Related Items: getElementByTagNameNS(), getElementById(), tags() methods.

getElementsByTagNameNS(“namespaceURI”, “localName”)
Returns: Array of element objects.
Compatibility: WinIE-, MacIE-, NN6+, Moz1+, Safari-

elementObject.getClientRects()

293Chapter 15 ✦ Generic HTML Element Objects

This method returns an array of all elements contained by the current object (within an XML
document) as specified in the two parameters. The first parameter of the method is a URI
string matching a URI assigned to a label in the document. The second parameter is the local
name portion of the attribute whose value you are getting.

Returned value types from getAttributeNS() are either strings (including attribute values
assigned as unquoted numeric values) or Booleans (for example, the multiple property of a
select element object).

Related Items: attributes, namespaceURI, localName properties;
getElementsByTagNameNS(), getElementById(), tags() methods.

getExpression(“attributeName”)
Returns: String.
Compatibility: WinIE5+, MacIE-, NN-, Moz-, Safari-

The getExpression() method returns the text of the expression that was assigned to an ele-
ment’s attribute via the setExpression() method. The returned value is not the value of the
expression, but rather the expression itself. If you want to find out the current value of the
expression (assuming that the variables used are within the scope of your script), you can
use the eval() function on the call to getExpression(). This action converts the string to a
JavaScript expression and returns the evaluated result.

One parameter, a string version of the attribute name, is required.

Example
See Listing 15-32 for the setExpression() method. This listing demonstrates the kinds of
values returned by getExpression().

Related Items: document.recalc(), removeExpression(), setExpression() methods.

hasAttribute(“attributeName”)
Returns: Boolean.
Compatibility: WinIE-, MacIE-, NN6+, Moz1+, Safari1+

The hasAttribute() method returns true if the current object has an attribute whose name
matches the sole parameter; it returns false otherwise.

Related Items: hasAttributeNS() and hasAttributes() methods.

hasAttributeNS(“namespaceURI”, “localName”)
Returns: Boolean.
Compatibility: WinIE-, MacIE-, NN6+, Moz1+, Safari-

The hasAttributeNS() method returns true if the current object has an attribute as identi-
fied by the two parameters; it returns false otherwise. The first parameter of the method is
a URI string matching a URI assigned to a label in the document. The second parameter is the
local name portion of the attribute whose value you are getting.

Related Items: attributes, namespaceURI, localName properties; hasAttribute() and
hasAttributes() methods.

hasAttributes()
Returns: Boolean.
Compatibility: WinIE-, MacIE-, NN6+, Moz1+, Safari1+

elementObject.hasAttributes()

294 Part III ✦ Document Objects Reference

The hasAttributes() method returns true if the current object has any attributes explicitly
assigned within the tag; it returns false otherwise.

Related Items: hasAttribute() and hasAttributeNS() methods.

hasChildNodes()
Returns: Boolean.
Compatibility: WinIE5+, MacIE5+, NN6+, Moz1+, Safari1+

The hasChildNodes() method returns true if the current object has child nodes nested
within; it returns false otherwise. A child node is not necessarily the same as a child ele-
ment, so the following two expressions return true when the current object has at least one
child node:

document.getElementById(“myObject”).hasChildNodes()
document.getElementById(“myObject”).childNodes.length > 0

You cannot use the second expression interchangeably with the following statement (which
uses the IE-only children property):

document.getElementById(“myObject”).children.length > 0

You generally use the hasChildNodes() method in a conditional expression to make sure
such nodes exist before performing operations on them:

if (document.getElementById(“myObject”).hasChildNodes() {
statements that apply to child nodes

}

Example
Use The Evaluator (Chapter 13) to experiment with the hasChildNodes() method. If you
enter the following statement into the topmost text box:

document.getElementById(“myP”).hasChildNodes()

the returned value is true. You can find out how many nodes there are by getting the length
of the childNodes array:

document.getElementById(“myP”).childNodes.length

This expression reveals a total of three nodes: the two text nodes and the em element
between them. Check out whether the first text node has any children:

document.getElementById(“myP”).childNodes[0].hasChildNodes()

The response is false because text fragments do not have any nested nodes. But check out
the em element, which is the second child node of the myP element:

document.getElementById(“myP”).childNodes[1].hasChildNodes()

The answer is true because the em element has a text fragment node nested within it. Sure
enough, the statement

document.getElementById(“myP”).childNodes[1].childNodes.length

yields a node count of 1. You can also go directly to the em element in your references:

document.getElementById(“myEM”).hasChildNodes()
document.getElementById(“myEM”).childNodes.length

elementObject.hasAttributes()

295Chapter 15 ✦ Generic HTML Element Objects

If you want to see the properties of the text fragment node inside the em element, enter the
following into the lower text box:

document.getElementById(“myEM”).childNodes[0]

You can see that the data and nodeValue properties for the text fragment return the text “all”.

Related Items: childNodes property; appendChild(), removeChild(), replaceChild()
methods.

insertAdjacentElement(“location”, elementObject)
Returns: Object.
Compatibility: WinIE5+, MacIE-, NN-, Moz-, Safari-

The insertAdjacentElement() method inserts an element object (coming from a variety of
sources) in a specific position relative to the current object. Both parameters are required.
The first must be one of four possible case-insensitive locations for the insertion, shown in
the following table:

Location Description

beforeBegin Before the current element’s start tag

afterBegin After the start tag, but before any nested content

beforeEnd Before the end tag, but after all other nested content

afterEnd After the end tag

These locations are relative to the current object. The element type of the current object (a
block-level or inline element) has great bearing on how the inserted element is rendered. For
example, suppose you create a b element (using document.createElement()) and assign
some inner text to it. You then use insertAdjacentElement() in an effort to insert this b
element before some text in a p element. Because a p element is a block-level element, the
location beforeBegin places the new b element before the start tag of the p element. This
means, however, that the bold text appears in a text line above the start of the p element
because a <p> tag begins a new block at the left margin of its container (unless instructed
otherwise by stylesheets). The resulting HTML looks like the following:

The new element.<p>The original paragraph element.</p>

To make the new b element a part of the p element — but in front of the existing p element’s
content — use the afterBegin location. The resulting HTML looks like the following:

<p>The new element.The original paragraph element.</p>

To complete the demonstration of the four location types, the following is the result of the
beforeEnd location:

<p>The original paragraph element. The new element.</p>

and this is the result of the afterEnd location:

<p>The original paragraph element.</p>The new element.

The object to be inserted is a reference to an element object. The object reference can
come from any expression that evaluates to an element object or, more likely, from the
result of the document.createElement() method. Bear in mind that the object generated

elementObject.insertAdjacentElement()

296 Part III ✦ Document Objects Reference

by document.createElement() initially has no content, and all attribute values are set to
default values. Moreover, the object is passed to insertAdjacentElement() by reference,
which means that there is only one instance of that object. If you attempt to insert that
object in two places with two statements, the object is moved from the first location to the
second. If you need to copy an existing object so that the original is not moved or other-
wise disturbed by this method, use the cloneNode() method to specify the true parame-
ter to capture all nested content of the node.

Example
Use The Evaluator (Chapter 13) to experiment with the insertAdjacentElement() method.
The goal of the experiment is to insert a new h1 element above the myP element.

All actions require you to enter a sequence of statements in the topmost text box. Begin by
storing a new element in the global variable a:

a = document.createElement(“h1”)

Give the new object some text:

a.innerText = “New Header”

Now, insert this element before the start of the myP object:

myP.insertAdjacentElement(“beforeBegin”, a)

Notice that you have not assigned an id property value to the new element. But because the
element was inserted by reference, you can modify the inserted object by changing the object
stored in the a variable:

a.style.color = “red”

The inserted element is also part of the document hierarchy, so you can access it through
hierarchy references such as myP.previousSibling.

The parent element of the newly inserted element is the body. Thus, you can inspect the cur-
rent state of the HTML for the rendered page by entering the following statement into the top-
most text box:

document.body.innerHTML

If you scroll down past the first form, you can find the <h1> element that you added along
with the style attribute.

Related Items: document.createElement(), applyElement() methods.

insertAdjacentHTML(“location”, “HTMLtext”)
insertAdjacentText(“location”, “text”)

Returns: Nothing.
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-

These two methods insert HTML or straight text at a location relative to the current element.
They are intended for use after a page loads, rather than inserting content while the page
loads (in which case you can use document.write() wherever you need evaluated content
to appear on the page).

The first parameter must be one of four possible case-insensitive locations for the insertion,
shown in the following table:

elementObject.insertAdjacentElement()

297Chapter 15 ✦ Generic HTML Element Objects

Location Description

beforeBegin Before the current element’s start tag

afterBegin After the start tag, but before any nested content

beforeEnd Before the end tag, but after all other nested content

afterEnd After the end tag

These locations yield the same results as described in the insertAdjacentElement() func-
tion discussed earlier.

Whether you use insertAdjacentHTML() or insertAdjacentText() depends on the nature
of your content and what you want the browser to do with it. If the content contains HTML
tags that you want the browser to interpret and render as if it were part of the page source
code, use the insertAdjacentHTML() method. All tags become objects in the document’s
object model. But if you want only to display some text (including HTML tags in their “raw”
form), use insertAdjacentText(). The rendering engine does not interpret any tags
included in the string passed as the second parameter. Instead, these tags are displayed as
characters on the page. This distinction is identical to the one between the innerHTML and
innerText properties.

The difference between insertAdjacentHTML() and insertAdjacentElement() is the
nature of the content that you insert. The former enables you to accumulate the HTML as a
string, while the latter requires the creation of an element object. Also, the two methods in
this section work with IE4+ (including Mac versions), whereas insertAdjacentElement()
requires the newer object model of WinIE5+.

If the HTML you pass as the second parameter of insertAdjacentHTML() contains
<script> tags, you must set the defer attribute in the opening tag. This prevents script
statements from executing as you insert them.

Example
Use The Evaluator (Chapter 13) to experiment with these two methods. The example here
demonstrates the result of employing both methods in an attempt to add some HTML to the
beginning of the myP element.

Begin by assigning a string of HTML code to the global variable a:

a = “<b id=’myB’>Important News!”

Because this HTML is to go on the same line as the start of the myP paragraph, use the
afterBegin parameter for the insert method:

myP.insertAdjacentHTML(“afterBegin”, a)

Notice that there is no space after the exclamation mark of the inserted HTML. But to prove
that the inserted HTML is genuinely part of the document’s object model, you can now insert
the text of a space after the b element whose ID is myB:

myB.insertAdjacentText(“afterEnd”, “ “)

Each time you evaluate the preceding statement (by repeatedly clicking the Evaluate button
or pressing Enter with the cursor in the topmost field), an additional space is added.

elementObject.insertAdjacentHTML()

298 Part III ✦ Document Objects Reference

You should also see what happens when the string to be inserted with insertAdjacentText()
contains HTML tags. Reload The Evaluator and enter the following two statements into the top-
most field, evaluating each one in turn:

a = “<b id=’myB’>Important News!”
myP.insertAdjacentText(“afterBegin”, a)

The HTML is not interpreted but is displayed as plain text. There is no object named myB
after executing this latest insert method.

Related Items: innerText, innerHTML, outerText, outerHTML properties;
insertAdjacentElement(), replaceAdjacentText() methods.

insertBefore(newChildNodeObject, referenceChildNode)
Returns: Node object.
Compatibility: WinIE5+, MacIE5+, NN6+, Moz1+, Safari1+

The insertBefore() method is the W3C DOM syntax for inserting a new child node into an
existing element. Node references for both parameters must be valid Node objects (including
those that document.createElement() generates).

The behavior of this method might seem counterintuitive at times. If you include the second
parameter (a reference to an existing child node of the current element — optional in IE), the
new child node is inserted before that existing one. But if you omit the second parameter (or its
value is null), the new child node is inserted as the last child of the current element — in
which case, the method acts the same as the appendChild() method. The true power of this
method is summoned when you specify that second parameter; from the point of view of a par-
ent element, you can drop a new child into any spot among its existing children. If an inserted
node already exists in the document tree, it will be removed from its previous position.

Bear in mind that the insertBefore() method works from a parent element. Internet
Explorer provides additional methods, such as insertAdjacentElement(), to operate from
the perspective of what will become a child element.

Example
Listing 15-28 demonstrates how the insertBefore() method can insert child elements (li)
inside a parent (ol) at different locations, depending on the second parameter. A text box
enables you to enter your choice of text and/or HTML for insertion at various locations within
the ol element. If you don’t specify a position, the second parameter of insertBefore() is
passed as null— meaning that the new child node is added to the end of the existing children.
But choose a spot from the select list where you want to insert the new item. The value of each
select list option is an index of one of the first three child nodes of the ol element.

Listing 15-28: Using the insertBefore() Method

<html>
<head>

<title>insertBefore() Method</title>
<script type=”text/javascript”>
function doInsert(form) {

if (form.newText) {
var newChild = document.createElement(“LI”);
newChild.innerHTML = form.newText.value;
var choice =

form.itemIndex.options[form.itemIndex.selectedIndex].value;

elementObject.insertAdjacentHTML()

299Chapter 15 ✦ Generic HTML Element Objects

var insertPoint = (isNaN(choice)) ?
null : document.getElementById(“myUL”).childNodes[choice];

document.getElementById(“myUL”).insertBefore(newChild,
insertPoint);

}
}
</script>

</head>
<body>

<h1>insertBefore() Method</h1>
<hr />
<form onsubmit=”return false”>

<p>Enter text or HTML for a new list item: <input type=”text”
name=”newText” size=”40” value=”” /></p>

<p>Before which existing item? <select name=”itemIndex”>
<option value=”null”>None specified</option>
<option value=”0”>1</option>
<option value=”1”>2</option>
<option value=”2”>3</option>

</select></p>
<input type=”button” value=”Insert Item”
onclick=”doInsert(this.form)” />

</form>
<ol id=”myUL”>

Originally the First Item
Originally the Second Item
Originally the Third Item

</body>

</html>

Related Items: appendChild(), replaceChild(), removeChild(),
insertAdjacentElement() methods.

isSupported(“feature”, “version”)
Returns: Boolean.
Compatibility: WinIE-, MacIE-, NN6+, Moz1+, Safari1+

The isSupported() method returns true if the current node supports required portions of
the specified W3C DOM module and version; it returns false otherwise. The first parameter
accepts any of the following case-sensitive DOM module name strings: Core, XML, HTML, Views,
StyleSheets, CSS, CSS2, Events, UIEvents, MouseEvents, MutationEvents, HTMLEvents,
Range, Traversal. The second parameter accepts a string representation of the major and
minor DOM module version, such as “2.0” for DOM Level 2.

Example
Use The Evaluator (Chapter 13) to experiment with the isSupported() method. If you have
multiple versions of NN6 or later and Mozilla, try the following (and others) to see how the
support for various modules has evolved:

document.body.isSupported(“CSS”, “2.0”)
document.body.isSupported(“CSS2”, “2.0”)
document.body.isSupported(“Traversal”, “2.0”)

If you have access to Safari, try the same methods there to see the differences in modules
supported compared to Mozilla-based browsers.

elementObject.isSupported()

300 Part III ✦ Document Objects Reference

item(index | “index” [, subIndex])
Returns: Object.
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

The item() method works with most objects that are themselves collections of other
objects. In W3C DOM terminology, these kinds of objects are known as named node lists (for
objects such as nodes and attributes) or HTML collections (for objects such as elements of a
form). You may call the item() method with a single numeric parameter that is the index
value of the desired object within the collection. If you know the index number of the item,
you can use JavaScript array syntax instead. The following two statements return the same
object reference:

document.getElementById(“myTable”).childNodes.item(2)
document.getElementById(“myTable”).childNodes[2]

The method also supports a string of the ID of an object within the collection. (Integer values
are required for the attributes, rules, and TextRectangle objects, however.) Additionally,
if the collection has more than one object with the same ID (never a good idea except when
necessary), a second numeric parameter enables you to select which identically named
group you want (using zero-based index values within that subgroup). This obviously does
not apply to collections, such as attributes and rules, which have no ID associated with them.

The method returns a reference to the object specified by the parameters.

Example
Use The Evaluator (Chapter 13) to experiment with the item() method. Type the following
statements into the topmost text box and view the results for each.

W3C and IE5:

document.getElementById(“myP”).childNodes.length
document.getElementById(“myP”).childNodes.item(0).data
document.getElementById(“myP”).childNodes.item(1).nodeName

W3C, IE4, and IE5:

document.forms[1].elements.item(0).type

IE4 and IE5:

document.all.item(“myP”).outerHTML
myP.outerHTML

In the last two examples, both statements return the same string. The first example is helpful
when your script is working with a string version of an object’s name. If your script already
knows the object reference, the second approach is more efficient and compact.

Related Items: All object element properties that return collections (arrays) of other objects.

mergeAttributes(“sourceObject”)
Returns: Nothing.
Compatibility: WinIE5+, MacIE-, NN-, Moz-, Safari-

The mergeAttributes() method is a convenient way to propagate attributes in newly cre-
ated elements without painstakingly adding attributes one at a time. Once you have an object
whose attributes can function as a prototype for other elements, those attributes (except for
the id attribute) can be applied to a newly created element instantaneously.

elementObjectCollection.item()

301Chapter 15 ✦ Generic HTML Element Objects

Example
Listing 15-29 demonstrates the usage of mergeAttributes() in the process of replicating the
same form input field while assigning a unique ID to each new field. So you can see the results
as you go, I display the HTML for each input field in the field.

The doMerge() function begins by generating two new elements: a p element and an input
element. Because these newly created elements have no properties associated with them, a
unique ID is assigned to the input element via the uniqueID property. Attributes from the
field in the source code (field1) are merged into the new input element. Thus, all attributes
except name and id are copied to the new element. The input element is inserted into
the p element, and the p element is appended to the document’s form element. Finally, the
outerHTML of the new element is displayed in its field. Notice that except for the name and
id attributes, all others are copied. This includes stylesheet attributes and event handlers.
To prove that the event handler works in the new elements, you can add a space to any one
of them and press Tab to trigger the onchange event handler that changes the content to all
uppercase characters.

Listing 15-29: Using the mergeAttributes() Method

<html>
<head>

<title>mergeAttributes() Method</title>
<script type=”text/javascript”>
function doMerge(form) {

var newPElem = document.createElement(“p”);
var newInputElem = document.createElement(“input”);
newInputElem.id = newInputElem.uniqueID;
newInputElem.mergeAttributes(form.field1);
newPElem.appendChild(newInputElem);
form.appendChild(newPElem);
newInputElem.value = newInputElem.outerHTML;

}

// called by onChange event handler of fields
function upperMe(field) {

field.value = field.value.toUpperCase();
}
</script>

</head>
<body
onload=”document.expandable.field1.value =

document.expandable.field1.outerHTML”>
<h1>mergeAttributes() Method</h1>
<hr />
<form name=”expandable” onsubmit=”return false”>

<p><input type=”button” value=”Append Field ‘Clone’”
onclick=”doMerge(this.form)” /></p>

<p><input type=”text” name=”field1” id=”FIELD1” size=”120” value=””
style=”font-size:9pt” onchange=”upperMe(this)” /></p>

</form>
</body>

</html>

Related Items: clearAttributes(), cloneNode(), removeAttributes() methods.

elementObject.mergeAttributes()

302 Part III ✦ Document Objects Reference

normalize()
Returns: Nothing.
Compatibility: WinIE-, MacIE-, NN6+, Moz1+, Safari-

In the course of appending, inserting, removing, and replacing child nodes of an element, it is
conceivable that two text nodes can end up adjacent to each other. While this typically has no
effect on the rendering of the content, some XML-centric applications that rely heavily on the
document node hierarchy to interpret content properly may not like having two text nodes sit-
ting next to each other. The “proper” form of a node hierarchy is for a single text node to be
bounded by other node types. The normalize() method sweeps through the child nodes of
the current node object and combines adjacent text nodes into a single text node. The effect
obviously impacts the number of child nodes of an element, but it also cleanses the nested
node hierarchy.

Example
Use The Evaluator (Chapter 13) to experiment with the normalize() method in Mozilla-
based browsers. The following sequence adds a text node adjacent to one in the myP element.
A subsequent invocation of the normalize() method removes the division between the adja-
cent text nodes.

Begin by confirming the number of child nodes of the myP element:

document.getElementById(“myP”).childNodes.length

Three nodes initially inhabit the element. Next, create a text node and append it as the last
child of the myP element:

a = document.createTextNode(“This means you!”)
document.getElementById(“myP”).appendChild(a)

With the new text now rendered on the page, the number of child nodes increases to four:

document.getElementById(“myP”).childNodes.length

You can see that the last child node of myP is the text node you just created:

document.getElementById(“myP”).lastChild.nodeValue

But by invoking normalize() on myP, all adjacent text nodes are accumulated into single
nodes:

document.getElementById(“myP”).normalize()

You can now see that the myP element is back to three child nodes, and the last child is a
combination of the two previously distinct, but adjacent, text nodes:

document.getElementById(“myP”).childNodes.length
document.getElementById(“myP”).lastChild.nodeValue

Related Items: document.createTextNode(), appendChild(), insertBefore(),
removeChild(), replaceChild() methods.

releaseCapture()
setCapture(containerBoolean)

Returns: Nothing.
Compatibility: WinIE5+, MacIE-, NN-, Moz-, Safari-

You can instruct a single object on a page to capture all mouse events (onmousedown,
onmouseup, onmousemove, onmouseout, onmouseover, onclick, and ondblclick) via the

elementObject.normalize()

303Chapter 15 ✦ Generic HTML Element Objects

WinIE-specific setCapture() method. A primary scenario for mouse event capture is when
some content appears on the page that you wish to leave as the center of user focus — items
such as pull-down menus, context menus, or simulated modal window areas. When such
items appear on the screen, you want the effect of blocking all mouse events except those
that apply to the menu or currently visible pseudowindow. When the region disappears,
mouse events can be released so that individual elements (such as buttons and links else-
where on the page) respond to mouse events.

Event capture does not block the events. Instead, the events are redirected to the object set to
capture all mouse events. Events bubble up from that point unless explicitly cancelled (see
Chapter 25). For example, consider a document that has a <body> tag containing an onclick
event handler that governs the entire document at all times. If you turn on event capture for a
div somewhere in the document, the click event first goes to the div. That div might have an
onclick event handler that looks to process click events when they occur in some of its child
elements. If the event handler for the div does not also cancel the bubbling of that click event,
the body element’s onclick event handler eventually receives and processes the event, even
though the div initially captured the event.

Deciding which object should capture events is an important design issue to confront. With
event capture engaged, all mouse events (no matter where they occur) get funneled to the
object set to capture the events. Therefore, if you design an application whose entire interface
consists of clicking and dragging positionable elements, you can set one of those elements (or
even the document object) to perform the capturing. For pop-up regions, however, it is gener-
ally more logical and convenient for your coding to assign the capture mechanism to the pri-
mary container of the pop-up content (usually a positioned div).

The setCapture() method has one optional Boolean parameter. The parameter controls
whether mouse events on child elements within the capturing object are under control of
the event capture mechanism. The default value (true) means that all mouse events tar-
geted at elements within the current object go to the current object rather than to the
original target — the most likely way you will use setCapture() for things such as pop-up
and context menus. But if you specify false as the parameter, then mouse events occur-
ring in child elements of the capturing container receive their events directly. From there,
regular event bubbling upward from the target ensues (see Chapter 25).

You may encounter odd behavior when the region you set up to capture mouse events
contains form elements such as text input fields and select lists. Because these elements
require mouse events to gain focus for interaction, the event capture mechanism inhibits
access to these items. To work around this behavior, you can examine the click event’s
srcElement property to see if the click was on one of these elements and script the focus
of that element (or instruct the user to press the Tab key until the element gets focus
manually).

Once an object is set to capture events, your other code must define which events actually
do something; and decide whether events should bubble up beyond the capturing element.
You need to worry about bubbling only if your design includes mouse event handlers in ele-
ments higher up the element containment hierarchy. You may not wish for those event han-
dlers to fire while event capture is on; in this case, you need to cancel the bubbling of those
events in the capturing object.

If your application design requires that the pop-up area be hidden and event handling
be returned to normal (such as after the user makes a pop-up menu selection), use the
releaseCapture() method in conjunction with hiding the container. Because event cap-
ture can be engaged for only one element at a time, you can release capture by invoking the
releaseCapture() method from the container or from the document object.

elementObject.releaseCapture()

304 Part III ✦ Document Objects Reference

Event capture is automatically disengaged when the user performs any of the following
actions:

✦ Gives focus to any other window

✦ Displays any system modal dialog window (for example, alert window)

✦ Scrolls the page

✦ Opens a browser context menu (by right-clicking)

✦ Tabs to give focus to the Address field in the browser window

Therefore, you may want to set the document object’s onlosecapture event handler to hide
any container that your script displays in concert with event capture.

Also be aware that even though mouse events may be captured to prevent mouse access to
the rest of the page, keyboard events are not captured. Thus, using the event capture mecha-
nism to simulate modal windows is not foolproof: a user can tab to any form element or link
in the page and press the spacebar or Enter key to activate that element.

Event capture, as defined in the W3C DOM, operates differently from WinIE event capture. In
the W3C DOM, you can instruct the browser to substitute event capture of any kind of event
for the normal event bubbling behavior. For example, you can attach an event listener to the
body element in such a way that it sees all click events aimed at elements contained by the
body element before the events reach their target elements. (See Chapters 14 and 25 for more
on the W3C DOM event model and how to integrate it into cross-browser applications.)

Example
Listing 15-30 demonstrates the usage of setCapture() and releaseCapture() in a “quick-
and-dirty” context menu for WinIE5+. The job of the context menu is to present a list of num-
bering styles for the ordered list of items on the page. Whenever the user brings up the
context menu atop the ol element, the custom context menu appears. Event capture is
turned on in the process to prevent mouse actions elsewhere on the page from interrupting
the context menu choice. Even a click on the link set up as the title of the list is inhibited
while the context menu is visible. A click anywhere outside of the context menu hides the
menu. Clicking a choice in the menu changes the listStyleType property of the ol object
and hides the menu. Whenever the context menu is hidden, event capture is turned off so
that clicking on the page (such as the link) works as normal.

For this design, onclick, onmouseover, and onmouseout event handlers are assigned to the
div element that contains the context menu. To trigger the display of the context menu, the ol
element has an oncontextmenu event handler. This handler invokes the showContextMenu()
function. In this function, event capture is assigned to the context menu div object. The div is
also positioned at the location of the click before it is set to be visible. To prevent the system’s
regular context menu from also appearing, the event object’s returnValue property is set to
false.

Now that all mouse events on the page go through the contextMenu div object, let’s exam-
ine what happens with different kinds of events triggered by user action. As the user rolls
the mouse, a flood of mouseover and mouseout events fire. The event handlers assigned to
the div manage these events. But notice that the two event handlers, highlight() and
unhighlight(), perform action only when the srcElement property of the event is one of
the menu items in the div. Because the page has no other onmouseover or onmouseout
event handlers defined for elements up the containment hierarchy, you do not have to can-
cel event bubbling for these events.

elementObject.releaseCapture()

305Chapter 15 ✦ Generic HTML Element Objects

When a user clicks the mouse button, different things happen depending on whether event
capture is enabled. Without event capture, the click event bubbles up from wherever it
occurred to the onclick event handler in the body element. (An alert dialog box displays to
let you know when the event reaches the body.) But with event capture turned on (the con-
text menu is showing), the handleClick() event handler takes over to apply the desired
choice whenever the click is atop one of the context menu items. For all click events han-
dled by this function, the context menu is hidden and the click event is cancelled from bub-
bling up any higher (no alert dialog box appears). This takes place whether the user makes a
choice in the context menu or clicks anywhere else on the page. In the latter case, all you
need is for the context menu to go away like the real context menu does. For added insur-
ance, the onlosecapture event handler hides the context menu when a user performs any of
the actions just listed that cancel capture.

Listing 15-30: Using setCapture() and releaseCapture()

<html>
<head>

<title></title>
<style type=”text/css”>
#contextMenu {position:absolute; background-color:#cfcfcf;

border-style:solid; border-width:1px;
border-color:#EFEFEF #505050 #505050 #EFEFEF;
padding:3px 10px; font-size:8pt; font-family:Arial, Helvetica;
line-height:150%; visibility:hidden}

.menuItem {color:black}

.menuItemOn {color:white}
ol {list-style-position:inside; font-weight:bold; cursor:nw-resize}
li {font-weight:normal}
</style>
<script type=”text/javascript”>
function showContextMenu() {

contextMenu.setCapture();
contextMenu.style.pixelTop = event.clientY + document.body.scrollTop;
contextMenu.style.pixelLeft = event.clientX +

document.body.scrollLeft;
contextMenu.style.visibility = “visible”;
event.returnValue = false;

}

function revert() {
document.releaseCapture();
hideMenu();

}

function hideMenu() {
contextMenu.style.visibility = “hidden”;

}

function handleClick() {
var elem = window.event.srcElement;
if (elem.id.indexOf(“menuItem”) == 0) {

document.getElementById(“shapesList”).style.listStyleType =
elem.listtype;

}

Continued

elementObject.releaseCapture()

306 Part III ✦ Document Objects Reference

Listing 15-30 (continued)

revert();
event.cancelBubble = true;

}

function highlight() {
var elem = event.srcElement;
if (elem.className == “menuItem”) {

elem.className = “menuItemOn”;
}

}

function unhighlight() {
var elem = event.srcElement
if (elem.className == “menuItemOn”) {

elem.className = “menuItem”;
}

}
</script>

</head>
<body onclick=”alert(‘You reached the document object.’)”>

<ol id=”shapesList” oncontextmenu=”showContextMenu()”>
<li style=”list-style: none”><a href=

“javascript:alert(‘A%20sample%20link.’)”>Three-Dimensional
Shapes

<li value=”1”>Circular Cylinder
Cube
Rectangular Prism
Regular Right Pyramid
Right Circular Cone
Sphere

<div id=”contextMenu” onlosecapture=”hideMenu()” onclick=”handleClick()”
onmouseover=”highlight()” onmouseout=”unhighlight()”>

<span id=”menuItem1” class=”menuItem”
listtype=”upper-alpha”>A,B,C,...

<span id=”menuItem2” class=”menuItem”
listtype=”lower-alpha”>a,b,c,...

<span id=”menuItem3” class=”menuItem”
listtype=”upper-roman”>I,II,III,...

<span id=”menuItem4” class=”menuItem”
listtype=”lower-roman”>i,ii,iii,...

<span id=”menuItem5” class=”menuItem”
listtype=”decimal”>1,2,3,...

</div>
</body>

</html>

Related Items: addEventListener(), dispatchEvent(), fireEvent(),
removeEventListener() methods; onlosecapture event; Event object (Chapter 25).

removeAttribute(“attributeName”[, caseSensitivity])
Returns: Boolean (IE); Nothing (NN/DOM).
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

elementObject.releaseCapture()

307Chapter 15 ✦ Generic HTML Element Objects

If you create an attribute with the setAttribute() method, you can eliminate that attribute
from the element object via the removeAttribute() method. The required parameter is the
name of the attribute. IE4+ permits you to set and remove attributes such that the attribute
names are case-sensitive. The default behavior of removeAttribute() in IE (the second
parameter is a Boolean value) is false. Therefore, if you supply a value of true for the
case-sensitivity parameter in setAttribute(), you should set the parameter to true in
removeAttribute() to ensure a proper balance between created and removed attributes.

The W3C DOM (NN/Moz/Safari) version of the removeAttribute() method has a single
parameter (a case-insensitive attribute name) and returns no value. The returned value in IE
is true if the removal succeeds and false if it doesn’t succeed (or the attribute is one that
you set in some other manner).

Example
Use The Evaluator (Chapter 13) to experiment with the removeAttribute() method for the
elements in the page. See the examples for the setAttribute() method later in this chapter,
and enter the corresponding removeAttribute() statements in the top text box. Interlace
statements using getAttribute() to verify the presence or absence of each attribute.

Related Items: attributes property; document.createAttribute(), getAttribute(),
setAttribute() methods.

removeAttributeNode(attributeNode)
setAttributeNode(attributeNode)

Returns: Attribute object.
Compatibility: WinIE6+, MacIE-, NN6+, Moz1+, Safari1+

As discussed in the coverage of the getAttributeNode() method earlier in this chapter, the
W3C DOM treats a name–value attribute pair as an attribute object. An attribute object is a
distinct node within a named node map — a collection of attribute objects belonging to an
element. Understanding named node maps and attribute objects is more useful in an XML
environment where attributes can not only contain valuable data, but are not exposed to the
document object model as properties you can access via script. Instead of accessing an
object’s properties, you work with the actual attributes.

If you want to insert an attribute in the formal W3C methodology, you can use document.
createAttribute() to generate a new attribute object. Subsequent script statements
assign values to the nodeName and nodeValue properties to give the attribute its traditional
name–value pair. You can then insert that new attribute object into the attribute list of an
object via the setAttributeNode() method. The sole parameter is an attribute object, and
the return value is a reference to the newly inserted attribute object.

To remove an attribute node from an element using this syntax, employ the
removeAttributeNode() method. Again, the sole parameter is an attribute object. If your
script knows only the attribute’s name, you can use getAttributeNode() to obtain a valid
reference to the attribute object. The removeAttributeNode() method returns a reference
to the removed attribute object. That object remains in the browser’s memory, but it is not
part of the document hierarchy. By capturing this removed attribute object in a variable, you
have the flexibility to modify and assign it to another object elsewhere in the document.

In practice, you may rarely, if ever, need to address attributes as nodes. Other methods —
notably getAttribute(), removeAttribute(), and setAttribute()— do the job when
your scripts have only the name (as a string) of an attribute belonging to an element.

elementObject.removeAttributeNode()

308 Part III ✦ Document Objects Reference

Example
Use The Evaluator (Chapter 13) to experiment with the setAttributeNode() and
removeAttributeNode() methods for the p element in the page. The task is to create and add
a style attribute to the p element. Begin by creating a new attribute and storing it temporarily
in the global variable a:

a = document.createAttribute(“style”)

Assign a value to the attribute object:

a.nodeValue = “color:red”

Now insert the new attribute into the p element:

document.getElementById(“myP”).setAttributeNode(a)

The paragraph changes color in response to the newly added attribute.

Due to the NN6 bug that won’t allow the method to return a reference to the newly inserted
attribute node, you can artificially obtain such a reference:

b = document.getElementById(“myP”).getAttributeNode(“style”)

Finally, use the reference to the newly added attribute to remove it from the element:

document.getElementById(“myP”).removeAttribute(b)

Upon removing the attribute, the paragraph resumes its initial color. See the example for the
setAttribute() method later in this chapter to discover how you can perform this same
kind of operation with setAttribute().

Related Items: attributes property; document.createAttribute(), getAttribute(),
getAttributeNode(), setAttribute() methods.

removeAttributeNS(“namespaceURI”, “localName”)
Returns: Nothing.
Compatibility: WinIE-, MacIE-, NN6+, Moz1+, Safari-

This method removes the attribute specified in the two parameters. The first parameter of
the method is a URI string matching a URI assigned to a label in the document. The second
parameter is the local name portion of the attribute whose value you are removing.

Related Items: attributes, namespaceURI, localName properties; removeAttribute(),
getAttributeNS(), and setAttributeNS() methods.

removeBehavior(ID)
Returns: Boolean.
Compatibility: WinIE5+, MacIE-, NN-, Moz-, Safari-

The removeBehavior() method detaches a behavior from an object. It assumes that the
behavior was added to the object via the addBehavior() method. The return value of the
addBehavior() method is a unique identifier for that particular behavior. This identifier is
the required parameter for the removeBehavior() method. Thus, you can add two behaviors
to an object and remove just one of them if so desired. If the removal succeeds, the
removeBehavior() method returns true; otherwise, it returns false.

elementObject.removeAttributeNode()

309Chapter 15 ✦ Generic HTML Element Objects

Example
See Listings 15-19a and 15-19b earlier in this chapter for examples of how to use
addBehavior() and removeBehavior().

Related Item: addBehavior() method.

removeChild(nodeObject)
Returns: Node object reference.
Compatibility: WinIE5+, MacIE5+, NN6+, Moz1+, Safari1+

The removeChild() method erases a child element from the current element. Content asso-
ciated with the child element is no longer visible on the page, and the object is no longer part
of the document object hierarchy.

As destructive as that sounds, the specifications for the deleted object are not lost to the
ether necessarily. The removeChild() method returns a reference to the removed node. By
assigning this value to a variable, you can hold onto that object specification for insertion
later in the session. You are free to use this value as a parameter to such methods as
appendChild(), replaceChild(), swapNode(), and insertBefore().

Remember that removeChild() is invoked from the point of view of a parent element. If you
simply want to remove an element, you can do so more directly (in WinIE5+ only) with the
removeNode() method.

Example
You can see an example of removeChild() as part of Listing 15-21 earlier in this chapter.

Related Items: appendChild(), replaceChild(), removeNode() methods.

removeEventListener()
(See addEventListener())

removeExpression(“propertyName”)
Returns: Boolean.
Compatibility: WinIE5+, MacIE-, NN-, Moz-, Safari-

If you assign an expression to an object property (including an object’s style object) via the
setExpression() method, you can remove it under script control with the
removeExpression() method. The sole parameter is the name of the property in string form.
Property names are case-sensitive.

The method returns true if the removal succeeds; otherwise, false is returned. Be aware
that removing an expression does not alter the value that is currently assigned to the prop-
erty. In other words, you can use setExpression() to set a property’s value and then
remove the expression so that no further changes are made when the document recalculates
expressions. If this is your goal, however, you are probably better served by simply setting
the property directly via scripting.

Example
You can experiment with all three expression methods in The Evaluator (Chapter 13). The fol-
lowing sequence adds an expression to a stylesheet property of the myP element on the page
and then removes it.

elementObject.removeExpression()

310 Part III ✦ Document Objects Reference

To begin, enter the number 24 in the bottom one-line text box in The Evaluator (but don’t
press Enter or click the List Properties button). This is the value used in the expression to
govern the fontSize property of the myP object. Next, assign an expression to the myP
object’s style object by entering the following statement into the topmost text box:

myP.style.setExpression(“fontSize”,”document.forms[0].inspector.value”,”JScript”)

You can now enter different font sizes into the lower text box and have the values immediately
applied to the fontSize property. (Keyboard events in the text box automatically trigger the
recalculation.) The default unit is px, but you can also append other units (such as pt) to the
value in the text field to see how different measurement units influence the same numeric value.

Before proceeding to the next step, enter a value other than 16 (the default fontSize value).
Finally, enter the following statement in the topmost text box to disconnect the expression
from the property:

myP.style.removeExpression(“fontSize”)

Notice that although you can no longer adjust the font size from the lower text box, the most
recent value assigned to it still sticks to the element. To prove it, enter the following state-
ment in the topmost text box to see the current value:

myP.style.fontSize

Related Items: document.recalc(), getExpression(), setExpression() methods.

removeNode(removeChildrenFlag)
Returns: Node object reference.
Compatibility: WinIE5+, MacIE-, NN-, Moz-, Safari-

You can use the removeNode() method to delete the current node from an element hierarchy
in WinIE5+. The sole parameter is a Boolean value that directs the method to remove only
itself (without its child nodes) or the node and all of its children (value of true). Exercise
care with this method when you use a default parameter value of false: If the node has child
nodes (for example, you attempt to remove a table but not its child nodes), IE5 can crash on
you. However, you can safely remove the node and all of its children by passing true as the
sole parameter.

The method returns a reference to the node object removed. This removed object is no
longer accessible to the document object model. But the returned value contains all proper-
ties of the object as it existed before you removed it (including properties such as outerHTML
and explicitly set stylesheet rules). Thus, you can use this value as a parameter to insert the
node elsewhere in the document.

While the W3C DOM does not have a removeNode() method, the cross-browser method
whose behavior most closely resembles removeNode() is the removeChild() method. The
scope of the removeChild() method is one level up the object hierarchy from the object you
use for the removeNode() method.

Example
Examine Listing 15-21 for the appendChild() method to understand the difference between
removeChild() and removeNode(). In the restore() function, you can replace this statement

mainObj.removeChild(oneChild);

in IE5+ with

oneChild.removeNode(true);

elementObject.removeExpression()

311Chapter 15 ✦ Generic HTML Element Objects

The difference is subtle, but it is important to understand. See Listing 15-31 later in this chap-
ter for another example of the removeNode() method.

Related Items: Node object; appendChild(), cloneChild(), removeChild(),
replaceChild(), replaceNode() methods.

replaceAdjacentText(“location”, “text”)
Returns: String.
Compatibility: WinIE5+, MacIE-, NN-, Moz-, Safari-

The replaceAdjacentText() method enables you to replace one chunk of document text
with another in a specific position relative to the current object. Be aware that this method
works only for plain text and not HTML tags. The returned value is the string of the text that
you replace.

Both parameters are required. The first must be one of four possible case-insensitive loca-
tions for the insertion, shown in the following table:

Location Description

beforeBegin Before the current element’s start tag

afterBegin After the start tag, but before any nested content

beforeEnd Before the end tag, but after all other nested content

afterEnd After the end tag

This method is best used with inline (rather than block) elements when specifying
the beforeBegin and afterEnd parameters. For example, if you attempt to use
replaceAdjacentText() with beforeBegin on the second of two consecutive paragraph
elements, the replacement text is inserted into the end of the first paragraph. You can think
of the replaceAdjacentText() method in terms of text fragment nodes. The method
replaces the text fragment node (given any one of the four position parameters) with new
text. Replacing the text of a simple element with either the afterBegin or beforeEnd loca-
tions is the same as assigning that text to the object’s innerText property.

Example
Use The Evaluator (Chapter 13) to experiment with the replaceAdjacentText() method.
Enter each of the following statements into the top text box and watch the results in the myP
element (and its nested myEM element) below the solid rule:

document.getElementById(“myEM”).replaceAdjacentText(“afterBegin”, “twenty”)

Notice that the myEM element’s new text picks up the behavior of the element. In the mean-
time, the replaced text (all) is returned by the method and displayed in the Results box:

document.getElementById(“myEM”).replaceAdjacentText(“beforeBegin”, “We need “)

All characters of the text fragment, including spaces, are replaced. Therefore, you may need
to supply a trailing space, as shown here, if the fragment you replace has a space:

document.getElementById(“myP”).replaceAdjacentText(“beforeEnd”, “ good people.”)

elementObject.replaceAdjacentText()

312 Part III ✦ Document Objects Reference

This is another way to replace the text fragment following the myEM element, but it is also rel-
ative to the surrounding myP element. If you now attempt to replace text after the end of the
myP block-level element,

document.getElementById(“myP”).replaceAdjacentText(“afterEnd”, “Hooray!”)

the text fragment is inserted after the end of the myP element’s tag set. The fragment is just
kind of floating in the document object model as an unlabeled text node.

Related Items: innerText, outerText properties; getAdjacentText(),
insertAdjacentHTML(), insertAdjacentText() methods.

replaceChild(newNodeObject, oldNodeObject)
Returns: Node object reference.
Compatibility: WinIE5+, MacIE5+, NN6+, Moz1+, Safari1+

The replaceChild() method enables you to swap an existing child node object for a new
node object. Parameters for the replaceChild() method are node object references, and
they must be in the order of the new object followed by the object you want to replace. The
old object must be an immediate child node of the parent used to invoke the method, and the
new object must also be a “legal” child element within the document containment hierarchy.

The method returns a reference to the child object that you replaced with the new object.
This reference can be used as a parameter to any of the node-oriented insertion or replace-
ment methods.

Remember that replaceChild() is invoked from the point of view of a parent element. If
you simply want to change an element, you can do so more directly in WinIE5+ with the
swapNode() or replaceNode() method.

Example
You can see an example of replaceChild() as part of Listing 15-21 (for the appendChild
property) earlier in this chapter.

Related Items: appendChild(), removeChild(), replaceNode(), swapNode() methods.

replaceNode(“newNodeObject”)
Returns: Node object reference.
Compatibility: WinIE5+, MacIE-, NN-, Moz-, Safari-

The replaceNode() method is related to the replaceChild() method, but you invoke this
method on the actual node you want to replace (instead of the object’s parent). The sole
parameter is a reference to a valid node object, which you can generate via the document.
createElement() method or copy from an existing node. The value returned from the
method is a reference to the object that you replace. Thus, you can preserve a copy of the
replaced node by storing the results in a variable for use later.

If the node you replace contains other nodes, the replaceNode() method removes all con-
tained nodes of the original from the document. Therefore, if you want to change a wrapper
node but want to maintain the original children, your script must capture the children and
put them back into the new node as shown in the following example.

Example
Listing 15-31 demonstrates three node-related methods: removeNode(), replaceNode(), and
swapNode(). These methods work in WinIE5+ only.

elementObject.replaceAdjacentText()

313Chapter 15 ✦ Generic HTML Element Objects

The page rendered from Listing 15-31 begins with a ul type list of four items. Four buttons
control various aspects of the node structure of this list element. The first button invokes the
replace() function, which changes the ul type to ol. To do this, the function must temporar-
ily tuck away all child nodes of the original ul element so that they can be added back into the
new ol element. At the same time, the old ul node is stored in a global variable (oldNode) for
restoration in another function.

To replace the ul node with an ol, the replace() function creates a new, empty ol element
and assigns the myOL ID to it. Next, the children (li elements) are stored en masse as an array
in the variable innards. The child nodes are then inserted into the empty ol element, using the
insertBefore() method. Notice that as each child element from the innards array is inserted
into the ol element, the child element is removed from the innards array. That’s why the loop
to insert the child nodes is a while loop that constantly inserts the first item of the innards
array to the new element. Finally, the replaceNode() method puts the new node in the old
node’s place, while the old node (just the ul element) is stored in oldNode.

The restore() function operates in the inverse direction of the replace() function. The
same juggling of nested child nodes is required.

The third button invokes the swap() function, whose script exchanges the first and last
nodes. The swapNode() method, like the others in this discussion, operates from the point of
view of the node. Therefore, the method is attached to one of the swapped nodes, while the
other node is specified as a parameter. Because of the nature of the ol element, the number
sequence remains fixed but the text of the li node swaps.

To demonstrate the removeNode() method, the fourth function removes the last child node
of the list. Each call to removeNode() passes the true parameter to guarantee that the text
nodes nested inside each li node are also removed. Experiment with this method by setting
the parameter to false (the default). Notice how the parent–child relationship changes when
you remove the li node.

Listing 15-31: Using Node-Related Methods

<html>
<head>

<title>removeNode(), replaceNode(), and swapNode() Methods</title>
<script type=”text/javascript”>
// store original node between changes
var oldNode;

// replace UL node with OL
function replace() {

if (document.getElementById(“myUL”)) {
var newNode = document.createElement(“OL”);
newNode.id = “myOL”;
var innards = document.getElementById(“myUL”).children;
while (innards.length > 0) {

newNode.insertBefore(innards[0]);
}
oldNode = document.getElementById(“myUL”).replaceNode(newNode);

}
}

// restore OL to UL
function restore() {

Continued

elementObject.replaceNode()

314 Part III ✦ Document Objects Reference

Listing 15-31 (continued)

if (document.getElementById(“myOL”) && oldNode) {
var innards = document.getElementById(“myOL”).children;
while (innards.length > 0) {

oldNode.insertBefore(innards[0]);
}
document.getElementById(“myOL”).replaceNode(oldNode);

}
}

// swap first and last nodes
function swap() {

if (document.getElementById(“myUL”)) {
document.getElementById(“myUL”).firstChild.swapNode(

document.getElementById(“myUL”).lastChild);
}
if (document.getElementById(“myOL”)) {

document.getElementById(“myOL”).firstChild.swapNode(
document.getElementById(“myOL”).lastChild);

}
}

// remove last node
function remove() {

if (document.getElementById(“myUL”)) {
document.getElementById(“myUL”).lastChild.removeNode(true);

}
if (document.getElementById(“myOL”)) {

document.getElementById(“myOL”).lastChild.removeNode(true);
}

}
</script>

</head>
<body>

<h1>Node Methods</h1>
<hr />
Here is a list of items:
<ul id=”myUL”>

First Item
Second Item
Third Item
Fourth Item

<form>

<input type=”button” value=”Change to OL List”
onclick=”replace()” /> <input type=”button”
value=”Restore LI List” onclick=”restore()” /> <input
type=”button” value=”Swap First/Last” onclick=”swap()” />
<input type=”button” value=”Remove Last” onclick=”remove()” />

</form>
</body>

</html>

You can accomplish the same functionality shown in Listing 15-31 in a cross-browser fashion
using the W3C DOM. In place of the removeNode() and replaceNode() methods, use
removeChild() and replaceChild() methods to shift the point of view (and object references)

elementObject.replaceNode()

315Chapter 15 ✦ Generic HTML Element Objects

to the parent of the ul and ol objects: the document.body. Also, you need to change the
document.all references to document.getElementById().

Related Items: removeChild(), removeNode(), replaceChild(), swapNode() methods.

scrollIntoView(topAlignFlag)
Returns: Nothing.
Compatibility: WinIE4+, MacIE4+, NN7+, Moz1+, Safari-

The scrollIntoView() method scrolls the page (vertically and/or horizontally as needed)
such that the current object is visible within the window or frame that contains it. A single
parameter, a Boolean value, controls the location of the element within the viewable space. A
value of true (the default) causes the element to be displayed so that its top is aligned with
the top of the window or frame (provided the document beneath it is long enough to allow
this amount of scrolling). But a value of false causes the bottom of the element to align with
the bottom of the viewable area. In most cases, you want the former so that the beginning of
a page section is at the top of the viewable area. But if you don’t want a user to see content
below a certain element when you jump to the new view, use the false parameter.

For form elements, you must use the typical form element reference (document.formName.
elementName.scrollIntoView()) unless you also specify an ID attribute for the element
(document.getElementById(“elementID”).scrollIntoView()).

Example
Use The Evaluator (Chapter 13) to experiment with the scrollIntoView() method. Resize
the browser window height so that you can see only the topmost text box and the Results
text area. Enter each of the following statements into the top text box and see where the myP
element comes into view:

myP.scrollIntoView()
myP.scrollIntoView(false)

Expand the height of the browser window until you can see part of the table lower on the
page. If you enter

myTable.scrollIntoView(false)

into the top text box, the page scrolls to bring the bottom of the table to the bottom of the
window. But if you use the default parameter (true or empty),

myTable.scrollIntoView()

the page scrolls as far as it can in an effort to align the top of the element as closely as possi-
ble to the top of the window. The page cannot scroll beyond its normal scrolling maximum
(although if the element is a positioned element, you can use dynamic positioning to place it
wherever you want — including “off the page”). Also, if you shrink the window and try to
scroll the top of the table to the top of the window, be aware that the table element contains
a caption element so the caption is flush with the top of the window.

Related Items: window.scroll(), window.scrollBy(), window.scrollTo() methods.

setActive()
Returns: Nothing.
Compatibility: WinIE5.5+, MacIE-, NN-, Moz-, Safari-

The setActive() method lets a script designate an element object as the active element.
However, unlike the focus() method, the window does not scroll the active element into

elementObject.setActive()

316 Part III ✦ Document Objects Reference

view. Any onFocus event handler defined for the element fires when setActive() is invoked,
without the browser giving the element focus.

Example
Use The Evaluator (Chapter 13) to compare the setActive() and focus() methods. With
the page scrolled to the top and the window sized so that you cannot see the sample check-
box near the bottom of the page, enter the following statement into the top text box:

document.forms[1].myCheckbox.setActive()

Scroll down to see that the checkbox has operational focus (press the spacebar to see). Now,
scroll back to the top and enter the following:

document.forms[1].myCheckbox.focus()

This time, the checkbox gets focus and the page automatically scrolls the object into view.

Related Item: focus() method.

setAttribute(“attributeName”, value[, caseSensitivity])
Returns: Nothing.
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

The setAttribute() method assigns a new value to an existing attribute of the current
object or inserts an entirely new attribute name–value pair among the attributes of the cur-
rent object. This method represents an alternative syntax to setting a property of the object
directly.

The W3C DOM Level 2 standard recommends getAttribute() and setAttribute() for
reading and writing element object attribute values, rather than reading and writing those
values by way of their corresponding properties. While using these methods is certainly
advisable for XML elements, the same DOM standard sends conflicting signals by defining all
kinds of properties for HTML element objects. Browsers, of course, will support access via
properties well into the future, so don’t feel obligated to change your ways just yet.

The first two parameters of setAttribute() are required. The first is the name of the
attribute. The default behavior of this method respects the case of the attribute name.
Therefore, if you use setAttribute() to adjust the value of an existing attribute in default
mode, the first parameter must match the case of the attribute as known by the object model
for the current document. Remember that all names of all attributes assigned as inline source
code attributes are automatically converted to lowercase letters.

A value you assign to the attribute is the second parameter. For cross-browser compatibility,
the value should be either a string or Boolean data type.

IE provides an optional third parameter to control the case-sensitivity issue for the attribute
name. The default value (true) has a different impact on your object depending on whether you
use setAttribute() to assign a new attribute or reassign an existing one. In the former case,
the third parameter as true means that the attribute name assigned to the object observes the
case of the first parameter. In the latter case, the third parameter as true means that the
attribute isn’t reassigned unless the first parameter matches the case of the attribute currently
associated with the object. Instead, a new attribute with a different case sequence is created.

Attempting to manage the case-sensitivity of newly created attributes is fraught with peril,
especially if you try to reuse names but with different case sequences. I strongly recommend
using default case-sensitivity controls for setAttribute() and getAttribute().

Note

elementObject.setActive()

317Chapter 15 ✦ Generic HTML Element Objects

IE4+ imposes some limitations on the action resulting from the setAttribute() method. Any
attribute you add via setAttribute() does not become part of the attributes collection
associated with the element. While you can extract the value of such a newly added attribute
via getAttribute(), you cannot access the new attribute from the attributes collection.
Thus, after creating a new attribute as follows:

document.getElementById(“myTable”).setAttribute(“currYear”,
(new Date()).getFullYear());

you can access that attribute value through either of the following two statements:

var tableYear = document.getElementById(“myTable”).getAttribute(“curryear”);
var tableYear = document.getElementById(“myTable”).currYear;

However, you cannot access the attribute value with the following statement:

var tableYear = document.getElementById(“myTable”).attributes[“currYear”];

See also the W3C DOM facilities for treating attributes as node objects in the discussions of
the getAttributeNode() and removeAttributeNode() methods earlier in this chapter.

Example
Use The Evaluator (Chapter 13) to experiment with the setAttribute() method for the
elements in the page. For IE4, use the document.all notation; IE5+ and W3C browsers
understand the W3C standard getElementById() method of addressing an element.

Setting attributes can have immediate impact on the layout of the page (just as setting an
object’s properties can). Enter the following sample statements into the top text box to view
attribute values.

IE4+:

document.all.myTable.setAttribute(“width”, “80%”)
document.all.myTable.setAttribute(“border”, “5”)

IE5+/W3C:

document.getElementById(“myTable”).setAttribute(“width”, “80%”)
document.getElementById(“myTable”).setAttribute(“border”, “5”)

Related Items: attributes property; document.createAttribute(), getAttribute(),
getAttributeNode(), removeAttribute(), removeAttributeNode(),
setAttributeNode() methods.

setAttributeNode()
(See removeAttributeNode())

setAttributeNodeNS(“attributeNode”)
Returns: Attribute object.
Compatibility: WinIE-, MacIE-, NN6+, Moz1+, Safari-

This method inserts or replaces an attribute in the current element. The sole parameter is an
attribute object, and the return value is a reference to the newly inserted attribute object.
When the method is invoked, the browser looks for a pairing of local name and namespace
URI between the nodes. If there is a match, the node replaces the matched node; otherwise,
the node is inserted.

Related Items: attributes, namespaceURI, localName properties; removeAttributeNS(),
getAttributeNS(), and setAttributeNS() methods.

elementObject.setAttributeNodeNS()

318 Part III ✦ Document Objects Reference

setAttributeNS(“namespaceURI”, “qualifiedName”, “value”)
Returns: Nothing.
Compatibility: WinIE-, MacIE-, NN6+, Moz1+, Safari-

This method inserts or replaces an attribute in the current element, as specified in the three
parameters. The first parameter of the method is a URI string matching a URI assigned to a
label in the document. The second parameter is the local name portion of the attribute whose
value you are getting. If a match is found among these parameters, the value in the third
parameter is assigned to the existing attribute; otherwise, the value is inserted as a new
attribute.

Related Items: attributes, namespaceURI, localName properties; removeAttributeNS(),
getAttributeNS(), and setAttributeNodeNS() methods.

setCapture(containerBoolean)
(See releaseCapture())

setExpression(“propertyName”, “expression”,[“language”])
Returns: Nothing.
Compatibility: WinIE5+, MacIE-, NN-, Moz-, Safari-

Use the setExpression() method to assign the result of an executable expression to the
value of an element object property. This method can assign values to both HTML element
objects and style objects that belong to them.

The setExpression() method is a scripted way of assigning expressions to attributes. But
you can also assign expressions directly to stylesheet definitions in the HTML tag of an ele-
ment using the expression() syntax, as in the following example:

<p style=”width:expression(document.body.style.width * 0.75)”>

The setExpression() method requires three parameters. The first parameter is the name of
the property (in string form) to which you assign the expression. Property names are case-
sensitive. The second parameter is a string form of the expression to be evaluated to supply a
value for the property. Expressions can refer to global variables or properties of other objects
in the same document (provided the property is anything other than an array). An expression
may also contain math operators.

Pay close attention to the data type of the evaluated value of the expression. The value must
be a valid data type for the property. For example, the URL of the body background image
must be a string. But for numeric values, you can generally use number and string types inter-
changeably because the values are converted to the proper type for the property. Even for
expressions that evaluate to numbers, encase the expression inside quotes. It may not be
necessary in all cases, but if you get into the habit of using quotes, you’ll have fewer prob-
lems for strings or complex expressions that require them.

You are not limited to using JavaScript as the language for the expression because you can also
specify the scripting language of the expression in the optional third parameter. Acceptable
parameter values for the language are

JScript
JavaScript
VBScript

For all intents and purposes, JScript and JavaScript are the same. Both languages are ECMA-
262 compatible. JScript is the default value for the language parameter.

elementObject.setAttributeNS()

319Chapter 15 ✦ Generic HTML Element Objects

One reason to use setExpression() for dynamic properties is to let the property always
respond to the current conditions on the page. For example, if you set a property that is
dependent on the current width of the body, then you want a recalculation that is applied to
the property if the user resizes the window. The browser automatically responds to many
events and updates any dynamic properties. In essence, the browser recalculates the expres-
sions and applies the new values to the property. Keyboard events, in particular, trigger this
kind of automatic recalculation for you. But if your scripts perform actions on their own (in
other words, not triggered by events), then your scripts need to force the recalculation of the
expressions. The document.recalc() method takes care of this, but you must invoke it to
force the recalculation of dynamic properties in these cases.

Example
Listing 15-32 shows the setExpression(), recalc(), and getExpression() methods at
work in a DHTML-based clock. Figure 15-1 shows the clock. As time clicks by, the bars for
hours, minutes, and seconds adjust their widths to reflect the current time. At the same time,
the innerHTML of span elements to the right of each bar display the current numeric value
for the bar.

The dynamically calculated values in this example are based on the creation of a new date
object over and over again to get the current time from the client computer clock. It is from
the date object (stored in the variable called now) that the hour, minute, and second values
are retrieved. Some other calculations are involved so that a value for one of these time com-
ponents is converted into a pixel value for the width of the bars. The bars are divided into 24
(for the hours) and 60 (for the minutes and seconds) parts, so the scale for the two types dif-
fers. For the 60-increment bars in this application, each increment is set to 5 pixels (stored in
shortWidth); the 24-increment bars are 2.5 times the shortWidth.

Figure 15-1: A bar graph clock created with dynamic expressions.

elementObject.setExpression()

320 Part III ✦ Document Objects Reference

As the document loads, the three span elements for the colored bars are given no width,
which means that they assume the default width of zero. But after the page loads, the onload
event handler invokes the init() function, which sets the initial values for each bar’s width
and the text (innerHTML) of the three labeled spans. Once these initial values are set, the
init() function invokes the updateClock() function.

In the updateClock() function, a new date object is created for the current instant. The
document.recalc() method is called, instructing the browser to recalculate the expressions
that were set in the init() function and assign the new values to the properties. To keep the
clock “ticking,” the setTimeout() method is set to invoke this same updateClock() func-
tion in one second.

To see what the getExpression() method does, you can click the button on the page. It simply
displays the returned value for one of the attributes that you assign using setExpression().

Listing 15-32: Dynamic Properties

<html>
<head>

<title>getExpression(), setExpression(), and recalc() Methods</title>
<style type=”text/css”>
th {text-align:right}
span {vertical-align:bottom}
</style>
<script type=”text/javascript”>
var now = new Date();
var shortWidth = 5;
var multiple = 2.5;

function init() {
with (document.all) {

hoursBlock.style.setExpression(“width”,”now.getHours() *
shortWidth * multiple”,”jscript”);

hoursLabel.setExpression(“innerHTML”,”now.getHours()”,”jscript”);
minutesBlock.style.setExpression(“width”,”now.getMinutes() *

shortWidth”,”jscript”);
minutesLabel.setExpression(“innerHTML”,”now.getMinutes()”,

“jscript”);
secondsBlock.style.setExpression(“width”,”now.getSeconds() *

shortWidth”,”jscript”);
secondsLabel.setExpression(“innerHTML”,”now.getSeconds()”,

“jscript”);
}

updateClock();
}

function updateClock() {
now = new Date();
document.recalc();
setTimeout(“updateClock()”,1000);

}

function showExpr() {
alert(“Expression for the \’Hours\’ innerHTML property is:\r\n” +

document.getElementById(“hoursLabel”).getExpression(“innerHTML”) +
“.”); }

elementObject.setExpression()

321Chapter 15 ✦ Generic HTML Element Objects

</script>
</head>
<body onload=”init()”>

<h1>getExpression(), setExpression(), recalc() Methods</h1>
<hr />
<p>This clock uses Dynamic Properties to calculate bar width and time

numbers:</p>
<table border=”0”>

<tr>
<th>Hours:</th>
<td>

 </td>
</tr>
<tr>

<th>Minutes:</th>
<td>

 </td>
</tr>
<tr>

<th>Seconds:</th>
<td>

 </td>
</tr>

</table>
<hr />
<form>

<input type=”button” value=”Show ‘Hours’ number innerHTML Expression”
onclick=”showExpr()” />

</form>
</body>

</html>

Related Items: document.recalc(), removeExpression(), setExpression() methods.

swapNode(otherNodeObject)
Returns: Node object reference.
Compatibility: WinIE5+, MacIE-, NN-, Moz-, Safari-

The swapNode() method exchanges the positions of two nodes within an element hierarchy.
Contents of both nodes are preserved in their entirety during the exchange. The single
parameter must be a valid node object (perhaps created with document.createElement()
or copied from an existing node). A return value is a reference to the object whose
swapNode() method was invoked.

Example
See Listing 15-31 (the replaceNode() method) for an example of the swapNode() method in
action.

Related Items: removeChild(), removeNode(), replaceChild(), replaceNode() methods.

tags(“tagName”)
Returns: Array of element objects.
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-

elementObjectCollection.tags()

322 Part III ✦ Document Objects Reference

The tags() method does not belong to every element, but it is a method of every collection
of objects (such as all, forms, and elements). The method is best thought of as a kind of fil-
ter for the elements that belong to the current collection. For example, to get an array of all p
elements inside a document, use this expression:

document.all.tags(“P”)

You must pass a parameter string consisting of the tag name you wish to extract from the col-
lection. The tag name is case-insensitive.

The return value is an array of references to the objects within the current collection whose
tags match the parameter. If there are no matches, the returned array has a length of zero. If
you need cross-browser compatibility, use the getElementsByTagName() method described
earlier in this chapter, and pass a wildcard value of “*”.

Example
Use The Evaluator (Chapter 13) to experiment with the tags() method. Enter the following
statements one at a time into the upper text box and study the results:

document.all.tags(“div”)
document.all.tags(“div”).length
myTable.all.tags(“td”).length

Because the tags() method returns an array of objects, you can use one of those returned
values as a valid element reference:

document.all.tags(“form”)[1].elements.tags(“input”).length

Related Item: getElementsByTagName() method.

urns(“behaviorURN”)
Returns: Array of element objects.
Compatibility: WinIE5+, MacIE-, NN-, Moz-, Safari-

The urns() method does not belong to every element, but it is a method of every collection
of objects. You must pass a parameter string consisting of the URN (Uniform Resource Name)
of a behavior resource (most typically .htc) assigned to one or more elements of the collec-
tion. The parameter does not include the extension of the filename. If there is no matching
behavior URN for the specified parameter, the urns() method returns an array of zero length.
This method is related to the behaviorUrns property, which contains an array of behavior
URNs assigned to a single element object.

Example
In case the urns() method is reconnected in the future, you can add a button and function to
Listing 15-19b that reveals whether the makeHot.htc behavior is attached to the myP ele-
ment. Such a function looks like this:

function behaviorAttached() {
if (document.all.urns(“makeHot”)) {

alert(“There is at least one element set to \’makeHot\’.”);
}

}

Related Item: behaviorUrns property.

elementObjectCollection.tags()

323Chapter 15 ✦ Generic HTML Element Objects

Event handlers
onactivate
onbeforedeactivate
ondeactivate

Compatibility: WinIE5.5+, MacIE-, NN-, Moz-, Safari-

The onactivate and ondeactivate event handlers are very similar to the onfocus and
onblur event handlers, respectively. If an element receives focus, the onactivate event fires
for that element just before the onfocus event fires; conversely, just prior to the element los-
ing focus, events fire in the sequence onbeforedeactivate, ondeactivate, onblur. Only
elements that, by their nature, can accept focus (for example, links and form input controls)
or that have a tabindex attribute set can become the active element (and therefore fire these
events).

WinIE5.5+ maintains the original onfocus and onblur event handlers. But because the behav-
iors are so close to those of the onactivate and ondeactivate events, I don’t recommend
mixing the old and new event handler names in your coding style. If you script exclusively for
WinIE5.5+, you can use the new terminology throughout.

Example
You can modify Listing 15-34 later in this chapter by substituting onactivate for onfocus
and ondeactivate for onblur.

Use The Evaluator (Chapter 13) to experiment with the onbeforedeactivate event handler.
To begin, set the myP element so it can accept focus:

myP.tabIndex = 1

If you repeatedly press the Tab key, the myP paragraph will eventually receive focus — indicated
by the dotted rectangle around it. To see how you can prevent the element from losing focus,
assign an anonymous function to the onbeforedeactivate event handler, as shown in the fol-
lowing statement:

myP.onbeforedeactivate = new Function(“event.returnValue=false”)

Now you can press Tab all you like or click other focusable elements all you like, and the
myP element will not lose focus until you reload the page (which clears away the event han-
dler). Please do not do this on your pages unless you want to infuriate and alienate your
site visitors.

Related Items: onblur, onfocus event handlers.

onbeforecopy
Compatibility: WinIE5+, MacIE-, NN-, Moz-, Safari-

The onbeforecopy event handler fires before the actual copy action takes place whenever
the user initiates a content copy action via the Edit menu (including the Ctrl+C keyboard
shortcut) or the right-click context menu. If the user accesses the Copy command via the Edit
or context menu, the onbeforecopy event fires before either menu displays. In practice, the
event may fire twice even though you expect it only once. Just because the onbeforecopy
event fires, it does not guarantee that a user will complete the copy operation (for example,
the context menu may close before the user makes a selection).

Unlike paste-related events, the onbeforecopy event handler does not work with form input
elements. Just about any other HTML element is fair game, however.

elementObject.onbeforecopy

324 Part III ✦ Document Objects Reference

Example
You can use the onbeforecopy event handler to preprocess information prior to an actual copy
action. In Listing 15-33, the function invoked by the second paragraph element’s onbeforecopy
event handler selects the entire paragraph so that the user can select any character(s) in the
paragraph to copy the entire paragraph into the clipboard. You can paste the results into the
text area to verify the operation. By assigning the paragraph selection to the onbeforecopy
event handler, the page notifies the user about what the copy operation will entail prior to mak-
ing the menu choice. Had the operation been deferred to the oncopy event handler, the selec-
tion would have been made after the user chose Copy from the menu.

Listing 15-33: The onbeforecopy Event Handler

<html>
<head>

<title>onbeforecopy Event Handler</title>
<script type=”text/javascript”>
function selectWhole() {

var obj = window.event.srcElement;
var range = document.body.createTextRange();
range.moveToElementText(obj);
range.select();
event.returnValue = false;

}
</script>

</head>
<body>

<h1>onbeforecopy Event Handler</h1>
<hr />
<p>Select one or more characters in the following paragraph. Then execute

a Copy command via Edit or context menu.</p>
<p id=”myP” onbeforecopy=”selectWhole()”>Lorem ipsum dolor sit amet,

consectetaur adipisicing elit, sed do eiusmod tempor incididunt ut
labore et dolore magna aliqua. Ut enim adminim veniam, quis nostrud
exercitation ullamco laboris nisi ut aliquip ex ea commodo
consequat.</p>

<form>
<p>Paste results here:

<textarea name=”output” cols=”60” rows=”5”>
</textarea></p>

</form>
</body>

</html>

Related Items: onbeforecut, oncopy event handlers.

onbeforecut
Compatibility: WinIE5+, MacIE-, NN-, Moz-, Safari-

The onbeforecut event handler fires before the actual cut action takes place whenever the
user initiates a content cut via the Edit menu (including the Ctrl+X keyboard shortcut) or the
right-click context menu. If the user accesses the Cut command via the Edit or context menu,
the onbeforecut event fires before either menu displays. In practice, the event may fire twice
even though you expect it only once. Just because the onbeforecut event fires, it does not

elementObject.onbeforecopy

325Chapter 15 ✦ Generic HTML Element Objects

guarantee that a user will complete the cut operation (for example, the context menu may close
before the user makes a selection). If you add the onbeforecut event handler to an HTML ele-
ment, the context menu usually disables the Cut menu item. But assigning a JavaScript call to
this event handler brings the Cut menu item to life.

Example
You can use the onbeforecut event handler to preprocess information prior to an actual cut
action. You can try this by editing a copy of Listing 15-33, changing the onbeforecopy event
handler to onbeforecut. Notice that in its original form, the example does not activate the Cut
item in either the context or Edit menu when you select some text in the second paragraph. But
by assigning a function to the onbeforecut event handler, the menu item is active, and the
entire paragraph is selected from the function that is invoked.

Related Items: onbeforecopy, oncut event handlers.

onbeforedeactivate
Compatibility: WinIE5.5+, MacIE-, NN-, Moz-, Safari-

(See onactivate event handler)

onbeforeeditfocus
Compatibility: WinIE5+, MacIE-, NN-, Moz-, Safari-

The onbeforeeditfocus event handler is triggered whenever you edit an element on a page
in an environment such as Microsoft’s DHTML Editing ActiveX control or with the editable
page content feature of IE5.5+. This discussion focuses on the latter scenario because it is
entirely within the scope of client-side JavaScript. The onbeforeeditfocus event fires just
before the element receives its focus. (There may be no onscreen feedback that editing is
turned on unless you script it yourself.) The event fires each time a user clicks the element,
even if the element just received edit focus elsewhere in the same element.

Example
Use The Evaluator (Chapter 13) to explore the onbeforeeditfocus in WinIE5.5+. In the fol-
lowing sequence, you assign an anonymous function to the onbeforeeditfocus event han-
dler of the myP element. The function turns the text color of the element to red when the
event handler fires:

myP.onbeforeeditfocus = new Function(“myP.style.color=’red’”)

Now turn on content editing for the myP element:

myP.contentEditable = true

If you now click inside the myP element on the page to edit its content, the text turns to red
before you begin editing. In a page scripted for this kind of user interface, you would include
some control that turns off editing and changes the color to normal.

Related Items: document.designMode, contentEditable, isContentEditable properties.

onbeforepaste
Compatibility: WinIE5+, MacIE-, NN-, Moz-, Safari-

Like onbeforecopy and onbeforecut, the onbeforepaste event occurs just prior to the dis-
play of either the context or menu bar Edit menu when the current object is selected (or has a
selection within it). The primary value of this event comes when you use scripts to control the

elementObject.onbeforepaste

326 Part III ✦ Document Objects Reference

copy-and-paste process of a complex object. Such an object may have multiple kinds of data
associated with it, but your script captures only one of the data types. Or, you may want to put
some related data about the copied item (for example, the id property of the element) into the
clipboard. By using the onbeforepaste event handler to set the event.returnValue property
to false, you guarantee that the pasted item is enabled in the context or Edit menu (provided
the clipboard is holding some content). A handler invoked by onpaste should then apply the
specific data subset from the clipboard to the currently selected item.

Example
See Listing 15-45 for the onpaste event handler (later in this chapter) to see how the onbe-
forepaste and onpaste event handlers work together.

Related Items: oncopy, oncut, onpaste event handlers.

onblur
Compatibility: WinIE3+, MacIE3+, NN2+, Moz1+, Safari1+

The onblur event fires when an element that has focus is about to lose focus because some
other element is about to receive focus. For example, a text input element fires the onblur
event when a user tabs from that element to the next one inside a form. The onblur event of
the first element fires before the onfocus event of the next element.

The availability of the onblur event has expanded with succeeding generations of script-
capable browsers. In the earlier versions, blur and focus were largely confined to text-oriented
input elements (including the select element). These are safe to use with all scriptable
browser versions. The window object received the onblur event handler starting with NN3 and
IE4. IE4 also extended the event handler to more form elements, predominantly on the Windows
operating system because that OS has a user interface clue (the dotted rectangle) when items
such as buttons and links receive focus (so that you may act upon them by pressing the key-
board’s spacebar). For IE5+, the onblur event handler is available to virtually every HTML ele-
ment. For most of those elements, however, blur and focus are not possible unless you assign a
value to the tabindex attribute of the element’s tag. For example, if you assign tabindex=”1”
inside a <p> tag, the user can bring focus to that paragraph (highlighted with the dotted rectan-
gle in Windows) by clicking the paragraph or pressing the Tab key until that item receives focus
in sequence.

If you plan to use the onblur event handler on window or text-oriented input elements, be
aware that there might be some unexpected and undesirable consequences of scripting for
the event. For example, in IE, a window object that has focus loses focus (and triggers the
onblur event) if the user brings focus to any element on the page (or even clicks a blank area
on the page). Similarly, the interaction between onblur, onfocus, and the alert() dialog
box can be problematic with text input elements. This is why I generally recommend using
the onchange event handler to trigger form validation routines. If you should employ both
the onblur and onchange event handler for the same element, the onchange event fires
before onblur. For more details about using this event handler for data validation, see
Chapter 43 on the CD-ROM.

WinIE5.5+ adds the ondeactivate event handler, which fires immediately before the
onblur event handler. Both the onblur and ondeactivate events can be blocked if the
onbeforedeactivate event handler function sets event.returnValue to false.

Example
More often than not, a page author uses the onblur event handler to exert extreme control
over the user, such as preventing a user from exiting out of a text box unless that user types

elementObject.onbeforepaste

327Chapter 15 ✦ Generic HTML Element Objects

something into the box. This is not a Web-friendly practice, and it is one that I discourage
because there are intelligent ways to ensure a field has something typed into it before a form
is submitted (see Chapter 43 on the CD-ROM). Listing 15-34 simply demonstrates the impact
of the tabindex attribute in a WinIE5 element with respect to the onblur and onfocus
events. Notice that as you press the Tab key, only the second paragraph issues the events
even though all three paragraphs have event handlers assigned to them.

Listing 15-34: onblur and onfocus Event Handlers

<html>
<head>

<title>onblur and onblur Event Handlers</title>
<script type=”text/javascript”>
function showBlur() {

var id = event.srcElement.id;
alert(“Element \”” + id + “\” has blurred.”);

}

function showFocus() {
var id = event.srcElement.id;
alert(“Element \”” + id + “\” has received focus.”);

}
</script>

</head>
<body>

<h1 id=”H1” tabindex=”2”>onblur and onblur Event Handlers</h1>
<hr />
<p id=”P1” onblur=”showBlur()” onfocus=”showFocus()”>Lorem ipsum dolor

sit amet, consectetaur adipisicing elit, sed do eiusmod tempor
incididunt ut labore et dolore magna aliqua. Ut enim adminim veniam,
quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea
commodo consequat.</p>

<p id=”P2” tabindex=”1” onblur=”showBlur()” onfocus=”showFocus()”>Bis
nostrud exercitation ullam mmodo consequet. Duis aute involuptate
velit esse cillum dolore eu fugiat nulla pariatur. At vver eos et
accusam dignissum qui blandit est praesent luptatum delenit
aigueexcepteur sint occae.</p>

<p id=”P3” onblur=”showBlur()” onfocus=”showFocus()”>Unte af phen
neigepheings atoot Prexs eis phat eit sakem eit vory gast te Plok
peish ba useing phen roxas. Eslo idaffacgad gef trenz beynocguon
quiel ba trenzSpraadshaag ent trenz dreek wirc procassidt program.</p>

</body>
</html>

Related Items: blur(), focus() methods; ondeactivate, onbeforedeactivate, onfocus,
onactivate event handlers.

onclick
Compatibility: WinIE3+, MacIE3+, NN2+, Moz1+, Safari1+

The onclick event fires when a user presses down (with the primary mouse button) and
releases the button with the pointer atop the element (both the down and up strokes must be
within the rectangle of the same element). The event also fires with non-mouse click equiva-
lents in operating systems such as Windows. For example, you can use the keyboard to give

elementObject.onclick

328 Part III ✦ Document Objects Reference

focus to a clickable object and then press the spacebar or Enter key to perform the same
action as clicking the element. In IE, if the element object supports the click() method, the
onclick event fires with the invocation of that method (notice that this does not apply to
Navigator or other browsers).

The onclick event is closely related to other mouse events. The other related events are
onmousedown, onmouseup, and ondoubleclick. The onmousedown event fires when the user
makes contact with the mouse switch on the downstroke of a click action. Next comes the
onmouseup event (when the contact breaks). Only then does the onclick event fire — provided
that the onmousedown and onmouseup events have fired in the same object. See the discussions
on the onmousedown and onmouseup events later in this chapter for examples of their usage.

Interaction with the ondblclick event is simple: the onclick event fires first (after the first
click), followed by the ondblclick event (after the second click). See the discussion of the
ondblclick event handler later in this chapter for more about the interaction of these two
event handlers.

When used with objects that have intrinsic actions when users click them (namely links and
areas), the onclick event handler can perform all of the action — including navigating to the
destination normally assigned to the href attribute of the element. For example, to be compati-
ble with all scriptable browsers, you can make an image clickable if you surround its tag with an
<a> link tag. This lets the onclick event of that tag substitute for the missing onclick event
handler of earlier tags. If you assign an onclick event handler without special protec-
tion, the event handler will execute and the intrinsic action of the element will be carried out.
Therefore, you need to block the intrinsic action. To accomplish this, the event handler must
evaluate to the statement return false. You can do this in two ways. The first is to append a
return false statement to the script statement assigned to the event handler:

<img...>

As an alternative, you can let the function invoked by the event handler supply the false
part of the return false statement, as shown in the following sequence:

function yourFunction() {
[statements that do something here]
return false;

}
...
<img...>

Either methdology is acceptable. A third option is to not use the onclick event handler at all,
but assign a javascript: pseudo-URL to the href attribute (see the Link object in Chapter 19).

The event model in IE4+ provides one more way to prevent the intrinsic action of an object
from firing when a user clicks it. If the onclick event handler function sets the returnValue
property of the event object to false, the intrinsic action is cancelled. Simply include the fol-
lowing statement in the function invoked by the event handler:

event.returnValue = false;

The event model of the W3C DOM has a different approach to cancelling the default action. In
the event handler function for an event, invoke the eventObj.cancelDefault() method.

A common mistake made by scripting beginners is to use a submit type input button as a but-
ton intended to perform some script action rather than submitting a form. The typical sce-
nario is an input element of type submit assigned an onclick event handler to perform
some local action. The submit input button has an intrinsic behavior, just like links and areas.
While you can block the intrinsic behavior, as just described, you should use an input ele-
ment of type button.

elementObject.onclick

329Chapter 15 ✦ Generic HTML Element Objects

If you are experiencing difficulty with an implementation of the onclick event handler (such
as trying to find out which mouse button was used for the click), it may be that the operat-
ing system or default browser behavior is getting in the way of your scripting. But you can
usually get what you need via the onmousedown event handler. (The onmouseup event may
not fire when you use the secondary mouse button to click an object.) Use the onclick
event handler whenever possible to capture user clicks because this event behaves most
like users are accustomed to in their daily computing work. But fall back on onmousedown in
an emergency.

Example
The onclick event handler is one of the simplest to grasp and use. Listing 15-35 demon-
strates its interaction with the ondblclick event handler and shows you how to prevent
a link’s intrinsic action from activating when combined with click events. As you click
and/or double-click the link, the status bar displays a message associated with each event.
Notice that if you double-click, the click event fires first with the first message immediately
replaced by the second. For demonstration purposes, I show both backward-compatible ways
of cancelling the link’s intrinsic action. In practice, decide on one style and stick with it.

Listing 15-35: Using onclick and ondblclick Event Handlers

<html>
<head>

<title>onclick and ondblclick Event Handlers</title>
<script type=”text/javascript”>
var timeout;
function clearOutput() {

document.getElementById(“clickType”).innerHTML = “”;
}
function showClick() {

document.getElementById(“clickType”).innerHTML = “single”;
clearTimeout(timeout);
timeout = setTimeout(“clearOutput()”, 3000);

}

function showDblClick() {
document.getElementById(“clickType”).innerHTML = “double”;
clearTimeout(timeout);
timeout = setTimeout(“clearOutput()”, 3000);

}
</script>

</head>
<body>

<h1>onclick and ondblclick Event Handlers</h1>
<hr />
<a href=”#” onclick=”showClick();return false”
ondblclick=”return showDblClick()”>A sample link.
(Click type:)

</body>
</html>

Related Items: click() method; oncontextmenu, ondblclick, onmousedown, onmouseup
event handlers.

elementObject.onclick

330 Part III ✦ Document Objects Reference

oncontextmenu
Compatibility: WinIE5+, MacIE-, NN7+, Moz1+, Safari-

The oncontextmenu event fires when the user clicks an object with the secondary (usually
the right-hand) mouse button. The only click-related events that fire with the secondary but-
ton are onmousedown and oncontextmenu.

To block the intrinsic application menu display of the oncontextmenu event, use any of the
three event cancellation methodologies available in WinIE5+ (as just described in the onclick
event handler description: two variations of evaluating the event handler to return false;
assigning false to the event.returnValue property). It is not uncommon to wish to block the
context menu from appearing so that users are somewhat inhibited from downloading copies of
images or viewing the source code of a frame. Be aware, however, that if a user turns Active
Scripting off in WinIE5+, the event handler cannot prevent the context menu from appearing.

Another possibility for this event is to trigger the display of a custom context menu con-
structed with other DHTML facilities. In this case, you must also disable the intrinsic context
menu so that both menus do not display at the same time.

Example
See Listing 15-30 earlier in this chapter for an example of using the oncontextmenu event
handler with a custom context menu.

Related Items: releaseCapture(), setCapture() methods.

oncontrolselect
Compatibility: WinIE5.5+, MacIE-, NN-, Moz-, Safari-

The oncontrolselect event fires just before a user makes a selection on an editable element
while the page is in edit mode. It’s important to note that it is the element itself that is
selected in order to trigger this event, not the content within the element.

Related Items: onresizeend, onresizestart event handlers.

oncopy
oncut

Compatibility: WinIE5+, MacIE4+, NN-, Moz-, Safari-

The oncopy and oncut events fire immediately after the user or script initiates a copy or cut
edit action on the current object. Each event is preceded by its associated “before” event,
which fires before any Edit or context menu appears (or before the copy or cut action, if initi-
ated by keyboard shortcut).

Use these event handlers to provide edit functionality to elements that don’t normally allow
copying or cutting. In such circumstances, you need to enable the Copy or Cut menu items in
the context or Edit menu by setting the event.returnValue for the onbeforecopy or onbe-
forecut event handlers to false. Then your oncopy or oncut event handlers must manually
stuff a value into the clipboard by way of the setdata() method of the clipboardData
object. If you use the setdata() method in your oncopy or oncut event handler, you must
also set the event.returnValue property to false in the handler function to avoid the
default copy or cut action from wiping out your clipboard contents.

Because you are in charge of what data is stored in the clipboard, you are not limited to a
direct copy of the data. For example, you might wish to store the value of the src property of
an image object so that the user can paste it elsewhere on the page.

elementObject.oncontextmenu

331Chapter 15 ✦ Generic HTML Element Objects

In the case of the oncut event handler, your script is also responsible for cutting the element
or selected content from the page. To eliminate all of the content of an element, you can set
the element’s innerHTML or innerText property to an empty string. For a selection, use the
selection.createRange() method to generate a TextRange object whose contents you can
manipulate through the TextRange object’s methods.

Example
Listing 15-36 shows both the onbeforecut and oncut event handlers in action (as well as
onbeforepaste and onpaste). Notice how the handleCut() function not only stuffs the
selected word into the clipboardData object, but it also erases the selected text from the
table cell element from where it came. If you replace the onbeforecut and oncut event han-
dlers with onbeforecopy and oncopy (and change handleCut() to not eliminate the inner
text of the event source element), the operation works with copy and paste instead of cut and
paste. I demonstrate this later in the chapter in Listing 15-45.

Listing 15-36: Cutting and Pasting under Script Control

<html>
<head>

<title>onbeforecut and oncut Event Handlers</title>
<style type=”text/css”>
td {text-align:center}
th {text-decoration:underline}
.blanks {text-decoration:underline}
</style>
<script type=”text/javascript”>
function selectWhole() {

var obj = window.event.srcElement;
var range = document.body.createTextRange();
range.moveToElementText(obj);
range.select();
event.returnValue = false;

}

function handleCut() {
var rng = document.selection.createRange();
clipboardData.setData(“Text”,rng.text);
var elem = event.srcElement;
elem.innerText = “”;
event.returnValue = false;

}

function handlePaste() {
var elem = window.event.srcElement;
if (elem.className == “blanks”) {

elem.innerHTML = clipboardData.getData(“Text”);
}
event.returnValue = false;

}

function handleBeforePaste() {
var elem = window.event.srcElement;
if (elem.className == “blanks”) {

Continued

elementObject.oncopy

332 Part III ✦ Document Objects Reference

Listing 15-36 (continued)

event.returnValue = false;
}

}
</script>

</head>
<body>

<h1>onbeforecut and oncut Event Handlers</h1>
<hr />
<p>Your goal is to cut and paste one noun and one adjective from the

following table into the blanks of the sentence. Select a word from
the table and use the Edit or context menu to cut it from the table.
Select one or more spaces of the blanks in the sentence and choose
Paste to replace the blank with the clipboard contents.</p>

<table cellpadding=”5” onbeforecut=”selectWhole()” oncut=”handleCut()”>
<tr>

<th>Nouns</th>
<th>Adjectives</th>

</tr>
<tr>

<td>truck</td>
<td>round</td>

</tr>
<tr>

<td>doll</td>
<td>red</td>

</tr>
<tr>

<td>ball</td>
<td>pretty</td>

</tr>
</table>
<p id=”myP” onbeforepaste=”handleBeforePaste()” onpaste=”handlePaste()”>

Pat said, “Oh my, the <span id=”blank1”
class=”blanks”> is so !”</p>

<button onclick=”location.reload()”>Reset</button>
</body>

</html>

Related Items: onbeforecopy, onbeforecut, onbeforepaste, and onpaste event handlers.

ondblclick
Compatibility: WinIE4+, MacIE4+, NN4+, Moz1+, Safari1+

The ondblclick event fires after the second click of a double-click sequence. The timing
between clicks depends on the client’s mouse control panel settings. The onclick event also
fires, but only after the first of the two clicks.

In general, it is rarely a good design to have an element perform one task when the mouse is
single-clicked and a different task if double-clicked. With the event sequence employed in mod-
ern browsers, this isn’t practical anyway (the onclick event always fires, even when the user
double-clicks). But it is not uncommon to have the mouse down action perform some helper
action. You see this in most icon-based file systems: if you click a file icon, it is highlighted at

elementObject.oncopy

333Chapter 15 ✦ Generic HTML Element Objects

mouse down to select the item; you can double-click the item to launch it. In either case, one
event’s action does not impede the other nor confuse the user.

Example
See Listing 15-35 (for the onclick event handler) to see the ondblclick event in action.

Related Items: onclick, onmousedown, onmouseup event handlers.

ondrag, ondragend, ondragstart
Compatibility: WinIE5+, MacIE-, NN-, Moz-, Safari-

The ondrag event fires after the ondragstart event and continues firing repeatedly while the
user drags a selection or object on the screen. Unlike the onmousemove event, which fires only
as the cursor moves on the screen, the ondrag event continues to fire even when the cursor is
stationary. In the WinIE5+ environment, users can drag objects to other browser windows or
other applications. The event fires while the dragging extends beyond the browser window.

Because the event fires regardless of what is underneath the dragged object, you can use it in
a game or training environment in which the user has only a fixed amount of time to complete
a dragging operation (for example, matching similar pairs of objects). If the browser accom-
modates downloadable cursors, the ondrag event could cycle the cursor through a series of
cursor versions to resemble an animated cursor.

Understanding the sequence of drag-related events during a user drag operation can be help-
ful if your scripts need to micromanage the actions (usually not necessary for basic drag-and-
drop operations). Consider the drag-and-drop operation shown in Figure 15-2.

Figure 15-2: A typical drag-and-drop operation.

elementObject.ondrag

334 Part III ✦ Document Objects Reference

It helps to imagine that the cells of the table with draggable content are named like spread-
sheet cells: “truck” is cell A1; “round” is B1; “doll” is A2; and so on. During the drag operation,
many objects are the targets of a variety of drag-related events. Table 15-10 lists the event
sequence and the event targets.

Table 15-10: Events and Their Targets
During a Typical Drag-and-Drop Operation

Event Target Discussion

ondragstart cell A1 The very first event that fires during a drag-and-drop operation.

ondrag cell A1 Fires continually on this target throughout the entire operation. Other
events get interspersed, however.

ondragenter cell A1 Even though the cursor hasn’t moved from cell A1 yet, the ondragenter
event fires upon first movement within the source element.

ondragover cell A1 Fires continually on whatever element the cursor rests on at that instant. If
the user simply holds the mouse button down and does not move the
cursor during a drag, the ondrag and ondragover events fire continually,
alternating between the two.

(repetition) cell A1 ondrag and ondragover events fire alternately while the cursor remains
atop cell A1.

ondragenter table The table element, represented by the border and/or cell padding,
receives the ondragenter event when the cursor touches its space.

ondragleave cell A1 Notice that the ondragleave event fires after the ondragenter event
fires on another element.

ondrag cell A1 Still firing away.

ondragover table The source element for this event shifts to the table because that’s what
the cursor is “over” at this instant. If the cursor doesn’t move from this
spot, the ondrag (cell A1) and ondragover (table) events continue to
fire in turn.

ondragenter cell B1 The drag is progressing from the table border space to cell B1.

ondragleave table
ondrag cell A1 The ondrag event continues to fire on the cell A1 object.

ondragover cell B1 The cursor is atop cell B1 now, so the ondragover event fires for that
object. Fires multiple times (depending on the speed of the computer and
the user’s drag action), alternating with the previous ondrag event.

[More of the same as the cursor progresses from cell B1 through the
table border again to cell B2, the table again, cell B3, and the
outermost edge of the table.]

ondragenter body Dragging is free of the table and is floating free on the bare body
element.

ondragleave table Yes, you just left the table.

ondrag cell A1 Still alive and receiving this event.

ondragover body That’s where the cursor is now. Fires multiple times (depending on the
speed of the computer and the user’s drag action), alternating with the
previous ondrag event.

ondragenter blank1 The cursor reaches the span element whose ID is blank1, where the
empty underline is.

ondragleave body Just left the body for the blank.

elementObject.ondrag

335Chapter 15 ✦ Generic HTML Element Objects

Event Target Discussion

ondrag cell A1 Still kicking.

ondragover blank1 That’s where the cursor is now. Fires multiple times (depending on the
speed of the computer and the user’s drag action), alternating with the
previous ondrag event.

ondrop blank1 The span element gets the notification of a recent drop.

ondragend cell A1 The original source element gets the final word that dragging is complete.
This event fires even if the drag does not succeed because the drag does
not end on a drop target.

In practice, some of the events shown in Table 15-10 may not fire. Much has to do with how
many event handlers you trap that need to execute scripts along the way. The other major
factor is the physical speed at which the user performs the drag-and-drop operation (which
interacts with the CPU processing speed). The kinds of events that are most likely to be
skipped are the ondragenter and ondragleave events, and perhaps some ondragover
events if the user flies over an object before its ondragover event has a chance to fire.

Despite this uncertainty about drag-related event reliability, you can count on several impor-
tant ones to fire all the time. The ondragstart, ondrop (if over a drop target), and ondragend
events — as well some interstitial ondrag events — will definitely fire in the course of dragging
on the screen. All but ondrop direct their events to the source element, while ondrop fires on
the target.

Example
Listing 15-37 shows several drag-related event handlers in action. The page resembles the
example in Listing 15-36, but the scripting behind the page is quite different. In this example,
the user is encouraged to select individual words from the Nouns and Adjectives columns
and drag them to the blanks of the sentence. To beef up the demonstration, Listing 15-37
shows you how to pass the equivalent of array data from a drag source to a drag target. At
the same time, the user has a fixed amount of time (two seconds) to complete each drag
operation.

The ondragstart and ondrag event handlers are placed in the <body> tag because those
events bubble up from any element that the user tries to drag. The scripts invoked by these
event handlers filter the events so that the desired action is triggered only by the “hot” ele-
ments inside the table. This approach to event handlers prevents you from having to dupli-
cate event handlers (or IE <script for=> tags) for each table cell.

The ondragstart event handler invokes setupDrag(). This function cancels the
ondragstart event except when the target element (the one about to be dragged) is one of
the td elements inside the table. To make this application smarter about what kind of word is
dragged to which blank, it passes not only the word’s text, but also some extra information
about the word. This lets another event handler verify that a noun has been dragged to the
first blank, while an adjective has been dragged to the second blank. To help with this effort,
class names are assigned to the td elements to distinguish the words from the Nouns column
from the words of the Adjectives column. The setupDrag() function generates an array con-
sisting of the innerText of the event’s source element plus the element’s class name. But the
event.dataTransfer object cannot store array data types, so the Array.join() method
converts the array to a string with a colon separating the entries. This string, then, is stuffed
into the event.dataTransfer object. The object is instructed to render the cursor display
during the drag-and-drop operation so that when the cursor is atop a drop target, the cursor

elementObject.ondrag

336 Part III ✦ Document Objects Reference

is the “copy” style. Finally, the setupDrag() function is the first to execute in the drag opera-
tion, so a timer is set to the current clock time to time the drag operation.

The ondrag event handler (in the body) captures the ondrag events that are generated by
whichever table cell element is the source element for the action. Each time the event fires
(which is a lot during the action), the timeIt() function is invoked to compare the current
time against the reference time (global timer) set when the drag starts. If the time exceeds
two seconds (2,000 milliseconds), an alert dialog box notifies the user. To close the alert dia-
log box, the user must unclick the mouse button to end the drag operation.

To turn the blank span elements into drop targets, their ondragenter, ondragover, and ondrop
event handlers must set event.returnValue to false; also, the event.dataTransfer.
dropEffect property should be set to the desired effect (copy in this case). These event han-
dlers are placed in the p element that contains the two span elements, again for simplicity.
Notice, however, that the cancelDefault() functions do their work only if the target element is
one of the span elements whose ID begins with “blank.”

As the user releases the mouse button, the ondrop event handler invokes the handleDrop()
function. This function retrieves the string data from event.dataTransfer and restores it to
an array data type (using the String.split() method). A little bit of testing makes sure that
the word type (“noun” or “adjective”) is associated with the desired blank. If so, the source
element’s text is set to the drop target’s innerText property; otherwise, an error message is
assembled to help the user know what went wrong.

Listing 15-37: Using Drag-Related Event Handlers

<html>
<head>

<title>Dragging Event Handlers</title>
<style type=”text/css”>
td {text-align:center}
th {text-decoration:underline}
.blanks {text-decoration:underline}
</style>
<script type=”text/javascript”>
var timer;

function setupDrag() {
if (event.srcElement.tagName != “TD”) {

// don’t allow dragging for any other elements
event.returnValue = false;

} else {
// setup array of data to be passed to drop target
var passedData = [event.srcElement.innerText,

event.srcElement.className];
// store it as a string
event.dataTransfer.setData(“Text”, passedData.join(“:”));
event.dataTransfer.effectAllowed = “copy”;
timer = new Date();

}
}

function timeIt() {
if (event.srcElement.tagName == “TD” && timer) {

if ((new Date()) - timer > 2000) {
alert(“Sorry, time is up. Try again.”);

elementObject.ondrag

337Chapter 15 ✦ Generic HTML Element Objects

timer = 0;
}

}
}

function handleDrop() {
var elem = event.srcElement;
var passedData = event.dataTransfer.getData(“Text”);
var errMsg = “”;
if (passedData) {

// reconvert passed string to an array
passedData = passedData.split(“:”);
if (elem.id == “blank1”) {

if (passedData[1] == “noun”) {
event.dataTransfer.dropEffect = “copy”;
event.srcElement.innerText = passedData[0];

} else {
errMsg = “You can’t put an adjective into the noun

placeholder.”;
}

} else if (elem.id == “blank2”) {
if (passedData[1] == “adjective”) {

event.dataTransfer.dropEffect = “copy”;
event.srcElement.innerText = passedData[0];

} else {
errMsg = “You can’t put a noun into the adjective

placeholder.”;
}

}
if (errMsg) {

alert(errMsg);
}

}
}

function cancelDefault() {
if (event.srcElement.id.indexOf(“blank”) == 0) {

event.dataTransfer.dropEffect = “copy”;
event.returnValue = false;

}
}
</script>

</head>
<body ondragstart=”setupDrag()” ondrag=”timeIt()”>

<h1>Dragging Event Handlers</h1>
<hr />
<p>Your goal is to drag one noun and one adjective from the following

table into the blanks of the sentence. Select a word from the table
and drag it to the desired blank. When you release the mouse, the word
will appear in the blank.You have two seconds to complete each
blank.</p>

<table cellpadding=”5”>
<tr>

<th>Nouns</th>
<th>Adjectives</th>

</tr>
<tr>

<td class=”noun”>truck</td>

Continued

elementObject.ondrag

338 Part III ✦ Document Objects Reference

Listing 15-37 (continued)

<td class=”adjective”>round</td>
</tr>
<tr>

<td class=”noun”>doll</td>
<td class=”adjective”>red</td>

</tr>
<tr>

<td class=”noun”>ball</td>
<td class=”adjective”>pretty</td>

</tr>
</table>
<p id=”myP” ondragenter=”cancelDefault()” ondragover=”cancelDefault()”

ondrop=”handleDrop()”>Pat said, “Oh my, the <span id=”blank1”
class=”blanks”> is so !”</p>

<button onclick=”location.reload()”>Reset</button>
</body>

</html>

One event handler not shown in Listing 15-37 is ondragend. You can use this event to display
the elapsed time for each successful drag operation. Because the event fires on the drag
source element, you can implement it in the <body> tag and filter events similar to the way
the ondragstart or ondrag event handlers filter events for the td element.

Related Items: event.dataTransfer object; ondragenter, ondragleave, ondragover,
ondrop event handlers.

ondragenter
ondragleave
ondragover

Compatibility: WinIE5+, MacIE-, NN-, Moz-, Safari-

These events fire during a drag operation. When the cursor enters the rectangular space of an
element on the page, the ondragenter event fires on that element. Immediately thereafter,
the ondragleave event fires on the element from which the cursor came. While this may
seem to occur out of sequence from the physical action, the events always fire in this order.
Depending on the speed of the client computer’s CPU and the speed of the user’s dragging
action, one or the other of these events may not fire — especially if the physical action out-
strips the computer’s capability to fire the events in time.

The ondragover event fires continually while a dragged cursor is atop an element. In the
course of dragging from one point on the page to another, the ondragover event target
changes with the element beneath the cursor. If no other drag-related events are firing (the
mouse button is still down in the drag operation, but the cursor is not moving), the ondrag
and ondragover events fire continually, alternating between the two.

You should have the ondragover event handler of a drop target element set the event
.returnValue property to false. See the discussion of the ondrag event handler earlier
in this chapter for more details on the sequence of drag-related events.

elementObject.ondrag

339Chapter 15 ✦ Generic HTML Element Objects

Example
Listing 15-38 shows the ondragenter and ondragleave event handlers in use. The simple
page displays (via the status bar) the time of entry to one element of the page. When the
dragged cursor leaves the element, the ondragleave event handler hides the status bar mes-
sage. No drop target is defined for this page, so when you drag the item, the cursor remains
as the “no drop” cursor.

Listing 15-38: Using ondragenter and ondragleave Event Handlers

<html>
<head>

<title>ondragenter and ondragleave Event Handlers</title>
<script type=”text/javascript”>
function showEnter() {

status = “Entered at: “ + new Date();
event.returnValue = false;

}
function clearMsg() {

status = “”;
event.returnValue = false;

}
</script>

</head>
<body>

<h1 ondragenter=”showEnter()” ondragleave=”clearMsg()”>
ondragenter and ondragleave Event Handlers</h1>
<hr />
<p>Select any character(s) from this paragraph, and slowly drag it around

the page. When the dragging action enters the large header above, the
status bar displays when the onDragEnter event handler fires. When you
leave the header, the message is cleared via the onDragLeave event
handler.</p>

</body>
</html>

Related Items: ondrag, ondragend, ondragstart, ondrop event handlers.

ondragstart
(See ondrag)

ondrop
Compatibility: WinIE5+, MacIE-, NN-, Moz-, Safari-

The ondrop event fires on the drop target element as soon as the user releases the mouse but-
ton at the end of a drag-and-drop operation. Microsoft recommends that you denote a drop
target by applying the ondragenter, ondragover, and ondrop event handlers to the target ele-
ment. In each of those event handlers, you should set the dataTransfer.dropEffect to the
transfer effect you wish to portray in the drag-and-drop operation (signified by a different cur-
sor for each type). These settings should match the dataTransfer.effectAllowed property
that is usually set in the ondragstart event handler. Each of the three drop-related handlers
should also override the default event behavior by setting the event.returnValue property to

elementObject.ondrop

340 Part III ✦ Document Objects Reference

false. See the discussion of the ondrag event handler earlier in this chapter for more details
on the sequence of drag-related events.

Example
See Listing 15-37 of the ondrag event handler to see how to apply the ondrop event handler
in a typical drag-and-drop scenario.

Related Items: event.dataTransfer object; ondrag, ondragend, ondragenter,
ondragleave, ondragover, ondragstart event handlers.

onfilterchange
Compatibility: WinIE4+, MacIE-, NN-, Moz-, Safari-

The onfilterchange event fires whenever an object’s visual filter switches to a new state or a
transition completes (a transition may be extended over time). Only objects that accommodate
filters and transitions in IE (primarily block elements and form controls) receive the event.

A common usage of the onfilterchange event is to trigger the next transition within a
sequence of transition activities. This may include an infinite loop transition, for which the
object receiving the event toggles between two transition states. If you don’t want to get into
a loop of that kind, place the different sets of content into their own positionable elements
and use the onfilterchange event handler in one to trigger the transition in the other.

Example
Listing 15-39 demonstrates how the onfilterchange event handler can trigger a second
transition effect after another one completes. The onload event handler triggers the first
effect. Although the onfilterchange event handler works with most of the same objects in
IE4 as IE5, the filter object transition properties are not reflected in a convenient form. The
syntax shown in Listing 15-39 uses the new ActiveX filter control found in IE5.5+ (described in
Chapter 30).

Listing 15-39: Using the onFilterChange Event Handler

<html>
<head>

<title>onfilterchange Event Handler</title>
<script type=”text/javascript”>
function init() {

image1.filters[0].apply();
image2.filters[0].apply();
start();

}

function start() {
image1.style.visibility = “hidden”;
image1.filters[0].play();

}

function finish() {
// verify that first transition is done (optional)
if (image1.filters[0].status == 0) {

image2.style.visibility = “visible”;
image2.filters[0].play();

}

elementObject.ondrop

341Chapter 15 ✦ Generic HTML Element Objects

}
</script>

</head>
<body onload=”init()”>

<h1>onfilterchange Event Handler</h1>
<hr />
<p>The completion of the first transition (“circle-in”) triggers the

second (“circle-out”). <button onclick=”location.reload()”>Play It
Again</button></p>

<div id=”image1”
style=”visibility:visible; position:absolute; top:150px; left:150px;
filter:progID:DXImageTransform.Microsoft.Iris(irisstyle=’CIRCLE’,
motion=’in’)” onfilterchange=”finish()”>

</div>
<div id=”image2”
style=”visibility:hidden; position:absolute; top:150px; left:150px;
filter:progID:DXImageTransform.Microsoft.Iris(irisstyle=’CIRCLE’,
motion=’out’)”>

</div>

</body>
</html>

Related Item: filter object.

onfocus
Compatibility: WinIE3+, MacIE3+, NN2+, Moz1+, Safari1+

The onfocus event fires when an element receives focus, usually following some other object
losing focus. (The element losing focus receives the onblur event before the current object
receives the onfocus event.) For example, a text input element fires the onfocus event when
a user tabs to that element while navigating through a form via the keyboard. Clicking an ele-
ment also gives that element focus, as does making the browser the frontmost application on
the client desktop.

The availability of the onfocus event has expanded with succeeding generations of script-
capable browsers. In earlier versions, blur and focus were largely confined to text-oriented
input elements such as the select element. The window object received the onfocus event
handler starting with NN3 and IE4. IE4 also extended the event handler to more form ele-
ments, predominantly on the Windows operating system because that OS has a user interface
clue (the dotted rectangle) when items such as buttons and links receive focus (so that users
may act upon them by pressing the keyboard’s spacebar). For IE5+, the onfocus event han-
dler is available to virtually every HTML element. For most of those elements, however,
you cannot use blur and focus unless you assign a value to the tabindex attribute of the
element’s tag. For example, if you assign tabindex=”1” inside a <p> tag, the user can bring
focus to that paragraph (highlighted with the dotted rectangle in Windows) by clicking the
paragraph or pressing the Tab key until that item receives focus in sequence.

WinIE5.5 adds the onactivate event handler, which fires immediately before the onfocus
event handler. You can use one or the other, but there is little need to include both event han-
dlers for the same object unless you temporarily wish to block an item from receiving focus. To
prevent an object from receiving focus in IE5.5+, include an event.returnValue=false state-
ment in the onactivate event handler for the same object. In other browsers, you can usually
get away with assigning onfocus=”this.blur()” as an event handler for elements such as

elementObject.onfocus

342 Part III ✦ Document Objects Reference

form controls. However, this is not a foolproof way to prevent a user from changing a control’s
setting. Unfortunately, there are few reliable alternatives, short of disabling the control.

Example
See Listing 15-34 earlier in this chapter for an example of the onfocus and onblur event
handlers.

Related Items: onactivate, onblur, ondeactivate event handlers.

onhelp
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-

The onhelp event handler fires in Windows whenever an element of the document has focus
and the user presses the F1 function key on a Windows PC. As of MacIE5, the event fires only
on the window (in other words, event handler specified in the <body> tag) and does so via
the dedicated Help key on a Mac keyboard. Browser Help menu choices do not activate this
event. To prevent the browser’s Help window from appearing, the event handler must evalu-
ate to return false (for IE4+) or set the event.returnValue property to false (IE5+).
Because the event handler can be associated with individual elements of a document in the
Windows version, you can create a context-sensitive help system. However, if the focus is in
the Address field of the browser window, you cannot intercept the event. Instead, the
browser’s Help window appears.

Example
Listing 15-40 is a rudimentary example of a context-sensitive help system that displays help
messages tailored to the kind of text input required by different text fields. When the user
gives focus to either of the text fields, a small legend appears to remind the user that help is
available by a press of the F1 help key. MacIE5 provides only generic help.

Listing 15-40: Creating Context-Sensitive Help

<html>
<head>

<title>onhelp Event Handler</title>
<script type=”text/javascript”>
function showNameHelp() {

alert(“Enter your first and last names.”);
event.cancelBubble = true;
return false;

}
function showYOBHelp() {

alert(“Enter the four-digit year of your birth. For example: 1972”);
event.cancelBubble = true;
return false;

}
function showGenericHelp() {

alert(“All fields are required.”);
event.cancelBubble = true;
return false;

}
function showLegend() {

document.getElementById(“legend”).style.visibility = “visible”;
}
function hideLegend() {

elementObject.onfocus

343Chapter 15 ✦ Generic HTML Element Objects

document.getElementById(“legend”).style.visibility = “hidden”;
}
function init() {

var msg = “”;
if (navigator.userAgent.indexOf(“Mac”) != -1) {

msg = “Press \’help\’ key for help.”;
} else if (navigator.userAgent.indexOf(“Win”) != -1) {

msg = “Press F1 for help.”;
}
document.getElementById(“legend”).style.visibility = “hidden”;
document.getElementById(“legend”).innerHTML = msg;

}
</script>

</head>
<body onload=”init()” onhelp=”return showGenericHelp()”>

<h1>onhelp Event Handler</h1>
<hr />
<p id=”legend” style=”visibility:hidden; font-size:10px”> </p>
<form>

Name: <input type=”text” name=”name” size=”30” onfocus=”showLegend()”
onblur=”hideLegend()” onhelp=”return showNameHelp()” />

Year of Birth: <input type=”text” name=”YOB” size=”30”
onfocus=”showLegend()” onblur=”hideLegend()”
onhelp=”return showYOBHelp()” />

</form>
</body>

</html>

Related Items: window.showHelp(), window.showModalDialog() methods.

onkeydown
onkeypress
onkeyup

Compatibility: WinIE4+, MacIE4+, NN4+, Moz1+, Safari1+

When someone presses and releases a keyboard key, a sequence of three events fires in quick
succession. The onkeydown event fires when the key makes its first contact. This is followed
immediately by the onkeypress event. When contact is broken by the key release, the onkeyup
event fires. If you hold a character key down until it begins auto-repeating, the onkeydown and
onkeypress events fire with each repetition of the character.

The sequence of events can be crucial in some keyboard event handling. Consider the sce-
nario that wants the focus of a series of text fields to advance automatically after the user
enters a fixed number of characters (for example, date, month, and two-digit year). By the
time the onkeyup event fires, the character associated with the key press action is already
added to the field and you can accurately determine the length of text in the field, as shown
in this simple example:

<html>
<head>
<script type=”text/javascript”>
function jumpNext(fromFld, toFld) {

if (fromFld.value.length == 2) {
document.forms[0].elements[toFld].focus();
document.forms[0].elements[toFld].select();

}

elementObject.onkeydown

344 Part III ✦ Document Objects Reference

}
</script>
</head>
<body>
<form>
Month: <input name=”month” type=”text” size=”3” value=””

onkeyup=”jumpNext(this, day)” maxlength=”2” />
Day: <input name =”day” type=”text” size=”3” value=””

onkeyup =”jumpNext(this, year)” maxlength=”2” />
Year: <input name=”year” type=”text” size=”3” value=””

onkeyup =”jumpNext(this, month)” maxlength=”2” />
</form>
</body>
</html>

These three events do not fire for all keys of the typical PC keyboard on all browser versions
that support keyboard events. The only keys that you can rely on supporting the events in all
browsers shown in the preceding compatibility chart are the alphanumeric keys represented
by ASCII values. This includes keys such as the spacebar and Enter (Return on the Mac), but
it excludes all function keys, arrow keys, and other navigation keys. Modifier keys, such as
Shift, Ctrl (PC), Alt (PC), Command (Mac), and Option (Mac), generate some events on their
own (depending on browser and version). However, functions invoked by other key events
can always inspect the pressed states of these modifier keys.

The onkeydown event handler works in Mozilla-based browsers only starting with Mozilla
1.4 (and Netscape 7.1).

Scripting keyboard events almost always entails examining which key is pressed so that some
processing or validation can be performed on that key press. This is where the situation gets
very complex if you are writing for cross-browser implementation. In some cases, even writ-
ing just for Internet Explorer gets tricky because non-alphanumeric keys generate only the
onkeydown and onkeyup events.

In fact, to fully comprehend keyboard events, you need to make a distinction between key codes
and character codes. Every PC keyboard key has a key code associated with it. This key code is
always the same regardless of what other keys you press at the same time. Only the alpha-
numeric keys (letters, numbers, spacebar, and so on), however, generate character codes. The
code represents the typed character produced by that key. The value might change if you press
a modifier key. For example, if you type the “A” key by itself, it generates a lowercase “a” char-
acter (character code 97); if you also hold down the Shift key, that same key produces an upper-
case “A” character (character code 65). The key code for that key (65 for Western language
keyboards) remains the same no matter what.

That brings us, then, to where these different codes are made available to scripts. In all cases,
the code information is conveyed as one or two properties of the browser’s event object. IE’s
event object has only one such property —keyCode. It contains key codes for onkeydown and
onkeyup events, but character codes for onkeypress events. The NN6/Moz1 event object, on
the other hand, contains two separate properties: charCode and keyCode. You can find more
details and examples about these event object properties in Chapter 25.

The bottom-line script consideration is to use either onkeydown or onkeyup event handlers
when you want to look for non-alphanumeric key events (for example, function keys, arrow
and page navigation keys, and so on). To process characters as they appear in text boxes, use
the onkeypress event handler. You can experiment with these events and codes in Listing
15-41 as well as in examples from Chapter 25.

Caution

elementObject.onkeydown

345Chapter 15 ✦ Generic HTML Element Objects

Common keyboard event tasks
WinIE4+ enables you to modify the character that a user who is editing a text box enters. The
onkeypress event handler can modify the event.keyCode property and allow the event to
continue (in other words, don’t evaluate to return false or set the event.returnValue
property to false). The following IE function (invoked by an onkeypress event handler)
makes sure text entered into a text field is all uppercase, even if you type it as lowercase:

function assureUpper() {
if (event.keyCode >= 97 && event.keyCode <= 122) {

event.keyCode = event.keyCode – 32;
}

}

Doing this might confuse (or frustrate) users, so think carefully before implementing such a plan.

To prevent a keyboard key press from becoming a typed character in a text field, the
onkeypress event handler prevents the default action of the event. For example, the fol-
lowing HTML page shows how to inspect a text field’s entry for numbers only:

<html>
<head>
<title>Keyboard Capture</title>
<script type=”text/javascript”>
function checkIt(evt) {

var charCode = (evt.charCode) ? evt.charCode : ((
evt.which) ? evt.which : evt.keyCode);

if (charCode > 31 && (charCode < 48 || charCode > 57)) {
alert(“Please make sure entries are numbers only.”);
return false;

}
return true;

}
</script>
</head>

<body>
<form>
Enter any positive integer: <input type=”text” name=”numeric”

onkeypress=”return checkIt(event)”>
</form>
</body>
</html>

Whenever a user enters a non-number, the user receives a warning and the character is not
appended to the text box’s text.

Keyboard events also enable you to script the submission of a form when a user presses the
Enter (Return on the Mac) key within a text box. The ASCII value of the Enter/Return key is
13. Therefore, you can examine each key press in a text box and submit the form whenever
value 13 arrives, as shown in the following function:

function checkForEnter(evt) {
evt = (evt) ? evt : event;
var charCode = (evt.charCode) ? evt.charCode : ((

evt.which) ? evt.which : evt.keyCode);
if (charCode == 13) {

document.forms[0].submit();
return false;

elementObject.onkeydown

346 Part III ✦ Document Objects Reference

}
return true;

}

By assigning the checkForEnter() function to each field’s onkeypress event handler, you
suddenly add some extra power to a typical HTML form.

You can intercept Ctrl+keyboard combinations (letters only) in HTML pages most effectively
in Internet Explorer, but only if the browser itself does not use the combination. In other
words, you cannot redirect Ctrl+key combinations that the browser uses for its own control.
The onkeypress keyCode value for Ctrl+combinations ranges from 1 through 26 for letters A
through Z (except for those used by the browser, in which case no keyboard event fires).

Example
Listing 15-41 is a working laboratory that you can use to better understand the way keyboard
event codes and modifier keys work in IE5+ and W3C browsers. The actual code of the listing
is less important than watching the page while you use it. For every key or key combination
that you press, the page shows the keyCode value for the onkeydown, onkeypress, and
onkeyup events. If you hold down one or more modifier keys while performing the key press,
the modifier key name is highlighted for each of the three events. Note that when run in
NN6+, the keyCode value is not the character code (which doesn’t show up in this example
for NN6+). Also, you may need to click the NN6+ page for the document object to recognize
the keyboard events.

The best way to watch what goes on during keyboard events is to press and hold a key to see
the key codes for the onkeydown and onkeypress events. Then release the key to see the code
for the onkeyup event. Notice, for instance, that if you press the A key without any modifier key,
the onkeydown event key code is 65 (A) but the onkeypress key code in IE (and the charCode
property in NN6+) is 97 (a). If you then repeat the exercise but hold the Shift key down, all three
events generate the 65 (A) key code (and the Shift modifier labels are highlighted). Releasing
the Shift key causes the onkeyup event to show the key code for the Shift key.

In another experiment, press any of the four arrow keys. No key code is passed for the
onkeypress event because those keys don’t generate those events. They do, however, gener-
ate onkeydown and onkeyup events.

Listing 15-41: Keyboard Event Handler Laboratory

<html>
<head>

<title>Keyboard Event Handler Lab</title>
<style type=”text/css”>
td {text-align:center}
</style>
<script type=”text/javascript”>
function init() {

document.onkeydown = showKeyDown;
document.onkeyup = showKeyUp;
document.onkeypress = showKeyPress;

}

function showKeyDown(evt) {
evt = (evt) ? evt : window.event;
document.getElementById(“pressKeyCode”).innerHTML = 0;

elementObject.onkeydown

347Chapter 15 ✦ Generic HTML Element Objects

document.getElementById(“upKeyCode”).innerHTML = 0;
document.getElementById(“pressCharCode”).innerHTML = 0;
document.getElementById(“upCharCode”).innerHTML = 0;
restoreModifiers(“”);
restoreModifiers(“Down”);
restoreModifiers(“Up”);
document.getElementById(“downKeyCode”).innerHTML = evt.keyCode;
if (evt.charCode) {

document.getElementById(“downCharCode”).innerHTML = evt.charCode;
}
showModifiers(“Down”, evt);

}

function showKeyUp(evt) {
evt = (evt) ? evt : window.event;
document.getElementById(“upKeyCode”).innerHTML = evt.keyCode;
if (evt.charCode) {

document.getElementById(“upCharCode”).innerHTML = evt.charCode;
}
showModifiers(“Up”, evt);
return false;

}

function showKeyPress(evt) {
evt = (evt) ? evt : window.event;
document.getElementById(“pressKeyCode”).innerHTML = evt.keyCode;
if (evt.charCode) {

document.getElementById(“pressCharCode”).innerHTML = evt.charCode;
}
showModifiers(“”, evt);
return false;

}

function showModifiers(ext, evt) {
restoreModifiers(ext);
if (evt.shiftKey) {

document.getElementById(“shift” + ext).style.backgroundColor =
“#ff0000”;

}
if (evt.ctrlKey) {

document.getElementById(“ctrl” + ext).style.backgroundColor =
“#00ff00”;

}
if (evt.altKey) {

document.getElementById(“alt” + ext).style.backgroundColor =
“#0000ff”;

}
}

function restoreModifiers(ext) {
document.getElementById(“shift” + ext).style.backgroundColor =

“#ffffff”;
document.getElementById(“ctrl” + ext).style.backgroundColor =

“#ffffff”;
document.getElementById(“alt” + ext).style.backgroundColor =

“#ffffff”;
}

Continued

elementObject.onkeydown

348 Part III ✦ Document Objects Reference

Listing 15-41 (continued)

</script>
</head>
<body onload=”init()”>

<h1>Keyboard Event Handler Lab</h1>
<hr />
<form>

<table border=”2” cellpadding=”2”>
<tr>

<th></th>
<th>onKeyDown</th>
<th>onKeyPress</th>
<th>onKeyUp</th>

</tr>
<tr>

<th>Key Codes</th>
<td id=”downKeyCode”>0</td>
<td id=”pressKeyCode”>0</td>
<td id=”upKeyCode”>0</td>

</tr>
<tr>

<th>Char Codes (IE5/Mac; NN6)</th>
<td id=”downCharCode”>0</td>
<td id=”pressCharCode”>0</td>
<td id=”upCharCode”>0</td>

</tr>
<tr>

<th rowspan=”3”>Modifier Keys</th>
<td>Shift</td>
<td>Shift</td>
<td>Shift</td>

</tr>
<tr>

<td>Ctrl</td>
<td>Ctrl</td>
<td>Ctrl</td>

</tr>
<tr>

<td>Alt</td>
<td>Alt</td>
<td>Alt</td>

</tr>
</table>

</form>
</body>

</html>

Spend some time with this lab, and try all kinds of keys and key combinations until you
understand the way the events and key codes work.

Related Item: String.fromCharCode() method.

onlosecapture
Compatibility: WinIE5+, MacIE-, NN-, Moz-, Safari-

elementObject.onkeydown

349Chapter 15 ✦ Generic HTML Element Objects

The onlosecapture event handler fires whenever an object that has event capture turned on
no longer has that capture. Event capture is automatically disengaged when the user per-
forms any of the following actions:

✦ Gives focus to any other window

✦ Displays any system modal dialog box (for example, alert window)

✦ Scrolls the page

✦ Opens a browser context menu (right-clicking)

✦ Tabs to give focus to the Address field in the browser window

A function associated with the onlosecapture event handler should perform any cleanup of
the environment due to an object no longer capturing mouse events.

Example
See Listing 15-30 earlier in this chapter for an example of how to use onlosecapture with an
event-capturing scenario for displaying a context menu. The onlosecapture event handler
hides the context menu when the user performs any action that causes the menu to lose
mouse capture.

Related Items: releaseCapture(), setCapture() methods.

onmousedown
onmouseup

Compatibility: WinIE4+, MacIE4+, NN4+, Moz1+, Safari1+

The onmousedown event handler fires when the user presses any button of a mouse. The
onmouseup event handler fires when the user releases the mouse button, provided the object
receiving the event also received an onmousedown event. When a user performs a typical
click of the mouse button atop an object, mouse events occur in the following sequence:
onmousedown, onmouseup, onclick. But if the user presses the mouse atop an object and
then slides the cursor away from the object, only the onmousedown event fires.

These events enable authors and designers to add more application-like behavior to images
that act as action or icon buttons. If you notice the way most buttons work, the appearance of
the button changes while you press the mouse button and reverts to its original style when
you release the mouse button (or you drag the cursor out of the button). These events enable
you to emulate that behavior.

The event object created with every mouse button action has a property that reveals which
mouse button the user pressed. NN4’s event model calls that property the which property. IE4+
and NN6+/Moz1+ call it the button property (but with different values for the buttons). It is
most reliable to test for the mouse button number on either the onmousedown or onmouseup
event, rather than on onclick. The onclick event object does not always contain the button
information.

Example
To demonstrate a likely scenario of changing button images in response to rolling atop an
image, pressing down on it, releasing the mouse button, and rolling away from the image,
Listing 15-42 presents a pair of small navigation buttons (left- and right-arrow buttons). Because
the image object is not part of the document object model for NN2 or IE3 (which reports itself
as Navigator version 2), the page is designed to accept all browsers. Only those browsers that
support precached images and image swapping (and thus pass the test for the presence of the

elementObject.onmousedown

350 Part III ✦ Document Objects Reference

document.images array) can execute those statements. For a browser with an image object,
images are preloaded into the browser cache as the page loads so that response to the user is
instantaneous the first time the user calls upon new versions of the images.

Listing 15-42: Using onmousedown and onmouseup Event Handlers

<html>
<head>

<title>onmousedown and onmouseup Event Handlers</title>
<script type=”text/javascript”>
if (document.images) {

var RightNormImg = new Image(16,16);
var RightUpImg = new Image(16,16);
var RightDownImg = new Image(16,16);
var LeftNormImg = new Image(16,16);
var LeftUpImg = new Image(16,16);
var LeftDownImg = new Image(16,16);

RightNormImg.src = “RightNorm.gif”;
RightUpImg.src = “RightUp.gif”;
RightDownImg.src = “RightDown.gif”;
LeftNormImg.src = “LeftNorm.gif”;
LeftUpImg.src = “LeftUp.gif”;
LeftDownImg.src = “LeftDown.gif”;

}

function setImage(imgName, type) {
if (document.images) {

var imgFile = eval(imgName + type + “Img.src”);
document.images[imgName].src = imgFile;
return false;

}
}
</script>

</head>
<body>

<h1>onmousedown and onmouseup Event Handlers</h1>
<hr />
<p>Roll atop and click on the buttons to see how the link event handlers

swap images:</p>
<center>

<a href=”javascript:void(0)”
onmouseover=”return setImage(‘Left’,’Up’)”
onmousedown=”return setImage(‘Left’,’Down’)”
onmouseup=”return setImage(‘Left’,’Up’)”
onmouseout=”return setImage(‘Left’,’Norm’)”><img alt=”image”
name=”Left” src=”LeftNorm.gif” height=”16” width=”16”
border=”0” /> <a href=”javascript:void(0)”
onmouseover=”return setImage(‘Right’,’Up’)”
onmousedown=”return setImage(‘Right’,’Down’)”
onmouseup=”return setImage(‘Right’,’Up’)”
onmouseout=”return setImage(‘Right’,’Norm’)”><img alt=”image”
name=”Right” src=”RightNorm.gif” height=”16” width=”16”
border=”0” />

</center>
</body>

</html>

elementObject.onmousedown

351Chapter 15 ✦ Generic HTML Element Objects

IE4+ and W3C browsers simplify the implementation of this kind of three-state image button
by allowing you to assign the event handlers directly to img element objects. Wrapping
images inside links is a backward-compatibility approach that allows older browsers to
respond to clicks on images for navigation or other scripting tasks.

Related Item: onclick event handler.

onmouseenter
onmouseleave

Compatibility: WinIE5.5+, MacIE-, NN-, Moz-, Safari-

WinIE5.5 introduced the onmouseenter and onmouseleave event handlers. Both event han-
dlers operate just like the onmouseover and onmouseout event handlers, respectively.
Microsoft simply offers an alternate terminology. The old and new events continue to fire in
IE5.5+. The old ones fire just before the new ones for each act of moving the cursor atop, and
exiting from atop, the object. If you are scripting exclusively for IE5.5+, you should use the
new terminology; otherwise, stay with the older versions.

Example
You can modify Listing 15-43 with the IE5.5 syntax by substituting onmouseenter for
onmouseover and onmouseleave for onmouseout. The effect is the same.

Related Items: onmouseover, onmouseout event handlers.

onmousemove
Compatibility: WinIE4+, MacIE4+, NN4+, Moz1+, Safari1+

The onmousemove event handler fires whenever the cursor is atop the current object and the
mouse is moved, even by a single pixel. You do not have to press the mouse button for the
event to fire, although the event is most commonly used in element dragging — especially in
NN/Mozilla, where no ondrag event handler is available.

Even though the granularity of this event can be at the pixel level, you should not use the
number of event firings as a measurement device. Depending on the speed of cursor
motion and the performance of the client computer, the event may not fire at every pixel
location.

In NN4, you cannot assign the onmousemove event handler to any object by way of tag
attributes. But you can use the NN4 event capturing mechanism to instruct (via scripting)
a window, document, or layer object to capture mouseMove events. This allows for NN4
scripts to produce positioned element (layer) dragging. In IE4+ and W3C DOM-compatible
browsers, however, you can assign the onmousemove event handler to any element
(although you can drag only with positioned elements). When designing a page that
encourages users to drag multiple items on a page, it is most common to assign the
onmousemove event handler to the document object and let all such events bubble up to
the document for processing.

Example
See Chapters 39 and 56 on the CD-ROM for examples of using mouse events to control ele-
ment dragging on a page.

Related Items: ondrag, onmousedown, onmouseup event handlers.

elementObject.onmousemove

352 Part III ✦ Document Objects Reference

onmouseout
onmouseover

Compatibility: WinIE3+, MacIE3+, NN2+, Moz1+, Safari1+

The onmouseover event fires for an object whenever the cursor rolls into the rectangular
space of the object on the screen. The onmouseout event handler fires when you move the
cursor outside the object’s rectangle. These events most commonly display explanatory text
about an object in the window’s status bar and effect image swapping (so-called mouse
rollovers). Use the onmouseover event handler to change the state to a highlighted version;
use the onmouseout event handler to restore the image or status bar to its normal setting.

While these two events have been in object models of scriptable browsers since the beginning,
they were not available to most objects in earlier browsers. IE4+ and W3C DOM-compatible
browsers provide support for these events on every element that occupies space on the screen.
IE5.5+ includes an additional pair of event handlers —onmouseenter and onmouseleave— that
duplicate the onmouseover and onmouseout events but with different terminology. The old
event handlers fire just before the new versions.

The onmouseout event handler commonly fails to fire if the event is associated with an ele-
ment that is near a frame or window edge and the user moves the cursor quickly outside of
the current frame.

Example
Listing 15-43 uses the U.S. Pledge of Allegiance with four links to demonstrate how to use the
onmouseover and onmouseout event handlers. Notice that for each link, the handler runs a
general-purpose function that sets the window’s status message. The function returns a true
value, which the event handler call evaluates to replicate the required return true state-
ment needed for setting the status bar. In one status message, I supply a URL in parentheses
to let you evaluate how helpful you think it is for users.

Listing 15-43: Using onmouseover and onmouseout Event Handlers

<html>
<head>

<title>onmouseover and onmouseout Event Handlers</title>
<script type=”text/javascript”>
function setStatus(msg) {

status = msg;
return true;

}

// destination of all link HREFs
function emulate() {

alert(“Not going there in this demo.”);
}
</script>

</head>
<body>

<h1>onmouseover and onmouseout Event Handlers</h1>
<hr />
<h1>Pledge of Allegiance</h1>
<hr />
I pledge <a href=”javascript:emulate()”

Note

elementObject.onmouseout

353Chapter 15 ✦ Generic HTML Element Objects

onmouseover=”return setStatus(‘View dictionary definition’)”
onmouseout=”return setStatus(‘’)”>allegiance to the <a
href=”javascript:emulate()”
onmouseover=”return setStatus(‘Learn about the U.S. flag
(http://lcweb.loc.gov)’)”
onmouseout=”return setStatus(‘’)”>flag of the <a
href=”javascript:emulate()”
onmouseover=”return setStatus(‘View info about the U.S. government’)”
onmouseout=”return setStatus(‘’)”>United States of America, and to
the Republic for which it stands, one nation <a
href=”javascript:emulate()”
onmouseover=”return setStatus(‘Read about the history of this phrase in
the Pledge’)”
onmouseout=”return setStatus(‘’)”>under God, indivisible, with
liberty and justice for all.

</body>
</html>

Related Items: onmouseenter, onmouseleave, onmousemove event handlers.

onpaste
Compatibility: WinIE5+, MacIE-, NN-, Moz-, Safari-

The onpaste event fires immediately after the user or script initiates a paste edit action on
the current object. The event is preceded by the onbeforepaste event, which fires prior to
any edit or context menu that appears (or before the paste action if initiated by keyboard
shortcut).

Use this event handler to provide edit functionality to elements that don’t normally allow
pasting. In such circumstances, you need to enable the Paste menu item in the context or Edit
menu by setting the event.returnValue for the onbeforepaste event handler to false.
Then your onpaste event handler must manually retrieve data from the clipboard (by way of
the getData() method of the clipboardData object) and handle the insertion into the cur-
rent object.

Because you are in charge of what data is stored in the clipboard, you are not limited to a
direct copy of the data. For example, you might wish to store the value of the src property of
an image object so that you can paste it elsewhere on the page.

Example
Listing 15-44 demonstrates how to use the onbeforepaste and onpaste event handlers
(in conjunction with onbeforecopy and oncopy) to let scripts control the data-transfer
process during a copy-and-paste user operation. A table contains words to be copied (one
column of nouns, one column of adjectives) and then pasted into blanks in a paragraph. The
onbeforecopy and oncopy event handlers are assigned to the table element because the
events from the td elements bubble up to the table container and there is less HTML code
to contend with.

Inside the paragraph, two span elements contain underscored blanks. To paste text into the
blanks, the user must first select at least one character of the blanks. (See Listing 15-37,
which gives a drag-and-drop version of this application.) The onbeforepaste event handler
in the paragraph (which gets the event as it bubbles up from either span) sets the event.
returnValue property to false, thus allowing the Paste item to appear in the context and
Edit menus (not a normal occurrence in HTML body content).

elementObject.onpaste

354 Part III ✦ Document Objects Reference

At paste time, the innerHTML property of the target span is set to the text data stored in the
clipboard. The event.returnValue property is set to false here, as well, to prevent normal
system pasting from interfering with the controlled version.

Listing 15-44: Using onbeforepaste and onpaste Event Handlers

<html>
<head>

<title>onbeforepaste and onpaste Event Handlers</title>
<style type=”text/css”>
td {text-align:center}
th {text-decoration:underline}
.blanks {text-decoration:underline}
</style>
<script type=”text/javascript”>
function selectWhole() {

var obj = window.event.srcElement;
var range = document.body.createTextRange();
range.moveToElementText(obj);
range.select();
event.returnValue = false;

}
function handleCopy() {

var rng = document.selection.createRange();
clipboardData.setData(“Text”,rng.text);
event.returnValue = false;

}

function handlePaste() {
var elem = window.event.srcElement;
if (elem.className == “blanks”) {

elem.innerHTML = clipboardData.getData(“Text”);
}
event.returnValue = false;

}
function handleBeforePaste() {

var elem = window.event.srcElement;
if (elem.className == “blanks”) {

event.returnValue = false;
}

}
</script>

</head>
<body>

<h1>onbeforepaste and onpaste Event Handlers</h1>
<hr />
<p>Your goal is to copy and paste one noun and one adjective from the

following table into the blanks of the sentence. Select a word from
the table and copy it to the clipboard. Select one or more spaces of
the blanks in the sentence and choose Paste to replace the blank with
the clipboard contents.</p>

<table cellpadding=”5” onbeforecopy=”selectWhole()”
oncopy=”handleCopy()”>

<tr>
<th>Nouns</th>
<th>Adjectives</th>

</tr>
<tr>

elementObject.onpaste

355Chapter 15 ✦ Generic HTML Element Objects

<td>truck</td>
<td>round</td>

</tr>
<tr>

<td>doll</td>
<td>red</td>

</tr>
<tr>

<td>ball</td>
<td>pretty</td>

</tr>
</table>
<p id=”myP” onbeforepaste=”handleBeforePaste()” onpaste=”handlePaste()”>

Pat said, “Oh my, the <span id=”blank1”
class=”blanks”> is so !”</p>

<button onclick=”location.reload()”>Reset</button>
</body>

</html>

Related Items: oncopy, oncut, onbeforepaste event handlers.

onpropertychange
Compatibility: WinIE5+, MacIE-, NN-, Moz-, Safari-

The onpropertychange event fires in WinIE5+ whenever a script modifies an object’s prop-
erty. This includes changes to the properties of an object’s style. Changing properties by way
of the setAttribute() method also triggers this event.

A script can inspect the nature of the property change because the event.propertyName
property contains the name (as a string) of the property that was just changed. In the case of
a change to an object’s style object, the event.propertyName value begins with “style.”
as in style.backgroundcolor.

You can use this event handler to localize any object-specific post-processing of changes to
an object’s properties. Rather than include the post-processing statements inside the func-
tion that makes the changes, you can make that function generalized (perhaps to modify
properties of multiple objects).

Example
Listing 15-45 shows how you can respond programmatically to an object’s properties being
changed. The page generated by the listing contains four radio buttons that alter the innerHTML
and style.color properties of a paragraph. The paragraph’s onpropertychange event handler
invokes the showChange() function, which extracts information about the event and displays
the data in the status bar of the window. Notice how the property name includes style. when
you modify the stylesheet property.

Listing 15-45: Using the onPropertyChange Property

<html>
<head>

<title>onpropertychange Event Handler</title>

Continued

elementObject.onpropertychange

356 Part III ✦ Document Objects Reference

Listing 15-45 (continued)

<script type=”text/javascript”>
function normalText() {

myP.innerText = “This is a sample paragraph.”;
}
function shortText() {

myP.innerText = “Short stuff.”;
}
function normalColor() {

myP.style.color = “black”;
}
function hotColor() {

myP.style.color = “red”;
}
function showChange() {

var objID = event.srcElement.id;
var propName = event.propertyName;
var newValue = eval(objID + “.” + propName);
status = “The “ + propName + “ property of the “ + objID;
status += “ object has changed to \”” + newValue + “\”.”;

}
</script>

</head>
<body>

<h1>onpropertychange Event Handler</h1>
<hr />
<p id=”myP” onpropertychange=”showChange()”>This is a sample
paragraph.</p>
<form>

Text: <input type=”radio” name=”btn1” checked=”checked”
onclick=”normalText()” />Normal <input type=”radio” name=”btn1”
onclick=”shortText()” />Short

Color: <input type=”radio” name=”btn2” checked=”checked”
onclick=”normalColor()” />Black <input type=”radio” name=”btn2”
onclick=”hotColor()” />Red

</form>
</body>

</html>

Related Items: style property; setAttribute() method.

onreadystatechange
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-

The onreadystatechange event handler fires whenever the ready state of an object changes.
See details about these states in the discussion of the readyState property earlier in this
chapter (and notice the limits for IE4). The change of state does not guarantee that an object
is, in fact, ready for script statements to access its properties. Always check the readyState
property of the object in any script that the onreadystatechange event handler invokes.

This event fires for objects that are capable of loading data: applet, document, frame,
frameset, iframe, img, link, object, script, and XML objects. The event doesn’t fire for
other types of objects unless a Microsoft DHTML behavior is associated with the object. The
onreadystatechange event does not bubble, nor can you cancel it.

elementObject.onpropertychange

357Chapter 15 ✦ Generic HTML Element Objects

Related Item: readyState property.

onresize
Compatibility: WinIE4+, MacIE4+, NN4+, Moz1+, Safari1+

The onresize event handler fires whenever an object is resized in response to a variety of
user or scripted actions. Most elements include this event handler, provided the object has
dimensional style attributes (for example, height, width, or position) assigned to it.

In IE4+ and NN6+/Moz1+, the onresize event does not bubble. Resizing the browser window
or frame does not cause the window’s onload event handler to fire.

Example
If you want to capture the user’s resizing of the browser window (or frame), you can assign a
function to the onresize event handler either via script

window.onresize = handleResize;

or by an HTML attribute of the body element:

<body onresize=”handleResize()”>

Related Item: window.resize() method.

onresizeend
onresizestart

Compatibility: WinIE5.5+, MacIE-, NN-, Moz-, Safari-

The onresizeend and onresizestart event handlers fire only on a resizable object in
Windows edit mode.

Related Item: oncontrolselect event handler.

onselectstart
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-

The onselectstart event handler fires when a user begins to select content on the page.
Selected content can be inline text, images, or text within an editable text field. If the user
selects more than one object, the event fires in the first object affected by the selection.

Example
Use the page from Listing 15-46 to see how the onselectstart event handler works when a
user selects across multiple elements on a page. As the user begins a selection anywhere on
the page, the ID of the object receiving the event appears in the status bar. Notice that the
event doesn’t fire until you actually make a selection. When no other element is under the
cursor, the body element fires the event.

Listing 15-46: Using the onselectstart Event Handler

<html>
<head>

<title>onselectstart Event Handler</title>

Continued

elementObject.onselectstart

358 Part III ✦ Document Objects Reference

Listing 15-46 (continued)

<style type=”text/css”>
td {text-align:center}
</style>
<script type=”text/javascript”>
function showObj() {

var objID = event.srcElement.id;
status = “Selection started with object: “ + objID;

}
</script>

</head>
<body id=”myBody” onselectstart=”showObj()”>

<h1 id=”myH1”>
onselectstart Event Handler

</h1>
<hr id=”myHR” />
<p id=”myP”>This is a sample paragraph.</p>
<table border=”1”>

<tr id=”row1”>
<th id=”header1”>Column A</th>
<th id=”header2”>Column B</th>
<th id=”header3”>Column C</th>

</tr>
<tr id=”row2”>

<td id=”cellA2”>text</td>
<td id=”cellB2”>text</td>
<td id=”cellC2”>text</td>

</tr>
<tr id=”row3”>

<td id=”cellA3”>text</td>
<td id=”cellB3”>text</td>
<td id=”cellC3”>text</td>

</tr>
</table>

</body>
</html>

Related Item: onselect event handler for a variety of objects.

✦ ✦ ✦

elementObject.onselectstart

Window and
Frame Objects

Aquick look at the basic document object model diagram in
Chapter 14 (see Figure 14-1) reveals that the window object is

the outermost, most global container of all document-related objects
that you script with JavaScript. All HTML and JavaScript activity
takes place inside a window. That window may be a standard
Windows, Mac, or XWindows application-style window, complete with
scrollbars, toolbars, and other “chrome;” you can also generate win-
dows that have only some of a typical window’s chrome. A frame is
also a window, even though a frame doesn’t have many accou-
trements beyond scroll bars. The window object is where everything
begins in JavaScript references to objects. IE4+, NN6+, and W3C
browsers treat the frameset as a special kind of window object, so
that it is also covered in this chapter.

Of all the objects associated with browser scripting, the window and
window-related objects have by far the most object-specific terminol-
ogy associated with them. This necessitates a rather long chapter to
keep the discussion in one place. Use the running footers as a naviga-
tional aid through this substantial collection of information.

Window Terminology
The window object is often a source of confusion when you first
learn about the document object model. A number of synonyms for
window objects muck up the works: top, self, parent, and frame.
Aggravating the situation is that these terms are also properties of a
window object. Under some conditions, a window is its own parent,
but if you define a frameset with two frames, you have only one par-
ent among a total of three window objects. It doesn’t take long before
the whole subject can make your head hurt.

If you do not use frames in your Web applications, all of these
headaches never appear. But if frames are part of your design plan,
you should get to know how frames affect the object model.

Frames
The application of frames has become a religious issue among Web
designers: some swear by them; others swear at them. I believe there
can be compelling reasons to use frames at times. For example, if you

1616C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Scripting
communication among
multiple frames

Creating and managing
new windows

Controlling the size,
position, and
appearance of the
browser window

Details of window,
frame, frameset, and
iframe objects

✦ ✦ ✦ ✦

360 Part III ✦ Document Objects Reference

have a document that requires considerable scrolling to get through, you may want to main-
tain a static set of navigation controls visible at all times. By placing those controls — be they
links or image maps — in a separate frame, you have made the controls available for immedi-
ate access, regardless of the scrolled condition of the main document.

Creating frames
The task of defining frames in a document remains the same whether or not you’re using
JavaScript. The simplest framesetting document consists of tags that are devoted to setting
up the frameset, as follows:

<html>
<head>
<title>My Frameset</title>
</head>
<frameset>

<frame name=”Frame1” src=”document1.html”>
<frame name=”Frame2” src=”document2.html”>

</frameset>
</html>

The preceding HTML document, which the user never sees, defines the frameset for the
entire browser window. Each frame must have a URL reference (specified by the src
attribute) for a document to load into that frame. For scripting purposes, assigning a name
to each frame with the name attribute greatly simplifies scripting frame content.

The frame object model
Perhaps the key to successful frame scripting is understanding that the object model in the
browser’s memory at any given instant is determined by the HTML tags in the currently
loaded documents. All canned object model graphics in this book, such as Figure 16-1, do not
reflect the precise object model for your document or document set.

For a single, frameless document, the object model starts with just one window object, which
contains one document, as shown in Figure 16-1. In this simple structure, the window object
is the starting point for all references to any loaded object. Because the window is always
there — it must be there for a document to load into — a reference to any object in the docu-
ment can omit a reference to the current window.

In a simple two-framed frameset model (see Figure 16-2), the browser treats the container of
the initial, framesetting document as the parent window. The only visible evidence that the
document exists is that the framesetting document’s title appears in the browser window
title bar.

Figure 16-1: The simplest window–document relationship.

Window

Document

361Chapter 16 ✦ Window and Frame Objects

Figure 16-2: The parent and frames are part
of the object model.

Each <frame> tag inside the <frameset> tag set creates another window object into which a
document is loaded. Each of those frames, then, has a document object associated with it.
From the point of view of a given document, it has a single window container, just as in the
model shown in Figure 16-1. And although the parent object is not visible to the user, it
remains in the object model in memory. The presence of the parent often makes it a conve-
nient repository for variable data that need to be shared by multiple child frames or must
persist between loading of different documents inside a child frame.

In even more complex arrangements, as shown in Figure 16-3, a child frame itself may load a
framesetting document. In this situation, the difference between the parent and top objects
starts to come into focus. The top window is the only one in common with all frames in Figure
16-3. As you see in a moment, when frames need to communicate with other frames (and
their documents), you must fashion references to the distant object via the window object
that they all have in common.

Figure 16-3: Three generations of
window objects.

Top
Parent

Child
Frame

Document
Child

Frame
Child

Frame

Document

Child Frame
Parent

<FRAMESET>

<FRAME>

<FRAME> <FRAME>

<FRAMESET>
<FRAME>

Document

Top
Parent

Top
Parent

Document Document

Top
Parent

<FRAMESET>

<FRAME> <FRAME>

362 Part III ✦ Document Objects Reference

Referencing frames
The purpose of an object reference is to help JavaScript locate the desired object in the
object model currently held in memory. A reference is a road map for the browser to follow,
so that it can track down, say, the value of a particular text field in a particular document.
Therefore, when you construct a reference, think about where the script appears in the
object model and how the reference can help the browser determine where it should go to
find the distant object. In a two-generation scenario, such as the one shown in Figure 16-2,
three intergenerational references are possible:

✦ Parent-to-child

✦ Child-to-parent

✦ Child-to-child

Assuming that you need to access an object, function, or variable in the relative’s frame, the
following are the corresponding reference structures: frameName.objFuncVarName;
parent.objFuncVarName; parent.frameName.objFuncVarName.

The rule is this: Whenever a reference must point to another frame, begin the reference with
the window object that the two destinations have in common. To demonstrate that rule on
the complex model in Figure 16-3, if the left-hand child frame’s document needs to reference
the document at the bottom right of the map, the reference structure is

top.frameName.frameName.document. ...

Follow the map from the top window object down through two frames to the final document.
JavaScript has to take this route, so your reference must help it along.

Top versus parent
After seeing the previous object maps and reference examples, you may be wondering, Why
not use top as the leading object in all trans-frame references? From an object model point of
view, you’ll have no problem doing that: A parent in a two-generation scenario is also the top
window. What you can’t count on, however, is your framesetting document always being the
top window object in someone’s browser. Take the instance where a Web site loads other
Web sites into one of its frames. At that instant, the top window object belongs to someone
else. If you always specify top in references intended just for your parent window, your refer-
ences won’t work and will probably lead to script errors for the user. My advice, then, is to
use parent in references whenever you mean one generation above the current document.

Preventing framing
You can use your knowledge of top and parent references to prevent your pages from being
displayed inside another Web site’s frameset. Your top-level document must check whether it
is loaded into its own top or parent window. When a document is in its own top window, a ref-
erence to the top property of the current window is equal to a reference to the current win-
dow (the window synonym self seems most grammatically fitting here). If the two values are
not equal, you can script your document to reload itself as a top-level document. When it is
critical that your document be a top-level document, include the script in Listing 16-1 in the
Head portion of your document:

363Chapter 16 ✦ Window and Frame Objects

Listing 16-1: Prevention from Getting “Framed”

<script type=”text/javascript”>
if (top != self) {

top.location = location;
}
</script>

Your document may appear momentarily inside the other site’s frameset, but then the slate is
wiped clean, and your top-level document rules the browser window.

Ensuring framing
When you design a Web application around a frameset, you may want to make sure that a
page always loads the complete frameset. Consider the possibility that a visitor adds only
one of your frames to a bookmarks list. On the next visit, only the bookmarked page appears
in the browser, without your frameset, which may contain valuable navigation aids to the site.

A script can make sure that a page always loads into its frameset by comparing the URLs of
the top and self windows. If the URLs are the same, it means that the page needs to load the
frameset. Listing 16-2 shows the simplest version of this technique, which loads a fixed frame-
set. The listing includes a workaround for an NN4-specific behavior that prevents printing a
frame. (NN4 for Windows and UNIX reloads a page into a separate hidden window for printing
and runs any immediate scripts in the process.) For a more complete implementation that
passes a parameter to the frameset so that it opens a specific page in one of the frames, see
the location.search property in Chapter 17.

Listing 16-2: Forcing a Frameset to Load

<script type=”text/javascript”>
var isNav4 = (navigator.appName == “Netscape” &&

parseInt(navigator.appVersion) == 4);
if (top.location.href == window.location.href) {

if (isNav4) {
if (window.innerWidth != 0) {

top.location.href = “myFrameset.html”;
}

} else {
top.location.href = “ myFrameset.html”;

}
}
</script>

364 Part III ✦ Document Objects Reference

Switching from frames to frameless
Some sites load themselves in a frameset by default and offer users the option of getting rid
of the frames. Only IE4+ and W3C browsers let you modify a frameset’s cols or rows proper-
ties on the fly to simulate adding or removing frames from the current view (see the frame-
set element object later in this chapter). In other browsers, you cannot dynamically change
the makeup of a frameset after it has loaded, but you can load the content page of the frame-
set into the main window. Simply include a button or link whose action loads that document
into the top window object:

top.location.href = “mainBody.html”;

A switch back to the frame version entails nothing more complicated than loading the frame-
setting document.

Inheritance versus containment
Scripters who have experience in object-oriented programming environments probably
expect frames to inherit properties, methods, functions, and variables defined in a parent
object. That’s not the case with scriptable browsers. You can, however, still access those par-
ent items when you make a call to the item with a complete reference to the parent. For exam-
ple, if you want to define a deferred function in the framesetting parent document that all
frames can share, the scripts in the frames refer to that function with this reference:

parent.myFunc()

You can pass arguments to such functions and expect returned values.

Frame synchronization
A pesky problem for some scripters’ plans is that including immediate scripts in the frameset-
ting document is dangerous. Such scripts tend to rely on the presence of documents in the
frames being created by this framesetting document. But if the frames have not yet been cre-
ated and their documents have not yet loaded, the immediate scripts will likely crash and
burn.

One way to guard against this problem is to trigger all such scripts from the frameset’s
onload event handler. In theory, this handler won’t trigger until all documents have success-
fully loaded into the child frames defined by the frameset. Unfortunately, IE4+ for Windows
has a nasty bug that fires the onload event handler in the frameset even if the loading has
been interrupted by the browser’s Stop button or a press of the Esc key. At the same time, be
careful with onload event handlers in the documents going into a frameset’s frames. If one of
those scripts relies on the presence of a document in another frame (one of its brothers or
sisters), you’re doomed to eventual failure. Anything coming from a slow network or server
to a slow modem can get in the way of other documents loading into frames in the ideal
order.

One way to work around these problems is to create a Boolean variable in the parent docu-
ment to act as a flag for the successful loading of subsidiary frames. When a document loads
into a frame, its onload event handler can set that flag to true to indicate that the document
has loaded. Any script that relies on a page being loaded should use an if construction to
test the value of that flag before proceeding.

365Chapter 16 ✦ Window and Frame Objects

Despite the horrible WinIE4+ bug just described , it is best to construct the code so that the
parent’s onload event handler triggers all the scripts that you want to run after loading. You
should also test your pages thoroughly for any residual effects that may accrue if someone
resizes a window or clicks Reload.

Blank frames
Often, you may find it desirable to create a frame in a frameset but not put any document in it
until the user has interacted with various controls or other user interface elements in other
frames. Most modern browsers have a somewhat empty document in one of their internal
URLs (about:blank). However, this URL is not guaranteed to be available on all browsers. If
you need a blank frame, let your framesetting document write a generic HTML document to
the frame directly from the src attribute for the frame, as shown in the skeletal code in
Listing 16-3. Loading an “empty” HTML document requires no additional transactions.

Listing 16-3: Creating a Blank Frame

<html>
<head>
<script type=”text/javascript”>
<!--
function blank() {

return “<html></html>”;
}
//-->
</script>
</head>
<frameset>

<frame name=”Frame1” src=”someURL.html”>
<frame name=”Frame2” src=”javascript:parent.blank()”>

</frameset>
</html>

Viewing frame source code
Studying other scripters’ work is a major learning tool for JavaScript (or any programming
language). With most scriptable browsers you can easily view the source code for any frame,
including those frames whose content is generated entirely or in part by JavaScript. Click the
desired frame to activate it (a subtle border may appear just inside the frame on some
browser versions, but don’t be alarmed if the border doesn’t appear). Then select Frame
Source (or equivalent) from the View menu (or right-click submenu). You can also print or
save a selected frame.

Frames versus frame element objects
With the expansion of object models that expose every HTML element to scripting (IE4+ and
W3C DOM–compatible browsers), a terminology conflict comes into play. Everything that you
have read about frames thus far in the chapter refers to the original object model, where a
frame is just another kind of window, with a slightly different referencing approach. That still
holds true, even in the latest browsers.

366 Part III ✦ Document Objects Reference

But when the object model also exposes HTML elements, the notion of the frame element
object is somewhat distinct from the frame object of the original model. The frame element
object represents an object whose properties are dominated by the attributes you set inside
the <frame> tag. This provides access to settings, such as the frame border and
scrollability — the kinds of properties that are not exposed to the original frame object.

References to the frame and frame element objects are also different. You’ve seen plenty of
examples of how to reference an old-fashioned frame earlier in this chapter. But access to a
frame element object is either via the element’s id attribute or through the child node rela-
tionship of the enclosing frameset element (you cannot use the parentNode property to
back your way out of the current document to the frame element that encloses the docu-
ment). The way I prefer is to assign an id attribute to <frame> tags and access the frame ele-
ment object by way of the document object that lives in the parent (or top) of the frameset
hierarchy. Therefore, to access the frameBorder property of a frame element object from a
script living in any frame of a frameset, the syntax is

parent.document.all.frame1ID.frameBorder

or, for IE5+/NN6+/W3C

parent.document.getElementById(“frame1ID”).frameBorder

When the reference goes through the frame element object you can still reach the document
object in that frame via the element object’s contentWindow or contentDocument properties
(see the frame element object later in this chapter).

window Object

Properties Methods Event Handlers

appCore alert() onabort††
clientInformation attachEvent()† onafterprint
clipboardData back() onbeforeprint
closed blur()† onbeforeunload
components[] captureEvents() onblur†
controllers[] clearInterval() onchange††
crypto clearTimeout() onclick††
defaultStatus close() onclose††
dialogArguments confirm() ondragdrop
dialogHeight createPopup() onerror
dialogLeft detachEvent()† onfocus†
dialogTop execScript() onhelp
dialogWidth find() onkeydown††
directories fireEvent()† onkeypress††
document focus()† onkeyup††
event forward() onload
external handleEvent() onmousedown††
frameElement home() onmousemove††

window

367Chapter 16 ✦ Window and Frame Objects

Properties Methods Event Handlers

frames[] moveBy() onmouseout††
history moveTo() onmouseover††
innerHeight navigate() onmouseup††
innerWidth open() onmove
length print() onreset††
loading prompt() onresize
location releaseEvents() onscroll
locationbar resizeBy() onselect††
menubar resizeTo() onsubmit††
name routeEvent() onunload
navigator scroll()
offscreenBuffering scrollBy()
opener scrollTo()
outerHeight setActive()†
outerWidth setInterval()
pageXOffset setTimeout()
pageYOffset showHelp()
parent showModalDialog()
personalbar showModelessDialog()
pkcs11 sizeToContent()
prompter stop()
returnValue
screen
screenLeft
screenTop
screenX
screenY
scrollbars
scrollMaxX
scrollMaxY
scrollX
scrollY
self
sidebar
status
statusbar
toolbar
top
window

†See Chapter 15.

††To handle captured or bubbled events of other objects in IE4+ and W3C DOM browsers

window

368 Part III ✦ Document Objects Reference

Syntax
Creating a window:

var windowObject = window.open([parameters]);

Accessing window properties or methods:

window.property | method([parameters])

self.property | method([parameters])

windowObject.property | method([parameters])

Compatibility: WinIE3+, MacIE3+, NN2+, Moz1+, Safari1+

About this object
The window object has the unique position of being at the top of the object hierarchy, encom-
passing even the almighty document object. This exalted position gives the window object a
number of properties and behaviors unlike those of any other object.

Chief among its unique characteristics is that because everything takes place in a window,
you can usually omit the window object from object references. You’ve seen this behavior in
previous chapters when I invoked document methods, such as document.write(). The com-
plete reference is window.document.write(). But because the activity was taking place in
the window that held the document running the script, that window was assumed to be part
of the reference. For single-frame windows, this concept is simple enough to grasp.

As previously stated, among the list of properties for the window object is one called self.
This property is synonymous with the window object itself (which is why it shows up in hier-
archy diagrams as an object). Having a property of an object that is the same name as the
object may sound confusing, but this situation is not that uncommon in object-oriented envi-
ronments. I discuss the reasons why you may want to use the self property as the window’s
object reference in the self property description that follows.

As indicated earlier in the syntax definition, you don’t always have to specifically create a
window object in JavaScript code. After you start your browser, it usually opens a window.
That window is a valid window object, even if the window is blank. Therefore, after a user
loads your page into the browser, the window object part of that document is automatically
created for your script to access as it pleases.

One conceptual trap to avoid is believing that a window object’s event handler or custom
property assignments outlive the document whose scripts make the assignments. Except for
some obvious physical properties of a window, each new document that loads into the win-
dow starts with a clean slate of window properties and event handlers.

Your script’s control over an existing (already open) window’s user interface elements varies
widely with the browser and browser version for which your application is intended. Before
the version 4 browsers, the only change you can make to an open window is to the status line
at the bottom of the browser window. With IE4+ and NN4+, however, you can control such
properties as the size, location, and (with signed scripts in Navigator and Mozilla) the pres-
ence of “chrome” elements (toolbars and scrollbars, for example) on the fly. Many of these
properties can be changed beyond specific safe limits only if you cryptographically sign the
scripts (see Chapter 46 on the CD-ROM) and/or the user grants permission for your scripts to
make those modifications.

window

369Chapter 16 ✦ Window and Frame Objects

Window properties are far more flexible on all browsers when your scripts generate a new
window (with the window.open() method): You can influence the size, toolbar, or other view
options of a window. Recent browser versions provide even more options for new windows,
including the position of the window and whether the window should even display a title bar.
Again, if an option can conceivably be used to deceive a user (for example, silently hiding one
window that monitors activity in another window), signed scripts and/or user permission are
necessary.

The window object is also the level at which a script asks the browser to display any of three
styles of dialog boxes (a plain alert dialog box, an OK/Cancel confirmation dialog box, or a
prompt for user text entry). Although dialog boxes are extremely helpful for cobbling
together debugging tools for your own use (see Chapter 45 on the CD-ROM), they can be very
disruptive to visitors who navigate through Web sites. Because most JavaScript dialog boxes
are modal (that is, you cannot do anything else in the browser until you dismiss the dialog
box), use them sparingly, if at all. Remember that some users may create macros on their
computers to visit sites unattended. Should such an automated access of your site encounter
a modal dialog box, it is trapped on your page until a human intervenes.

All dialog boxes generated by JavaScript identify themselves as being generated by
JavaScript. This is primarily a security feature to prevent deceitful scripts from creating sys-
tem- or application-style dialog boxes that convince visitors to enter private information. It
should also discourage dialog box usage in Web page design. And that’s good, because dialog
boxes tend to annoy users.

With the exception of the IE-specific modal and modeless dialog boxes (see the window
.showModalDialog() and window.showModeless() methods), JavaScript dialog boxes are
not particularly flexible in letting you fill them with text or graphic elements beyond the basics.
In fact, you can’t even change the text of the dialog box buttons or add a button. With DHTML-
capable browsers, you can use positioned div or iframe elements to simulate dialog box
behavior in a cross-browser way.

With respect to the W3C DOM, the window is outside the scope of the standard through
DOM Level 2. The closest that the standard comes to acknowledging a window at all is the
document.defaultView property, which evaluates to the window object in today’s browsers
(predominantly Mozilla). But the formal DOM standard specifies no properties or methods
for this “view” object.

Properties
appCore
Components[]
controllers[]
prompter
sidebar

Values: See text. Read-Only
Compatibility: WinIE-, MacIE-, NN6+, Moz1+, Safari-

NN6+/Mozilla provides scriptable access to numerous services that are part of the xpconnect
package (“xp” stands for “cross-platform”). These services allow scripts to work with COM
objects and the mozilla.org XUL (XML-based User Interface Language) facilities — lengthy

windowObject.appCore

370 Part III ✦ Document Objects Reference

subjects that extend well beyond the scope of this book. You can begin to explore this sub-
ject within the context of Mozilla-based browsers and scripting at
http://www.mozilla.org/scriptable/.

clientInformation
Value: navigator object. Read-Only
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-

In an effort to provide scriptable access to browser-level properties while avoiding reference
to the Navigator browser brand, Microsoft provides the clientInformation property. Its
value is identical to that of the navigator object — an object name that is also available in IE.
Use the navigator object for cross-browser applications. (See Chapter 38 on the CD-ROM.)

Related Items: navigator object.

clipboardData
Value: Object. Read/Write
Compatibility: WinIE5+, MacIE-, NN-, Moz-, Safari-

Use the clipboardData object to transfer data for such actions as cutting, copying, and past-
ing under script control. The object contains data of one or more data types associated with
a transfer operation. Use this property only when editing processes via the Edit menu (or
keyboard equivalents) or context menu controlled by script — typically in concert with edit-
related event handlers.

Working with the clipboardData object requires knowing about its three methods, shown in
Table 16-1. Familiarity with the edit-related event handlers (“before” and “after” versions of
cut, copy, and paste) is also helpful (see Chapter 15).

Table 16-1: window.clipboardData Object Methods

Method Returns Description

clearData([format]) Nothing Removes data from the clipboard. If no format
parameter is supplied, all data is cleared. Data
formats can be one or more of the following strings:
Text, URL, File, HTML, Image.

getData(format) String Retrieves data of the specified format from the
clipboard. The format is one of the following strings:
Text, URL, File, HTML, Image. The clipboard is not
emptied when you get the data, so that the data can
be retrieved in several sequential operations.

setData(format, data) Boolean Stores string data in the clipboard. The format is one
of the following strings: Text, URL, File, HTML,
Image. For non-text data formats, the data must be
a string that specifies the path or URL to the content.
Returns true if the transfer to the clipboard is
successful.

windowObject.appCore

371Chapter 16 ✦ Window and Frame Objects

You cannot use the clipboardData object to transfer data between pages that originate from
different domains or arrive via different protocols (http versus https).

Example
See Listings 15-30 and 15-39 to see how the clipboardData object is used with a variety of
edit-related event handlers.

Related Items: event.dataTransfer property; onbeforecopy, onBeforeCut,
onbeforepaste, oncopy, oncut, onpaste event handlers.

closed
Value: Boolean. Read-Only
Compatibility: WinIE4+, MacIE4+, NN3+, Moz1+, Safari1+

When you create a subwindow with the window.open() method, you may need to access
object properties from that subwindow, such as setting the value of a text field. Access to the
subwindow is via the window object reference that is returned by the window.open()
method, as in the following code fragment:

var newWind = window.open(“someURL.html”,”subWind”);
...
newWind.document.entryForm.ZIP.value = “00000”;

In this example, the newWind variable is not linked “live” to the window, but is only a refer-
ence to that window. If the user should close the window, the newWind variable still contains
the reference to the now missing window. Thus, any script reference to an object in that miss-
ing window will likely cause a script error. What you need to know before accessing items in
a subwindow is whether the window is still open.

The closed property returns true if the window object has been closed either by script or
by the user. Any time you have a script statement that can be triggered after the user has an
opportunity to close the window, test for the closed property before executing that
statement.

Example
In Listing 16-4, I have created a basic window opening and closing example. The script begins
by initializing a global variable, newWind, which is used to hold the object reference to the
second window. This value needs to be global so that other functions can reference the win-
dow for tasks, such as closing.

For this example, the new window contains some HTML code written dynamically to it, rather
than loading an existing HTML file into it. Therefore, the URL parameter of the window.open()
method is left as an empty string. Next comes a brief delay to allow Internet Explorer (espe-
cially versions 3 and 4) to catch up with opening the window so that content can be written
to it. The delay (using the setTimeout() method described later in this chapter) invokes the
finishNewWindow() function, which uses the global newWind variable to reference the win-
dow for writing. The document.close() method closes writing to the document — a different
kind of close than a window close. A separate function, closeWindow(), is responsible for
closing the subwindow.

As a final test, an if condition looks at two conditions: 1) if the window object has ever been
initialized with a value other than null (in case you click the window closing button before
ever having created the new window) and 2) if the window’s closed property is null or
false. If either condition is true, the close() method is sent to the second window.

windowObject.closed

372 Part III ✦ Document Objects Reference

Listing 16-4: Checking Before Closing a Window

<html>
<head>

<title>window.closed Property</title>
<script type=”text/javascript”>
// initialize global var for new window object
// so it can be accessed by all functions on the page
var newWind;

// make the new window and put some stuff in it
function newWindow() {

newWind = window.open(“”,”subwindow”,”height=200,width=200”);
setTimeout(“finishNewWindow()”, 100);

}
function finishNewWindow() {

var output = “”;
output += “<html><body><h1>A Sub-window</h1>”;
output += “<form><input type=’button’ value=’Close Main Window’”;
output +=”onclick=’window.opener.close()’></form></body></html>”;
newWind.document.write(output);
newWind.document.close();

}

// close subwindow, including ugly workaround for IE3
function closeWindow() {

if (newWind && !newWind.closed) {
newWind.close();

}
}
</script>

</head>
<body>

<form>
<input type=”button” value=”Open Window”
onclick=”newWindow()” />

<input type=”button” value=”Close it if Still Open”
onclick=”closeWindow()” />

</form>
</body>

</html>

To complete the example of the window opening and closing, notice that the subwindow is
given a button whose onclick event handler closes the main window. In modern browsers,
the user is presented with an alert asking to confirm the closure of the main browser window.

Related Items: window.open(), window.close() methods.

Components
(See appCore)

controllers
(See appCore)

windowObject.closed

373Chapter 16 ✦ Window and Frame Objects

crypto
pkcs11

Values: Object references. Read-Only
Compatibility: WinIE-, MacIE-, NN6+, Moz1+, Safari-

The crypto and pkcs11 properties return references to browser objects that are relevant to
internal public-key cryptography mechanisms. These subjects are beyond the scope of this
book, but you can read more about Netscape’s efforts on this front at http://www.mozilla
.org/projects/security/.

defaultStatus
Value: String. Read/Write
Compatibility: WinIE3+, MacIE3+, NN2+, Moz1+, Safari1+

After a document is loaded into a window or frame, the status bar’s message field can display
a string that is visible any time the mouse pointer is not atop an object that takes precedence
over the status bar (such as a link object or an image map). The window.defaultStatus
property is normally an empty string, but you can set this property at any time. Any setting of
this property will be temporarily overridden when a user moves the mouse pointer atop a
link object (see window.status property for information about customizing this temporary
status bar message).

Probably the most common time to set the window.defaultStatus property is when a
document loads into a window. You can do this as an immediate script statement that
executes from the Head or Body portion of the document or as part of a document’s onload
event handler.

Example
Unless you plan to change the default status bar text while a user spends time at your Web
page, the best time to set the property is when the document loads. In Listing 16-5, notice
how I also read this property to reset the status bar in an onmouseout event handler. Setting
the status property to empty also resets the status bar to the defaultStatus setting.

Listing 16-5: Setting the Default Status Message

<html>
<head>

<title>window.defaultStatus property</title>
<script type=”text/javascript”>
window.defaultStatus = “Welcome to my Web site.”;
</script>

</head>
<body>

<a href=”http://www.microsoft.com”
onmouseover=”window.status = ‘Visit Microsoft\’s Home page.’;return true”
onmouseout=”window.status = ‘’;return true”>Microsoft
<p><a href=”http://mozilla.org”
onmouseover=”window.status = ‘Visit Mozilla\’s Home page.’;return true”
onmouseout=”window.status = window.defaultStatus;return
true”>Mozilla</p>

</body>
</html>

windowObject.defaultStatus

374 Part III ✦ Document Objects Reference

If you need to display single or double quotes in the status bar (as in the second link in
Listing 16-5), use escape characters (\’ and \”) as part of the strings being assigned to these
properties. Although Safari 1.0 sets the value correctly when the page loads, rolling the cur-
sor around empty areas of the page causes the scripted default message to disappear.

Related Items: window.status property.

dialogArguments
Value: Varies. Read-Only
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-

The dialogArguments property is available only in a window that is generated by the IE-spe-
cific showModalDialog() or showModelessDialog() methods. Those methods allow a
parameter to be passed to the dialog box window, and the dialogArguments property lets
scripts inside the dialog box window’s scripts access that parameter value. The value can be
in the form of a string, number, or JavaScript array (convenient for passing multiple values).

Example
See Listing 16-39 for the window.showModalDialog() method to see how arguments can be
passed to a dialog box and retrieved via the dialogArguments property.

Related Items: window.showModalDialog(), window.showModelessDialog() methods.

dialogHeight
dialogWidth

Value: String. Read/Write
Compatibility: WinIE4+, MacIE-, NN-, Moz-, Safari-

Scripts in a document located inside an IE-specific modal or modeless dialog box (generated
by showModalDialog() or showModelessDialog()) can read or modify the height and
width of the dialog box window via the dialogHeight and dialogWidth properties. Scripts
can access these properties from the main window only for modeless dialog boxes, which
remain visible while the user can control the main window contents.

Values for these properties are strings and include the unit of measure, the pixel (px).

Example
Dialog boxes sometimes provide a button or icon that reveals more details or more complex
settings for advanced users. You can create a function that handles the toggle between two
sizes. The following function assumes that the document in the dialog box has a button
whose label also toggles between “Show Details” and “Hide Details.” The button’s onclick
event handler invokes the function as toggleDetails(this).

function toggleDetails(btn) {
if (dialogHeight == “200px”) {

dialogHeight = “350px”;
btn.value = “Hide Details”;

} else {
dialogHeight = “200px”;
btn.value = “Show Details”;

}
}

windowObject.defaultStatus

375Chapter 16 ✦ Window and Frame Objects

In practice, you also have to toggle the display stylesheet property of the extra material
between none and block to make sure that the dialog box does not display scrollbars in the
smaller dialog box version.

Related Items: window.dialogLeft, window.dialogTop properties.

dialogLeft
dialogTop

Value: String. Read/Write
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-

Scripts in a document located inside an IE-specific modal or modeless dialog box (generated
by showModalDialog() or showModelessDialog()) can read or modify the left and top
coordinates of the dialog box window via the dialogLeft and dialogTop properties. Scripts
can access these properties from the main window only for modeless dialog boxes, which
remain visible while the user can control the main window contents.

Values for these properties are strings and include the unit of measure, the pixel (px). If you
attempt to change these values so that any part of the dialog box window would be outside
the video monitor, the browser overrides the settings to keep the entire window visible.

Example
Although usually not a good idea because of the potentially jarring effect on a user, you can
reposition a dialog box window that has been resized by script (or by the user if you let the
dialog box be resizable). The following statements in a dialog box window document’s script
recenters the dialog box window.

dialogLeft = (screen.availWidth/2) - (parseInt(dialogWidth)/2) + “px”;
dialogHeight = (screen.availHeight/2) - (parseInt(dialogHeight)/2) + “px”;

Note that the parseInt() functions are used to read the numeric portion of the
dialogWidth and dialogHeight properties so that the values can be used for arithmetic.

Related Items: window.dialogHeight, window.dialogTopWidth properties.

directories
locationbar
menubar
personalbar
scrollbars
statusbar
toolbar

Value: Object. Read/Write (with signed scripts)
Compatibility: WinIE-, MacIE-, NN4+, Moz1+, Safari-

Beyond the rectangle of the content region of a window (where your documents appear), the
Netscape browser window displays an amalgam of bars and other features known collectively
as chrome. All browsers can elect to remove these chrome items when creating a new window
(as part of the third parameter of the window.open() method), but until signed scripts were
available in Navigator 4, these items could not be turned on and off in the main browser win-
dow or any existing window.

windowObject.directories

376 Part III ✦ Document Objects Reference

Navigator 4 promoted these elements to first-class objects contained by the window object.
Navigator 6 added one more feature, called the directories bar — a frame-like device that can
be opened or hidden from the left edge of the browser window. At the same time, however,
NN6+/Mozilla browsers no longer permit hiding and showing the browser window’s scroll-
bars. Chrome objects have but one property: visible. Reading this Boolean value (possible
without signed scripts) lets you inspect the visitor’s browser window for the elements cur-
rently engaged.

Changing the visibility of these items on the fly alters the relationship between the inner and
outer dimensions of the browser window. If you must carefully size a window to display con-
tent, you should adjust the chrome elements before sizing the window. Before you start
changing chrome visibility before the eyes of your page visitors, weigh the decision carefully.
Experienced users have fine-tuned the look of their browser windows to just the way they like
them. If you mess with that look, you may anger your visitors. Fortunately, changes you make
to a chrome element’s visibility are not stored to the user’s preferences. However, the
changes you make survive an unloading of the page. If you change the settings, be sure you
first save the initial settings and restore them with an onunload event handler.

The Macintosh menu bar is not part of the browser’s window chrome. Therefore, its visibility
cannot be adjusted from a script.

Example
In Listing 16-6, you can experiment with the look of a browser window with any of the chrome
elements turned on and off. To run this script, you must either sign the scripts or turn on
codebase principals (see Chapter 46 on the CD-ROM). Java must also be enabled to use the
signed script statements.

As the page loads, it stores the current state of each chrome element. One button for each
chrome element triggers the toggleBar() function. This function inverts the visible property
for the chrome object passed as a parameter to the function. Finally, the Restore button
returns visibility to their original settings. Notice that the restore() function is also called
by the onunload event handler for the document. Also, if you load this example into NN6+,
non-fatal script errors occur when the scrollbars are turned on or off.

Listing 16-6: Controlling Window Chrome

<html>
<head>

<title>Bars Bars Bars</title>
<script type=”text/javascript”>
// store original outer dimensions as page loads
var originalLocationbar = window.locationbar.visible;
var originalMenubar = window.menubar.visible;
var originalPersonalbar = window.personalbar.visible;
var originalScrollbars = window.scrollbars.visible;
var originalStatusbar = window.statusbar.visible;
var originalToolbar = window.toolbar.visible;

// generic function to set inner dimensions
function toggleBar(bar) {

netscape.security.PrivilegeManager.enablePrivilege(
“UniversalBrowserWrite”);

Tip

windowObject.directories

377Chapter 16 ✦ Window and Frame Objects

bar.visible = !bar.visible;
netscape.security.PrivilegeManager.revertPrivilege(

“UniversalBrowserWrite”);
}
// restore settings
function restore() {

netscape.security.PrivilegeManager.enablePrivilege(
“UniversalBrowserWrite”);

window.locationbar.visible = originalLocationbar;
window.menubar.visible = originalMenubar;
window.personalbar.visible = originalPersonalbar;
window.scrollbars.visible = originalScrollbars;
window.statusbar.visible = originalStatusbar;
window.toolbar.visible = originalToolbar;
netscape.security.PrivilegeManager.revertPrivilege(

“UniversalBrowserWrite”);
}
</script>

</head>
<body onunload=”restore()”>

<form>
Toggle Window Bars

<input type=”button” value=”Location Bar”
onclick=”toggleBar(window.locationbar)” />

<input type=”button” value=”Menu Bar”
onclick=”toggleBar(window.menubar)” />

<input type=”button” value=”Personal Bar”
onclick=”toggleBar(window.personalbar)” />

<input type=”button” value=”Scrollbars”
onclick=”toggleBar(window.scrollbars)” />

<input type=”button” value=”Status Bar”
onclick=”toggleBar(window.statusbar)” />

<input type=”button” value=”Tool Bar”
onclick=”toggleBar(window.toolbar)” />

<hr />
<input type=”button” value=”Restore Original Settings”
onclick=”restore()” />

</form>
</body>

</html>

Related Items: window.open() method.

document
Value: Object. Read-Only
Compatibility: WinIE3+, MacIE3+, NN2+, Moz1+, Safari1+

I list the document property here primarily for completeness. Each window object contains a
single document object (although in Navigator 4, a window may also contain layers, each of
which has a document object, as described in Chapter 39 on the CD-ROM). The value of the
document property is the document object, which is not a displayable value. Instead, you use
the document property as you build references to properties and methods of the document
and to other objects contained by the document, such as a form and its elements. To load a

windowObject.document

378 Part III ✦ Document Objects Reference

different document into a window, use the location object (see Chapter 17). The document
object is described in detail in Chapter 18.

Related Items: document object.

event
Value: Object. Read/Write
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari1+

IE4+ and Safari treat the event object as a property of the window object. Navigator 4+ and
the W3C DOM (as well as Safari here, too) pass an instance of the Event object as an argu-
ment to event handler functions. The connection with the window object is relatively inconse-
quential, because all action involving the event object occurs in event handler functions. The
only difference is that the object can be treated as a more global object when one event han-
dler function invokes another. Instead of having to pass the event object parameter to the
next function, functions can access the event object directly (with or without the window.
prefix in the reference).

For complete details about the event object in all browsers, see Chapter 25.

Related Items: event object.

external
Value: Object. Read-Only
Compatibility: WinIE4+, MacIE-, NN-, Moz-, Safari-

The external property is useful only when the browser window is a component in another
application. The property provides a gateway between the current browser window and the
application that acts as a host to the browser window component.

With WinIE4+ acting as a component to the host operating system, the external property can
be used to access several methods that influence behaviors outside of the browser. Perhaps
the three most useful methods to regular Web page scripters are AddDesktopComponent(),
AddFavorite(), and NavigateAndFind(). The first two methods display the same kind of
alert dialog box that users get after making these choices from the browser or desktop menus,
so that you won’t be able to sneak your Web site onto desktops or Favorites listings without
the visitor’s approval. Table 16-2 describes the parameters for these three methods.

Table 16-2: Popular window.external Object Methods

Method Description

AddDesktopComponent Adds a Web site or image to the Active Desktop (if turned on in the
(“URL”, “type”[, user’s copy of Windows). The type parameter value is either
left, top, width, website or image. Dimensional parameters (optional) are all
height]) integer values.

AddFavorite Adds the specified URL to the user’s Favorites list. The optional title
(“URL”[, “title”]) string parameter is how the URL should be listed in the menu (if

missing, the URL appears in the list).

NavigateAndFind Navigates to the URL in the first parameter and opens the page in
(“URL”, “findString”, the target frame (an empty string opens in the current frame). The
“target”) findString is text to be searched for on that page and

highlighted when the page loads.

windowObject.document

379Chapter 16 ✦ Window and Frame Objects

Example
The first example asks the user if it is okay to add a Web site to the Active Desktop. If Active
Desktop is not enabled, the user is given the choice of enabling it at this point.

external.AddDesktopComponent(“http://www.nytimes.com”,”website”, 200, 100,
400, 400);

In the next example, the user is asked to approve the addition of a URL to the Favorites list.
The user can follow the normal procedure for filing the item in a folder in the list.

external.AddFavorite(“http://www.dannyg.com/update11.html”,
“JSBible 5 Support Center”);

The final example assumes that a user makes a choice from a select list of items. The
onchange event handler of the select list invokes the following function to navigate to a fic-
titious page and locate listings for a chosen sports team on the page.

function locate(list) {
var choice = list.options[list.selectedIndex].value;
external.NavigateAndFind(“http://www.collegesports.net/scores.html”,

choice, “scores”);
}

frameElement
Values: frame or iframe object reference. Read-Only
Compatibility: WinIE5.5+, MacIE-, NN-, Moz-, Safari-

If the current window exists as a result of a <frame> or <iframe> tag, the window’s
frameElement property returns a reference to the hosting element. As is made clear in the
discussion later in this chapter about the frame element object, a reference to a frame or
iframe element object provides access to the properties that echo the attributes of the
HTML element object. For a window that is not part of a frameset, the frameElement prop-
erty returns null.

The convenience of this property becomes apparent when a single document is loaded into
multiple framesets. A script in the document can still refer to the containing frame element,
even when the ID of the element changes from one frameset to another. The frameset ele-
ment is also accessible via the parentElement property of the frameElement property:

var frameSetObj = self.frameElement.parentElement;

A reference to the frameset element opens possibilities of adjusting frame sizes.

Related Items: frame, iframe objects.

frames
Value: Array. Read-Only
Compatibility: WinIE3+, MacIE3+, NN2+, Moz1+, Safari1+

In a multiframe window, the top or parent window contains any number of separate frames,
each of which acts as a full-fledged window object. The frames property (note the plural use
of the word as a property name) plays a role when a statement must reference an object
located in a different frame. For example, if a button in one frame is scripted to load a docu-
ment in another frame, the button’s event handler must be able to tell JavaScript precisely
where to display the new HTML document. The frames property assists in that task.

windowObject.frames

380 Part III ✦ Document Objects Reference

To use the frames property to communicate from one frame to another, it should be part of a
reference that begins with the parent or top property. This lets JavaScript make the proper
journey through the hierarchy of all currently loaded objects to reach the desired object. To
find out how many frames are currently active in a window, use this expression:

parent.frames.length

This expression returns a number indicating how many frames the parent window defines.
This value does not, however, count further nested frames, should a third generation of frame
be defined in the environment. In other words, no single property exists that you can use to
determine the total number of frames in the browser window if multiple generations of
frames are present.

The browser stores information about all visible frames in a numbered (indexed) array, with
the first frame (that is, the topmost <frame> tag defined in the framesetting document) as
number 0:

parent.frames[0]

Therefore, if the window shows three frames (whose indexes are frames[0], frames[1], and
frames[2], respectively), the reference for retrieving the title property of the document in
the second frame is

parent.frames[1].document.title

This reference is a road map that starts at the parent window and extends to the second
frame’s document and its title property. Other than the number of frames defined in a par-
ent window and each frame’s name (top.frames[i].name), no other values from the frame
definitions are directly available from the frame object via scripting until you get to IE4 and
NN6/W3C (see the frame element object later in this chapter). In these browsers, individual
frame element objects have several properties that reveal <frame> tag attributes.

Using index values for frame references is not always the safest tactic, however, because
your frameset design may change over time, in which case the index values will also change.
Instead, you should take advantage of the name attribute of the <frame> tag, and assign a
unique, descriptive name to each frame. A value you assign to the name attribute is also the
name that you use for target attributes of links to force a linked page to load in a frame
other than the one containing the link. You can use a frame’s name as an alternative to the
indexed reference. For example, in Listing 16-7, two frames are assigned distinctive names.
To access the title of a document in the JustAKid2 frame, the complete object reference is

parent.JustAKid2.document.title

with the frame name (case-sensitive) substituting for the frames[1] array reference. Or, in
keeping with JavaScript flexibility, you can use the object name in the array index position:

parent.frames[“JustAKid2”].document.title

The supreme advantage to using frame names in references is that no matter how the frame-
set structure may change over time, a reference to a named frame will always find that frame,
although its index value (that is, position in the frameset) may change.

Example
Listings 16-7 and 16-8 demonstrate how JavaScript treats values of frame references from
objects inside a frame. The same document is loaded into each frame. A script in that docu-
ment extracts information about the current frame and the entire frameset. Figure 16-4 shows
the results after loading the HTML document in Listing 16-7.

windowObject.frames

381Chapter 16 ✦ Window and Frame Objects

Listing 16-7: Framesetting Document for Listing 16-8

<html>
<head>

<title>window.frames property</title>
</head>
<frameset cols=”50%,50%”>

<frame name=”JustAKid1” src=”lst16-08.htm” />
<frame name=”JustAKid2” src=”lst16-08.htm” />

</frameset>
</html>

A call to determine the number (length) of frames returns 0 from the point of view of the cur-
rent frame referenced. That’s because each frame here is a window that has no nested frames
within it. But add the parent property to the reference, and the scope zooms out to take into
account all frames generated by the parent window’s document.

Listing 16-8: Showing Various Window Properties

<html>
<head>

<title>Window Revealer II</title>
<script type=”text/javascript”>
function gatherWindowData() {

var msg = “”;
msg += “<p>From the point of view of this frame:
”;
msg += “window.frames.length: “ + window.frames.length + “
”;
msg += “window.name: “ + window.name + “</p>”;
msg += “<p>From the point of view of the framesetting

document:
”;
msg += “parent.frames.length: “ + parent.frames.length + “
”;
msg += “parent.frames[0].name: “ + parent.frames[0].name + “</p>”;
return msg;

}
</script>

</head>
<body>

<script type=”text/javascript”>
document.write(gatherWindowData());
</script>

</body>
</html>

The last statement in the example shows how to use the array syntax (brackets) to refer to a
specific frame. All array indexes start with 0 for the first entry. Because the document asks
for the name of the first frame (parent.frames[0]), the response is JustAKid1 for both
frames.

Related Items: frame, frameset objects; window.parent, window.top properties.

windowObject.frames

382 Part III ✦ Document Objects Reference

Figure 16-4: Property readouts from both frames loaded from Listing 16-7.

history
Value: Object. Read-Only
Compatibility: WinIE3+, MacIE3+, NN2+, Moz1+, Safari1+

(See the discussion of the history object in Chapter 17.)

innerHeight
innerWidth
outerHeight
outerWidth

Value: Integer. Read/Write (see text)
Compatibility: WinIE-, MacIE-, NN4+, Moz1+, Safari1+

NN4+ lets scripts adjust the height and width of any window, including the main browser
window by setting properties. This adjustment can be helpful when your page shows itself
best with the browser window sized to a particular height and width. Rather than relying
on the user to size the browser window for optimum viewing of your page, you can dictate
the size of the window (although the user can always manually resize the main window).
And because you can examine the operating system of the visitor via the navigator object
(see Chapter 38 on the CD-ROM), you can size a window to adjust for the differences in font
and form element rendering on different platforms.

windowObject.history

383Chapter 16 ✦ Window and Frame Objects

Supporting browsers provide two different points of reference for measuring the height and
width of a window: inner and outer. Both are measured in pixels. The inner measurements are
that of the active document area of a window (sometimes known as a window’s content
region). If the optimum display of your document depends on the document display area
being a certain number of pixels high and/or wide, the innerHeight and innerWidth proper-
ties are the ones to set.

In contrast, the outer measurements are of the outside boundary of the entire window, includ-
ing whatever chrome is showing in the window: scroll bars, status bar, and so on. Setting the
outerHeight and outerWidth is generally done in concert with a reading of screen object
properties (see Chapter 38 on the CD-ROM). Perhaps the most common usage of the outer
properties is to set the browser window to fill the available screen area of the visitor’s monitor.

A more efficient way of modifying both outer dimensions of a window is with the
window.resizeTo() method, which is also available in IE4+. The method takes pixel width
and height (as integer values) as parameters, thus accomplishing a window resizing in one
statement. Be aware that resizing a window does not adjust the location of a window.
Therefore, just because you set the outer dimensions of a window to the available space
returned by the screen object doesn’t mean that the window will suddenly fill the available
space on the monitor. Application of the window.moveTo() method is necessary to ensure
the top-left corner of the window is at screen coordinates 0,0.

Despite the freedom that these properties afford the page author, Netscape and Mozilla-based
browsers have built in a minimum size limitation for scripts that are not cryptographically
signed. You cannot set these properties such that the outer height and width of the window is
smaller than 100 pixels on a side. This limitation is to prevent an unsigned script from setting
up a small or nearly invisible window that monitors activity in other windows. With signed
scripts, however, windows can be made smaller than 100 × 100 pixels with the user’s permis-
sion. IE4+ maintains a smaller minimum size to prevent resizing a window to zero size.

Users may dislike your scripts messing with their browser window sizes and positions.
NN7+/Moz1+/Safari do not allow scripts to resize windows.

Example
In Listing 16-9, a number of buttons let you see the results of setting the innerHeight,
innerWidth, outerHeight, and outerWidth properties in NN4 and NN6. Later browsers and
Safari ignore scripted adjustments to these properties.

Listing 16-9: Setting Window Height and Width

<html>
<head>

<title>Window Sizer</title>
<script type=”text/javascript”>
// store original outer dimensions as page loads
var originalWidth = window.outerWidth;
var originalHeight = window.outerHeight;
// generic function to set inner dimensions

Continued

Caution

windowObject.innerHeight

384 Part III ✦ Document Objects Reference

Listing 16-9 (continued)

function setInner(width, height) {
window.innerWidth = width;
window.innerHeight = height;

}
// generic function to set outer dimensions
function setOuter(width, height) {

window.outerWidth = width;
window.outerHeight = height;

}
// restore window to original dimensions
function restore() {

window.outerWidth = originalWidth;
window.outerHeight = originalHeight;

}
</script>

</head>
<body>

<form>
Setting Inner Sizes

<input type=”button” value=”600 Pixels Square”
onclick=”setInner(600,600)” />

<input type=”button” value=”300 Pixels Square”
onclick=”setInner(300,300)” />

<input type=”button” value=”Available Screen Space”
onclick=”setInner(screen.availWidth, screen.availHeight)” />

<hr />
Setting Outer Sizes

<input type=”button” value=”600 Pixels Square”
onclick=”setOuter(600,600)” />

<input type=”button” value=”300 Pixels Square”
onclick=”setOuter(300,300)” />

<input type=”button” value=”Available Screen Space”
onclick=”setOuter(screen.availWidth, screen.availHeight)” />

<hr />
<input type=”button” value=”Cinch up for Win95”
onclick=”setInner(273,304)” />

<input type=”button” value=”Cinch up for Mac”
onclick=”setInner(273,304)” />

<input type=”button” value=”Restore Original”
onclick=”restore()” />

</form>
</body>

</html>

Related Items: window.resizeTo(), window.moveTo() methods; screen object; navigator
object.

loading
Value: Boolean. Read-Only
Compatibility: WinIE-, MacIE-, NN4, Moz-, Safari-

This NN4-specific property allows you to query whether the window is still loading content.
The property returns true if the page is still loading and false if the page has completed
loading all of its content.

windowObject.innerHeight

385Chapter 16 ✦ Window and Frame Objects

location
Value: Object. Read/Write
Compatibility: WinIE3+, MacIE3+, NN2+, Moz1+, Safari1+

(See the discussion of the location object in Chapter 17.)

locationbar
(See directories)

name
Value: String. Read/Write
Compatibility: WinIE3+, MacIE3+, NN2+, Moz1+, Safari1+

All window objects can have names assigned to them. Names are particularly useful for work-
ing with frames, because a good naming scheme for a multiframe environment can help you
determine precisely which frame you’re working with in references coming from other frames.

The main browser window, however, has no name attached to it by default. Its value is an
empty string. There aren’t many reasons to assign a name to the window, because JavaScript
and HTML provide plenty of other ways to refer to the window object (the top property, the
_top constant for target attributes, and the opener property from subwindows).

If you want to attach a name to the main window, you can do so by setting the window.name
property at any time. But be aware that because this is one window property whose life
extends beyond the loading and unloading of any given document, chances are that your
scripts would use the reference in only one document or frameset. Unless you restore the
default empty string, your programmed window name will be present for any other document
that loads later. My suggestion in this regard is to assign a name in a window’s or frameset’s
onload event handler, and then reset it to empty in a corresponding onunload event handler:

<body onload=”self.name = ‘Main’” onunload=”self.name = ‘’”>

You can see an example of this application in Listing 16-16, where setting a parent window
name is helpful for learning the relationships among parent and child windows.

Related Items: top property; window.open(), window.sizeToContent() methods.

navigator
Value: Object. Read-Only
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

Although the navigator object appears as a property of the window object only in the most
recent browsers, the navigator object has been around since the very beginning (see
Chapter 38 on the CD-ROM). In previous browsers, the navigator object was referenced as a
standalone object. And because you can omit any reference to the window object for a win-
dow object’s properties, you can use the same window-less reference syntax for compatibility
across all scriptable browsers (at least for the navigator object properties that exist across
all browsers). That’s the way I recommend referring to the navigator object.

Example
This book is littered with examples of using the navigator object, primarily for performing
browser detection. You can find examples of specific navigator object properties in Chapter
38 on the CD-ROM.

Related Items: navigator object.

windowObject.navigator

386 Part III ✦ Document Objects Reference

offscreenBuffering
Value: Boolean or string. Read/Write
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-

IE4+ by default initially renders a page in a buffer (a chunk of memory) before it is blasted to
the video screen. You can control this behavior explicitly by modifying the
window.offscreenBuffering property.

The default value of the property is the string auto. You can also assign Boolean true or
false to the property to override IE’s normal automatic handling of this behavior.

Example
If you want to turn off buffering for an entire page, include the following statement at the
beginning of your script statements:

window.offscreenBuffering = false;

onerror
Value: Function. Read/Write
Compatibility: WinIE4+, MacIE4+, NN3+, Moz1+, Safari-

The onerror property is an exception to the rule of this book to not describe event handlers
as properties within object reference sections. The reason is that the onerror event brings
along some special properties that are useful to control by setting the event handler property
in scripts.

Recent browsers (IE5+, NN4+, and W3C) are designed to prevent script errors from being
intrusive if a user encounters a script error while loading or interacting with a page. Even so,
even the subtle hints about problems (messages or icons in the status bar) can be confusing
for users who have no idea what JavaScript is. JavaScript lets you turn off the display of
script error windows or messages as someone executes a script on your page. The question
is: When should you turn off these messages?

Script errors generally mean that something is wrong with your script. The error may be the
result of a coding mistake or, conceivably, a bug in JavaScript (perhaps on a platform version
of the browser that you haven’t been able to test). If such errors occur, often the script won’t
continue to do what you intended. Hiding the script error from yourself during development
would be foolhardy, because you’d never know whether unseen errors are lurking in your
code. It can be equally dangerous to turn off error dialog boxes for users who may believe
that the page is operating normally, when, in fact, it’s not. Some data values may not be calcu-
lated or displayed correctly.

That said, I can see some limited instances of when you may want to keep such dialog box
windows from appearing. For example, if you know for a fact that a platform-specific bug trips
the error message without harming the execution of the script, you may want to prevent that
error alert dialog box from appearing in the files posted to your Web site. You should do this
only after extensive testing to ensure that the script ultimately behaves correctly, even with
the bug or error.

IE fires the onerror event handler only for runtime errors. This means that if you have a
syntactical error in your script that trips the browser as the page loads, the onerror event
doesn’t fire, and you cannot trap that error message. Moreover, if the user has the IE script
debugger installed, any code you use to prevent browser error messages from appearing will
not work.

Note

windowObject.offscreenBuffering

387Chapter 16 ✦ Window and Frame Objects

When the browser starts, the window.onerror property is <undefined>. In this state, all
errors are reported via the normal JavaScript error window or message. To turn off error
alerts, set the window.onerror property to invoke a function that does absolutely nothing:

function doNothing() { return true; }
window.onerror = doNothing;

To restore the error messages, reload the page.

You can, however, also assign a custom function to the window.onerror property. This func-
tion then handles errors in a more friendly way under your script control. Whenever error
messages are turned on (the default behavior), a script error (or Java applet or class excep-
tion) invokes the function assigned to the onerror property, passing three parameters:

✦ Error message

✦ URL of document causing the error

✦ Line number of the error

You can essentially trap for all errors and handle them with your own interface (or no user
notification at all). The last statement of this function must be return true if you do not
want the JavaScript script error message to appear.

If you are using LiveConnect to communicate with a Java applet directly from your scripts,
you can use the same scheme to handle any exception that Java may throw. A Java exception
is not necessarily a mistake kind of error: Some methods assume that the Java code will trap
for exceptions to handle special cases (for example, reacting to a user’s denial of access when
prompted by a signed script dialog box). See Chapter 44 on the CD-ROM for an example of
trapping for a specific Java exception. Also, see Chapter 31 for JavaScript exception handling
introduced for W3C DOM–compatible browsers.

Example
In Listing 16-10, one button triggers a script that contains an error. I’ve added an error han-
dling function to process the error so that it opens a separate window and fills in a textarea
form element (see Figure 16-5). A Submit button is also provided to mail the bug information
to a support center e-mail address — an example of how to handle the occurrence of a bug in
your scripts.

Listing 16-10: Controlling Script Errors

<html>
<head>

<title>Error Dialog Control</title>
<script type=”text/javascript”>
// function with invalid variable value
function goWrong() {

var x = fred;
}
// turn off error dialogs
function errOff() {

window.onerror = doNothing;
}

Continued

windowObject.onerror

388 Part III ✦ Document Objects Reference

Listing 16-10 (continued)

// turn on error dialogs with hard reload
function errOn() {

window.onerror = handleError;
}

// assign default error handler
window.onerror = handleError;

// error handler when errors are turned off...prevents error dialog
function doNothing() { return true; }
function handleError(msg, URL, lineNum) {

var errWind = window.open(“”,”errors”,”height=270,width=400”);
var wintxt = “<html><body bgcolor=red>”;
wintxt += “An error has occurred on this page. Please report it to

Tech Support.”;
wintxt += “<form method=POST enctype=’text/plain’

action=mailTo:support4@dannyg.com >”;
wintxt += “<textarea name=’errMsg’ cols=45 rows=8 wrap=VIRTUAL>”;
wintxt += “Error: “ + msg + “\n”;
wintxt += “URL: “ + URL + “\n”;
wintxt += “Line: “ + lineNum + “\n”;
wintxt += “Client: “ + navigator.userAgent + “\n”;
wintxt += “---\n”;
wintxt += “Please describe what you were doing when the error

occurred:”;
wintxt += “</textarea>
”;
wintxt += “<input type=SUBMIT value=’Send Error Report’>”;
wintxt += “<input type=button value=’Close’ onclick=’self.close()’>”;
wintxt += “</form></body></html>”;
errWind.document.write(wintxt);
errWind.document.close();
return true;

}
</script>

</head>
<body>

<form name=”myform”>
<input type=”button” value=”Cause an Error” onclick=”goWrong()” />
<p><input type=”button” value=”Turn Off Error Dialogs”

onclick=”errOff()” /> <input type=”button”
value=”Turn On Error Dialogs” onclick=”errOn()” /></p>

</form>
</body>

</html>

I provide a button that performs a hard reload, which, in turn, resets the window.onerror
property to its default value. With error dialog boxes turned off, the error handling function
does not run.

Related Items: location.reload() method; JavaScript exception handling (Chapter 31);
debugging scripts (Chapter 45 on the CD-ROM).

windowObject.onerror

389Chapter 16 ✦ Window and Frame Objects

Figure 16-5: An example of a self-reporting
error window.

opener
Value: Window object reference. Read/Write
Compatibility: WinIE3+, MacIE3+, NN3+, Moz1+, Safari1+

Many scripters make the mistake of thinking that a new browser window created with the
window.open() method has a child–parent relationship similar to the one that frames have
with their parents. That’s not the case at all. New browser windows, once created, have a
very slim link to the window from whence they came: via the opener property. The purpose
of the opener property is to provide scripts in the new window with a valid reference back to
the original window. For example, the original window may contain some variable values or
general-purpose functions that a new window at this Web site wants to use. The original win-
dow may also have form elements whose settings are either of value to the new window or
get set by user interaction in the new window.

Because the value of the opener property is a reference to a genuine window object, you can
begin references with the property name. Or, you may use the more complete window.opener
or self.opener reference. But the reference must then include some object or property of
that original window, such as a window method or a reference to something contained by
that window’s document.

If a subwindow opens yet another subwindow, the chain is still valid, albeit one step longer.
The third window can reach the main window with a reference that begins

opener.opener....

It’s a good idea for the third window to store in a global variable the value of opener.opener
while the page loads. Thus, if the user closes the second window, the variable can be used to
start a reference to the main window.

When a script that generates a new window is within a frame, the opener property of the
subwindow points to that frame. Therefore, if the subwindow needs to communicate with
the main window’s parent or another frame in the main window, you have to very carefully
build a reference to that distant object. For example, if the subwindow needs to get the
checked property of a checkbox in a sister frame of the one that created the subwindow,
the reference is

opener.parent.sisterFrameName.document.formName.checkboxName.checked

windowObject.opener

390 Part III ✦ Document Objects Reference

It is a long way to go, indeed, but building such a reference is always a case of mapping out
the path from where the script is to where the destination is, step-by-step.

Example
To demonstrate the importance of the opener property, take a look at how a new window can
define itself from settings in the main window (see Listing 16-11). The doNew() function gen-
erates a small subwindow and loads the file in Listing 16-12 into the window. Notice the initial
conditional statements in doNew() to make sure that if the new window already exists, it
comes to the front by invoking the new window’s focus() method. You can see the results in
Figure 16-6.

Listing 16-11: Contents of a Main Window Document
That Generates a Second Window

<html>
<head>

<title>Master of all Windows</title>
<script type=”text/javascript”>
var myWind;
function doNew() {

if (!myWind || myWind.closed) {
myWind = window.open(“lst16-12.htm”, “subWindow”,

“height=200,width=350,resizable”);
} else {

// bring existing subwindow to the front
myWind.focus();

}
}
</script>

</head>
<body>

<form name=”input”>
Select a color for a new window: <input type=”radio” name=”color”
value=”red” checked=”checked” />Red <input type=”radio” name=”color”
value=”yellow” />Yellow <input type=”radio” name=”color”
value=”blue” />Blue <input type=”button” name=”storage”
value=”Make a Window” onclick=”doNew()” />
<hr />
This field will be filled from an entry in another window: <input
type=”text” name=”entry” size=”25” />

</form>
</body>

</html>

windowObject.opener

391Chapter 16 ✦ Window and Frame Objects

Listing 16-12: References to the opener Property

<html>
<head>

<title>New Window on the Block</title>
<script type=”text/javascript”>
function getColor() {

// shorten the reference
colorButtons = self.opener.document.forms[0].color;
// see which radio button is checked
for (var i = 0; i < colorButtons.length; i++) {

if (colorButtons[i].checked) {
return colorButtons[i].value;

}
}
return “white”;

}
</script>
<script type=”text/javascript”>
document.write(“<body bgcolor=’” + getColor() + “‘>”)
</script>

</head>
<body>

<h1>This is a new window.</h1>
<form>

<input type=”button” value=”Who’s in the Main window?”
onclick=”alert(self.opener.document.title)” />
<p>Type text here for the main window: <input type=”text” size=”25”

onchange=”self.opener.document.forms[0].entry.value = this.value”
/></p>

</form>
</body>

</html>

In the getColor() function, the multiple references to the radio button array can be very
long. To simplify the references, the getColor() function starts out by assigning the radio
button array to a variable I arbitrarily call colorButtons. That shorthand now stands in for
lengthy references as I loop through the radio buttons to determine which button is checked
and retrieve its value property.

A button in the second window simply fetches the title of the opener window’s document.
Even if another document loads in the main window in the meantime, the opener reference
still points to the main window: Its document object, however, will change.

Finally, the second window contains a text input object. Enter any text there that you like and
either tab or click out of the field. The onchange event handler updates the field in the
opener’s document (provided that document is still loaded).

Related Items: window.open(), window.focus() methods.

windowObject.opener

392 Part III ✦ Document Objects Reference

Figure 16-6: The main and subwindows, inextricably linked via the window.opener property.

outerHeight
outerWidth

(See innerHeight and innerWidth, earlier)

pageXOffset
pageYOffset

Value: Integer. Read-Only
Compatibility: WinIE-, MacIE-, NN4+, Moz1+, Safari1+

The top-left corner of the content (inner) region of the browser window is an important geo-
graphical point for scrolling documents. When a document is scrolled all the way to the top
and flush left in the window (or when a document is small enough to fill the browser window
without displaying scrollbars), the document’s location is said to be 0,0, meaning zero pixels
from the top and zero pixels from the left. If you were to scroll the document, some other
coordinate point of the document would be under that top-left corner. That measure is called
the page offset, and the pageXOffset and pageYOffset properties let you read the pixel
value of the document at the inner window’s top-left corner: pageXOffset is the horizontal
offset, and pageYOffset is the vertical offset.

The value of these measures becomes clear if you design navigation buttons in your pages
to carefully control paging of content being displayed in the window. For example, you might
have a two-frame page in which one of the frames features navigation controls, while the
other displays the primary content. The navigation controls take the place of scrollbars,

windowObject.outerHeight

393Chapter 16 ✦ Window and Frame Objects

which, for aesthetic reasons, are turned off in the display frame. Scripts connected to the sim-
ulated scrolling buttons can determine the pageYOffset value of the document and then use
the window.scrollTo() method to position the document precisely to the next logical divi-
sion in the document for viewing.

IE4+ has corresponding values as body object properties: body.scrollLeft and
body.scrollTop (see Chapter 18).

Example
The script in Listing 16-13 is an unusual construction that creates a frameset and creates the
content for each of the two frames all within a single HTML document (see “frame Element
Object” later in the chapter for more details). The purpose of this example (not available in
Safari 1.0) is to provide you with a playground to become familiar with the page offset con-
cept and how the values of these properties correspond to physical activity in a scrollable
document.

In the left frame of the frameset are two fields that are ready to show the pixel values of the
right frame’s pageXOffset and pageYOffset properties. The content of the right frame is a
30-row table of fixed width (800 pixels). Mouse click events are captured by the document
level (see Chapter 18), allowing you to click any table or cell border or outside the table to
trigger the showOffsets() function in the right frame. That function is a simple script that
displays the page offset values in their respective fields in the left frame.

Listing 16-13: Viewing the pageXOffset and pageYOffset Properties

<html>
<head>

<title>Master of all Windows</title>
<script type=”text/javascript”>
function leftFrame() {

var output = “<html><body<h3>Page Offset Values<\/h3><hr \/>\n”;
output += “<form>PageXOffset:<input type=’text’ name=’xOffset’

size=’4’ \/><br \/>\n”;
output += “PageYOffset:<input type=’text’ name=’yOffset’ size=’4’

\/><br \/>\n”;
output += “<\/form><\/body><\/html>”;
return output;

}

function rightFrame() {
var output = “<html><head><script type=’text/javascript’>\n”;
output += “function showOffsets() {\n”;
output += “parent.readout.document.forms[0].xOffset.value =

self.pageXOffset;\n”;
output += “parent.readout.document.forms[0].yOffset.value =

self.pageYOffset;\n}\n”;
output += “document.captureEvents(Event.CLICK);\n”;
output += “document.onclick = showOffsets;\n”;
output += “<\/script><\/head><body><h3>Content Page<\/h3>\n”;
output += “Scroll this frame and click on a table border to view “ +

“page offset values.<br \/><hr \/>\n”;
output += “<table border=’5’ width=’800’>”;

Continued

windowObject.pageXOffset

394 Part III ✦ Document Objects Reference

Listing 16-13 (continued)

var oneRow = “<td>Cell 1<\/td><td>Cell 2<\/td><td>Cell 3<\/td>
<td>Cell 4<\/td>” + “<td>Cell 5<\/td>”;

for (var i = 1; i <= 30; i++) {
output += “<tr><td>Row “ + i + “<\/b><\/td>” + oneRow +

“<\/tr>”;
}
output += “<\/table><\/body><\/html>”;
return output;

}
</script>

</head>
<frameset cols=”30%,70%”>

<frame name=”readout” src=”javascript:parent.leftFrame()” />
<frame name=”display” src=”javascript:parent.rightFrame()” />

</frameset>
</html>

To gain an understanding of how the offset values work, scroll the window slightly in the hori-
zontal direction and notice that the pageXOffset value increases; the same goes for the
pageYOffset value as you scroll down. Remember that these values reflect the coordinate in
the document that is currently under the top-left corner of the window (frame) holding the
document. You can see an IE4+ version of this example in Listing 18-20. A cross-browser ver-
sion would require very little browser branching.

Related Items: window.innerHeight, window.innerWidth, body.scrollLeft,
body.scrollTop properties; window.scrollBy(), window.scrollTo() methods.

parent
Value: Window object reference. Read-Only
Compatibility: WinIE3+, MacIE3+, NN2+, Moz1+, Safari1+

The parent property (and the top property that follows later in this section) comes into play
primarily when a document is to be displayed as part of a multiframe window. The HTML doc-
uments that users see in the frames of a multiframe browser window are distinct from the
document that specifies the frameset for the entire window. That document, though still in
the browser’s memory (and appearing as the URL in the location field of the browser), is not
otherwise visible to the user (except in the Source View).

If scripts in your visible documents need to reference objects or properties of the frameset
window, you can reference those frameset window items with the parent property (do not,
however, expand the reference by preceding it with the window object, as in window.parent.
propertyName, because this causes problems in early browsers). In a way, the parent prop-
erty seems to violate the object hierarchy because, from a single frame’s document, the
property points to a level seemingly higher in precedence. If you didn’t specify the parent
property or instead specified the self property from one of these framed documents, the
object reference is to the frame only, rather than to the outermost framesetting window
object.

A nontraditional but perfectly legal way to use the parent object is as a means of storing
temporary variables. Thus, you could set up a holding area for individual variable values or
even an array of data. These values can then be shared among all documents loaded into the
frames, including when documents change inside the frames. You have to be careful,

windowObject.pageXOffset

395Chapter 16 ✦ Window and Frame Objects

however, when storing data in the parent on the fly (that is, in response to user action in the
frames). Variables can revert to their default values (that is, the values set by the parent’s
own script) if the user resizes the window in early browsers.

A child window can also call a function defined in the parent window. The reference for such
a function is

parent.functionName([parameters])

At first glance, it may seem as though the parent and top properties point to the same
framesetting window object. In an environment consisting of one frameset window and its
immediate children, that’s true. But if one of the child windows was, itself, another frameset-
ting window, then you wind up with three generations of windows. From the point of view of
the “youngest” child (for example, a window defined by the second frameset), the parent
property points to its immediate parent, whereas the top property points to the first frame-
setting window in this chain.

On the other hand, a new window created via the window.open() method has no
parent–child relationship to the original window. The new window’s top and parent point to
that new window. You can read more about these relationships in the “Frames” section earlier
in this chapter.

Example
To demonstrate how various window object properties refer to window levels in a multiframe
environment, use your browser to load the Listing 16-14 document. It, in turn, sets each of
two equal-size frames to the same document: Listing 16-15. This document extracts the values
of several window properties, plus the document.title properties of two different window
references.

Listing 16-14: Framesetting Document for Listing 16-15

<html>
<head>

<title>The Parent Property Example</title>
<script type=”text/javascript”>
self.name = “Framesetter”;
</script>

</head>
<frameset cols=”50%,50%” onunload=”self.name = ‘’”>

<frame name=”JustAKid1” src=”lst16-15.htm” />
<frame name=”JustAKid2” src=”lst16-15.htm” />

</frameset>
</html>

Listing 16-15: Revealing Various Window-Related Properties

<html>
<head>

<title>Window Revealer II</title>
<script type=”text/javascript”>
function gatherWindowData() {

Continued

windowObject.parent

396 Part III ✦ Document Objects Reference

Listing 16-15 (continued)

var msg = “”;
msg = msg + “top name: “ + top.name + “
”;
msg = msg + “parent name: “ + parent.name + “
”;
msg = msg + “parent.document.title: “ + parent.document.title +

“
”;
msg = msg + “window name: “ + window.name + “
”;
msg = msg + “self name: “ + self.name + “
”;
msg = msg + “self.document.title: “ + self.document.title;
return msg;

}
</script>

</head>
<body>

<script type=”text/javascript”>
document.write(gatherWindowData());
</script>

</body>
</html>

In the two frames (see Figure 16-7), the references to the window and self object names return
the name assigned to the frame by the frameset definition (JustAKid1 for the left frame,
JustAKid2 for the right frame). In other words, from each frame’s point of view, the window
object is its own frame. References to self.document.title refer only to the document loaded
into that window frame. But references to the top and parent windows (which are one and the
same in this example) show that those object properties are shared between both frames.

Figure 16-7: Parent and top properties being shared by both frames.

windowObject.parent

397Chapter 16 ✦ Window and Frame Objects

A couple other fine points are worth highlighting. First, the name of the framesetting window
is set as Listing 16-14 loads, rather than in response to an onload event handler in the
<frameset> tag. The reason for this is that the name must be set in time for the documents
loading in the frames to get that value. If I had waited until the frameset’s onload event han-
dler, the name wouldn’t be set until after the frame documents had loaded. Second, I restore
the parent window’s name to an empty string when the framesetting document unloads. This
is to prevent future pages from getting confused about the window name.

Related Items: window.frames, window.self, window.top properties.

personalbar
(See directories)

returnValue
Value: Any data type. Read/Write
Compatibility: WinIE4+, MacIE5+, NN-, Moz-, Safari-

Scripts use the returnValue property in a document that loads into the IE-specific modal
dialog box. A modal dialog box is generated via the showModalDialog() method, which
returns whatever data has been assigned to the returnValue property of the dialog box win-
dow before it closes. This is possible because script processing in the main window freezes
while the modal dialog box is visible. As the dialog box closes, a value can be returned to the
main window’s script right where the modal dialog box was invoked, and the main window’s
script resumes executing statements.

Example
See Listing 16-39 for the showModalDialog() method for an example of how to get data back
from a dialog box in IE4+.

Related Items: showModalDialog() method.

screen
Value: screen object. Read-Only
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

Although the screen object appears as a property of the window object only in the most
recent browsers, the screen object is also available in NN4 (see Chapter 38 on the CD-ROM),
but as a standalone object. Because you can omit any reference to the window object for a
window object’s properties, the same window-less reference syntax can be used for compati-
bility across all browsers that support the screen object. That’s the way I recommend refer-
ring to the screen object.

Example
See Chapter 38 on the CD-ROM for examples of using the screen object to determine the
video monitor characteristics of the computer running the browser.

Related Items: screen object.

windowObject.screen

398 Part III ✦ Document Objects Reference

screenLeft
screenTop

Value: Integer. Read-Only
Compatibility: WinIE5+, MacIE-, NN-, Moz-, Safari-

WinIE5+ provides the screenLeft and screenTop properties of the window object to let you
read the pixel position (relative to the top-left 0,0 coordinate of the video monitor) of what
Microsoft calls the client area of the browser window. The client area excludes most window
chrome, such as the title bar, address bar, and the window sizing bar. Therefore, when the
WinIE5+ browser window is maximized (meaning that no sizing bars are exposed), the
screenLeft property of the window is 0, while the screenTop property varies depending on
the combination of toolbars the user has elected to display. For non-maximized windows, if
the window has been positioned so that the top and/or left part of the client area are out of
view, their property values will be negative integers.

These two properties are read-only. You can position the browser window via the
window.moveTo() and window.moveBy() methods, but these methods position the top-left
corner of the entire browser window, not the client area. IE browsers, through version 6, do
not provide properties for the position of the entire browser window.

Example
Use The Evaluator (Chapter 13) to experiment with the screenLeft and screenTop proper-
ties. Start with the browser window maximized (if you are using Windows). Enter the follow-
ing property name into the top text box:

window.screenLeft

Click the Evaluate button to see the current setting. Unmaximize the window and drag it
around the screen. Each time you finish dragging, click the Evaluate button again to see the
current value. Do the same for window.screenTop.

Related Items: window.moveTo(), window.moveBy() methods.

screenX
screenY

Value: Integer. Read/Write
Compatibility: WinIE-, MacIE-, NN6+, Moz1+, Safari1+

NN6+/Moz/Safari provide the screenX and screenY properties to read the position of the
outer boundary of the browser window relative to the top-left coordinates (0,0) of the video
monitor. The browser window includes the 4-pixel wide window sizing bars that surround
Win32 windows. Therefore, when the WinNN6+ browser window is maximized, the values for
both screenX and screenY are -4. Netscape does not provide the equivalent measures of the
browser window client area as found in the screenLeft and screenTop properties of IE5+.
You can, however, find out if various toolbars are visible in the browser window (see
window.directories).

Although you can assign a value to either property, current versions of supporting browsers
do not adjust the window position in response. Moving and resizing windows by script is con-
sidered by many Web surfers to be unacceptable behavior.

windowObject.screenLeft

399Chapter 16 ✦ Window and Frame Objects

Example
Use The Evaluator (Chapter 13) to experiment with the screenX and screenY properties.
Start with the browser window maximized (if you are using Windows). Enter the following
property name into the top text box:

window.screenY

Click the Evaluate button to see the current setting. Unmaximize the window and drag it
around the screen. Each time you finish dragging, click the Evaluate button again to see the
current value. Do the same for window.screenY.

Related Items: window.moveTo(), window.moveBy() methods.

scrollbars
(See directories)

scrollMaxX
scrollMaxY

Value: Integer. Read/Write
Compatibility: WinIE-, MacIE-, NN7.1+, Moz1.4+, Safari1-

The NN7.1+/Mozilla1.4+ scrollMaxX and scrollMaxY properties let you determine the maxi-
mum horizontal and vertical scrolling extents of a window. Scrolling is possible only if the
window displays scrollbars along the desired axis. Values are pixel integers.

Related Items: scrollX, scrollY properties.

scrollX
scrollY

Value: Integer. Read-Only
Compatibility: WinIE-, MacIE-, NN6+, Moz1+, Safari1+

The NN6+/Mozilla/Safari scrollX and scrollY properties let you determine the horizontal
and vertical scrolling of a window. Scrolling is possible only if the window displays scroll bars
along the desired axis. Values are pixel integers.

Although the IE DOM does not provide similar properties for the window, the same informa-
tion can be derived from the body.scrollLeft and body.scrollTop properties.

Example
Use The Evaluator (Chapter 13) to experiment with the scrollX and scrollY properties.
Enter the following property into the top text box:

window.scrollY

Now manually scroll the page down so that you can still see the Evaluate button. Click the
button to see how far the window has scrolled along the y-axis.

Related Items: body.scrollLeft, body.scrollTop properties.

windowObject.scrollX

400 Part III ✦ Document Objects Reference

self
Value: Window object reference. Read-Only
Compatibility: WinIE3+, MacIE3+, NN2+, Moz1+, Safari1+

Just as the window object reference is optional, so too is the self property when the object
reference points to the same window as the one containing the reference. In what may seem
to be an unusual construction, the self property represents the same object as the window.
For instance, to obtain the title of the document in a single-frame window, you can use any of
the following three constructions:

window.document.title
self.document.title
document.title

Although self is a property of a window, you should not combine the references within a
single-frame window script (for example, don’t begin a reference with window.self, which
has been known to cause numerous scripting problems). Specifying the self property,
though optional for single-frame windows, can help make an object reference crystal clear
to someone reading your code (and to you, for that matter). Multiple-frame windows are
where you need to pay particular attention to this property.

JavaScript is pretty smart about references to a statement’s own window. Therefore, you can
generally omit the self part of a reference to a same-window document element. But when
you intend to display a document in a multiframe window, complete references (including the
self prefix) to an object make it much easier on anyone who reads or debugs your code to
track who is doing what to whom. You are free to retrieve the self property of any window.
The value that comes back is a window object reference.

Example
Listing 16-16 uses the same operations as Listing 16-5 but substitutes the self property for
all window object references. The application of this reference is entirely optional, but it can
be helpful for reading and debugging scripts if the HTML document is to appear in one frame
of a multiframe window — especially if other JavaScript code in this document refers to docu-
ments in other frames. The self reference helps anyone reading the code know precisely
which frame was being addressed.

Listing 16-16: Using the self Property

<html>
<head>

<title>self Property</title>
<script type=”text/javascript”>
self.defaultStatus = “Welcome to my Web site.”;
</script>

</head>

windowObject.self

401Chapter 16 ✦ Window and Frame Objects

<body>
<a href=”http://www.microsoft.com”
onmouseover=”self.status = ‘Visit Microsoft\’s Home page.’;return true;”
onmouseout=”self.status = ‘’;return true;”>Microsoft
<p><a href=”http://mozilla.org”

onmouseover=”self.status = ‘Visit Mozilla\’s Home page.’;return
true;”

onmouseout=”self.status = self.defaultStatus;return
true;”>Mozilla</p>

</body>
</html>

Related Items: window.frames, window.parent, window.top properties.

sidebar
(See appCore)

status
Value: String. Read/Write
Compatibility: WinIE3+, MacIE3+, NN2+, Moz1+, Safari1+

At the bottom of the browser window is a status bar. Part of that bar includes an area that
normally discloses the document loading progress or the URL of a link that the mouse is
pointing to at any given instant. You can control the temporary content of that field by assign-
ing a text string to the window object’s status property. You should adjust the status prop-
erty only in response to events that have a temporary effect, such as a link or image map area
object’s onmouseover event handler. When the status property is set in this situation, it
overrides any other setting in the status bar. If the user then moves the mouse pointer away
from the object that changes the status bar, the bar returns to its default setting (which may
be empty on some pages). Note that Safari 1.0 doesn’t always display the new text.

Use this window property as a friendlier alternative to displaying the URL of a link as a user
rolls the mouse around the page. For example, if you’d rather use the status bar to explain
the nature of the destination of a link, put that text into the status bar in response to the
onmouseover event handler. But be aware that experienced Web surfers like to see URLs
down there. Therefore, consider creating a hybrid message for the status bar that includes
both a friendly description followed by the URL in parentheses. In multiframe environments,
you can set the window.status property without having to worry about referencing the
individual frame.

Example
In Listing 16-17, the status property is set in a handler embedded in the onmouseover
attribute of two HTML link tags. Notice that the handler requires a return true statement
(or any expression that evaluates to return true) as the last statement of the handler. This
statement is required or the status message will not display in all browsers.

windowObject.status

402 Part III ✦ Document Objects Reference

Listing 16-17: Links with Custom Status Bar Messages

<html>
<head>

<title>window.status Property</title>
</head>
<body>

<a href=”http://www.dannyg.com”
onmouseover=”window.status = ‘Go to my Home page. (www.dannyg.com)’;
return true;”>Home
<p><a href=”http://mozilla.org”
onmouseover=”window.status = ‘Visit Mozilla Home page. (mozilla.org)’;
return true;”>Mozilla</p>

</body>
</html>

As a safeguard against platform-specific anomalies that affect the behavior of onmouseover
event handlers and the window.status property, you should also include an onmouseout
event handler for links and client-side image map area objects. Such onmouseout event han-
dlers should set the status property to an empty string. This setting ensures that the status
bar message returns to the defaultStatus setting when the pointer rolls away from these
objects. If you want to write a generalizable function that handles all window status changes,
you can do so, but word the onmouseover attribute carefully so that the event handler evalu-
ates to return true. Listing 16-18 shows such an alternative.

Listing 16-18: Handling Status Message Changes

<html>
<head>

<title>Generalizable window.status Property</title>
<script type=”text/javascript”>
function showStatus(msg) {

window.status = msg;
return true;

}
</script>

</head>
<body>

<a href=”http://www.example.com”
onmouseover=”return showStatus(‘Go to my Home page.’)”
onmouseout=”return showStatus(‘’)”>Home
<p><a href=”http://mozilla.org”
onmouseover=”return showStatus(‘Visit Mozilla Home page.’)”
onmouseout=”return showStatus(‘’)”>Mozilla</p>

</body>
</html>

Notice how the event handlers return the results of the showStatus() method to the event
handler, allowing the entire handler to evaluate to return true.

windowObject.status

403Chapter 16 ✦ Window and Frame Objects

One final example of setting the status bar (shown in Listing 16-19) also demonstrates how to
create a simple scrolling banner in the status bar.

Listing 16-19: Creating a Scrolling Banner

<html>
<head>

<title>Message Scroller</title>
<script type=”text/javascript”>
var msg = “Welcome to my world...”;
var delay = 150;
var timerId;
var maxCount = 0;
var currCount = 1;

function scrollMsg() {
// set the number of times scrolling message is to run
if (maxCount == 0) {

maxCount = 3 * msg.length;
}
window.status = msg;
// keep track of how many characters have scrolled
currCount++;
// shift first character of msg to end of msg
msg = msg.substring (1, msg.length) + msg.substring (0, 1);
// test whether we’ve reached maximum character count
if (currCount >= maxCount) {

timerID = 0; // zero out the timer
window.status = “”; // clear the status bar
return; // break out of function

} else {
// recursive call to this function
timerId = setTimeout(“scrollMsg()”, delay);

}
}
</script>

</head>
<body onload=”scrollMsg()”>
</body>

</html>

Because the status bar is being set by a standalone function (rather than by an onmouseover
event handler), you do not have to append a return true statement to set the status prop-
erty. The scrollMsg() function uses more advanced JavaScript concepts, such as the
window.setTimeout() method (covered later in this chapter) and string methods (covered
in Chapter 27). To speed the pace at which the words scroll across the status bar, reduce the
value of delay.

Many Web surfers (myself included) don’t care for these scrollers that run forever in the sta-
tus bar. Rolling the mouse over links disturbs the banner display. Use scrolling bars sparingly
or design them to run only a few times after the document loads.

windowObject.status

404 Part III ✦ Document Objects Reference

Setting the status property with onmouseover event handlers has had a checkered career
along various implementations in Navigator. A script that sets the status bar is always in com-
petition against the browser itself, which uses the status bar to report loading progress.
When a “hot” area on a page is at the edge of a frame, many times the onmouseout event
fails to fire, thus preventing the status bar from clearing itself. Be sure to torture test any such
implementations before declaring your page ready for public access.

Related Items: window.defaultStatus property; onmouseover, onmouseout event
handlers; link object.

statusbar
toolbar

(See locationbar)

top
Value: Window object refererence. Read-Only
Compatibility: WinIE3+, MacIE3+, NN2+, Moz1+, Safari1+

The window object’s top property refers to the topmost window in a frameset object hierar-
chy. For a single-frame window, the reference is to the same object as the window itself
(including the self and parent properties), so do not include window as part of the refer-
ence. In a multiframe window, the top window is the one that defines the first frameset (in
case of nested framesets). Users don’t ever really see the top window in a multiframe environ-
ment, but the browser stores it as an object in its memory. The reason is that the top window
has the road map to the other frames (if one frame should need to reference an object in a dif-
ferent frame), and its children frames can call upon it. Such a reference looks like

top.functionName([parameters])

For more about the distinction between the top and parent properties, see the in-depth dis-
cussion about scripting frames at the beginning of this chapter. See also the example of the
parent property for listings that demonstrate the values of the top property.

Related Items: window.frames, window.self, window.parent properties.

window
Value: Window object. Read-Only
Compatibility: WinIE3+, MacIE3+, NN2+, Moz1+, Safari1+

Listing the window property as a separate property may be more confusing than helpful. The
window property is the same object as the window object. You do not need to use a reference
that begins with window.window. Although the window object is assumed for many refer-
ences, you can use window as part of a reference to items in the same window or frame as the
script statement that makes that reference. You should not, however, use window as a part of
a reference involving items higher up in the hierarchy (top or parent).

Methods
alert(“message”)

Returns: Nothing.
Compatibility: WinIE3+, MacIE3+, NN2+, Moz1+, Safari1+

Tip

windowObject.status

405Chapter 16 ✦ Window and Frame Objects

An alert dialog box is a modal window that presents a message to the user with a single OK
button to dismiss the dialog box. As long as the alert dialog box is showing, no other applica-
tion or window can be made active. The user must dismiss the dialog box before proceeding
with any more work in the browser.

The single parameter to the alert() method can be a value of any data type, including repre-
sentations of some unusual data types whose values you don’t normally work with in
JavaScript (such as complete objects). This makes the alert dialog box a handy tool for
debugging JavaScript scripts. Anytime you want to monitor the value of an expression, use
that expression as the parameter to a temporary alert() method in your code. The script
proceeds to that point and then stops to show you the value. (See Chapter 45 on the CD-ROM
for more tips on debugging scripts.)

What is often disturbing to application designers is that all JavaScript-created modal dialog
boxes (via the alert(), confirm(), and prompt() methods) identify themselves as being
generated by JavaScript or the browser. The purpose of this identification is to act as a secu-
rity precaution against unscrupulous scripters who might try to spoof system or browser
alert dialog boxes, inviting a user to reveal passwords or other private information. These
identifying words cannot be overwritten or eliminated by your scripts. You can simulate a
modal dialog box window in a cross-browser fashion with regular browser windows, but it is
not as robust as a genuine modal window, which you can create in IE4+ via the
window.showModalDialog() method.

Because the alert() method is of a global nature (that is, no particular frame in a multiframe
environment derives any benefit from laying claim to the alert dialog box), a common prac-
tice is to omit all window object references from the statement that calls the method. Restrict
the use of alert dialog boxes in your HTML documents and site designs. The modality of the
windows is disruptive to the flow of a user’s navigation around your pages. Communicate
with users via forms or by writing to separate document window frames.

Example
The parameter for the example in Listing 16-20 is a concatenated string. It joins together two
fixed strings and the value of the browser’s navigator.appName property. Loading this docu-
ment causes the alert dialog box to appear, as shown in several configurations in Figure 16-8.
The JavaScript Alert: line cannot be deleted from the dialog box in earlier browsers, nor can
the title bar be changed in later browsers.

Listing 16-20: Displaying an Alert Dialog Box

<html>
<head>

<title>window.alert() Method</title>
</head>
<body>

<script type=”text/javascript”>
alert(“You are running the “ + navigator.appName + “ browser.”)
</script>

</body>
</html>

Related Items: window.confirm(), window.prompt() methods.

windowObject.alert()

406 Part III ✦ Document Objects Reference

Figure 16-8: Results of the alert() method in
Listing 16-20 in Internet Explorer and Netscape
Navigator.

back()
forward()

Returns: Nothing.
Compatibility: WinIE-, MacIE-, NN4+, Moz-, Safari-

The purpose of the window.back() and window.forward() methods in NN4 is to offer a
scripted version of the global back and forward navigation buttons, while allowing the his-
tory object to control navigation strictly within a particular window or frame — as it should.
These window methods did not catch on in IE (and the window object is out of the scope of
the W3C DOM Level 2), so you are better off staying with the history object’s methods for
navigating through browser history. For more information about version compatibility and
the back and forward navigation, see the history object in Chapter 17.

Related Items: history.back(), history.forward(), history.go() methods.

captureEvents(eventTypeList)
Returns: Nothing.
Compatibility: WinIE-, MacIE-, NN4, Moz-, Safari-

In Navigator 4, an event filters down from the window object and eventually reaches its
intended target. For example, if you click a button, the click event first reaches the window
object; then it goes to the document object; and eventually (in a split second) it reaches the
button, where an onclick event handler is ready to act on that click.

The NN4 “trickle-down” event propagation mechanism allows window, document, and layer
objects to intercept events and process them prior to reaching their intended targets (or pre-
venting them from reaching their destinations entirely). But for one of these outer containers
to grab an event, your script must instruct it to capture the type of event your application is
interested in preprocessing. If you want the window object to intercept all events of a particu-
lar type, use the window.captureEvents() method to turn that facility on.

windowObject.back()

407Chapter 16 ✦ Window and Frame Objects

NN6+ and W3C browsers have both a trickle-down and bubble-up event model combina-
tion. The syntax for using event capture in NN6+ is quite different from that in NN4. The
discussions of the captureEvents(), releaseEvents(), handleEvent(), and
routeEvent() methods of the window, document, and layer objects apply only to
Navigator 4. If your DHTML page design does not need to support NN4, you can skip these
discussions.

The window.captureEvents() method takes one or more event types as parameters. An
event type is a constant value built inside the Navigator 4 Event object. One event type exists
for every kind of event handler you see in all of the Navigator 4 document objects. The syntax
is the event object name (Event) and the event name in all uppercase letters. For example, if
you want the window to intercept all click events, the statement is

window.captureEvents(Event.CLICK);

For multiple events, add them as parameters, separated by the pipe (|) character:

window.captureEvents(Event.MOUSEDOWN | Event.KEYPRESS);

After an event type is captured by the window object, a function must be ready to deal with
the event. For example, perhaps the function looks through all Event.MOUSEDOWN events and
looks to see if the right mouse button was the one that triggered the event and what form ele-
ment (if any) is the intended target. The goal is to perhaps display a pop-up menu (as a sepa-
rate layer) for a right-click. If the click comes from the left mouse button, the event is routed
to its intended target.

To associate a function with a particular event type captured by a window object, assign a
function to the event. For example, to assign a custom doClickEvent() function to click
events captured by the window object, use the following statement:

window.onclick = doClickEvent;

Note that the function name is assigned only as a reference name (no quotes or parentheses),
not like an event handler within a tag. The function itself is like any function, but it has the
added benefit of automatically receiving an instance of the Event object as a parameter. To
turn off event capture for one or more event types, use the window.releaseEvent()
method.

Capturing events at the window, document, or layer level in NN4 does not always work the
way you might like. This is especially true if your page contains tables. For example, captur-
ing mouse events has no effect in the Windows version of NN4 unless the cursor is atop a
cell border. Event capture works most reliably when a scriptable object has an event handler
defined for it (even if it is an empty string) and the element is the target of the event (for
example, you are about to type into a text field). For all other elements, events may simply
not be captured at the document or window level.

Example
The page in Listing 16-21 is an exercise in capturing and releasing click events in the window
object. Whenever the window is capturing click events, the flash() function runs. In that
function, the event is examined so that only if the Control key is also being held down and the
name of the button starts with “button” does the document background color flash red. For
all click events (that is, those directed at objects on the page capable of their own onclick
event handlers), the click is processed with the routeEvent() method to make sure the tar-
get buttons execute their own onclick event handlers.

Note

Note

windowObject.captureEvents()

408 Part III ✦ Document Objects Reference

Listing 16-21: Capturing Click Events in the Window

<html>
<head>

<title>Window Event Capture</title>
<script type=”text/javascript”>
// function to run when window captures a click event
function flash(e) {

if (e.modifiers == Event.CONTROL_MASK &&
e.target.name.indexOf(“button”) == 0) {
document.bgColor = “red”;
setTimeout(“document.bgColor = ‘white’”, 500);

}
// let event continue to target
routeEvent(e);

}

// default setting to capture click events
window.captureEvents(Event.CLICK);
// assign flash() function to click events captured by window
window.onclick = flash;
</script>

</head>
<body bgcolor=”white”>

<form name=”buttons”>
Turn window click event capture on or off (Default is “On”)
<p><input name=”captureOn” type=”button” value=”Capture On”

onclick=”window.captureEvents(Event.CLICK)” /> <input
name=”captureOff” type=”button” value=”Capture Off”
onclick=”window.releaseEvents(Event.CLICK)” /></p>

<hr />
Ctrl+Click on a button to see if clicks are being captured by the
window (background color will flash red):

<input name=”button1” type=”button” value=”Informix”
onclick=”alert(‘You clicked on Informix.’)” />

<input name=”button2” type=”button” value=”Oracle”
onclick=”alert(‘You clicked on Oracle.’)” />

<input name=”button3” type=”button” value=”Sybase”
onclick=”alert(‘You clicked on Sybase.’)” />

</form>

</body>
</html>

When you try this page, also turn off window event capture. Now only the buttons’ onclick
event handlers execute, and the page does not flash red.

Related Items: window.disableExternalCapture(), window.enableExternalCapture(),
window.handleEvent(), window.releaseEvents(), window.routeEvent() methods.

clearInterval(intervalIDnumber)
Returns: Nothing.
Compatibility: WinIE4+, MacIE4+, NN4+, Moz1+, Safari1+

windowObject.captureEvents()

409Chapter 16 ✦ Window and Frame Objects

Use the window.clearInterval() method to turn off an interval loop action started with
the window.setInterval() method. The parameter is the ID number returned by the
setInterval() method. A common application for the JavaScript interval mechanism is ani-
mation of an object on a page. If you have multiple intervals running, each has its own ID
value in memory. You can turn off any interval by its ID value. As soon as an interval loop
stops, your script cannot resume that interval: It must start a new one, which generates a
new ID value.

Example
See Listings 16-36 and 16-37 for an example of how setInterval() and clearInterval()
are used together on a page.

Related Items: window.setInterval(), window.setTimeout(), window.clearTimeout()
methods.

clearTimeout(timeoutIDnumber)
Returns: Nothing.
Compatibility: WinIE3+, MacIE3+, NN2+, Moz1+, Safari1+

Use the window.clearTimeout() method in concert with the window.setTimeout()
method, as described later in this chapter, when you want your script to cancel a timer that
is waiting to run its expression. The parameter for this method is the ID number that the
window.setTimeout() method returns when the timer starts ticking. The clearTimeout()
method cancels the specified timeout. A good practice is to check your code for instances
where user action may negate the need for a running timer — and to stop that timer before it
goes off.

Example
The page in Listing 16-22 features one text field and two buttons (see Figure 16-9). One button
starts a countdown timer coded to last one minute (easily modifiable for other durations);
the other button interrupts the timer at any time while it is running. When the minute is up,
an alert dialog box lets you know.

Listing 16-22: A Countdown Timer

<html>
<head>

<title>Count Down Timer</title>
<script type=”text/javascript”>
var running = false;
var endTime = null;
var timerID = null;

function startTimer() {
running = true;
now = new Date();
now = now.getTime();
// change last multiple for the number of minutes
endTime = now + (1000 * 60 * 1);
showCountDown();

}

Continued

windowObject.clearTimeout()

410 Part III ✦ Document Objects Reference

Listing 16-22 (continued)

function showCountDown() {
var now = new Date();
now = now.getTime();
if (endTime - now <= 0) {

stopTimer();
alert(“Time is up. Put down your pencils.”);

} else {
var delta = new Date(endTime - now);
var theMin = delta.getMinutes();
var theSec = delta.getSeconds();
var theTime = theMin;
theTime += ((theSec < 10) ? “:0” : “:”) + theSec;
document.forms[0].timerDisplay.value = theTime;
if (running) {

timerID = setTimeout(“showCountDown()”,1000);
}

}
}

function stopTimer() {
clearTimeout(timerID);
running = false;
document.forms[0].timerDisplay.value = “0:00”;

}
</script>

</head>
<body>

<form>
<input type=”button” name=”startTime” value=”Start 1 min. Timer”
onclick=”startTimer()” /> <input type=”button” name=”clearTime”
value=”Clear Timer” onclick=”stopTimer()” />
<p><input type=”text” name=”timerDisplay” value=”” /></p>

</form>
</body>

</html>

Notice that the script establishes three variables with global scope in the window: running,
endTime, and timerID. These values are needed inside multiple functions, so they are initial-
ized outside of the functions.

In the startTimer() function, you switch the running flag on, meaning that the timer should
be going. Using some date functions (see Chapter 29), you extract the current time in millisec-
onds and add the number of milliseconds for the next minute (the extra multiplication by one
is the place where you can change the amount to the desired number of minutes). With the
end time stored in a global variable, the function now calls another function that compares
the current and end times and displays the difference in the text field.

Early in the showCountDown() function, check to see if the timer has wound down. If so, you
stop the timer and alert the user. Otherwise, the function continues to calculate the difference
between the two times and formats the time in mm:ss format. As long as the running flag is
set to true, the function sets the one-second timeout timer before repeating itself. To stop the
timer before it has run out (in the stopTimer() function), the most important step is to cancel
the timeout running inside the browser. The clearTimeout() method uses the global timerID
value to do that. Then the function turns off the running switch and zeros out the display.

windowObject.clearTimeout()

411Chapter 16 ✦ Window and Frame Objects

Figure 16-9: The countdown timer page as it displays the time remaining.

When you run the timer, you may occasionally notice that the time skips a second. It’s not
cheating. It just takes slightly more than one second to wait for the timeout and then finish
the calculations for the next second’s display. What you’re seeing is the display catching up
with the real time left.

Related Items: window.setTimeout() method.

close()
Returns: Nothing.
Compatibility: WinIE3+, MacIE3+, NN2+, Moz1+, Safari1+

The window.close() method closes the browser window referenced by the window object.
Most likely, you will use this method to close subwindows created from a main document
window. If the call to close the window comes from a window other than the new subwindow,
the original window object must maintain a record of the subwindow object. You accomplish
this by storing the value returned from the window.open() method in a global variable that
will be available to other objects later (for example, a variable not initialized inside a func-
tion). If, on the other hand, an object inside the new subwindow calls the window.close()
method, the window or self reference is sufficient.

Be sure to include a window as part of the reference to this method. Failure to do so may
cause JavaScript to regard the statement as a document.close() method, which has differ-
ent behavior (see Chapter 18). Only the window.close() method can close the window via a
script. Closing a window, of course, forces the window to trigger an onunload event handler
before the window disappears from view; but after you’ve initiated the window.close()
method, you cannot stop it from completing its task. Moreover, onunload event handlers that
attempt to execute time-consuming processes (such as submitting a form in the closing win-
dow) may not complete because the window can easily close before the process completes —
a behavior that has no workaround (with the exception of the onbeforeunload event han-
dler in IE4+).

windowObject.close()

412 Part III ✦ Document Objects Reference

While I’m on the subject of closing windows, a special case exists when a subwindow tries to
close the main window (via a statement such as self.opener.close()) when the main win-
dow has more than one entry in its session history. As a safety precaution against scripts
closing windows they did not create, modern browsers ask the user whether he or she wants
the main window to close (via a browser-generated dialog box). This security precaution can-
not be overridden except in NN4+/Moz via a signed script when the user grants permission to
control the browser (see Chapter 46 on the CD-ROM).

Example
See Listing 16-4 (for the window.closed property), which provides a cross-platform example
of applying the window.close() method across multiple windows.

Related Items: window.open(), document.close() methods.

confirm(“message”)
Returns: Boolean.
Compatibility: WinIE3+, MacIE3+, NN2+, Moz1+, Safari1+

A confirm dialog box presents a message in a modal dialog box along with OK and Cancel but-
tons. Such a dialog box can be used to ask a question of the user, usually prior to a script per-
forming actions that will not be undoable. Querying a user about proceeding with typical Web
navigation in response to user interaction on a form element is generally a disruptive waste
of the user’s time and attention. But for operations that may reveal a user’s identity or send
form data to a server, a JavaScript confirm dialog box may make a great deal of sense. Users
can also accidentally click buttons, so you should provide avenues for backing out of an oper-
ation before it executes.

Because this dialog box returns a Boolean value (OK = true; Cancel = false), you can use
this method as a comparison expression or as an assignment expression. In a comparison
expression, you nest the method within any other statement where a Boolean value is
required. For example:

if (confirm(“Are you sure?”)) {
alert(“OK”);

} else {
alert(“Not OK”);

}

Here, the returned value of the confirm dialog box provides the desired Boolean value type
for the if...else construction (see Chapter 31).

This method can also appear on the right side of an assignment expression, as in

var adult = confirm(“You certify that you are over 18 years old?”);
if (adult) {

//statements for adults
} else {

//statements for children
}

You cannot specify other alert icons or labels for the two buttons in JavaScript confirm dialog
box windows.

The example in Listing 16-23 shows the user interface part of how you can use a confirm dia-
log box to query a user before clearing a table full of user-entered data. The line in the title
bar, as shown in Figure 16-10, or the “JavaScript Confirm” legend in earlier browser versions
cannot be removed from the dialog box.

windowObject.close()

413Chapter 16 ✦ Window and Frame Objects

Listing 16-23: The Confirm Dialog Box

<html>
<head>

<title>window.confirm() Method</title>
<script type=”text/javascript”>
function clearTable() {

if (confirm(“Are you sure you want to empty the table?”)) {
alert(“Emptying the table...”); // for demo purposes
//statements that actually empty the fields

}
}
</script>

</head>
<body>

<form>
<!-- other statements that display and populate a large table -->
<input type=”button” name=”clear” value=”Reset Table”
onclick=”clearTable()” />

</form>
</body>

</html>

Figure 16-10: A JavaScript confirm dialog
box in WinIE.

Related Items: window.alert(), window.prompt(), form.submit() methods.

createPopup()
Returns: Pop-up object reference.
Compatibility: WinIE5.5+, MacIE-, NN-, Moz-, Safari-

An IE pop-up window is a chrome-less rectangular space that overlaps the current window.
Unlike the dialog boxes generated by the showModalDialog() and showModelessDialog()
methods, the pop-up window’s entire content must be explicitly controlled by script. That
also goes for the size and location of the window. Generating the window via the
createPopup() method simply creates the object in memory without displaying it. You can
then use the reference to the pop-up window that is returned by the method to position the
window, populate its content, and make it visible. See details in the description of the popup
object later in this chapter.

Example
See Listing 16-49 later in this chapter for an example of the createPopup() method.

Related Items: popup object.

windowObject.createPopup()

414 Part III ✦ Document Objects Reference

execScript(“exprList”[, language])
Returns: Nothing.
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-

The IE-specific window.execScript() method executes one or more script statements that
are passed as string expressions. The first parameter is a string version of one or more script
statements (multiple statements must be separated by semicolons). The second, optional
parameter is the language interpreter the browser should use to execute the script state-
ment. Acceptable values for the language are JavaScript, JScript, VBS, and VBScript. The
default value is JScript, so you can omit the second parameter when supplying expressions
in JavaScript.

Unlike the JavaScript core language eval() function (which also executes string versions of
JavaScript statements), the execScript() method returns no values. Even so, the method
operates within the global variable space of the window holding the current document. For
example, if a document’s script declares a global variable as follows

var myVar;

the execScript() method can read or write to that variable:

window.execScript(“myVar = 10; myVar += 5”);

After this statement runs, the global variable myVar has a value of 15.

Example
Use The Evaluator (Chapter 13) to experiment with the execScript() method. The
Evaluator has predeclared global variables for the lowercase letters a through z. Enter each
of the following statements into the top text box and observe the results for each.

a

When first loaded, the variable is declared but assigned no value, so it is undefined.

window.execScript(“a = 5”)

The method returns no value, so the mechanism inside The Evaluator says that the statement
is undefined.

a

The variable is now 5.

window.execScript(“b = a * 50”)
b

The b global variable has a value of 250. Continue exploring with additional script statements.
Use semicolons to separate multiple statements within the string parameter.

Related Items: eval() function.

find([“searchString” [, matchCaseBoolean,
searchUpBoolean]])

Returns: Boolean value for nondialog searches.
Compatibility: WinIE-, MacIE-, NN4+, Moz1+, Safari-

The window.find() method introduced in NN4 mimics the powers of the browser’s Find dia-
log box, accessible from the Find button in the toolbar. This method was deactivated in NN6
but reactivated in NN7/Moz1.

windowObject.execScript()

415Chapter 16 ✦ Window and Frame Objects

If you specify no parameters, the browser’s Find dialog box appears, just as if the user had
clicked the Find button in the toolbar. With no parameters, this function does not return a
value.

You can specify a search string as a parameter to the function. The search is based on simple
string matching and is not in any way connected with the regular expression kind of search
(see Chapter 42 on the CD-ROM). If the search finds a match, the browser scrolls to that
matching word and highlights the word, just as if using the browser’s own Find dialog box.
The function also returns a Boolean true after a match is found. If no match is found in the
document or no more matches occur in the current search direction (the default direction is
from top to bottom), the function returns false.

Two optional Boolean parameters to the scripted find action let you specify whether the
search should be case-sensitive and whether the search direction should be upward from the
bottom of the document. These choices are identical to the ones that appear in the NN4+’s
Find dialog box. Default behavior is case-insensitive and searches from top to bottom.

IE4+ also has a text search facility, but it is implemented in an entirely different way (using the
TextRange object described in Chapter 35). The visual behavior also differs in that it does
not highlight and scroll to a matching string in the text.

Example
A simple call to the window.find() method looks as follows:

var success = window.find(“contract”);

And if you want the search to be case-sensitive, add at least one of the two optional
parameters:

success = window.find(matchString,caseSensitive,backward);

Because this method works only in NN4, refer to discussions of the TextRange and Range
objects in Chapter 35 on the CD-ROM for more modern implementations of body text
searching.

Related Items: TextRange, Range objects (Chapter 35).

forward()
(See window.back())

handleEvent(event)
Returns: Nothing.
Compatibility: WinIE-, MacIE-, NN4, Moz-, Safari-

When you explicitly capture events in the NN4 window, document, or layer object (by invok-
ing the captureEvents() method for that object), you can control where the events go after
their initial capture. To let an event continue to its original target (for example, a button that
was clicked by a user), you use the routeEvent() method. But if you want to redirect an
event (or class of events) to a particular event handler elsewhere in the document, use the
handleEvent() method.

Every NN4 object that has event handlers associated with it also has a handleEvent()
method. Thus, if you are capturing click events in a window, you can redirect the events to,
say, a particular button or link on the page because both of those objects know what to do
with click events. Consider the following code excerpt:

<script type=”text/javaScript”>

windowObject.handleEvent()

416 Part III ✦ Document Objects Reference

// function to run when window captures a click event
function doClicks(evt) {

// send all clicks to the first link in the document
document.links[0].handleEvent(evt);

}
// set window to capture click events
window.captureEvents(Event.CLICK);
// assign doClick() function to click events captured by window
window.onclick = doClicks;
</script>

The window is set up to capture all click events and invoke the doClicks() function each
time the user clicks a clickable item in the window. In the doClicks() function is a single
statement that instructs the first link in the document to handle the click event being passed
as a parameter. The link must have an onclick event handler defined for this to be meaning-
ful. Because an event object is passed along automatically, the link’s event handler can exam-
ine event properties (for example, location of the click) and perhaps alter some of the link’s
properties before letting it perform its linking task. The preceding example is really showing
how to use handleEvent() with a link object, rather than a window object. There is little
opportunity for other objects to capture events that normally go to the window, but this
method is part of every event-aware object in NN4.

The corresponding method in the W3C event model’s capture mechanism is
dispatchEvent(), and the IE5+ equivalent is fireEvent().

See Chapter 25 for details and in-depth examples of working with event objects.

Related Items: window.captureEvents(), window.releaseEvents(),
window.routeEvent() methods; event object.

home()
Returns: Nothing.
Compatibility: WinIE-, MacIE-, NN4+, Moz-, Safari-

Like many of the window methods introduced in Navigator 4, the window.home() method
provides an NN-specific scripted way of replicating the action of a toolbar button: the Home
button. The action navigates the browser to whatever URL is set in the browser preferences
for home page location. You cannot control the default home page of a visitor’s browser.

Related Items: window.back(), window.forward() methods; window.toolbar property.

moveBy(deltaX,deltaY)
moveTo(x,y)

Returns: Nothing.
Compatibility: WinIE4+, MacIE4+, NN4+, Moz1+, Safari1+

As of version 4 browsers, JavaScript can adjust the location of a browser window on the
screen (no longer available in Mozilla-based browsers, however). This applies to the main
window or any subwindow generated by script. Netscape regards the possibility of a window
moved out of screen view as a potential security hole, so signed scripts are needed in NN4+
to move a window off screen.

You can move a window to an absolute position on the screen or adjust it along the horizon-
tal and/or vertical axis by any number of pixels, irrespective of the absolute pixel position.

windowObject.handleEvent()

417Chapter 16 ✦ Window and Frame Objects

The coordinate space for the x (horizontal) and y (vertical) position is the entire screen, with
the top-left corner representing 0,0. The point of the window you set with the moveBy() and
moveTo() methods is the very top-left corner of the outer edge of the browser window.
Therefore, when you move the window to point 0,0, that sets the window flush with the top-
left corner of the screen. This may not be the equivalent of a truly maximized window for all
browsers and operating systems, however, because a maximized window’s coordinates may
be negative by a handful of pixels.

If you try to adjust the position of the window in NN4 such that any edge falls beyond the
screen area, the window remains at the edge of the screen — unless you are using a signed
script and have the user’s permission to adjust the window partially or completely off screen.
Moving the only visible browser window entirely off screen is dangerous because the user
has no way to get it back into view without quitting and relaunching the browser.

The difference between the moveTo() and moveBy() methods is that one is an absolute
move, while the other is relative with respect to the current window position. Parameters you
specify for moveTo() are the precise horizontal and vertical pixel counts on the screen where
you want the upper-left corner of the window to appear. In contrast, the parameters for
moveBy() indicate how far to adjust the window location in either direction. If you want to
move the window 25 pixels to the right, you must still include both parameters, but the y
value will be zero:

window.moveBy(25,0);

To move to the left, the first parameter must be a negative number.

Example
Several examples of using the window.moveTo() and window.moveBy() methods are shown
in Listing 16-24. The page presents four buttons, each of which performs a different kind of
browser window movement.

Listing 16-24: Window Boogie

<html>
<head>

<title>Window Gymnastics</title>
<script type=”text/javascript”>
var isNav4 = ((navigator.appName == “Netscape”) &&

(parseInt(navigator.appVersion) >= 4));

// wait in onload for page to load and settle in IE
function init() {

// fill missing IE properties
if (!window.outerWidth) {

window.outerWidth = document.body.clientWidth;
window.outerHeight = document.body.clientHeight + 30;

}
// fill missing IE4 properties
if (!screen.availWidth) {

screen.availWidth = 640;
screen.availHeight = 480;

}
}

Continued

windowObject.moveBy()

418 Part III ✦ Document Objects Reference

Listing 16-24 (continued)

// function to run when window captures a click event
function moveOffScreen() {

// branch for NN security
if (isNav4) {

netscape.security.PrivilegeManager.enablePrivilege(
“UniversalBrowserWrite”);

}
var maxX = screen.width;
var maxY = screen.height;
window.moveTo(maxX+1, maxY+1);
setTimeout(“window.moveTo(0,0)”,500);
if (isNav4) {

netscape.security.PrivilegeManager.disablePrivilege(
“UniversalBrowserWrite”);

}
}

// moves window in a circular motion
function revolve() {

var winX = (screen.availWidth - window.outerWidth) / 2;
var winY = 50;
window.resizeTo(400,300);
window.moveTo(winX, winY);

for (var i = 1; i < 36; i++) {
winX += Math.cos(i * (Math.PI/18)) * 5;
winY += Math.sin(i * (Math.PI/18)) * 5;
window.moveTo(winX, winY);

}
}

// moves window in a horizontal zig-zag pattern
function zigzag() {

window.resizeTo(400,300);
window.moveTo(0,80);
var incrementX = 2;
var incrementY = 2;
var floor = screen.availHeight - window.outerHeight;
var rightEdge = screen.availWidth - window.outerWidth;
for (var i = 0; i < rightEdge; i += 2) {

window.moveBy(incrementX, incrementY);
if (i%60 == 0) {

incrementY = -incrementY;
}

}
}

// resizes window to occupy all available screen real estate
function maximize() {

window.moveTo(0,0);
window.resizeTo(screen.availWidth, screen.availHeight);

}
</script>

</head>

windowObject.moveBy()

419Chapter 16 ✦ Window and Frame Objects

<body onload=”init()”>
<form name=”buttons”>

Window Gymnastics

<input name=”offscreen” type=”button”
value=”Disappear a Second” onclick=”moveOffScreen()” />

<input name=”circles” type=”button” value=”Circular Motion”
onclick=”revolve()” />

<input name=”bouncer” type=”button” value=”Zig Zag”
onclick=”zigzag()” />

<input name=”expander” type=”button” value=”Maximize”
onclick=”maximize()” />

</form>

</body>
</html>

To run successfully in NN (prior to NN7), the first button requires that you have codebase
principals turned on (see Chapter 46 on the CD-ROM) to take advantage of what would nor-
mally be a signed script. The moveOffScreen() function momentarily moves the window
entirely out of view. Notice how the script determines the size of the screen before deciding
where to move the window. After the journey off screen, the window comes back into view at
the upper-left corner of the screen.

If using the Web sometimes seems like going around in circles, then the second function,
revolve(), should feel just right. After reducing the size of the window and positioning it
near the top center of the screen, the script uses a bit of math to position the window along
36 places around a perfect circle (at 10-degree increments). This is an example of how to con-
trol a window’s position dynamically based on math calculations. IE complicates the job a bit
by not providing properties that reveal the outside dimensions of the browser window.

To demonstrate the moveBy() method, the third function, zigzag(), uses a for loop to
increment the coordinate points to make the window travel in a sawtooth pattern across the
screen. The x coordinate continues to increment linearly until the window is at the edge of
the screen (also calculated on the fly to accommodate any size monitor). The y coordinate
must increase and decrease as that parameter changes direction at various times across the
screen.

In the fourth function, you see some practical code (finally) that demonstrates how best to
simulate maximizing the browser window to fill the entire available screen space on the visi-
tor’s monitor.

Related Items: window.outerHeight, window.outerWidth properties; window.resizeBy(),
window.resizeTo() methods.

navigate(“URL”)
Returns: Nothing.
Compatibility: WinIE3+, MacIE3+, NN-, Moz-, Safari-

The window.navigate() method is an IE-specific method that lets you load a new doc-
ument into a window or frame. This method’s action is the same as assigning a URL to the
location.href property — a property that is available on all scriptable browsers. If your
audience is entirely IE-based, this method is safe. Otherwise, I recommend the location.href
property as the best navigation approach.

windowObject.navigate()

420 Part III ✦ Document Objects Reference

Example
Supply any valid URL as the parameter to the method, as in

window.navigate(“http://www.dannyg.com”);

Related Items: location object.

open(“URL”, “windowName” [,
“windowFeatures”][,replaceFlag])

Returns: A window object representing the newly created window; null if method fails.
Compatibility: WinIE3+, MacIE3+, NN2+, Moz1+, Safari1+

With the window.open() method, a script provides a Web site designer with an immense
range of options for the way a second or third Web browser window looks on the user’s com-
puter screen. Moreover, most of this control can work with all JavaScript-enabled browsers
without the need for signed scripts. Because the interface elements of a new window are eas-
ier to envision, I cover those aspects of the window.open() method parameters first.

Setting new window features
The optional windowFeatures parameter is one string, consisting of a comma-separated list
of assignment expressions (behaving something like HTML tag attributes). Important: For the
best browser compatibility, do not put spaces after the commas. If you omit the third parame-
ter, JavaScript creates the same type of new window you get from the New Web Browser
menu choice in the File menu. But you can control which window elements appear in the new
window with the third parameter. Remember this important rule: If you specify even one of
the method’s original set of third parameter values, all other features are turned off unless
the parameters specify the features to be switched on. Table 16-3 lists the attributes that you
can control for a newly created window in all browsers. Except where noted, all Boolean val-
ues default to yes if you do not specify the third parameter.

Table 16-3: window.open() Method Attributes Controllable via Script

Attribute Browsers Description

alwaysLowered3 NN4+ (Boolean) Always behind other browser windows

alwaysRaised3 NN4+ (Boolean) Always in front of other browser windows

channelMode IE4+ (Boolean) Theater mode with channel band (default is no)

copyhistory NN2+, IE3+ (Boolean) Duplicates Go menu history for new window

dependent NN4+ (Boolean) Subwindow closes if the opener window closes

directories NN2+, IE3+ (Boolean) “What’s New” and other buttons in the row

fullscreen IE4+ (Boolean) No title bar or menus (default is no)

height NN2+, IE3+ (Integer) Content region height in pixels

hotkeys NN4+ (Boolean) If true, disables menu shortcuts (except Quit and
Security Info) when menu bar is turned off

innerHeight4 NN4+ (Integer) Content region height; same as old height property

innerWidth4 NN4+ (Integer) Content region width; same as old width property

left NN6+, IE4+ (Integer) Horizontal position of top-left corner on screen

location NN2+, IE3+ (Boolean) Field displaying the current URL

menubar1 NN2+, IE3+ (Boolean) Menu bar at top of window

outerHeight4 NN4+ (Integer) Visible window height

windowObject.navigate()

421Chapter 16 ✦ Window and Frame Objects

Attribute Browsers Description

outerWidth4 NN4+ (Integer) Visible window width

resizable2 NN2+, IE3+ (Boolean) Interface elements that allow resizing by dragging

screenX4 NN4+ (Integer) Horizontal position of top-left corner on screen

screenY4 NN4+ (Integer) Vertical position of top-left corner on screen

scrollbars NN2+, IE3+ (Boolean) Displays scrollbars if document is larger than window

status NN2+, IE3+ (Boolean) Status bar at bottom of window

titlebar3 NN4+ (Boolean) Title bar and all other border elements

toolbar NN2+, IE3+ (Boolean) “Back,” “Forward,” and other buttons in the row

top NN6+, IE4+ (Integer) Horizontal position of top-left corner on screen

width NN2+, IE3+ (Integer) Content region width in pixels

z-lock3 NN4+ (Boolean) Window layer is fixed below browser windows

1 Not on Macintosh because the menu bar is not in the browser window; when off in MacNN4, displays an
abbreviated Mac menu bar.

2 Macintosh windows are always resizable.

3 Requires a signed script.

4 Requires a signed script to size or position a window beyond safe threshold.

Boolean values are handled a bit differently than you might expect. The value for true can
be either yes, 1, or just the feature name by itself; for false, use a value of no or 0. If you
omit any Boolean attributes, they are rendered as false. Therefore, if you want to create a
new window that shows only the toolbar and status bar and is resizable, the method looks
like this:

window.open(“newURL”,”NewWindow”, “toolbar,status,resizable”);

A new window that does not specify the height and width is set to the default size of the
browser window that the browser creates from a File menu’s New Web Browser command. In
other words, a new window does not automatically inherit the size of the window making the
window.open() method call. A new window created via a script is positioned somewhat arbi-
trarily, unless you use the window positioning attributes available in NN4+ and IE4+. Notice
that the position attributes are different for each browser (screenX and screenY for NN;
left and top for IE). You can include both sets of attributes in a single parameter string
because the browser ignores attributes it doesn’t recognize.

Invoking window.open() via a window’s onload and onunload event handlers has led to
severe abuse in the form of unwanted pop-up advertising windows. Browsers that include
“pop-up blockers” (such as Mozilla-based browsers) prevent the method from being invoked
by these event handlers. With more browsers and users employing pop-up blockers every
day, you should not even think about blasting pop-up ads to Web surfers.

Netscape-only signed scripts
Many NN-specific attributes are deemed to be security risks and thus require signed scripts
and the user’s permission before they are recognized. If the user fails to grant permission, the
secure parameter is ignored.

A couple of these attributes have different behaviors on different operating system plat-
forms, due to the way the systems manage their application windows. For example, the
alwaysLowered, alwaysRaised, and z-locked styles can exist in layers that range behind

Note

windowObject.open()

422 Part III ✦ Document Objects Reference

Navigator’s own windows in the Windows platform; on the Mac, however, such windows are
confined to the levels occupied by Navigator. The difference is that Windows allows windows
from multiple applications to interleave each other, while the Mac keeps each application’s
windows in contiguous layers.

To apply signed scripts to opening a new window with the secure window features, you must
enable UniversalBrowserWrite privileges as you do for other signed scripts (see Chapter
46 on the CD-ROM). A code fragment that generates an alwaysRaised style window follows:

<script type=”text/javaScript” archive=”myJar.jar” id=”1”>
function newRaisedWindow() {

netscape.security.PrivilegeManager.enablePrivilege(“UniversalBrowserWrite”);
var newWindow = window.open(“”,””,”height=100,width=300,alwaysRaised=yes”);
netscape.security.PrivilegeManager.disablePrivilege(“UniversalBrowserWrite”);
var newContent = “<html><body> “On top of spaghetti!””;
newContent += “<form><center><input type=’button’ value=’OK’”;
newContent += “onclick=’self.close()’></center></form></body></html>”;
newWindow.document.write(newContent);
newWindow.document.close();

}
</script>

You can experiment with the look and behavior of new windows with any combination of
attributes with the help of the script in Listing 16-25. This page presents a table of all NN-spe-
cific new window Boolean attributes and creates a new 300 × 300 pixel window based on your
choices. This page assumes that if you are using NN4, you have codebase principals turned
on for signed scripts (see Chapter 46 on the CD-ROM).

Be careful with turning off the title bar and hotkeys. With the title bar off, the content appears
to float in space, because absolutely no borders are displayed. With hotkeys still turned on,
you can use Ctrl+W to close this borderless window (except on the Mac, for which the
hotkeys are always disabled with the title bar off). This is how you can turn a computer into a
kiosk by sizing a window to the screen’s dimensions and setting the window options to
“titlebar=no,hotkeys=no,alwaysRaised=yes”.

Listing 16-25: New Window Laboratory

<html>
<head>

<title>window.open() Options</title>
<script type=”text/javascript”>
var isNav4 = (navigator.appName == “Netscape” &&

navigator.appVersion.charAt(0) >= 4) ? true : false;

function makeNewWind(form) {
if (isNav4) {

netscape.security.PrivilegeManager.enablePrivilege(
“UniversalBrowserWrite”);

}
var attr = “width=300,height=300”;
for (var i = 0; i < form.elements.length; i++) {

if (form.elements[i].type == “checkbox”) {
attr += “,” + form.elements[i].name + “=”;
attr += (form.elements[i].checked) ? “yes” : “no”;

}
}
var newWind = window.open(“bofright.htm”,”subwindow”,attr);

windowObject.open()

423Chapter 16 ✦ Window and Frame Objects

if (isNav4) {
netscape.security.PrivilegeManager.revertPrivilege(“CanvasAccess”);

}
}
</script>

</head>
<body>

Select new window options:
<form>

<table border=”2”>
<tr>

<td colspan=”2” bgcolor=”yellow” align=”middle”>
All Browsers Features:</td>

</tr>
<tr>

<td><input type=”checkbox” name=”toolbar” />toolbar</td>
<td><input type=”checkbox” name=”location” />location</td>

</tr>
<tr>

<td><input type=”checkbox” name=”directories” />directories</td>
<td><input type=”checkbox” name=”status” />status</td>

</tr>
<tr>

<td><input type=”checkbox” name=”menubar” />menubar</td>
<td><input type=”checkbox” name=”scrollbars” />scrollbars</td>

</tr>
<tr>

<td><input type=”checkbox” name=”resizable” />resizable</td>
<td><input type=”checkbox” name=”copyhistory” />copyhistory</td>

</tr>
<tr>

<td colspan=”2” bgcolor=”yellow” align=”middle”>
Communicator Features:</td>

</tr>
<tr>

<td><input type=”checkbox” name=”alwaysLowered” />
alwaysLowered</td>
<td><input type=”checkbox” name=”alwaysRaised” />
alwaysRaised</td>

</tr>
<tr>

<td><input type=”checkbox” name=”dependent” />dependent</td>
<td><input type=”checkbox” name=”hotkeys” checked=”checked” />
hotkeys</td>

</tr>
<tr>

<td><input type=”checkbox” name=”titlebar” checked=”checked” />
titlebar</td>
<td><input type=”checkbox” name=”z-lock” />z-lock</td>

</tr>
<tr>

<td colspan=”2” align=”middle”><input type=”button”
name=”forAll” value=”Make New Window”
onclick=”makeNewWind(this.form)” /></td>

</tr>
</table>

</form>

</body>
</html>

windowObject.open()

424 Part III ✦ Document Objects Reference

Specifying a window name
Getting back to the other parameters of window.open(), the second parameter is the name
for the new window. Don’t confuse this parameter with the document’s title, which would
normally be set by whatever HTML text determines the content of the window. A window
name must be the same style of one-word identifier that you use for other object names and
variables. This name is also an entirely different entity than the window object that the
open() method returns. You don’t use the name in your scripts. At most, the name can be
used for target attributes of links and forms.

Loading content into a new window
A script generally populates a window with one of two kinds of information:

✦ An existing HTML document whose URL is known beforehand

✦ An HTML page created on the fly

To create a new window that displays an existing HTML document, supply the URL as the
first parameter of the window.open() method. If your page is having difficulty loading a URL
into a new page, try specifying the complete URL of the target document (instead of just the
filename).

Leaving the first parameter as an empty string forces the window to open with a blank docu-
ment, ready to have HTML written to it by your script (or loaded separately by another state-
ment that sets that window’s location to a specific URL). If you plan to write the content of
the window on the fly, assemble your HTML content as one long string value and then use the
document.write() method to post that content to the new window. If you plan to append no
further writing to the page, also include a document.close() method at the end to tell the
browser that you’re finished with the layout (so that the Layout:Complete or Done message
appears in the status bar, if your new window has one).

A call to the window.open() method returns a reference to the new window’s object if the
window opens successfully. This value is vitally important if your script needs to address ele-
ments of that new window (such as when writing to its document).

To allow other functions in your script to reference the subwindow, you should assign the
result of a window.open() method to a global variable. Before writing to the new window the
first time, test the variable to make sure that it is not a null value — the window may have
failed to open because of low memory, for instance. If everything is okay, you can use that
variable as the beginning of a reference to any property or object within the new window. For
example:

var newWindow
...
function createNewWindow() {

newWindow = window.open(“”,””);
if (newWindow != null) {

newWindow.document.write(“<html><head><title>Hi!</title></head>”);
}

}

That global variable reference continues to be available for another function that perhaps
closes the subwindow (via the close() method).

When scripts in the subwindow need to communicate with objects and scripts in the originat-
ing window, you must make sure that the subwindow has an opener property if the level of
JavaScript in the visitor’s browser doesn’t automatically supply one. See the discussion about
the window.opener property earlier in this chapter.

windowObject.open()

425Chapter 16 ✦ Window and Frame Objects

Invoking multiple window.open() methods with the same window name parameter (the sec-
ond parameter) does not create additional copies of that window in Netscape browsers
(although it does in Internet Explorer). JavaScript prevents you from creating two windows
with the same name. Also be aware that a window.open() method does not bring an existing
window of that name to the front of the window layers: Use window.focus() for that.

Internet Explorer idiosyncracies
Creating subwindows in IE can be complicated at times by undesirable behavior by the
browser. One of the most common problems occurs when you attempt to use document
.write() to put content into a newly created window. IE, including some of the latest ver-
sions, fails to complete the window opening job before the script statement that uses
document.write() executes. This causes a script error because the reference to the sub-
window is not yet valid. To work around this, you should put the HTML assembly and
document.write() statements in a separate function that gets invoked via a setTimeout()
method after the window is created. You can see an example of this in Listing 16-26.

Another problem that affects IE is the occasional security violation (“access denied”) warning
when a script attempts to access a subwindow. This problem goes away when the page that
includes the script for opening and accessing the subwindow is served from an http server,
rather than accessed from a local hard disk.

Example
The page rendered by Listing 16-26 displays a single button that generates a new window of a
specific size that has only the status bar turned on. The script here shows all the elements
necessary to create a new window that has all the right stuff on most platforms. The new win-
dow object reference is assigned to a global variable, newWindow. Before a new window is
generated, the script looks to see if the window has never been generated before (in which
case newWindow would be null) or, for newer browsers, the window is closed. If either condi-
tion is true, the window is created with the open() method. Otherwise, the existing window
is brought forward with the focus() method (NN3+ and IE4+).

Due to the timing problem that afflicts all IE generations, the HTML assembly and writing to
the new window is separated into its own function that is invoked after a 50-millisecond delay
(other browsers go along for the ride even if they could accommodate the assembly and
writing without the delay). To build the string that is eventually written to the document, I
use the += (add-by-value) operator, which appends the string on the right side of the operator
to the string stored in the variable on the left side. In this example, the new window is handed
an <h1>-level line of text to display.

Listing 16-26: Creating a New Window

<html>
<head>

<title>New Window</title>
<script type=”text/javascript”>
var newWindow;

function makeNewWindow() {
if (!newWindow || newWindow.closed) {

newWindow = window.open(“”,””,”status,height=200,width=300”);
// force small delay for IE to catch up
setTimeout(“writeToWindow()”, 50);

Continued

windowObject.open()

426 Part III ✦ Document Objects Reference

Listing 16-26 (continued)

} else {
// window’s already open; bring to front
newWindow.focus();

}
}

function writeToWindow() {
// assemble content for new window
var newContent = “<html><head><title>One Sub Window<\/title><\/head>”;
newContent += “<body><h1>This window is brand new.<\/h1>”;
newContent += “<\/body><\/html>”;
// write HTML to new window document
newWindow.document.write(newContent);
newWindow.document.close(); // close layout stream

}
</script>

</head>
<body>

<form>
<input type=”button” name=”newOne” value=”Create New Window”
onclick=”makeNewWindow()” />

</form>
</body>

</html>

Related Items: window.close(), window.blur(), window.focus() methods;
window.closed property.

print()
Returns: Nothing.
Compatibility: WinIE5+, MacIE5+, NN4+, Moz1+, Safari-

The print() method provides a scripted way of sending the window or a frame from a frame-
set to the printer. In all cases, the Print dialog box appears for the user to make the typical
printer choices when printing manually. This prevents a rogue print() command from tying
up a printer without the user’s permission.

The precise behavior of the print() method varies a bit with the ways different browsers
(not to mention operating systems) handle printing. In NN4+ (except for the Windows OS),
you can print all frames of a frameset in one print() command when it is invoked for the
framesetting (parent) document. NN4 for Windows, however, does not print the entire frame-
set at once. You can write a script that iterates through all frames and prints them with
delays to let the content be sent to the print spooler:

function printFrames(n) {
parent.frames[n++].print();
if (n < parent.frames.length) {

setTimeout(“printFrames(“ + n + “)”,5000);
}

}

Invoke this function as printFrames(0), and the function does the rest.

windowObject.open()

427Chapter 16 ✦ Window and Frame Objects

In IE5+, the print dialog box gives the user the choice of printing just one frame or all of the
frames. Make sure that the print() method is invoked for the desired frame when you want
only that frame to print. The browser defaults to printing just that frame.

WinIE5 introduced some print-specific event handlers that are triggered by scripted printing
as well as manual printing. The events begin to fire after the user has accepted the Print dia-
log box. An onbeforeprint event handler can be used to show content that might be hidden
from view but should appear in the printout. After the content has been sent to the print
spooler, the onafterprint event can restore the page.

Example
Listing 16-27 is a frameset that loads Listing 16-28 into the top frame and a copy of the Bill of
Rights into the bottom frame.

Listing 16-27: Print Example Frameset

<html>
<head>

<title>window.print() method</title>
</head>
<frameset rows=”25%,75%”>

<frame name=”controls” src=”lst16-28.htm” />
<frame name=”display” src=”bofright.htm” />

</frameset>
</html>

Two buttons in the top control panel (see Listing 16-28) let you print the whole frameset (in
those browsers and OSes that support it) or just the lower frame. To print the entire frame-
set, the reference includes the parent window; to print the lower frame, the reference is
directed at the parent.display frame.

Listing 16-28: Printing Control

<html>
<head>

<title>Print()</title>
</head>
<body>

<form>
<input type=”button” name=”printWhole” value=”Print Entire Frameset”
onclick=”parent.print()” />
<p><input type=”button” name=”printFrame”

value=”Print Bottom Frame Only”
onclick=”parent.display.print()” /></p>

</form>
</body>

</html>

windowObject.print()

428 Part III ✦ Document Objects Reference

If you don’t like some facet of the printed output, blame the browser’s print engine, and not
JavaScript. The print() method merely invokes the browser’s regular printing routines.

Related Items: window.back(), window.forward(), window.home(), window.find()
methods.

prompt(“message”, “defaultReply”)
Returns: String of text entered by user or null.
Compatibility: WinIE3+, MacIE3+, NN2+, Moz1+, Safari1+

The third kind of dialog box that JavaScript can display includes a message from the script
author, a field for user entry, and two buttons (OK and Cancel, or Yes and No on Mac versions
of Navigator 2 and 3). The script writer can supply a prewritten answer so that a user con-
fronted with a prompt dialog box can click OK (or press Enter) to accept that answer without
further typing. Supplying both parameters to the window.prompt() method is important.
Even if you don’t want to supply a default answer, enter an empty string as the second
parameter:

prompt(“What is your postal code?”,””);

If you omit the second parameter, JavaScript inserts the string undefined into the dialog
box’s field. This string is disconcerting to most Web page visitors.

The value returned by this method is a string in the dialog box’s field when the user clicks the
OK button. If you’re asking the user to enter a number, remember that the value returned by
this method is a string. You may need to perform data-type conversion with the parseInt()
or parseFloat() functions (see Chapter 34) to use the returned values in math calculations.

When the user clicks the prompt dialog box’s OK button without entering any text into a
blank field, the returned value is an empty string (“”). Clicking on the Cancel button, how-
ever, makes the method return a null value. Therefore, the scripter must test for the type of
returned value to make sure that the user entered some data that can be processed later in
the script, as in

var entry = prompt(“Enter a number between 1 and 10:”,””);
if (entry != null) {

//statements to execute with the value
}

This script excerpt assigns the results of the prompt dialog box to a variable and executes
the nested statements if the returned value of the dialog box is not null (if the user clicked
the OK button). The rest of the statements then include data validation to make sure that the
entry is a number within the desired range (see Chapter 43 on the CD-ROM).

It may be tempting to use the prompt dialog box as a handy user input device. But, as with
the other JavaScript dialog boxes, the modality of the prompt dialog box is disruptive to the
user’s flow through a document and can also trap automated macros that some users acti-
vate to capture Web sites. In forms, HTML fields are better user interface elements for attract-
ing user text entry. Perhaps the safest way to use a prompt dialog box is to have it appear
when a user clicks a button element on a page — and then only if the information you require
of the user can be provided in a single prompt dialog box. Presenting a sequence of prompt
dialog boxes is downright annoying to users.

Example
The function that receives values from the prompt dialog box in Listing 16-29 (see the dialog
box in Figure 16-11) does some data-entry validation (but certainly not enough for a commer-
cial site). The function first checks to make sure that the returned value is neither null

windowObject.print()

429Chapter 16 ✦ Window and Frame Objects

(Cancel) nor an empty string (the user clicked OK without entering any values). See Chapter
43 on the CD-ROM for more about data-entry validation.

Listing 16-29: The Prompt Dialog Box

<html>
<head>

<title>window.prompt() Method</title>
<script type=”text/javascript”>
function populateTable() {

var howMany = prompt(“Fill in table for how many factors?”,””);
if (howMany != null && howMany != “”) {

alert(“Filling the table for “ + howMany); // for demo
//statements that validate the entry and
//actually populate the fields of the table

}
}
</script>

</head>
<body>

<form>
<!-- other statements that display and populate a large table -->
<input type=”button” name=”fill” value=”Fill Table...”
onclick=”populateTable()” />

</form>
</body>

</html>

Figure 16-11: The prompt dialog box displayed from
Listing 16-29 in WinIE.

Notice one important user interface element in Listing 16-29. Because clicking the button
leads to a dialog box that requires more information from the user, the button’s label ends in
an ellipsis (or, rather, three periods acting as an ellipsis character). The ellipsis is a common
courtesy to let users know that a user interface element leads to a dialog box of some sort.
Consistent with standalone applications, the user should be able to cancel out of that dialog
box and return to the same screen state that existed before the button was clicked.

Related Items: window.alert(), window.confirm() method.

releaseEvents(eventTypeList)
Returns: Nothing.
Compatibility: WinIE-, MacIE-, NN4, Moz-, Safari-

If your scripts have enabled NN4-specific event capture for the window object (or document
or layer, for that matter), you can turn off that capture with the releaseEvents() method.

windowObject.releaseEvents()

430 Part III ✦ Document Objects Reference

This method does not inhibit events from reaching their intended target. In fact, by releasing
capture from a higher object, released events don’t bother stopping at those higher objects
anymore. Parameters for the releaseEvents() method are one or more event types. Each
event type is its own entity, so if your window captures three event types at one point, you
can release some or all of those event types as the visitor interacts with your page. For exam-
ple, if the page loads and captures three types of events, as in

window.captureEvents(Event.CLICK | Event.KEYPRESS | Event.CHANGE);

you can later turn off window event capture for all but the click event:

window.releaseEvents(Event.KEYPRESS | Event.CHANGE);

The window still captures and processes click events, but keypress and change events go
directly to their target objects.

An improved mechanism (removing an event listener) is implemented in NN6+/W3C browsers
based on the W3C event model. See Chapters 14 and 25 for more information.

Related Items: window.captureEvents(), window.routeEvent() methods.

resizeBy(deltaX,deltaY)
resizeTo(outerwidth,outerheight)

Returns: Nothing.
Compatibility: WinIE4+, MacIE4+, NN4, Moz-, Safari1+

Starting with version 4 browsers, scripts can control the size of the current browser window
on the fly (no longer available in Mozilla-based browsers). While you can set the individual
inner and (in NN4) outer width and height properties of a window, the resizeBy() and
resizeTo() methods let you adjust both axis measurements in one statement. In both
instances, all adjustments affect the lower-right corner of the window: To move the top-left
corner, use the window.moveBy() or window.moveTo() methods.

Each resize method requires a different kind of parameter. The resizeBy() method adjusts
the window by a certain number of pixels along one or both axes. Therefore, it is not con-
cerned with the specific size of the window beforehand — only by how much each axis is to
change. For example, to increase the current window size by 100 pixels horizontally and 50
pixels vertically, the statement is

window.resizeBy(100, 50);

Both parameters are required, but if you only want to adjust the size in one direction, set the
other to zero. You may also shrink the window by using negative values for either or both
parameters.

You find a greater need for the resizeTo() method, especially when you know that on a par-
ticular platform the window needs adjustment to a specific width and height to best accom-
modate that platform’s display of form elements. Parameters for the resizeTo() method are
the actual pixel width and height of the outer dimension of the window — the same as NN4’s
window.outerWidth and window.outerHeight properties.

To resize the window such that it occupies all screen real estate (except for the Windows
Taskbar and Macintosh menu bar), use the screen object properties that calculate the avail-
able screen space:

window.resizeBy(screen.availWidth, screen.availHeight);

windowObject.releaseEvents()

431Chapter 16 ✦ Window and Frame Objects

This action, however, is not precisely the same in Windows as maximizing the window. To
achieve that same effect, you must move the window to coordinates -4, -4 and add eight to
the two parameters of resizeBy():

window.moveTo(-4,-4);
window.resizeTo(screen.availWidth + 8, screen.availHeight + 8);

This hides the window’s own 4-pixel wide border, as occurs during OS-induced window maxi-
mizing. See also the screen object discussion (see Chapter 38 on the CD-ROM) for more OS-
specific details.

On some platforms, the dimensions are applied to the inner width and height, rather than
outer. If a specific outer size is necessary, use the NN-specific window.outerHeight and win-
dow.outerWidth properties instead.

Navigator 4 imposes some security restrictions for maximum and minimum size for a window.
For both methods, you are limited to the viewable area of the screen and visible minimums
unless the page uses signed scripts (see Chapter 46 on the CD-ROM). With signed scripts and
the user’s permission, for example, you can adjust windows beyond the available screen
borders.

Example
You can experiment with the resize methods with the page in Listing 16-30. Two parts of a
form let you enter values for each method. The one for window.resize() also lets you enter
a number of repetitions to better see the impact of the values. Enter zero and negative values
to see how those affect the method. Also test the limits of different browsers.

Listing 16-30: Window Resize Methods

<html>
<head>

<title>Window Resize Methods</title>
<script type=”text/javascript”>
function doResizeBy(form) {

var x = parseInt(form.resizeByX.value);
var y = parseInt(form.resizeByY.value);
var count = parseInt(form.count.value);
for (var i = 0; i < count; i++) {

window.resizeBy(x, y);
}

}
function doResizeTo(form) {

var x = parseInt(form.resizeToX.value);
var y = parseInt(form.resizeToY.value);
window.resizeTo(x, y);

}
</script>

</head>
<body>

<form>
Enter the x and y increment, plus how many times the window should
be resized by these increments:

Horiz:<input type=”text” name=”resizeByX” size=”4” /> Vert:<input
type=”text” name=”resizeByY” size=”4” /> How Many:<input type=”text”
name=”count” size=”4” /> <input type=”button” name=”ResizeBy”

Continued

windowObject.resizeBy()

432 Part III ✦ Document Objects Reference

Listing 16-30 (continued)

value=”Show resizeBy()” onclick=”doResizeBy(this.form)” />
<hr />
Enter the desired width and height of the current window:

Width:<input type=”text” name=”resizeToX” size=”4” /> Height:<input
type=”text” name=”resizeToY” size=”4” /> <input type=”button”
name=”ResizeTo” value=”Show resizeTo()”
onclick=”doResizeTo(this.form)” />

</form>
</body>

</html>

Related Items: window.outerHeight, window.outerWidth properties; window.moveTo(),
window.sizeToContent() methods.

routeEvent(event)
Returns: Nothing.
Compatibility: WinIE-, MacIE-, NN4, Moz-, Safari-

If you turn on NN4-specific event capturing in the window, document, or layer objects (via
their respective captureEvents() methods), the handlers you assign to those events really
capture those events, preventing them from ever reaching their intended targets. For some
page designs, this is intentional, because it allows the higher-level object to handle all events
of a particular type. But if your goal is to perform some preprocessing of events before they
reach their destination, you need a way to pass that event along its regular path. That’s what
the routeEvent() method is for.

Perhaps a more common reason for capturing events at the window (or similar) level is to
look for special cases, such as when someone Ctrl+clicks on an element. In this case, even
though the window event handler receives all click events, it performs further processing
only when the event.modifiers property indicates the Ctrl key is also pressed and the
eventObj.target property reveals the item being clicked is a link rather than a button. All
other instances of the click event are routed on their way to their destinations. The event
object knows where it’s going, so that your routeEvent() method doesn’t have to worry
about that.

The parameter for the routeEvent() method is the event object that is passed to the func-
tion that processes the high-level event, as shown here:

function flashRed(evt) {
[statements that filter specific events to flash background color red]
routeEvent(evt);

}

The event object, evt, comes into the function while passing unmodified to the object that
was clicked.

In the W3C DOM event model (as implemented in NN6+/Moz1+/Safari1+), a captured event
continues onward to the target after event handlers higher up the containment chain finish
their work.

Example
The window.routeEvent() method is used in the example for window.captureEvents(),
Listing 16-21.

windowObject.resizeBy()

433Chapter 16 ✦ Window and Frame Objects

Related Items: window.captureEvents(), window.releaseEvents(),
window.handleEvent() methods; event object (Chapter 25).

scroll(horizontalCoord, verticalCoord)
Returns: Nothing.
Compatibility: WinIE4+, MacIE4+, NN3+, Moz1+, Safari1+

The window.scroll() method was introduced in NN3 and has been implemented in all
scriptable browsers since then. But in the meantime, the method has been replaced by the
window.scrollTo() method, which is in more syntactic alliance with many other window
methods. Use the window.scroll() method only if your audience is still using NN3; for an
audience of NN4+ and IE4+, use the window.scrollTo() method instead.

The window.scroll() method takes two parameters, the horizontal (x) and vertical (y)
coordinates of the document that is to be positioned at the top-left corner of the window or
frame. You must realize that the window and document have two similar, but independent,
coordinate schemes. From the window’s point of view, the top-left pixel (of the content area)
is point 0,0. All documents also have a 0,0 point: the very top-left of the document. The win-
dow’s 0,0 point doesn’t move, but the document’s 0,0 point can move — via manual or
scripted scrolling. Although scroll() is a window method, it seems to behave more like a
document method, as the document appears to reposition itself within the window.
Conversely, you can also think of the window moving to bring its 0,0 point to the designated
coordinate of the document.

Although you can set values beyond the maximum size of the document or to negative val-
ues, the results vary from platform to platform. For the moment, the best usage of the win-
dow.scroll() method is as a means of adjusting the scroll to the very top of a document
(window.scroll(0,0)) when you want the user to be at a base location in the document.
For vertical scrolling within a text-heavy document, an HTML anchor may be a better alterna-
tive for now (though it doesn’t readjust horizontal scrolling).

Example
To demonstrate the scroll() method, Listing 16-31 defines a frameset with a document in
the top frame (see Listing 16-32) and a control panel in the bottom frame (see Listing 16-33).
A series of buttons and text fields in the control panel frame directs the scrolling of the docu-
ment. I’ve selected an arbitrary, large GIF image to use in the example. To see results of some
horizontal scrolling values, you may need to shrink the width of the browser window until a
horizontal scrollbar appears in the top frame.

Listing 16-31: A Frameset for the scroll() Demonstration

<html>
<head>

<title>
window.scroll() Method

</title>
</head>
<frameset rows=”50%,50%”>

<frame src=”lst16-32.htm” name=”display” />
<frame src=”lst16-33.htm” name=”control” />

</frameset>
</html>

windowObject.scroll()

434 Part III ✦ Document Objects Reference

Listing 16-32: The Image to Be Scrolled

<html>
<head>

<title>
Arch

</title>
</head>
<body>

<h1>
A Picture is Worth...

</h1>
<hr />
<center>

<table border=”3”>
<caption align=”bottom”>

A Splendid Arch
</caption>
<tr>

<td>

</td>
</tr>

</table>
</center>

</body>
</html>

Listing 16-33: Controls to Adjust Scrolling of the Upper Frame

<html>
<head>

<title>
Scroll Controller

</title>

<script type=”text/javascript”>
function scroll(x,y) {

parent.frames[0].scroll(x,y);
}
function customScroll(form) {

parent.frames[0].scroll(parseInt(form.x.value),
parseInt(form.y.value));

}
</script>

</head>
<body>

<h2>
Scroll Controller

</h2>
<hr />
<form name=”fixed”>

Click on a scroll coordinate for the upper frame:
<p>

windowObject.scroll()

435Chapter 16 ✦ Window and Frame Objects

<input type=”button” value=”0,0” onclick=”scroll(0,0)” /> <input
type=”button” value=”0,100” onclick=”scroll(0,100)” /> <input
type=”button” value=”100,0” onclick=”scroll(100,0)” />

</p>
<p>

<input type=”button” value=”-100,100” onclick=”scroll(-100,100)” />
<input type=”button” value=”20,200” onclick=”scroll(20,200)” />
<input type=”button” value=”1000,3000”
onclick=”scroll(1000,3000)” />

</p>
</form>
<hr />
<form name=”custom”>

Enter a Horizontal <input type=”text” name=”x” value=”0” size=”4” />
and Vertical <input type=”text” name=”y” value=”0” size=”4” /> value.
Then <input type=”button” value=”click to scroll”
onclick=”customScroll(this.form)” />

</form>
</body>

</html>

Notice that in the customScroll() function, JavaScript must convert the string values from
the two text boxes to integers (with the parseInt() method) for the scroll() method to
accept them. Nonnumeric data can produce very odd results. Also be aware that although
this example shows how to adjust the scroll values in another frame, you can set such values
in the same frame or window as the script, as well as in subwindows, provided that you use
the correct object references to the window.

Related Items: window.scrollBy(), window.scrollTo() methods.

scrollBy(deltaX,deltaY)
scrollTo(x,y)

Returns: Nothing.
Compatibility: WinIE4+, MacIE4+, NN4+, Moz1+, Safari1+

Modern browsers provide a related pair of window scrolling methods. The
window.scrollTo() method is the newer version of the window.scroll() method. The two
work identically to position a specific coordinate point of a document at the top-left corner of
the inner window region.

In contrast, the window.scrollBy() method allows for relative positioning of the document.
Parameter values indicate by how many pixels the document should scroll in the window
(horizontally and vertically). Negative numbers are allowed if you want to scroll to the left
and/or upward. The scrollBy() method comes in handy if you elect to hide the scrollbars of
a window or frame and offer other types of scrolling controls for your users. For example, to
scroll down one entire screen of a long document, you can use the window.innerHeight (in
NN) or document.body.clientHeight (in IE) properties to determine what the offset from
the current position would be:

// assign IE body clientHeight to window.innerHeight
if (document.body && document.body.clientHeight) {

window.innerHeight = document.body.clientHeight;
}
window.scrollBy(0, window.innerHeight);

windowObject.scrollBy()

436 Part III ✦ Document Objects Reference

To scroll upward, use a negative value for the second parameter:

window.scrollBy(0, -window.innerHeight);

Scrolling the document in Macintosh versions of NN4 and IE exhibits some buggy behavior. At
times it appears as though you are allowed to scroll well beyond the document edges. In
truth, the document has stopped at the border, but the window or frame may not have
refreshed properly.

The window scroll methods are not the ones to use to produce the scrolling effect of a posi-
tioned element. That kind of animation is accomplished by adjusting style position proper-
ties (see Chapter 39 on the CD-ROM).

Example
To work with the scrollTo() method, you can use Listings 16-31 through 16-33 (the
window.scroll() method) but substitute window.scrollTo() for window.scroll().
The results should be the same. For scrollBy(), the example starts with the frameset in
Listing 16-34. It loads the same content document as the window.scroll() example
(see Listing 16-32), but the control panel (see Listing 16-35) provides input to experiment
with the scrollBy() method.

Listing 16-34: Frameset for ScrollBy Controller

<html>
<head>

<title>
window.scrollBy() Method

</title>
</head>
<frameset rows=”50%,50%”>

<frame src=”lst16-32.htm” name=”display” />
<frame src=”lst16-35.htm” name=”control” />

</frameset>
</html>

Notice in Listing 16-35 that all references to window properties and methods are directed to
the display frame. String values retrieved from text fields are converted to numbers with the
parseInt() global function.

windowObject.scrollBy()

Unwanted User Scrolling

Many Windows-compatible personal computers ship with a mouse that includes a scroll wheel
that is activated by pressing down on the wheel and spinning the wheel. Be aware that even if
your page design loads into frames or new windows that intentionally lack scrollbars, the page
will be scrollable via this wheel if the document or its background image are larger than the win-
dow or frame. Users may not even be aware that they have scrolled the page (because there are
no scroll bar visual clues). If this affects your design, you may need to build in a routine (via
setTimeout()) that periodically sets the scroll of the window to 0,0.

437Chapter 16 ✦ Window and Frame Objects

Listing 16-35: ScrollBy Controller

<html>
<head>

<title>
ScrollBy Controller

</title>

<script type=”text/javascript”>
function page(direction) {

var pixFrame = parent.display;
var deltaY = (pixFrame.innerHeight) ?

pixFrame.innerHeight : pixFrame.document.body.scrollHeight;
if (direction == “up”) {

deltaY = -deltaY;
}
parent.display.scrollBy(0, deltaY);

}
function customScroll(form) {

parent.display.scrollBy(parseInt(form.x.value),
parseInt(form.y.value));

}
</script>

</head>
<body>

ScrollBy Controller
<form name=”custom”>

Enter an Horizontal increment <input type=”text” name=”x” value=”0”
size=”4” /> and Vertical <input type=”text” name=”y” value=”0”
size=”4” /> value.

Then <input type=”button” value=”click to scrollBy()”
onclick=”customScroll(this.form)” />
<hr />
<input type=”button” value=”PageDown” onclick=”page(‘down’)” /> <input
type=”button” value=”PageUp” onclick=”page(‘up’)” />

</form>
</body>

</html>

Related Items: window.pageXOffset, window.pageYOffset properties; window.scroll()
method.

setInterval(“expr”, msecDelay [, language])
setInterval(funcRef, msecDelay [, funcarg1, ...,
funcargn])

Returns: Interval ID integer.
Compatibility: WinIE4+, MacIE4+, NN4+, Moz1+, Safari1+

It is important to understand the distinction between the setInterval() and setTimeout()
methods. Before the setInterval() method was part of JavaScript, authors replicated the
behavior with setTimeout(), but the task often required reworking scripts a bit.

windowObject.setInterval()

438 Part III ✦ Document Objects Reference

Use setInterval() when your script needs to call a function or execute some expression
repeatedly with a fixed time delay between calls to that function or expression. The delay is
not at all like a wait state in some languages: Other processing does not halt while the delay is
in effect. Typical applications include animation by moving an object around the page under
controlled speed (instead of letting the JavaScript interpreter whiz the object through its
path at CPU-dependent speeds). In a kiosk application, you can use setInterval() to
advance “slides” that appear in other frames or as layers, perhaps changing the view every 10
seconds. Clock displays and countdown timers would also be suitable usage of this method
(even though you see examples in this book that use the old-fashioned setTimeout() way to
perform timer and clock functions).

In contrast, setTimeout() is best suited for those times when you need to carry out a func-
tion or expression one time in the future — even if that future is only a second or two away.
See the discussion of the setTimeout() method later in this chapter for details on this
application.

While the primary functionality of the setInterval() method is the same in all browsers,
NN and IE offer some extra possibilities depending on the way you use parameters to the
method. For simple invocations of this method, the same parameters work in all browsers
that support the method. First, I address the parameters that all browsers have in common.

The first parameter of the setInterval() method is the name of the function or expression
to run after the interval elapses. This item must be a quoted string. If the parameter is a func-
tion, no function arguments are allowed inside the function’s parentheses unless the argu-
ments are literal strings (but see the next section, “Passing function parameters”).

The second parameter of this method is the number of milliseconds (1,000 per second) that
JavaScript should use as the interval between invocations of the function or expression. Even
though the measure is in extremely small units, don’t rely on 100 percent accuracy of the
intervals. Various other internal processing delays may throw off the timing just a bit.

Just as with setTimeout(), setInterval() returns an integer value that is the ID for the
interval process. That ID value lets you turn off the process with the clearInterval()
method. That method takes the ID value as its sole parameter. This mechanism allows for the
setting of multiple interval processes running, while giving your scripts the power to stop
individual processes at any time without interrupting the others.

IE4+ uses the optional third parameter to specify the scripting language of the statement or
function being invoked in the first parameter. As long as you are scripting exclusively in
JavaScript (the same as JScript), there is no need to include this parameter.

Passing function parameters
NN4+ provides a mechanism for easily passing evaluated parameters to a function invoked by
setInterval(). To use this mechanism, the first parameter of setInterval() must not be a
string, but rather a reference to the function (no trailing parentheses). The second parameter
remains the amount of delay. But beginning with the third parameter, you can include evalu-
ated function arguments as a comma-delimited list:

intervalID = setInterval(cycleAnimation, 500, “figure1”);

The function definition receives those parameters in the same form as any function:

function cycleAnimation(elemID) {...}

windowObject.setInterval()

439Chapter 16 ✦ Window and Frame Objects

For use with a wider range of browsers, you can also cobble together the ability to pass
parameters to a function invoked by setInterval(). Because the call to the other function
is a string expression, you can use computed values as part of the strings via string concate-
nation. For example, if a function uses event handling to find the element that a user clicked
(to initiate some animation sequence), that element’s ID, referenced by a variable, can be
passed to the function invoked by setInterval():

function findAndCycle() {
var elemID;
// statements here that examine the event info
// and extract the ID of the clicked element,
// assigning that ID to the elemID variable
intervalID = setInterval(“cycleAnimation(“ + elemID + “)”, 500);

}

If you need to pass ever-changing parameters with each invocation of the function from
setInterval(), look instead to using setTimeout() at the end of a function to invoke that
very same function again.

Example
The demonstration of the setInterval() method entails a two-framed environment. The
framesetting document is shown in Listing 16-36.

Listing 16-36: SetInterval() Demonstration Frameset

<html>
<head>

<title>setInterval() Method</title>
</head>
<frameset rows=”50%,50%”>

<frame src=”lst16-37.htm” name=”control” />
<frame src=”bofright.htm” name=”display” />

</frameset>
</html>

In the top frame is a control panel with several buttons that control the automatic scrolling of
the Bill of Rights text document in the bottom frame. Listing 16-37 shows the control panel
document. Many functions here control the interval, scrolling jump size, and direction, and
they demonstrate several aspects of applying setInterval().

Notice that in the beginning the script establishes a number of global variables. Three of
them are parameters that control the scrolling; the last one is for the ID value returned by the
setInterval() method. The script needs that value to be a global value so that a separate
function can halt the scrolling with the clearInterval() method.

All scrolling is performed by the autoScroll() function. For the sake of simplicity, all con-
trolling parameters are global variables. In this application, placement of those values in
global variables helps the page restart autoscrolling with the same parameters as it had when
it last ran.

windowObject.setInterval()

440 Part III ✦ Document Objects Reference

Listing 16-37: SetInterval() Control Panel

<html>
<head>

<title>ScrollBy Controller</title>
<script type=”text/javascript”>
var scrollSpeed = 500;
var scrollJump = 1;
var scrollDirection = “down”;
var intervalID;

function autoScroll() {
if (scrollDirection == “down”) {

scrollJump = Math.abs(scrollJump);
} else if (scrollDirection == “up” && scrollJump > 0) {

scrollJump = -scrollJump;
}
parent.display.scrollBy(0, scrollJump);
if (parent.display.pageYOffset <= 0) {

clearInterval(intervalID);
}

}

function reduceInterval() {
stopScroll();
scrollSpeed -= 200;
startScroll();

}
function increaseInterval() {

stopScroll();
scrollSpeed += 200;
startScroll();

}
function reduceJump() {

scrollJump -= 2;
}
function increaseJump() {

scrollJump += 2;
}
function swapDirection() {

scrollDirection = (scrollDirection == “down”) ? “up” : “down”;
}
function startScroll() {

parent.display.scrollBy(0, scrollJump);
if (intervalID) {

clearInterval(intervalID);
}
intervalID = setInterval(“autoScroll()”,scrollSpeed);

}
function stopScroll() {

clearInterval(intervalID);
}
</script>

</head>
<body onload=”startScroll()”>

AutoScroll by setInterval() Controller
<form name=”custom”>

<input type=”button” value=”Start Scrolling”

windowObject.setInterval()

441Chapter 16 ✦ Window and Frame Objects

onclick=”startScroll()” /> <input type=”button” value=”Stop Scrolling”
onclick=”stopScroll()” />
<p><input type=”button” value=”Shorter Time Interval”

onclick=”reduceInterval()” /> <input type=”button”
value=”Longer Time Interval” onclick=”increaseInterval()” /></p>

<p><input type=”button” value=”Bigger Scroll Jumps”
onclick=”increaseJump()” /> <input type=”button”
value=”Smaller Scroll Jumps” onclick=”reduceJump()” /></p>

<p><input type=”button” value=”Change Direction”
onclick=”swapDirection()” /></p>

</form>
</body>

</html>

The setInterval() method is invoked inside the startScroll() function. This function ini-
tially “burps” the page by one scrollJump interval so that the test in autoScroll() for the
page being scrolled all the way to the top doesn’t halt a page from scrolling before it gets
started. Notice, too, that the function checks for the existence of an interval ID. If one is there,
it is cleared before the new one is set. This is crucial within the design of the example page,
because repeated clicking of the Start Scrolling button triggers multiple interval timers inside
the browser. Only the most recent one’s ID would be stored in intervalID, allowing no way
to clear the older ones. But this little side trip makes sure that only one interval timer is run-
ning. One of the global variables, scrollSpeed, is used to fill the delay parameter for
setInterval(). To change this value on the fly, the script must stop the current interval pro-
cess, change the scrollSpeed value, and start a new process.

The intensely repetitive nature of this application is nicely handled by the setInterval()
method.

Related Items: window.clearInterval(), window.setTimeout() methods.

setTimeout(“expr”, msecDelay [, language])
setTimeout(functionRef, msecDelay [, funcarg1, ...,
funcargn])

Returns: ID value for use with window.clearTimeout() method.
Compatibility: WinIE3+, MacIE3+, NN2+, Moz1+, Safari1+

The name of this method may be misleading, especially if you have done other kinds of pro-
gramming involving timeouts. In JavaScript, a timeout is an amount of time (in milliseconds)
before a stated expression evaluates. A timeout is not a wait or script delay, but rather a way
to tell JavaScript to hold off executing a statement or function for a desired amount of time.
Other statements following the one containing setTimeout() execute immediately.

Say that you have a Web page designed to enable users to interact with a variety of buttons
or fields within a time limit (this is a Web page running at a free-standing kiosk). You can turn
on the timeout of the window so that if no interaction occurs with specific buttons or fields
lower in the document after, say, two minutes (120,000 milliseconds), the window reverts to
the top of the document or to a help screen. To tell the window to switch off the timeout after
a user does navigate within the allotted time, you need to have any button that the user inter-
acts with call the other side of a setTimeout() method — the clearTimeout() method — to
cancel the current timer. (The clearTimeout() method is explained earlier in this chapter.)
Multiple timers can run concurrently and are completely independent of each other.

windowObject.setTimeout()

442 Part III ✦ Document Objects Reference

While the primary functionality of the setTimeout() method is the same in all browsers, NN
and IE offer some extra possibilities depending on the way you use parameters to the
method. For simple invocations of this method, the same parameters work in all browsers
that support the method. I first address the parameters that all browsers have in common.

The expression that comprises the first parameter of the method window.setTimeout() is a
quoted string that can contain either a call to any function or method or a standalone
JavaScript statement. The expression evaluates after the time limit expires.

Understanding that this timeout does not halt script execution is very important. In fact, if
you use a setTimeout() method in the middle of a script, the succeeding statements in the
script execute immediately; after the delay time, the expression in the setTimeout() method
executes. Therefore, I’ve found that the best way to design a timeout in a script is to plug it in
as the last statement of a function: Let all other statements execute and then let the
setTimeout() method appear to halt further execution until the timer goes off. In truth, how-
ever, although the timeout is “holding,” the user is not prevented from performing other
tasks. And after a timeout timer is ticking, you cannot adjust its time. Instead, clear the time-
out and start a new one.

If you need to use setTimeout() as a delay inside a function, break the function into two
parts, using the setTimeout() method as a bridge between the two functions. You can see
an example of this in Listing 16-26, where IE needs a little delay to finish opening a new win-
dow before content can be written for it. If it weren’t for the required delay, the HTML assem-
bly and writing would have been accomplished in the same function that opens the new
window.

It is not uncommon for a setTimeout() method to invoke the very function in which it lives.
For example, if you have written a Java applet to perform some extra work for your page and
you need to connect to it via LiveConnect, your scripts must wait for the applet to load and
carry out its initializations. Although an onload event handler in the document ensures that
the applet object is visible to scripts, it doesn’t know whether the applet has finished its ini-
tializations. A JavaScript function that inspects the applet for a clue might need to poll the
applet every 500 milliseconds until the applet sets some internal value indicating all is ready,
as shown here:

var t;
function autoReport() {

if (!document.myApplet.done) {
t = setTimeout(“autoReport()”,500);

} else {
clearTimeout(t);
// more statements using applet data //

}
}

JavaScript provides no built-in equivalent for a wait command. The worst alternative is to
devise a looping function of your own to trap script execution for a fixed amount of time.
Unfortunately, this approach prevents other processes from being carried out, so you should
consider reworking your code to rely on a setTimeout() method instead.

NN4+ provides a mechanism for passing parameters to functions invoked by setTimeout().
See the section “Passing function parameters” in the discussion of window.setInterval()
for details on this and passing parameters in other browser versions.

As a note to experienced programmers, neither setInterval() nor setTimeout() spawn
new threads in which to run their invoked scripts. When the timer expires and invokes a func-
tion, the process gets at the end of the queue of any pending script processing in the
JavaScript execution thread.

windowObject.setTimeout()

443Chapter 16 ✦ Window and Frame Objects

Example
When you load the HTML page in Listing 16-38, it triggers the updateTime() function, which
displays the time (in hh:mm am/pm format) in the status bar. Instead of showing the seconds
incrementing one by one (which may be distracting to someone trying to read the page), this
function alternates the last character of the display between an asterisk and nothing, like a
visual “heartbeat.”

Listing 16-38: Display the Current Time

<html>
<head>

<title>Status Bar Clock</title>
<script type=”text/javascript”>
var flasher = false;
// calculate current time, determine flasher state,
// and insert time into status bar every second
function updateTime() {

var now = new Date();
var theHour = now.getHours();
var theMin = now.getMinutes();
var theTime = “” + ((theHour > 12) ? theHour - 12 : theHour);
theTime += ((theMin < 10) ? “:0” : “:”) + theMin;
theTime += (theHour >= 12) ? “ pm” : “ am”;
theTime += ((flasher) ? “ “ : “*”);
flasher = !flasher;
window.status = theTime;
// recursively call this function every second to keep timer going
timerID = setTimeout(“updateTime()”,1000);

}
</script>

</head>
<body onload=”updateTime()”>
</body>

</html>

In this function, the setTimeout() method works in the following way: Once the current time
(including the flasher status) appears in the statusbar, the function waits approximately one
second (1,000 milliseconds) before calling the same function again. You don’t have to clear
the timerID value in this application because JavaScript does it for you every time the 1,000
milliseconds elapse.

A logical question to ask is whether this application should be using setInterval() instead
of setTimeout(). This is a case in which either one does the job. To use setInterval()
here would require that the interval process start outside of the updateTime() function,
because you need only one process running that repeatedly calls updateTime(). It would be
a cleaner implementation in that regard, instead of the tons of timeout processes spawned by
Listing 16-38. On the other hand, the application would not run in any browsers before NN4
or IE4, as Listing 16-38 does.

To demonstrate passing parameters, you can modify the updateTime() function to add the
number of times it gets invoked to the display in the status bar. For that to work, the function
must have a parameter variable so that it can catch a new value each time it is invoked by
setTimeout()’s expression. For all browsers, the function would be modified as follows
(unchanged lines are represented by the ellipsis):

windowObject.setTimeout()

444 Part III ✦ Document Objects Reference

function updateTime(i) {
...
window.status = theTime + “ (“ + i + “)”;
// pass updated counter value with next call to this function
timerID = setTimeout(“updateTime(“ + i+1 + “)”,1000);

}

If you were running this exclusively in NN4+, which is likely, you could use its more conve-
nient way of passing parameters to the function:

timerID = setTimeout(updateTime,1000, i+1);

In either case, the onload event handler would also have to be modified to get the ball rolling
with an initial parameter:

onload = “updateTime(0)”;

Related Items: window.clearTimeout(), window.setInterval(),
window.clearInterval() methods.

showHelp(“URL”,[“contextID”])
Returns: Nothing.
Compatibility: WinIE4+, MacIE-, NN-, Moz-, Safari-

The IE-specific showHelp() method lets a script open a Winhelp window with a particular
.hlp file. This method is specific to Win32 operating systems.

If your Winhelp file has context identifiers specified in various places, you can pass the ID as
an optional second parameter. This lets the call to showHelp() navigate to a particular area
of the .hlp file that applies to a specific element on the page.

See the Microsoft Visual Studio authoring environment for details on building Winhelp files.

showModalDialog(“URL”[, arguments][, features])
showModelessDialog(“URL”[, arguments][, features])

Returns: returnValue (modal) or window object (modeless).
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-

IE4+ provides methods for opening a modal dialog box window, which always stays in front of
the main browser window while making the main window inaccessible to the user. In WinIE5,
Microsoft added the modeless type of dialog box, which also stays in front, but allows user
access to whatever can be seen in the main window. You can load any HTML page or image
that you like into the dialog box window, by providing a URL as the first parameter. Optional
parameters let you pass data to a dialog box and give you considerable control over the look
of the window. Unfortunately, these types of dialog box windows are not available in
Navigator. At best, you can simulate modal and modeless dialog box windows, but the job is
not for beginners.

The windows generated by both methods are (almost) full-fledged window objects with some
extra properties that are useful for what these windows are intended to do. Perhaps the most
important property is the window.dialogArgument property. This property lets a script read
the data that is passed to the window via the second parameter of both showModalDialog()
and showModelessDialog(). Passed data can be in any valid JavaScript data type, including
objects and arrays.

windowObject.setTimeout()

445Chapter 16 ✦ Window and Frame Objects

Displaying a modal dialog box has some ramifications for scripts. In particular, script execu-
tion in the main window halts at the statement that invokes the showModalDialog() method
as long as the modal dialog box remains visible. Scripts are free to run in the dialog box win-
dow during this time. The instant the user closes the dialog box, execution resumes in the
main window. A call to show a modeless dialog box, on the other hand, does not halt process-
ing because scripts in the main page or dialog box window are allowed to communicate “live”
with the other window.

Retrieving dialog data
To send data back to the main window’s script from a modal dialog box window, a script in
the dialog box window can set the window.returnValue property to any JavaScript value. It
is this value that gets assigned to the variable receiving the returned value from the
setModelDialog() method, as shown in the following example:

var specifications = window.showModalDialog(“preferences.html”);

The makeup and content of the returned data is in the hands of your scripts. No data is auto-
matically returned for you.

Because a modeless dialog box coexists with your live main page window, returning data is
not as straightforward as for a modal dialog box. The second parameter of the showModeless
Dialog() method takes on a special task that isn’t exactly the same as passing parameters to
the dialog box. Instead, if you define a global variable or a function in the main window’s
script, pass a reference to that variable or function as the second parameter to display the
modeless dialog box. A script in the modeless dialog box can then point to that reference as
the way to send data back to the main window before the dialog box closes (or when a user
clicks something, such as an Apply button). This mechanism even allows for passing data
back to a function in the main window. For example, say that the main window has a function
defined as the following:

function receivePrefsDialogData(a, b, c) {
// statements to process incoming values //

}

Then pass a reference to this function when opening the window:

dlog = showModelessDialog(“prefs.html”, receivePrefsDialogData);

A script statement in the dialog box window’s document can pick up that reference so that
other statements can use it, such as a function for an Apply button’s onclick event handler:

var returnFunc = window.dialogArguments;
...
function apply(form) {

returnFunc(form.color.value, form.style.value, form.size.value);
}

While this approach seems to block ways of getting parameters to the dialog box when it
opens, you can always reference the dialog box in the main window’s script and set form or
variable values directly:

dlog = showModelessDialog(“prefs.html”, receivePrefsDialogData);
dlog.document.forms[0].userName.value = GetCookie(“userName”);

Be aware that a dialog box window opened with either of these methods does not maintain a
connection to the originating window via the opener property. The opener property for both
dialog box types is undefined.

windowObject.showModalDialog()

446 Part III ✦ Document Objects Reference

Dialog window features
Both methods provide an optional third property that lets you specify visible features of the
dialog box window. Omitting the property sets all features to their default values. All parame-
ters are to be contained by a single string, and each parameter’s name-value pair is in the
form of CSS attribute:value syntax. Table 16-4 lists all of the window features available for
the two window styles. If you are designing for compatibility with IE4, you are restricted to
the modal dialog box and a subset of features, as noted in the table. All values listed as
Boolean take only the following four values: yes, no, 1, 0.

Table 16-4: IE Dialog Box Window Features

Feature Type Default Description

center Boolean yes Whether to center dialog box (overridden
by dialogLeft and/or dialogTop).

dialogHeight Length varies Outer height of the dialog box window. IE4
default length unit is em; IE5+ is pixel (px).

dialogLeft Integer varies Pixel offset of dialog box from left edge of
screen.

dialogTop Integer varies Pixel offset of dialog box from top edge of
screen.

dialogWidth Length varies Outer width of the dialog box window. IE4
default length unit is em; IE5+ is pixel (px).

edge String raised | sunken Border style.

help Boolean yes Display Help icon in title bar.

resizable Boolean no Dialog box is resizable (IE5+ only).

status Boolean varies Display status bar at window bottom (IE5+
only). Default is yes for untrusted dialog
box; no for trusted dialog box.

The CSS-type of syntax for these features lets you string multiple features together by sepa-
rating each pair with a semicolon within the string. For example:

var dlogData = showModalDialog(“prefs.html”, defaultData,
“dialogHeight:300px; dialogWidth:460px; help:no”);

Although not explicitly listed as one of the window features, scroll bars are normally dis-
played in the window if the content exceeds the size assigned or available to the dialog box. If
you don’t want scroll bars to appear, have your dialog box document’s script set the docu-
ment.body.scroll property to false as the page opens.

Dialog cautions
A potential user problem to watch for is that typically a dialog box window does not open
until the HTML file for the dialog box has loaded. Therefore, if there is substantial delay
before a complex document loads, the user does not see any action indicating that something
is happening. You may want to experiment with setting the cursor stylesheet property and
restoring it when the dialog box’s document loads.

One of the reasons I call a dialog box window an (almost) window object is that some normal
behavior is not available in IE4. For example, if you load a frameset into the dialog box

windowObject.showModalDialog()

447Chapter 16 ✦ Window and Frame Objects

window, scripts in documents within the frames cannot refer back to the parent document to
access variables or parent window methods. Thus, a button in a frame of an IE4 modal dialog
box cannot issue parent.close() to close the dialog box. This anomaly is repaired in IE5+.

Example
To demonstrate the two styles of dialog boxes, I have implemented the same functionality
(setting some session visual preferences) for both modal and modeless dialog boxes. This
tactic shows you how to pass data back and forth between the main page and both styles of
dialog box windows.

The first example demonstrates how to use a modal dialog box. In the process, data is passed
into the dialog box window and values are returned. Listing 16-39 is the HTML and scripting
for the main page. A button’s onclick event handler invokes a function that opens the modal
dialog box. The dialog box’s document (see Listing 16-40) contains several form elements for
entering a user name and selecting a few color styles for the main page. Data from the dialog
is fashioned into an array to be sent back to the main window. That array is initially assigned
to a local variable, prefs, as the dialog box closes. If the user cancels the dialog box, the
returned value is an empty string, so nothing more in getPrefsData() executes. But when
the user clicks OK, the array comes back. Each of the array items is read and assigned to its
respective form value or style property. These values are also preserved in the global
currPrefs array. This allows the settings to be sent to the modal dialog box (as the second
parameter to showModalDialog()) the next time the dialog box is opened.

Listing 16-39: Main Page for showModalDialog()

<html>
<head>

<title>window.setModalDialog() Method</title>
<script type=”text/javascript”>
var currPrefs = new Array();

function getPrefsData() {
var prefs = showModalDialog(“lst16-40.htm”, currPrefs,

“dialogWidth:400px; dialogHeight:300px”);
if (prefs) {

if (prefs[“name”]) {
document.all.firstName.innerText = prefs[“name”];
currPrefs[“name”] = prefs[“name”];

}
if (prefs[“bgColor”]) {

document.body.style.backgroundColor = prefs[“bgColor”];
currPrefs[“bgColor”] = prefs[“bgColor”];

}
if (prefs[“textColor”]) {

document.body.style.color = prefs[“textColor”];
currPrefs[“textColor”] = prefs[“textColor”];

}
if (prefs[“h1Size”]) {

document.all.welcomeHeader.style.fontSize = prefs[“h1Size”];
currPrefs[“h1Size”] = prefs[“h1Size”];

}
}

}

Continued

windowObject.showModalDialog()

448 Part III ✦ Document Objects Reference

Listing 16-39 (continued)

function init() {
document.all.firstName.innerText = “friend”;

}
</script>

</head>
<body bgcolor=”#EEEEEE” style=”margin:20px” onload=”init()”>

<h1>window.setModalDialog() Method</h1>
<hr />
<h2 id=”welcomeHeader”>Welcome, !</h2>
<hr />
<p>Use this button to set style preferences for this page: <button

id=”prefsButton” onclick=”getPrefsData()”>Preferences</button></p>
</body>

</html>

The dialog box’s document, shown in Listing 16-40, is responsible for reading the incoming
data (and setting the form elements accordingly) and assembling form data for return to the
main window’s script. Notice when you load the example that the title element of the dialog
box’s document appears in the dialog box window’s title bar.

When the page loads into the dialog box window, the init() function examines the win-
dow.dialogArguments property. If it has any data, the data is used to preset the form ele-
ments to mirror the current settings of the main page. A utility function, setSelected(),
preselects the option of a select element to match the current settings.

Buttons at the bottom of the page are explicitly positioned to be at the lower-right corner of
the window. Each button invokes a function to do what is needed to close the dialog box. In
the case of the OK button, the handleOK() function sets the window.returnValue property
to the data that come back from the getFormData() function. This latter function reads the
form element values and packages them in an array using the form elements’ names as array
indices. This helps keep everything straight back in the main window’s script, which uses the
index names, and is therefore not dependent upon the precise sequence of the form elements
in the dialog box window.

Listing 16-40: Document for the Modal Dialog

<html>
<head>

<title>User Preferences</title>
<script type=”text/javascript”>
// Close the dialog
function closeme() {

window.close();
}

// Handle click of OK button
function handleOK() {

window.returnValue = getFormData();
closeme();

}

// Handle click of Cancel button

windowObject.showModalDialog()

449Chapter 16 ✦ Window and Frame Objects

function handleCancel() {
window.returnValue = “”;
closeme();

}

// Generic function converts form element name-value pairs
// into an array
function getFormData() {

var form = document.prefs;
var returnedData = new Array();
// Harvest values for each type of form element
for (var i = 0; i < form.elements.length; i++) {

if (form.elements[i].type == “text”) {
returnedData[form.elements[i].name] = form.elements[i].value;

} else if (form.elements[i].type.indexOf(“select”) != -1) {
returnedData[form.elements[i].name] = form.elements[i].

options[form.elements[i].selectedIndex].value;
} else if (form.elements[i].type == “radio”) {

returnedData[form.elements[i].name] = form.elements[i].value;
} else if (form.elements[i].type == “checkbox”) {

returnedData[form.elements[i].name] = form.elements[i].value;
} else

continue;
}
return returnedData;

}

// Initialize by setting form elements from passed data
function init() {

if (window.dialogArguments) {
var args = window.dialogArguments;
var form = document.prefs;
if (args[“name”]) {

form.name.value = args[“name”];
}
if (args[“bgColor”]) {

setSelected(form.bgColor, args[“bgColor”]);
}
if (args[“textColor”]) {

setSelected(form.textColor, args[“textColor”]);
}
if (args[“h1Size”]) {

setSelected(form.h1Size, args[“h1Size”]);
}

}
}

// Utility function to set a SELECT element to one value
function setSelected(select, value) {

for (var i = 0; i < select.options.length; i++) {
if (select.options[i].value == value) {

select.selectedIndex = i;
break;

}
}
return;

}

// Utility function to accept a press of the
Continued

windowObject.showModalDialog()

450 Part III ✦ Document Objects Reference

Listing 16-40 (continued)

// Enter key in the text field as a click of OK
function checkEnter() {

if (window.event.keyCode == 13) {
handleOK();

}
}
</script>

</head>
<body bgcolor=”#EEEEEE” onload=”init()”>

<h2>Web Site Preferences</h2>
<hr />
<form name=”prefs” onsubmit=”return false”>

<table>
<tr>

<td>Enter your first name:<input name=”name” type=”text”
value=”” size=”20” onkeydown=”checkEnter()” /></td>

</tr>
<tr>

<td>Select a background color: <select name=”bgColor”>
<option value=”beige”>Beige</option>
<option value=”antiquewhite”>Antique White</option>
<option value=”goldenrod”>Goldenrod</option>
<option value=”lime”>Lime</option>
<option value=”powderblue”>Powder Blue</option>
<option value=”slategray”>Slate Gray</option>

</select></td>
</tr>
<tr>

<td>Select a text color: <select name=”textColor”>
<option value=”black”>Black</option>
<option value=”white”>White</option>
<option value=”navy”>Navy Blue</option>
<option value=”darkorange”>Dark Orange</option>
<option value=”seagreen”>Sea Green</option>
<option value=”teal”>Teal</option>

</select></td>
</tr>
<tr>

<td>Select “Welcome” heading font point size: <select
name=”h1Size”>

<option value=”12”>12</option>
<option value=”14”>14</option>
<option value=”18”>18</option>
<option value=”24”>24</option>
<option value=”32”>32</option>
<option value=”48”>48</option>

</select></td>
</tr>

</table>
</form>
<div style=”position:absolute; left:200px; top:220px”>

<button style=”width:80px”
onclick=”handleOK()”>OK</button> <button
style=”width:80px” onclick=”handleCancel()”>Cancel</button>

</div>
</body>

</html>

windowObject.showModalDialog()

451Chapter 16 ✦ Window and Frame Objects

One last convenience feature of the dialog box window is the onkeypress event handler in
the text box. The function it invokes looks for the Enter key. If that key is pressed while the
box has focus, the same handleOK() function is invoked, as if the user had clicked the OK
button. This feature makes the dialog box behave as if the OK button is an automatic default,
just as “real” dialog boxes.

You should observe several important structural changes that were made to turn the modal
approach into a modeless one. Listing 16-41 shows the version of the main window modified
for use with a modeless dialog box. Another global variable, prefsDlog, is initialized to even-
tually store the reference to the modeless window returned by the showModelessWindow()
method. The variable gets used to invoke the init() function inside the modeless dialog
box, but also as conditions in an if construction surrounding the generation of the dialog
box. The reason this is needed is to prevent multiple instances of the dialog box being cre-
ated (the button is still alive while the modeless window is showing). The dialog box won’t be
created again as long as there is a value in prefsDlog, and the dialog box window has not
been closed (picking up the window.closed property of the dialog box window).

The showModelessDialog() method’s second parameter is a reference to the function in the
main window that updates the main document. As you see in a moment, that function is
invoked from the dialog box when the user clicks the OK or Apply buttons.

Listing 16-41: Main Page for showModelessDialog()

<html>
<head>

<title>window.setModelessDialog() Method</title>
<script type=”text/javascript”>
var currPrefs = new Array();
var prefsDlog;
function getPrefsData() {

if (!prefsDlog || prefsDlog.closed) {
prefsDlog = showModelessDialog(“lst16-42.htm”, setPrefs,

“dialogWidth:400px; dialogHeight:300px”);
prefsDlog.init(currPrefs);

}
}

function setPrefs(prefs) {
if (prefs[“bgColor”]) {

document.body.style.backgroundColor = prefs[“bgColor”];
currPrefs[“bgColor”] = prefs[“bgColor”];

}
if (prefs[“textColor”]) {

document.body.style.color = prefs[“textColor”];
currPrefs[“textColor”] = prefs[“textColor”];

}
if (prefs[“h1Size”]) {

document.all.welcomeHeader.style.fontSize = prefs[“h1Size”];
currPrefs[“h1Size”] = prefs[“h1Size”];

}
if (prefs[“name”]) {

document.all.firstName.innerText = prefs[“name”];
currPrefs[“name”] = prefs[“name”];

}
}

Continued

windowObject.showModalDialog()

452 Part III ✦ Document Objects Reference

Listing 16-41 (continued)

function init() {
document.all.firstName.innerText = “friend”;

}
</script>

</head>
<body bgcolor=”#EEEEEE” style=”margin:20px” onload=”init()”>

<h1>window.setModelessDialog() Method</h1>
<hr />
<h2 id=”welcomeHeader”>Welcome, !</h2>
<hr />
<p>Use this button to set style preferences for this page: <button

id=”prefsButton” onclick=”getPrefsData()”>Preferences</button></p>
</body>

</html>

Changes to the dialog box window document for a modeless version (see Listing 16-42) are
rather limited. A new button is added to the bottom of the screen for an Apply button. As in
many dialog box windows you see in Microsoft products, the Apply button lets current set-
tings in dialog boxes be applied to the current document but without closing the dialog box.
This approach makes experimenting with settings easier.

The Apply button invokes a handleApply() function, which works the same as handleOK(),
except the dialog box is not closed. But these two functions communicate back to the main
window differently than a modal dialog box. The main window’s processing function is
passed as the second parameter of showModelessDialog() and is available as the window.
dialogArguments property in the dialog box window’s script. That function reference is
assigned to a local variable in both functions, and the remote function is invoked, passing
the results of the getFormData() function as parameter values back to the main window.

Listing 16-42: Document for the Modeless Dialog Box

<html>
<head>

<title>User Preferences</title>
<script type=”text/javascript”>
// Close the dialog
function closeme() {

window.close();
}

// Handle click of OK button
function handleOK() {

var returnFunc = window.dialogArguments;
returnFunc(getFormData());
closeme();

}

// Handle click of Apply button
function handleApply() {

var returnFunc = window.dialogArguments;
returnFunc(getFormData());

}

windowObject.showModalDialog()

453Chapter 16 ✦ Window and Frame Objects

// Handle click of Cancel button
function handleCancel() {

window.returnValue = “”;
closeme();

}

// Generic function converts form element name-value pairs
// into an array
function getFormData() {

var form = document.prefs;
var returnedData = new Array();
// Harvest values for each type of form element
for (var i = 0; i < form.elements.length; i++) {

if (form.elements[i].type == “text”) {
returnedData[form.elements[i].name] = form.elements[i].value;

} else if (form.elements[i].type.indexOf(“select”) != -1) {
returnedData[form.elements[i].name] = form.elements[i].

options[form.elements[i].selectedIndex].value;
} else if (form.elements[i].type == “radio”) {

returnedData[form.elements[i].name] = form.elements[i].value;
} else if (form.elements[i].type == “checkbox”) {

returnedData[form.elements[i].name] = form.elements[i].value;
} else

continue;
}
return returnedData;

}

// Initialize by setting form elements from passed data
function init(currPrefs) {

if (currPrefs) {
var form = document.prefs;
if (currPrefs[“name”]) {

form.name.value = currPrefs[“name”];
}
if (currPrefs[“bgColor”]) {

setSelected(form.bgColor, currPrefs[“bgColor”]);
}
if (currPrefs[“textColor”]) {

setSelected(form.textColor, currPrefs[“textColor”]);
}
if (currPrefs[“h1Size”]) {

setSelected(form.h1Size, currPrefs[“h1Size”]);
}

}
}

// Utility function to set a SELECT element to one value
function setSelected(select, value) {

for (var i = 0; i < select.options.length; i++) {
if (select.options[i].value == value) {

select.selectedIndex = i;
break;

}
}
return;

}

Continued

windowObject.showModalDialog()

454 Part III ✦ Document Objects Reference

Listing 16-42 (continued)

// Utility function to accept a press of the
// Enter key in the text field as a click of OK
function checkEnter() {

if (window.event.keyCode == 13) {
handleOK();

}
}
</script>

</head>
<body bgcolor=”#EEEEEE” onload=”init()”>

<h2>Web Site Preferences</h2>
<hr />
<form name=”prefs” onsubmit=”return false”>

<table>
<tr>

<td>Enter your first name:<input name=”name” type=”text”
value=”” size=”20” onkeydown=”checkEnter()” /></td>

</tr>
<tr>

<td>Select a background color: <select name=”bgColor”>
<option value=”beige”>Beige</option>
<option value=”antiquewhite”>Antique White</option>
<option value=”goldenrod”>Goldenrod</option>
<option value=”lime”>Lime</option>
<option value=”powderblue”>Powder Blue</option>
<option value=”slategray”>Slate Gray</option>

</select></td>
</tr>
<tr>

<td>Select a text color: <select name=”textColor”>
<option value=”black”>Black</option>
<option value=”white”>White</option>
<option value=”navy”>Navy Blue</option>
<option value=”darkorange”>Dark Orange</option>
<option value=”seagreen”>Sea Green</option>
<option value=”teal”>Teal</option>

</select></td>
</tr>
<tr>

<td>Select “Welcome” heading font point size: <select
name=”h1Size”>

<option value=”12”>12</option>
<option value=”14”>14</option>
<option value=”18”>18</option>
<option value=”24”>24</option>
<option value=”32”>32</option>
<option value=”48”>48</option>

</select></td>
</tr>

</table>
</form>
<div style=”position:absolute; left:120px; top:220px”>

<button style=”width:80px”
onclick=”handleOK()”>OK</button> <button
style=”width:80px”
onclick=”handleCancel()”>Cancel</button> <button

windowObject.showModalDialog()

455Chapter 16 ✦ Window and Frame Objects

style=”width:80px” onclick=”handleApply()”>Apply</button>
</div>

</body>
</html>

The biggest design challenge you probably face with respect to these windows is deciding
between a modal and modeless dialog box style. Some designers insist that modality has no
place in a graphical user interface; others say that there are times when you need to focus the
user on a very specific task before any further processing can take place. That’s where a
modal dialog box makes perfect sense.

Related Items: window.open() method.

sizeToContent()
Returns: Nothing.
Compatibility: WinIE-, MacIE-, NN6+, Moz1+, Safari-

The NN6+ window.sizeToContent() method can be a valuable aid in making sure that a win-
dow (especially a subwindow) is sized for the optimum display of the window’s content. But
you must also be cautious with this method, or it will do more harm than good.

Invoking the sizeToContent() method resizes the window so that all content is visible.
Concerns about variations in OS-specific rendering become a thing of the past. Naturally, you
should perform this action only on a window whose content at the most occupies a space
smaller than the smallest video monitor running your code (typically 640 × 480 pixels, but
conceivably much smaller for future versions of the browser used on handheld computers).

You can get the user in trouble, however, if you invoke the method twice on the same window
that contains the resizing script. This action can cause the window to expand to a size that
may exceed the pixel size of the user’s video monitor. Successive invocations fail to cinch up
the window’s size to its content again. Multiple invocations are safe, however, on subwindows
when the resizing script statement is in the main window.

Example
Use The Evaluator (Chapter 13) in NN6 to try the sizeToContent() method. Assuming that
you are running The Evaluator from the Chap13 directory on the CD-ROM (or the directory
copied as-is to your hard disk), you can open a subwindow with one of the other files in the
directory, and then size the subwindow. Enter the following statements into the top text box:

a = window.open(“lst13-02.htm”,””)
a.sizeToContent()

The resized subwindow is at the minimum recommended width for a browser window, and at
a height tall enough to display the little bit of content in the document.

Related Item: window.resizeTo() method.

stop()
Returns: Nothing.
Compatibility: WinIE-, MacIE-, NN4+, Moz-, Safari-

The Navigator-specific stop() method offers a scripted equivalent of clicking the Stop
button in the toolbar. Availability of this method allows you to create your own toolbar on
your page and hide the toolbar (in the main window with signed scripts or in a subwindow).

windowObject.stop()

456 Part III ✦ Document Objects Reference

For example, if you have an image representing the Stop button in your page, you can sur-
round it with a link whose action stops loading, as in the following:

A script cannot stop its own document from loading, but it can stop loading of another frame
or window. Similarly, if the current document dynamically loads a new image or a multimedia
MIME type file as a separate action, the stop() method can halt that process. Even though
the stop() method is a window method, it is not tied to any specific window or frame: Stop
means stop.

Related Items: window.back(), window.find(), window.forward(), window.home(),
window.print() methods.

Event handlers
onafterprint
onbeforeprint

Compatibility: WinIE5+, MacIE-, NN-, Moz-, Safari-

Each of these event handlers fires after the user has clicked the OK button in IE’s Print dialog
box. This goes for printing that is invoked manually (via menus and browser shortcut but-
tons) and the window.print() method.

Although printing is usually WYSIWYG, it is conceivable that you may want the printed ver-
sion of a document to display more or less of the document than is showing at that instant.
For example, you may have a special copyright notice that you want printed at the end of a
page whenever it goes to the printer. In that case, the element with that content can have its
display stylesheet property set to none when the page loads. Before the document is sent to
the printer, a script needs to adjust that style property to display the element as a block item;
after printing, have your script revert the setting to none.

Immediately after the user clicks the OK button in the Print dialog box, the onbeforeprint
event handler fires. As soon as the page(s) is sent to the printer or spooler, the onafter-
print event handler fires.

Example
The following script fragment assumes that the page includes a div element whose
stylesheet includes a setting of display:none as the page loads. Somewhere in the Head, the
print-related event handlers are set as properties:

function showPrintCopyright() {
document.all.printCopyright.style.display = “block”;

}
function hidePrintCopyright() {

document.all.printCopyright.style.display = “none”;
}
window.onbeforeprint = showPrintCopyright;
window.onafterprint = hidePrintCopyright;

onbeforeunload
Compatibility: WinIE4+, MacIE5+, NN-, Moz-, Safari-

Any user or scripted action that normally forces the current page to be unloaded or replaced
causes the onbeforeunload event handler to fire. Unlike the onunload event handler,

windowObject.stop

457Chapter 16 ✦ Window and Frame Objects

however, onbeforeunload is a bit better behaved when it comes to allowing complex scripts
to finish before the actual unloading takes place. Moreover, you can assign a string value to
the event.returnValue property in the event handler function. That string becomes part of
a message in an alert window that gives the user a chance to stay on the page. If the user
agrees to stay, the page does not unload, and any action that caused the potential replace-
ment is cancelled.

Example
The simple page in Listing 16-43 shows you how to give the user a chance to stay on the page.

Listing 16-43: Using the onbeforeunload Event Handler

<html>
<head>

<title>onbeforeunload Event Handler</title>
<script type=”text/javascript”>
function verifyClose() {

event.returnValue =
“We really like you and hope you will stay longer.”;

}

window.onbeforeunload = verifyClose;
</script>

</head>
<body>

<h1>onbeforeunload Event Handler</h1>
<hr />
<p>Use this button to navigate to the previous page: <button id=”go”

onclick=”history.back()”>Go Back</button></p>
</body>

</html>

Related Items: onunload event handler.

ondragdrop
Compatibility: WinIE-, MacIE-, NN4, Moz-, Safari-

With closer integration between the computer desktop and browsers these days, it is increas-
ingly possible that shortcuts (or aliases) to Web URLs can be represented on our desktops
and other kinds of documents. With NN4 (only), you can script awareness of dragging and
dropping of such items onto the browser window. The window’s dragdrop event fires when-
ever a user drops a file or other URL-filled object onto the window.

Example
You can add an ondragdrop event handler to the <body> tag of your document and pass
along the event object that has some juicy tidbits about the drop: the object on which the
item was dropped and the URL of the item. The function called by the event handler receives
the event object information and can process it from there. Because this event is a window
event, you don’t have to turn on window.captureEvents() to get the window to feel the
effect of the event.

windowObject.ondragdrop

458 Part III ✦ Document Objects Reference

The juiciest tidbit of the event, the URL of the dropped item, can be retrieved only with a
signed script and the user’s permission (see Chapter 46 on the CD-ROM). Listing 16-44 shows
a simple document that reveals the URL and screen location, as derived from the event object
passed with the dragdrop event. You must have codebase principals turned on to get the full
advantage of this listing, and it works best with Windows.

Listing 16-44: Analyzing a dragdrop Event

<html>
<head>

<title>DragDrop Event</title>
<script type=”text/javascript”>
function reportDrag(e) {

var msg = “You dropped the file:\n”;
netscape.security.PrivilegeManager.enablePrivilege(

“UniversalBrowserRead”);
msg += e.data;
netscape.security.PrivilegeManager.disablePrivilege(

“UniversalBrowserRead”);
msg += “\nonto the window object at screen location (“;
msg += e.screenX + “,” + e.screenY + “).”;
alert(msg);
return false;

}
</script>

</head>
<body ondragdrop=”return reportDrag(event)”>

Drag and Drop a file onto this window
</body>

</html>

The dragdrop event is the only one that uses the data property of the NN4 event object.
That property contains the URL. The target property reveals only the window object, but
you can access the event object’s screenX and screenY properties to get the location of the
mouse release.

Related Items: event object (Chapter 25).

onerror
Compatibility: WinIE4+, MacIE4+, NN3+, Moz1+, Safari1+

(See the discussion of the window.onerror property earlier in this chapter.)

onhelp
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-

The generic onhelp event handler is discussed in Chapter 15, but it also fires when the user
activates the context-sensitive help within a modal or modeless dialog box. In the latter case,
a user can click the Help icon in the dialog box’s title bar, at which time the cursor changes to
a question mark. The user can then click on any element in the window. At that second click,
the onhelp event handler fires, and the event object contains information about the element
clicked (the event.srcElement is a reference to the specific element), allowing a script to
supply help about that element.

windowObject.ondragdrop

459Chapter 16 ✦ Window and Frame Objects

To prevent the brower’s built-in help window from appearing, the event handler must evalu-
ate to return false (IE4+) or set the event.returnValue property to false (IE5+).

Example
The following script fragment can be embedded in the IE5+-only modeless dialog box code
in Listing 16-44 to provide context-sensitive help within the dialog box. Help messages for
only two of the form elements are shown here, but in a real application you add messages
for the rest.

function showHelp() {
switch (event.srcElement.name) {

case “bgColor” :
alert(“Choose a color for the main window\’s background.”);
break;

case “name” :
alert(“Enter your first name for a friendly greeting.”);
break;

default :
alert(“Make preference settings for the main page styles.”);

}
event.returnValue = false;

}
window.onhelp = showHelp

Because this page’s help focuses on form elements, the switch construction cases are based
on the name properties of the form elements. For other kinds of pages, the id properties may
be more appropriate.

Related Items: event object (Chapter 25); switch construction (Chapter 31).

onload
Compatibility: WinIE3+, MacIE3+, NN2+, Moz1+, Safari1+

The onload event handler fires in the current window at the end of the document loading
process (after all text and image elements have been transferred from the source file server
to the browser, and after all plug-ins and Java applets have loaded and started running). At
that point, the browser’s memory contains all the objects and script components in the docu-
ment that the browser can possibly know about.

The onload handler is an attribute of a <body> tag for a single-frame document or of the
<frameset> tag for the top window of a multiple-frame document. When the handler is an
attribute of a <frameset> tag, the event triggers only after all frames defined by that frame-
set have completely loaded.

Use either of the following scenarios to insert an onload handler into a document:

<html>
<head>
</head>
<body [other attributes] onload=”statementOrFunction”>

[body content]
</body>

</html>

<html>
<head>
</head>
<frameset [other attributes] onload=”statementOrFunction”>

windowObject.onload

460 Part III ✦ Document Objects Reference

<frame>frame specifications</frame>
</frameset>

</html>

This handler has a special capability when part of a frameset definition: The handler won’t
fire until the onload event handlers of all child frames in the frameset have fired. Therefore, if
some initialization scripts depend on components existing in other frames, trigger them from
the frameset’s onload event handler. This brings up a good general rule of thumb for writing
JavaScript: Scripts that execute during a document’s loading should contribute to the process
of generating the document and its objects. To act immediately on those objects, design addi-
tional functions that are called by the onload event handler for that window.

The type of operations suited for an onload event handler are those that can run quickly and
without user intervention. Users shouldn’t be penalized by having to wait for considerable
post-loading activity to finish before they can interact with your pages. At no time should you
present a modal dialog box as part of an onload handler. Users who design macros on their
machines to visit sites unattended may get hung up on a page that automatically displays an
alert, confirm, or prompt dialog box. On the other hand, an operation such as setting the
window.defaultStatus property is a perfect candidate for an onload event handler, as are
initializing event handlers as properties of element objects in the page.

Browsers equipped with pop-up window blockers ignore all window.open() method calls
in onload event handler functions.

Related Items: onunload event handler; window.defaultStatus property.

onmove
Compatibility: WinIE-, MacIE-, NN4, Moz-, Safari-

If a user drags an NN4 window around the screen, the action triggers a move event for the
window object. When you assign a function to the event (for example, window.onmove =
handleMoves), the function receives an event object whose screenX and screenY properties
reveal the coordinate point (relative to the entire screen) of the top-left corner of the window
after the move.

Related Items: event object (Chapter 25).

onresize
Compatibility: WinIE4+, MacIE4+, NN4+, Moz1+, Safari-

If a user resizes a window, the action causes the onresize event handler to fire for the win-
dow object. When you assign a function to the event (for example, window.onresize =
handleResizes), the NN event object conveys width and height properties that reveal the
outer width and height of the entire window. A window resize should not reload the docu-
ment such that an onload event handler fires (although some early Navigator versions did
fire the extra event).

Resizing the Navigator 4 browser window, especially if that window contains positioned ele-
ments (as div or layer elements), causes serious problems not only for the content, but also
for scripts in the page. Content can get jumbled, and scripts may disappear. Your only hope
is to use an onresize event handler to reload the page and get back to a known point. For
some ideas on handling this problem, see the article at http://developer.netscape.
com/viewsource/goodman_resize/goodman_resize.html. One point not covered in
the article is that the Windows version of NN4 issues a resize event when scrollbars appear

Note

Note

windowObject.onload

461Chapter 16 ✦ Window and Frame Objects

in a window. This resize event can make any reload-on-resize strategy turn into an infinite
loop. To guard against this, you have to inspect the window.innerWidth and window.
innerHeight properties to see if the window has really changed (the property values don’t
change when the scrollbars appear). Here is an example of script statements that go in the
Head script of a page that has to worry about this problem in NN4:

var Nav4 = (navigator.appName == “Netscape” &&
parseInt(navigator.appVersion) == 4);

if (Nav4) {
var loadWidth = window.innerWidth;
var loadHeight = window.innerHeight;

}

function restore() {
if (loadWidth != window.innerWidth || loadHeight !=

window.innerHeight) {
history.go(0);

}
}

if (Nav4)
window.onresize = restore;

This problem does not occur in NN6+ or Mozilla-based browsers.

Related Items: event object (Chapter 25).

onunload
Compatibility: WinIE3+, MacIE3+, NN2+, Moz1+, Safari1+

An unload event reaches the current window just before a document is cleared from view.
The most common ways windows are cleared are when new HTML documents are loaded
into them or when a script begins writing new HTML on the fly for the window or frame.

Limit the extent of the onunload event handler to quick operations that do not inhibit the
transition from one document to another. Do not invoke any methods that display dialog
boxes. You specify onunload event handlers in the same places in an HTML document as the
onload handlers: as a <body> tag attribute for a single-frame window or as a <frameset> tag
attribute for a multiframe window. Both onload and onunload event handlers can appear in
the same <body> or <frameset> tag without causing problems. The onunload event handler
merely stays safely tucked away in the browser’s memory, waiting for the unload event to
arrive for processing as the document gets ready to clear the window.

Let me pass along one caution about the onunload event handler. Even though the event
fires before the document goes away, don’t burden the event handler with time-consuming
tasks, such as generating new objects or submitting a form. The document will probably go
away before the function completes, leaving the function looking for objects and values that
no longer exist. The best defense is to keep your onunload event handler processing to a
minimum.

Browsers equipped with pop-up window blockers ignore all window.open() method calls
in onunload event handler functions.

Related Items: onload event handler.

Note

windowObject.onunload

462 Part III ✦ Document Objects Reference

frame Element Object
For HTML element properties, methods, and event handlers, see Chapter 15.

Properties Methods Event Handlers

allowTransparency
borderColor
contentDocument
contentWindow
frameBorder
height
longDesc
marginHeight
marginWidth
name
noResize
scrolling
src
width

Syntax
Accessing properties or methods of a frame element object from a frameset:

(IE4+) document.all.frameID. property | method([parameters])
(IE5+/W3C) document.getElementById(“frameID”). property | method([parameters])

Accessing properties of methods of a frame element from a frame document:

(IE4+) parent.document.all.frameID. property | method([parameters])
(IE5+/W3C) parent.document.getElementById(“frameID”). property |
method([parameters])

Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

About this object
As noted in the opening section of this chapter, a frame element object is distinct from the
frame object that acts as a window object in a document hierarchy. The frame element object
is available to scripts only when all HTML elements are exposed in the object model, as in
IE4+, NN6+, Mozilla, and Safari.

Because the frame element object is an HTML element, it shares the properties, methods,
and event handlers of all HTML elements, as described in Chapter 15. By and large, you
access the frame element object to set or modify an attribute value in the <frame> tag. If so,
you simplify matters if you assign an identifier to the id attribute of the tag. Your tag still
needs a name attribute if your scripts refer to frames through the original object model (a
parent.frameName reference). While there is no law against using the same identifier for

frame

463Chapter 16 ✦ Window and Frame Objects

both name and id attributes, using different names to prevent potential conflict with refer-
ences in browsers that recognize both attributes is best.

To modify the dimensions of a frame, you must go the frameset element object that defines
the cols and rows attributes for the frameset. These properties can be modified on the fly in
IE4+ and W3C DOM–compatible browsers.

Properties
allowTransparency

Value: Boolean. Read/Write
Compatibility: WinIE6+, MacIE-, NN-, Moz-, Safari-

The allowTransparency property indicates whether or not the frame’s background is trans-
parent. This property applies primarily to the iframe object, since framesets don’t have
background colors or images to show through a transparent frame.

borderColor
Value: Hexadecimal triplet or color name string. Read/Write
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-

If a frame displays a border (as determined by the frameborder attribute of the frame
element or border attribute of the frameset element), it can have a color set separately from
the rest of the frames. The initial color (if different from the rest of the frameset) is usually set
by the bordercolor attribute of the <frame> tag. After that, scripts can modify settings as
needed.

Modifying a single frame’s border can be risky at times, depending on your color combina-
tions. In practice, different browers appear to follow different rules when it comes to negotiat-
ing conflicts or defining just how far a single frame’s border extends into the border space.
Color changes to individual frame borders do not always render. Verify your designs on as
many browsers and operating system variations as you can to test your combinations.

Example
Although you may experience problems changing the color of a single frame border, the W3C
DOM syntax would look like the following if the script were inside the framesetting document:

document.getElementById(“contentsFrame”).borderColor = “red”;

The IE-only version would be:

document.all[“contentsFrame”].borderColor = “red”;

These examples assume the frame name arrives to a script function as a string. If the script is
executing in one of the frames of the frameset, add a reference to parent in the preceding
statements.

Related Items: frame.frameBorder, frameset.frameBorder properties.

contentDocument
Value: document object reference. Read-Only
Compatibility: WinIE-, MacIE-, NN6+, Moz1+, Safari1+

The contentDocument property of a frame element object is nothing more than a reference
to the document contained by that frame. This property bridges the gap between the frame

frame.contentDocument

464 Part III ✦ Document Objects Reference

element object and the frame object. Both of these objects contain the same document
object, but from a scripting point of view, references most typically use the frame object to
reach the document inside a frame, while the frame element is used to access properties
equated with the frame tag’s attributes. But if your script finds that it has a reference to the
frame element object, you can use the contentDocument property to get a valid reference to
the document, and therefore any other content of the frame.

Example
A framesetting document script might be using the ID of a frame element to read or adjust
one of the element properties, and then need to perform some action on the content of the
page through its document object. You can get the reference to the document object via a
statement, such as the following:

var doc = document.getElementById(“Frame3”).contentDocument;

Then your script can, for example, dive into a form in the document:

var val = doc.mainForm.entry.value;

Related Items: contentWindow property; document object.

contentWindow
Value: document object reference. Read-Only
Compatibility: WinIE5.5+, MacIE-, NN7+, Moz1+, Safari-

The contentWindow property of a frame element object is simply a reference to the window
generated by that frame. This property provides access to the frame’s window, which can
then be used to reach the document inside the frame.

Example
You can get the reference to the window object associated with a frame via a statement, such
as the following:

var win = document.getElementById(“Frame3”).contentWindow;

Related Items: window object.

frameBorder
Value: yes | no | 1 | 0 as strings. Read/Write
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

The frameBorder property offers scripted access to a frame element object’s frameborder
attribute setting. IE4+ does not respond well to modifying this property after the page has
loaded.

Values for the frameBorder property are strings that substitute for Boolean values. Values
yes or 1 mean that the border is (supposed to be) turned on; no or 0 turn off the border.

Example
The default value for the frameBorder property is yes. You can use this setting to create
a toggle script (which, unfortunately, does not change the appearance in IE). The W3C-
compatible version looks like the following:

frame.contentDocument

465Chapter 16 ✦ Window and Frame Objects

function toggleFrameScroll(frameID) {
var theFrame = document.getElementById(frameID);
if (theFrame.frameBorder == “yes”) {

theFrame.frameBorder = “no”;
} else {

theFrame.frameBorder = “yes”;
}

}

Related Items: frameset.frameBorder properties.

height
width

Value: Integer. Read-Only
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-

IE4+ lets you retrieve the height and width of a frame element object. These values are not
necessarily the same as the document.body.clientHeight and document.body.clientWidth,
because the frame dimensions include chrome associated with the frame, such as scrollbars.
These values are read-only. If you need to modify the dimensions of a frame, do so via the
frameset element object’s rows and/or cols properties. Reading integer values for a frame’s
height and width properties is much easier than trying to parse the rows and cols string
properties.

Example
The following fragment assumes a frameset defined with two frames set up as two columns
within the frameset. The statements here live in the framesetting document. They retrieve the
current width of the left frame and increase the width of that frame by 10 percent. Syntax
shown here is for the W3C DOM, but can be easily adapted to IE-only terminology.

var frameWidth = document.getElementById(“leftFrame”).width;
document.getElementById(“mainFrameset”).cols =

(Math.round(frameWidth * 1.1)) + “,*”;

Notice how the numeric value of the existing frame width is first increased by 10 percent and
then concatenated to the rest of the string property assigned to the frameset’s cols property.
The asterisk after the comma means that the browser should figure out the remaining width
and assign it to the right-hand frame.

Related Items: frameset object.

longDesc
Value: URL string. Read/Write
Compatibility: WinIE6+, MacIE5+, NN6+, Moz1+, Safari1+

The longDesc property is the scripted equivalent of the longdesc attribute of the <frame>
tag. This HTML 4.0 attribute is intended to provide browsers with a URL to a document that
contains a long description of the element. Future browsers can use this feature to provide
information about the frame for visually impaired site visitors.

frame.longDesc

466 Part III ✦ Document Objects Reference

marginHeight
marginWidth

Value: Integer. Read/Write
Compatibility: WinIE6+, MacIE5+, NN6+, Moz1+, Safari1+

Browsers tend to automatically insert content within a frame by adding a margin between the
content and the edge of the frame. These values are represented by the marginHeight (top
and bottom edges) and marginWidth (left and right edges) properties. Although the proper-
ties are not read-only, changing the values after the frameset has loaded does not alter the
appearance of the document in the frame. If you need to alter the margin(s) of a document
inside a frame, adjust the document.body.style margin properties.

Also be aware that although the default values of these properties are empty (meaning when
no marginheight or marginwidth attributes are set for the <frame> tag), margins are built
into the page. The precise pixel count of those margins varies with operating system.

Related Items: style object (Chapter 26).

name
Value: String. Read/Write
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

The name property is the identifier associated with the frame for use as a frame reference.
Scripts can reference the frame through the name property (e.g., top.frames[“myFrame”]),
which is typically assigned via the name attribute.

noResize
Value: Boolean. Read/Write
Compatibility: WinIE6+, MacIE5+, NN6+, Moz1+, Safari1+

Web designers commonly fix their framesets so that users cannot resize the frames (by drag-
ging any divider border between frames). The noResize property lets you read and adjust
that behavior of a frame after the page has loaded. For example, during some part of the
interaction with a user on a page, you may allow the user to modify the frame size manually
while in a certain mode. Or you may grant the user one chance to resize the frame. When the
onresize event handler fires, a script sets the noResize property of the frame element to
false. If you turn off resizing for a frame, all edges of the frame become non-resizable,
regardless of the noResize value setting of adjacent frames. Turning off resizability has no
effect on the ability of scripts to alter the sizes of frames via the frameset element object’s
cols or rows properties.

Example
The following statement turns off the ability for a frame to be resized:

parent.document.getElementById(“myFrame1”).noResize = true;

Because of the negative nature of the property name, it may be difficult to keep the logic
straight (setting noResize to true means that resizability is turned off). Keep a watchful eye
on your Boolean values.

Related Items: frameset.cols, frameset.rows properties.

frame.marginHeight

467Chapter 16 ✦ Window and Frame Objects

scrolling
Value: yes | no | 1 | 0 as strings. Read/Write
Compatibility: WinIE6+, MacIE5+, NN6+, Moz1+, Safari1+

The scrolling property lets scripts turn scrollbars on and off inside a single frame of a
frameset. By default, scrolling is turned on unless overridden by the scroll attribute of the
<frame> tag.

Values for the scrolling property are strings that substitute for Boolean values. Values yes
or 1 mean that scrollbars are visible (provided there is more content than can be viewed
without scrolling); no or 0 hide scrollbars in the frame. IE4+ also recognizes (and sets as
default) the auto value.

Although this property is read/write, changing its value by script does not alter a frame’s
appearance in WinIE5.5+, Mozilla browsers, or Safari.

Example
Listing 16-45 produces a frameset consisting of eight frames. The content for the frames is
generated by a script within the frameset (via the fillFrame() function). Event handlers
(onclick) in the Body of each frame invoke the toggleFrameScroll() function. Both ways
of referencing the frame element object are shown, with the IE-only version commented out.

In the toggleFrameScroll() function, the if condition checks whether the property is set
to something other than no. This allows the condition to evaluate to true if the property is
set to either auto (the first time) or yes (as set by the function). Note that the scrollbars
don’t disappear from the frames in IE5.5+, NN6+, Moz, or Safari.

Listing 16-45: Controlling the frame.scrolling Property

<html>
<head>

<title>frame.scrolling Property</title>
<script type=”text/javascript”>
function toggleFrameScroll(frameID) {

// IE5+/W3C version
var theFrame = document.getElementById(frameID);
// IE4+ version
// var theFrame = document.all[frameID];

if (theFrame.scrolling != “no”) {
theFrame.scrolling = “no”;

} else {
theFrame.scrolling = “yes”;

}
}

// generate content for each frame
function fillFrame(frameID) {

var page = “<html><body onclick=’parent.toggleFrameScroll(\”” +
frameID + “\”)’>”;
page += “<p>This frame has the ID of:<\/p><p>” + frameID + “.<\/p>”;
page += “<\/span><\/body><\/html>”;
return page;

Continued

Note

frame.scrolling

468 Part III ✦ Document Objects Reference

Listing 16-45 (continued)

}
</script>

</head>
<frameset id=”outerFrameset” cols=”50%,50%”>

<frameset id=”innerFrameset1” rows=”25%,25%,25%,25%”>
<frame id=”myFrame1” src=”javascript:parent.fillFrame(‘myFrame1’)” />
<frame id=”myFrame2” src=”javascript:parent.fillFrame(‘myFrame2’)” />
<frame id=”myFrame3” src=”javascript:parent.fillFrame(‘myFrame3’)” />
<frame id=”myFrame4” src=”javascript:parent.fillFrame(‘myFrame4’)” />

</frameset>
<frameset id=”innerFrameset2” rows=”25%,25%,25%,25%”>

<frame id=”myFrame5” src=”javascript:parent.fillFrame(‘myFrame5’)” />
<frame id=”myFrame6” src=”javascript:parent.fillFrame(‘myFrame6’)” />
<frame id=”myFrame7” src=”javascript:parent.fillFrame(‘myFrame7’)” />
<frame id=”myFrame8” src=”javascript:parent.fillFrame(‘myFrame8’)” />

</frameset>
</frameset>

</html>

src
Value: URL string. Read/Write
Compatibility: WinIE6+, MacIE5+, NN6+, Moz1+, Safari1+

The src property of a frame element object offers an additional way of navigating to a differ-
ent page within a frame (meaning other than assigning a new URL to the location.href
property of the frame object). For backward compatibility with older browsers, however, con-
tinue using location.href for scripted navigation. Remember that the src property belongs
to the frame element object, not the window object it represents. Therefore, references to the
src property must be via the element’s ID and/or node hierarchy.

Example
For best results, use fully formed URLs as value for the src property, as shown here:

parent.document.getElementById(“mainFrame”).src = “http://www.dannyg.com”;

Relative URLs and javascript: pseudo-URLs will also work most of the time.

Related Items: location.href property.

frameset Element Object
For HTML element properties, methods, and event handlers, see Chapter 15.

frame.scrolling

469Chapter 16 ✦ Window and Frame Objects

Properties Methods Event Handlers

border
borderColor
cols
frameBorder
frameSpacing
rows

Syntax
Accessing properties or methods of a frameset element object from a frameset:

(IE4+) document.all.framesetID. property | method([parameters])
(IE5+/W3C) document.getElementById(“framesetID”). property |
method([parameters])

Accessing properties of methods of a frameset element from a frame document:

(IE4+) parent.document.all.framesetID. property | method([parameters])
(IE5+/W3C) parent.document.getElementById(“framesetID”). property |

method([parameters])

Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

About this object
The frameset element object is the script-accessible equivalent of the element generated via
the <frameset> tag. This element is different from the parent (window-type) object from the
original object model. A frameset element object has properties and methods that impact
the HTML element; in contrast, the window object referenced from documents inside frames
via the parent or top window references contains a document and all the content that goes
along with it.

When framesets are nested in one another, a node parent–child relationship exists between
containing and contained framesets. For example, consider the following skeletal nested
frameset structure:

<frameset id=”outerFrameset” cols=”30%, 70%”>
<frame id=”frame1”>
<frameset id=”innerFrameset” rows=”50%,50%”>

<frame id=”frame2”>
<frame id=”frame3”>

</frameset>
</frameset>

When writing scripts for documents that go inside any of the frames of this structure, refer-
ences to the framesetting window and frames are a flatter hierarchy than the HTML signifies.
A script in any frame references the framesetting window via the parent reference; a script in
any frame references another frame via the parent.frameName reference. In other words, the
window objects of the frameset defined in a document are all siblings and share the same
parent.

frameset

470 Part III ✦ Document Objects Reference

Such is not the case when viewing the preceding structure from the perspective of W3C node
terminology. Parent–child relationships are governed by the nesting of HTML elements, irre-
spective of whatever windows get generated by the browser. Therefore, frame frame2 has
only one sibling, frame3. Both of those share one parent, innerFrameset. Both
innerFrameset and frame1 are children of outerFrameset. If your script were sitting on a
reference to frame2, and you wanted to change the cols property of outerFrameset, you
would have to traverse two generations of nodes:

frame2Ref.parentNode.parentNode.cols = “40%,60%”;

What might confuse matters ever more in practice is that a script belonging to one of the
frames must use window object terminology to jump out of the current window object to the
frameset that generated the frame window for the document. In other words, there is no
immediate way to jump directly from a document to the frame element object that defines
the frame in which the document resides. The document’s script accesses the node hierarchy
of its frameset via the parent.document reference. But this reference is to the document
object that contains the entire frameset structure. Fortunately, the W3C DOM provides the
getElementById() method to extract a reference to any node nested within the document.
Thus, a document inside one of the frames can access the frame element object just as if it
were any element in a typical document (which it is):

parent.document.getElementById(“frame2”)

No reference to the containing frameset element object is necessary. Or, to make that col-
umn width change from a script inside one of the frame windows, the statement would be:

parent.document.getElementById(“outerFrame”).cols = “40%,60%”;

The inner frameset is equally accessible by the same syntax.

Properties
border

Value: Integer. Read/Write
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari1+

The border property of a frameset element object lets you read the thickness (in pixels) of
the borders between frames of a frameset. If you do not specify a border attribute in the
frameset’s tag, the property is empty, rather than reflecting the actual border thickness
applied by default.

Example
Even though the property is read/write, changing the value does not change the thickness of
the border you see in the browser. If you need to find the thickness of the border, a script ref-
erence from one of the frame’s documents would look like the following:

var thickness = parent.document.all.outerFrameset.border;

Related Items: frameset.frameBorder property.

frameset

471Chapter 16 ✦ Window and Frame Objects

borderColor
Value: Hexadecimal triplet or color name string. Read/Write
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-

The borderColor property lets you read the value of the color assigned to the bordercolor
attribute of the frameset’s tag. Although the property is read/write, changing the color by
script does not alter the border colors rendered in the browser window. Attribute values set
as color names are returned as hexadecimal triplets when you read the property value.

Example
To retrieve the current color setting in a frameset, a script reference from one of the frame’s
documents would look like the following:

var borderColor = parent.document.all.outerFrameset.borderColor;

Related Items: frame.borderColor, frameset.frameBorder properties.

cols
rows

Value: String. Read/Write
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

The cols and rows properties of a frameset element object let you read and modify the
sizes of frames after the frameset has loaded. These two properties are defined in the W3C
DOM. Values for both properties are strings, which may include percent symbols or asterisks.
Therefore if you are trying to increase or decrease the size of a frame column or row gradu-
ally, you must parse the string for the necessary original values before performing any math
on them (or, in IE4+, use the frame element object’s height and width properties to gauge
the current frame size in pixels).

Adjusting these two properties lets you completely modify the frameset. This includes adding
or removing columns or rows to the frameset grid. Because a change in the frameset struc-
ture could impact scripts by changing the size of the frames array associated with the parent
window or unloading documents that contain needed data, be sure to test your scripts with
both states of your frameset. If you want to remove a frame from a frameset view, you might
be safer to specify the size of zero for that particular row or column in the frameset. Of
course a size of zero still leaves a one-pixel frame, but it is essentially invisible if borders are
not turned on and the 1-pixel frame shares the same background color as the other frames.
Another positive by-product of this technique is that you can restore the other frame with its
document state identical from when it was hidden.

When you have nested framesets defined in a single document, be sure to reference the
desired frameset element object. One object may be specifying the columns, while another
(nested) one specifies the rows for the grid. Assign a unique ID to each frameset element so
that references can be reliably directed to the proper object.

Example
Listings 16-46 through 16-48 show the HTML for a frameset and two of the three documents
that go into the frameset. The final document is an HTML version of the U.S. Bill of Rights,
which is serving here as a content frame for the demonstration.

frameset.cols

472 Part III ✦ Document Objects Reference

The frameset listing (see Listing 16-46) shows a three-frame setup. Down the left column is a
table of contents (see Listing 16-47). The right column is divided into two rows. In the top row
is a simple control (see Listing 16-48) that hides and shows the table of contents frame. As
the user clicks the hot text of the control (located inside a span element), the onclick event
handler invokes the toggleTOC() function in the frameset.

Syntax used in this example is W3C-compatible. To modify this for IE-only, you replace docu-
ment.getElementById(“outerFrameset”) with document.all.outerFrameset and
elem.firstChild.nodeValue to elem.innerText. You can also branch within the scripts to
accommodate both styles.

Listing 16-46: Frameset and Script for Hiding/Showing a Frame

<html>
<head>

<title>Hide/Show Frame Example</title>
<script type=”text/javascript”>
var origCols;
function toggleTOC(elem, frm) {

if (origCols) {
showTOC(elem);

} else {
hideTOC(elem, frm);

}
}
function hideTOC(elem, frm) {

var frameset = document.getElementById(“outerFrameset”);
origCols = frameset.cols;
frameset.cols = “0,*”;

}
function showTOC(elem) {

if (origCols) {
document.getElementById(“outerFrameset”).cols = origCols;
origCols = null;

}
}
</script>

</head>
<frameset id=”outerFrameset” frameborder=”no” cols=”150,*”>

<frame id=”TOC” name=”TOCFrame” src=”lst16-47.htm” />
<frameset id=”innerFrameset1” rows=”80,*”>

<frame id=”controls” name=”controlsFrame” src=”lst16-48.htm” />
<frame id=”content” name=”contentFrame” src=”bofright.htm” />

</frameset>
</frameset>

</html>

When a user clicks the hot spot to hide the frame, the script copies the original cols prop-
erty settings to a global variable. The variable is used in showTOC() to restore the frameset to
its original proportions. This allows a designer to modify the HTML for the frameset without
also having to dig into scripts to hard-wire the restored size.

frameset.cols

473Chapter 16 ✦ Window and Frame Objects

Listing 16-47: Table of Contents Frame Content

<html>
<head>

<title>Table of Contents</title>
</head>
<body bgcolor=”#EEEEEE”>

<h3>
Table of Contents

</h3>
<hr />
<ul style=”font-size:10pt”>

Article
I

Article
II

Article
III

Article
IV

Article
V

Article
VI

Article
VII

Article
VIII

Article
IX

Article
X

</body>

</html>

Listing 16-48: Control Panel Frame

<html>
<head>

<title>Control Panel</title>
</head>
<body>

<p><span id=”tocToggle” style=”text-decoration:underline; cursor:pointer”
onclick=”parent.toggleTOC()”><<Hide/Show>> Table of
Contents</p>

</body>
</html>

Related Items: frame object.

frameset.cols

474 Part III ✦ Document Objects Reference

frameBorder
Value: yes | no | 1 | 0 as strings. Read/Write
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-

The frameBorder property offers scripted access to a frameset element object’s
frameborder attribute setting. IE4+ does not respond well to modifying this property after
the page has loaded.

Values for the frameBorder property are strings that substitute for Boolean values. Values
yes or 1 mean that the border is (supposed to be) turned on; no or 0 turn off the border.

Example
The default value for the frameBorder property is yes. You can use this setting to create a
toggle script (which, unfortunately, does not change the appearance in IE). The IE4+-compati-
ble version looks like the following:

function toggleFrameScroll(framesetID) {
var theFrameset = document.all(framesetID);
if (theFrameset.frameBorder == “yes”) {

theFrameset.frameBorder = “no”;
} else {

theFrameset.frameBorder = “yes”;
}

}

Related Items: frame.frameBorder properties.

frameSpacing
Value: Integer. Read/Write
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-

The frameSpacing property of a frameset element object lets you read the spacing
(in pixels) between frames of a frameset. If you do not specify a framespacing attribute in
the frameset’s tag, the property is empty, rather than reflecting the actual border thickness
applied by default (usually 2).

Example
Even though the property is read/write in IE4+, changing the value does not change the thick-
ness of the frame spacing you see in the browser. If you need to find the spacing as set by the
tag’s attribute, a script reference from one of the frame’s documents would look like the
following:

var spacing = parent.document.all.outerFrameset.frameSpacing;

Related Items: frameset.border property.

iframe Element Object
For HTML element properties, methods, and event handlers, see Chapter 15.

frameset.frameBorder

475Chapter 16 ✦ Window and Frame Objects

Properties Methods Event Handlers

align
allowTransparency
contentDocument
contentWindow
height
hspace
longDesc
marginHeight
marginWidth
name
scrolling
src
vspace
width

Syntax
Accessing properties or methods of an iframe element object from a containing document:

(IE4+) document.all.iframeID. property | method([parameters])
(IE4+/NN6) window.frames[“iframeName”]. property | method([parameters])
(IE5+/W3C) document.getElementById(“iframeID”). property | method([parameters])

Accessing properties of methods of an iframe element from a document inside the iframe
element:

(IE4+) parent.document.all.iframeID. property | method([parameters])
(IE5+/W3C) parent.document.getElementById(“iframeID”). property |
method([parameters])

Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

About this object
An iframe element allows HTML content from a separate source to be loaded within the
body of another document. In some respects, the NN4 layer element was a precursor to the
iframe concept, but unlike the layer, an iframe element is not inherently positionable. It is
positionable the same way as any other HTML element, by assigning positioning attributes to
a stylesheet associated with the iframe. Without explicit positioning, an iframe element
appears in the body of a document in normal source code order of elements. Unlike a frame
of a frameset, you can place an iframe arbitrarily in the middle of any document. If the
frame changes size under script control, the surrounding content moves out of the way or
cinches up.

What truly separates the iframe apart from other HTML elements is its ability to load and
display external HTML files and, with the help of scripts, have different pages loaded into the
iframe without disturbing the rest of the content of the main document. Pages loaded into
the iframe can also have scripts and any other features that you may like to put into an
HTML document (including XML in IE for Windows).

iframe

476 Part III ✦ Document Objects Reference

The iframe element has a rich set of attributes that let the HTML author control the look,
size (height and width), and, to some degree, behavior of the frame. Most of those are
accessible to scripts as properties of an iframe element object.

It is important to bear in mind that an iframe element is in many respects like a frame ele-
ment, especially when it comes to window kinds of relationships. If you plant an iframe ele-
ment in a document of the main window, that element shows up in the main window’s object
model as a frame, accessible via common frames terminology:

window.frames[i]
window.frames[frameName]

Within that iframe frame object is a document and all its contents. All references to the doc-
ument objects inside the iframe must flow through the “portal” of the iframe frame.

Conversely, scripts in the document living inside an iframe can communicate with the main
document via the parent reference. Of course, you cannot replace the content of the main
window with another HTML document (using location.href, for instance) without destroy-
ing the iframe that was in the original document.

Properties
align

Value: String. Read/Write
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

The align property governs how an iframe element aligns itself with respect to surrounding
content on the page. Two of the possible values (left and right) position the iframe along
the left and right edge (respectively) of the iframe’s containing element (usually the body).
Just as with an image, when an iframe is floated along the left and right edges of a container,
other content wraps around the element. Table 16-5 shows all possible values and their
meanings.

Table 16-5: Values of the align Property

Value Description

absbottom Aligns the bottom of the iframe with the imaginary line that extends along character
descenders of surrounding text.

absmiddle Aligns the middle of the iframe with the center point between the surrounding text’s
top and absbottom.

baseline Aligns the bottom of the iframe with the baseline of surrounding text.

bottom Same as baseline in IE.

left Aligns the iframe flush with left edge of the containing element.

middle Aligns the imaginary vertical centerline of surrounding text with the same for the
iframe element.

right Aligns the iframe flush with the right edge of the containing element.

texttop Aligns the top of the iframe element with the imaginary line that extends along the
tallest ascender of surrounding text.

top Aligns the top of the iframe element with the surrounding element’s top.

iframe

477Chapter 16 ✦ Window and Frame Objects

As your script changes the value of the align property, the page automatically reflows the
content to suit the new alignment.

Example
The default setting for an iframe alignment is baseline. A script can shift the iframe to be
flush with the right edge of the containing element as follows:

document.getElementById(“iframe1”).align = “right”;

Related Items: iframe.hspace, iframe.vspace properties.

allowTransparency
Value: Boolean. Read/Write
Compatibility: WinIE6+, MacIE-, NN-, Moz-, Safari-

The allowTransparency property indicates whether or not the frame’s background is trans-
parent. By setting this property to true, you allow a background color or image to show
through the transparent frame.

contentDocument
Value: document object reference. Read-Only
Compatibility: WInIE-, MacIE-, NN6+, Moz1+, Safari1+

The contentDocument property of an iframe element object is nothing more than a refer-
ence to the document contained by that frame. If your script finds that it has a reference to
an iframe element object, you can use the contentDocument property to get a valid refer-
ence to the document, and therefore any other content of the frame.

Example
A document script might be using the ID of an iframe element to read or adjust one of the
element properties; it then needs to perform some action on the content of the page through
its document object. You can get the reference to the document object via a statement, such
as the following:

var doc = document.getElementById(“Frame3”).contentDocument;

Then your script can, for example, dive into a form in the document:

var val = doc.mainForm.entry.value;

Related Items: contentWindow property; document object.

contentWindow
Value: document object reference. Read-Only
Compatibility: WInIE5.5+, MacIE-, NN7+, Moz1+, Safari-

The contentWindow property of an iframe element object serves as a reference to the
window object generated by the frame. You can then use this window object as a means of
accessing the document object and any document elements.

Related Items: contentDocument property; window object.

iframe.contentWindow

478 Part III ✦ Document Objects Reference

height
width

Value: Integer. Read/Write
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

The height and width properties provide access to the height and width of the iframe
object, and allow you to alter the size of the frame. Both properties are specified in pixels.

hspace
vspace

Value: Integer. Read/Write
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-

These IE-specific properties allow for margins to be set around an iframe element. In general,
hspace and vspace properties (and their HTML attributes) have been replaced by CSS mar-
gins and padding. These properties and their attributes are not recognized by any W3C stan-
dard (including HTML 4.0).

Values for these properties are integers representing the number of pixels of padding
between the element and surrounding content. The hspace value assigns the same number of
pixels to the left and right sides of the element; the vspace value is applied to both the top
and bottom edges. Scripted changes to these values have no effect in WinIE5+.

Related Items: style.padding property.

longDesc
Value: URL string. Read/Write
Compatibility: WinIE6+, MacIE5+, NN6+, Moz1+, Safari1+

The longDesc property is the scripted equivalent of the longdesc attribute of the <iframe>
tag. This HTML 4.0 attribute is intended to provide browsers with a URL to a document that
contains a long description of the element. Future browsers can use this feature to provide
information about the frame for visually impaired site visitors.

marginHeight
marginWidth

Value: Integer. Read/Write
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

Browsers tend to automatically insert content within a frame by adding a margin between the
content and the edge of the frame. These values are represented by the marginHeight (top
and bottom edges) and marginWidth (left and right edges) properties. Although the proper-
ties are not read-only, changing the values after the frameset has loaded does not alter the
appearance of the document in the frame. If you need to alter the margin(s) of a document
inside a frame, adjust the document.body.style margin properties.

Also be aware that although the default values of these properties are empty (that is, when no
marginheight or marginwidth attributes are set for the <iframe> tag), margins are built into
the page. The precise pixel count of those margins varies with different operating systems.

Related Items: style object (Chapter 26).

iframe.height

479Chapter 16 ✦ Window and Frame Objects

name
Value: String. Read/Write
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

The name property is the identifier associated with the frame for use as a frame reference.
Scripts can reference the frame through the name property (e.g., window.frames
[“myIframe”]), which is typically assigned via the name attribute.

scrolling
Value: yes | no | 1 | 0 as strings. Read/Write
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

The scrolling property lets scripts turn scroll bars on and off inside an iframe element. By
default, scrolling is turned on unless overridden by the scroll attribute of the <iframe> tag.

Values for the scrolling property are strings that substitute for Boolean values. Values yes
or 1 mean that scroll bars are visible (provided there is more content than can be viewed
without scrolling); no or 0 hide scrollbars in the frame. IE4+ also recognizes (and sets as
default) the auto value.

Example
The following toggleIFrameScroll() function accepts a string of the iframe element’s ID
as a parameter and switches between on and off scrollbars in the iframe. The if condition
checks whether the property is set to something other than no. This test allows the condition
to evaluate to true if the property is set to either auto (the first time) or yes (as set by the
function).

function toggleFrameScroll(frameID) {
// IE5 & NN6 version
var theFrame = document.getElementById(frameID);
// IE4+ version
// var theFrame = document.all[frameID]
if (theFrame.scrolling != “no”) {

theFrame.scrolling = “no”;
} else {

theFrame.scrolling = “yes”;
}

}

Related Items: frame.scrolling property.

src
Value: URL string. Read/Write
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

The src property of an iframe element object offers an additional way of navigating to
a different page within an inline frame (that is, other than assigning a new URL to the
location.href property of the frame object). Remember that the src property belongs
to the iframe element object, not the window object it represents. Therefore, references
to the src property must be via the element’s ID and/or node hierarchy.

iframe.src

480 Part III ✦ Document Objects Reference

Example
For best results, use fully formed URLs as value for the src property, as shown here:

document.getElementById(“myIframe”).src = “http://www.dannyg.com”;

Relative URLs and javascript: pseudo-URLs also work most of the time.

Related Items: location.href property.

popup Object

Properties Methods Event Handlers

document hide()
isOpen show()

Syntax
Creating a popup object:

var popupObj = window.createPopup()

Accessing properties or methods of a popup object from a document in the window that cre-
ated the pop-up:

popupObj.property | method([parameters])

Compatibility: WinIE5.5+, MacIE-, NN-, Moz-, Safari-

About this object
A popup object is a chrome-less window space, which overlaps the window whose document
generates the pop-up. A pop-up also appears in front of any dialog boxes. Unlike the dialog
box windows generated via IE’s showModalDialog() and showModelessDialog() methods,
your scripts must not only create the window, but also put content into it, and then define
where on the screen and how big it will be.

Because the pop-up window has no chrome (that is, title bar, resize handles, and so forth),
you should populate its content with a border and/or background color so that it stands out
from the main window’s content. The following statements reflect a typical sequence of creat-
ing, populating, and showing a popup object:

var popup = window.createPopup();
var popupBody = popup.document.body;
popupBody.style.border = “solid 2px black”;
popupBody.style.padding = “5px”;
popupBody.innerHTML = “<p>Here is some text in a popup window</p>”;
popup.show(200,100, 200, 50, document.body);

The pop-up window that IE creates is, in fact, a window, but only from the point of view of the
document that it contains. In other words, while the number of properties and methods for
the popup object is small, the parentWindow property of the document inside the pop-up

iframe.src

481Chapter 16 ✦ Window and Frame Objects

points to a genuine window property. Even so, be aware that this pop-up does not appear as a
distinct window among windows listed in the Windows Taskbar. If a user clicks outside of the
pop-up or switches to another application, the pop-up disappears, and you must reinvoke the
show() method by script (complete with dimension and position parameters) to force the
pop-up to reappear.

When you assign content to a pop-up, you are also responsible for making sure that the con-
tent fits the size of the pop-up you specify. If the content runs past the rectangular space
(body text word wraps within the pop-up’s rectangle), no scroll bars appear.

Properties
document

Value: document object reference. Read-Only
Compatibility: WinIE5.5+, MacIE-, NN-, Moz-, Safari-

Use the document property as a gateway to the content of a pop-up window. This property is
the only access point available from the script that creates the pop-up to the pop-up itself.
The most common application of this property is to set document properties governing the
content of the pop-up window. For example, to give the pop-up a border (because the pop-up
itself has no window chrome), the script that creates the window can assign values to the
style property of the document in the pop-up window, as follows:

myPopup.document.body.style.border = “solid 3px gray”;

Beware that the document object of a pop-up window may not implement the full flexibility
you know about primary window document objects. For example, you are not allowed to
assign a URL to the document.URL property in a pop-up window.

Example
Use The Evaluator (Chapter 13) to experiment with the popup object and its properties. Enter
the following statements into the top text box. The first statement creates a pop-up window,
whose reference is assigned to the a global variable. Next, a reference to the body of the pop-
up’s document is preserved in the b variable for the sake of convenience. Further statements
work with these two variables.

a = window.createPopup()
b = a.document.body
b.style.border = “solid 2px black”
b.style.padding = “5px”
b.innerHTML = “<P>Here is some text in a popup window</P>”
a.show(200,100, 200, 50, document.body)

See the description of the show() method for details on the parameters.

Related Items: document object.

isOpen
Value: Boolean. Read-Only
Compatibility: WinIE5.5+, MacIE-, NN-, Moz-, Safari-

While a pop-up window is visible, its isOpen property returns true; otherwise the property
returns false. Because any user action in the browser causes the pop-up to hide itself, the
property is useful only for script statements that are running on their own after the pop-up is
made visible.

popupObject.isOpen

482 Part III ✦ Document Objects Reference

Example
Use The Evaluator (Chapter 13) to experiment with the isOpen property. Enter the following
statements into the top text box. The sequence begins with a creation of a simple pop-up win-
dow, whose reference is assigned to the a global variable. Note that the final statement is
actually two statements, designed so that the second statement executes while the pop-up
window is still open.

a = window.createPopup();
a.document.body.innerHTML = “<p>Here is a popup window</p>”;
a.show(200,100, 200, 50, document.body); alert(“Popup is open:” + a.isOpen);

If you then click into the main window to hide the pop-up, you will see a different result if you
enter the following statement into the top text box by itself:

alert(“Popup is open:” + a.isOpen);

Related Items: popup.show() method.

Methods
hide()
show(left, top, width, height[, positioningElementRef])

Returns: Nothing.
Compatibility: WinIE5.5+, MacIE-, NN-, Moz-, Safari-

After you have created a popup object with the window.createPopup() method and popu-
lated it with content, you must explicitly show the window via the show() method. If the win-
dow is hidden because a user clicked the main browser window somewhere, the show()
method (and all its parameters) must be invoked again. To have a script hide the window,
invoke the hide() method for the popup object.

The first four parameters of the show() method are required and define the pixel location
and size of the pop-up window. By default, the coordinate space for the left and top parame-
ters is the video display. Thus, a left and top setting of zero places the pop-up in the upper-
left corner of the video screen. But you can also define a different coordinate space by adding
an optional fifth parameter. This parameter must be a reference to an element on the page. To
confine the coordinate space to the content region of the browser window, specify the docu-
ment.body object as the positioning element reference.

Example
Listing 16-49 demonstrates both the show() and hide() methods for a popup object. A click
of the button on the page invokes the selfTimer() function, which acts as the main routine
for this page. The goal is to produce a pop-up window that “self-destructs” five seconds after
it appears. Along the way, a message in the pop-up counts down the seconds.

A reference to the pop-up window is preserved as a global variable, called popup. After the
popup object is created, the initContent() function stuffs the content into the pop-up by
way of assigning style properties and some innerHTML for the body of the document that is
automatically created when the pop-up is generated. A span element is defined so that another
function later on can modify the content of just that segment of text in the pop-up. Notice that
the assignment of content to the pop-up is predicated on the pop-up window having been ini-
tialized (by virtue of the popup variable having a value assigned to it) and that the pop-up
window is not showing. Although invoking initContent() under any other circumstances is
probably impossible, the validation of the desired conditions is good programming practice.

popupObject.isOpen()

483Chapter 16 ✦ Window and Frame Objects

Back in selfTimer(), the popup object is displayed. Defining the desired size requires some
trial and error to make sure the pop-up window comfortably accommodates the text that is
put into the pop-up in the initContent() function.

With the pop-up window showing, now is the time to invoke the countDown() function.
Before the function performs any action, it validates that the pop-up has been initialized and
is still visible. If a user clicks the main window while the counter is counting down, this
changes the value of the isOpen property to false, and nothing inside the if condition
executes.

This countDown() function grabs the inner text of the span and uses paresInt() to extract
just the integer number (using base 10 numbering, because we’re dealing with zero-leading
numbers that can potentially be regarded as octal values). The condition of the if construc-
tion decreases the retrieved integer by one. If the decremented value is zero, then the time is
up, and the pop-up window is hidden with the popup global variable returned to its original,
null value. But if the value is other than zero, then the inner text of the span is set to the
decremented value (with a leading zero), and the setTimeout() method is called upon to
reinvoke the countDown() function in one second (1,000 milliseconds).

Listing 16-49: Hiding and Showing a Pop-up

<html>
<head>

<title>popup Object</title>
<script type=”text/javascript”>
var popup;
function initContent() {

if (popup && !popup.isOpen) {
var popBody = popup.document.body;
popBody.style.border = “solid 3px red”;
popBody.style.padding = “10px”;
popBody.style.fontSize = “24pt”;
popBody.style.textAlign = “center”;
var bodyText = “<P>This popup will self-destruct in “;
bodyText += “05<\/span>”;
bodyText += “ seconds...<\/P>”;
popBody.innerHTML = bodyText;

}
}
function countDown() {

if (popup && popup.isOpen) {
var currCount = parseInt(popup.document.all.counter.innerText, 10);
if (--currCount == 0) {

popup.hide();
popup = null;

} else {
popup.document.all.counter.innerText = “0” + currCount;
setTimeout(“countDown()”, 1000);

}
}

}
function selfTimer() {

popup = window.createPopup();
initContent();

Continued

popupObject.hide()

484 Part III ✦ Document Objects Reference

Listing 16-49 (continued)

popup.show(200,200,400,100,document.body);
setTimeout(“countDown()”, 1000);

}
</script>

</head>
<body>

<form>
<input type=”button” value=”Impossible Mission”
onclick=”selfTimer()” />

</form>
</body>

</html>

The hide() method here is invoked by a script that is running while the pop-up window is
showing. Because a pop-up window automatically goes away if a user clicks the main window,
it is highly unlikely that the hide() method would ever be invoked by itself in response to
user action in the main window. If you want a script in the pop-up window to close the pop-
up, use parentWindow.close().

Related Items: popup.isOpen property, window.createPopup() method.

✦ ✦ ✦

popupObject.hide()

Location and
History Objects

Not all objects in the document object model are “things” you
can see in the content area of the browser window. Each

browser window or frame maintains a bunch of other information
about the page you are currently visiting and where you have been.
The URL of the page you see in the window is called the location,
and browsers store this information in the location object. As you
surf the Web, the browser stores the URLs of your past pages in the
history object. You can manually view what that object contains
by looking in the browser menu that enables you to jump back to a
previously visited page. This chapter is all about these two nearly
invisible, but important, objects.

Not only are these objects valuable to your browser, but they are also
valuable to snoopers who might want to write scripts to see what
URLs you’re viewing in another frame or the URLs of other sites
you’ve visited in the last dozen mouse clicks. As a result, security
restrictions built into browsers limit access to some of these objects’
properties (unless you use signed scripts in NN4+). For older
browsers, these properties simply are not available from a script.

location Object

Properties Methods Event Handlers

hash assign() None

host reload()
hostname replace()
href
pathname
port
protocol
search

1717C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Loading new pages and
other media types via
the location object

Security restrictions
across frames

Navigating through the
browser history under
script control

✦ ✦ ✦ ✦

486 Part III ✦ Document Objects Reference

Syntax
Loading a new document into the current window:

[window.]location.href = “URL”;

Accessing location object properties or methods:

[window.]location.property | method([parameters])

About this object
In its place one level below window-style objects in the original document object hierarchy,
the location object represents information about the URL of any currently open window or
of a specific frame. A multiple-frame window displays the parent window’s URL in the
Location (or Address) field of the browser. Each frame also has a location associated with it,
although you may not see any overt reference to the frame’s URL in the browser. To get URL
information about a document located in another frame, the reference to the location
object must include the window frame reference. For example, if you have a window consist-
ing of two frames, Table 17-1 shows the possible references to the location objects for all
frames comprising the Web presentation.

Scripts cannot alter the URL displayed in the browser’s Location/Address box. For security
and privacy reasons, that text box cannot display anything other than the URL of a current
page or URL in transit.

Table 17-1: Location Object References in a Two-Frame Browser Window

Reference Description

location (or window.location) URL of frame displaying the document that runs the
script statement containing this reference

parent.location URL information for parent window that defines the
<frameset>

parent.frames[0].location URL information for first visible frame

parent.frames[1].location URL information for second visible frame

parent.otherFrameName.location URL information for another named frame in the same
frameset

Most properties of a location object deal with network-oriented information. This informa-
tion involves various data about the physical location of the document on the network includ-
ing the host server, the protocol being used, and other components of the URL. Given a
complete URL for a typical WWW page, the window.location object assigns property names
to various segments of the URL, as shown here:

http://www.example.com:80/promos/newproducts.html#giantGizmo

Note

windowObject.location

487Chapter 17 ✦ Location and History Objects

Property Value

protocol “http:”
hostname “www.example.com”
port “80”
host “www.example.com:80”
pathname “/promos/newproducts.html”
hash “#giantGizmo”
href “http://www.example.com:80/promos newproducts.html#giantGizmo”

The window.location object is handy when a script needs to extract information about the
URL, perhaps to obtain a base reference on which to build URLs for other documents to be
fetched as the result of user action. This object can eliminate a nuisance for Web authors who
develop sites on one machine and then upload them to a server (perhaps at an Internet ser-
vice provider) with an entirely different directory structure. By building scripts to construct
base references from the directory location of the current document, you can construct the
complete URLs for loading documents. You don’t have to manually change the base reference
data in your documents as you shift the files from computer to computer or from directory to
directory. To extract the segment of the URL and place it into the enclosing directory, use the
following:

var baseRef = location.href.substring(0,location.href.lastIndexOf(“/”) + 1);

Security alert: To allay fears of Internet security breaches and privacy invasions, scriptable
browsers prevent your script in one frame from retrieving location object properties from
other frames whose domain and server are not your own (unless you use signed scripts in
NN4+ or the user has set the IE browser to trust your site). This restriction puts a damper on
many scripters’ well-meaning designs and aids for Web watchers and visitors. If you attempt
such property accesses, however, you receive an “access denied” (or similar) security warn-
ing dialog box.

Setting the value of some location properties is the preferred way to control which docu-
ment gets loaded into a window or frame. Though you may expect to find a method some-
where in JavaScript that contains a plain language “Go” or “Open” word (to simulate what
you see in the browser menu bar), you “point your browser” to another URL by setting the
window.location.href property to that URL, as in

window.location.href = “http://www.dannyg.com/”;

The equals assignment operator (=) in this kind of statement is a powerful weapon. In fact,
setting the location.href object to a URL of a different MIME type, such as one of the vari-
ety of sound and video formats, causes the browser to load those files into the plug-in or
helper application designated in your browser’s settings. The location.assign() method
was originally intended for internal use by the browser, but it is available for scripters
(although I don’t recommend using it for navigation). Internet Explorer’s object model
includes a window.navigate() method that also loads a document into a window, but you
can’t use it for cross-browser applications.

Two other methods complement the location object’s capability to control navigation. One
method is the script equivalent of clicking Reload; the other method enables you to replace
the current document’s entry in the history with that of the next URL of your script’s choice.

Caution

windowObject.location

488 Part III ✦ Document Objects Reference

Properties

hash
Value: String. Read/Write
Compatibility: WinIE3+, MacIE3+, NN2+, Moz1+, Safari1+

The hash mark (#) is a URL convention that directs the browser to an anchor located in the
document. Any name you assign to an anchor (with the ... tag pair)
becomes part of the URL after the hash mark. A location object’s hash property is the name
of the anchor part of the current URL (which consists of the hash mark and the name).

If you have written HTML documents with anchors and directed links to navigate to those
anchors, you have probably noticed that although the destination location shows the anchor
as part of the URL (for example, in the Location field), the window’s anchor value does not
change as the user manually scrolls to positions in the document where other anchors are
defined. An anchor appears in the URL only when the window has navigated there as part of a
link or in response to a script that adjusts the URL.

Just as you can navigate to any URL by setting the window.location.href property, you can
navigate to another hash in the same document by adjusting only the hash property of the
location without the hash mark (as shown in the following example). Such navigation, even
within a document, sometimes causes IE to reload the document.

Listing 17-1 demonstrates how to use the hash property to access the anchor part of a URL.
When you load the script in Listing 17-1, adjust the size of the browser window so only one
section is visible at a time. When you click a button, the script navigates to the next logical
section in the progression and eventually takes you back to the top.

Listing 17-1: A Document with Anchors

<html>
<head>

<title>location.hash Property</title>
<script type=”text/javascript”>
function goNextAnchor(where) {

window.location.hash = where;
}
</script>

</head>
<body>

<h1>Top</h1>
<form>

<input type=”button” name=”next” value=”NEXT”
onclick=”goNextAnchor(‘sec1’)” />

</form>
<hr />
<h1>Section 1</h1>
<form>

<input type=”button” name=”next” value=”NEXT”
onclick=”goNextAnchor(‘sec2’)” />

</form>

windowObject.location.hash

489Chapter 17 ✦ Location and History Objects

<hr />
<h1>Section 2</h1>
<form>

<input type=”button” name=”next” value=”NEXT”
onclick=”goNextAnchor(‘sec3’)” />

</form>
<hr />
<h1>Section 3</h1>
<form>

<input type=”button” name=”next” value=”BACK TO TOP”
onclick=”goNextAnchor(‘start’)” />

</form>
</body>

</html>

Anchor names are passed as parameters with each button’s onclick event handler. Instead
of going through the work of assembling a window.location value in the function by
appending a literal hash mark and the value for the anchor, here I simply modify the hash
property of the current window’s location. This is the preferred, cleaner method.

If you attempt to read back the window.location.hash property in an added line of script,
however, the window’s actual URL probably will not have been updated yet, and the browser
will appear to be giving your script false information. To prevent this problem in subsequent
statements of the same function, construct the URLs of those statements from the same vari-
able values you use to set the window.location.hash property — don’t rely on the browser
to give you the values you expect.

Related Item: location.href property.

host
Value: String. Read/Write
Compatibility: WinIE3+, MacIE3+, NN2+, Moz1+, Safari1+

The location.host property describes both the hostname and port of a URL. The port is
included in the value only when the port is an explicit part of the URL. If you navigate to a
URL that does not display the port number in the Location field of the browser, the loca-
tion.host property returns the same value as the location.hostname property.

Use the location.host property to extract the hostname:port part of the URL of any docu-
ment loaded in the browser. This capability may be helpful for building a URL to a specific
document that you want your script to access on the fly.

Use the documents in Listings 17-2 through 17-4 as tools to help you learn the values that the
various window.location properties return. In the browser, open the file for Listing 17-2.
This file creates a two-frame window. The left frame contains a temporary placeholder (see
Listing 17-4) that displays some instructions. The right frame has a document (see Listing
17-3) that enables you to load URLs into the left frame and get readings on three different win-
dows available: the parent window (which creates the multiframe window), the left frame,
and the right frame.

windowObject.location.host

490 Part III ✦ Document Objects Reference

Listing 17-2: Frameset for the Property Picker

<html>
<head>

<title>window.location Properties</title>
</head>
<frameset cols=”50%,50%” border=”1” bordercolor=”black”>

<frame name=”Frame1” src=”lst17-04.htm” />
<frame name=”Frame2” src=”lst17-03.htm” />

</frameset>
</html>

Listing 17-3: Property Picker

<html>
<head>

<title>Property Picker</title>
<script type=”text/javascript”>
var isNav = (typeof netscape != “undefined”) ? true : false;

function fillLeftFrame() {
newURL = prompt(“Enter the URL of a document to show in the left

frame:”,””);
if (newURL != null && newURL != “”) {

parent.frames[0].location = newURL;
}

}

function showLocationData(form) {
for (var i = 0; i <3; i++) {

if (form.whichFrame[i].checked) {
var windName = form.whichFrame[i].value;
break;

}
}
var theWind = “” + windName + “.location”;
if (isNav) {

netscape.security.PrivilegeManager.enablePrivilege(
“UniversalBrowserRead”);

}
var theObj = eval(theWind);
form.windName.value = windName;
form.windHash.value = theObj.hash;
form.windHost.value = theObj.host;
form.windHostname.value = theObj.hostname;
form.windHref.value = theObj.href;
form.windPath.value = theObj.pathname;
form.windPort.value = theObj.port;
form.windProtocol.value = theObj.protocol;
form.windSearch.value = theObj.search;
if (isNav) {

netscape.security.PrivilegeManager.disablePrivilege(
“UniversalBrowserRead”);

}

windowObject.location.host

491Chapter 17 ✦ Location and History Objects

}
</script>

</head>
<body>

Click the “Open URL” button to enter the location of an HTML document to
display in the left frame of this window.
<form>

<input type=”button” name=”opener” value=”Open URL...”
onclick=”fillLeftFrame()” />
<hr />
<center>

Select a window/frame. Then click the “Show Location Properties”
button to view each window.location property value for the desired
window.
<p><input type=”radio” name=”whichFrame” value=”parent”

checked=”checked” />Parent window <input type=”radio”
name=”whichFrame” value=”parent.frames[0]” />Left frame <input
type=”radio” name=”whichFrame” value=”parent.frames[1]” />This
frame</p>

<p><input type=”button” name=”getProperties”
value=”Show Location Properties”
onclick=”showLocationData(this.form)” /> <input type=”reset”
value=”Clear” /></p>

<table border=”2”>
<tr>

<td align=”right”>Window:</td>
<td><input type=”text” name=”windName” size=”30” /></td>

</tr>
<tr>

<td align=”right”>hash:</td>
<td><input type=”text” name=”windHash” size=”30” /></td>

</tr>
<tr>

<td align=”right”>host:</td>
<td><input type=”text” name=”windHost” size=”30” /></td>

</tr>
<tr>

<td align=”right”>hostname:</td>
<td><input type=”text” name=”windHostname” size=”30” /></td>

</tr>
<tr>

<td align=”right”>href:</td>
<td><textarea name=”windHref” rows=”3” cols=”30” wrap=”soft”>

</textarea></td>
</tr>
<tr>

<td align=”right”>pathname:</td>
<td><textarea name=”windPath” rows=”3” cols=”30” wrap=”soft”>

</textarea></td>
</tr>
<tr>

<td align=”right”>port:</td>
<td><input type=”text” name=”windPort” size=”30” /></td>

</tr>
<tr>

<td align=”right”>protocol:</td>
<td><input type=”text” name=”windProtocol” size=”30” /></td>

</tr>

Continued

windowObject.location.host

492 Part III ✦ Document Objects Reference

Listing 17-3 (continued)

<tr>
<td align=”right”>search:</td>
<td><textarea name=”windSearch” rows=”3” cols=”30”

wrap=”soft”></textarea></td>
</tr>

</table>
</center>

</form>
</body>

</html>

Listing 17-4: Placeholder Document for Listing 17-2

<html>
<head>

<title>Opening Placeholder</title>
</head>
<body>

Initial placeholder. Experiment with other URLs for this frame (see
right).

</body>
</html>

For the best results, open a URL to a Web document on the network from the same domain
and server from which you load the listings (perhaps your local hard disk). If possible, load a
document that includes anchor points to navigate through a long document. Click the Left
frame radio button and then click the button that shows all properties. This action fills the
table in the right frame with all the available location properties for the selected window.

Related Items: location.port, location.hostname properties.

hostname
Value: String. Read/Write
Compatibility: WinIE3+, MacIE3+, NN2+, Moz1+, Safari1+

The hostname of a typical URL is the name of the server on the network that stores the docu-
ment you view in the browser. For most Web sites, the server name includes not only the
domain name, but also the www. prefix. The hostname does not, however, include the port
number if the URL specifies such a number.

See Listings 17-2 through 17-4 for a set of related pages to help you view the hostname data
for a variety of other pages.

Related Items: location.host, location.port properties.

windowObject.location.host

493Chapter 17 ✦ Location and History Objects

href
Value: String. Read/Write
Compatibility: WinIE3+, MacIE3+, NN2+, Moz1+, Safari1+

Of all the location object properties, href (hypertext reference) is probably the one most
often called upon in scripting. The location.href property supplies a string of the entire
URL of the specified window object.

Using this property on the left side of an assignment statement is the JavaScript way of open-
ing a URL for display in a window. Any of the following statements can load my Web site’s
index page into a single-frame browser window:

window.location = “http://www.dannyg.com”;
window.location.href = “http://www.dannyg.com”;

At times, you may encounter difficulty by omitting a reference to a window. JavaScript may
get confused and reference the document.location property. To prevent this confusion, the
document.location property was deprecated (put on the no-no list) and replaced by the
document.URL property. In the meantime, you can’t go wrong by always specifying a window
in the reference.

You should be able to omit the href property name when assigning a new URL to the
location object (for example, location = “http://www.dannyg.com”). While this
works in most browsers most of the time, some early browsers behave more reliably if you
assign a URL explicitly to the location.href property. I recommend using
location.href at all times.

Sometimes you must extract the name of the current directory in a script so another state-
ment can append a known document to the URL before loading it into the window. Although
the other location object properties yield an assortment of a URL’s segments, none of them
provides the full URL to the current URL’s directory. But you can use JavaScript string manip-
ulation techniques to accomplish this task. Listing 17-5 shows such a possibility.

Depending on your browser, the values for the location.href property may be encoded
with ASCII equivalents of non-alphanumeric characters. Such an ASCII value includes the %
symbol and the ASCII numeric value. The most common encoded character in a URL is the
space: %20. If you need to extract a URL and display that value as a string in your documents,
you can safely pass all such potentially encoded strings through the JavaScript unescape()
function. For example, if a URL is http://www.example.com/product%20list, you can con-
vert it by passing it through the unescape() function, as in the following example.

var plainURL = unescape(window.location.href);
// result = “http://www.example.com/product list”;

The inverse function, escape(), is available for sending encoded strings to CGI programs on
servers. See Chapter 34 for more details on these functions.

Listing 17-5 shows how the href property can be used to view the directory URL of the cur-
rent page. This example includes the unescape() function in front of the part of the script
that captures the URL. This function serves cosmetic purposes by displaying the pathname in
alert dialog boxes for browsers that normally display the ASCII-encoded version.

Note

windowObject.location.href

494 Part III ✦ Document Objects Reference

Listing 17-5: Extracting the Directory of the Current Document

<html>
<head>

<title>Extract pathname</title>
<script type=”text/javascript”>
// general purpose function to extract URL of current directory
function getDirPath(URL) {

var result = unescape(URL.substring(0,(URL.lastIndexOf(“/”)) + 1));
return result;

}

// handle button event, passing work onto general purpose function
function showDirPath(URL) {

alert(getDirPath(URL));
}
</script>

</head>
<body>

<form>
<input type=”button” value=”View directory URL”
onclick=”showDirPath(window.location.href)” />

</form>
</body>

</html>

Related Items: location.pathname, document.location properties; String object
(Chapter 34).

pathname
Value: String. Read/Write
Compatibility: WinIE3+, MacIE3+, NN2+, Moz1+, Safari1+

The pathname component of a URL consists of the directory structure relative to the server’s
root volume. In other words, the root (the server name in an http: connection) is not part of
the pathname. If the URL’s path is to a file in the root directory, the location.pathname
property is a single slash (/) character. Any other pathname starts with a slash character,
indicating a directory nested within the root. The value of the location.pathname property
also includes the document name.

See Listings 17-2 through 17-4 earlier in this chapter for a multiple-frame example you can use
to view the location.pathname property for a variety of URLs of your choice.

Related Item: location.href property.

port
Value: String. Read/Write
Compatibility: WinIE3+, MacIE3+, NN2+, Moz1+, Safari1+

These days, few consumer-friendly Web sites need to include the port number as part of their
URLs. You see port numbers mostly in the less-popular protocols, in URLs to sites used for
private development purposes, or in URLs to sites that have no assigned domain names. You
can retrieve the value with the location.port property. If you extract the value from one

windowObject.location.href

495Chapter 17 ✦ Location and History Objects

URL and intend to build another URL with that component, be sure to include the colon
delimiter between the server’s IP address and port number.

If you have access to URLs containing port numbers, use the documents in Listings 17-2
through 17-4 to experiment with the output of the location.port property.

Related Item: location.host property.

protocol
Value: String. Read/Write
Compatibility: WinIE3+, MacIE3+, NN2+, Moz1+, Safari1+

The first component of any URL is the protocol used for the particular type of communica-
tion. For World Wide Web pages, the Hypertext Transfer Protocol (http) is the standard.
Other common protocols you may see in your browser include HTTP-Secure (https), File
Transfer Protocol (ftp), File (file), and Mail (mailto). Values for the location.protocol
property include not only the name of the protocol, but also the trailing colon delimiter.
Thus, for a typical Web page URL, the location.protocol property is

http:

Notice that the usual slashes after the protocol in the URL are not part of the location.
protocol value. Of all the location object properties, only the full URL (location.href)
reveals the slash delimiters between the protocol and other components.

See Listings 17-2 through 17-4 for a multiple-frame example you can use to view the
location.protocol property for a variety of URLs. Also try loading an FTP site to see
the location.protocol value for that type of URL.

Related Item: location.href property.

search
Value: String. Read/Write
Compatibility: WinIE3+, MacIE3+, NN2+, Moz1+, Safari1+

Perhaps you’ve noticed the long, cryptic URL that appears in the Location/Address field of
your browser whenever you ask one of the WWW search services to look up matches for
items you enter into the keyword field. The URL starts the regular way — with protocol, host,
and pathname values. But following the more traditional URL are search commands that are
submitted to the search engine (a CGI program running on the server). You can retrieve or set
that trailing search query by using the location.search property.

Each search engine has its own formula for query submissions based on the designs of the
HTML forms that obtain details from users. These search queries come in an encoded format
that appears in anything but plain language. If you plan to script a search query, be sure you
fully understand the search engine’s format before you start assembling a string to assign to
the location.search property of a window.

The most common format for search data is a series of name/value pairs. An equal symbol (=)
separates a name and its value. Multiple name/value pairs have ampersands (&) between
them. You should use the escape() function to convert the data into URL-friendly format,
especially when the content includes spaces.

The location.search property also applies to any part of a URL after the filename, includ-
ing parameters being sent to CGI programs on the server.

windowObject.location.search

496 Part III ✦ Document Objects Reference

Passing data among pages via URLs
It is not uncommon to want to preserve some pieces of data that exist in one page so that a
script in another page can pick up where the script processing left off in the first page. You
can achieve persistence across page loads through one of three techniques: the
document.cookie (see Chapter 18), variables in framesetting documents, and the search
string of a URL. That’s really what happens when you visit search and e-commerce sites that
return information to your browser. Rather than store, say, your search criteria on the server,
they spit the criteria back to the browser as part of the URL. The next time you activate that
URL, the values are sent to the server for processing (for example, to send you the next page
of search results for a particular query).

Passing data among pages is not limited to client/server communication. You can use the
search string strictly on the client-side to pass data from one page to another. Unless some
CGI process on the server is programmed to do something with the search string, a Web
server regurgitates the search string as part of the location data that comes back with a page.
A script in the newly loaded page can inspect the search string (via the location.search
property) and tear it apart to gather the data and put it into script variables. Take a look at
Listings 17-6 through 17-8 to see a powerful application of this technique.

As mentioned in the opening of Chapter 16 about frames, you can force a particular HTML
page to open inside the frameset for which it is designed. But with the help of the search
string, you can reuse the same framesetting document to accommodate any number of con-
tent pages that go into one of the frames (rather than specifying a separate frameset for each
possible combination of pages in the frameset). The listings in this section create a simple
example of how to force a page to load in a frameset by passing some information about the
page to the frameset. Thus, if a user has a URL to one of the content frames (perhaps it has
been bookmarked by right-clicking the frame or it comes up as a search engine result), the
page appears in its designated frameset the next time the user visits the page.

The fundamental task going on in this scheme has two parts. The first is in each of the con-
tent pages where a script checks whether the page is loaded inside a frameset. If the frameset
is missing, a search string is composed and appended to the URL for the framesetting docu-
ment. The framesetting document has its own short script that looks for the presence of the
search string. If the string is there, the script extracts the search string data and uses it to
load that specific page into the content frame of the frameset.

Listing 17-6 is the framesetting document. The getSearchAsArray() function is more com-
plete than necessary for this simple example, but you can use it in other instances to convert
any number of name/value pairs passed in the search string (in traditional format of
name1=value1&name2=value2&etc.) into an array whose indexes are the names (making it
easier for scripts to extract a specific piece of passed data). Version branching takes place
because, for convenience, the getSearchAsArray() function uses text and array methods
that don’t exist in browsers prior to NN3 or IE4.

Listing 17-6: A Smart Frameset

<html>
<head>

<title>Example Frameset</title>
<script type=”text/javascript”>
// Convert location.search into an array of values
// indexed by name.
function getSearchAsArray() {

var results = new Array();

windowObject.location.search

497Chapter 17 ✦ Location and History Objects

var input = unescape(location.search.substr(1));
if (input) {

var srchArray = input.split(“&”);
var tempArray = new Array();
for (var i = 0; i < srchArray.length; i++) {

tempArray = srchArray[i].split(“=”);
results[tempArray[0]] = tempArray[1];

}
}
return results;

}

function loadFrame() {
if (location.search) {

var srchArray = getSearchAsArray();
if (srchArray[“content”]) {

self.content.location.href = srchArray[“content”];
}

}
}
</script>

</head>
<frameset cols=”250,*” onload=”loadFrame()”>

<frame name=”toc” src=”lst17-07.htm” />
<frame name=”content” src=”lst17-08.htm” />

</frameset>
</html>

Listing 17-7 is the HTML for the table of contents frame. Nothing elaborate goes on here, but
you can see how normal navigation works for this simplified frameset.

Listing 17-7: The Table of Contents

<html>
<head>

<title>Table of Contents</title>
</head>
<body bgcolor=”#EEEEEE”>

<h3>Table of Contents</h3>
<hr />

Page 1
Page 2
Page 3

</body>

</html>

Listing 17-8 shows one of the content pages. As the page loads, the checkFrameset() func-
tion is invoked. If the window does not load inside a frameset, the script navigates to the
framesetting page, passing the current content URL as a search string. Notice that for browsers
that support the location.replace() method, the loading of this page on its own does not
get recorded to the browser’s history and isn’t accessed if the user hits the Back button.

windowObject.location.search

498 Part III ✦ Document Objects Reference

Listing 17-8: A Content Page

<html>
<head>

<title>Page 1</title>
<script type=”text/javascript”>
function checkFrameset() {

var isNav4 = (navigator.appName == “Netscape” &&
parseInt(navigator.appVersion) == 4);

if (parent == window) {
// Don’t do anything if running NN4
// so that the frame can be printed on its own
if (isNav4 && window.innerWidth == 0) {

return;
}
// Use replace() to keep current page out of history
location.replace(“lst17-06.htm?content=” + escape(location.href));

}
}

// Invoke the function
checkFrameset();
</script>

</head>
<body>

<h1>Page 1</h1>
<hr />

</body>
</html>

In practice, I recommend placing the code for the checkFrameset() function and call to it
inside an external .js library and linking that library into each content document of the
frameset. That’s why the function assigns the generic location.href property to the search
string — you can use it on any content page.

The code in Listings 17-6 through 17-8 establishes a frameset containing two frames. In the
left frame is a Table of Contents that allows you to navigate among three different pages, the
first of which is initially displayed in the right frame. The interesting thing about the example
is how you can specify a new page in the content parameter of the search property, and then
the page is opened within the frameset. For example, the following URL would result in the
page hello.htm being opened in the right frame:

lst17-06.htm?content=hello.htm

In this example URL, the frameset page is first opened due to the inclusion of the file
lst17-06.htm, while the hello.htm file is specified as the value of the content parameter.

Related Item: location.href property.

windowObject.location.search

499Chapter 17 ✦ Location and History Objects

Methods
assign(“URL”)

Returns: Nothing.
Compatibility: WinIE3+, MacIE3+, NN2+, Moz1+, Safari1+

In earlier discussions about the location object, I said that you navigate to another page by
assigning a new URL to the location object or location.href property. The location.
assign() method does the same thing. In fact, when you set the location object to a URL,
JavaScript silently applies the assign() method. No particular penalty or benefit comes
from using the assign() method, except perhaps to make your code more understandable
to others.

Related Item: location.href property.

reload(unconditionalGETBoolean)
Returns: Nothing.
Compatibility: WinIE4+, MacIE4+, NN3+, Moz1+, Safari1+

The location.reload() method may be named inappropriately because it makes you think
of the Reload/Refresh button in the browser toolbar. The reload() method is actually more
powerful than the Reload/Refresh button (a soft reload) in that it clears form control values
that might otherwise survive the Reload/Refresh button. Note that MacIE and Safari do not
preserve form control settings even with a soft reload.

Most form elements retain their screen states when you click Reload/Refresh. Text and
textarea objects maintain whatever text is inside them; radio buttons and checkboxes main-
tain their checked status; select objects remember which item is selected. About the only
items the Reload/Refresh button destroys are global variable values and any settable, but not
visible, property (for example, the value of a hidden input object). I call this kind of reload a
soft reload.

Browsers are frustratingly irregular about the ways they reload a document in the memory
cache. In theory, an application of the location.reload() method should retrieve the page
from the cache if the page is still available there (while the history.go(0) method should
be even gentler, preserving form element settings). Adding a true parameter to the method is
supposed to force an unconditional GET to the server, ignoring the cached version of the
page. Yet when it is crucial for your application to get a page from the cache (for speed) or
from the server (to guarantee a fresh copy), the browser behaves in just the opposite way
you want it to behave. Meta tags supposedly designed to prevent caching of a page rarely, if
ever, work. Some scripters have had success in reloading the page from the server by setting
location.href to the URL of the page, plus a slightly different search string (for example,
based on a string representation of the Date object) so that there is no match for the URL in
the cache.

The bottom line is to be prepared to try different schemes to achieve the effect you want.
And also be prepared to not get the results you need.

windowObject.location.reload()

500 Part III ✦ Document Objects Reference

Listing 17-9 provides a means of testing out the different outcomes of a soft reload versus a
hard reload. Open this example page in a browser and click a radio button. Then enter some
new text and make a choice in the select object. Clicking the Soft Reload/Refresh button
invokes a method that reloads the document as if you had clicked the browser’s Reload/
Refresh button. It also preserves the visible properties of form elements. The Hard Reload
button invokes the location.reload() method, which resets all objects to their default
settings.

Listing 17-9: Hard versus Soft Reloading

<html>
<head>

<title>Reload Comparisons</title>
<script type=”text/javascript”>
function hardReload() {

location.reload(true);
}
function softReload() {

history.go(0);
}
</script>

</head>
<body>

<form name=”myForm”>
<input type=”radio” name=”rad1” value=”1” />Radio 1

<input type=”radio” name=”rad1” value=”2” />Radio 2

<input type=”radio” name=”rad1” value=”3” />Radio 3
<p><input type=”text” name=”entry” value=”Original” /></p>
<p><select name=”theList”>

<option>Red</option>
<option>Green</option>
<option>Blue</option>

</select></p>
<hr />
<input type=”button” value=”Soft Reload” onclick=”softReload()” />
<input type=”button” value=”Hard Reload” onclick=”hardReload()” />

</form>
</body>

</html>

Related Item: history.go() method.

replace(“URL”)
Returns: Nothing.
Compatibility: WinIE4+, MacIE4+, NN3+, Moz1+, Safari1+

In a complex Web site, you may have pages that you do not want to appear in the user’s his-
tory list. For example, a registration sequence may lead the user to one or more intermediate
HTML documents that won’t make much sense to the user later. You especially don’t want
users to see these pages again if they use the Back button to return to a previous URL. The
location.replace() method navigates to another page, but it does not let the current page
stay in the queue of pages accessible via the Back button.

windowObject.location.reload()

501Chapter 17 ✦ Location and History Objects

Although you cannot prevent a document from appearing in the history list while the user
views that page, you can instruct the browser to load another document into the window and
replace the current history entry with the entry for the new document. This trick does not
empty the history list but instead removes the current item from the list before the next URL
is loaded. Removing the item from the history list prevents users from seeing the page again
by clicking the Back button later.

Listing 17-10 shows how to use the replace() method to direct a Web browser to a new URL.
Calling the location.replace() method navigates to another URL similarly to assigning a
URL to the location. The difference is that the document doing the calling doesn’t appear in
the history list after the new document loads. Check the history listing (in your browser’s
usual spot for this information) before and after clicking Replace Me in Listing 17-10.

Listing 17-10: Invoking the location.replace() Method

<html>
<head>

<title>location.replace() Method</title>
<script type=”text/javascript”>
function doReplace() {

location.replace(“lst17-01.htm”);
}
</script>

</head>
<body>

<form name=”myForm”>
<input type=”button” value=”Replace Me” onclick=”doReplace()” />

</form>
</body>

</html>

Related Item: history object.

history Object

Property Method Event Handler

current back() (None)

length forward()
next go()
previous

windowObject.history

502 Part III ✦ Document Objects Reference

Syntax
Accessing history object properties or methods:

[window.]history.property | method([parameters])

About this object
As a user surfs the Web, the browser maintains a list of URLs for the most recent stops. This
list is represented in the scriptable object model by the history object. A script cannot sur-
reptitiously extract actual URLs maintained in that list unless you use signed scripts (in
NN4+ — see Chapter 46 on the CD-ROM) and the user grants permission. Under unsigned con-
ditions, a script can methodically navigate to each URL in the history (by relative number or
by stepping back one URL at a time), in which case the user sees the browser navigating on
its own as if possessed by a spirit. Good Netiquette dictates that you do not navigate a user
outside of your Web site without the user’s explicit permission.

One application for the history object and its back() or go() methods is to provide the
equivalent of a Back button in your HTML documents. That button triggers a script that
checks for any items in the history list and then goes back one page. Your document doesn’t
have to know anything about the URL from which the user lands at your page.

As of NN4, the behavior of the Back and Forward buttons is also available through a pair of
window methods: window.back() and window.forward(). The history object methods are
not specific to a frame that is part of the reference. When the parent.frameName.history.
back() method reaches the end of history for that frame, further invocations of that method
are ignored.

IE’s history mechanism is not localized to a particular frame of a frameset. Instead, the
history.back() and history.forward() methods mimic the physical act of clicking the
toolbar buttons. If you want to ensure cross-browser, if not cross-generational, behavior in a
frameset, address references to the history.back() and history.forward() methods to
the parent window.

You should use the history object and its methods with extreme care. Your design must be
smart enough to “watch” what the user is doing with your pages (for example, by checking
the current URL before navigating with these methods). Otherwise, you run the risk of con-
fusing your user by navigating to unexpected places. Your script can also get into trouble
because it cannot detect where the current document is in the Back–Forward sequence in
history.

Properties
current
next
previous

Value: String. Read-Only
Compatibility: WinIE-, MacIE-, NN4+, Moz1+, Safari-

windowObject.history

503Chapter 17 ✦ Location and History Objects

To know where to go when you click the Back and Forward buttons, the browser maintains a
list of URLs visited. To someone trying to invade your privacy and see what sites and pages
you frequent, this information is valuable. That’s why the three properties that expose the
actual URLs in the history list are restricted to pages with signed scripts and whose visitors
have given permission to read sensitive browser data (see Chapter 46 on the CD-ROM).

With signed scripts and permission, you can look through the entire array of history entries
in any frame or window. Because the list is an array, you can extract individual items by index
value. For example, if the array has 10 entries, you can see the fifth item by using normal
array indexing methods:

var fifthEntry = window.history[4];

No property or method exists that directly reveals the index value of the currently loaded
URL, but you can script an educated guess by comparing the values of the current, next, and
previous properties of the history object against the entire list.

I personally don’t like some unknown entity watching over my shoulder while I’m on the Net,
so I respect that same feeling in others and therefore discourage the use of these powers
unless the user is given adequate warning. The signed script permission dialog box does not
offer enough detail about the consequences of revealing this level of information.

These properties were available in some form in NN3. Access to them required a short-lived
security scheme called data tainting. That mechanism was never implemented fully and was
replaced by signed scripts.

Related Item: history.length property.

length
Value: Number. Read-Only
Compatibility: WinIE3+, MacIE3+, NN2+, Moz1+, Safari1+

Use the history.length property to count the items in the history list. Unfortunately, this
nugget of information is not particularly helpful in scripting navigation relative to the current
location because your script cannot extract anything from the place in the history queue
where the current document is located. If the current document is at the top of the list (the
most recently loaded), you can calculate relative to that location. But users can use the
Go/View menu to jump around the history list as they like. The position of a listing in the his-
tory list does not change by virtue of navigating back to that document. A history.length
of 1, however, indicates that the current document is the first one the user loaded since start-
ing the browser software.

Safari 1.0 uniformly reports history.length as zero.

Listing 17-11 shows how to use the length property to notify users of how many pages
they’ve visited.

Note

Note

windowObject.history.length

504 Part III ✦ Document Objects Reference

Listing 17-11: A Browser History Count

<html>
<head>

<title>History Object</title>
<script type=”text/javascript”>
function showCount() {

var histCount = window.history.length;
if (histCount > 5) {

alert(“My, my, you\’ve been busy. You have visited “ + histCount +
“ pages so far.”);

} else {
alert(“You have been to “ + histCount + “ Web pages this

session.”);
}

}
</script>

</head>
<body>

<form>
<input type=”button” name=”activity” value=”My Activity”
onclick=”showCount()” />

</form>
</body>

</html>

Related Items: None.

Methods
back()
forward()

Returns: Nothing.
Compatibility: WinIE3+, MacIE3+, NN2+, Moz1+, Safari1+

Prior to Navigator 4, the back() method acted identically to clicking the Back button in
Navigator browsers. In Navigator 4, however, the history.back() method became
window/frame-specific. Therefore, if you direct successive back() methods to a frame within
a frameset, the method is ignored once it reaches the first document to be loaded into that
frame. The Back button (and the window.back() method) unload the frameset and continue
taking you back through the browser’s global history.

If you deliberately lead a user to a dead end in your Web site, you should make sure that the
HTML document provides a way to navigate back to a recognizable spot. Because you can
easily create a new window that has no toolbar or menu bar (non-Macintosh browsers), you
may end up stranding your users because they have no way of navigating out of a cul-de-sac
in such a window. A button in your document should give the user a way back to the last
location.

windowObject.history.length()

505Chapter 17 ✦ Location and History Objects

Unless you need to perform some additional processing prior to navigating to the previous
location, you can simply place this method as the parameter to the event handler attribute of
a button definition. To guarantee compatibility across all browsers, direct this method at the
parent document when used from within a frameset.

Less likely to be scripted than the history.back() action is the method that performs
the opposite action: navigating forward one step in the browser’s history list. The only time
you can confidently use the history.forward() method is to balance the use of the
history.back() method in the same script — where your script closely keeps track of how
many steps the script heads in either direction. Use the history.forward() method with
extreme caution, and only after performing extensive user testing on your Web pages to make
sure that you’ve covered all user possibilities. The same cautions about differences intro-
duced in NN4 for history.back() apply equally to history.forward(): Forward progress
extends only through the history listing for a given window or frame, not the entire browser
history list.

Listings 17-12 and 17-13 provide a little workshop in which you can test the behavior of a vari-
ety of backward and forward navigation in different browsers. Some features work only in NN4+.

Listing 17-12: Navigation Lab Frameset

<html>
<head>

<title>Back and Forward</title>
</head>
<frameset cols=”45%,55%”>

<frame name=”controller” src=”lst17-13.htm” />
<frame name=”display” src=”lst17-01.htm” />

</frameset>
</html>

Listing 17-13: Navigation Lab Control Panel

<html>
<head>

<title>Lab Controls</title>
</head>
<body>

Load a series of documents into the right frame by clicking some of
these links (make a note of the sequence you click on):
<p>Listing 17-1

Listing 17-5

Listing 17-9
</p>

<hr />
<form name=”input”>

Click on the various buttons below to see the results in this
frameset:

Continued

windowObject.history.back()

506 Part III ✦ Document Objects Reference

Listing 17-13 (continued)

NN4+ Substitute for toolbar buttons --
<tt>window.back()</tt> and <tt>window.forward()</tt>:<input
type=”button” value=”Back” onclick=”window.back()” /><input
type=”button” value=”Forward” onclick=”window.forward()” />

<tt>history.back()</tt> and <tt>history.forward()</tt> for
righthand frame:<input type=”button” value=”Back”
onclick=”parent.display.history.back()” /><input type=”button”
value=”Forward” onclick=”parent.display.history.forward()” />

<tt>history.back()</tt> for this frame:<input type=”button”
value=”Back” onclick=”history.back()” />

<tt>history.back()</tt> for parent:<input type=”button”
value=”Back” onclick=”parent.history.back()” />

</form>

</body>
</html>

Related Items: history.go() method.

go(relativeNumber | “URLOrTitleSubstring”)
Returns: Nothing.
Compatibility: WinIE3+, MacIE3+, NN2+, Moz1+, Safari1+

Use the history.go() method to script navigation within the history list currently stored in
the browser. If you elect to use a URL as a parameter, however, that precise URL must already
exist in the history listing. Therefore, do not regard this method as an alternate to setting the
window.location object to a brand-new URL.

For navigating n steps in either direction along the history list, use the relativeNumber
parameter of the history.go() method. This number is an integer value that indicates
which item in the list to use, relative to the current location. For example, if the current URL
is at the top of the list (that is, the Forward button in the toolbar is dimmed), you need to use
the following method to jump to the URL two items backward in the list:

history.go(-2);

In other words, the current URL is the equivalent of history.go(0) (a method that reloads
the window). A positive integer indicates a jump that many items forward in the history list.
Thus, history.go(-1) is the same as history.back(), whereas history.go(1) is the
same as history.forward().

Alternatively, you can specify one of the URLs or document titles stored in the browser’s
history list (titles appear in the Go/View menu). As security and privacy concerns increased
over time, this variant of the go() method has been reined in. It’s best not to use the string
parameter in your scripting.

Like most other history methods, your script finds it difficult to manage the history list or the
current URL’s spot in the queue. That fact makes it even more difficult for your script to intel-
ligently determine how far to navigate in either direction or to which specific URL or title

windowObject.history.back()

507Chapter 17 ✦ Location and History Objects

matches it should jump. Use this method only for situations in which your Web pages are in
strict control of the user’s activity (or for designing scripts for yourself that automatically
crawl around sites according to a fixed regimen). Once you give the user control over naviga-
tion, you have no guarantee that the history list will be what you expect, and any scripts you
write that depend on a history object will likely break.

In practice, this method mostly performs a soft reload of the current window using the 0
parameter.

If you are developing a page for all scriptable browsers, be aware that Internet Explorer’s
go() method behaves a little differently than Netscape’s. In IE4+, the matching string must
be part of the URL and not part of the document title, as in Navigator. Additionally, the
reloading of a page with history.go(0) often returns to the server to reload the page
rather than reloading from the cache.

Listing 17-14 contains sample code that demonstrates how to navigate through the history
list via the go() method. Fill in either the number or text field of the page in Listing 17-14 and
then click the associated button. The script passes the appropriate kind of data to the go()
method. Be sure to use negative numbers for visiting a page earlier in the history.

Listing 17-14: Navigating to an Item in History

<html>
<head>

<title>history.go() Method</title>
<script type=”text/javascript”>
function doGoNum(form) {

window.history.go(parseInt(form.histNum.value));
}
function doGoTxt(form) {

window.history.go(form.histWord.value);
}
</script>

</head>
<body>

<form>
Calling the history.go() method:
<hr />
Enter a number (+/-):<input type=”text” name=”histNum” size=”3”
value=”0” /> <input type=”button” value=”Go to Offset”
onclick=”doGoNum(this.form)” />
<p>Enter a word in a title:<input type=”text” name=”histWord” />

<input type=”button” value=”Go to Match”
onclick=”doGoTxt(this.form)” /></p>

</form>
</body>

</html>

Related Items: history.back(), history.forward(), location.reload() methods.

✦ ✦ ✦

Tip

windowObject.history.go()

The Document and
Body Objects

User interaction is a vital aspect of client-side JavaScript script-
ing, and most of the communication between script and user

takes place by way of the document object and its components.
Understanding the scope of the document object within each of the
object models you support is key to implementing successful cross-
browser applications.

Review the document object’s place within the original object hierar-
chy. Figure 18-1 clearly shows that the document object is a pivotal
point for a large percentage of objects. In the W3C DOM, the document
object plays an even more important role as the container of all ele-
ment objects delivered with the page: The document object is the
root of the entire document tree.

Figure 18-1: The basic document object model hierarchy.

In fact, the document object and all that it contains is so big that I
have divided its discussion into many chapters, each focusing on
related object groups. This chapter looks at the document object and
body object (which have conceptual relationships), while each of the
succeeding chapters in this part of the book details objects con-
tained by the document object.

window
parent

history document location

text radio button select

textarea checkbox reset option

link form anchor

password submit

frame self top

1818C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Accessing arrays of
objects contained by the
document object

Writing new document
content to a window or
frame

Using the body element
for IE window
measurements

✦ ✦ ✦ ✦

510 Part III ✦ Document Objects Reference

I must stress at the outset that many newcomers to JavaScript have the expectation that they
can, on the fly, modify sections of a loaded page’s content with ease: replace some text here,
change a table cell there. However, understanding that these capabilities — an important part
of what is called Dynamic HTML — are available only in more recent browsers, specifically
IE4+/NN6+/Moz1+/Safari1+, is very important. Not only do these browsers expose every
HTML element to script languages but they also automatically reflow the page when the size
of content changes under script control. Pages on all previous browsers are limited to a small
set of modifiable objects, such as images and form elements.

If your application requires compatibility with all scriptable browsers, you will be limited to
changing only a handful of other invisible properties after the page loads. If these compatible
pages need to modify their contents based on user input or timed updates, consider design-
ing your pages so that scripts write the contents; then let the scripts rewrite the entire page
with your new settings.

document Object
Compatibility: WinIE3+, MacIE3+, NN2+, Moz1+, Safari1+

Properties Methods Event Handlers

activeElement attachEvent()† onactivate†
alinkColor captureEvents() onbeforecut†
all† clear() onbeforedeactivate†
anchors[] clearAttributes()† onbeforeeditfocus†
applets[] close() onbeforepaste†
attributes† createAttribute() onclick†
bgColor createComment() oncontextmenu†
body createDocumentFragment() oncontrolselect†
charset createElement() oncut†
characterSet createEvent() ondblclick†
childNodes† createEventObject() ondrag†
compatMode createRange() ondragend†
cookie createStyleSheet() ondragenter†
defaultCharset createTextNode() ondragleave†
defaultView createTreeWalker() ondragover†
designMode detachEvent()† ondragstart†
doctype elementFromPoint() ondrop†
documentElement execCommand() onhelp†
domain focus()† onkeydown†
embeds[] getElementById() onkeypress†
expando getElementsByName() onkeyup†
fgColor getElementsByTagName()† onmousedown†
fileCreatedDate getSelection() onmousemove†
fileModifiedDate handleEvent() onmouseout†

document

511Chapter 18 ✦ The Document and Body Objects

Properties Methods Event Handlers

fileSize hasFocus()† onmouseover†
firstChild† mergeAttributes()† onmouseup†
forms[] open() onpaste†
frames[] queryCommandEnabled() onpropertychange†
height queryCommandIndterm() onreadyStatechange†
ids[] queryCommandState() onresizeend†
images[] queryCommandSupported() onresizestart†
implementation queryCommandText() onselectionchange
lastChild† queryCommandValue() onstop
lastModified recalc()
layers[] releaseCapture()†
linkColor releaseEvents()
links[] routeEvent()
location setActive()†
media write()
mimeType writeln()
nameProp
namespaces[]
namespaceURI†
nextSibling†
nodeName†
nodeType†
ownerDocument†
parentNode†
parentWindow
plugins[]
previousSibling†
protocol
readyState†
referrer
scripts[]
security
selection
styleSheets[]
tags[]
title
uniqueID†
URL
URLUnencoded
vlinkColor
width

†See Chapter 15.

document

512 Part III ✦ Document Objects Reference

Syntax
Accessing document object properties or methods:

[window.]document.property | method([parameters])

About this object
A document object encompasses the totality of what exists inside the content region of a
browser window or window frame (excluding toolbars, status lines, and so on). The docu-
ment is a combination of the content and interface elements that make the Web page worth
visiting. In more recent browsers, which treat HTML elements as nodes of a hierarchical tree,
the document object is the root node — that from which all other nodes grow.

Because the document object isn’t explicitly represented in an HTML document by tags or
any other notation, the original designers of JavaScript and object models decided to make
the document object the portal to many settings that were represented in HTML as belonging
to the body element. That element’s tag contains attributes for document-wide attributes,
such as background color (bgcolor) and link colors in various states (alink, link, and
vlink). The body element also served as an HTML container for forms, links, and anchors.
The document object, therefore, assumed a majority of the role of the body element. But even
then, the document object became the most convenient place to bind some properties that
extend beyond the body element, such as the title element and the URL of the link that
referred the user to the page. When viewed within the context of the HTML source code, the
original document object is somewhat schizophrenic. Even so, the document object has
worked well as the basis for references to original object model objects, such as forms,
images, and applets.

This, of course, was before every HTML element, including the body element, was exposed as
an object via modern object models. Amazingly, even with the IE4+ object model and W3C
DOM — both of which treat the body element as an object separate from the document
object — script compatibility with the original object model is quite easily accomplished. The
document object has assumed a new schizophrenia, splitting its personality between the orig-
inal object model and the one that places the document object at the root of the hierarchy,
quite separate from the body element object it contains. The object knows which “face” to
put on based on the rest of the script syntax that follows it. This means that quite often there
are multiple ways to achieve the same reference. For example, you can use the following
statement in all scriptable browsers to get the number of form objects in a document:

document.forms.length

In IE4+, you can also use

document.tags[“FORM”].length

And in the W3C DOM as implemented in IE5+ and NN6+/Moz1+/Safari1+, you can use

document.getElementsByTagName(“FORM”).length

The more modern versions provide generic ways of accessing elements (the tags array in
IE4+ and the getElementsByTagName() method in the W3C DOM) to meet the requirements
of object models that expose every HTML (and XML) element as an object.

document

513Chapter 18 ✦ The Document and Body Objects

Promoting the body element to the ranks of exposed objects presented its own challenges to
the new object model designers. The body element is the true “owner” of some properties
that the original document object had to take on by default. Most properties that had
belonged to the original document object were renamed in their transfer to the body element.
For example, the original document.alinkColor property is the body.aLink property in the
new model. But the bgColor property has not been renamed. For the sake of code compati-
bility, the current versions of browsers recognize both properties, even though the W3C DOM
(in an effort to push the development world ahead) has removed the old versions as proper-
ties of what it conceives as the document object.

As confusing as all of this may sound on the surface, understanding when to refer to the origi-
nal document object and when to use the new syntax doesn’t take long. It all depends on
what you hang off the right edge of the reference. Original properties and methods are recog-
nized as using the original document object; new properties and methods summon the pow-
ers of the new document object. It’s all quite automatic. Thankfully.

Properties

activeElement
Value: Object reference. Read-Only
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-

In IE4+, a script can examine the document.activeElement property to see which element
currently has focus. The value returned is an element object reference. You can use any of the
properties and methods listed in Chapter 15 to find out more about the object. Be aware that
not all elements in all operating systems receive focus. For example, buttons in IE4 for the
Macintosh do not receive focus.

Although the element used to generate a mouse or keyboard event will most likely have focus
(except for MacIE4 buttons), don’t rely on the activeElement property to find out which ele-
ment generated an event. The IE event.srcElement property is far more reliable.

Example
Use The Evaluator (Chapter 13) with IE4+ to experiment with the activeElement property.
Type the following statement into the top text box:

document.activeElement.value

After you press the Enter key, the Results box shows the value of the text box you just typed
into (the very same expression you just typed). But if you then click the Evaluate button, you
will see the value property of that button object appear in the Results box.

Related Items: event.srcElement property.

document.activeElement

514 Part III ✦ Document Objects Reference

alinkColor
bgColor
fgColor
linkColor
vlinkColor

Value: Hexadecimal triplet or color name string. Mostly Read/Write
Compatibility: WinIE3+, MacIE3+, NN2+, Moz1+, Safari1+

These five properties are the script equivalent of the <body> tag attributes of the same name
(although the property names are case-sensitive). All five settings can be read via scripting,
but the ability to change some or all of these properties varies widely with browser and client
platform. Table 18-1 shows a summary of which browsers and platforms can set which of the
color properties; Mozilla and Safari browsers support all of the color properties.

Table 18-1: Setting Document Colors on the Fly (Browser Versions)

Navigator Internet Explorer

Color Property Windows Mac UNIX Windows Mac UNIX

bgColor All 4+ 4+ All All 4+

All others 6+ 6+ 6+ All All 4+

Values for all color properties can be either the common HTML hexadecimal triplet value (for
example, “#00FF00”) or any of the Netscape color names. Internet Explorer recognizes these
plain language color names, as well. But also be aware that some colors work only when the
user has the monitor set to 16- or 24-bit color settings.

If you are scripting exclusively for IE4+ and NN6+, you should use the document.body object
to access these properties.

Example
I select some color values at random to plug into three settings of the ugly colors group for
Listing 18-1. The smaller window displays a dummy button so that you can see how its dis-
play contrasts with color settings. Notice that the script sets the colors of the smaller win-
dow by rewriting the entire window’s HTML code. After changing colors, the script displays
the color values in the original window’s textarea. Even though some colors are set with the
color constant values, properties come back in the hexadecimal triplet values. You can exper-
iment to your heart’s content by changing color values in the listing. Every time you change
the values in the script, save the HTML file and reload it in the browser.

Listing 18-1: Tweaking the Color of Page Elements

<html>
<head>

<title>Color Me</title>
<script type=”text/javascript”>
// may be blocked at load time by browser popup blockers
var newWindow = window.open(“”,””,”height=150,width=300”);

document.alinkColor

515Chapter 18 ✦ The Document and Body Objects

function defaultColors() {
return “bgcolor=’#c0c0c0’ vlink=’#551a8b’ link=’#0000ff’”;

}

function uglyColors() {
return “bgcolor=’yellow’ vlink=’pink’ link=’lawngreen’”;

}

function showColorValues() {
var result = “”;
result += “bgColor: “ + newWindow.document.bgColor + “\n”;
result += “vlinkColor: “ + newWindow.document.vlinkColor + “\n”;
result += “linkColor: “ + newWindow.document.linkColor + “\n”;
document.forms[0].results.value = result;

}

// dynamically writes contents of another window
function drawPage(colorStyle) {

// work around popup blockers
if (!newWindow || newWindow.closed) {

newWindow = window.open(“”,””,”height=150,width=300”);
}
var thePage = “”;
thePage += “<html><head><title>Color Sampler<\/title><\/head><body “;
if (colorStyle == “default”) {

thePage += defaultColors();
} else {

thePage += uglyColors();
}
thePage += “>Just so you can see the variety of items and color, <a “;
thePage += “href=’http://www.nowhere.com’>here\’s a link<\/a>, and here is another link <\/a> you can
use on-line to visit and see how its color differs from the standard
link.”;
thePage += “<form>”;
thePage += “<input type=’button’ name=’sample’ value=’Just a
Button’>”;
thePage += “<\/form><\/body><\/html>”;
newWindow.document.write(thePage);
newWindow.document.close();
showColorValues();

}

// the following works properly only in Windows Navigator
function setColors(colorStyle) {

if (colorStyle == “default”) {
document.bgColor = “#c0c0c0”;

} else {
document.bgColor = “yellow”;

}
}

var newWindow = window.open(“”,””,”height=150,width=300”);
</script>

</head>
<body>

Try the two color schemes on the document in the small window.
<form>

Continued

document.alinkColor

516 Part III ✦ Document Objects Reference

Listing 18-1 (continued)

<input type=”button” name=”default” value=’Default Colors’
onclick=”drawPage(‘default’)” /> <input type=”button” name=”weird”
value=”Ugly Colors” onclick=”drawPage(‘ugly’)” />
<p><textarea name=”results” rows=”3” cols=”20”>

</textarea></p>
<hr />
These buttons change the current document, but not correctly on all
platforms
<p><input type=”button” name=”default” value=’Default Colors’

onclick=”setColors(‘default’)” /> <input type=”button” name=”weird”
value=”Ugly Colors” onclick=”setColors(‘ugly’)” /></p>

</form>
</body>

</html>

To satisfy the curiosity of those who want to change the color of a loaded document on the
fly, the preceding example includes a pair of buttons that set the color properties of the cur-
rent document. If you’re running browsers and versions capable of this power (see Table
18-1), everything will look fine; but in other platforms or earlier versions, you may lose the
buttons and other document content behind the color. You can still click and activate these
items, but the color obscures them. Unless you know for sure that users of your Web page
use only browsers and clients empowered for background color changes, do not change col-
ors by setting properties of an existing document.

Related Items: body.aLink, body.bgColor, body.link, body.text, body.vLink properties.

anchors[]
Value: Array of anchor objects. Read-Only
Compatibility: WinIE3+, MacIE3+, NN2+, Moz1+, Safari1+

Anchor objects (described in Chapter 19) are points in an HTML document marked with
 tags. Anchor objects are referenced in URLs by a hash value between the page
URL and anchor name. Like other object properties that contain a list of nested objects, the
document.anchors property (notice the plural) delivers an indexed array of anchors in a docu-
ment. Use the array references to pinpoint a specific anchor for retrieving any anchor property.

Anchor arrays begin their index counts with 0: The first anchor in a document, then, has the
reference document.anchors[0]. And, as is true with any built-in array object, you can find
out how many entries the array has by checking the length property. For example

var anchorCount = document.anchors.length;

The document.anchors property is read-only. To script navigation to a particular anchor,
assign a value to the window.location or window.location.hash object, as described in
Chapter 17’s location object discussion.

Example
In Listing 18-2, I append an extra script to Listing 17-1 to demonstrate how to extract the num-
ber of anchors in the document. The document dynamically writes the number of anchors
found in the document. You will not likely ever need to reveal such information to users of
your page, and the document.anchors property is not one that you will call frequently. The
object model defines it automatically as a document property while defining actual anchor
objects.

document.alinkColor

517Chapter 18 ✦ The Document and Body Objects

Listing 18-2: Using Anchors to Navigate Through a Page

<html>
<head>

<title>document.anchors Property</title>
<script type=”text/javascript”>
function goNextAnchor(where) {

window.location.hash = where;
}
</script>

</head>
<body>

<h1>Top</h1>
<form>

<input type=”button” name=”next” value=”NEXT”
onclick=”goNextAnchor(‘sec1’)” />

</form>
<hr />
<h1>Section 1</h1>
<form>

<input type=”button” name=”next” value=”NEXT”
onclick=”goNextAnchor(‘sec2’)” />

</form>
<hr />
<h1>Section 2</h1>
<form>

<input type=”button” name=”next” value=”NEXT”
onclick=”goNextAnchor(‘sec3’)” />

</form>
<hr />
<h1>Section 3</h1>
<form>

<input type=”button” name=”next” value=”BACK TO TOP”
onclick=”goNextAnchor(‘start’)” />

</form>
<hr />
<p>

<script type=”text/javascript”>
document.write(“<i>There are “ + document.anchors.length +

“ anchors defined for this document<\/i>”)
</script>

</p>
</body>

</html>

Related Items: anchor, location objects; document.links property.

applets[]
Value: Array of applet objects. Read-Only
Compatibility: WinIE3+, MacIE3+, NN2+, Moz1+, Safari1+

The applets property refers to Java applets defined in a document by the <applet> tag. An
applet is not officially an object in the document until the applet loads completely.

document.applets

518 Part III ✦ Document Objects Reference

Most of the work you do with Java applets from JavaScript takes place via the methods and
variables defined inside the applet. Although you can reference an applet according to its
indexed array position within the applets array, you will more likely use the applet object’s
name in the reference to avoid any confusion.

Example
The document.applets property is defined automatically as the browser builds the object
model for a document that contains applet objects. You will rarely access this property,
except to determine how many applet objects a document has.

Related Items: applet object.

bgColor
(See alinkColor)

body
Value: body element object. Read/Write
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

The document.body property is a shortcut reference to the body element object in modern
object models. As you can see in the discussion of the body element object later in this chap-
ter, that object has many key properties that govern the look of the entire page. Because the
document object is the root of all references within any window or frame, the document.body
property is easier to use to get to the body properties, rather than longer references normally
used to access HTML element objects in both the IE4+ and W3C object models.

Example
Use The Evaluator (Chapter 13) to examine properties of the body element object. First, to
prove that the document.body is the same as the element object that comes back from
longer references, enter the following statement into the top text box with either IE5+, NN6+,
or some other W3C browser:

document.body == document.getElementsByTagName(“body”)[0]

Next, check out the body object’s property listings later in this chapter and enter the listings
into the top text box to review their results. For example:

document.body.bgColor
document.body.tagName

Related Items: body element object.

charset
Value: String. Read/Write
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-

The charset property reveals the character set used by the browser to render the current
document (the NN6+/Moz1+ version of this property is called characterSet). You can find
possible values for this property at

document.applets

519Chapter 18 ✦ The Document and Body Objects

ftp://ftp.isi.edu/in-notes/iana/assignments/character-sets

Each browser and operating system has its own default character set. Values may also be set
via a <meta> tag.

Example
Use The Evaluator (Chapter 13) to experiment with the charset property. To see the default
setting applied to the page, enter the following statement into the top text box:

document.charset

If you are running IE5+ for Windows and you enter the following statement, the browser will
apply a different character set to the page:

document.charset = “iso-8859-2”

If your version of Windows does not have that character set installed in the system, the
browser may ask permission to download and install the character set.

Related Items: characterSet, defaultCharset properties.

characterSet
Value: String. Read/Write
Compatibility: WinIE-, MacIE-, NN6+, Moz1+, Safari-

The characterSet property reveals the character set used by the browser to render the cur-
rent document (the IE4+ version of this property is called charset). You can find possible
values for this property at

http://www.iana.org/assignments/character-sets

Each browser and operating system has its own default character set. Values may also be set
via a <meta> tag.

Example
Use The Evaluator (Chapter 13) to experiment with the characterSet property in
NN6+/Moz1+. To see the default setting applied to the page, enter the following statement into
the top text box:

document.charset

Related Items: charset property.

compatMode
Value: String. Read-Only
Compatibility: WinIE6+, MacIE6+, NN7+, Moz1+, Safari-

The compatMode property reveals the compatibility mode for the document, as determined
by the DOCTYPE element’s content. The value for this property can be one of the following
string constants: BackCompat or CSS1Compat. The default setting for the compatMode prop-
erty is BackCompat.

document.compatMode

520 Part III ✦ Document Objects Reference

Example
You may find it useful to check the compatibility mode of a document in order to carry out
processing specific to one of the modes. Following is an example of how you might branch to
carry out processing for backward-compatible documents:

if (document.compatMode == “BackCompat”) {
// perform backward compatible processing

}

Related Items: Standards Compatibility Modes (Chapter 13).

cookie
Value: String. Read/Write
Compatibility: WinIE3+, MacIE3+, NN2+, Moz1+, Safari1+

The cookie mechanism in a Web browser lets you store small pieces of information on the
client computer in a reasonably secure manner. In other words, when you need some tidbit of
information to persist at the client level while either loading diverse HTML documents or
moving from one session to another, the cookie mechanism saves the day. The cookie is
commonly used as a means to store the username and password you enter into a password-
protected Web site. The first time you enter this information into a CGI-governed form, the
CGI program has Navigator write the information back to a cookie on your hard disk (usually
after encrypting the password). Rather than bothering you to enter the username and pass-
word the next time you access the site, the server searches the cookie data stored for that
particular server and extracts the username and password for automatic validation process-
ing behind the scenes.

Other applications of the cookie include storing user preferences and information about the
user’s previous visit to the site. Preferences may include font styles or sizes and whether the
user prefers viewing content inside a frameset or not. As shown in Chapter 54 on the CD-ROM,
a time stamp of the previous visit can allow a coded HTML page to display highlighted images
next to content that has changed since the user’s last visit, even if you have updated the page
several times in the interim. Rather than hard-wiring “New” flags for your last visit, the scripts
highlight what’s new for the visitor.

The cookie file
Allowing some foreign CGI program to read from and write to your hard disk may give you
pause, but browser cookie mechanisms don’t just open up your drive’s directory for the
world to see (or corrupt). Instead, the cookie mechanism provides access to just one special
text file (Navigator/Mozilla/Safari) or type of text file (Internet Explorer) located in a platform-
specific spot on your drive.

In Mozilla-based browsers, for example, the cookie file is named cookies.txt and is located in
a directory (whose name ends in .slt) within the browser’s profile area. In Windows, that loca-
tion is C:\\Windows\Application Data\Mozilla\Profiles\[profilename]\; in Mac OSX,
the location is [user]/Library/Mozilla/Profiles/[profilename]/. Internet Explorer for
Windows uses a different filing system: all cookies for each domain are saved in a domain-
specific file inside the C:\\Windows\Temporary Internet Files\ directory. Filenames
begin with Cookie: and include the username and domain of the server that wrote the cookie.
Safari cookies are recorded in an XML file named Cookies.plist within the [user]/Library/
Cookies/ directory.

document.compatMode

521Chapter 18 ✦ The Document and Body Objects

A cookie file is a text file. If curiosity drives you to open a cookie file, I recommend you do so
only with a copy saved in another directory or folder. Any alteration to the existing file can
mess up whatever valuable cookies are stored there for sites you regularly visit. The data for-
mat for cookie files differs across browsers, in line with the different methodologies used for
filing cookies. Inside the Netscape/Mozilla file (after a few comment lines warning you not to
manually alter the file) are lines of tab-delimited text. Each return-delimited line contains one
cookie’s information. The cookie file is just like a text listing of a database. In each of the IE
cookie files, the same data points are stored for a cookie as for Navigator, but the items are in
a return-delimited list. The structure of these files is of no importance to scripting cookies,
because all browsers utilize the same syntax for reading and writing cookies through the
document.cookie property.

As you experiment with browser’s cookies, you will be tempted to look into the cookie file
after a script writes some data to the cookie. The cookie file usually will not contain the
newly written data, because in most browsers cookies are transferred to disk only when the
user quits the browser; conversely, the cookie file is read into the browser’s memory when it
is launched. While you read, write, and delete cookies during a browser session, all activity is
performed in memory (to speed up the process) to be saved later.

A cookie record
Among the “fields” of each cookie record are the following (not necessarily in this order):

✦ Domain of the server that created the cookie

✦ Information on whether you need a secure HTTP connection to access the cookie

✦ Pathname of URL(s) capable of accessing the cookie

✦ Expiration date of the cookie

✦ Name of the cookie entry

✦ String data associated with the cookie entry

Notice that cookies are domain-specific. In other words, if one domain creates a cookie,
another domain cannot access it through the browser’s cookie mechanism behind your back.
That reason is why it’s generally safe to store what I call throwaway passwords (the user-
name/password pairs required to access some free registration-required sites) in cookies.
Moreover, sites that store passwords in a cookie usually do so as encrypted strings, making it
more difficult for someone to hijack the cookie file from your unattended PC and figure out
what your personal password scheme may be.

Cookies also have expiration dates. Because some browsers may allow no more than a fixed
number of cookies (300 in NN), the cookie file can get pretty full over the years. Therefore, if a
cookie needs to persist past the current browser session, it should have an expiration date
established by the cookie writer. Browsers automatically clean out any expired cookies.

Not all cookies have to last beyond the current session, however. In fact, a scenario in which
you use cookies temporarily while working your way through a Web site is quite typical.
Many shopping sites employ one or more temporary cookie records to behave as the shop-
ping cart for recording items you intend to purchase. These items are copied to the order
form at checkout time. But after you submit the order form to the server, that client-side data
has no particular value. As it turns out, if your script does not specify an expiration date, the
browser keeps the cookie fresh in memory without writing it to the cookie file. When you quit
the browser, that cookie data disappears as expected.

Note

document.cookie

522 Part III ✦ Document Objects Reference

JavaScript access
Scripted access of cookies from JavaScript is limited to setting the cookie (with a number of
optional parameters) and getting the cookie data (but with none of the parameters).

The original object model defines cookies as properties of documents, but this description is
somewhat misleading. If you use the default path to set a cookie (that is, the current directory
of the document whose script sets the cookie in the first place), all documents in that same
server directory have read and write access to the cookie. A benefit of this arrangement is that
if you have a scripted application that contains multiple documents, all documents served
from the same directory can share the cookie data. NN and IE, however, impose a limit of 20
named cookie entries (that is, one name/value pair) for any domain. If your cookie require-
ments are extensive, you need to fashion ways of concatenating cookie data (I do this in the
Decision Helper application in Chapter 55 on the CD-ROM).

Saving cookies
To write cookie data to the cookie file, you use a simple JavaScript assignment operator with
the document.cookie property. But the formatting of the data is crucial to achieving suc-
cess. Here is the syntax for assigning a value to a cookie (optional items are in brackets;
placeholders for data you supply are in italics):

document.cookie = “cookieName=cookieData
[; expires=timeInGMTString]
[; path=pathName]
[; domain=domainName]
[; secure]”

Let’s examine each of the properties individually.

Name/Data
Each cookie must have a name and a string value (even if that value is an empty string). Such
name/value pairs are fairly common in HTML, but they look odd in an assignment statement.
For example, if you want to save the string “Fred” to a cookie named “userName,” the
JavaScript statement is

document.cookie = “userName=Fred”;

If the browser sees no existing cookie in the current domain with this name, it automatically
creates the cookie entry for you; if the named cookie already exists, the browser replaces the
old data with the new data. Retrieving the document.cookie property at this point yields the
following string:

userName=Fred

You can omit all the other cookie-setting properties, in which case the browser uses default
values, as explained in a following section. For temporary cookies (those that don’t have to
persist beyond the current browser session), the name/value pair is usually all you need.

The entire name/value pair must be a single string with no semicolons, commas, or character
spaces. To take care of spaces between words, preprocess the value with the JavaScript
escape() function, which URL-encodes the spaces as %20 (and then be sure to unescape()
the value to restore the human-readable spaces when you retrieve the cookie later).

You cannot save a JavaScript array or object to a cookie. But with the help of the Array.join()
method, you can convert an array to a string; use String.split() to re-create the array after
reading the cookie at a later time. These two methods are available in NN3+/Moz1+, IE4+, and
Safari1+.

document.cookie

523Chapter 18 ✦ The Document and Body Objects

Expires
Expiration dates, when supplied, must be passed as Greenwich Mean Time (GMT) strings
(see Chapter 29 about time data). To calculate an expiration date based on today’s date, use
the JavaScript Date object as follows:

var exp = new Date();
var oneYearFromNow = exp.getTime() + (365 * 24 * 60 * 60 * 1000);
exp.setTime(oneYearFromNow);

Then convert the date to the accepted GMT string format:

document.cookie = “userName=Fred; expires=” + exp.toGMTString();

In the cookie file, the expiration date and time is stored as a numeric value (seconds) but, to
set it, you need to supply the time in GMT format. You can delete a cookie before it expires by
setting the named cookie’s expiration date to a time and date earlier than the current time
and date. The safest expiration parameter is

expires=Thu, 01-Jan-70 00:00:01 GMT

Omitting the expiration date signals the browser that this cookie is temporary. The browser
never writes it to the cookie file and forgets it the next time you quit the browser.

Path
For client-side cookies, the default path setting (the current directory) is usually the best
choice. You can, of course, create a duplicate copy of a cookie with a separate path (and
domain) so that the same data is available to a document located in another area of your site
(or the Web).

Domain
To help synchronize cookie data with a particular document (or group of documents), the
browser matches the domain of the current document with the domain values of cookie
entries in the cookie file. Therefore, if you were to display a list of all cookie data contained in
a document.cookie property, you would get back all the name/value cookie pairs from the
cookie file whose domain parameter matches that of the current document.

Unless you expect the document to be replicated in another server within your domain, you
can usually omit the domain parameter when saving a cookie. Default behavior automatically
supplies the domain of the current document to the cookie file entry. Be aware that a domain
setting must have at least two periods, such as

.mcom.com

.hotwired.com

Or, you can write an entire URL to the domain, including the http:// protocol.

SECURE
If you omit the SECURE parameter when saving a cookie, you imply that the cookie data is
accessible to any document or CGI program from your site that meets the other domain- and
path-matching properties. For client-side scripting of cookies, you should omit this parameter
when saving a cookie.

document.cookie

524 Part III ✦ Document Objects Reference

Retrieving cookie data
Cookie data retrieved via JavaScript is contained in one string, including the whole name-data
pair. Even though the cookie file stores other parameters for each cookie, you can retrieve only
the name-data pairs via JavaScript. Moreover, when two or more (up to a maximum of 20) cook-
ies meet the current domain criteria, these cookies are also lumped into that string, delimited
by a semicolon and space. For example, a document.cookie string may look like this:

userName=Fred; password=NikL2sPacU

In other words, you cannot treat named cookies as objects. Instead, you must parse the
entire cookie string, extracting the data from the desired name-data pair.

When you know that you’re dealing with only one cookie (and that no more will ever be
added to the domain), you can customize the extraction based on known data, such as the
cookie name. For example, with a cookie name that is seven characters long, you can extract
the data with a statement such as this:

var data = unescape(document.cookie.substring(7,document.cookie.length));

The first parameter of the substring() method includes the equal sign to separate the name
from the data.

A better approach is to create a general-purpose function that can work with single- or multiple-
entry cookies. Here is one I use in some of my pages:

function getCookieData(labelName) {
var labelLen = labelName.length;
// read cookie property only once for speed
var cookieData = document.cookie;
var cLen = cookieData.length;
var i = 0;
var cEnd;
while (i < cLen) {

var j = i + labelLen;
if (cookieData.substring(i,j) == labelName) {

cEnd = cookieData.indexOf(“;”,j);
if (cEnd == -1) {

cEnd = cookieData.length;
}
return unescape(cookieData.substring(j+1, cEnd));

}
i++;

}
return “”;

}

Calls to this function pass the label name of the desired cookie as a parameter. The function
parses the entire cookie string, chipping away any mismatched entries (through the semi-
colons) until it finds the cookie name.

If all of this cookie code still makes your head hurt, you can turn to a set of functions devised
by experienced JavaScripter and Web site designer Bill Dortch of hIdaho Design. His cookie
functions provide generic access to cookies that you can use in all of your cookie-related
pages. Listing 18-3 shows Bill’s cookie functions, which include a variety of safety nets for
date calculation bugs that appeared in some older versions of Netscape Navigator. Don’t be
put off by the length of the listing: Most of the lines are comments.

document.cookie

525Chapter 18 ✦ The Document and Body Objects

Listing 18-3: Bill Dortch’s Cookie Functions

<html>
<head>

<title>Cookie Functions</title>
</head>
<body>

<script type=”text/javascript”>
//
// Cookie Functions -- “Night of the Living Cookie” Version (25-Jul-96)
//
// Written by: Bill Dortch, hIdaho Design
// The following functions are released to the public domain.
//
// This version takes a more aggressive approach to deleting
// cookies. Previous versions set the expiration date to one
// millisecond prior to the current time; however, this method
// did not work in Netscape 2.02 (though it does in earlier and
// later versions), resulting in “zombie” cookies that would not
// die. DeleteCookie now sets the expiration date to the earliest
// usable date (one second into 1970), and sets the cookie’s value
// to null for good measure.
//
// Also, this version adds optional path and domain parameters to
// the DeleteCookie function. If you specify a path and/or domain
// when creating (setting) a cookie**, you must specify the same
// path/domain when deleting it, or deletion will not occur.
//
// The FixCookieDate function must now be called explicitly to
// correct for the 2.x Mac date bug. This function should be
// called *once* after a Date object is created and before it
// is passed (as an expiration date) to SetCookie. Because the
// Mac date bug affects all dates, not just those passed to
// SetCookie, you might want to make it a habit to call
// FixCookieDate any time you create a new Date object:
//
// var theDate = new Date();
// FixCookieDate (theDate);
//
// Calling FixCookieDate has no effect on platforms other than
// the Mac, so there is no need to determine the user’s platform
// prior to calling it.
//
// This version also incorporates several minor coding improvements.
//
// **Note that it is possible to set multiple cookies with the same
// name but different (nested) paths. For example:
//
// SetCookie (“color”,”red”,null,”/outer”);
// SetCookie (“color”,”blue”,null,”/outer/inner”);
//
// However, GetCookie cannot distinguish between these and will return
// the first cookie that matches a given name. It is therefore
// recommended that you *not* use the same name for cookies with
// different paths. (Bear in mind that there is *always* a path

Continued

document.cookie

526 Part III ✦ Document Objects Reference

Listing 18-3 (continued)

// associated with a cookie; if you don’t explicitly specify one,
// the path of the setting document is used.)
//
// Revision History:
//
// “Toss Your Cookies” Version (22-Mar-96)
// - Added FixCookieDate() function to correct for Mac date bug
//
// “Second Helping” Version (21-Jan-96)
// - Added path, domain and secure parameters to SetCookie
// - Replaced home-rolled encode/decode functions with Netscape’s
// new (then) escape and unescape functions
//
// “Free Cookies” Version (December 95)
//
//
// For information on the significance of cookie parameters,
// and on cookies in general, please refer to the official cookie
// spec, at:
//
// http://www.netscape.com/newsref/std/cookie_spec.html
//
//**
//
// “Internal” function to return the decoded value of a cookie
//
function getCookieVal (offset) {

var endstr = document.cookie.indexOf (“;”, offset);
if (endstr == -1) {

endstr = document.cookie.length;
}
return unescape(document.cookie.substring(offset, endstr));

}

//
// Function to correct for 2.x Mac date bug. Call this function to
// fix a date object prior to passing it to SetCookie.
// IMPORTANT: This function should only be called *once* for
// any given date object! See example at the end of this document.
//
function FixCookieDate (date) {

var base = new Date(0);
var skew = base.getTime(); // dawn of (Unix) time - should be 0
if (skew > 0) { // Except on the Mac - ahead of its time

date.setTime (date.getTime() - skew);
}

}

//
// Function to return the value of the cookie specified by “name”.
// name - String object containing the cookie name.
// returns - String object containing the cookie value, or null if
// the cookie does not exist.
//

document.cookie

527Chapter 18 ✦ The Document and Body Objects

function GetCookie (name) {
var arg = name + “=”;
var alen = arg.length;
var clen = document.cookie.length;
var i = 0;
while (i < clen) {

var j = i + alen;
if (document.cookie.substring(i, j) == arg) {

return getCookieVal (j);
}
i = document.cookie.indexOf(“ “, i) + 1;
if (i == 0) {

break;
}

}
return null;

}

//
// Function to create or update a cookie.
// name - String object containing the cookie name.
// value - String object containing the cookie value. May contain
// any valid string characters.
// [expires] - Date object containing the expiration data of the
// cookie. If omitted or null, expires the cookie at the end of the
// current session.
// [path] - String object indicating the path for which the cookie is
// valid.
// If omitted or null, uses the path of the calling document.
// [domain] - String object indicating the domain for which the cookie
// is valid. If omitted or null, uses the domain of the calling
// document.
// [secure] - Boolean (true/false) value indicating whether cookie
// transmission requires a secure channel (HTTPS).
//
// The first two parameters are required. The others, if supplied, must
// be passed in the order listed above. To omit an unused optional
// field, use null as a place holder. For example, to call SetCookie
// using name, value and path, you would code:
//
// SetCookie (“myCookieName”, “myCookieValue”, null, “/”);
//
// Note that trailing omitted parameters do not require a placeholder.
//
// To set a secure cookie for path “/myPath”, that expires after the
// current session, you might code:
//
// SetCookie (myCookieVar, cookieValueVar, null, “/myPath”, null,
// true);
//
function SetCookie (name,value,expires,path,domain,secure) {

document.cookie = name + “=” + escape (value) +
((expires) ? “; expires=” + expires.toGMTString() : “”) +
((path) ? “; path=” + path : “”) +
((domain) ? “; domain=” + domain : “”) +
((secure) ? “; secure” : “”);

}

Continued

document.cookie

528 Part III ✦ Document Objects Reference

Listing 18-3 (continued)

// Function to delete a cookie. (Sets expiration date to start of epoch)
// name - String object containing the cookie name
// path - String object containing the path of the cookie to delete.
// This MUST be the same as the path used to create the
// cookie, or null/omitted if
// no path was specified when creating the cookie.
// domain - String object containing the domain of the cookie to
// delete. This MUST be the same as the domain used to
// create the cookie, or null/omitted if no domain was
// specified when creating the cookie.
//
function DeleteCookie (name,path,domain) {

if (GetCookie(name)) {
document.cookie = name + “=” +

((path) ? “; path=” + path : “”) +
((domain) ? “; domain=” + domain : “”) +
“; expires=Thu, 01-Jan-70 00:00:01 GMT”;

}
}

//
// Examples
//
var expdate = new Date ();
FixCookieDate (expdate); // Correct for Mac date bug (call only once)
expdate.setTime (expdate.getTime() + (24 * 60 * 60 * 1000)); // 24 hrs
SetCookie (“ccpath”, “http://www.hidaho.com/colorcenter/”, expdate);
SetCookie (“ccname”, “hIdaho Design ColorCenter”, expdate);
SetCookie (“tempvar”, “This is a temporary cookie.”);
SetCookie (“ubiquitous”, “This cookie will work anywhere in this

domain”,null,”/”);
SetCookie (“paranoid”, “This cookie requires secure

communications”,expdate,”/”,null,true);
SetCookie (“goner”, “This cookie must die!”);
document.write (document.cookie + “
”);
DeleteCookie (“goner”);
document.write (document.cookie + “
”);
document.write (“ccpath = “ + GetCookie(“ccpath”) + “
”);
document.write (“ccname = “ + GetCookie(“ccname”) + “
”);
document.write (“tempvar = “ + GetCookie(“tempvar”) + “
”);
</script>

</body>
</html>

Extra batches
You may design a site that needs more than 20 cookies for a given domain. For example, in a
shopping site, you never know how many items a customer may load into the shopping cart
cookie.

Because each named cookie stores plain text, you can create your own text-based data struc-
tures to accommodate multiple pieces of information per cookie. (But also watch out for a

document.cookie

529Chapter 18 ✦ The Document and Body Objects

practical limit of 2,000 characters per name/value pair within the 4,000 character maximum
for any domain’s combined cookies.) The trick is determining a delimiter character that won’t
be used by any of the data in the cookie. In Decision Helper (in Chapter 55 on the CD-ROM),
for example, I use a period to separate multiple integers stored in a cookie.

With the delimiter character established, you must then write functions that concatenate
these “subcookies” into single cookie strings and extract them on the other side. It’s a bit
more work, but well worth the effort to have the power of persistent data on the client.

Example
Experiment with the last group of statements in Listing 18-3 to create, retrieve, and delete
cookies. You can also experiment with The Evaluator by assigning a name/value pair string
to document.cookie, and then examining the value of the cookie property.

Related Items: String object methods (Chapter 27).

defaultCharset
Value: String. Read/Write
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-

The defaultCharset property reveals the character set used by the browser to render the
current document. You can find possible values for this property at

http://www.iana.org/assignments/character-sets

Each browser and operating system has its own default character set. Values may also be set
via a <meta> tag. The difference between the defaultCharset and charset properties is not
clear, especially because both are read/write (although modifying the defaultCharset prop-
erty has no visual effect on the page). However, if your scripts temporarily modify the charset
property, you can use the defaultCharset property to return to the original character set:

document.charset = document.defaultCharset;

Example
Use The Evaluator (Chapter 13) to experiment with the defaultCharset property. To see the
default setting applied to the page, enter the following statement into the top text box:

document.defaultCharset

Related Items: charset, characterSet properties.

defaultView
Value: window or frame object reference. Read-Only
Compatibility: WinIE-, MacIE-, NN6+, Moz1+, Safari-

The defaultView property returns a reference to the object serving as the “viewer” for the
document. The viewer is responsible for rendering the document, and in NN6+ the object
returned in the defaultView property is the window or frame object that contains the docu-
ment. This W3C DOM Level 2 property provides access to computed CSS values being applied
to any HTML element (via the document.defaultView.getComputedStyle() method, or
more simply, the window.getComputedStyle() method).

Related Items: window and frame properties; window.getComputedStyle() method.

document.defaultView

530 Part III ✦ Document Objects Reference

designMode
Value: String. Read/Write
Compatibility: WinIE5+, MacIE-, NN7.1, Moz1.4+, Safari-

The designMode property is applicable only when WinIE5+ technology is being used as a
component in another application. The property controls whether the browser module is
being used for HTML editing. Modifying the property from within a typical HTML page in the
IE5+ browser has no effect. But on the Mozilla side, the property can be used to turn an
iframe element’s document object into an HTML editable document. Visit http://www.
mozilla.org/editor for current details and examples.

doctype
Value: DocumentType object reference. Read-Only
Compatibility: WinIE-, MacIE5+, NN6+, Moz1+, Safari-

The doctype property comes from the W3C Core DOM and returns a DocumentType object —
a representation of the DTD information for the document. The DocumentType object (if one
is explicitly defined in the source code) is the first child node of the root document node (and
is thus a sibling to the HTML element).

Table 18-2 shows the typical DocumentType object property list and values for a generic
HTML page. Future DOM specifications will allow these properties to be read/write.

Table 18-2: DocumentType Object in NN6+/Moz1+

Property Value

entities null
internalSubset (empty)

name html
notations null
publicId -//W3C//DTD XHTML 1.0 Transitional//EN
systemId http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd

Related Items: Node object (Chapter 14).

documentElement
Value: HTML or XML element object reference. Read-Only
Compatibility: WinIE5+, MacIE5+, NN6+, Moz1+, Safari1+

The documentElement property returns a reference to the HTML (or XML) element object
that contains all of the content of the current document. The naming of this property is a bit
misleading, because the root document node is not an element, but its only child node is the
HTML (or XML) element for the page. At best, you can think of this property as providing
scripts with an “element face” to the document object and document node associated with
the page currently loaded in the browser.

document.designMode

531Chapter 18 ✦ The Document and Body Objects

Example
Use The Evaluator (Chapter 13) to examine the behavior of the documentElement property.
In IE5+/W3C, enter the following statement into the top text field:

document.documentElement.tagName

The result is HTML, as expected.

Related Items: ownerDocument property (Chapter 15).

domain
Value: String. Read/Write
Compatibility: WinIE4+, MacIE4+, NN3+, Moz1+, Safari1+

Security restrictions can get in the way of sites that have more than one server at their
domain. Because some objects, especially the location object, prevent access to properties
of other servers displayed in other frames, legitimate access to those properties are blocked.
For example, it’s not uncommon for popular sites to have their usual public access site on a
server named something such as www.popular.com. If a page on that server includes a front
end to a site search engine located at search.popular.com, visitors who use browsers with
these security restrictions are denied access.

To guard against that eventuality, a script in documents from both servers can instruct the
browser to think both servers are the same. In the preceding example, you would set the
document.domain property in both documents to popular.com. Without specifically setting
the property, the default value includes the server name as well, thus causing a mismatch
between hostnames.

Before you start thinking that you can spoof your way into other servers, be aware that you
can set the document.domain property only to servers with the same domain (following the
“two-dot” rule) as the document doing the setting. Therefore, documents originating only
from xxx.popular.com can set their document.domain properties to popular.com server.

Related Items: window.open() method; window.location object; security (Chapter 46 on
the CD-ROM).

embeds[]
Value: Array of embed element objects. Read-Only
Compatibility: WinIE4+, MacIE4+, NN3+, Moz1+, Safari1+

Although now supplanted by the <object> tag, the <embed> tag used to be the markup that
loaded data requiring a plug-in application to play or display. The document.embeds prop-
erty is an array of embed element objects within the document:

var count = document.embeds.length;

For controlling those plug-ins in Navigator and Mozilla-based browsers, you can use the
LiveConnect technology, described in Chapter 44 on the CD-ROM.

Related Items: embed element object (Chapter 40 on the CD-ROM).

document.embeds

532 Part III ✦ Document Objects Reference

expando
Value: Boolean. Read/Write
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-

Microsoft calls any custom property that is not a native property of the document object an
expando property. By default, most objects in recent generations of browsers allow scripts to
add new properties of objects as a way to temporarily store data without explicitly defining
global variables. For example, if you want to maintain an independent counter of how often a
function is invoked, you can create a custom property of the document object and use it as
the storage facility:

document.counter = 0;

IE4+ lets you control whether the document object is capable of accepting expando properties.
The default value of the document.expando property is true, thus allowing custom properties.
But the potential downside to this permissiveness, especially during the page construction
phase, is that a misspelled native property name is gladly accepted by the document object.
You may not be aware of why the title bar of the browser window doesn’t change when you
assign a new string to the document.Title property (which, in the case-sensitive world of
JavaScript, is distinct from the native document.title property).

Example
Use The Evaluator (Chapter 13) to experiment with the document.expando property in IE4+.
Begin by proving that the document object can normally accept custom properties. Type the
following statement into the top text field:

document.spooky = “Boo!”

This property is now set and stays that way until the page is either reloaded or unloaded.

Now freeze the document object’s properties with the following statement:

document.expando = false

If you try to add a new property, such as the following, you receive an error:

document.happy = “tra la”

Interestingly, even though document.expando is turned off, the first custom property is still
accessible and modifiable.

Related Items: prototype property of custom objects (Chapter 33).

fgColor
(See alinkColor)

fileCreatedDate
fileModifiedDate
fileSize

Value: String, Integer (fileSize). Read-Only
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-

document.expando

533Chapter 18 ✦ The Document and Body Objects

These three IE-specific properties return information about the file that holds the current
document. The first two properties (not implemented in MacIE) reveal the dates on which the
current document’s file was created and modified. For an unmodified file, its creation and
modified dates are the same. The fileSize property reveals the number of bytes of the file.

Date values returned for the first two properties are formatted differently between IE4 and
IE5+. The former provides a full readout of the day and date; the latter in a format similar to
mm/dd/yyyy. Note, however, that the values contain only the date and not the time. In any
case, you can use the values as the parameter to a new Date() constructor function. You can
then use date calculations for such information as the number of days between the current
day and the most recent modification.

Not all servers may provide the proper date or size information about a file or in a format that
IE can interpret. Test your implementation on the deployment server to ensure compatibility.

Also, be aware that these properties can be read only for a file that is loaded in the browser.
JavaScript by itself cannot get this information about files that are on the server but not
loaded in the browser.

IE5.5+ exposes a property called fileUpdatedDate, but the property does not return any
data. This property may be a phantom property left over from a prerelease version.

Example
Listing 18-4 dynamically generates several pieces of content relating to the creation and modi-
fication dates of the file, as well as its size. More importantly, the listing demonstrates how to
turn a value returned by the file date properties into a genuine date object that can be used
for date calculations. In the case of Listing 18-4, the calculation is the number of full days
between the creation date and the day someone views the file. Notice that the dynamically
generated content is added very simply via the innerText properties of carefully located
span elements in the body content.

Listing 18-4: Displaying File Information for a Web Page

<html>
<head>

<title>fileCreatedDate and fileModifiedDate Properties</title>
<script type=”text/javascript”>
function fillInBlanks() {

var created = document.fileCreatedDate;
var modified = document.fileModifiedDate;
document.getElementById(“created”).innerText = created;
document.getElementById(“modified”).innerText = modified;
var createdDate = new Date(created).getTime();
var today = new Date().getTime();
var diff = Math.floor((today - createdDate) / (1000*60*60*24));
document.getElementById(“diff”).innerText = diff;
document.getElementById(“size”).innerText = document.fileSize;

}
</script>

</head>
<body onload=”fillInBlanks()”>

Continued

document.fileCreatedDate

534 Part III ✦ Document Objects Reference

Listing 18-4 (continued)

<h1>fileCreatedDate and fileModifiedDate Properties</h1>
<hr />
<p>This file (bytes) was created on <span

id=”created”> and most recently modified on .</p>

<p>It has been days since this file was
created.</p>

</body>
</html>

Related Items: lastModified property.

forms[]
Value: Array. Read-Only
Compatibility: WinIE3+, MacIE3+, NN2+, Moz1+, Safari1+

As I show in Chapter 21, which is dedicated to the form object, an HTML form (anything
defined inside a <form>...</form> tag pair) is a JavaScript object unto itself. You can create
a valid reference to a form according to its name (assigned via a form’s name attribute). For
example, if a document contains the following form definition

<form name=”phoneData”>
input item definitions

</form>

your scripts can refer to the form object by name:

document.phoneData

However, a document object also tracks its forms in another way: as an array of form objects.
The first item of a document.forms array is the form that loaded first (it was first from the top
of the HTML code). If your document defines one form, the forms property is an array one
entry in length; with three separate forms in the document, the array is three entries long.

Use standard array notation to reference a particular form from the document.forms array.
For example, the first form in a document (the “zeroth” entry of the document.forms array)
is referenced as

document.forms[0]

Any of the form object’s properties or methods are available by appending the desired prop-
erty or method name to the reference. For example, to retrieve the value of an input text field
named homePhone from the second form of a document, the reference you use is

document.forms[1].homePhone.value

One advantage to using the document.forms property for addressing a form object or ele-
ment instead of the actual form name is that you may be able to generate a library of general-
izable scripts that know how to cycle through all available forms in a document and hunt for
a form that has some special element and property. The following script fragment (part of a
repeat loop described more fully in Chapter 31) uses a loop-counting variable (i) to help the
script check all forms in a document:

document.fileCreatedDate

535Chapter 18 ✦ The Document and Body Objects

for (var i = 0; i < document.forms.length; i++) {
if (document.forms[i]. ...) {

statements
}

}

One more variation on forms array references lets you substitute the name of a form (as a string)
for the forms array index. For example, the form named phoneData can be referenced as

document.forms[“phoneData”]

If you use a lot of care in assigning names to objects, you will likely prefer the document.
formName style of referencing forms. In this book, you see both indexed array and form name
style references. The advantage of using name references is that even if you redesign the page
and change the order of forms in the document, references to the named forms will still be
valid, whereas the index numbers of the forms will have changed. See also the discussion in
Chapter 21 of the form object and how to pass a form’s data to a function.

Example
The document in Listing 18-5 is set up to display an alert dialog box that simulates navigation
to a particular music site, based on the checked status of the “bluish” checkbox. The user
input here is divided into two forms: one form with the checkbox and the other form with the
button that does the navigation. A block of copy fills the space in between. Clicking the bot-
tom button (in the second form) triggers the function that fetches the checked property of
the “bluish” checkbox by using the document.forms[i] array as part of the address.

Listing 18-5: A Simple Form Example

<html>
<head>

<title>document.forms example</title>
<script type=”text/javascript”>
function goMusic() {

if (document.forms[0].bluish.checked) {
alert(“Now going to the Blues music area...”);

} else {
alert(“Now going to Rock music area...”);

}
}
</script>

</head>
<body>

<form name=”theBlues”>
<input type=”checkbox” name=”bluish” />Check here if you’ve got the
blues.

</form>
<hr />
M

o

r

e

C

o

Continued

document.forms

536 Part III ✦ Document Objects Reference

Listing 18-5 (continued)

p

y

<hr />
<form name=”visit”>

<input type=”button” value=”Visit music site” onclick=”goMusic()” />
</form>

</body>
</html>

Related Items: form object (Chapter 21).

frames[]
Value: Array. Read-Only
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-

The document.frames property is similar to the window.frames property, but its association
with the document object may seem a bit illogical at times. The objects contained by the array
returned from the property are window objects, which means they are the window objects of
any frame elements (from a framesetting document) or iframe elements (from a plain HTML
document) defined for the document. Distinguishing the window objects from the iframe ele-
ment objects is important. Window objects have different properties and methods than the
frame and iframe element objects. The latter’s properties typically represent the attributes
for those element’s tags. If a document contains no iframe elements, the document.frames
array length is zero.

While you can access an individual frame object via the typical array syntax (for example,
document.frames[0]), you can also use alternate syntax that Microsoft provides for collec-
tions of objects. The index number can also be placed inside parentheses, as in

document.frames(0)

Moreover, if the frames have values assigned to their name attributes, you can use the name
(in string form) as a parameter:

document.frames(“contents”)

And if the collection of frames has more than one frame with the same name, you must take
special care. Using the duplicated name as a parameter forces the reference to return a col-
lection of frame objects that share that name. Or, you can limit the returned value to a single
instance of the duplicate-named frames by specifying an optional second parameter indicat-
ing the index. For example, if a document has two iframe elements with the name contents,
a script could reference the second window object as

document.frames(“contents”, 1)

For the sake of cross-browser compatibility, my preference for referencing frame window
objects is via the window.frames property.

document.forms

537Chapter 18 ✦ The Document and Body Objects

Example
See Listings 16-7 and 16-8 for examples of using the frames property with window objects.
The listings work with IE4+ if you swap references to window with document.

Related Items: window.frames property.

height
width

Value: Integer. Read-Only
Compatibility: WinIE-, MacIE-, NN4+, Moz1+, Safari1+

The height and width properties provide the pixel dimensions of the content within the cur-
rent window (or frame). If the document’s content is smaller than the size of the browser’s
content region, the dimensions returned by these properties include the blank space to the
right and/or bottom edges of the content area of the window. But if the content extends
beyond the viewable edges of the content region, the dimensions include the unseen content
as well. The corresponding measures in IE4+ are the document.body.scrollHeight and
document.body.scrollWidth properties.

Example
Use The Evaluator (Chapter 13) to examine the height and width properties of that docu-
ment. Enter the following statement into the top text box and click the Evaluate button:

“height=” + document.height + “; width=” + document.width

Resize the window so that you see both vertical and horizontal scroll bars in the browser
window and click the Evaluate button again. If either or both numbers get smaller, the values
in the Results box are the exact size of the space occupied by the document. But if you
expand the window to well beyond where the scroll bars are needed, the values extend to the
number of pixels in each dimension of the window’s content region.

Related Items: document.body.scrollHeight, document.body.scrollWidth properties.

ids[]
Value: Array. Read-Only
Compatibility: WinIE-, MacIE-, NN4, Moz-, Safari-

The NN4-specific ids property is used in the browser’s alternative, JavaScript-based
stylesheet syntax. Deployment of JavaScript stylesheets is exceedingly rare. In some ways,
the document.ids property behaves similarly to the IE4+ document.all property, but
document.ids cannot be used in regular scripts to access element objects.

Related Items: tags property.

images[]
Value: Array. Read-Only
Compatibility: WinIE4+, MacIE3+, NN3+, Moz1+, Safari1+

With images treated as first-class objects beginning with NN3 and IE4, it’s only natural for a
document to maintain an array of all the image tags defined on the page (just as it does for
links and anchors). The prime importance of having images as objects is that you can modify
their content (the source file associated with the rectangular space of the image) on the fly.
You can find details about the image object in Chapter 20.

document.images

538 Part III ✦ Document Objects Reference

Use image array references to pinpoint a specific image for retrieval of any image property or
for assigning a new image file to its src property. Image arrays begin their index counts with
0: The first image in a document has the reference document.images[0]. And, as with any
array object, you can find out how many images the array contains by checking the length
property. For example:

var imageCount = document.images.length;

Images can also have names, so if you prefer, you can refer to the image object by its name,
as in

var imageLoaded = document.imageName.complete;

or

var imageLoaded = document.images[imageName].complete;

The document.images array is a useful guide to knowing whether a browser supports swap-
pable images. Any browser that treats an img element as an object always forms a document.
images array in the page. If no images are defined in the page, the array is still there, but its
length is zero. The array’s existence, however, is the clue about image object compatibility.
Because the document.images array evaluates to an array object when present, the expres-
sion can be used as a condition expression for branching to statements that involve image
swapping:

if (document.images) {
// image swapping or precaching here

}

Earlier browsers that don’t have this property evaluate document.images as undefined and
thus the condition is treated as a false value.

Example
The document.images property is defined automatically as the browser builds the object
model for a document that contains image objects. See the discussion about the Image object
in Chapter 20 for reference examples.

Related Items: Image object (Chapter 20).

implementation
Value: Object. Read-Only
Compatibility: WinIE6+, MacIE5+, NN6+, Moz1+, Safari1+

The Core W3C DOM defines the document.implementation property as an avenue to let
scripts find out what DOM features (that is, modules of the DOM standard) are implemented
for the current environment. While the object returned by the property (a DOMImplementation
object) has no properties, it has a method, hasFeature(), which lets scripts find out, for
example, whether the environment supports HTML or just XML. The first parameter of the
hasFeature() method is the feature in the form of a string. The second parameter is a string
form of the version number. The method returns a Boolean value.

A section of the W3C DOM specification, called “Conformance,” governs the module names
(the standard also allows browser-specific features to be tested via the hasFeature()
method). Module names include strings such as HTML, XML, MouseEvents, and so on.

document.images

539Chapter 18 ✦ The Document and Body Objects

Version numbering for W3C DOM modules corresponds to the W3C DOM level. Thus, the ver-
sion for the XML DOM module in DOM Level 2 is known as 2.0. Note that versions refer to
DOM modules and not, for instance, the separate HTML standard.

Example
Use The Evaluator (Chapter 13) to experiment with the document.implementation.
hasFeature() method. Enter the following statements one at a time into the top text field
and examine the results:

document.implementation.hasFeature(“HTML”,”1.0”)
document.implementation.hasFeature(“HTML”,”2.0”)
document.implementation.hasFeature(“HTML”,”3.0”)
document.implementation.hasFeature(“CSS”,”2.0”)
document.implementation.hasFeature(“CSS2”,”2.0”)

Feel free to try other values.

lastModified
Value: Date string. Read-Only
Compatibility: WinIE3+, MacIE3+, NN2+, Moz1+, Safari1+

Every disk file maintains a modified time stamp, and most (but not all) servers are configured
to expose this information to a browser accessing a file. This information is available by read-
ing the document.lastModified property. If your server supplies this information to the
client, you can use the value of this property to present this information for readers of your
Web page. The script automatically updates the value for you, rather than requiring you to
hand-code the HTML line every time you modify the home page.

If the value returned to you displays itself as a date in 1969, it means that you are positioned
somewhere west of GMT, or Greenwich Mean Time (some number of time zones west of GMT
at 1 January 1970), and the server is not providing the proper data when it serves the file.
Sometimes server configuration can fix the problem, but not always.

The returned value is not a date object (see Chapter 29) but rather a straight string consist-
ing of time and date, as recorded by the document’s file system. The format of the string
varies from browser to browser and version to version. You can, however, usually convert the
date string to a JavaScript date object and use the date object’s methods to extract selected
elements for recompilation into readable form. Listing 18-6 shows an example.

Even local file systems don’t necessarily provide the correct data for every browser to inter-
pret. But put that same file on a UNIX or Windows Web server, and the date appears correctly
when accessed via the Net.

Example
Experiment with the document.lastModified property with Listing 18-6. But also be pre-
pared for inaccurate readings if the file is located on some servers or local hard disks.

document.lastModified

540 Part III ✦ Document Objects Reference

Listing 18-6: Putting a Time Stamp on a Page

<html>
<head>

<title>Time Stamper</title>
</head>
<body>

<center>
<h1>GiantCo Home Page</h1>

</center>
<script type=”text/javascript”>
update = new Date(document.lastModified);
theMonth = update.getMonth() + 1;
theDate = update.getDate();
theYear = update.getFullYear();
document.writeln(“<I>Last updated:” + theMonth + “/” + theDate + “/” +

theYear + “<\/I>”);
</script>
<hr />

</body>
</html>

As noted at great length in the Date object discussion in Chapter 29, you should be aware
that date formats vary greatly from country to country. Some of these formats use a different
order for date elements. When you hard-code a date format, it may take a form that is unfa-
miliar to other users of your page.

Related Items: Date object (Chapter 29).

layers[]
Value: Array. Read-Only
Compatibility: WinIE-, MacIE-, NN4, Moz-, Safari-

The layer object (see Chapter 39 on the CD-ROM) is the NN4 way of exposing positioned ele-
ments to the object model. Thus, the document.layers property is an array of positioned
elements in the document. But due to the nonstandard way that NN4 implements positioned
elements, not every positioned element is represented in the document.layers array. More
deeply nested positioned elements must be referenced through a hierarchy of layers.

The Layer object and document.layers property are orphaned in NN4, and their impor-
tance diminishes as the installed base of NN4 shrinks. The remaining discussion is included
only for those Web authors who must support positioned elements in NN4. In NN6+, the
layer is represented by any HTML element whose stylesheet definition includes a position
attribute. References to such elements can be made through the document.getElement
ById() method or shortcuts described in Chapter 14.

A Netscape layer is a container for content that can be precisely positioned on the page.
Layers can be defined with the NN4-specific <layer> tag or with W3C standard stylesheet
positioning syntax, as explained in Chapter 39 on the CD-ROM. Each layer contains a document
object — the true holder of the content displayed in that layer. Layers can be nested within
each other, but a reference to document.layers reveals only the first level of layers defined
in the document. Consider the following HTML skeleton.

Note

document.lastModified

541Chapter 18 ✦ The Document and Body Objects

<html>
<body>
<layer name=”Europe”>

<layer name=”Germany”></layer>
<layer name=”Netherlands”></layer>

</layer>
</body>
</html>

From the point of view of the primary document, there is one layer (Europe). Therefore, the
length of the document.layers array is 1. But the Europe layer has a document, in which two
more layers are nested. A reference to the array of those nested layers is

document.layers[1].document.layers

or

document.Europe.document.layers

The length of this nested array is two: The Germany and Netherlands layers. No property
exists that reveals the entire set of nested arrays in a document, but you can create a for
loop to crawl through all nested layers (shown in Listing 18-7).

Example
Listing 18-7 demonstrates only for NN4 how to use the document.layers property to crawl
through the entire set of nested layers in a document. Using reflexive calls to the crawl
Layers() function, the script builds an indented list of layers in the same hierarchy as the
objects themselves and displays the results in an alert dialog box. After you load this docu-
ment (the script is triggered by the onLoad event handler), compare the alert dialog box
contents against the structure of <layer> tags in the document.

Listing 18-7: Crawling Through Nested Layers in NN4

<html>
<head>

<title></title>
<script type=”text/javascript”>
var output = “”;
function crawlLayers(layerArray, indent) {

for (var i = 0; i < layerArray.length; i++) {
output += indent + layerArray[i].name + “\n”;
if (layerArray[i].document.layers.length) {

var newLayerArray = layerArray[i].document.layers;
crawlLayers(newLayerArray, indent + “ “);

}
}
return output;

}
function revealLayers() {

alert(crawlLayers(document.layers, “”));
}
</script>

</head>
<body onload=”revealLayers()”>

<layer name=”Europe”>

Continued

document.layers

542 Part III ✦ Document Objects Reference

Listing 18-7 (continued)

<layer name=”Germany”>
</layer>
<layer name=”Netherlands”>

<layer name=”Amsterdam”></layer>
<layer name=”Rotterdam”></layer>

</layer>
<layer name=”France”>
</layer>

</layer>
<layer name=”Africa”>

<layer name=”South Africa”>
</layer>
<layer name=”Ivory Coast”>
</layer>

</layer>
</body>

</html>

Related Items: layer object (Chapter 39 on the CD-ROM).

linkColor
(See alinkColor)

links[]
Value: Array. Read-Only
Compatibility: WinIE3+, MacIE3+, NN2+, Moz1+, Safari1+

The document.links property is similar to the document.anchors property, except that the
objects maintained by the array are link objects — items created with tags. Use
the array references to pinpoint a specific link for retrieving any link property, such as the
target window specified in the link’s HTML definition.

Link arrays begin their index counts with 0: The first link in a document has the reference
document.links[0]. And, as with any array object, you can find out how many entries the
array has by checking the length property. For example:

var linkCount = document.links.length;

Entries in the document.links property are full-fledged location objects, which means you
have the same properties available to each member of the links[] array as you do in the
location object.

Example
The document.links property is defined automatically as the browser builds the object
model for a document that contains link objects. You rarely access this property, except to
determine the number of link objects in the document.

Related Items: link object; document.anchors property.

document.layers

543Chapter 18 ✦ The Document and Body Objects

location
URL

Value: String. Read/Write and Read-Only (see text)
Compatibility: WinIE3+, MacIE3+, NN3+, Moz1+, Safari1+

The fact that JavaScript frequently reuses the same terms in different contexts may be con-
fusing to the language’s newcomers. Such is the case with the document.location property.
You may wonder how this property differs from the location object (see Chapter 17). In
practice, many scripts also get the two confused when references don’t include the window
object. As a result, a new property name, document.URL, was introduced in NN3 and IE4 to
take the place of document.location. You can still use document.location, but the term
may eventually disappear from the object model vocabulary. To help you get into the future
mindset, the rest of this discussion refers to this property as document.URL.

The remaining question is how the window.location object and document.URL property
differ. The answer lies in their respective data types.

A location object, you may recall from Chapter 17, consists of a number of properties about
the document currently loaded in a window or frame. Assigning a new URL to the location
object (or location.href property) tells the browser to load the page from that URL into
the frame. The document.URL property, on the other hand, is simply a string (read-only in
Navigator, Mozilla, and Safari) that reveals the URL of the current document. The value
may be important to your script, but the property does not have the “object power” of the
window.location object. You cannot change (assign another value to) this property value
because a document has only one URL: its location on the Net (or your hard disk) where the
file exists, and what protocol is required to get it.

This may seem like a fine distinction, and it is. The reference you use (window.location
object or document.URL property) depends on what you are trying to accomplish specifically
with the script. If the script is changing the content of a window by loading a new URL, you
have no choice but to assign a value to the window.location object. Similarly, if the script is
concerned with the component parts of a URL, the properties of the location object provide
the simplest avenue to that information. To retrieve the URL of a document in string form
(whether it is in the current window or in another frame), you can use either the
document.URL property or the window.location.href property.

Example
HTML documents in Listings 18-8 through 18-10 create a test lab that enables you to experi-
ment with viewing the document.URL property for different windows and frames in a multi-
frame environment. Results are displayed in a table, with an additional listing of the
document.title property to help you identify documents being referred to. The same
security restrictions that apply to retrieving window.location object properties also
apply to retrieving the document.URL property from another window or frame.

document.location

544 Part III ✦ Document Objects Reference

Listing 18-8: A Simple Frameset for the URL Example

<html>
<head>

<title>document.URL Reader</title>
</head>
<frameset rows=”60%,40%”>

<frame name=”Frame1” src=”lst18-10.htm” />
<frame name=”Frame2” src=”lst18-09.htm” />

</frameset>
</html>

Listing 18-9: Showing Location Information for Different Contexts

<html>
<head>

<title>URL Property Reader</title>
<script type=”text/javascript”>
function fillTopFrame() {

newURL=prompt(“Enter the URL of a document to show in the top
frame:”,””);

if (newURL != null && newURL != “”) {
top.frames[0].location = newURL;

}
}

function showLoc(form,item) {
var windName = item.value;
var theRef = windName + “.document”;
form.dLoc.value = unescape(eval(theRef + “.URL”));
form.dTitle.value = unescape(eval(theRef + “.title”));

}
</script>

</head>
<body>

Click the “Open URL” button to enter the location of an HTML document to
display in the upper frame of this window.
<form>

<input type=”button” name=”opener” value=”Open URL...”
onclick=”fillTopFrame()” />

</form>
<hr />
<form>

Select a window or frame to view each document property values.
<p><input type=”radio” name=”whichFrame” value=”parent”

onclick=”showLoc(this.form,this)” />Parent window <input
type=”radio” name=”whichFrame” value=”top.frames[0]”
onclick=”showLoc(this.form,this)” />Upper frame <input type=”radio”
name=”whichFrame” value=”top.frames[1]”

document.location

545Chapter 18 ✦ The Document and Body Objects

onclick=”showLoc(this.form,this)” />This frame</p>
<table border=”2”>

<tr>
<td align=”RIGHT”>document.URL:</td>
<td><textarea name=”dLoc” rows=”3” cols=”30” wrap=”soft”>

</textarea></td>
</tr>
<tr>

<td align=”RIGHT”>document.title:</td>
<td><textarea name=”dTitle” rows=”3” cols=”30” wrap=”soft”>

</textarea></td>
</tr>

</table>
</form>

</body>
</html>

Listing 18-10: A Placeholder Page for the URL Example

<html>
<head>

<title>Opening Placeholder</title>
</head>
<body>

Initial place holder. Experiment with other URLs for this frame (see
below).

</body>
</html>

Related Items: location object; location.href, URLUnencoded properties.

media
Value: String. Read/Write
Compatibility: WinIE5.5+, MacIE-, NN-, Moz-, Safari-

The document.media property indicates the output medium for which content is formatted.
The property actually returns an empty string as of IE6, but the intention appears to be to
provide a way to use scripting to set the equivalent of the CSS2 @media rule (one of the so-
called “at” rules because of the at symbol). This stylesheet rule allows browsers to assign
separate styles for each type of output device on which the page is rendered (for example,
perhaps a different font for a printer versus the screen). In practice, however, this property is
not modifiable in WinIE5.5 and WinIE6.

Related Items: None.

document.media

546 Part III ✦ Document Objects Reference

mimeType
Value: String. Read-Only
Compatibility: WinIE5+, MacIE-, NN-, Moz-, Safari-

Although this property is readable in WinIE5+, its value is not strictly speaking a MIME type,
or at least not in traditional MIME format. Moreover, the results are inconsistent between
WinIE5 and WinIE6. Perhaps this property will be of more use in an XML, rather than HTML,
document environment. In any case, this property in no way exposes supported MIME types
in the current browser.

nameProp
Value: String. Read-Only
Compatibility: WinIE6+, MacIE-, NN-, Moz-, Safari-

The nameProp property returns a string containing the title of the document, which is the
same as document.title. If the document doesn’t have a title, nameProp contains an empty
string.

Related Items: title property.

namespaces[]
Value: Array of namespace objects. Read-Only
Compatibility: WinIE5.5+, MacIE-, NN-, Moz-, Safari-

A namespace object can dynamically import an XML-based IE Element Behavior. The name-
spaces property returns an array of all namespace objects defined in the current document.

Related Items: None.

parentWindow
Value: window object reference. Read-Only
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-

The document.parentWindow property returns a reference to the window object containing
the current document. The value is the same as any reference to the current window.

Example
To prove the parentWindow property points to the document’s window, you can enter the fol-
lowing statement into the top text field of The Evaluator (Chapter 13):

document.parentWindow == self

This expression evaluates to true only if both references are of the same object.

Related Items: window object.

plugins[]
Value: Array. Read-Only
Compatibility: WinIE4+, MacIE4+, NN4+, Moz1+, Safari1+

document.mimeType

547Chapter 18 ✦ The Document and Body Objects

The document.plugins property returns the same array of embed element objects that you
get from the document.embeds property. This property appears to have been deprecated in
favor of document.embeds.

Related Items: document.embeds property.

protocol
Value: String. Read/Write
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-

The IE-specific document.protocol property returns the plain-language version of the proto-
col that was used to access the current document. For example, if the file is accessed from a
Web server, the property returns Hypertext Transfer Protocol. This property differs
from the location.protocol property, which returns the portion of the URL that includes
the often more cryptic protocol abbreviation (for example, http:). As a general rule, you
want to hide all of this stuff from a Web application user.

Example
If you use The Evaluator (Chapter 13) to test the document.protocol property, you will find
that it displays File Protocol in the results because you are accessing the listing from a
local hard disk or CD-ROM.

Related Items: location.protocol property.

referrer
Value: String. Read-Only
Compatibility: WinIE3+, MacIE3+, NN2+, Moz1+, Safari1+

When a link from one document leads to another, the second document can, under JavaScript
control, reveal the URL of the document containing the link. The document.referrer prop-
erty contains a string of that URL. This feature can be a useful tool for customizing the con-
tent of pages based on the previous location the user was visiting within your site. A referrer
contains a value only when the user reaches the current page via a link. Any other method of
navigation (such as through the history, bookmarks, or by manually entering a URL) sets this
property to an empty string.

The document.referrer property usually returns an empty string unless the files are
retrieved from a Web server. Also, early versions of WinIE never returned the correct referrer
info.

Example
This demonstration requires two documents (and for IE, you’ll also need to access the docu-
ments from a Web server). The first document, in Listing 18-11, simply contains one line of
text as a link to the second document. In the second document (see Listing 18-12), a script
verifies the document from which the user came via a link. If the script knows about that link,
it displays a message relevant to the experience the user had at the first document. Also try
opening Listing 18-12 in a new browser window from the Open File command in the File menu
to see how the script won’t recognize the referrer.

Caution

document.referrer

548 Part III ✦ Document Objects Reference

Listing 18-11: An Example Referrer Page

<html>
<head>

<title>document.referrer Property 1</title>
</head>
<body>

<h1>Visit my sister document</h1>
</body>

</html>

Listing 18-12: Determining the Referrer when a Page Is Visited
through a Link

<html>
<head>

<title>document.referrer Property 2</title>
</head>
<body>

<h1>
<script type=”text/javascript”>
alert(document.referrer.length + “ : “ + document.referrer);
if(document.referrer.length > 0 &&

document.referrer.indexOf(“lst18-11.htm”) != -1) {
document.write(“How is my brother document?”);

} else {
document.write(“Hello, and thank you for stopping by.”);

}
</script>

</h1>
</body>

</html>

Related Items: link object.

scripts[]
Value: Array. Read-Only
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-

The IE-specific document.scripts property returns an array of all script element objects in
the current document. You can reference an individual script element object to read not
only the properties it shares with all HTML element objects (see Chapter 15) but also script-
specific properties, such as defer, src, and htmlFor. The actual scripting is accessible
either through the innerText or text properties for any script element object.

While the document.scripts array is read-only, many properties of individual script ele-
ment objects are modifiable. Adding or removing script elements impacts the length of the

document.referrer

549Chapter 18 ✦ The Document and Body Objects

document.scripts array. Don’t forget, too, that if your scripts need to access a specific
script element object, you can assign an id attribute to it and reference the element
directly.

This property is an IE-specific convenience property that is the same as the W3C browser
expression document.getElementsByTagName(“script”), which returns an array of the
same objects.

Example
You can experiment with the document.scripts array in The Evaluator (Chapter 13). For
example, you can see that only one script element object is in The Evaluator page if you
enter the following statement into the top text field:

document.scripts.length

If you want to view all of the properties of that lone script element object, enter the follow-
ing statement into the bottom text field:

document.scripts[0]

Among the properties are both innerText and text. If you assign an empty string to either
property, the scripts are wiped out from the object model, but not from the browser. The
scripts disappear because after the scripts loaded, they were cached outside of the object
model. Therefore, if you enter the following statement into the top field:

document.scripts[0].text = “”

the script contents are gone from the object model, yet subsequent clicks of the Evaluate and
List Properties buttons (which invoke functions of the script element object) still work.

Related Items: script element object (Chapter 36 on the CD-ROM).

security
Value: String. Read-Only
Compatibility: WinIE5.5+, MacIE-, NN-, Moz-, Safari-

The security property reveals information about a security certificate, if one is associated
with the current document.

selection
Value: Object. Read-Only
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-

The document.selection property returns a selection object whose content is represented
in the browser window as a body text selection. That selection can be explicitly performed by
the user (by clicking and dragging across some text) or created under script control via the
WinIE TextRange object (see Chapter 35). Because script action on a selection (for example,
finding the next instance of selected text) is performed via the TextRange object, converting a
selection to a TextRange object using the document.selection.createRange() method is
common practice. See the selection object in Chapter 35 for more details.

document.selection

550 Part III ✦ Document Objects Reference

Be aware that you cannot script interaction with text selections through user interface ele-
ments, such as buttons. Clicking a button gives focus to the button and deselects the selec-
tion. Use other events, such as document.onmouseup to trigger actions on a selection.

Example
See Listings 15-30 and 15-39 in Chapter 15 to see the document.selection property in action
for script-controlled copying and pasting (WinIE only).

Related Items: selection, TextRange objects.

styleSheets[]
Value: Array. Read-Only
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

The document.styleSheets array consists of references to all style element objects in the
document. Not included in this array are stylesheets that are assigned to elements by way of
the style attribute inside a tag or linked in via link elements. See Chapter 26 for details
about the styleSheet object.

Related Items: styleSheet object (Chapter 26).

tags[]
Value: Array. Read-Only
Compatibility: WinIE-, MacIE-, NN4, Moz-, Safari-

The NN4-specific tags property is used in the browser’s alternate, JavaScript-based stylesheet
syntax. Deployment of JavaScript stylesheets is exceedingly rare. In some ways, the document.
tags property behaves like the W3C DOM document.getElementsByTagName() method, but
document.tags cannot be used in regular scripts to access element objects.

Related Items: ids property.

title
Value: String. Read-Only and Read/Write
Compatibility: WinIE3+, MacIE3+, NN2+, Moz1+, Safari1+

A document’s title is the text that appears between the <title>...</title> tag pair in an
HTML document’s Head portion. The title usually appears in the title bar of the browser win-
dow in a single-frame presentation. Only the title of the topmost framesetting document
appears as the title of a multiframe window. Even so, the title property for an individual
document within a frame is available via scripting. For example, if two frames are available
(UpperFrame and LowerFrame), a script in the document occupying the LowerFrame frame
can reference the title property of the other frame’s document, such as this:

parent.UpperFrame.document.title

This property is read-only in browsers prior to IE4 and NN6+ but not all browsers allow
scripts to change the text that appears in the browser window’s title bar.

The document.title property is a holdover from the original document object model. HTML
elements in recent browsers have an entirely different application of the title property (see
Chapter 15). In modern browsers (IE4+/NN6+), you should address the document’s title by
way of the title element object directly.

Related Items: history object.

document.selection

551Chapter 18 ✦ The Document and Body Objects

URL
(See location)

URLUnencoded
Value: String. Read-Only
Compatibility: WinIE5.5+, MacIE-, NN-, Moz-, Safari-

The document.URL property returns a URL-encoded string, meaning that non-alphanumeric
characters in the URL are converted to URL-friendly characters (for example, a space
becomes %20). You can always use the unescape() function on the value returned by the
document.URL property, but the URLUnencoded property does that for you. If there are no
URL-encoded characters in the URL, then both properties return identical strings.

Related Items: document.URL property.

vlinkColor
(See alinkColor)

width
(See height)

Methods

captureEvents(eventTypeList)
Returns: Nothing.
Compatibility: WinIE-, MacIE-, NN4+, Moz-, Safari-

In Navigator 4 only, the natural propagation of an event is downward from the window object,
through the document object, and eventually reaching its target. For example, if you click a
button, the click event first reaches the window object; then it goes to the document object;
if the button is defined within a layer, the event also filters through that layer; eventually (in a
split second) the event reaches the button, where an onclick event handler is ready to act
on that click.

The NN4 mechanism allows window, document, and layer objects to intercept events and pro-
cess them prior to reaching their intended targets (or preventing them from reaching their
destinations entirely). But for an outer container to grab an event, your script must instruct it
to capture the type of event your application is interested in preprocessing. If you want the
document object to intercept all events of a particular type, use the
document.captureEvents() method to turn that facility on.

Event capture with different syntax has been standardized in the W3C DOM and is imple-
mented in W3C browsers, such as NN6+ and Mozilla. See the addEventListener()
method in Chapter 15 for the W3C counterpart to the NN4 captureEvents() method.
Also, see Chapter 25 for more details on the combination of event capture and event bub-
bling in the W3C DOM.

The document.captureEvents() method takes one or more event types as parameters. An
event type is a constant value built inside the NN4 Event object. One event type exists for
every kind of event handler that you see in all of the document objects of NN4. The syntax

Note

document.captureEvents()

552 Part III ✦ Document Objects Reference

consists of a reference to the Event object and the event name in all uppercase letters. For
example, if you want the document to intercept all click events, the statement is

document.captureEvents(Event.CLICK);

For multiple events, add them as parameters, separated by the pipe (|) character:

document.captureEvents(Event.MOUSEDOWN | Event.KEYPRESS);

After the document object is set to capture an event type, it must have a function ready to
deal with the event. For example, perhaps the function looks through all Event.MOUSEDOWN
events and looks to see if the right mouse button is the one that triggers the event and what
form element (if any) is the intended target. The goal is perhaps to display a pop-up menu (as
a separate layer) for a right-click. If the click comes from the left mouse button, the event is
routed to its intended target.

To associate a function with a particular event type captured by a document object, assign a
function to the event. For example, to assign a custom doClickEvent() function to click
events captured by the document object, use the following statement:

document.onclick = doClickEvent;

Notice that the function name is assigned only as a reference name, unlike an event handler
within a tag. The function, itself, is like any function, but it has the added benefit of automati-
cally receiving the event object as a parameter. To turn off event capture for one or more
event types, use the document.releaseEvent() method. See Chapter 25 for details of work-
ing with NN4 events.

Capturing events at the window, document, or layer level in NN4 does not always work the
way you may want, which is especially true if your page contains tables. For example, cap-
turing mouse events has no effect in the Windows version of NN4 unless the cursor is atop a
cell border. Event capture works most reliably when a scriptable object has an event handler
defined for it (even if the handler is an empty string), and the element is the target of the
event (for example, you are about to type into a text field). For all other elements, event cap-
ture may simply not be captured at the document or window level.

Example
See the example for the NN4 window.captureEvents() method in Listing 16-21 to see how
to capture events on their way to other objects. In that example, you can substitute the
document reference for the window reference to see how the document version of the method
works just like the window version. If you understand the mechanism for windows, you
understand it for documents. The same is true for the other NN4 event methods.

Related Items: document.handleEvent(), document.releaseEvents(),
document.routeEvent() methods; parallel window object event methods.

clear()
Returns: Nothing.
Compatibility: WinIE3+, MacIE3+, NN2+, Moz1+, Safari1+

Ever since NN2, the document.clear() method was intended to clear the current document
from the browser window. This method is quite impractical, because you typically need some
further scripts to execute after you clear the document, but if the scripts are gone, nothing
else happens.

Note

document.captureEvents()

553Chapter 18 ✦ The Document and Body Objects

In practice, the document.clear() method never did what it was supposed to do (and in ear-
lier browsers easily caused browser crashes). I recommend against using document.clear(),
including in preparation for generating a new page’s content with document.write(). The
document.write() method clears the original document from the window before adding new
content. If you truly want to empty a window or frame, then use document.write() to write a
blank HTML document or to load an empty HTML document from the server.

Related Items: document.close(), document.write(), document.writeln() methods.

close()
Returns: Nothing.
Compatibility: WinIE3+, MacIE3+, NN2+, Moz1+, Safari1+

Whenever a layout stream is opened to a window via the document.open() method or either
of the document writing methods (which also open the layout stream), you must close the
stream after the document is written. This causes the Layout:Complete and Done messages
to appear in the status line (although you may experience some bugs in the status message
on some platforms). The document-closing step is very important to prepare the window for
the next potential round of replenishment with new script-assembled HTML. If you don’t
close the document, subsequent writing is appended to the bottom of the document.

Some or all of the data specified for the window won’t display properly until you invoke the
document.close() method, especially when images are being drawn as part of the docu-
ment stream. A common symptom is the momentary appearance and then disappearance of
the document parts. If you see such behavior, look for a missing document.close() method
after the last document.write() method.

Example
Before you experiment with the document.close() method, be sure you understand the
document.write() method described later in this chapter. After that, make a separate set of

document.close()

Fixing the Sticky Wait Cursor

From time to time, various browsers fail to restore the cursor to normal after document.write()
and document.close() (and some other content-modifying scripts). The cursor stubbornly
remains in the wait mode or the progress bar keeps spinning when, in truth, all processing has
been completed. One, albeit ugly, workaround that I have found effective is to force an extra
document.close() via a javascript: pseudo-URL (just adding another document.close()
to your script doesn’t do the trick). For use within a frameset, the javascript: URL must be
directed to the top of the frameset hierarchy, while the document.close() is aimed at the
frame that had its content changed. For example, if the change is made to a frame named
content, create a function, such as the following:

function recloseDoc() {
top.location.href =

“javascript:void (parent.content.document.close())”;
}

If you place this function in the framesetting document, scripts that modify the content frame can
invoke this script after any operation that prevents the normal cursor from appearing.

554 Part III ✦ Document Objects Reference

the three documents for that method’s example (Listings 18-16 through 18-18 in a different
directory or folder). In the takePulse() function listing, comment out the document.close()
statement, as shown here:

msg += “<p>Make it a great day!</body></html>”;
parent.frames[1].document.write(msg);
//parent.frames[1].document.close();

Now try the pages on your browser. You see that each click of the upper button appends text
to the bottom frame, without first removing the previous text. The reason is that the previous
layout stream was never closed. The document thinks that you’re still writing to it. Also,
without properly closing the stream, the last line of text may not appear in the most recently
written batch.

Related Items: document.open(), document.clear(), document.write(),
document.writeln() methods.

createAttribute(“attributeName”)
Returns: Attribute object reference.
Compatibility: WinIE6+, MacIE5+, NN6+, Moz1+, Safari1+

The document.createAttribute() method generates an attribute node object (formally
known as an Attr object in W3C DOM terminology) and returns a reference to the newly cre-
ated object. Invoking the method assigns only the name of the attribute, so it is up to your
script to assign a value to the object’s nodeValue property and then plug the new attribute
into an existing element via that element’s setAttributeNode() method (described in
Chapter 15). The following sequence generates an attribute that becomes an attribute of a
table element:

var newAttr = document.createAttribute(“width”);
newAttr.nodeValue = “80%”;
document.getElementById(“myTable”).setAttributeNode(newAttr);

Attributes do not always have to be attributes known to the HTML standard, because the
method also works for XML elements, which have custom attributes.

Example
To create an attribute and inspect its properties, enter the following text into the top text box
of The Evaluator (Chapter 13):

a = document.createAttribute(“author”)

Now enter a into the bottom text box to inspect the properties of an Attr object.

Related Items: setAttributeNode() method (Chapter 15).

createComment(“commentText”)
Returns: Comment object reference.
Compatibility: WinIE6+, MacIE5+, NN6+, Moz1+, Safari1+

The document.createComment() method creates an instance of a comment node. Upon cre-
ation, the node is in memory and available to be inserted into the document via any node’s
appendChild() or insertBefore() method.

Related Items: appendChild() and insertBefore() methods.

document.close()

555Chapter 18 ✦ The Document and Body Objects

createDocumentFragment()
Returns: Document fragment object reference.
Compatibility: WinIE6+, MacIE5+, NN6+, Moz1+, Safari1+

The document.createDocumentFragment() method creates an instance of an empty docu-
ment fragment node. This node serves as a holder that can be used to assemble a sequence
of nodes in memory. After creating and assembling nodes into the document fragment, the
entire fragment can be inserted into the document tree.

A document fragment is particularly helpful when your scripts assemble an arbitrary sequence
of element and text nodes. By providing a parent node for all content within, the fragment node
supplies the necessary parent node context for W3C DOM node methods, such as append
Child() during the content assembly process. If you then append or insert the document
fragment node to an element in the rendered document tree, the fragment wrapper disappears,
leaving just its content in the desired location in the document. Therefore, a typical usage
pattern for a document fragment is to begin by creating an empty fragment node (via the
createDocumentFragment() method), populate it at will with newly created element and/or
text nodes, and then use the appropriate node method on a document tree’s element to
append, insert, or replace using the fragment node as the source material.

Related Items: None.

createElement(“tagName”)
Returns: Element object reference.
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

The document.createElement() method generates an element object for whatever HTML
(or XML) tag name you pass as the parameter. An object created in this manner is not officially
part of the current document node tree because it has not yet been placed into the document.
But this method is the way you begin assembling an element object that eventually gets
inserted into the document.

The returned value is a reference to the object. Properties of that object include all properties
(set to default values) that the browser’s object model defines for that element object. Your
scripts can then address the object via this reference to set the object’s properties. Typically
you do this before the object is inserted into the document, especially because otherwise
read-only properties can be modified before the element is inserted into the document.

After the object is inserted into the document, the original reference (for example, a global
variable used to store the value returned from the createElement() method) still points to
the object, even while it is in the document and being displayed for the user. To demonstrate
this effect, consider the following statements that create a simple paragraph element contain-
ing a text node:

var newText = document.createTextNode(“Four score and seven years ago...”);
var newElem = document.createElement(“p”);
newElem.id = “newestP”;
newElem.appendChild(newText);
document.body.appendChild(newElem);

At this point, the new paragraph is visible in the document. But you can now modify, for
example, the style of the paragraph by addressing either the element in the document object
model or the variable that holds the reference to the object you created:

document.createElement()

556 Part III ✦ Document Objects Reference

newElem.style.fontSize = “20pt”;

or

document.getElementById(“newestP”).style.fontSize = “20pt”;

The two references are inextricably connected and always point to the exact same object.
Therefore, if you want to use a script to generate a series of similar elements (for example, a
bunch of li elements), then you can use createElement() to make the first one and set all
properties that the items have in common. Then use cloneNode() to make a new copy,
which you can then treat as a separate element (and probably assign unique IDs to each one).

When scripting in the W3C DOM environment, you may rely on document.createElement()
frequently to generate new content for a page or portion thereof (unless you prefer to use the
convenience innerHTML property to add content in the form of strings of HTML). In a strict
W3C DOM environment, creating new elements is not a matter of assembling HTML strings,
but rather creating genuine element (and text node) objects.

You may use this method to generate any HTML element in the supported browsers except
IE4, which limits you to area, img, and option elements.

Example
Chapter 15 contains numerous examples of the document.createElement() method in con-
cert with methods that add or replace content to a document. See Listings 15-10, 15-21,
15-22,15-28, 15-29, and 15-31.

Related Items: document.createTextNode() method.

createEvent(“eventType”)
Returns: Event object reference.
Compatibility: WinIE-, MacIE-, NN6+, Moz1+, Safari1+

The document.createEvent() method creates an instance of a W3C DOM Event object of
the specified event category. Upon creation, the generic event must be initialized as a particu-
lar event type, and any other relevant properties set for the event. After successfully initializ-
ing the event, you can fire it via a call to the dispatchEvent() method.

Event types recognized by NN6+/Moz are KeyEvents, MouseEvents, MutationEvents, and
UIEvents. The process of initializing each of these event types requires its own series of
parameters in the associated initEvent() method. See Chapter 25 for more details.

Example
Following is an example of how you might create an event, initialize it to a specific event type,
and send it to a given element:

var evt = document.createEvent(“MouseEvents”);
evt.initEvent(“mouseup”, true, true);
document.getElementById(“myButton”).dispatchEvent(evt);

Related Items: createEventObject() method; W3C DOM event object (Chapter 25).

document.createElement()

557Chapter 18 ✦ The Document and Body Objects

createEventObject([eventObject])
Returns: event object.
Compatibility: WinIE5.5+, MacIE-, NN-, Moz-, Safari-

The IE-specific createEventObject() method creates an event object, which can then be
passed as a parameter to the fireEvent() method of any element object. The event object
created by this event is just like an event object created by a user or system action.

An optional parameter lets you base the new event on an existing event object. In other
words, the properties of the newly created event object pick up all the properties of the
event object passed as a parameter, which lets you then modify properties of your choice.
If you provide no parameter to the method, then you must fill the essential properties manu-
ally. For more about the properties of an event object, see Chapter 25.

Example
See the discussion of the fireEvent() method in Chapter 15 for an example of the sequence
to follow when creating an event to fire on an element.

Related Items: createEvent() method; fireEvent() method (Chapter 15); event object
(Chapter 25).

createRange()
Returns: Range object reference.
Compatibility: WinIE-, MacIE-, NN6+, Moz1+, Safari-

The document.createRange() method creates an empty W3C DOM Range object with the
boundary points of the range collapsed to the point before the first character of the rendered
body text.

Related Items: Range object.

createStyleSheet([“URL”[, index]])
Returns: styleSheet object reference.
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-

The IE-specific createStyleSheet() method creates a styleSheet object, a type of object
that includes style element objects as well as stylesheets that are imported into a document
via the link element. Thus you can dynamically load an external stylesheet even after a page
has loaded.

Unlike the other “create” methods entering W3C DOM usage, the createStyleSheet()
method not only creates the stylesheet, but it inserts the object into the document object
model immediately. Thus, any stylesheet rules that belong (or are assigned to) that object
take effect on the page right away. If you’d rather create a stylesheet and delay its deployment,
you should use the createElement() method and element object assembly techniques.

If you don’t specify any parameters to the method in WinIE, an empty styleSheet object is
created. It is assumed that you will then use styleSheet object methods, such as addRule()
to add the details to the stylesheet. To link in an external stylesheet file, assign the file’s URL
to the first parameter of the method. The newly imported stylesheet is appended to the end of

document.createStyleSheet()

558 Part III ✦ Document Objects Reference

the document.styleSheets array of styleSheet objects. An optional second parameter lets
you specify precisely where in the sequence of stylesheet elements the newly linked stylesheet
should be inserted. A stylesheet rule for any given selector is overridden by a stylesheet for
the same selector that appears later in the sequence of stylesheets in a document.

Example
Listing 18-13 demonstrates adding an internal and external stylesheet to a document. For
the internal addition, the addStyle1() function invokes document.createStyleSheet()
and adds a rule governing the p elements of the page (not available for MacIE5). In the
addStyle2() function, an external file is loaded. That file contains the following two style
rules:

h2 {font-size:20pt; color:blue}
p {color:blue}

Notice that by specifying a position of zero for the imported stylesheet, the addition of the
internal stylesheet always comes afterward in styleSheet object sequence. Thus, except
when you deploy only the external stylesheet, the red text color of the p elements override
the blue color of the external stylesheet. If you remove the second parameter of the
createStyleSheet() method in addStyle2(), the external stylesheet is appended to the
end of the list. If it is the last stylesheet to be added, the blue color prevails. Repeatedly click-
ing the buttons in this example continues to add the stylesheets to the document.

Listing 18-13: Creating and Applying Stylesheets

<html>
<head>

<title>document.createStyleSheet() Method</title>
<script type=”text/javascript”>
function addStyle1() {

var newStyle = document.createStyleSheet();
newStyle.addRule(“P”, “font-size:16pt; color:red”);

}

function addStyle2() {
var newStyle = document.createStyleSheet(“lst18-13.css”,0);

}
</script>

</head>
<body>

<h1>document.createStyleSheet() Method</h1>
<hr />
<form>

<input type=”button” value=”Add Internal”
onclick=”addStyle1()” /> <input type=”button”
value=”Add External” onclick=”addStyle2()” />

</form>
<h2>Section 1</h2>
<p>Lorem ipsum dolor sit amet, consectetaur adipisicing elit, sed do

eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim
adminim veniam, quis nostrud exercitation ullamco laboris nisi ut
aliquip ex ea commodo consequat.</p>

<h2>Section 2</h2>

document.createstyleSheet()

559Chapter 18 ✦ The Document and Body Objects

<p>Duis aute irure dolor in reprehenderit involuptate velit esse cillum
dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non
proident, sunt in culpa qui officia deseruntmollit anim id est
laborum.</p>

</body>
</html>

Related Items: styleSheet object (Chapter 26).

createTextNode(“text”)
Returns: Object.
Compatibility: WinIE5+, MacIE5+, NN6+, Moz1+, Safari1+

A text node is a W3C DOM object that contains body text without any HTML (or XML) tags,
but is usually contained by (meaning, is a child of) an HTML (or XML) element. Without the IE
innerText convenience property for modifying the text of an element, the W3C DOM relies
on the node hierarchy of a document (NN6+/Moz1+ exceeds the W3C DOM by providing an
innerHTML property, which you can use to replace text in an element). To insert or replace
text inside an HTML element in the W3C DOM way, you create the text node and then use
methods of the parent element (for example, appendChild(), insertBefore(), and
replaceChild(), all described in Chapter 15) to modify the document’s content. To generate
a fresh text node, use document.createTextNode().

The sole parameter of the createTextNode() method is a string whose text becomes the
nodeValue of the text node object returned by the method. You can also create an empty text
node (passing an empty string) and assign a string to the nodeValue of the object later. As
soon as the text node is present in the document object model, scripts can simply change the
nodeValue property to modify text of an existing element. For more details on the role of text
nodes in the W3C DOM, see Chapter 14.

Example
Although Chapters 14 and 15 (Listing 15-21, for instance) provide numerous examples of the
createTextNode() method at work, using The Evaluator (Chapter 13) is instructive to see
just what the method generates in IE5+/W3C. You can use one of the built-in global variables
of The Evaluator to hold a reference to a newly generated text node by entering the following
statement into the top text field:

a = document.createTextNode(“Hello”)

The Results box shows that an object was created. Now, look at the properties of the object
by typing a into the bottom text field. The precise listings of properties varies between IE5+
and W3C browsers, but the W3C DOM properties that they share in common indicate that the
object is a node type 3 with a node name of #text. No parents, children, or siblings exist yet
because the object created here is not part of the document hierarchy tree until it is explicitly
added to the document.

To see how insertion works, enter the following statement into the top text field to append
the text node to the myP paragraph:

document.getElementById(“myP”).appendChild(a)

document.createTextNode()

560 Part III ✦ Document Objects Reference

The word “Hello” appears at the end of the simple paragraph lower on the page. Now you can
modify the text of that node either via the reference from the point of view of the containing p
element or via the global variable reference for the newly created node:

document.getElementById(“myP”).lastChild.nodeValue = “Howdy”

or

a.nodeValue = “Howdy”

Related Items: document.createElement() method.

createTreeWalker(rootNode, whatToShow, filterFunction,
entityRefExpansion)

Returns: TreeWalker object reference.
Compatibility: WinIE-, MacIE-, NN7+, Moz1.4+, Safari-

The document.createTreeWalker() method creates an instance of a TreeWalker object
that can be used to navigate the document tree. The first parameter to the method indicates
the node in the document that is to serve as the root node of the tree. The second parameter
is an integer constant that specifies one of several built-in filters for selecting nodes to be
included in the tree. Following are the possible acceptable values for this parameter:

NodeFilter.SHOW_ALL NodeFilter.SHOW_ATTRIBUTE
NodeFilter.SHOW_CDATA_SECTION NodeFilter.SHOW_COMMENT
NodeFilter.SHOW_DOCUMENT NodeFilter.SHOW_DOCUMENT_FRAGMENT
NodeFilter.SHOW_DOCUMENT_TYPE NodeFilter.SHOW_ELEMENT
NodeFilter.SHOW_ENTITY NodeFilter.SHOW_ENTITY_REFERENCE
NodeFilter.SHOW_NOTATION NodeFilter.SHOW_PROCESSING_INSTRUCTION
NodeFilter.SHOW_TEXT

The third parameter to the createNodeIterator() method is a reference to a filter function
that can filter nodes even further than the whatToShow parameter. This function must accept
a single node and return an integer value based upon one of the following constants:
NodeFilter.FILTER_ACCEPT, NodeFilter.FILTER_REJECT, or NodeFilter.FILTER_SKIP.
The idea is that you code the function to perform a test on each node and return an indicator
value that lets the node iterator know whether or not to include the node in the tree. Your
function doesn’t loop through nodes. The TreeWalker object mechanism repetitively invokes
the function as needed to look for the presence of whatever characteristic you wish to use as
a filter.

The final parameter to the method is a Boolean value that determines whether or not the con-
tent of entity reference nodes should be treated as hierarchical nodes. This parameter applies
primarily to XML documents.

Related Items: TreeWalker object.

elementFromPoint(x, y)
Returns: Element object reference.
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-

document.createTextNode()

561Chapter 18 ✦ The Document and Body Objects

The IE-specific elementFromPoint() method returns a reference to whatever element object
occupies the point whose integer coordinates are supplied as parameters to the method. The
coordinate plane is that of the document, whose top-left corner is at point 0,0. This coordi-
nate plane can be very helpful in interactive designs that need to calculate collision detection
between positioned objects or mouse events.

When more than one object occupies the same point (for example, one element is positioned
atop another), the element with the highest z-index value is returned. A positioned element
always wins when placed atop a normal body-level element. And if multiple overlapping posi-
tioned elements have the same z-index value (or none by default), the element that comes
last in the source code order is returned for the coordinate that they share in common.

Example
Listing 18-14 is a document that contains many different types of elements, each of which has
an ID attribute assigned to it. The onmouseover event handler for the document object
invokes a function that finds out which element the cursor is over when the event fires.
Notice that the event coordinates are event.clientX and event.clientY, which use the
same coordinate plane as the page for their point of reference. As you roll the mouse over
every element, its ID appears on the page. Some elements, such as br and tr, occupy no
space in the document, so you cannot get their IDs to appear. On a typical browser screen
size, a positioned element rests atop one of the paragraph elements so that you can see how
the elementFromPoint() method handles overlapping elements. If you scroll the page, the
coordinates for the event and the page’s elements stay in sync.

Listing 18-14: Tracking the Mouse as it Passes over Elements

<html>
<head>

<title>document.elementFromPoint() Method</title>
<script type=”text/javascript”>
function showElemUnderneath() {

var elem = document.elementFromPoint(event.clientX, event.clientY);
document.getElementById(“mySpan”).innerText = elem.id;

}

document.onmouseover = showElemUnderneath;
</script>

</head>
<body id=”myBody”>

<h1 id=”header”>document.elementFromPoint() Method</h1>
<hr id=”myHR” />
<p id=”instructions”>Roll the mouse around the page. The coordinates

of the mouse pointer are currently atop an element<br id=”myBR” />
whose ID is:””.</p>

<form id=”myForm”>
<input id=”myButton” type=”button” value=”Sample Button”
onclick=”” />

</form>
<table border=”1” id=”myTable”>

<tr id=”tr1”>
<td id=”td_A1”>Cell A1</td>
<td id=”td_B1”>Cell B1</td>

Continued

document.elementFromPoint()

562 Part III ✦ Document Objects Reference

Listing 18-14 (continued)

</tr>
<tr id=”tr2”>

<td id=”td_A2”>Cell A2</td>
<td id=”td_B2”>Cell B2</td>

</tr>
</table>
<h2 id=”sec1”>Section 1</h2>
<p id=”p1”>Lorem ipsum dolor sit amet, consectetaur adipisicing elit, sed

do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim
adminim veniam, quis nostrud exercitation ullamco laboris nisi ut
aliquip ex ea commodo consequat.</p>

<h2 id=”sec2”>Section 2</h2>
<p id=”p2”>Duis aute irure dolor in reprehenderit involuptate velit esse

cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat
cupidatat non proident, sunt in culpa qui officia deseruntmollit anim
id est laborum.</p>

<div id=”myDIV”
style=”position:absolute; top:340; left:300; background-color:yellow”>

Here is a positioned element.
</div>

</body>
</html>

Related Items: event.clientX, event.clientY properties; positioned objects (Chapter 39
on the CD-ROM).

execCommand(“commandName”[, UIFlag] [, param])
Returns: Boolean.
Compatibility: WinIE4+, MacIE-, NN7.1, Moz1.4, Safari-

WinIE4+ includes a large set of commands that are outside of the methods defined for objects
in the object model. These commands are also accessible to programmers who build an
Internet Explorer ActiveX control into their applications. The execCommand() method is the
JavaScript gateway to those commands. A series of related methods
(queryCommandEnable() and others) also facilitate management of these commands.

The syntax for the execCommand() method requires at least one parameter, a string version
of the command name. Command names are not case-sensitive. An optional second param-
eter is a Boolean flag to instruct the command to display any user interface artifacts that may
be associated with the command. The default is false. For the third parameter, some com-
mands require that an attribute value be passed for the command to work. For example, to
set the font size of a text range, the syntax is

myRange.execCommand(“FontSize”, true, 5);

The execCommand() method returns Boolean true if the command is successful; false if not
successful. Some commands can return values (for example, finding out the font name of a
selection), but those are accessed through the queryCommandValue() method.

document.elementFromPoint()

563Chapter 18 ✦ The Document and Body Objects

Most of these commands operate on body text selections that are TextRange objects. As
described in Chapter 35, a TextRange object must be created under script control. But a
TextRange object can be done in response to a user selecting some text in the document.
Because a TextRange object is independent of the element hierarchy (indeed, a TextRange
can spread across multiple nodes), it cannot respond to stylesheet specifications. Thus,
many of the commands that can operate on a TextRange object have to do with formatting or
modifying the text. For a list of commands that work exclusively on TextRange objects, see
the TextRange.execCommand() method in Chapter 35.

While many of the commands intended for the TextRange also work when invoked from the
document object, in this section the focus is on those commands that have scope over the
entire document. Table 18-3 lists those few commands that work with the document. Also
listed are many commands that work exclusively on text selections in the document, whether
the selections are made manually by the user or with the help of the TextRange object (see
Chapter 35).

Table 18-3: document.execCommand() Commands

Command Parameter Description

Refresh None Reloads the page.

SelectAll None Selects entire page content.

Unselect None Unselects any page selection.

BackColor Color String Encloses the current selection with a font element whose
style attribute sets the background-color style to the
parameter value.

CreateBookmark Anchor String Encloses the current selection (or text range) with an anchor
element whose name attribute is set to the parameter value.

CreateLink URL String Encloses the current selection with an a element whose
href attribute is set to the parameter value.

FontName Font Face(s) Encloses the current selection with a font element whose
face attribute is set to the parameter value.

FontSize Size String Encloses the current selection with a font element whose
size attribute is set to the parameter value.

FontColor Color String Encloses the current selection with a font element whose
color attribute is set to the parameter value.

Indent None Indents the current selection.

JustifyCenter None Centers the current selection.

JustifyFull None Full-justifies the current selection.

JustifyLeft None Left-justifies the current selection.

JustifyRight None Right-justifies the current selection.

Outdent None Outdents the current selection.

RemoveFormat None Removes formatting for the current selection.

SelectAll None Selects all text of the document.

UnBookmark None Removes anchor tags that surround the current selection.

Unlink None Removes link tags that surround the current selection.

Unselect None Deselects the current selection anywhere in the document.

document.execCommand()

564 Part III ✦ Document Objects Reference

Mozilla 1.4 includes a feature that allows scripts to turn an iframe element’s document
object into an HTML editable document. Part of the scripting incorporates the
document.execCommand() method. Visit http://www.mozilla.org/editor for current
details and examples.

Example
You can find many examples of the execCommand() method for the TextRange object in
Chapter 35. But you can try out the document-specific commands in The Evaluator (Chapter 13)
if you like. Try each of the following statements in the top text box and click the Evaluate
button:

document.execCommand(“Refresh”)
document.execCommand(“SelectAll”)
document.execCommand(“Unselect”)

All methods return true in the Results box.

Because any way you can evaluate a statement in The Evaluator forces a body selection to
become deselected before the evaluation takes place, you can’t experiment this way with the
selection-oriented commands.

Related Items: queryCommandEnabled(), queryCommandIndterm(), queryCommandState(),
queryCommandSupported(), queryCommandText(), queryCommandValue() methods.

getElementById(“elementID”)
Returns: Element object reference.
Compatibility: WinIE5+, MacIE5+, NN6+, Moz1+, Safari1+

The document.getElementById() method is the W3C DOM syntax for retrieving a reference
to any element in a document that has a unique identifier assigned to its id attribute. If the
document contains more than one instance of an ID, the method returns a reference to the
first element in source code order with that ID. Because this method is such an important
avenue to writing references to objects that are to be modified under script control, you can
see how important it is to assign unique IDs to elements.

This method’s name is quite a finger twister for scripters, especially compared to the IE4+
convention of letting a reference to any element begin simply with the object’s ID. However,
the getElementById() method is the cross-browser way of acquiring an element’s reference
for W3C DOM-compatible browsers. When you type this method, be sure to use a lowercase
“d” as the last character of the method name.

Unlike some other element-oriented methods (for example, getElementsByTagName()),
which can be invoked on any element in a document, the getElementById() method works
exclusively with the document object.

Example
You can find many examples of this method in use throughout this book, but you can take a
closer look at how it works by experimenting in The Evaluator (Chapter 13). A number of ele-
ments in The Evaluator have IDs assigned to them, so that you can use the method to inspect
the objects and their properties. Enter the following statements into both the top and bottom
text fields of The Evaluator. Results from the top field are references to the objects; results
from the bottom field are lists of properties for the particular object.

document.execCommand()

565Chapter 18 ✦ The Document and Body Objects

document.getElementById(“myP”)
document.getElementById(“myEM”)
document.getElementById(“myTitle”)
document.getElementById(“myScript”)

Related Items: getElementsByTagName() method (Chapter 15).

getElementsByName(“elementName”)
Returns: Array.
Compatibility: WinIE5+, MacIE5+, NN6+, Moz1+, Safari1+

The document.getElementsByName() method returns an array of references to objects
whose name attribute is assigned the element name passed as the method’s attribute.
Although NN6+/Moz1+ recognizes name attributes even for elements that don’t have them by
default, IE5+ does not. Therefore, for maximum cross-browser compatibility, use this method
only to locate elements that have name attributes defined for them by default, such as form
control elements. If the element does not exist in the document, the method returns an array
of zero length.

For the most part, you are best served by using IDs on elements and the getElementById()
method to unearth references to individual objects. But some elements, especially the input
element of type radio, use the name attribute to group elements together. In that case, a call
to getElementsByName() returns an array of all elements that share the name — facilitating
perhaps a for loop that inspects the checked property of a radio button group. Thus, instead
of using the old-fashioned (although entirely backward-compatible) approach by way of the
containing form object

var buttonGroup = document.forms[0].radioGroupName;

you can go more directly:

var buttonGroup = document.getElementsByName(radioGroupName);

In the latter case, you operate independently of the containing form object’s index number or
name. This assumes, of course, that a group name is not shared elsewhere on the page.

Example
Use The Evaluator (Chapter 13) to test out the getElementsByName() method. All form ele-
ments in the upper part of the page have names associated with them. Enter the following
statements into the top text field and observe the results:

document.getElementsByName(“output”)
document.getElementsByName(“speed”).length
document.getElementsByName(“speed”)[0].value

You can also explore all of the properties of the text field by typing the following expression
into the bottom field:

document.getElementsByName(“speed”)[0]

Related Items: document.getElementsById(), getElementsByTagName() methods.

document.getElementsByName()

566 Part III ✦ Document Objects Reference

getSelection()
Returns: String.
Compatibility: WinIE-, MacIE-, NN4+, Moz-, Safari-

Many Web browser users aren’t aware that they can select and copy body text in a document
for pasting into other application documents. Even so, NN4+ offers a scripted way of captur-
ing the text selected by a user in a page. The document.getSelection() method returns
the string of text selected by the user. If nothing is selected, an empty string is the result.
Returned values consist only of the visible text on the page and not the underlying HTML or
style of the text. This method generates JavaScript Console warning messages in Mozilla-
based browsers, urging you to use the newer, more sophisticated window.getSelection()
method instead.

The WinIE4+ equivalent involves the document.selection property, which returns an IE
selection object. To derive the text from this object, you must create a TextRange object
from it and then inspect the text property:

var selectedText = document.selection.createRange().text;

Example
The document in Listing 18-15 provides a cross-browser (but not MacIE5) solution to captur-
ing text that a user selects in the page. Selected text is displayed in the textarea. The script
uses browser detection and branching to accommodate the diverse ways of recognizing the
event and reading the selected text.

Listing 18-15: Retrieving Selected Text

<html>
<head>

<title>Getting Selected Text</title>
<script type=”text/javascript”>
var isNav4 = (navigator.appName == “Netscape” &&

parseInt(navigator.appVersion) == 4);
var isNav4Min = (navigator.appName == “Netscape” &&

parseInt(navigator.appVersion) >= 4);
var isIE4Min = (navigator.appName.indexOf(“Microsoft”) != -1 &&

parseInt(navigator.appVersion) >= 4);

function showSelection() {
if (isNav4Min) {

document.forms[0].selectedText.value = document.getSelection();
} else if (isIE4Min) {

if (document.selection) {
document.forms[0].selectedText.value =

document.selection.createRange().text;
event.cancelBubble = true;

}
}

}

if (isNav4) {
document.captureEvents(Event.MOUSEUP);

}

document.getSelection()

567Chapter 18 ✦ The Document and Body Objects

document.onmouseup = showSelection;
</script>

</head>
<body>

<h1>Getting Selected Text</h1>
<hr />
<p>Select some text and see how JavaScript can capture the selection:</p>
<h2>ARTICLE I</h2>
<p>Congress shall make no law respecting an establishment of religion, or

prohibiting the free exercise thereof; or abridging the freedom of
speech, or of the press; or the right of the people peaceably to
assemble, and to petition the government for a redress of
grievances.</p>

<form>
<textarea name=”selectedText” rows=”3” cols=”40” wrap=”virtual”>
</textarea>

</form>
</body>

</html>

Related Items: document.selection property.

handleEvent(event)
Returns: Nothing.
Compatibility: WinIE-, MacIE-, NN4, Moz-, Safari-

When you explicitly capture NN4 events in the window, document, or layer object (by invok-
ing the captureEvents() method for that object), you can control where the events go after
their initial capture. To let an event continue to its original target (for example, a button that
is clicked by a user), you use the routeEvent() method. But if you want to redirect an event
(or class of events) to a particular event handler elsewhere in the document, use the
handleEvent() method.

See the discussion of the handleEvent() method for the window object in Chapter 16. The
behavior of the handleEvent() method for all objects is the same.

Related Items: document.captureEvents(), document.releaseEvents(),
document.routeEvent() methods; event object (Chapter 25).

open([“mimeType”] [,”replace”])
Returns: Nothing.
Compatibility: WinIE3+, MacIE3+, NN2+, Moz1+, Safari1+

Opening a document is different from opening a window. In the case of a window, you’re cre-
ating a new object, both on the screen and in the browser’s memory. Opening a document, on
the other hand, tells the browser to get ready to accept some data for display in the window
named or implied in the reference to the document.open() method. (For example,
parent.frames[1].document.open() may refer to a different frame in a frameset, whereas
document.open() implies the current window or frame.) Therefore, the method name may
mislead newcomers because the document.open() method has nothing to do with loading
documents from the Web server or hard disk. Rather, this method is a prelude to sending
data to a window via the document.write() or document.writeln() methods. In a sense,

document.open()

568 Part III ✦ Document Objects Reference

the document.open() method merely opens the valve of a pipe; the other methods send the
data down the pipe like a stream, and the document.close() method closes that valve as
soon as the page’s data has been sent in full.

The document.open() method is optional because a document.write() method that
attempts to write to a closed document automatically clears the old document and opens the
stream for a new one. Whether or not you use the document.open() method, be sure to use
the document.close() method after all the writing has taken place.

An optional parameter to the document.open() method lets you specify the nature of the
data being sent to the window. A MIME (Multipurpose Internet Mail Extension) type is a speci-
fication for transferring and representing multimedia data on the Internet (originally for mail
transmission, but now applicable to all Internet data exchanges). You’ve seen MIME depictions
in the list of helper applications in your browser’s preferences settings. A pair of data type
names separated by a slash represents a MIME type (such as text/html and image/gif).
When you specify a MIME type as a parameter to the document.open() method, you’re
instructing the browser about the kind of data it is about to receive, so that it knows how
to render the data. Common values that most browsers accept are

text/html
text/plain
image/gif
image/jpeg
image/xbm

If you omit the parameter, JavaScript assumes the most popular type, text/html— the kind
of data you typically assemble in a script prior to writing to the window. The text/html type
includes any images that the HTML references. Specifying any of the image types means that
you have the raw binary representation of the image that you want to appear in the new docu-
ment — possible, but unlikely.

Another possibility is to direct the output of a write() method to a plug-in. For the mimeType
parameter, specify the plug-in’s MIME type (for example, application/x-director for
Shockwave). Again, the data you write to a plug-in must be in a form that it knows how to
handle. The same mechanism also works for writing data directly to a helper application.

IE accepts only the text/html MIME type parameter.

NN4+/Moz1+ and IE5+ include a second, optional parameter to the method: replace. This
parameter does for the document.open() method what the replace() method does for the
location object. For document.open(), it means that the new document you are about to
write replaces the previous document in the window or frame from being recorded to that
window or frame’s history.

Example
You can see an example of where the document.open() method fits in the scheme of dynami-
cally creating content for another frame in the discussion of the document.write() method
later in this chapter.

Related Items: document.close(), document.clear(), document.write(),
document.writeln() methods.

Note

document.open()

569Chapter 18 ✦ The Document and Body Objects

queryCommandEnabled(“commandName”)
queryCommandIndterm(“commandName”)
queryCommandCommandState(“commandName”)
queryCommandSupported(“commandName”)
queryCommandText(“commandName”)
queryCommandValue(“commandName”)

Returns: Various values.
Compatibility: WinIE4+, MacIE-, NN7.1, Moz1.4, Safari-

These six methods lend further support to the execCommand() method for document and
TextRange objects in WinIE. If you choose to use the execCommand() method to achieve some
stylistic change on a text selection, you can use some of these query methods to make sure
the browser supports the desired command and to retrieve any returned values. Table 18-4
summarizes the purpose and returned values for each of the methods.

Table 18-4: IE Query Commands

queryCommand Returns Description

Enabled Boolean Reveals whether the document or TextRange object is in a
suitable state to be invoked.

Indterm Boolean Reveals whether the command is in an indeterminate state.

CommandState Boolean | null Reveals whether the command has been completed (true), is still
working (false), or is in an indeterminate state (null).

Supported Boolean Reveals whether the command is supported in the current browser.

Text String Returns any text that may be returned by a command.

Value Varies Returns whatever value (if any) is returned by a command.

Because the execCommand() method cannot be invoked on a page while it is still loading,
any such invocations that may collide with the loading of a page should check with query
CommandEnabled() prior to invoking the command. Validating that the browser version run-
ning the script supports the desired command (especially for commands that have been
introduced after IE4) is also a good idea. Therefore, you may want to wrap any command call
with the following conditional structure:

if (document.queryCommandEnabled(commandName) &&
document.queryCommandSupported(commandName)) {
...

}

When using a command to read information about a selection, use the queryCommandText()
or queryCommandValue() methods to catch that information (recall that the execCommand()
method itself returns a Boolean value regardless of the specific command invoked).

document.queryCommandEnabled()

570 Part III ✦ Document Objects Reference

Example
See the examples for these methods covered under the TextRange object in Chapter 35.

Related Items: TextRange object (Chapter 35); execCommand() method.

recalc([allFlag])
Returns: Nothing.
Compatibility: WinIE5+, MacIE-, NN-, Moz-, Safari-

IE5 introduced the concept of dynamic properties. With the help of the setExpression()
method of all elements and the expression() stylesheet value, you can establish dependen-
cies between object properties and potentially dynamic properties, such as a window’s size
or a draggable element’s location. After those dependencies are established, the document.
recalc() method causes those dependencies to be recalculated — usually in response to
some user action, such as resizing a window or dragging an element.

The optional parameter is a Boolean value. The default value, false, means that the recalcu-
lations are performed only on expressions for which the browser has detected any change
since the last recalculation. If you specify true, however, all expressions are recalculated
whether they have changed or not.

Mozilla 1.4 includes a feature that allows scripts to turn an iframe element’s document
object into an HTML editable document. Part of the scripting incorporates the document.
execCommand() and related methods. Visit http://www.mozilla.org/editor for current
details and examples.

Example
You can see an example of recalc() in Listing 15-32 for the setExpression() method. In
that example, the dependencies are between the current time and properties of standard ele-
ment objects.

Related Items: getExpression(), removeExpression(), setExpression() methods
(Chapter 15).

releaseEvents(eventTypeList)
Returns: Nothing.
Compatibility: WinIE-, MacIE-, NN4+, Moz-, Safari-

If your NN4 scripts have enabled event capture for the document object (or window or layer,
for that matter), you can turn off that capture with the releaseEvents() method. This
method does not inhibit events from reaching their intended target. In fact, by releasing
capture from a higher object, released events don’t bother stopping at those higher objects
anymore.

See the discussion of the releaseEvents() method for the window object in Chapter 16.
The behavior of the releaseEvents() method for all objects is the same.

Related Items: document.captureEvents(), document.routeEvent() methods.

document.queryCommandEnabled()

571Chapter 18 ✦ The Document and Body Objects

routeEvent(event)
Returns: Nothing.
Compatibility: WinIE-, MacIE-, NN4+, Moz-, Safari-

If you turn on NN4 event capturing in the window, document, or layer object (via their respec-
tive captureEvents() methods), the event handler you assign to those events really cap-
tures those events, preventing them from ever reaching their intended targets. For some page
designs, this capturing is intentional, because it allows the higher-level object to handle all
events of a particular type. But if your goal is to perform some preprocessing of events before
they reach their destination, you need a way to pass that event along its regular path, which
is what the routeEvent() method is for.

See the discussion of the routeEvent() method for the window object in Chapter 16. The
behavior of the routeEvent() method for all objects is the same.

Related Items: document.captureEvents(), document.releaseEvents() methods.

write(“string1” [,”string2” ... [, “stringn”]])
writeln(“string1” [,”string2” ... [, “stringn”]])

Returns: Boolean true if successful.
Compatibility: WinIE3+, MacIE3+, NN2+, Moz1+, Safari1+

Both of these methods send text to a document for display in its window. The only difference
between the two methods is that document.writeln() appends a carriage return to the end
of the string it sends to the document. This carriage return is helpful for formatting source
code when viewed through the browser’s source view window. For new lines in rendered
HTML that is generated by these methods, you must still write a
 to insert a line break.

A common, incorrect conclusion that many JavaScript newcomers make is that these meth-
ods enable a script to modify the contents of an existing document, which is not true. As
soon as a document has loaded into a window (or frame), the only fully backward-compatible
text that you can modify without reloading or rewriting the entire page is the content of text
and textarea objects. In IE4+, you can modify HTML and text via the innerHTML, innerText,
outerHTML, and outerText properties of any element. For W3C DOM–compatible browsers,
you can modify an element’s text by setting its nodeValue or innerHTML properties; strict
adherence to the W3C DOM requires creating and inserting or replacing new elements, as
described in Chapter 15.

The two safest ways to use the document.write() and document.writeln() methods are to

✦ Write some or all of the page’s content by way of scripts embedded in the document

✦ Send HTML code either to a new window or to a separate frame in a multiframe window

For the first case, you essentially interlace script segments within your HTML. The scripts run
as the document loads, writing whatever scripted HTML content you like. This task is exactly
what you did in script1.htm in Chapter 3. This task is also how you can have one page gener-
ate browser-specific HTML when a particular class of browser requires unique syntax.

In the latter case, a script can gather input from the user in one frame and then algorithmi-
cally determine the layout and content destined for another frame. The script assembles the
HTML code for the other frame as a string variable (including all necessary HTML tags).
Before the script can write anything to the frame, it can optionally open the layout stream

document.write()

572 Part III ✦ Document Objects Reference

(to close the current document in that frame) with the parent.frameName.document.
open() method. In the next step, a parent.frameName.document.write() method pours
the entire string into the other frame. Finally, a parent.frameName.document.close()
method ensures that the total data stream is written to the window. Such a frame looks just
the same as if it were created by a source document on the server rather than on the fly in
memory. The document object of that window or frame is a full citizen as a standard document
object. You can, therefore, even include scripts as part of the HTML specification for one of
these temporary HTML pages.

After an HTML document (containing a script that is going to write via the write() or
writeln() methods) loads completely, the page’s incoming stream closes automatically.
If you then attempt to apply a series of document.write() statements, the first document.
write() method completely removes all vestiges of the original document. That includes all
of its objects and scripted variable values. Therefore, if you try to assemble a new page with
a series of document.write() statements, the script and variables from the original page will
be gone before the second document.write() statement executes. To get around this poten-
tial problem, assemble the content for the new screen of content as one string variable and
then pass that variable as the parameter to a single document.write() statement. Also be
sure to include a document.close() statement in the next line of script.

Assembling HTML in a script to be written via the document.write() method often requires
skill in concatenating string values and nesting strings. A number of JavaScript String object
shortcuts facilitate the formatting of text with HTML tags (see Chapter 27 for details).

If you are writing to a different frame or window, you are free to use multiple document.
write() statements if you like. Whether your script sends lots of small strings via multiple
document.write() methods or assembles a larger string to be sent via one document.
write() method depends partly on the situation and partly on your own scripting style.
From a performance standpoint, a fairly standard procedure is to do more preliminary work
in memory and place as few I/O (input/output) calls as possible. On the other hand, making a
difficult-to-track mistake is easier in string concatenation when you assemble longer strings.
My personal preference is to assemble longer strings, but you should use the system that’s
most comfortable for you.

You may see another little-known way of passing parameters to these methods. Instead of con-
catenating string values with the plus (+) operator, you can also bring string values together
by separating them with commas. For example, the following two statements produce the
same results:

document.write(“Today is “ + new Date());
document.write(“Today is “,new Date());

Neither form is better than the other, so use the one that feels more comfortable to your
existing programming style.

Dynamically generating scripts requires an extra trick, especially in NN. The root of the prob-
lem is that if you try code, such as document.write(“<script></script>”), the
browser interprets the end script tag as the end of the script that is doing the writing. You
have to trick the browser by separating the end tag into a couple of components. Escaping
the forward slash also helps. For example, if you want to load a different .js file for each
class of browser, the code looks similar to the following:

// variable ‘browserVer’ is a browser-specific string
// and ‘page’ is the HTML your script is accumulating
// for document.write()
page += “<script type=’text/javascript’ src=’” +

browseVer + “.js’><” + “\/script>”;

Note

document.write()

573Chapter 18 ✦ The Document and Body Objects

Using the document.open(), document.write(), and document.close() methods to display
images in a document requires some small extra steps. First, any URL assignments that you
write via document.write() must be complete (not relative) URL references. Alternatively,
you can write the <base> tag for the dynamically generated page so that its href attribute
value matches that of the file that is writing the page.

The other image trick is to be sure to specify height and width attributes for every image,
scripted or otherwise. Document-rendering performance is improved on all platforms,
because the values help the browser lay out elements even before their details are loaded.

In addition to the document.write() example that follows (see Listings 18-16 through 18-18),
you can find fuller implementations that use this method to assemble images and bar charts
in many of the applications in Chapters 48 through 57 on the CD-ROM. Because you can assem-
ble any valid HTML as a string to be written to a window or frame, a customized, on-the-fly
document can be as elaborate as the most complex HTML document that you can imagine.

Example
The example in Listings 18-16 through 18-18 demonstrates several important points about
using the document.write() or document.writeln() methods for writing to another frame.
First is the fact that you can write any HTML code to a frame, and the browser accepts it as if
the source code came from an HTML file somewhere. In the example, I assemble a complete
HTML document, including basic HTML tags for completeness.

Listing 18-16: A Frameset for the Document Writing Example

<html>
<head>

<title>Writin’ to the doc</title>
</head>
<frameset rows=”50%,50%”>

<frame name=”Frame1” src=”lst18-17.htm” />
<frame name=”Frame2” src=”lst18-18.htm” />

</frameset>
</html>

Listing 18-17: Writing a Document Based upon User Input

<html>
<head>

<title>Document Write Controller</title>
<script type=”text/javascript”>
function takePulse(form) {

var msg = “<html><head><title>On The Fly with “ +
form.yourName.value + “<\/title><\/head>”;

msg += “<body bgcolor=’salmon’><h1>Good Day “ + form.yourName.value +
“!<\/h1><hr />”;

for (var i = 0; i < form.how.length; i++) {
if (form.how[i].checked) {

msg += form.how[i].value;
break;

}

Continued

document.write()

574 Part III ✦ Document Objects Reference

Listing 18-17 (continued)

}
msg += “
Make it a great day!<\/body><\/html>”;

parent.Frame2.document.write(msg);
parent.Frame2.document.close();

}

function getTitle() {
alert(“Lower frame document.title is now:” +

parent.Frame2.document.title);
}
</script>

</head>
<body>

Fill in a name, and select how that person feels today. Then click “Write
To Below” to see the results in the bottom frame.
<form>

Enter your first name:<input type=”text” name=”yourName”
value=”Dave” />
<p>How are you today? <input type=”radio” name=”how”

value=”I hope that feeling continues forever.”
checked=”checked” />Swell <input type=”radio” name=”how”
value=”You may be on your way to feeling Swell” />Pretty Good
<input type=”radio” name=”how”
value=”Things can only get better from here.” />So-So</p>

<p><input type=”button” name=”enter” value=”Write To Below”
onclick=”takePulse(this.form)” /></p>

<hr />
<input type=”button” name=”peek” value=”Check Lower Frame Title”
onclick=”getTitle()” />

</form>
</body>

</html>

Listing 18-18: A Placeholder Page for the Document Writing Example

<html>
<head>

<title>Placeholder</title>
</head>
<body>
</body>

</html>

It is important to note that this example customizes the content of the document based on
user input. This customization makes the experience of working with your Web page feel far
more interactive to the user — yet you’re doing it without any CGI programs running on the
server.

document.write

575Chapter 18 ✦ The Document and Body Objects

The second point I want to bring home is that the document created in the separate frame
by the document.write() method is a genuine document object. In this example, for instance,
the <title> tag of the written document changes if you redraw the lower frame after changing
the entry of the name field in the upper frame. If you click the lower button after updating the
bottom frame, you see that the document.title property has, indeed, changed to reflect the
<title> tag written to the browser in the course of displaying the frame’s page. The fact that
you can artificially create full-fledged, JavaScript document objects on the fly represents one
of the most important powers of serverless CGI scripting (for information delivery to the user)
with JavaScript. You have much to take advantage of here if your imagination is up to the task.

Notice that you can easily modify Listing 18-17 to write the results to the same frame as the
document containing the field and buttons. Instead of specifying the lower frame

parent.frames[1].document.open()
parent.frames[1].document.write(msg)
parent.frames[1].document.close()

the code simply can use

document.open()
document.write(msg)
document.close()

This code would replace the form document with the results and not require any frames in
the first place. Because the code assembles all of the content for the new document into one
variable value, that data survive the one document.write() method.

The frameset document (Listing 18-16) creates a blank frame by loading a blank document
(Listing 18-18). An alternative I highly recommend is to have the framesetting document fill
the frame with a blank document of its own creation. See the section titled “Blank frames” in
Chapter 16 for further details about this technique for NN3+ and IE3+.

Related Items: document.open(); document.close(); document.clear() methods.

Event handlers

onselectionchange
Compatibility: WinIE5.5+, MacIE-, NN-, Moz-, Safari-

The onselectionchange event can be triggered by numerous user actions, although all of
those actions occur on elements that are under the influence of the WinIE5.5 edit mode.

Related Items: oncontrolselect event handler.

onstop
Compatibility: WinIE5+, MacIE-, NN-, Moz-, Safari-

The onstop event fires in WinIE5+ when the user clicks the browser’s Stop button. Use this
event handler to stop potentially runaway script execution on a page, because the Stop but-
ton does not otherwise control scripts after a page has loaded. If you are having a problem
with a runaway repeat loop during development, you can temporarily use this event handler
to let you stop the script for debugging.

document.onstop

576 Part III ✦ Document Objects Reference

Example
Listing 18-19 provides a simple example of an intentional infinitely looping script. In case you
load this page into a browser other than IE5+, you can click the Halt Counter button to stop
the looping. The Halt Counter button as well as the onstop event handler invokes the same
function.

Listing 18-19: Stopping a Script Using the onstop Event Handler

<html>
<head>

<title>onStop Event Handler</title>
<script type=”text/javascript”>
var counter = 0;
var timerID;
function startCounter() {

document.forms[0].display.value = ++counter;
//clearTimeout(timerID)
timerID = setTimeout(“startCounter()”, 10);

}
function haltCounter() {

clearTimeout(timerID);
counter = 0;

}

document.onstop = haltCounter;
</script>

</head>
<body>

<h1>onStop Event Handler</h1>
<hr />
<p>Click the browser’s Stop button (in IE) to stop the script
counter.</p>
<form>

<p><input type=”text” name=”display” /></p>
<input type=”button” value=”Start Counter” onclick=”startCounter()” />
<input type=”button” value=”Halt Counter” onclick=”haltCounter()” />

</form>
</body>

</html>

Related Items: Repeat loops (Chapter 31).

body Element Object
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

For HTML element properties, methods, and event handlers, see Chapter 15.

document.onstop

577Chapter 18 ✦ The Document and Body Objects

Properties Methods Event Handlers

alink createControlRange() onafterprint
background createTextRange() onbeforeprint
bgColor doScroll() onscroll
bgProperties
bottomMargin
leftMargin
link
noWrap
rightMargin
scroll
scrollLeft
scrollTop
text
topMargin
vLink

Syntax
Accessing body element object properties or methods:

[window.] document.body.property | method([parameters])

About this object
In object models that reveal HTML element objects, the body element object is the primary
container of the content that visitors see on the page. The body contains all rendered HTML.
This special place in the node hierarchy gives the body object some special powers, especially
in the IE object model.

As if to signify the special relationship, both the IE and W3C object models provide the same
shortcut reference to the body element: document.body. As a first-class HTML element
object (as evidenced by the long lists of properties, methods, and event handlers covered
in Chapter 15), you are also free to use other syntaxes to reach the body element.

You are certainly familiar with several body element attributes that govern body-wide content
appearance, such as link colors (in three states) and background (color or image). But IE and
NN/Mozilla (and the W3C so far) have some very different ideas about the body element’s role
in scripting documents. Many methods and properties that NN/Mozilla considers to be the
domain of the window (for example, scrolling, inside window dimensions, and so forth), IE
puts into the hands of the body element object. Therefore, while NN/Mozilla scrolls the win-
dow (and whatever it may contain), IE scrolls the body (inside whatever window it lives). And
because the body element fills the entire viewable area of a browser window or frame, that

document.body

578 Part III ✦ Document Objects Reference

viewable rectangle is determined in IE by the body’s scrollHeight and scrollWidth prop-
erties, whereas NN4+ features window.innerHeight and window.innerWidth properties. This
distinction is important to point out because when you are scripting window- or document-
wide appearance factors, you may have to look for properties and methods for the window or
body element object, depending on your target browser(s).

Use caution when referencing the document.body object while the page is loading. The
object may not officially exist until the page has completely loaded. If you need to set some
initial properties via scripting, do so in response to the onload event handler located in the
<body> tag. Attempts at setting body element object properties in immediate scripts inside
the head element may result in error messages about the object not being found.

Properties

aLink
bgColor
link
text

vLink

Value: Hexadecimal triplet or color name string. Read/Write
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

The aLink, link, and vLink properties are the new versions of the document properties
alinkColor, linkColor, and vlinkColor. The bgColor is the same as the old document.
bgColor property, while the text property is the new version of the document.fgColor
property. These new properties are the scripted equivalents of the HTML attributes for the
body element — the property names more closely align themselves with the HTML attributes
than the old property names.

Link colors that are set via pseudo-class selectors in stylesheets (as style attributes of the
body element) must be accessed via the style property for the body object. Over time, these
properties will likely fall into disuse as stylesheets become more common.

Example
You can modify Listing 18-1 for use with IE4+ and NN6+/Moz1+/W3C only by using the new prop-
erty names instead. Replace all references to the document properties with their document.
body equivalents. For example, the function would be reworked as the following (changes in
boldface):

function showColorValues() {
var result = “”;
result += “bgColor: “ + newWindow.document.body.bgColor + “\n”;
result += “vLink: “ + newWindow.document.body.vLink + “\n”;
result += “link: “ + newWindow.document.body.link + “\n”;
document.forms[0].results.value = result;

}

Related Items: document.alinkColor, document.bgColor, document.fgColor, document.
linkColor, document.vlinkColor properties.

Note

document.body

579Chapter 18 ✦ The Document and Body Objects

background
Value: URL string. Read/Write
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

The background property lets you set or get the URL for the background image (if any)
assigned to the body element. A body element’s background image overlays the background
color in case both attributes or properties are set. To remove an image from the document’s
background, set the document.body.background property to an empty string.

Example
If you have a background image file named images/logoBG.gif, a script can set the back-
ground via the following statement:

document.body.background = “images/logoBG.gif”;

To clear the background image:

document.body.background = “”;

If a background color has been previously set, the color becomes visible after the image
disappears.

Related Items: body.bgColor, body.bgProperties properties.

bgColor
See aLink

bgProperties
Value: String constant. Read/Write
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-

The IE-specific bgProperties property is an alternative way of adjusting whether the back-
ground image should remain fixed when the user scrolls the document or if it should scroll
with the document. Initial settings for this behavior should be done via the background-
attachment CSS attribute and modified under script control by way of the body element’s
style.backgroundAttachment property.

No matter which way you reference this property, the only allowable values are string con-
stants scroll (the default) or fixed.

Example
Both of the following statements change the default behavior of background image scrolling
in IE4+:

document.body.bgProperties = “fixed”;

or

document.body.style.backgroundAttachment = “fixed”;

The added benefit of using the stylesheet version is that it also works in NN6+.

Related Items: body.background property.

document.body.bgProperties

580 Part III ✦ Document Objects Reference

bottomMargin
leftMargin
rightMargin
topMargin

Value: Integer. Read/Write
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-

The four IE-specific margin properties are alternatives to setting the corresponding four
margin stylesheet attributes for the body element (body.style.marginBottom, and so on).
Stylesheet margins represent blank space between the edge of an element’s content and its
next outermost container. In the case of the body element, that container is an invisible docu-
ment container.

Of the four properties, only the one for the bottom margin may be confusing if the content
does not fill the vertical space of a window or frame. The margin value is not automatically
increased to accommodate the extra blank space.

Different versions and operating system implementations of IE4+ offer a variety of default inte-
ger values for these properties. But be aware that their values are not necessarily returned by
these properties unless they are explicitly set in the IE-proprietary body element attributes
of the same name. Therefore, even though a default body has a visible margin, the property
does not return that default value except in MacIE, where the left and top margins may need
to be factored into determining an inline element’s position.

Example
Both of the following statements change the default left margin in IE4+:

document.body.leftMargin = 30;

or

document.body.style.marginLeft = 30;

Related Items: style object.

leftMargin
(See bottomMargin)

link
(See aLink)

noWrap
Value: Boolean. Read/Write
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-

The noWrap property lets you modify the body element behavior normally set via the nowrap
attribute. Because the property name is a negative, the Boolean logic needed to control it can
get confusing.

The default behavior for a body element is for text to wrap within the width of the window or
frame. This behavior occurs when the value of noWrap is its default value of false. By turning
noWrap to true, a line of text continues to render past the right edge of the window or frame

document.body.bottomMargin

581Chapter 18 ✦ The Document and Body Objects

until the HTML contains a line break (or end of paragraph). If the text continues on past the
right edge of the window, the window (or frame) gains a horizontal scroll bar (of course, not if
a frame is set to not scroll).

By and large, users don’t like to scroll in any direction if they don’t have to. Unless you have a
special need to keep single lines intact, let the default behavior rule the day.

Example
To change the word-wrapping behavior from the default, the statement is:

document.body.noWrap = true;

Related Items: None.

rightMargin
(See bottomMargin)

scroll
Value: Constant string. Read/Write
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-

The IE-specific scroll property provides scripted access to the IE-specific scroll attribute
of a body element. By default, an IE body element displays a vertical scroll bar even if the height
of the content does not warrant it; a horizontal scroll bar appears only when the content is
forced to be wider than the window or frame. You can make sure that both scroll bars are hid-
den by setting the scroll attribute to “no” or changing it via script. Possible values for this
property are the constant strings yes and no.

Other than frame attributes and NN4+ signed scripts, other browsers do not provide facilities
for turning off scroll bars under script control. You can generate a new window (via the
window.open() method) and specify that its scroll bars be hidden.

Example
To change the scroll bar appearance from the default, the statement is:

document.body.scroll = “no”;

Related Items: window.scrollbars property; window.open() method.

scrollLeft

scrollTop
Value: Integer. Read/Write
Compatibility: WinIE4+, MacIE4+, NN7+, Moz1+, Safari-

Even though the scrollLeft and scrollTop properties of the body object are the same as
those for generic HTML element objects, they play an important roll in determining the posi-
tion of positioned elements (described more fully in Chapter 39 on the CD-ROM). Because the
mouse event and element position properties tend to be relative to the visible content region
of the browser window, you must take the scrolling values of the document.body object into
account when assigning an absolute position. Values for both of these properties are integers
representing pixels.

document.body.scrollLeft

582 Part III ✦ Document Objects Reference

Example
Listing 18-20 is the IE4+ (and NN7+/Moz1+) version of the original NN example for pageXOffset
and pageYOffset properties (see Listing 16-13). Everything about these two examples is the
same except for the syntax that retrieves the values indicating how much the document is
scrolled in a window.

Listing 18-20: Determining Scroll Values

<html>
<head>

<title>Master of all Windows</title>
<script type=”text/javascript”>
function leftFrame() {

var output = “<html><body><h3>Body Scroll Values<\/h3><hr />\n”;
output += “<form>body.scrollLeft:<input type=’text’ name=’xOffset’

size=4 />
\n”;
output += “body.scrollTop:<input type=’text’ name=’yOffset’

size=4 />
\n”;
output += “<\/form><\/body><\/html>”;
return output;

}

function rightFrame() {
var output = “<html><head><script type=’text/javascript’>\n”;
output += “function showOffsets() {\n”;
output += “parent.readout.document.forms[0].xOffset.value =

document.body.scrollLeft\n”;
output += “parent.readout.document.forms[0].yOffset.value =

document.body.scrollTop\n}\n”;
output += “document.onclick = showOffsets\n”;
output += “<\/script><\/head><body><h3>Content Page<\/h3>\n”;
output += “Scroll this frame and click on a table border to view page

offset values.
<hr />\n”;
output += “<table border=5 width=800>”;
var oneRow = “<td>Cell 1<\/td><td>Cell 2<\/td><td>Cell 3<\/td><td>Cell

4<\/td><td>Cell 5<\/td>”;
for (var i = 1; i <= 30; i++) {

output += “<tr><td>Row “ + i + “<\/b><\/td>” + oneRow +
“<\/tr>”;

}
output += “<\/table><\/body><\/html>”;
return output;

}
</script>

</head>
<frameset cols=”30%,70%”>

<frame name=”readout” src=”javascript:parent.leftFrame()” />
<frame name=”display” src=”javascript:parent.rightFrame()” />

</frameset>
</html>

Related Items: window.pageXOffset, window.pageYOffset properties.

document.body.scrollLeft

583Chapter 18 ✦ The Document and Body Objects

text
(See aLink)

topMargin
(See bottomMargin)

vLink
(See aLink)

Methods

createControlRange()
Returns: Array.
Compatibility: WinIE5+, MacIE-, NN-, Moz-, Safari-

This method creates a control range in WinIE5+ browsers. Control ranges are used for control-
based selection, as opposed to text-based selection made possible by text ranges. The method
only applies to documents in edit mode. In regular document view mode, the createControl
Range() method returns an empty array.

createTextRange()
Returns: Object.
Compatibility: WinIE4+, MacIE-, NN-, Moz-, Safari-

The body element object is the most common object to use to generate a TextRange object
in IE4+, especially when the text you are about to manipulate is part of the document’s body
text. The initial TextRange object returned from the createTextRange() method encom-
passes the entire body element’s HTML and body text. Further action on the returned object
is required to set the start and end point of the range. See Chapter 35’s discussion of the
TextRange object for more details.

Example
See Listing 35-8 for an example of the createTextRange() method in action.

Related Items: TextRange object (Chapter 35).

doScroll([“scrollAction”])
Returns: Nothing.
Compatibility: WinIE5+, MacIE-, NN-, Moz-, Safari-

Use the doScroll() method to simulate user action on the scroll bars inside a window or
frame that holds the current document. This method comes in handy if you are creating your
own scroll bars in place of the standard system scroll bars. Scrolling is instantaneous, however,
rather than with animation even if the Display control panel is set for animated scrolling. The
parameter for this method is one of the string constant values shown in Table 18-5. In practice,
occasionally the longer scroll action names more closely simulate an actual click on the scroll
bar component, whereas the shortcut versions may scroll at a slightly different increment.

document.body.doScroll()

584 Part III ✦ Document Objects Reference

Table 18-5: document.body.doScroll() Parameters

Long Parameter Short Parameter Scroll Action Simulates

scrollbarDown down Clicking the down arrow.

scrollbarHThumb n/a Clicking the horizontal scroll bar thumb (no scrolling
action).

scrollbarLeft left Clicking the left arrow.

scrollbarPageDown pageDown Clicking the page down area or pressing PgDn (default).

scrollbarPageLeft pageLeft Clicking the page left area.

scrollbarPageRight pageRight Clicking the page right area.

scrollbarPageUp pageUp Clicking the page up area or pressing PgUp.

scrollbarVThumb n/a Clicking the vertical scroll bar thumb (no scrolling action).

Unlike scrolling to a specific pixel location (by setting the body element’s scrollTop and
scrollLeft properties), the doScroll() method depends entirely on the spatial relationship
between the body content and the window or frame size. Also, the doScroll() method triggers
the onscroll event handler for the body element object.

Be aware that scripted modifications to body content can alter these spatial relationships. IE
is prone to being sluggish in updating all of its internal dimensions after content has been
altered. Should you attempt to invoke the doScroll() method after such a layout modifica-
tion, the scroll may not be performed as expected. You may find the common trick of using
setTimeout() to delay the invocation of the doScroll() method by a fraction of a second.

Example
Use The Evaluator (Chapter 13) to experiment with the doScroll() method in IE5+. Size the
browser window so that at least the vertical scroll bar is active (meaning it has a thumb
region). Enter the following statement into the top text field and press Enter a few times to
simulate clicking the PgDn key:

document.body.doScroll()

Return to the top of the page and now do the same for scrolling by the increment of the scroll
bar down arrow:

document.body.doScroll(“down”)

You can also experiment with upward scrolling. Enter the desired statement in the top text
field and leave the text cursor in the field. Manually scroll to the bottom of the page and then
press Enter to activate the command.

Related Items: body.scroll, body.scrollTop, body.scrollLeft properties; window.
scroll(), window.scrollBy(), window.scrollTo() methods.

Event handlers

onafterprint
onbeforeprint

(See the onafterprint event handler for the window object, Chapter 16)

document.body.doScroll()

585Chapter 18 ✦ The Document and Body Objects

onscroll
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-

The onscroll event handler fires for the body element object as the result of manual
scrolling of the document (via scroll bars or navigation keyboard keys) and scripted scrolling
via the doScroll() method, scrollIntoView() method, or adjusting the scrollTop and/or
scrollLeft properties of the body element object. For manual scrolling and scrolling by
doScroll(), the event seems to fire twice in succession. Moreover, the event.srcElement
property is null, even when the body element is handling the onscroll event handler.

Example
Listing 18-21 is a highly artificial demonstration of what can be a useful tool for some page
designs. Consider a document that occupies a window or frame, but one that you don’t want
scrolled, even by accident with one of the newer mouse wheels that are popular with Wintel
PCs. If scrolling of the content would destroy the appearance or value of the content, then you
want to make sure that the page always zips back to the top. The onscroll event handler in
Listing 18-21 does just that. Notice that the event handler is set as a property of the document.
body object after the page has loaded. Although the event handler can also be set as an
attribute of the <body> tag, to assign it as a property requires the page to load first. Until then,
the document.body object does not yet officially exist in the object model for this page.

Listing 18-21: Preventing a Page from Scrolling

<html>
<head>

<title>onscroll Event Handler</title>
<script type=”text/javascript”>
function zipBack() {

window.scroll(0,0);
}
function init() {

document.body.onscroll = zipBack;
}
</script>

</head>
<body onload=”init()”>

<h1>onscroll Event Handler</h1>
<hr />
This page always zips back to the top if you try to scroll it.
<p><iframe frameborder=”0” scrolling=”no” height=”1000”

src=”bofright.htm”></iframe></p>
</body>

</html>

Related Items: body.scrollTop, body.scrollLeft properties; scrollIntoView(),
body.doScroll() methods.

document.body.onscroll

586 Part III ✦ Document Objects Reference

TreeWalker Object

Property Method Event Handler

currentNode firstChild() (None)

expandEntityReference lastChild()
filter nextNode()
root nextSibling()
whatToShow parentNode()

previousNode()
previousSibling()

Syntax
Creating a TreeWalker object:

var treewalk = document.createTreeWalker(document, whatToShow, filterFunction,
entityRefExpansion);

Accessing TreeWalker object properties and methods:

TreeWalker.property | method([parameters])

Compatibility: WinIE-, MacIE-, NN7+, Moz1+, Safari-

About this object
The TreeWalker object serves as a container for a list of nodes that meet the criteria defined
by the document.createTreeWalker() method, which is used to create the object. The list
of nodes contained by a TreeWalker object conforms to the same hierarchical structure of
the document from which they are referenced. The TreeWalker object provides a means of
navigating through this list of nodes based upon their inherent tree-like structure.

You can think of the TreeWalker object as somewhat of an iterator object since its main pur-
pose is to provide a means of stepping through nodes in a list. However, in this case the list is
a hierarchical tree, as opposed to a linear list. The TreeWalker object maintains a pointer
inside the list of nodes that always points to the “current node.” Whenever you navigate
through the list using the TreeWalker object, the navigation is always relative to the pointer.
For example, referencing the previous or next node via calls to the previousNode() or
nextNode() methods depends upon the current position of the node pointer in the tree.

Use the document.createTreeWalker() method to create a TreeWalker object for a partic-
ular document. This method requires a user function that serves as a filter for nodes selected
to be part of the tree. A reference to the function is the third parameter of the method call.
The return value of this user function can be one of three constant values, which indicate the
status of the current node: NodeFilter.FILTER_ACCEPT, NodeFilter.FILTER_REJECT,
or NodeFilter.FILTER_SKIP. The difference between NodeFilter.FILTER_REJECT and
NodeFilter.FILTER_SKIP is that descendents of skipped nodes may still qualify as part of

TreeWalker

587Chapter 18 ✦ The Document and Body Objects

the tree, while rejected nodes and their descendents are excluded altogether. Following is an
example of a user function you could use to create a TreeWalker object:

function ratingAttrFilter(node) {
if (node.hasAttribute(“rating”)) {

return NodeFilter.FILTER_ACCEPT;
}
return NodeFilter.FILTER_REJECT;

}

In this example function, only nodes containing an attribute named rating are allowed
through the filter, which means only those nodes will get added to the list (tree). With this
function in place, you then call the document.createTreeWalker() method to create the
TreeWalker object:

var myTreeWalker = document.createTreeWalker(document, NodeFilter.SHOW_ELEMENT,
ratingAttrFilter, false);

Now that the TreeWalker object is created, you can use its properties and methods to access
individual nodes and navigate through the list.

Properties

currentNode
Value: Node reference. Read/Write
Compatibility: WinIE-, MacIE-, NN7+, Moz1+, Safari-

The currentNode property returns a reference to the current node, which sits at the location
of the tree’s node pointer. Although you can use the currentNode property to access the cur-
rent node, you can also use it to set the current node.

Example
To assign a node to the current position in the tree, just create an assignment statement using
the currentNode property:

myTreeWalker.currentNode = document.getElementById(“info”);

Related Item: root property.

expandEntityReference
filter
root
whatToShow

Value: See text. Read-Only
Compatibility: WinIE-, MacIE-, NN7+, Moz1+, Safari-

These properties reflect the parameter values passed into the document.createTreeWalker()
method upon the creation of the TreeWalker object.

Related Item: document.createTreeWalker() method.

TreeWalker.expandEntityReference

588 Part III ✦ Document Objects Reference

Methods
firstChild()
lastChild()
nextSibling()
parentNode()
previousSibling()

Returns: Node reference.
Compatibility: WinIE-, MacIE-, NN7+, Moz1+, Safari-

These methods return references to nodes within the hierarchy of the tree-like list of nodes
contained by the TreeWalker object. There is a parent-child relationship among all of the
nodes in the tree, and these functions are used to obtain node references based upon this
relationship. The node pointer within the tree moves to the new node whenever you use one
of these methods to navigate to a given node. This means you can access the new node as the
current node after calling one of these navigation methods.

Example
The following code shows how to obtain the tag name of the parent node of the current node
in the TreeWalker object:

if (myTreeWalker.parentNode()) {
var parentTag = myTreeWalker.currentNode.tagName;

}

Related Items: nextNode(), previousNode() methods.

nextNode()
previousNode()

Returns: Node reference.
Compatibility: WinIE-, MacIE-, NN7+, Moz1+, Safari-

The nextNode() and previousNode() methods navigate back and forth in the list of nodes
contained by the TreeWalker object. It’s important to note that these methods operate on
the node list as if it has been flattened from a tree into a linear sequence of nodes. Both meth-
ods move the internal node pointer to the next or previous node, respectively.

Example
The following code demonstrates both the node filter function and a typical function you could
use to display (in a series of alert windows, perhaps for debugging purposes) the IDs of all
elements inside the body that have id attributes assigned. The nextNode() method is called
first to advance the TreeWalker’s node pointer to the first node of the collection, and then
iteratively (inside a do-while construction) to obtain the next node that passes the node fil-
ter’s test.

TreeWalker.firstChild()

589Chapter 18 ✦ The Document and Body Objects

function idFilter(node) {
if (node.hasAttribute(“id”)) {

return NodeFilter.FILTER_ACCEPT;
}
return NodeFilter.FILTER_SKIP;

}

function showIds() {
var tw =
document.createTreeWalker(document.body, NodeFilter.SHOW_ELEMENT, idFilter,

false);
// make sure TreeWalker contains at least one node, and go to it if true
if (tw.nextNode()) {

do {
alert(tw.currentNode.id);

} while (tw.nextNode());
}

}

Related Items: parentNode() method.

✦ ✦ ✦

TreeWalker.nextNode()

Link and Anchor
Objects

The Web is based on the notion that the world’s information can
be strung together by way of the hyperlink — the clickable hunk

of text or image that enables an inquisitive reader to navigate to a fur-
ther explanation or related material. Of all the document objects you
work with in JavaScript, the link is the one that makes that connec-
tion. Anchors also provide guideposts to specific locations within
documents.

As scriptable objects going back to the first scriptable browsers, links
and anchors are comparatively simple devices. But this simplicity
belies their significance in the entire scheme of the Web. Under script
control, links can be far more powerful than mere tethers to locations
on the Web.

In modern browsers (IE4+ and W3C-compatible browsers), the notion
of separating links and anchors as similar yet distinctly different
objects begins to fade. The association of the word “link” with objects
is potentially confused by the newer browsers’ recognition of the link
element (see Chapter 36 on the CD-ROM), which has an entirely dif-
ferent purpose, as a scriptable object. Taking the place of the anchor
and link objects is an HTML element object representing the element
created by the <a> tag. As an element object, the a element assumes
all of the properties, methods, and event handlers that accrue to all
HTML element objects in modern object models. To begin making that
transition, this chapter treats all three types of objects at once. If you
develop pages that must be compatible with early scriptable browsers,
pay special attention to the comments about properties and event
handler compatibility.

1919C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Differences between
link, anchor, and a
element objects

Scripting a link to
invoke a script function

Scripting a link to swap
an image on mouse
rollovers

✦ ✦ ✦ ✦

592 Part III ✦ Document Objects Reference

Anchor, Link, and a Element Objects
For HTML element properties, methods, and event handlers, see Chapter 15.

Properties Methods Event Handlers

charset
coords
hash
host
hostname
href
hreflang
Methods
mimeType
name
nameProp
pathname
port
protocol
protocolLong
rel
rev
search
shape
target
text
type
urn
x
y

Syntax
Accessing link object properties:

(all) [window.]document.links[index].property

Accessing a element object properties:

(IE4+) [window.]document.all.elemID.property | method([parameters])
(IE5+/W3C) [window.]document.getElementById(“elemID”).property |
method([parameters])

Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

a

593Chapter 19 ✦ Link and Anchor Objects

About this object
A little scripting history can help you to understand where the link and anchor objects came
from and how the a element object evolved from them.

Using the terminology of the original object model, the anchor and link objects are both created
in the object model from the <a> tag. What distinguishes a link from an anchor is the presence
of the href attribute in the tag. Without an href attribute, the element is an anchor object,
which (prior to version 4 browsers) has no properties, events, or event handlers associated
with it. And even in NN4, the anchor object gains only four properties, all but one of which
(name) disappear in NN6+/Moz1+.

A link, on the other hand, is much more alive as an object — all just because of the inclusion
of an href attribute, which usually points to a URL to load into a window or frame. In fact, the
majority of early object model properties for the link object are the same as those of the early
location object — properties that reveal information about the URL assigned to the href
attribute. The other vital part of the original link object — especially as distinct from an
anchor object — is that a link can respond to events. Initially, event handlers were limited to
just onclick and onmouseover. By NN4, additional mouse events and an ondblclick event
joined the repertoire.

When object models treat HTML elements as objects, both the anchor and link objects are
subsumed by the a element object. Even so, one important characteristic from the original
object still holds true: all a element objects that behave as link objects (by virtue of the pres-
ence of an href attribute) are members of the document.links property array. Therefore, if
your scripts need to inspect or modify properties of all link objects on a page, they can do so
by way of a for loop through the array of link objects. This is true even if you script solely for
modern browsers and want to, say, change a style attribute of all links (for example, changing
their style.textDecoration property from none to underline). The fact that the same ele-
ment can have different behaviors depending on the existence of one attribute makes me think
of the a element object as potentially two different animals. Thus, you see references to link
and anchor objects throughout this book when the distinction between the two is important.

Scripting newcomers are often confused about the purpose of the target attribute of an a
element when they want a scripted link to act on a different frame or window. Under plain
HTML, the target attribute points to the frame or window into which the new document (the
one assigned to the href attribute) is to load, leaving the current window or frame intact. But
if you intend to use event handlers to navigate (by setting the location.href property), the
target attribute does not apply to the scripted action. Instead, assign the new URL to the
location.href property of the desired frame or window. For example, if one frame contains
a table of contents consisting entirely of links, the onclick event handlers of those links can
load other pages into the main frame by assigning the URL to the parent.main.location.
href property. You must also cancel the default behavior of any link, as described in the dis-
cussion of the generic onclick event handler in Chapter 15.

When you want a click of the link (whether the link consists of text or an image) to initiate an
action without actually navigating to another URL, you can use a special technique — the
javascript: pseudo-URL — to direct the URL to a JavaScript function. The URL javascript:
functionName() is a valid parameter for the href attribute (and not just in the link object).
Browsers that don’t have JavaScript enabled do not respond to clicks on such a link.

a

594 Part III ✦ Document Objects Reference

If you don’t want the link to do anything other than change the status bar in the onmouseover
event handler, define an empty function and set the URL to that empty JavaScript function
(such as href=”javascript:doNothing()”). Starting with NN3 and IE4, you can also add a
special void operator that guarantees that the called function does not trigger any true link-
ing action (href=”javascript: void someFunction()”). Specifying an empty string for the
href attribute yields an FTP-like file listing for the client computer — an undesirable artifact.
Don’t forget, too, that if the URL leads to a type of file that initiates a browser helper applica-
tion (for example, to play a RealAudio sound file) the helper app or plug-in loads and plays
without changing the page in the browser window.

A single link can change the content of more than one frame at once with the help of JavaScript.
If you want only JavaScript-enabled browsers to act on such links, use a javascript: pseudo-
URL to invoke a function that changes the location.href properties of multiple frames. For
example, consider the following function, which changes the content of two frames:

function navFrames(url1, url2) {
parent.product.location.href = url1;
parent.accessories.location.href = url2;

}

You can then have a javascript: pseudo-URL invoke this multipurpose function and pass
the specifics for the link as parameters:

<a href=”javascript: void navFrames(‘products/gizmo344.html’,
‘access/access344.html’)”>Deluxe Super Gizmo

Or if you want one link to do something for everyone, but something extra for JavaScript-
enabled browsers, you can combine the standard link behavior with an onclick event
handler to take care of both situations:

function setAccessFrame(url) {
parent.accessories.location.href = url;

}
...
<a href=”products/gizmo344.html” target=”product”
onclick=”setAccessFrame(‘access/access344.html’)”>Deluxe Super Gizmo

Notice here that the target attribute is necessary for the standard link behavior, while the
script assigns a URL to a frame’s location.href property.

One additional technique allows a single link tag to operate for both scriptable and nonscript-
able browsers. For nonscriptable browsers, establish a genuine URL to navigate from the link.
Then make sure that the link’s onclick event handler evaluates to return false. At click
time, a scriptable browser executes the event handler and ignores the href attribute; a non-
scriptable browser ignores the event handler and follows the link. See the discussion of the
generic onclick event handler in Chapter 15 for more details.

As you design your links, consider building onmouseover and onmouseout event handlers into
your link definitions. The most common applications for these event handlers are as a means
of adjusting the window.status property or swapping images. Thus, as a user rolls the mouse
pointer atop a link, a descriptive label (perhaps more detailed or friendly than what the link
text or image may indicate) appears in the status line at the bottom of the window. Whether
a user notices the change down there is another issue, so don’t rely on the status line as a
medium for mission-critical communication. Image swaps, however, are more dramatic and
enable a user to receive visual feedback that the mouse pointer is atop a particular button
image. Thanks to the onmousedown event handler, you can even swap the image when the
user presses down with the mouse button atop the link.

a

595Chapter 19 ✦ Link and Anchor Objects

Properties
charset

Value: String. Read/Write
Compatibility: WinIE6+, MacIE6+, NN6+, Moz1+, Safari1+

The charset property represents the HTML 4.0 charset attribute of an a element. It advises the
browser of the character set used by the document to which the href attribute points. The
value is a string of one of the character set codes from the registry found at http://www.iana.
org/assignments/character-sets.

coords
shape

Value: Strings. Read/Write
Compatibility: WinIE6+, MacIE6+, NN6+, Moz1+, Safari1+

HTML 4.0 provides specifications for a elements that accommodate different shapes (rect,
circle, and poly) and coordinates when the link surrounds an image. Although the coords and
shape properties are present for a element objects in all W3C DOM–compatible browsers,
active support for the feature is not present in NN6.

hash
host
hostname
pathname
port
protocol
search

Value: Strings. Read/Write
Compatibility: WinIE3+, MacIE3+, NN2+, Moz1+, Safari1+

This large set of properties is identical to the same-named properties of the location object
(see Chapter 17). All properties are components of the URL that is assigned to the link
object’s href attribute. Although none of these properties appear in the W3C DOM specifica-
tion for the a element object, they survive in modern browsers for backward compatibility. If
you want to script the change of the destination for a link, try modifying the value of the
object’s href property rather than individual components of the URL.

Related Item: location object.

href
Value: String. Read/Write
Compatibility: WinIE3+, MacIE3+, NN2+, Moz1+, Safari1+

The href property (included in the W3C DOM) is the URL of the destination of an a element
equipped to act as a link. URLs can be relative or absolute.

a.href

596 Part III ✦ Document Objects Reference

In W3C DOM–compatible browsers, you can turn an anchor object into a link object by
assigning a value to the href property even if the a element has no href attribute in the
HTML that loads from the server. Naturally, this conversion is temporary, and it lasts only as
long as the page is loaded in the browser. When you assign a value to the href property of an
a element that surrounds text, the text assumes the appearance of a link (either the default
appearance or whatever style you assign to links).

Related Item: location object.

hreflang
Value: String. Read/Write
Compatibility: WinIE6+, MacIE6+, NN6+, Moz1+, Safari1+

The hreflang property advises the browser (if the browser takes advantage of it) about the
written language used for the content to which the a element’s href attribute points. Values
for this property must be in the form of the standard language codes (for example, en-us for
U.S. English).

Methods
Value: String. Read/Write
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-

The Methods property (note the uppercase “M”) represents the HTML 4.0 methods attribute
for an a element. Values for this attribute and property serve as advisory instructions to the
browser about which HTTP method(s) to use for accessing the destination document. This is
a rare case in which an HTML 4.0 attribute is not echoed in the W3C DOM. In any case, while
IE4+ supports the property, the IE browsers do nothing special with the information.

mimeType
Value: String. Read-Only
Compatibility: WinIE4+, MacIE-, NN-, Moz-, Safari-

This property is used to obtain the MIME type of the document linked to by the a element.
The HTML 4.0 and W3C DOM specifications define a type attribute and type property
instead of mimeType. The property is a read-only property, and therefore has no control over
the MIME type of the destination document.

Related Item: a.type property.

name
Value: String. Read/Write
Compatibility: WinIE3+, MacIE3+, NN2+, Moz1+, Safari1+

Although a name attribute is optional for an a element serving solely as a link object, it is
required for an anchor object. This value is exposed to scripting via the name property. While
it is unlikely you will need to change the value by scripting, you can use this property as a
way to identify a link object from among the document.links arrays in a repeat loop. For
example:

a.href

597Chapter 19 ✦ Link and Anchor Objects

for (var i = 0; i < document.links.length; i++) {
if (document.links[i].name == “bottom” {

// statements dealing with the link named “bottom”
}

}

nameProp
Value: String. Read-Only
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-

The IE-specific nameProp property is a convenience property that retrieves the segment of the
href to the right of the rightmost forward slash character of the URL. Most typically, this value
is the name of the file from a URL. But if the URL also includes a port number, that number is
returned as part of the nameProp value.

protocolLong
Value: String. Read-Only
Compatibility: WinIE4+, MacIE-, NN-, Moz-, Safari-

The IE-specific protocolLong property returns a verbose rendition of the protocol property
as indicated in the a element’s href attribute. For example, if the href attribute points to
an http: protocol, the protocolLong property returns HyperText Transfer Protocol.
Introduced in IE4, the protocolLong property is still present in IE5 but apparently is no longer
supported.

rel
rev

Value: String. Read/Write
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

The rel and rev properties define relationships in the forward and back directions with
respect to the destination document of the a element. Browsers have yet to exploit most of
the potential of these attributes and properties.

A long list of values are predefined for these properties, based on the corresponding attribute
values specified in HTML 4.0. If the browser does nothing with a particular value, the value is
ignored. You can string together multiple values in a space-delimited list inside a single string.
Accepted values are as follows:

alternate contents index start
appendix copyright next stylesheet
bookmark glossary prev subsection
chapter help section

a.rel

598 Part III ✦ Document Objects Reference

target
Value: String. Read/Write
Compatibility: WinIE3+, MacIE3+, NN2+, Moz1+, Safari1+

An important property of the link object is the target. This value reflects the window name
supplied to the target attribute in the a element.

You can temporarily change the target for a link. But, as with most transient object proper-
ties, the setting does not survive soft reloads. Rather than altering the target this way,
you can safely force the target change by letting the href attribute call a javascript:
functionName() psuedo-URL in which the function assigns a document to the desired
window.location. If you have done extensive HTML authoring before, you will find it hard
to break the habit of relying on the target attribute.

Further, if you develop XHTML pages that must validate with the strict DTD, you will not be
able to include a target attribute in your <a> tags. Instead, use the page’s onload event han-
dler or the a element’s onclick event handler to invoke a function that assigns the desired
value to the target property.

Related Item: document.links property.

text
Value: String. Read-Only
Compatibility: WinIE-, MacIE-, NN4, Moz-, Safari-

Between the start and end tags of a link goes the text (or image) that is highlighted in the dis-
tinguishing link color of the document. Navigator 4 enables you to read that text with the
link.text property. This property is read-only. For later browsers, use the IE4+ and/or W3C
DOM syntax for reading the text node (innerText, innerHTML, or nodeValue) property of
the a element.

This property was not implemented in releases of Navigator 4 prior to version 4.02.

type
Value: String. Read/Write
Compatibility: WinIE6+, MacIE6+, NN6+, Moz1+, Safari1+

The type property represents the HTML 4.0 type attribute, which specifies the MIME type
for the content of the destination document to which the element’s href attribute points.
This is primarily an advisory property for browsers that wish to, say, display different cursor
styles based on the anticipated type of content at the other end of the link. Thus far, browsers
do not take advantage of this feature. However, you can assign MIME type values to the
attribute (for example, video/mpeg) and let scripts read those values for making style
changes to the link text after the page loads. IE4+ also implements a similar property in
the mimeType property.

Related Item: a.mimeType property.

Note

a.target

599Chapter 19 ✦ Link and Anchor Objects

urn
Value: String. Read/Write
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-

The urn property represents the IE-specific URN attribute, which enables authors to use a
URN (Uniform Resource Name) for the destination of the a element. (See http://www.ietf.
org/rfc/rfc2141.txt for information about URNs.) This property is not in common use.

x
y

Value: Integer. Read-Only
Compatibility: WinIE-, MacIE-, NN4, Moz-, Safari-

Your Navigator 4 script can retrieve the x and y coordinates of a link object (the top-left cor-
ner of the rectangular space occupied by the linked text or image) via the link.x and link.y
properties. With IE4+ and W3C DOM-compatible browsers, you can get the coordinates of a
typical link via the a element’s offsetLeft and offsetTop properties.

✦ ✦ ✦

a.x

Image, Area, and
Map Objects

For modern Web browsers, images and areas — those items cre-
ated by the and <area> tags — are first-class objects that

you can script for enhanced interactivity. You can swap the image
displayed in an tag with other images, perhaps to show the
highlighting of an icon button when the cursor rolls atop it. And with
scriptable client-side area maps, pages can be smarter about how
they respond to users’ clicks on image regions.

One further benefit afforded scripters is that they can preload images
into the browser’s image cache as the page loads. With cached
images, the user experiences no delay when the first swap occurs.

Image and img Element Objects
For HTML element properties, methods, and event handlers, see
Chapter 15.

2020C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

How to precache
images

Swapping images after
a document loads

Creating interactive,
client-side image maps

✦ ✦ ✦ ✦

602 Part III ✦ Document Objects Reference

Properties Methods Event Handlers

align onabort
alt onerror
border onload
complete
dynsrc
fileCreatedDate
fileModifiedDate
fileSize
fileUpdatedDate
height
href
hspace
isMap
loop
longDesc
lowsrc
mimeType
name
nameProp
naturalHeight
naturalWidth
protocol
src
start
useMap
vspace
width
x
y

Syntax
Creating an Image object:

imageName = new Image([pixelWidth, pixelHeight]);

Accessing img element and image object properties or methods:

(NN3+/IE4+) [window.]document.imageName. property | method([parameters])
(NN3+/IE4+) [window.]document.images[index]. property | method([parameters])
(NN3+/IE4+) [window.]document.images[“imageName”]. property |
method([parameters])
(IE4+) [window.]document.all.elemID.property | method([parameters])
(IE5+/W3C) [window.]document.getElementById(“elemID”).property |

method([parameters])

Compatibility: WinIE4+, MacIE4+, NN3+, Moz1+, Safari1+

img

603Chapter 20 ✦ Image, Area, and Map Objects

About this object
Before getting into detail about images as objects, it’s important to understand the distinction
between instances of the static Image object and img element objects. The former exist only
in the browser’s memory without showing anything to the user; the latter are the elements on
the page generated via the (or nonsanctioned, but accepted, <image>) tag. Scripts use
Image objects to precache images for a page, but Image objects obviously have fewer applica-
ble properties, methods, and event handlers because they are neither visible on the page nor
influenced by tag attributes.

img elements have been in the HTML vocabulary since the earliest days, but Netscape
Navigator 3 was the first to treat them like first-class objects along with the companion Image
object for precaching images. All flavors of IE4+ treat img elements as true document objects.
The primary advantage of treating img elements as objects is that scripts can change the
image that occupies the img object’s space on the page, even after the document has loaded
and displayed an initial image. The key to this scriptability is the src property of an image.

In a typical scenario, a page loads with an initial image. That image’s tags specify any of the
extra attributes, such as height and width (which help speed the rendering of the page), and
specify whether the image uses a client-side image map to make it interactive. (See the area
object later in this chapter.) As the user spends time on the page, the image can then change
(perhaps in response to user action or some timed event in the script), replacing the original
image with a new one in the same space. In browsers prior to IE4 and NN6 that support the img
element object, the height and width of the initial image that loads into the element establishes
a fixed-sized rectangular space for the image. Attempts to fit an image of another size into that
space forces the image to scale (up or down, as the case may be) to fit the rectangle. But in
IE4+ and W3C-compatible browsers, a change in the image’s size is reflected by an automatic
reflow of the page content around the different size.

The benefit of the separate Image object is that a script can create a virtual image to hold a
preloaded image. (The image is loaded into the image cache but the browser does not display
the image.) The hope is that one or more unseen images will load into memory while the user
is busy reading the page or waiting for the page to download. Then, in response to user action
on the page, an image can change instantaneously rather than forcing the user to wait for the
image to load on demand.

To preload an image, begin by assigning a new, empty image object to a global variable. The
new image is created via the constructor function available to the Image object:

var imageVariable = new Image(width, height);

You help the browser allocate memory for the image if you provide the pixel height and width
of the precached image as parameters to the constructor function. All that this statement does
is create an object in memory whose properties are all empty. To force the browser to load
the image into the cache, assign an image file URL to the object’s src property:

var oneImage = new Image(55,68);
oneImage.src = “neatImage.gif”;

As this image loads, you see the progress in the status bar just like any image. Later, assign the
src property of this stored image to the src property of the img element object that appears
on the page:

document.images[“someImage”].src = oneImage.src;

Depending on the type and size of image, you will be amazed at the speedy response of this
kind of loading. With small-palette graphics, the image displays instantaneously.

img

604 Part III ✦ Document Objects Reference

A popular user-interface technique is to change the appearance of an image that represents a
clickable button when the user rolls the mouse pointer atop that art. This action assumes that
a mouse event fires on an element associated with the object. Prior to IE4 and NN6, img ele-
ment objects did not respond to mouse events on their own. The required technique was to
encase the img element inside an a element. This allowed the events associated with rollovers
(onmouseover and onmouseout) and a user click on the image to effect some change (usually
to navigate to another page). Although IE4+, NN6+, and other W3C browsers provide these
events directly for img element objects, you can guarantee your pages to be backward com-
patible if you continue to surround your images with a elements. You can see examples of
these kinds of actions in Chapters 12 and 20.

Image rollovers are most commonly accomplished in two different image states: normal and
highlighted. But you may want to increase the number of states to more closely simulate the
way clickable buttons work in application programs. In some instances, a third state signifies
that the button is switched on. For example, if you use rollovers in a frame for navigational
purposes and the user clicks a button to navigate to the Products area, that button stays
selected but in a different style than the rollover highlights. Some designers go one step fur-
ther by providing a fourth state that appears briefly when the user mouses down an image.
Each one of these states requires the download of yet another image, so you have to gauge
the effect of the results against the delay in loading the page.

The speed with which image swapping takes place may lead you to consider using this
approach for animation. Though this approach may be practical for brief bursts of animation,
the many other ways of introducing animation to your Web page (such as via GIF89a-standard
images, Flash animations, Java applets, and a variety of plug-ins) produce animation that offers
better speed control. In fact, swapping preloaded JavaScript image objects for some cartoon-
like animations may be too fast. You can build a delay mechanism around the setInterval()
method, but the precise timing between frames varies with client processor performance.

All browsers that implement the img element object also implement the document.images
array. You can (and should) use the availability of this array as a conditional switch before
any script statements that work with the img element or Image object. The construction to
use is as follows:

if (document.images) {
// statements working with images as objects

}

Earlier browsers treat the absence of this array as the equivalent of false in the if clause’s
conditional statement.

Most of the properties discussed here mirror attributes of the img HTML element. For more
details on the meanings and implications of attribute values on the rendered content, consult
the HTML 4.01 specification (http://www.w3.org/TR/REC-html401) and Microsoft’s exten-
sions for IE (http://msdn.microsoft.com/workshop/author/dhtml/reference/objects/
img.asp).

Properties

align
Value: String. Read/Write
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

The align property defines how the image is oriented in relation to surrounding text content. It
is a double-duty property because you can use it to control the vertical or horizontal alignment

img

605Chapter 20 ✦ Image, Area, and Map Objects

depending on the value (and whether the image is influenced by a float style attribute). Values
are string constants, as follows:

absbottom middle
absmiddle right
baseline texttop
bottom top
left

The default alignment for an image is bottom. Safari 1.0 responds only to left and right.
Increasingly, element alignment is handed over to stylesheet control.

Listing 20-1 enables you to choose from the different align property values as they influence
the layout of an image whose HTML is embedded inline with some other text. Resize the win-
dow to see different perspectives on word-wrapping on a page and their effects on the align-
ment choices. Not all browsers provide distinctive alignments for each choice, so experiment
in multiple supported browsers.

Listing 20-1: Testing an Image’s align Property

<html>
<head>

<title>img align Property</title>
<script type=”text/javascript”>
function setAlignment(sel) {

document.getElementById(“myIMG”).align =
sel.options[sel.selectedIndex].value;

}
</script>

</head>
<body>

<h1>img align Property</h1>
<hr />
<form>

Choose the image alignment: <select onchange=”setAlignment(this)”>
<option value=”absbottom”>absbottom</option>
<option value=”absmiddle”>absmiddle</option>
<option value=”baseline”>baseline</option>
<option value=”bottom” selected=”selected”>bottom</option>
<option value=”left”>left</option>
<option value=”middle”>middle</option>
<option value=”right”>right</option>
<option value=”texttop”>texttop</option>
<option value=”top”>top</option>

</select>
</form>
<hr />
<p>Lorem ipsum dolor sit amet, consectetaur adipisicing elit, sed do

eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut
enim adminim veniam, quis nostrud exercitation ullamco laboris nisi ut
aliquip ex ea commodo consequat.</p>

</body>
</html>

Related Items: text-align, float stylesheet attributes.

img.align

606 Part III ✦ Document Objects Reference

alt
Value: String. Read/Write
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

The alt property enables you to set or modify the text that the browser displays in the image’s
rectangular space (if height and width are specified in the tag) before the image downloads to
the client. Also, if a browser has images turned off (or is incapable of displaying images), the
alt text helps users identify what is normally displayed in that space. You can modify this
alt text even after the page loads.

Example
Use The Evaluator (Chapter 13) to assign a string to the alt property of the document.myIMG
image on the page. First, assign a nonexistent image to the src property to remove the existing
image:

document.myIMG.src = “fred.gif”

Scroll down to the image, and you can see a space for the image. Now, assign a string to the
alt property:

document.myIMG.src = “Fred\’s face”

The extra backslash is required to escape the apostrophe inside the string. Scroll down to see
the new alt text in the image space.

Related Item: title property.

border
Value: Integer. Read/Write
Compatibility: WinIE4+, MacIE4+, NN3+, Moz1+, Safari1+

The border property defines the thickness in pixels of a border around an image. Remember
that if you wrap an image inside an a element to make use of the mouse events (for rollovers
and such), be sure to set the border=0 attribute of the tag to prevent the browser from
generating the usual link kind of border around the image. Even though the default value of
the attribute is zero, surrounding the image with an a element or attaching the image to a
client-side image map puts a border around the image.

Example
Feel free to experiment with the document.myIMG.border property for the image in The
Evaluator (Chapter 13) by assigning different integer values to the property.

Related Items: isMap, useMap properties.

complete
Value: Boolean. Read-Only
Compatibility: WinIE4+, MacIE4+, NN3+, Moz1+, Safari-

Sometimes you may want to make sure that an image is not still in the process of loading
before allowing another process to take place. This situation is different from waiting for an
image to load before triggering some other process (which you can do via the image object’s
onload event handler). To verify that the img object displays a completed image, check for
the Boolean value of the complete property. To verify that a particular image file has loaded,
first find out whether the complete property is true; then compare the src property against
the desired filename.

img.alt

607Chapter 20 ✦ Image, Area, and Map Objects

An image’s complete property switches to true even if only the specified lowsrc image has
finished loading. Do not rely on this property alone for determining whether the src image
has loaded if both src and lowsrc attributes are specified in the tag.

One of the best ways to use this property is in an if construction’s conditional statement:

if (document.myImage.complete) {
// statements that work with document.myImage

}

The complete property is not reliable in Navigator 4 and some versions of Internet Explorer 4.
For those browsers, the value returns true in all instances.

To experiment with the image.complete property, quit and relaunch your browser before
loading Listing 20-2 (in case the images are in memory cache). As each image loads, click the
“Is it loaded yet?” button to see the status of the complete property for the image object. The
value is false until the loading finishes; then, the value becomes true. The arch image is the
bigger of the two image files. You may have to quit and relaunch your browser between trials
to clear the arch image from the cache (or empty the browser’s memory cache). If you experi-
ence difficulty with this property in your scripts, try adding an onload event handler (even if
it is empty, as in Listing 20-2) to your tag.

Listing 20-2: Scripting image.complete

<html>
<head>

<title></title>
<script type=”text/javascript”>
function loadIt(theImage,form) {

form.result.value = “”;
document.images[0].src = theImage;

}
function checkLoad(form) {

form.result.value = document.images[0].complete;
}
</script>

</head>
<body>

<form>

<input type=”button” value=”Load keyboard”
onclick=”loadIt(‘cpu2.gif’,this.form)” /> <input type=”button”
value=”Load arch” onclick=”loadIt(‘arch.gif’,this.form)” />
<p><input type=”button” value=”Is it loaded yet?”

onclick=”checkLoad(this.form)” /> <input type=”text”
name=”result” /></p>

</form>
</body>

</html>

Related Items: img.src, img.lowsrc, img.readyState properties; onload event handler.

Note

img.complete

608 Part III ✦ Document Objects Reference

dynsrc
Value: URL string. Read/Write
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-

The dynsrc property is a URL to a video source file, which (in IE) you can play through an
img element. You can turn a space devoted to a static image into a video viewer by assigning
a URL of a valid video source (for example, an .avi or .mpg file) to the dynsrc property of
the image element object. Unlike the src property of image objects, assigning a URL to the
dynsrc property does not precache the video.

You may experience buggy behavior in various IE versions when you assign a value to an
image’s dynsrc property after the img element renders a .gif or .jpg image. In WinIE5, the
status bar indicates that the video file is still downloading, even though the download is com-
plete. Clicking the Stop button has no effect. WinIE5.5+ may not even load the video file, leaving
a blank space on the page. MacIE5 changes between static and motion images with no prob-
lems, but playing the video file multiple times causes the img element to display black space
beyond the element’s rectangle. You can experience all this behavior in the example provided
in Listing 20-3. None of these bugs is fatal, but they should discourage you from using the img
element as a vehicle for video content.

To swap between still and video sources, simply empty the opposite property. Listing 20-3
shows a simplified example that swaps between one fixed image and one video image. This
listing exhibits most of the bugs associated with changing between static image and video
sources described a moment ago.

Listing 20-3: Changing Between Still and Motion Images

<html>
<head>

<title>img dynsrc Property</title>
<script type=”text/javascript”>
var trainImg = new Image(160,120);
trainImg.src = “amtrak.jpg”;
trainImg.dynsrc = “amtrak.mpg”;

function setLoop() {
var selector = document.forms[0].looper;
document.getElementById(“myIMG”).loop =

selector.options[selector.selectedIndex].value;
}

function setImage(type) {
if (type == “jpg”) {

document.getElementById(“myIMG”).dynsrc = “”;
document.getElementById(“myIMG”).src = trainImg.src;

} else {
document.getElementById(“myIMG”).src = “”;
document.getElementById(“myIMG”).start = “fileopen”;
setLoop();
document.getElementById(“myIMG”).dynsrc = trainImg.dynsrc;

}
}
</script>

</head>

img.dynsrc

609Chapter 20 ✦ Image, Area, and Map Objects

<body>
<h1>img dynsrc Property</h1>
<hr />
<form>

Choose image type: <input type=”radio” name=”imgGroup”
checked=”checked” onclick=”setImage(‘jpg’)” />Still <input
type=”radio” name=”imgGroup” onclick=”setImage(‘mpg’)” />Video
<p>Play video how many times after loading: <select name=”looper”

onchange=”setLoop()”>
<option value=”1” selected=”selected”>Once</option>
<option value=”2”>Twice</option>
<option value=”-1”>Continuously</option>

</select></p>
</form>
<hr />
<img alt=”image” id=”myIMG” src=”amtrak.jpg” height=”120”
width=”160” />

</body>
</html>

Related Items: img.loop, img.start properties.

fileCreatedDate
fileModifiedDate
fileUpdatedDate
fileSize

Value: String, Integer (fileSize). Read-Only
Compatibility: WinIE4+, MacIE5+, NN-, Moz-, Safari-

These four IE-specific properties return information about the file displayed in the img element
(whether still or motion image). Three of the properties reveal the dates on which the current
image’s file was created, modified, and updated. For an unmodified file, its creation and modi-
fied dates are the same. The updated date of an image is the date on which the image file was
last uploaded to the server; the fileUpdatedDate property is only supported on WinIE5.5+
and MacIE5. The fileSize property reveals the number of bytes of the file.

Date values returned for the first two properties are formatted differently between IE4 and
IE5. The former provides a full readout of the day and date; the latter returns a format similar
to mm/dd/yyyy. Note, however, that the values contain only the date and not the time. In any
case, you can use the values as the parameter to a new Date() constructor function. This
enables you to then use date calculations for such information as the number of days between
the current day and the most recent modification.

Not all servers provide the proper date or size information about a file or in a format that IE
can interpret. Test your implementation on the deployment server to ensure compatibility.

Also, be aware that these properties can be read-only for a file that is loaded in the browser.
JavaScript by itself cannot get this information about files on the server that are not loaded in
the browser.

All of these file-related properties are present in the Mac version of IE, but the values are
empty.

Note

img.fileCreatedDate

610 Part III ✦ Document Objects Reference

Example
These properties are similar to the same-named properties of the document object. You can
see these properties in action in Listing 18-4. Make a copy of that listing, and supply an image
before modifying the references from the document object to the image object to see how
these properties work with the img element object.

Related Items: None.

height
width

Value: Integer. Read/Write (see text)
Compatibility: WinIE4+, MacIE4+, NN3+, Moz1+, Safari1+

The height and width properties return and (in later browsers) control the pixel height and
width of an image object. The property is read-only in NN3 and NN4, but it is read/write in all
newer browsers that support the img element object.

If you adjust the height property of an image, the browser automatically scales the image
within the same proportions as the original. But adjusting the width property has no effect
on the height property in most browser versions. Scaling of an image may cause unwanted
pixelation in the image, so modify an image’s size with extreme care.

Example
Use The Evaluator (Chapter 13) to experiment with the height and width properties. Begin
retrieving the default values by entering the following two statements into the top text box:

document.myIMG.height
document.myIMG.width

Increase the height of the image from its default 90 to 180:

document.myIMG.height = 180

If you scroll down to the image, you see that the image has scaled in proportion. Next, exag-
gerate the width:

document.myIMG.width = 400

View the resulting image.

Related Items: hspace, vspace properties.

href
(See src property)

hspace
vspace

Value: Integer. Read/Write
Compatibility: WinIE4+, MacIE4+, NN3+, Moz1+, Safari1+

The hspace and vspace properties control the pixel width of a transparent margin surrounding
an image. Specifically, hspace controls the margins at the left and right of the image; vspace
controls the top and bottom margins. Images, by default, have margins of zero pixels.

img.fileCreatedDate

611Chapter 20 ✦ Image, Area, and Map Objects

Example
Use The Evaluator (Chapter 13) to experiment with the hspace and vspace properties. Begin
by noticing that the image near the bottom of the page has no margins specified for it and is
flush left with the page. Now assign a horizontal margin spacing of 30 pixels:

document.myIMG.hspace = 30

The image has shifted to the right by 30 pixels. An invisible margin also exists to the right of
the image.

Related Items: height, width properties.

isMap
Value: Boolean. Read/Write
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

The isMap property enables you to set whether the image should act as a server-side image
map. When set as a server-side image map, pixel coordinates of the click are passed as param-
eters to whatever link href surrounds the image. For client-side image maps, see the useMap
property later in this chapter.

Example
The image in The Evaluator page is not defined as an image map. Thus, if you type the follow-
ing statement into the top text box, the property returns false:

document.myIMG.isMap

Related Item: img.useMap property.

longDesc
Value: URL string. Read/Write
Compatibility: WinIE6+, MacIE5+, NN6+, Moz1+, Safari1+

The longDesc property is a URL of a file that is intended to provide a detailed description
of the image associated with the img element. Version 6 browsers recognize this property, but
do not do anything special with the information — whether specified by script or the longdesc
attribute.

Related Item: alt property.

loop
Value: Integer. Read/Write
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-

The loop property represents the number of times a video clip playing through the img ele-
ment object should run. After the video plays that number of times, only the first frame of the
video appears in the image area. The default value is 1; but if you set the value to -1, the video
plays continuously. Unfortunately, setting the property to 0 prior to assigning a URL to the
dynsrc property does not prevent the movie from playing at least once (except on the Mac,
as noted in the dynsrc property discussion earlier in this chapter).

Example
See Listing 20-3 for the dynsrc property to see the loop property in action.

Related Item: dynsrc property.

img.loop

612 Part III ✦ Document Objects Reference

lowsrc
lowSrc

Value: URL string. Read/Write
Compatibility: WinIE4+, MacIE4+, NN3+, Moz1+, Safari-

For image files that take several seconds to load, recent browsers enable you to specify a
lower-resolution image or some other quick-loading placeholder to stand in while the big
image crawls to the browser. You assign this alternate image via the lowsrc attribute in the
 tag. The attribute is reflected in the lowsrc property of an image object.

All compatible browsers recognize the all-lowercase version of this property. NN6 also recog-
nizes an interCap “S” version of the property, lowSrc.

Be aware that if you assign a URL to the lowsrc attribute, the complete property switches to
true and the onLoad event handler fires when the alternate file finishes loading: The browser
does not wait for the main src file to load.

Example
See Listing 20-5 for the image object’s onload event handler to see how the source-related
properties affect event processing.

Related Items: img.src, img.complete properties.

mimeType
Value: String. Read-Only
Compatibility: WinIE6+, MacIE-, NN-, Moz-, Safari-

The mimeType property returns a plain-language description of the MIME type for the image,
such as JPEG Image or GIF Image.

Example
You can use the mimeType property to determine the format of an image, as the following
example demonstrates:

if (document.myIMG.mimeType.indexOf(“JPEG”) != -1) {
// Carry out JPEG-specific processing

}

In this example, the indexOf() method is used to check for the presence of the phrase
“JPEG” anywhere in the MIME type string. This works because the string returned in the
mimeType property for JPEG images is “JPEG Image”.

Related Items: None.

name
Value: Identifier string. Read/Write
Compatibility: WinIE3+, MacIE3+, NN2+, Moz1+, Safari1+

The name property returns the value assigned to the name attribute of an img element.
Starting with IE4 and NN6, you can use the ID of the element (id attribute) to reference the
img element object via document.all and document.getElementById(). But references in
the form of document.imageName and document.images[imageName] must use only the
value assigned to the name attribute.

img.lowsrc

613Chapter 20 ✦ Image, Area, and Map Objects

In some designs, it may be convenient to assign numerically sequenced names to img elements,
such as img1, img2, and so on. As with any scriptable identifier, the name cannot begin with a
numeric character. Rarely, if ever, will you need to change the name of an img element object.

Example
You can use The Evaluator (Chapter 13) to examine the value returned by the name property
of the image on that page. Enter the following statement into the top text box:

document.myIMG.name

Of course, this is redundant because the name is part of the reference to the object.

Related Item: id property.

nameProp
Value: Filename string. Read-Only
Compatibility: WinIE5+, MacIE-, NN-, Moz-, Safari-

Unlike the src property, which returns a complete URL in IE, the IE nameProp property returns
only the filename exclusive of protocol and path. If your image-swapping script needs to read
the name of the file currently assigned to the image (to determine which image to show next),
the nameProp property makes it easier to get the actual filename without having to perform
extensive parsing of the URL.

Example
You can use The Evaluator Sr. (Chapter 13) to compare the results of the src and nameProp
properties in WinIE5+. Enter each of the following statements into the top text box:

document.myIMG.src
document.myIMG.nameProp

Related Item: img.src property.

naturalHeight
naturalWidth

Value: Integer. Read-Only
Compatibility: WinIE-, MacIE-, NN6+, Moz1+, Safari-

The naturalHeight and naturalWidth properties return the unscaled height and width of
the image, in pixels. These properties are useful in situations where script code or img ele-
ment attributes have scaled an image and you wish to know the image’s original size.

Example
Use The Evaluator (Chapter 13) to experiment with the naturalHeight and naturalWidth
properties. Begin retrieving the default values by entering the following statement into the
top text box:

document.myIMG.width

Increase the width of the image from its default 120 to 200:

document.myIMG.width = 200

img.naturalHeight

614 Part III ✦ Document Objects Reference

If you scroll down to the image, you see that the image has scaled in proportion. You can now
find out the natural width of the original image by taking a look at the naturalWidth property:

document.myIMG.naturalWidth

The Evaluator will reveal 120 as the natural image width even though the image is currently
scaled to 200.

Related Items: img.height, img.width properties.

protocol
Value: String. Read-Only
Compatibility: WinIE4+, MacIE5+, NN-, Moz-, Safari-

The IE protocol property returns only the protocol portion of the complete URL returned by
the src property. This allows your script, for example, to see if the image is sourced from a
local hard drive or a Web server. Values returned are not the actual protocol strings; rather,
they are descriptions thereof: HyperText Transfer Protocol or File Protocol.

Example
You can use The Evaluator Sr. (Chapter 13) to examine the protocol property of the image
on the page. Enter the following statement into the top text box:

document.myIMG.protocol

Related Items: img.src, img.nameProp properties.

src
Value: URL string. Read/Write
Compatibility: WinIE4+, MacIE4+, NN3+, Moz1+, Safari1+

The src property is the gateway to precaching images (in instances of the Image object that
are stored in memory) and performing image swapping (in img element objects). Assigning a
URL to the src property of an image object in memory causes the browser to load the image
into the browser’s cache (provided the user has the cache turned on). Assigning a URL to the
src property of an img element object causes the element to display the new image. To take
advantage of this powerful combination, you preload alternate versions of swappable images
into image objects in memory and then assign the src property of the image object to the
src property of the desired img element object.

In NN3 and NN4 (all OS platforms) and MacIE3, the size of the image defined by the img ele-
ment’s attributes (or, if not specified, then calculated by the browser from the size of the
incoming image) governs the rectangular space devoted to that image. An attempt to assign
an image of a different size to that img element object causes the image to rescale to fit the
rectangle (usually resulting in a distorted image). In all later browsers, however, the img ele-
ment object resizes itself to accommodate the image, and the page content reflows around
the new size.

Note that when you read the src property, it returns a fully formed URL of the image file
including protocol and path. This often makes it inconvenient to let the name of the file guide
your script to swap images with another image in a sequence of your choice. Some other
mechanism (such as storing the current filename in a global variable) may be easier to work
with (and see the WinIE5+ nameProp property).

img.naturalHeight

615Chapter 20 ✦ Image, Area, and Map Objects

Example
In the following example (see Listing 20-4), you see a few applications of image objects. Of
prime importance is a comparison of how precached and regular images feel to the user. As a
bonus, you see an example of how to set a timer to automatically change the images displayed
in an image object. This feature is a popular request among sites that display advertising ban-
ners or slide shows.

As the page loads, a global variable is handed an array of image objects. Entries of the array
are assigned string names as index values (“desk1”, “desk2”, and so on). The intention is
that these names ultimately will be used as addresses to the array entries. Each image object
in the array has a URL assigned to it, which precaches the image.

The page (see Figure 20-1) includes two img elements: one that displays noncached images
and one that displays cached images. Under each image is a select element that you can use
to select one of four possible image files for each element. The onchange event handler for
each select list invokes a different function to change the noncached (loadIndividual())
or cached (loadCached()) images. Both of these functions take as their single parameter a
reference to the form that contains the select elements.

To cycle through images at five-second intervals, the checkTimer() function looks to see if the
timer checkbox is checked. If so, the selectedIndex property of the cached image select
control is copied and incremented (or reset to zero if the index is at the maximum value). The
select element is adjusted, so you can now invoke the loadCached() function to read the
currently selected item and set the image accordingly.

Figure 20-1: The image object demonstration page.

img.src

616 Part III ✦ Document Objects Reference

For some extra style points, the <body> tag includes an onunload event handler that invokes the
resetSelects() function. This general-purpose function loops through all forms on the page
and all elements within each form. For every select element, the selectedIndex property is
reset to zero. Thus, if a user reloads the page, or returns to the page via the Back button, the
images start in their original sequence. An onload event handler makes sure that the images
are in sync with the select choices and the checkTimer() function is invoked with a five-
second delay. Unless the timer checkbox is checked, however, the cached images don’t cycle.

Listing 20-4: A Scripted Image Object and Rotating Images

<html>
<head>

<title>Image Object</title>
<script type=”text/javascript”>
// global declaration for ‘desk’ images array
var imageDB;
// pre-cache the ‘desk’ images
if (document.images) {

// list array index names for convenience
var deskImages = new Array(“desk1”, “desk2”, “desk3”, “desk4”);
// build image array and pre-cache them
imageDB = new Array(4);
for (var i = 0; i < imageDB.length ; i++) {

imageDB[deskImages[i]] = new Image(120,90);
imageDB[deskImages[i]].src = deskImages[i] + “.gif”;

}
}
// change image of ‘individual’ image
function loadIndividual(form) {

if (document.images) {
var gifName =

form.individual.options[form.individual.selectedIndex].value;
document.getElementById(“thumbnail1”).src = gifName + “.gif”;

}
}
// change image of ‘cached’ image
function loadCached(form) {

if (document.images) {
var gifIndex =

form.cached.options[form.cached.selectedIndex].value;
document.getElementById(“thumbnail2”).src = imageDB[gifIndex].src;

}
}
// if switched on, cycle ‘cached’ image to next in queue
function checkTimer() {

if (document.images && document.Timer.timerBox.checked) {
var gifIndex = document.selections.cached.selectedIndex;
if (++gifIndex > imageDB.length - 1) {

gifIndex = 0;
}
document.selections.cached.selectedIndex = gifIndex;
loadCached(document.selections);
var timeoutID = setTimeout(“checkTimer()”,5000);

}
}
// reset form controls to defaults on unload
function resetSelects() {

img.src

617Chapter 20 ✦ Image, Area, and Map Objects

for (var i = 0; i < document.forms.length; i++) {
for (var j = 0; j < document.forms[i].elements.length; j++) {

if (document.forms[i].elements[j].type == “select-one”) {
document.forms[i].elements[j].selectedIndex = 0;

}
}

}
}
// get things rolling
function init() {

loadIndividual(document.selections);
loadCached(document.selections);
setTimeout(“checkTimer()”,5000);

}
</script>

</head>
<body onload=”init()” onunload=”resetSelects ()”>

<h1>Image Object</h1>
<hr />
<center>

<table border=”3” cellpadding=”3”>
<tr>

<th></th>
<th>Individually Loaded</th>
<th>Pre-cached</th>

</tr>
<tr>

<td align=”right”>Image:</td>
<td><img alt=”image” src=”cpu1.gif” id=”thumbnail1”

height=”90” width=”120” /></td>
<td><img alt=”image” src=”desk1.gif” id=”thumbnail2”

height=”90” width=”120” /></td>
</tr>
<tr>

<td align=”right”>Select image:</td>
<form name=”selections”>
<td><select name=”individual”

onchange=”loadIndividual(this.form)”>
<option value=”cpu1”>Wires</option>
<option value=”cpu2”>Keyboard</option>
<option value=”cpu3”>Disks</option>
<option value=”cpu4”>Cables</option>

</select></td>
<td><select name=”cached” onchange=”loadCached(this.form)”>

<option value=”desk1”>Bands</option>
<option value=”desk2”>Clips</option>
<option value=”desk3”>Lamp</option>
<option value=”desk4”>Erasers</option>

</select></td>
</form>

</tr>
</table>
<form name=”Timer”>

<input type=”checkbox” name=”timerBox”
onclick=”checkTimer()” />Auto-cycle through pre-cached images

</form>
</center>

</body>
</html>

img.src

618 Part III ✦ Document Objects Reference

Related Items: img.lowsrc, img.nameProp properties.

start
Value: String. Read/Write
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-

The start property works in conjunction with video clips viewed through the img element in
IE4+. By default, a clip starts playing (except on the Macintosh) when the image file opens.
This follows the default setting of the start property: “fileopen”. Another recognized value
is “mouseover”, which prevents the clip from running until the user rolls the mouse pointer
atop the image.

Related Items: img.dynsrc, img.loop properties.

useMap
Value: Identifier string. Read/Write
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

The useMap property represents the usemap attribute of an img element, pointing to the name
assigned to the area element in the page (see Listing 20-7). This area element contains the
details about the client-side image map (described later in this chapter). The value for the
useMap property must include the hash mark that defines an internal HTML reference on the
page. If you need to switch among two or more image maps for the same img element (for
example, you swap images or the user is in a different mode), you can define multiple map
elements each with a different name. Then change the value of the useMap property for the
img element object to associate a different map with the image.

Related Item: isMap property.

vspace
(See hspace)

width
(See height)

x
y

Value: Integer. Read-Only
Compatibility: WinIE-, MacIE-, NN4, Moz-, Safari-

An NN4 script can retrieve the x and y coordinates of an img element (the top-left corner of
the rectangular space occupied by the image) via the x and y properties. These properties
are read-only. They were supplanted in NN6 via the offsetLeft and offsetTop properties
of any element.

Even without Dynamic HTML, you can use the information from these properties to help scroll
a NN4 document to a precise position (with the window.scrollTo() method) as a navigational
aid in your page. Due to the different ways each operating system platform renders pages and
the different sizes of browser windows, you can dynamically locate the position of an image
(in other words, scroll the document) given the current client conditions.

img.src

619Chapter 20 ✦ Image, Area, and Map Objects

Example
If you want to scroll the document so that the link is a few pixels below the top of the window,
use a statement such as this:

window.scrollTo(document.images[0].x, (document.images[0].y - 3));

Related Items: img.offsetLeft, img.offsetTop properties; img.scrollIntoView(),
window.scrollTo() methods.

Event handlers

onabort
onerror

Compatibility: WinIE4+, MacIE4+, NN3+, Moz1+, Safari1+

Your scripts may need to be proactive when a user clicks the Stop button while an image loads
or when a network or server problem causes the image transfer to fail. Use the onabort event
handler to activate a function in the event of a user clicking the Stop button; use the onerror
event handler for the unexpected transfer snafu.

In practice, these event handlers don’t supply all the information you may like to have in a
script, such as the filename of the image loading at the time. If such information is critical to
your scripts, the scripts need to store the name of a currently loading image to a variable
before they set the image’s src property. You also don’t know the nature of the error that trig-
gers an error event. You can treat such problems by forcing a scripted page to reload or by
navigating to an entirely different spot in your Web site.

Example
Listing 20-5 includes an onabort event handler. If the images already exist in the cache, you
must quit and relaunch the browser to try to stop the image from loading. In that example, I
provide a reload option for the entire page. How you handle the exception depends a great
deal on your page design. Do your best to smooth over any difficulties that users may
encounter.

onload
Compatibility: WinIE3+, MacIE3+, NN2+, Moz1+, Safari1+

An img object’s onload event handler fires when one of three actions occurs: an image’s
lowsrc image finishes loading; in the absence of a lowsrc image specification, the src image
finishes loading; or when each frame of an animated GIF (GIF89a format) appears.

It’s important to understand that if you define a lowsrc file inside an tag, the img object
receives no further word about the src image having completed its loading. If this information
is critical to your script, verify the current image file by checking the src property of the image
object.

Be aware, too, that an img element’s onload event handler may fire before the other elements
on the page have completed loading. If the event handler function refers to other elements on
the page, the function should verify the existence of other elements prior to addressing them.

img.onload

620 Part III ✦ Document Objects Reference

Quit and restart your browser to get the most from Listing 20-5. As the document first loads,
the lowsrc image file (the picture of pencil erasers) loads ahead of the computer keyboard
image. When the erasers are loaded, the onload event handler writes “done” to the text field
even though the main image is not loaded yet. You can experiment further by loading the
arch image. This image takes longer to load, so the lowsrc image (set on the fly, in this case)
loads way ahead of it.

Listing 20-5: The Image onload Event Handler

<html>
<head>

<title></title>
<script type=”text/javascript”>
function loadIt(theImage,form) {

if (document.images) {
form.result.value = “”;
document.images[0].lowsrc = “desk1.gif”;
document.images[0].src = theImage;

}
}
function checkLoad(form) {

if (document.images) {
form.result.value = document.images[0].complete;

}
}
function signal() {

if(confirm(“You have stopped the image from loading. Do you want to
try again?”)) {
location.reload();

}
}
</script>

</head>
<body>

<img alt=”image” src=”cpu2.gif” lowsrc=”desk4.gif” width=”120”
height=”90” onload=”if (document.forms[0].result)
document.forms[0].result.value=’done’” onabort=”signal()” />
<form>

<input type=”button” value=”Load keyboard”
onclick=”loadIt(‘cpu2.gif’,this.form)” /> <input type=”button”
value=”Load arch” onclick=”loadIt(‘arch.gif’,this.form)” />
<p><input type=”button” value=”Is it loaded yet?”

onclick=”checkLoad(this.form)” /> <input type=”text”
name=”result” /> <input type=”hidden” /></p>

</form>
</body>

</html>

Related Items: img.src, img.lowsrc properties.

img.onload

621Chapter 20 ✦ Image, Area, and Map Objects

area Element Object
For HTML element properties, methods, and event handlers, see Chapter 15.

Properties Methods Event Handlers

alt
coords
hash
host
hostname
href
noHref
pathname
port
protocol
search
shape
target

Syntax
Accessing area element object properties:

(NN3+/IE4+) [window.]document.links[index].property
(IE4+) [window.]document.all.elemID.property | method([parameters])
(IE4+) [window.]document.all.MAPElemID.areas[index].property |

method([parameters])
(IE5+/W3C) [window.]document.getElementById(“MAPElemID).areas[index].property
| method([parameters])
(IE5+/W3C) [window.]document.getElementById(“elemID”).property |

method([parameters])

Compatibility: WinIE4+, MacIE4+, NN3+, Moz1+, Safari1+

About this object
Document object models treat an image map area object as one of the link (a element) objects
in a document (see the anchor object in Chapter 19). When you think about it, such treatment
is not illogical at all because clicking a map area generally leads the user to another document
or anchor location in the same document — a hyperlinked reference.

Although the HTML definitions of links and map areas differ greatly, the earliest scriptable
implementations of both kinds of objects had nearly the same properties and event handlers.
Therefore, to read about the details for these items, refer to the discussion about the link
object in Chapter 19. The one difference is that in NN3 and NN4, a map area object does not
have the same full array of mouse event handlers — you can count upon having only the
onclick (NN4+), onmouseover, and onmouseout event handlers for those browsers.

area

622 Part III ✦ Document Objects Reference

Starting with IE4, NN6, and W3C-compatible browsers, all area element attributes are accessi-
ble as scriptable properties. Moreover, you can change the makeup of client-side image map
areas by way of the map element object. The map element object contains an array of area ele-
ment objects nested inside. You can remove, modify, or add to the area elements inside the
map element.

Client-side image maps are fun to work with, and they have been well documented in HTML
references since Netscape Navigator 2 introduced the feature. Essentially, you define any
number of areas within the image based on shape and coordinates. Many graphics tools can
help you capture the coordinates of images that you need to enter into the coords attribute
of the <area> tag.

If one gotcha exists that trips up most HTML authors, it’s the tricky link between the
and <map> tags. You must assign a name to the <map>; in the tag, the usemap
attribute requires a hash symbol (#) and the map name. If you forget the hash symbol, you
can’t create a connection between the image and its map.

Listing 20-6 contains an example of a client-side image map that allows you to navigate through
different geographical features of the Middle East. As you drag the mouse around an aerial
image, certain regions cause the mouse pointer to change, indicating that there is a link asso-
ciated with the region. Clicking a region results in an alert box indicating which region you
clicked.

Listing 20-6: A Simple Client-Side Image Map

<html>
<head>

<title></title>
<script type=”text/javascript”>
function show(msg) {

window.status = msg;
return true;

}
function go(where) {

alert(“We’re going to “ + where + “!”);
}
function clearIt() {

window.status = “”;
return true;

}
</script>

</head>
<body>

<h1>Sinai and Vicinity</h1>
<img alt=”image” src=”nile.gif” width=”320” height=”240”
usemap=”#sinai” />
<map id=”sinai” name=”sinai”>

<area href=”javascript:go(‘Cairo’)” coords=”12,152,26,161”
shape=”rect” onmouseover=”return show(‘Cairo’)”
onmouseout=”return clearIt()” />
<area href=”javascript:go(‘the Nile River’)”
coords=”1,155,6,162,0,175,3,201,61,232,109,227,167,238,274,239,292,
220,307,220,319,230,319,217,298,213,282,217,267,233,198,228,154,227,
107,221,71,225,21,199,19,165,0,149”

Tip

area

623Chapter 20 ✦ Image, Area, and Map Objects

shape=”poly” onmouseover=”return show(‘Nile River’)”
onmouseout=”return clearIt()” />
<area href=”javascript:go(‘Israel’)” coords=”95,69,201,91”
shape=”rect” onmouseover=”return show(‘Israel’)”
onmouseout=”return clearIt()” />
<area href=”javascript:go(‘Saudi Arabia’)” coords=”256,57,319,121”
shape=”rect” onmouseover=”return show(‘Saudi Arabia’)”
onmouseout=”return clearIt()” />
<area href=”javascript:go(‘the Mediterranean Sea’)”
coords=”1,55,26,123” shape=”rect”
onmouseover=”return show(‘Mediterranean Sea’)”
onmouseout=”return clearIt()” />
<area href=”javascript:go(‘the Mediterranean Sea’)”
coords=”27,56,104,103” shape=”rect”
onmouseover=”return show(‘Mediterranean Sea’)”
onmouseout=”return clearIt()” />

</map>
</body>

</html>

Properties

alt
Value: String. Read/Write
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

The alt property represents the alt attribute of an area. Future browsers may implement
this attribute to provide additional information about the link associated with the area
element.

Related Item: title property.

coords
shape

Value: String. Read/Write
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

The coords and shape properties control the location, size, and shape of the image hot spot
governed by the area element. Shape values that you can use for this property control the
format of the coords property values, as follows:

Shape Coordinates Example

circ center-x, center-y, radius “30, 30, 20”
circle center-x, center-y, radius “30, 30, 20”
poly x1, y1, x2, y2,... “0, 0, 0, 30, 15, 30, 0, 0”
polygon x1, y1, x2, y2,... “0, 0, 0, 30, 15, 30, 0, 0”
rect left, top, right, bottom “10, 20, 60, 40”
rectangle left, top, right, bottom “10, 20, 60, 40”

area.coords

624 Part III ✦ Document Objects Reference

The default shape for an area is a rectangle.

Related Items: None.

hash
host
hostname
href
pathname
port
protocol
search
target

(See corresponding properties of the link object in Chapter 19)

shape
(See coords)

map Element Object
For HTML element properties, methods, and event handlers, see Chapter 15.

Properties Methods Event Handlers

areas[] onscroll
name

Syntax
Accessing map element object properties:

(IE4+) [window.]document.all.elemID.property | method([parameters])
(IE5+/W3C) [window.]document.getElementById(“elemID”).property |

method([parameters])

Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

About this object
The map element object is an invisible HTML container for all area elements, each of which
defines a “hot” region for an image. Client-side image maps associate links (and targets) to
rectangular, circular, or polygonal regions of the image.

By far, the most important properties of a map element object are the areas array and, to a
lesser extent, its name. It is unlikely that you will change the name of a map. (It is better to
define multiple map elements with different names, and then assign the desired name to an
img element object’s useMap property.) But you can use the areas array to change the makeup
of the area objects inside a given client-side map.

area.coords

625Chapter 20 ✦ Image, Area, and Map Objects

Properties

areas[]
Value: Array of area element objects. Read/Write
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

Use the areas array to iterate through all area element objects within a map element. While NN6
adheres closely to the document node structure of the W3C DOM, IE4+ provides more direct
access to the area element objects nested inside a map. If you want to rewrite the area elements
inside a map, you can clear out the old ones by setting the length property of the areas array
to zero. Then assign area element objects to slots in the array to build that array.

Listing 20-7 demonstrates how to use scripting to replace the area element objects inside a
map element. The scenario is that the page loads with one image of a computer keyboard.
This image is linked to the keyboardMap client-side image map, which specifies details for
three hot spots on the image. If you then switch the image displayed in that img element,
scripts change the useMap property of the img element object to point to a second map that
has specifications more suited to the desk lamp in the second image. Roll the mouse pointer
atop the images, and view the URLs associated with each area in the status bar (for this
example, the URLs do not lead to other pages).

Another button on the page, however, invokes the makeAreas() function (not working in
MacIE5), which creates four new area element objects and (through DOM-specific pathways)
adds those new area specifications to the image. If you roll the mouse atop the image after
the function executes, you can see that the URLs now reflect those of the new areas. Also
note the addition of a fourth area, whose status bar message appears in Figure 20-2.

Figure 20-2: Scripts created a special client-side image map for the image.

map.areas

626 Part III ✦ Document Objects Reference

Listing 20-7: Modifying area Elements on the Fly

<html>
<head>

<title>map Element Object</title>
<script type=”text/javascript”>
// generate area elements on the fly
function makeAreas() {

document.getElementById(“myIMG”).src = “desk3.gif”;
// build area element objects
var area1 = document.createElement(“area”);
area1.href = “Script-Made-Shade.html”;
area1.shape = “polygon”;
area1.coords = “52,28,108,35,119,29,119,8,63,0,52,28”;
var area2 = document.createElement(“area”);
area2.href = “Script-Made-Base.html”;
area2.shape = “rect”;
area2.coords = “75,65,117,87”;
var area3 = document.createElement(“area”);
area3.href = “Script-Made-Chain.html”;
area3.shape = “polygon”;
area3.coords = “68,51,73,51,69,32,68,51”;
var area4 = document.createElement(“area”);
area4.href = “Script-Made-Emptyness.html”;
area4.shape = “rect”;
area4.coords = “0,0,50,120”;
// stuff new elements into MAP child nodes
var mapObj = document.getElementById(“lamp_map”);
while (mapObj.childNodes.length) {

mapObj.removeChild(mapObj.firstChild);
}
mapObj.appendChild(area1);
mapObj.appendChild(area2);
mapObj.appendChild(area3);
mapObj.appendChild(area4);
// workaround NN6 display bug
document.getElementById(“myIMG”).style.display = “inline”;

}

function changeToKeyboard() {
document.getElementById(“myIMG”).src = “cpu2.gif”;
document.getElementById(“myIMG”).useMap = “#keyboardMap”;

}

function changeToLamp() {
document.getElementById(“myIMG”).src = “desk3.gif”;
document.getElementById(“myIMG”).useMap = “#lampMap”;

}
</script>

</head>
<body>

<h1>map Element Object</h1>
<hr />
<img alt=”image” id=”myIMG” src=”cpu2.gif” width=”120” height=”90”
usemap=”#keyboardMap” />

map.areas

627Chapter 20 ✦ Image, Area, and Map Objects

<map id=”keyboardMap” name=”keyboardMap”>
<area href=”AlpaKeys.htm” shape=”rect” coords=”0,0,26,42” />
<area href=”ArrowKeys.htm” shape=”polygon”
coords=”48,89,57,77,69,82,77,70,89,78,84,89,48,89” />
<area href=”PageKeys.htm” shape=”circle” coords=”104,51,14” />

</map>
<map name=”lampMap” id=”lamp_map”>

<area href=”Shade.htm” shape=”polygon”
coords=”52,28,108,35,119,29,119,8,63,0,52,28” />
<area href=”Base.htm” shape=”rect” coords=”75,65,117,87” />
<area href=”Chain.htm” shape=”polygon”
coords=”68,51,73,51,69,32,68,51” />

</map>
<form>

<p><input type=”button” value=”Load Lamp Image”
onclick=”changeToLamp()” /> <input type=”button”
value=”Write Map on the Fly” onclick=”makeAreas()” /></p>

<p><input type=”button” value=”Load Keyboard Image”
onclick=”changeToKeyboard()” /></p>

</form>
</body>

</html>

Related Items: area element object.

✦ ✦ ✦

map.areas

The Form and
Related Objects

Prior to the advent of dynamic object models and automatic page
reflow, the majority of scripting in an HTML document took

place in and around forms. Even with all the new DHTML powers,
forms remain the primary user interface elements of HTML docu-
ments because they enable users to input information and make
choices in very familiar user interface elements, such as buttons,
option lists, and so on. The challenge of scripting forms and form
elements often involves getting object references just right. The refer-
ences can get pretty long by the time you start pointing to the prop-
erty of a form control element (which is part of a form, which is part
of a document, which is part of a window or frame).

Expanded object models of W3C-compatible browsers include script-
able access to form-related elements that are part of the HTML 4.0
specification. One pair of elements, fieldset and legend, provides
both contextual and visual containment of form controls in a docu-
ment. Another element, label, provides context for text labels that
usually appear adjacent to form controls. Although there is generally
little need to script these objects, the browsers give you access to
them just as they do for virtually every HTML element supported by
the browser.

The Form in the Object Hierarchy
Take another look at the JavaScript object hierarchy in the lowest
common denominator object model (refer back to Figure 14-1). The
form element object can contain a wide variety of form element
objects (sometimes called form controls), which I cover in Chapters
22 through 24. In this chapter, however, I focus primarily on the
container.

The good news on the compatibility front is that much of the client-
side scripting works on all scriptable browsers. While you are free to
use newer ways of addressing forms and their nested elements when
your audience exclusively uses the newer browsers, it can serve you
well to be comfortable with the “old-fashioned” reference syntax.
Therefore, almost all example code in this and the next three chap-
ters uses syntax that is compatible with the earliest scriptable
browsers. Besides, the only significant additions to the defining
points of the form object in newer browsers are those characteristics
that all other HTML elements share.

2121C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

The form object as
a container of form
controls

Processing form
validations

label, fieldset,
and legend element
objects

✦ ✦ ✦ ✦

630 Part III ✦ Document Objects Reference

form Object
For HTML element properties, methods, and event handlers, see Chapter 15.

Properties Methods Event Handlers

acceptCharset handleEvent() onreset
action reset() onsubmit
autocomplete submit()
elements[]
encoding
enctype
length
method
name
target

Syntax
Accessing form object properties or methods:

(All) [window.]document.formName. property | method([parameters])
(All) [window.]document.forms[index]. property | method([parameters])
(All) [window.]document.forms[“formName”]. property | method([parameters])
(IE4+) [window.]document.all.elemID.property | method([parameters])
(IE5+/W3C) [window.]document.getElementById(“elemID”).property |
method([parameters])

Compatibility: WinIE3+, MacIE3+, NN2+, Moz1+, Safari1+

About this object
Forms and their elements are the most common two-way gateways between users and
JavaScript scripts. A form control element provides the only way that users can enter textual
information. Form controls also provide somewhat standardized and recognizable user inter-
face elements for the user to make a selection from a predetermined set of choices. Sometimes
those choices appear in the form of an on/off checkbox, in a set of mutually exclusive radio
buttons, or as a selection from a list.

As you have seen in many Web sites, the form is the avenue for the user to enter information
that is sent to the server housing the Web files. Just what the server does with this informa-
tion depends on the CGI (Common Gateway Interface) programs running on the server. If
your Web site runs on a server directly under your control (that is, it is in-house or hosted by
a service), you have the freedom to set up all kinds of data-gathering or database search pro-
grams to interact with the user. But with some of the more consumer-oriented Internet ser-
vice providers (ISPs), you may have no CGI support available — or, at best, a limited set of

form

631Chapter 21 ✦ The Form and Related Objects

popular but inflexible CGI programs available to all customers of the service. Custom
databases or transactional services are rarely provided for this kind of Internet service.

Regardless of your Internet server status, you can find plenty of uses for JavaScript scripts in
forms. For instance, rather than using data exchanges (and Internet bandwidth) to gather raw
user input and report any input errors, a JavaScript-enhanced document can preprocess the
information to make sure that it employs the format that your back-end database or other
programs most easily process. All corrective interaction takes place in the browser, without
one extra bit flowing across the Net. I devote all of Chapter 43 (on the CD-ROM) to these
kinds of form data-validation techniques.

How you define a form element (independent of the user interface elements described in sub-
sequent chapters) depends a great deal on how you plan to use the information from the
form’s controls. If you intend to use the form exclusively for JavaScript purposes (that is, no
queries or postings going to the server), you do not need to use the action, target, and
method attributes. But if your Web page will be feeding information or queries back to a
server, you need to specify at least the action and method attributes. You need to also spec-
ify the target attribute if the resulting data from the server is to be displayed in a window
other than the calling window and the enctype attribute if your form’s scripts fashion the
server-bound data in a MIME type other than in a plain ASCII stream.

References to form control elements
For most client-side scripting, user interaction comes from the elements within a form; the
form element object is merely a container for the various control elements. If your scripts
perform any data validation checks on user entries prior to submission or other calculations,
many statements have the form object as part of the reference to the element.

A complex HTML document can have multiple form objects. Each <form>...</form> tag
pair defines one form. You don’t receive any penalties (except for potential confusion on the
part of someone reading your script) if you reuse a name for an element in each of a docu-
ment’s forms. For example, if each of three forms has a grouping of radio buttons with the
name “choice,” the object reference to each button ensures that JavaScript doesn’t confuse
them. The reference to the first button of each of those button groups is as follows:

document.forms[0].choice[0]
document.forms[1].choice[0]
document.forms[2].choice[0]

If you assign identifiers to id attributes, however, you should not reuse an identifier on the
same page.

Passing forms and elements to functions
When a form or form element contains an event handler that calls a function defined else-
where in the document, you can use a couple of shortcuts to simplify the task of addressing
the objects while the function does its work. Failure to grasp this concept not only causes
you to write more code than you have to, but it also hopelessly loses you when you try to
trace somebody else’s code in his or her JavaScripted document. The watchword in event
handler parameters is

this

form

632 Part III ✦ Document Objects Reference

which represents a reference to the current object that contains the event handler attribute.
For example, consider the function and form definition in Listing 21-1. The entire user inter-
face for this listing consists of form elements, as shown in Figure 21-1.

Listing 21-1: Passing the form Object as a Parameter

<html>
<head>

<title>Beatle Picker</title>
<script type=”text/javascript”>
function processData(form) {

for (var i = 0; i < form.Beatles.length; i++) {
if (form.Beatles[i].checked) {

break;
}

}
var chosenBeatle = form.Beatles[i].value;
var chosenSong = form.song.value;
alert(“Looking to see if “ + chosenSong + “ was written by “ +

chosenBeatle + “...”);
}

function checkSong(songTitle) {
var enteredSong = songTitle.value;
alert(“Making sure that “ + enteredSong + “ was recorded by the

Beatles.”);
}
</script>

</head>
<body>

<form name=”Abbey Road”>
Choose your favorite Beatle: <input type=”radio” name=”Beatles”
value=”John Lennon” checked=”true” />John <input type=”radio”
name=”Beatles” value=”Paul McCartney” />Paul <input type=”radio”
name=”Beatles” value=”George Harrison” />George <input type=”radio”
name=”Beatles” value=”Ringo Starr” />Ringo
<p>Enter the name of your favorite Beatles song:

<input type=”text” name=”song” value=”Eleanor Rigby”
onchange=”checkSong(this)” /></p>

<p><input type=”button” name=”process” value=”Process Request...”
onclick=”processData(this.form)” /></p>

</form>
</body>

</html>

The processData() function, which needs to read and write properties of multiple form con-
trol elements, can reference the controls in two ways. One way is to have the onclick event
handler (in the button element at the bottom of the document) call the processData() func-
tion and not pass any parameters. Inside the function, all references to objects (such as the
radio buttons or the song field) must be complete references, such as

document.forms[0].song.value

to retrieve the value entered into the song field.

form

633Chapter 21 ✦ The Form and Related Objects

Figure 21-1: Controls pass different object references to functions in Listing 21-1.

A more efficient way is to send a reference to the form object as a parameter with the call to
the function (as shown in Listing 21-1). By specifying this.form as the parameter, you tell
JavaScript to send along everything it knows about the form from which the function is
called. This works because form is a property of every form control element; the property is
a reference to the form that contains the control. Therefore, this.form passes the value of
the form property of the control.

At the function, the reference to the form object is assigned to a variable name (arbitrarily
set to form here) that appears in parentheses after the function name. I use the parameter
variable name form here because it represents an entire form. But you can use any valid vari-
able name you like.

The reference to the form contains everything the browser needs to know to find that form
within the document. Any statements in the function can therefore use the parameter value in
place of the longer, more cumbersome reference to the form. Thus, here I can use form to
take the place of document.forms[0] in any address. To get the value of the song field, the
reference is:

form.song.value

Had I assigned the form object to a parameter variable called sylvester, the reference
would have been:

sylvester.song.value

When a function parameter is a reference to an object, statements in the function can retrieve
or set properties of that object as well as invoke the object’s methods.

form

634 Part III ✦ Document Objects Reference

Another version of the this parameter passing style simply uses the word this as the
parameter. Unlike this.form, which passes a reference to the entire form connected to a par-
ticular element, this passes a reference only to that one element. In Listing 21-1, you can add
an event handler to the song field to do some validation of the entry (to make sure that the
entry appears in a database array of Beatles’ songs created elsewhere in the document).
Therefore, you want to send only the field object to the function for analysis:

<input type=”text” name=”song” onchange=”checkSong(this)” />

You then have to create a function to catch this call:

function checkSong(songTitle) {
var enteredSong = songTitle.value;
alert(“Making sure that “ + enteredSong + “ was recorded by the Beatles.”);

}

Within this function, you can go straight to the heart — the value property of the field
element — without a long reference.

One further extension of this methodology passes only a single property of a form control ele-
ment as a parameter. In the last example, the checkSong() function needs only the value
property of the field, so the event handler can pass this.value as a parameter. Because
this refers to the very object in which the event handler appears, the this.propertyName
syntax enables you to extract and pass along a single property:

<input type=”text” name=”song” onchange=”checkSong(this.value)” />

A benefit of this way of passing form element data is that the function doesn’t have to do as
much work:

function checkSong(songTitle) {
alert(“Making sure that “ + songTitle + “ was recorded by the Beatles.”);

}

Unlike passing object references (like the form and text field objects above), when you pass a
property value (for example, this.value), the property’s value is passed with no reference
to the object from which it came. This suffices when the function just needs the value to do
its job. However, if part of that job is to modify the object’s property (for example, converting
all text from a field to uppercase and redisplaying the converted text), the value passed to the
function does not maintain a “live” connection with its object. To modify a property of the
object that invokes an event handler function, you need to pass some object reference so that
the function knows where to go to work on the object.

Many programmers with experience in other languages expect parameters to be passed
either by reference or by value, but not both ways. The rule of thumb in JavaScript, however,
is fairly simple: object references are passed by reference; property values are passed by
value.

Here are some guidelines to follow when deciding what kind of value to pass to an event han-
dler function:

✦ Pass the entire form control object (this) when the function needs to make subse-
quent access to that same element (perhaps reading an object’s value property, con-
verting the value to all uppercase letters, and then writing the result back to the same
object’s value property).

✦ Pass only one property (this.propertyName) when the function needs read-only
access to that property.

Tip

form

635Chapter 21 ✦ The Form and Related Objects

✦ Pass the entire form element object (this.form) for the function to access multiple
elements inside a form (for example, a button click means that the function must
retrieve a field’s content).

Also be aware that you can submit multiple parameters (for example, onclick=”someFunction
(this.form, this.name)”) or even an entirely different object from the same form (for
example, onclick=”someFunction(this.form.emailAddr.value)”). Simply adjust your
function’s incoming parameters accordingly. (See Chapter 33 for more details about custom
functions.)

E-mailing forms
A common request among scripters is how to send a form via e-mail to the page’s author. This
includes the occasional desire to send “secret” e-mail to the author whenever someone visits
the Web site. Let me address the privacy issue first.

A site visitor’s e-mail address is valuable personal information that you should not retrieve
without the visitor’s permission or knowledge. That’s one reason why Netscape plugged a pri-
vacy hole in Navigator 2 that allowed submitting a form to a mailto: URL without requesting
permission from the user. You can use some workarounds for this in Navigator 3, but I do not
condone surreptitiously lifting e-mail addresses and therefore choose not to publicize those
workarounds here. Besides, the workarounds fail in newer browsers anyway.

Microsoft, on the other hand, went too far in preventing forms e-mailing in the earliest browser
versions. While Netscape’s browsers reveal to the user in an alert that an e-mail message
bearing the user’s e-mail address (as stored in the browser’s preferences) will be sent upon
approval, Internet Explorer 3 does not send form content via e-mail at all. Internet Explorer 4
sends form content as an attachment through Microsoft Outlook, but only after displaying a
mail composition window to the user. Starting with IE5, the process is somewhat more fluid,
but if the user doesn’t have a compatible e-mail application installed as the default, the job
fails. Due to the unreliable nature and occasionally awkward user interface of mailing a form
via the mailto: URL, I do not recommend its use.

Many ISPs that host Web sites provide standard CGIs for forwarding forms to an e-mail
address of your choice. Search the Web for “formmail service” to locate third-party suppliers
of this feature if you don’t have access to server programming for yourself.

The remaining discussion about mailing forms focuses primarily on NN2+ and IE5+ browsers
and assumes an ideally configured e-mail program is installed. You should be aware that mail-
ing forms in the following ways is controversial in some Web standards circles. As of this writ-
ing, the W3C HTML specification does not endorse these techniques specifically. Use these
facilities judiciously and only after extensive testing on the client browsers you intend to
support.

If you want to have forms submitted as e-mail messages, you must attend to three <form> tag
attributes. The first is the method attribute. You must set it to POST. Next comes enctype. If
you omit this attribute, the e-mail client sends the form data as an attachment consisting of
escaped name-value pairs, as in this example:

name=Danny+Goodman&rank=Scripter+First+Class&serialNumber=042

But if you set the enctype attribute to text/plain, the form name-value pairs are placed in the
body of the mail message in a more human-readable format:

name=Danny Goodman
rank=Scripter First Class
serialNumber=042

form

636 Part III ✦ Document Objects Reference

The last attribute of note is the action attribute, which is normally the spot to place a URL to
another file or server CGI. Substitute the URL with the special mailto: URL followed by an
optional parameter for the subject. Here is an example:

action=”mailto:prez@whitehouse.gov?subject=Opinion%20Poll”

To sum up, the following example shows the complete <form> tag for e-mailing the form in
Navigator:

<form name=”entry”
method=”POST”
enctype=”text/plain”
action=”mailto:prez@whitehouse.gov?subject=Opinion Poll”>

None of this requires any JavaScript at all. But seeing how you can use the attributes — and
the fact that these attributes are exposed as properties of the form element object — you
might see some extended possibilities for script control over forms.

Changing form attributes
With the exception of IE3 (whose form object properties are read-only), all scriptable
browsers expose form element attributes as modifiable properties. Therefore, you can
change, say, the action of a form via a script in response to user interaction on your page. For
example, you can have two different CGI programs invoked on your server depending on
whether a form’s checkbox is checked.

The best opportunity to change the properties of a form element object is in a function
invoked by the form’s onsubmit event handler. The modifications are performed at the
last instant prior to actual submission, leaving no room for user-induced glitches to get in
the way.

Buttons in forms
A common mistake that newcomers to scripting make is defining all clickable buttons as the
submit type of input object (<input type=”submit”>). The Submit button does exactly
what it says — it submits the form. If you don’t set any method or action attributes of the
<form> tag, the browser inserts its default values for you: method=GET and action=pageURL.
When you submit a form with these attributes, the page reloads itself and resets all field val-
ues to their initial values.

Use a Submit button only when you want the button to actually submit the form. If you want a
button for other types of action, use the button style (<input type=”button”>). A regular
button can invoke a function that performs some internal actions and then invokes the form
element object’s submit() method to submit the form under script control.

Redirection after submission
Undoubtedly, you have submitted a form to a site and seen a “Thank You” page come back
from the server to verify that your submission was accepted. This is warm and fuzzy, if not
logical, feedback for the submission action. It is not surprising that you would want to re-
create that effect even if the submission is to a mailto: URL. Unfortunately, a problem gets
in the way.

Tip

form

637Chapter 21 ✦ The Form and Related Objects

A common sense approach to the situation calls for a script to perform the submission (via
the form.submit() method) and then navigate to another page that does the “Thank You.”
Here is such a scenario from inside a function triggered by a click of a link surrounding a nice,
graphical Submit button:

function doSubmit() {
document.forms[0].submit();
location.href = “thanks.html”;

}

The problem is that when another statement executes immediately after the form.submit()
method, the submission is canceled. In other words, the script does not wait for the submis-
sion to complete itself and verify to the browser that all is well (even though the browser
appears to know how to track that information given the status bar feedback during submis-
sion). The point is, because JavaScript does not provide an event that is triggered by a suc-
cessful submission, there is no sure-fire way to display your own “Thank You” page.

Don’t be tempted by the window.setTimeout() method to change the location after some
number of milliseconds following the form.submit() method. You cannot predict how fast
the network and/or server is for every visitor. If the submission does not complete before the
timeout ends, the submission is still canceled — even if it is partially complete.

Form element arrays
Starting with NN2 and IE4, document object models provide a feature that is beneficial to a lot
of scripters. If you create a series of like-named objects, they automatically become an array
of objects accessible via array syntax (see Chapter 7). This is particularly helpful when you
create forms with columns and rows of fields, such as in an order form. By assigning the same
name to all fields in a column, you can employ for loops to cycle through each row using the
loop index as an array index.

As an example, the following code shows a typical function that calculates the total for an
order form row (and calls another custom function to format the value):

function extendRows(form) {
for (var i = 0; i < Qty.length; i++) {

var rowSum = form.Qty[i].value * form.Price[i].value;
form.Total[i].value = formatNum(rowSum,2);

}
}

All fields in the Qty column are named Qty. The item in the first row has an array index value
of zero and is addressed as form.Qty[i].

About <input> element objects
While this chapter focuses strictly on the form element as a container of controls, the next
three chapters discuss different types of controls that nest inside a form. Many of these con-
trols share the same HTML tag: <input>. Only the type attribute of the <input> tag deter-
mines whether the browser shows you a clickable button, a checkbox, a text field, or so on.
The fact that one element has so many guises makes the system seem illogical at times to
scripters.

An input element has some attributes (and corresponding scriptable object properties) that
simply don’t apply to every type of form control. For example, while the maxLength property

form

638 Part III ✦ Document Objects Reference

of a text box makes perfect sense in limiting the number of characters that a user can type
into it, the property has no bearing whatsoever on form controls that act as clickable but-
tons. Similarly, you can switch a radio button or checkbox on or off by adjusting the checked
property; however, that property simply doesn’t apply to a text box.

As the document object models have evolved, they have done so in an increasingly object-
oriented way. The result in this form-oriented corner of the model is that all elements created
via the <input> tag have a long list of characteristics that they all share by virtue of being
types of input elements — they inherit the properties and methods that are defined for any
input element. To try to limit the confusion, I divide the chapters in this book that deal with
input elements along functional lines (clickable buttons in one chapter, text fields in the
other), and only list and discuss those input element properties and methods that apply to
the specific control type.

In the meantime, this chapter continues with details of the form element object.

Properties
acceptCharset

Value: String. Read/Write
Compatibility: WinIE5+, MacIE5+, NN6+, Moz1+, Safari1+

The acceptCharset property represents the acceptcharset attribute of the form element
in HTML 4.0. The value is a list of one or more recognized character sets that the server
receiving the form must support. For a list of registered character set names, see http://
www.iana.org/assignments/character-sets.

Related Items: None.

action
Value: URL string. Read/Write (see text)
Compatibility: WinIE3+, MacIE3+, NN2+, Moz1+, Safari1+

The action property (along with the method and target properties) primarily functions for
HTML authors whose pages communicate with server-based CGI scripts. This property is the
same as the value you assign to the action attribute of a <form> tag. The value is typically a
URL on the server where queries or postings are sent for submission.

User input may affect how you want your page to access a server. For example, a checked box
in your document may set a form’s action property so that a CGI script on one server han-
dles all the input, whereas an unchecked box means the form data goes to a different CGI
script or a CGI script on an entirely different server. Or, one setting may direct the action to
one mailto: address, whereas another setting sets the action property to a different
mailto: address.

Although the specifications for all three related properties indicate that you can set them on
the fly, such changes are ephemeral. A soft reload eradicates any settings you make to these
properties, so you should make changes to these properties only in the same script function
that submits the form (see form.submit() later in this chapter).

Related Items: form.method, form.target, form.encoding properties.

form

639Chapter 21 ✦ The Form and Related Objects

autocomplete
Value: String. Read/Write
Compatibility: WinIE5+, MacIE-, NN-, Moz-, Safari-

Microsoft added a feature to forms with WinIE5 that allows the browser to supply hints for
filling out form controls if the controls’ names map to a set of single-line text controls defined
via some additional attributes linked to the vCard XML schema. For details on implementing
this browser feature, see http://msdn.microsoft.com/workshop/author/forms/
autocomplete_ovr.asp. Values for the autoComplete property are your choice of two
strings: on or off. In either case, the form element object does not report knowing about
this property unless you set the autocomplete attribute in the form’s tag.

Related Items: None.

elements[]
Value: Array of form control elements. Read-Only
Compatibility: WinIE3+, MacIE3+, NN2+, Moz1+, Safari1+

Elements include all the user interface elements defined for a form: text fields, buttons, radio
buttons, checkboxes, selection lists, and more. The elements property is an array of all form
control items defined within the current form. For example, if a form defines three <input>
items, the elements property for that form is an array consisting of three entries (one for
each item in source code order). Each entry is a valid reference to that element; so, to extract
properties or call methods for those elements, your script must dig deeper in the reference.
Therefore, if the first element of a form is a text field and you want to extract the string cur-
rently showing in the field (a text element’s value property), the reference looks like this:

document.forms[0].elements[0].value

Notice that this reference summons two array-oriented properties along the way: one for the
document’s forms property and one for the form’s elements property.

In practice, I suggest you refer to form controls (and forms) by their names. This allows you
the flexibility to move controls around the page as you fine-tune the design, and you don’t
have to worry about the source code order of the controls. The elements array comes in
handy when you need to iterate through all of the controls within a form. If your script needs
to loop through all elements of a form in search of particular kinds of elements, use the type
property of every form object (NN3+, IE4+, and W3C) to identify which kind of object it is.
The type property consists of the same string used in the type attribute of an <input> tag.

Overall, I prefer to generate meaningful names for each form control element and use those
names in references throughout my scripts. The elements array helps with form control
names, as well. Instead of a numeric index to the elements array, you can use the string
name of the control element as the index. Thus, you can create a generic function that pro-
cesses any number of form control elements, and simply pass the string name of the control
as a parameter to the function. Then use that parameter as the elements array index value.
For example:

function putVal(controlName, val) {
document.forms[0].elements[controlName].value = val;

}

form.elements

640 Part III ✦ Document Objects Reference

If you want to modify the number of controls within a form, you should use the element
and/or node management facilities of the browser(s) of your choice. For example, in IE4+ and
W3C browsers, you can assemble the HTML string for an entirely new set of form controls
and then assign that string to the innerHTML property of the form element object.

The document in Listing 21-2 demonstrates a practical use of the elements property. A form
contains four fields and some other elements mixed in between (see Figure 21-2). The first
part of the function that acts on these items repeats through all the elements in the form to
find out which ones are text box objects and which text box objects are empty. Notice how I
use the type property to separate text box objects from the rest, even when radio buttons
appear amid the fields. If one field has nothing in it, I alert the user and use that same index
value to place the insertion point at the field with the field’s focus() method.

Listing 21-2: Using the form.elements Array

<html>
<head>

<title>Elements Array</title>
<script type=”text/javascript”>
function verifyIt() {

var form = document.forms[0];
for (i = 0; i < form.elements.length; i++) {

if (form.elements[i].type == “text” &&
form.elements[i].value == “”) {
alert(“Please fill out all fields.”);
form.elements[i].focus();
break;

}
// more tests

}
// more statements

}
</script>

</head>
<body>

<form>
Enter your first name:<input type=”text” name=”firstName” />
<p>Enter your last name:<input type=”text” name=”lastName” /></p>
<p><input type=”radio” name=”gender” />Male <input type=”radio”

name=”gender” />Female</p>
<p>Enter your address:<input type=”text” name=”address” /></p>
<p>Enter your city:<input type=”text” name=”city” /></p>
<p><input type=”checkbox” name=”retired” />I am retired</p>

</form>
<form>

<input type=”button” name=”act” value=”Verify” onclick=”verifyIt()” />
</form>

</body>
</html>

Related Items: text, textarea, button, radio, checkbox, select objects.

form.elements

641Chapter 21 ✦ The Form and Related Objects

Figure 21-2: The elements array helps find text fields for validation.

encoding
enctype

Value: MIME type string. Read/Write (see text)
Compatibility: WinIE6+, MacIE5+, NN6+, Moz1+, Safari1+

You can define a form to alert a server when the data you submit is in a MIME type. The
encoding property reflects the setting of the enctype attribute in the form definition. The
enctype property name is defined for form element objects in the W3C DOM (with encoding
removed), but NN6+ provides both properties for backward and forward compatibility.

For mailto: URLs, I recommend setting this value (in the tag or via script) to “text/plain”
to have the form contents placed in the mail message body. If the definition does not have an
enctype attribute, this property is an empty string.

Related Items: form.action, form.method properties.

length
Value: Integer. Read-Only
Compatibility: WinIE3+, MacIE3+, NN2+, Moz1+, Safari1+

The length property of a form element object provides the same information as the length
property of the form’s elements array. The property provides a convenient, if not entirely
logical, shortcut to retrieving the number of controls in a form.

Related Items: form.elements property.

form.length

642 Part III ✦ Document Objects Reference

method
Value: String (GET or POST). Read/Write (see text)
Compatibility: WinIE3+, MacIE3+, NN2+, Moz1+, Safari1+

A form’s method property is either the GET or POST value (not case-sensitive) assigned to the
method attribute in a <form> definition. Terminology overlaps here a bit, so be careful to dis-
tinguish a form’s method of transferring its data to a server from the object-oriented method
(action or function) that all JavaScript forms have.

The method property is of primary importance to HTML documents that submit a form’s data
to a server-based CGI script because it determines the format used to convey this informa-
tion. For example, to submit a form to a mailto: URL, the method property must be POST.
Details of forms posting and CGI processing are beyond the scope of this book. Consult HTML
or CGI documentation to determine which is the appropriate setting for this attribute in your
Web server environment. If a form does not have a method attribute explicitly defined for it,
the default value is GET.

Related Items: form.action, form.target, form.encoding properties.

name
Value: Identifier string. Read/Write
Compatibility: WinIE3+, MacIE3+, NN2+, Moz1+, Safari1+

Assigning a name to a form via the name attribute is optional but highly recommended when
your scripts need to reference a form or its elements. This attribute’s value is retrievable as
the name property of a form. You don’t have much need to read this property unless you
inspect another source’s document for its form construction, as in:

var formName = parent.frameName.document.forms[0].name;

Moreover, because CGI programs frequently rely on the name of the form for validation pur-
poses, it is unlikely you will need to change this property.

target
Value: Identifier string. Read/Write (see text)
Compatibility: WinIE3+, MacIE3+, NN2+, Moz1+, Safari1+

Whenever an HTML document submits a query to a server for processing, the server typi-
cally sends back an HTML page — whether it is a canned response or, more likely, a cus-
tomized page based on the input provided by the user. You see this situation all the time
when you perform a search at Web sites. In a multiframe or multiwindow environment, you
may want to keep the form part of this transaction in view for the user but leave the respond-
ing page in a separate frame or window for viewing. The purpose of the target attribute of
a <form> definition is to enable you to specify where the output from the server’s query
should be displayed.

The value of the target property is the name of the window or frame. For instance, if
you define a frameset with three frames and assign the names Frame1, Frame2, and Frame3
to them, you need to supply one of these names (as a quoted string) as the parameter of
the target attribute of the <form> definition. Browsers also observe four special window
names that you can use in the <form> definition: _top, _parent, _self, and _blank. To set
the target as a separate subwindow opened via a script, use the window name from the
window.open() method’s second parameter and not the window object reference that the
method returns.

form.method

643Chapter 21 ✦ The Form and Related Objects

If you code your page to validate according to strict XHTML, you won’t be able to include a
target attribute for a form. But you can still use a script to assign a value to the property
without interfering with the validation.

Related Items: form.action, form.method, form.encoding properties.

Methods
handleEvent(event)

Returns: Nothing.
Compatibility: WinIE-, MacIE-, NN4, Moz-, Safari-

See the discussion of the window.handleEvent() method in Chapter 16 for a description of
this NN4-specific method.

reset()
Returns: Nothing.
Compatibility: WinIE4+, MacIE4+, NN3+, Moz1+, Safari1+

A common practice, especially with a long form, is to provide a button that enables the user to
return all the form elements to their default settings. The standard Reset button (a separate
object type described in Chapter 22) does that task just fine. But if you want to clear the form
using script control, you must do so by invoking the reset() method for the form. More than
likely, such a call is initiated from outside the form, perhaps from a function or graphical but-
ton. In such cases, make sure that the reference to the reset() method includes the complete
reference to the form you want to reset — even if the page only has one form defined for it.

In Listing 21-3, I assign the act of resetting the form to the href attribute of a link object (that
is attached to a graphic called reset.jpg). I use the javascript: URL to invoke the
reset() method for the form directly (in other words, without doing it via function). Note
that the form’s action in this example is to a nonexistent URL. If you click the Submit icon,
you receive an “unable to locate” error from the browser.

Listing 21-3: form.reset() and form.submit() Methods

<html>
<head>

<title>Registration Form</title>
</head>
<body>

<form name=”entries” method=”POST”
action=”http://www.u.edu/pub/cgi-bin/register”>

Enter your first name:<input type=”text” name=”firstName” />
<p>Enter your last name:<input type=”text” name=”lastName” /></p>
<p>Enter your address:<input type=”text” name=”address” /></p>
<p>Enter your city:<input type=”text” name=”city” /></p>
<p><input type=”radio” name=”gender” checked=”checked” />Male <input

type=”radio” name=”gender” />Female</p>
<p><input type=”checkbox” name=”retired” />I am retired</p>

</form>

Continued

form.reset()

644 Part III ✦ Document Objects Reference

Listing 21-3 (continued)

<p><img alt=”image”
src=”submit.jpg” height=”25” width=”100” border=”0” /> <img alt=”image”
src=”reset.jpg” height=”25” width=”100” border=”0” /></p>

</body>
</html>

Related Items: onreset event handler; reset object.

submit()
Returns: Nothing.
Compatibility: WinIE3+, MacIE3+, NN2+, Moz1+, Safari1+

The most common way to send a form’s data to a server’s CGI program for processing is to
have a user click a Submit button. The standard HTML Submit button is designed to send
data from all named elements of a form according to the specifications listed in the <form>
definition’s attributes. But if you want to submit a form’s data to a server automatically for a
user, or want to use a graphical button for submission, you can accomplish the submission
with the form.submit() method.

Invoking this method is almost the same as a user clicking a form’s Submit button (except
that the onsubmit event handler is not triggered). Therefore, you may have an image on your
page that is a graphical submission button. If that image is surrounded by a link object, you
can capture a mouse click on that image and trigger a function whose content includes a call
to a form’s submit() method (see Listing 21-3).

In a multiple-form HTML document, however, you must reference the proper form either by
name or according to its position in a document.forms array. Always make sure that the ref-
erence you specify in your script points to the desired form before you submit any data to a
server.

As a security and privacy precaution for people visiting your site, JavaScript ignores all sub-
mit() methods whose associated form actions are set to a mailto: URL. Many Web page
designers would love to have secret e-mail addresses captured from visitors. Because such a
capture can be considered an invasion of privacy, the power has been disabled since NN2.02.
You can, however, still use an explicit Submit button object to mail a form to you from
browsers. (See the section “E-mailing forms” earlier in this chapter.)

Because the form.submit() method does not trigger the form’s onsubmit event handler,
you must perform any presubmission processing and forms validation in the same script that
ends with the form.submit() statement. You also do not want to interrupt the submission
process after the script invokes the form.submit() method. Script statements inserted after
one that invokes form.submit()— especially those that navigate to other pages or attempt
a second submission — cause the first submission to cancel itself.

Related Item: onsubmit event handler.

form.reset()

645Chapter 21 ✦ The Form and Related Objects

Event handlers
onreset

Compatibility: WinIE4+, MacIE4+, NN3+, Moz1+, Safari1+

Immediately before a Reset button returns a form to its default settings, JavaScript sends a
reset event to the form. By including an onreset event handler in the form definition, you
can trap that event before the reset takes place.

A friendly way of using this feature is to provide a safety net for a user who accidentally clicks
the Reset button after filling out a form. The event handler can run a function that asks the
user to confirm the action.

The onreset event handler employs a technique that surfaced with Navigator 3: The event
handler must evaluate to return true for the event to continue to the browser. This may
remind you of the way onmouseover and onmouseout event handlers work for links and
image areas. This requirement is far more useful here because your function can control
whether the reset operation ultimately proceeds to conclusion.

Listing 21-4 demonstrates one way to prevent accidental form resets or submissions. Using
standard Reset and Submit buttons as interface elements, the <form> object definition
includes both event handlers. Each event handler calls its own function that offers a choice for
users. Notice how each event handler includes the word return and takes advantage of the
Boolean values that come back from the confirm() method dialog boxes in both functions.

Listing 21-4: The onreset and onsubmit Event Handlers

<html>
<head>

<title>Submit and Reset Confirmation</title>
<script type=”text/javascript”>
function allowReset() {

return window.confirm(“Go ahead and clear the form?”);
}
function allowSend() {

return window.confirm(“Go ahead and mail this info?”);
}
</script>

</head>
<body>

<form method=”POST” enctype=”text/plain”
action=”mailto:trash4@dannyg.com” onreset=”return allowReset()”
onsubmit=”return allowSend()”>

Enter your first name:<input type=”text” name=”firstName” />
<p>Enter your last name:<input type=”text” name=”lastName” /></p>
<p>Enter your address:<input type=”text” name=”address” /></p>
<p>Enter your city:<input type=”text” name=”city” /></p>
<p><input type=”radio” name=”gender” checked=”checked” />Male <input

type=”radio” name=”gender” />Female</p>
<p><input type=”checkbox” name=”retired” />I am retired</p>
<p><input type=”reset” /> <input type=”submit” /></p>

</form>
</body>

</html>

form.onreset

646 Part III ✦ Document Objects Reference

onsubmit
Compatibility: WinIE3+, MacIE3+, NN2+, Moz1+, Safari1+

No matter how a form’s data is actually submitted (by a user clicking a Submit button or by a
script invoking the form.submit() method), you may want your JavaScript-enabled HTML
document to perform some data validation on the user input, especially with text fields,
before the submission heads for the server. You have the option of doing such validation
while the user enters data (see Chapter 43 on the CD-ROM) or in batch mode before sending
the data to the server (or both). The place to trigger this last-ditch data validation is the
form’s onsubmit event handler. Note, however, that this event fires only from a genuine
Submit type <input> element and not from the form’s submit() method.

When you define an onsubmit handler as an attribute of a <form> definition, JavaScript
sends the submit event to the form just before it dashes off the data to the server. Therefore,
any script or function that is the parameter of the onsubmit attribute executes before the
data is actually submitted. Note that this event handler fires only in response to a genuine
Submit-style button and not from a form.submit() method.

Any code executed for the onsubmit event handler must evaluate to an expression consisting
of the word return plus a Boolean value. If the Boolean value is true, the submission exe-
cutes as usual; if the value is false, no submission is made. Therefore, if your script per-
forms some validation prior to submitting data, make sure that the event handler calls that
validation function as part of a return statement (as shown in Listing 21-4).

Even after your onsubmit event handler traps a submission, JavaScript’s security mechanism
can present additional alerts to the user depending on the server location of the HTML docu-
ment and the destination of the submission.

fieldset and legend Element Objects
For HTML element properties, methods, and event handlers, see Chapter 15.

Properties Methods Event Handlers

align
form

Syntax
Accessing fieldset or legend element object properties or methods:

(IE4+) [window.]document.all.elemID.property | method([parameters])
(IE5+/W3C) [window.]document.getElementById(“elemID”).property |
method([parameters])

Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

form.onsubmit

647Chapter 21 ✦ The Form and Related Objects

About these objects
The fieldset and legend elements go hand in hand to provide some visual context to a
series of form controls within a form. Browsers that implement the fieldset element draw a
rectangle around the document space occupied by the form controls nested inside the
fieldset element (although MacIE5 drops the space into a debossed area on the page — a
nice effect). The rectangle renders the full width of the body, unless its width is controlled by
appropriate stylesheet properties (for example, width). To that rectangle is added a text
label that is assigned via the legend element nested inside the fieldset element. (For
MacIE5, the legend text is rendered just inside the debossed space.) None of this HTML-
controlled grouping is necessary if you design a page layout that already provides graphical
elements to group the form controls together.

Nesting the elements properly is essential to obtaining the desired browser rendering. A typi-
cal HTML sequence looks like the following:

<form>
<fieldset>
<legend>Legend Text</legend>
All your form controls and their labels go here.
</fieldset>
</form>

You can have more than one fieldset element inside a form. Each set has a rectangle drawn
around it. This can help organize a long form into more easily digestible blocks of controls for
users — yet the single form retains its integrity for submission to the server.

A fieldset element acts like any HTML container with respect to stylesheets and the inheri-
tance thereof. For example, if you set the color style property of a fieldset element, the
color affects the text of elements nested within; however, the color of the border drawn by
the browser is unaffected. Assigning a color to the fieldset style’s border-color property
colors just the border and not the textual content of nested elements.

Note that the content of the legend element can be any HTML. Alternatively, you can assign a
distinctive stylesheet rule to the legend element. If your scripts need to modify the text of
the legend, you can accomplish this with the innerText (IE4+), innerHTML (IE4+, NN6+,
Moz1+, Safari1+), or nodeValue (IE5+, W3C) properties of HTML element objects.

Only two element-specific properties are assigned to this object pair. The first is the align
property of the legend object. This property matches the capabilities of the align attribute
for the element as specified in the HTML 4.0 recommendation (albeit the property is depre-
cated in favor of stylesheet rules). MacIE5+ and WinIE5.5+ enable you to adjust this property
on the fly (generally between your choices of “right” and “left”) to alter the location of the leg-
end at the top of the fieldset rectangle.

Because these elements are children of a form element, it makes sense that the DOM Level 2
specification supplies the read-only form property to both of these objects. That property
returns a reference to the form element object that encloses either element. The form prop-
erty for the fieldset and legend objects is implemented in WinIE6, MacIE5, and W3C
browsers.

fieldset

648 Part III ✦ Document Objects Reference

label Element Object
For HTML element properties, methods, and event handlers, see Chapter 15.

Properties Methods Event Handlers

form
htmlFor

Syntax
Accessing label element object properties or methods:

(IE4+) [window.]document.all.elemID.property | method([parameters])
(IE5+/W3C) [window.]document.getElementById(“elemID”).property |
method([parameters])

Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

About this object
With the push in the HTML 4.0 specification to provide context-oriented tags for just about
every bit of content on the page, the W3C HTML working group filled a gap with respect to
text that usually hangs in front of or immediately after input, select, and textarea form
control elements. You use these text chunks as labels for the items to describe the purpose
of the control. The only input element that had an attribute for its label was the button
input type. But even the newer button element did away with that.

A label element enables you to surround a control’s label text with a contextual tag. In addi-
tion, one of the element’s attributes —for— enables you to associate the label with a partic-
ular form control element. In the HTML, the for attribute is assigned the ID of the control
with which the label is associated. A label element can be associated with a form control if
the form control’s tag is contained between the label element’s start and end tags.

At first glance, browsers do nothing special (from a rendering point of view) for a label ele-
ment. But for some kinds of elements, especially checkbox and radio input type elements,
browsers help restore to users a vital user-interface convention: clicking the label is the same
as clicking the control. For text elements, focus events are passed to the text input element
associated with the label. In fact, all events that are directed at a label bubble upward to the
form control associated with it. The following page fragment demonstrates how fieldset,
legend, and label elements look in a form consisting of two radio buttons:

<form ...>
<fieldset id=”form1set1”>
<legend id=”form1set1legend”>Choose the Desired Performance</legend>
<input type=”radio” name=”speed” id=”speed1” />

<label for=”speed1”>Fastest (lower quality)</label>

<input type=”radio” name=”speed” id=”speed2” />

<label for=”speed2”>Slower (best quality)</label>
</fieldset>
</form>

label

649Chapter 21 ✦ The Form and Related Objects

Even so, a label and its associated form control element do not have to be adjacent to each
other in the source code. For example, you can have a label in one cell of a table row with the
form control in another cell (in the same or different row).

Properties
htmlFor

Value: Element object reference. Read/Write
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

The htmlFor property is the scripted equivalent of the for attribute of the label element.
An acceptable value is a full reference to a form control element (input, textarea, or
select element objects). It is highly unlikely that you would modify this property for an
existing label element. However, if your script is creating a new label element (perhaps a
replacement form), use this property to associate the label with a form control.

✦ ✦ ✦

label.htmlFor

Button Objects

This chapter is devoted to those lovable buttons that invite users
to initiate action and make choices with a single click of the

mouse button. In this category fall the standard system-looking but-
tons with labels on them, as well as radio buttons and checkboxes.
For such workhorses of the HTML form, these objects have a limited
vocabulary of object-specific properties, methods, and event
handlers.

I group together the button, submit, and reset objects for an impor-
tant reason: They look alike yet they are intended for very different
purposes. Knowing when to use which button is important —
especially when to differentiate between the button and submit
objects. Many a newcomer gets the two confused and winds up with
scripting error headaches. That confusion won’t happen to you by
the time you finish this chapter.

The button Element Object,
and the Button, Submit,
and Reset Input Objects

For HTML element properties, methods, and event handlers, see
Chapter 15.

Properties Methods Event Handlers

form click() onclick
name onmousedown
type onmouseup
value

Syntax
Accessing button object properties or methods:

(All) [window.]document.formName.buttonName.property
| method([parameters])
(All)
[window.]document.formName.elements[index].property |
method([parameters])

2222C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Triggering action from a
user’s click of a button

Assigning hidden values
to radio and checkbox
buttons

Distinguishing between
radio button families
and their individual
buttons

✦ ✦ ✦ ✦

652 Part III ✦ Document Objects Reference

(All) [window.]document.forms[index].buttonName.property |
method([parameters])
(All) [window.]document.forms[“formName”].buttonName.property |

method([parameters])
(All) [window.]document.forms[“formName”].elements[index].property |

method([parameters])
(IE4+) [window.]document.all.elemID.property | method([parameters])
(IE5+/W3C) [window.]document.getElementById(“elemID”).property |
method([parameters])

Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

About these objects
Button objects generate standard, pushbutton-style user interface elements on the page,
depending on the operating system on which the particular browser runs. In the early days,
the browsers called upon the operating systems to generate these standard interface ele-
ments. In more recent versions, the browsers define their own look, albeit frequently still dif-
ferent for each operating system. More recently, the appearance of a button may also be
influenced by browser-specific customizations that browser makers put into their products.
Even so, any computer user will recognize a button when the browser produces it on the page.

Starting with IE4 and NN6, you have two ways to put standard buttons into a page. The first,
and completely backward-compatible way, is to use input elements nested inside a form con-
tainer. But a new HTML element, the button element, provides a slightly different way of
specifying a button in a page, including the option of putting a button outside of a form (pre-
sumably for some client-side script execution, independent of form submission). From an
HTML point of view, the difference between the two concerns itself with the way the label of
the button is specified. With an input element, the string assigned to the value attribute
becomes the label of the button; but a button element is a container (meaning with an end
tag), whose content becomes the button’s label. You can still assign a value to the value
attribute, which, if a form contains the button, gets submitted to the server, independent of
the label text.

Always give careful thought to the label that you assign to a button. Because a button initi-
ates some action, make sure that the verb in the label clearly defines what happens after you
click it. Also, take cues from experienced user interface designers who craft operating system
and commercial software buttons: Be concise. If you find your button labels going longer than
two or three words, reconsider the design of your page so that the user can clearly under-
stand the purpose of any button from a shorter label.

Browsers automatically display a button sized to accommodate the label text. But only
browsers that support stylesheets (IE4+ and W3C) allow you to control more visual aspects
of the button, such as size, label font, and coloration. And, as for the position of the button on
the page, buttons, as in all in-line elements, appear where they occur in the source code. You
can, of course, use element positioning of recent browsers (Chapter 39 on the CD-ROM) to
make a button appear wherever you want it. But if your pages run on multiple operating sys-
tems and generations of browsers, be aware that the appearance (and size) of a button will
not be identical on all screens. Check out the results on as many platforms as possible.

Buttons in the Windows environment follow their normal behavior in that they indicate the
focus with highlighted button-label text (usually with a dotted rectangle). Some newer
browsers running on other operating systems offer this kind of highlighting and selection as a
user option. IE5 provides additional input element features that prevent buttons from receiv-
ing this kind of visible focus.

document.formObject.buttonObject

653Chapter 22 ✦ Button Objects

The lone button object event handler that works on all browser versions is one that responds
to a user clicking the pointer atop the button: the onclick event handler. Virtually all action
surrounding a button object comes from this event handler. You rarely need to extract
property values or invoke the click() method. NN4 and IE4 add events for the components
of a click: mousedown and mouseup; and IE4+ and W3C browsers provide a plethora of user-
initiated events for buttons.

Two special variants of the button object are the submit and reset button objects. With their
heritages going back to early incarnations of HTML, these two button types perform special
operations on their own. The submit-style button automatically sends the data within the
same form object to the URL listed in the action attribute of the <form> definition. The
method attribute dictates the format in which the button sends the data. Therefore, you don’t
have to script this action if your HTML page is communicating with a CGI program on the
server.

If the form’s action attribute is set to a mailto: URL, you must provide the page visitor with
a Submit button to carry out the action. Setting the form’s enctype attribute to text/plain
is also helpful so that the form data arrives in a more readable form than the normal encoded
name-value pairs. See “E-mailing forms” in Chapter 21 for details about submitting form con-
tent via e-mail.

The partner of the Submit button is the Reset button. This button, too, has special powers.
A click of this button type restores all elements within the form to their default values. That
goes for text objects, radio button groups, checkboxes, and selection lists. The most common
application of the button is to clear entry fields of the last data entered by the user.

All that distinguishes these three types of buttons from each other in the <input> tag or
<button> tag is the parameter of the type attribute. For buttons not intended to send data to
a server, use the “button” style (this is the default value for the button element). Reserve
“submit” and “reset” for their special powers.

If you want an image to behave like a button in all scriptable browsers, consider either associ-
ating a link with an image (see the discussion on the link object in Chapter 19) or creating a
client-side image map (see the area object discussion in Chapter 20). But for IE4+ and W3C
browsers, you can use the input element with a type attribute set to image (discussed later
in this chapter).

Probably the biggest mistake scripters make with these buttons is using a Submit button to
do the work of a plain button. Because these two buttons look alike, and the submit type of
input element has a longer tradition than the button, confusing the two is easy. But if all you
want is to display a button that initiates client-side script execution, use a plain button. The
Submit button attempts to submit the form. If no action attribute is set, then the page
reloads, and all previous processing and field entries are erased. The plain button does its
job quietly without reloading the page (unless the script intentionally does so).

Properties
form

Value: Form object reference. Read-Only
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

A property of every input element object is a reference to the form element that contains
the control. This property can be very convenient in a script when you are dealing with one
form control that is passed as a parameter to the function and you want to either access
another control in the same form or invoke a method of the form. An event handler of any

document.formObject.buttonObject.form

654 Part III ✦ Document Objects Reference

input element can pass this as the parameter, and the function can still get access to the
form without having to hard-wire the script to a particular form name or document layout.

Related Items: form object.

name
Value: Identifier string. Read/Write (see text)
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

A button’s name is fixed in the input or button element’s name attribute and cannot be
adjusted via scripting except in newer browsers. You may need to retrieve this property in a
general-purpose function handler called by multiple buttons in a document. The function can
test for a button name and perform the necessary statements for that button. If you change
the name of the object, even a soft reload or window resize restores its original name.

Related Items: name property of all form elements.

type
Value: String. Read-Only
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

The precise value of the type property echoes the setting of the type attribute of the
<input> or <button> tag that defines the object: button; submit; or reset.

value
Value: String. Read/Write (see text)
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

Both input and button elements have the value attribute, which is represented by the
value property in the object model. But the purpose of the attribute/property in the two
elements differs. For the input element, the value property represents the label displayed
on the button. For a button element, however, the label text is created by the HTML text
between the start and end tags for the button element. When the input element has a name
value associated with it, the name-value pair is submitted along with the form.

If you do not assign a value attribute to a reset or submit style button, the browsers auto-
matically assign the labels Reset and Submit without assigning a value. A value property can
be any string, including multiple words.

You can modify this text on the fly in a script, but some cautions apply. Browsers prior to IE4
and NN6 do not resize the width of the button to accommodate a new name that is longer or
shorter than the original. Moreover, any soft reload or resize of the window restores the origi-
nal label. IE4+ and NN6+, however, resize the button and reflow the page to meet the new
space needs; the new label survives a window resizing, but not a soft reload of the page.
Finally, IE4 for the Mac allows you to set this property, but it doesn’t really stick.

Related Items: value property of text object.

document.formObject.buttonObject.form

655Chapter 22 ✦ Button Objects

Methods
click()

Returns: Nothing.
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

A button’s click() method simulates, via scripting, the human action of clicking that button.
Unfortunately, the method is highly unreliable in browsers prior to IE4 and NN4.

Related Items: onclick event handler.

Event handlers
onclick

Compatibility: WinIE3+, MacIE3+, NN2+, Moz1+, Safari1+

Virtually all button action takes place in response to the onclick event handler. A click is
defined as a press and release of the mouse button while the screen pointer rests atop the
button. The event goes to the button only after the user releases the mouse button.

For a Submit button, you should probably omit the onclick event handler and allow the
form’s onsubmit event handler to take care of last-minute data entry validation before send-
ing the form. By triggering validation with the onsubmit event handler, your scripts can can-
cel the submission if something is not right (see the form object discussion in Chapter 21).

Listing 22-1 demonstrates not only the onclick event handler of a button but also how you
may need to extract a particular button’s name or value properties from a general-purpose
function that services multiple buttons. In this case, each button passes its own object as a
parameter to the displayTeam() function. The function then displays the results in an alert
dialog box. A real-world application would probably use a more complex if...else decision
tree to perform more sophisticated actions based on the button clicked (or use a switch con-
struction on the btn.value expression for IE4+ and W3C browsers).

Listing 22-1: Three Buttons Sharing One Function

<html>
<head>

<title>Button Click</title>
<script type=”text/javascript”>
function displayTeam(btn) {

if (btn.value == “Abbott”) {
alert(“Abbott & Costello”);

}
if (btn.value == “Rowan”) {

alert(“Rowan & Martin”);
}
if (btn.value == “Martin”) {

alert(“Martin & Lewis”);
}

}
</script>

</head>

Continued

document.formObject.buttonObject.onclick

656 Part III ✦ Document Objects Reference

Listing 22-1 (continued)

<body>
Click on your favorite half of a popular comedy team:
<form>

<input type=”button” value=”Abbott” onclick=”displayTeam(this)” />
<input type=”button” value=”Rowan” onclick=”displayTeam(this)” />
<input type=”button” value=”Martin” onclick=”displayTeam(this)” />

</form>
</body>

</html>

Related Items: button.onmousedown, button.onmouseup, form.onsubmit event handlers.

onmousedown
onmouseup

Compatibility: WinIE4+, MacIE4+, NN4+, Moz1+, Safari1+

More recent browsers have event handlers for the components of a click event: the
onmousedown and onmouseup event handlers. These events fire in addition to the onclick
event handler.

The system-level buttons provided by the operating system perform their change of appear-
ance while a button is being pressed. Therefore, trapping for the components of a click action
won’t help you in changing the button’s appearance via scripting. Remember that a user can
roll the cursor off the button while the button is still down. When the cursor leaves the region
of the button, the button’s appearance returns to its unpressed look, but any setting you
make with the onmousedown event handler won’t undo itself with an onmouseup counterpart,
even after the user releases the mouse button elsewhere. On the other hand, if you can pre-
cache a click-on and click-off sound, you can use these events to fire the respective sounds in
response to the mouse button action.

Related Items: button.onclick event handler.

checkbox Input Object
For HTML element properties, methods, and event handlers, see Chapter 15.

Properties Methods Event Handlers

checked click()† onclick†
form†
name†
type
value

† See Button object.

document.formObject.buttonObject.onclick

657Chapter 22 ✦ Button Objects

Syntax
Accessing checkbox properties or methods:

(All) [window.]document.formName.boxName.property | method([parameters])
(All) [window.]document.formName.elements[index].property |
method([parameters])
(All) [window.]document.forms[index].boxName.property |
method([parameters])
(All) [window.]document.forms[“formName”].boxName.property |
method([parameters])
(All) [window.]document.forms[“formName”].elements[index].property |

method([parameters])
(IE4+) [window.]document.all.elemID.property | method([parameters])
(IE5+/W3C) [window.]document.getElementById(“elemID”).property |
method([parameters])

Compatibility: WinIE3+, MacIE3+, NN2+, Moz1+, Safari1+

About this object
Checkboxes have a very specific purpose in modern graphical user interfaces: to toggle
between “on” and “off” settings. As with a checkbox on a printed form, a mark in the box indi-
cates that the label text is true or should be included for the individual who made that mark.
When the box is unchecked or empty, the text is false or should not be included. If two or
more checkboxes are physically grouped together, they should have no interaction: Each is
an independent setting (see the discussion on the radio object for interrelated buttons).

I make these user interface points at the outset because, in order to present a user interface
in your HTML pages consistent with the user’s expectations based on exposure to other pro-
grams, you must use checkbox objects only for on/off choices that the user makes. Using a
checkbox as an action button that, for example, navigates to another URL is not good form.
Just as they do in a Windows or Mac dialog box, users make settings with checkboxes and
radio buttons and initiate action by clicking a standard button or image map.

That’s not to say that a checkbox object cannot perform some limited action in response to a
user’s click, but such actions are typically related to the context of the checkbox button’s
label text. For example, in some Windows and Macintosh dialog boxes, turning on a checkbox
may activate a bunch of otherwise inactive settings elsewhere in the same dialog box. IE4+
and W3C browsers allow disabling (dimming) or hiding form elements, so a checkbox may
control those visible attributes of related controls. Or, in a two-frame window, a checkbox in
one frame may control whether the viewer is an advanced user. If so, the content in the other
frame may be more detailed. Toggling the checkbox changes the complexity level of a docu-
ment showing in the other frame (using different URLs for each level). The bottom line, then,
is that you should use checkboxes for toggling between on/off settings. Provide regular but-
tons for users to initiate processing.

In the <input> tag for a checkbox, you can preset the checkbox to be checked when the page
appears. Add the constant checked attribute to the definition. If you omit this attribute, the
default, unchecked appearance rules. As for the checkbox label text, its definition lies outside
the <input> tag. If you look at the way checkboxes behave in HTML browsers, this location
makes sense: The label is not an active part of the checkbox (as it typically is in Windows and
Macintosh user interfaces, where clicking the label is the same as clicking the box).

document.formObject.checkboxObject

658 Part III ✦ Document Objects Reference

Naming a checkbox can be an important part of the object definition, depending on how you
plan to use the information in your script or document. For forms whose content goes to a
CGI program on the server, you must word the box name as needed for use by the CGI pro-
gram, so that the program can parse the form data and extract the setting of the checkbox.
For JavaScript client-side use, you can assign not only a name that describes the button, but
also a value useful to your script for making if...else decisions or for assembling strings
that are eventually displayed in a window or frame.

Properties
checked

Value: Boolean. Read/Write
Compatibility: WinIE3+, MacIE3+, NN2+, Moz1+, Safari1+

The simplest property of a checkbox reveals (or lets you set) whether or not a checkbox is
checked. The value is true for a checked box and false for an unchecked box. To check a
box via a script, simply assign true to the checkbox’s checked property:

document.forms[0].boxName.checked = true;

Setting the checked property from a script does not trigger a click event for the checkbox
object.

You may need an instance in which one checkbox automatically checks another checkbox
elsewhere in the same or other form of the document. To accomplish this task, create an
onclick event handler for the one checkbox and build a statement similar to the preceding
one to set the other related checkbox to true. Don’t get too carried away with this feature,
however: For a group of interrelated, mutually exclusive choices, use a group of radio buttons
instead.

If your page design requires that a checkbox be checked after the page loads, don’t bother
trying to script this checking action. Simply add the one-word checked attribute to the
<input> tag. Because the checked property is a Boolean value, you can use its results as an
argument for an if clause, as shown in the next example.

The simple example in Listing 22-2 passes a form object reference to the JavaScript function.
The function, in turn, reads the checked value of the form’s checkbox object
(checkThis.checked) and uses its Boolean value as the test result for the if...else con-
struction.

Listing 22-2: The checked Property as a Conditional

<html>
<head>

<title>Checkbox Inspector</title>
<script type=”text/javascript”>
function inspectBox(form) {

if (form.checkThis.checked) {
alert(“The box is checked.”);

} else {
alert(“The box is not checked at the moment.”);

}
}
</script>

</head>

document.formObject.checkboxObject

659Chapter 22 ✦ Button Objects

<body>
<form>

<input type=”checkbox” name=”checkThis” />Check here
<p><input type=”button” name=”boxChecker” value=”Inspect Box”

onclick=”inspectBox(this.form)” /></p>
</form>

</body>
</html>

Related Items: defaultChecked, value properties.

defaultChecked
Value: Boolean. Read-Only
Compatibility: WinIE3+, MacIE3+, NN2+, Moz1+, Safari1+

If you add the checked attribute to the <input> definition for a checkbox, the
defaultChecked property for that object is true; otherwise, the property is false. Having
access to this property enables your scripts to examine checkboxes to see if they have been
adjusted (presumably by the user, if your script does not set properties).

The function in Listing 22-3 is designed to compare the current setting of a checkbox against
its default value. The if construction compares the current status of the box against its
default status. Both are Boolean values, so they can be compared against each other. If the
current and default settings don’t match, the function goes on to handle the case in which the
current setting is other than the default.

Listing 22-3: Examining the defaultChecked Property

function compareBrowser(thisBox) {
if (thisBox.checked != thisBox.defaultChecked) {

// statements about using a different set of HTML pages
}

}

Related Items: checked, value properties.

type
Value: String (checkbox). Read-Only
Compatibility: WinIE4+, MacIE4+, NN3+, Moz1+, Safari1+

Use the type property to help you identify a checkbox object from an unknown group of form
elements.

Related Items: form.elements property.

value
Value: String. Read/Write
Compatibility: WinIE3+, MacIE3+, NN2+, Moz1+, Safari1+

A checkbox object’s value property is a string of any text that you want to associate with the
box. Note that the checkbox’s value property is not the label, as it is for a regular button, but

document.formObject.checkboxObject.value

660 Part III ✦ Document Objects Reference

hidden text associated with the checkbox. For instance, the label that you attach to a check-
box may not be worded in a way that is useful to your script. But if you place that useful
wording in the value attribute of the checkbox tag, you can extract that string via the value
property.

When a checkbox object’s data is submitted to a CGI program, the value property is sent as
part of the name-value pair if the box is checked (nothing about the checkbox is sent if the
box is unchecked). If you omit the value attribute in your definition, the property always
yields the string “on,” which is submitted to a CGI program when the box is checked. From
the JavaScript side, don’t confuse this string with the on and off settings of the checkbox: Use
the checked property to determine a checkbox’s status.

The scenario for the skeleton HTML page in Listing 22-4 is a form with a checkbox whose
selection determines which of two actions to follow for submission to the server. After the
user clicks the Submit button, a JavaScript function examines the checkbox’s checked prop-
erty. If the property is true (the button is checked), the script sets the action property for
the entire form to the content of the value property — thus influencing where the form goes
on the server side. If you try this listing on your computer, the result you see varies widely
with the browser version you use. For most browsers, you see some indication (an error alert
or other screen notation) that a file with the name primaryURL or alternateURL doesn’t
exist. Unfortunately, WinIE5.5 does not display the name of the file that can’t be opened. Try
the example in another browser if you have one. The names and the error message come
from the submission process for this demonstration.

Listing 22-4: Adjusting a CGI Submission Action

<html>
<head>

<title>Checkbox Submission</title>
<script type=”text/javascript”>
function setAction(form) {

if (form.checkThis.checked) {
form.action = form.checkThis.value;

} else {
form.action = “file://primaryURL”;

}
return true;

}
</script>

</head>
<body>

<form method=”POST” action=””>
<input type=”checkbox” name=”checkThis”
value=”file://alternateURL” />Use alternate
<p><input type=”submit” name=”boxChecker”

onclick=”return setAction(this.form)” /></p>
</form>

</body>
</html>

Related Items: checked property.

document.formObject.checkboxObject.value

661Chapter 22 ✦ Button Objects

Methods
click()

Returns: Nothing.
Compatibility: WinIE3+, MacIE3+, NN2+, Moz1+, Safari1+

The intention of the click() method is to enact, via script, the physical act of clicking a
checkbox (but without triggering the onclick event handler). However, your scripts are bet-
ter served by setting the checked property so that you know exactly what the setting of the
box is at any time.

Related Items: checked property; onclick event handler.

Event handlers
onclick

Compatibility: WinIE3+, MacIE3+, NN2+, Moz1+, Safari1+

Because users regularly click checkboxes, the objects have an event handler for the click
event. Use this event handler only if you want your page (or variable values hidden from
view) to respond in some way to the action of clicking a checkbox. Most user actions, as men-
tioned earlier, are initiated by clicking standard buttons rather than checkboxes, so be careful
not to overuse event handlers in checkboxes.

The page in Listing 22-5 shows how to trap the click event in one checkbox to influence the
visibility and display of other form controls. After you turn on the Monitor checkbox, a list of
radio buttons for monitor sizes appears. Similarly, engaging the Communications checkbox
makes two radio buttons visible. Your choice of radio button brings up one of two further
choices within the same table cell (see Figure 22-1).

Figure 22-1: Clicking on button choices reveals additional relevant choices.

document.formObject.checkboxObject.onclick

662 Part III ✦ Document Objects Reference

Notice how the toggle() function was written as a generalizable function. This function can
accept a reference to any checkbox object and any related span. If five more groups like this
were added to the table, no additional functions would be needed.

In the swap() function, an application of a nested if...else shortcut construction is used
to convert the Boolean values of the checked property to the strings needed for the display
style property. The nesting is used to allow a single statement to take care of two conditions:
the group of buttons to be controlled and the checked property of the button invoking the
function. This function is not generalizable, because it contains explicit references to objects
in the document. The swap() function can be made generalizable, but due to the special rela-
tionships between pairs of span elements (meaning one has to be hidden while the other is
displayed in its place), the function would require more parameters to fill in the blanks where
explicit references are needed.

Listing 22-5: A Checkbox and an onclick Event Handler

<html>
<head>

<title>Checkbox Event Handler</title>
<style type=”text/css”>
#monGroup {visibility:hidden}
#comGroup {visibility:hidden}
</style>
<script type=”text/javascript”>
// toggle visibility of a main group spans
function toggle(chkbox, group) {

var visSetting = (chkbox.checked) ? “visible” : “hidden”;
document.getElementById(group).style.visibility = visSetting;

}
// swap display of communications sub group spans
function swap(radBtn, group) {

var modemsVisSetting = (group == “modems”) ? ((radBtn.checked) ?
“” : “none”) : “none”;

var netwksVisSetting = (group == “netwks”) ? ((radBtn.checked) ?
“” : “none”) : “none”;

document.getElementById(“modems”).style.display = modemsVisSetting;
document.getElementById(“netwks”).style.display = netwksVisSetting;

}
</script>

</head>
<body>

<form>
<h3>Check all accessories for your computer:</h3>
<table border=”2” cellpadding=”5”>

<tr>
<td><input type=”checkbox” name=”monitor”

onclick=”toggle(this, ‘monGroup’)” />Monitor</td>
<td><input type=”radio”

name=”monitorType” />15” <input type=”radio”
name=”monitorType” />17” <input type=”radio”
name=”monitorType” />21” <input type=”radio”
name=”monitorType” />>21”</td>

</tr>

document.formObject.checkboxObject.onclick

663Chapter 22 ✦ Button Objects

<tr>
<td><input type=”checkbox” name=”comms”

onclick=”toggle(this, ‘comGroup’)” />Communications</td>
<td><p><input type=”radio” name=”commType”

onclick=”swap(this, ‘modems’)” />Modem <input type=”radio”
name=”commType” onclick=”swap(this, ‘netwks’)” />Network</p>
<p><input type=”radio”
name=”modemType” /><56kbps <input type=”radio”
name=”modemType” />56kbps <input type=”radio”
name=”modemType” />ISDN (any speed) <input type=”radio”
name=”modemType” />Cable <span id=”netwks”
style=”display:none”><input type=”radio”
name=”netwkType” />Ethernet 10Mbps (10-Base T) <input
type=”radio” name=”netwkType” />Ethernet 100Mbps (10/100)
<input type=”radio” name=”netwkType” />T1 or
greater </p></td>

</tr>
</table>

</form>
</body>

</html>

Related Items: checkbox mouse-related event handler.

radio Input Object

Properties Methods Event Handlers

See checkbox object.

Syntax
Accessing radio object properties or methods:

(All) [window.]document.formName.buttonGroupName[index].property |
method([parameters])

(All) [window.]document.formName.elements[index] [index].property |
method([parameters])

(All) [window.]document.forms[index]. buttonGroupName[index].property |
method([parameters])

(All) [window.]document.forms[“formName”]. buttonGroupName[index].property
|

method([parameters])
(All) [window.]document.forms[“formName”].elements[index].property |

method([parameters])
(IE4+) [window.]document.all.elemID[index].property | method([parameters])
(IE5+/W3C) [window.]document.getElementById(“elemID”)[index].property |

method([parameters])

Compatibility: WinIE3+, MacIE3+, NN2+, Moz1+, Safari1+

document.formObject.radioObject

664 Part III ✦ Document Objects Reference

About this object
A radio button object is an unusual one within the body of JavaScript applications. In every
other case of form control elements, one object equals one visual element on the screen. But
a radio object actually consists of a group of radio buttons. Because of the nature of radio
buttons — a mutually exclusive choice among two or more selections — a group always has
multiple visual elements. All buttons in the group share the same name — which is how the
browser knows to group buttons together and to let the clicking of a button deselect any
other selected button within the group. Beyond that, however, each button can have unique
properties, such as its value or checked property.

Use JavaScript array syntax to access information about an individual button within the but-
ton group. Look at the following example of defining a button group and see how to reference
each button. This button group lets the user select a favorite member of the Three Stooges:

<form>
Select your favorite Stooge:

<input type=”radio” name=”stooges” value=”Moe Howard” checked=”checked” />Moe
<input type=”radio” name=”stooges” value=”Larry Fine” />Larry
<input type=”radio” name=”stooges” value=”Curly Howard” />Curly
<input type=”radio” name=”stooges” value=”Shemp Howard” />Shemp
</form>

After this group displays on the page, the first radio button is preselected for the user. Only
one property of a radio button object (length) applies to all members of the group. However,
the other properties apply to individual buttons within the group. To access any button, use
an array index value as part of the button group name. For example:

firstBtnValue = document.forms[0].stooges[0].value; // “Moe Howard”
secondBtnValue = document.forms[0].stooges[1].value; // “Larry Fine”

Any time you access the checked, defaultChecked, type, or value property, you must point
to a specific button within the group according to its order in the array (or, in IE4+/W3C, each
button can also have a unique ID). The order of buttons in the group depends on the sequence
in which the individual buttons are defined in the HTML document. In other words, to uncover
the currently selected radio button, your script has to iterate through all radio buttons in the
radio group. Examples of this come later in the discussion of this object.

Supplying a value attribute to a radio button can be very important in your script. Although
the text label for a button is defined outside the <input> tag, the value attribute lets you
store any string in the button’s hip pocket. In the earlier example, the radio button labels
were just first names, whereas the value properties were set in the definition to the full
names of the actors. The values could have been anything that the script needed, such as
birth dates, shoe sizes, URLs, or the first names again (because a script has no way to
retrieve the labels except through innerHTML or node property access in more modern
browsers). The point is that the value attribute should contain whatever string the script
needs to derive from the selection made by the user. The value attribute contents are also
what is sent to a CGI program on a server in a submit action for the form.

How you decide to orient a group of buttons on the screen is entirely up to your design and
the real estate available within your document. You can string them in a horizontal row (as
shown earlier), place
 tags after each one to form a column, or do so after every other
button to form a double column. Numeric order within the array is determined only by the
order in which the buttons are defined in the source code, not by where they appear. To
determine which radio button of a group is checked before doing processing based on that

document.formObject.radioObject

665Chapter 22 ✦ Button Objects

choice, you need to construct a repeat loop to cycle through the buttons in the group (shown
in the next example). For each button, your script examines the checked property.

Properties
checked

Value: Boolean. Read/Write
Compatibility: WinIE3+, MacIE3+, NN2+, Moz1+, Safari1+

Only one radio button in a group can be highlighted (checked) at a time (the browser takes
care of highlighting and unhighlighting buttons in a group for you). That one button’s
checked property is set to true, whereas all others in the group are set to false.

Beginning with version 3 browsers, you can safely set the checked property of a radio button.
By setting the checked property of one button in a group to true, all other buttons automati-
cally uncheck themselves.

Listing 22-6 uses a repeat loop in a function to look through all buttons in the Stooges group
in search of the checked button. After the loop finds the one whose checked property is
true, it returns the value of the index. In one instance, that index value is used to extract the
value property for display in the alert dialog box; in the other instance, the value helps
determine which button in the group is next in line to have its checked property set to true.

Listing 22-6: Finding the Selected Button in a Radio Group

<html>
<head>

<title>Extracting Highlighted Radio Button</title>
<script type=”text/javascript”>
function getSelectedButton(buttonGroup){

for (var i = 0; i < buttonGroup.length; i++) {
if (buttonGroup[i].checked) {

return i;
}

}
return 0;

}
function fullName(form) {

var i = getSelectedButton(form.stooges);
alert(“You chose “ + form.stooges[i].value + “.”);

}
function cycle(form) {

var i = getSelectedButton(form.stooges);
if (i+1 == form.stooges.length) {

form.stooges[0].checked = true;
} else {

form.stooges[i+1].checked = true;
}

}
</script>

</head>

Continued

document.formObject.radioObject.checked

666 Part III ✦ Document Objects Reference

Listing 22-6 (continued)

<body>
<form>

Select your favorite Stooge:
<p><input type=”radio” name=”stooges” value=”Moe Howard”

checked=”checked” />Moe <input type=”radio” name=”stooges”
value=”Larry Fine” />Larry <input type=”radio” name=”stooges”
value=”Curly Howard” />Curly <input type=”radio” name=”stooges”
value=”Shemp Howard” />Shemp</p>

<p><input type=”button” name=”Viewer” value=”View Full Name...”
onclick=”fullName(this.form)” /></p>

<p><input type=”button” name=”Cycler” value=”Cycle Buttons”
onclick=”cycle(this.form)” /></p>

</form>
</body>

</html>

Related Items: defaultChecked property.

defaultChecked
Value: Boolean. Read-Only
Compatibility: WinIE3+, MacIE3+, NN2+, Moz1+, Safari1+

If you add the checked attribute to the <input> definition for a radio button, the
defaultChecked property for that object is true; otherwise, the property is false. Having
access to this property enables your scripts to examine individual radio buttons to see if
they have been adjusted (presumably by the user, if your script does not perform automatic
clicking).

In the script fragment of Listing 22-7, a function is passed a reference to a form containing the
Stooges radio buttons. The goal is to see, in as general a way as possible (supplying the radio
group name where needed), if the user changed the default setting. Looping through each of
the radio buttons, you look for the one whose checked attribute is set in the <input> defini-
tion. With that index value (i) in hand, you then look to see if that entry is still checked. If not
(notice the ! negation operator), you display an alert dialog box about the change.

Listing 22-7: Has a Radio Button Changed?

function groupChanged(form) {
for (var i = 0; i < form.stooges.length; i++) {

if (form.stooges[i].defaultChecked) {
if (!form.stooges[i].checked) {

alert(“This radio group has been changed.”);
}

}
}

}

Related Items: checked, value properties.

document.formObject.radioObject.checked

667Chapter 22 ✦ Button Objects

length
Value: Integer. Read-Only
Compatibility: WinIE3+, MacIE3+, NN2+, Moz1+, Safari1+

A radio button group has length — the number of individual radio buttons defined for that
group. Attempting to retrieve the length of an individual button yields a null value. The
length property is valuable for establishing the maximum range of values in a repeat loop
that must cycle through every button within that group. If you specify the length property
to fill that value (rather than hard-wiring the value), the loop construction will be easier to
maintain — as you make changes to the number of buttons in the group during page construc-
tion, the loop adjusts to the changes automatically.

Related Items: None.

name
Value: Identifier string. Read-Only
Compatibility: WinIE3+, MacIE3+, NN2+, Moz1+, Safari1+

The name property, while associated with an entire radio button group, can be read only from
individual buttons in the group, such as

btnGroupName = document.forms[0].groupName[2].name;

In that sense, each radio button element in a group inherits the name of the group. Your
scripts have little need to extract the name property of a button or group. More often than
not, you will hard-wire a button group’s name into your script to extract other properties of
individual buttons. Getting the name property of an object whose name you know is obviously
redundant. But understanding the place of radio button group names in the scheme of
JavaScript objects is important for all scripters.

Related Items: value property.

type
Value: String (radio). Read-Only
Compatibility: WinIE4+, MacIE4+, NN3+, Moz1+, Safari1+

Use the type property to help identify a radio object from an unknown group of form elements.

Related Items: form.elements property.

value
Value: String. Read/Write
Compatibility: WinIE3+, MacIE3+, NN2+, Moz1+, Safari1+

As described earlier in this chapter for the checkbox object, the value property contains
arbitrary information that you assign when mapping out the <input> definition for an indi-
vidual radio button. Using this property is a handy shortcut to correlating a radio button
label with detailed or related information of interest to your script or CGI program on a
server. If you like, the value property can contain the same text as the label.

Related Items: name property.

document.formObject.radioObject.value

668 Part III ✦ Document Objects Reference

Methods
click()

Returns: Nothing.
Compatibility: WinIE3+, MacIE3+, NN2+, Moz1+, Safari1+

The intention of the click() method is to enact, via a script, the physical act of clicking a
radio button. However, you better serve your scripts by setting the checked properties of all
buttons in a group so that you know exactly what the setting of the group is at any time.

Related Items: checked property; onclick event handler.

Event handlers
onclick

Compatibility: WinIE3+, MacIE3+, NN2+, Moz1+, Safari1+

Radio buttons, more than any user interface element available in HTML, are intended for use
in making choices that other objects, such as submit or standard buttons, act upon later. You
may see cases in Windows or Mac programs in which highlighting a radio button — at most —
activates or brings into view additional, related settings (see Listing 22-5).

I strongly advise you not to use scripting handlers that perform significant actions at the click
of any radio button. At best, you may want to use knowledge about a user’s clicking of a radio
button to adjust a global variable or document.cookie setting that influences subsequent
processing. Be aware, however, that if you script such a hidden action for one radio button in
a group, you must also script similar actions for others in the same group. That way, if a user
changes the setting back to a previous condition, the global variable is reset to the way it
was. JavaScript, however, tends to run fast enough so that a batch operation can make such
adjustments after the user clicks a more action-oriented button.

Every time a user clicks one of the radio buttons in Listing 22-8, he or she sets a global vari-
able to true or false, depending on whether the person is a Shemp lover. This action is
independent of the action that is taking place if the user clicks on the View Full Name button.
An onunload event handler in the <body> definition triggers a function that displays a mes-
sage to Shemp lovers just before the page clears (click the browser’s Reload button to leave
the current page prior to reloading). Here I use an initialize function triggered by onload so
that the current radio button selection sets the global value upon a reload.

Listing 22-8: An onclick Event Handler for Radio Buttons

<html>
<head>

<title>Radio Button onClick Handler</title>
<script type=”text/javascript”>
var ShempOPhile = false
function initValue() {

ShempOPhile = document.forms[0].stooges[3].checked;
}

document.formObject.radioObject.click()

669Chapter 22 ✦ Button Objects

function fullName(form) {
for (var i = 0; i < form.stooges.length; i++) {

if (form.stooges[i].checked) {
break;

}
}
alert(“You chose “ + form.stooges[i].value + “.”);

}
function setShemp(setting) {

ShempOPhile = setting;
}
function exitMsg() {

if (ShempOPhile) {
alert(“You like SHEMP?”);

}
}
</script>

</head>
<body onload=”initValue()” onunload=”exitMsg()”>

<form>
Select your favorite Stooge:
<p><input type=”radio” name=”stooges” value=”Moe Howard”

checked=”checked” onclick=”setShemp(false)” />Moe <input
type=”radio” name=”stooges” value=”Larry Fine”
onclick=”setShemp(false)” />Larry <input type=”radio”
name=”stooges” value=”Curly Howard”
onclick=”setShemp(false)” />Curly <input type=”radio”
name=”stooges” value=”Shemp Howard”
onclick=”setShemp(true)” />Shemp</p>

<p><input type=”button” name=”Viewer” value=”View Full Name...”
onclick=”fullName(this.form)” /></p>

</form>
</body>

</html>

image Input Object
For HTML element properties, methods, and event handlers, see Chapter 15.

Properties Methods Event Handlers

complete
form†
name†
src
type

† See Button object.

document.formObject.imageObject

670 Part III ✦ Document Objects Reference

Syntax
Accessing image input object properties or methods:

(All) [window.]document.formName.imageName.property |
method([parameters])
(All) [window.]document.formName.elements[index].property |
method([parameters])
(All) [window.]document.forms[index].imageName.property |
method([parameters])
(All) [window.]document.forms[“formName”].imageName.property |

method([parameters])
(All) [window.]document.forms[“formName”].elements[index].property |

method([parameters])
(IE4+) [window.]document.all.elemID.property | method([parameters])
(IE5+/W3C) [window.]document.getElementById(“elemID”).property |
method([parameters])

Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

About this object
Browsers with fuller document object models include the image input element among script-
able objects. The image input object most closely resembles the button input object but
replaces the value property (which defines the label for the button) with the src property,
which defines the URL for the image that is to be displayed in the form control. This is a
much simpler way to define a clickable image icon, for example, than the way required for
compatibility with older browsers: wrapping an img element inside an a element so that you
can use the a element’s event handlers.

Although this element loads a regular Web image in the document, you have virtually no con-
trol over the image, which the img element provides. Be sure the rendering is as you predict.

Properties
complete

Value: Boolean. Read-Only
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-

The complete property works as it does for an img element, reporting true if the image has
finished loading. Otherwise the property returns false. Interestingly, there is no onload
event handler for this object.

Related Items: image.complete property.

src
Value: URL string. Read/Write
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

Like the img element object, the image input element’s src property controls the URL of the
image being displayed in the element. The property can be used for image swapping in a form
control, just as it is for a regular img element. Because the image input element has all neces-
sary mouse event handlers available (for example, onmouseover, onmouseout, onmousedown)
you can script rollovers, click-downs, or any other user interface technique that you feel is
appropriate for your buttons and images. To adapt code written for link-wrapped images,

document.formObject.imageObject

671Chapter 22 ✦ Button Objects

move the event handlers from the a element to the image input element, and make sure the
name of the image input element is the same as your old img element.

Older browsers load images into an image input element, but no event handlers are recognized.

Related Items: image.src property.

type
Value: String (image). Read-Only
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

Use the type property to help you identify an image input object from an unknown group of
form elements.

Related Items: form.elements property.

✦ ✦ ✦

document.formObject.imageObject.type

Text-Related
Form Objects

The document object model for forms includes four text-related
user interface objects — text, password, and hidden input ele-

ment objects, plus the textarea element object. All four of these
objects are used for entry, display, or temporary storage of text data.
While all of these objects can have text placed in them by default as
the page loads, scripts can also modify the contents of these objects.
Importantly, all but the hidden objects retain their user- or script-
modified content during a soft reload (for example, clicking the
Reload button); hidden objects revert to their default values on all
reloads.

A more obvious difference between the hidden object and the rest is
that its invisibility removes it from the realm of user events and
actions. Therefore, the range of scripted possibilities is much smaller
for the hidden object.

The persistence of text and textarea object data through reloads
(and window resizes) makes these objects prime targets for off-
screen storage of data that may otherwise be stored temporarily in a
cookie. If you create a frame with no size (for example, you set the
cols or rows values of a <frameset> tag to let all visible frames
occupy 100 percent of the space and assign the rest —*— to the hid-
den frame), you can populate the frame with fields that act as shop-
ping cart information or other data holders. Therefore, if users have
cookies turned off or don’t usually respond affirmatively to cookie
requests, your application can still make use of temporary client stor-
age. The field contents may survive unloading of the page, but
whether this happens and for how many navigations away from the
page the contents last depends on the visitor’s cache settings. If the
user quits the browser or closes the browser window, the field entry
is lost.

2323C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Capturing and
modifying text field
contents

Triggering action by
entering text

Capturing individual
keystroke events

✦ ✦ ✦ ✦

674 Part III ✦ Document Objects Reference

Text Input Object
For HTML element properties, methods, and event handlers, see Chapter 15.

Properties Methods Event Handlers

defaultValue select() onafterupdate*
form onbeforeupdate*
maxLength onchange
name onerrorupdate*
readOnly onselect
size
type
value

Syntax
Accessing text input object properties or methods:

(All) [window.]document.formName.fieldName.property | method([parameters])
(All) [window.]document.formName.elements[index].property |
method([parameters])
(All) [window.]document.forms[index].fieldName.property |
method([parameters])
(All) [window.]document.forms[“formName”].fieldName.property |

method([parameters])
(All) [window.]document.forms[“formName”].elements[index].property |

method([parameters])
(IE4+) [window.]document.all.elemID.property | method([parameters])
(IE5+/W3C) [window.]document.getElementById(“elemID”).property |
method([parameters])

Compatibility: WinIE3+, MacIE3+, NN2+, Moz1+, Safari1+

About this object
The text input object is the primary medium for capturing single-line, user-entered text. By
default, browsers tend to display entered text in a monospaced font (usually Courier or a
derivative) so that you can easily specify the width (size) of a field based on the anticipated
number of characters that a user may put into the field. Until you get to IE4+ and W3C-
compatible browsers, the font is a fixed size and always is left-aligned in the field. In those
later browsers, stylesheets can control the font characteristics of a text field. If your design
requires multiple lines of text, use the textarea object that comes later in this chapter.

Before the W3C DOM allowed dynamic modification of body content, a common practice was
to use text objects to display results of a script calculation or other processing. Such fields
may stand alone on a page or be part of a table.

document.formObject.textObject

675Chapter 23 ✦ Text-Related Form Objects

Also prior to the W3C DOM, these fields could not be made fully write-protected, so it was
easy to understand how a novice user may have become confused after he or she caused the
text pointer or selection to activate a field used exclusively for output, simply by tabbing
through a page.

Text object methods and event handlers use terminology that may be known to Windows
users but not to Macintosh users. A field is said to have focus whenever the user clicks or
tabs into the field. When a field has focus, either the text insertion pointer flashes, or any text
in the field may be selected. Only one text object on a page can have focus at a time. The
inverse user action — clicking or tabbing away from a text object — is called a blur. Clicking
another object, whether it is another field or a button of any kind, causes a field that cur-
rently has focus to blur.

If you don’t want the contents of a field to be changed by the user, you have three
possibilities — depending on the vintage of browsers you need to support: forcing the field
to lose focus; disabling the field; or setting the field’s readOnly property.

The tactic that is completely backward compatible uses the following event handler in a field
you want to protect:

onfocus=”this.blur()”

Starting with IE4 and NN6, the object model provides a disabled property for form controls.
Setting the property to true leaves the element visible on the page, but the user cannot
access the control. The same browsers provide a readOnly property, which doesn’t dim the
field, but prevents typing in the field.

Text fields and events
Focus and blur also interact with other possible user actions to a text object: selecting and
changing. Selecting occurs when the user clicks and drags across any text in the field; chang-
ing occurs when the user makes any alteration to the content of the field and then either tabs
or clicks away from that field.

When you design event handlers for fields, be aware that a user’s interaction with a field may
trigger more than one event with a single action. For instance, clicking a field to select text
may trigger both a focus and select event. If you have conflicting actions in the onfocus
and onselect event handlers, your scripts can do some weird things to the user’s experience
with your page. Displaying alert dialog boxes, for instance, also triggers blur events, so a
field that has both an onselect handler (which displays the alert) and an onblur handler
gets a nasty interaction from the two.

As a result, be very judicious with the number of event handlers you specify in any text object
definition. If possible, pick one user action that you want to use to initiate some JavaScript
code execution and deploy it consistently on the page. Not all fields require event handlers —
only those you want to perform some action as the result of user activity in that field.

Many newcomers also become confused by the behavior of the change event. To prevent this
event from being sent to the field for every character the user types, any change to a field is
determined only after the field loses focus by the user’s clicking or tabbing away from it. At
that point, instead of a blur event being sent to the field, only a change event is sent, trigger-
ing an onchange event handler if one is defined for the field. This extra burden of having to
click or tab away from a field may entice you to shift any onchange event handler tasks to a
separate button that the user must click to initiate action on the field contents.

document.formObject.textObject

676 Part III ✦ Document Objects Reference

Starting with version 4 browsers, text fields also have event handlers for keyboard actions,
namely onkeydown, onkeypress, and onkeyup. With these event handlers, you can intercept
keystrokes before the characters reach the text field. Thus, you can use keyboard events to
prevent anything but numbers from being entered into a text box while the user types the
characters.

To extract the current content of a text object, summon the property document.formName.
fieldName.value. After you have the string value, you can use JavaScript’s string object
methods to parse or otherwise massage that text as needed for your script. If the field entry
is a number and you need to pass that value to methods requiring numbers, you have to con-
vert the text to a number with the help of the parseInt() or parseFloat() global functions.

document.formObject.textObject

Text Boxes and the Enter/Return Key

Early browsers established a convention that continues to this day. When a form consists of only
one text box, a press of the Enter/Return key acts the same as clicking a Submit button for the
form. You have probably experienced this many times when entering a value into a single search
field of a form. Press the Enter/Return key, and the search request goes off to the server.

The flip side is that if the form contains more than one text box, the Enter/Return key does no
submission from any of the text boxes (IE for the Mac and Safari are exceptions: they submit no
matter how many text boxes there are). But with the advent of keyboard events, you can script
this action (or the invocation of a client-side script) into any text boxes of the form you like. To
make it work with all flavors of browsers capable of keyboard events requires a small conversion
function that extracts the DOM-specific desired code from the keystroke. The following listing
shows a sample page that demonstrates how to implement a function that inspects each
keystroke from a text field and initiates processing if the key pressed is the Enter/Return key:

<html>
<head>

<title>Enter/Return Event Trigger</title>
<script type=”text/javascript”>
// Event object processor for NN4, IE4+, NN6
function isEnterKey(evt) {

evt = (evt) ? evt : (window.event) ? window.event : “”;
var theKey;
if (evt) {

theKey = (evt.which) ? evt.which : evt.keyCode;
}
return (theKey == 13);

}

function processOnEnter(fld, evt) {
if (isEnterKey(evt)) {

alert(“Ready to do some work with the form.”);
return false;

}
return true;

}
</script>

</head>

677Chapter 23 ✦ Text-Related Form Objects

Properties
defaultValue

Value: String. Read-Only
Compatibility: WinIE3+, MacIE3+, NN2+, Moz1+, Safari1+

Though your users and your scripts are free to muck with the contents of a text object by
assigning strings to the value property, you can always extract (and thus restore, if neces-
sary) the string assigned to the text object in its <input> definition. The defaultValue prop-
erty yields the string parameter of the value attribute.

Listings 23-1, 23-2, and 23-3 feature a form with only one text input element. The rules of
HTML forms say that such a form submits itself if the user presses the Enter key whenever
the field has focus. Such a submission to a form whose action is undefined causes the page
to reload, thus stopping any scripts that are running at the time. form elements for these
example listings contain an onsubmit event handler that both blocks the submission and
attempts to trigger the text box onchange event handler to run the demonstration script. In
some browsers, such as MacIE5, you may have to press the Tab key or click outside of the
text box to trigger the onchange event handler after you enter a new value.

Listing 23-1 has a simple form with a single field that has a default value set in its tag. A func-
tion (resetField()) restores the contents of the page’s lone field to the value assigned to it
in the <input> definition. For a single-field page such as this, defining a type=”reset” but-
ton or calling form.reset() works the same way because such buttons reestablish default
values of all elements of a form. But if you want to reset only a subset of fields in a form, fol-
low the example button and function in Listing 23-1.

Note

document.formObject.textObject.defaultValue

<body>
<h1>Enter/Return Event Trigger</h1>
<hr />
<form onsubmit=”return false”>

Field 1: <input type=”text” name=”field1”
onkeydown=”return processOnEnter(this, event)” />
Field 2: <input
type=”text” name=”field2”
onkeydown=”return processOnEnter(this, event)” />
Field 3: <input
type=”text” name=”field3”
onkeydown=”return processOnEnter(this, event)” />

</form>
</body>

</html>

Notice that to accommodate the NN4+ and W3C event models, a reference to the event object
must be passed as a parameter to the processing function. For more details on event handling,
see Chapter 25.

678 Part III ✦ Document Objects Reference

Listing 23-1: Resetting a Text Object to Default Value

<html>
<head>

<title>Text Object DefaultValue</title>
<script type=”text/javascript”>
function upperMe(field) {

field.value = field.value.toUpperCase();
}
function resetField(form) {

form.converter.value = form.converter.defaultValue;
}
</script>

</head>
<body>

<form onsubmit=”window.focus(); return false”>
Enter lowercase letters for conversion to uppercase: <input
type=”text” name=”converter” value=”sample”
onchange=”upperMe(this)” /> <input type=”button” value=”Reset Field”
onclick=”resetField(this.form)” />

</form>
</body>

</html>

Related Items: value property.

form
Value: Form object reference. Read-Only
Compatibility: WinIE3+, MacIE3+, NN2+, Moz1+, Safari1+

A property of every input element object is a reference to the form element that contains
the control. This property can be very convenient in a script when you are dealing with one
form control that is passed as a parameter to the function and you want to either access
another control in the same form or invoke a method of the form. An event handler of any
input element can pass this as the parameter, and the function can still get access to the
form without having to hard-wire the script to a particular form name or document layout.

The following function fragment receives a reference to a text element as the parameter. The
text element reference is needed to decide which branch to follow; then the form is submitted.

function setAction(fld) {
if (fld.value.indexOf(“@”) != -1) {

fld.form.action = “mailto:” + fld.value;
} else {

fld.form.action = “cgi-bin/normal.pl”;
}
fld.form.submit();

}

Notice how this function doesn’t have to worry about the form reference, because its job is to
work with whatever form encloses the text field that triggers this function.

Related Items: form object.

document.formObject.textObject.defaultValue

679Chapter 23 ✦ Text-Related Form Objects

maxLength
Value: Integer. Read/Write
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

The maxLength property controls the maximum number of characters allowed to be typed
into the field. There is no interaction between the maxLength and size properties. This value
is normally set initially via the maxlength attribute of the input element.

Use The Evaluator (Chapter 13) to experiment with the maxLength property. The top text
field has no default value, but you can temporarily set it to only a few characters and see how
it affects entering new values:

document.forms[0].input.maxLength = 3;

Try typing this into the field to see the results of the change. To restore the default value,
reload the page.

Related Items: size property.

name
Value: Identifier string. Read/Write
Compatibility: WinIE3+, MacIE3+, NN2+, Moz1+, Safari1+

Text object names are important for two reasons. First, if your HTML page submits informa-
tion to CGI scripts, the input device passes the name of the text object along with the data to
help the server program identify the data being supplied by the form. Second, you can use a
text object’s name in its reference within JavaScript coding. If you assign distinctive, meaning-
ful names to your fields, these names will help you read and debug your JavaScript listings
(and will help others follow your scripting tactics).

Be as descriptive about your text object names as you can. Borrowing text from the field’s on-
page label may help you mentally map a scripted reference to a physical field on the page.
Like all JavaScript object names, text object names must begin with a letter and be followed
by any number of letters or numbers. Avoid punctuation symbols with the exception of the
very safe underscore character.

Although I urge you to use distinctive names for all objects you define in a document, you can
make a case for assigning the same name to a series of interrelated fields — and JavaScript is
ready to help. Within a single form, any reused name for the same object type is placed in an
indexed array for that name. For example, if you define three fields with the name entry, the
following statements retrieve the value property for each field:

data = document.forms[0].entry[0].value;
data = document.forms[0].entry[1].value;
data = document.forms[0].entry[2].value;

This construction may be useful if you want to cycle through all of a form’s related fields to
determine which ones are blank. Elsewhere, your script probably needs to know what kind of
information each field is supposed to receive, so that it can process the data intelligently. I
don’t often recommend reusing object names, but you should be aware of how the object
model handles them in case you need this construction. See “Form element arrays” in
Chapter 21 for more details.

Consult Listing 23-2 later in this chapter, where I use the text object’s name, convertor, as
part of the reference when assigning a value to the field. To extract the name of a text object,

document.formObject.textObject.name

680 Part III ✦ Document Objects Reference

you can use the property reference. Therefore, assuming that your script doesn’t know the
name of the first object in the first form of a document, the statement is

var objectName = document.forms[0].elements[0].name;

Related Items: form.elements property; all other form element objects’ name property.

readOnly
Value: Boolean. Read/Write
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

To display text in a text field yet prevent users from modifying it, newer browsers offer the
readOnly property (and tag attribute). When set to true, the property prevents users from
changing or removing the content of the text field. Unlike a disabled text field, a read-only text
field looks just like an editable one.

For older browsers, you can partially simulate this behavior by including the following event
handler in the input element:

onfocus=”this.blur()”

The event handler approach is not foolproof, however, in that quick-fingered users may be
able to change a field before the event handler completes its task. For NN4, you can also trap
for any keyboard events and prevent them from putting characters in the field.

Use The Evaluator (Chapter 13) to set the bottom text box to be read-only. Begin by typing
anything you want in the bottom text box. Then enter the following statement into the top
text box:

document.forms[0].inspector.readOnly = true;

While existing text in the box is selectable (and therefore can be copied into the clipboard),
it cannot be modified or removed.

Related Items: disabled property.

size
Value: Integer. Read/Write
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

Unless otherwise directed, a text box is rendered to accommodate approximately 20 charac-
ters of text for the font family and size assigned to the element’s stylesheet. You can adjust
this under script control (in case the size attribute of the tag wasn’t enough) via the size
property, whose value is measured in characters (not pixels). Be forewarned, however, that
browsers don’t always make completely accurate estimates of the space required to display a
set number of characters. If you are setting the maxlength attribute of a text box, making the
size one or two characters larger is often a safe bet.

Resize the bottom text box of The Evaluator (Chapter 13) by entering the following statements
into the top text box:

document.forms[0].inspector.size = 20;
document.forms[0].inspector.size = 400;

Reload the page to return the size back to normal (or set the value to 80).

Related Items: maxLength property.

document.formObject.textObject.name

681Chapter 23 ✦ Text-Related Form Objects

type
Value: String (text). Read-Only
Compatibility: WinIE4+, MacIE4+, NN3+, Moz1+, Safari1+

Use the type property to help you identify a text input object from an unknown group of form
elements.

Related Items: form.elements property.

value
Value: String. Read/Write
Compatibility: WinIE3+, MacIE3+, NN2+, Moz1+, Safari1+

A text object’s value property is the two-way gateway to the content of the field. A reference
to an object’s value property returns the string currently showing in the field. Note that all
values coming from a text object are string values. If your field prompts a user to enter a num-
ber, your script may have to perform data conversion to the number-as-string value (“42”
instead of plain, old 42) before a script can perform math operations on it. JavaScript tries to
be as automatic about this data conversion as possible and follows some rules about it (see
Chapter 27). If you see an error message that says a value is not a number (for a math opera-
tion), the value is still a string.

Your script places text of its own into a field for display to the user by assigning a string to
the value property of a text object. Use the simple assignment operator. For example:

document.forms[0].ZIP.value = “90210”;

JavaScript is more forgiving about data types when assigning values to a text object.
JavaScript does its best to convert a value to a string on its way to a text object display. Even
Boolean values get converted to their string equivalents true or false. Scripts can place
numeric values into fields without a hitch. But remember that if a script later retrieves these
values from the text object, they will come back as strings. About the only values that don’t
get converted are objects. They typically show up in text boxes as [object] or, in some
browsers, a more descriptive label for the object.

Storing arrays in a field requires special processing. You need to use the array.join()
method to convert an array into a string. Each array entry is delimited by a character you
establish in the array.join() method. Later you can use the string.split() method to
turn this delimited string into an array.

As a demonstration of how to retrieve and assign values to a text object, Listing 23-2 shows
how the action in an onchange event handler is triggered. Enter any lowercase letters into
the field and click out of the field. I pass a reference to the entire form object as a parameter
to the event handler. The function extracts the value, converts it to uppercase (using one of
the JavaScript string object methods), and assigns it back to the same field in that form.

Listing 23-2: Getting and Setting a Text Object’s Value

<html>
<head>

<title>Text Object Value</title>
<script type=”text/javascript”>

Continued

document.formObject.textObject.value

682 Part III ✦ Document Objects Reference

Listing 23-2 (continued)

function upperMe(form) {
inputStr = form.converter.value;
form.converter.value = inputStr.toUpperCase();

}
</script>

</head>
<body>

<form onsubmit=”window.focus(); return false”>
Enter lowercase letters for conversion to uppercase: <input
type=”text” name=”converter” value=”sample”
onchange=”upperMe(this.form)” />

</form>
</body>

</html>

I also show two other ways to accomplish the same task, each one more efficient than the
previous example. Both utilize the shortcut object reference to get at the heart of the text
object. Listing 23-3 passes the text object — contained in the this reference — to the function
handler. Because that text object contains a complete reference to it (out of sight, but there
just the same), you can access the value property of that object and assign a string to that
object’s value property in a simple assignment statement.

Listing 23-3: Passing a Text Object (as this) to the Function

<html>
<head>

<title>Text Object Value</title>
<script type=”text/javascript”>
function upperMe(field) {

field.value = field.value.toUpperCase();
}
</script>

</head>
<body>

<form onsubmit=”window.focus(); return false”>
Enter lowercase letters for conversion to uppercase: <input
type=”text” name=”converter” value=”sample”
onchange=”upperMe(this)” />

</form>
</body>

</html>

Yet another way is to deal with the field values directly in an embedded event handler —
instead of calling an external function (which is easier to maintain because all scripts are
grouped together in the Head). With the function removed from the document, the event han-
dler attribute of the <input> tag changes to do all the work:

<input type=”text” name=”converter” value=”sample”
onchange=”this.value = this.value.toUpperCase()” />

document.formObject.textObject.value

683Chapter 23 ✦ Text-Related Form Objects

The right-hand side of the assignment expression extracts the current contents of the field
and (with the help of the toUpperCase() method of the string object) converts the original
string to all uppercase letters. The result of this operation is assigned to the value property
of the field.

The application of the this keyword in the previous examples may be confusing at first, but
these examples represent the range of ways in which you can use such references effectively.
Using this by itself as a parameter to an object’s event handler refers only to that single
object — a text object in Listing 23-3. If you want to pass along a broader scope of objects that
contain the current object, use the this keyword along with the outer object layer that you
want. In Listing 23-2, I sent a reference to the entire form along by specifying this.form—
meaning the form that contains “this” object, which is being defined in the line of HTML code.

At the other end of the scale, you can use similar-looking syntax to specify a particular prop-
erty of the this object. Thus, in the last example, I zeroed in on just the value property of
the current object being defined —this.value. Although the formats of this.form and
this.value appear the same, the fact that one is a reference to an object and the other just a
value can influence the way your functions work. When you pass a reference to an object, the
function can read and modify properties of that object (as well as invoke its functions); but
when the parameter passed to a function is just a property value, you cannot modify that
value without building a complete reference to the object and its value.

Related Items: form.defaultValue property.

Methods
blur()

Returns: Nothing.
Compatibility: WinIE3+, MacIE3+, NN2+, Moz1+, Safari1+

Just as a camera lens blurs when it goes out of focus, a text object blurs when it loses
focus — when someone clicks or tabs out of the field. Under script control, blur() deselects
whatever may be selected in the field, and the text insertion pointer leaves the field. The
pointer does not proceed to the next field in tabbing order, as it does if you perform a blur by
tabbing out of the field manually.

The following statement invokes the blur() method on a text box named vanishText:

document.forms[0].vanishText.blur();

Related Items: focus() method; onblur event handler.

focus()
Returns: Nothing.
Compatibility: WinIE3+, MacIE3+, NN2+, Moz1+, Safari1+

For a text object, having focus means that the text insertion pointer is flashing in that text
object’s field (having focus means something different for buttons in a Windows environ-
ment). Giving a field focus is like opening it up for human editing.

Setting the focus of a field containing text does not let you place the cursor at any specified
location in the field. The cursor usually appears at the beginning of the text (although in
WinIE4+, you can use the TextRange object to position the cursor wherever you want in the
field, as shown in Chapter 35 on the CD-ROM). To prepare a field for entry to remove the
existing text, use both the focus() and select() methods.

document.formObject.textObject.focus()

684 Part III ✦ Document Objects Reference

See Listing 23-4 for an example of an application of the focus() method in concert with the
select() method.

Related Items: select() method; onfocus event handler.

select()
Returns: Nothing.
Compatibility: WinIE3+, MacIE3+, NN2+, Moz1+, Safari1+

Selecting a field under script control means selecting all text within the text object. A typical
application is one in which an entry validation script detects a mistake on the part of the
user. After alerting the user to the mistake (via a window.alert() dialog box), the script fin-
ishes its task by selecting the text of the field in question. Not only does this action draw the
user’s eye to the field needing attention (especially important if the validation code is check-
ing multiple fields), but it also keeps the old text there for the user to examine for potential
problems. With the text selected, the next key the user presses erases the former entry.

Trying to select a text object’s contents with a click of a button is problematic. One problem
is that a click of the button brings the document’s focus to the button, which disrupts the
selection process. For more ensured selection, the script should invoke both the focus()
and the select() methods for the field, in that order. No penalty exists for issuing both
methods, and the extra insurance of the second method provides a more consistent user
experience with the page.

Some versions of WinIE are known to exhibit anomalous (meaning buggy) behavior when
using the technique of focusing and selecting a text field after the appearance of an alert dia-
log box. The fix is not elegant, but it works: inserting an artificial delay via the setTimeout()
method before invoking a separate function that focuses and selects the field. Better-behaved
browsers accept the workaround with no penalty.

Selecting a text object via script does not trigger the same onselect event handler for that
object as the one that triggers if a user manually selects text in the field. Therefore, no event
handler script is executed when a user invokes the select() method.

A click of the Verify button in Listing 23-4 performs a validation on the contents of the text box,
making sure the entry consists of all numbers. All work is controlled by the checkNumeric()
function, which receives a reference to the field needing inspection as a parameter. Because
of the way the delayed call to the doSelection() function has to be configured, various
parts of what will become a valid reference to the form are extracted from the field’s and
form’s properties. If the validation (performed in the isNumber() function) fails, the
setSelection() method is invoked after an artificial delay of zero milliseconds. As goofy
as this sounds, this method is all that IE needs to recover from the display and closure of
the alert dialog box. Because the first parameter of the setTimeout() method must be a
string, the example assembles a string invocation of the setSelection() function via string
versions of the form and field names. All that the setSelection() function does is focus and
select the field whose reference is passed as a parameter. This function is now generalizable
to work with multiple text boxes in a more complex form.

Listing 23-4: Selecting a Field

<html>
<head>

<title>Text Object Select/Focus</title>

document.formObject.textObject.focus()

685Chapter 23 ✦ Text-Related Form Objects

<script type=”text/javascript”>
// general purpose function to see if a suspected numeric input is a
// number
function isNumber(inputStr) {

for (var i = 0; i < inputStr.length; i++) {
var oneChar = inputStr.charAt(i);
if (oneChar < “0” || oneChar > “9”) {

alert(“Please make sure entries are numbers only.”);
return false;

}
}
return true;

}

function checkNumeric(fld) {
var inputStr = fld.value;
var fldName = fld.name;
var formName = fld.form.name;
if (isNumber(inputStr)) {

// statements if true
} else {

setTimeout(“doSelection(document.” + formName + “. “ + fldName +
“)”, 0);

}
}

function doSelection(fld) {
fld.focus();
fld.select();

}
</script>

</head>
<body>

<form name=”entryForm” onsubmit=”return false”>
Enter any positive integer: <input type=”text” name=”numeric” />
<p><input type=”button” value=”Verify”

onclick=”checkNumeric(this.form.numeric)” /></p>
</form>

</body>
</html>

Related Items: focus() method; onselect event handler.

Event handlers
onafterupdate
onbeforeupdate
onerrorupdate

Compatibility: WinIE4+, MacIE-, NN-, Moz-, Safari-

If you are using WinIE data binding on a text element, the element is subject to three possible
events in the course of retrieving updated data. The onbeforeupdate and onafterupdate
events fire immediately before and after (respectively) the update takes place. If an error
occurs in the retrieval of data from the database, the onerrorupdate event fires.

document.formObject.textObject.onafterupdate

686 Part III ✦ Document Objects Reference

All three events may be used for advisory purposes. For example, an onafterupdate event
handler may temporarily change the font characteristics of the element to signify the arrival
of fresh data. Or an onerrorupdate event handler may fill the field with hyphens because no
valid data exists for the field. These events apply only to input elements of type text (mean-
ing not password or hidden types).

Related Items: dataFld, dataSrc properties (Chapter 15).

onblur
onfocus
onselect

Compatibility: WinIE3+, MacIE3+, NN2+, Moz1+, Safari1+

All three of these event handlers should be used only after you have a firm understanding of
the interrelationships of the events that reach text objects. You must use extreme care and
conduct lots of user testing before including more than one of these three event handlers in a
text object. Because some events cannot occur without triggering others either immediately
before or after (for example, an onfocus occurs immediately before an onselect if the field
did not have focus before), whatever actions you script for these events should be as distinct
as possible to avoid interference or overlap.

The onselect event handler does not work in Windows versions of NN through Version 4.

In particular, be careful about displaying modal dialog boxes (for example, window.alert()
dialog boxes) in response to the onfocus event handler. Because the text field loses focus
when the alert displays and then regains focus after the alert is closed, you can get yourself
into a loop that is difficult to break out of. If you get trapped in this manner, try the keyboard
shortcut for reloading the page (Ctrl+R or Ô-R) repeatedly as you keep closing the dialog box
window.

A question often arises about whether data-entry validation should be triggered by the
onblur or onchange event handler. An onblur validation cannot be fooled, whereas an
onchange one can be (the user simply doesn’t change the bad entry as he or she tabs out of
the field). What I don’t like about the onblur way is it can cause a frustrating experience for a
user who wants to tab through a field now and come back to it later (assuming your valida-
tion requires data be entered into the field before submission). As in Chapter 43’s discussion
(on the CD-ROM) about form data validation, I recommend using onchange event handlers to
trigger immediate data checking and then using another last-minute check in a function called
by the form’s onsubmit event handler.

To demonstrate one of these event handlers, Listing 23-5 shows how you may use the win-
dow’s status bar as a prompt message area after a user activates any field of a form. When the
user tabs to or clicks on a field, the prompt message associated with that field appears in the
status bar. In Figure 23-1, the user has tabbed to the second text box, which caused the status
bar message to display a prompt for the field.

Note

document.formObject.textObject.onafterupdate

687Chapter 23 ✦ Text-Related Form Objects

Listing 23-5: The onfocus Event Handler

<html>
<head>

<title>onfocus Event Handler</title>
<script type=”text/javascript”>
function prompt(msg) {

window.status = “Please enter your “ + msg + “.”;
}
</script>

</head>
<body>

<form>
Enter your first name:<input type=”text” name=”firstName”
onfocus=”prompt(‘first name’)” />
<p>Enter your last name:<input type=”text” name=”lastName”

onfocus=”prompt(‘last name’)” /></p>
<p>Enter your address:<input type=”text” name=”address”

onfocus=”prompt(‘address’)” /></p>
<p>Enter your city:<input type=”text” name=”city”

onfocus=”prompt(‘city’)” /></p>
</form>

</body>
</html>

Figure 23-1: An onfocus event handler triggers a status bar display.

document.formObject.textObject.onblur

688 Part III ✦ Document Objects Reference

onchange
Compatibility: WinIE3+, MacIE3+, NN2+, Moz1+, Safari1+

Of all the event handlers for a text object, you will probably use the onchange handler the
most in your forms (see Listing 23-6). This event is the one I prefer for triggering the valida-
tion of whatever entry the user just typed in the field. The potential hazard of trying to do
only a batch-mode data validation of all entries before submitting an entire form is that the
user’s mental focus is away from the entry of a given field as well. When you immediately vali-
date an entry, the user is already thinking about the information category in question. See
Chapter 43 on the CD-ROM for more about data-entry validation.

In NN4 (only), if you have both onchange and any keyboard event handlers defined for the
same text field tag, the onchange event handlers are ignored. This is not true for IE4+,
NN6+, and other W3C browsers, where all events fire.

Listing 23-6: Data Validation via an onchange Event Handler

<html>
<head>

<title>Text Object Select/Focus</title>
<script type=”text/javascript”>
// general purpose function to see if a suspected numeric input is a
// number
function isNumber(inputStr) {

for (var i = 0; i < inputStr.length; i++) {
var oneChar = inputStr.substring(i, i + 1);
if (oneChar < “0” || oneChar > “9”) {

alert(“Please make sure entries are numbers only.”);
return false;

}
}
return true;

}

function checkIt(form) {
inputStr = form.numeric.value;
if (isNumber(inputStr)) {

// statements if true
} else {

form.numeric.focus();
form.numeric.select();

}
}
</script>

</head>
<body onsubmit=”checkIt(this); return false”>

<form>
Enter any positive integer: <input type=”text” name=”numeric”
onchange=”checkIt(this.form)” />

</form>
</body>

</html>

Note

document.formObject.textObject.onchange

689Chapter 23 ✦ Text-Related Form Objects

password Input Object

Properties Methods Event Handlers

See “Text Input Object”

Syntax
See “Text Input Object”

Compatibility: WinIE3+, MacIE3+, NN2+, Moz1+, Safari1+

About this object
A password-style field looks like a text object, but when the user types something into the
field, only asterisks or bullets (depending on your operating system) appear in the field. For
the sake of security, any password exchanges should be handled by a server-side program
(CGI, Java servlet, and so on).

Scripts can treat a password object exactly like a text input object. This may lead a scripter
to capture a user’s Web site password for storage in the document.cookie of the client
machine. A password object value property is returned in plain language, so that such a cap-
tured password would be stored in the cookie file the same way. Because a client machine’s
cookie file can be examined on the local computer (perhaps by a snoop during lunch hour),
plain-language storage of passwords is a potential security risk. Instead, develop a scripted
encryption algorithm for your page for reading and writing the password in the cookie. Most
password-protected sites, however, usually have a server program (CGI, for example) encrypt
the password prior to sending it back to the cookie.

See the text object discussion for the behavior of password object’s properties, methods, and
event handlers. The type property for this object returns password.

hidden Input Object

Properties Methods Event Handlers

See “Text Input Object”

Syntax
See “Text Input Object”

Compatibility: WinIE4+, MacIE4+, NN3+, Moz1+, Safari1+

document.formObject.hiddenObject

690 Part III ✦ Document Objects Reference

About this object
A hidden object is a simple string holder within a form object whose contents are not visible
to the user of your Web page. Despite the long list of properties, methods, and event handlers
that this input element type inherits by virtue of being an input element, you will be doing lit-
tle with a hidden element beyond reading and writing its value property.

The hidden object plays a vital role in applications that rely on CGI programs on the server.
Very often, the server has data that it needs to convey to itself the next time the client makes
a submission (for example, a user ID captured at the application’s login page). A CGI program
can generate an HTML page with the necessary data hidden from the user but located in a
field transmitted to the server at submit time.

Along the same lines, a page for a server application may present a user-friendly interface
that makes data-entry easy for the user. But on the server end, the database or other applica-
tion requires that the data be in a more esoteric format. A script located in the page gener-
ated for the user can use the onsubmit event handler to perform the last-minute assembly of
user-friendly data into database-friendly data in a hidden field. When the CGI program
receives the request from the client, it passes along the hidden field value to the database.

I am not a fan of the hidden object for use on client-side-only JavaScript applications. If I
want to deliver with my JavaScript-enabled pages some default data collections or values, I
do so in JavaScript variables and arrays as part of the script.

Because scripted changes to the contents of a hidden field are fragile (for example, a soft
reload erases the changes), the only place you should consider making such changes is in the
same script that submits a form to a CGI program or in a function triggered by an onsubmit
event handler. In effect, you’re just using the hidden fields as holding pens for the scripted
data to be submitted. For more persistent storage, use the document.cookie property or
genuine text fields in hidden frames, even if just for the duration of the visit to the page.

For information about the properties of the hidden object, consult the earlier listing for the
text input object. The type property for this object returns hidden.

textarea Element Object
For HTML element properties, methods, and event handlers, see Chapter 15.

Properties Methods Event Handlers

cols createTextRange() onafterupdate†
form† select()† onbeforeupdate†
name† onchange
readOnly† onerrorupdate†
rows
type†
wrap

† See “Text Input Object.”

document.formObject.hiddenObject

691Chapter 23 ✦ Text-Related Form Objects

Syntax
Accessing textarea element object properties or methods:

(All) [window.]document.formName.textareaName.property |
method([parameters])
(All) [window.]document.formName.elements[index].property |
method([parameters])
(All) [window.]document.forms[index].textareaName.property |
method([parameters])
(All) [window.]document.forms[“formName”].textareaName.property |

method([parameters])
(All) [window.]document.forms[“formName”].elements[index].property |

method([parameters])
(IE4+) [window.]document.all.elemID.property | method([parameters])
(IE5+/W3C) [window.]document.getElementById(“elemID”).property |
method([parameters])

Compatibility: WinIE3+, MacIE3+, NN2+, Moz1+, Safari1+

About this object
Although not in the same HTML syntax family as other <input> elements of a form, a
textarea object is indeed a form input element, providing multiple-line text input facilities.
Although some browsers let you put a textarea element anywhere in a document, it really
should be contained by a form element.

A textarea object closely resembles a text object, except for attributes that define its physi-
cal appearance on the page. Because the intended use of a textarea object is for multiple-
line text input, the attributes include specifications for height (number of rows) and width
(number of columns in the monospaced font). No matter what size you specify, the browser
displays a textarea with horizontal and vertical scrollbars in older browsers; more recent
browsers tend to be smarter about displaying scrollbars only when needed (although there
are exceptions). Text entered in the textarea wraps within the visible rectangle of the field if
you set the wrap attribute to virtual or physical in NN and soft or hard in IE; otherwise the
text scrolls for a significant distance horizontally (the horizontal scrollbar appears when
wrapping has the default off setting). This field is, indeed, a primitive text field by GUI com-
puting standards in that font specifications made possible in newer browsers by way of
stylesheets apply to all text in the box.

Use The Evaluator Sr. (Chapter 13) to play with the cols and rows property settings for the
Results textarea on that page. Shrink the width of the textarea by entering the following state-
ment into the top text box:

document.forms[0].output.cols = 30;

And make the textarea one row deeper:

document.forms[0].output.rows++;

All properties, methods, and event handlers of text objects apply to the textarea object.
They all behave exactly the same way (except, of course, for the type property, which is
textarea). Therefore, refer to the previous listings for the text object for scripting details for
those items. Some additional properties that are unique to the textarea object are dis-
cussed next.

textarea

692 Part III ✦ Document Objects Reference

Carriage returns inside textareas
The three classes of operating systems supported by Netscape Navigator — Windows,
Macintosh, and UNIX — do not agree about what constitutes a carriage return character in a
text string. This discrepancy carries over to the textarea object and its contents on these
platforms.

After a user enters text and uses Enter/Return on the keyboard, one or more unseen charac-
ters are inserted into the string. In the parlance of JavaScript’s literal string characters, the
carriage return consists of some combination of the newline (\n) and return (\r) character.
The following table shows the characters inserted into the string for each operating system
category.

Operating System Character String

Windows \r\n
Macintosh \r
UNIX \n

This tidbit is valuable if you need to remove carriage returns from a textarea for processing in
a CGI or local script. The problem is that you obviously need to perform platform-specific
operations on each. For the situation in which you must preserve the carriage return loca-
tions, but your server-side database cannot accept the carriage return values, I suggest you
use the string.escape() method to URL-encode the string. The return character is con-
verted to %0D and the newline character is converted to %0A. Of course these characters
occupy extra character spaces in your database, so these additions must be accounted for in
your database design.

As far as writing carriage returns into textareas, the situation is a bit easier. From NN3 and IE4
onward, if you specify any one of the combinations in the preceding table, all platforms know
how to automatically convert the data to the form native to the operating system. Therefore,
you can set the value of a textarea object to 1\r\n2\r\n3 in all platforms, and a columnar
list of the numbers 1, 2, and 3 will appear in those fields. Or, if you URL-encoded the text for
saving to a database, you can unescape that character string before setting the textarea
value, and no matter what platform the visitor has, the carriage returns are rendered cor-
rectly. Upon reading those values again by script, you can see that the carriage returns are in
the form of the platform (shown in the previous table).

Properties
cols
rows

Value: Integer. Read/Write
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

The displayed size of a textarea element is defined by its cols and rows attributes, which
are represented in the object model by the cols and rows properties, respectively. Values for
these properties are integers. For cols, the number represents the number of characters that

textarea

693Chapter 23 ✦ Text-Related Form Objects

can be displayed without horizontal scrolling of the textarea; for rows, the number is the
number of lines of text that can be displayed without vertical scrolling.

Related Items: wrap property.

wrap
Value: String. Read/Write
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-

The wrap property represents the wrap attribute, which, surprisingly, is not a W3C-sanctioned
attribute as of HTML 4.01. In any case, IE4+ lets you adjust the property by scripting. Allowable
string values are soft, hard, and off. The browser adds soft returns (the default in IE) to
word-wrap the content, but no carriage return characters are actually inserted into the text.
A setting for hard returns means that carriage return characters are added to the text (and
would be submitted with the value to a server CGI). With wrap set to off, text continues
to extend beyond the right edge of the textarea until the user manually presses the Enter/
Return key.

Related Items: cols property.

Methods
createTextRange()

Returns: TextRange object.
Compatibility: WinIE4+, MacIE-, NN-, Moz-, Safari-

The createTextRange() method for a textarea operates just as the document.
createTextRange() method, except that the range consists of text inside the textarea
element, apart from the regular body content. This version of the TextRange object comes
in handy when you want a script to control the location of the text insertion pointer inside
a textarea element for the user.

See the example for the TextRange.move() method in Chapter 5 to see how to control the
text insertion pointer inside a textarea element.

Related Items: TextRange object (Chapter 35 on the CD-ROM).

✦ ✦ ✦

textarea.createTextRange()

Select, Option, and
FileUpload Objects

Selection lists — whether in the form of pop-up menus or scrolling
lists — are space-saving form elements in HTML pages. They

enable designers to present a lot of information in a comparatively
small space. At the same time, users are familiar with the interface
elements from working in their own operating systems’ preference
dialog boxes and application windows.

However, selection lists are more difficult to script, especially in older
browsers, because the objects themselves are complicated entities.
Scripts find all the real data associated with the form control in
option elements that are nested inside select elements. As you can
see throughout this chapter, backward-compatible references neces-
sary to extract information from a select element object and its
option objects can get pretty long. The results, however, are worth
the effort.

The other object covered in this chapter, the fileUpload input
object, is frequently misunderstood as being more powerful than it
actually is. It is, alas, not the great file transfer elixir desired by many
page authors.

select Element Object
For HTML element properties, methods, and event handlers, see
Chapter 15.

Properties Methods Event Handlers

form† add() onchange
length options[i].add()
multiple item()
name† namedItem()
options[] remove()
selectedIndex options[i].remove()
size
type
value

†See “Text Input Object” (Chapter 23).

2424C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Triggering action based
on a user’s selection in
a pop-up or select list

Modifying the contents
of select objects

Using the fileUpload
object

✦ ✦ ✦ ✦

696 Part III ✦ Document Objects Reference

Syntax
Accessing select element object properties:

(All) [window.]document.formName.selectName.property |
method([parameters])
(All) [window.]document.formName.elements[index].property |
method([parameters])
(All) [window.]document.forms[index].selectName.property |
method([parameters])
(All) [window.]document.forms[“formName”].selectName.property |

method([parameters])
(All) [window.]document.forms[“formName”].elements[index].property |

method([parameters])
(IE4+) [window.]document.all.elemID.property | method([parameters])
(IE5+/W3C) [window.]document.getElementById(“elemID”).property |
method([parameters])

Compatibility: WinIE3+, MacIE3+, NN2+, Moz1+, Safari1+

About this object
select element objects are perhaps the most visually interesting user interface elements
among the standard built-in objects. In one format, they appear on the page as pop-up lists; in
another format, they appear as scrolling list boxes. Pop-up lists, in particular, offer efficient
use of page real estate for presenting a list of choices for the user. Moreover, only the choice
selected by the user shows on the page, minimizing the clutter of unneeded verbiage.

Compared with other JavaScript objects, select objects are difficult to script — mostly
because of the complexity of data that goes into a list of items. What the user sees as a
select element on the page consists of both that element and option elements that contain
the actual choices from which the user makes a selection. Some properties that are of value
to scripters belong to the select object, while others belong to the nested option objects.
For example, you can extract the number (index) of the currently selected option in the list —
a property of the entire select object. To get the displayed text of the selected option, how-
ever, you must zero in further to extract the text property of a single option among all
options defined for the object.

When you define a select object within a form, the construction of the <select>...
</select> tag pair is easy to inadvertently mess up. First, most attributes that define the
entire object — such as name, size, and event handlers — are attributes of the opening
<select> tag. Between the end of the opening tag and the closing </select> tag are addi-
tional tags for each option to be displayed in the list. The following object definition creates
a selection pop-up list containing three color choices:

<form>
<select name=”RGBColors” onchange=”changeColor(this)”>

<option selected=”selected”>Red</option>
<option>Green</option>
<option>Blue</option>

</select>
</form>

The indented formatting of the tags in the HTML document is not critical. I indent the lines of
options merely for the sake of readability.

select

697Chapter 24 ✦ Select, Option, and FileUpload Objects

By default, a select element is rendered as a pop-up list. To make it appear as a scrolled list,
assign an integer value greater than 1 to the size attribute to specify how many options
should be visible in the list without scrolling — how tall the list’s box should be, measured in
lines. Because scrollbars in GUI environments tend to require a fair amount of space to dis-
play a minimum set of clickable areas (including sliding “thumbs”), you should set list-box
style sizes to no less than 4. If that makes the list box too tall for your page design, consider
using a pop-up menu instead.

Significant differences exist in the way each GUI platform presents pop-up menus. Because
each browser sometimes relies on the operating system to display its native pop-up menu
style (and sometimes the browser designers go their own way), considerable differences
exist among the OS and browser platforms in the size of a given pop-up menu. What fits
nicely within a standard window width of one OS may not fit in the window of another OS in
a different browser. In other words, you cannot rely on any select object having a precise
dimension on a page (in case you’re trying to align a select object with an image).

In list-box form, you can set a select object to accept multiple, noncontiguous selections.
Users typically accomplish such selections by holding down a modifier key (the Shift, Ctrl, or
Ô key, depending on the operating system) while clicking additional options. To switch on
this capability for a select object, include the multiple attribute constant in the definition.

For each entry in a list, your <select> tag definition must include an <option> tag plus the
text as you want it to appear in the list. If you want a pop-up list to show a default selection
when the page loads, you must attach a selected attribute to that item’s <option> tag.
Without this attribute, the default item may be empty or the first item, depending on the
browser. (I go more in depth about this in the option object discussion later in this chapter.)
You can also assign a string to each option’s value attribute. As with radio buttons, this
value can be text other than the wording displayed in the list. In essence, your script can act
on that “hidden” value rather than on the displayed text, such as letting a plain-language
select listing actually refer to a complex URL. This string value is also the value sent to a CGI
program (as part of the name-value pair) when the user submits the select object’s form.

One behavioral aspect of the select object may influence your page design. The onchange
event handler triggers immediately when a user makes a new selection in a pop-up list. If you
prefer to delay any action until the user makes other settings in the form, omit an onchange
event handler in the select object — but be sure to create a button that enables users to ini-
tiate an action governed by those user settings.

Modifying select options (NN3+, IE4+)
Script control gives you considerable flexibility in modifying the contents and selection of a
select object. These powers are available only in NN3+ or IE4+ (I discuss a W3C approach
a bit later in the chapter). Some of this flexibility is rather straightforward, such as changing
the selectObj.options[i].text property to alter the display of a single-option entry. The
situation gets tricky, though, when the number of options in the select object changes. Your
choices include

✦ Removing an individual option (and thus collapsing the list)

✦ Reducing an existing list to a fewer number of options

✦ Removing all options

✦ Adding new options to a select object

select

698 Part III ✦ Document Objects Reference

To remove an option from the list, set the specific option to null. For example, if a list con-
tains five items and you want to eliminate the third item altogether (reducing the list to four
items), the syntax (from the select object reference) for doing that task is this:

selectObj.options[2] = null;

After this statement, selectObj.options.length equals 4.

In another scenario, suppose that a select object has five options in it and you want to
replace it with one having only three options. You first must hard-code the length property
to 3:

selectObj.options.length = 3;

Then, set individual text and value properties for index values 0 through 2.

Perhaps you want to start building a new list of contents by completely deleting the original
list (without harming the select object). To accomplish this, set the length to 0:

selectObj.options.length = 0;

From here, you have to create new options (as you do when you want to expand a list from,
say, three to seven options). The mechanism for creating a new option involves an object
constructor: new Option(). This constructor accepts up to four parameters, which enable
you to specify the equivalent of an <option> tag’s attributes:

✦ Text to be displayed in the option

✦ Contents of the option’s value property

✦ Whether the item is the defaultSelected option (Boolean)

✦ Whether the item is selected (Boolean)

You can set any (or none) of these items as part of the constructor and return to other state-
ments to set their properties. I suggest setting the first two parameters (leave the others
blank) and then setting the selected property separately. The following is an example of a
statement that creates a new, fifth entry, in a select object and sets both its displayed text
and value properties:

selectObj.options[4] = new Option(“Yahoo”,”http://www.yahoo.com”);

To demonstrate all of these techniques, Listing 24-1 enables you to change the text of a
select object — first by adjusting the text properties in the same number of options and
then by creating an entirely new set of options. Radio button onclick event handlers trigger
functions for making these changes — rare examples of when radio buttons can logically initi-
ate visible action.

Listing 24-1: Modifying select Options

<html>
<head>

<title>Changing Options On The Fly</title>
<script type=”text/javascript” language=”JavaScript”>
// flag to reload page for older NNs
var isPreNN6 = (navigator.appName == “Netscape” &&

parseInt(navigator.appVersion) <= 4);

select

699Chapter 24 ✦ Select, Option, and FileUpload Objects

// initialize color list arrays
plainList = new Array(6);
hardList = new Array(6);
plainList[0] = “cyan”;
hardList[0] = “#00FFFF”;
plainList[1] = “magenta”;
hardList[1] = “#FF00FF”;
plainList[2] = “yellow”;
hardList[2] = “#FFFF00”;
plainList[3] = “lightgoldenrodyellow”;
hardList[3] = “#FAFAD2”;
plainList[4] = “salmon”;
hardList[4] = “#FA8072”;
plainList[5] = “dodgerblue”;
hardList[5] = “#1E90FF”;

// change color language set
function setLang(which) {

var listObj = document.forms[0].colors;
// filter out old browsers
if (listObj.type) {

// find out if it’s 3 or 6 entries
var listLength = listObj.length;
// save selected index
var currSelected = listObj.selectedIndex;
// replace individual existing entries
for (var i = 0; i < listLength; i++) {

if (which == “plain”) {
listObj.options[i].text = plainList[i];

} else {
listObj.options[i].text = hardList[i];

}
}
if (isPreNN6) {

history.go(0);
} else {

listObj.selectedIndex = currSelected;
}

}
}

// create entirely new options list
function setCount(choice) {

var listObj = document.forms[0].colors;
// filter out old browsers
if (listObj.type) {

// get language setting
var lang = (document.forms[0].geekLevel[0].checked) ?

“plain” : “hard”;
// empty options from list
listObj.length = 0;
// create new option object for each entry
for (var i = 0; i < choice.value; i++) {

if (lang == “plain”) {
listObj.options[i] = new Option(plainList[i]);

} else {
listObj.options[i] = new Option(hardList[i]);

Continued

select

700 Part III ✦ Document Objects Reference

Listing 24-1 (continued)

}
}
listObj.options[0].selected = true;
if (isPreNN6) {

history.go(0);
}

}
}
</script>

</head>
<body>

<h1>Flying Select Options</h1>
<form>

Choose a palette size: <input type=”radio” name=”paletteSize”
value=”3” onclick=”setCount(this)” checked=”checked” />Three <input
type=”radio” name=”paletteSize” value=”6”
onclick=”setCount(this)” />Six
<p>Choose geek level: <input type=”radio” name=”geekLevel” value=””

onclick=”setLang(‘plain’)” checked=”checked” />Plain-language
<input type=”radio” name=”geekLevel” value=””
onclick=”setLang(‘hard’)” />Gimme hex-triplets!</p>

<p>Select a color: <select name=”colors”>
<option selected=”selected”>cyan</option>
<option>magenta</option>
<option>yellow</option>

</select></p>
</form>

</body>
</html>

In an effort to make this code easily maintainable, the color choice lists (one in plain lan-
guage, the other in hexadecimal triplet color specifications) are established as two separate
arrays. Repeat loops in both large functions can work with these arrays no matter how big
they get.

The first two radio buttons (see Figure 24-1) trigger the setLang() function. This function’s
first task is to extract a reference to the select object to make additional references shorter
(just listObj). Then by way of the length property, you find out how many items are cur-
rently displayed in the list because you just want to replace as many items as are already
there. In the repeat loop, you set the text property of the existing select options to corre-
sponding entries in either of the two array listings.

In the second pair of radio buttons, each button stores a value indicating how many items
should be displayed when the user clicks the button. This number is picked up by the
setCount() function and is used in the repeat loop as a maximum counting point. In the
meantime, the function finds the selected language radio button and zeros out the select
object entirely. Options are rebuilt from scratch using the new Option() constructor for
each option. The parameters are the corresponding display text entries from the arrays.
Because none of these new options have other properties set (such as which one should be
selected by default), the function sets that property of the first item in the list.

select

701Chapter 24 ✦ Select, Option, and FileUpload Objects

Figure 24-1: Radio button choices alter the contents of the select object on the fly.

Notice that both functions call history.go(0) for NN3 and NN4 browsers after setting up
their select objects. The purpose of this call is to give these earlier Navigator versions an
opportunity to resize the select object to accommodate the contents of the list. The differ-
ence in size here is especially noticeable when you switch from the six-color, plain-language
list to any other list. Without resizing, some long items are not readable. IE4+ and NN6+, on
the other hand, automatically redraw the page to the newly sized form element.

Modifying select options (IE4+)
Microsoft offers another way to modify select element options for IE4+, but the technique
involves two proprietary methods of the options array property of the select object.
Because I cover all other ways of modifying the select element in this section, I cover the IE
way of doing things here as well.

The two options array methods are add() and remove(). The add() method takes one
required parameter and one optional parameter. The required parameter is a reference to an
option element object that your script creates in another statement (using the document.
createElement() method). If you omit the second parameter to add(), the new option ele-
ment is appended to the current collection of items. But you can also specify an index value
as the second parameter. The index points to the position in the options array where the
new item is to be inserted.

Listing 24-2 shows how to modify the two main functions from Listing 24-1 using the IE
approach exclusively (changes and additions appear in bold). The script assumes that only
IE browsers ever load the page (in other words, there is no filtering for browser brand here).

select

702 Part III ✦ Document Objects Reference

When replacing one set of options with another, there are two approaches demonstrated. In
the first (the setLang() function), the replacements have the same number of items, so the
length of existing options provides a counter and index value for the remove() and add()
methods. But when the number of items may change (as in the setCount() function), a tight
loop removes all items before they are added back via the add() method without a second
parameter (items are appended to the list). The approach shown in Listing 24-2 has no spe-
cific benefit over that of Listing 24-1.

Listing 24-2: Modifying select Options (IE4+)

// change color language set
function setLang(which) {

var listObj = document.forms[0].colors;
var newOpt;
// filter out old IE browsers
if (listObj.type) {

// find out if it’s 3 or 6 entries
var listLength = listObj.length;
// save selected index
var currSelected = listObj.selectedIndex;
// replace individual existing entries
for (var i = 0; i < listLength; i++) {

newOpt = document.createElement(“option”);
newOpt.text = (which == “plain”) ? plainList[i] : hardList[i];
listObj.options.remove(i);
listObj.options.add(newOpt, i);

}
listObj.selectedIndex = currSelected;

}
}

// create entirely new options list
function setCount(choice) {

var listObj = document.forms[0].colors;
var newOpt;
// filter out old browsers
if (listObj.type) {

// get language setting
var lang = (document.forms[0].geekLevel[0].checked) ? “plain” : “hard”;
// empty options from list
while (listObj.options.length) {

listObj.options.remove(0);
}
// create new option object for each entry
for (var i = 0; i < choice.value; i++) {

newOpt = document.createElement(“option”);
newOpt.text = (lang == “plain”) ? plainList[i] : hardList[i];
listObj.options.add(newOpt);

}
listObj.options[0].selected = true;

}
}

select

703Chapter 24 ✦ Select, Option, and FileUpload Objects

Modifying select options (W3C DOM)
Yet another approach is possible in browsers that closely adhere to the W3C DOM Level 2
standard. In NN6+, Moz1+, and Safari1+, for example, you can use the add() and remove()
methods of the select element object. They work very much like the same-named methods
for the options array in IE4+, but these are methods of the select element object itself. The
other main difference between the two syntaxes is that the add() method does not use the
index value as the second parameter but rather a reference to the option element object
before which the new option is inserted. The second parameter is required, so to simply
append the new item at the end of the current list, supply null as the parameter. Listing 24-3
shows the W3C-compatible version of the select element modification scripts shown in
Listings 24-1 and 24-2. I highlight source code lines in bold that exhibit differences between
the IE4+ and W3C DOM versions.

Listing 24-3: Modifying select Options (W3C)

// change color language set
function setLang(which) {

var listObj = document.forms[0].colors;
var newOpt;
// filter out old IE browsers
if (listObj.type) {

// find out if it’s 3 or 6 entries
var listLength = listObj.length;
// save selected index
var currSelected = listObj.selectedIndex;
// replace individual existing entries
for (var i = 0; i < listLength; i++) {

newOpt = document.createElement(“option”);
newOpt.text = (which == “plain”) ? plainList[i] : hardList[i];
listObj.remove(i);
listObj.add(newOpt, listObj.options[i]);

}
listObj.selectedIndex = currSelected;

}
}

// create entirely new options list
function setCount(choice) {

var listObj = document.forms[0].colors;
var newOpt;
// filter out old browsers
if (listObj.type) {

// get language setting
var lang = (document.forms[0].geekLevel[0].checked) ? “plain” : “hard”;
// empty options from list
while (listObj.options.length) {

listObj.remove(0);
}
// create new option object for each entry
for (var i = 0; i < choice.value; i++) {

newOpt = document.createElement(“option”);

Continued

select

704 Part III ✦ Document Objects Reference

Listing 24-3 (continued)

newOpt.text = (lang == “plain”) ? plainList[i] : hardList[i];
listObj.add(newOpt, null);

}
listObj.options[0].selected = true;

}
}

As with the IE4 version, the W3C version offers no specific benefit over the original, backward-
compatible approach. Choose the most modern one that fits the types of browsers you need
to support with your page.

Properties
length

Value: Integer. Read/Write (see text)
Compatibility: WinIE3+, MacIE3+, NN2+, Moz1+, Safari1+

Like all JavaScript arrays, the options array has a length property of its own. But rather
than having to reference the options array to determine its length, the select object has its
own length property that you use to find out how many items are in the list. This value is the
number of options in the object. A select object with three choices in it has a length prop-
erty value of 3.

In NN3+ and IE4+, you can adjust this value downward after the document loads. This is one
way to decrease the number of options in a list. Setting the value to 0 causes the select
object to empty but not disappear.

See Listing 24-1 for an illustration of the way you use the length property to help determine
how often to cycle through the repeat loop in search of selected items. Because the loop
counter, i, must start at 0, the counting continues until the loop counter is one less than the
actual length value (which starts its count with 1).

Related Item: options property.

multiple
Value: Boolean. Read/Write
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

The multiple property represents the multiple attribute setting for a select element
object. If the value is true, the element accepts multiple selections by the user (for example,
Ctrl+clicking in Windows). If you want to convert a pop-up list into a multiple select pick
list, you must also adjust the size property to direct the browser to render a set number of
visible choices in the list.

The following statement toggles between single and multiple selections on a select element
object whose size attribute is set to a value greater than 1:

document.forms[0].mySelect.multiple = !document.forms[0].mySelect.multiple;

Related Item: size property.

select

705Chapter 24 ✦ Select, Option, and FileUpload Objects

options[index]
Value: Array of option element objects. Read-Only
Compatibility: WinIE3+, MacIE3+, NN2+, Moz1+, Safari1+

You typically don’t summon this property by itself. Rather, it is part of a reference to a spe-
cific option’s properties (or methods in later browsers) within the entire select object. In
other words, the options property is a kind of gateway to more specific properties, such as
the value assigned to a single option within the list.

In newer browsers (IE4+ and W3C), you can reference individual options as separate HTML
element objects. These references do not require the reference to the containing form or
select element objects. For backward compatibility, however, I recommend you stick with
the long references through the select objects.

I list the next several properties here in the select object discussion because they are
backward-compatible with all browsers, including browsers that don’t treat the option
element as a distinct object. Be aware that all properties shown here that include options
[index] as part of their references are also properties of the option element object in
IE4+ and W3C browsers.

See Listings 24-1 through 24-3 for examples of how the options array references information
about the options inside a select element.

Related Items: All options[index].property items.

options[index].defaultSelected
Value: Boolean. Read-Only
Compatibility: WinIE3+, MacIE3+, NN2+, Moz1+, Safari1+

If your select object definition includes one option that features the selected attribute,
that option’s defaultSelected property is set to true. The defaultSelected property for
all other options is false. If you define a select object that allows multiple selections (and
whose size attribute is greater than 1), however, you can define the selected attribute for
more than one option definition. When the page loads, all items with that attribute are prese-
lected for the user (even in noncontiguous groups).

The following statement preserves a Boolean value if the first option of the select list is the
default selected item:

var zeroIsDefault = document.forms[0].listName.options[0].defaultSelected;

Related Item: options[index].selected property.

options[index].index
Value: Integer. Read-Only
Compatibility: WinIE3+, MacIE3+, NN6+, Moz1+, Safari1+

The index value of any single option in a select object likely is a redundant value in your
scripting. Because you cannot access the option without knowing the index anyway (in brack-
ets as part of the options[index] array reference), you have little need to extract the index
value. The value is a property of the item just the same.

The following statement assigns the index integer of the first option of a select element
named listName to a variable named itemIndex.

var itemIndex = document.forms[0].listName.options[0].index;

Related Item: options property.

select.options[index].index

706 Part III ✦ Document Objects Reference

options[index].selected
Value: Boolean. Read/Write
Compatibility: WinIE3+, MacIE3+, NN2+, Moz1+, Safari1+

As mentioned earlier in the discussion of this object, better ways exist for determining which
option a user selects from a list than looping through all options and examining the selected
property. An exception to that “rule” occurs when you set up a list box to enable multiple selec-
tions. In this situation, the selectedIndex property returns an integer of only the topmost
item selected. Therefore, your script needs to look at the true or false values of the selected
property for each option in the list and determine what to do with the text or value data.

To accumulate a list of all items selected by the user, the seeList() function in Listing 24-4
systematically examines the options[index].selected property of each item in the list.
The text of each item whose selected property is true is appended to the list. I add the “\n”
inline carriage returns and spaces to make the list in the alert dialog box look nice and
indented. If you assign other values to the value attributes of each option, the script can
extract the options[index].value property to collect those values instead.

Listing 24-4: Cycling through a Multiple-Selection List

<html>
<head>

<title>Accessories List</title>
<script type=”text/javascript”>
function seeList(form) {

var result = “”;
for (var i = 0; i < form.accList.length; i++) {

if (form.accList.options[i].selected) {
result += “\n “ + form.accList.options[i].text;

}
}
alert(“You have selected:” + result);

}
</script>

</head>
<body>

<form>
<p>Control/Command-click on all accessories you use: <select

name=”accList” size=”9” multiple=”multiple”>
<option selected=”selected”>Color Monitor</option>
<option>Modem</option>
<option>Scanner</option>
<option>Laser Printer</option>
<option>Tape Backup</option>
<option>MO Drive</option>
<option>Video Camera</option>

</select></p>
<p><input type=”button” value=”View Summary...”

onclick=”seeList(this.form)” /></p>
</form>

</body>
</html>

Related Items: options[index].text, options[index].value, selectedIndex properties.

select.options[index].selected

707Chapter 24 ✦ Select, Option, and FileUpload Objects

options[index].text
Value: String. Read/Write
Compatibility: WinIE3+, MacIE3+, NN2+, Moz1+, Safari1+

The text property of an option is the text of the item as it appears in the list. If you can pass
that wording along with your script to perform appropriate tasks, this property is the one
you want to extract for further processing. But if your processing requires other strings asso-
ciated with each option, assign a value attribute in the definition and extract the
options[index].value property (see Listing 24-6).

To demonstrate the text property of an option, Listing 24-5 applies the text from a selected
option to the document.bgColor property of a document in the current window. The color
names are part of the collection built into all scriptable browsers; fortunately, the values are
case-insensitive so that you can capitalize the color names displayed and assign them to the
property.

Listing 24-5: Using the options[index].text Property

<html>
<head>

<title>Color Changer 1</title>
<script type=”text/javascript”>
function seeColor(form) {

var newColor =
(form.colorsList.options[form.colorsList.selectedIndex].text);

document.bgColor = newColor;
}
</script>

</head>
<body>

<form>
<p>Choose a background color: <select name=”colorsList”>

<option selected=”selected”>Gray</option>
<option>Lime</option>
<option>Ivory</option>
<option>Red</option>

</select></p>
<p><input type=”button” value=”Change It”

onclick=”seeColor(this.form)” /></p>
</form>

</body>
</html>

Related Item: options[index].value property.

options[index].value
Value: String. Read/Write
Compatibility: WinIE4+, MacIE4+, NN4+, Moz1+, Safari1+

In many instances, the words in the options list appear in a form that is convenient for the
document’s users but inconvenient for the scripts behind the page. Rather than set up an
elaborate lookup routine to match the selectedIndex or options[index].text values with

select.options[index].value

708 Part III ✦ Document Objects Reference

the values your script needs, you can easily store those values in the value attribute of each
<option> definition of the select object. You can then extract those values as needed.

You can store any string expression in the value attributes. That includes URLs, object prop-
erties, or even entire page descriptions that you want to send to a parent.frames[index].
document.write() method.

Starting with IE4 and W3C browsers, the select element object itself has a value property
that returns the value property of the selected option. But for backward compatibility, be
sure to use the longer approach shown in the example in Listing 24-6.

Listing 24-6 requires the option text that the user sees to be in familiar, multiple-word form.
But to set the color using the browser’s built-in color palette, you must use the one-word
form. Those one-word values are stored in the value attributes of each <option> definition.
The function then reads the value property, assigning it to the bgColor of the current docu-
ment. If you prefer to use the hexadecimal triplet form of color specifications, those values
are assigned to the value attributes (<option value=”#e9967a”>Dark Salmon).

Listing 24-6: Using the options[index].value Property

<html>
<head>

<title>Color Changer 2</title>
<script type=”text/javascript”>
function seeColor(form) {

var newColor =
(form.colorsList.options[form.colorsList.selectedIndex].value);

document.bgColor = newColor;
}
</script>

</head>
<body>

<form>
<p>Choose a background color: <select name=”colorsList”>

<option selected=”selected” value=”cornflowerblue”>
Cornflower Blue</option>
<option value=”darksalmon”>Dark Salmon</option>
<option value=”lightgoldenrodyellow”>
Light Goldenrod Yellow</option>
<option value=”seagreen”>Sea Green</option>
</select></p>

<p><input type=”button” value=”Change It”
onclick=”seeColor(this.form)” /></p>

</form>
</body>

</html>

Related Item: options[index].text property.

select.options[index].value

709Chapter 24 ✦ Select, Option, and FileUpload Objects

selectedIndex
Value: Integer. Read/Write
Compatibility: WinIE3+, MacIE3+, NN2+, Moz1+, Safari1+

When a user clicks a choice in a selection list, the selectedIndex property changes to a
zero-based number corresponding to that item in the list. The first item has a value of 0. This
information is valuable to a script that needs to extract the value or text of a selected item for
further processing.

You can use this information as a shortcut to getting at a selected option’s properties. To
examine a select object’s selected property, rather than cycling through every option in a
repeat loop, use the object’s selectedIndex property to fill in the index value for the refer-
ence to the selected item. The wording gets kind of long; but from an execution standpoint,
this methodology is much more efficient. Note, however, that when the select object is a
multiple-style, the selectedIndex property value reflects the index of only the topmost item
selected in the list.

To script the selection of a particular item, assign an integer value to the select element
object’s selectedIndex property, as shown in Listings 24-1 through 24-3.

In the inspect() function of Listing 24-7, notice that the value inside the options property
index brackets is a reference to the object’s selectedIndex property. Because this property
always returns an integer value, it fulfills the needs of the index value for the options prop-
erty. Therefore, if you select Green in the pop-up menu, form.colorsList.selectedIndex
returns a value of 1; that reduces the rest of the reference to form.colorsList.options[1].
text, which equals “Green.”

Listing 24-7: Using the selectedIndex Property

<html>
<head>

<title>Select Inspector</title>
<script type=”text/javascript”>
function inspect(form) {

alert(form.colorsList.options[form.colorsList.selectedIndex].text);
}
</script>

</head>
<body>

<form>
<p><select name=”colorsList”>

<option selected=”selected”>Red</option>
<option value=”Plants”>Green</option>
<option>Blue</option>

</select></p>
<p><input type=”button” value=”Show Selection”

onclick=”inspect(this.form)” /></p>
</form>

</body>
</html>

Related Item: options property.

select.selectedIndex

710 Part III ✦ Document Objects Reference

size
Value: Integer. Read/Write
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

The size property represents the size attribute setting for a select element object. You can
modify the integer value of this property to change the number of options that are visible in a
pick list without having to scroll.

The following statement uses the size property to set the number of visible items to 5:

document.forms[0].mySelect.size = 5;

Related Item: multiple property.

type
Value: String. Read-Only
Compatibility: WinIE4+, MacIE4+, NN3+, Moz1+, Safari1+

Use the type property to help you identify a select object from an unknown group of form
elements. The precise string returned for this property depends on whether the select
object is defined as a single- (select-one) or multiple- (select-multiple) type.

Related Item: form.elements property.

value
Value: String. Read/Write (see text)
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

The more recent browsers (and the W3C DOM) provide a value property for the select ele-
ment object. This property returns the string assigned to the value attribute (or value prop-
erty) of the currently selected option element. If you do not assign a string to the attribute
or property, the value property returns an empty string. For these browser generations, you
can use this shortcut reference to the select element object’s value property instead of the
longer version that requires a reference to the selectedIndex property and the options
array of the element object.

The seeColor() function in Listing 24-6 that accesses the chosen value the long way can be
simplified for newer browsers only with the following construction:

function seeColor(form) {
document.bgColor = form.colorsList.value;

}

Related Item: options[index].value property.

Methods
add(newOptionElementRef[, index])
add(newOptionElementRef, optionElementRef)
remove(index)

Returns: Nothing.
Compatibility: WinIE5+, MacIE5+, NN6+, Moz1+, Safari1+

These methods represent the W3C approach to adding and removing option elements from
a selection. The first parameter to each of the add() methods is the new option element
object to be added to the selection. The second parameters differ due to variances in IE and

select.size

711Chapter 24 ✦ Select, Option, and FileUpload Objects

other W3C browsers. The first version of add() is the IE version, which allows you to specify
an optional index position for the new option; the option is placed just before the index posi-
tion or it is appended to the end of the selection list if no index is provided. The W3C
approach is represented by the second add() method, which requires an option object ref-
erence as the second parameter. This reference is to an option already in the selection list;
the new option is added just before the option or it is appended to the end of the selection
list if null is passed as the second parameter.

The remove() method requires the index of the option to be removed, and simply removes
the option from the selection list.

options[index].add(elementRef[, index])
options[index].remove()

Returns: Nothing.
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-

These two IE-specific methods belong to the options array property of a select element
object. See the discussion at the opening of the select element object earlier in this chapter
to see how to use these methods and their counterparts in other browser versions and object
models.

item(index)
namedItem(“optionID”)

Returns: option element reference.
Compatibility: WinIE5+, MacIE5+, NN-, Moz-, Safari-

The item() and namedItem() methods are IE-specific convenience methods that access
option element objects nested inside a select object. In a sense, they provide shortcuts to
referencing nested options without having to use the options array property and the index-
ing within that array.

The parameter for the item() method is an index integer value. For example, the following
two statements refer to the same option element object:

document.forms[0].mySelect.options[2]
document.forms[0].mySelect.item(2)

If your script knows the ID of an option element, it can use the namedItem() method,
supplying the string version of the ID as the parameter, to return a reference to that option
element.

The following statement assigns an option element reference to a variable:

var oneOption = document.forms[0].mySelect.namedItem(“option3_2”);

Related Item: options property.

Event handlers
onchange

Compatibility: WinIE3+, MacIE3+, NN2+, Moz1+, Safari1+

As a user clicks a new choice in a select object, the object receives a change event that the
onchange event handler can capture. In examples earlier in this section (Listings 24-6 and 24-7,
for example), the action is handed over to a separate button. This design may make sense in

select.onchange

712 Part III ✦ Document Objects Reference

some circumstances, especially when you use multiple select lists or any list box. (Typically,
clicking a list box item does not trigger any action that the user sees.) But for most pop-up
menus, triggering the action when the user makes a choice is desirable.

To bring a pop-up menu to life, add an onchange event handler to the <select> definition.
If the user makes the same choice as previously selected, the onchange event handler is not
triggered. In this case, you can still trigger an action via the onclick event handler; but this
event works for the select object only in IE4+ and W3C browsers.

Listing 24-8 is a version of Listing 24-6 that invokes all action as the result of a user making a
selection from the pop-up menu. The onchange event handler in the <select> tag replaces
the action button. For this application — when you desire a direct response to user input —
an appropriate method is to have the action triggered from the pop-up menu rather than by
a separate action button.

Notice two other important changes. First, the select element now contains a blank first
option. When a user visits the page, nothing is selected yet, so you should present a blank
option to encourage the user to make a selection. The function also makes sure that the user
selects one of the color-valued items before it attempts to change the background color.

Second, the body element contains an onunload event handler that resets the form. The
purpose behind this is that if the user navigates to another page and uses the Back button
to return to the page, the script-adjusted background color does not persist. I recommend
you return the select element to its original setting. Unfortunately, the reset does not stick
to the form in IE4 and IE5 for Windows (although this problem appears to be repaired in
IE5.5+). Another way to approach this issue is to use the onload event handler to invoke
seeColor(), passing as a parameter a reference to the select element. Thus, if the select
element choice persists, the background color is adjusted accordingly after the page loads.

Listing 24-8: Triggering a Color Change from a Pop-Up Menu

<html>
<head>

<title>Color Changer 2</title>
<script type=”text/javascript”>
function seeColor(list) {

var newColor = (list.options[list.selectedIndex].value);
if (newColor) {

document.bgColor = newColor;
}

}
</script>

</head>
<body onunload=”document.forms[0].reset()”>

<form>
<p>Choose a background color: <select name=”colorsList”

onchange=”seeColor(this)”>
<option selected=”selected” value=””></option>
<option value=”cornflowerblue”>Cornflower Blue</option>
<option value=”darksalmon”>Dark Salmon</option>
<option value=”lightgoldenrodyellow”>
Light Goldenrod Yellow</option>
<option value=”seagreen”>Sea Green</option>

</select></p>
</form>

</body>
</html>

select.onchange

713Chapter 24 ✦ Select, Option, and FileUpload Objects

option Element Object
For HTML element properties, methods, and event handlers, see Chapter 15.

Properties Methods Event Handlers

defaultSelected
form†
label
selected
text
value

†See “Text Input Object” (Chapter 23).

Syntax
Accessing option object properties:

(All) [window.]document.formName.selectName.options[index].property |
method([parameters])

(All) [window.]document.formName.elements[index].options[index].property
|

method([parameters])
(All) [window.]document.forms[index].selectName.options[index].property
|

method([parameters])
(All)
[window.]document.forms[“formName”].selectName.options[index].property |

method([parameters])
(All)
[window.]document.forms[“formName”].elements[index].options[index].

property | method([parameters])
(IE4+) [window.]document.all.elemID.property | method([parameters])
(IE5+/W3C) [window.]document.getElementById(“elemID”).property |

method([parameters])
(W3C) [window.]document.forms[index].selectName.item(index).property |

method([parameters])
(W3C) [window.]document.forms[“formName”].selectName.namedItem(elemID).

property | method([parameters])

Compatibility: WinIE3+, MacIE3+, NN2+, Moz1+, Safari1+

About this object
option elements are nested inside select elements. Each option represents an item in the
list of choices presented by the select element. Properties of the option element object let
scripts inspect whether a particular option is currently selected or is the default selection.
Other properties enable you to get or set the hidden value associated with the option as well
as the visible text. For more details about the interaction between the select and option
element objects, see the discussion about the select object earlier in this chapter as well as
the discussion of the properties and methods associated with the options array returned by
the select object’s options property.

option

714 Part III ✦ Document Objects Reference

I discuss all backward-compatible option object properties (defaultSelected, selected,
text, and value) among the options property descriptions in the select object section.
The only items listed in this section are those that are unique to the option element object
defined in newer browsers.

In NN3+ and IE4+, there is a provision for creating a new option object via an Option object
constructor function. The syntax is as follows:

var newOption = new Option(“text”,”value”);

Here, text is the string that is displayed for the item in the list, and value is the string assigned
to the value property of the new option. This new option object is not added to a select
object until you assign it to a slot in the options array of the select object. You can see an
example of this approach to modifying options in Listing 24-1.

Properties
label

Value: String. Read/Write
Compatibility: WinIE6+, MacIE5+, NN6+, Moz1+, Safari1+

The label property corresponds to the HTML 4.01 label attribute of an option element.
This attribute (and property) enables you to assign alternate text for an option. In MacIE5,
any string assigned to the label attribute or corresponding property overrides the display of
text found between the start and end tags of the option element. Therefore, you can assign
content to both the attribute and tag, but only browsers adhering to the HTML 4.01 standard
for this element display the value assigned to the label. Although the label property is imple-
mented in NN6, the browser does not modify the option item’s text to reflect the property’s
setting.

The following statement modifies the text that appears as the selected text in a pop-up list:

document.forms[0].mySelect.options[3].label = “Widget 9000”;

If this option is the currently selected one, the text on the pop-up list at rest changes to the
new label.

Related Item: text property.

optgroup Element Object
For HTML element properties, methods, and event handlers, see Chapter 15.

Properties Methods Event Handlers

form†
label

†See “Text Input Object” (Chapter 23).

option

715Chapter 24 ✦ Select, Option, and FileUpload Objects

Syntax
Accessing optgroup object properties:

(IE) [window.]document.all.elemID”.property | method([parameters])
(W3C) [window.]document.getElementById(“elemID”).property |
method([parameters])

Compatibility: WinIE6+, MacIE5+, NN6+, Moz1+, Safari1+

About this object
An optgroup element in the HTML 4.01 specification enables authors to group options into
subgroups within a select list. The label assigned to the optgroup element is rendered in the
list as a non-selectable item, usually differentiated from the selectable items by some alternate
display. In W3C browsers, optgroup items by default are shown in bold italic, while all option
elements nested within an optgroup are indented but with normal font characteristics.

Browsers not recognizing this element ignore it. All options are presented as if the optgroup
elements are not there.

Properties
label

Value: String. Read/Write
Compatibility: WinIE6+, MacIE5+, NN6+, Moz1+, Safari1+

The label property corresponds to the HTML 4.01 label attribute of an optgroup element.
This attribute (and property) enables you to assign text to the label that encompasses a
group of nested option elements in the pop-up list display.

MacIE5 exhibits a bug that prevents scripts from assigning values to the last optgroup
element inside a select element.

I present Listing 24-9 in the hope that Microsoft and Netscape will eventually eradicate the
bugs that afflict their current implementations of the label property. When the feature works
as intended, Listing 24-9 demonstrates how a script can alter the text of option group labels.
This page is an enhanced version of the background color setters used in other examples of
this chapter. Be aware that several versions of IE do not alter the last optgroup element’s
label, and NN6+ achieves only a partial change to the text displayed in the select element.

Listing 24-9: Modifying optgroup Element Labels

<html>
<head>

<title>Color Changer 3</title>
<script type=”text/javascript”>
var regularLabels = [“Reds”,”Greens”,”Blues”];
var naturalLabels = [“Apples”,”Leaves”,”Sea”];

Continued

Note

optgroup.label

716 Part III ✦ Document Objects Reference

Listing 24-9 (continued)

function setRegularLabels(list) {
var optGrps = list.getElementsByTagName(“optgroup”);
for (var i = 0; i < optGrps.length; i++) {

optGrps[i].label = regularLabels[i];
}

}
function setNaturalLabels(list) {

var optGrps = list.getElementsByTagName(“optgroup”);
for (var i = 0; i < optGrps.length; i++) {

optGrps[i].label = naturalLabels[i];
}

}
function seeColor(list) {

var newColor = (list.options[list.selectedIndex].value);
if (newColor) {

document.bgColor = newColor;
}

}
</script>

</head>
<body onunload=”document.forms[0].reset()”>

<form>
<p>Choose a background color: <select name=”colorsList”

onchange=”seeColor(this)”>
<optgroup id=”optGrp1” label=”Reds”>

<option value=”#ff9999”>Light Red</option>
<option value=”#ff3366”>Medium Red</option>
<option value=”#ff0000”>Bright Red</option>
<option value=”#660000”>Dark Red</option>

</optgroup>
<optgroup id=”optGrp2” label=”Greens”>

<option value=”#ccff66”>Light Green</option>
<option value=”#99ff33”>Medium Green</option>
<option value=”#00ff00”>Bright Green</option>
<option value=”#006600”>Dark Green</option>

</optgroup>
<optgroup id=”optGrp3” label=”Blues”>

<option value=”#ccffff”>Light Blue</option>
<option value=”#66ccff”>Medium Blue</option>
<option value=”#0000ff”>Bright Blue</option>
<option value=”#000066”>Dark Blue</option>

</optgroup>
</select></p>

<p><input type=”radio” name=”labels” checked=”checked”
onclick=”setRegularLabels(this.form.colorsList)” />Regular Label
Names <input type=”radio” name=”labels”
onclick=”setNaturalLabels(this.form.colorsList)” />Label Names from
Nature</p>

</form>
</body>

</html>

Related Item: option.label property.

optgroup.label

717Chapter 24 ✦ Select, Option, and FileUpload Objects

file Input Element Object
For HTML element properties, methods, and event handlers, see Chapter 15.

Properties Methods Event Handlers

defaultValue† select()† onchange†
form†
name†
readOnly†
size†
type†
value†

†See “Text Input Object” (Chapter 23).

Syntax
Accessing file input element object properties:

(NN3+/IE4+) [window.]document.formName.inputName.property |
method([parameters])
(NN3+/IE4+) [window.]document.formName.elements[index].property |

method([parameters])
(NN3+/IE4+) [window.]document.forms[index].inputName.property |
method([parameters])
(NN3+/IE4+) [window.]document.forms[“formName”].inputName.property |

method([parameters])
(NN3+/IE4+) [window.]document.forms[“formName”].elements[index].property |

method([parameters])
(IE4+) [window.]document.all.elemID.property | method([parameters])
(IE5+/W3C) [window.]document.getElementById(“elemID”).property |

method([parameters])

Compatibility: WinIE4+, MacIE4+, NN3+, Moz1+, Safari1+

About this object
Some Web sites enable you to upload files from the client to the server, typically by using a
form-style submission to a CGI program on the server. The input element whose type is set
to “file” (also known as a fileUpload object) is merely a user interface that enables users
to specify which file on their PC they want to upload. Without a server process capable of
receiving the file, the file input element does nothing. Moreover, you must also set two form
element attributes as follows:

method=”POST”
enctype=”multipart/form-data”

This element displays a field and a Browse button. The Browse button leads to an Open File
dialog box (in the local operating system’s interface vernacular) where a user can select a file.

document.formObject.fileInputObject

718 Part III ✦ Document Objects Reference

After you make a selection, the filename (or pathname, depending on the operating system)
appears in the file input element’s field. The value property of the object returns the
filename.

You do not have to script much for this object on the client side. The value property, for
example, is read-only in earlier browsers; in addition, a form cannot surreptitiously upload
a file to the server without the user’s knowledge or consent.

Listing 24-10 helps you see what the file input element looks like in an example page.

Listing 24-10: file Input Element

<html>
<head>

<title>FileUpload Object</title>
</head>
<body>

<form method=”POST” action=”yourCGIURL” enctype=”multipart/form-data”>
File to be uploaded: <input type=”file” size=”40” name=”fileToGo” />
<p><input type=”button” value=”View Value”

onclick=”alert(this.form.fileToGo.value)” /></p>
</form>

</body>
</html>

In a true production environment, a Submit button and a URL to your CGI process are speci-
fied for the action attribute of the <form> tag.

✦ ✦ ✦

document.formObject.fileInputObject

Event Objects

Prior to version 4 browsers, user and system actions — events —
were captured predominantly by event handlers defined as

attributes inside HTML tags. For instance, when a user clicked a but-
ton, the click event triggered the onclick event handler in the tag.
That handler may invoke a separate function or perform some inline
JavaScript script. Even so, the events themselves were rather dumb:
Either an event occurred or it didn’t. Where an event occurred (that
is, the screen coordinates of the pointer at the moment the mouse
button was clicked) and other pertinent event tidbits (for example,
whether a keyboard modifier key was pressed at the same time) were
not part of the equation. Until version 4 browsers, that is.

While remaining fully backward-compatible with the event handler
mechanism of old, version 4 browsers had the first event model that
turned events into first-class objects whose properties automatically
carry a lot of relevant information about the event when it occurs.
These properties are fully exposed to scripts, allowing pages to
respond more intelligently about what the user does with the page
and its elements.

Another new aspect of version 4 event models was the notion of
“event propagation.” It was possible to have an event processed by
an object higher up the element containment hierarchy whenever it
made sense to have multiple objects share one event handler. That
the event being processed carried along with it information about the
intended target, plus other golden information nuggets, made it pos-
sible for event handler functions to be smart about processing the
event without requiring an event handler call to pass all kinds of
target-specific information.

Unfortunately, the joy of this newly found power is tempered by the
forces of object model incompatibility. No fewer than three event
object models are in use today: the one initiated by, and unique to,
NN4 (whose importance diminishes with each passing day as users
migrate to other, newer browsers); the IE4+ model; and the model
adopted by the W3C DOM Level 2 as implemented in NN6+/Moz1+/
Safari1+. Many of these distinctions are addressed in the overviews
of the object models in Chapter 15. In this chapter, you find out more
about the actual event objects that contain all the “goodies.” Where
possible, cross-browser concerns are addressed.

Why “Events”?
Graphical user interfaces are more difficult to program than the
“old-fashioned” command-line interface. With a command-line or
menu-driven system, users were intentionally restricted in the

2525C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

The “life” of an event
object

Event support in
different browser
generations

Retrieving information
from an event

✦ ✦ ✦ ✦

720 Part III ✦ Document Objects Reference

types of actions they could take at any given moment. The world was very modal, primarily
as a convenience to programmers who led users through rigid program structures.

That all changed in a graphical user interface, such as Windows, MacOS, XWindow System,
and all others derived from the pioneering work of the Xerox Star system. The challenge for
programmers is that a good user interface in this realm must make it possible for users to
perform all kinds of actions at any given moment: roll the mouse, click a button, type a key,
select text, choose a pull-down menu item, and so on. To accommodate this, a program (or,
better yet, the operating system) must be on the lookout for any possible activity coming
from all input ports, whether it be the mouse, keyboard, or network connection.

A common methodology to accomplish this at the operating system level is to look for any
kind of event, whether it comes from user action or some machine-generated activity. The
operating system or program then looks up how it should process each kind of event. Such
events, however, must have some smarts about them so that the program knows what and
where on the screen the event is.

What an event knows (and when it knows it)
Although the way to reference an event object varies a bit among the three event models,
the one concept they all share is that an event object is created the instant the event action
occurs. For instance, if you click a button, an event object is created in the browser’s
memory. As the object is created, the browser assigns values to the object’s properties —
properties that reflect numerous characteristics of that specific event. For a click event,
that information includes the coordinates of the click and which mouse button was used to
generate the event. To be even more helpful, the browser does some quick calculations to
determine that the coordinates of the click event coincide with the rectangular space of a
button element on the screen. Therefore, the event object has as one of its properties a
reference to the “screen thing” that you clicked on.

Most event object properties (all of them in some event models) are read-only, because an
event object is like a snapshot of an event action. If the event model were to allow modifica-
tion of event properties, performing both potentially useful and potentially unfriendly actions
would be possible. For example, how frustrating would it be to a user to attempt to type into
a text box only to have a keystroke modified after the actual key press and then have a totally
different character appear in the text box? On the other hand, perhaps it may be useful in
some situations to make sure that anything typed into a text box is converted to uppercase
characters, no matter what is typed. Each event model brings its own philosophy to the table
in this regard. For example, the IE4+ event model allows keyboard character events to be
modified by script; the NN4 and W3C DOM event models do not.

Perhaps the most important aspect of an event object to keep in mind is that it exists only as
long as scripts process the event. An event can trigger an event handler — usually a function.
That function, of course, can invoke other functions. As long as statements are still executing
in response to the event handler, the event object and all its properties are still “alive” and
available to your scripts. But after the last script statement runs, the event object reverts to
an empty object.

The reason an event object has such a brief life is that there can be only one event object at a
time. In other words, no matter how complex your event handler functions are or how rapidly
events fire, they are executed serially (for experienced programmers: there is one execution
thread). The operating system buffers events that start to bunch up on each other. Except in
rare cases in which the buffer gets full and events are not recorded, event handlers are exe-
cuted in the order in which the events occur.

721Chapter 25 ✦ Event Objects

The static Event object
Up to this point, the discussion has been about the event object (with a lowercase “e”),
which is one instance of an event, with all the properties associated with that specific event
action. In the NN4 and W3C DOM event models, there is also a static Event object (with an
uppercase “E”). In the W3C DOM event model are additional subcategories of the Event
object. These subcategories are all covered later in this chapter, but they are introduced here
to draw the contrast between the event and Event objects. The former, as you’ve seen, is a
transient object with details about a specific event action; the latter serves primarily as a
holder of event-related constant values that scripts can use. The static Event object is always
available to scripts inside any window or frame. If you want to see a list of all Event object
properties in NN4 and NN6+, use The Evaluator (Chapter 13): enter Event into the bottom
text box (also check out the KeyEvent object in NN6+).

The static Event object also turns out to be the object from which event objects are cloned.
Thus, the static Event object has a number of properties and methods that apply to (are
inherited by) the event objects created by event actions. These relationships are more impor-
tant in the W3C DOM event model, which builds upon the DOM’s object-oriented tendencies
to implement the event model.

Event Propagation
Prior to version 4 browsers, an event fired on an object. If an event handler was defined for
that event and that object, the handler executed; if there was no event handler, the event just
disappeared into the ether. Newer browsers, however, send events on a longer ride, causing
them to propagate through the document object models. As you know by now, three propaga-
tion models exist, one for each of the event models in use today: NN4, IE4+, and W3C DOM as
implemented in NN6+/Moz1+/Safari1+. Conceptually, the NN4 and IE4+ propagation models
are diametrically opposite each other — any NN4 event propagates inward toward the target,
whereas an IE event starts at the target and propagates outward. But the W3C DOM model
manages to implement both models simultaneously, albeit with all new syntax so as not to
step on the older models.

At the root of all three models is the notion that every event has a target. For user-initiated
actions, this is fairly obvious. If you click a button or type in a text box, that button is the tar-
get of your mouse-related event; the text box is the target of your keyboard event. System-
generated events are not so obvious, such as the onload event after a page finishes loading.
In all event models, this event fires on the window object. What distinguishes the event propa-
gation models is how an event reaches its target, and what, if anything, happens to the event
after it finishes executing the event handler associated with the target.

NN4-only event propagation
Although the installed base of NN4 has largely given way to newer browsers, its propagation
model initiated some concepts that are found in the modern W3C DOM event propagation
model. The name for the model is event capture.

In NN4, all events propagate from the top of the document object hierarchy (starting with the
window object) downward to the target object. For example, if you click a button in a form,
the click event passes through the window and document (and, if available, layer) objects
before reaching the button (the form object is not part of the propagation path). This propa-
gation happens instantaneously, so that there is no performance penalty by this extra journey.

722 Part III ✦ Document Objects Reference

The event that passes through the window, document, and layer objects is a fully formed
event object, complete with all properties relevant to that event action. Therefore, if the
event were processed at the window level, one of the event object’s properties is a reference
to the target object, so that the event handler scripts at the window level can find out infor-
mation, such as the name of the button, and even get a reference to its enclosing form.

By default, event capture is turned off. To instruct the window, document, or layer object
levels to process that passing click object requires turning on event capture for the window,
document, and/or layer object.

Enabling NN4 event capture
All three objects just mentioned —window, document, and layer—have a captureEvents()
method. You use this method to enable event capture at any of those object levels. The
method requires one or more parameters, which are the event types (as supplied by Event
object constants) that the object should capture, while letting all others pass untouched. For
example, if you want the window object to capture all keypress events, you include the fol-
lowing statement in a script that executes as the page loads:

window.captureEvents(Event.KEYPRESS);

Defining event handlers in the intended targets is also a good idea, even if they are empty
(for example, onkeypress=””) to help NN4 generate the event in the first place. If you want
the window to capture multiple event types, string the event type constants together, sepa-
rated by the pipe character:

window.captureEvents(Event.KEYPRESS | Event.CLICK);

Now you must assign an action to the event at the window’s level for each event type. More
than likely, you have defined functions to execute for the event. Assign a function reference
to the event handler by setting the handler property of the window object:

window.onkeypress = processKeyEvent;
window.onclick = processClickEvent;

Hereafter, if a user clicks a button or types into a field inside that window, the events are
processed by their respective window-level event handler functions.

Turning off event capture
As soon as you enable event capture for a particular event type in a document, that capture
remains in effect until the page unloads or you specifically disable the capture. You can turn
off event capture for each event via the window, document, or layer releaseEvents()
method. The releaseEvents() method takes the same kind of parameters —Event object
type constants — as the captureEvents() method.

The act of releasing an event type simply means that events go directly to their intended tar-
gets without stopping elsewhere for processing, even if an event handler for the higher-level
object is still defined. And because you can release individual event types based on parame-
ters set for the releaseEvents() method, other events being captured are not affected by
the release of others.

To demonstrate not only the captureEvents() and releaseEvents() methods, but other
event model techniques, I present a series of several versions of the same document. Each
successive version implements an added feature to help you experience the numerous inter-
actions among events and event handling methods. The document merely contains a few but-
tons, plus some switches to enable and disable various methods being demonstrated in the
section. A layer object is also thrown into the mixture because a lot of impetus for capturing
and modifying event handling comes from application of layers in a document.

723Chapter 25 ✦ Event Objects

Listing 25-1 is the first example, which shows the basic event capture and release from the
outermost document level. A checkbox lets you enable or disable the document-level capture
of click events (all checkboxes in these examples use onmouseup event handlers to avoid
getting in the way of tracing click events). Because all click events are being captured by
the outermost document, even clicks to the layer’s buttons get trapped by the outermost
document when captureEvents() is set.

Listing 25-1: Event Capture and Release

<html>
<head>

<title></title>
<script type=”text/javascript”>
function setDocCapture(enable) {

if (!enable) {
document.captureEvents(Event.CLICK);

} else {
document.releaseEvents(Event.CLICK);

}
}
function doMainClick(e) {

if (e.target.type == “button”) {
alert(“Captured in top document”);

}
}
document.captureEvents(Event.CLICK);
document.onclick=doMainClick;
</script>

</head>
<body>

Basic document-level capture of Event.CLICK
<hr />
<form>

<input type=”checkbox” onmousedown=”setDocCapture(this.checked)”
checked=”checked” />Enable Document Capture
<hr />
<input type=”button” value=”Button ‘main1’” name=”main1”
onclick=”alert(‘Event finally reached Button:’ + this.name)” />

</form>
<layer id=”layer1” left=”200” top=”150” bgcolor=”coral”>

<form>

<p><input type=”button” value=”Button ‘layerButton1’”

name=”layerButton1”
onclick=”alert(‘Event finally reached Button:’ + this.name)” />
</p>

<p><input type=”button” value=”Button ‘layerButton2’”
name=”layerButton2”
onclick=”alert(‘Event finally reached Button:’ + this.name)” />
</p>

</form>
</layer>

</body>
</html>

724 Part III ✦ Document Objects Reference

With document-level event capture turned on (the default), all click events are trapped by
the document’s onclick event handler property, a function that alerts the user that the event
was captured by the top document. Because all click events for buttons are trapped there,
even click events of the layer’s buttons are trapped at the top. But if you turn off event cap-
ture, the events reach their intended targets.

If the logic of the setDocCapture() function seems backward to you, recall that when the
onmousedown event fires on the checkbox, its state is the opposite of what it is being
changed to.

In Listing 25-2, I add some code (shown in boldface) that lets the layer object capture click
events whenever the outer document event capture is turned off. Inside the <layer> tag, a
script sets the layer to capture click events. Therefore, if you disable the outer document
capture, the click event goes straight to the main1 button and to the layer event capture.
Event capture in the layer object prevents the events from ever reaching the buttons in the
layer, unless you disable event capture for both the document and the layer.

Listing 25-2: Document and Layer Event Capture and Release

<html>
<head>

<title></title>
<script type=”text/javascript”>
function setDocCapture(enable) {

if (!enable) {
document.captureEvents(Event.CLICK);

} else {
document.releaseEvents(Event.CLICK);

}
}
function setLayerCapture(enable) {

if (!enable) {
document.layer1.captureEvents(Event.CLICK);

} else {
document.layer1.releaseEvents(Event.CLICK);

}
}
function doMainClick(e) {

if (e.target.type == “button”) {
alert(“Captured in top document”);

}
}
document.captureEvents(Event.CLICK);
document.onclick=doMainClick;
</script>

</head>
<body>

Document-level and/or Layer-level capture of Event.CLICK
<hr />
<form>

<input type=”checkbox” onmousedown=”setDocCapture(this.checked)”
checked=”checked” />Enable Document Capture
<input type=”checkbox” onmousedown=”setLayerCapture(this.checked)”
checked=”checked” />Enable Layer Capture
<hr />

Note

725Chapter 25 ✦ Event Objects

<input type=”button” value=”Button ‘main1’” name=”main1”
onclick=”alert(‘Event finally reached Button:’ + this.name)” />

</form>
<layer id=”layer1” left=”200” top=”150” bgcolor=”coral”>

<script type=”text/javascript”>
function doLayerClick(e) {

if (e.target.type == “button”) {
alert(“Captured in layer1”);

}
}
layer1.captureEvents(Event.CLICK);
layer1.onclick=doLayerClick;
</script>
<form>

 layer1

<p><input type=”button” value=”Button ‘layerButton1’”

name=”layerButton1”
onclick=”alert(‘Event finally reached Button:’ + this.name)” />
</p>

<p><input type=”button” value=”Button ‘layerButton2’”
name=”layerButton2”
onclick=”alert(‘Event finally reached Button:’ + this.name)” />
</p>

</form>
</layer>

</body>
</html>

Passing events toward their targets
If you capture a particular event type, your script may need to perform some limited process-
ing on that event before letting it reach its intended target. For example, perhaps you want to
do something special if a user clicks an element with the Shift meta key pressed. In that case,
the function that handles the event at the document level inspects the event’s modifiers
property to determine if the Shift key was pressed at the time of the event. If the Shift key was
not pressed, you want the event to continue on its way to the element that the user clicked.

To let an event pass through the object hierarchy to its target, you use the routeEvent()
method, passing as a parameter the event object being handled in the current function. A
routeEvent() method does not guarantee that the event will reach its intended destination,
because another object in between may have event capturing for that event type turned on
and will intercept the event. That object, too, can let the event pass through with its own
routeEvent() method.

Listing 25-3 demonstrates event routing by adding onto the document being built in previous
examples. While the clickable button objects are the same, additional powers are added to
the document and layer function handlers that process events that come their way. For each
of these event-capturing objects, you have additional checkbox settings to allow or disallow
events from passing through after each level has processed them.

The default settings for the checkboxes are like the ones in Listing 25-2, where event capture
(for the click event) is set for both the document and layer objects. Clicking any button
causes the document object’s event handler to process and none other. But if you then enable
the checkbox that lets the event continue, you find that click events on the layer buttons
cause alerts to display from both the document and layer object event handler functions. If
you then also let events continue from the layer object, a click on the button displays a third

726 Part III ✦ Document Objects Reference

alert, showing that the event has reached the buttons. Because the main1 button is not in the
layer, none of the layer object event handling settings affect its behavior.

Listing 25-3: Capture, Release, and Route Events

<html>
<head>

<title></title>
<script type=”text/javascript”>
function setDocCapture(enable) {

if (!enable) {
document.captureEvents(Event.CLICK);

} else {
document.releaseEvents(Event.CLICK);
document.forms[0].setDocRte.checked = false;
docRoute = false;

}
}
function setLayerCapture(enable) {

if (!enable) {
document.layer1.captureEvents(Event.CLICK);

} else {
document.layer1.releaseEvents(Event.CLICK);
document.forms[0].setLyrRte.checked = false;
layerRoute = false;

}
}
var docRoute = false;
var layerRoute = false;
function setDocRoute(enable) {

docRoute = !enable;
}
function setLayerRoute(enable) {

layerRoute = !enable;
}
function doMainClick(e) {

if (e.target.type == “button”) {
alert(“Captured in top document”);
if (docRoute) {

routeEvent(e);
}

}
}
document.captureEvents(Event.CLICK);
document.onclick=doMainClick;
</script>

</head>
<body>

Capture, Release, and Routing of Event.CLICK
<hr />
<form>

<input type=”checkbox” name=”setDocCap”
onmousedown=”setDocCapture(this.checked)” checked=”checked” />Enable
Document Capture
<input type=”checkbox” name=”setDocRte”
onmousedown=”setDocRoute(this.checked)” />And let event continue

<input type=”checkbox” name=”setLyrCap”

727Chapter 25 ✦ Event Objects

onmousedown=”setLayerCapture(this.checked)”
checked=”checked” />Enable Layer Capture
<input type=”checkbox” name=”setLyrRte”
onmousedown=”setLayerRoute(this.checked)” />And let event
continue

<hr />
<input type=”button” value=”Button ‘main1’” name=”main1”
onclick=”alert(‘Event finally reached Button:’ + this.name)” />

</form>
<layer id=”layer1” left=”200” top=”150” bgcolor=”coral”>

<script type=”text/javascript”>
function doLayerClick(e) {

if (e.target.type == “button”) {
alert(“Captured in layer1”);
if (layerRoute) {

routeEvent(e);
}

}
}
layer1.captureEvents(Event.CLICK);
layer1.onclick=doLayerClick;
</script>
<form>

 layer1

<p><input type=”button” value=”Button ‘layerButton1’”

name=”layerButton1”
onclick=”alert(‘Event finally reached Button:’ + this.name)” />
</p>

<p><input type=”button” value=”Button ‘layerButton2’”
name=”layerButton2”
onclick=”alert(‘Event finally reached Button:’ + this.name)” />
</p>

</form>
</layer>

</body>
</html>

In some cases, your scripts need to know if an event that is passed onward by the
routeEvent() method activated a function that returns a value. This knowledge is especially
valuable if your event must return a true or false value to let an object know if it should
proceed with its default behavior (for example, whether a link should activate its href
attribute URL or cancel after the event handler evaluates to return true or return false).
When a function is invoked by the action of a routeEvent() method, the return value of the
destination function is passed back to the routeEvent() method. That value, in turn, can be
returned to the object that originally captured the event.

Event traffic cop
The last scenario is one in which a higher-level object captures an event and directs the event
to a particular object elsewhere in the hierarchy. For example, you could have a document-
level event handler function direct every click event whose modifiers property indicates
that the Alt key was pressed to a Help button object whose own onclick event handler dis-
plays a help panel (perhaps shows an otherwise hidden layer).

You can redirect an event to any object via the handleEvent() method. This method works
differently from the others described in this chapter, because the object reference of this

728 Part III ✦ Document Objects Reference

method is the reference of the object to handle the event (with the event object being passed
as a parameter, such as the other methods). As long as the target object has an event han-
dler defined for that event, it will process the event as if it had received the event directly
from the system (even though the event object’s target property may be some other object
entirely).

To demonstrate how this event redirection works, Listing 25-4 includes the final additions to
the document being built so far in this chapter. The listing includes mechanisms that allow all
click events to be sent directly to the second button in the layer (layerButton2). The pre-
vious interaction with document and layer event capture and routing is still intact, although
you cannot have event routing and redirection on at the same time.

The best way to see event redirection at work is to enable both document and layer event
capture (the default settings). When you click the main1 button, the event reaches only as
far as the document-level capture handler. But if you then turn on the “Send event to
‘layerButton2’” checkbox associated with the document level, a click of the main1 button
reaches both the document-level event handler and layerButton2, even though the main1
button is not anywhere near the layer button in the document object hierarchy. Click other
checkboxes to work with the interaction of event capturing, routing, and redirection.

Listing 25-4: Redirecting Events

<html>
<head>

<title></title>
<script type=”text/javascript”>
function setDocCapture(enable) {

if (!enable) {
document.captureEvents(Event.CLICK);

} else {
document.releaseEvents(Event.CLICK);
document.forms[0].setDocRte.checked = false;
docRoute = false;

}
}
function setLayerCapture(enable) {

if (!enable) {
document.layer1.captureEvents(Event.CLICK);

} else {
document.layer1.releaseEvents(Event.CLICK);
document.forms[0].setLyrRte.checked = false;
layerRoute = false;

}
}
var docRoute = false;
var layerRoute = false;
function setDocRoute(enable) {

docRoute = !enable;
document.forms[0].setDocShortCircuit.checked = false;
docShortCircuit = false;

}
function setLayerRoute(enable) {

layerRoute = !enable;

729Chapter 25 ✦ Event Objects

document.forms[0].setLyrShortCircuit.checked = false;
layerShortCircuit = false;

}
var docShortCircuit = false;
var layerShortCircuit = false;
function setDocShortcut(enable) {

docShortCircuit = !enable;
if (docShortCircuit) {

document.forms[0].setDocRte.checked = false;
docRoute = false;

}
}
function setLayerShortcut(enable) {

layerShortCircuit = !enable;
if (layerShortCircuit) {

document.forms[0].setLyrRte.checked = false;
layerRoute = false;

}
}
function doMainClick(e) {

if (e.target.type == “button”) {
alert(“Captured in top document”);
if (docRoute) {

routeEvent(e);
} else if (docShortCircuit) {

document.layer1.document.forms[0].layerButton2.handleEvent(e);
}

}
}
document.captureEvents(Event.CLICK);
document.onclick=doMainClick;
</script>

</head>
<body>

Redirecting Event.CLICK
<hr />
<form>

<input type=”checkbox” name=”setDocCap”
onmousedown=”setDocCapture(this.checked)” checked=”checked” />Enable
Document Capture <input type=”checkbox” name=”setDocRte”
onmousedown=”setDocRoute(this.checked)” />And let event continue
<input type=”checkbox” name=”setDocShortCircuit”
onmousedown=”setDocShortcut(this.checked)” />Send event to
‘layerButton2’

<input type=”checkbox” name=”setLyrCap”
onmousedown=”setLayerCapture(this.checked)”
checked=”checked” />Enable Layer Capture <input
type=”checkbox” name=”setLyrRte”
onmousedown=”setLayerRoute(this.checked)” />And let event continue
<input type=”checkbox” name=”setLyrShortCircuit”
onmousedown=”setLayerShortcut(this.checked)” />Send event to
‘layerButton2’

<hr />
<input type=”button” value=”Button ‘main1’” name=”main1”
onclick=”alert(‘Event finally reached Button:’ + this.name)” />

</form>

Continued

730 Part III ✦ Document Objects Reference

Listing 25-4 (continued)

<layer id=”layer1” left=”200” top=”200” bgcolor=”coral”>
<script type=”text/javascript”>
function doLayerClick(e) {

if (e.target.type == “button”) {
alert(“Captured in layer1”);
if (layerRoute) {

routeEvent(e);
} else if (layerShortCircuit) {

document.forms[0].layerButton2.handleEvent(e);
}

}
}
layer1.captureEvents(Event.CLICK)
layer1.onclick=doLayerClick
</script>
<form>

 layer1

<p><input type=”button” value=”Button ‘layerButton1’”

name=”layerButton1”
onclick=”alert(‘Event finally reached Button:’ + this.name)” />
</p>

<p><input type=”button” value=”Button ‘layerButton2’”
name=”layerButton2”
onclick=”alert(‘Event finally reached Button:’ + this.name)” />
</p>

</form>
</layer>

</body>
</html>

IE4+ event propagation
IE’s event propagation model is called event bubbling, in which events “bubble” upward from
the target object through the HTML element containment hierarchy. It’s important to distin-
guish between the old-fashioned document object hierarchy (followed in the NN4 event cap-
ture model) and the more modern notion of HTML element containment — a concept that
carries to the W3C DOM as well.

A good way to demonstrate the effect of event bubbling — a behavior that is turned on by
default — is to populate a simple document with lots of event handlers to see which ones fire
and in what order. Listing 25-5 has onclick event handlers defined for a button inside a form,
the form itself, and other elements and objects all the way up the hierarchy out to the window.

Listing 25-5: Event Bubbling Demonstration

<html onclick=”alert(‘Event is now at the HTML element.’)”>
<head>

<title>Event Bubbles</title>
<script type=”text/javascript”>

731Chapter 25 ✦ Event Objects

function init() {
window.onclick = winEvent

document.onclick = docEvent;
document.body.onclick = docBodEvent;

}
function winEvent() {

alert(“Event is now at the window object level.”);
}
function docEvent() {

alert(“Event is now at the document object level.”);
}
function docBodEvent() {

alert(“Event is now at the BODY element.”);
}
</script>

</head>
<body onload=”init()”>

<h1>Event Bubbles</h1>
<hr />
<form onclick=”alert(‘Event is now at the FORM element.’)”>

<input type=”button” value=”Button ‘main1’” name=”main1”
onclick=”alert(‘Event started at Button: ‘ + this.name)” />

</form>
</body>

</html>

You can try this listing in IE4+ and even NN6+ or Safari, because W3C DOM browsers also
observe event bubbling. But you will notice differences in the precise propagation among
WinIE4+, MacIE4+, and W3C DOM browsers. But first, notice that after you click the button
in Listing 25-5, the event first fires at the target: the button. Then the event bubbles upward
through the HTML containment to fire at the enclosing form element; next to the enclosing
body element; and so on. Where the differences occur are after the body element. Table 25-1
shows the objects for which event handlers are defined in Listing 25-5 and which objects
have the click event bubble to them in the three classes of browsers.

Table 25-1: Event Bubbling Variations for Listing 25-5

Event Handler Location WinIE4+ MacIE4+ NN6+/Moz1+/Safari

button yes yes yes

form yes yes yes

body yes yes yes

HTML yes no yes

document yes yes yes

window no no yes

Despite the discrepancies in Table 25-1, events do bubble through the most likely HTML con-
tainers that come to mind. The object level with the most global scope and that works in all
browser categories shown in the table is the document object.

732 Part III ✦ Document Objects Reference

Preventing IE event bubbling
Because bubbling occurs by default, there are times when you may prefer to prevent an
event from bubbling up the hierarchy. For example, if you have one handler at the document
level whose job is to deal with the click event from a related series of buttons, any other
object that receives click events will allow those events to bubble upward to the document
level unless the bubbling is cancelled. Having the event bubble up could conflict with the
document-level event handler.

Each event object in IE has a property called cancelBubble. The default value of this prop-
erty is false, which means that the event bubbles to the next outermost container that has
an event handler for that event. But if, in the execution of an event handler, that property is
set to true, the processing of that handler finishes its job, but the event does not bubble up
any higher. Therefore, to stop an event from bubbling beyond the current event handler,
include the following statement somewhere in the handler function:

event.cancelBubble = true;

You can prove this to yourself by modifying the page in Listing 25-5 to cancel bubbling at any
level. For example, if you change the event handler of the form element to include a state-
ment that cancels bubbling, the event goes no further than the form in IE (the syntax is differ-
ent for NN6+/Moz1+, as discussed later):

<form onclick=”alert(‘Event is now at the form element.’);
event.cancelBubble=true”>

Preventing IE event default action
In the days when events were almost always bound to elements by way of attributes in tags,
the technique to block the event’s default action was to make sure the event handler evalu-
ated to return false. This is how, for instance, a form element’s onsubmit event handler
could prevent the form from carrying out the submission if client-side form validation failed.

To enhance that capability — especially when events are bound by other means, such as
object element properties — IE’s event object includes a returnValue property. Assign
false to this property in the event handler function to block the element’s default action to
the event:

event.returnValue = false;

This way of blocking default actions in IE is often more effective than the old return false
technique.

Redirecting events
Starting with IE5.5, you can redirect an event to another element, but with some limitations.
The mechanism that makes this possible is the fireEvent() method of all HTML element
objects (see Chapter 15). This method isn’t so much redirecting an event as causing a brand-
new event to be fired. But you can pass most of the properties of the original event object
with the new event by specifying a reference to the old event object as the optional second
parameter to the fireEvent() method.

The big limitation in this technique, however, is that the reference to the target element gets
lost in this hand-off to the new event. The srcElement property of the old event gets over-
written with a reference to the object that is the target of the call to fireEvent(). For exam-
ple, consider the following onclick event handler function for a button inside a form
element:

733Chapter 25 ✦ Event Objects

function buttonEvent() {
event.cancelBubble = true;
document.body.fireEvent(“onclick”, event);

}

By cancelling event bubbling, the event does not propagate upward to the enclosing form
element. Instead, the event is explicitly redirected to the body element, passing the current
event object as the second parameter. When the event handler function for the body ele-
ment runs, its event object has information about the original event, such as the mouse
button used for the click and the coordinates. But the event.srcElement property points
to the document.body object. As the event bubbles upward from the body element, the
srcElement property continues to point to the document.body object. You can see this
at work in Listing 25-6 for IE5.5+.

Listing 25-6: Cancelling and Redirecting Events in IE5.5+

<html onclick=”revealEvent(‘HTML’, event)”>
<head>

<title>Event Cancelling & Redirecting</title>
<script type=”text/javascript”>
// display alert with event object info
function revealEvent(elem, evt) {

var msg = “Event (from “ + evt.srcElement.tagName + “ at “;
msg += event.clientX + “,” + event.clientY + “) is now at the “;
msg += elem + “ element.”;
alert(msg);

}
function init() {

document.onclick = docEvent;
document.body.onclick = docBodEvent;

}
function docEvent() {

revealEvent(“document”, event);
}
function docBodEvent() {

revealEvent(“BODY”, event);
}
function buttonEvent(form) {

revealEvent(“BUTTON”, event);
// cancel if checked (IE4+)
event.cancelBubble = form.bubbleCancelState.checked;
// redirect if checked (IE5.5+)
if (form.redirect.checked) {

document.body.fireEvent(“onclick”, event);
}

}
</script>

</head>
<body onload=”init()”>

<h1>Event Cancelling & Redirecting</h1>
<hr />
<form onclick=”revealEvent(‘FORM’, event)”>

<p><button name=”main1” onclick=”buttonEvent(this.form)”>Button
‘main1’</button></p>

Continued

734 Part III ✦ Document Objects Reference

Listing 25-6 (continued)

<p><input type=”checkbox” name=”bubbleCancelState”
onclick=”event.cancelBubble=true” />Cancel Bubbling at BUTTON

<input type=”checkbox” name=”redirect”
onclick=”event.cancelBubble=true” /> Redirect Event to BODY</p>

</form>
</body>

</html>

Listing 25-6 is a modified version of Listing 25-5. Major additions are enhanced event handlers
at each level so that you can see the tag name of the event that is regarded as the srcElement
of the event as well as the coordinates of the click event. With both checkboxes unchecked,
events bubble upward from the button, and the button element is then shown to be the orig-
inal target all the way up the bubble hierarchy. If you check the Cancel Bubbling checkbox,
the event goes no further than the button element, because that’s where event bubbling is
turned off. If you then check the Redirect Event to body checkbox, the original event is can-
celled at the button level, but a new event is fired at the body element. But notice that by
passing the old event object as the second parameter, the click location properties of the old
event are applied to the new event directed at the body. This event then continues to bubble
upward from the body.

As a side note, if you uncheck the Cancel Bubbling checkbox but leave the Redirect Event box
checked, you can see how the redirection is observed at the end of the button’s event han-
dler, and something special goes on. The original event is held aside by the browser while the
redirected event bubbles upward. As soon as that event-processing branch finishes, the origi-
nal bubbling propagation carries on with the form. Notice, though, that the event object still
knows that it was targeted at the button element, and the other properties are intact. This
means that for a time, two event objects were in the browser’s memory, but only one is
“active” at a time. While the redirected event is propagating, the window.event object refers
to that event object only.

Applying event capture
WinIE 5 and later also provide a kind of event capture, which overrides all other event propa-
gation. Intended primarily for temporary capture of mouse events, it is controlled not
through the event object but via the setCapture() and releaseCapture() methods of all
HTML element objects (described in Chapter 15).

When you engage capture mode, all mouse events are directed to the element object that
invoked the setCapture() method, regardless of the actual target of the event. This action
facilitates such activities as element dragging so that mouse events that might fire outside of
the intended target (for example, when dragging the cursor too fast for the animation to
track) continue to go to the target. When the drag mode is no longer needed, invoke the
releaseCapture() method to allow mouse events to propagate normally.

W3C event propagation
Yielding to arguments in favor of both NN4’s event capture and IE’s event bubbling, the W3C
DOM group managed to assemble an event model that employs both propagation systems.
Although forced to use new syntax so as not to conflict with older browsers, the W3C DOM
propagation model works like the NN4 one for capture and like IE4+ for bubbling. In other

735Chapter 25 ✦ Event Objects

words, an event bubbles by default, but you can also turn on event capture if you want. Thus,
an event first trickles down the element containment hierarchy to the target; then it bubbles
up through the reverse path.

Event bubbling is on by default, just as in IE4+. To enable capture, you must apply a W3C
DOM event listener to an object at some higher container. Use the addEventListener()
method (see Chapter 15) for any visible HTML element or node. One of the parameters of the
addEventListener() method determines whether the event listener function should be trig-
gered while the event is bubbling or is captured.

Listing 25-7 is a simplified example that demonstrates how a click event aimed at a button
can be both captured and allowed to bubble. Most event handling functions are assigned
inside the init() function. Borrowing code from Listing 25-5, event handlers are assigned to
the window, document, and body objects as property assignments. These are automatically
treated as bubble-type event listeners. Next, two objects — the document and a form — are
given capture-type event listeners for the click event. The document object event listener
invokes the same function as the bubble-type event handler (the alert text includes some
asterisks to remind you that it is the same alert being displayed in both the capture and bub-
ble phases of the event). For the form object, however, the capture-type event listener is
directed to one function, while a bubble-type listener for the same object is directed at a sep-
arate function. In other words, the form object invokes one function as the event trickles
down to the target and another function when the event starts bubbling back up. Many of the
event handler functions dynamically read the eventPhase property of the event object to
reveal which phase of event propagation is in force at the instance the event handler is
invoked (although an apparent bug reports the incorrect phase at the document object dur-
ing event capture).

Listing 25-7: NN6+ Event Capture and Bubble

<html>
<head>

<title>W3C DOM Event Propagation</title>
<script type=”text/javascript”>
function init() {

// using old syntax to assign bubble-type event handlers
window.onclick = winEvent;
document.onclick = docEvent;
document.body.onclick = docBodEvent;
// turn on click event capture for document and form objects
document.addEventListener(“click”, docEvent, true);
document.forms[0].addEventListener(“click”, formCaptureEvent, true);
// set event listener for bubble
document.forms[0].addEventListener(“click”, formBubbleEvent, false);

}
function winEvent(evt) {

alert(“Event is now at the window object level (“ +
getPhase(evt) + “).”);

}
function docEvent(evt) {

alert(“Event is now at the **document** object level (“ +
getPhase(evt) + “).”);

}

Continued

736 Part III ✦ Document Objects Reference

Listing 25-7 (continued)

function docBodEvent(evt) {
alert(“Event is now at the BODY level (“ + getPhase(evt) + “).”);

}
function formCaptureEvent(evt) {

alert(“This alert triggered by FORM only on CAPTURE.”);
}
function formBubbleEvent(evt) {

alert(“This alert triggered by FORM only on BUBBLE.”);
}
// reveal event phase of current event object
function getPhase(evt) {

switch (evt.eventPhase) {
case 1:

return “CAPTURING”;
break;

case 2:
return “AT TARGET”;
break;

case 3:
return “BUBBLING”;
break;

default:
return “”;

}
}
</script>

</head>
<body onload=”init()”>

<h1>W3C DOM Event Propagation</h1>
<hr />
<form>

<input type=”button” value=”Button ‘main1’” name=”main1”
onclick=”alert(‘Event is now at the button object level (‘ +
getPhase(event) + ‘).’)” />

</form>
</body>

</html>

If you want to remove event capture after it has been enabled, use the removeEvent
Listener() method on the same object as the event listener that was originally added
(see Chapter 15). And, because multiple event listeners can be attached to the same object,
specify the exact same three parameters to the removeEventListener() method as
applied to the addEventListener() method.

Preventing W3C event bubbling or capture
Corresponding to the cancelBubble property of the IE4+ event object is an event object
method in the W3C DOM. The method that prevents propagation in any event phase is the
stopPropagation() method. Invoke this method anywhere within an event listener handler
function. The current function executes to completion, but the event propagates no further.

737Chapter 25 ✦ Event Objects

Listing 25-8 extends the example of Listing 25-7 to include two checkboxes that let you stop
propagation type at the form element in your choice of the capture or bubble phase.

Listing 25-8: Preventing Bubble and Capture

<html>
<head>

<title>W3C DOM Event Propagation</title>
<script type=”text/javascript”>
function init() {

// using old syntax to assign bubble-type event handlers
window.onclick = winEvent;
document.onclick = docEvent;
document.body.onclick = docBodEvent;
// turn on click event capture for two objects
document.addEventListener(“click”, docEvent, true);
document.forms[0].addEventListener(“click”, formCaptureEvent, true);
// set event listener for bubble
document.forms[0].addEventListener(“click”, formBubbleEvent, false);

}
function winEvent(evt) {

if (evt.target.type == “button”) {
alert(“Event is now at the window object level (“ +

getPhase(evt) + “).”);
}

}
function docEvent(evt) {

if (evt.target.type == “button”) {
alert(“Event is now at the **document** object level (“ +

getPhase(evt) + “).”);
}

}
function docBodEvent(evt) {

if (evt.target.type == “button”) {
alert(“Event is now at the BODY level (“ + getPhase(evt) + “).”);

}
}
function formCaptureEvent(evt) {

if (evt.target.type == “button”) {
alert(“This alert triggered by FORM only on CAPTURE.”);
if (document.forms[0].stopAllProp.checked) {

evt.stopPropagation();
}

}
}
function formBubbleEvent(evt) {

if (evt.target.type == “button”) {
alert(“This alert triggered by FORM only on BUBBLE.”);
if (document.forms[0].stopDuringBubble.checked) {

evt.preventBubble();
}

}
}

Continued

738 Part III ✦ Document Objects Reference

Listing 25-8 (continued)

// reveal event phase of current event object
function getPhase(evt) {

switch (evt.eventPhase) {
case 1:

return “CAPTURING”;
break;

case 2:
return “AT TARGET”;
break;

case 3:
return “BUBBLING”;
break;

default:
return “”;

}
}
</script>

</head>
<body onload=”init()”>

<h1>W3C DOM Event Propagation</h1>
<hr />
<form>

<input type=”checkbox” name=”stopAllProp” />Stop all propagation at
FORM

<input type=”checkbox” name=”stopDuringBubble” />Prevent bubbling past
FORM
<hr />
<input type=”button” value=”Button ‘main1’” name=”main1”
onclick=”alert(‘Event is now at the button object level (‘ +
getPhase(event) + ‘).’)” />

</form>
</body>

</html>

In addition to the W3C DOM stopPropagation() method, NN6+, Moz1+, and Safari also sup-
port IE’s cancelBubble property for syntactical convenience.

Preventing W3C event default action
The W3C DOM counterpart to IE’s returnValue property is the event object’s
preventDefault() method. Invoke this method in an event handler function when you wish
to block the element’s default action to the event:

evt.preventDefault();

Redirecting W3C DOM events
The mechanism for sending an event to an object outside the normal propagation pattern in
W3C is similar to that of IE4+, although with different syntax. In place of the IE4+ fireEvent()
method, NN6+/Moz1+/Safari uses the W3C DOM dispatchEvent() method. The sole parame-
ter of the method is an event object, such as the current event object. Listing 25-9 is the same

739Chapter 25 ✦ Event Objects

as the IE4+ Listing 25-6, but with just a few modifications to run in the W3C event model. Notice
that the dispatchEvent() method passes the current event object as its sole parameter.

Listing 25-9: Cancelling and Redirecting Events in the W3C DOM

<html onclick=”revealEvent(‘HTML’, event)”>
<head>

<title>Event Cancelling & Redirecting</title>
<script type=”text/javascript”>
// display alert with event object info
function revealEvent(elem, evt) {

var msg = “Event (from “ + evt.target.tagName + “ at “;
msg += evt.clientX + “,” + evt.clientY + “) is now at the “;
msg += elem + “ element.”;
alert(msg);

}
function init() {

document.onclick = docEvent;
document.body.onclick = docBodEvent;

}
function docEvent(evt) {

revealEvent(“document”, evt);
}
function docBodEvent(evt) {

revealEvent(“BODY”, evt);
}
function buttonEvent(form, evt) {

revealEvent(“BUTTON”, evt);
// redirect if checked
if (form.redirect.checked) {

document.body.dispatchEvent(evt);
}
// cancel if checked
if (form.bubbleCancelState.checked) {

evt.stopPropagation();
}

}
</script>

</head>
<body onload=”init()”>

<h1>Event Cancelling & Redirecting</h1>
<hr />
<form onclick=”revealEvent(‘FORM’, event)”>

<p><button name=”main1” onclick=”buttonEvent(this.form, event)”>Button
‘main1’</button></p>

<p><input type=”checkbox” name=”bubbleCancelState”
onclick=”event.stopPropagation()” />Cancel Bubbling at BUTTON

<input type=”checkbox” name=”redirect”
onclick=”event.stopPropagation()” /> Redirect Event to BODY</p>

</form>
</body>

</html>

740 Part III ✦ Document Objects Reference

Referencing the event object
While there may be essentially three different event object models in today’s browsers, the
way your scripts access those objects is divided into two camps: the IE way and the W3C
(NN4+/Moz1+/Safari1+) way. I start with the simpler, IE way.

IE4+ event object references
In IE4+, the event object is accessible as a property of the window object:

window.event

But, as you are well aware, the window part of references is optional, so your scripts can treat
the event object as if it were a global reference:

event.propertyName

Thus, any statement in an event handler function can access the event object without any
special preparation or initializations.

W3C event object references
The situation is a bit more complicated in the W3C event model. In some cases you must
explicitly pass the event object as a parameter to an event handler function, while in other
cases, the event object is delivered as a parameter automatically. The difference depends on
how the event handler function is bound to the object.

Using the original way of binding event handlers to objects — via an attribute in the element’s
tag — you must specify the event object as a parameter by passing event as a parameter, as in

onclick=”doSomething(event)”

This is the only time in the W3C model that you see an explicit reference to the event (lower-
case “e”) object as if it were a global reference. This reference does not work in any other
context — only as a parameter to an event handler function. If you have multiple parameters,
the event reference can go in any order, but I tend to put it last:

onclick=”doSomething(this, event)”

The function definition that is bound to the element should therefore have a parameter vari-
able in place to “catch” the event object parameter:

function doSomething(widget, evt) {...}

You have no restrictions on how you name this parameter variable. In some examples of this
book, you may see the variable assigned as event or, more commonly, evt. When working
with cross-browser scripts, avoid using event as a parameter variable name so as not to
interfere with IE’s event property.

Other ways of binding event handler functions to objects — via property assignments and the
W3C DOM addEventListener() method — assign references of those handlers to the
desired objects in the document, as in either of the following:

document.forms[0].someButton.onclick = doSomething;
document.getElementById(“myButton”).addEventListener(“click”, doSomething,

false);

Event binding through these approaches prevents explicit passage of your own parameters
to the invoked functions. But W3C browsers automatically pass as the sole parameter a

741Chapter 25 ✦ Event Objects

reference to the event object created in response to the user or system action that triggered
the event. This means that your functions should “receive” the passed event object in a
parameter variable:

function doSomething(evt) {...}

Recall that the event object contains a reference to the object that was the target of the
event. From that, you can access any properties of that object, such as the form object that
contains a form control object.

You can see the way the event object is passed as a parameter in Listing 25-9. For all event
handlers that are assigned by reference (both to an event handler property of an object and
to an addEventListener() method call), the functions have a parameter variable in place to
act as a reference to the event object for statements within the function. If you need to invoke
other functions from there, you can pass the event object reference further along as needed.
The event object retains its properties as long as the chain of execution triggered by the
event action continues.

event Object Compatibility
Despite the incompatible ways that W3C DOM and IE event objects arrive at an event han-
dler function, you can easily stuff the object into one variable that both browser types can
use. For example, the following function fragment receives a W3C DOM event object but also
accommodates the IE event object:

function doSomething(evt) {
evt = (evt) ? evt : ((window.event) ? window.event : null);
if (evt) {

// browser has an event to process
...

}
}

If an event object arrives as a parameter, it continues to be available as evt; but if not, the
function makes sure that a window.event object is available and assigns it to the evt vari-
able; finally, if the browser doesn’t know about an event object, the evt variable is made
null. Processing continues only if evt contains an event object.

That’s the easy part. The madness comes in the details: reading properties of the event
object when the property names can vary widely across the three event object models.
Sections later in this chapter provide details of each property and method of all three event
object models, but seeing an overview of the property terminology on a comparative basis is
helpful. Table 25-2 lists the common information bits and actions you are likely to want from
an event object and the property or method names used in the three event object models.

Table 25-2: Common event Object Properties and Methods

Property/Action NN4 IE4+ W3C DOM

Target element target srcElement target
Event type type type type
X coordinate in element n/a† offsetX n/a†

Continued

742 Part III ✦ Document Objects Reference

Table 25-2 (continued)

Property/Action NN4 IE4+ W3C DOM

Y coordinate in element n/a† offsetY n/a†

X coordinate in positioned element layerX x layerX
Y coordinate in positioned element layerY y layerY
X coordinate on page pageX n/a† pageX
Y coordinate on page pageY n/a† pageY
X coordinate in window n/a clientX clientX
Y coordinate in window n/a clientY clientY
X coordinate on screen screenX screenX screenX
Y coordinate on screen screenY screenY screenY
Mouse button which button button
Keyboard key which keyCode keyCode
Shift key pressed modifiers shiftKey shiftKey
Alt key pressed modifiers altKey altKey
Ctrl key pressed modifiers ctrlKey ctrlKey
Previous Element n/a fromElement relatedTarget
Next Element n/a toElement relatedTarget
Cancel bubbling n/a cancelBubble preventBubble()
Prevent default action return false returnValue preventDefault()

†Value can be derived through calculations with other properties.

As you can see in Table 25-2, properties for the IE4+ and NN6+/W3C event objects have a lot
in common. This is good news, given that the installed base of NN4 users has diminished dra-
matically thanks to newer browsers. The primary incompatibility is how to reference the ele-
ment that is the intended target of the event. This, too, can be branched in your code to
achieve a common variable that references the element. For example, embedded within the
previous function fragment can be a statement, such as the following:

var elem = (evt.target) ? evt.target : evt.srcElement;

Each event model has additional properties that are not shared by the other. Details about
these are covered in the rest of this chapter.

Dueling Event Models
Despite the sometimes widely divergent ways event object models treat their properties,
accommodating a wide range of browsers for event manipulation is not difficult. In this sec-
tion, you see two scripts that examine important event properties. The first script reveals
which, if any, modifier keys are held down during an event; the second script extracts the
codes for both mouse buttons and keyboard keys. Both scripts work with all browsers that
have event objects, including NN4. If your audience no longer uses NN4, you can eliminate the
code branches that support it.

743Chapter 25 ✦ Event Objects

Cross-platform modifier key check
Listing 25-10 demonstrates branching techniques for examining the modifier key(s) being
held down while an event fires. You can find details of the event object properties, such as
modifiers and altKey, later in this chapter. To see the page in action, click a link, type into a
text box, and click a button while holding down any combination of modifier keys (the link is
all that works in Safari 1.0). A series of four checkboxes representing the four modifier keys is
at the bottom. As you click or type, the checkbox(es) of the pressed modifier key(s) become
checked.

Listing 25-10: Checking Events for Modifier Keys

<html>
<head>

<title>Event Modifiers</title>
<script type=”text/javascript”>
function checkMods(evt) {

evt = (evt) ? evt : ((window.event) ? window.event : null);
if (evt) {

var elem = (evt.target) ? evt.target : evt.srcElement;
var form = document.output;
if (evt.modifiers) {

form.modifier[0].checked = evt.modifiers & Event.ALT_MASK;
form.modifier[1].checked = evt.modifiers & Event.CONTROL_MASK;
form.modifier[2].checked = evt.modifiers & Event.SHIFT_MASK;
form.modifier[3].checked = evt.modifiers & Event.META_MASK;

} else {
form.modifier[0].checked = evt.altKey;
form.modifier[1].checked = evt.ctrlKey;
form.modifier[2].checked = evt.shiftKey;
form.modifier[3].checked = false;

}
}
return false;

}
</script>

</head>
<body>

<h1>Event Modifiers</h1>
<hr />
<p>Hold one or more modifier keys and click on this
link to see which keys you are holding.</p>

<form name=”output”>
<p>Enter some text with uppercase and lowercase letters: <input

type=”text” size=”40” onkeyup=”checkMods(event)” /></p>
<p><input type=”button” value=”Click Here With Modifier Keys”

onclick=”checkMods(event)” /></p>
<p><input type=”checkbox” name=”modifier” />Alt <input type=”checkbox”

name=”modifier” />Control <input type=”checkbox”
name=”modifier” />Shift <input type=”checkbox”
name=”modifier” />Meta</p>

</form>
</body>

</html>

744 Part III ✦ Document Objects Reference

Because all three event handlers call the same checkMods() function, branching is needed
only in this function. Notice, though, that branching is done by object detection, rather than
navigator.userAgent detection. This method makes the most sense for this example,
because the scripts rely on the existence of particular objects and properties for their proper
execution. For NN4, the event object is passed as a parameter (evt) whose modifiers prop-
erty is Bitwise ANDed with an Event object constant for each modifier key. For IE4+ and
NN6+/W3C, the script checks the event object property for each of three modifiers.

Cross-platform key capture
To demonstrate keyboard events in both browsers, Listing 25-11 captures the key character
being typed into a text box, as well as the mouse button used to click a button. As with
Listing 25-10, NN4 has a very different way of getting this information compared to IE4+ and
NN6+/W3C. In this arena, however, NN6+ continues to support the NN4 syntax as well, so you
can use the old or new syntax as you like. Whereas NN4 combines the features of key charac-
ter code and mouse button into one event object property (depending on the event type),
newer browsers have entirely separate properties for these values. Listing 25-11 is written
such that NN6+ follows the NN4 syntax path, but even if the NN4 syntax should disappear in a
future NN version, the browser would follow the new syntax path without blinking an eye.

Listing 25-11: Checking Events for Key and Mouse Button Pressed

<html>
<head>

<title>Button and Key Properties</title>
<script type=”text/javascript”>
function checkWhich(evt) {

evt = (evt) ? evt : ((window.event) ? window.event : null);
if (evt) {

var thingPressed = “”;
var elem = (evt.target) ? evt.target : evt.srcElement;
if (elem.type == “textarea”) {

thingPressed = (evt.charCode) ? evt.charCode :
((evt.which) ? evt.which : evt.keyCode);

} else if (elem.type == “button”) {
thingPressed = (typeof evt.button != “undefined”) ? evt.button :

((typeof evt.which != “undefined”) ? evt.which : “n/a”);
}
window.status = thingPressed;

}
return false;

}
</script>

</head>
<body>

<h1>Button and Key Properties</h1>
(results in the status bar)
<hr />
<form>

<p>Mouse down atop this <input type=”button” value=”Button”
onmousedown=”checkWhich(event)” /> with either mouse button (if you
have more than one).</p>

745Chapter 25 ✦ Event Objects

<p>Enter some text with uppercase and lowercase letters: <textarea
cols=”40” rows=”4” onkeypress=”checkWhich(event)”
wrap=”virtual”></textarea></p>

</form>
</body>

</html>

The codes displayed for the keyboard event are equivalent to the ASCII values of character
keys. If you need the codes of other keys, the onkeydown and onkeyup event handlers pro-
vide Unicode values for any key that you press on the keyboard. See the charCode and
keyCode property listings for event objects later in this chapter for more details.

Event Types
Although browsers prior to version 4 did not have an accessible event object, this is a good
time to summarize the evolution of what in today’s browsers is known as the type property.
The type property reveals the kind of event that generates an event object (the event han-
dler name minus the “on”). Object models in IE4+ and NN6+/W3C provide event handlers for
virtually every HTML element, so that it’s possible, for example, to define an onclick event
handler for not only a clickable button but also a p or even an arbitrary span element. We’ll
come back to the current crop of browsers in a moment. But first, in case you must write
scripts that work on older browsers, you need to know which elements in those browsers
support which event handlers. This knowledge will help you determine a common denomina-
tor of event handlers to implement in your pages, based on the browsers you anticipate will
be accessing the pages.

Older browsers
Earlier browsers tended to limit the number of event handlers for any particular element to
just those that made sense for the kind of element it was. Even so, many scripters wanted
more event handlers on more objects. But until that became a reality in IE4+ and NN6+/W3C,
authors had to know the limits of the object models. Table 25-3 shows the event handlers
available for objects within three generations of early browsers. Each column represents the
version in which the event type was introduced. For example, the window object started out
with four event types and gained three more when NN4 was released. In contrast, the area
object was exposed as an object for the first time in NN3, which is where the first event types
for that object are listed.

Table 25-3: Event Types through the Early Ages

Object NN2/IE3 NN3 NN4

window blur dragdrop
focus move
load resize
unload

layer blur
focus

Continued

746 Part III ✦ Document Objects Reference

Table 25-3 (continued)

Object NN2/IE3 NN3 NN4

load
mouseout
mouseover
mouseup

link click mouseout dblclick
mouseover mousedown

onmouseup
area mouseout click

mouseover
image abort

error
load

Form submit reset
text, textarea,
password

blur keydown
change keypress
focus keyup
select

all buttons click mousedown
mouseup

select blur
change
focus

fileUpload blur
focus
select

With the exception of the NN4 layer object, all objects shown in Table 25-3 have survived
into the newer browsers, so that you can use these event handlers with confidence. Again,
keep in mind that of the browsers listed in Table 25-3, only NN4 has an event object of any
kind exposed to scripts.

Event types in IE4+ and NN6+/W3C
By now you should have at least scanned the list of event handlers defined for elements in
common, as shown in Chapter 15. This list of event types is enormous. A sizable number of
the event types are unique to IE4, IE5, and IE5.5/6, and in some cases, just the Windows ver-
sion at that.

If you compose pages for both IE4+ and NN6+/W3C, however, you need to know which
event types these browser families and generations have in common. Event types for

747Chapter 25 ✦ Event Objects

NN6+/Moz1+/Safari are based primarily on the W3C DOM Level 2 specification, although
they also include keyboard events, which are not formally part of the Level 2 specification.
Table 25-4 lists a common denominator of event types for modern browsers and the objects
that support them. As you can see, many of these event types and corresponding objects go
way back to the beginning. The biggest change is that mouse events are available for any visi-
ble element. While not as long as the IE event list, the event types in Table 25-4 are the basic
set you should get to know for all browsers.

Table 25-4: IE4+ and W3C DOM Event Types in Common

Event type Applicable Elements

abort object
blur window, button, text, password, label, select, textarea
change text, password, textarea, select
click All elements

error window, frameset, object
focus window, button, text, password, label, select, textarea
keydown text, password, textarea
keypress text, password, textarea
keyup text, password, textarea
load window, frameset, object
mousedown All elements

mousemove All elements

mouseout All elements

mouseover All elements

mouseup All elements

reset form
resize window
scroll window
select text, password, textarea
submit form
unload window, frameset

NN4 event Object

Properties Methods Event Handlers

data
layerX
layerY
modifiers

Continued

(NN4) eventObject

748 Part III ✦ Document Objects Reference

Properties Methods Event Handlers

pageX
pageY
screenX
screenY
target
type
which

Syntax
Accessing NN4 event object properties:

eventObject.property

Compatibility: WinIE-, MacIE-, NN4+, Moz-, Safari-

About this object
Most of the details about this object were covered in the comparative event object discus-
sions earlier in this chapter. As the NN4 browser continues to dissipate from the user-
installed base, this object and its details will become less important.

Properties
data

Value: Array of strings. Read-Only
Compatibility: WinIE-, MacIE-, NN4+, Moz-, Safari-

A dragdrop event contains information about the URL string being dragged to the browser
window. Because dragging multiple items to a window is possible (for example, many icons
representing URLs on some operating systems), the value of the property is an array of
strings, with each string containing a single URL (including file:// URLs for computer files).

URL information such as this is deemed to be private data, so it is exposed only to signed
scripts after the user has granted permission to read browser data. If you want your signed
script to capture this information without loading the URL into the window, the event handler
must evaluate to return false.

Example
The page in Listing 25-12 contains little more than a textarea in which the URLs of dragged
items are listed. To run this script without signing the scripts, turn on codebase principals, as
directed in Chapter 46 on the CD-ROM.

To experiment with this listing, load the page and drag any desktop icons that represent files,
applications, or folders to the window. Select multiple items and drag them all at once.
Because the ondragdrop event handler evaluates to return false, the files are not loaded
into the window. If you want merely to look at the URL and allow only some to process, you

(NN4) eventObject

749Chapter 25 ✦ Event Objects

would generate an if...else construction to return true or false to the event handler as
needed. A value of return true allows the normal processing of the dragdrop event to take
place after your event handler function has completed its processing.

Listing 25-12: Obtaining URLs of a dragdrop Event’s data Property

<html>
<head>

<title>Drag and Drop</title>
<script type=”text/javascript”>
function handleDrag(evt) {

netscape.security.PrivilegeManager.enablePrivilege(
“UniversalBrowserRead”);

var URLArray = evt.data;
netscape.security.PrivilegeManager.disablePrivilege(

“UniversalBrowserRead”);
if (URLArray) {

document.forms[0].output.value = URLArray.join(“\n”);
} else {

document.forms[0].output.value = “Nothing found.”;
}
return false;

}
</script>

</head>
<body ondragdrop=”return handleDrag(event)”>

Drag a URL to this window (NN4 only).
<hr />
<form>

URLs:

<textarea name=”output” cols=”70” rows=”4”></textarea>

<input type=”reset” />

</form>
</body>

</html>

layerX
layerY
pageX
pageY
screenX
screenY

Compatibility: WinIE-, MacIE-, NN4+, Moz-, Safari-

For many (but not all) mouse-related events, the NN4 event object contains a lot of informa-
tion about the coordinates of the pointer when the event occurred. In the most complex case,
a click in a layer object has three distinct pairs of horizontal and vertical (x and y) coordi-
nate values relative to the layer, the page, and the entire screen. If no layers are specified for
a document, the layer and page coordinate systems are identical. Note that these values are

(NN4) eventObject.layerX

750 Part III ✦ Document Objects Reference

merely geographical in nature and do not, by themselves, contain any information about the
object being clicked (information held by the eventObject.target property).

These mouse coordinate properties are set only with specific events. In the case of a link
object, the click and all four mouse events pack these values into the event object. For but-
tons, however, only the mouse events (mousedown and mouseup) receive these coordinates.

Each of the two window event types (move and resize) uses one of these property pairs to
convey the results of the user action involved. For example, when the user resizes a window,
the resize event stuffs the eventObject.layerX and eventObject.layerY properties with
the inner width and height (that is, the content area) of the browser window (you can also
use the optional eventObject.width and eventObject.height property names if you
prefer). When the user moves the window, the eventObject.screenX and eventObject.
screenY properties contain the screen coordinates of the top-left corner of the entire
browser application window.

Example
You can see the effects of the coordinate systems and associated properties with the page
in Listing 25-13. Part of the page contains a three-field readout of the layer-, page-, and
screen-level properties. Two clickable objects are provided so that you can see the differ-
ences between an object not in any layer and an object residing within a layer. The object not
confined by a layer has the same coordinates for the layer and the page in the event object
properties.

Additional readouts display the event object coordinates for resizing and moving a window.
If you maximize the window under Windows, the Navigator browser’s top-left corner is actu-
ally out of sight, four pixels up and to the left. That’s why the screenX and screenY values
are both -4.

Listing 25-13: NN4 Event Coordinate Properties

<html>
<head>

<title>X and Y Event Properties</title>
<script type=”text/javascript”>
function checkCoords(evt) {

var form = document.forms[0];
form.layerCoords.value = evt.layerX + “,” + evt.layerY;
form.pageCoords.value = evt.pageX + “,” + evt.pageY;
form.screenCoords.value = evt.screenX + “,” + evt.screenY;
return false;

}
function checkSize(evt) {

document.forms[0].resizeCoords.value = evt.layerX + “,” + evt.layerY;
}
function checkLoc(evt) {

document.forms[0].moveCoords.value = evt.screenX + “,” + evt.screenY;
}
</script>

</head>
<body onresize=”checkSize(event)” onmove=”checkLoc(event)”>

<h1>X and Y Event Properties (NN4)</h1>
<hr />

(NN4) eventObject.layerX

751Chapter 25 ✦ Event Objects

<p>Click on the button and in the layer/image to see the coordinate
values for the event object.</p>

<form name=”output”>
<table>

<tr>
<td colspan=”2”>Mouse Event Coordinates:</td>

</tr>
<tr>

<td align=”right”>layerX, layerY:</td>
<td><input type=”text” name=”layerCoords” size=”10” /></td>

</tr>
<tr>

<td align=”right”>pageX, pageY:</td>
<td><input type=”text” name=”pageCoords” size=”10” /></td>

</tr>
<tr>

<td align=”right”>screenX, screenY:</td>
<td><input type=”text” name=”screenCoords” size=”10” /></td>

</tr>
<tr>

<td align=”right”><input type=”button” value=”Click Here”
onmousedown=”checkCoords(event)” /></td>

</tr>
<tr>

<td colspan=”2”><hr /></td>
</tr>
<tr>

<td colspan=”2”>Window Resize Coordinates:</td>
</tr>
<tr>

<td align=”right”>layerX, layerY:</td>
<td><input type=”text” name=”resizeCoords” size=”10” /></td>

</tr>
<tr>

<td colspan=”2”><hr /></td>
</tr>
<tr>

<td colspan=”2”>Window Move Coordinates:</td>
</tr>
<tr>

<td align=”right”>screenX, screenY:</td>
<td><input type=”text” name=”moveCoords” size=”10” /></td>

</tr>
</table>

</form>
<layer name=”display” bgcolor=”coral” top=”140” left=”300” height=”250”
width=”330”>

</layer>
</body>

</html>

Related Items: window and layer object move and resize methods.

(NN4)eventObject.layerX

752 Part III ✦ Document Objects Reference

modifiers
Value: Constant. Read-Only
Compatibility: WinIE-, MacIE-, NN4+, Moz-, Safari-

The modifiers property of the NN4 event object refers to the modifier keys that can be
pressed while clicking or typing. Modifier keys are Alt (also the Option key on the Macintosh
keyboard), Ctrl, Shift, and what is known as a meta key (for example, the Command key, Ô, on
the Macintosh keyboard). You can use this property to find out if one or more modifier keys
were pressed at the time the event occurred.

Values for these keys are integer values designed in such a way that any combination of keys
generates a unique value. Fortunately, you don’t have to know anything about these values,
because the event model supplies some plain-language constants (properties of a global
Event object always available behind the scenes) that a script can apply to the property
value passed with the object. The constant names consist of the key name (all uppercase),
followed by an underscore and the uppercase word MASK. For example, if the Alt key is
pressed by itself or in concert with other modifier keys, you can use the bitwise and operator
(&) and the Event.ALT_MASK constant to test for the presence of the Alt key in the property
value:

function handleMyEvent(evt) {
if (evt.modifiers & Event.ALT_MASK) {

//statements for Alt key handling
}

}

Modifiers are not available with every event. You can capture them with mousedown and
mouseup events in buttons and links. The only click event offering modifiers is with button
objects. Keyboard events in text objects also include these modifiers. But be aware that
accelerated keyboard combinations (for example, Ctrl+Q/Ô-Q for Quit) are not trappable
by JavaScript event mechanisms because they are reserved for the browser’s own menu
shortcuts.

Example
See Listing 25-10 earlier in this chapter to see (in a cross-browser way) how the modifier keys
are read for NN4.

target
Value: Object reference. Read-Only
Compatibility: WinIE-, MacIE-, NN4+, Moz-, Safari-

Every event has a property containing a reference to the object that was clicked, typed into,
or otherwise acted upon. Most commonly, this property is examined when you set up a page
to trap for events at the window, document, or layer level, as described earlier in this chapter.
The target property lets you better identify the intended destination of the event while han-
dling all processing for that type of event in one place. With a reference to the target object at
hand in this property, your scripts can extract and/or set properties of the object directly.

(NN4) eventObject.modifiers

753Chapter 25 ✦ Event Objects

type
Value: String. Read-Only
Compatibility: WinIE-, MacIE-, NN4+, Moz-, Safari-

An event object’s type is the name of the event that generated the event object. An event
name is the same as the event handler’s name, without the “on” prefix. Therefore, if a button’s
onclick event handler is triggered by a user’s click, then the event type is click (all lower-
case). If you create a multipurpose function for handling events, you can extract the
eventObject.type property to help the function decide how to handle the current event.
This sounds like a good job for the switch control structure (see Chapter 31).

which
Value: Integer. Read-Only
Compatibility: WinIE-, MacIE-, NN4+, Moz-, Safari-

The value of the which property depends on the event type: a mouse button indicator for
mouse events and a character key code for keyboard events.

For a mouse-related event, the eventObject.which property contains either a 1 for the left
(primary) mouse button or a 3 for the right (secondary) mouse button. Most Macintosh com-
puters have only a one-button mouse, so exercise care in designing pages that rely on the sec-
ond mouse button. Even on Windows and other platforms, you must program an object’s
onmousedown event handler to return false for the secondary button to be registered
instead of a browser pop-up menu appearing onscreen.

Keyboard events generate the ISO-Latin character code for the key that has been pressed.
This value is an integer between 0 and 255. If your script needs to look at the actual character
being typed, rather than the key code, use the String.fromCharCode() method (see
Chapter 27) to make the conversion. If you have difficulty obtaining character codes from
keyboard events, try using the onkeydown and onkeyup events rather than onkeypress. In
either case, the function keys do not present character codes.

Example
See Listing 25-10 for an example of using the eventObject.which property.

IE4+ event Object

Properties Methods Event Handlers

altKey
altLeft
behaviorCookie
behaviorPart
bookmarks
boundElements
button

Continued

(IE) event

754 Part III ✦ Document Objects Reference

Properties Methods Event Handlers

cancelBubble
clientX
clientY
contentOverflow
ctrlKey
ctrlLeft
dataFld
dataTransfer
fromElement
keyCode
nextPage
offsetX
offsetY
propertyName
qualifier
reason
recordset
repeat
returnValue
saveType
screenX
screenY
shiftKey
shiftLeft
srcElement
srcFilter
srcUrn
toElement
type
wheelData
x
y

Syntax
Accessing IE4+ event object properties:

[window.]event.property

Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-

(IE) event

755Chapter 25 ✦ Event Objects

About this object
The IE4+ event object is a property of the window object. Its basic operation is covered ear-
lier in this chapter.

You can see a little of what the event object is about with the help of The Evaluator (see
Chapter 13). If you type event into the bottom text box, you can examine the properties of
the event object for the event that triggers the function that displays the event object prop-
erties. If you press the Enter key in the text box, you see properties of the keypress event
that caused the internal script to run; click the List Properties button to see the properties of
the click event fired at the button. Hold down some of the modifier keys while clicking to
see how this affects some of the properties.

As you review the properties for the event object, make special note of the compatibility
rating for each property. The list of properties for this object has grown over the evolution of
the IE4+ event object model. Also, most properties are listed here as being read-only, which
they were in IE4. But for IE5+, these properties are also Read/Write if the event is created arti-
ficially via methods, such as IE5.5+’s document.createEventObject() method. Event
objects that are created by user or system action have very few properties that can be modi-
fied on the fly (to prevent your scripts from altering user actions). Notice, too, that some
properties are the same as for the W3C DOM event object, as revealed in the compatibility
ratings.

Properties
altKey
ctrlKey
shiftKey

Value: Boolean. Read-Only
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

When an event object is created in response to a user or system action, these three proper-
ties are set based on whether their corresponding keys were being held down at the time —
a Shift-click, for example. If the key was held down, the property is assigned a value of true;
otherwise the value is false.

Most commonly, you use expressions consisting of this property as if construction condi-
tion statements. Because these are Boolean values, you can combine multiple properties in a
single condition. For example, if you have a branch of a function that is to execute only if the
event occurred with both the Shift and Control keys held down, the condition looks as the
following:

if (event.shiftKey && event.ctrlKey) {
// statements to execute

}

Conversely, you can take a more user-friendly approach to provide special processing if the
user holds down any one of the three modifier keys:

if (event.shiftKey || event.ctrlKey || event.altKey) {
// statements to execute

}

(IE) event.altKey

756 Part III ✦ Document Objects Reference

The rationale behind this approach is to offer perhaps some shortcut operation for users, but
not force them to memorize a specific modifier key combination.

Example
See Listing 25-10, where the values of these three properties are used to set the checked
properties of corresponding checkboxes for a variety of event types.

Related Items: altLeft, ctrlLeft, shiftLeft properties.

altLeft
ctrlLeft
shiftLeft

Value: Boolean. Read-Only
Compatibility: WinIE5.5+, MacIE-, NN-, Moz-, Safari-

Some versions of Windows allow events to be modified by only the left-hand Alt, Ctrl, and
Shift keys when using IE5.5+. For these modifiers to be recorded by the event object, focus
must be on the document (body), and not in any form control. If the left-key version is false
and the regular version is true, then your script knows that the right-hand key had been held
down during the event.

Related Items: altKey, ctrlKey, shiftKey properties.

behaviorCookie
behaviorPart

Value: Integer. Read-Only
Compatibility: WinIE6+, MacIE-, NN-, Moz-, Safari-

These two properties are related to a Windows technology that Microsoft calls rendering
behaviors. Unlike the behaviors discussed under the addBehavior() method in Chapter 15,
rendering behaviors are written in C++ and provide services for custom drawing on your
Web page. For more details, consult the document “Implementing Rendering Behaviors” at
http://msdn.microsoft.com/workshop/browser/editing/imprendbehav.asp.

bookmarks
boundElements
dataFld
qualifier
reason
recordset

Value: See text. Read-Only
Compatibility: WinIE6+, MacIE-, NN-, Moz-, Safari-

This group of event object properties is tied to using Data Binding in Windows versions
of IE4+. Extensive details of Data Binding lie outside the scope of this book, but Table 25-5
provides a summary of these event object properties within that context (much of the
terminology is used in Data Binding, but doesn’t affect other scripting). For more details,
search for ActiveX Data Objects (ADO) at http://msdn.microsoft.com/workshop/.

(IE) event.altKey

757Chapter 25 ✦ Event Objects

Table 25-5: ADO-Related event Object Properties

Property Value First Implemented Description

bookmarks Array IE4 Array of ADO bookmarks (saved positions)
for records within a recordset associated with
the object that received the event.

boundElements Array IE5 Array of element references for all elements
bound to the same data set that was touched
by the current event.

dataFld String IE5 Name of the data source column that is
bound to a table cell that receives a
cellchange event.

qualifier String IE5 Name of the data member associated with
a data source that receives a data-related
event. Available only if the data source object
(DSO) allows multiple-named data members
or a qualifier has been explicitly set via the
datasrc attribute of the bound element.
Read-write in IE5+.

reason Integer IE4 Set only from onDataSetComplete event,
provides the result code of the data set
loading (0=successful; 1=transfer aborted;
2=other error).

recordset Object IE4 Reference to the current recordset in a data
source object.

button
Value: Integer. Read-Only
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

The button property reveals which button or buttons were pressed to activate a mouse
event. If no mouse button is pressed to generate an event, this property is zero. But integers
1 through 7 reveal single and multiple button presses, including three-button mice when they
are recognized by the operating system. Integer values correspond to buttons according to
the following scheme:

Value Description

0 No button

1 Left (primary) button

2 Right button

3 Left and right buttons together

4 Middle button

Continued

(IE) event.button

758 Part III ✦ Document Objects Reference

Value Description

5 Left and middle buttons together

6 Right and middle buttons together

7 Left, middle, and right buttons together

Mouse buttons other than the primary one are easier to look for in mousedown or mouseup
events rather than onclick events. Be aware that as the user works toward pressing multiple
buttons, each press fires a mousedown event. Therefore, if the user presses the left button
first, the mousedown event fires, with the event.button property bearing the 1 value; as
soon as the right button is pressed, the mousedown event fires again, but this time with an
event.button value of 3. If your script intends to perform special action with both buttons
pressed, it should ignore and not perform any action for a single mouse button, because that
one-button event will very likely fire in the process, disturbing the intended action.

Exercise caution when scripting the event.button property for both IE4+ and NN6+/W3C.
The W3C DOM event model defines different button values for mouse buttons (0, 1, and 2 for
left, middle, and right) and no values for multiple buttons.

Example
See Listing 25-11, where the event.button property is revealed in the status bar. Try press-
ing individual mouse buttons on, for example, the screen button. Then try combinations,
watching the results very closely in the status bar.

Related Items: None.

cancelBubble
Value: Boolean. Read/Write
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

The cancelBubble property (which sounds more as if it should be a method name) deter-
mines whether the current event object bubbles up any higher in the element containment
hierarchy of the document. By default, this property is false, meaning that if the event is
supposed to bubble, it will do so automatically.

To prevent event bubbling for the current event, set the property to true anywhere within
the event handler function. As an alternative, you can cancel bubbling directly in an element’s
event handler attribute, as in the following:

onclick=”doButtonClick(this); event.cancelBubble = true”

Cancelling event bubbling works only for the current event. The very next event to fire will
have bubbling enabled (provided the event bubbles).

Example
See Listing 25-6 to see the cancelBubble property in action. Even though that listing has
some features that apply to IE5.5+, the bubble cancelling demonstration works all the way
back to IE4.

Related Items: returnValue property.

(IE) event.button

759Chapter 25 ✦ Event Objects

clientX
clientY
offsetX
offsetY
screenX
screenY
x
y

Value: Integer. Read/Write
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

An IE event object provides coordinates for an event in as many as four coordinate spaces:
the element itself, the parent element of the event’s target, the viewable area of the browser
window, and the entire video screen. Unfortunately, misleading values can be returned by
some of the properties that correspond to these coordinate spaces, as discussed in this sec-
tion. Note that no properties provide the explicit position of an event relative to the entire
page, in case the user has scrolled the window.

Starting with the innermost space — that of the element that is the target of the event — the
offsetX and offsetY properties should provide pixel coordinates within the target element.
This is how, for example, you could determine the click point on an image, regardless of
whether the image is embedded in the body or floating around in a positioned div. Windows
versions through IE6 produce the correct values in most cases. But for some elements that
are child elements of the body element, the vertical (y) value may be relative to the viewable
window, rather than just the element itself. You can see an example of this when you work
with Listing 25-14 and click the h1 or p elements near the top of the page. This problem does
not affect MacIE, but there is another problem on Mac versions: If the page is scrolled away
from its normal original position, the scrolled values are subtracted from the clientX and
clientY values. This is an incompatibility bug, and you must take this error into account if
you need click coordinates inside an element for a potentially scrolled page. This error cor-
rection must be done only for the Mac, because Windows works okay.

Extending scope to the offset parent element of the event’s target, the x and y properties in
IE5+ for Windows should return the coordinates for the event relative to the target’s offset
parent element (the element that can be found via the offsetParent property). For most
non-positioned elements, these values are the same as the clientX and clientY properties
because, as discussed in a moment, the offset parent element has a zero offset with its parent,
the body. Observe an important caution about the x and y properties: In WinIE4 and through
MacIE5, the properties do not take into account any offset parent locations other than the
body. Even in WinIE5+, this property can give false readings in some circumstances. By and
large, these two properties should not be used.

The next set of coordinates, clientX and clientY, are relative to the visible document
area of the browser window. When the document is scrolled all the way to the top (or the
document doesn’t scroll at all), these coordinates are the same as the coordinates on the
entire page. But because the page can scroll “underneath” the viewable window, the coordi-
nates on the page can change if the page scrolls. Also, in the Windows versions of IE, you can
actually register mouse events that are up to 2 pixels outside of the body element, which
seems weird, but true. Therefore, in WinIE, if you click the background of the body, the event

(IE) event.clientX

760 Part III ✦ Document Objects Reference

fires on the body element, but the clientX/clientY values will be 2 pixels greater than
offsetX/offsetY (they’re equal in MacIE). Despite this slight discrepancy, you should rely
on the clientX and clientY properties if you are trying to get the coordinates of an event
that may be in a positioned element, but have those coordinates relative to the entire view-
able window, rather than just the positioning context.

Taking the page’s scrolling into account for an event coordinate is often important. After all,
unless you generate a fixed-size window for a user, you don’t know how the browser window
will be oriented. If you’re looking for a click within a specific region of the page, you must take
page scrolling into account. The scrolling factor can be retrieved from the
document.body.scrollLeft and document.body.scrollTop properties. When reading the
clientX and clientY properties, be sure to add the corresponding scroll properties to get
the position on the page:

var coordX = event.clientX + document.body.scrollLeft;
var coordY = event.clientY + document.body.scrollTop;

Do this in your production work without fail.

Finally, the screenX and screenY properties return the pixel coordinates of the event on the
entire video screen. These properties may be more useful if IE provided more window dimen-
sion properties. In any case, because mouse events fire only when the cursor is somewhere in
the content region of the browser window, don’t expect to get screen values of anywhere out-
side this region.

If these descriptions seem confusing to you, you are not alone. Throw in a few bugs, and it
may seem like quite a mess. But think how you may use event coordinates in scripts. By and
large, you want to know one of two types of mouse event coordinates: within the element
itself and within the page. Use the offsetX/offsetY properties for the former; use
clientX/clientY (plus the scroll property values) for the latter.

Although the coordinate properties are used primarily for mouse events, there is a little quirk
that may let you determine if the user has resized the window via the maximize icon in the
title bar (on the Mac, this is called the zoom box) or the resize handle at the bottom-right cor-
ner of the screen. Mouse event coordinates are recorded in the event object for a resize
event. In the case of the maximize icon, the clientY coordinate is a negative value (above
the client space) and the clientX coordinate is within about 45 pixels of the previous width
of the window (document.body.clientWidth). This, of course, happens after the window
has resized, so it is not a way to prevent window resizing.

Example
Listing 25-14 provides readings of all event coordinate properties in an interactive way. An
onmousedown event handler triggers all event handling, and you can click the mouse any-
where on the page to see what happens. You see the tag of the element targeted by the mouse
event to help you visualize how some of the coordinate properties are determined. An image
is encased inside a positioned div element to help you see what happens to some of the
properties when the event is targeted inside a positioned element.

Listing 25-14: IE4+ Event Coordinate Properties

<html>
<head>

<title>X and Y Event Properties (IE4+ Syntax)</title>
<script type=”text/javascript”>

(IE) event.clientX

761Chapter 25 ✦ Event Objects

function checkCoords(evt) {
evt = (evt) ? evt : ((window.event) ? window.event : null);
if (evt) {

var elem = (evt.target) ? evt.target : evt.srcElement;
var form = document.forms[0];
form.srcElemTag.value = “<” + elem.tagName + “>”;
form.clientCoords.value = evt.clientX + “,” + evt.clientY;
if (typeof document.body.scrollLeft != “undefined”) {

form.pageCoords.value = (evt.clientX + document.body.scrollLeft)
+

“,” + (evt.clientY + document.body.scrollTop);
}
form.offsetCoords.value = evt.offsetX + “,” + evt.offsetY;
form.screenCoords.value = evt.screenX + “,” + evt.screenY;
form.xyCoords.value = evt.x + “,” + evt.y;
if (elem.offsetParent) {

form.parElem.value = “<” + elem.offsetParent.tagName + “>”;
}
return false;

}
}
function handleSize(evt) {

evt = (evt) ? evt : ((window.event) ? window.event : null);
if (evt) {

document.forms[0].resizeCoords.value = evt.clientX + “,” +
evt.clientY;

}
}
</script>

</head>
<body onmousedown=”checkCoords(event)” onresize=”handleSize(event)”>

<h1>X and Y Event Properties (IE4+ Syntax)</h1>
<hr />
<p>Click on any element to see the coordinate values

for the event object.</p>
<form name=”output”>

<table>
<tr>

<td colspan=”2”>IE Mouse Event Coordinates:</td>
</tr>
<tr>

<td align=”right”>srcElement:</td>
<td><input type=”text” name=”srcElemTag” size=”10” /></td>

</tr>
<tr>

<td align=”right”>clientX, clientY:</td>
<td><input type=”text” name=”clientCoords” size=”10” /></td>
<td align=”right”>...With scrolling:</td>
<td><input type=”text” name=”pageCoords” size=”10” /></td>

</tr>
<tr>

<td align=”right”>offsetX, offsetY:</td>
<td><input type=”text” name=”offsetCoords” size=”10” /></td>

</tr>
<tr>

<td align=”right”>screenX, screenY:</td>
<td><input type=”text” name=”screenCoords” size=”10” /></td>

</tr>

Continued

(IE) event.clientX

762 Part III ✦ Document Objects Reference

Listing 25-14 (continued)

<tr>
<td align=”right”>x, y:</td>
<td><input type=”text” name=”xyCoords” size=”10” /></td>
<td align=”right”>...Relative to:</td>
<td><input type=”text” name=”parElem” size=”10” /></td>

</tr>
<tr>

<td align=”right”><input type=”button” value=”Click Here” /></td>
</tr>
<tr>

<td colspan=”2”><hr /></td>
</tr>
<tr>

<td colspan=”2”>Window Resize Coordinates:</td>
</tr>
<tr>

<td align=”right”>clientX, clientY:</td>
<td><input type=”text” name=”resizeCoords” size=”10” /></td>

</tr>
</table>

</form>
<div id=”display” style=”position:relative; left:100”>

</div>

</body>
</html>

Here are some tasks to try with the page that loads from Listing 25-14 to help you understand
the relationships among the various pairs of coordinate properties:

1. Click the dot above the “i” on the “Click Here” button label. The target element is the
button (input) element, whose offsetParent is a table cell element. The offsetY
value is very low because you are near the top of the element’s own coordinate space.
The client coordinates (and x and y), however, are relative to the viewable area in the
window. If your browser window is maximized in Windows, the screenX and clientX
values will be the same; the difference between screenY and clientY is the height of
all the window chrome above the content region. With the window not scrolled at all,
the client coordinates are the same with and without scrolling taken into account.

2. Jot down the various coordinate values and then scroll the page down slightly (clicking
the scrollbar fires an event) and click the dot on the button again. The clientY value
shrinks because the page has moved upward relative to the viewable area, making the
measure between the top of the area smaller with respect to the button. The Windows
version does the right thing with the offset properties, by continuing to return values
relative to the element’s own coordinate space; the Mac, unfortunately, subtracts the
scrolled amount from the offset properties.

3. Click the large image. The client properties perform as expected for both Windows and
Mac, as do the screen properties. For Windows, the x and y properties correctly return
the event coordinates relative to the img element’s offsetParent, which is the div
element that surrounds it. Note, however, that the browser “sees” the div as starting

(IE) event.clientX

763Chapter 25 ✦ Event Objects

10 pixels to the left of the image. In WinIE5.5+, you can click within those 10 transparent
pixels to the left of the image to click the div element. This padding is inserted auto-
matically and impacts the coordinates of the x and y properties. A more reliable mea-
sure of the event inside the image is the offset properties. The same is true in the
Macintosh version, as long as the page isn’t scrolled, in which case the scroll, just as in
Step 2, affects the values above.

4. Click the top hr element under the heading. It may take a couple of tries to actually hit
the element (you’ve made it when the hr element shows up in the srcElement box).
This is to reinforce the way the client properties provide coordinates within the ele-
ment itself (again, except on the Mac when the page is scrolled). Clicking at the very
left end of the rule, you eventually find the 0,0 coordinate.

Finally, if you are a Windows user, here are two examples to try to see some of the unex-
pected behavior of coordinate properties.

1. With the page not scrolled, click anywhere along the right side of the page, away from
any text so that the body element is srcElement. Because the body element theoreti-
cally fills the entire content region of the browser window, all coordinate pairs except
for the screen coordinates should be the same. But offset properties are 2 pixels less
than all the others. By and large, this difference won’t matter in your scripts, but you
should be aware of this potential discrepancy if precise positioning is important. For
inexplicable reasons, the offset properties are measured in a space that is inset 2 pixels
from the left and top of the window. This is not the case in the Macintosh version,
where all value pairs are the same from the body perspective.

2. Click the text of the h1 or p elements (just above and below the long horizontal rule at
the top of the page). In theory, the offset properties should be relative to the rectangles
occupied by these elements (they’re block elements, after all). But instead, they’re
measured in the same space as the client properties (plus the 2 pixels). This unex-
pected behavior doesn’t have anything to do with the cursor being a text cursor,
because if you click inside any of the text box elements, their offset properties are
properly relative to their own rectangles. This problem does not afflict the Macintosh
version.

Many of these properties are also in the W3C DOM and are therefore supported in W3C DOM
browsers. Unsupported properties display their values as undefined when you run Listing
25-14 in those browsers.

You can see further examples of important event coordinate properties in action in the dis-
cussion of dragging elements around the IE page in Chapter 39 on the CD-ROM.

Related Items: fromElement, toElement properties.

dataTransfer
Value: Object. Read-Only
Compatibility: WinIE5+, MacIE-, NN-, Moz-, Safari-

The dataTransfer property is a reference to a WinIE-only object called the dataTransfer
object. Use this object in drag-and-drop operations (that is, with drag-and-drop-related
events) to control not only the data that gets transferred from the source to the target but
also to control the look of the cursor along the way.

Table 25-6 lists the properties and methods of the dataTransfer object.

(IE) event.dataTransfer

764 Part III ✦ Document Objects Reference

Table 25-6: dataTransfer object Properties and Methods

Property/Method Returns Description

dropEffect String An element that is a potential recipient of a drop action
can use the ondragenter, ondragover, or ondrop
event handler to set the cursor style to be displayed
when the cursor is atop the element. Before this can
work, the source element’s ondragstart event handler
must assign a value to the event.effectAllowed
property. Possible string values for both properties are
copy, link, move, or none. These properties
correspond to the Windows system cursors for the
operations users typically do with files and in other
documents. You must also cancel the default action
(meaning set event.returnValue to false) for all
of these drop element event handlers: ondragenter,
ondragover, and ondrop.

effectAllowed String Set in response to an ondragstart event of the source
element, this property determines which kind of drag-
and-drop action will be taking place. Possible string
values are copy, link, move, or none. This property
value must match the dropEffect property value for
the target element’s event object. Also, cancel the
default action (meaning, set event.returnValue to
false) in the ondragstart event handler.

clearData([format]) Nothing Removes data in the clipboard. If no format parameters
are supplied, all data are cleared. Data formats can be
one or more of the following strings: Text, URL, File,
HTML, Image.

getData(format) String Retrieves data of the specified format from the
clipboard. The format is one of the following strings:
Text, URL, File, HTML, Image. The clipboard is not
emptied after you get the data, so that it can be
retrieved in several sequential operations.

setData (format, Boolean Stores string data in the clipboard. The format is one
data) of the following strings: Text, URL, File, HTML,

Image. For non-text data formats, the data must be
a string that specifies the path or URL to the content.
Returns true if the transfer to the clipboard is
successful.

The dataTransfer object acts as a conduit and controller of data that your scripts need to
transfer from one element to another in response to a user’s drag-and-drop action. You need
to adhere to a well-defined sequence of actions triggered by a handful of event handlers. This
means that the object is invoked on different instances of the event object as different events
fire in the process of dragging and dropping.

The sequence begins at the source element, where an ondragstart event handler typically
assigns a value to the dropEffect property and uses the getData() method to explicitly

(IE) event.dataTransfer

765Chapter 25 ✦ Event Objects

capture whatever data it is about the source object that gets transferred to the eventual tar-
get. For example, if you drag an image, the information being transferred may simply be the
URL of the image — data that is extractable from the event.srcElement.src property of
that event (the src property of the image, that is).

At the target element(s), three event handlers must be defined: ondragenter, ondragover,
and ondrop. Most commonly, the first two event handlers do nothing more than mark the ele-
ment for a particular dropEffect (which must match the effectAllowed set at the source
during the drag’s start) and set event.returnValue to false so that the cursor displays the
desired cursor. These actions are also carried out in the ondrop event handler, but that is
also the handler that does the processing of the destination action at the target element. This
is when the dataTransfer object’s getData() method is invoked to pick up the data that
has been “stored” away by getData() at the start of the drag. If you also want to make sure
that the data is not picked up accidentally by another event, invoke the clearData() method
to remove that data from memory.

Note that the style of dragging being discussed here is not the kind in which you see the
source element actually moving on the screen (although you could script it that way). The
intention is to treat drag-and-drop operations just as Windows does in, say, the Windows
Explorer window or on the Desktop. To the user, the draggable component becomes encapsu-
lated in the cursor. That’s why the properties of the dataTransfer object control the appear-
ance of the cursor at the drop point as a way of conveying to the user the type of action that
will occur with the impending drop.

Example
An extensive example of the dataTransfer property in action can be found in Listing 15-37 in
the section for the ondrag event handler.

Related Items: ondragend, ondragenter, ondragleave, ondragover, ondragstart, ondrop
event handlers.

fromElement
toElement

Value: Element object. Read-Only
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-

The fromElement and toElement properties allow an element to uncover where the cursor
rolled in from or has rolled out to. These properties extend the power of the onmouseover
and onmouseout event handlers by expanding their scope to outside the current element
(usually to an adjacent element).

When the onmouseover event fires on an element, the cursor had to be over some other ele-
ment just beforehand. The fromElement property holds a reference to that element.
Conversely, when the onmouseout event fires, the cursor is already over some other element.
The toElement property holds a reference to that element.

Example
Listing 25-15 provides an example of how the fromElement and toElement properties can
reveal the life of the cursor action before and after it rolls into an element. When you roll the
cursor to the center box (a table cell), its onmouseover event handler displays the text from
the table cell from which the cursor arrived.

(IE) event.fromElement

766 Part III ✦ Document Objects Reference

Listing 25-15: Using the toElement and fromElement Properties

<html>
<head>

<title>fromElement and toElement Properties</title>
<style type=”text/css”>
.direction {background-color:#00FFFF; width:100; height:50;
text-align:center}
#main {background-color:#FF6666; text-align:center}
</style>
<script type=”text/javascript”>
function showArrival() {

var direction = (event.fromElement.innerText) ?
event.fromElement.innerText : “parts unknown”;

status = “Arrived from: “ + direction;
}
function showDeparture() {

var direction = (event.toElement.innerText) ?
event.toElement.innerText : “parts unknown”;

status = “Departed to: “ + direction;
}
</script>

</head>
<body>

<h1>fromElement and toElement Properties</h1>
<hr />
<p>Roll the mouse to the center box and look for arrival information in

the status bar. Roll the mouse away from the center box and look for
departure information in the status bar.</p>

<table cellspacing=”0” cellpadding=”5”>
<tr>

<td></td>
<td class=”direction”>North</td>
<td></td></tr>

<tr>
<td class=”direction”>West</td>
<td id=”main” onmouseover=”showArrival()”
onmouseout=”showDeparture()”>Roll</td>
<td class=”direction”>East</td>

</tr>
<tr>

<td></td>
<td class=”direction”>South</td>
<td></td>

</tr>
</table>

</body>
</html>

This is a good example to experiment with in the browser, because it also reveals a potential
limitation. The element registered as the toElement or fromElement must fire a mouse event
to register itself with the browser. If not, the next element in the sequence that registers itself
is the one acknowledged by these properties. For example, if you roll the mouse into the cen-
ter box and then extremely quickly roll the cursor to the bottom of the page, you may bypass
the South box entirely. The text that appears in the status bar is actually the inner text of the

(IE) event.fromElement

767Chapter 25 ✦ Event Objects

body element, which is the element that caught the first mouse event to register itself as the
toElement for the center table cell.

Related Items: srcElement property.

keyCode
Value: Integer. Read-Only
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

For keyboard events, the keyCode property returns an integer corresponding to the Unicode
value of the character (for onkeypress events) or the keyboard character key (for onkey-
down and onkeyup events). There is a significant distinction between these numbering code
systems.

If you want the Unicode values (the same as ASCII values for the Latin character set) for the
key that a user pressed, get the keyCode property from the onkeypress event handler. For
example, a lowercase “a” returns 97, while an uppercase “A” returns 65. Non-character keys,
such as arrows, page navigation, and function keys, return a null value for the keyCode prop-
erty during onkeypress events. In other words, the keyCode property for onkeypress events
is more like a character code than a key code.

To capture the exact keyboard key that the user presses, use either the onkeydown or
onkeyup event handler. For these events, the event object captures a numeric code associ-
ated with a particular key on the keyboard. For the character keys, this varies with the lan-
guage assigned as the system language. Importantly, there is no distinction between
uppercase or lowercase: The “A” key on the Latin keyboard returns a value of 65, regardless
of the state of the Shift key. At the same time, however, the press of the Shift key fired its own
onkeydown and onkeyup events, setting the keyCode value to 16. Other non-character keys —
arrows, page navigation, function, and similar — have their own codes as well. This gets very
detailed, including special key codes for the numeric keyboard keys that are different from
their corresponding numbers along the top row of the alphanumeric keyboard.

Be sure to see the extensive section on keyboard events in Chapter 15 for examples of how to
apply the keyCode property in applications.

Example
Listing 25-16 provides an additional play area to view the keyCode property for all three key-
board events while you type into a textarea. You can use this page later as an authoring tool
to grab the precise codes for keyboard keys you may not be familiar with.

Listing 25-16: Displaying keyCode Property Values

<html>
<head>

<title>keyCode Property</title>
<style type=”text/css”>
td {text-align:center}
</style>
<script type=”text/javascript”>
function showCode(which) {

document.forms[0].elements[which].value = event.keyCode
}

Continued

(IE) event.keyCode

768 Part III ✦ Document Objects Reference

Listing 25-16 (continued)

function clearEm() {
for (var i = 1; i < document.forms[0].elements.length; i++) {

document.forms[0].elements[i].value = “”
}

}
</script>

</head>
<body>

<h1>keyCode Property</h1>
<hr />
<form>

<p><textarea name=”scratchpad” cols=”40” rows=”5” wrap=”hard”
onkeydown=”clearEm(); showCode(‘down’)” onkeyup=”showCode(‘up’)”
onkeypress=”showCode(‘press’)”>
</textarea></p>

<table cellpadding=”5”>
<tr>

<th>Event</th>
<th>event.keyCode</th>

</tr>
<tr>

<td>onKeyDown:</td>
<td><input type=”text” name=”down” size=”3” /></td>

</tr>
<tr>

<td>onKeyPress:</td>
<td><input type=”text” name=”press” size=”3” /></td>

</tr>
<tr>

<td>onKeyUp:</td>
<td><input type=”text” name=”up” size=”3” /></td>

</tr>
</table>

</form>
</body>

</html>

The following are some specific tasks to try with the page to examine key codes (if you are
not using a browser set for English and a Latin-based keyboard, your results may vary):

1. Enter a lowercase “a”. Notice how the onkeypress event handler shows the code to
be 97, which is the Unicode (and ASCII) value for the first of the lowercase letters of the
Latin alphabet. But the other two events record just the key’s code: 65.

2. Type an uppercase “A” via the Shift key. If you watch closely, you see that the Shift key,
itself, generates the code 16 for the onkeydown and onkeyup events. But the character
key then shows the value 65 for all three events, because the ASCII value of the upper-
case letter happens to match the keyboard key code for that letter.

3. Press and release the Down Arrow key (be sure the cursor still flashes in the textarea,
because that’s where the keyboard events are being monitored). As a non-character
key, it does not fire an onkeypress event. But it does fire the other events, and assigns
40 as the code for this key.

(IE) event.keyCode

769Chapter 25 ✦ Event Objects

4. Poke around with other non-character keys. Some may produce dialog boxes or menus,
but their key codes are recorded nonetheless. Note that not all keys on a Macintosh
keyboard register with MacIE.

Related Items: onkeydown, onkeypress, onkeyup event handlers.

nextPage
Value: String. Read-Only
Compatibility: WinIE5.5+, MacIE-, NN-, Moz-, Safari-

The nextPage property is applicable only if your WinIE5.5+ page uses a TemplatePrinter
behavior. Values of this property are one of the following strings: left, right, or an empty
string. For more information about the TemplatePrinter behavior for WinIE5.5+, see

http://msdn.microsoft.com/workshop/browser/hosting/printpreview/reference/
behaviors/TemplatePrinter.asp

propertyName
Value: String. Read-Only
Compatibility: WinIE5+, MacIE-, NN-, Moz-, Safari-

The propertyName property is filled only after an onpropertychange event fires.

If a script modifies a property, the onpropertychange event handler fires, and the string
name of the property is stuffed into the event.propertyName property. If the property hap-
pens to be a property of the style object associated with the element, the propertyName is
the full property reference, as in style.backgroundColor.

Example
See Listing 15-46 in the section about the onpropertychange event handler for an example of
the values returned by this property.

Related Items: onpropertychange event handler (Chapter 15).

repeat
Value: Boolean. Read-Only
Compatibility: WinIE5+, MacIE-, NN-, Moz-, Safari-

The repeat property reveals for onkeydown events only whether the key is in repeat mode
(as determined by the Keyboard control panel settings in the system). With this information,
you can prevent the automatic triggering of repeat mode from causing multiple characters
from being recognized by the browser. This property can come in handy if users may be
physically challenged and may occasionally and accidentally hold down a key too long. The
following script fragment in an onkeydown event handler for a text box or textarea prevents
multiple characters from appearing even if the system goes into repeat mode:

if (event.repeat) {
event.returnValue = false;

}

By disabling the default action while in repeat mode, no further characters reach the text box
until repeat mode goes away (meaning, with the press of another key).

Related Items: onkeydown event handler.

(IE) event.repeat

770 Part III ✦ Document Objects Reference

returnValue
Value: Boolean. Read-Only
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-

While IE4+ continues to honor the original way of preventing default action for an event han-
dler (that is, having the last statement of the event handler evaluate to return false), the
IE4+ event model provides a property that lets the cancellation of default action take place
entirely within a function invoked by an event handler. By default, the returnValue property
of the event object is true, meaning that the element processes the event after the scripted
handler completes its job, just as if the script weren’t there. Normal processing, for example,
is displaying a typed character, navigating to a link’s href URL upon being clicked, or submit-
ting a form after the Submit button is clicked.

But you don’t always want the default action to occur. For example, consider a text box that
is supposed to allow only numbers to be typed in it. The onkeypress event handler can
invoke a function that inspects each typed character. If the character is not a numeric charac-
ter, it should not reach the text box for display. The following validation function may be
invoked from the onkeypress event handler of just such a text box:

function checkIt() {
var charCode = event.keyCode;
if (charCode < 48 || charCode > 57) {

alert(“Please make sure entries are numerals only.”);
event.returnValue = false;

}
}

By using this event handler, the errant character won’t appear in the text box.

Note that this property is not a substitute for the return statement of a function. If you need
a value to be returned to the invoking statement, you can use a return statement in addition
to setting the event.returnValue property.

Example
You can find several examples of the returnValue property at work in Chapter 15 and
Chapter 1. Look at Listings 15-30, 15-33, 15-36, 15-37, 15-38, and 15-45. Moreover, many of the
other examples in Chapter 15 can substitute the returnValue property way of cancelling the
default action if the scripts were to be run exclusively on IE4+.

Related Items: return statement (Chapter 33).

saveType
Value: String. Read-Only
Compatibility: WinIE5.5+, MacIE-, NN-, Moz-, Safari-

The saveType property is assigned a value only when an oncontentsave event is bound to a
WinIE DHTML behavior (.htc). For more information about behaviors, see

http://msdn.microsoft.com/workshop/author/behaviors/overview.asp

Related Items: addBehavior() method.

srcElement
Value: Element object reference. Read-Only
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-

(IE) event.returnValue

771Chapter 25 ✦ Event Objects

The srcElement property is a reference to the HTML element object that is the original
target of the event. Because an event may bubble up through the element containment hierar-
chy and be processed at any level along the way, having a property that points back to the
element from which the event originated is comforting. After you have a reference to that ele-
ment, you can read or write any properties that belong to that element or invoke any of its
methods.

Example
As a simplified demonstration of the power of the srcElement property, Listing 25-17 has but
two event handlers defined for the body element, each invoking a single function. The idea is
that the onmousedown and onmouseup events will bubble up from whatever their targets are,
and the event handler functions will find out which element is the target and modify the color
style of that element.

An extra flair is added to the script in that each function also checks the className property
of the target element. If the className is bold— a class name shared by three span elements
in the paragraph — the stylesheet rule for that class is modified so that all items share the
same color. Your scripts can do even more in the way of filtering objects that arrive at the
functions to perform special operations on certain objects or groups of objects.

Notice that the scripts don’t have to know anything about the objects on the page to address
each clicked one individually. That’s because the srcElement property provides all of the
specificity needed for acting on the target element.

Listing 25-17: Using the srcElement Property

<html>
<head>

<title>srcElement Property</title>
<style type=”text/css”>
.bold {font-weight:bold}
.ital {font-style:italic}
</style>
<script type=”text/javascript”>
function highlight() {

var elem = event.srcElement;
if (elem.className == “bold”) {

document.styleSheets[0].rules[0].style.color = “red”;
} else {

elem.style.color = “#FFCC00”;
}

}
function restore() {

var elem = event.srcElement;
if (elem.className == “bold”) {

document.styleSheets[0].rules[0].style.color = “”;
} else {

elem.style.color = “”;
}

}
</script>

</head>

Continued

(IE) event.srcElement

772 Part III ✦ Document Objects Reference

Listing 25-17 (continued)

<body onmousedown=”highlight()” onmouseup=”restore()”>
<h1>srcElement Property</h1>
<hr />
<p>One event handler...</p>

Can
Cover
Many
Objects

<p>Lorem ipsum dolor sit amet, consectetaur adipisicing elit, <span

class=”bold”>sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim adminim
veniam, quis nostrud exercitation ullamco
laboris nisi ut aliquip ex ea commodo
consequat.</p>

</body>
</html>

Related Items: fromElement, toElement properties.

srcFilter
Value: String. Read-Only
Compatibility: WinIE4+, MacIE-, NN-, Moz-, Safari-

According to Microsoft, the srcFilter property should return a string of the name of the fil-
ter that was applied to trigger an onfilterchange event handler. While the property exists
in the event object, its value is always null, at least through WinIE6.

Related Items: onfilterchange event handler; style.filter object.

srcUrn
Value: String. Read-Only
Compatibility: WinIE5+, MacIE-, NN-, Moz-, Safari-

If an event is fired in a WinIE behavior attached to an element, and the behavior has a URN
identifier defined for it, the srcUrn property returns the string from the URN identifier. For
more information about behaviors, see

http://msdn.microsoft.com/workshop/author/behaviors/overview.asp

Related Items: addBehavior() method.

toElement
(See fromElement)

type
Value: String. Read-Only
Compatibility: WinIE4+, MacIE4+, NN4+, Moz1+, Safari1+

(IE) event.srcElement

773Chapter 25 ✦ Event Objects

You can find out what kind of event fired to create the current event object by way of the
type property. The value is a string version of the event name — just the name of the event
without the “on” prefix that is normally associated with event names in IE. This property can
be helpful when you designate one event handler function to process different kinds of
events. For example, both the onmousedown and onclick event handlers for an object can
invoke one function. Inside the function, a branch is written for whether the type comes in as
mousedown or click, with different processing for each event type. That is not to endorse
such event handler function sharing, but for you to be aware of this power should your script
constructions find the property helpful.

This property and its values are fully compatible with the NN4 and W3C/NN6+ event models.

Example
Use The Evaluator (Chapter 13) to see values returned by the type property. Enter the follow-
ing object name into the bottom text box and press Enter/Return:

event

If necessary, scroll the Results box to view the type property, which should read keypress.
Now click the List Properties button. The type changes to click. The reason for these types
is that the event object whose properties are being shown here is the event that triggers the
function to show the properties. From the text box, an onkeypress event handler triggers
that process; from the button, an onclick event handler does the job.

Related Items: All event handlers (Chapter 15).

wheelData
Value: Integer. Read-Only
Compatibility: WinIE5.5+, MacIE-, NN-, Moz-, Safari-

The wheelData property returns an integer indicating which direction the mouse wheel was
rolled for an onmousewheel event. The values returned are typically either 120 or –120, with a
positive value indicating that the mouse wheel was rolled toward the screen and a negative
value indicating that the wheel was rolled the opposite direction.

NN6+/Moz/Safari event Object

Properties Methods Event Handlers

altKey initEvent()*
bubbles initKeyEvent()*
button initMouseEvent()*
cancelBubble initMutationEvent()*
cancelable initUIEvent()*
charCode preventDefault()
clientX stopPropagation()
clientY
ctrlKey

Continued

(NN6/Moz/Safari) eventObject

774 Part III ✦ Document Objects Reference

Properties Methods Event Handlers

currentTarget
detail
eventPhase
isChar
keyCode
layerX
layerY
metaKey
originalTarget
pageX
pageY
relatedTarget
screenX
screenY
shiftKey
target
timeStamp
type
view

Syntax
Accessing NN6+ event object properties and methods:

eventObject.property | method([parameters])

Compatibility: WinIE-, MacIE-, NN6+, Moz1+, Safari1+

About this object
Although it is based largely on the event object as defined by the W3C DOM Level 2, the
NN6+/Moz event object also carries forward several characteristics from the NN4 event
object. A few properties are continued primarily for backward compatibility. But because
future Mozilla development will likely forego the peculiarities of the NN4 DOM and event
models, you should ignore these items (as highlighted below). Wherever possible, look for-
ward and embrace the W3C DOM aspects of the event model. Safari, for example, implements
a lot of the W3C DOM event model, but excludes all old NN4 properties.

Although the NN6+ event model provides a bubbling event propagation model just as IE4+,
the incompatibility of referencing event objects between the event models is still there. In the
W3C DOM (as in NN4), an event object is explicitly passed as a parameter to event handler
(or, rather, event listener) functions. But after you have a browser-specific event object
assigned to a variable inside a function, a few important properties have the same names

(NN6/Moz/Safari) eventObject

775Chapter 25 ✦ Event Objects

between the IE4+ and W3C DOM event models. If Microsoft adopts more of the W3C DOM
event model in future versions of IE, the compatibility situation should improve.

The event object discussed in this section is the instance of an event that is created as the
result of a user or system event action. The W3C DOM includes an additional static Event
object. Many of the properties of the static Event object are inherited by the event instances,
so the detailed coverage of those shared properties is in this section because it is the event
object you’ll be scripting for the most part.

In many code fragments in the following detail sections, you will see references that begin
with the evt reference. This assumes that the statement(s) resides inside a function that has
assigned the incoming event object to the evt parameter variable:

function myFunction(evt) {...}

As shown earlier in this chapter, you can equalize W3C DOM and IE4+ event object references
when it is practical to do so because the scripts work on identical (or similar) event object
properties.

Properties
altKey
ctrlKey
metaKey
shiftKey

Value: Boolean. Read-Only
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

When an event object is created in response to a user or system action, these four properties
are set based on whether their corresponding keys were being held down at the time — a
Shift-click, for example. If the key was held down, the property is assigned a value of true;
otherwise the value is false. The metaKey property corresponds to the Command key on
the Macintosh keyboard but does not register for the Windows key on Wintel computers.

Most commonly, you use expressions consisting of this property as if construction condi-
tion statements. Because these are Boolean values, you can combine multiple properties in a
single condition. For example, if you have a branch of a function that is to execute only if the
event occurred with both the Shift and Control keys held down, the condition looks as the
following:

if (evt.shiftKey && evt.ctrlKey) {
// statements to execute

}

Conversely, you can take a more user-friendly approach to provide special processing if the
user holds down any one of the four modifier keys:

if (evt.shiftKey || evt.ctrlKey || evt.metaKey || evt.altKey) {
// statements to execute

}

The rationale behind this approach is to offer perhaps some shortcut operation for users, but
not force them to memorize a specific modifier key combination.

(NN6/Moz/Safari) eventObject.altKey

776 Part III ✦ Document Objects Reference

Example
See Listing 25-10, where the values of these properties are used to set the checked properties
of corresponding checkboxes for a variety of event types.

Related Items: None.

bubbles
Value: Boolean. Read-Only
Compatibility: WinIE-, MacIE-, NN6+, Moz1+, Safari1+

Not every event bubbles. For example, an onsubmit event propagates no further than the
form object with which the event is associated. Events that do not bubble have their event
object’s bubbles property set to false; all others have the property set to true. You use this
property in the rare circumstance of a single event handler function processing a wide variety
of events. You may want to perform special operations only on events that can bubble and
handle the others without special treatment. For this branch, you can use the property in an
if condition statement:

if (evt.bubbles) {
// special processing for bubble-able events

}

You do not have to branch, however, just to cancel bubbling. A non-propagating event doesn’t
mind if you tell it not to propagate.

Related Items: cancelBubble property.

button
Value: Integer. Read-Only
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

The button property reveals the button that was pressed to activate the mouse event. In the
W3C DOM, the left (primary) button returns a value of 0. If the mouse is a three-button
mouse, the middle button returns 1. The right button (on any multibutton mouse) returns a
value of 2. Note that Safari elects to follow the IE button-numbering convention, where the
primary mouse button has a code of 1.

Mouse buttons other than the primary one are easier to look for in mousedown or mouseup
events, rather than onclick events. In the case of a user pressing multiple buttons, only the
most recent button is registered.

Exercise caution when scripting the button property across browsers. The respective event
models define different button values for mouse buttons.

Example
See Listing 25-11, where the button property is revealed in the status bar. Try pressing indi-
vidual mouse buttons on, say, the screen button.

Related Items: None.

cancelable
Value: Boolean. Read-Only
Compatibility: WinIE-, MacIE-, NN6+, Moz1+, Safari1+

(NN6/Moz/Safari) eventObject.altKey

777Chapter 25 ✦ Event Objects

If an event is cancelable, then its default action can be prevented from occurring with the
help of a script. While most events are cancelable, some are not. The cancelable property lets
you inquire about a particular event object to see if its event type is cancelable. Values for
the property are Booleans. You may want to perform special operations only on events that
are cancelable and handle the others without special treatment. For this branch, you can use
the property in an if condition statement:

if (evt.cancelable) {
// special processing for cancelable events

}

You do not have to branch, however, just to prevent an event’s default action. A non-
cancelable event doesn’t mind if you tell it to prevent the default action.

Related Items: preventDefault() method.

cancelBubble
Value: Boolean. Read/Write
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

The cancelBubble property is a rare instance of an IE4+ event property being implemented
in NN6+/Moz/Safari even though the property is not defined in the W3C DOM. The property
operates the same as in IE4+ in that it determines whether the current event object bubbles
up any higher in the element containment hierarchy of the document. By default, this prop-
erty is false, meaning that if the event is supposed to bubble, it will do so automatically.

To prevent event bubbling for the current event, set the property to true anywhere within
the event handler function. As an alternative, you can cancel bubbling directly in an element’s
event handler attribute, as in the following:

onclick=”doButtonClick(this); event.cancelBubble = true”

Cancelling event bubbling works only for the current event. The very next event to fire will
have bubbling enabled (provided the event bubbles).

If you are trying to migrate your code as much as possible to the W3C DOM, use the
stopPropagation() method instead of cancelBubble. For cross-browser compatibility,
however, cancelBubble is a safe bet.

Example
See Listing 25-6 to see the cancelBubble property in action in an IE environment. Even
though that listing has some features that apply to WinIE5.5+, the bubble cancelling demon-
stration works all the way back to IE4.

Related Items: stopPropagation() method.

charCode
keyCode

Value: Integer. Read-Only
Compatibility: WinIE-, MacIE-, NN6+, Moz1+, Safari1+

The W3C DOM event object model clearly distinguishes between the Unicode character
attached to the alphanumeric keys of the keyboard and the code attached to each of the
keyboard keys (regardless of its character). To inspect the character of a key, use the

(NN6/Moz/Safari) eventObject.charCode

778 Part III ✦ Document Objects Reference

onkeypress event to create the event object, and then look at the event object’s charCode
property. This is the property that returns 97 for “a” and 65 for “A” because it’s concerned
with the character associated with the key action. This property’s value is zero for
onkeydown and onkeyup events.

In contrast, the keyCode property is filled with a non-zero value only from onkeydown and
onkeyup events (onkeypress sets the property to zero) when alphanumeric keys are
pressed; for most other non-character keys, all three events fill the keyCode property.
Through this property you can look for non-character keys, such as arrows, page navigation,
and function keys. For the character keys, there is no distinction between uppercase or low-
ercase: The “A” key on the Latin keyboard returns a value of 65, regardless of the state of the
Shift key. At the same time, however, the press of the Shift key fires its own onkeydown and
onkeyup events, setting the keyCode value to 16. Other non-character keys — arrows, page
navigation, function, and similar — have their own codes as well. This gets very detailed,
including special key codes for the numeric keyboard keys that are different from their corre-
sponding numbers along the top row of the alphanumeric keyboard.

Safari 1.0 does not support the charCode property. Instead, the keyCode property returns
the ASCII values of alphanumeric keyboard keys — and no non-character keys for any key-
board event.

Be sure to see the extensive section on keyboard events in Chapter 15 for examples of how to
apply the keyCode property in applications.

Example
Listing 25-18 provides a play area to view the charCode and keyCode properties for all three
keyboard events while you type into a textarea. You can use this later as an authoring tool
to grab the precise codes for keyboard keys you may not be familiar with.

Listing 25-18: Displaying charCode and keyCode Property Values

<html>
<head>

<title>charCode and keyCode Properties</title>
<style type=”text/css”>
td {text-align:center}
</style>
<script type=”text/javascript”>
function showCode(which, evt) {

document.forms[0].elements[which + “Char”].value = evt.charCode;
document.forms[0].elements[which + “Key”].value = evt.keyCode;

}
function clearEm() {

for (var i = 1; i < document.forms[0].elements.length; i++) {
document.forms[0].elements[i].value = “”;

}
}
</script>

</head>
<body>

<h1>charCode and keyCode Properties</h1>
<hr />

Note

(NN6/Moz/Safari) eventObject.charCode

779Chapter 25 ✦ Event Objects

<form>
<p><textarea name=”scratchpad” cols=”40” rows=”5” wrap=”hard”

onkeydown=”clearEm(); showCode(‘down’, event)”
onkeyup=”showCode(‘up’, event)”
onkeypress=”showCode(‘press’, event)”></textarea></p>

<table cellpadding=”5”>
<tr>

<th>Event</th>
<th>event.charCode</th>
<th>event.keyCode</th>

</tr>
<tr>

<td>onKeyDown:</td>
<td><input type=”text” name=”downChar” size=”3” /></td>
<td><input type=”text” name=”downKey” size=”3” /></td>

</tr>
<tr>

<td>onKeyPress:</td>
<td><input type=”text” name=”pressChar” size=”3” /></td>
<td><input type=”text” name=”pressKey” size=”3” /></td>

</tr>
<tr>

<td>onKeyUp:</td>
<td><input type=”text” name=”upChar” size=”3” /></td>
<td><input type=”text” name=”upKey” size=”3” /></td>

</tr>
</table>

</form>
</body>

</html>

Here are some specific tasks to try with the page in NN6+/Moz1+ to examine key codes (if you
are not using a browser set for English and a Latin-based keyboard, your results may vary):

1. Enter a lowercase “a”. Notice how the onkeypress event handler shows the charCode
to be 97, which is the Unicode (and ASCII) value for the first of the lowercase letters of
the Latin alphabet. But the other two event types record just the key’s code: 65.

2. Type an uppercase “A” via the Shift key. If you watch closely, you see that the Shift key,
itself, generates the key code 16 for the onkeydown and onkeyup events. But the char-
acter key then shows the value 65 for all three events (until you release the Shift key),
because the ASCII value of the uppercase letter happens to match the keyboard key
code for that letter.

3. Press and release the Down Arrow key (be sure the cursor still flashes in the textarea,
because that’s where the keyboard events are being monitored). As a non-character
key, all three events stuff a value into the keyCode property, but zero into charCode.
The keyCode value for this key is 40.

4. Poke around with other non-character keys. Some may produce dialog boxes or menus,
but their key codes are recorded nonetheless.

Related Items: onkeydown, onkeypress, onkeyup event handlers.

(NN6/Moz/Safari) eventObject.charCode

780 Part III ✦ Document Objects Reference

clientX
clientY
layerX
layerY
pageX
pageY
screenX
screenY

Value: Integer. Read-Only
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

The W3C DOM event object borrows mouse coordinate properties from both the NN4 and
IE4+ event models. If you have worked with event coordinates in these other browsers, you
have nothing new to learn for W3C DOM-compatible browsers.

Like the IE4+ event object, the W3C DOM event object’s clientX and clientY properties
are the coordinates within the viewable content region of the window. These values are rela-
tive to the window space, not the document. But unlike IE4+, you don’t have to calculate the
position of the coordinates within the document because another pair of NN/Moz/Safari prop-
erties, pageX and pageY, provide that information automatically. If the page has not scrolled,
the values of the client and page coordinates are the same. Because it is usually more impor-
tant to know an event’s coordinates with respect to the document than the window, the
pageX and pageY properties are used most often.

Another NN/Moz/Safari property pair, layerX and layerY, borrow terminology from the now
defunct layer schemes of NN4, but the properties can still be quite valuable nonetheless.
These coordinates are measured relative to the positioning context of the element that
received the event. For regular, unpositioned elements in the body part of a document, that
positioning context is the body element. Thus, for those elements, the values of the page and
layer coordinates will be the same. But if you create a positioned element, the coordinate
space is measured from the top-left corner of that space. Thus, if you are using the coordi-
nates to assist in scripted dragging of positioned elements, you can confine your scope to
just the positioned element.

One coordinate system missing from the NN6+/Moz repertoire, but present in Safari, is that of
the target element itself (comparable to the offsetX and offsetY properties of IE4+). These
values, however, can be calculated in NN/Moz by subtracting from the page coordinate prop-
erties the offsetLeft and offsetTop properties of both the target element and its position-
ing context. For example, if you want to get the coordinates of a mouse event inside an image,
the event handler can calculate those values as follows:

var clickOffsetX = evt.pageX - evt.target.offsetLeft –
document.body.offsetLeft;

var clickOffsetY = evt.pageY - evt.target.offsetTop –
document.body.offsetTop;

The last set of coordinate properties, screenX and screenY, provide values relative to the
entire video display. Of all these properties, only the client and screen coordinates are
defined in the W3C DOM Level 2 standard.

(NN6/Moz/Safari) eventObject.clientX

781Chapter 25 ✦ Event Objects

Keep in mind that in most W3C DOM–compatible browsers, event targets include text nodes
inside elements. Because nodes do not have all the properties of elements (for example, they
have no offset properties signifying their location in the document), you may sometimes have
to go to the target node’s parent node to get an element object whose offset properties pro-
vide the necessary page geography. This matters, of course, only if your scripts need concern
themselves with mouse events on text.

Example
You can see the effects of the coordinate systems and associated NN6+/Moz properties with
the page in Listing 25-19. You can view coordinate values for all four measuring systems, as
well as some calculated value. Two clickable objects are provided so that you can see the dif-
ferences between an object not in any layer and an object residing within a layer (although
anything you see is clickable, including text nodes). Figure 25-1 shows the results of a click
inside the positioned layer.

One of the calculated fields applies window scrolling values to the client coordinates. But, as
you will see, these calculated values are the same as the more convenient page coordinates.
The other calculated field shows the coordinates relative to the rectangular space of the tar-
get element. Notice in the code that if the nodeType of the target indicates a text node, that
node’s parent node (an element) is used for the calculation.

Figure 25-1: NN6+/Moz event coordinates for a click inside a positioned element.

(NN6/Moz/Safari) eventObject.clientX

782 Part III ✦ Document Objects Reference

Listing 25-19: NN6+/Moz/Safari Event Coordinate Properties

<html>
<head>

<title>X and Y Event Properties (NN6+)</title>
<script type=”text/javascript”>
function checkCoords(evt) {

var form = document.forms[“output”];
var targText, targElem;
if (evt.target.nodeType == 3) {

targText = “[textnode] inside <” + evt.target.parentNode.tagName +
“>”;

targElem = evt.target.parentNode;
} else {

targText = “<” + evt.target.tagName + “>”;
targElem = evt.target;

}
form.srcElemTag.value = targText;
form.clientCoords.value = evt.clientX + “,” + evt.clientY;
form.clientScrollCoords.value = (evt.clientX + window.scrollX) +

“,” + (evt.clientY + window.scrollY);
form.layerCoords.value = evt.layerX + “,” + evt.layerY;
form.pageCoords.value = evt.pageX + “,” + evt.pageY;
form.inElemCoords.value =

(evt.pageX - targElem.offsetLeft - document.body.offsetLeft) +
“,” + (evt.pageY - targElem.offsetTop - document.body.offsetTop);

form.screenCoords.value = evt.screenX + “,” + evt.screenY;
return false;

}
</script>

</head>
<body onmousedown=”checkCoords(event)”>

<h1>X and Y Event Properties (NN6+)</h1>
<hr />
<p>Click on the button and in the div/image to see the coordinate values

for the event object.</p>
<form name=”output”>

<table>
<tr>

<td colspan=”2”>NN6 Mouse Event Coordinates:</td>
</tr>
<tr>

<td align=”right”>target:</td>
<td colspan=”3”><input type=”text” name=”srcElemTag”
size=”25” /></td>

</tr>
<tr>

<td align=”right”>clientX, clientY:</td>
<td><input type=”text” name=”clientCoords” size=”10” /></td>
<td align=”right”>...With scrolling:</td>
<td><input type=”text” name=”clientScrollCoords”
size=”10” /></td>

</tr>
<tr>

<td align=”right”>layerX, layerY:</td>

(NN6/Moz/Safari) eventObject.clientX

783Chapter 25 ✦ Event Objects

<td><input type=”text” name=”layerCoords” size=”10” /></td>
</tr>
<tr>

<td align=”right”>pageX, pageY:</td>
<td><input type=”text” name=”pageCoords” size=”10” /></td>
<td aligh=”right”>Within Element:</td>
<td><input type=”text” name=”inElemCoords” size=”10” /></td>

</tr>
<tr>

<td align=”right”>screenX, screenY:</td>
<td><input type=”text” name=”screenCoords” size=”10” /></td>

</tr>
<tr>

<td align=”right”><input type=”button” value=”Click Here” />
</td>

</tr>
</table>

</form>
<div id=”display” style=”position:relative; left:100”>

</div>

</body>
</html>

Related Items: target property.

currentTarget
Value: Element object reference. Read-Only
Compatibility: WinIE-, MacIE-, NN6+, Moz1+, Safari1+

As an event courses its way through its propagation paths, an event listener may process
that event along the way. Though the event knows what the target is, it can also be helpful
for the event listener function to know which element’s event listener is now processing the
event. The currentTarget property provides a reference to the element object whose event
listener is processing the event. This allows one listener function to potentially process the
event from different levels, branching the code to accommodate different element levels that
process the event.

A valuable companion piece of information about the event is the eventPhase property,
which helps your event listener function determine if the event is in capture mode, bubble
mode, or is at the target. This property is demonstrated in the next section.

Example
Listing 25-20 shows the power of the currentTarget property in revealing the element that is
processing an event during event propagation. Similar to the code in Listing 25-7, this example
is made simpler because it lets the event object’s properties do more of the work to reveal the
identity of each element that processes the event. Event listeners assigned for various propa-
gation modes are assigned to a variety of nodes in the document. After you click the button,
each listener in the propagation chain fires in sequence. The alert dialog shows which node is
processing the event. And, as in Listing 25-7, the eventPhase property is used to help display
the propagation mode in force at the time the event is processed by each node.

(NN6/Moz/Safari) eventObject.currentTarget

784 Part III ✦ Document Objects Reference

Listing 25-20: currentTarget and eventPhase Properties

<html>
<head>

<title>currentTarget and eventPhase Properties</title>
<script type=”text/javascript”>
function init() {

// using old syntax to assign bubble-type event handlers
document.onclick = processEvent;
document.body.onclick = processEvent;
// turn on click event capture for document and form
document.addEventListener(“click”, processEvent, true);
document.forms[0].addEventListener(“click”, processEvent, true);
// set bubble event listener for form
document.forms[0].addEventListener(“click”, processEvent, false);

}
function processEvent(evt) {

var currTargTag, msg;
if (evt.currentTarget.nodeType == 1) {

currTargTag = “<” + evt.currentTarget.tagName + “>”;
} else {

currTargTag = evt.currentTarget.nodeName;
}
msg = “Event is now at the “ + currTargTag + “ level “;
msg += “(“ + getPhase(evt) + “).”;
alert(msg);

}
// reveal event phase of current event object
function getPhase(evt) {

switch (evt.eventPhase) {
case 1:

return “CAPTURING”;
break;

case 2:
return “AT TARGET”;
break;

case 3:
return “BUBBLING”;
break;

default:
return “”;

}
}
</script>

</head>
<body onload=”init()”>

<h1>currentTarget and eventPhase Properties</h1>
<hr />
<form>

<input type=”button” value=”A Button” name=”main1”
onclick=”processEvent(event)” />

</form>
</body>

</html>

(NN6/Moz/Safari) eventObject.currentTarget

785Chapter 25 ✦ Event Objects

You can also click other places on the page. For example, if you click to the right of the but-
ton, you will be clicking the form element. Event propagation and processing adjusts accord-
ingly. Similarly, if you click the header text, the only event listeners that see the event are in
the document and body levels.

Related Items: eventPhase property.

detail
Value: Integer. Read-Only
Compatibility: WinIE-, MacIE-, NN6+, Moz1+, Safari1+

The detail property is included in the W3C DOM specification as an extra property whose
purpose can be determined by the browser maker. Mozilla-based browsers increment a
numeric value for rapid instances of click events on an object; Safari appears to be holding
this property in reserve.

Related Items: None.

eventPhase
Value: Integer. Read-Only
Compatibility: WinIE-, MacIE-, NN6+, Moz1+, Safari1+

An event fires in one of three possible event phases: event capture, at the target, or bubbling.
Because the same event listener function may be processing an event in multiple phases, it
can inspect the value of the eventPhase property of the event object to see in which phase
the event was when the function was invoked. Values for this property are integers 1 (cap-
ture), 2 (at target), or 3 (bubbling).

Example
See Listing 25-20 earlier in this chapter for an example of how you can use a switch construc-
tion to branch function processing based on the event phase of the current event object.

Related Items: currentTarget property.

isChar
Value: Boolean. Read-Only
Compatibility: WinIE-, MacIE-, NN6+, Moz1+, Safari-

You can find out from each keyboard event whether the key being pressed is a character key
by examining the isChar property. Most typically, however, you are already filtering for char-
acter or non-character keys by virtue of the event handlers used to capture keyboard actions:
onkeypress for character keys; onkeydown or onkeyup for non-character keys. Be aware that
the isChar property returns inconsistent values (even for the same key) in the first release
of NN6.

Related Items: charCode, keyCode properties.

originalTarget
Value: Node object reference. Read-Only
Compatibility: WinIE-, MacIE-, NN6+, Moz1+, Safari-

The originalTarget property provides a reference to the node object that serves as the
genuine first target of the event. This information is typically associated with the internal
construction of certain elements, which makes it less useful for scripting purposes.

(NN6/Moz) eventObject.originalTarget

786 Part III ✦ Document Objects Reference

Additionally, in many cases the originalTarget property holds the same value as the
target property.

relatedTarget
Value: Element object. Read-Only
Compatibility: WinIE-, MacIE-, NN6+, Moz1+, Safari1+

The relatedTarget property allows an element to uncover where the cursor rolled in from
or has rolled out to. This property extends the power of the onmouseover and onmouseout
event handlers by expanding their scope to outside the current element (usually to an adja-
cent element). This one W3C DOM property does the same duty as the fromElement and
toElement properties of the IE4+ event object.

When the onmouseover event fires on an element, the cursor had to be over some other ele-
ment just beforehand. The relatedTarget property holds a reference to that element.
Conversely, when the onmouseout event fires, the cursor is already over some other element.
The relatedTarget property holds a reference to that element.

Example
Listing 25-21 provides an example of how the relatedTarget property can reveal the life of
the cursor action before and after it rolls into an element. When you roll the cursor to the
center box (a table cell), its onmouseover event handler displays the text from the table cell
from which the cursor arrived (the nodeValue of the text node inside the table cell). If the
cursor comes in from one of the corners (not easy to do), a different message is displayed.

The two functions that report the results employ a bit of filtering to make sure that they pro-
cess the event object only if the event occurs on an element and if the relatedTarget ele-
ment is anything other than a nested text node of the central table cell element. Because
nodes respond to events in W3C DOM browsers, this extra filtering prevents processing
whenever the cursor makes the transition from the central td element to its nested text node.
Safari 1.0 reports values only on horizontal moves in this example — between cells of the
same table row.

Listing 25-21: Using the relatedTarget Property

<html>
<head>

<title>relatedTarget Properties</title>
<style type=”text/css”>
.direction {background-color:#00FFFF; width:100; height:50;
text-align:center}
#main {background-color:#FF6666; text-align:center}
</style>
<script type=”text/javascript”>
function showArrival(evt) {

if (evt.target.nodeType == 1) {
if (evt.relatedTarget != evt.target.firstChild) {

var direction = (evt.relatedTarget.firstChild) ?
evt.relatedTarget.firstChild.nodeValue : “parts unknown”;

window.status = “Arrived from: “ + direction;
}

}
}

(NN6/Moz/Safari) eventObject.originalTarget

787Chapter 25 ✦ Event Objects

function showDeparture(evt) {
if (evt.target.nodeType == 1) {

if (evt.relatedTarget != evt.target.firstChild) {
var direction = (evt.relatedTarget.firstChild) ?

evt.relatedTarget.firstChild.nodeValue : “parts unknown”;
window.status = “Departed to: “ + direction;

}
}

}
</script>

</head>
<body>

<h1>relatedTarget Properties</h1>
<hr />
<p>Roll the mouse to the center box and look for arrival information in

the status bar. Roll the mouse away from the center box and look for
departure information in the status bar.</p>

<table cellspacing=”0” cellpadding=”5”>
<tr>

<td></td>
<td class=”direction”>North</td>
<td></td>

</tr>
<tr>

<td class=”direction”>West</td>
<td id=”main” onmouseover=”showArrival(event)”
onmouseout=”showDeparture(event)”>Roll</td>
<td class=”direction”>East</td>

</tr>
<tr>

<td></td>
<td class=”direction”>South</td>
<td></td>

</tr>
</table>

</body>
</html>

Related Items: target property.

target
Value: Element object reference. Read-Only
Compatibility: WinIE-, MacIE-, NN6+, Moz1+, Safari1+

The target property is a reference to the HTML element object that is the original target of
the event. Because an event may trickle down and bubble up through the element contain-
ment hierarchy and be processed at any level along the way, having a property that points
back to the element from which the event originated is comforting. As soon as you have a ref-
erence to that element, you can read or write any properties that belong to that element or
invoke any of its methods.

Example
As a simplified demonstration of the power of the target property, Listing 25-22 has but two
event handlers defined for the body element, each invoking a single function. The idea is that

(NN6/Moz/Safari) eventObject.target

788 Part III ✦ Document Objects Reference

the onmousedown and onmouseup events will bubble up from whatever their targets are, and
the event handler functions will find out which element is the target and modify the color
style of that element.

An extra flair is added to the script in that each function also checks the className property
of the target element. If the className is bold— a class name shared by three span elements
in the paragraph — the stylesheet rule for that class is modified so that all items share the
same color. Your scripts can do even more in the way of filtering objects that arrive at the
functions to perform special operations on certain objects or groups of objects.

Notice that the scripts don’t have to know anything about the objects on the page to address
each clicked one individually. That’s because the target property provides all of the speci-
ficity needed for acting on the target element.

Listing 25-22: Using the target Property

<html>
<head>

<title>target Property</title>
<style type=”text/css”>
.bold {font-weight:bold}
.ital {font-style:italic}
</style>
<script type=”text/javascript”>
function highlight(evt) {

var elem = (evt.target.nodeType == 3) ? evt.target.parentNode :
evt.target;

if (elem.className == “bold”) {
document.styleSheets[0].cssRules[0].style.color = “red”;

} else {
elem.style.color = “#FFCC00”;

}
}
function restore(evt) {

var elem = (evt.target.nodeType == 3) ? evt.target.parentNode :
evt.target;

if (elem.className == “bold”) {
document.styleSheets[0].cssRules[0].style.color = “black”;

} else {
elem.style.color = “black”;

}
}
</script>

</head>
<body onmousedown=”highlight(event)” onmouseup=”restore(event)”>

<h1>target Property</h1>
<hr />
<p>One event handler...</p>

Can
Cover
Many
Objects

(NN6/Moz/Safari) eventObject.target

789Chapter 25 ✦ Event Objects

<p>Lorem ipsum dolor sit amet, consectetaur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim adminim
veniam, quis nostrud exercitation ullamco
laboris nisi ut aliquip ex ea commodo
consequat.</p>

</body>
</html>

Related Items: relatedTarget property.

timeStamp
Value: Integer. Read-Only
Compatibility: WinIE-, MacIE-, NN6+, Moz1+, Safari1+

Each event receives a time stamp in milliseconds, based on the same date epoch as the Date
object (1 January 1970). Just as with the Date object, accuracy is wholly dependent on the
accuracy of the system clock of the client computer.

Although the precise time of an event may be of value in only some situations, the time
between events can be useful for applications, such as timed exercises or action games. You
can preserve the time of the most recent event in a global variable, and compare the time of
the current time stamp against the stored value to determine the elapsed time between
events.

Example
Listing 25-23 uses the timeStamp property to calculate the instantaneous typing speed when
you type into a textarea. The calculations are pretty raw, and work only on intra-keystroke
times without any averaging or smoothing that a more sophisticated typing tutor might per-
form. Calculated values are rounded to the nearest integer.

Listing 25-23: Using the timeStamp Property

<html>
<head>

<title>timeStamp Property</title>
<script type=”text/javascript”>
var stamp;
function calcSpeed(evt) {

if (stamp) {
var gross = evt.timeStamp - stamp;
var wpm = Math.round(6000/gross);
document.getElementById(“wpm”).firstChild.nodeValue = wpm +

“ wpm.”;
}
stamp = evt.timeStamp;

}
</script>

</head>

Continued

(NN6/Moz/Safari) eventObject.timeStamp

790 Part III ✦ Document Objects Reference

Listing 25-23 (continued)

<body>
<h1>timeStamp Property</h1>
<hr />
<p>Start typing, and watch your instantaneous typing speed below:</p>
<p><textarea cols=”60” rows=”10” wrap=”hard”

onkeypress=”calcSpeed(event)”></textarea></p>
<p>Typing Speed: </p>

</body>
</html>

Related Items: Date object.

type
Value: String. Read-Only
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

You can find out what kind of event fired to create the current event object by way of the
type property. The value is a string version of the event name — just the name of the event
without the “on” prefix that is normally associated with event listener names in NN6+. This
property can be helpful when you designate one event handler function to process different
kinds of events. For example, both the onmousedown and onclick event listeners for an
object can invoke one function. Inside the function, a branch is written for whether the type
comes in as mousedown or click, with different processing for each event type. That is not to
endorse such event handler function sharing, but be aware of this power should your script
constructions find the property helpful.

This property and its values are fully compatible with the NN4 and IE4+ event models.

Keyboard events in Safari 1.0 report their types as khtml_keydown, khtml_keypress, and
khtml_keyup, using the prefix referring to the name of the rendering engine on which
Safari is built. This is probably to avoid committing to an unfinished W3C DOM Level 3 key-
board event specification.

Related Items: All event handlers (Chapter 15).

view
Value: Window object reference. Read-Only
Compatibility: WinIE-, MacIE-, NN6+, Moz1+, Safari1+

The closest that the W3C DOM Level 2 specification comes to acknowledging the browser
window is an abstract object called an abstract view (AbstractView class). The object’s only
property is a reference to the document that it contains — the root document node that
you’ve come to know and love. User events always occur within the confines of one of these
views, and this is reflected in the event object’s view property. NN6+ returns a reference to
the window object (which can be a frame) in which the event occurs. This reference allows an
event object to be passed to scripts in other frames and those scripts can then gain access to
the document object of the target element’s window.

Related Items: window object.

Caution

(NN6/Moz/Safari) eventObject.timeStamp

791Chapter 25 ✦ Event Objects

Methods
initEvent(“eventType”, bubblesFlag, cancelableFlag)
initKeyEvent(“eventType”, bubblesFlag, cancelableFlag,
view, ctrlKeyFlag, altKeyFlag, shiftKeyFlag, metaKeyFlag,
keyCode, charCode)
initMouseEvent(“eventType”, bubblesFlag, cancelableFlag,
view, detailVal, screenX, screenY, clientX, clientY,
ctrlKeyFlag, altKeyFlag, shiftKeyFlag, metaKeyFlag,
buttonCode, relatedTargetNodeRef)
initMutationEvent(“eventType”, bubblesFlag,
cancelableFlag, relatedNodeRef, prevValue, newValue,
attrName, attrChangeCode)
initUIEvent(“eventType”, bubblesFlag, cancelableFlag,
view, detailVal)

Returns: Nothing.
Compatibility: WinIE-, MacIE-, NN6+, Moz1+, Safari1+

The W3C DOM event object initialization methods provide a means of initializing a newly
created event with a complete set of property values associated with that particular event.
The parameters to each of the initialization methods vary according to the type of event
being initialized. However, all of the initialization methods share the first three parameters:
eventType, bubblesFlag, and cancelableFlag. The eventType parameter is a string identi-
fier for the event’s type, such as “mousedown” or “keypress”. The bubblesFlag parameter
is a Boolean value that specifies whether the event’s default propagation behavior is to
bubble (true) or not (false). The cancelableFlag parameter is also a Boolean value, and
its job is to specify if the event’s default action may be prevented with a call to the
preventDefault() method (true) or not (false).

A few of the methods also include view and detailVal parameters, which correspond to the
window or frame in which the event occurred and the integer code of detail data associated
with the event, respectively. Additional parameters are specified for some of the methods,
and are unique to the event being initialized.

You don’t have to use the more detailed methods if you need a simple event. For example, if
you want a simple mouseup event, you can initialize a generic event with initEvent(), and
dispatch the event to the desired element, without having to fill in all of the coordinate, but-
ton, and other parameters of the initMouseEvent() method:

var evt = document.createEvent(“MouseEvents”);
evt.initEvent(“mouseup”, true, true);
document.getElementById(“myButton”).dispatchEvent(evt);

For more details about W3C DOM event types and the values expected for each of the more
complex initialization methods, visit http://www.w3.org/TR/DOM-Level-2-Events/
events.html#Events-eventgroupings.

Related Items: document.createEvent() method.

(NN6/Moz/Safari) eventObject.initEvent()

792 Part III ✦ Document Objects Reference

preventDefault()
Returns: Nothing.
Compatibility: WinIE-, MacIE-, NN6+, Moz1+, Safari1+

While NN6+ continues to honor the original way of preventing default action for an event han-
dler (that is, having the last statement of the event handler evaluate to return false), the
W3C DOM event model provides a method that lets the cancellation of default action take
place entirely within a function invoked by an event handler. For example, consider a text box
that is supposed to allow only numbers to be typed in it. The onkeypress event handler can
invoke a function that inspects each typed character. If the character is not a numeric charac-
ter, it does not reach the text box for display. The following validation function may be
invoked from the onkeypress event handler of just such a text box:

function checkIt(evt) {
var charCode = evt.charCode;
if (charCode < 48 || charCode > 57) {

alert(“Please make sure entries are numbers only.”);
evt.preventDefault();

}
}

This way, the errant character won’t appear in the text box.

Invoking the preventDefault() method in NN6+/Moz/Safari is the equivalent of assigning
true to event.returnValue in IE5+.

Related Items: cancelable property.

stopPropagation()
Returns: Nothing.
Compatibility: WinIE-, MacIE-, NN6+, Moz1+, Safari1+

Use the stopPropagation() method to stop events from trickling down or bubbling up fur-
ther through the element containment hierarchy. A statement in the event listener function
that invokes

evt.stopPropagation();

is all that is needed. As an alternative, you can cancel bubbling directly in an element’s event
handler attribute, as in the following:

onclick=”doButtonClick(this); event.stopPropagation()”

If you are writing cross-browser scripts, you also have the option of using the cancelBubble
property, which is compatible with IE4+.

Related Items: bubbles, cancelBubble properties.

✦ ✦ ✦

(NN6/Moz/Safari) eventObject.preventDefault()

Style Sheet and
Style Objects

Version 4 browsers from Microsoft and Netscape were the first to
offer full-scale support for the concept of stylesheets. Stylesheets

promote a concept that makes excellent sense in the fast-paced, high-
volume content creation environment that is today’s World Wide Web:
separating content from the rendering details of the content. Textual
content may come from any number of electronic sources, but it may
need to be dropped into different contexts — just like an online news
feed that becomes amalgamated into dozens of Web portal sites, each
with its own look and feel. All the content cares about is the text and
its meaning; the Web page designer then decides how that content
should be rendered on the page.

The concept has other advantages. Consider the large corporate Web
site that wants to promote its identity through a distinct style. A family
of stylesheets can dictate the font face, font size, the look of empha-
sized text, and the margin width of all body text. To apply these styles
on an element-by-element basis would not only be a tedious page-
authoring task, it is fraught with peril. If the style is omitted from the
tags of one page, the uniformity of the look is destroyed. Worse yet, if
the corporate design changes to use a different font face, the task
of changing every style in every tag — even with a highly powered
search-and-replace operation — is risky. But if a single external
stylesheet file dictates the styles, then the designer need make only
one change in that one file to cause the new look to ripple through
the entire Web site.

Learning how to create and apply stylesheets is beyond the scope of
this book, and this chapter assumes you already are familiar with
stylesheet terminology, such as a stylesheet rule and a selector. If
these terms are not in your vocabulary, you can find numerous tutori-
als on the subject both online and in books. Although IE, NN, and other
recent browsers adhere fairly closely to W3C standards for stylesheets
(called Cascading Style Sheets, or CSS for short), your first learning
experience should come from sources that focus on standards, rather
than browser-specific features. Microsoft includes some extras in the
stylesheet vocabulary that work only on IE4+ for Windows; Netscape
7+ and other Mozilla-based browsers have specially named, prelimi-
nary properties that offer future CSS3 capabilities in advance of the
final standards. Unless you develop for a single target browser brand
and client operating system, learning the common denominator of
stylesheet features is the right way to go. Details in this chapter
cover all versions, so pay close attention to compatibility listings for
each item.

2626C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Managing stylesheets
by script

Changing element styles
on the fly

Distinguishing among
style, styleSheet,
and style objects

✦ ✦ ✦ ✦

794 Part III ✦ Document Objects Reference

One last compatibility note: Although NN4 implements a fair amount of CSS, it does not expose
stylesheets or style rules to the object model. Part of this is linked to the static nature of an
NN4 page. Because modifying a style may alter the physical layout of body elements, and
because that browser does not reflow the page in response to such changes, altering styles
of content that is already loaded is simply not possible. In NN6+/Moz1+, however, the page
reflows, and everything relating to styles is exposed to the scriptable object model.

Making Sense of the Object Names
The first task in this chapter is to clarify the seemingly overlapping terminology for the
stylesheet-related objects that you will be scripting. Some objects are more abstract than
others, but they are all important. The objects in question are

✦ style element object

✦ styleSheet object (a member of the styleSheets array)

✦ rule or cssRule object (a member of the rules or cssRules array)

✦ style object

A style element object is the object that represents the <style> tag in your document.
Most of its properties are inherited from the basic HTML element objects you see detailed in
Chapter 15. By and large, you won’t be reading or writing stylesheet properties via the style
element object.

A stylesheet can be embedded in a document via the <style> tag or it may be linked in via a
<link> tag. One property of the document object, the styleSheets property, returns an array
(collection) of all styleSheet objects that are currently “visible” to the document, whether
or not they are disabled. Included in the collection are stylesheets defined by a <style> tag
or linked in via a <link> tag. Even though the <style> tag, for example, contains lines of code
that make up the rules for a stylesheet, the style element object is not the path to reach the
individual rules. The styleSheet object is. It is through the styleSheet object that you can
enable or disable an entire sheet, access individual rules (via the rules or cssRules property
array), and add or delete rules for that stylesheet.

The meat of any stylesheet is the rules that define how elements are to be rendered. At this
object level, the terminology forks in IE4 and NN6. The IE4+ object model calls each stylesheet
rule a rule object; the W3C DOM Level 2 model (in NN6+/Moz), calls each rule a cssRule object.
MacIE5 and Safari support both references to the same object. Despite the incompatible
object names, the two objects share key property names. Assembling a reference to a rule
requires array references. For example, the reference to the first rule of the first styleSheet
object in the document is as follows for various browsers:

var oneRule = document.styleSheets[0].rules[0]; // IE4+, MacIE5, Safari
var oneRule = document.styleSheets[0].cssRules[0]; // MacIE5, NN6+/Moz,
Safari

The last object of this quartet of style-related objects is the style object. This object is the
mother lode, where actual style definitions take place. In earlier chapters, you have seen count-
less examples of modifying one or more style properties of an element. Most typically, this
modification is accomplished through the style property of the HTML element. For example,
you would set the font color of a span element whose ID is “hot” as follows:

document.all.hot.style.color = “red”; // IE4+
document.getElementById(“hot”).style.color = “red”; // IE5+, W3C

795Chapter 26 ✦ Style Sheet and Style Objects

The style object is also a property of a rule/cssRule object. Thus, if you need to modify
the style of elements affected by an existing stylesheet rule, you approach the style object
through a different reference path, but the style object is treated just as it is for elements:

document.styleSheets[0].rules[0].style.color = “red”; // IE4+, MacIE5,
Safari
document.styleSheets[0].cssRules[0].style.color = “red”; // MacIE5, NN6+/Moz,
Safari

Many scripters concern themselves solely with the style object, and at that, a style object
associated with a particular element object. Rare are instances that require manipulation of
styleSheet objects beyond perhaps enabling and disabling them under script control.
Therefore, if you are learning about these objects for the first time, pay closest attention to
the style object details rather than to the other related objects.

Imported Stylesheets
Stylesheets embedded in a document via the style element can import additional
stylesheets via the @import selector:

<style type=”text/css”>
@import url(externalStyle.css);
p {font-size:16pt}
</style>

In this example scenario, the document sees just one styleSheet object. But that object
has a stylesheet nested inside — the stylesheet defined by the external file. IE4+ calls one of
these imported stylesheets an import object. An import object has all the properties of any
styleSheet object, but its parentStyle property is a reference to the styleSheet that
“owns” the @import rule. In fact, the @import statement does not even appear among the
rules collection of the IE styleSheet object. Therefore, to access the first rule of the
imported stylesheet, the reference is as the following:

document.styleSheets[0].imports[0].rules[0]

The W3C DOM and NN6+/Moz1+ treat import rule objects differently from the IE model. To
the W3C DOM, even an at-rule is considered one of the cssRules collection of a styleSheet
object. One of the properties of a cssRule object is type, which conveys an integer code value
revealing whether the rule is a plain CSS rule or one of several other types, including an import
rule. Of course, an imported rule object then has as one of its properties the styleSheet
object that, in turn, contains the rules defined in the external stylesheet file. The parent-child
relationship exists here, as well, whereby the stylesheet that contains the @import rule is ref-
erenced by the imported styleSheet object’s parentStyle property (just as in IE4+).

Reading Style Properties
Both the IE4+ and W3C object models exhibit a behavior that at first glance may seem discon-
certing. On the one hand, the W3C and good HTML practice encourage defining styles remotely
(that is, embedded via <style> or <link> tags) rather than as values assigned to the style
attribute of individual element tags throughout the document. This more closely adheres to
the notion of separating style from content.

796 Part III ✦ Document Objects Reference

On the other hand, object models can be very literal beasts. Strictly speaking, if an element
object presents a scriptable property that reflects an attribute for that element’s tag, the first
time a script tries to read that property, a value will be associated with that property only if
the attribute is explicitly assigned in the HTML code. But if you assign stylesheet settings via
remote stylesheets, the values are not explicitly set in the tag. Therefore, the style property
of such an element comes up empty, even though the element is under the stylistic control of
the remote stylesheet. If all you want to do is assign a new value to a style property, that’s not
a problem, because your assignment to the element object’s style property overrides what-
ever style is assigned to that property in the remote stylesheet (and then that new value is
subsequently readable from the style property). But if you want to see what the current set-
ting is, the initial value won’t be in the element’s style object.

Microsoft (in IE5+) and the W3C DOM provide competing (and incompatible) solutions so this
problem.

IE5+ provides an extra, read-only property —currentStyle— that reveals the stylesheet val-
ues that are currently being applied to the element, regardless of where the stylesheet defini-
tions are. The currentStyle property returns an object that is in the same format and has
most of the same properties as the regular style property. If your audience runs browsers no
earlier than IE5, you should make a habit of reading styles for an element via its currentStyle
property. If you want a change to a style object’s property to apply to only one element, use
the element’s style property to set that value; but if the change is to apply to all elements
covered by the same remote stylesheet rule, modify the style property of the rule object.

The W3C DOM solution is the getComputedStyle() method. Although the W3C DOM doesn’t
(yet) talk about a window object, it does describe an object (called the defaultView) which
Mozilla-based browsers channel through the window object. To read the value of a particular
style property being applied to an element, you first retrieve a computed style value for the
element, and then read the desired CSS style property. For example, to read the font-family
currently applied to an element whose ID is myP, use the following sequence:

var elem = document.getElementById(“myP”);
var computedStyle = window.getComputedStyle(elem, “”);
var fontFam = computedStyle.getPropertyValue(“font-family”);

Note that you must use the CSS property name (for example, font-family) and not the
scripted equivalent of that property (for example, fontFamily). Unfortunately, Safari 1.0 does
not support the getComputedStyle() method and does not allow scripts to read stylesheet
values set outside of a rendered element’s style attribute.

style Element Object
See Chapter 15 for items shared by all HTML elements.

Properties Methods Event Handlers

media
type

style

797Chapter 26 ✦ Style Sheet and Style Objects

Syntax
Accessing style element object properties and methods:

(IE4+) document.all.objectID.property | method([parameters])
(IE5+/W3C) document.getElementById(objectID).property | method([parameters])

Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

About this object
The style element is among the classification of HTML directive elements (see Chapter 36 on
the CD-ROM) in that it goes in the head portion of a document and does not have any of its
own content rendered in the page. But the contents obviously have a great amount of control
over the rendering of other elements. Most of the properties, methods, and event handlers
that the style element inherits from all HTML elements are irrelevant.

One exception is the Boolean disabled property. Although there are additional ways to disable
a stylesheet (the disabled property of the styleSheet object), it may be easier to disable or
enable a stylesheet by way of the style element object. Because you can assign an ID to this
element and reference it explicitly, doing so may be more convenient than trying to identify
which styleSheet object among the document’s styleSheets collection you intend to enable
or disable.

Properties
media

Value: String. Read/Write
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

The media property represents the media attribute of a style element. This attribute can
define what kind of output device is governed by the stylesheet. The HTML 4.0 specification
has lofty goals for this attribute, but at best, computer browsers are limited to the following
values: screen, print, and all. Thus, you can design one set of styles to apply when the
page is viewed on the computer screen and a different set for when it’s printed.

type
Value: String. Read/Write
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+ , Safari1+

The type property represents the type attribute of the style element. For Cascading Style
Sheets, this property is always set to text/css. If your scripts assign some other value to
this property and the browser does not support that stylesheet type, the stylesheet no longer
functions as a Cascading Style Sheet, and any styles it controls revert to their default styles.

style.type

798 Part III ✦ Document Objects Reference

styleSheet Object

Properties Methods Event Handlers

cssRules addImport()
cssText addRule()
disabled deleteRule()
href insertRule()
id removeRule()
imports
media
ownerNode
ownerRule
owningElement
pages
parentStyleSheet
readOnly
rules
title
type

Syntax
Accessing styleSheet object properties and methods:

(IE4+/W3C) document.styleSheets[index].property | method([parameters])

Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

About this object
If the style element object is the concrete incarnation of a stylesheet, then the styleSheet
object is its abstract equivalent. A styleSheet object exists by virtue of a stylesheet defini-
tion being embedded in the current document either by way of the <style> tag or linked in
from an external file via the <link> tag. Each element that introduces a stylesheet into a
document creates a separate styleSheet object. Access to a styleSheet object is via the
document.styleSheets array. If the document contains no stylesheet definitions, then the
array has a length of zero. Styles that are introduced into a document by way of an element’s
style attribute are not considered styleSheet objects.

Although both IE4+ and W3C DOM browsers present styleSheet objects — and the object rep-
resents the same “thing” in both browser families — the set of properties and methods diverges
widely between browsers. In many cases, the object provides the same information but through
differently named properties in the two families. Interestingly, on some important properties,
such as the ones that return the array of style rules and a reference to the HTML element that
is responsible for the stylesheet’s being in the document, MacIE5 and Safari provide both the
Microsoft and W3C terminology. Methods for this object focus on adding rules to and deleting
rules from the stylesheet. For the most part, however, your use of the styleSheet object will
be as a reference gateway to individual rules (via the rules or cssRules array).

styleSheetObject

799Chapter 26 ✦ Style Sheet and Style Objects

Properties
cssRules

Value: Array of rule objects. Read-Only
Compatibility: WinIE-, MacIE5, NN6+, Moz1+, Safari1+

The cssRules property returns an array of stylesheet rule objects. Strictly speaking, the
objects are called cssRule objects in the W3C DOM terminology. This property is implemented
in MacIE5, but not in the Windows version as of IE6. The list of rule objects is in source code
order. The corresponding WinIE4+ property is rules.

Example
Use The Evaluator (Chapter 13) to look at the cssRules property in W3C DOM browsers or
MacIE5. First, view how many rules are in the first styleSheet object of the page by entering
the following statement into the top text box:

document.styleSheets[0].cssRules.length

Now use the array with an index value to access one of the rule objects to view the rule
object’s properties list. Enter the following statement into the bottom text box:

document.styleSheets[0].cssRules[1]

You use this syntax to modify the style details of an individual rule belonging to the
styleSheet object.

Related Items: rules property, cssRule, rule objects.

cssText
Value: String. Read/Write
Compatibility: WinIE5+, MacIE5, NN-, Moz-, Safari-

The cssText property contains a string of all stylesheet rules contained by the styleSheet
object. Parsing this text in search of particular strings is not wise because the text returned
by this property can have carriage returns and other formatting that is not obvious from the
text that is assigned to the rules in the stylesheet. But you can use this property as a way to
completely rewrite the rules of a stylesheet in a rather brute-force manner: Assemble a string
consisting of all the new rules and assign that string to the cssText property. The more for-
mal way of modifying rules (adding and removing them) is perhaps better form, but there is
no penalty for using the cssText property if your audience is strictly IE5+.

Example
Use The Evaluator (Chapter 13) to replace the style rules in one blast via the cssText property.
Begin by examining the value returned from the property for the initially disabled stylesheet
by entering the following statement into the top text box:

document.styleSheets[0].cssText

Next, enable the stylesheet so that its rules are applied to the document:

document.styleSheets[0].disabled = false

Finally, enter the following statement into the top text box to overwrite the stylesheet with
entirely new rules.

document.styleSheets[0].cssText = “p {color:red}”

styleSheetObject.cssText

800 Part III ✦ Document Objects Reference

Reload the page after you are finished to restore the original state.

Related Items: addRule(), deleteRule(), insertRule(), removeRule() methods.

disabled
Value: Boolean. Read/Write
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

While the disabled property of the style element object works with that element only, the
styleSheet object’s disabled property works with a styleSheet object that comes into
the document by a link element as well.

Enabling and disabling stylesheets is one way to swap different appearance styles for a page,
allowing the user to select the preferred style. The page can contain multiple stylesheets that
control the same selectors, but your script can enable one and disable another to change the
overall style. You can even perform this action via the onload event handler. For example, if
you have separate stylesheets for Windows and Mac browsers, you can put both of them in
the document, initially both disabled. An onload event handler determines the operating sys-
tem and enables the stylesheet tailored for that OS. Unless your stylesheets are very extensive,
there is little download performance penalty for having both stylesheets in the document.

Example
Use The Evaluator (Chapter 13) to toggle between the enabled and disabled state of the first
styleSheet object on the page. Enter the following statement into the top text box:

document.styleSheets[0].disabled = (!document.styleSheets[0].disabled)

The inclusion of the NOT operator (!) forces the state to change from true to false or
false to true with each click of the Evaluate button.

Related Items: disabled property of the style element object.

href
Value: String. Read/Write (See Text)
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

When a stylesheet is linked into a document via a link element, the href property of the
styleSheet object contains a string with the URL to that file. Essentially, the href property
of the link element is passed along to the styleSheet object that loads as a result. In WinIE4+
only, this property is read/write, allowing you to dynamically link in an external stylesheet file
after the page has loaded. In MacIE and NN6+/Moz, this property is read-only.

Related Items: link element object.

id
Value: String. Read-Only
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-

The id property of a styleSheet object inherits the id property of its containing element
(style or link element). This can get confusing, because it may appear as though two objects
in the document have the same ID. The id string, however, can be used as an index to the
document.styleSheets array in IE4+ (for example, document.styleSheets[“winLINK”]).
NN does not provide a comparable identifier associated with a styleSheet object.

Related Items: id property of all element objects.

styleSheetObject.cssText

801Chapter 26 ✦ Style Sheet and Style Objects

imports
Value: Array of styleSheet objects. Read-Only
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-

A stylesheet can contain one or more @import rules to import an external stylesheet file
into the document. Each imported styleSheet object is treated as an import object. The
imports property is a collection of all imported styleSheet objects that belong to the current
styleSheet object. Imported stylesheets are not added to the document.styleSheets col-
lection, so that references to an imported styleSheet object must be through the document.
styleSheets[i].imports[i] array.

An import object is, itself, a styleSheet object. All properties and methods applicable to a
styleSheet object also apply to an import object. Therefore, if you want to load a different
external stylesheet into the page, you can assign the new URL to the imported styleSheet
object’s href property:

document.styleSheets[0].imports[0].href = “alternate.css”;

Modifications of this nature work in IE for Windows, but not in MacIE.

Related Items: styleSheet object.

media
Value: See text. Read/Write
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

Cascading Style Sheets can be defined to apply to specific output media, such as the video
display screen, printer, and, in the future, devices such as speech synthesizers or Braille gen-
erators. A stylesheet gets this direction from the media attribute of a style or link element.
That value is represented in the media property of the styleSheet object.

In IE4+, the media property value is a string with one of three possible values: screen,
printer, all. The W3C DOM and NN6+ take this one step further by allowing for potentially
multiple values being assigned to the media attribute. The NN6+/Moz/Safari value is an array
of string media names (returned in an object called a mediaList).

Related Items: None.

ownerNode
Value: Node reference. Read-Only
Compatibility: WinIE-, MacIE-, NN6+, Moz1+, Safari1+

The ownerNode property is a reference to the document node in which the styleSheet object
is defined. For styleSheet objects defined inside style and link elements, the ownerNode
property is a reference to that element. The corresponding property in IE4+ is owningElement.
Oddly, MacIE5 has an additional, misnamed property called owningNode, whose value equals
that of the owningElement property.

Example
Use The Evaluator (Chapter 13) with NN6+/Moz1+/Safari to inspect the ownerNode of the first
styleSheet object in the document. Enter the following statement into the top text box:

document.styleSheets[0].ownerNode.tagName

The returned value is the style element tag name.

Related Items: ownerRule, owningElement property.

styleSheetObject.ownerNode

802 Part III ✦ Document Objects Reference

ownerRule
Value: cssRule object. Read-Only
Compatibility: WinIE-, MacIE-, NN6+, Moz1+, Safari1+

The ownerRule property applies to a styleSheet object that has been imported into a docu-
ment via the @import rule. The property returns a reference to the @import rule responsible for
loading the external stylesheet. There is an interaction between the ownerRule and ownerNode
properties in that an imported rule has an ownerRule but its ownerNode property is null;
conversely, a regular styleSheet has an ownerNode, but its ownerRule property is null.

Related Items: ownerNode property.

owningElement
Value: Element reference. Read-Only
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-

The owningElement property is a reference to the element object in which the styleSheet
object is defined. For styleSheet objects defined inside style and link elements, the
owningElement property is a reference to that element. The corresponding property in NN6+
is ownerNode. Oddly, MacIE5 has an additional, misnamed property called owningNode,
whose value equals that of the owningElement property.

Example
Use The Evaluator (Chapter 13) with IE4+ to inspect the owningElement of the first
styleSheet object in the document. Enter the following statement into the top text box:

document.styleSheets[0].owningElement.tagName

The returned value is the style element tag name.

Related Items: ownerNode property.

pages
Value: Array of @page rules. Read-Only
Compatibility: WinIE5.5+, MacIE-, NN-, Moz-, Safari-

An @page style rule defines the dimensions and margins for printed versions of a Web page.
The pages property returns a collection of @page rules contained by the current styleSheet
object. If no @page rules are defined in the stylesheet, the array has a length of zero.

While an @page rule has the same properties as any rule object, it has one more read-only
property, the pseudoClass property, which returns any pseudo-class definitions in the rule.
For example, the following @page rules define different rectangle specifications for the left
and right printed pages:

@page :left {margin-left:4cm; margin-right:3cm;}
@page :right {margin-left:3cm; margin-right:4cm;}

Values for the pseudoClass property of these two page rules are :left and :right,
respectively.

To the W3C DOM, an @page rule is just another rule object, but one whose type property
returns page.

styleSheetObject.ownerRule

803Chapter 26 ✦ Style Sheet and Style Objects

For more information about the paged media specification, see http://www.w3.org/TR/
REC-CSS2/page.html.

Related Items: None.

parentStyleSheet
Value: styleSheet object. Read-Only
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

An imported stylesheet is present thanks to the hosting of a styleSheet object created by a
style or link element. That host styleSheet object is referenced by the parentStyleSheet
property. For most styleSheet objects (that is, those not imported via the @import rule),
the parentStyleSheet property is null. Take note of the distinction between the parent
StyleSheet property, which points to a styleSheet object, and the various properties that
refer to the HTML element that “owns” the styleSheet object.

Related Items: None.

readOnly
Value: Boolean. Read-Only
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-

The readOnly property’s name is a bit misleading. Its Boolean value lets your script know
whether the current stylesheet was embedded in the document by way of the style element
or brought in from an external file via the link element or @import rule. When embedded by
a style element, the readOnly property is false; for stylesheets defined outside the page,
the property is true. But a value of true doesn’t mean that your scripts cannot modify the
style properties. Style properties can still be modified on the fly, but of course the changes
will not be reflected in the external file from which the initial settings came.

Related Items: owningElement property.

rules
Value: Array of rule objects. Read-Only
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari1+

The rules property returns an array of all rule objects (other than @ rules) defined in the cur-
rent stylesheet. The order of rule objects in the array is based on source code order of the
rules defined in the style element or in the external file.

Use the rules array as the primary way to reference an individual rule inside a stylesheet. If
you use a for loop to iterate through all rules in search of a particular rule, you will most likely
be looking for a match of the rule object’s selectorText property. This assumes, of course,
that each selector is unique within the stylesheet. Using unique selectors is good practice,
but no restrictions prevent you from reusing a selector name in a stylesheet for additional
style information applied to the same selector elements.

The corresponding property name for NN6+/Moz is cssRules. MacIE5 and Safari respond to
both the rules and cssRules properties.

styleSheetObject.rules

804 Part III ✦ Document Objects Reference

Example
Use The Evaluator (Chapter 13) with IE4+ to examine the rules property of the first
styleSheet object in the page. First, find out how many rules are in the first styleSheet
object by entering the following statement into the top text box:

document.styleSheets[0].rules.length

Next, examine the properties of one of the rules by entering the following statement into the
bottom text box:

document.styleSheets[0].rules[1]

You now see the all the properties that IE4+ exposes for a rule object.

Related Items: rule object; cssRules property.

title
Value: String. Read/Write
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

If you assign a value to the title attribute of a style element or a link element that loads a
stylesheet, that string value filters down to the title property of the styleSheet object.
You can use the string value as a kind of identifier, but it is not usable as a true identifier that
you can use as an index to the styleSheets array. In visible HTML elements, the title
attribute usually sets the text that displays with the tooltip over the element. But for the
unseen style and link elements, the attribute has no impact on the rendered display of the
page. Therefore, you can use this attribute and corresponding property to convey any string
value you want.

Related Items: title property of all HTML elements.

type
Value: String. Read/Write
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

The type property of a styleSheet object picks up the type attribute of the style or link
element that embeds a stylesheet into the page. Unless you are experimenting with some new
types of stylesheet language (assuming it is even supported in the browser), the value of the
type property is text/css.

Related Items: None.

Methods

addImport(“URL”[, index])
Returns: Integer.
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-

The addImport() method lets you add an @import rule to a styleSheet object. A required
first parameter is the URL of the external .css file that contains one or more stylesheet rules.
If you omit the second parameter, the @import rule is appended to the end of rules in the

styleSheetObject.rules

805Chapter 26 ✦ Style Sheet and Style Objects

styleSheet object. Or you can specify an integer as the index of the position within the rules
collection where the rule should be inserted. The order of rules in a styleSheet object can
influence the cascading order of overlapping stylesheet rules (that is, multiple rules that
apply to the same elements).

The value returned by the method is an integer representing the index position of the new
rule within the rules collection of the styleSheet. If you need subsequent access to the new
rule, you can preserve the value returned by the addImport() method and use it as the index
to the rules collection.

Related Items: addRule() method.

addRule(“selector”, “styleSpec”[, index])
removeRule(index)

Returns: Integer (for addRule()).
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-

The addRule() method appends or inserts a stylesheet rule into the current styleSheet
object. The first two parameters are strings for the two components of every rule: the selec-
tor and the style specification. Any valid selector, including multiple, space-delimited selec-
tors, is permitted. For the style specification, the string should contain the
semicolon-delimited list of style attribute:value pairs, but without the curly braces that
surround the specification in a regular stylesheet rule.

If you omit the last parameter, the rule is appended to the end of the rules collection for the
stylesheet. Or, you can specify an integer index value signifying the position within the rules
collection where the new rule should go. The order of rules in a styleSheet object can influ-
ence the cascading order of overlapping stylesheet rules (meaning multiple rules that apply
to the same elements).

The return value conveys no meaningful information.

To remove a rule from a styleSheet object’s rules collection, invoke the removeRule()
method. Exercise some care here, because you must have the correct index value for the rule
that you want to remove. Your script can use a for loop to iterate through the rules collec-
tion, looking for a match of the selectorText property (assuming that you have unique
selectors). The index for the matching rule can then be used as the parameter to
removeRule(). This method returns no value.

For NN6+, the corresponding methods are called insertRule() and deleteRule().

Example
Use The Evaluator (Chapter 13) with IE4+ to add a stylesheet rule to the first styleSheet
object of the page. First, make sure the stylesheet is enabled by entering the following state-
ment into the top text box:

document.styleSheets[0].disabled = false

Next, append a style that sets the color of the textarea element:

document.styleSheets[0].addRule(“textarea”, “color:red”)

styleSheetObject.addRule()

806 Part III ✦ Document Objects Reference

Enter any valid object (such as document.body) into the bottom text box to see how the
style has been applied to the textarea element on the page.

Now remove the style, using the index of the last item of the rules collection as the index:

document.styleSheets[0].removeRule(document.styleSheets[0].rules.length - 1)

The text in the textarea returns to its default color.

Related Items: deleteRule(), insertRule() methods.

deleteRule(index)
insertRule(“rule”, index)

Returns: Integer (for insertRule()).
Compatibility: WinIE-, MacIE5, NN6+, Moz1+, Safari1+

The insertRule() method appends or inserts a stylesheet rule into the current styleSheet
object. The first parameter is a string containing the style rule as it would normally appear in
a stylesheet, including the selector and curly braces surrounding the semicolon-delimited list
of style attribute:value pairs.

You must supply an index location within the cssRules array where the new rule is to be
inserted. If you want to append the rule to the end of the list, use the length property of the
cssRules collection for the parameter. The order of rules in a styleSheet object can influ-
ence the cascading order of overlapping stylesheet rules (meaning multiple rules that apply
to the same elements).

The return value is an index for the position of the inserted rule.

Safari 1.0 executes the method without complaint, but the inserted rule does not alter any of
the page’s rendering.

To remove a rule from a styleSheet object’s cssRules collection, invoke the deleteRule()
method. Exercise some care here, because you must have the correct index value for the rule
that you want to remove. Your script could use a for loop to iterate through the cssRules
collection, looking for a match of the selectorText property (assuming that you have unique
selectors). The index for the matching rule can then be used as the parameter to deleteRule().
This method returns no value.

For IE4+, the corresponding methods are called addRule() and removeRule().

Example
Use The Evaluator (Chapter 13) with NN6+/Moz to add a stylesheet rule to the first styleSheet
object of the page. First, make sure the stylesheet is enabled by entering the following state-
ment into the top text box:

document.styleSheets[0].disabled = false

Next, append a style that sets the color of the textarea element:

document.styleSheets[0].insertRule(“textarea {color:red}”,
document.styleSheets[0].cssRules.length)

Note

styleSheetObject.addRule()

807Chapter 26 ✦ Style Sheet and Style Objects

Enter any valid object (such as document.body) into the bottom text box to see how the
style has been applied to the textarea element on the page.

Now remove the style, using the index of the last item of the rules collection as the index:

document.styleSheets[0].deleteRule(document.styleSheets[0].cssRules.length - 1)

Related Items: addRule(), removeRule() methods.

cssRule and rule Objects

Properties Methods Event Handlers

cssText
parentStyleSheet
readOnly
selectorText
style
type

Syntax
Accessing rule or cssRule object properties:

(IE4+) document.styleSheets[index].rules[index].property
(MacIE5/W3C) document.styleSheets[index].cssRules[index].property

About these objects
The rule and cssRule objects are different object model names for the same objects. For
IE4+, the object is known as a rule (and a collection of them the rules collection); for NN6+/
Moz/Safari (and MacIE5), the object follows the W3C DOM recommendation, calling the object
a cssRule (and a collection of them the cssRules collection). For the remainder of this section,
they will be referred to generically as the rule object.

A rule object has two major components. The first is the selector text, which governs which ele-
ment(s) are to be influenced by the style rule. The second component is the style definition,
with its set of semicolon-delimited attribute:value pairs. In both the IE4+ and NN6+/W3C
object models, the style definition is treated as an object: the style object, which has tons of
properties representing the style attributes available in the browser. The style object that
belongs to a rule object is precisely the same style object that is associated with every HTML
element object. Accessing style properties of a stylesheet rule requires a fairly long reference,
as in

document.styleSheets[0].rules[0].style.color = “red”;

but the format follows the logic of JavaScript’s dot-syntax to the letter.

ruleObject

808 Part III ✦ Document Objects Reference

Properties
cssText

Value: String. Read/Write
Compatibility: WinIE-, MacIE5, NN6+, Moz1+, Safari1+

The cssText property returns the full text of the current cssRule object. While the text
returned from this property can be parsed to locate particular strings, it is easier and more
reliable to access individual style properties and their values via the style property of a
cssRule object. Safari 1.0 returns an empty string.

Related Items: style property.

parentStyleSheet
Value: styleSheet object. Read-Only
Compatibility: WinIE-, MacIE5, NN6+, Moz1+, Safari1+

The parentStyleSheet property is a reference to the styleSheet object that contains the
current cssRule object. The return value is a reference to a styleSheet object, from which
scripts can read and write properties related to the entire stylesheet.

Related Items: parentRule property.

readOnly
Value: Boolean. Read-Only
Compatibility: WinIE5+, MacIE5, NN-, Moz-, Safari-

The readOnly property’s name is a bit misleading. Its Boolean value lets your script know
whether the current rule’s styleSheet was embedded in the document by way of the style
element or brought in from an external file via the link element or @import rule. When
embedded by a style element, the readOnly property is false; for stylesheets defined out-
side the page, the property is true. But a value of true doesn’t mean that your scripts can-
not modify the style properties. Style properties can still be modified on the fly, but of course
the changes are not reflected in the external file from which the initial settings came.

Related Items: styleSheet.readOnly property.

selectorText
Value: String. Read-Only
Compatibility: WinIE5+, MacIE5, NN6+, Moz1+, Safari1+

The selectorText property returns only the selector portion of a stylesheet rule. The value
is a string, and if the selector contains multiple, space-delimited items, the selectorText
value returns the same space-delimited string. For selectors that are applied to classes (pre-
ceded by a period) or ids (preceded by a crosshatch), those leading characters are returned
as part of the string as well.

If you want to change the selector for a rule, removing the original rule and adding a new one
in its place is better. You can always preserve the style property of the original rule and
assign the style to the new rule.

ruleObject.cssText

809Chapter 26 ✦ Style Sheet and Style Objects

Example
Use The Evaluator (Chapter 13) to examine the selectorText property of rules in the first
styleSheet object of the page. Enter each of the following statements in the top text box:

document.styleSheets[0].rules[0].selectorText
document.styleSheets[0].rules[1].selectorText

Compare these values against the source code view for the style element in the page.

Related Items: style property.

style
Value: style object. Read/Write
Compatibility: WinIE5+, MacIE5, NN6+, Moz1+, Safari1+

The style property of a rule (or cssRule) is, itself, an object whose properties consist of the
CSS style properties supported by the browser. Modifying a property of the style object
requires a fairly long reference, as in

document.styleSheets[0].rules[0].style.color = “red”;

Any change you make to the rule’s style properties is reflected in the rendered style of what-
ever elements are denoted by the rule’s selector. If you want to change the style of just one
element, access the style property of just that element. Style values applied directly to an
element override whatever stylesheet style values are associated with the element.

Example
Use The Evaluator (Chapter 13) to modify a style property of one of the styleSheet rules in
the page. The syntax shown here is for IE4+, but you can substitute the cssRules reference for
the rules collection reference in NN6+, MacIE5, and W3C browsers if you like.

Begin by reloading the page and making sure the stylesheet is enabled. Enter the following
statement into the top text box:

document.styleSheets[0].disabled = false

The first rule is for the myP element on the page. Change the rule’s font-size style:

document.styleSheets[0].rules[0].style.fontSize = “20pt”

Look over the style object properties in the discussion of the style object later in this
chapter and have fun experimenting with different style properties. After you are finished,
reload the page to restore the styles to their default states.

Related Items: style object.

type
Value: Integer. Read-Only
Compatibility: WinIE-, MacIE-, NN6+, Moz1+, Safari1+

The W3C DOM defines several classes of stylesheet rules. To make it easier for a script to
identify the kind of cssRule it is working with, the type property returns an integer whose
value is associated with one of the known cssRule types. While not all of these rule types
may be implemented in current browsers, the complete W3C DOM list is as follows:

ruleObject.type

810 Part III ✦ Document Objects Reference

Type Description

0 Unknown type

1 Regular style rule

2 @charset rule

3 @import rule

4 @media rule

5 @font-face rule

6 @page rule

Most of the stylesheet rules you work with are type 1. To learn more about these rule types,
consult the W3C specification for CSS at http://www.w3.org/TR/REC-CSS2.

Related Items: None.

currentStyle , runtimeStyle , and style Objects

Properties Methods Event Handlers

(See below)

Syntax
Accessing currentStyle, runtimeStyle, or style object properties:

(IE4+/W3C) elementReference.style.property
(IE4+/W3C) document.styleSheets[index].style.property
(IE5+) elementReference.currentStyle.property
(IE5.5) elementReference.runtimeStyle.property

About these objects
All three of these objects —currentStyle, runtimeStyle, and style— return an object that
contains dozens of properties related to stylesheet specifications associated either with a
styleSheet object (for the style object only) or any rendered HTML element object. With
the browser page reflow facilities of modern browsers, changes made to the properties of the
style and IE-specific runtimeStyle objects are reflected immediately by the rendered content
on the page.

The primary object, the style object, is accessed as a property of either a styleSheet object
or an HTML element object. It is vital to remember that style properties of an HTML element
are reflected by the style object only if the specifications are made via the style attribute
inside the element’s tag. If your coding style requires that stylesheets be applied via style
or link tags, and if your scripts need to access the style property values as set by those
stylesheets, then you must read the properties of the effective stylesheet through the read-
only currentStyle property (available in IE5+) or the W3C DOM
window.getComputedStyle() method (NN6+/Moz).

ruleObject.type

811Chapter 26 ✦ Style Sheet and Style Objects

IE’s currentStyle object does not have precisely the same properties as its style object.
Missing from the currentStyle object are the properties that contain combination values,
such as border or borderBottom. On the other hand, currentStyle provides separate prop-
erties for each of the sides of a clipping rectangle (clipTop, clipRight, clipBottom, and
clipLeft), which the clip property does not provide.

Microsoft introduced one more flavor of style object — the runtimeStyle object — in IE5.5.
This object lets scripts override any style property that is set in a stylesheet or via the
"style attribute. In other words, the runtimeStyle object is like a read/write version of
currentStyle except that assigning a new value to one of its properties does not modify the
stylesheet definition or the value assigned in a style attribute. By and large, however, your
scripts will modify the style property of an element to make changes, unless you modify styles
by enabling and disabling stylesheets (or changing the className property of an element so
that it is under the control of a different selector).

Style properties
If you add up all the style object properties available in browsers starting with IE4 and NN6,
you have a list approximately 180 properties long. A sizable percentage are in common among
all browsers and are scriptable versions of W3C Cascading Style Sheet properties. The actual
CSS property names are frequently script-unfriendly in that multiple-worded properties have
hyphens in them, such as font-size. JavaScript identifiers do not allow hyphens, so multiple-
worded properties are converted to interCap versions, such as fontSize.

Not all style properties are supported by all browsers that have the style object in their object
models. Microsoft, in particular, has added many properties that are sometimes unique to IE
and sometimes unique to just IE for Windows. On the Netscape side, you find some properties
that appear to be supported by the style object, but the browser doesn’t genuinely support
the attributes. For example, the CSS specification defines several attributes that enhance the
delivery of content that is rendered through a speech synthesizer. Although NN6 and NN7 don’t
qualify, the Gecko browser engine at their core could be adapted to such a browser. Therefore,
if you see a property in the following listings that doesn’t make sense to you, test it out in the
compatible browsers to verify that it works as you need it. You will also find some properties
that are proprietary to Mozilla-based browsers — properties that begin with moz. These prop-
erties are preliminary implementations of as yet unreleased CSS Level 3 properties. The moz
prefix lets you use these properties today without conflicting with future, sanctioned implemen-
tations of the properties (which won’t have the moz prefix). When specifying these properties
in CSS syntax for your stylesheets, the properties begin with the special prefix -moz-, as in
-moz-opacity (and the scripted equivalent, mozOpacity).

Some browsers also expose advanced style object properties to scripters, when, in fact,
they are not genuinely supported in the browser. For example, an inspection of the style
object for MacIE5 and NN6+ shows a quotes property, which matches the quotes style prop-
erty in the W3C CSS2 specification. But in truth, the quotes style property cannot be set by
script in these browsers. When you see that a property is supported by MacIE5 and NN6+ but
none others, testing out the style property (and the stylesheet attribute as well) in The
Evaluator is a good idea before attempting to employ the property in your application.

With so many properties associated with an object, it may be difficult to locate the specific
property you need for a particular style effect. To help you locate properties, the listings that
follow are divided into functional categories, ordered by popularity:

elementRef.style

812 Part III ✦ Document Objects Reference

Category Description

Text & Fonts Font specifications, text rendering, text alignment

Inline Display & Layout Element flow, alignment, and display

Positioning Explicit positioning of “layers”

Background Background images and colors

Borders & Edges Borders, padding, and margins around elements

Lists Details for ul and ol elements

Scroll bars Scroll bar colors (WinIE5.5+ only)

Tables Details for table elements and components

Printing Page breaks and alignment for printed pages

Miscellaneous Odds and ends

Aural For rendering via speech-synthesis

Property values
All style object property values are strings. Moreover, many groups of style properties share
the same format for their values. Knowing the formats for the frequently used values is helpful.
The purpose of this chapter is not to teach you about stylesheets but to show you how to
script them. Therefore, if you see unfamiliar terminology here, consult online or print instruc-
tional material about Cascading Style Sheets.

Length
Values for length cover a wide range, but they all define an amount of physical space in the
document. Because content can be displayed on a video monitor or printed on a sheet of
paper, any kind of length value should include a unit of measure as well as the quantity. One
group of units (px, em, ex) are considered relative units, because the precise size depends on
factors beyond the control of the stylesheet (for example, the pixel density of the display) or
units set by elements with more global scope (for example, a p element’s margin em length
dependent upon the body element’s font-size setting). Absolute units (in, cm, mm, pi, pt) are
more appropriate for printed output. Length units are referred in script according to the fol-
lowing table:

Unit Script Version Example

pixel px 14px
em em 1.5em
ex ex 1.5ex
inch in 3.0in
centimeter cm 4.0cm
millimeter mm 40mm
pica pi 72pi
point pt 14pt

elementRef.style

813Chapter 26 ✦ Style Sheet and Style Objects

A length value can also be represented by a percentage as a string. For example, the
lineHeight style for a paragraph would be set to 120% of the font size established for the
paragraph by the following statement:

document.getElementById(“myP”).style.lineHeight = “120%”;

Style inheritance — an important CSS concept — often has significant impact on style proper-
ties whose values are lengths.

Color
Values for colors can be one of three types:

✦ RGB values (in a few different formats)

✦ plain-language versions of the color names

✦ plain-language names of system user interface items

RGB values can be expressed as hexadecimal values. The most common way is with a
crosshatch character followed by six hex numbers, as in #ff00ff (letters can be uppercase
or lowercase). A special shortcut is also available to let you specify three numbers with the
assumption that they will be expanded to pairs of numbers. For example, a color of #f0f is
expanded internally to be #ff00ff.

An alternative RGB expression is with the rgb() prefix and three numbers (from 0 to 255) or
percentages corresponding to the red, green, and blue components of the color. Here are a
couple of examples:

document.styleSheets[0].rules[0].style.color = “rgb(0, 255, 0)”;
document.styleSheets[0].rules[0].style.color = “rgb(0%, 100%, 0%)”;

Browsers also respond to a long list of plain-language color names originally devised by
Netscape. You can see the list with sample colors at http://developer.netscape.com/
library/manuals/1998/htmlguide/colortab.htm. Not all of those colors are necessarily
part of what are known as “Web safe” colors. For a demonstration of Web safe colors, visit
http://www.lynda.com/hexh.html.

The last category of color values references user interface pieces, many of which are deter-
mined by the user’s control panel for video display. The string values correspond to recogniz-
able UI components (also called system colors), as follows:

activeborder highlight scrollbar

activecaption highlighttext threeddarkshadow

appworkspace inactiveborder threedface

background inactivecaption threedhighlight

buttonface inactivecaptiontext threedlightshadow

buttonhighlight infobackground threedshadow

buttonshadow infotext window

buttontext menu windowframe

captiontext menutext windowtext

graytext

elementRef.style

814 Part III ✦ Document Objects Reference

Using these color settings may be risky for public sites, because you are at the mercy of the
color settings the user has chosen. For a corporate environment where system installations
and preferences are strictly controlled, these values could help define a safe color scheme for
your pages.

Rectangle sides
Many style properties control the look of sides of rectangles (for example, thickness of a border
around a block element). In most cases, the style values can be applied to individual sides or
combinations of sides, depending on the number of values supplied to the property. The
number of values affects the four sides of the rectangle according to the following matrix:

Number of Values Impact

1 All four sides set to the one value

2 Top and bottom sides set to first value; left and right sides set to second value

3 Top side set to first value; left and right sides set to second value; bottom side
set to third value

4 Top, right, bottom, and left sides set to individual values in that order

For example, to set the border color of an element so that all sides are red, the syntax is

elementRef.style.borderColor = “red”;

To set the top and bottom to red but the left and right to green, the syntax is

elementRef.style.borderColor = “red green”;

Properties that accept these multiple values cover a wide range of styles. Values may be col-
ors, lengths, or selections from a fixed list of possible values.

Combination values
Another category of style values includes properties that act as shortcuts for several related
properties. For example, the border property encompasses the borderWidth, borderStyle,
and borderColor properties. This is possible because very different classes of values repre-
sent the three component properties: borderWidth is a length; borderStyle is based on a
fixed list of values; and borderColor is a color value. Therefore, you can specify one or more
of these property values (in any order), and the browser knows how to apply the values to
the detailed subproperty. Only one value is permitted for any one of these subproperties,
which means that if the property is one of the four-sided styles described in the previous sec-
tion, the value is applied to all four sides equally.

For example, setting the border property to a single value, as in

elementRef.style.border = “blue”;

is the same as setting

elementRef.style.borderColor = “blue”;

But if you set multiple items, as in

elementRef.style.border = “groove blue 3px”;

elementRef.style

815Chapter 26 ✦ Style Sheet and Style Objects

then you have set the equivalent of the following three statements:

elementRef.style.borderStyle = “groove”
elementRef.style.borderColor = “blue”;
elementRef.style.borderWidth = “3px”;

In the property descriptions that follow, these combination values are denoted by their
scripted property names and the OR (||) operator, as in

border = “borderStyle || borderColor || borderWidth”;

URLs
Unlike other property values containing URLs, a style property requires a slightly different
format. This format includes the url() prefix, with the actual URL (relative or absolute) located
inside the parentheses. The URL itself is not quoted, but the entire property value is, as in

elementRef.style.backgroundImage = “url(chainlink.jpg)”;

URLs should not have any spaces in them, but if they do, use the URL-encoded version for the
file specification: convert spaces to %20. This format distinguishes a URL value from some
other string value for shortcut properties.

Text and font properties
color

Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+
Controls: Foreground color of an element, primarily used to assign color to text. May also
affect edges and highlights of other elements in some browsers.
Value: Color specification.
Example: elementRef.style.color = “rgb(#22FF00)”;

font
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+
Controls: Up to six font-related style properties.
Value: Combination values: fontStyle || fontVariant || fontWeight || fontSize ||
lineHeight || fontFamily. See individual properties for their value formats.
Example: elementRef.style.font = “bold sans-serif 16px”;

fontFamily
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+
Controls: Font family to be applied to an element in order of priority.
Value: Comma-delimited list of font families to be applied to element, starting with the most
preferred font family name. You can also use one of several generic family names that rely on
the browser to choose the optimal font to match the class: serif | sans-serif | cursive
| fantasy | monospace. Not all browsers support all constants, but serif, sans-serif,
and monospace are commonly implemented.
Example: elementRef.style.fontFamily = “Bauhaus 93, Arial, monospace”;

elementRef.style.fontFamily

816 Part III ✦ Document Objects Reference

fontSize
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+
Controls: Size of the characters of the current font family.
Value: Lengths (generally px or pt values); relative size constants: larger | smaller;
absolute size constants: xx-small | x-small | small | medium | large | x-large | xx-
large
Examples: elementRef.style.fontSize = “16px”; elementRef.style.fontSize
= “small”;

fontSizeAdjust
Compatibility: WinIE-, MacIE5, NN6+, Moz1+, Safari-
Controls: Aspect value of a secondary font family so that it maintains a similar character
height as the primary font family.
Value: Number (including floating-point value) or none
Example: elementRef.style.fontSizeAdjust = “1.05”;

fontStretch
Compatibility: WinIE-, MacIE5, NN6+, Moz1+, Safari-
Controls: Rendered width of a font’s characters.
Value: Constant ultra-condensed | extra-condensed | condensed | semi-condensed
| semi-expanded | expanded | extra-expanded | ultra-expanded or wider |
narrower | inherit | normal
Example: elementRef.style.fontStretch = “expanded”;

fontStyle
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+
Controls: Italic style of characters.
Value: Constant normal | italic | oblique | inherit
Example: elementRef.style.fontStyle = “italic”;

fontVariant
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari-
Controls: Rendering characters as small caps.
Value: Constant normal | small-caps | inherit
Example: elementRef.style.fontVariant = “small-caps”;

fontWeight
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+
Controls: Rendering characters in bold or light weights. Fonts that support numbered
gradations can be controlled by those numbers. Normal = 400; Bold = 700.
Value: Constant bold | bolder | lighter | normal | 100 | 200 | 300 | 400 | 500 | 600
| 700 | 800 | inherit
Example: elementRef.style.fontWeight = “bold”;

elementRef.style.fontSize

817Chapter 26 ✦ Style Sheet and Style Objects

letterSpacing
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+
Controls: Spacing between characters. Used to override a font family’s own characteristics.
Value: Length (usually em units, relative to current font size); Constant normal | inherit
Example: elementRef.style.letterSpacing = “1.2em”;

lineBreak
Compatibility: WinIE5+, MacIE-, NN-, Moz-, Safari-
Controls: Line-break rules for Japanese text content.
Value: Constant normal | strict
Example: elementRef.style.lineBreak = “strict”;

lineHeight
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+
Controls: Height of the rectangular space that holds a line of text characters.
Value: Length (usually em units, relative to current font size); number (a multiplier on the
inherited line height); percentage (relative to inherited line height); constant normal |
inherit
Example: elementRef.style.lineHeight = “1.1”;

quotes
Compatibility: WinIE-, MacIE5, NN6+, Moz1+, Safari-
Controls: Characters to be used for quotation marks.
Value: Space-delimited pairs of open and close quotation symbols; Constant none |
inherit
Example: elementRef.style.quotes = “« »”;

rubyAlign
Compatibility: WinIE5+, MacIE5, NN-, Moz-, Safari-
Controls: Alignment of ruby text within a ruby element.
Value: Constant auto | left | center | right | distribute-letter | distribute-
space | line-edge
Example: RUBYelementRef.style.rubyAlign = “distribute=letter”;

rubyOverhang
Compatibility: WinIE5+, MacIE5, NN-, Moz-, Safari-
Controls: Overhang of ruby text within a ruby element.
Value: Constant auto | whitespace | none
Example: RUBYelementRef.style.rubyOverhang = “whitespace”;

rubyPosition
Compatibility: WinIE5+, MacIE5, NN-, Moz-, Safari-
Controls: Placement of ruby text with respect to the ruby element’s base text.
Value: Constant above | inline
Example: RUBYelementRef.style.rubyPosition = “inline”;

elementRef.style.rubyPosition

818 Part III ✦ Document Objects Reference

textAlign
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+
Controls: Horizontal alignment of text with respect to its containing element.
Value: Constant center | justify | left | right
Example: elementRef.style.textAlign = “center”;

textAlignLast
Compatibility: WinIE5.5+, MacIE-, NN-, Moz-, Safari-
Controls: Horizontal alignment of last line of text in a paragraph.
Value: Constant auto | center | justify | left | right
Example: elementRef.style.textAlignLast = “justify”;

textAutospace
Compatibility: WinIE5+, MacIE-, NN-, Moz-, Safari-
Controls: Extra spacing between ideographic and non-ideographic text.
Value: Constant none | ideograph-alpha | ideograph-numeric | ideograph-
parenthesis | ideograph-space
Example: elementRef.style.textAutospace = “ideograph=alpha”;

textDecoration
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+
Controls: Display of underline, overline, or line-through with text.
Value: Constant none | blink | line-through | overline | underline
Example: elementRef.style.textDecoration = “underline”;

textDecorationBlink
textDecorationLineThrough
textDecorationNone
textDecorationOverline
textDecorationUnderline

Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-
Controls: Individual text decoration characteristics for text, allowing for multiple decorations
to be applied to the same text.
Value: Boolean (not strings) true | false
Example: elementRef.style.textDecorationUnderline = true;

textIndent
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+
Controls: Amount of indentation for the first line of a block text element (for example, p).
Value: Length (negative values for outdenting); percentage (relative to inherited value)
Example: elementRef.style.textIndent = “2.5em”;

elementRef.style.textAlign

819Chapter 26 ✦ Style Sheet and Style Objects

textJustify
Compatibility: WinIE5+, MacIE5, NN-, Moz-, Safari-
Controls: Additional detailed specifications for an element whose textAlign property is set
to justify.
Value: Constant auto | distribute | distribute-all-lines | distribute-center-
last | inter-cluster | inter-ideograph | inter-word | kashida | newspaper
Example: elementRef.style.textJustify = “distribute”;

textJustifyTrim
Compatibility: WinIE5+, MacIE5, NN-, Moz-, Safari-
Reserved for future use.

textKashidaSpace
Compatibility: WinIE5.5+, MacIE-, NN-, Moz-, Safari-
Controls: Ratio of kashida expansion to white space expansion for Arabic writing systems.
Value: Percentage
Example: elementRef.style.textKashidaSpace = “90%”;

TextOverflow
Compatibility: WinIE6+, MacIE-, NN-, Moz-, Safari-
Controls: Whether an ellipsis (...) is displayed at the end of a line of overflowed text to
indicate that more text is available.
Value: Constant clip | ellipsis

textShadow
Compatibility: WinIE-, MacIE5, NN6+, Moz1+, Safari-
Controls: Shadow rendering around text characters. Note: The style attribute for this
property is not implemented in MacIE5 or NN6/7, but the property is listed as valid for a
style object.
Value: Each shadow specification consists of an optional color and three space-delimited
length values (horizontal shadow offset, vertical shadow offset, blur radius length). Multiple
shadow specifications are comma-delimited.

textTransform
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+
Controls: Case rendering of the text (meaning without altering the case of the original text).
Value: Constant none | capitalize | lowercase | uppercase
Example: elementRef.style.textTransform = “uppercase”;

textUnderlinePosition
Compatibility: WinIE5.5+, MacIE-, NN-, Moz-, Safari-
Controls: Whether an underline text decoration is displayed above or below the text. Seems
redundant with textDecorationUnderline and textDecorationOverline.
Value: Constant above | below
Example: elementRef.style.textUnderlinePosition = “above”;

elementRef.style.textUnderlinePosition

820 Part III ✦ Document Objects Reference

unicodeBidi
Compatibility: WinIE5+, MacIE5, NN6+, Moz1+, Safari1+
Controls: Within bidirectional text (for example, English and Arabic), to what extent an
alternate direction text block is embedded within the outer element.
Value: Constant normal | embed | bidi-override
Example: elementRef.style.unicodeBidi = “embed”;

whiteSpace
Compatibility: WinIE5.5+, MacIE5, NN6+, Moz1+, Safari1+
Controls: Treatment of white space characters within an element’s source code.
Value: Constant normal | nowrap | pre
Example: elementRef.style.whiteSpace = “nowrap”;

wordBreak
Compatibility: WinIE5+, MacIE-, NN-, Moz-, Safari-
Controls: Word breaking characteristics, primarily for Asian-language text or text containing
a mixture of Asian and Latin characters.
Value: Constant normal | break-all | keep-all
Example: elementRef.style.wordBreak = “break-all”;

wordSpacing
Compatibility: WinIE6+, MacIE4+, NN6+, Moz1+, Safari1+
Controls: Spacing between words.
Value: Length (usually in em units); Constant normal
Example: elementRef.style.wordSpacing = “1em”;

wordWrap
Compatibility: WinIE5.5+, MacIE-, NN-, Moz-, Safari-
Controls: Word wrapping characteristics of text in a block element, explicitly sized inline
element, or positioned element.
Value: Constant normal | break-word
Example: elementRef.style.wordWrap = “break-word”;

writingMode
Compatibility: WinIE5.5+, MacIE-, NN-, Moz-, Safari-
Controls: Direction of content flow (left-to-right/top-to-bottom or top-to-bottom/right-to-left,
as in some Asian languages).
Value: Constant lr-tb | tb-rl
Example: elementRef.style.writingMode = “tb-rl”;

elementRef.style.unicodeBidi

821Chapter 26 ✦ Style Sheet and Style Objects

Inline display and layout properties
clear

Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+
Controls: Layout orientation of an element with respect to a neighboring floating element.
Value: Constant both | left | none | right
Example: elementRef.style.clear = “right”;

clip
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+
Controls: The clipping rectangle of an element (that is, the position of the rectangle through
which the user sees an element’s content).
Value: rect(topLength, rightLength, bottomLength, leftLength) | auto
Example: elementRef.style.clip = “rect(10px, 300px, 200px, 0px)”;

clipBottom
clipLeft
clipRight
clipTop

Compatibility: WinIE5+, MacIE-, NN-, Moz-, Safari-
Controls: Individual edges of the clipping rectangle of an element. These properties are read-
only properties of the currentStyle object.
Value: Length | auto
Example: var leftEdge = elementRef.currentStyle.clipLeft;

content
Compatibility: WinIE-, MacIE5, NN6+, Moz1+, Safari-
Controls: The content rendered in addition to the element, usually to be applied with a
:before or :after pseudo-class. This feature will become more useful when CSS counters
are implemented in browsers. They’ll provide automatic section or paragraph numbering.
While the CSS equivalent is implemented in NN7/Moz1/Safari, changes to the scripted
property are not rendered.
Value: See http://www.w3.org/TR/REC-CSS2/generate.html#propdef-content.

counterIncrement
Compatibility: WinIE-, MacIE5, NN6+, Moz1+, Safari-
Controls: The jumps in counter values to be displayed via the content style property. Note:
The CSS property is not implemented in MacIE5 or NN6/7, but the property is listed as valid
for a style object.
Value: One or more pairs of counter identifier and integers.

elementRef.style.counterIncrement

822 Part III ✦ Document Objects Reference

counterReset
Compatibility: WinIE-, MacIE5, NN6+, Moz1+, Safari-
Controls: Resets a named counter for content to be displayed via the content style
property. Note: The CSS property is not implemented in MacIE5 or NN6/7, but the property is
listed as valid for a style object.
Value: One or more pairs of counter identifier and integers.

cssFloat
Compatibility: WinIE-, MacIE5, NN6+, Moz1+, Safari1+
Controls: Horizontal alignment of an element that allows other content to wrap around the
element (usually text wrapping around an image). Corresponds to the CSS float style
attribute. See also the floatStyle property, below. Floating (non-positioned) elements
follow a long sequence of rules for their behavior, detailed at
http://www.w3.org/TR/REC-CSS2/visuren.html#propdef-float.
Value: Constant left | right | none
Example: elementRef.style.cssFloat = “right”;

cursor
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari-
Controls: The icon used for the cursor on the screen from a library of system-generated
cursors. The CSS2 specification defines syntax for downloadable cursors, but this feature is
not implemented as of IE5.5 or NN6/7. You can change this style property only if a :hover
pseudo-class is initially defined for the element.
Value: Constant auto | crosshair | default | e-resize | help | move | n-resize |
ne-resize | nw-resize | pointer | s-resize | se-resize | sw-resize | text |
w-resize | wait. New values for IE6 are: all-scroll | col-resize | no-drop |
not-allowed | progress | row-resize | url | vertical-text. Mozilla-based browsers
include: alias | cell | context-menu | copy | count-down | count-up | count-up-
down | grab | grabbing | spinning.
Example: elementRef.style.cursor = “hand”;

direction
Compatibility: WinIE5+, MacIE5, NN6+, Moz1+, Safari1+
Controls: Layout direction (left-to-right or right-to-left) of inline text (same as dir attribute
of an element).
Value: Constant ltr | rtl
Example: elementRef.style.direction = “rtl”;

display
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+
Controls: Whether an element is displayed on the page and in which display mode. Content
surrounding an undisplayed element cinches up to occupy the undisplayed element’s space —
as if the element didn’t exist for rendering purposes (see the visibility property for a
different approach). Commonly used to hide or show segments of a graphical tree structure.

elementRef.style.counterReset

823Chapter 26 ✦ Style Sheet and Style Objects

Also used to direct the browser to display an element as inline or block-level element. Some
special-purpose values are associated with specific element types (for example, lists, table
cells, and so on).
Value: Constant block | compact | inline | inline-table | list-item | none |
run-in | table | table-caption | table-cell | table-column-group | table-
footer-group | table-header-group | table-row | table-row-group
Example: elementRef.style.display = “none”;// removes element from page

filter
Compatibility: WinIE4+, MacIE-, NN-, Moz-, Safari-
Controls: Rendering effects on static content and on transitions between hiding and showing
elements. Microsoft made a massive overhaul of the filter stylesheet syntax in WinIE5.5
(using the DXImageTransform ActiveX control). Scripting transitions require several steps
to load the transition and actions before playing the transition. Use style.filter to read
or write the entire filter specification string; use the elem.styles[i] object to access
individual filter properties. See the discussion of the filter object later in this chapter.
Value: Filter specification as string.
Example: var filterSpec = elementRef.style.filter = “alpha(opacity=50)
flipH()”;

layoutGrid
Compatibility: WinIE5+, MacIE-, NN-, Moz-, Safari-
Controls: Page grid properties (primarily for Asian-language pages).
Value: Combination values: layoutGridMode || layoutGridType || layoutGridLine ||
layoutGridChar. See individual properties for their value formats.
Example: elementRef.style.layoutGrid = “2em fixed”;

layoutGridChar
Compatibility: WinIE5+, MacIE-, NN-, Moz-, Safari-
Controls: Size of the character grid (Asian languages).
Value: Length; Percentage; Constant none | auto
Example: elementRef.style.layoutGridChar = “2em”;

layoutGridLine
Compatibility: WinIE5+, MacIE-, NN-, Moz-, Safari-
Controls: Line height of the grid (Asian languages).
Value: Value: Length; Percentage; Constant none | auto
Example: elementRef.style.layoutGridLine = “110%”;

layoutGridMode
Compatibility: WinIE5+, MacIE-, NN-, Moz-, Safari-
Controls: One- or two-dimensional grid (Asian languages).
Value: Constant both | none | line | char
Example: elementRef.style.layoutGridMode = “both”;

elementRef.style.layoutGridMode

824 Part III ✦ Document Objects Reference

layoutGridType
Compatibility: WinIE5+, MacIE-, NN-, Moz-, Safari-
Controls: Type of grid for text content (Asian languages).
Value: Constant loose | strict | fixed
Example: elementRef.style.layoutGridType = “strict”;

markerOffset
Compatibility: WinIE-, MacIE-, NN6+, Moz1+, Safari-
Controls: Distance between the edges of a marker box (content whose display is of a marker
type) and a block-level element’s box. Note: The CSS property is not implemented in MacIE5
or NN6/7, but the property is listed as valid for a style object.
Value: Length; Constant auto
Example: elementRef.style.markerOffset = “2em”;

marks
Compatibility: WinIE-, MacIE5, NN6+, Moz1+, Safari-
Controls: Rendering of crop marks and the like on the printed page. Note: The CSS property
is not implemented in MacIE5 or NN6/7, but the property is listed as valid for a style object.
Value: Constant crop || cross | none
Example: elementRef.style.marks = “crop”;

maxHeight
maxWidth
minHeight
minWidth

Compatibility: WinIE (see text), MacIE-, NN6+, Moz1+, Safari-
Controls: Maximum or minimum height or width of an element. IE6 supports minHeight only.
Value: Length; Percentage; Constant (for max properties only) none
Example: elementRef.style.maxWidth = “300px”;

overflow
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+
Controls: The rendering of a block-level element’s content when its native rectangle exceeds
that of its next outermost rectangular space. A hidden overflow clips the block-level content;
a scrolled overflow forces the outermost rectangle to display scroll bars so that users can
scroll around the block-level element’s content; a visible overflow causes the block-level
element to extend beyond the outermost container’s rectangle (indeed, “overflowing” the
container).
Value: Constant auto | hidden | scroll | visible
Example: elementRef.style.overflow = “scroll”;

elementRef.style.layoutGridType

825Chapter 26 ✦ Style Sheet and Style Objects

overflowX
overflowY

Compatibility: WinIE5+, MacIE-, NN-, Moz-, Safari-
Controls: The rendering of a block-level element’s content when its native rectangle exceeds
the width (overflowX) or height (overflowY) of its next outermost rectangular space.
A hidden overflow clips the block-level content; a scrolled overflow forces the outermost
rectangle to display scroll bars so that users can scroll around the block-level element’s
content; a visible overflow causes the block-level element to extend beyond the outermost
container’s rectangle (indeed, “overflowing” the container).
Value: Constant auto | hidden | scroll | visible
Example: elementRef.style.overflowX = “scroll”;

styleFloat
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-
Controls: Horizontal alignment of an element that allows other content to wrap around the
element (usually text wrapping around an image). Corresponds to the CSS float style
attribute. See also the cssFloat property, above. Floating (non-positioned) elements follow
a long sequence of rules for their behavior, detailed at http://www.w3.org/TR/REC-CSS2/
visuren.html#propdef-float.
Value: Constant left | right | none
Example: elementRef.style.styleFloat = “right”;

verticalAlign
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari-
Controls: How inline and table cell content aligns vertically with surrounding content. Not all
constant values are supported by all browsers.
Value: Constant baseline | bottom | middle | sub | super | text-bottom | text-top
| top; Length; Percentage.
Example: elementRef.style.verticalAlign = “baseline”;

visibility
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+
Controls: Whether an element is displayed on the page. The element’s space is preserved as
empty space when the element is hidden. To cinch up surrounding content, see the display
property. This property is used frequently for hiding and showing positioned element under
script control.
Value: Constant collapse | hidden | visible
Example: elementRef.style.visibility = “hidden”;

elementRef.style.visibility

826 Part III ✦ Document Objects Reference

width
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+
Controls: Horizontal dimension of a block-level element. Earlier browsers exhibit unexpected
behavior when nesting elements that have their width style properties set.
Value: Length; Percentage; Constant auto
Example: elementRef.style.width = “200px”;

zoom
Compatibility: WinIE5.5+, MacIE-, NN-, Moz-, Safari-
Controls: Magnification factor of a rendered element.
Value: Constant normal; Percentage (where 100% is normal); floating-point number (scale
multiplier, where 1.0 is normal)
Example: elementRef.style.zoom = “.9”;

Positioning properties
(See Chapter 39 on the CD-ROM for coding examples of positioned elements and their style
properties.)

bottom
right

Compatibility: WinIE5+, MacIE5, NN6+, Moz1+, Safari1+
Controls: The offset measure of a positioned element from its containing rectangle’s bottom
and right edges, respectively. In practice, you should adjust the size of a positioned element
via the style’s height and width properties.
Value: Length; Percentage; Constant auto
Example: elementRef.style.bottom = “20px”;

left
top

Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+
Controls: The offset measure of a positioned element from its containing rectangle’s left and
top edges, respectively. In practice, use these properties to position an element under script
control. To position an absolute-positioned element atop an inline element, calculate the
position of the inline element via the offsetTop and offsetLeft properties with some
browser-specific adjustments, as shown in Chapter 39 on the CD-ROM.
Value: Length; Percentage; Constant auto
Example: elementRef.style.top = “250px”;

height
width

Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+
Controls: Height and width of a block-level element’s box. Used most commonly to adjust
the dimensions of a positioned element (Chapter 39 on the CD-ROM).
Value: Length; Percentage; Constant auto
Example: elementRef.style.height = “300px”;

elementRef.style.width

827Chapter 26 ✦ Style Sheet and Style Objects

pixelBottom
pixelHeight
pixelLeft
pixelRight
pixelTop
pixelWidth

Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari1+
Controls: Integer pixel values for (primarily positioned) elements. Because the non-pixel
versions of these properties return strings that also contain the unit measure (for example,
30px), these properties let you work exclusively in integers for pixel units. The same can be
done cross-platform by using parseInt() on the non-pixel versions of these properties.
The pixelBottom and pixelRight properties are not in MacIE4.
Value: Integer
Example: elementRef.style.pixelTop = elementRef.style.pixelTop + 20;

posBottom
posHeight
posLeft
posRight
posTop
posWidth

Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-
Controls: Numeric values for (primarily positioned) elements in whatever unit was specified
by the corresponding style attribute. Because the non-pos versions of these properties
return strings that also contain the unit measure (for example, 1.2em), these properties let
you work exclusively in numbers in the same units as the style was originally defined. The
same can be done cross-platform by using parseFloat() on the non-pixel versions of these
properties.
Value: Integer
Example: elementRef.style.posTop = elementRef.style.posTop + 0.5;

position
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+
Controls: The type of positioning to be applied to the element. An element that is not explicitly
positioned is said to be static. A relative-positioned element appears in its normal page flow
location but can be explicitly positioned relative to that location. An absolute-positioned
element must have its top and left style attributes set to give the element a set of coordi-
nates for its location. MacIE5 and NN6+/Moz/Safari also allow for a fixed positioned element,
which remains at its designated position in the browser window, even if the page scrolls (for
example, for a watermark effect). You cannot use scripts to change between positioned and
non-positioned style settings. See Chapter 39 on the CD-ROM for more information on posi-
tioned elements.
Value: Constant absolute | fixed | relative | static
Example: elementRef.style.position = “absolute”;

elementRef.style.position

828 Part III ✦ Document Objects Reference

zIndex
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+
Controls: Front-to-back layering of positioned elements. Multiple items with the same zIndex
value are layered in source code order (earliest item at the bottom). The higher the value,
the closer to the user’s eye the element is.
Value: Integer number; Constant auto
Example: elementRef.style.zIndex = “3”;

Background properties

background
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+
Controls: Up to five background style properties for an element.
Value: Combination values: backgroundAttachment || backgroundColor || background
Image || backgroundPosition || backgroundRepeat
Example: elementRef.style.background = “scroll url(bricks.jpg) repeat-x”;

backgroundAttachment
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari-
Controls: Whether the background image remains fixed or scrolls with the content. Default is
scroll.
Value: Constant fixed | scroll
Example: elementRef.style.backgroundAttachment = “fixed”;

backgroundColor
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+
Controls: Solid, opaque color for the background, or completely transparent. If you assign a
background image, the color is layered behind the image so that any transparent spots of
the image show the background color.
Value: Color value; Constant transparent
Example: elementRef.style.backgroundColor = “salmon”;

backgroundImage
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+
Controls: The URL (if any) of an image to be used for the background for the element.
Value: URL value; Constant none
Example: elementRef.style.backgroundImage = “url(bricks.jpg)”;

backgroundPosition
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+
Controls: The left-top location of the background image. Any offset from the left-top corner
(default value “0% 0%”) allows background color to show through along left and top edges of
the element.
Value: Length values; Percentages; Constant left | center | right || top | center |
bottom. While single values are accepted, their behavior may not be as expected. Providing
space-delimited pairs of values is more reliable.
Example: elementRef.style.backgroundPosition = “left top”;

elementRef.style.zIndex

829Chapter 26 ✦ Style Sheet and Style Objects

backgroundPositionX
backgroundPositionY

Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-
Controls: The left (backgroundPositionX) and top (backgroundPositionY) locations
of the background image. Any offset from the left-top corner (default value “0%”) allows
background color to show through along left and top edges of the element.
Value: Length value; Percentage; Constant left | center | right (for background
PositionX); Constant top | center | bottom (for backgroundPositionY).
Example: elementRef.style.backgroundPositionX = “5px”;

backgroundRepeat
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+
Controls: Image repetition characteristics of a background image. You can force the image to
repeat along a single axis, if you want.
Value: Constant repeat | repeat-x | repeat-y | no-repeat
Example: elementRef.style.backgroundRepeat = “repeat-y”;

Border and edge properties

border
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+
Controls: Up to three border characteristics (color, style, and width) for all four edges of an
element.
Value: Combination values borderColor || borderStyle || borderWidth
Example: elementRef.style.border = “green groove 2px”;

borderBottom
borderLeft
borderRight
borderTop

Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+
Controls: Up to three border characteristics (color, style, and width) for a single edge of an
element.
Value: Combination values

(for borderBottom) borderBottomColor || borderBottomStyle || border
BottomWidth
(for borderLeft) borderLeftColor || borderLeftStyle || borderLeftWidth
(for borderRight) borderRightColor || borderRightStyle || borderRight
Width
(for borderTop) borderTopColor || borderTopStyle || borderTopWidth

Example: elementRef.style.borderLeft = “#3300ff solid 2px”;

elementRef.style.borderBottom

830 Part III ✦ Document Objects Reference

borderBottomColor
borderLeftColor
borderRightColor
borderTopColor

Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+
Controls: Color for a single border edge of an element.
Value: Color values; Constant transparent
Example: elementRef.style.borderTopColor = “rgb(30%, 50%, 0%)”;

borderBottomStyle
borderLeftStyle
borderRightStyle
borderTopStyle

Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+
Controls: Rendered style for a border edge of an element.
Value:Constant none | hidden | dotted | dashed | solid | double | groove | ridge |
inset | outset. WinIE versions prior to IE5.5 do not respond to the dotted or dashed
types; MacIE does not respond to the hidden type.
Example: elementRef.style.borderRightStyle = “double”;

borderBottomWidth
borderLeftWidth
borderRightWidth
borderTopWidth

Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+
Controls: Thickness of a border edge of an element.
Value:Length value; Constant thin | medium | thick (precise measure is at browser’s
discretion).
Example: elementRef.style.borderBottomWidth = “5px”;

borderColor
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+
Controls: Rendered color for one to four sides of an element.
Value: Color values for one to four rectangle sides.
Example: elementRef.style.borderColor = “green black”;

borderStyle
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+
Controls: Rendered style for one to four sides of an element.
Value: One to four rectangle side constants none | hidden | dotted | dashed | solid |
double | groove | ridge | inset | outset. WinIE versions prior to IE5.5 do not respond
to the dotted or dashed types; MacIE does not respond to the hidden type.
Example: elementRef.style.borderStyle = “ridge”;

elementRef.style.borderBottomColor

831Chapter 26 ✦ Style Sheet and Style Objects

borderWidth
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+
Controls: Thickness of border for one to four sides of an element.
Value: One to four rectangle side length value or constants thin | medium | thick (precise
dimension is at browser’s discretion).
Example: elementRef.style.borderWidth = “5px 4px 5px 3px”;

margin
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+
Controls: Thickness of transparent margin space outside the element’s borders for one to
four edges.
Value: One to four rectangle side length values.
Example: elementRef.style.margin = “10px 5px”;

marginBottom
marginLeft
marginRight
marginTop

Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+
Controls: Thickness of transparent margin space outside the element’s borders for a single
border edge.
Value: Length value
Example: elementRef.style.marginBottom = “50px”;

mozBorderRadius
mozBorderRadiusBottomLeft
mozBorderRadiusBottomRight
mozBorderRadiusTopLeft
mozBorderRadiusTopRight

Compatibility: WinIE-, MacIE-, NN7+, Moz1+, Safari
Controls: Radius of the border around the element. You can specify each radius corner as a
series of values in the mozBorderRadius style (one value for all four corners; two values
for top-left/bottom-right and top-right/bottom-left; three values for top-left, top-right/bottom-
left, and bottom-right; four values for top-left, top-right, bottom-right, bottom-left), or set
each corner radius individually with its own property.
Value: Radius length value
Example: elementRef.style.mozBorderRadius = “20px 10px 20px 10px”;

mozOpacity
Compatibility: WinIE-, MacIE-, NN7+, Moz1+, Safari
Controls: The level of opacity (transparency) of the element as a percentage; the lower the
value, the more transparent the element becomes (0% or 0.0 is completely transparent, while
100% or 1.0 is completely opaque).
Value: Percentage, or numeric value between 0.0 and 1.0.
Example: elementRef.style.mozOpacity = “75%”;

elementRef.style.mozOpacity

832 Part III ✦ Document Objects Reference

outline
Compatibility: WinIE-, MacIE5, NN6+, Moz1+, Safari1+
Controls: Up to three characteristics of an outline surrounding an element (similar to a
border, but not shifting the location of internal content). This style is not fully supported in
the above browsers, even though the properties are reflected in the style object. It does,
however, work well in Safari 1.0.
Value: Combination values: outlineColor || outlineStyle || outlineWidth
Example: elementRef.style.outline = “red groove 2px”;

outlineColor
Compatibility: WinIE-, MacIE5, NN6+, Moz1+, Safari1+
Controls: Color of all four edges of an outline. This style is not fully supported in the above
browsers, even though the properties are reflected in the style object. It does, however,
work well in Safari 1.0.
Value: Color values; Constant invert
Example: elementRef.style.outlineColor = “cornflowerblue”;

outlineStyle
Compatibility: WinIE-, MacIE5, NN6+, Moz1+, Safari1+
Controls: Rendered style for all four sides of an element outline. This style is not fully
supported in the above browsers, even though the properties are reflected in the style
object. It does, however, work well in Safari 1.0.
Value: Constant none | hidden | dotted | dashed | solid | double | groove | ridge |
inset | outset
Example: elementRef.style.outlineStyle = “ridge”;

outlineWidth
Compatibility: WinIE-, MacIE5, NN6+, Moz1+, Safari1+
Controls: Thickness of all four sides of an element outline. This style is not fully supported
in the above browsers, even though the properties are reflected in the style object. It does,
however, work well in Safari 1.0.
Value: Length value or constant thin | medium | thick (precise dimension is at browser’s
discretion)
Example: elementRef.style.outlineWidth = “4px”;

padding
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+
Controls: Thickness of space between an element’s content and its borders for one to four
edges.
Value: One to four rectangle side length values.
Example: elementRef.style.padding = “5px”;

elementRef.style.outline

833Chapter 26 ✦ Style Sheet and Style Objects

paddingBottom
paddingLeft
paddingRight
paddingTop

Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+
Controls: Thickness of space between an element’s content and its borders for a single edge.
Value: Length value
Example: elementRef.style.paddingBottom = “20px”;

List properties

listStyle
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+
Controls: Up to three characteristics of a list (ol or ul) presentation. Also applies to dd, dt,
and li elements.
Value: Combination values listStyleImage || listStylePosition || listStyleType
Example: elementRef.style.listStyle = “none inside lower-alpha”;

listStyleImage
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+
Controls: URL of the image to be used as a marker for a list item.
Value: URL value; Constant none
Example: elementRef.style.listStyleImage = “url(custombullet.jpg)”;

listStylePosition
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+
Controls: Whether the marker should be formatted inside the wrapped text of its content or
dangle outside the wrapped text (default).
Value: Constant inside | outside
Example: elementRef.style.listStylePosition = “inside”;

listStyleType
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+
Controls: Which of the standard marker sets should be used for items in the list. A change to
this property for a single li element causes succeeding items to be in the same style.
Value: For ul elements, constant circle | disc | square
For ol elements, constant decimal | decimal-leading-zero | lower-alpha | lower-
greek | lower-latin | lower-roman | upper-alpha | upper-greek | upper-latin |
upper-roman, and non-Roman formats when supported by the operating system (as in
Mozilla for MacOS X): armenian | georgian | hebrew | cjk-ideographic | hiragana |
hiragana-iroha | katakana | katakana-iroha.
Example: elementRef.style.listStyleType = “upper-roman”;

elementRef.style.listStyleType

834 Part III ✦ Document Objects Reference

Scroll bar properties
scrollbar3dLightColor
scrollbarArrowColor
scrollbarBaseColor
scrollbarDarkShadowColor
scrollbarFaceColor
scrollbarHighlightColor
scrollbarShadowColor
scrollbarTrackColor

Compatibility: WinIE5.5, Mac-, NN-, Moz-, Safari-
Controls: Colors of individual components of scroll bars when they are displayed for applet,
body, div, embed, object, or textarea elements. To experiment with how different colors
can affect the individual components, visit http://msdn.microsoft.com/workshop/
samples/author/dhtml/refs/scrollbarColor.htm.
Value: Color values; Constant none
Example: elementRef.style.scrollbarTrackColor = “hotpink”;

Table properties
borderCollapse

Compatibility: WinIE5+, MacIE5, NN6+, Moz1+, Safari-
Controls: Whether a table element adheres to the CSS2 separated borders model or the
collapsed borders model. Style is not fully supported in MacIE5.
Value: Constant collapse | separate
Example: elementRef.style.borderCollapse = “separate”;

borderSpacing
Compatibility: WinIE5+, MacIE5, NN6+, Moz1+, Safari1+
Controls: For a table following the separated borders model, the thickness of the spacing
between cell rectangles (akin to the cellspacing attribute of table elements). Style is not
fully supported in MacIE5.
Value: One length value (for horizontal and vertical spacing) or comma-delimited list of two
length values (the first for horizontal; the second for vertical).
Example: elementRef.style.borderSpacing = “10px”;

captionSide
Compatibility: WinIE-, MacIE5, NN6+, Moz1+, Safari1+
Controls: Position of the caption element inside a table element. Style is not implemented
in MacIE5 and is only partially implemented in Safari.
Value: Constant top | right | bottom | left
Example: elementRef.style.captionSide = “bottom”;

elementRef.style.scrollbar3dLightColor

835Chapter 26 ✦ Style Sheet and Style Objects

emptyCells
Compatibility: WinIE-, MacIE5, NN6+, Moz1+, Safari-
Controls: Rendering of cells and their borders when the cells have no content. Default
behavior is to not render borders around empty cells. Style is not implemented in MacIE5.
Value: Constant show | hide
Example: elementRef.style.emptyCells = “show”;

tableLayout
Compatibility: WinIE5+, MacIE5, NN6+, Moz1+, Safari1+
Controls: Whether table is rendered progressively based on fixed width settings of the first
row of cells or is rendered after the widths of all row content can be determined. Modifying
this property after a table loads has no effect on the table.
Value: Constant auto | fixed
Example: elementRef.style.tableLayout = “auto”;

Page and printing properties
orphans
widows

Compatibility: WinIE-, MacIE5, NN6+, Moz1+, Safari-
Controls: The minimum number of lines of a paragraph to be displayed at the bottom of a
page (orphans) or top of a page (widows) when a page break occurs.
Value: Integer
Example: elementRef.style.orphans = “4”;

page
Compatibility: WinIE-, MacIE5, NN6+, Moz1+, Safari-
Controls: The page (defined in an @page rule) with which the current element should be
associated for printing.
Value: Identifier assigned to an existing @page rule
Example: elementRef.style.page = “landscape”;

pageBreakAfter
pageBreakBefore

Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari-
Controls: Whether a printed page break should be before or after the current element and
the page break type.
Value: Constant auto | always | avoid | left | right
Example: elementRef.style.pageBreakBefore = “always”;

pageBreakInside
Compatibility: WinIE-, MacIE5, NN6+, Moz1+, Safari-
Controls: Whether a printed page break is allowed inside an element.
Value: Constant auto | avoid
Example: elementRef.style.pageBreakInside = “avoid”;

elementRef.style.pageBreakInside

836 Part III ✦ Document Objects Reference

size
Compatibility: WinIE-, MacIE-, NN6+, Moz1+, Safari-
Controls: The size or orientation of the page box (linked to the style rule via the page
property) used to determine printed pages.
Value: One (same value for width and height) or two space-delimited (width and height)
length values; constant auto | portrait | landscape
Example: elementRef.style.size = “portrait”;

Miscellaneous properties
accelerator

Compatibility: WinIE5+, MacIE-, NN-, Moz-, Safari-
Controls: Whether an accelerator key is defined for an element.
Value: Boolean
Example: elementRef.style.accelerator = “true”;

behavior
Compatibility: WinIE5+, MacIE-, NN-, Moz-, Safari-
Controls: The external behavior to be applied to the current element.
Value: Space-delimited list of URL values. URLs can be a file location, an object element ID,
or one of the built-in (default) behaviors.
Example: elementRef.style.behavior = “url(#default#anchorClick)”;

cssText
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari-
Controls: Actual CSS rule text (read-only). This property exists by virtue of the browser’s
object model and is not part of the CSS specification. There is no corresponding CSS attribute.
Value: String
Example: var cssRuleText = elementRef.style.cssText;

imeMode
Compatibility: WinIE5+, MacIE-, NN-, Moz-, Safari-
Controls: Whether text is entered into a text input or textarea element through the Input
Method Editor (for languages, such as Chinese, Japanese, or Korean).
Value: Constant auto | active | inactive | disabled
Example: elementRef.style.imeMode = “active”;

Aural properties
Although these properties are defined in the CSS2 specification and placeholders exist for
them in Mozilla-based browsers the styles are not implemented. The script equivalent prop-
erties are listed here for the sake of completeness only.

elementRef.style.size

837Chapter 26 ✦ Style Sheet and Style Objects

azimuth
cue
cueAfter
cueBefore
elevation
pause
pauseAfter
pauseBefore
pitch
pitchRange
playDuring
richness
speak
speakHeader
speakNumeral
speakPunctuation
speechRate
stress
voiceFamily
volume

Compatibility: WinIE-, MacIE-, NN6+, Moz1+, Safari-
Controls: A variety of styles primarily for browsers that support speech synthesis output.
Value: Consult http://www.w3.org/TR/REC-CSS2/aural.html for details on aural
stylesheets.

filter Object

Properties Methods Event Handlers

See text

Syntax
Accessing filter object properties and methods:

(IE4+) document.all.objectID.filters[i].property | method([parameters])
(IE5.5+) document.all.objectID.filters[filterName].property |
method([parameters])

Compatibility: WinIE4+, MacIE-, NN-, Moz-, Safari-

elementRef.style.filterObject

838 Part III ✦ Document Objects Reference

About this object
Earlier in this chapter, the style.filter property was shown to allow reading and writing of
the string value that is assigned to an element’s style.filter property. Filters are available
in WinIE only, even though MacIE5 returns the style.filter property value. The purpose of
this section is to teach you not how to use filters but rather, how to script them.

Multiple filters are merely part of the space-delimited list of filters. Some filter types have addi-
tional specifications. For example, the glow() filter has three properties that more clearly
define how the element should be rendered with a glow effect. The stylesheet rule for an ele-
ment whose ID is glower looks like the following:

#glower {filter:glow(color=yellow, strength=5, enabled=true)}

Accessing the currentStyle.filter property for that element yields the string value:

glow(color=yellow, strength=5, enabled=true)

Attempting to modify a single subproperty of the glow() filter by way of string parsing would
be cumbersome and hazardous at best. For example, imagine trying to increment the glow fil-
ter’s strength property by 5.

Reading and writing subproperties
A cleaner way to work with individual properties of a filter is to access the filter as an object
belonging to the element affected by the filter. Each type of filter object has as its properties
the individual sub-properties that you set in the stylesheet. Continuing with the glow() filter
example, you could access just the color property of the filter as follows:

var currColor = document.all.glower.filters[“glow”].color;

To modify the color, assign a new value to the filter object’s property:

document.all.glower.filters[“glow”].color = “green”;

To increment a numeric value, such as increasing the glow() filter’s strength property by 5,
use a construction such as the following (long-winded though it may be):

document.all.glower.filters[“glow”].strength =
document.all.glower.filters[“glow”].strength + 5;

Table 26-1 lists the filter object names that work all the way back to IE4 and the properties
associated with each filter type.

Table 26-1: IE4-Compatible Static Filter Types

Filter Name Description and Properties

alpha() Transparency level

Properties: opacity (0 to 100)

finishopacity (0 to 100)

style (gradient shape 0 to 3)

startX (coordinate integer)

startY (coordinate integer)

finishX (coordinate integer)

finishY (coordinate integer)

elementRef.style.filterObject

839Chapter 26 ✦ Style Sheet and Style Objects

Filter Name Description and Properties

blur() Simulating blurred motion

Properties: add (1 or 0)

direction (0, 45, 90, 135, 180, 225, 270, 315)

strength (pixel count)

chroma() Color transparency

Properties: color (color value)

dropShadow() Shadow effect

Properties: color (color value)

offx (horizontal offset pixels)

offy (vertical offset pixels)

positive (1 or 0)

flipH() Horizontally mirrored image

Properties: None

flipV() Vertically mirrored image

Properties: None

glow() Outer edge radiance

Properties: color (color value)

strength (intensity 1 to 255)

gray() Eliminate color

Properties: None

invert() Opposite hue, saturation, brightness levels

Properties: None

light() Add light source (controlled by methods)

Properties: None

mask() Overlay transparent mask

Properties: color (color value)

shadow() Render as silhouette

Properties: color (color value)

direction (0, 45, 90, 135, 180, 225, 270, 315)

wave() Add sine-wave distortion

Properties: add (1 or 0)

freq (integer number of waves)

light (strength 0 to 100)

phase (percentage offset 0 to 100)

strength (intensity 0 to 255)

xRay() Render edges only

Properties: None

In addition to the static filter types, which are applied to content and sit there unless modified
by script, the IE4+ filter object also provides types for blends and reveals for transitions
between visible and invisible elements. Scripting transitions to act when a script hides or
shows an element requires a few lines of code, including calls to some of the filter object’s
methods. First, Table 26-2 shows the IE4+ syntax for transition filters.

elementRef.style.filterObject

840 Part III ✦ Document Objects Reference

Table 26-2: IE4+ Transition Filters

FilterName Description and Properties

blendTrans() Fades out old element, fades in new element

Properties: duration (floating-point number of seconds)

Methods: apply() (freezes current display)

play() (plays the transition)

stop() (stops transition mid-stream)

revealTrans() Reveals element to be shown through an effect

Properties: duration (floating-point number of seconds)

transition (code number for effect)

0 Box in

1 Box out

2 Circle in

3 Circle out

4 Wipe up

5 Wipe down

6 Wipe right

7 Wipe left

8 Vertical blinds

9 Horizontal blinds

10 Checkerboard across

11 Checkerboard down

12 Random dissolve

13 Split vertical in

14 Split vertical out

15 Split horizontal in

16 Split horizontal out

17 Strips left down

18 Strips left up

19 Strips right down

20 Strips right up

21 Random bars horizontally

22 Random bars vertically

23 Random effect

Methods: apply() (freezes current display)

play() (plays the transition)

stop() (stops transition mid-stream)

To make a transition work under script control, a filter must be applied to the element that
you want the transition to work on. That can be done by script or by assigning a filter style to
the element. As for the scripting, you begin by invoking the apply() method of the desired
filter object. Next, script the change, such as assigning a new URL to the src property of
an img element. While you do this, the apply() method freezes the image until you invoke

elementRef.style.filterObject

841Chapter 26 ✦ Style Sheet and Style Objects

the play() method on the filter. Listing 26-1 effects a checkerboard transition between two
images after you click the image.

Listing 26-1: A Reveal Transition Between Images

<html>
<head>

<title>IE4+ Transition</title>
<style type=”text/css”>
img {filter:revealTrans(transition=10)}
</style>
<script type=”text/javascript”>
function doReveal() {

document.all.myIMG.filters[“revealTrans”].apply();
if (document.all.myIMG.src.indexOf(“desk1”) != -1) {

document.all.myIMG.src = “desk3.gif”;
} else {

document.all.myIMG.src = “desk1.gif”;
}
document.all.myIMG.filters[“revealTrans”].play();

}
</script>

</head>
<body>

<h1>IE4+ Transition</h1>
<hr />
<p>Click on the image to cause a reveal transition.</p>
<img alt=”image” id=”myIMG” src=”desk1.gif” height=”90” width=”120”
onclick=”doReveal()” />

</body>
</html>

Building on the example in Listing 26-1, the next example in Listing 26-2 demonstrates how a
script can also modify a filter object’s property, including a transition filter. Before the tran-
sition filter has its apply() method invoked, the script sets the transition type based on a
user choice in a select list.

Listing 26-2: Choosing Reveal Transitions Between Images

<html>
<head>

<title>IE4+ Transition and Choices</title>
<style type=”text/css”>
img {filter:revealTrans(transition=10)}
</style>
<script type=”text/javascript”>
function doReveal() {

document.all.myIMG.filters[“revealTrans”].transition =
document.forms[0].transChoice.value;

document.all.myIMG.filters[“revealTrans”].apply();
if (document.all.myIMG.src.indexOf(“desk1”) != -1) {

document.all.myIMG.src = “desk3.gif”;
} else {

Continued

elementRef.style.filterObject

842 Part III ✦ Document Objects Reference

Listing 26-2 (continued)

document.all.myIMG.src = “desk1.gif”;
}
document.all.myIMG.filters[“revealTrans”].play();

}
</script>

</head>
<body>

<h1>IE4+ Transition and Choices</h1>
<hr />
<form>

<p>Choose the desired transition type: <select name=”transChoice”>
<option value=”0”>Box in</option>
<option value=”1”>Box out</option>
<option value=”2”>Circle in</option>
<option value=”3”>Circle out</option>
<option value=”4”>Wipe up</option>
<option value=”5”>Wipe down</option>
<option value=”6”>Wipe right</option>
<option value=”7”>Wipe left</option>
<option value=”8”>Vertical blinds</option>
<option value=”9”>Horizontal blinds</option>
<option value=”10”>Checkerboard across</option>
<option value=”11”>Checkerboard down</option>
<option value=”12”>Random dissolve</option>
<option value=”13”>Split vertical in</option>
<option value=”14”>Split vertical out</option>
<option value=”15”>Split horizontal in</option>
<option value=”16”>Split horizontal out</option>
<option value=”17”>Strips left down</option>
<option value=”18”>Strips left up</option>
<option value=”19”>Strips right down</option>
<option value=”20”>Strips right up</option>
<option value=”21”>Random bars horizontally</option>
<option value=”22”>Random bars vertically</option>
<option value=”23”>Random effect</option>

</select></p>
</form>
<p>Click on the image to cause a reveal transition.</p>
<img alt=”image” id=”myIMG” src=”desk1.gif” height=”90” width=”120”
onclick=”doReveal()” />

</body>
</html>

WinIE5.5+ filter syntax changes
While WinIE5.5+ still supports the original IE4 way of controlling filters, the browser also
implements a new filter component, which Microsoft strongly encourages authors to use (as
evidenced by the difficulty in finding documentation for the IE4 syntax at its developer Web
site). In the process of implementing this new filter component, the names of many filters
change, as do their individual properties. Moreover, the way the filter component is invoked
in the stylesheet is also quite different from the original component.

elementRef.style.filterObject

843Chapter 26 ✦ Style Sheet and Style Objects

The stylesheet syntax requires a reference to the new component as well as the filter name.
Here is the old way:

#glower {filter:glow(color=yellow, strength=5, enabled=true)}

And here is the new way:

#glower {filter:progid:DXImageTransform.Microsoft.Glow(color=yellow,
strength=5, enabled=true)}

Don’t overlook the extra progid: pointer in the reference. This program identifier becomes
part of the filter name that your scripts use to reference the filter:

document.getElementById(“glower”).filters[
“DXImageTransform.Microsoft.Glow”].color = “green”;

While some of the filter names and properties stay the same (except for the huge prefix), sev-
eral older properties are subsumed by new filters whose properties help identify the specific
effect. The former revealTrans() filter is now divided among several new filters dedicated
to transition effects. Table 26-3 shows the IE5.5+ syntax.

Using the new syntax in IE5.5+ can cause frequent crashes of the browser (at least early
released versions), especially transition filters. If you implement the new syntax, be sure to
torture-test your pages extensively. Ideally, you should encourage users of these pages to
run IE6+.

Table 26-3: IE5.5 DXImageTransform.Microsoft Filter Names

Filter Name Description and Properties

Alpha() Transparency level

Properties: opacity (0 to 100)

finishopacity (0 to 100)

style (gradient shape 0 to 3)

startX (coordinate integer)

startY (coordinate integer)

finishX (coordinate integer)

finishY (coordinate integer)

Barn() Barn-door style transition

Properties: duration (floating-point number of seconds)

motion (in or out)

orientation (horizontal or vertical)

percent (0 to 100)

status 0 (stopped), 1 (applied), 2 (playing)

Methods: apply() (freezes current display)

play() (plays the transition)

stop() (stops transition mid-stream)

Continued

Note

elementRef.style.filterObject

844 Part III ✦ Document Objects Reference

Table 26-3 (continued)

Filter Name Description and Properties

BasicImage() Element rotation, flip, color effects, and opacity

Properties: grayScale (1 or 0)

invert (1 or 0)

mask (1 or 0)

maskColor (color value)

mirror (1 or 0)

opacity (0.0 to 1.0)

rotation 0 (no rotation), 1 (90°), 2 (180°),
3 (270°)

xRay (1 or 0)

Blinds() Action transition with Venetian blind effect

Properties: direction (up, down, right, left)

squaresX (integer column count)

squaresY (integer row count)

status 0 (stopped), 1 (applied), 2 (playing)

Methods: apply() (freezes current display)

play() (plays the transition)

stop() (stops transition mid-stream)

Checkerboard() Action transition with checkerboard effect

Properties: bands (1 to 100)

direction (up, down, right, left)

duration (floating-point number of seconds)

percent (0 to 100)

slideStyle (HIDE, PUSH, SWAP)

status 0 (stopped), 1 (applied), 2 (playing)

Methods: apply() (freezes current display)

play() (plays the transition)

stop() (stops transition mid-stream)

Chroma() Color transparency

Properties: color (color value)

DropShadow() Shadow effect

Properties: color (color value)

offx (horizontal offset pixels)

offy (vertical offset pixels)

positive (1 or 0)

Fade() Blend transition

Properties: duration (floating-point number of seconds)

overlap (0.0 to 1.0 seconds)

percent (0 to 100)

status 0 (stopped), 1 (applied), 2 (playing)

elementRef.style.filterObject

845Chapter 26 ✦ Style Sheet and Style Objects

Filter Name Description and Properties

Methods: apply() (freezes current display)

play() (plays the transition)

stop() (stops transition mid-stream)

Glow() Outer edge radiance

Properties: color (color value)

strength (intensity 1 to 255)

Iris() Action transition with zoom effect

Properties: duration (floating-point number of seconds)

irisStyle (CIRCLE, CROSS, DIAMOND, PLUS,
SQUARE, STAR)

motion (in or out)

percent (0 to 100)

status 0 (stopped), 1 (applied), 2 (playing)

Methods: apply() (freezes current display)

play() (plays the transition)

stop() (stops transition mid-stream)

Light() Add light source (controlled by methods)

Properties: None

Methods: addAmbient (red, green, blue, strength)
addCone (sourceLeft, sourceTop, sourceZAxis,
targetLeft, targetTop, red, green, blue,
strength, spreadAngle)
addPoint (sourceLeft, sourceTop, sourceZAxis,
red, green, blue, strength)
changeColor (lightID, red, green, blue,
absoluteColorFlag)
changeStrength (lightID, strength,
absoluteIntensityFlag)
clear()
moveLight (lightID, sourceLeft, sourceTop,
sourceZAxis, absoluteMovementFlag)

MaskFilter() Overlay transparent mask

Properties: color (color value)

MotionBlur() Simulating blurred motion

Properties: add (1 or 0)

direction (0, 45, 90, 135, 180, 225, 270, 315)

strength (pixel count)

RandomDissolve() Pixelated dissolve transition

Properties: duration (floating-point number of seconds)

percent (0 to 100)

status 0 (stopped), 1 (applied), 2 (playing)

Methods: apply() (freezes current display)

play() (plays the transition)

stop() (stops transition mid-stream)

Continued

elementRef.style.filterObject

846 Part III ✦ Document Objects Reference

Table 26-3 (continued)

Filter Name Description and Properties

RandomBars() Bar style transition

Properties: duration (floating-point number of seconds)

orientation (horizontal or vertical)

percent (0 to 100)

status 0 (stopped), 1 (applied), 2 (playing)

Methods: apply() (freezes current display)

play() (plays the transition)

stop() (stops transition mid-stream)

Shadow() Render as silhouette

Properties: color (color value)

direction (0, 45, 90, 135, 180, 225, 270, 315)

Stripes() Striped style transition

Properties: duration (floating-point number of seconds)

motion (in or out)

percent (0 to 100)

status 0 (stopped), 1 (applied), 2 (playing)

Methods: apply() (freezes current display)

play() (plays the transition)

stop() (stops transition mid-stream)

Wave() Add sine-wave distortion

Properties: add (1 or 0)

freq (integer number of waves)

light (strength 0 to 100)

phase (percentage offset 0 to 100)

strength (intensity 0 to 255)

xRay() Render edges only

Properties: None

For more details on deploying filters in IE for Windows, visit http://msdn.microsoft.com/
workshop/author/filter/filters.asp. Because most of the live examples require
WinIE5.5+, be sure to use that version for the best experience at that page.

✦ ✦ ✦

elementRef.style.filterObject

JavaScript Core
Language Reference

✦ ✦ ✦ ✦

In This Part

Chapter 27
The String Object

Chapter 28
The Math, Number,
and Boolean Objects

Chapter 29
The Date Object

Chapter 30
The Array Object

Chapter 31
Control Structures
and Exception Handling

Chapter 32
JavaScript Operators

Chapter 33
Functions and
Custom Objects

Chapter 34
Global Functions
and Statements

Chapter 35
Body Text Objects

✦ ✦ ✦ ✦

P A R T

IVIV

The String Object

Chapter 6’s tutorial introduced you to the concepts of values and
the types of values that JavaScript works with — features, such as

strings, numbers, and Boolean values. In this chapter, you look more
closely at the very important String data type, as well as its relation-
ship to the Number data type. Along the way, you encounter the many
ways in which JavaScript enables scripters to manipulate strings.

Much of the syntax that you see in this chapter is identical to that of
the Java programming language. Because the scope of JavaScript
activity is narrower than that of Java, you don’t have nearly as much
to learn for JavaScript as for Java.

String and Number Data Types
Although JavaScript is what is known as a “loosely typed” language,
you still need to be aware of several data types because of their
impact on the way you work with the information in those forms.
In this section, I focus on strings and two types of numbers.

Simple strings
A string consists of one or more standard text characters between
matching quote marks. JavaScript is forgiving in one regard: You can
use single or double quotes, as long as you match two single quotes
or two double quotes around a string. Another benefit to this scheme
becomes apparent when you try to include a quoted string inside a
string. For example, say that you’re assembling a line of HTML code
in a variable that you will eventually write to a new window com-
pletely controlled by JavaScript. The line of text that you want to
assign to a variable is the following:

<input type=”checkbox” name=”candy” />Chocolate

To assign this entire line of text to a variable, you have to surround the
line in quotes. But because quotes appear inside the string, JavaScript
(or any language) has problems deciphering where the string begins
or ends. By carefully placing the other kind of quote pairs, however,
you can make the assignment work. Here are two equally valid ways:

result = ‘<input type=”checkbox” name=”candy” />Chocolate’;
result = “<input type=’checkbox’ name=’candy’ />Chocolate”;

Notice that in both cases, the same unique pair of quotes surrounds
the entire string. Inside the string, two quoted strings appear that are
treated as such by JavaScript. I recommend that you settle on one
form or the other, and then use that form consistently throughout
your scripts.

Note

2727C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

How to parse and work
with text

Performing search-and-
replace operations

Scripted alternatives
to text formatting

✦ ✦ ✦ ✦

850 Part IV ✦ JavaScript Core Language Reference

Building long string variables
The act of joining strings together — concatenation — enables you to assemble long strings
out of several little pieces. This feature is very important for some of your scripting — for
example, when you need to build an HTML page’s specifications entirely within a variable
before writing the page to another frame with one document.write() statement.

One tactic that I use keeps the length of each statement in this building process short enough
so that it’s easily readable in your text editor. This method uses the add-by-value assignment
operator (+=) that appends the right-hand side of the equation to the left-hand side. Here is a
simple example, which begins by initializing a variable as an empty string:

var newDocument = “”;
newDocument += “<html><head><title>Life and Times</title></head>”;
newDocument += “<body><h1>My Life and Welcome to It</h1>”;
newDocument += “by Sidney Finortny<hr />”;

Starting with the second line, each statement adds more data to the string being stored in
newDocument. You can continue appending string data until the entire page’s specification is
contained in the newDocument variable.

Excessive use of the add-by-value operator involving large quantities of text can become
inefficient. If you are experiencing slow performance when accumulating large strings, try
pushing your string segments into items of an array (see Chapter 30). Then use the array’s
join() method to generate the resulting large string value.

Joining string literals and variables
In some cases, you need to create a string out of literal strings (characters with quote marks
around them) and string variable values. The methodology for concatenating these types of
strings is no different from that of multiple string literals. The plus-sign operator does the job.
Therefore, in the following example, a variable contains a name. That variable value is made a
part of a larger string whose other parts are string literals:

yourName = prompt(“Please enter your name:”,””);
var msg = “Good afternoon, “ + yourName + “.”;
alert(msg);

Some common problems that you may encounter while attempting this kind of concatenation
include the following:

✦ Accidentally omitting one of the quotes around a literal string

✦ Failing to insert blank spaces in the string literals to accommodate word spaces

✦ Forgetting to concatenate punctuation after a variable value

Also, don’t forget that what I show here as variable values can be any expression that evalu-
ates to a string, including property references and the results of some methods. For example

var msg = “The name of this document is “ + document.title + “.”;
alert(msg);

Special inline characters
The way string literals are created in JavaScript makes adding certain characters to strings
difficult. I’m talking primarily about adding quotes, carriage returns, apostrophes, and tab
characters to strings. Fortunately, JavaScript provides a mechanism for entering such

Note

851Chapter 27 ✦ The String Object

characters into string literals. A backslash symbol, followed by the character that you want
to appear as inline, makes that task happen. For the “invisible” characters, a special set of let-
ters following the backslash tells JavaScript what to do.

The most common backslash pairs are as follows:

✦ \” Double quote

✦ \’ Single quote (apostrophe)

✦ \\ Backslash

✦ \b Backspace

✦ \t Tab

✦ \n New line

✦ \r Carriage return

✦ \f Form feed

Use these “inline characters” (also known as “escaped characters,” but this terminology has
a different connotation for Internet strings) inside quoted string literals to make JavaScript
recognize them. When assembling a block of text that needs a new paragraph, insert the \n
character pair. Here are some examples of syntax using these special characters:

msg = “You\’re doing fine.”;
msg = “This is the first line.\nThis is the second line.”;
msg = document.title + “\n” + document.links.length + “ links present.”;

Technically speaking, a complete carriage return, as known from typewriting days, is both
a line feed (advance the line by one) and a carriage return (move the carriage all the way to
the left margin). Although JavaScript strings treat a line feed (\n new line) as a full carriage
return, you may have to construct \r\n breaks when assembling strings that go back to a cgi
script on a server. The format that you use all depends on the string-parsing capabilities of
the cgi program. (Also see the special requirements for the textarea object in Chapter 20.)

Confusing the strings assembled for display in textarea objects or alert boxes with strings
to be written as HTML is easy. For HTML strings, make sure that you use the standard HTML
tags for line-breaks (
) and paragraph breaks (<p>) rather than the inline return or line
feed symbols.

String Object

Properties Methods

constructor anchor()
length big()
prototype† blink()

bold()
charAt()
charCodeAt()
concat()

Continued

stringObject

852 Part IV ✦ JavaScript Core Language Reference

Properties Methods

fixed()
fontcolor()
fontsize()
fromCharCode()†
indexOf()
italics()
lastIndexOf()
link()
localeCompare()
match()
replace()
search()
slice()
small()
split()
strike()
sub()
substr()
substring()
sup()
toLocaleLowerCase()
toLocaleUpperCase()
toLowerCase()
toString()
toUpperCase()
valueOf()

†Member of the static String object

Syntax
Creating a string object:

var myString = new String(“characters”);

Creating a string value:

var myString = “characters”;

Accessing static String object properties and methods:

String.property | method([parameters])

Accessing string object properties and methods:

string.property | method([parameters])

Compatibility: WinIE3+, MacIE3+, NN2+, Moz1+, Safari1+

stringObject

853Chapter 27 ✦ The String Object

About this object
JavaScript draws a fine line between a string value and a string object. Both let you use the
same methods on their contents, so that by and large, you do not have to create a string
object (with the new String() constructor) every time you want to assign a string value to a
variable. A simple assignment operation (var myString = “fred”) is all you need to create
a string value that behaves on the surface very much like a full-fledged string object.

Where the difference comes into play is when you want to exploit the “object-ness” of a gen-
uine string object, which I explain further in the discussion of the string.prototype prop-
erty later in this chapter. You may also encounter the need to use a full-fledged string object
when passing string data to Java applets. If you find that your applet doesn’t receive a string
value as a Java String data type, then create a new string object via the JavaScript construc-
tor function before passing the value onto the applet.

With string data often comes the need to massage that text in scripts. In addition to concate-
nating strings, you at times need to extract segments of strings, delete parts of strings, and
replace one part of a string with some other text. Unlike many plain-language scripting lan-
guages, JavaScript is fairly low-level in its built-in facilities for string manipulation. This char-
acteristic means that unless you can take advantage of the regular expression powers of
NN4+/IE4+ or advanced array techniques, you must fashion your own string handling routines
out of very elemental powers built into JavaScript. Later in this chapter, I provide several
functions that you can use in your own scripts for common string handling in a manner fully
compatible with older browsers.

As you work with string values, visualize every string value as an object with properties and
methods like other JavaScript objects. The latest versions of JavaScript define a few proper-
ties and a slew of methods for any string value (and one extra property for the static String
object that is always present in the context of the browser window). The syntax is the same
for string methods as it is for any other object method:

stringObject.method()

What may seem odd at first is that the stringObject part of this reference can be any
expression that evaluates to a string, including string literals, variables containing strings,
methods or functions that return strings, or other object properties. Therefore, the following
examples of calling the toUpperCase() method are all valid:

“george burns”.toUpperCase()
yourName.toUpperCase() // yourName is a variable containing a string
window.prompt(“Enter your name”,””).toUpperCase()
document.forms[0].entry.value.toUpperCase() // entry is a text field object

An important concept to remember is that invoking a string method does not change the
string object that is part of the reference. Rather, the method returns a value, which can be
used as a parameter to another method or function call, or assigned to a variable value.

Therefore, to change the contents of a string variable to the results of a method, you must
use an assignment operator, as in

yourName = yourName.toUpperCase(); // variable is now all uppercase

Properties
constructor

Value: Function reference. Read/Write
Compatibility: WinIE4+, MacIE4+, NN4+, Moz1+, Safari1+

stringObject.constructor

854 Part IV ✦ JavaScript Core Language Reference

The constructor property is a reference to the function that was invoked to create the cur-
rent string. For a native JavaScript string object, the constructor function is the built-in
String() constructor.

When you use the new String() constructor to create a string object, the type of the value
returned by the constructor is object (meaning the typeof operator returns object).
Therefore, you can use the constructor property on an object value to see if it is a string
object:

if (typeof someValue == “object”) {
if (someValue.constructor == String) {

// statements to deal with string object
}

}

Although the property is read/write, and you can assign a different constructor to the
String.prototype, the native behavior of a String object persists through the new con-
structor.

Example
Use The Evaluator (Chapter 13) to test the value of the constructor property. Enter the fol-
lowing statements into the top text box:

a = new String(“abcd”)
a.constructor == String
a.constructor == Number

Related Items: prototype property.

length
Value: Integer. Read-Only
Compatibility: WinIE3+, MacIE3+, NN2+, Moz1+, Safari1+

The most frequently used property of a string is length. To derive the length of a string, read
its property as you would read the length property of any object:

string.length

The length value represents an integer count of the number of characters within the string.
Spaces and punctuation symbols count as characters. Any backslash special characters
embedded in a string count as one character, including such characters as newline and tab.
Here are some examples:

“Lincoln”.length // result = 7
“Four score”.length // result = 10
“One\ntwo”.length // result = 7
“”.length // result = 0

The length property is commonly summoned when dealing with detailed string manipula-
tion in repeat loops.

prototype
Value: String object. Read/Write
Compatibility: WinIE4+, MacIE4+, NN3+, Moz1+, Safari1+

String objects defined with the new String(“stringValue”) constructor are robust
objects compared with plain, old variables that are assigned string values. You certainly don’t

stringObject.constructor

855Chapter 27 ✦ The String Object

have to create this kind of string object for every string in your scripts, but these objects do
come in handy if you find that strings in variables go awry. This happens occasionally while
trying to preserve string information as script variables in other frames or windows. By using
the string object constructor, you can be relatively assured that the string value will be avail-
able in the distant frame when needed.

Another byproduct of true string objects is that you can assign prototype properties and
methods to all string objects in the document. A prototype is a property or method that
becomes a part of every new object created after the prototype items are added. For strings,
as an example, you may want to define a new method for converting a string into a new type
of HTML font tag not already defined by the JavaScript string object. Listing 27-1 shows how
to create and use such a prototype.

Listing 27-1: A String Object Prototype

<html>
<head>

<title>String Object Prototype</title>
<script type=”text/javascript”>
function makeItHot() {

return “” + this.toString() + “<\/font>”;
}
String.prototype.hot = makeItHot;
</script>

</head>
<body>

<script type=”text/javascript”>
document.write(“<h1>This site is on “ + “FIRE”.hot() + “!!<\/h1>”);
</script>

</body>
</html>

A function definition (makeItHot()) accumulates string data to be returned to the object
when the function is invoked as the object’s method. The this keyword refers to the object
making the call, which you convert to a string for concatenation with the rest of the strings
to be returned. In the page’s Body, that prototype method is invoked in the same way one
invokes existing String methods that turn strings into HTML tags (discussed later in this
chapter).

In the next sections, I divide string object methods into two distinct categories. The first,
parsing methods, focuses on string analysis and character manipulation within strings. The
second group, formatting methods, is devoted entirely to assembling strings in HTML syntax
for those scripts that assemble the text to be written into new documents or other frames.

Parsing methods
string.charAt(index)

Returns: One-character string.
Compatibility: WinIE3+, MacIE3+, NN2+, Moz1+, Safari1+

Use the string.charAt() method to read a single character from a string when you know
the position of that character. For this method, you specify an index value in the string as a

stringObject.charAt()

856 Part IV ✦ JavaScript Core Language Reference

parameter to the method. The index value of the first character of the string is 0. To grab the
last character of a string, mix string methods:

myString.charAt(myString.length - 1)

If your script needs to get a range of characters, use the string.substring() method. Using
string.substring() to extract a character from inside a string is a common mistake, when
the string.charAt() method is more efficient.

Example
Enter each of the following statements into the top text box of The Evaluator:

a = “banana daiquiri”
a.charAt(0)
a.charAt(5)
a.charAt(6)
a.charAt(20)

Results from each of the charAt() methods should be b, a (the third “a” in “banana”), a
space character, and an empty string, respectively.

Related Items: string.lastIndexOf(), string.indexOf(), string.substring()
methods.

string.charCodeAt([index])
String.fromCharCode(num1 [, num2 [, ... numn]])

Returns: Integer code number for a character; concatenated string value of code numbers
supplied as parameters.
Compatibility: WinIE4+, MacIE4+, NN4+, Moz1+, Safari1+

Conversions from plain language characters to their numeric equivalents have a long tradi-
tion in computer programming. For a long time, the most common numbering scheme was
the ASCII standard, which covers the basic English, alphanumeric characters and punctuation
within 128 values (numbered 0 through 127). An extended version with a total of 256 charac-
ters, with some variations depending on the operating system, accounts for other roman char-
acters in other languages, particularly vowels with umlauts and other pronunciation marks.
To bring all languages, including pictographic languages and other non-Roman alphabets, into
the computer age, a world standard called Unicode provides space for thousands of characters.

In JavaScript, the character conversions are string methods. Acceptable values depend on
the browser that you are using. NN4 works only with the 256 ISO-Latin-I values; IE4+, NN6+,
and W3C browsers work with the Unicode system.

The two methods that perform these conversions work in very different ways syntactically.
The first, string.charCodeAt(), converts a single string character to its numerical equiva-
lent. The string being converted is the one to the left of the method name — and the string
may be a literal string or any other expression that evaluates to a string value. If no parame-
ter is passed, the character being converted is by default the first character of the string.
However, you can also specify a different character as an index value into the string (first
character is 0), as demonstrated here:

“abc”.charCodeAt() // result = 97
“abc”.charCodeAt(0) // result = 97
“abc”.charCodeAt(1) // result = 98

If the string value is an empty string or the index value is beyond the last character, the result
is NaN.

stringObject.charAt()

857Chapter 27 ✦ The String Object

To convert numeric values to their characters, use the String.fromCharCode() method.
Notice that the object beginning the method call is the static String object, not a string
value. Then, as parameters, you can include one or more integers separated by commas. In
the conversion process, the method combines the characters for all of the parameters into
one string, an example of which is shown here:

String.fromCharCode(97, 98, 99) // result “abc”

Although recent browsers support character values across the entire Unicode range, the
browser won’t render characters above 255 unless the computer is equipped with language
and font support for the designated language.

Example
Listing 27-2 provides examples of both methods on one page. Moreover, because one of the
demonstrations relies on the automatic capture of selected text on the page, the scripts
include code to accommodate the different handling of selection events and capture of the
selected text in a variety of browsers.

After you load the page, select part of the body text anywhere on the page. If you start the
selection with the lowercase letter “a,” the character code displays as 97. If you select no
text, the result is NaN.

Try entering numeric values in the three fields at the bottom of the page. Values below 32 are
ASCII control characters that most fonts represent as hollow squares. But try all other values
to see what you get. Notice that the script passes all three values as a group to the String.
fromCharCode() method, and the result is a combined string. Thus, Figure 27-1 shows what
happens when you enter the uppercase ASCII values for a three-letter animal name.

Listing 27-2: Character Conversions

<html>
<head>

<title>Character Codes</title>
<script type=”text/javascript”>
function showCharCode() {

var theText = “”;
if (window.getSelection) {

theText = window.getSelection().toString();
} else if (document.getSelection) {

theText = document.getSelection();
} else if (document.selection && document.selection.createRange) {

theText = document.selection.createRange().text;
}
if (theText) {

document.forms[0].charCodeDisplay.value = theText.charCodeAt();
} else {

document.forms[0].charCodeDisplay.value = “ “;
}

}
function showString(form) {

form.result.value =
String.fromCharCode(form.entry1.value,form.entry2.value,form.entry3.value);

}

Continued

Note

stringObject.charCodeAt()

858 Part IV ✦ JavaScript Core Language Reference

Listing 27-2 (continued)

document.onmouseup = showCharCode;
</script>

</head>
<body>

Capturing Character Codes
<form>

Select any of this text, and see the character code of the first
character.
<p>Character Code:<input type=”text” name=”charCodeDisplay”

size=”3” />
</p>
<hr />
Converting Codes to Characters

Enter a value 0-255:<input type=”text” name=”entry1” size=”6” />

Enter a value 0-255:<input type=”text” name=”entry2” size=”6” />

Enter a value 0-255:<input type=”text” name=”entry3” size=”6” />

<input type=”button” value=”Show String”
onclick=”showString(this.form)” /> Result:<input type=”text”
name=”result” size=”5” />

</form>
</body>

</html>

Figure 27-1: Conversions from text characters to ASCII values and vice versa.

stringObject.charCodeAt()

859Chapter 27 ✦ The String Object

Related Items: None.

string.concat(string2)
Returns: Combined string.
Compatibility: WinIE4+, MacIE4+, NN4+, Moz1+, Safari1+

JavaScript’s add-by-value operator (+=) provides a convenient way to concatenate strings.
Recent browsers, however, include a string object method that performs the same task.
The base string to which more text is appended is the object or value to the left of the
period. The string to be appended is the parameter of the method, as the following example
demonstrates:

“abc”.concat(“def”) // result: “abcdef”

As with the add-by-value operator, the concat() method doesn’t know about word endings.
You are responsible for including the necessary space between words if the two strings
require a space between them in the result.

Related Items: Add-by-value (+=) operator.

string.indexOf(searchString [, startIndex])
Returns: Index value of the character within string where searchString begins.
Compatibility: WinIE3+, MacIE3+, NN2+, Moz1+, Safari1+

Like some languages’ offset string function, JavaScript’s indexOf() method enables your
script to obtain the number of the character in the main string where a search string begins.
Optionally, you can specify where in the main string the search should begin — but the
returned value is always relative to the very first character of the main string. Such as all
string object methods, index values start their count with 0. If no match occurs within the
main string, the returned value is -1. Thus, this method is a convenient way to determine
whether one string contains another, regardless of position.

Example
Enter each of the following statements (up to but not including the “//” comment symbols)
into the top text box of The Evaluator (you can simply replace the parameters of the
indexOf() method for each statement after the first one). Compare your results with the
results shown below.

a = “bananas”
a.indexOf(“b”) // result = 0 (index of 1st letter is zero)
a.indexOf(“a”) // result = 1
a.indexOf(“a”,1) // result = 1 (start from 2nd letter)
a.indexOf(“a”,2) // result = 3 (start from 3rd letter)
a.indexOf(“a”,4) // result = 5 (start from 5th letter)
a.indexOf(“nan”) // result = 2
a.indexOf(“nas”) // result = 4
a.indexOf(“s”) // result = 6
a.indexOf(“z”) // result = -1 (no “z” in string)

Related Items: string.lastIndexOf(), string.charAt(), string.substring() methods.

stringObject.IndexOf()

860 Part IV ✦ JavaScript Core Language Reference

string.lastIndexOf(searchString[, startIndex])
Returns: Index value of the last character within string where searchString begins.
Compatibility: WinIE3+, MacIE3+, NN2+, Moz1+, Safari1+

The string.lastIndexOf() method is closely related to the method string.indexOf().
The only difference is that this method starts its search for a match from the end of the string
(string.length - 1) and works its way backward through the string. All index values are
still counted, starting with 0, from the front of the string. The examples that follow use the
same values as in the examples for string.indexOf() so that you can compare the results.
In cases where only one instance of the search string is found, the results are the same; but
when multiple instances of the search string exist, the results can vary widely — hence the
need for this method.

Example
Enter each of the following statements (up to, but not including the “//” comment symbols)
into the top text box of The Evaluator (you can simply replace the parameters of the
lastIndexOf() method for each statement after the first one). Compare your results with
the results shown below.

a = “bananas”
a.lastIndexOf(“b”) // result = 0 (index of 1st letter is zero)
a.lastIndexOf(“a”) // result = 5
a.lastIndexOf(“a”,1) // result = 1 (from 2nd letter toward the front)
a.lastIndexOf(“a”,2) // result = 1 (start from 3rd letter working toward front)
a.lastIndexOf(“a”,4) // result = 3 (start from 5th letter)
a.lastIndexOf(“nan”) // result = 2 [except for -1 Nav 2.0 bug]
a.lastIndexOf(“nas”) // result = 4
a.lastIndexOf(“s”) // result = 6
a.lastIndexOf(“z”) // result = -1 (no “z” in string)

Related Items: string.lastIndexOf(), string.charAt(), string.substring() methods.

string.localeCompare(string2)
Returns: Integer.
Compatibility: WinIE5.5+, MacIE-, NN6+, Moz1+, Safari1+

The localeCompare() method lets a script compare the cumulative Unicode values of two
strings, taking into account the language system for the browser. The need for this method
affects only some language systems (Turkish is said to be one). If the two strings, adjusted for
the language system, are equal, the value returned is zero. If the string value on which the
method is invoked (meaning the string to the left of the period) sorts ahead of the parameter
string, the value returned is a negative integer; otherwise the returned value is a positive
integer.

The ECMA standard for this method leaves the precise positive or negative values up to the
browser designer. NN6+ calculates the cumulative Unicode values for both strings and sub-
tracts the string parameter’s sum from the string value’s sum. IE5.5+, on the other hand,
returns -1 or 1 if the strings are not colloquially equal.

Related Items: string.toLocaleLowerCase(), string.toLocaleUpperCase() methods.

stringObject.lastIndexOf()

861Chapter 27 ✦ The String Object

string.match(regExpression)
Returns: Array of matching strings.
Compatibility: WinIE4+, MacIE4+, NN4+, Moz1+, Safari1+

The string.match() method relies on the RegExp (regular expression) object introduced
to JavaScript in version 4 browsers. The string value under scrutiny is to the left of the dot,
while the regular expression to be used by the method is passed as a parameter. The parame-
ter must be a regular expression object, created according to the two ways these objects can
be generated.

This method returns an array value when at least one match turns up; otherwise the
returned value is null. Each entry in the array is a copy of the string segment that matches
the specifications of the regular expression. You can use this method to uncover how many
times a substring or sequence of characters appears in a larger string. Finding the offset loca-
tions of the matches requires other string parsing.

Example
To help you understand the string.match() method, Listing 27-3 provides a workshop area
for experimentation. Two fields occur for data entry: the first is for the long string to be exam-
ined by the method; the second is for a regular expression. Some default values are provided
in case you’re not yet familiar with the syntax of regular expressions (see Chapter 42 on the
CD-ROM). A checkbox lets you specify whether the search through the string for matches
should be case-sensitive. After you click the “Execute match()” button, the script creates a
regular expression object out of your input, performs the string.match() method on the
big string, and reports two kinds of results to the page. The primary result is a string version
of the array returned by the method; the other is a count of items returned.

Listing 27-3: Regular Expression Match Workshop

<html>
<head>

<title>Regular Expression Match</title>
<script type=”text/javascript”>
function doMatch(form) {

var str = form.entry.value;
var delim = (form.caseSens.checked) ? “/g” : “/gi”;
var regexp = eval(“/” + form.regexp.value + delim);
var resultArray = str.match(regexp);
if (resultArray) {

form.result.value = resultArray.toString();
form.count.value = resultArray.length;

} else {
form.result.value = “<no matches>”;
form.count.value = “”;

}
}
</script>

</head>

Continued

stringObject.match()

862 Part IV ✦ JavaScript Core Language Reference

Listing 27-3 (continued)

<body>
String Match with Regular Expressions
<hr />
<form>

Enter a main string:<input type=”text” name=”entry” size=”60”
value=”Many a maN and womAN have meant to visit GerMAny.” />

Enter a regular expression to match:<input type=”text” name=”regexp”
size=”25” value=”\wa\w” /> <input type=”checkbox”
name=”caseSens” />Case-sensitive
<p><input type=”button” value=”Execute match()”

onclick=”doMatch(this.form)” /> <input type=”reset” /></p>
<p>Result:<input type=”text” name=”result” size=”40” />

Count:<input type=”text” name=”count” size=”3” />
</p>
</form>

</body>
</html>

The default value for the main string has unusual capitalization intentionally. The capitaliza-
tion lets you see more clearly where some of the matches come from. For example, the
default regular expression looks for any three-character string that has the letter “a” in the
middle. Six string segments match that expression. With the help of capitalization, you can
see where each of the four strings containing “man” are extracted from the main string. The
following table lists some other regular expressions to try with the default main string.

RegExp Description

man Both case-sensitive and not

man\b Where “man” is at the end of a word

\bman Where “man” is at the start of a word

me*an Where zero or more “e” letters occur between “m” and “a”

.a. Where “a” is surrounded by any one character (including space)

\sa\s Where “a” is surrounded by a space on both sides

z Where a “z” occurs (none in the default string)

In the scripts for Listing 27-3, if the string.match() method returns null, you are informed
politely, and the count field is emptied.

Related Items: RegExp object (Chapter 42 on the CD-ROM).

string.replace(regExpression, replaceString)
Returns: Changed string.
Compatibility: WinIE4+, MacIE4+, NN4+, Moz1+, Safari1+

Regular expressions are commonly used to perform search-and-replace operations.
JavaScript’s string.replace() method provides a simple framework in which to perform
this kind of operation on any string.

stringObject.match()

863Chapter 27 ✦ The String Object

Searching and replacing requires three components. The first is the main string that is the tar-
get of the operation. Second is the regular expression to search for. And third is the string to
replace each instance of the text found by the operation. For the string.replace() method,
the main string is the string value or object referenced to the left of the period. This string
can also be a literal string (that is, text surrounded by quotes). The regular expression to
search for is the first parameter, while the replacement string is the second parameter.

The regular expression definition determines whether the replacement is of just the first
match encountered in the main string or all matches in the string. If you add the g parameter
to the end of the regular expression, then one invocation of the replace() method performs
global search-and-replace through the entire main string.

As long as you know how to generate a regular expression, you don’t have to be a whiz to use
the string.replace() method to perform simple replacement operations. But using regular
expressions can make the operation more powerful. Consider these soliloquy lines by
Hamlet:

To be, or not to be: that is the question:
Whether ‘tis nobler in the mind to suffer

If you wanted to replace both instances of “be” with “exist,” you can do it in this case by
specifying

var regexp = /be/g;
soliloquy.replace(regexp, “exist”);

But you can’t always be assured that the letters “b” and “e” will be standing alone as a word.
What happens if the main string contains the word “being” or “saber”? The above example
replaces the “be” letters in them as well.

The regular expression help comes from the special characters to better define what to
search for. In the example here, the search is for the word “be.” Therefore, the regular expres-
sion surrounds the search text with word boundaries (the \b special character), as in

var regexp = /\bbe\b/g;
soliloquy.replace(regexp, “exist”);

This syntax also takes care of the fact that the first two “be” words are followed by punctua-
tion, rather than a space, as you may expect for a freestanding word. For more about regular
expression syntax, see Chapter 42 on the CD-ROM.

Example
The page in Listing 27-4 lets you practice with the string.replace() and string.search()
methods and regular expressions in a friendly environment. The source text is a five-line
excerpt from Hamlet. You can enter the regular expression to search for, and the replacement
text as well. Note that the script completes the job of creating the regular expression object,
so that you can focus on the other special characters used to define the matching string. All
replacement activities act globally, because the g parameter is automatically appended to any
expression you enter.

Default values in the fields replace the contraction ‘tis with “it is” after you click the “Execute
replace()” button (see Figure 27-2). Notice that the backslash character in front of the apos-
trophe of ‘tis (in the string assembled in mainString) makes the apostophe a non-word
boundary, and thus allows the \B’t regular expression to find a match there. As described in
the section on the string.search() method, the button connected to that method returns
the offset character number of the matching string (or -1 if no match occurs).

stringObject.replace()

864 Part IV ✦ JavaScript Core Language Reference

Figure 27-2: Using the default replacement regular expression.

You could modify the listing so that it actually replaces text in the HTML paragraph for IE4+
and W3C browsers. The steps include wrapping the paragraph in its own element (for exam-
ple, a span) and invoking the replace() method on the innerHTML of that element. Assign
the results to the innerHTML property of that element to complete the job.

Listing 27-4: Lab for string.replace() and string.search()

<html>
<head>

<title>Regular Expression Replace and Search</title>
<script type=”text/javascript”>
var mainString = “To be, or not to be: that is the question:\n”;
mainString += “Whether \’tis nobler in the mind to suffer\n”;
mainString += “The slings and arrows of outrageous fortune,\n”;
mainString += “Or to take arms against a sea of troubles,\n”;
mainString += “And by opposing end them.”;

function doReplace(form) {
var replaceStr = form.replaceEntry.value;
var delim = (form.caseSens.checked) ? “/g” : “/gi”;
var regexp = eval(“/” + form.regexp.value + delim);
form.result.value = mainString.replace(regexp, replaceStr);

}
function doSearch(form) {

var replaceStr = form.replaceEntry.value;
var delim = (form.caseSens.checked) ? “/g” : “/gi”;

stringObject.replace()

865Chapter 27 ✦ The String Object

var regexp = eval(“/” + form.regexp.value + delim);
form.result.value = mainString.search(regexp);

}
</script>

</head>
<body>

String Replace and Search with Regular Expressions
<hr />
Text used for string.replace() and string.search() methods:

To be, or not to be: that is the question:

Whether ‘tis nobler in the mind to suffer

The slings and arrows of outrageous fortune,

Or to take arms against a sea of troubles,

And by opposing end them.
<form>

Enter a regular expression to match:<input type=”text” name=”regexp”
size=”25” value=”\B’t” /> <input type=”checkbox”
name=”caseSens” />Case-sensitive

Enter a string to replace the matching strings:<input type=”text”
name=”replaceEntry” size=”30” value=”it “ />
<p><input type=”button” value=”Execute replace()”

onclick=”doReplace(this.form)” /> <input type=”reset” /> <input
type=”button” value=”Execute search()”
onclick=”doSearch(this.form)” /></p>

<p>Result:

<textarea name=”result” cols=”60” rows=”5” wrap=”virtual”>
</textarea></p>

</form>
</body>

</html>

Related Items: string.match() method; RegExp object.

string.search(regExpression)
Returns: Offset integer.
Compatibility: WinIE4+, MacIE4+, NN4+, Moz1+, Safari1+

The results of the string.search() method may remind you of the string.indexOf()
method. In both cases, the returned value is the character number where the matching string
first appears in the main string, or -1 if no match occurs. The big difference, of course, is that
the matching string for string.search() is a regular expression.

Example
Listing 27-4, for the string.replace() method, also provides a laboratory to experiment
with the string.search() method.

Related Items: string.match() method; RegExp object.

string.slice(startIndex [, endIndex])
Returns: String.
Compatibility: WinIE4+, MacIE4+, NN4+, Moz1+, Safari1+

The string.slice() method resembles the method string.substring() in that both let
you extract a portion of one string and create a new string as a result (without modifying the

stringObject.slice()

866 Part IV ✦ JavaScript Core Language Reference

original string). A helpful improvement in string.slice(), however, is that specifying an
ending index value relative to the end of the main string is easier.

Using string.substring() to extract a substring that ends before the end of the string
requires machinations, such as the following:

string.substring(4, (string.length-2))

Instead, you can assign a negative number to the second parameter of string.slice() to
indicate an offset from the end of the string:

string.slice(4, -2)

The second parameter is optional. If you omit the second parameter, the returned value is a
string from the starting offset to the end of the main string.

Example
With Listing 27-5, you can try several combinations of parameters with the string.slice()
method (see Figure 27-3). A base string is provided (along with character measurements).
Select from the different choices available for parameters and study the outcome of the slice.

Listing 27-5: Slicing a String

<html>
<head>

<title>String Slicing and Dicing, Part I</title>
<script type=”text/javascript”>
var mainString = “Electroencephalograph”;
function showResults() {

var form = document.forms[0];
var param1 = parseInt(

form.param1.options[form.param1.selectedIndex].value);
var param2 = parseInt(

form.param2.options[form.param2.selectedIndex].value);
if (!param2) {

form.result1.value = mainString.slice(param1);
} else {

form.result1.value = mainString.slice(param1, param2);
}

}
</script>

</head>
<body onload=”showResults()”>

String slice() Method
<hr />
Text used for the methods:

<tt>Electroencephalograph

----5----5----5----5-</tt>
<form>

<table>
<tr>

<th>String Method</th>
<th>Method Parameters</th>
<th>Results</th>

</tr>
<tr>

<td>string.slice()</td>

stringObject.slice()

867Chapter 27 ✦ The String Object

<td rowspan=”3” valign=”middle”>
(<select name=”param1” onchange=”showResults()”>

<option value=”0”>0</option>
<option value=”1”>1</option>
<option value=”2”>2</option>
<option value=”3”>3</option>
<option value=”5”>5</option>

</select>, <select name=”param2” onchange=”showResults()”>
<option>(None)</option>
<option value=”5”>5</option>
<option value=”10”>10</option>
<option value=”-1”>-1</option>
<option value=”-5”>-5</option>
<option value=”-10”>-10</option>

</select>)
</td>
<td><input type=”text” name=”result1” size=”25” /></td>

</tr>
</table>

</form>
</body>

</html>

Figure 27-3: Lab for exploring the string.slice() method.

Related Items: string.substr(), string.substring() methods.

stringObject.slice()

868 Part IV ✦ JavaScript Core Language Reference

string.split(“delimiterCharacter” [, limitInteger])
Returns: Array of delimited items.
Compatibility: WinIE4+, MacIE4+, NN3+, Moz1+, Safari1+

The split() method is the functional opposite of the array.join() method (see Chapter
30). From the string object point of view, JavaScript splits a long string into pieces delimited
by a specific character and then creates a dense array with those pieces. You do not need to
initialize the array via the new Array() constructor. Given the powers of array object meth-
ods, such as array.sort(), you may want to convert a series of string items to an array to
take advantage of those powers. Also, if your goal is to divide a string into an array of single
characters, you can still use the split() method, but specify an empty string as a parameter.
For NN3 and IE4, only the first parameter is observed.

In NN4+, IE4+, and W3C browsers, you can use a regular expression object for the first param-
eter, enhancing the powers of finding delimiters in strings. For example, consider the follow-
ing string:

var nameList = “1.Fred,2.Jane,3.Steve”;

To convert that string into a three-element array of only the names takes a lot of parsing with-
out regular expressions before you can even use string.split(). However, with a regular
expression as a parameter,

var regexp = /,*\d.\b/;
var newArray = nameList.split(regexp);

// result = an array “Fred”, “Jane”, “Steve”

the new array entries hold only the names and not the leading numbers or periods. A second
addition is an optional second parameter. This integer value allows you to specify a limit to
the number of array elements generated by the method.

Example
Use The Evaluator (Chapter 13) to see how the string.split() method works. Begin by
assigning a comma-delimited string to a variable:

a = “Anderson,Smith,Johnson,Washington”

Now split the string at comma positions so that the string pieces become items in an array,
saved as b:

b = a.split(“,”)

To prove that the array contains four items, inspect the array’s length property:

b.length // result: 4

Related Items: array.join() method.

string.substr(start [, length])
Returns: String.
Compatibility: WinIE4+, MacIE4+, NN4+, Moz1+, Safari1+

The string.substr() method offers a variation of the string.substring() method that
has been in the language since the beginning. The distinction is that the string.substr()
method’s parameters specify the starting index and a number of characters to be included
from that start point. In contrast, the string.substring() method parameters specify index
points for the start and end characters within the main string.

stringObject.split()

869Chapter 27 ✦ The String Object

As with all string methods requiring an index value, the string.substr() first parameter is
zero-based. If you do not specify a second parameter, the returned substring starts at the
indexed point and extends to the end of the string. A second parameter value that exceeds
the end point of the string means that the method returns a substring to the end of the string.

Even though this method is newer than its partner, it is not part of the ECMA standard as of
Edition 3 of the language spec. But because the method is so widely used, the standard does
acknowledge it so that other scripting contexts can implement the method consistent with
browser practice.

Example
Listing 27-6 lets you experiment with a variety of values to see how the string.substr()
method works.

Listing 27-6: Reading a Portion of a String

<html>
<head>

<title>String Slicing and Dicing, Part II</title>
<script type=”text/javascript”>
var mainString = “Electroencephalograph”;
function showResults() {

var form = document.forms[0];
var param1 = parseInt(

form.param1.options[form.param1.selectedIndex].value);
var param2 = parseInt(

form.param2.options[form.param2.selectedIndex].value);
if (!param2) {

form.result1.value = mainString.substr(param1);
} else {

form.result1.value = mainString.substr(param1, param2);
}

}
</script>

</head>
<body onload=”showResults()”>

String substr() Method
<hr />
Text used for the methods:

<tt>Electroencephalograph

----5----5----5----5-</tt>
<form>

<table>
<tr>

<th>String Method</th>
<th>Method Parameters</th>
<th>Results</th>

</tr>
<tr>

<td>string.substr()</td>
<td rowspan=”3” valign=”middle”>
(<select name=”param1” onchange=”showResults()”>

<option value=”0”>0</option>
<option value=”1”>1</option>

Continued

stringObject.substr()

870 Part IV ✦ JavaScript Core Language Reference

Listing 27-6 (continued)

<option value=”2”>2</option>
<option value=”3”>3</option>
<option value=”5”>5</option>

</select>, <select name=”param2” onchange=”showResults()”>
<option>(None)</option>
<option value=”5”>5</option>
<option value=”10”>10</option>
<option value=”20”>20</option>

</select>)
</td>
<td><input type=”text” name=”result1” size=”25” /></td>

</tr>
</table>

</form>
</body>

</html>

Related Items: string.substring() method.

string.substring(indexA, indexB)
Returns: String of characters between index values indexA and indexB.
Compatibility: WinIE3+, MacIE3+, NN2+, Moz1+, Safari1+

The string.substring() method enables your scripts to extract a copy of a contiguous
range of characters from any string. The parameters to this method are the starting and end-
ing index values (first character of the string object is index value 0) of the main string from
which the excerpt should be taken. An important item to note is that the excerpt goes up to,
but does not include, the character pointed to by the higher index value.

It makes no difference which index value in the parameters is larger than the other: The
method starts the excerpt from the lowest value and continues to (but does not include) the
highest value. If both index values are the same, the method returns an empty string; and if
you omit the second parameter, the end of the string is assumed to be the endpoint.

Example
Listing 27-7 lets you experiment with a variety of values to see how the string.substring()
method works.

Listing 27-7: Reading a Portion of a String

<html>
<head>

<title>String Slicing and Dicing, Part III</title>
<script type=”text/javascript”>
var mainString = “Electroencephalograph”;
function showResults() {

var form = document.forms[0];
var param1 = parseInt(

form.param1.options[form.param1.selectedIndex].value);
var param2 = parseInt(

stringObject.substr()

871Chapter 27 ✦ The String Object

form.param2.options[form.param2.selectedIndex].value);
if (!param2) {

form.result1.value = mainString.substring(param1);
} else {

form.result1.value = mainString.substring(param1, param2);
}

}
</script>

</head>
<body onload=”showResults()”>

String substr() Method
<hr />
Text used for the methods:

<tt>Electroencephalograph

----5----5----5----5-</tt>
<form>

<table>
<tr>

<th>String Method</th>
<th>Method Parameters</th>
<th>Results</th>

</tr>
<tr>

<td>string.substring()</td>
<td>(<select name=”param1” onchange=”showResults()”>

<option value=”0”>0</option>
<option value=”1”>1</option>
<option value=”2”>2</option>
<option value=”3”>3</option>
<option value=”5”>5</option>

</select>, <select name=”param2” onchange=”showResults()”>
<option>(None)</option>
<option value=”3”>3</option>
<option value=”5”>5</option>
<option value=”10”>10</option>

</select>)
</td>
<td><input type=”text” name=”result1” size=”25” /></td>

</tr>
</table>

</form>
</body>

</html>

Related Items: string.substr(), string.slice() methods.

string.toLocaleLowerCase()
string.toLocaleUpperCase()

Returns: String.
Compatibility: WinIE5.5+, MacIE-, NN6+, Moz1+, Safari-

These two methods are variations on the standard methods for changing the case of a string.
They take into account some language systems whose cases for a particular character don’t
necessarily map to the Latin alphabet character mappings.

Related Items: string.toLowerCase(), string.toUpperCase() methods.

stringObject.toLocaleLowerCase()

872 Part IV ✦ JavaScript Core Language Reference

string.toLowerCase()
string.toUpperCase()

Returns: The string in all lower- or uppercase, depending on which method you invoke.
Compatibility: WinIE3+, MacIE3+, NN2+, Moz1+, Safari1+

A great deal of what takes place on the Internet (and in JavaScript) is case-sensitive. URLs on
some servers, for instance, are case-sensitive for directory names and filenames. These two
methods, the simplest of the string methods, return a copy of a string converted to either all
lowercase or all uppercase. Any mixed-case strings get converted to a uniform case. If you
want to compare user input from a field against some coded string without worrying about
matching case, you can convert both strings to the same case for the comparison.

Example
You can use the toLowerCase() and toUpperCase() methods on literal strings, as follows:

var newString = “HTTP://www.Netscape.COM”.toLowerCase();
// result = “http://www.netscape.com”

The methods are also helpful in comparing strings when case is not important, as follows:

if (guess.toUpperCase() == answer.toUpperCase()) {...}
// comparing strings without case sensitivity

Related Items: string.toLocaleLowerCase(), string.toLocaleUpperCase() methods.

string.toString()
string.valueOf()

Returns: String value.
Compatibility: WinIE4+, MacIE4+, NN4+, Moz1+, Safari1+

Both of these methods return string values (as opposed to full-fledged string objects). If you
have created a string object via the new String() constructor, the type of that item is
object. Therefore, if you want to examine more precisely what kind of value is held by the
object, you can use the valueOf() method to get the value and then examine it via the
typeof operator. The toString() method is present for this object primarily because a
string object inherits the method from the root object of JavaScript.

Example
Use The Evaluator (Chapter 13) to test the valueOf() method. Enter the following state-
ments into the top text box and examine the values that appear in the Results field:

a = new String(“hello”)
typeof a
b = a.valueOf()
typeof b

Because all other JavaScript core objects also have the valueOf() method, you can build
generic functions that receive a variety of object types as parameters, and the script can
branch its code based on the type of value that is stored in the object.

Related Items: typeof operator (Chapter 32).

stringObject.toLowerCase()

873Chapter 27 ✦ The String Object

String Utility Functions
Figuring out how to apply the various string object methods to a string manipulation chal-
lenge is not always an easy task, especially if you need backward compatibility with older
scriptable browsers. I also find it difficult to anticipate every possible way you may need to
massage strings in your scripts. But to help you get started, Listing 27-8 contains a fully
backward-compatible library of string functions for inserting, deleting, and replacing chunks
of text in a string. If your audience uses browsers capable of including external .js library
files, that would be an excellent way to make these functions available to your scripts.

Listing 27-8: Utility String Handlers

// extract front part of string prior to searchString
function getFront(mainStr,searchStr){

foundOffset = mainStr.indexOf(searchStr);
if (foundOffset == -1) {

return null;
}
return mainStr.substring(0,foundOffset);

}

// extract back end of string after searchString
function getEnd(mainStr,searchStr) {

foundOffset = mainStr.indexOf(searchStr);
if (foundOffset == -1) {

return null;
}
return mainStr.substring(foundOffset+searchStr.length,mainStr.length);

}

// insert insertString immediately before searchString
function insertString(mainStr,searchStr,insertStr) {

var front = getFront(mainStr,searchStr);
var end = getEnd(mainStr,searchStr);
if (front != null && end != null) {

return front + insertStr + searchStr + end;
}
return null;

}

// remove deleteString
function deleteString(mainStr,deleteStr) {

return replaceString(mainStr,deleteStr,””);
}

// replace searchString with replaceString
function replaceString(mainStr,searchStr,replaceStr) {

var front = getFront(mainStr,searchStr);
var end = getEnd(mainStr,searchStr);
if (front != null && end != null) {

return front + replaceStr + end;
}
return null;

}

874 Part IV ✦ JavaScript Core Language Reference

The first two functions extract the front or end components of strings as needed for some of
the other functions in this suite. The final three functions are the core of these string-handling
functions. If you plan to use these functions in your scripts, be sure to notice the dependence
that some functions have on others. Including all five functions as a group ensures that they
work as designed.

A modern alternative to Listing 27-8 utilizes a combination of string and array methods to
perform a global replace operation in a one-statement function:

function replaceString(mainStr, searchStr, replaceStr) {
return mainStr.split(searchStr).join(replaceStr);

}

Going one step further, you can create a custom method to use with all string values or
objects in your scripts. Simply let the following statement execute as the page loads:

String.prototype.replaceString = function(mainStr, searchStr, replaceStr) {
return mainStr.split(searchStr).join(replaceStr);

}

Then invoke this method of any string value in other scripts on the page, as in:

myString = myString.replaceString(“ CD “, “ MP3 “);

Formatting methods
Now we come to the other group of string object methods, which ease the process of creating
the numerous string display characteristics when you use JavaScript to assemble HTML
code. The following is a list of these methods:

string.anchor(“anchorName”) string.link(locationOrURL)
string.blink() string.big()
string.bold() string.small()
string.fixed() string.strike()
string.fontcolor(colorValue) string.sub()
string.fontsize(integer1to7) string.sup()
string.italics()

First examine the methods that don’t require any parameters. You probably see a pattern:
All of these methods are font-style attributes that have settings of on or off. To turn on these
attributes in an HTML document, you surround the text in the appropriate tag pairs, such as
... for boldface text. These methods take the string object, attach those tags, and
return the resulting text, which is ready to be put into any HTML that your scripts are build-
ing. Therefore, the expression

“Good morning!”.bold()

evaluates to

Good morning!

Of course, nothing is preventing you from building your HTML by embedding real tags
instead of by calling the string methods. The choice is up to you. One advantage to the string
methods is that they never forget the ending tag of a tag pair. Listing 27-9 shows an example
of incorporating a few simple string methods in a string variable that is eventually written to

875Chapter 27 ✦ The String Object

the page as it loads. Internet Explorer does not support the <blink> tag and therefore
ignores the string.blink() method.

Listing 27-9: Using Simple String Methods

<html>
<head>

<title>HTML by JavaScript</title>
</head>
<body>

<script type=”text/javascript”>
var page = “”;
page += “JavaScript can create HTML on the fly.<P>Numerous string object

methods facilitate creating text that is “ +
“boldfaced”.bold() + “, “ + “italicized”.italics() +
“, or even the terribly annoying “ + “blinking text”.blink() + “.”;

document.write(page);
</script>

</body>
</html>

Of the remaining string methods, two more (string.fontsize() and string.fontcolor())
also affect the font characteristics of strings displayed in the HTML page. The parameters for
these items are pretty straightforward — an integer between 1 and 7 corresponding to the
seven browser font sizes and a color value (as either a hexadecimal triplet or color constant
name) for the designated text. Listing 27-10 adds a line of text to the string of Listing 27-9.
This line of text not only adjusts the font size of some parts of the string but also nests multi-
ple attributes inside one another to set the color of one word in a large-font-size string.
Because these string methods do not change the content of the string, you can safely nest
methods here.

Listing 27-10: Nested String Methods

<html>
<head>

<title>HTML by JavaScript</title>
</head>
<body>

<script type=”text/javascript”>
var page = “”;
page += “JavaScript can create HTML on the fly.<P>Numerous string object

methods facilitate creating text that is “ + “boldfaced”.bold() +
“, “ + “italicized”.italics() + “, or even the terribly annoying “ +
“blinking text”.blink() + “.
”;

page += “We can make “ + “some words big”.fontsize(5) + “ and some words
both “ + (“big and “ + “colorful”.fontcolor(‘coral’)).fontsize(5) +
“ at the same time.”;

document.write(page);
</script>

</body>
</html>

876 Part IV ✦ JavaScript Core Language Reference

The final two string methods let you create an anchor and a link out of a string. The
string.anchor() method uses its parameter to create a name for the anchor. Thus, the fol-
lowing expression

“Table of Contents”.anchor(“toc”)

evaluates to

Table of Contents

In a similar fashion, the string.link() method expects a valid location or URL as its param-
eter, creating a genuine HTML link out of the string:

“Back to Home”.link(“index.html”)

This evaluates to the following:

Back to Home

Again, the choice of whether you use string methods to build HTML anchors and links over
assembling the actual HTML is up to you. The methods may be a bit easier to work with if the
values for the string and the parameters are variables whose content may change based on
user input elsewhere in your Web site.

URL String Encoding and Decoding
When browsers and servers communicate, some non-alphanumeric characters that we take
for granted (such as a space) cannot make the journey in their native form. Only a narrower
set of letters, numbers, and punctuation is allowed. To accommodate the rest, the characters
must be encoded with a special symbol (%) and their hexadecimal ASCII values. For example,
the space character is hex 20 (ASCII decimal 32). When encoded, it looks like %20. You may
have seen this symbol in browser history lists or URLs.

JavaScript includes two functions, escape() and unescape(), that offer instant conversion
of whole strings. To convert a plain string to one with these escape codes, use the escape
function, as in

escape(“Howdy Pardner”); // result = “Howdy%20Pardner”

The unescape() function converts the escape codes into human-readable form. Both of
these functions and some newer, more robust versions for recent browsers are covered in
Chapter 34.

✦ ✦ ✦

The Math, Number,
and Boolean
Objects

The introduction to data types and values in Chapter 6’s tutorial
scratched the surface of JavaScript’s numeric and Boolean pow-

ers. In this chapter, you look more closely at JavaScript’s way of
working with numbers and Boolean data.

Math often frightens away budding programmers; but as you’ve seen
so far in this book, you don’t really have to be a math genius to pro-
gram in JavaScript. The powers described in this chapter are here
when you need them — if you need them. So if math is not your
strong suit, don’t freak out over the terminology here.

An important point to remember about the objects described in this
chapter is that (like string values and string objects) numbers and
Booleans are both values and objects. Fortunately for script writers,
the differentiation is rarely, if ever, a factor unless you get into some
very sophisticated programming. To those who actually write the
JavaScript interpreters inside the browsers we use, the distinctions
are vital.

For most scripters, the information about numeric data types and
conversions as well as the Math object are important to know. I pre-
sent other details in this chapter about the number and Boolean
objects primarily for completeness because their direct powers are
almost never used in day-to-day scripting of Web applications.

Numbers in JavaScript
More powerful programming languages have many different kinds of
numbers, each related to the amount of memory it occupies in the
computer. Managing all these different types may be fun for some,
but it gets in the way of quick scripting. A JavaScript number has
only two possibilities. It can be an integer or a floating-point value.
An integer is any whole number within a humongous range that does
not have any fractional part. Integers never contain a decimal point in
their representation. Floating-point numbers in JavaScript spread
across the same range, but they are represented with a decimal point
and some fractional value. If you are an experienced programmer,

2828C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Advanced math
operations

Number base
conversions

Working with integers
and floating-point
numbers

✦ ✦ ✦ ✦

878 Part IV ✦ JavaScript Core Language Reference

refer to the discussion about the number object later in this chapter to see how the
JavaScript number type lines up with numeric data types you use in other programming
environments.

Integers and floating-point numbers
Deep inside a computer, the microprocessor has an easier time performing math on integer
values as compared to any number with a decimal value tacked on it, which requires the
microprocessor to go through extra work to add even two such floating-point numbers. We,
as scripters, are unfortunately saddled with this historical baggage and must be conscious of
the type of number used in certain calculations.

Most internal values generated by JavaScript, such as index values and length properties,
consist of integers. Floating-point numbers usually come into play as the result of the division
of numeric values, special values such as pi, and human-entered values such as dollars and
cents. Fortunately, JavaScript is forgiving if you try to perform math operations on mixed
numeric data types. Notice how the following examples resolve to the appropriate data type:

3 + 4 = 7 // integer result
3 + 4.1 = 7.1 // floating-point result
3.9 + 4.1 = 8 // integer result

Of the three examples, perhaps only the last result is unexpected. When two floating-point
numbers yield a whole number, the result is rendered as an integer.

When dealing with floating-point numbers, be aware that not all browser versions return
the precise same value down to the last digit to the right of the decimal. For example, the
following table shows the result of 8/9 as calculated by numerous scriptable browsers
(all in Windows) and converted for string display:

Navigator 2 0.88888888888888884

Navigator 3 & 4 .8888888888888888

Navigator 6+/Mozilla 1+/Safari 1+ 0.8888888888888888

Internet Explorer 3 0.888888888888889

Internet Explorer 4+ 0.8888888888888888

Clearly, from this display, you don’t want to use floating-point math in JavaScript browsers
to plan space flight trajectories. For everyday math, however, you need to be cognizant of
floating-point errors that accrue in PC arithmetic.

In Navigator, JavaScript relies on the operating system’s floating-point math for its own math.
Operating systems that offer accuracy to as many places to the right of the decimal as
JavaScript displays are exceedingly rare. As you can detect from the preceding table, the
modern versions of browsers from Netscape and Microsoft agree about how many digits to
display and how to perform internal rounding for this display. That’s good for the math, but
not particularly helpful when you need to display numbers in a specific format.

Until you get to IE5.5, NN6, and W3C-compatible browsers, JavaScript does not offer built-in
facilities for formatting the results of floating-point arithmetic. (For the newer browsers, see
the Number object later in this chapter for formatting methods.) Listing 28-1 demonstrates a
generic formatting routine for positive values, plus a specific call that turns a value into a dol-
lar value. Remove the comments and the routine is fairly compact.

879Chapter 28 ✦ The Math, Number, and Boolean Objects

Listing 28-1: A Generic Number-Formatting Routine

<html>
<head>

<title>Number Formatting</title>
<script type=”text/javascript”>
// generic positive number decimal formatting function
function format(expr, decplaces) {

// raise incoming value by power of 10 times the
// number of decimal places; round to an integer; convert to string
var str = “” + Math.round(eval(expr) * Math.pow(10,decplaces));
// pad small value strings with zeros to the left of rounded number
while (str.length <= decplaces) {

str = “0” + str;
}
// establish location of decimal point
var decpoint = str.length - decplaces;
// assemble final result from: (a) the string up to the position of
// the decimal point; (b) the decimal point; and (c) the balance
// of the string. Return finished product.
return str.substring(0,decpoint) + “.” +

str.substring(decpoint,str.length);
}
// turn incoming expression into a dollar value
function dollarize(expr) {

return “$” + format(expr,2);
}
</script>

</head>
<body>

<h1>How to Make Money</h1>
<form>

Enter a positive floating point value or arithmetic expression to be
converted to a currency format:
<p><input type=”text” name=”entry” value=”1/3” /> <input type=”button”

value=”>Dollars and Cents>”
onclick=”this.form.result.value=dollarize(this.form.entry.value)”
/>
<input type=”text” name=”result” /></p>

</form>
</body>

</html>

This routine may seem like a great deal of work, but it’s essential if your application relies on
floating-point values and specific formatting for all browsers.

You can also enter floating-point numbers with exponents. An exponent is signified by the let-
ter “e” (upper- or lowercase), followed by a sign (+ or –) and the exponent value. Here are
examples of floating-point values expressed as exponents:

1e6 // 1,000,000 (the “+” symbol is optional on positive exponents)
1e-4 // 0.0001 (plus some error further to the right of the decimal)
-4e-3 // -0.004

880 Part IV ✦ JavaScript Core Language Reference

For values between 1e-5 and 1e15, JavaScript renders numbers without exponents (although
you can force a number to display in exponential notation in IE5.5+, NN6+, and W3C browsers).
All other values outside these boundaries return with exponential notation in all browsers.

Hexadecimal and octal integers
JavaScript enables you to work with values in decimal (base-10), hexadecimal (base-16), and
octal (base-8) formats. You have only a few rules to follow when dealing with any of these
values.

Decimal values cannot begin with a leading 0. Therefore, if your page asks users to enter
decimal values that begin with a 0, your script must strip those zeros from the input string
or use the number parsing global functions (described in the next section) before perform-
ing any math on the values.

Hexadecimal integer values are expressed with a leading 0x or 0X. (That’s a zero, not the
letter “o.”) The A through F values can appear in upper- or lowercase, as you prefer. Here
are some hex values:

0X2B
0X1a
0xcc

Don’t confuse the hex values used in arithmetic with the hexadecimal values used in color
property specifications for Web documents. Those values are expressed in a special hexadeci-
mal triplet format, which begins with a crosshatch symbol followed by the three hex values
bunched together (such as #c0c0c0).

Octal values are represented by a leading 0 followed by any digits between 0 and 7. Octal val-
ues consist only of integers.

You are free to mix and match base values in arithmetic expressions, but JavaScript renders
all results in decimal form. For conversions to other number bases, you have to employ a
user-defined function in your script. Listing 28-2, for example, is a function that converts any
decimal value from 0 to 255 into a JavaScript hexadecimal value.

Listing 28-2: Decimal-to-Hexadecimal Converter Function

function toHex(dec) {
hexChars = “0123456789ABCDEF”;
if (dec > 255) {

return null;
}
var i = dec % 16;
var j = (dec - i) / 16;
result = “0X”;
result += hexChars.charAt(j);
result += hexChars.charAt(i);
return result;

}

881Chapter 28 ✦ The Math, Number, and Boolean Objects

The toHex() conversion function assumes that the value passed to the function is a decimal
integer. If you simply need a hexadecimal representation of a number in string format, see the
toString() method in Chapter 34.

Converting strings to numbers
What is missing so far from this discussion is a way to convert a number represented as a
string to a number with which the JavaScript arithmetic operators can work. Before you get
too concerned about this, be aware that most JavaScript operators and math methods gladly
accept string representations of numbers and handle them without complaint. You will run
into data type incompatibilities most frequently when trying to accomplish addition with the
+ operator (which is also the string concatenation operator). Also know that if you perform
math operations on values retrieved from form text boxes, those object value properties are
strings. Therefore, in many cases, you need to convert those values to values of the number
type for math operations.

Conversion to numbers requires one of two JavaScript functions:

parseInt(string [,radix])
parseFloat(string [,radix])

These functions are inspired by the Java language. The term parsing has many implied mean-
ings in programming. One meaning is the same as extracting. The parseInt() function
returns whatever integer value it can extract from the string passed to it; the parseFloat()
function returns the floating-point number that can be extracted from the string. Here are
some examples and their resulting values:

parseInt(“42”) // result = 42
parseInt(“42.33”) // result = 42
parseFloat(“42.33”) // result = 42.33
parseFloat(“42”) // result = 42
parseFloat(“fred”) // result = NaN

Because the parseFloat() function can also work with an integer and return an integer
value, you may prefer using this function in scripts that have to deal with either kind of num-
ber, depending on the string entered into a text field by a user.

An optional second parameter to both functions enables you to specify the base of the num-
ber represented by the string. This comes in handy particularly when you need a decimal
number from a string that starts with one or more zeros. Normally, the leading zero indicates
an octal value. But if you force the conversion to recognize the string value as a decimal, it is
converted the way you expect:

parseInt(“010”) // result = 8
parseInt(“010”,10) // result = 10
parseInt(“F2”) // result = NaN
parseInt(“F2”, 16) // result = 242

Use these functions wherever you need the integer or floating-point value. For example:

var result = 3 + parseInt(“3”); // result = 6
var ageVal = parseInt(document.forms[0].age.value);

The latter technique ensures that the string value of this property is converted to a number
(although you should do more data validation — see Chapter 43 on the CD-ROM — before
trying any math on a user-entered value).

882 Part IV ✦ JavaScript Core Language Reference

Both the parseInt() and parseFloat() methods start working on the first character of a
string and continue until there are no more numbers or decimal characters. That’s why you
can use them on strings — such as the one returned by the navigator.appVersion property
(for example, 5.0 (Windows; en-US)) — to obtain just the leading, numeric part of the
string. If the string does not begin with an acceptable character, the methods return NaN
(not a number).

Converting numbers to strings
If you attempt to pass a numeric data type value to many of the string methods discussed in
Chapter 27, JavaScript complains. Therefore, you should convert any number to a string
before you, for example, find out how many digits make up a number.

Several ways exist to force conversion from any numeric value to a string. The old-fashioned
way is to precede the number with an empty string and the concatenation operator. For
example, assume that a variable named dollars contains the integer value of 2500. To use
the string object’s length property (discussed later in this chapter) to find out how many
digits the number has, use this construction:

(“” + dollars).length // result = 4

The parentheses force JavaScript to evaluate the concatenation before attempting to extract
the length property.

A more elegant way is to use the toString() method. Construct such statements as you do
to invoke any object’s method. For example, to convert the dollars variable value to a
string, use this statement:

dollars.toString() // result = “2500”

This method has one added power in NN3+ and IE4+: You can specify a number base for the
string representation of the number. Called the radix, the base number is added as a parame-
ter to the method name. Here is an example of creating a numeric value for conversion to its
hexadecimal equivalent as a string:

var x = 30;
var y = x.toString(16); // result = “1e”

Use a parameter of 2 for binary results and 8 for octal. The default is base 10. Be careful not
to confuse these conversions with true numeric conversions. You cannot use results from the
toString() method as numeric operands in other statements.

Finally, in IE5.5+, NN6, and W3C browsers, three additional methods of the Number object —
toExponential(), toFixed(), and toPrecision()— return string versions of numbers for-
matted according to the rules and parameters passed to the methods. I describe these in
detail later in this chapter.

When a number isn’t a number
In a couple of examples in the previous section, you probably noticed that the result of some
operations was a value named NaN. That value is not a string but rather a special value that
stands for Not a Number. For example, if you try to convert the string “joe” to an integer
with parseFloat(), the function cannot possibly complete the operation. It reports back
that the source string, when converted, is not a number.

883Chapter 28 ✦ The Math, Number, and Boolean Objects

When you design an application that requests user input or retrieves data from a server-side
database, you cannot be guaranteed that a value you need to be numeric is, or can be con-
verted to, a number. If that’s the case, you need to see if the value is a number before per-
forming some math operation on it. JavaScript provides a special global function, isNaN(),
that enables you to test the “numberness” of a value. The function returns true if the value is
not a number and false if it is a number. For example, you can examine a form field that
should be a number:

var ageEntry = parseInt(document.forms[0].age.value);
if (isNaN(ageEntry)) {

alert(“Try entering your age again.”);
}

Math Object
Whenever you need to perform math that is more demanding than simple arithmetic, look
through the list of Math object methods for the solution.

Syntax
Accessing Math object properties and methods:

Math.property
Math.method(value [, value])

Compatibility: WinIE3+, MacIE3+, NN2+, Moz1+, Safari1+

About this object
In addition to the typical arithmetic operations (covered in detail in Chapter 32), JavaScript
includes more advanced mathematical powers that you can access in a way that may seem
odd to you if you have not programmed in true object-oriented environments before.
Although most arithmetic takes place on the fly (such as var result = 2 + 2), the rest
requires use of the JavaScript internal Math object (with a capital “M”). The Math object
brings with it several properties (which behave like some other languages’ constants) and
many methods (which behave like some other languages’ math functions).

The way you use the Math object in statements is the same way you use any JavaScript
object: You create a reference beginning with the Math object’s name, a period, and the name
of the property or method you need:

Math.property | method([parameter]. . . [,parameter])

Property references return the built-in values (things such as pi). Method references require
one or more values to be sent as parameters of the method. Every method returns a result.

Properties
JavaScript Math object properties represent a number of valuable constant values in math.
Table 28-1 shows you those methods and their values as displayed to 16 decimal places.

Math

884 Part IV ✦ JavaScript Core Language Reference

Table 28-1: JavaScript Math Properties

Property Value Description

Math.E 2.718281828459045091 Euler’s constant

Math.LN2 0.6931471805599452862 Natural log of 2

Math.LN10 2.302585092994045901 Natural log of 10

Math.LOG2E 1.442695040888963387 Log base-2 of E

Math.LOG10E 0.4342944819032518167 Log base-10 of E

Math.PI 3.141592653589793116 π
Math.SQRT1_2 0.7071067811865475727 Square root of 0.5

Math.SQRT2 1.414213562373095145 Square root of 2

Because these property expressions return their constant values, you use them in your regu-
lar arithmetic expressions. For example, to obtain the circumference of a circle whose diame-
ter is in variable d, employ this statement:

circumference = d * Math.PI;

Perhaps the most common mistakes scripters make with these properties are failing to capi-
talize the Math object name and observing the case-sensitivity of property names.

Methods
Methods make up the balance of JavaScript Math object powers. With the exception of the
Math.random() method, all Math object methods take one or more values as parameters.
Typical trigonometric methods operate on the single values passed as parameters; others
determine which of the numbers passed along are the highest or lowest of the group. The
Math.random() method takes no parameters but returns a randomized, floating-point value
between 0 and 1 (note that the method does not work on Windows or Macintosh versions of
Navigator 2). Table 28-2 lists all the Math object methods with their syntax and descriptions
of the values they return.

Table 28-2: Math Object Methods

Method Syntax Returns

Math.abs(val) Absolute value of val

Math.acos(val) Arc cosine (in radians) of val

Math.asin(val) Arc sine (in radians) of val

Math.atan(val) Arc tangent (in radians) of val

Math.atan2(val1, val2) Angle of polar coordinates x and y

Math.ceil(val) Next integer greater than or equal to val

Math.cos(val) Cosine of val

Math.exp(val) Euler’s constant to the power of val

Math.floor(val) Next integer less than or equal to val

Math.log(val) Natural logarithm (base e) of val

Math

885Chapter 28 ✦ The Math, Number, and Boolean Objects

Method Syntax Returns

Math.max(val1, val2) The greater of val1 or val2

Math.min(val1, val2) The lesser of val1 or val2

Math.pow(val1, val2) Val1 to the val2 power

Math.random() Random number between 0 and 1

Math.round(val) N+1 when val >= n.5; otherwise N

Math.sin(val) Sine (in radians) of val

Math.sqrt(val) Square root of val

Math.tan(val) Tangent (in radians) of val

HTML is not exactly a graphic artist’s dream environment, so using trig functions to obtain a
series of values for HTML-generated charting is not a hot JavaScript prospect. Only with the
advent of positionable elements have scripters been able to apply their knowledge of using
these functions to define fancy trajectories for flying elements. For scripters who are not
trained in programming, math is often a major stumbling block. But as you’ve seen so far, you
can accomplish a great deal with JavaScript by using simple arithmetic and a little bit of
logic — leaving the heavy-duty math for those who love it.

Creating random numbers
The Math.random() method returns a floating-point value between 0 and 1. If you design a
script to act like a card game, you need random integers between 1 and 52; for dice, the range
is 1 to 6 per die. To generate a random integer between zero and any top value, use the fol-
lowing formula:

Math.floor(Math.random() * n)

Here, n is the top number. To generate random numbers between a different range, use this
formula:

Math.floor(Math.random() * (n – m + 1)) + m

Here, m is the lowest possible integer value of the range and n equals the top number of the
range. For the dice game, the formula for each die is

newDieValue = Math.floor(Math.random() * 6) + 1;

Math object shortcut
In Chapter 31, you see details about a JavaScript construction that enables you to simplify
the way you address multiple Math object properties and methods in statements. The trick is
to use the with statement.

In a nutshell, the with statement tells JavaScript that the next group of statements (inside the
braces) refers to a particular object. In the case of the Math object, the basic construction
looks like this:

with (Math) {
//statements

}

Math

886 Part IV ✦ JavaScript Core Language Reference

For all intervening statements, you can omit the specific references to the Math object.
Compare the long reference way of calculating the area of a circle (with a radius of six units)

result = Math.pow(6,2) * Math.PI;

to the shortcut reference way:

with (Math) {
result = pow(6,2) * PI;

}

Though the latter occupies more lines of code, the object references are shorter and more
natural when reading the code. For a longer series of calculations involving Math object prop-
erties and methods, the with construction saves keystrokes and reduces the likelihood of a
case-sensitive mistake with the object name in a reference. You can also include other full-
object references within the with construction; JavaScript attempts to attach the object
name only to those references lacking an object name. On the downside, the with construc-
tion is not particularly efficient in JavaScript because it must perform a lot of internal track-
ing in order to work.

Number Object

Properties Methods

Constructor toExponential()
MAX_VALUE toFixed()
MIN_VALUE toLocaleString()
NaN toString()
NEGATIVE_INFINITY toPrecision()
POSITIVE_INFINITY valueOf()
Prototype

Syntax
Creating a number object:

var val = new Number(number);

Accessing number and Number object properties and methods:

number.property | method([parameters])
Number.property | method([parameters])

Compatibility: WinIE4+, MacIE4+, NN3+, Moz1+, Safari1+

About this object
The Number object is rarely used because (for the most part) JavaScript satisfies day-to-day
numeric needs with a plain number value. But the Number object contains some information
and power of value to serious programmers.

Math

887Chapter 28 ✦ The Math, Number, and Boolean Objects

First on the docket are properties that define the ranges for numbers in the language. The
largest number is 1.79E+308; the smallest number is 2.22E-308. Any number larger than the
maximum is POSITIVE_INFINITY; any number smaller than the minimum is
NEGATIVE_INFINITY. Rarely will you accidentally encounter these values.

More to the point of a JavaScript object, however, is the prototype property. Chapter 27
shows how to add a method to a string object’s prototype such that every newly created
object contains that method. The same goes for the Number.prototype property. If you have
a need to add common functionality to every number object, this is where to do it. This pro-
totype facility is unique to full-fledged number objects and does not apply to plain number
values. For experienced programmers who care about such matters, JavaScript number
objects and values are defined internally as ieee double-precision 64-bit values.

Properties

constructor
(See string.constructor in Chapter 27)

MAX_VALUE
MIN_VALUE
NEGATIVE_INFINITY
POSITIVE_INFINITY

Value: Number. Read-Only
Compatibility: WinIE4+, MacIE4+, NN3+, Moz1+, Safari1+

The Number.MAX_VALUE and Number.MIN_VALUE properties belong to the static Number
object. They represent constants for the largest and smallest possible positive numbers that
JavaScript (and ECMAScript) can work with. Their actual values are 1.7976931348623157 ×
10308, and 5 × 10-324, respectively.

A number that falls outside the range of allowable numbers is equal to the constant
Number.POSITIVE_INFINITY or Number.NEGATIVE_INFINITY.

Example
Enter each of the four Number object expressions into the top text field of The Evaluator
(Chapter 13) to see how the browser reports each value.

Number.MAX_VALUE
Number.MIN_VALUE
Number.NEGATIVE_INFINITY
Number.POSITIVE_INFINITY

Related Items: NaN property; isNaN() global function.

NaN
Value: NaN. Read-Only
Compatibility: WinIE4+, MacIE4+, NN3+, Moz1+, Safari1+

The NaN property is a constant that JavaScript uses to report when a number-related function
or method attempts to work on a value other than a number or the result is something other

Number.NaN

888 Part IV ✦ JavaScript Core Language Reference

than a number. You encounter the NaN value most commonly as the result of the parseInt()
and parseFloat() functions whenever a string undergoing conversion to a number lacks a
numeral as the first character. Use the isNaN() global function to see if a value is an NaN
value.

Example
See the discussion of the isNaN() function in Chapter 34.

Related Item: isNaN() global function.

prototype
(See String.prototype in Chapter 27)

Methods
number.toExponential(fractionDigits)
number.toFixed(fractionDigits)
number.toPrecision(precisionDigits)

Returns: String.
Compatibility: WinIE5.5+, MacIE-, NN6+, Moz1+, Safari1+

A recent addition to the ECMA language — and thus to the JavaScript-enabled browsers — are
three Number object methods that let scripts control the formatting of numbers for display as
string text. Each method has a unique purpose, but they all return strings. You should per-
form all math operations as unformatted number objects because the values have the most
precision. Only after you are ready to display the results should you use one of these meth-
ods to convert the number to a string for display as body text or assignment to a text field.

The toExponential() method forces a number to display in exponential notation, even if
the number is in the range in which JavaScript normally uses standard notation. The parame-
ter is an integer specifying how many digits to the right of the decimal should be returned. All
digits to the right of the decimal are returned, even if they are zero. For example, if a variable
contains the numeric value 345, applying toExponential(3) to that value yields 3.450e+2,
which is JavaScript’s exponential notation for 3.45 × 102.

Use the toFixed() method when you want to format a number with a specific number of dig-
its to the right of the decimal. This is the method you use, for instance, to display the results
of a financial calculation in units and hundredths of units (for example, dollars and cents).
The parameter to the method is an integer indicating the number of digits to be displayed to
the right of the decimal. If the number being formatted has more numbers to the right of the
decimal than the number of digits specified by the parameter, the method rounds the right-
most visible digit — but only with respect to the unrounded value of the next digit. For exam-
ple, the value 123.455 fixed to two digits to the right of the decimal is rounded up to 123.46.
But if the starting value is 123.4549, the method ignores the 9 and sees that the 4 to the right
of the 5 should be rounded down; therefore, the result is 123.45. Do not consider the
toFixed() method to be an accurate rounder of numbers; however, it does a satisfactory job
in most cases.

The final method is toPrecision(), which enables you to define how many total digits
(including digits to the left and right of the decimal) to display of a number. In other words,
you define the precision of a number. The following list demonstrates the results of several
parameter values signifying a variety of precisions:

Number.NaN

889Chapter 28 ✦ The Math, Number, and Boolean Objects

var num = 123.45
num.toPrecision(1) // result = 1e+2
num.toPrecision(2) // result = 1.2e+2
num.toPrecision(3) // result = 123
num.toPrecision(4) // result = 123.5
num.toPrecision(5) // result = 123.45
num.toPrecision(6) // result = 123.450

Notice that the same kind of rounding can occur with toPrecision() as it does for
toFixed().

Example
You can use The Evaluator (Chapter 13) to experiment with all three of these methods with a
variety of parameter values. Before invoking any method, be sure to assign a numeric value to
one of the built-in global variables in The Evaluator (a through z).

a = 10/3
a.toFixed(4)
“$” + a.toFixed(2)

None of these methods works with number literals (for example, 123.toExponential(2)
does not work).

Related Item: Math object.

number.toLocaleString()
Returns: String.
Compatibility: WinIE5.5+, MacIE5+, NN6+, Moz1+, Safari1+

The number.toLocaleString() method returns a string value version of the current num-
ber in a format that may vary according to a browser’s locale settings. According to the ECMA
Edition 3 standard, browsers have some leeway in determining exactly how the
toLocaleString() method should return a string value that conforms with the language
standard of the client system or browser.

Related Items: number.toFixed(), number.toString() methods.

number.toString([radix])
Returns: String.
Compatibility: WinIE4+, MacIE4+, NN4+, Moz1+, Safari1+

The number.toString() method returns a string value version of the current number. The
default radix parameter (10) converts the value to base-10 notation if the original number
isn’t already of that type. Or you can specify other number bases (for example, 2 for binary,
16 for hexadecimal) to convert the original number to the other base — as a string, not a
number, for further calculation.

Example
Use The Evaluator (Chapter 13) to experiment with the toString() method. Assign the num-
ber 12 to the variable a and see how the number is converted to strings in a variety of num-
ber bases:

numberObject.toString()

890 Part IV ✦ JavaScript Core Language Reference

a = 12
a.toString() // base 10
a.toString(2)
a.toString(16)

Related Item: toLocaleString() method.

number.valueOf()
(See string.valueOf() in Chapter 27)

Boolean Object

Properties Methods

constructor toString()
prototype valueOf()

Syntax
Creating a Boolean object:

var val = new Boolean(BooleanValue);

Accessing Boolean object properties:

BooleanObject.property | method

Compatibility: WinIE4+, MacIE4+, NN3+, Moz1+, Safari1+

About this object
You work with Boolean values a lot in JavaScript — especially as the result of conditional
tests. Just as string values benefit from association with string objects and their properties
and methods, so, too, do Boolean values receive aid from the Boolean object. For example,
when you display a Boolean value in a text box, the “true” or “false” string is provided by
the Boolean object’s toString() method so you don’t have to invoke it directly.

The only time you need to even think about a Boolean object is if you wish to attach some
property or method to Boolean objects that you create with the new Boolean() constructor.
Parameter values for the constructor include the string versions of the values, numbers (0 for
false; any other integer for true), and expressions that evaluate to a Boolean value. Any
such new Boolean object is imbued with the new properties or methods you add to the
prototype property of the core Boolean object.

For details about the properties and methods of the Boolean object, see the corresponding
listings for the String object in Chapter 27.

✦ ✦ ✦

numberObject.toString()

The Date Object

Perhaps the most untapped power of JavaScript is its date and time
handling. Scripters passed over the Date object with good cause

in the early days of JavaScript, because in earlier versions of scriptable
browsers, significant bugs and platform-specific anomalies made date
and time programming hazardous without significant testing. Even
with the improved bug situation, working with dates requires a work-
ing knowledge of the world’s time zones and their relationships with
the standard reference point, known as Greenwich Mean Time (GMT)
or Coordinated Universal Time (abbreviated UTC).

Now that date- and time-handling has improved in the latest browsers,
I hope more scripters look into incorporating these kinds of calcula-
tions into their pages. In Chapter 54 on the CD-ROM, for example, I
show you an application that lets your Web site highlight the areas
that have been updated since each visitor’s last surf ride through
your pages — an application that relies heavily on date arithmetic
and time zone conversion.

Before getting to the JavaScript part of date discussions, however,
the chapter summarizes key facts about time zones and their impact
on scripting date and time on a browser. If you’re not sure what GMT
and UTC mean, the following section is for you.

Time Zones and GMT
By international agreement, the world is divided into distinct time
zones that allow the inhabitants of each zone to say with confidence
that when the Sun appears directly overhead, it is roughly noon,
squarely in the middle of the day. The current time in the zone is
what we set our clocks to — the local time.

That’s fine when your entire existence and scope of life go no further
than the width of your own time zone. But with instant communication
among all parts of the world, your scope reaches well beyond local
time. Periodically you must be aware of the local time in other zones.
After all, if you live in New York, you don’t want to wake up someone in
Los Angeles before dawn with a phone call from your office.

For the rest of this section, I speak of the Sun “moving” as if Earth
were the center of the solar system. I do so for the convenience of
our daily perception of the Sun arcing across what appears to us
as a stationary sky. In point of fact, I believe Copernicus’s theories,
so delete that e-mail you were about to send me.

Note

2929C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Working with date and
time values in JavaScript

Performing date
calculations

Validating date entry
form fields

✦ ✦ ✦ ✦

892 Part IV ✦ JavaScript Core Language Reference

From the point of view of the time zone over which the Sun is positioned at any given instant,
all time zones to the east have already had their noon, so it is later in the day for them — one
hour later per time zone (except for those few time zones offset by fractions of an hour).
That’s why when U.S. television networks broadcast simultaneously to the eastern and cen-
tral time zones, the announced schedule for a program is “10 eastern, 9 central.”

Many international businesses must coordinate time schedules of far-flung events. Doing so
and taking into account the numerous time zone differences (not to mention seasonal national
variations, such as daylight saving time) would be a nightmare. To help everyone out, a stan-
dard reference point was devised: the time zone running through the celestial observatory at
Greenwich (pronounced GREN-itch), England. This time zone is called Greenwich Mean Time,
or GMT for short. The “mean” part comes from the fact that on the exact opposite side of the
globe (through the Pacific Ocean) is the international date line, another world standard that
decrees where the first instance of the next calendar day appears on the planet. Thus, GMT is
located at the middle, or mean, of the full circuit of the day. Not that many years ago, GMT was
given another abbreviation that is not based on any one language of the planet. The abbrevia-
tion is UTC (pronounced as its letters: yu-tee-see), and the English version is Coordinated
Universal Time. Whenever you see UTC, it is for all practical purposes the same as GMT.

If your personal computer’s system clock is set correctly, the machine ticks away in GMT
time. But because you set your local time zone in the appropriate control panel, all file time
stamps and clock displays are in your local time. The machine knows what the offset time is
between your local time and GMT. For daylight saving time, you may have to check a prefer-
ence setting so that the offset is adjusted accordingly; in Windows 95 and later, the operating
system knows when the changeover occurs and prompts you if changing the offset is okay. In
any case, if you travel across time zones with a laptop, you should change the computer’s
time zone setting, not its clock.

JavaScript’s inner handling of date and time works a lot like the PC clock (on which your pro-
grams rely). Date values that you generate in a script are stored internally in GMT time; how-
ever, almost all the displays and extracted values are in the local time of the visitor (not the
Web site server). And remember that the date values are created on the visitor’s machine by
virtue of your script’s generating that value — you don’t send “living” date objects to the
client from the server. This concept is perhaps the most difficult to grasp as you work with
JavaScript date and time.

Whenever you program time and date in JavaScript for a public Web page, you must take the
worldview. This view requires knowing that the visitor’s computer settings determine the
accuracy of the conversion between GMT and local time. You’ll also have to do some testing
by changing your PC’s clock to times in other parts of the world and making believe you are
temporarily in those remote locations, which isn’t always easy to do. It reminds me of the
time I was visiting Sydney, Australia. I was turning in for the night and switched on the televi-
sion in the hotel. This hotel received a live satellite relay of a long-running U.S. television pro-
gram, Today. The program broadcast from New York was for the morning of the same day I
was just finishing in Sydney. Yes, this time zone stuff can make your head hurt.

The Date Object
Like a handful of other objects in JavaScript and the document object models, there is a dis-
tinction between the single, static Date object that exists in every window (or frame) and a
date object that contains a specific date and time. The static Date object (uppercase “D”) is
used in only a few cases: Primarily to create a new instance of a date and to invoke a couple
of methods that the Date object offers for the sake of some generic conversions.

893Chapter 29 ✦ The Date Object

Most of your date and time work, however, is with instances of the Date object. These
instances are referred to generically as date objects (lowercase “d”). Each date object is a
snapshot of an exact millisecond in time, whether it be for the instant at which you generate
the object or for a specific time in the past or future you need for calculations. If you need to
have a live clock ticking away, your scripts will repeatedly create new date objects to grab up-
to-the-millisecond snapshots of your computer’s clock. To show the time on the page, extract
the hours, minutes, and seconds from the snapshot date object, and then display the values
as you like (for example, a digital readout, a graphical bar chart, and so on). By and large, it is
the methods of a date object instance that your scripts invoke to read or modify individual
components of a date object (for example, the month or hour).

Despite its name, every date object contains information about date and time. Therefore,
even if you’re concerned only about the date part of an object’s data, time data is standing by
as well. As you learn in a bit, the time element can catch you off-guard for some operations.

Creating a date object
The statement that asks JavaScript to make an object for your script uses the special object
construction keyword new. The basic syntax for generating a new date object is as follows:

var dateObjectName = new Date([parameters]);

The date object evaluates to an object data type rather than to some string or numeric value.

With the date object’s reference safely tucked away in the variable name, you access all date-
oriented methods in the dot-syntax fashion with which you’re already familiar:

var result = dateObjectName.method();

With variables, such as result, your scripts perform calculations or displays of the date object’s
data (some methods extract pieces of the date and time data from the object). If you then want
to put some new value into the date object (such as adding a year to the date object), you
assign the new value to the object by way of the method that lets you set the value:

dateObjectName.method(newValue);

This example doesn’t look like the typical JavaScript assignment statement, which has an
equals sign operator. But this statement is the way in which methods that set date object
data work.

You cannot get very far into scripting dates without digging into time zone arithmetic. Although
JavaScript may render the string equivalent of a date object in your local time zone, the internal
storage is strictly GMT.

Even though you haven’t yet seen details of a date object’s methods, here is how you use two
of them to add one year to today’s date:

var oneDate = new Date(); // creates object with current GMT date
var theYear = oneDate.getYear(); // theYear is now storing the value 2004
theYear = theYear + 1; // theYear now is 2005
oneDate.setYear(theYear); // new year value now in the object

At the end of this sequence, the oneDate object automatically adjusts all the other date com-
ponents for the next year’s date. The day of the week, for example, will be different, and
JavaScript takes care of that for you, should you need to extract that data. With next year’s
data in the oneDate object, you may now want to extract that new date as a string value for
display in a field on the page or submit it quietly to a CGI program on the server.

894 Part IV ✦ JavaScript Core Language Reference

The issue of parameters for creating a new date object is a bit complex, mostly because of the
flexibility that JavaScript offers the scripter. Recall that the job of the new Date() statement
is to create a place in memory for all data that a date needs to store. What is missing from
that task is the data — what date and time to enter into that memory spot. That’s where the
parameters come in.

If you leave the parameters empty, JavaScript takes that to mean you want today’s date and
the current time to be assigned to that new date object. JavaScript isn’t any smarter, of
course, than the setting of the internal clock of your page visitor’s personal computer. If the
clock isn’t correct, JavaScript won’t do any better of a job identifying the date and time.

Remember that when you create a new date object, it contains the current time as well. The
fact that the current date may include a time of 16:03:19 (in 24-hour time) may throw off
things, such as days-between-dates calculations. Be careful.

To create a date object for a specific date or time, you have five ways to send values as a
parameter to the new Date() constructor function:

new Date(“Month dd, yyyy hh:mm:ss”)
new Date(“Month dd, yyyy”)
new Date(yy,mm,dd,hh,mm,ss)
new Date(yy,mm,dd)
new Date(milliseconds)

The first four variations break down into two styles — a long string versus a comma-delimited
list of data — each with optional time settings. If you omit time settings, they are set to 0 (mid-
night) in the date object for whatever date you entered. You cannot omit date values from the
parameters — every date object must have a real date attached to it, whether you need it or not.

In the long string versions, the month is spelled out in full in English. No abbreviations are
allowed. The rest of the data is filled with numbers representing the date, year, hours, min-
utes, and seconds, even if the order is different from your local way of indicating dates. For
single-digit values, you can use either a one- or two-digit version (such as 4:05:00). Colons
separate hours, minutes, and seconds.

The short versions contain a non-quoted list of integer values in the order indicated. JavaScript
cannot know that a 30 means the date if you accidentally place it in the month slot.

You use the last version only when you have the millisecond value of a date and time avail-
able. This generally occurs after some math arithmetic (described later in this chapter), leav-
ing you with a date and time in millisecond format. To convert that numeric value to a date
object, use the new Date() constructor. From the new date object created, you can retrieve
more convenient values about the date and time.

Native object properties and methods
Like the String and Array objects, the Date object features a small handful of properties and
methods that all native JavaScript objects have in common. On the property side, the Date
object has a prototype property, which enables you to apply new properties and methods to
every date object created in the current page. You can see examples of how this works in dis-
cussions of the prototype property for String and Array objects (Chapters 27 and 30, respec-
tively). At the same time, every instance of a date object in IE4+/W3C has a constructor
property that references the constructor function that generated the object.

A date object has numerous methods that convert date object types to strings, most of
which are more specific than the generic toString() one. The valueOf() method returns
the millisecond integer that is stored for a particular date.

Note

895Chapter 29 ✦ The Date Object

Date methods
The bulk of a date object’s methods are for reading parts of the date and time information
and for changing the date and time stored in the object. These two categories of methods are
easily identifiable because they all begin with the word “get” or “set.” Table 29-1 lists all of the
methods of both the static Date object and, by inheritance, date object instances. The list is
impressive — some would say frightening — but there are patterns you should readily observe.
Most methods deal with a single component of a date and time value: year, month, date, and so
forth. Each block of “get” and “set” methods also has two sets of methods: one for the local
date and time conversion of the date stored in the object; one for the actual UTC date stored in
the object. After you see the patterns, the list should be more manageable. Unless otherwise
noted, a method has been part of the Date object since the first generation of scriptable
browsers, and is therefore also supported in new browsers.

Table 29-1: Date Object Methods

Method Value Range Description

dateObj.getFullYear() 1970-... Specified year (NN4+, IE3+)

dateObj.getYear() 70-... (See Text)

dateObj.getMonth() 0-11 Month within the year (January = 0)

dateObj.getDate() 1-31 Date within the month

dateObj.getDay() 0-6 Day of week (Sunday = 0)

dateObj.getHours() 0-23 Hour of the day in 24-hour time

dateObj.getMinutes() 0-59 Minute of the specified hour

dateObj.getSeconds() 0-59 Second within the specified minute

dateObj.getTime() 0-... Milliseconds since 1/1/70 00:00:00 GMT

dateObj.getMilliseconds() 0-999 Milliseconds since the previous full
second (NN4+, IE3+)

dateObj.getUTCFullYear() 1970-... Specified UTC year (NN4+, IE3+)

dateObj.getUTCMonth() 0-11 UTC month within the year (January = 0)
(NN4+, IE3+)

dateObj.getUTCDate() 1-31 UTC date within the month (NN4+,
IE3+)

dateObj.getUTCDay() 0-6 UTC day of week (Sunday = 0) (NN4+,
IE3+)

dateObj.getUTCHours() 0-23 UTC hour of the day in 24-hour time
(NN4+, IE3+)

dateObj.getUTCMinutes() 0-59 UTC minute of the specified hour (NN4+,
IE3+)

dateObj.getUTCSeconds() 0-59 UTC second within the specified minute
(NN4+, IE3+)

dateObj.getUTCMilliseconds() 0-999 UTC milliseconds since the previous full
second (NN4+, IE3+)

dateObj.setYear(val) 1970-... Be safe: always specify a four-digit year

dateObj.setFullYear(val) 1970-... Specified year (NN4+, IE3+)

dateObj.setMonth(val) 0-11 Month within the year (January = 0)

Continued

896 Part IV ✦ JavaScript Core Language Reference

Table 29-1 (continued)

Method Value Range Description

dateObj.setDate(val) 1-31 Date within the month

dateObj.setDay(val) 0-6 Day of week (Sunday = 0)

dateObj.setHours(val) 0-23 Hour of the day in 24-hour time

dateObj.setMinutes(val) 0-59 Minute of the specified hour

dateObj.setSeconds(val) 0-59 Second within the specified minute

dateObj.setMilliseconds(val) 0-999 Milliseconds since the previous full
second (NN4+, IE3+)

dateObj.setTime(val) 0-... Milliseconds since 1/1/70 00:00:00 GMT

dateObj.setUTCFullYear(val) 1970-... Specified UTC year (NN4+, IE3+)

dateObj.setUTCMonth(val) 0-11 UTC month within the year (January = 0)
(NN4+, IE3+)

dateObj.setUTCDate(val) 1-31 UTC date within the month (NN4+,
IE3+)

dateObj.setUTCDay(val) 0-6 UTC day of week (Sunday = 0) (NN4+,
IE3+)

dateObj.setUTCHours(val) 0-23 UTC hour of the day in 24-hour time
(NN4+, IE3+)

dateObj.setUTCMinutes(val) 0-59 UTC minute of the specified hour (NN4+,
IE3+)

dateObj.setUTCSeconds(val) 0-59 UTC second within the specified minute
(NN4+, IE3+)

dateObj.setUTCMilliseconds(val) 0-999 UTC milliseconds since the previous full
second (NN4+, IE3+)

dateObj.getTimezoneOffset() 0-... Minutes offset from GMT/UTC

dateObj.toDateString() Date-only string in a format determined
by browser (WinIE5.5+)

dateObj.toGMTString() Date/time string in universal format

dateObj.toLocaleDateString() Date-only string in your system’s
localized format (NN6+, WinIE5.5+)

dateObj.toLocaleString() Date/time string in your system’s
localized format

dateObj.toLocaleTimeString() Time-only string in your system’s
localized format (NN6+, WinIE5.5+)

dateObj.toString() Date/time string in a format determined
by browser

dateObj.toTimeString() Time-only string in a format determined
by browser (WinIE5.5+)

dateObj.toUTCString() Date/time string in universal format
(NN4+, IE3+)

Date.parse(“dateString”) Converts string date to milliseconds
integer

Date.UTC(date values) Converts GMT string date to milliseconds
integer

897Chapter 29 ✦ The Date Object

Deciding between using the UTC or local versions of the methods depends on several factors.
If the browsers you must support go back to the beginning, you will be stuck with the local
versions in any case. But even for newer browsers, activities, such as calculating the number
of days between dates or creating a countdown timer for a quiz, won’t care which set you
use, but you must use the same set for all calculations. If you start mixing local and UTC ver-
sions of date methods, you’ll be destined to get wrong answers. The UTC versions come in
most handy when your date calculations must take into account the time zone of the client
machine compared to some absolute in another time zone — calculating the time remaining
to the chiming of Big Ben signifying the start of the New Year in London.

JavaScript maintains its date information in the form of a count of milliseconds (thousandths
of a second) starting from January 1, 1970, in the GMT (UTC) time zone. Dates before that
starting point are stored as negative values (but see the section on bugs and gremlins later in
this chapter). Regardless of the country you are in or the date and time formats specified for
your computer, the millisecond is the JavaScript universal measure of time. Any calculations
that involve adding or subtracting times and dates should be performed in the millisecond
values to ensure accuracy. Therefore, though you may never display the milliseconds value in
a field or dialog box, your scripts will probably work with them from time to time in variables.
To derive the millisecond equivalent for any date and time stored in a date object, use the
dateObj.getTime() method, as in

var startDate = new Date();
var started = startDate.getTime();

Although the method has the word “time” in its name, the fact that the value is the total num-
ber of milliseconds from January 1, 1970, means the value also conveys a date.

Other date object get methods read a specific component of the date or time. You have to exer-
cise some care here, because some values begin counting with 0 when you may not expect it.
For example, January is month 0 in JavaScript’s scheme; December is month 11. Hours, min-
utes, and seconds all begin with 0, which, in the end, is logical. Calendar dates, however, use
the actual number that would show up on the wall calendar: The first day of the month is date
value 1. For the twentieth-century years, the year value is whatever the actual year number is,
minus 1900. For 1996, that means the year value is 96. But for years before 1900 and after 1999,
JavaScript uses a different formula, showing the full year value. This means you have to check
whether a year value is less than 100 and add 1900 to it before displaying that year.

var today = new Date();
var thisYear = today.getYear();
if (thisYear < 100) {

thisYear += 1900;
}

This assumes, of course, you won’t be working with years before A.D. 100. If your audience is
strictly IE3+/NN4+, which is quite likely, use only the getFullYear() method. This method
returns the complete set of year digits from all ranges.

To adjust any one of the elements of a date value, use the corresponding set method in an
assignment statement. If the new value forces the adjustment of other elements, JavaScript
takes care of that. For example, consider the following sequence and how some values are
changed for us:

myBirthday = new Date(“September 11, 2001”);
result = myBirthday.getDay(); // result = 2, a Tuesday
myBirthday.setYear(2002); // bump up to next year
result = myBirthday.getDay(); // result = 3, a Wednesday

Because the same date in the following year is on a different day, JavaScript tracks that for you.

898 Part IV ✦ JavaScript Core Language Reference

Accommodating time zones
Understanding the dateObj.getTimezoneOffset() method involves both your operating sys-
tem’s time control panel setting and an internationally recognized (in computerdom, anyway)
format for representing dates and times. If you have ignored the control panel stuff about set-
ting your local time zone, the values you get for this property may be off for most dates and
times. In the eastern part of North America, for instance, the eastern standard time zone is five
hours earlier than Greenwich Mean Time. With the getTimezoneOffset() method producing a
value of minutes’ difference between GMT and the PC’s time zone, the five hours difference of
eastern standard time is rendered as a value of 300 minutes. On the Windows platform, the
value automatically changes to reflect changes in daylight saving time in the user’s area (if
applicable). Offsets to the east of GMT (to the date line) are expressed as negative values.

Dates as strings
When you generate a date object, JavaScript automatically applies the toString() method
to the object if you attempt to display that date either in a page or alert box. The format of
this string varies with browser and operating system platform. For example, in IE6 for
Windows XP, the string is in the following format:

Mon Jan 5 14:11:49 CDT 2004

But in NN7 for Windows XP, the string is

Mon Jan 05 2004 14:11:49 GMT-0500 (Central Standard Time)

Other browsers return their own variations on the string. The point is not to rely on a specific
format and character location of this string for the components of dates. Use the date object
methods to read date object components.

JavaScript does, however, provide two methods that return the date object in more constant
string formats. One, dateObj.toGMTString(), converts the date and time to the GMT equiv-
alent on the way to the variable that you use to store the extracted data. Here is what such
data looks like:

Mon, 05 Jan 2004 19:11:49 GMT

If you’re not familiar with the workings of GMT and how such conversions can present unex-
pected dates, exercise great care in testing your application. Eight o’clock on a Friday evening
in California in the winter is four o’clock on Saturday morning GMT.

If time zone conversions make your head hurt, you can use the second string method,
dateObj.toLocaleString(). In NN7 for North American Windows users, the returned
value looks like this:

Monday, January 05, 2004 14:11:49

Starting with IE5.5 and NN6, you can also have JavaScript convert a date object to just the
date or time portions in a nicely formatted version. The best pair of methods for this are
toLocaleDateString() and toLocaleTimeString(), because these methods return values
that make the most sense to the user, based on the localization settings of the user’s operat-
ing system and browser.

Friendly date formats for older browsers
If you don’t have the luxury of writing only for IE5.5+/NN6+/W3C, you can create your own for-
matting function to do the job for a wide range of browsers. Listing 29-1 demonstrates one way
of creating this kind of string from a date object (in a form compatible with IE4+ and NN4+).

899Chapter 29 ✦ The Date Object

Listing 29-1: Creating a Friendly Date String

<html>
<head>

<title>Date String Maker</title>
<script type=”text/javascript”>
monthNames = [“January”, “February”, “March”, “April”, “May”, “June”,

“July”,
“August”, “September”, “October”, “November”, “December”];

dayNames = [“Sunday”, “Monday”, “Tuesday”, “Wednesday”, “Thursday”,
“Friday”, “Saturday”];

function customDateString(oneDate) {
var theDay = dayNames[oneDate.getDay()];
var theMonth = monthNames[oneDate.getMonth()];
var theYear = oneDate.getFullYear();
return theDay + “, “ + theMonth + “ “ + oneDate.getDate() +

“, “ + theYear;
}
</script>

</head>
<body>

<h1>
Welcome!

</h1>
<script type=”text/javascript”>
document.write(customDateString(new Date()))
</script>
<hr />

</body>
</html>

Assuming the user has the PC’s clock set correctly (a big assumption), the date appearing
just below the opening headline is the current date — making it appear as though the docu-
ment had been updated today. The downside to this approach (as opposed to the newer
toLocaleDateString() method) is that international users are forced to view dates in the
format you design, which may be different from their local custom.

More conversions
The last two methods shown in Listing 29-1 are methods of the static Date object. These util-
ity methods convert dates from string or numeric forms into millisecond values of those
dates. The primary beneficiary of these actions is the dateObj.setTime() method, which
requires a millisecond measure of a date as a parameter. You use this method to throw an
entirely different date into an existing date object.

Date.parse() accepts as a parameter date strings similar to the ones you’ve seen in this
section, including the internationally approved version. Date.UTC(), on the other hand,
requires the comma-delimited list of values (in proper order: yy,mm,dd,hh,mm,ss) in the
GMT zone. The Date.UTC() method gives you a backward-compatible way to hard-code a
GMT time (you can do the same in NN4+ and IE4+ via the UTC methods). The following is an
example that creates a new date object for 6 p.m. on March 4, 2004, GMT in WinIE6:

var newObj = new Date(Date.UTC(2004,2,4,18,0,0));
result = newObj.toString(); // result = “Thu, Mar 04 10:00:00 PST 2004”

900 Part IV ✦ JavaScript Core Language Reference

The second statement returns a value in a local time zone, because all non-UTC methods
automatically convert the GMT time stored in the object to the client’s local time.

Date and time arithmetic
You may need to perform some math with dates for any number of reasons. Perhaps you
need to calculate a date at some fixed number of days or weeks in the future or figure out the
number of days between two dates. When calculations of these types are required, remember
the lingua franca of JavaScript date values: milliseconds.

What you may need to do in your date-intensive scripts is establish some variable values rep-
resenting the number of milliseconds for minutes, hours, days, or weeks, and then use those
variables in your calculations. Here is an example that establishes some practical variable
values, building on each other:

var oneMinute = 60 * 1000;
var oneHour = oneMinute * 60;
var oneDay = oneHour * 24;
var oneWeek = oneDay * 7;

With these values established in a script, I can use one to calculate the date one week from
today:

var targetDate = new Date();
var dateInMs = targetDate.getTime();
dateInMs += oneWeek;
targetDate.setTime(dateInMs);

Another example uses components of a date object to assist in deciding what kind of greeting
message to place in a document, based on the local time of the user’s PC clock. Listing 29-2
adds to the scripting from Listing 29-1, bringing some quasi-intelligence to the proceedings.

Listing 29-2: A Dynamic Welcome Message

<html>
<head>

<title>Date String Maker</title>
<script type=”text/javascript”>
monthNames = [“January”, “February”, “March”, “April”, “May”, “June”,

“July”,
“August”, “September”, “October”, “November”, “December”];

dayNames = [“Sunday”, “Monday”, “Tuesday”, “Wednesday”, “Thursday”,
“Friday”, “Saturday”];

function customDateString(oneDate) {
var theDay = dayNames[oneDate.getDay()];
var theMonth = monthNames[oneDate.getMonth()];
var theYear = oneDate.getFullYear();
return theDay + “, “ + theMonth + “ “ + oneDate.getDate() +

“, “ + theYear;
}
function dayPart(oneDate) {

var theHour = oneDate.getHours();
if (theHour < 6)

return “wee hours”;
if (theHour < 12)

return “morning”;

901Chapter 29 ✦ The Date Object

if (theHour < 18)
return “afternoon”;

return “evening”;
}
</script>

</head>
<body>

<h1>Welcome!</h1>
<script type=”text/javascript”>
today = new Date();
var header = (customDateString(today)).italics();
header += “
We hope you are enjoying the “;
header += dayPart(today) + “.”;
document.write(header);
</script>
<hr />

</body>
</html>

The script divides the day into four parts and presents a different greeting for each part of the
day. The greeting that plays is based, simply enough, on the hour element of a date object repre-
senting the time the page is loaded into the browser. Because this greeting is embedded in the
page, the greeting does not change no matter how long the user stays logged on to the page.

Counting the days...
You may find one or two more date arithmetic applications useful. One displays the number
of shopping days left until Christmas (in the user’s time zone); the other is a countdown timer
to the start of the year 2100.

Listing 29-3 demonstrates how to calculate the number of days between the current day and
some fixed date in the future. The assumption in this application is that all calculations take
place in the user’s time zone. The example shows the display of the number of shopping days
before the next Christmas day (December 25). The basic operation entails converting the cur-
rent date and the next December 25 to milliseconds, calculating the number of days repre-
sented by the difference in milliseconds. If you let the millisecond values represent the dates,
JavaScript automatically takes care of leap years.

The only somewhat tricky part is setting the year of the next Christmas day correctly. You
can’t just slap the fixed date with the current year, because if the program is run on
December 26, the year of the next Christmas must be incremented by one. That’s why the
constructor for the Christmas date object doesn’t supply a fixed date as its parameters, but
rather, sets individual components of the object.

Listing 29-3: How Many Days Until Christmas

<html>
<head>

<title>Christmas Countdown</title>
<script type=”text/javascript”>
function getDaysUntilXmas() {

var oneMinute = 60 * 1000;

Continued

902 Part IV ✦ JavaScript Core Language Reference

Listing 29-3 (continued)

var oneHour = oneMinute * 60;
var oneDay = oneHour * 24;
var today = new Date();
var nextXmas = new Date();
nextXmas.setMonth(11);
nextXmas.setDate(25);
if (today.getMonth() == 11 && today.getDate() > 25) {

nextXmas.setFullYear(nextXmas.getFullYear() + 1);
}
var diff = nextXmas.getTime() - today.getTime();
diff = Math.floor(diff/oneDay);
return diff;

}
</script>

</head>
<body>

<h1>
<script type=”text/javascript”>
var header = “You have <i>” + getDaysUntilXmas() + “<\/i> “;
header += “shopping days until Christmas.”;
document.write(header);
</script>

</h1>
<hr />

</body>
</html>

The second variation on calculating the amount of time before a certain event takes time
zones into account. For this demonstration, the page is supposed to display a countdown
timer to the precise moment when the flame for the 2008 Summer Games in Beijing is to be lit.
That event takes place in a time zone that may be different from that of the page’s viewer, so
the countdown timer must calculate the time difference accordingly.

Listing 29-4 shows a simplified version that simply displays the ticking timer in a text field.
The output, of course, could be customized in any number of ways, depending on the amount
of dynamic HTML you want to employ on a page. The time of the lighting for this demo is set
at 11:00 GMT on August 8, 2008 (the date is certainly accurate, but the officials may set a dif-
ferent time closer to the actual event).

Because this application is implemented as a live ticking clock, the code starts by setting some
global variables that should be calculated only once so that the function that gets invoked
repeatedly has a minimum of calculating to do (to be more efficient). The Date.UTC() method
provides the target time and date in standard time. The getTimeUntil() function accepts a
millisecond value (as provided by the targetDate variable) and calculates the difference
between the target date and the actual internal millisecond value of the client’s PC clock.

The core of the getCountDown() function peels off the number of whole days, hours, minutes,
and seconds from the total number of milliseconds difference between now and the target date.
Notice that each chunk is subtracted from the total so that the next smaller chunk can be calcu-
lated from the leftover milliseconds.

One extra touch on this page is a display of the local date and time of the actual event.

903Chapter 29 ✦ The Date Object

Listing 29-4: Summer Games Countdown

<html>
<head>

<title>Summer Games Countdown</title>
<script type=”text/javascript”>
// globals -- calculate only once
// set target date to 1100GMT on August 8, 2008
var targetDate = Date.UTC(2008, 7, 8, 11, 0, 0, 0);
var oneMinute = 60 * 1000;
var oneHour = oneMinute * 60;
var oneDay = oneHour * 24;

function getTimeUntil(targetMS) {
var today = new Date();
var diff = targetMS - today.valueOf();
return Math.floor(diff);

}
function getCountDown() {

var ms = getTimeUntil(targetDate);
var output = “”;
var days, hrs, mins, secs;
if (ms >= 0) {

days = Math.floor(ms/oneDay);
ms -= oneDay * days;
hrs = Math.floor(ms/oneHour);
ms -= oneHour * hrs;
mins = Math.floor(ms/oneMinute);
ms -= oneMinute * mins;
secs = Math.floor(ms/1000);
output += days + “ Days, “ + hrs + “ Hours, “ +

mins + “ Minutes, “ + secs + “ Seconds”;
} else {

output += “The time has passed.”;
}
return output;

}
function updateCountDown() {

document.forms[0].timer.value = getCountDown();
setTimeout(“updateCountDown()”, 1000);

}
</script>

</head>
<body onload=”updateCountDown()”>

<h1>Beijing Games Torch Lighting Countdown</h1>
<p>

<script type=”text/javascript”>
document.write(“(“ + (new Date(targetDate)).toLocaleString());
document.write(“ in your time zone.)”);
</script>

</p>
<form>

<input type=”text” name=”timer” size=”60” />
</form>
<hr />

</body>
</html>

904 Part IV ✦ JavaScript Core Language Reference

Early browser date bugs and gremlins
Each new browser generation improves the stability and reliability of scripted date objects.
Unfortunately, Navigator 2 has enough bugs and crash problems across many platforms to
make scripting complex world-time applications for this browser impossible. The Macintosh
version also has bugs that throw off dates by as much as a full day. I recommend avoiding
NN2 on all platforms for serious date and time scripting.

The situation is much improved for NN3. Still, some bugs persist. One bug in particular affects
Macintosh versions of NN3. Whenever you create a new date object with daylight saving time
engaged in the Date and Time control panel, the browser automatically adds one hour to the
object. See the time-based application in Chapter 54 on the CD-ROM for an example of how to
counteract the effects of typical time bugs. Also afflicting the Macintosh in NN3 is a faulty calcu-
lation of the time zone offset for all time zones east of GMT. Instead of generating these values
as negative numbers (getting lower and lower as you head east), the offset values increase
continuously as you head west from Greenwich. While the Western Hemisphere is fine, the
values continue to increase past the international date line, rather than switch over to the
negative values.

Internet Explorer 3 isn’t free of problems. It cannot handle dates before January 1, 1970
(GMT). Attempts to generate a date before that one result in that base date as the value. IE3
also completely miscalculates the time zone offset, following the erroneous pattern of NN2.
Even Navigators 3 and 4 have problems with historic dates. You are asking for trouble if the
date extends earlier than January 1, A.D. 1. Internet Explorer 4, on the other hand, appears to
sail very well into ancient history.

You should be aware of one more discrepancy between Mac and Windows versions of
Navigator through Version 4. In Windows, if you generate a date object for a date in another
part of the year, the browser sets the time zone offset for that object according to the time
zone setting for that time of year. On the Mac, the current setting of the control panel governs
whether the normal or daylight saving time offset is applied to the date, regardless of the
actual date within the year. This discrepancy affects Navigator 3 and 4 and can throw off cal-
culations from other parts of the year by one hour.

It may sound as though the road to Date object scripting is filled with land mines. While date
and time scripting is far from hassle free, you can put it to good use with careful planning and
a lot of testing.

Validating Date Entries in Forms
Given the bug horror stories in the previous section, you may wonder how you can ever per-
form data entry validation for dates in forms. The problem is not so much in the calculations
as it is in the wide variety of acceptable date formats around the world. No matter how well
you instruct users to enter dates in a particular format, many will follow their own habits and
conventions. Moreover, how can you know whether an entry of 03/04/2002 is the North
American March 4, 2002, or the European April 3, 2002? The answer: You can’t.

My recommendation is to divide a date field into three components: month, day, and year. Let
the user enter values into each field and validate each field individually for its valid range.
Listing 29-5 shows an example of how this is done. The page includes a form that is to be vali-
dated before it is submitted. Each component field does its own range checking on the fly as
the user enters values. But because this kind of validation can be defeated, the page includes
one further check triggered by the form’s onsubmit event handler. If any field is out of whack,
the form submission is cancelled.

905Chapter 29 ✦ The Date Object

Listing 29-5: Date Validation in a Form

<html>
<head>

<title>Date Entry Validation</title>
<script type=”text/javascript”>
// **BEGIN GENERIC VALIDATION FUNCTIONS**
// general purpose function to see if an input value has been entered at

all
function isEmpty(inputStr) {

if (inputStr == “” || inputStr == null) {
return true;

}
return false;

}

// function to determine if value is in acceptable range for this
application

function inRange(inputStr, lo, hi) {
var num = parseInt(inputStr, 10);
if (num < lo || num > hi) {

return false;
}
return true;

}
// **END GENERIC VALIDATION FUNCTIONS**

function validateMonth(field, bypassUpdate) {
var input = field.value;
if (isEmpty(input)) {

alert(“Be sure to enter a month value.”);
select(field);
return false;

} else {
input = parseInt(field.value, 10);
if (isNaN(input)) {

alert(“Entries must be numbers only.”);
select(field);
return false;

} else {
if (!inRange(input,1,12)) {

alert(“Enter a number between 1 (January) and 12
(December).”);

select(field);
return false;

}
}

}
if (!bypassUpdate) {

calcDate();
}
return true;

}

function validateDate(field) {
var input = field.value;

Continued

906 Part IV ✦ JavaScript Core Language Reference

Listing 29-5 (continued)

if (isEmpty(input)) {
alert(“Be sure to enter a date value.”);
select(field);
return false;

} else {
input = parseInt(field.value, 10);
if (isNaN(input)) {

alert(“Entries must be numbers only.”);
select(field);
return false;

} else {
var monthField = document.birthdate.month;
if (!validateMonth(monthField, true))

return false;
var monthVal = parseInt(monthField.value, 10);
var monthMax = new Array(31,31,29,31,30,31,30,31,31,30,31,30,31);
var top = monthMax[monthVal];
if (!inRange(input,1,top)) {

alert(“Enter a number between 1 and “ + top + “.”);
select(field);
return false;

}
}

}
calcDate();
return true;

}

function validateYear(field) {
var input = field.value;
if (isEmpty(input)) {

alert(“Be sure to enter a year value.”);
select(field);
return false;

} else {
input = parseInt(field.value, 10);
if (isNaN(input)) {

alert(“Entries must be numbers only.”);
select(field);
return false;

} else {
if (!inRange(input,1900,2005)) {

alert(“Enter a number between 1900 and 2005.”);
select(field);
return false;

}
}

}
calcDate();
return true;

}

function select(field) {
field.focus();
field.select();

}

907Chapter 29 ✦ The Date Object

function calcDate() {
var mm = parseInt(document.birthdate.month.value, 10);
var dd = parseInt(document.birthdate.date.value, 10);
var yy = parseInt(document.birthdate.year.value, 10);
document.birthdate.fullDate.value = mm + “/” + dd + “/” + yy;

}

function checkForm(form) {
if (validateMonth(form.month)) {

if (validateDate(form.date)) {
if (validateYear(form.year)) {

return true;
}

}
}
return false;

}
</script>

</head>
<body>

<form name=”birthdate” action=”mailto:fun@dannyg.com” method=”POST”
onsubmit=”return checkForm(this)”>

Please enter your birthdate...

Month:<input type=”text” name=”month” value=”1” size=”2”
onchange=”validateMonth(this)” /> Date:<input type=”text” name=”date”
value=”1” size=”2” onchange=”validateDate(this)” /> Year:<input
type=”text” name=”year” value=”1900” size=”4”
onchange=”validateYear(this)” />
<p>Thank you for entering:<input type=”text” name=”fullDate”

size=”10” /></p>
<p><input type=”submit” /> <input type=”Reset” /></p>

</form>
</body>

</html>

The page shows the three entry fields as well as a field that is normally hidden on a form to
be submitted to a CGI program. On the server end, the CGI program responds only to the hid-
den field with the complete date, which is in a format for entry into, for example, an Informix
database.

Not every date entry validation must be divided in this way. For example, an intranet application
can be more demanding in the way users are to enter data. Therefore, you can have a single field
for date entry, but the parsing required for such a validation is quite different from that shown
in Listing 29-5. See Chapter 43 on the CD-ROM for an example of such a one-field date valida-
tion routine.

✦ ✦ ✦

The Array Object

An array is the sole JavaScript data structure provided for storing
and manipulating ordered collections of data. But unlike some

other programming languages, JavaScript’s arrays are very forgiving
as to the kind of data you store in each cell or entry of the array. This
allows, for example, an array of arrays, providing the equivalent of
multidimensional arrays customized to the kind of data your applica-
tion needs.

If you have not done a lot of programming in the past, the notion of
arrays may seem like an advanced topic. But if you ignore their capa-
bilities, you set yourself up for a harder job when implementing many
kinds of tasks. Whenever I approach a script, one of my first thoughts
is about the data being controlled by the application and whether
handling it as an array will offer some shortcuts for creating the docu-
ment and handling interactivity with the user.

I hope that by the end of this chapter, you will not only be familiar
with the properties and methods of JavaScript arrays, but you will
begin to look for ways to make arrays work for you.

Structured Data
In programming, an array is defined as an ordered collection of data.
You can best visualize an array as a table, not much different from a
spreadsheet. In JavaScript, arrays are limited to a table holding one
column of data, with as many rows as needed to hold your data. As
you have seen in many chapters in Part III, a JavaScript-enabled
browser creates a number of internal arrays for the objects in your
HTML documents and browser properties. For example, if your
document contains five links, the browser maintains a table of those
links. You access them by number (with 0 being the first link) in the
array syntax: the array name is followed by the index number in
square brackets, as in document.links[0], which represents the
first link in the document.

3030C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Working with ordered
collections of data

Simulating
multidimensional arrays

Manipulating
information stored
in an array

✦ ✦ ✦ ✦

910 Part IV ✦ JavaScript Core Language Reference

For many JavaScript applications, you will want to use an array as an organized warehouse for
data that users of your page access, depending on their interaction with form elements. In the
application shown in Chapter 50 on the CD-ROM, for example, I demonstrate an extended ver-
sion of this usage in a page that lets users search a small table of data for a match between the
first three digits of their U.S. Social Security numbers and the state in which they registered
with the agency. Arrays are the way JavaScript-enhanced pages can re-create the behavior of
more sophisticated CGI programs on servers. When the collection of data you embed in the
script is no larger than a typical .gif image file, the user won’t experience significant delays in
loading your page; yet he or she has the full power of your small database collection for instant
searching without any calls back to the server. Such database-oriented arrays are important
applications of JavaScript for what I call serverless CGIs.

As you design an application, look for clues as to potential application of arrays. If you have a
number of objects or data points that interact with scripts the same way, you have a good
candidate for array structures. For example, you can assign like names to every text field in a
column of an order form. In that sequence, like-named objects are treated as elements of an
array. To perform repetitive row calculations down an order form, your scripts can use array
syntax to perform all the extensions within a handful of JavaScript statements, rather than
perhaps dozens of statements hard-coded to each field name. Chapter 51 (on the CD-ROM)
shows an example of this application.

You can also create arrays that behave like the Java hash table: a lookup table that gets you
to the desired data point instantaneously if you know the name associated with the entry. If
you can conceive your data in a table format, an array is in your future.

Creating an Empty Array
Full-fledged array objects were first implemented in NN3 and IE4. It was possible to simulate
some array characteristics in earlier browsers, but since those first-generation browsers have
largely disappeared from users’ computers, this chapter focuses on the modern array and its
hefty powers.

To create a new array object, use the static Array object’s constructor method. For example:

var myArray = new Array();

An array object automatically has a length property (0 for an empty array).

Should you want to presize the array (for example, preload entries with null values), you can
specify an initial size as a parameter to the constructor. For example, here is how to create a
new array to hold information about a 500-item compact disc collection:

var myCDCollection = new Array(500);

Unlike many other programming languages presizing a JavaScript array does not give you
any particular advantage, because you can assign a value to any slot in an array at any
time: The length property adjusts itself accordingly. For instance, if you assign a value to
myCDCollection[700], the array object adjusts its length upward to meet that slot (with
the count starting at 0):

myCDCollection [700] = “Gloria Estefan/Destiny”;
collectionSize = myCDCollection.length; // result = 701

A true array object also features a number of methods and the capability to add prototype
properties, described later in this chapter.

911Chapter 30 ✦ The Array Object

Populating an Array
Entering data into an array is as simple as creating a series of assignment statements, one for
each element of the array. Listing 30-1 generates an array containing a list of the nine planets
of the solar system.

Listing 30-1: Generating and Populating a New Array

solarSys = new Array(9);
solarSys[0] = “Mercury”;
solarSys[1] = “Venus”;
solarSys[2] = “Earth”;
solarSys[3] = “Mars”;
solarSys[4] = “Jupiter”;
solarSys[5] = “Saturn”;
solarSys[6] = “Uranus”;
solarSys[7] = “Neptune”;
solarSys[8] = “Pluto”;

This way of populating a single array is a bit tedious when you’re writing the code, but after
the array is set, it makes accessing information collections as easy as any array reference:

onePlanet = solarSys[4]; // result = “Jupiter”

A more compact way to create an array is available if you know that the data will be in the
desired order (as the preceding solarSys array). Instead of writing a series of assignment
statements (as in Listing 30-1), you can create what is called a dense array by supplying the
data as comma-delimited parameters to the Array() constructor:

solarSys = new Array(“Mercury”,”Venus”,”Earth”,”Mars”,”Jupiter”,”Saturn”,
“Uranus”,”Neptune”,”Pluto”);

The term “dense array” means that data is packed into the array, without gaps, starting at
index position 0.

The example in Listing 30-1 shows what you may call a vertical collection of data. Each data
point contains the same type of data as the other data points — the name of a planet — and
the data points appear in the relative order of the planets from the Sun.

JavaScript Array Creation Enhancements
The JavaScript version in NN4+/IE4+ provides one more way to create a dense array and also
clears up a bug in the old way. A new, simpler way to create a dense array does not require
the Array object constructor. Instead, JavaScript 1.2 (and later) accepts what is called literal
notation to generate an array. To demonstrate the difference, the following statement is the
regular dense array constructor that works with NN3:

solarSys = new Array(“Mercury”,”Venus”,”Earth”,”Mars”,”Jupiter”,”Saturn”,
“Uranus”,”Neptune”,”Pluto”);

While JavaScript 1.2+ fully accepts the preceding syntax, it also accepts the new literal notation:

solarSys = [“Mercury”,”Venus”,”Earth”,”Mars”,”Jupiter”,”Saturn”,
“Uranus”,”Neptune”,”Pluto”];

912 Part IV ✦ JavaScript Core Language Reference

The square brackets stand in for the call to the Array constructor. Unless your audience is
stuck using ancient browsers, you should use this streamlined approach to array creation.

The bug fix has to do with how to treat the earlier dense array constructor if the scripter
enters only the numeric value 1 as the parameter —new Array(1). In NN3 and IE4, JavaScript
erroneously creates an array of length 1, but that element is undefined. For NN4 and all later
browsers (IE5+, NN6+, W3C), the same statement creates that one-element array and places
the value in that element.

Deleting Array Entries
You can always set the value of an array entry to null or an empty string to wipe out any
data that used to occupy that space. But until the delete operator in version 4 browsers, you
could not completely remove the element.

Deleting an array element eliminates the index from the list of accessible index values but
does not reduce the array’s length, as in the following sequence of statements:

myArray.length // result: 5
delete myArray[2]
myArray.length // result: 5
myArray[2] // result: undefined

The process of deleting an array entry does not necessarily release memory occupied by that
data. The JavaScript interpreter’s internal garbage collection mechanism (beyond the reach
of scripters) is supposed to take care of such activity. See the delete operator in Chapter 32
for further details.

Newer browsers feature the splice() method of an array, which lets you remove an item (or
sequence of items) from an array — causing the array’s length to adjust to the new item count.
See the splice() method later in this chapter.

Parallel Arrays
Using an array to hold data is frequently desirable so that a script can do a lookup to see if a
particular value is in the array (perhaps verifying that a value typed into a text box by the
user is permissible); however, even more valuable is if, upon finding a match, a script can
look up some related information in another array. One way to accomplish this is with two or
more parallel arrays: the same indexed slot of each array contains related information.

Consider the following three arrays:

var regionalOffices = new Array(“New York”, “Chicago”, “Houston”, “Portland”);
var regionalManagers = new Array(“Shirley Smith”, “Todd Gaston”,

“Leslie Jones”, “Harold Zoot”);
var regOfficeQuotas = new Array(300000, 250000, 350000, 225000);

The assumption for these statements is that Shirley Smith is the regional manager out of the
New York office, and her office’s quota is 300,000. This represents the data that is included
with the document, perhaps retrieved by a CGI program on the server that gets the latest
data from a SQL database and embeds the data in the form of array constructors. Listing 30-2
shows how this data appears in a simple page that looks up the manager name and quota val-
ues for whichever office is chosen in the select element. The order of the items in the list of
select is not accidental: The order is identical to the order of the array for the convenience
of the lookup script.

913Chapter 30 ✦ The Array Object

Lookup action in Listing 30-2 is performed by the getData() function. Because the index val-
ues of the options inside the select element match those of the parallel arrays index values,
the selectedIndex property of the select element makes a convenient way to get directly
at the corresponding data in other arrays.

Listing 30-2: A Simple Parallel Array Lookup

<html>
<head>

<title>Parallel Array Lookup</title>
<script type=”text/javascript”>
// the data
var regionalOffices = new Array(“New York”, “Chicago”, “Houston”,

“Portland”);
var regionalManagers = new Array(“Shirley Smith”, “Todd Gaston”,

“Leslie Jones”, “Harold Zoot”);
var regOfficeQuotas = new Array(300000, 250000, 350000, 225000);
// do the lookup into parallel arrays
function getData(form) {

var i = form.offices.selectedIndex;
form.manager.value = regionalManagers[i];
form.quota.value = regOfficeQuotas[i];

}
</script>

</head>
<body onload=”getData(document.officeData)”>

<h1>Parallel Array Lookup</h1>
<hr />
<form name=”officeData”>

<p>Select a regional office: <select name=”offices”
onchange=”getData(this.form)”>

<option>New York</option>
<option>Chicago</option>
<option>Houston</option>
<option>Portland</option>

</select></p>
<p>The manager is: <input type=”text” name=”manager” size=”35” />

The office quota is: <input type=”text” name=”quota”
size=”8” /></p>

</form>
</body>

</html>

On the other hand, if the content to be looked up is typed into a text box by the user, you
have to loop through one of the arrays to get the matching index. Listing 30-3 is a variation of
Listing 30-2, but instead of the select element, a text field asks users to type in the name of
the region. Assuming that users will always spell the input correctly (an outrageous assump-
tion), the version of getData() in Listing 30-3 performs actions that more closely resemble
what you may think a “lookup” should be doing: looking for a match in one array, and display-
ing corresponding results from the parallel arrays. The for loop iterates through items in the
regionalOffices array. An if condition compares all uppercase versions of both the input
and each array entry. If there is a match, the for loop breaks, with the value of i still pointing
to the matching index value. Outside the for loop, another if condition makes sure that the
index value has not reached the length of the array, which means that no match is found.

914 Part IV ✦ JavaScript Core Language Reference

Only when the value of i points to one of the array entries does the script retrieve corre-
sponding entries from the other two arrays.

Listing 30-3: A Looping Array Lookup

<html>
<head>

<title>Parallel Array Lookup II</title>
<script type=”text/javascript”>
// the data
var regionalOffices = new Array(“New York”, “Chicago”, “Houston”,

“Portland”);
var regionalManagers = new Array(“Shirley Smith”, “Todd Gaston”,

“Leslie Jones”, “Harold Zoot”);
var regOfficeQuotas = new Array(300000, 250000, 350000, 225000);
// do the lookup into parallel arrays
function getData(form) {

// make a copy of the text box contents
var inputText = form.officeInp.value;
// loop through all entries of regionalOffices array
for (var i = 0; i < regionalOffices.length; i++) {

// compare uppercase versions of entered text against one entry
// of regionalOffices
if (inputText.toUpperCase() == regionalOffices[i].toUpperCase()) {

// if they’re the same, then break out of the for loop
break;

}
}
// make sure the i counter hasn’t exceeded the max index value
if (i < regionalOffices.length) {

// display corresponding entries from parallel arrays
form.manager.value = regionalManagers[i];
form.quota.value = regOfficeQuotas[i];

} else { // loop went all the way with no matches
// empty any previous values
form.manager.value = “”;
form.quota.value = “”;
// advise user
alert(“No match found for “ + inputText + “.”);

}
}
</script>

</head>
<body>

<h1>Parallel Array Lookup II</h1>
<hr />
<form name=”officeData”>

<p>Enter a regional office: <input type=”text” name=”officeInp”
size=”35” /> <input type=”button” value=”Search”
onclick=”getData(this.form)” /></p>

<p>The manager is: <input type=”text” name=”manager”
size=”35” />

The office quota is: <input type=”text” name=”quota”
size=”8” /></p>

</form>
</body>

</html>

915Chapter 30 ✦ The Array Object

Multidimensional Arrays
An alternate to parallel arrays is the simulation of a multidimensional array. While it’s true
that JavaScript arrays are one-dimensional, you can create a one-dimensional array of other
arrays or objects. A logical approach is to make an array of custom objects, because the
objects easily allow for naming of object properties, making references to multidimensional
array data more readable (custom objects are discussed at length in Chapter 33).

Using the same data from the examples of parallel arrays, the following statements define an
object constructor for each “data record.” A new object is then assigned to each of four
entries in the main array.

// custom object constructor
function officeRecord(city, manager, quota) {

this.city = city;
this.manager = manager;
this.quota = quota;

}

// create new main array
var regionalOffices = new Array();
// stuff main array entries with objects
regionalOffices[0] = new officeRecord(“New York”, “Shirley Smith”, 300000);
regionalOffices[1] = new officeRecord(“Chicago”, “Todd Gaston”, 250000);
regionalOffices[2] = new officeRecord(“Houston”, “Leslie Jones”, 350000);
regionalOffices[3] = new officeRecord(“Portland”, “Harold Zoot”, 225000);

The object constructor function (officeRecord()) assigns incoming parameter values to
properties of the object. Therefore, to access one of the data points in the array, you use both
array notations to get to the desired entry in the array and the name of the property for that
entry’s object:

var eastOfficeManager = regionalOffices[0].manager;

You can also assign string index values for this kind of array, as in

regionalOffices[“east”] = new officeRecord(“New York”, “Shirley Smith”,
300000);

and access the data via the same index:

var eastOfficeManager = regionalOffices[“east”].manager;

But if you’re more comfortable with the traditional multidimensional array (from your experi-
ence in other programming languages), you can also implement the above as an array of arrays
with less code:

// create new main array
var regionalOffices = new Array();
// stuff main array entries with arrays
regionalOffices[0] = new Array(“New York”, “Shirley Smith”, 300000);
regionalOffices[1] = new Array(“Chicago”, “Todd Gaston”, 250000);
regionalOffices[2] = new Array(“Houston”, “Leslie Jones”, 350000);
regionalOffices[3] = new Array(“Portland”, “Harold Zoot”, 225000);

or, for the extreme of unreadable brevity with literal notation:

// create new main array
var regionalOffices = [[“New York”, “Shirley Smith”, 300000],

[“Chicago”, “Todd Gaston”, 250000],

916 Part IV ✦ JavaScript Core Language Reference

[“Houston”, “Leslie Jones”, 350000],
[“Portland”, “Harold Zoot”, 225000]];

Accessing a single data point of an array of arrays requires a double array reference. For
example, retrieving the manager’s name for the Houston office requires the following syntax:

var HoustonMgr = regionalOffices[2][1];

The first index in brackets is for the outermost array (regionalOffices); the second index
in brackets points to the item of the array returned by regionalOffices[2].

Simulating a Hash Table
All arrays shown so far in this chapter have used integers as their index values. A JavaScript
array is a special type of object (the object type is covered in Chapter 33). As a result, you
can also assign values to customized properties of an array without interfering with the data
stored in the array or the length of the array. In other words, you can “piggy-back” data in the
array object. You may reference the values of these properties either using “dot” syntax
(array.propertyName) or through array-looking syntax consisting of square brackets and
the property name as a string inside the brackets (array.[“propertyName”]).

Addressing object properties by way of string indexes is sometimes very useful. For example,
the multidimensional array described in the previous section consists of four objects. If your
page contains a form whose job is to look through the array to find a match for a city chosen
from a select list, the typical array lookup would loop through the length of the array, com-
pare the chosen value against the city property of each object, and then retrieve the other
properties when there was a match. For a 4-item list, this isn’t a big deal. But for a 100-item
list, the process could get time consuming. A faster approach would be to jump directly to
the array entry whose city property is the chosen value. That’s what a simulated hash table
can do for you (some programming languages have formal hash table constructions espe-
cially designed to act like a lookup table).

Create a simulated hash table after the array is populated by looping through the array and
assigning properties to the array object as string values. Use string values that you expect to
use for lookup purposes. For example, after the regionalOffices array has its component
objects assigned, run through the following routine to make the hash table:

for (var i = 0; i < regionalOffices.length; i++) {
regionalOffices[regionalOffices[i].city] = regionalOffices[i];

}

You can retrieve the manager property of the Houston office object as follows:

var HoustonMgr = regionalOffices[“Houston”].manager;

With the aid of the hash table component of the array, your scripts have the convenience of
both numeric lookup (if the script needs to cycle through all items) and an immediate jump
to an item.

Array Object Properties
constructor

(See string.constructor in Chapter 27)

array.constructor

917Chapter 30 ✦ The Array Object

length
Value: Integer. Read/Write
Compatibility: WinIE4+, MacIE4+, NN3+, Moz1+, Safari1+

A true array object’s length property reflects the number of entries in the array. An entry
can be any kind of JavaScript value, including null. If an entry is in the 10th cell and the rest
are null, the length of that array is 10. Note that because array index values are zero-based,
the index of the last cell of an array is one less than the length. This characteristic makes it
convenient to use the property as an automatic counter to append a new item to an array:

myArray[myArray.length] = valueOfAppendedItem;

Thus, a generic function does not have to know which specific index value to apply to an
additional item in the array.

prototype
Value: Variable or function. Read/Write
Compatibility: WinIE4+, MacIE4+, NN3+, Moz1+, Safari1+

Inside JavaScript, an array object has its dictionary definition of methods and length
property — items that all array objects have in common. The prototype property enables
your scripts to ascribe additional properties or methods that apply to all the arrays you
create in the currently loaded documents. You can override this prototype, however, for
any individual object.

Example
To demonstrate how the prototype property works, Listing 30-4 creates a prototype prop-
erty for all array objects generated from the static Array object. As the script generates new
arrays (instances of the Array object, just as a date object is an instance of the Date object),
the property automatically becomes a part of those arrays. In one array, c, you override the
value of the prototype sponsor property. By changing the value for that one object, you don’t
alter the value of the prototype for the Array object. Therefore, another array created after-
ward, d, still gets the original sponsor property value.

Listing 30-4: Adding a prototype Property

<html>
<head>

<title>Array prototypes</title>
<script type=”text/javascript”>
// add prototype to all Array objects
Array.prototype.sponsor = “DG”;
a = new Array(5);
b = new Array(5);
c = new Array(5);
// override prototype property for one ‘instance’
c.sponsor = “JS”;
// this one picks up the original prototype
d = new Array(5);
</script>

</head>
<body>

Continued

array.prototype

918 Part IV ✦ JavaScript Core Language Reference

Listing 30-4 (continued)

<h2>
<script type=”text/javascript”>
document.write(“Array a is brought to you by: “ + a.sponsor +

“
”);
document.write(“Array b is brought to you by: “ + b.sponsor +

“
”);
document.write(“Array c is brought to you by: “ + c.sponsor +

“
”);
document.write(“Array d is brought to you by: “ + d.sponsor +

“
”);
</script>

</h2>
</body>

</html>

You can assign properties and functions to a prototype. To assign a function, define the func-
tion as you normally would in JavaScript. Then assign the function to the prototype by name:

function newFunc(param1) {
// statements

}
Array.prototype.newMethod = newFunc; // omit parentheses in this reference

When you need to call upon that function (which has essentially become a new temporary
method for the Array object), invoke it as you would any object method. Therefore, if an
array named CDCollection has been created and a prototype method showCoverImage()
has been attached to the array, the call to invoke the method for a tenth listing in the array is

CDCollection.showCoverImage(9);

where the parameter of the function uses the index value to perhaps retrieve an image whose
URL is a property of an object assigned to the 10th item of the array.

Array Object Methods
After you have information stored in an array, JavaScript provides several methods to help you
manage that data. These methods, all of which belong to array objects you create, have evolved
over time, so observe carefully which browser versions a desired method works with.

array.concat(array2)
Returns: Array object.
Compatibility: WinIE4+, MacIE4+, NN4+, Moz1+, Safari1+

The array.concat() method allows you to join two array objects into a new, third array object.
The action of concatenating the arrays does not alter the contents or behavior of the two origi-
nal arrays. To join the arrays, you refer to the first array object to the left of the period before
the method; a reference to the second array is the parameter to the method. For example:

var array1 = new Array(1,2,3);
var array2 = new Array(“a”,”b”,”c”);
var array3 = array1.concat(array2);

// result: array with values 1,2,3,”a”,”b”,”c”

array.prototype

919Chapter 30 ✦ The Array Object

If an array element is a string or number value (not a string or number object), the values are
copied from the original arrays into the new one. All connection with the original arrays
ceases for those items. But if an original array element is a reference to an object of any kind,
JavaScript copies a reference from the original array’s entry into the new array. So if you
make a change to either array’s entry, the change occurs to the object, and both array entries
reflect the change to the object.

Example
Listing 30-5 is a bit complex, but it demonstrates both how arrays can be joined with the
array.concat() method and how values and objects in the source arrays do or do not prop-
agate based on their data type. The page is shown in Figure 30-1.

After you load the page, you see readouts of three arrays. The first array consists of all string
values; the second array has two string values and a reference to a form object on the page
(a text box named “original” in the HTML). In the initialization routine of this page, not only
are the two source arrays created, but they are joined with the array.concat() method, and
the result is shown in the third box. To show the contents of these arrays in columns, I use
the array.join() method, which brings the elements of an array together as a string delim-
ited in this case by a return character — giving us an instant column of data.

Two series of fields and buttons let you experiment with the way values and object references
are linked across concatenated arrays. In the first group, if you enter a new value to be assigned
to arrayThree[0], the new value replaces the string value in the combined array. Because
regular values do not maintain a link back to the original array, only the entry in the com-
bined array is changed. A call to showArrays() proves that only the third array is affected
by the change.

Figure 30-1: Object references remain “alive” in a concatenated array.

array.concat()

920 Part IV ✦ JavaScript Core Language Reference

More complex is the object relationship for this demonstration. A reference to the first text
box of the second grouping has been assigned to the third entry of arrayTwo. After concate-
nation, the same reference is now in the last entry of the combined array. If you enter a new
value for a property of the object in the last slot of arrayThree, the change goes all the way
back to the original object — the first text box in the lower grouping. Thus, the text of the
original field changes in response to the change of arrayThree[5]. And because all refer-
ences to that object yield the same result, the reference in arrayTwo[2] points to the same
text object, yielding the same new answer. The display of the array contents doesn’t change,
because both arrays still contain a reference to the same object (and the value attribute
showing in the <input> tag of the column listings refers to the default value of the tag, not to
its current algorithmically retrievable value shown in the last two fields of the page).

Listing 30-5: Array Concatenation

<html>
<head>

<title>Array Concatenation</title>
<script type=”text/javascript”>
// global variables
var arrayOne, arrayTwo, arrayThree, textObj;
// initialize after load to access text object in form
function initialize() {

var form = document.forms[0];
textObj = form.original;
arrayOne = new Array(“Jerry”, “Elaine”,”Kramer”);
arrayTwo = new Array(“Ross”, “Rachel”,textObj);
arrayThree = arrayOne.concat(arrayTwo);
update1(form);
update2(form);
showArrays();

}
// display current values of all three arrays
function showArrays() {

var form = document.forms[0];
form.array1.value = arrayOne.join(“\n”);
form.array2.value = arrayTwo.join(“\n”);
form.array3.value = arrayThree.join(“\n”);

}
// change the value of first item in Array Three
function update1(form) {

arrayThree[0] = form.source1.value;
form.result1.value = arrayOne[0];
form.result2.value = arrayThree[0];
showArrays();

}
// change value of object property pointed to in Array Three
function update2(form) {

arrayThree[5].value = form.source2.value;
form.result3.value = arrayTwo[2].value;
form.result4.value = arrayThree[5].value;
showArrays();

}
</script>

</head>
<body onload=”initialize()”>

<form>

array.concat()

921Chapter 30 ✦ The Array Object

<table>
<tr>

<th>arrayOne</th>
<th>arrayTwo</th>
<th>arrayThree</th>

</tr>
<tr>

<td><textarea name=”array1” cols=”25” rows=”6”>
</textarea></td>

<td><textarea name=”array2” cols=”25” rows=”6”>
</textarea></td>

<td><textarea name=”array3” cols=”25” rows=”6”>
</textarea></td>

</tr>
</table>
Enter new value for arrayThree[0]:<input type=”text”
name=”source1” value=”Jerry” /> <input type=”button”
value=”Change arrayThree[0]” onclick=”update1(this.form)” />

Current arrayOne[0] is:<input type=”text” name=”result1” />

Current arrayThree[0] is:<input type=”text” name=”result2” />

<hr />
textObj assigned to arrayTwo[2]:<input type=”text” name=”original”
onfocus=”this.blur()” />

Enter new value for arrayThree[5]:<input type=”text”
name=”source2” value=”Phoebe” /> <input type=”button”
value=”Change arrayThree[5].value”
onclick=”update2(this.form)” />

Current arrayTwo[2].value is:<input type=”text”
name=”result3” />

Current arrayThree[5].value is:<input type=”text” name=”result4” />
<p><input type=”button” value=”Reset”
onclick=”location.reload()” /></p>

</form>
</body>

</html>

Related Items: array.join() method.

array.join(separatorString)
Returns: String of entries from the array delimited by the separatorString value.
Compatibility: WinIE4+, MacIE4+, NN3+, Moz1+, Safari1+

You cannot view data in an array when it’s in that form. Nor can you put an array into a form
element for transmittal to a server CGI program. To make the transition from discrete array
elements to string, the array.join() method handles what would otherwise be a nasty
string manipulation exercise.

The sole parameter for this method is a string of one or more characters that you want to act
as a delimiter between entries. For example, if you want commas between array items in their
text version, the statement is

var arrayText = myArray.join(“,”);

Invoking this method does not change the original array in any way. Therefore, you need to
assign the results of this method to another variable or a value property of a form element.

array.join()

922 Part IV ✦ JavaScript Core Language Reference

Example
The script in Listing 30-6 converts an array of planet names into a text string. The page pro-
vides you with a field to enter the delimiter string of your choice and shows the results in a
text area.

Listing 30-6: Using the Array.join() Method

<html>
<head>

<title>Array.join()</title>
<script type=”text/javascript”>
solarSys = new Array(9);
solarSys[0] = “Mercury”;
solarSys[1] = “Venus”;
solarSys[2] = “Earth”;
solarSys[3] = “Mars”;
solarSys[4] = “Jupiter”;
solarSys[5] = “Saturn”;
solarSys[6] = “Uranus”;
solarSys[7] = “Neptune”;
solarSys[8] = “Pluto”;

// join array elements into a string
function convert(form) {

var delimiter = form.delim.value;
form.output.value = unescape(solarSys.join(delimiter));

}
</script>

</head>
<body>

<h2>Converting arrays to strings</h2>
This document contains an array of planets in our solar system.
<hr />
<form>

Enter a string to act as a delimiter between entries: <input
type=”text” name=”delim” value=”,” size=”5” />
<p><input type=”button” value=”Display as String”

onclick=”convert(this.form)” /> <input type=”reset” /> <textarea
name=”output” rows=”4” cols=”40” wrap=”virtual”>
</textarea></p>

</form>
</body>

</html>

Notice that this method takes the parameter very literally. If you want to include non-
alphanumeric characters, such as a newline or tab, do so with URL-encoded characters (%0D
for a carriage return; %09 for a tab) instead of inline string literals. In Listing 30-7, the results
of the array.join() method are subjected to the unescape() function in order to display
them in the textarea.

Related Items: string.split() method.

array.join()

923Chapter 30 ✦ The Array Object

array.pop()
array.push(valueOrObject)
array.shift()
array.unshift(valueOrObject)

Returns: One array entry value.
Compatibility: WinIE5.5+, MacIE-, NN4+, Moz1+, Safari1+

The notion of a stack is well known to experienced programmers, especially those who
know about the inner workings of assembly language at the CPU level. Even if you’ve never
programmed a stack before, you have encountered the concept in real life many times. The
classic analogy is the spring-loaded pile of cafeteria trays. If the pile were created one tray
at a time, each tray would be pushed into the stack of trays. When a customer comes along,
the topmost tray (the last one to be pushed onto the stack) gets popped off. The last one to
be put on the stack is the first one to be taken off.

JavaScript in NN4+, IE5.5+, and W3C browsers lets you turn an array into one of these spring-
loaded stacks. But instead of placing trays on the pile, you can place any kind of data at either
end of the stack, depending on which method you use to do the stacking. Similarly, you can
extract an item from either end.

Perhaps the most familiar terminology for this is push and pop. When you push() a value
onto an array, the value is appended as the last entry in the array. When you issue the
array.pop() method, the last item in the array is removed from the stack and is returned,
and the array shrinks in length by one. In the following sequence of statements, watch what
happens to the value of the array used as a stack:

var source = new Array(“Homer”,”Marge”,”Bart”,”Lisa”,”Maggie”);
var stack = new Array();

// stack = <empty>
stack.push(source[0]);

// stack = “Homer”
stack.push(source[2]);

// stack = “Homer”,”Bart”
var Simpson1 = stack.pop();

// stack = “Homer” ; Simpson1 = “Bart”
var Simpson2 = stack.pop();

// stack = <empty> ; Simpson2 = “Homer”

While push() and pop() work at the end of an array, another pair of methods works at the front.
Their names are not as picturesque as push() and pop(). To insert a value at the front of
an array, use the array.unshift() method; to grab the first element and remove it from the
array, use array.shift(). Of course, you are not required to use these methods in matching
pairs. If you push() a series of values onto the back end of an array, you can shift() them off
from the front end without complaint. It all depends on how you need to process the data.

Related Items: array.concat(), array.slice() method.

array.reverse()
Returns: Array of entries in the opposite order of the original.
Compatibility: WinIE4+, MacIE4+, NN3+, Moz1+, Safari1+

Occasionally, you may find it more convenient to work with an array of data in reverse order.
Although you can concoct repeat loops to count backward through index values, a CGI program
on the server may prefer the data in a sequence opposite to the way it was most convenient for
you to script it.

array.reverse()

924 Part IV ✦ JavaScript Core Language Reference

You can have JavaScript switch the contents of an array for you: Whatever element was last in
the array becomes the 0 index item in the array. Bear in mind that if you do this, you’re restruc-
turing the original array, not copying it, even though the method also returns a copy of the
reversed version. A reload of the document restores the order as written in the HTML document.

Example
Listing 30-7 is an enhanced version of Listing 30-6, which includes another button and func-
tion that reverse the array and display it as a string in a text area.

Listing 30-7: Array.reverse() Method

<html>
<head>

<title>Array.reverse()</title>
<script type=”text/javascript”>
solarSys = new Array(9);
solarSys[0] = “Mercury”;
solarSys[1] = “Venus”;
solarSys[2] = “Earth”;
solarSys[3] = “Mars”;
solarSys[4] = “Jupiter”;
solarSys[5] = “Saturn”;
solarSys[6] = “Uranus”;
solarSys[7] = “Neptune”;
solarSys[8] = “Pluto”;

// show array as currently in memory
function showAsIs(form) {

var delimiter = form.delim.value;
form.output.value = unescape(solarSys.join(delimiter));

}
// reverse array order, then display as string
function reverseIt(form) {

var delimiter = form.delim.value;
solarSys.reverse(); // reverses original array
form.output.value = unescape(solarSys.join(delimiter));

}
</script>

</head>
<body>

<h2>Reversing array element order</h2>
This document contains an array of planets in our solar system.
<hr />
<form>

Enter a string to act as a delimiter between entries: <input
type=”text” name=”delim” value=”,” size=”5” />
<p><input type=”button” value=”Array as-is”

onclick=”showAsIs(this.form)” /> <input type=”button”
value=”Reverse the array” onclick=”reverseIt(this.form)” /> <input
type=”reset” /> <input type=”button” value=”Reload”
onclick=”self.location.reload()” /> <textarea name=”output”
rows=”4” cols=”60”>
</textarea></p>

</form>
</body>

</html>

array.reverse()

925Chapter 30 ✦ The Array Object

Notice that the solarSys.reverse() method stands by itself (meaning, nothing captures
the returned value) because the method modifies the solarSys array. You then run the
now inverted solarSys array through the array.join() method for your text display.

Related Items: array.sort() method.

array.slice(startIndex [, endIndex])
Returns: Array.
Compatibility: WinIE4+, MacIE4+, NN4+, Moz1+, Safari1+

Behaving as its like-named string method, array.slice() lets you extract a contiguous
series of items from an array. The extracted segment becomes an entirely new array object.
Values and objects from the original array have the same kind of behavior as arrays created
with the array.concat() method.

One parameter is required — the starting index point for the extraction. If you don’t specify
a second parameter, the extraction goes all the way to the end of the array; otherwise the
extraction goes to, but does not include, the index value supplied as the second parameter. For
example, extracting Earth’s neighbors from an array of planet names looks like the following:

var solarSys = new Array(“Mercury”,”Venus”,”Earth”,”Mars”,
“Jupiter”,”Saturn”,”Uranus”,”Neptune”,”Pluto”);

var nearby = solarSys.slice(1,4);
// result: new array of “Venus”, “Earth”, “Mars”

Related Items: array.splice(), string.slice() methods.

array.sort([compareFunction])
Returns: Array of entries in the order as determined by the compareFunction algorithm.
Compatibility: WinIE4+, MacIE4+, NN3+, Moz1+, Safari1+

JavaScript array sorting is both powerful and a bit complex to script if you haven’t had expe-
rience with this kind of sorting methodology. The purpose, obviously, is to let your scripts
sort entries of an array by almost any kind of criterion that you can associate with an entry.
For entries consisting of strings, the criterion may be their alphabetical order or their length;
for numeric entries, the criterion may be their numerical order.

Look first at the kind of sorting you can do with the array.sort() method by itself (for exam-
ple, without calling a comparison function). When no parameter is specified, JavaScript takes a
snapshot of the contents of the array and converts items to strings. From there, it performs a
string sort of the values. ASCII values of characters govern the sort, which means that numbers
are sorted by their string values, not their numeric values. This fact has strong implications if
your array consists of numeric data: The value 201 sorts before 88, because the sorting mecha-
nism compares the first characters of the strings (“2” versus “8”) to determine the sort order.
For simple alphabetical sorting of string values in arrays, the plain array.sort() method does
the trick.

Fortunately, additional intelligence is available that you can add to array sorting. The key tactic
is to define a function that helps the sort() method compare items in the array. A comparison
function is passed two values from the array (what you don’t see is that the array.sort()
method rapidly sends numerous pairs of values from the array to help it sort through all
entries). The comparison function lets the sort() method know which of the two items
comes before the other, based on the value the function returns. Assuming that the function
compares two values, a and b, the returned value reveals information to the sort() method,
as shown in Table 30-1.

array.sort()

926 Part IV ✦ JavaScript Core Language Reference

Table 30-1: Comparison Function Return Values

Return Value Range Meaning

< 0 Value b should sort later than a
0 The order of a and b should not change

> 0 Value a should sort later than b

Consider the following example:

myArray = new Array(12, 5, 200, 80);
function compare(a,b) {

return a – b;
}
myArray.sort(compare);

The array has four numeric values in it. To sort the items in numerical order, you define a com-
parison function (arbitrarily named compare()), which is called from the sort() method. Note
that unlike invoking other functions, the parameter of the sort() method uses a reference to
the function, which lacks parentheses.

When the compare() function is called, JavaScript automatically sends two parameters to the
function in rapid succession until each element has been compared with the others. Every
time compare() is called, JavaScript assigns two of the array’s values to the parameter vari-
ables (a and b). In the preceding example, the returned value is the difference between a and
b. If a is larger than b, then a positive value goes back to the sort() method, telling it to sort a
later than b (that is, position a at a higher value index position than b). Therefore, b may end
up at myArray[0], whereas a ends up at a higher index-valued location. On the other hand, if
a is smaller than b, the returned negative value tells sort() to put a in a lower index value
spot than b.

Evaluations within the comparison function can go to great lengths, as long as some data con-
nected with array values can be compared. For example, instead of numerical comparisons, as
just shown, you can perform string comparisons. The following function sorts alphabetically by
the last character of each array string entry:

function compare(a,b) {
// last character of array strings
var aComp = a.charAt(a.length - 1);
var bComp = b.charAt(b.length - 1);
if (aComp < bComp)

return -1;
if (aComp > bComp)

return 1;
return 0;

}

First, this function extracts the final character from each of the two values passed to it. Then,
because strings cannot be added or subtracted like numbers, you compare the ASCII values of
the two characters, returning the corresponding values to the sort() method to let it know
how to treat the two values being checked at that instant.

When an array’s entries happen to be objects, you can even sort by properties of those objects.
If you bear in mind that the a and b parameters of the sort function are references to two array
entries, then by extension you can refer to properties of those objects. For example, if an array

array.sort()

927Chapter 30 ✦ The Array Object

contains objects whose properties define information about employees, one of the proper-
ties of those objects can be the employee’s age as a string. You can then sort the array
based on the numeric equivalent of the age property of the objects by way of the following
comparison function:

function compare(a,b) {
return parseInt(a.age) - parseInt(b.age);

}

Array sorting, unlike sorting routines you may find in other scripting languages, is not a sta-
ble sort. Not being stable means that succeeding sort routines on the same array are not
cumulative. Also, remember that sorting changes the sort order of the original array. If you
don’t want the original array harmed, make a copy of it before sorting or reload the docu-
ment to restore an array to its original order. Should an array element be null, the method
sorts such elements at the end of the sorted array.

JavaScript array sorting is extremely powerful stuff. Array sorting is one reason why it’s not
uncommon to take the time during the loading of a page containing an IE XML data island to
make a JavaScript copy of the data as an array of objects (see Chapter 57 on the CD-ROM).
Converting the XML to JavaScript arrays makes the job of sorting the data much easier and
faster than cobbling together your own sorting routines on the XML elements.

Example
You can look to Listing 30-8 for a few examples of sorting an array of string values (see Figure
30-2). Four buttons summon different sorting routines, three of which invoke comparison
functions. This listing sorts the planet array alphabetically (forward and backward) by the
last character of the planet name and also by the length of the planet name. Each comparison
function demonstrates different ways of comparing data sent during a sort.

Listing 30-8: Array.sort() Possibilities

<html>
<head>

<title>Array.sort()</title>
<script type=”text/javascript”>
solarSys = new Array(9);
solarSys[0] = “Mercury”;
solarSys[1] = “Venus”;
solarSys[2] = “Earth”;
solarSys[3] = “Mars”;
solarSys[4] = “Jupiter”;
solarSys[5] = “Saturn”;
solarSys[6] = “Uranus”;
solarSys[7] = “Neptune”;
solarSys[8] = “Pluto”;
// comparison functions
function compare1(a,b) {

// reverse alphabetical order
if (a > b)

return -1;
if (b > a)

return 1;
return 0;

Continued

array.sort()

928 Part IV ✦ JavaScript Core Language Reference

Listing 30-8 (continued)

}
function compare2(a,b) {

// last character of planet names
var aComp = a.charAt(a.length - 1);
var bComp = b.charAt(b.length - 1);
if (aComp < bComp)

return -1;
if (aComp > bComp)

return 1;
return 0;

}
function compare3(a,b) {

// length of planet names
return a.length - b.length;

}
// sort and display array
function sortIt(form, compFunc) {

var delimiter = “;”;
if (compFunc == null) {

solarSys.sort();
} else {

solarSys.sort(compFunc);
}
// display results in field
form.output.value = unescape(solarSys.join(delimiter));

}
</script>

</head>
<body onload=”document.forms[0].output.value =

unescape(solarSys.join(‘;’))”>
<h2>Sorting array elements</h2>
This document contains an array of planets in our solar system.
<hr />
<form>

Click on a button to sort the array:
<p><input type=”button” value=”Alphabetical A-Z”

onclick=”sortIt(this.form)” /> <input type=”button”
value=”Alphabetical Z-A” onclick=”sortIt(this.form,compare1)” />
<input type=”button” value=”Last Character”
onclick=”sortIt(this.form,compare2)” /> <input type=”button”
value=”Name Length” onclick=”sortIt(this.form,compare3)” /> <input
type=”button” value=”Reload Original”
onclick=”self.location.reload()” /> <input type=”text”
name=”output” size=”62” /></p>

</form>
</body>

</html>

Related Items: array.reverse() method.

As I show you in Chapter 42 on the CD-ROM, many regular expression object methods gener-
ate arrays as their result (for example, an array of matching values in a string). These special
arrays have a custom set of named properties that assist your script in analyzing the findings of
the method. Beyond that, these regular expression result arrays behave like all others.

Note

array.sort()

929Chapter 30 ✦ The Array Object

Figure 30-2: Sorting an array of planet names alphabetically by last character.

array.splice(startIndex , deleteCount[, item1[,
item2[,...itemN]]])

Returns: Array.
Compatibility: WinIE5.5+, MacIE-, NN4+, Moz1+, Safari1+

If you need to remove items from the middle of an array, the array.splice() method simpli-
fies a task that would otherwise require assembling a new array from selected items of the
original array. The first of two required parameters is a zero-based index integer that points
to the first item to be removed from the current array. The second parameter is another inte-
ger that indicates how many sequential items are to be removed from the array. Removing
array items affects the length of the array, and those items that are removed are returned by
the splice() method as their own array.

You can also use the splice() method to replace array items. Optional parameters begin-
ning with the third let you provide data elements that are to be inserted into the array in
place of the items being removed. Each added item can be any JavaScript data type, and the
number of new items does not have to be equal to the number of items removed. In fact, by
specifying a second parameter of zero, you can use splice() to insert one or more items
into any position of the array.

Example
Use The Evaluator (Chapter 13) to experiment with the splice() method. Begin by creating
an array with a sequence of numbers:

a = new Array(1,2,3,4,5)

array.splice()

930 Part IV ✦ JavaScript Core Language Reference

Next, remove the center three items, and replace them with one string item:

a.splice(1, 3, “two/three/four”)

The Results box shows a string version of the three-item array returned by the method. To
view the current contents of the array, enter a into the top text box.

To put the original numbers back into the array, swap the string item with three numeric items:

a.splice(1, 1, 2, 3, 4)

The method returns the single string, and the a array now has five items in it again.

Related Items: array.slice() method.

array.toLocaleString()
Returns: String.
Compatibility: WinIE5.5+, MacIE-, NN6+, Moz1+, Safari1+

array.toString()
Returns: String.
Compatibility: WinIE4+, MacIE4+, NN3+, Moz1+, Safari1+

The array.toLocaleString() and the older, more compatible array.toString() are meth-
ods to retrieve the contents of an array in string form. Browsers use the toString() method
on their own whenever you attempt to display an array in text boxes, in which case the array
items are comma-delimited.

The precise string conversion of the toLocaleString() is left up to the specific browser imple-
mentation. That IE and NN differ in some details is not surprising, even in the U.S. English
versions of operating systems and browsers. For example, if the array contains integer values,
the toLocaleString() method in IE5.5+ returns the numbers comma-and-space-delimited, for-
matted with two digits to the right of the decimal (as if dollars and cents). NN6+, on the other
hand, returns just the integers, but these are also comma-and-space-delimited.

If you need to convert an array to a string for purposes of passing array data to other venues
(for example, as data in a hidden text box submitted to a server or as search string data con-
veyed to another page), use the array.join() method instead. Array.join() gives you
more reliable and flexible control over the item delimiters, and you are assured of the same
results regardless of locale.

Related Items: array.join() method.

✦ ✦ ✦

array.splice()

Control Structures
and Exception
Handling

You get up in the morning, go about your day’s business, and then
turn out the lights at night. That’s not much different from what

a program does from the time it starts to the time it ends. But along
the way, both you and a program take lots of tiny steps, not all of
which advance the “processing” in a straight line. At times, you have
to control what’s going on by making a decision or repeating tasks
until the whole job is finished. Control structures are the facilities
that make these tasks possible in JavaScript.

JavaScript control structures follow along the same lines of many pro-
gramming languages, particularly with additions made in Navigator 4
and Internet Explorer 4. Basic decision-making and looping construc-
tions satisfy the needs of just about all programming tasks.

Another vital program control mechanism — error (or exception)
handling — is formally addressed in Edition 3 of the ECMA-262 lan-
guage standard. The concept of exception handling was added to the
JavaScript version introduced in IE5.5 and NN6, but it is well known
to programmers in many other environments. Adopting exception-
handling techniques in your code can greatly enhance recovery from
processing errors caused by errant user input or network glitches.

If and If. . .Else Decisions
Compatibility: WinIE3+, MacIE3+, NN2+, Moz1+, Safari1+

JavaScript programs frequently have to make decisions based on the
current values of variables or object properties. Such decisions can
have only two possible outcomes at a time. The factor that determines
the path that the program takes at these decision points is the truth of
some statement. For example, when you enter a room of your home at
night, the statement under test is something such as “It is too dark to
see without a light.” If that statement is true, you switch on the light; if
that statement is false, you carry on with your primary task.

3131C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Branching script
execution down
multiple paths

Looping through
ordered collections
of data

Applying exception
handling techniques

✦ ✦ ✦ ✦

932 Part IV ✦ JavaScript Core Language Reference

Simple decisions
JavaScript syntax for this kind of simple decision always begins with the keyword if, followed
by the condition to test, and then the statements that execute if the condition yields a true
result. JavaScript uses no “then” keyword (as some other languages do); the keyword is implied
by the way parentheses and braces surround the various components of this construction. The
formal syntax is

if (condition) {
statementsIfTrue

}

This construction means that if the condition is true, program execution takes a detour to
execute statements inside the braces. No matter what happens, the program continues exe-
cuting statements beyond the closing brace (}). If household navigation were part of the
scripting language, the code would look like this:

if (tooDark == true) {
feel for light switch
turn on light switch

}

If you’re not used to C/C++, the double equals sign may have caught your eye. You learn more
about this type of operator in the next chapter, but for now, know that this operator compares
the equality of items on either side of it. In other words, the condition statement of an if con-
struction must always yield a Boolean (true or false) value. Some object properties, you may
recall, are Booleans, so you can stick a reference to that property into the condition statement
by itself. Otherwise, the condition statement consists of two values separated by a compari-
son operator, such as == (equals) or != (does not equal).

Next, look at some real JavaScript. The following function receives a form object containing a
text object called entry:

function notTooHigh(form) {
if (parseInt(form.entry.value) > 100) {

alert(“Sorry, the value you entered is too high. Try again.”);
return false;

}
return true;

}

The condition (in parentheses) tests the contents of the field against a hard-wired value of
100. If the entered value is larger than that, the function alerts you and returns a false value
to the calling statement elsewhere in the script. But if the value is less than 100, all interven-
ing code is skipped and the function returns true.

About (condition) expressions
A lot of condition testing for control structures compares a value against some very specific
condition, such as a string’s being empty or a value’s being null. You can use a couple of
shortcuts to take care of many circumstances. Table 31-1 details the values that evaluate to a
true or false (or equivalent) to satisfy a control structure’s condition expression.

if

933Chapter 31 ✦ Control Structures and Exception Handling

Table 31-1: Condition Value Equivalents

True False

Nonempty string Empty string

Nonzero number 0

Nonnull value Null

Object exists Object doesn’t exist

Property is defined Undefined property

Instead of having to spell out an equivalency expression for a condition involving these kinds
of values, you can simply supply the value to be tested. For example, if a variable named
myVal may reach an if construction with a value of null, an empty string, or a string value
for further processing, you can use the following shortcut:

if (myVal) {
// do processing on myVal

}

All null or empty string conditions evaluate to false, so that only the cases of myVal’s being
a processable value get inside the if construction. This mechanism is the same that you
have seen elsewhere in this book to employ object detection for browser branching. For
example, the code nested inside the following code segment executes only if the document
object has an images array property:

if (document.images) {
// do processing on image objects

}

Complex decisions
The simple type of if construction described earlier is fine when the decision is to take a small
detour before returning to the main path. But not all decisions — in programming or in life —
are like that. To present two alternate paths in a JavaScript decision, you can add a component
to the construction. The syntax is

if (condition) {
statementsIfTrue

} else {
statementsIfFalse

}

By appending the else keyword, you give the if construction a path to follow in case the condi-
tion evaluates to false. The statementsIfTrue and statementsIfFalse do not have to be bal-
anced in any way: One statement can be one line of code, the other 100 lines. But when either
one of those branches completes, execution continues after the last closing brace. To demon-
strate how this construction can come in handy, the following example is a script fragment that
assigns the number of days in February based on whether or not the year is a leap year (using
modulo arithmetic, explained in Chapter 32, to determine if the year is evenly divisible by four,
and setting aside all other leap year calculation details for the moment):

var howMany = 0;
var theYear = 2002;
if (theYear % 4 == 0) {

howMany = 29;

if...else

934 Part IV ✦ JavaScript Core Language Reference

} else {
howMany = 28;

}

Here is a case where execution has to follow only one of two possible paths to assign the
number of days to the howMany variable. Had I not used the else portion, as in

var howMany = 0;
var theYear = 2002;
if (theYear % 4 == 0) {

howMany = 29;
}
howMany = 28;

then the variable would always be set to 28, occasionally after momentarily being set to 29.
The else construction is essential in this case.

Nesting if. . .else statements
Designing a complex decision process requires painstaking attention to the logic of the decisions
your script must process and the statements that must execute for any given set of conditions.
The need for many complex constructions disappeared with the advent of switch construction
in NN4+/IE4+ (described later in this chapter), but there may still be times when you must fash-
ion complex decision behavior out of a series of nested if. . .else constructions. Without a
JavaScript-aware text editor to help keep everything properly indented and properly terminated
(with closing braces), you have to monitor the authoring process very carefully. Moreover, the
error messages that JavaScript provides when a mistake occurs (see Chapter 45 on the CD-ROM)
may not point directly to the problem line but only to the region of difficulty.

Another important point to remember about nesting if. . .else statements in JavaScript
before Version 1.2 is that the language does not provide a mechanism for script execution to
break out of a nested part of the construction. For that reason, you have to construct com-
plex assemblies with extreme care to make sure only the desired statement executes for
each set of conditions. Extensive testing, of course, is also required (see Chapter 45 on the
CD-ROM).

To demonstrate a deeply nested set of if. . .else constructions, Listing 31-1 presents a
simple user interface to a complex problem. A single text object asks the user to enter one of
three letters — A, B, or C. The script behind that field processes a different message for each
of the following conditions:

✦ The user enters no value.

✦ The user enters A.

✦ The user enters B.

✦ The user enters C.

✦ The user enters something entirely different.

Listing 31-1: Deeply Nested if. . .else Constructions

<html>
<head>

<title></title>

Note

if...else

935Chapter 31 ✦ Control Structures and Exception Handling

<script type=”text/javascript”>
function testLetter(form){

inpVal = form.entry.value; // assign to shorter variable name
if (inpVal != “”) { // if entry is not empty then dive in...

if (inpVal == “A”) { // Is it an “A”?
alert(“Thanks for the A.”);

} else if (inpVal == “B”) { // No. Is it a “B”?
alert(“Thanks for the B.”);

} else if (inpVal == “C”) { // No. Is it a “C”?
alert(“Thanks for the C.”);

} else { // Nope. None of the above
alert(“Sorry, wrong letter or case.”);

}
} else { // value was empty, so skipped all other stuff above

alert(“You did not enter anything.”);
}

}
</script>

</head>
<body>

<form onsubmit=”return false”>
Please enter A, B, or C: <input type=”text” name=”entry”
onchange=”testLetter(this.form)” />

</form>
</body>

</html>

Each condition executes only the statements that apply to that particular condition, even if it
takes several queries to find out what the entry is. You do not need to break out of the nested
construction because when a true response is found, the relevant statement executes, and no
other statements occur in the execution path to run.

Even if you understand how to construct a hair-raising nested construction, such as the one
in Listing 31-1, the trickiest part is making sure that each left brace has a corresponding right
brace. My technique for ensuring this pairing is to enter the right brace immediately after I
type the left brace. I typically type the left brace, press Enter twice (once to open a free line
for the next statement, once for the line that is to receive the right brace); tab, if necessary, to
the same indentation as the line containing the left brace; and then type the right brace.
Later, if I have to insert something indented, I just push down the right braces that I entered
earlier. If I keep up this methodology throughout the process, the right braces appear at the
desired indentation after I’m finished, even if the braces end up being dozens of lines below
their original spot.

if...else

What’s with the Formatting?

Indentation of the if construction and the further indentation of the statements executed on a
true condition are not required by JavaScript. What you see here, however, is a convention that
most JavaScript scripters follow. As you write the code in your text editor, you can use the Tab key
to make each indentation level; some developers prefer using a setting in their editor that con-
verts tabs to spaces, which guarantees that indentations are consistent across different editors.
The browser ignores these tab characters (and/or spaces) when loading the HTML documents
containing your scripts.

936 Part IV ✦ JavaScript Core Language Reference

Conditional Expressions
Compatibility: WinIE3+, MacIE3+, NN2+, Moz1+, Safari1+

While I’m showing you decision-making constructions in JavaScript, now is a good time to
introduce a special type of expression that you can use in place of an if. . .else control
structure for a common type of decision — the instance where you want to assign one of two
values to a variable, depending on the outcome of some condition. The formal definition for
the conditional expression is as follows:

variable = (condition) ? val1 : val2;

This expression means that if the Boolean result of the condition statement is true, JavaScript
assigns val1 to the variable; otherwise, it assigns val2 to the variable. Like other instances of
condition expressions, this one must also be written inside parentheses. The question mark is
key here, as is the colon separating the two possible values.

A conditional expression, though not particularly intuitive or easy to read inside code, is very
compact. Compare an if. . .else version of an assignment decision that follows

var collectorStatus;
if (CDCount > 500) {

collectorStatus = “fanatic”;
} else {

collectorStatus = “normal”;
}

with the conditional expression version:

var collectorStatus = (CDCount > 500) ? “fanatic” : “normal”;

The latter saves a lot of code lines (although the internal processing is the same as that of an
if. . .else construction). Of course, if your decision path contains more statements than
just one setting the value of a variable, the if. . .else or switch construction is prefer-
able. This shortcut, however, is a handy one to remember if you need to perform very binary
actions, such as setting a true-or-false flag in a script.

Repeat (for) Loops
Compatibility: WinIE3+, MacIE3+, NN2+, Moz1+, Safari1+

As you have seen in numerous examples throughout other chapters, the capability to cycle
through every entry in an array or through every item of a form element is vital to many
JavaScript scripts. Perhaps the most typical operation is inspecting a property of many simi-
lar items in search of a specific value, such as to determine which radio button in a group is
selected. One JavaScript structure that allows for these repetitious excursions is the for
loop, so-named after the keyword that begins the structure. Two other structures, called the
while loop and do-while loop, are covered in the following sections.

The JavaScript for loop lets a script repeat a series of statements any number of times and
includes an optional loop counter that can be used in the execution of the statements. The
following is the formal syntax definition:

for ([initial expression]; [condition]; [update expression]) {
statements

}

for

937Chapter 31 ✦ Control Structures and Exception Handling

The three statements inside the parentheses (parameters to the for statement) play a key
role in the way a for loop executes.

An initial expression in a for loop is executed one time, the first time the for loop begins to
run. The most common application of the initial expression is to assign a name and starting
value to a loop counter variable. Thus, seeing a var statement that both declares a variable
name and assigns an initial value (generally 0 or 1) to it is not uncommon. An example is

var i = 0;

You can use any variable name, but conventional usage calls for the letter i, which is short
for index. If you prefer the word counter or another word that reminds you of what the vari-
able represents, that’s fine, too. In any case, the important point to remember about this
statement is that it executes once at the outset of the for loop.

The second statement is a condition, precisely like the condition statement you saw in if
constructions earlier in this chapter. When a loop-counting variable is established in the initial
expression, the condition statement usually defines how high the loop counter should go
before the looping stops. Therefore, the most common statement here is one that compares
the loop counter variable against some fixed value — is the loop counter less than the maxi-
mum allowed value? If the condition is false at the start, the body of the loop is not executed.
But if the loop does execute, then every time execution comes back around to the top of the
loop, JavaScript reevaluates the condition to determine the current result of the expression. If
the loop counter increases with each loop, eventually the counter value goes beyond the value
in the condition statement, causing the condition statement to yield a Boolean value of
false. The instant that happens, execution drops out of the for loop entirely.

The final statement, the update expression, is executed at the end of each loop execution —
after all statements nested inside the for construction have run. Again, the loop counter
variable can be a factor here. If you want the counter value to increase by one the next time
through the loop (called incrementing the value), you can use the JavaScript operator that
makes that happen: the ++ operator appended to the variable name. That task is the reason
for the appearance of all those i++ symbols in the for loops that you’ve seen already in this
book. You’re not limited to incrementing by one. You can increment by any multiplier you
want or even drive a loop counter backward by decrementing the value (i--).

Now, take this knowledge and beef up the formal syntax definition with one that takes into
account a typical loop-counting variable, i, and the common ways to use it:

//incrementing loop counter
for (var i = minValue; i <= maxValue; i++) {

statements
}
//decrementing loop counter
for (var i = maxValue; i >= minValue; i--) {

statements
}

In the top format, the variable, i, is initialized at the outset to a value equal to that of minValue.
Variable i is immediately compared against maxValue. If i is less than or equal to maxValue,
processing continues into the body of the loop. At the end of the loop, the update expression
executes. In the top example, the value of i is incremented by 1. Therefore, if i is initialized as
0, then the first time through the loop, the i variable maintains that 0 value during the first exe-
cution of statements in the loop. The next time around, the variable has the value of 1.

As you may have noticed in the formal syntax definition, each of the parameters to the for
statement is optional. For example, the statements that execute inside the loop may control
the value of the loop counter based on data that gets manipulated in the process. Therefore,

for

938 Part IV ✦ JavaScript Core Language Reference

the update statement would probably interfere with the intended running of the loop. But I
suggest that you use all three parameters until such time as you feel absolutely comfortable
with their roles in the for loop. If you omit the condition statement, for instance, and you
don’t program a way for the loop to exit on its own, your script may end up in an infinite
loop — which does your users no good.

Putting the loop counter to work
Despite its diminutive appearance, the i loop counter (or whatever name you want to give
it) can be a powerful tool for working with data inside a repeat loop. For example, examine
a version of the classic JavaScript function that creates an array while initializing entries to
a value of 0:

// initialize array with n entries
function MakeArray(n) {

this.length = n;
for (var i = 1; i <= n; i++) {

this[i] = 0;
}
return this;

}

The loop counter, i, is initialized to a value of 1, because you want to create an array of empty
entries (with value 0) starting with the one whose index value is 1 (the zeroth entry is assigned
to the length property) in the previous line. In the condition statement, the loop continues to
execute as long as the value of the counter is less than or equal to the number of entries being
created (n). After each loop, the counter increments by 1. In the nested statement that executes
within the loop, you use the value of the i variable to substitute for the index value of the
assignment statement:

this[i] = 0;

The first time the loop executes, the value expression evaluates to

this[1] = 0;

The next time, the expression evaluates to

this[2] = 0;

and so on, until all entries are created and stuffed with 0.

Recall the HTML page in Listing 30-2, where a user chooses a regional office from a select list
(triggering a script to look up the manager’s name and sales quota for that region). Because the
regional office names are stored in an array, the page could be altered so that a script populates
the select element’s options from the array. That way, if there is ever a change to the align-
ment of regional offices, there need be only one change to the array of offices, and the HTML
doesn’t have to be modified. As a reminder, here is the definition of the regional offices array,
created while the page loads:

var regionalOffices = new Array(“New York”, “Chicago”, “Houston”, “Portland”);

A script inside the HTML form can be used to dynamically generate the select list as follows:

<script type=”text/javaScript”>
var elem = “”; // start assembling next part of page and form
elem += “<p>Select a regional office: “;
elem += “<select name=’offices’ onchange=’getData(this.form)’>”;
// build options list from array office names

for

939Chapter 31 ✦ Control Structures and Exception Handling

for (var i = 0; i < regionalOffices.length; i++) {
elem += “<option”; // option tags
if (i == 0) { // pre-select first item in list

elem += “ selected=’selected’”;
}
elem += “>” + regionalOffices[i];

}
elem += “</select></p>”; // close select item tag
document.write(elem); // write element to the page
</script>

Notice one important point about the condition statement of the for loop: JavaScript
extracts the length property from the array to be used as the loop counter boundary. From a
code maintenance and stylistic point of view, this method is preferable to hard-wiring a value
there. If the company added a new regional office, you would make the addition to the array
“database,” whereas everything else in the code would adjust automatically to those changes,
including creating a longer pop-up menu in this case.

Notice, too, that the operator for the condition statement is less-than (<): The zero-based
index values of arrays mean that the maximum index value we can use is one less than the
actual count of items in the array. This is vital information, because the index counter vari-
able (i) is used as the index to the regionalOffices array each time through the loop to
read the string for each item’s entry. You also use the counter to determine which is the first
option, so that you can take a short detour (via the if construction) to add the selected
attribute to the first option’s definition.

The utility of the loop counter in for loops often influences the way you design data struc-
tures, such as two-dimensional arrays (see Chapter 30) for use as databases. Always keep the
loop-counter mechanism in the back of your mind when you begin writing JavaScript script
that relies on collections of data that you embed in your documents.

Breaking out of a loop
Some loop constructions perform their job as soon as a certain condition is met, at which
point they have no further need to continue looping through the rest of the values in the loop
counter’s range. A common scenario for this is the cycling of a loop through an entire array in
search of a single entry that matches some criterion. That criterion test is set up as an if con-
struction inside the loop. If that criterion is met, you break out of the loop and let the script
continue with the more meaningful processing of succeeding statements in the main flow. To
accomplish that exit from the loop, use the break statement. The following schematic shows
how the break statement may appear in a for loop:

for (var i = 0; i < array.length; i++) {
if (array[i].property == magicValue) {

statements that act on entry array[i]
break;

}
}

The break statement tells JavaScript to bail out of the nearest for loop (in case you have
nested for loops). Script execution then picks up immediately after the closing brace of the
for statement. The variable value of i remains whatever it was at the time of the break, so
that you can use that variable later in the same script to access, say, that same array entry.

I use a construction similar to this in Chapter 22. There, the discussion of radio buttons
demonstrates this construction, where, in Listing 22-8, you see a set of radio buttons whose
value attributes contain the full names of four members of the Three Stooges. A function

break

940 Part IV ✦ JavaScript Core Language Reference

uses a for loop to find out which button was selected and then uses that item’s index
value — after the for loop breaks out of the loop — to alert the user. Listing 31-2 shows the
relevant function.

Listing 31-2: Breaking Out of a for Loop

function fullName(form) {
for (var i = 0; i < form.stooges.length; i++) {

if (form.stooges[i].checked) {
break;

}
}
alert(“You chose “ + form.stooges[i].value + “.”);

}

In this case, breaking out of the for loop was for more than mere efficiency; the value of the
loop counter (frozen at the break point) is used to summon a different property outside of
the for loop. As of version 4 browsers, the break statement gained additional powers in
cooperation with the new label feature of control structures. This subject is covered later
in this chapter.

Directing loop traffic with continue
One other possibility in a for loop is that you may want to skip execution of the nested state-
ments for just one condition. In other words, as the loop goes merrily on its way round and
round, executing statements for each value of the loop counter, one value of that loop counter
may exist for which you don’t want those statements to execute. To accomplish this task, the
nested statements need to include an if construction to test for the presence of the value to
skip. When that value is reached, the continue command tells JavaScript to immediately skip
the rest of the body, execute the update statement, and loop back around to the top of the loop
(also skipping the condition statement part of the for loop’s parameters).

To illustrate this construction, you create an artificial example that skips over execution
when the counter variable is the superstitious person’s unlucky 13:

for (var i = 0; i <= 20; i++) {
if (i == 13) {

continue;
}
statements

}

In this example, the statements part of the loop executes for all values of i except 13. The
continue statement forces execution to jump to the i++ part of the loop structure, incre-
menting the value of i for the next time through the loop. In the case of nested for loops, a
continue statement affects the for loop in whose immediate scope the if construction falls.
The continue statement was enhanced in version 4 browsers with the label feature of con-
trol structures, which is covered later in this chapter.

The while Loop
Compatibility: WinIE3+, MacIE3+, NN2+, Moz1+, Safari1+

break

941Chapter 31 ✦ Control Structures and Exception Handling

The for loop is not the only kind of repeat loop you can construct in JavaScript. Another
statement, called a while statement, sets up a loop in a slightly different format. Rather than
providing a mechanism for modifying a loop counter, a while repeat loop assumes that your
script statements will reach a condition that forcibly exits the repeat loop.

The basic syntax for a while loop is

while (condition) {
statements

}

The condition expression is the same kind that you saw in if constructions and in the middle
parameter of the for loop. You introduce this kind of loop if some condition exists in your code
(evaluates to true) before reaching this loop. The loop then performs some action, which
affects that condition repeatedly until that condition becomes false. At that point, the loop
exits, and script execution continues with statements after the closing brace. If the statements
inside the while loop do not affect the values being tested in condition, your script never
exits, and it becomes stuck in an infinite loop.

Many loops can be rendered with either the for or while loops. In fact, Listing 31-3 shows a
while loop version of the for loop from Listing 31-2.

Listing 31-3: A while Loop Version of Listing 31-2

function fullName(form) {
var i = 0;
while (!form.stooges[i].checked) {

i++;
}
alert(“You chose “ + form.stooges[i].value + “.”);

}

One point you may notice is that if the condition of a while loop depends on the value of a
loop counter, the scripter is responsible for initializing the counter prior to the while loop
construction and managing its value within the while loop.

Should you need their powers, the break and continue control statements work inside while
loops as they do in for loops. But because the two loop styles treat their loop counters and
conditions differently, be extra careful (do lots of testing) when applying break and continue
statements to both kinds of loops.

No hard-and-fast rules exist for which type of loop construction to use in a script. I generally
use while loops only when the data or object I want to loop through is already a part of my
script before the loop. In other words, by virtue of previous statements in the script, the val-
ues for any condition or loop counting (if needed) are already initialized. But if I need to cycle
through an object’s properties or an array’s entries to extract some piece of data for use later
in the script, I favor the for loop.

Another point of style, particularly with the for loop, is where a scripter should declare the
i variable. Some programmers prefer to declare (or initialize if initial values are known) all
variables in the opening statements of a script or function. That is why you tend to see a lot
of var statements in those positions in scripts. If you have only one for loop in a function,
for example, nothing is wrong with declaring and initializing the i loop counter in the initial
expression part of the for loop (as demonstrated frequently in the previous sections). But if
your function utilizes multiple for loops that reuse the i counter variable (that is, the loops

while

942 Part IV ✦ JavaScript Core Language Reference

run completely independently of one another), then you can declare the i variable once at
the start of the function and simply assign a new initial value to i in each for construction.

The do-while Loop
Compatibility: WinIE4+, MacIE4+, NN4+, Moz1+, Safari1+

JavaScript brings you one more looping construction, called the do-while loop. The formal
syntax for this construction is as follows:

do {
statements

} while (condition)

An important difference distinguishes the do-while loop from the while loop. In the do-
while loop, the statements in the construction always execute at least one time before the
condition can be tested; in a while loop, the statements may never execute if the condition
tested at the outset evaluates to false.

Use a do-while loop when you know for certain that the looped statements are free to run at
least one time. If the condition may not be met the first time, use the while loop. For many
instances, the two constructions are interchangeable, although only the while loop is com-
patible with all scriptable browsers.

Looping through Properties (for-in)
Compatibility: WinIE3+, MacIE3+, NN2+, Moz1+, Safari1+

JavaScript includes a variation of the for loop, called a for-in loop, which has special powers
of extracting the names and values of any object property currently in the browser’s memory.
The syntax looks like this:

for (var in object) {
statements

}

The object parameter is not the string name of an object but a reference to the object itself.
JavaScript delivers an object reference if you provide the name of the object as an unquoted
string, such as window or document. Using the var variable, you can create a script that
extracts and displays the range of properties for any given object.

Listing 31-4 shows a page containing a utility function that you can insert into your HTML
documents during the authoring and debugging stages of designing a JavaScript-enhanced
page. In the example, the current window object is examined and its properties are presented
in the page (note that Safari 1.0 doesn’t expose window object properties).

Listing 31-4: Property Inspector Function

<html>
<head>

<title></title>
<script type=”text/javascript”>
function showProps(obj,objName) {

while

943Chapter 31 ✦ Control Structures and Exception Handling

var result = “”;
for (var i in obj) {

result += objName + “.” + i + “ = “ + obj[i] + “
”;
}
return result;

}
</script>

</head>
<body>

Here are the properties of the current window:
<p>

<script type=”text/javascript”>
document.write(showProps(window, “window”));
</script>

</p>
</body>

</html>

For debugging purposes, you can revise the function slightly to display the results in an alert
dialog box. Replace the
 HTML tag with the \n carriage return character for a nicely for-
matted display in the alert dialog box. You can call this function from anywhere in your script,
passing both the object reference and a string to it to help you identify the object after the
results appear in an alert dialog box. If the showProps() function looks familiar to you, it is
because it closely resembles the property inspector routines of The Evaluator (see Chapter 13).
In Chapter 45 on the CD-ROM, you can see how to embed functionality of The Evaluator into a
page under construction so that you can view property values while debugging your scripts.

The with Statement
Compatibility: WinIE3+, MacIE3+, NN2+, Moz1+, Safari1+

A with statement enables you to preface any number of statements by advising JavaScript on
precisely which object your scripts will be talking about, so that you don’t have to use full,
formal addresses to access properties or invoke methods of the same object. The formal syn-
tax definition of the with statement is as follows:

with (object) {
statements

}

The object reference is a reference to any valid object currently in the browser’s memory. An
example of this appears in Chapter 28’s discussion of the Math object. By embracing several
Math-encrusted statements inside a with construction, your scripts can call the properties
and methods without having to make the object part of every reference to those properties
and methods.

An advantage of the with structure is that it can make heavily object-dependent statements
easier to read and understand. Consider this long version of a function that requires multiple
calls to the same object (but different properties):

function seeColor(form) {
newColor = (form.colorsList.options[form.colorsList.selectedIndex].text);
return newColor;

}

with

944 Part IV ✦ JavaScript Core Language Reference

Using the with structure, you can shorten the long statement:

function seeColor(form) {
with (form.colorsList) {

newColor = (options[selectedIndex].text);
}
return newColor;

}

When JavaScript encounters an otherwise unknown identifier inside a with statement, it tries
to build a reference out of the object specified as its parameter and that unknown identifier.
You cannot, however, nest with statements that build on one another. For instance, in the
preceding example, you cannot have a with (colorsList) nested inside a with (form) state-
ment and expect JavaScript to create a reference to options out of the two object names.

As clever as the with statement may seem, be aware that it introduces some inherent perfor-
mance penalties in your script (because of the way the JavaScript interpreter must artificially
generate references). You probably won’t notice degradation with occasional use of this con-
struction, but if it’s used inside a loop that must iterate many times, processing speed will
almost certainly be affected negatively.

Labeled Statements
Compatibility: WinIE4+, MacIE4+, NN4+, Moz1+, Safari1+

Crafting multiple nested loops can sometimes be difficult when the final condition your script
is looking for is met deep inside the nests. The problem is that the break or continue state-
ment by itself has scope only to the nearest loop level. Therefore, even if you break out of the
inner loop, the outer loop(s) continue to execute. If all you want to do is exit the function
after the condition is met, a simple return statement performs the same job as some other
languages’ exit command. But if you also need some further processing within that function
after the condition is met, you need the NN4+/IE4+/W3C facility that lets you assign labels to
blocks of JavaScript statements. Your break and continue statements can then alter their
scope to apply to a labeled block other than the one containing the statement.

A label is any identifier (that is, name starting with a letter and containing no spaces or odd
punctuation other than an underscore) followed by a colon preceding a logical block of exe-
cuting statements, such as an if. . .then or loop construction. The formal syntax looks
like the following:

labelID:
statements

For a break or continue statement to apply itself to a labeled group, the label is added as a
kind of parameter to each statement, as in

break labelID;
continue labelID;

To demonstrate how valuable this can be in the right situation, Listing 31-5 contains two ver-
sions of the same nested loop construction. The goal of each version is to loop through two
different index variables until both values equal the target values set outside the loop. When
those targets are met, the entire nested loop construction should break off and continue pro-
cessing afterward. To help you visualize the processing that goes on during the execution of
the loops, the scripts output intermediate and final results to a textarea.

In the version without labels, when the targets are met, only the simple break statement is
issued. This breaks the inner loop at that point, but the outer loop picks up on the next iteration.

with

945Chapter 31 ✦ Control Structures and Exception Handling

By the time the entire construction has ended, a lot of wasted processing has gone on.
Moreover, the values of the counting variables max themselves out, because the loops exe-
cute in their entirety several times after the targets are met.

But in the labeled version, the inner loop breaks out of the labeled outer loop as soon as the
targets are met. Far fewer lines of code are executed, and the loop counting variables are
equal to the targets, as desired. Experiment with Listing 31-5 by changing the break state-
ments to continue statements. Then closely analyze the two results in the Results textarea
to see how the two versions behave.

Listing 31-5: Labeled Statements

<html>
<head>

<title>Breaking Out of Nested Labeled Loops</title>
<script type=”text/javascript”>
var targetA = 2;
var targetB = 2;
var range = 5;
function run1() {

var out = document.forms[0].output;
out.value = “Running WITHOUT labeled break\n”;
for (var i = 0; i <= range; i++) {

out.value += “Outer loop #” + i + “\n”;
for (var j = 0; j <= range; j++) {

out.value += “ Inner loop #” + j + “\n”;
if (i == targetA && j == targetB) {

out.value += “**BREAKING OUT OF INNER LOOP**\n”;
break;

}
}

}
out.value += “After looping, i = “ + i + “, j = “ + j + “\n”;

}
function run2() {

var out = document.forms[0].output;
out.value = “Running WITH labeled break\n”;
outerLoop:
for (var i = 0; i <= range; i++) {

out.value += “Outer loop #” + i + “\n”;
innerLoop:
for (var j = 0; j <= range; j++) {

out.value += “ Inner loop #” + j + “\n”;
if (i == targetA && j == targetB) {

out.value += “**BREAKING OUT OF OUTER LOOP**\n”;
break outerLoop;

}
}

}
out.value += “After looping, i = “ + i + “, j = “ + j + “\n”;

}
</script>

</head>
<body>

<h1>Breaking Out of Nested Labeled Loops</h1>

Continued

label

946 Part IV ✦ JavaScript Core Language Reference

Listing 31-5 (continued)

<hr />
<p>Look in the Results field for traces of these button scripts:</p>
<form>

<p><input type=”button” value=”Execute WITHOUT Label”
onclick=”run1()” /></p>

<p><input type=”button” value=”Execute WITH Label”
onclick=”run2()” /></p>

<p>Results:</p>
<textarea name=”output” rows=”43” cols=”60”></textarea>

</form>
</body>

</html>

The switch Statement
Compatibility: WinIE4+, MacIE4+, NN4+, Moz1+, Safari1+

In some circumstances, a binary — true or false — decision path is not enough to handle the
processing in your script. An object property or variable value may contain any one of sev-
eral values, and a separate execution path is required for each one. In the past, the way to
accommodate this was with a series of if. . .else constructions. The more conditions you
must test, the less efficient the processing is, because each condition must be tested.
Moreover, the sequence of clauses and braces can get very confusing.

In version 4 browsers, a control structure in use by many languages was introduced to
JavaScript. The implementation is similar to that of Java and C, using the switch and case
keywords. The basic premise is that you can create any number of execution paths based on
the value of some expression. At the beginning of the structure, you identify what that expres-
sion is and then, for each execution path, assign a label matching a particular value.

The formal syntax for the switch statement is

switch (expression) {
case label1:

statements
[break]

case label2:
statements
[break]

...
[default:

statements]
}

The expression parameter of the switch statement can evaluate to any string or number
value. Labels are surrounded by quotes when the labels represent string values of the expres-
sion. Notice that the break statements are optional. A break statement forces the switch
expression to bypass all other checks of succeeding labels against the expression value.
Another option is the default statement, which provides a catchall execution path when the
expression value does not match any of the case statement labels. If you’d rather not have
any execution take place with a non-matching expression value, omit the default part of the
construction.

label

947Chapter 31 ✦ Control Structures and Exception Handling

To demonstrate the syntax of a working switch statement, Listing 31-6 provides the skeleton
of a larger application of this control structure. The page contains two separate arrays of dif-
ferent product categories. Each product has its name and price stored in its respective array.
A select list displays the product names. After a user chooses a product, the script looks up
the product name in the appropriate array and displays the price.

The trick behind this application is the values assigned to each product in the select list. While
the displayed text is the product name, the value attribute of each <option> tag is the array
category for the product. That value is the expression used to decide which branch to follow.
Notice, too, that I assign a label to the entire switch construction. The purpose of that is to let
the deeply nested repeat loops for each case completely bail out of the switch construction
(via a labeled break statement) whenever a match is made. You can extend this example to
any number of product category arrays with additional case statements to match.

Listing 31-6: The switch Construction in Action

<html>
<head>

<title>Switch Statement and Labeled Break</title>
<script type=”text/javascript”>
// build two product arrays, simulating two database tables
function product(name, price) {

this.name = name;
this.price = price;

}
var ICs = new Array();
ICs[0] = new product(“Septium 900MHz”,”$149”);
ICs[1] = new product(“Septium Pro 1.0GHz”,”$249”);
ICs[2] = new product(“Octium BFD 750MHz”,”$329”);
var snacks = new Array();
snacks[0] = new product(“Rays Potato Chips”,”$1.79”);
snacks[1] = new product(“Cheezey-ettes”,”$1.59”);
snacks[2] = new product(“Tortilla Flats”,”$2.29”);

// lookup in the ‘table’ associated with the product
function getPrice(selector) {

var chipName = selector.options[selector.selectedIndex].text;
var outField = document.forms[0].cost;
master:
switch(selector.options[selector.selectedIndex].value) {
case “ICs”:

for (var i = 0; i < ICs.length; i++) {
if (ICs[i].name == chipName) {

outField.value = ICs[i].price;
break master;

}
}
break;

case “snacks”:
for (var i = 0; i < snacks.length; i++) {

if (snacks[i].name == chipName) {
outField.value = snacks[i].price;
break master;

}
}

Continued

switch

948 Part IV ✦ JavaScript Core Language Reference

Listing 31-6 (continued)

break;
default:

outField.value = “Not Found”;
}

}
</script>

</head>
<body>

Branching with the switch Statement
<hr />
Select a chip for lookup in the chip price tables:
<form>

Chip:<select name=”chips” onchange=”getPrice(this)”>
<option></option>
<option value=”ICs”>Septium 900MHz</option>
<option value=”ICs”>Septium Pro 1.0GHz</option>
<option value=”ICs”>Octium BFD 750MHz</option>
<option value=”snacks”>Rays Potato Chips</option>
<option value=”snacks”>Cheezey-ettes</option>
<option value=”snacks”>Tortilla Flats</option>
<option>Poker Chipset</option>

</select> Price:<input type=”text” name=”cost” size=”10” />
</form>

</body>
</html>

Exception Handling
The subject of exception handling is relatively new to JavaScript. Formalized in Edition 3 of
ECMA-262, parts of the official mechanism are implemented in IE5, with more complete imple-
mentations in IE6 and NN6, and of course in Mozilla and Safari.

Exceptions and errors
If you’ve done any scripting, you are certainly aware of JavaScript errors, whether they be
from syntax errors in your code, or what are known as runtime errors — errors that occur
while scripts are processing information. Ideally, a program should be aware of when an error
occurs and handle it as gracefully as possible. This self-healing can prevent lost data (usually
not a big problem in Web applications) and prevent users from seeing the ugliness of error
messages. Chapter 16 covers the onerror event handler (and window.onerror property),
which were early attempts at letting scripts gain a level of control over runtime errors. This
event-driven mechanism works on a global level (that is, in the window object) and processes
every error that occurs throughout the page. This event handler ends up being used primar-
ily as a last-ditch defense against displaying any error message to the user and is a long way
from what programmers consider to be exception handling.

In the English language, the term “exception” can mean the same as something out of the
ordinary, or something abnormal. This definition seems quite distant from the word “error,”
which usually means a mistake. In the realm of programming languages, however, the two
words tend to be used interchangeably, and the difference between the two depends primar-
ily on one’s point of view.

switch

949Chapter 31 ✦ Control Structures and Exception Handling

Consider, for example, a simple script whose job is to multiply numbers that the user enters
into two text fields on the page. The script is supposed to display the results in a third text
box. If the script contains no data entry validation, JavaScript will attempt to multiply what-
ever values are entered into the text boxes. If the user enters two numbers, JavaScript is
smart enough to recognize that even though the value properties of the two input text fields
are strings, the strings contain numbers that can be converted to number types for the
proper multiplication. Without complaint, the product of the two numbers gets calculated
and displayed into the results.

But what if the user types a letter into one of the text boxes? Again, without any entry valida-
tion in the script, JavaScript has a fixed way of responding to such a request: The result of the
multiplication operation is the NaN (not a number) constant. If you are an untrained user, you
have no idea what NaN means, but your experience with computers tells you that some kind
of error has occurred. You may blame the computer or you may blame yourself.

To shift the point of view to the programmer, however, the script was designed to be run by a
user who never makes a typing mistake, intentional or not. That, of course, is not very good
programming practice. Users make mistakes. Therefore, anticipating user input that is not
what would be expected is the programmer’s job — input that is an exception to the rules
your program wants to operate by. You must include some additional code that handles the
exceptions gracefully so as to not confuse the user with unintelligible output and perhaps
even help the user repair the input to get a result. This extra programming code handles the
undesirable and erroneous input.

As it turns out, JavaScript and the W3C Document Object Model liberally mix terms of exception
and error within the vocabulary used to handle exceptions. As you see shortly, an exception
creates an error object, which contains information about the exception. It is safe to say that
you can think of exceptions and errors as the same things.

The exception mechanism
Newcomers to JavaScript (or any programming environment, for that matter) may have a dif-
ficult time at first creating a mental model of how all this stuff runs within the context of the
browser. It may be easy enough to understand how pages load and create object models, and
how event handlers (or listeners in the W3C DOM terminology) cause script functions to run.
But a lot of action also seems to be going on in the background. For example, the event object
that is generated automatically with each event action (see Chapter 25) seems to sit “some-
where” while event handler functions run so that they can retrieve details about the event.
After the functions finish their processing, the event object disappears, without even leaving
behind a Cheshire Cat smile. Mysterious.

Browsers equipped for exception handling have more of this “stuff” running in the background,
ready for your scripts when you need it. Because you have certainly viewed the details of at
least one scripting error, you have already seen some of the exception-handling mechanism
that is built into browsers. If a script error occurs, the browser creates in its memory an error
object, whose properties contain details about the error. The precise details (described later in
this chapter) vary from one browser brand to the next, but what you see in the error details
readout is the default way the browser handles exceptions/errors. As browsers have matured,
their makers have gone to great lengths to tone down the intrusion of script errors. For exam-
ple in NN4+, errors appear in a separate JavaScript Console window (which must be invoked in
NN4 by typing javascript: into the Location field; or opened directly via the Tools menu in
NN6+ and Mozilla). In IE4+ for Windows, the status bar comes into play again, as the icon at the
bottom-left corner turns into an alert icon: Double-clicking the icon displays more information
about the error. MacIE users can turn off scripting error alerts altogether. Safari 1.0 doesn’t
divulge any script errors (see Chapter 45 on the CD-ROM to engage this feature).

Exceptions

950 Part IV ✦ JavaScript Core Language Reference

True exception handling, however, goes further than just displaying error messages. It also
provides a uniform way to let scripts guard against unusual occurrences. Ideally, the mecha-
nism makes sure that all runtime errors get funneled through the same mechanism to help
simplify the scripting of exception handling. The mechanism is also designed to be used
intentionally as a way for your own code to generate errors in a uniform way so that other
parts of your scripts can handle them quietly and intelligently. In other words, you can use
the exception handling mechanism as a kind of “back channel” to communicate from one part
of your scripts to another.

The JavaScript exception handling mechanism is built around two groups of program execu-
tion statements. The first group consists of the try-catch-finally statement triumvirate;
the second group is the single throw statement.

Using try-catch-finally Constructions
The purpose of the try-catch-finally group of related statements is to provide a controlled
environment in which script statements that may encounter runtime errors can run, such
that if an exception occurs, your scripts can act upon the exception without alarming the rest
of the browser’s error mechanisms. Each of the three statements precedes a block of code in
the following syntax:

try {
statements to run

}
catch (errorInfo) {

statements to run if exception occurs in try block
}
finally {

statements to run whether or not an exception occurred [optional]
}

Each try block must be mated with a catch and/or finally block at the same nesting level,
with no intervening statements. For example, a function can have a one-level try-catch con-
struction inside it as follows:

function myFunc() {
try {

statements
}
catch (e) {

statements
}

}

But if there were another try block nested one level deeper, a balancing catch or finally
block would also have to be present at that deeper level:

function myFunc() {
try {

statements
try {

statements
}
catch (e) {

statements
}

Exceptions

951Chapter 31 ✦ Control Structures and Exception Handling

}
catch (e) {

statements
}

}

The statements inside the try block include statements that you believe are capable of gen-
erating a runtime error because of user input errors, the failure of some page component to
load, or a similar error. The presence of the catch block prevents errors from appearing in
the browser’s regular script error reporting system (for example, the JavaScript Console of
NN6+ and Mozilla).

An important term to know about exception handling of this type is throw. The convention is
that when an operation or method call triggers an exception, it is said to “throw an exception.”
For example, if a script statement attempts to invoke a method of a string object, but that
method does not exist for the object (perhaps you mistyped the method name), JavaScript
throws an exception. Exceptions have names associated with them — a name that sometimes,
but not always, reveals important information about the exception. In the mistyped method
example just cited, the name of that exception is a TypeError (yet more evidence of how
“exception” and “error” become intertwined).

The JavaScript language (in IE5+/NN6+/W3C) is not the only entity that can throw exceptions.
The W3C DOM also defines categories of exceptions for DOM objects. For example, according
to the Level 2 specification, the appendChild() method (see Chapter 15) can throw (or raise,
in the W3C terminology) one of three exceptions:

Exception Name When Thrown

HIERARCHY_REQUEST_ERR If the current node is of a type that does not allow children
of the type of the newChild node, or if the node to append
is one of this node’s ancestors

WRONG_DOCUMENT_ERR If newChild was created from a different document than
the one that created the current node

NO_MODIFICATION_ALLOWED_ERR If the current node is read-only

Because the appendChild() method is capable of throwing exceptions, a JavaScript state-
ment that invokes this method should ideally be inside a try block. If an exception is thrown,
then script execution immediately jumps to the catch or finally block associated with the
try block. Execution does not come back to the try block.

A catch block has special behavior. Its format looks similar to a function in a way, because the
catch keyword is followed by a pair of parentheses and an arbitrary variable that is assigned a
reference to the error object whose properties are filled by the browser when the exception
occurs. One of the properties of that error object is the name of the error. Therefore, the code
inside the catch block can examine the name of the error and perhaps include some branch-
ing code to take care of a variety of different errors that are caught.

To see how this construction may look in code, look at a hypothetical generic function whose
job is to create a new element and append it to some other node. Both the type of element to
be created and a reference to the parent node are passed as parameters. To take care of
potential misuses of this function through the passage of improper parameter values, it
includes extra error handling to treat all possible exceptions from the two DOM methods:
createElement() and appendChild(). Such a function looks like Listing 31-7.

try-catch-finally

952 Part IV ✦ JavaScript Core Language Reference

Listing 31-7: A Hypothetical try-catch Routine

// generic appender
function attachToEnd(theNode, newTag) {

try {
var newElem = document.createElement(newTag);
theNode.appendChild(newElem);

}
catch (e) {

switch (e.name) {
case “INVALID_CHARACTER_ERR” :

statements to handle this createElement() error
break;

case “HIERARCHY_REQUEST_ERR” :
statements to handle this appendChild() error
break;

case “WRONG_DOCUMENT_ERR” :
statements to handle this appendChild() error
break;

case “NO_MODIFICATION_ALLOWED_ERR” :
statements to handle this appendChild() error
break;

default:
statements to handle any other error

}
return false;

}
return true;

}

The single catch block in Listing 31-7 executes only if one of the statements in the try block
throws an exception. The exceptions may be not only one of the four specific ones named in
the catch block but also syntax or other errors that could occur inside the try block. That’s
why you have a last-ditch case to handle truly unexpected errors. Your job as scripter is to
not only anticipate errors but also to provide clean ways for the exceptions to be handled,
whether they be through judiciously worded alert dialog boxes or perhaps even some self-
repair. For example, in the case of the invalid character error for createElement(), your
script may attempt to salvage the data passed to the attachToEnd() function and reinvoke
the method passing theNode value as-is and the repaired value originally passed to newTag. If
your repairs were successful, the try block would execute without error and carry on with
the user’s being completely unaware that a nasty problem had been averted.

A finally block contains code that always executes after a try block, whether or not the
try block succeeds without throwing an error. Unlike the catch block, a finally block does
not receive an error object as a parameter, so it operates very much in the dark about what
transpires inside the try block. If you include both catch and finally blocks after a try
block, the execution path depends on whether an exception is thrown. If no exception is
thrown, the finally block executes after the last statement of the try block runs. But if the
try block throws an exception, program execution runs first to the catch block. After all pro-
cessing within the catch block finishes, the finally block executes. In development environ-
ments that give programmers complete control over resources, such as memory allocation, a
finally block may be used to delete some temporary items generated in the try block,
whether or not an exception occurs in the try block. Currently, JavaScript has less need for
that kind of maintenance, but you should be aware of the program execution possibilities of
the finally block in the try-catch-finally context.

try-catch-finally

953Chapter 31 ✦ Control Structures and Exception Handling

Real-life exceptions
The example shown in Listing 31-7 is a bit idealized. The listing assumes that the browser
dutifully reports every W3C DOM exception precisely as defined in the formal specification.
Unfortunately, that’s not how it is (yet) in browsers through IE6 and NN7. Both browsers
implement additional error naming conventions and layers between actual DOM exceptions
and what gets reported with the error object at the time of the exception.

If you think these discrepancies make cross-browser exception handling difficult, you’re right.
Even simple errors are reported differently among the two major browser brands and the
W3C DOM specification. Until the browsers exhibit a greater unanimity in exception report-
ing, the smoothest development road will be for those scripters who have the luxury of writ-
ing for one of the browser platforms, such as IE6 for Windows or NN7.

That said, however, one aspect of exception handling can still be used in both IE5+ and
NN6+/W3C. You can take advantage of try-catch constructions to throw your own excep-
tions — a practice that is quite common in advanced programming environments.

Throwing Exceptions
The last exception handling keyword not covered yet —throw— makes it possible to utilize
exception-handling facilities for your own management of processes, such as data entry vali-
dation. At any point inside a try block, you can manually throw an exception that gets picked
up by the associated catch block. The details of the specific exception are up to you.

Syntax for the throw statement is as follows:

throw value;

The value you throw can be of any type, but good practice suggests that the value be an error
object (described more fully later in this chapter). Whatever value you throw is assigned to
the parameter of the catch block. Look at the following two examples. In the first, the value is
a string message; in the second, the value is an error object.

Listing 31-8 presents one input text box for a number between 1 and 5. Clicking a button looks
up a corresponding letter in an array and displays the letter in a second text box. The lookup
script has two simple data validation routines to make sure the entry is a number and is in
the desired range. Error checking here is done manually by script. If either of the error condi-
tions occurs, throw statements force execution to jump to the catch block. The catch block
assigns the incoming string parameter to the variable e. The design here assumes that the
message being passed is text for an alert dialog box. Not only does a single catch block take
care of both error conditions (and conceivably any others to be added later), but the catch
block runs within the same variable scope as the function, so that it can use the reference to
the input text box to focus and select the input text if there is an error.

Listing 31-8: Throwing String Exceptions

<html>
<head>

<title>Throwing a String Exception</title>
<script type=”text/javascript”>
var letters = new Array(“A”,”B”,”C”,”D”,”E”);

Continued

throw

954 Part IV ✦ JavaScript Core Language Reference

Listing 31-8 (continued)

function getLetter(fld) {
try {

var inp = parseInt(fld.value, 10);
if (isNaN(inp)) {

throw “Entry was not a number.”;
}
if (inp < 1 || inp > 5) {

throw “Enter only 1 through 5.”;
}
fld.form.output.value = letters[inp - 1];

}
catch (e) {

alert(e);
fld.form.output.value = “”;
fld.focus();
fld.select();

}
}
</script>

</head>
<body>

<h1>Throwing a String Exception</h1>
<hr />
<form>

Enter a number from 1 to 5: <input type=”text” name=”input”
size=”5” /> <input type=”button” value=”Get Letter”
onclick=”getLetter(this.form.input)” /> Matching Letter is:<input
type=”text” name=”output” size=”5” />

</form>
</body>

</html>

The flaw with Listing 31-8 is that if some other kind of exception were thrown inside the try
block, the value passed to the catch block would be an error object, not a string. The alert
dialog box displayed to the user would be meaningless. Therefore, it is better to be uniform in
your throw-catch constructions and pass an error object.

Listing 31-9 is an updated version of Listing 31-8, demonstrating how to create an error object
that gets sent to the catch block via throw statements.

Listing 31-9: Throwing an Error Object Exception

<html>
<head>

<title>Throwing an Error Object Exception</title>
<script type=”text/javascript”>
var letters = new Array(“A”,”B”,”C”,”D”,”E”);
function getErrorObj(msg) {

var err = new Error(msg);
return err;

}

throw

955Chapter 31 ✦ Control Structures and Exception Handling

function getLetter(fld) {
try {

var inp = parseInt(fld.value, 10);
if (isNaN(inp)) {

throw getErrorObj(“Entry was not a number.”);
}
if (inp < 1 || inp > 5) {

throw getErrorObj(“Enter only 1 through 5.”);
}
fld.form.output.value = letters[inp - 1];

}
catch (e) {

alert(e.message);
fld.form.output.value = “”;
fld.focus();
fld.select();

}
}
</script>

</head>
<body>

<h1>Throwing an Error Object Exception</h1>
<hr />
<form>

Enter a number from 1 to 5: <input type=”text” name=”input”
size=”5” /> <input type=”button” value=”Get Letter”
onclick=”getLetter(this.form.input)” /> Matching Letter is:<input
type=”text” name=”output” size=”5” />

</form>
</body>

</html>

The only difference to the catch block is that it now reads the message property of the incom-
ing error object. This means that if some other exception is thrown inside the try block, the
browser-generated message will be displayed in the alert dialog box.

In truth, however, the job really isn’t complete. In all likelihood, if a browser-generated excep-
tion is thrown, the message in the alert dialog box won’t mean much to the user. The error
message will probably be some kind of syntax or type error — the kind of meaningless error
message you often get from your favorite operating system. A better design is to branch the
catch block so that “intentional” exceptions thrown by your code are handled through the
alert dialog box messages you’ve put there, but other types are treated differently. To accom-
plish this, you can take over one of the other properties of the error object —name— so that
your catch block treats your custom messages separately.

In Listing 31-10, the getErrorObj() function adds a custom value to the name property of the
newly created error object. The name you assign can be any name, but you want to avoid
exception names used by JavaScript or the DOM. Even if you don’t know what all of those are,
you can probably conjure up a suitably unique name for your error. Down in the catch block,
a switch construction branches to treat the two classes of errors differently. In this simpli-
fied example, about the only possible problem other than the ones being trapped for explic-
itly in the try block would be some corruption to the page during downloading. Therefore,
for this example, the branch for all other errors simply asks that the user reload the page and
try again. The point is, however, that you can have as many classifications of custom and sys-
tem errors as you want and handle them in a single catch block accordingly.

throw

956 Part IV ✦ JavaScript Core Language Reference

Listing 31-10: A Custom Object Exception

<html>
<head>

<title>Throwing a Custom Error Object Exception</title>
<script type=”text/javascript”>
var letters = new Array(“A”,”B”,”C”,”D”,”E”);
function getErrorObj(msg) {

var err = new Error(msg);
err.name = “MY_ERROR”;
return err;

}
function getLetter(fld) {

try {
var inp = parseInt(fld.value, 10);
if (isNaN(inp)) {

throw getErrorObj(“Entry was not a number.”);
}
if (inp < 1 || inp > 5) {

throw getErrorObj(“Enter only 1 through 5.”);
}
fld.form.output.value = letters[inp - 1];

}
catch (e) {

switch (e.name) {
case “MY_ERROR” :

alert(e.message);
fld.form.output.value = “”;
fld.focus();
fld.select();
break;

default :
alert(“Reload the page and try again.”);

}
}

}
</script>

</head>
<body>

<h1>Throwing a Custom Error Object Exception</h1>
<hr />
<form>

Enter a number from 1 to 5: <input type=”text” name=”input”
size=”5” /> <input type=”button” value=”Get Letter”
onclick=”getLetter(this.form.input)” /> Matching Letter is:<input
type=”text” name=”output” size=”5” />

</form>
</body>

</html>

If you want to see how the alternative branch of Listing 31-10 looks, copy the listing file from
the CD-ROM to your hard disk and modify the last line of the try block so that one of the let-
ters is dropped from the name of the array:

fld.form.output.value = letter[inp - 1];

throw

957Chapter 31 ✦ Control Structures and Exception Handling

This may simulate the faulty loading of the page. If you enter one of the allowable values, the
reload alert appears, rather than the actual message of the error object: letter is undefined.
Your users will thank you.

All that’s left now on this subject are the details on the error object.

Error Object

Properties Methods

Error.prototype errorObject.toString()
errorObject.constructor
errorObject.description
errorObject.filename
errorObject.lineNumber
errorObject.message
errorObject.name
errorObject.number

Syntax
Creating an error object:

var myError = new Error(“message”);
var myError = Error(“message”);

Accessing static Error object property:

Error.property

Accessing error object properties and methods:

errorObject.property | method([parameters])

Compatibility: WinIE5+, MacIE-, NN6+, Moz1+, Safari1+

About this object
An error object instance is created whenever an exception is thrown or when you invoke
either of the constructor formats for creating an error object. Properties of the error object
instance contain information about the nature of the error so that catch blocks can inspect
the error and process error handling accordingly.

IE5 implemented an error object in advance of the ECMA-262 formal error object, and the IE5
version ended up having its own set of properties that are not part of the ECMA standard.
Those proprietary properties are still part of IE5.5+, which includes the ECMA properties as
well. NN6, on the other hand, started with the ECMA properties and adds two proprietary
properties of its own. The browser uses these additional properties in its own script error
reporting. The unfortunate bottom line for cross-browser developers is that no properties in
common among all browsers support the error object. However, two common denominators
(name and message) are between IE5.5+ and NN6+.

errorObject

958 Part IV ✦ JavaScript Core Language Reference

As described earlier in this chapter, you are encouraged to create an error object whenever
you use the throw statement for your own error control. See the discussion surrounding
Listing 31-9 about handling missing properties in IE.

Properties
constructor

(See string.constructor in Chapter 27)

description
Value: String. Read/Write
Compatibility: WinIE5+, MacIE-, NN-, Moz-, Safari-

The description property contains a descriptive string that provides some level of detail about
the error. For errors thrown by the browser, the description is the same text that appears in the
script error dialog box in IE. Although this property continues to be supported, the message
property is preferred.

Related Items: message property.

fileName
lineNumber

Value: String. Read/Write
Compatibility: WinIE-, MacIE-, NN6+, Moz-, Safari-

The NN6 browser uses the fileName and lineNumber properties of an error object for its
own internal script error processing — these values appear as part of the error messages that
are listed in the JavaScript Console. The fileName is the URL of the document causing the
error; the lineNumber is the source code line number of the statement that threw the excep-
tion. These properties are exposed to JavaScript, as well, so that your error processing may
use this information if it is meaningful to your application.

See the discussion of the window.error property in Chapter 16 for further ideas on how to
use this information for bug reporting from users.

Related Items: window.error property.

message
Value: String. Read/Write
Compatibility: WinIE5.5+, MacIE-, NN6+, Moz1+, Safari1+

The message property contains a descriptive string that provides some level of detail about
the error. For errors thrown by the browser, the message is the same text that appears in the
script error dialog box in IE and the JavaScript Console in NN6+. By and large, these messages
are more meaningful to scripters than to users. Unfortunately, there are no standards for the
wording of a message for a given error. Therefore, it is hazardous at best to use the message
content in a catch block as a means of branching to handle particular kinds of errors. You
may get by with this approach if you are developing for a single browser platform, but you
have no assurances that the text of a message for a particular exception may not change in
future browser versions.

Custom messages for errors that your code explicitly throws can be in user-friendly language
if you intend to display such messages to users. See Listings 31-8 through 31-10 for examples
of this usage.

errorObject

959Chapter 31 ✦ Control Structures and Exception Handling

Related Items: description property.

name
Value: String. Read/Write
Compatibility: WinIE5.5+, MacIE-, NN6+, Moz1+, Safari1+

The name property generally contains a word that identifies the type of error that has been
thrown. The most general kind of error (and the one that is created via the new Error() con-
structor) has a name Error. But JavaScript errors can be of several varieties: EvalError,
RangeError, ReferenceError, SyntaxError, TypeError, and URIError. Some of these
error types are not necessarily intended for exposure to scripters (they’re used primarily in
the inner workings of the JavaScript engine), but some browsers do expose them.
Unfortunately, there are some discrepancies as to the specific name supplied to this property
for script errors.

When JavaScript is being used in a W3C-compatible browser, some DOM exception types are
returned via the name property. But browsers frequently insert their own error types for this
property, and, as is common in this department, little uniformity exists among browser brands.

For custom exceptions that your code explicitly throws, you can assign names as you want.
As shown in Listings 31-9 and 31-10, this information can assist a catch block in handling
multiple categories of errors.

Related Items: message property.

number
Value: Number. Read/Write
Compatibility: WinIE5+, MacIE-, NN-, Moz-, Safari-

IE5+ assigns unique numbers to each error description or message. The value of the number
property must be massaged somewhat to retrieve a meaningful error description. Following is
an example of how you must apply binary arithmetic to an error number to arrive at a mean-
ingful result:

var errNum = errorObj.number & x0FFFF;

To find out what an error number means, just look it up on Microsoft’s Developer Network
(MSDN) site at http://msdn.microsoft.com/library/en-us/script56/html/
js56jsmscRunTimeErrors.asp.

Related Items: description property.

Methods
toString()

Returns: String (see text).
Compatibility: WinIE5+, MacIE-, NN6+, Moz1+, Safari1+

The toString() method for an error object should return a string description of the error. In
IE5+, however, the method returns a reference to the very same error object. In NN6+, the
method returns the message property string, preceded by the string Error: (with a space
after the colon). Most typically, if you want to retrieve a human-readable expression of an
error object, read its message (or, in IE5+, description) property.

Related Items: message property.

✦ ✦ ✦

errorObject.toString()

JavaScript
Operators

JavaScript is rich in operators: words and symbols in expressions
that perform operations on one or two values to arrive at another

value. Any value on which an operator performs some action is called
an operand. An expression may contain one operand and one opera-
tor (called a unary operator) or two operands separated by one oper-
ator (called a binary operator). Many of the same symbols are used in
a variety of operators. The combination and order of those symbols
are what distinguish their powers.

The vast majority of JavaScript operators have been in the language
since the very beginning. But, as you may expect from an evolving
language, some new entries have been added to the lexicon. In the
rest of this chapter, compatibility charts typically govern an entire
category of operator. If there are version anomalies for a particular
operator within a category, they are covered in the text.

Operator Categories
To help you grasp the range of JavaScript operators, I group them
into seven categories. I assign a wholly untraditional name to the sec-
ond group — but a name that I believe better identifies its purpose in
the language. Table 32-1 shows the operator types.

Table 32-1: JavaScript Operator Categories

Type What It Does

Comparison Compares the values of two operands, deriving a
result of either true or false (used extensively in
condition statements for if...else and for loop
constructions)

Connubial Joins together two operands to produce a single value
that is a result of an arithmetical or other operation on
the two

Continued

Note

3232C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Understanding operator
categories

Exploring the role of
operators in script
statements

Recognizing operator
precedence

✦ ✦ ✦ ✦

962 Part IV ✦ JavaScript Core Language Reference

Table 32-1 (continued)

Type What It Does

Assignment Stuffs the value of the expression of the right-hand operand into a variable name
on the left-hand side, sometimes with minor modification, as determined by the
operator symbol

Boolean Performs Boolean arithmetic on one or two Boolean operands

Bitwise Performs arithmetic or column-shifting actions on the binary (base-2)
representations of two operands

Object Helps scripts examine the heritage and capabilities of a particular object before
they need to invoke the object and its properties or methods

Miscellaneous A handful of operators that have special behaviors

Any expression that contains an operator evaluates to a value of some kind. Sometimes the
operator changes the value of one of the operands; other times the result is a new value. Even
this simple expression

5 + 5

shows two integer operands joined by the addition operator. This expression evaluates to 10.
The operator is what provides the instruction for JavaScript to follow in its never-ending
drive to evaluate every expression in a script.

Doing an equality comparison on two operands that, on the surface, look very different is not at
all uncommon. JavaScript doesn’t care what the operands look like — only how they evaluate.
Two very dissimilar-looking values can, in fact, be identical when they are evaluated. Thus, an
expression that compares the equality of two values, such as

fred == 25

does, in fact, evaluate to true if the variable fred has the number 25 stored in it from an ear-
lier statement.

Comparison Operators
Compatibility: WinIE3+, MacIE3+, NN2+, Moz1+, Safari1+

Anytime you compare two values in JavaScript, the result is a Boolean true or false value.
You have a wide selection of comparison operators to choose from, depending on the kind of
test you want to apply to the two operands. Table 32-2 lists all comparison operators.

Table 32-2: JavaScript Comparison Operators

Syntax Name Operand Types Results

== Equals All Boolean

!= Does not equal All Boolean

=== Strictly equals All Boolean (IE4+, NN4+, W3C)

!== Strictly does not equal All Boolean (IE4+, NN4+, W3C)

> Is greater than All Boolean

Comparison Operators

963Chapter 32 ✦ JavaScript Operators

Syntax Name Operand Types Results

>= Is greater than or equal to All Boolean

< Is less than All Boolean

<= Is less than or equal to All Boolean

For numeric values, the results are the same as those you’d expect from your high school
algebra class. Some examples follow, including some that may not be obvious.

10 == 10 // true
10 == 10.0 // true
9 != 10 // true
9 > 10 // false
9.99 <= 9.98 // false

Strings can also be compared on all of these levels:

“Fred” == “Fred” // true
“Fred” == “fred” // false
“Fred” > “fred” // false
“Fran” < “Fred” // true

To calculate string comparisons, JavaScript converts each character of a string to its ASCII
value. Each letter, beginning with the first of the left-hand operator, is compared to the corre-
sponding letter in the right-hand operator. With ASCII values for uppercase letters being less
than those of their lowercase counterparts, an uppercase letter evaluates to being less than
its lowercase equivalent. JavaScript takes case-sensitivity very seriously.

Values for comparison can also come from object properties or values passed to functions from
event handlers or other functions. A common string comparison used in data-entry validation
is the one that sees if the string has anything in it:

form.entry.value != “” // true if something is in the field

Equality of Disparate Data Types
For all versions of JavaScript before 1.2, when your script tries to compare string values
consisting of numerals and real numbers (for example, “123” == 123 or “123” != 123),
JavaScript anticipates that you want to compare apples to apples. Internally it does some
data type conversion that does not affect the data type of the original values (for example, if
the values are in variables). But the entire situation is more complex, because other data
types, such as objects, need to be dealt with. Therefore, prior to JavaScript 1.2, the rules of
comparison are as shown in Table 32-3.

Table 32-3: Equality Comparisons for JavaScript 1.0 and 1.1

Operand A Operand B Internal Comparison Treatment

Object reference Object reference Compare object reference evaluations

Any data type Null Convert nonnull to its object type and compare against null

Object reference String Convert object to string and compare strings

String Number Convert string to number and compare numbers

Comparison Operators

964 Part IV ✦ JavaScript Core Language Reference

The logic to what goes on in equality comparisons from Table 32-3 requires a lot of forethought
on the scripter’s part, because you have to be very conscious of the particular way data types
may or may not be converted for equality evaluation (even though the values themselves are
not converted). In this situation, supplying the proper conversion where necessary in the com-
parison statement is best. This ensures that what you want to compare — for example, the
string versions of two values or the number versions of two values — is compared, rather than
leaving the conversion up to JavaScript.

Backward-compatible conversion from a number to string entails concatenating an empty
string to a number:

var a = “09”;
var b = 9;
a == “” + b; // result: false, because “09” does not equal “9”

For converting strings to numbers, you have numerous possibilities. The simplest is subtract-
ing zero from a numeric string:

var a = “09”;
var b = 9;
a-0 == b; // result: true because number 9 equals number 9

You can also use the parseInt() and parseFloat() functions to convert strings to numbers:

var a = “09”;
var b = 9;
parseInt(a, 10) == b; // result: true because number 9 equals number 9

To clear up the ambiguity of JavaScript’s equality internal conversions, JavaScript 1.2 uses two
more operators to force the equality comparison to be extremely literal in its comparison. The
strictly equals (===) and strictly does not equal (!==) operators compare both the data type
and value. The only time the === operator returns true is if the two operands are of the same
data type (for example, both are numbers) and the same value. Therefore, no number is ever
automatically equal to a string version of that same number. Data and object types must
match before their values are compared.

JavaScript 1.2 also provides some convenient global functions for converting strings to num-
bers and vice versa: String() and Number(). To demonstrate these methods, the following
examples use the typeof operator to show the data type of expressions using these functions:

typeof 9; // result: number
type of String(9); // result: string
type of “9”; // result: string
type of Number(“9”); // result: number

None of these functions alters the data type of the value being converted. But the value of the
function is what gets compared in an equality comparison:

var a = “09”;
var b = 9;
a == String(b); // result: false, because “09” does not equal “9”
typeof b; // result: still a number
Number(a) == b; // result: true, because 9 equals 9
typeof a; // result: still a string

This discussion should impress upon you the importance of considering data types when
testing the equality of two values.

Comparison Operators

965Chapter 32 ✦ JavaScript Operators

Connubial Operators
Compatibility: WinIE3+, MacIE3+, NN2+, Moz1+, Safari1+

Connubial operators is my terminology for those operators that join two operands to yield a
value related to the operands. Table 32-4 lists the connubial operators in JavaScript.

Table 32-4: JavaScript Connubial Operators

Syntax Name Operand Types Results

+ Plus Integer, float, string Integer, float, string

- Minus Integer, float Integer, float

* Multiply Integer, float Integer, float

/ Divide Integer, float Integer, float

% Modulo Integer, float Integer, float

++ Increment Integer, float Integer, float

-- Decrement Integer, float Integer, float

+val Positive Integer, float, string Integer, float

-val Negation Integer, float, string Integer, float

The four basic arithmetic operators for numbers are straightforward. The plus operator also
works on strings to join them together, as in

“Howdy “ + “Doody” // result = “Howdy Doody”

In object-oriented programming terminology, the plus sign is considered overloaded, meaning
that it performs a different action depending on its context. Remember, too, that string con-
catenation does not do anything on its own to monitor or insert spaces between words. In the
preceding example, the space between the names is part of the first string.

Modulo arithmetic is helpful for those times when you want to know if one number divides
evenly into another. You used it in an example in Chapter 31 to figure out if a particular year
was a leap year. Although some other leap year considerations exist for the turn of each cen-
tury, the math in the example simply checked whether the year was evenly divisible by four.
The result of the modulo math is the remainder of division of the two values: When the
remainder is 0, one divides evenly into the other. Here are some samples of years evenly
divisible by four:

2002 % 4 // result = 2
2003 % 4 // result = 3
2004 % 4 // result = 0 (Bingo! Leap year!)

Thus, I used this modulo operator in a condition statement of an if. . .else structure:

var howMany = 0;
today = new Date();
var theYear = today.getYear();
if (theYear % 4 == 0) {

howMany = 29;
} else {

howMany = 28;
}

Connubial Operators

966 Part IV ✦ JavaScript Core Language Reference

Some other languages offer an operator that results in the integer part of a division problem
solution: integral division, or div. Although JavaScript does not have an explicit operator for
this behavior, you can re-create it reliably if you know that your operands are always positive
numbers. Use the Math.floor() or Math.ceil() methods with the division operator, as in

Math.floor(4/3); // result = 1

In this example, Math.floor() works only with values greater than or equal to 0;
Math.ceil() works with values less than 0.

The increment operator (++) is a unary operator (only one operand) and displays two differ-
ent behaviors, depending on the side of the operand on which the symbols lie. Both the incre-
ment and decrement (--) operators can be used in conjunction with assignment operators,
which I cover next.

As its name implies, the increment operator increases the value of its operand by one. But in
an assignment statement, you have to pay close attention to precisely when that increase
takes place. An assignment statement stuffs the value of the right operand into a variable on
the left. If the ++ operator is located in front of the right operand (prefix), the right operand is
incremented before the value is assigned to the variable; if the ++ operator is located after
the right operand (postfix), the previous value of the operand is sent to the variable before
the value is incremented. Follow this sequence to get a feel for these two behaviors:

var a = 10; // initialize a to 10
var z = 0; // initialize z to zero
z = a; // a = 10, so z = 10
z = ++a; // a becomes 11 before assignment, so a = 11 and z becomes 11
z = a++; // a is still 11 before assignment, so z = 11; then a becomes 12
z = a++; // a is still 12 before assignment, so z = 12; then a becomes 13

The decrement operator behaves the same way, except that the value of the operand decreases
by one. Increment and decrement operators are used most often with loop counters in for and
while loops. The simpler ++ or -- symbology is more compact than reassigning a value by
adding 1 to it (such as, z = z + 1 or z += 1). Because these are unary operators, you can use
the increment and decrement operators without an assignment statement to adjust the value of
a counting variable within a loop:

function doNothing() {
var i = 1;
while (i < 20) {

++i;
}
alert(i); // breaks out at i = 20

}

The last pair of connubial operators are also unary operators (operating on one operand).
Both the positive and negation operators can be used as shortcuts to the Number() global
function, converting a string operand consisting of number characters to a number data type.
The string operand is not changed, but the operation returns a value of the number type, as
shown in the following sequence:

var a = “123”;
var b = +a; // b is now 123
typeof a; // result: string
typeof b; // result: number

The negation operator (-val) has additional power. By placing a minus sign in front of any
numeric value (no space between the symbol and the value), you instruct JavaScript to evalu-
ate a positive value as its corresponding negative value, and vice versa. The operator does

Connubial Operators

967Chapter 32 ✦ JavaScript Operators

not change the operand’s value, but the expression returns the modified value. The following
example provides a sequence of statements to demonstrate:

var x = 2;
var y = 8;
var z = -x; // z equals -2, but x still equals 2
z = -(x + y); // z equals -10, but x still equals 2 and y equals 8
z = -x + y; // z equals 6, but x still equals 2 and y equals 8

To negate a Boolean value, see the Not (!) operator in the discussion of Boolean operators.

Assignment Operators
Compatibility: WinIE3+, MacIE3+, NN2+, Moz1+, Safari1+

Assignment statements are among the most common statements you write in your JavaScript
scripts. These statements appear everywhere you copy a value or the results of an expres-
sion into a variable for further manipulation of that value.

You assign values to variables for many reasons, even though you could probably use the
original values or expressions several times throughout a script. Here is a sampling of rea-
sons why you should assign values to variables:

✦ Variable names are usually shorter

✦ Variable names can be more descriptive

✦ You may need to preserve the original value for later in the script

✦ The original value is a property that cannot be changed

✦ Invoking the same method several times in a script is not efficient

Newcomers to scripting often overlook the last reason. For instance, if a script is writing
HTML to a new document, it’s more efficient to assemble the string of large chunks of the
page into one variable before invoking the document.write() method to send that text to
the document. This approach is more efficient than literally sending out one line of HTML at a
time with multiple document.writeln() method statements. Table 32-5 shows the range of
assignment operators in JavaScript.

Table 32-5: JavaScript Assignment Operators

Syntax Name Example Means

= Equals x = y x = y
+= Add by value x += y x = x + y
-= Subtract by value x -= y x = x - y
*= Multiply by value x *= y x = x * y
/= Divide by value x /= y x = x / y
%= Modulo by value x %= y x = x % y
<<= Left shift by value x <<= y x = x << y
>= Right shift by value x >= y x = x > y
>>= Zero fill by value x >>= y x = x >> y

Continued

Assignment Operators

968 Part IV ✦ JavaScript Core Language Reference

Table 32-5 (continued)

Syntax Name Example Means

>>>= Right shift by value x >>>= y x = x >>> y
&= Bitwise and by value x &= y x = x & y
|= Bitwise or by value x |= y x = x | y
^= Bitwise XOR by value x ^= y x = x ^ y

As clearly demonstrated in the top group (see “Bitwise Operators” later in the chapter for infor-
mation on the bottom group), assignment operators beyond the simple equals sign can save
some characters in your typing, especially when you have a series of values that you’re trying
to bring together in subsequent statements. You’ve seen plenty of examples in previous chap-
ters, where you used the add-by-value operator (+=) to work wonders with strings as you
assemble a long string variable that you eventually send to a document.write() method. Look
at this variation of a segment of Listing 30-3, where you could use JavaScript to create the
HTML content of a select element on-the-fly:

var elem = “”; // start assembling next part of page and form
elem += “<p>Select a regional office: “;
elem += “<select name=’offices’ onchange=’getData(this.form)’>”;
// build options list from array office names
for (var i = 0; i < regionalOffices.length; i++) {

elem += “<option”; // option tags
if (i == 0) { // pre-select first item in list

elem += “ selected=’selected’”;
}
elem += “>” + regionalOffices[i];

}
elem += “</select></p>”; // close select item tag
document.write(elem); // write element to the page

The script segment starts with a plain equals assignment operator to initialize the elem vari-
able as an empty string. In many of the succeeding lines, you use the add-by-value operator to
tack additional string values onto whatever is in the elem variable at the time. Without the
add-by-value operator, you are forced to use the plain equals assignment operator for each
line of code to concatenate new string data to the existing string data. In that case, the first
few lines of code look as shown:

var elem = “”; // start assembling next part of page and form
elem = elem + “<p>Select a regional office: “;
elem = elem + “<select name=’offices’ onchange=’getData(this.form)’>”;

Within the for loop, the repetition of elem + makes the code very difficult to read, trace, and
maintain. These enhanced assignment operators are excellent shortcuts that you should use
at every turn.

Boolean Operators
Compatibility: WinIE4+, MacIE4+, NN3+, Moz1+, Safari1+

Because a great deal of programming involves logic, it is no accident that the arithmetic of
the logic world plays an important role. You’ve already seen dozens of instances where pro-
grams make all kinds of decisions based on whether a statement or expression is the Boolean

Assignment Operators

969Chapter 32 ✦ JavaScript Operators

value true or false. What you haven’t seen much of yet is how to combine multiple Boolean
values and expressions — a quality that scripts with slightly above average complexity may
need to have in them.

In the various condition expressions required throughout JavaScript (such as in an if construc-
tion), the condition that the program must test for may be more complicated than, say, whether
a variable value is greater than a certain fixed value or whether a field is not empty. Look at the
case of validating a text field entry for whether the entry contains all the numbers that your
script may want. Without some magical JavaScript function to tell you whether or not a string
consists of all numbers, you have to break apart the entry character by character and examine
whether each character falls within the range of 0 through 9. But that examination actually com-
prises two tests: You can test for any character whose ASCII value is less than 0 or greater than
9. Alternatively, you can test whether the character is greater than or equal to 0 and is less than
or equal to 9. What you need is the bottom-line evaluation of both tests.

Boolean math
That’s where the wonder of Boolean math comes into play. With just two values —true and
false— you can assemble a string of expressions that yield Boolean results and then let
Boolean arithmetic figure out whether the bottom line is true or false.

But you don’t add or subtract Boolean values the same way you add or subtract numbers.
Instead, you use one of three JavaScript Boolean operators at your disposal. Table 32-6 shows
the three operator symbols. In case you’re unfamiliar with the characters in the table, the
symbols for the Or operator are created by typing Shift-backslash.

Table 32-6: JavaScript Boolean Operators

Syntax Name Operands Results

&& And Boolean Boolean

|| Or Boolean Boolean

! Not One Boolean Boolean

Using Boolean operators with Boolean operands gets tricky if you’re not used to it, so I have
you start with the simplest Boolean operator: Not. This operator requires only one operand.
The Not operator precedes any Boolean value to switch it back to the opposite value (from
true to false, or from false to true). For instance:

!true // result = false
!(10 > 5) // result = false
!(10 < 5) // result = true
!(document.title == “Flintstones”) // result = true

As shown here, enclosing the operand of a Not expression inside parentheses is always a
good idea. This forces JavaScript to evaluate the expression inside the parentheses before
flipping it around with the Not operator.

The And (&&) operator joins two Boolean values to reach a true or false value based on the
results of both values. This brings up something called a truth table, which helps you visualize
all the possible outcomes for each value of an operand. Table 32-7 is a truth table for the And
operator.

Boolean Operators

970 Part IV ✦ JavaScript Core Language Reference

Table 32-7: Truth Table for the And Operator

Left Operand And Operator Right Operand Result

True && True True

True && False False

False && True False

False && False False

Only one condition yields a true result: Both operands must evaluate to true. Which side of
the operator a true or false value lives doesn’t matter. Here are examples of each possibility:

5 > 1 && 50 > 10 // result = true
5 > 1 && 50 < 10 // result = false
5 < 1 && 50 > 10 // result = false
5 < 1 && 50 < 10 // result = false

In contrast, the Or (||) operator is more lenient about what it evaluates to true. The reason
is that if one or the other (or both) operands is true, the operation returns true. The Or
operator’s truth table is shown in Table 32-8.

Table 32-8: Truth Table for the Or Operator

Left Operand Or Operator Right Operand Result

True || True True

True || False True

False || True True

False || False False

Therefore, if a true value exists on either side of the operator, a true value is the result. Take
the previous examples and swap the And operators with Or operators so that you can see the
Or operator’s impact on the results:

5 > 1 || 50 > 10 // result = true
5 > 1 || 50 < 10 // result = true
5 < 1 || 50 > 10 // result = true
5 < 1 || 50 < 10 // result = false

Only when both operands are false does the Or operator return false.

Boolean operators at work
Applying Boolean operators to JavaScript the first time just takes a little time and some sketches
on a pad of paper to help you figure out the logic of the expressions. Earlier I talked about using
a Boolean operator to see whether a character fell within a range of ASCII values for data-entry
validation. Listing 32-1 is a function discussed in more depth in Chapter 43 on the CD-ROM. This
function accepts any string and sees whether each character of the string has an ASCII value less
than 0 or greater than 9— meaning that the input string is not a number.

Boolean Operators

971Chapter 32 ✦ JavaScript Operators

Listing 32-1: Is the Input String a Number?

function isNumber(inputStr) {
for (var i = 0; i < inputStr.length; i++) {

var oneChar = inputStr.substring(i, i + 1);
if (oneChar < “0” || oneChar > “9”) {

alert(“Please make sure entries are numerals only.”);
return false;

}
}
return true;

}

Combining a number of JavaScript powers to read individual characters (substrings) from a
string object within a for loop, the statement that you’re interested in is the condition of
the if construction:

(oneChar < “0” || oneChar > “9”)

In one condition statement, you use the Or operator to test for both possibilities. If you check
the Or truth table (Table 32-8), you see that this expression returns true if either one or both
tests returns true. If that happens, the rest of the function alerts the user about the problem
and returns a false value to the calling statement. Only if both tests within this condition
evaluate to false for all characters of the string does the function return a true value.

From the simple Or operator, I go to the extreme, where the function checks — in one condition
statement — whether a number falls within several numeric ranges. The script in Listing 32-2
comes from the array lookup application in Chapter 50 (on the CD-ROM), in which a user
enters the first three digits of a U.S. Social Security number.

Listing 32-2: Is a Number within Discontiguous Ranges?

// function to determine if value is in acceptable range for this application
function inRange(inputStr) {

num = parseInt(inputStr)
if (num < 1 || (num > 586 && num < 596) || (num > 599 && num < 700) ||

num > 728) {
alert(“Sorry, the number you entered is not part of our database. Try

another three-digit number.”);
return false;

}
return true;

}

By the time this function is called, the user’s data entry has been validated enough for
JavaScript to know that the entry is a number. Now the function must check whether the
number falls outside of the various ranges for which the application contains matching data.
The conditions that the function tests here are whether the number is

✦ Less than 1

✦ Greater than 586 and less than 596 (using the And operator)

Boolean Operators

972 Part IV ✦ JavaScript Core Language Reference

✦ Greater than 599 and less than 700 (using the And operator)

✦ Greater than 728

Each of these tests is joined by an Or operator. Therefore, if any one of these conditions proves
true, the whole if condition is true, and the user is alerted accordingly.

The alternative to combining so many Boolean expressions in one condition statement would
be to nest a series of if constructions. But such a construction requires not only a great deal
more code but also much repetition of the alert dialog box message for each condition that
could possibly fail. The combined Boolean condition is, by far, the best way to go.

Bitwise Operators
Compatibility: WinIE3+, MacIE3+, NN2+, Moz1+, Safari1+

For scripters, bitwise operations are an advanced subject. Unless you’re dealing with external
processes on CGIs or the connection to Java applets, it’s unlikely that you will use bitwise
operators. Experienced programmers who concern themselves with more specific data types
(such as long integers) are quite comfortable in this arena, so I simply provide an explanation
of JavaScript capabilities. Table 32-9 lists JavaScript bitwise operators.

Table 32-9: JavaScript’s Bitwise Operators

Operator Name Left Operand Right Operand

& Bitwise And Integer value Integer value

| Bitwise Or Integer value Integer value

^ Bitwise XOR Integer value Integer value

~ Bitwise Not (None) Integer value

<< Left shift Integer value Shift amount

>> Right shift Integer value Shift amount

>>> Zero fill right shift Integer value Shift amount

The numeric value operands can appear in any of the JavaScript language’s three numeric lit-
eral bases (decimal, octal, or hexadecimal). As soon as the operator has an operand, the value
is converted to binary representation (32 bits long). For the first three bitwise operations, the
individual bits of one operand are compared with their counterparts in the other operand. The
resulting value for each bit depends on the operator:

✦ Bitwise And: 1 if both digits are 1

✦ Bitwise Or: 1 if either digit is 1

✦ Bitwise Exclusive Or: 1 if only one digit is a 1

Bitwise Not, a unary operator, inverts the value of every bit in the single operand. The bitwise
shift operators operate on a single operand. The second operand specifies the number of posi-
tions to shift the value’s binary digits in the direction of the arrows of the operator symbols.

Example
For example, the left shift (<<) operator has the following effect:

Boolean Operators

973Chapter 32 ✦ JavaScript Operators

4 << 2 // result = 16

The reason for this shifting is that the binary representation for decimal 4 is 00000100 (to eight
digits, anyway). The left shift operator instructs JavaScript to shift all digits two places to the
left, giving the binary result 00010000, which converts to 16 in decimal format. If you’re inter-
ested in experimenting with these operators, use The Evaluator (Chapter 13) to evaluate sam-
ple expressions for yourself. More advanced books on C and C++ programming are also of help.

Object Operators
The next group of operators concern themselves with objects (including native JavaScript,
DOM, and custom objects) and data types. Most of these have been implemented after the
earliest JavaScript browsers, so each one has its own compatibility rating.

delete
Compatibility: WinIE4+, MacIE4+, NN4+, Moz1+, Safari1+

Array objects do not contain a method to remove an element from the collection, nor do cus-
tom objects offer a method to remove a property. You can always empty the data in an array
item or property by setting its value to an empty string or null, but the array element or
property remains in the object. With the delete operator, you can completely remove the
element or property.

There is special behavior about deleting an array item that you should bear in mind. If your
array uses numeric indices, a deletion of a given index removes that index value from the
total array but without collapsing the array (which would alter index values of items higher
than the deleted item).

Example
For example, consider the following simple dense array:

var oceans = new Array(“Atlantic”, “Pacific”, “Indian”,”Arctic”);

This kind of array automatically assigns numeric indices to its entries for addressing later in
constructions, such as for loops:

for (var i = 0; i < oceans.length; i++) {
if (oceans[i] == form.destination.value) {

statements
}

}

If you then issue the statement

delete oceans[2];

the array undergoes significant changes. First, the third element is removed from the array.
Note that the length of the array does not change. Even so, the index value (2) is removed
from the array, such that schematically the array looks like the following:

oceans[0] = “Atlantic”;
oceans[1] = “Pacific”;
oceans[3] = “Arctic”;

If you try to reference oceans[2] in this collection, the result is undefined.

delete

974 Part IV ✦ JavaScript Core Language Reference

The delete operator works best on arrays that have named indices. Your scripts will have
more control over the remaining entries and their values, because they don’t rely on what
could be a missing entry of a numeric index sequence.

One aspect of this deletion action that JavaScript doesn’t provide is absolute control over
memory utilization. All garbage collection is managed by the JavaScript interpreter engine,
which tries to recognize when items occupying memory are no longer needed, at which time
the unused browser’s application memory may be recovered. But you cannot force the
browser to perform its garbage collection task.

in
Compatibility: WinIE5.5+, MacIE-, NN6+, Moz1+, Safari1+

The in operator lets a script statement inspect an object to see if it has a named property or
method. The operand to the left of the operator is a string reference to the property or method
(just the method name, without parentheses); the operand to the right of the operator is the
object being inspected. If the object knows the property or method, the expression returns
true. Thus, you can use the in operator in expressions used for conditional expressions.

Example
You can experiment with this operator in The Evaluator (Chapter 13). For example, to prove
that the write() method is implemented for the document object, the expression you type
into the top text box of The Evaluator is:

“write” in document

But compare the implementation of the W3C DOM document.defaultView property in IE5.5+
and modern W3C browsers:

“defaultView” in document

In NN6+, Mozilla, and Safari, the result is true, while in IE5.5 and IE6, the result is false.

Having this operator around for conditional expressions lets you go much beyond simple
object detection for branching code. For example, if you intend to use document.defaultView
in your script, you can make sure that the property is supported before referencing it (assum-
ing your users all have browsers that know the in operator).

instanceof
Compatibility: WinIE5+, MacIE-, NN6+, Moz1+, Safari1+

The instanceof operator lets a script test whether an object is an instance of a particular
JavaScript native object or DOM object. The operand to the left side of the operator is the
value under test; the value to the right of the operand is a reference to the root class from
which the value is suspected of being constructed.

For native JavaScript classes, the kinds of object references to the right of the operator include
such static objects as Date, String, Number, Boolean, Object, Array, and RegExp. You some-
times need to be mindful of how native JavaScript classes can sometimes be children of other
native classes, which means that a value may be an instance of two different static objects.

Example
For example, consider the following sequence (which you can follow along in The Evaluator):

delete

975Chapter 32 ✦ JavaScript Operators

a = new Array(1,2,3);
a instanceof Array;

The second statement yields a result of true, because the Array constructor was used to
generate the object. But the JavaScript Array is, itself, an instance of the root Object object.
Therefore both of the following statements evaluate to true:

a instanceof Object;
Array instanceof Object;

new
Compatibility: WinIE3+, MacIE3+, NN2+, Moz1+, Safari1+

Most JavaScript core objects have constructor functions built into the language. To access
those functions, you use the new operator along with the name of the constructor. The func-
tion returns a reference to the object instance, which your scripts can then use to get and set
properties or invoke object methods. For example, creating a new date object requires invok-
ing the Date object’s constructor, as follows:

var today = new Date();

Some object constructor functions require parameters to help define the object. Others, as in
the case of the Date object, can accept a number of different parameter formats, depending
on the format of date information you have to set the initial object. The new operator can be
used with the following core language objects:

JavaScript 1.0 JavaScript 1.1 JavaScript 1.2 JavaScript 1.5

Date Array RegExp Error
Object Boolean
(Custom object) Function

Image
Number
String

this
Compatibility: WinIE3+, MacIE3+, NN2+, Moz1+, Safari1+

JavaScript includes an operator that allows script statements to refer to the very object in
which they are located. The self-referential operator is this.

The most common application of the this operator is in event handlers that pass references
of themselves to functions for further processing, as in

<input type=”text” name=”entry” onchange=”process(this)” />

A function receiving the value assigns it to a variable that can be used to reference the
sender, its properties, and its methods.

Example
Because the this operator references an object, that object’s properties can be exposed with
the aid of the operator. For example, to send the value property of a text input object to a

this

976 Part IV ✦ JavaScript Core Language Reference

function, the this operator stands in for the current object reference and appends the
proper syntax to reference the value property:

<input type=”text” name=”entry” onchange=”process(this.value)” />

The this operator also works inside other objects, such as custom objects. When you define
a constructor function for a custom object, using the this operator to define properties of
the object and assign values to those properties is common practice. Consider the following
example of an object creation sequence:

function bottledWater(brand, ozSize, flavor) {
this.brand = brand;
this.ozSize = ozSize;
this.flavor = flavor;

}
var myWater = new bottledWater(“Crystal Springs”, 16, “original”);

When the new object is created via the constructor function, the this operators define each
property of the object and then assign the corresponding incoming value to that property.
Using the same names for the properties and parameter variables is perfectly fine and makes
the constructor easy to maintain.

By extension, if you assign a function as an object’s property (to behave as a method for the
object), the this operator inside that function refers to the object invoking the function,
offering an avenue to the object’s properties. For example, if I add the following function defi-
nition and statement to the myWater object created just above, the function can directly
access the brand property of the object:

function adSlogan() {
return “Drink “ + this.brand + “, it’s wet and wild!”;

}
myWater.getSlogan = adSlogan;

When a statement invokes the myWater.getSlogan() method, the object invokes the
adSlogan() function, but all within the context of the myWater object. Thus, the this oper-
ator applies to the surrounding object, making the brand property available via the this
operator (this.brand).

Miscellaneous Operators
The final group of operators doesn’t fit into any of the previous categories, but they are no
less important.

,
Compatibility: WinIE3+, MacIE3+, NN2+, Moz1+, Safari1+

The comma operator indicates a series of expressions that are to be evaluated in left-to-right
sequence. Most typically, this operator is used to permit multiple variable initializations. For
example, you can combine the declaration of several variables in a single var statement, as
follows:

var name, address, serialNumber;

Another situation where you could use this operator is within the expressions of a for loop
construction. In the following example, two different counting variables are initialized and
incremented at different rates. When the loop begins, both variables are initialized at zero

this

977Chapter 32 ✦ JavaScript Operators

(they don’t have to be, but this example starts that way); for each subsequent trip through
the loop, one variable is incremented by one, while the other is incremented by 10:

for (var i=0, j=0; i < someLength; i++, j+10) {
...

}

Don’t confuse the comma operator with the semicolon delimiter between statements.

? :
Compatibility: WinIE3+, MacIE3+, NN2+, Moz1+, Safari1+

The conditional operator is a shortcut way of expressing an if. . .else conditional con-
struction covered in Chapter 31. This operator is typically used in concert with an assignment
operator to assign one of two values to a variable based on the result of a condition expres-
sion. The formal syntax for the conditional operator is:

condition ? expressionIfTrue : expressionIfFalse

If used with an assignment operator, the syntax is:

var = condition ? expressionIfTrue : expressionIfFalse;

No matter how you use the operator, the important point to remember is that an expression
that contains this operator evaluates to one of the two expressions following the question
mark symbol. In truth, either expression could invoke any JavaScript, including calling other
functions or even nesting further conditional operators within one of the expressions to
achieve the equivalent of nested if. . .else constructions. To assure proper resolution of
nested conditionals, surround inner expressions with parentheses to make sure that they eval-
uate before the outer expression evaluates. As an example, the following statement assigns
one of three strings to a variable depending on the date within a month:

var monthPart = (dateNum <= 10) ? “early” : ((dateNum <= 20) ?
“middle” : “late”);

When the statement is evaluated, the inner conditional expression at the right of the first
colon is evaluated, returning either middle or late; then the outer conditional expression is
evaluated, returning either early or the result of the inner conditional expression.

typeof
Compatibility: WinIE3+, MacIE3+, NN3+, Moz1+, Safari1+

Unlike most other operators, which are predominantly concerned with arithmetic and logic,
the unary typeof operator defines the kind of value to which a variable or expression evalu-
ates. Typically, this operator is used to identify whether a variable value is one of the follow-
ing types: number, string, boolean, object, function, or undefined.

Example
Having this investigative capability in JavaScript is helpful because variables cannot only con-
tain any one of those data types but can change their data type on the fly. Your scripts may
need to handle a value differently based on the value’s type. The most common use of the
typeof property is as part of a condition. For example:

if (typeof myVal == “number”) {
myVal = parseInt(myVal);

}

typeof

978 Part IV ✦ JavaScript Core Language Reference

The evaluated value of the typeof operation is, itself, a string.

void
Compatibility: WinIE3+, MacIE3+, NN3+, Moz1+, Safari1+

In all scriptable browsers you can use the javascript: pseudo-protocol to supply the param-
eter for href and src attributes in HTML tags, such as links. In the process, you have to be care-
ful that the function or statement being invoked by the URL does not return or evaluate to any
values. If a value comes back from such an expression, then that value or sometimes the direc-
tory of the client’s hard disk often replaces the page content. To avoid this possibility, use the
void operator in front of the function or expression being invoked by the javascript: URL.

Example
The best way to use this construction is to place the operator before the expression or func-
tion and separate them by a space, as in

javascript: void doSomething();

On occasion, you may have to wrap the expression inside parentheses after the void opera-
tor. Using parentheses is necessary only when the expression contains operators of a lower
precedence than the void operator (see the following section, “Operator Precedence”). But
don’t automatically wrap all expressions in parentheses, because some browsers can experi-
ence problems with these. Even so, it is common practice to assign the following URL to the
href attribute of an a link whose onclick event handler does all of the work:

href=”javascript: void (0)”

The void operator makes sure the function or expression returns no value that the HTML
attribute can use. Such a link’s onclick event handler should also inhibit the natural behavior
of a clicked link (for example, by evaluating to return false).

Operator Precedence
When you start working with complex expressions that hold a number of operators (for
example, Listing 32-2), knowing the order in which JavaScript evaluates those expressions is
vital. JavaScript assigns different priorities or weights to types of operators in an effort to
achieve uniformity in the way it evaluates complex expressions.

In the following expression

10 + 4 * 5 // result = 30

JavaScript uses its precedence scheme to perform the multiplication before the addition —
regardless of where the operators appear in the statement. In other words, JavaScript first
multiplies 4 by 5 and then adds that result to 10 to get a result of 30. That may not be the way
you want this expression to evaluate. Perhaps your intention was to add the 10 and 4 first
and then to multiply that sum by 5. To make that happen, you have to override JavaScript’s
natural operator precedence. To do that, you must use parentheses to enclose an operator
with lower precedence. The following statement shows how you adjust the previous expres-
sion to make it behave differently:

(10 + 4) * 5 // result = 70

typeof

979Chapter 32 ✦ JavaScript Operators

That one set of parentheses has a great impact on the outcome. Parentheses have the highest
precedence in JavaScript, and if you nest parentheses in an expression, the innermost set
evaluates first.

For help in constructing complex expressions, refer to Table 32-10 for JavaScript’s operator
precedence. My general practice: When in doubt about complex precedence issues, I build
the expression with lots of parentheses according to the way I want the internal expressions
to evaluate.

Table 32-10: JavaScript Operator Precedence

Precedence Level Operator Notes

1 () From innermost to outermost

[] Array index value

function() Any remote function call

2 ! Boolean Not

~ Bitwise Not

- Negation

++ Increment

-- Decrement

new
typeof
void
delete Delete array or object entry

3 * Multiplication

/ Division

% Modulo

4 + Addition

- Subtraction

5 << Bitwise shifts

>
>>

6 < Comparison operators

<=
>
>=

7 == Equality

!=
8 & Bitwise And

9 ^ Bitwise XOR

10 | Bitwise Or

11 && Boolean And

12 || Boolean Or

13 ? Conditional expression

Continued

980 Part IV ✦ JavaScript Core Language Reference

Table 32-10 (continued)

Precedence Level Operator Notes

14 = Assignment operators

+=
-=
*=
/=
%=
<<=
>=
>>=
&=
^=
|=

15 , Comma (parameter delimiter)

This precedence scheme is devised to help you avoid being faced with two operators from the
same precedence level that often appear in the same expression. When it happens (such as
with addition and subtraction), JavaScript begins evaluating the expression from left to right.

One related fact involves a string of Boolean expressions strung together for a condition
statement (see Listing 32-2). JavaScript follows what is called short-circuit evaluation. As the
nested expressions are evaluated left to right, the fate of the entire condition can sometimes
be determined before all expressions are evaluated. Anytime JavaScript encounters an And
operator, if the left operand evaluates to false, the entire expression evaluates to false
without JavaScript’s even bothering to evaluate the right operand. For an Or operator, if the
left operand is true, JavaScript short-circuits that expression to true. This feature can trip
you up if you don’t perform enough testing on your scripts: If a syntax error or other error
exists in a right operand, and you fail to test the expression in a way that forces that right
operand to evaluate, you may not know that a bug exists in your code. Users of your page, of
course, will find the bug quickly. Do your testing to head bugs off at the pass.

Notice, too, that all math and string concatenation is performed prior to any comparison
operators. This enables all expressions that act as operands for comparisons to evaluate fully
before they are compared.

The key to working with complex expressions is to isolate individual expressions and to try
them out by themselves, if you can. See additional debugging tips in Chapter 45 on the CD-ROM.

✦ ✦ ✦

Note

Functions and
Custom Objects

By now, you’ve seen dozens of JavaScript functions in action and
probably have a pretty good feel for the way they work. This chap-

ter provides the function object specification and delves into the fun
prospect of creating objects in your JavaScript code. (That includes
objects that have properties and methods, just like the big boys.)

Function Object

Properties Methods Event Handlers

arguments apply()
arity call()
caller toString()
constructor valueOf()
length
prototype

Syntax
Creating a function object:

function functionName([arg1,...[,argN]]) {
statement(s)

}
var funcName = new Function([“argName1”,...[,”argNameN”],

“statement1;...[;statementN]”])
object.eventHandlerName = function([arg1,...[,argN]])
{statement(s)}

Accessing function object properties and methods:

functionObject.property | method([parameters])

Compatibility: WinIE3+, MacIE3+, NN2+, Moz1+, Safari1+

3333C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Creating function blocks

Passing parameters to
functions

Creating your own
objects

✦ ✦ ✦ ✦

982 Part IV ✦ JavaScript Core Language Reference

About this object
JavaScript accommodates what other languages might call procedures, subroutines, and
functions all in one type of structure: the custom function. A function may return a value (if
programmed to do so with the return keyword), but it does not have to return any value.
Except for JavaScript code that executes as the document loads, all deferred processing takes
place in functions.

While you can create functions that are hundreds of lines long, I recommend you break up
longer processes into shorter functions. Among the reasons for doing so: smaller chunks are
easier to write and debug; building blocks make it easier to visualize the entire script; you
can make functions generalizable and reusable for other scripts; and other parts of the script
or other open frames can use the functions.

Learning how to write good, reusable functions takes time and experience. But the earlier you
understand the importance of this concept, the more you will be on the lookout for good
examples in other people’s scripts on the Web.

Creating functions
The standard way of defining a function in your script means following a simple pattern and
then filling in the details. The formal syntax definition for a function is:

function functionName([arg1] ... [, argN]) {
statement(s)

}

The task of assigning a function name helps you determine the precise scope of activity of the
function. If you find that you can’t reduce the planned task for the function to a simple one- to
three-word name (which is then condensed into one contiguous sequence of characters for
the functionName), perhaps you’re asking the function to do too much. A better idea may be
to break the job into two or more functions. As you start to design a function, be on the look-
out for functions that you can call from the one you’re writing. If you find yourself copying and
pasting lines of code from one part of a function to another because you’re performing the
same operation in different spots within the function, it may be time to break that segment out
into its own function.

You can also create what is called an anonymous function using the new Function() con-
structor. In reality, you assign a name to this “anonymous” function as follows:

var funcName = new Function([“argName1”,...[,”argNameN”],
“statement1;...[;statementN]”]);

This other way of building a function is particularly helpful when your scripts need to create
a function after a document loads. All the components of a function are present in this defini-
tion. Each function parameter name is supplied as a string value, separated from each other
by commas. The final parameter string consists of the statements that execute whenever the
function is called. Separate each JavaScript statement with a semicolon, and enclose the
entire sequence of statements inside quotes, as in the following:

var willItFit = new Function(“width”,”height”,
“var sx = screen.availWidth; var sy = screen.availHeight;
return (sx >= width && sy >= height)”);

The willItFit() function takes two parameters; the body of the function defines two local
variables (sx and sy) and then returns a Boolean value of true if the incoming parameters
are smaller than the local variables. In traditional form, this function is defined as follows:

functionObject

983Chapter 33 ✦ Functions and Custom Objects

function willItFit(width, height) {
var sx = screen.availWidth;
var sy = screen.availHeight;
return (sx >= width && sy >= height);

}

Once this function exists in the browser’s memory, you can invoke it like any other function:

if (willItFit(400,500)) {
statements to load image

}

One last function creation format is available in NN4+, IE4+, and W3C DOM browsers. This
advanced technique, called a lambda expression, provides a shortcut for creating a reference
to an anonymous function (truly anonymous because the function has no name that you can
reference later). The common application of this technique is to assign function references to
event handlers when the NN event object also must be passed. The following is an example of
how to assign an anonymous function to an onchange event handler for a form control:

document.forms[0].age.onchange = function(event)
{isNumber(document.forms[0].age)}

Nesting functions
NN4+, IE4+, and W3C browsers also provide for nesting functions inside one another. In all
prior scripting, each function definition is defined at the global level whereby every function
is exposed and available to all other scripting. With nested functions, you can encapsulate
the exposure of a function inside another and make that nested function private to the
enclosing function. Of course I don’t recommend reusing names in this fashion, but you can
create nested functions with the same name inside multiple global level functions, as the fol-
lowing skeletal structure shows:

function outerA() {
statements
function innerA() {

statements
}
statements

}
function outerB() {

statements
function innerA() {

statements
}
function innerB() {

statements
}
statements

}

A good time to apply a nested function is when a sequence of statements need to be invoked
in multiple places within a large function but those statements have meaning only within the
context of the larger function. In other words, rather than break out the repeated sequence as
a separate global function, you keep it all within the scope of the larger function.

You can access a nested function only from statements in its containing function (and in any
order). Moreover, all variables defined in the outer function (including parameter variables) are
accessible to the inner function; but variables defined in an inner function are not accessible to

functionObject

984 Part IV ✦ JavaScript Core Language Reference

the outer function. See the section, “Variable scope: Globals and locals” later in this chapter for
details on how variables are visible to various components of a script.

Function parameters
The function definition requires a set of parentheses after the functionName. If the function
does not rely on any information arriving with it when invoked, the parentheses can be empty.
But when some kind of data is arriving with a call to the function, you need to assign names
to each parameter. Virtually any kind of value can be a parameter: strings, numbers, Booleans,
and even complete object references such as a form or form element. Choose names for these
variables that help you remember the content of those values; also, avoid reusing existing
object names as variable names because it’s easy to get confused when objects and variables
with the same name appear in the same statements. You must avoid using JavaScript key-
words (including the reserved words listed in Appendix B) and any global variable name
defined elsewhere in your script. (See more about global variables in the following sections.)

JavaScript is forgiving about matching the number of parameters in the function definition
with the number of parameters passed along from the calling statement. If you define a func-
tion with three parameters and the calling statement specifies only two, the third parameter
variable value in that function is assigned a null value. For example:

function oneFunction(a, b, c) {
statements

}
oneFunction(“George”,”Gracie”);

In the preceding example, the values of a and b inside the function are “George” and
“Gracie”, respectively; the value of c is null.

At the opposite end of the spectrum, JavaScript also doesn’t balk if you send more parameters
from the calling statement than the number of parameter variables specified in the function def-
inition. In fact, the language includes a mechanism — the arguments property — that you can
add to your function to gather any extraneous parameters that should read your function.

Properties
arguments

Value: Array of arguments. Read-Only
Compatibility: WinIE4+, MacIE4+, NN3+, Moz1+, Safari1+

When a function receives parameter values from the statement that invokes the function,
those parameter values are silently assigned to the arguments property of the function
object. This property is an array of the values, with each parameter value assigned to a zero-
based index entry in the array — whether or not parameters are defined for it. You can find
out how many parameters are sent by extracting functionName.arguments.length. For
example, if four parameters are passed, functionName.arguments.length returns 4. Then,
you can use array notation (functionName.arguments[i]) to extract the values of any
parameter(s) you want.

Theoretically, you never have to define parameter variables for your functions by extracting the
desired arguments array entry instead. Well-chosen parameter variable names, however, are
much more readable, so I recommend them over the arguments property in most cases. But
you may run into situations in which a single function definition needs to handle multiple calls
to the function when each call may have a different number of parameters. The function knows
how to handle any arguments over and above the ones given names as parameter variables.

functionObject

985Chapter 33 ✦ Functions and Custom Objects

Example
See Listings 33-1 and 33-2 for a demonstration of both the arguments and caller properties.

arity
Value: Integer. Read-Only
Compatibility: WinIE-, MacIE-, NN4+, Moz-, Safari-

See the discussion of the length property later in this chapter.

caller
Value: Function object reference. Read-Only
Compatibility: WinIE4+, MacIE4+, NN3+, Moz1+, Safari-

When one function invokes another, a chain is established between the two primarily so that a
returned value knows where to go. Therefore, a function invoked by another maintains a refer-
ence to the function that called it. Such information is automatically stored in a function object
as the caller property. This relationship reminds me a bit of a subwindow’s opener property,
which points to the window or frame responsible for the subwindow’s creation. The value is
valid only while the called function is running at the request of another function; when a func-
tion isn’t running, its caller property is null.

The value of the caller property is a reference to a function object, so you can inspect its
arguments and caller properties (in case it was called by yet another function). Thus, a
function can look back at a calling function to see what values it was passed.

The functionName.caller property reveals the contents of an entire function definition if the
current function was called from another function (including an event handler). If the call for a
function comes from a regular JavaScript statement not originating from inside a function, the
functionName.caller property is null.

Example
To help you grasp all that these two properties yield, study Listing 33-1.

Listing 33-1: A Function’s arguments and caller Properties

<html>
<head>

<title></title>
<script type=”text/javascript”>
function hansel(x,y) {

var args = hansel.arguments;
document.write(“<p>hansel.caller is “ + hansel.caller + “
”);
document.write(“hansel.arguments.length is “ +

hansel.arguments.length + “
”);
for (var i = 0; i < args.length; i++) {

document.write(“argument “ + i + “ is “ + args[i] + “
”);
}
document.write(“<\/p>”);

}

Continued

functionObject.caller

986 Part IV ✦ JavaScript Core Language Reference

Listing 33-1 (continued)

function gretel(x,y,z) {
today = new Date();
thisYear = today.getFullYear();
hansel(x,y,z,thisYear);

}
</script>

</head>
<body>

<script type=”text/javascript”>
hansel(1, “two”, 3);
gretel(4, “five”, 6, “seven”);
</script>

</body>
</html>

When you load this page, the following results appear in the browser window (although the
caller property values show undefined for Safari):

hansel.caller is null
hansel.arguments.length is 3
argument 0 is 1
argument 1 is two
argument 2 is 3

hansel.caller is function gretel(x, y, z) { today = new Date(); thisYear =
today.getFullYear(); hansel(x, y, z, thisYear); }
hansel.arguments.length is 4
argument 0 is 4
argument 1 is five
argument 2 is 6
argument 3 is 2004 (or whatever the current year is)

As the document loads, the hansel() function is called directly in the body script. It passes
three arguments, even though the hansel() function defines only two. The hansel.
arguments property picks up all three arguments just the same. The main body script then
invokes the gretel() function, which, in turn, calls hansel() again. But when gretel()
makes the call, it passes four parameters. The gretel() function picks up only three of the
four arguments sent by the calling statement. It also inserts another value from its own calcu-
lations as an extra parameter to be sent to hansel(). The hansel.caller property reveals
the entire content of the gretel() function, whereas hansel.arguments picks up all four
parameters, including the year value introduced by the gretel() function.

constructor
(See string.constructor in Chapter 27)

length
Value: Integer. Read-Only
Compatibility: WinIE4+, MacIE4+, NN4+, Moz1+, Safari1+

As the arguments property of a function proves, JavaScript is very forgiving about matching
the number of parameters passed to a function with the number of parameter variables defined

functionObject.caller

987Chapter 33 ✦ Functions and Custom Objects

for the function. But a script can examine the length property of a function object to see pre-
cisely how many parameter variables are defined for a function. A reference to the property
starts with the function name representing the object. For example, consider the following
function definition shell:

function identify(name, rank, serialNum) {
...

}

A script statement anywhere outside of the function can read the number of parameters with
the reference:

identify.length

The value of the property in the preceding example is 3. The length property supercedes the
NN-only arity property.

prototype
(See Array.prototype in Chapter 30)

Methods
apply([thisObj[, argumentsArray]])
call([thisObj[, arg1[, arg2[,...argN]]]])

Returns: Nothing.
Compatibility: WinIE5.5+, MacIE-, NN6+, Moz1+, Safari1+

The apply() and call() methods of a function object invoke the function. This may seem
redundant to the normal way in which script statements invoke functions by simply naming
the function, following it with parentheses, passing parameters, and so on. The difference
with these methods is that you can invoke the function if your script has only a reference to
the function. For example, if your script defines a function via the new Function() construc-
tor (or other anonymous shortcut supported by the browser), you receive a reference to the
function as a result of the constructor. To invoke the function later using only that reference
(presumably preserved in a global variable), use either the apply() or call() method. Both
of these methods achieve the same result, but choosing one method over the other depends
on the form in which the function’s parameters are conveyed (more about that in a moment).

The first parameter of both methods is a reference to the object that the function treats as
the current object. For garden-variety functions defined in your script, use the keyword this,
which means that the function’s context becomes the current object (just like a regular func-
tion). In fact, if there are no parameters to be sent to the function, you can omit parameters
to both methods altogether.

The object reference comes into play when the function being invoked is one that is normally
defined as a method to a custom object. (I cover some of these concepts later in this chapter,
so you may need to return here after you are familiar with custom objects.)

Example
Consider the following code that generates a custom object and assigns a method to the
object to display an alert about properties of the object:

// function to be invoked as a method from a ‘car’ object
function showCar() {

alert(this.make + “ : “ + this.color);

functionObject.apply()

988 Part IV ✦ JavaScript Core Language Reference

}
// ‘car’ object constructor function
function car(make, color) {

this.make = make;
this.color = color;
this.show = showCar;

}
// create instance of a ‘car’ object
var myCar = new car(“Ford”, “blue”);

The normal way of getting the myCar object to display an alert about its properties is:

myCar.show();

At that point, the showCar() function runs, picking up the current car object as the context
for the this references in the function. In other words, when the showCar() function runs as
a method of the object, the function treats the object as the “current object.”

With the call() or apply() methods, however, you don’t have to bind the showCar() func-
tion to the myCar object. You can omit the statement in the car() constructor that assigns
the showCar function to a method name for the object. Instead, a script can invoke the
showCar() method and instruct it to treat myCar as the current object:

showCar.call(myCar);

The showCar() function operates just as before, and the object reference in the call()
method’s first parameter slot is treated as the current object for the showCar() function.

As for succeeding parameters, the apply() method’s second parameter is an array of val-
ues to be passed as parameters to the current function. The order of the values must match
the order of parameter variables defined for the function. The call() method, on the other
hand, enables you to pass individual parameters in a comma-delimited list. Your choice
depends on how the parameters are carried along in your script. If they’re already in array
form, use the apply() method; otherwise, use the call() method. The (ECMA) recom-
mended way to invoke a function through this mechanism when no parameters need to be
passed is via the call() method.

toString()
valueOf()

Returns: String.
Compatibility: WinIE4+, MacIE4+, NN4+, Moz1+, Safari1+

Scripts rarely, if ever, summon the toString() and valueOf() methods of a function object.
They work internally to allow debugging scripts to display a string version of the function def-
inition. For example, when you enter the name of a function defined in The Evaluator (see
Chapter 13) into the top text box, JavaScript automatically converts the function to a string
so that its “value” can be displayed in the Results box. Using these methods or parsing the
text they return has little, if any, practical application.

Function Application Notes
Understanding the ins and outs of JavaScript functions is the key to successful scripting,
especially for complex applications. Additional topics covered in this chapter include the
ways to invoke functions, variable scope in and around functions, recursion, and the design
of reusable functions.

functionObject.apply()

989Chapter 33 ✦ Functions and Custom Objects

Invoking functions
A function doesn’t perform any work until a script calls it by name or reference. Scripts invoke
functions (that is, get functions to do something) via four routes: document object event han-
dlers; JavaScript statements; href attributes pointing to a javascript: URL; and the more
recent call() and apply() methods of function objects. The one approach not discussed at
length yet in this book is the javascript: URL (some say pseudo-URL).

Several HTML tags have href attributes that normally point to Internet URLs for navigating to
another page or loading a MIME file that requires a helper application or plug-in. These HTML
tags are usually tags for clickable objects, such as links and client-side image map areas.

A JavaScript-enabled browser has a special, built-in URL pseudo-protocol —javascript:—
that lets the href attribute point to a JavaScript function or method rather than to a URL out on
the Net. For example, it is common practice to use the javascript: URL to change the contents
of two frames from a single link. Because the href attribute is designed to point to only a single
URL, you’d be out of luck without a convenient way to put multiframe navigation into your
hands. Implement multiframe navigation by writing a function that sets the location.href
properties of the two frames; then invoke that function from the href attribute. The following
example shows what the script may look like:

function loadPages() {
parent.frames[1].location.href = “page2.html”;
parent.frames[2].location.href = “instrux2.html”;

}
...
Next

These kinds of function invocations can include parameters, and the functions can do anything
you want. One potential side effect to watch out for occurs when the function returns a value
(perhaps the function is also invoked from other script locations where a returned value is
expected). Because the href attribute sets the target window to whatever the attribute eval-
uates to, the returned value is assigned to the target window—probably not what you want.

To prevent the assignment of a returned value to the href attribute, prefix the function call
with the void operator:

If you don’t want the href attribute to do anything (that is, let the onclick event handler do
all the work), assign a blank function after the operator:

Experienced programmers of many other languages recognize this operator as a way of indi-
cating that no values are returned from a function or procedure. The operator has that pre-
cise functionality here, but in a nontraditional location.

Variable scope: Globals and locals
A variable can have two scopes in JavaScript. As you might expect, any variable initialized
within the main flow of a script (not inside a function) is a global variable in that any statement
in the same document’s script can access it by name. You can, however, also initialize vari-
ables inside a function (in a var statement) so the variable name applies only to statements
inside that function. By limiting the scope of the variable to a single function, you can reuse
the same variable name in multiple functions thereby enabling the variables to carry very dif-
ferent information in each function. Listing 33-2 demonstrates the various possibilities.

Note

990 Part IV ✦ JavaScript Core Language Reference

Listing 33-2: Variable Scope Workbench Page

<html>
<head>

<title>Variable Scope Trials</title>
<script type=”text/javascript”>
var headGlobal = “Gumby”;
function doNothing() {

var headLocal = “Pokey”;
return headLocal;

}
</script>

</head>
<body>

<script type=”text/javascript”>
// two global variables
var aBoy = “Charlie Brown”;
var hisDog = “Snoopy”;
function testValues() {

var hisDog = “Gromit”; // initializes local version of “hisDog”
var page = “”;
page += “headGlobal is: “ + headGlobal + “
”;
// page += “headLocal is: “ + headLocal + “
” // won’t run:
// ...headLocal not defined
page += “headLocal value returned from head function is: “ +

doNothing() + “
”;
page += “ aBoy is: “ + aBoy + “
”; // picks up global
page += “local version of hisDog is: “ + hisDog + “
”; // “sees”
// ...only local version
document.write(page);

}
testValues();
document.write(“global version of hisDog is intact: “ + hisDog);
</script>

</body>
</html>

In this page, you define a number of variables — some global, others local — that are spread out
in the document’s Head and Body sections. When you load this page, it runs the testValues()
function, which accounts for the current values of all the variable names. The script then fol-
lows up with one more value extraction that was masked in the function. The results of the
page look like this:

headGlobal is: Gumby
headLocal value returned from head function is: Pokey
aBoy is: Charlie Brown
local version of hisDog is: Gromit
global version of hisDog is intact: Snoopy

Examine the variable initialization throughout this script. In the Head, you define the first
variable (headGlobal) as a global style outside of any function definition. The var keyword
for the global variable is optional but often helpful for enabling you to see at a glance where
you initialize your variables. You then create a short function, which defines a variable
(headLocal) that only statements in the function can use.

991Chapter 33 ✦ Functions and Custom Objects

In the Body, you define two more global variables: aBoy and hisDog. Inside the Body’s function
(for purposes of demonstration), you reuse the hisDog variable name. By initializing hisDog
with the var statement inside the function, you tell JavaScript to create a separate variable
whose scope is only within the function. This initialization does not disturb the global variable
of the same name. It can, however, make things confusing for you as the script author.

Statements in this script attempt to collect the values of variables scattered around the
script. Even from within this script, JavaScript has no problem extracting global variables
directly — including the one defined in the Head. But JavaScript cannot get the local variable
defined in the other function — that headLocal variable is private to its own function. Trying
to run a script that references that variable value will result in an error message saying that
the variable name is not defined. In the eyes of everyone else outside of the doNothing()
function, that’s true. If you really need that value, you can have the function return the value
to a calling statement as you do in the testValues() function.

Near the end of the function, the script reads the aBoy global value without a hitch. But
because you initialized a separate version of hisDog inside that function, only the localized
version is available to the function. If you reassign a global variable name inside a function,
you cannot access the global version from inside that function.

As proof that the global variable — whose name was reused inside the testValues() function —
remains untouched, the script writes that value to the end of the page for all to see. Charlie
Brown and his dog are reunited.

A benefit of this variable-scoping scheme is that you can reuse “throw-away” variable names
in any function you like. For instance, you can use the i loop counting variable in every func-
tion that employs loops. (In fact, you can reuse it in multiple for loops of the same function
because the for loop reinitializes the value at the start of the loop.) If you pass parameters to
a function, you can assign to those parameter variables the same names to aid in consistency.
For example, a common practice is to pass an entire form object reference as a parameter to
a function (using a this.form parameter in the event handler). For every function that
catches one of these objects, you can use the variable name form in the parameter:

function doSomething(form) {
statements

}
...
<input type=”button” value=”Do Something” onclick=”doSomething(this.form)” />

If five buttons on your page pass their form objects as parameters to five different functions,
each function can assign form (or whatever you want to use) to that parameter value.

I recommend reusing variable names only for these “throwaway” variables. In this case, the
variables are all local to functions, so the possibility of a mix-up with global variables does
not exist. But the thought of reusing a global variable name as, say, a special case inside a
function sends shivers up my spine. Such a tactic is doomed to cause confusion and error.

Some programmers devise naming conventions to avoid reusing global variables as local vari-
ables. A popular scheme puts a lowercase “g” in front of any global variable name. In the
example from Listing 33-2, you can name the global variables

gHeadGlobal
gABoy
gHisDog

Then, if you define local variables, don’t use the leading “g.” A similar scheme involves using
an underscore character (_) instead of a g in front of global variable names. Any scheme you
employ to prevent the reuse of variable names in different scopes is fine as long as it does
the job.

992 Part IV ✦ JavaScript Core Language Reference

In a multiframe or multiwindow environment, your scripts can also access global variables
from any other document currently loaded into the browser. For details about this level of
access, see Chapter 16.

Variable scoping rules apply equally to nested functions in NN4+, IE4+, and W3C browsers.
Any variables defined in an outer function (including parameter variables) are exposed to all
functions nested inside. But if you define a new local variable inside a nested function, that
variable is not available to the outer function. Instead, you can return a value from the nested
function to the statement in the outer function that invokes the nested function.

Parameter variables
When a function receives data in the form of parameters, remember that the values may be
copies of the data (in the case of run-of-the-mill data values) or references to real objects
(such as a form object). In the latter case, you can change the object’s modifiable properties
in the function when the function receives the object as a parameter, as shown in the follow-
ing example:

function validateCountry (form) {
if (form.country.value == “”) {

form.country.value = “USA”;
}

}

Therefore, whenever you pass an object reference as a function parameter, be aware that the
changes you make to that object in its “passed” form affect the real object.

As a matter of style, if my function needs to extract properties or results of methods from
passed data (such as object properties or string substrings), I like to do that at the start of
the function. I initialize as many variables as needed for each piece of data used later in the
function. This task enables me to assign meaningful names to the data chunks, rather than
rely on potentially long references within the working part of the function (such as using a
variable like inputStr instead of form.entry.value).

Recursion in functions
Functions can call themselves — a process known as recursion. The classic example of pro-
grammed recursion is the calculation of the factorial (the factorial for a value of 4 is 4 * 3
* 2 * 1), shown in Listing 33-3.

In the third line of this function, the statement calls itself, passing along a parameter of the
next lower value of n. As this function executes, diving ever deeper into itself, JavaScript
watches intermediate values and performs the final evaluations of the nested expressions. Be
sure to test any recursive function carefully. In particular, make sure that the recursion is
finite: that a limit exists for the number of times it can recurse. In the case of Listing 33-3, that
limit is the initial value of n. Failure to watch out for this limit may cause the recursion to
overpower the limits of the browser’s memory and even lead to a crash.

Listing 33-3: A JavaScript Function Utilizing Recursion

function factorial(n) {
if (n > 0) {

return n * (factorial(n-1));
} else {

993Chapter 33 ✦ Functions and Custom Objects

return 1;
}

}

Turning functions into libraries
As you start writing functions for your scripts, be on the lookout for ways to make functions
generalizable (written so that you can reuse the function in other instances, regardless of the
object structure of the page). The likeliest candidates for this kind of treatment are functions
that perform specific kinds of validation checks (see examples in Chapter 43 on the CD-ROM),
data conversions, or iterative math problems.

To make a function generalizable, don’t let it make any references to specific objects by name.
Object names generally change from document to document. Instead, write the function so that
it accepts a named object as a parameter. For example, if you write a function that accepts a
text object as its parameter, the function can extract the object’s data or invoke its methods
without knowing anything about its enclosing form or name. Look again, for example, at the
factorial() function in Listing 33-4 — but now as part of an entire document.

Listing 33-4: Calling a Generalizable Function

<html>
<head>

<title>Variable Scope Trials</title>
<script type=”text/javascript”>
function factorial(n) {

if (n > 0) {
return n * (factorial(n - 1));

} else {
return 1;

}
}
</script>

</head>
<body>

<form>
Enter an input value: <input type=”text” name=”input” value=”0” />
<p><input type=”button” value=”Calc Factorial”

onclick=”this.form.output.value =
factorial(this.form.input.value)” /></p>

<p>Results: <input type=”text” name=”output” /></p>
</form>

</body>
</html>

This function is designed to be generalizable, accepting only the input value (n) as a parame-
ter. In the form, the onClick event handler of the button sends only the input value from one
of the form’s fields to the factorial() function. The returned value is assigned to the output
field of the form. The factorial() function is totally ignorant about forms, fields, or buttons
in this document. If I need this function in another script, I can copy and paste it into that
script knowing that it has been pretested. Any generalizable function is part of my personal
library of scripts — from which I can borrow — and saves me time in future scripting tasks.

994 Part IV ✦ JavaScript Core Language Reference

You cannot always generalize a function. Somewhere along the line in your scripts, you must
have references to JavaScript or custom objects. But if you find that you’re frequently writing
functions that perform the same kind of actions, see how you can generalize the code and put
the results in your library of ready-made functions. You should also consider placing these
reusable library functions in an external .js library file. See Chapter 13 for details on this
convenient way to share utility functions among many documents.

Custom Objects
In all the previous chapters of this book, you’ve seen how conveniently the browser document
object models organize all the information about the browser window and its document. What
may not be obvious from the scripting you’ve done so far is that JavaScript enables you to cre-
ate your own objects in memory — objects with properties and methods. These objects are not
user-interface elements on the page but rather the kinds of objects that may contain data and
script functions (behaving as methods) whose results the user can see displayed in the
browser window.

You actually had a preview of this power in Chapter 30’s discussion about arrays. An array,
you recall, is an ordered collection of data. An object typically contains different kinds of
data. It doesn’t have to be an ordered collection of data — although your scripts can use
objects in constructions that strongly resemble arrays. Moreover, you can attach any num-
ber of custom functions as methods for that object. You are in total control of the object’s
structure, data, and behavior.

An example — planetary objects
Building on your familiarity with the planetary data array created in Chapter 30, this chapter
shows you how convenient it is to use the data when it is constructed in the form of custom
objects. The application goal for the extended example in this section is to present a pop-up
list of the nine planets of the solar system and display data about the selected planet. From a
user-interface perspective (and for more exposure to multiframe environments), the resulting
data displays in a separate frame of a two-frame window. This means your object method
builds HTML on the fly and plugs it into the display frame. If you implement this application
strictly for IE4+, NN6+, and W3C browsers, you can apply the same data to reconstruct the
displayed table data for each user selection. The example as shown, however, is fully back-
ward compatible for all scriptable browsers.

In this chapter, instead of building arrays to hold the data, you build objects — one object for
each planet. The design of your object has five properties and one method. The properties of
each planet are: name, diameter, distance from the sun, year length, and day length. To assign
more intelligence to these objects, you give each of them the capability to display their data in
the lower frame of the window. You can conveniently define one function that knows how to
behave with any of these planet objects, rather than having to define nine separate functions.

Listing 33-5 shows the source code for the document that creates the frameset for your plane-
tary explorations; Listing 33-6 shows the entire HTML page for the object-oriented planet doc-
ument, which appears in the top frame.

Listing 33-5: Framesetting Document for a Two-Frame Window

<html>
<head>

<title>Solar System Viewer</title>

995Chapter 33 ✦ Functions and Custom Objects

<script type=”text/javascript”>
function blank() {

return “<html><body><\/body><\/html>”;
}
</script>

</head>
<frameset rows=”50%,50%”
onload=”Frame1.doDisplay(Frame1.document.forms[0].planetsList)”>

<frame name=”Frame1” src=”lst33-06.htm” />
<frame name=”Frame2” src=”javascript:parent.blank()” />

</frameset>
</html>

One item to point out in Listing 33-5 is that because the lower frame isn’t filled until the
upper frame’s document loads, you need to assign some kind of URL for the src attribute of
the second frame. Rather than add the extra transaction and file burden of a blank HTML
document, here you use the javascript: URL to invoke a function. In this instance, I want
the value returned from the function (a blank HTML page) to be reflected into the target
frame (no void operator here). This method provides the most efficient way of creating a
blank frame in a frameset.

Listing 33-6: Object-Oriented Planetary Data Presentation

<html>
<head>

<title>Our Solar System</title>
<script type=”text/javascript”>
// method definition
function showPlanet() {

var result = “<html><body><center><table border=’2’>”;
result += “<caption align=’top’>Planetary data for: ” + this.name +

“</caption>”;
result += “<tr><td align=’right’>Diameter:</td><td>” + this.diameter +

“</td></tr>”;
result += “<tr><td align=’right’>Distance from Sun:</td><td>” +

this.distance + “</td></tr>”;
result += “<tr><td align=’right’>One Orbit Around Sun:</td><td>” +

this.year + “</td></tr>”;
result += “<tr><td align=’right’>One Revolution (Earth

Time):</td><td>” + this.day + “</td></tr>”;
result += “</table></center></body></html>”;
// display results in a second frame of the window
parent.Frame2.document.write(result);
parent.Frame2.document.close();

}

// definition of planet object type;
// ‘new’ will create a new instance and stuff parameter data into object
function planet(name, diameter, distance, year, day) {

this.name = name;
this.diameter = diameter;
this.distance = distance;
this.year = year;

Continued

996 Part IV ✦ JavaScript Core Language Reference

Listing 33-6 (continued)

this.day = day;
this.showPlanet = showPlanet; // make showPlanet() function a method
// ...of planet

}

// create new planet objects, and store in a series of variables
var Mercury = new planet(“Mercury”,”3100 miles”, “36 million miles”,

“88 days”, “59 days”);
var Venus = new planet(“Venus”, “7700 miles”, “67 million miles”,

“225 days”, “244 days”);
var Earth = new planet(“Earth”, “7920 miles”, “93 million miles”,

“365.25 days”,”24 hours”);
var Mars = new planet(“Mars”, “4200 miles”, “141 million miles”,

“687 days”, “24 hours, 24 minutes”);
var Jupiter = new planet(“Jupiter”,”88,640 miles”,”483 million miles”,

“11.9 years”, “9 hours, 50 minutes”);
var Saturn = new planet(“Saturn”, “74,500 miles”,”886 million miles”,

“29.5 years”, “10 hours, 39 minutes”);
var Uranus = new planet(“Uranus”, “32,000 miles”,

“1.782 billion miles”,”84 years”, “23 hours”);
var Neptune = new planet(“Neptune”,”31,000 miles”,

“2.793 billion miles”,”165 years”, “15 hours, 48 minutes”);
var Pluto = new planet(“Pluto”, “1500 miles”, “3.67 billion miles”,

“248 years”, “6 days, 7 hours”);

// called from push button to invoke planet object method
function doDisplay(popup) {

i = popup.selectedIndex;
eval(popup.options[i].text + “.showPlanet()”);

}
</script>

</head>
<body>

<h1>The Daily Planet</h1>
<hr />
<form>

<p>Select a planet to view its planetary data: <select
name=’planetsList’ onchange=’doDisplay(this)’>

<option>Mercury</option>
<option>Venus</option>
<option selected=”selected”>Earth</option>
<option>Mars</option>
<option>Jupiter</option>
<option>Saturn</option>
<option>Uranus</option>
<option>Neptune</option>
<option>Pluto</option>

</select></p>
</form>

</body>
</html>

997Chapter 33 ✦ Functions and Custom Objects

The first task in the Head is to define the function that becomes a method in each of the objects.
You must do this task before scripting any other code that adopts the function as its method.
Failure to define the function ahead of time results in an error — the function name is not
defined. If you compare the data extraction methodology with the function in the array ver-
sion, notice that the parameter for the index value is gone and the reference to each property
begins with this. Later, I return to the custom method after giving you a look at the rest of
the Head code.

Next comes the object constructor function, which performs several important tasks. For one,
everything in this function establishes the structure of your custom object: the properties avail-
able for data storage and retrieval and any methods that the object can invoke. The name of the
function is the name you use later to create new instances of the object. Therefore, choosing a
name that truly reflects the nature of the object is important. And, because you probably want
to stuff some data into the function’s properties to get one or more instances of the object
loaded and ready for the page’s user, the function definition includes parameters for each of the
properties defined in this object definition.

Inside the function, you use the this keyword to assign data that comes in as parameters to
labeled properties. For this example, I use the same names for both the incoming parameter
variables and the properties. That’s primarily for convenience (and is very common prac-
tice), but you can assign any variable and property names you want and connect them any
way you like. In the planet() constructor function, five property slots are reserved for every
instance of the object whether or not any data actually is placed in every property (any unas-
signed slot has a value of null).

The last entry in the planet() constructor function is a reference to the showPlanet() func-
tion defined earlier. Notice that the assignment statement doesn’t refer to the function with its
parentheses — just to the function name. When JavaScript sees this assignment statement, it
looks back through existing definitions (those functions defined ahead of the current location in
the script) for a match. If it finds a function (as it does here), JavaScript knows to assign the
function to the identifier on the left side of the assignment statement. In doing this task with a
function, JavaScript automatically sets up the identifier as a method name for this object. As
you do in every JavaScript method you encounter, you must invoke a method by using a refer-
ence to the object, a period, and the method name followed by a set of parentheses. You see
that syntax in a minute.

The next long block of statements creates the individual objects according to the definition
established in the planet() constructor. Similar to an array, an assignment statement and
the keyword new create an object. I assign names that are not only the real names of planets
(the Mercury object name is the Mercury planet object) but that also can come in handy later
when the doDisplay() function extracts names from the pop-up list in search of a particular
object’s data.

The act of creating a new object sets aside space in memory (associated with the current docu-
ment) for this object and its properties. In this script, you create nine object spaces, each with
a different set of properties. Notice that no parameter is sent (or expected at the function) that
corresponds to the showPlanet() method. Omitting that parameter here is fine because the
specification of that method in the object definition means that the script automatically
attaches the method to every version (instance) of the planet object that it creates.

The last function definition, doDisplay(), is invoked whenever the user makes a choice from
the list of planets in the upper frame. This function is also invoked via the frameset’s onload
event handler so that an initial table is displayed from the default selected item (see Figure
33-1). Invoking the function from the upper frame’s onload event handler can cause problems
(such as the failure of the other frame) if the frameset is not completely loaded.

998 Part IV ✦ JavaScript Core Language Reference

Figure 33-1: An external and internal face-lift for an earlier application.

The onchange event handler in the select list passes that select element’s reference to
the doDisplay() function. In that function, the select object is assigned to a variable
called popup to help you visualize that the object is the pop-up list. The first statement
extracts the index value of the selected item. Using that index value, the script extracts the
text. But things get a little tricky because you need to use that text string as a variable
name — the name of the planet — and append it to the call to the showPlanet() method.
To make the disparate data types come together, use the eval() function. Inside the paren-
theses, extract the string for the planet name and concatenate a string that completes the
reference to the object’s showPlanet() method. The eval() function evaluates that string,
which turns it into a valid method call. Therefore, if the user selects Jupiter from the pop-
up list, the method call becomes Jupiter.showPlanet().

Now it’s time to look back to the showPlanet() function/method definition at the top of
the script. When that method runs in response to a user selection of the planet Jupiter, the
method’s only scope is of the Jupiter object. Therefore, all references to this.propertyName
in showPlanet() refer to Jupiter only. The only possibility for this.name in the Jupiter
object is the value assigned to the name property for Jupiter. The same goes for the rest of the
properties extracted in the function/method.

Creating an array of objects
In Listing 33-6, each of the planet objects is assigned to a global variable whose name is that
of the planet. If the idea of custom objects is new to you, this idea probably doesn’t sound so
bad because it’s easy to visualize each variable representing an object. But, as shown in the
doDisplay() function, accessing an object by name requires use of the eval() function to

999Chapter 33 ✦ Functions and Custom Objects

convert a string representation to a valid object reference. While it’s not too important in this
simple example, the eval() function is not particularly efficient in JavaScript. If you find
yourself using an eval() function, look for ways to improve efficiency such that you can ref-
erence an object by string. The way to accomplish that streamlining for this application is to
place the objects in an array whose index values are the planet names.

To assign the custom objects in Listing 33-6 to an array, first create an empty array and then
assign the result of each object constructor call to an entry in the array. The modified code
section looks like the following (formatted to fit this printed page):

// create array
var planets = new Array();
// populate array with new planet objects
planets[“Mercury”] =

new planet(“Mercury”,”3100 miles”, “36 million miles”,
“88 days”, “59 days”);

planets[“Venus”] =
new planet(“Venus”, “7700 miles”, “67 million miles”,
“225 days”, “244 days”);

planets[“Earth”] =
new planet(“Earth”, “7920 miles”, “93 million miles”,
“365.25 days”,”24 hours”);

planets[“Mars”] =
new planet(“Mars”, “4200 miles”, “141 million miles”,
“687 days”, “24 hours, 24 minutes”);

planets[“Jupiter”] =
new planet(“Jupiter”,”88,640 miles”,”483 million miles”,
“11.9 years”, “9 hours, 50 minutes”);

planets[“Saturn”] =
new planet(“Saturn”, “74,500 miles”,”886 million miles”,
“29.5 years”, “10 hours, 39 minutes”);

planets[“Uranus”] =
new planet(“Uranus”, “32,000 miles”,”1.782 billion miles”,
“84 years”, “23 hours”);

planets[“Neptune”] =
new planet(“Neptune”,”31,000 miles”,”2.793 billion miles”,
“165 years”, “15 hours, 48 minutes”);

planets[“Pluto”] =
new planet(“Pluto”, “1500 miles”, “3.67 billion miles”,
“248 years”, “6 days, 7 hours”);

The supreme advantage to this approach comes in a modified doDisplay() function, which
can use the string value from the select element directly without any conversion to an
object reference:

// called from push button to invoke planet object method
function doDisplay(popup) {

i = popup.selectedIndex;
planets[popup.options[i].text].showPlanet();

}

The presence of so many similar objects cries out for their storage as an array. Because the
names play a key role in their choice for this application, the named index values work best; in
other situations, you may prefer to use numeric indexes to facilitate looping through the array.

Adding a custom method
You’re approaching advanced subject matter at this point, so I merely mention and briefly
demonstrate an additional power of defining and using custom objects. A custom object can

1000 Part IV ✦ JavaScript Core Language Reference

have a reference to another custom object as a property. Let’s extend the planet example to
help you understand the implications.

Say that you want to beef up the planet page with a photo of each planet. Each photo has a
URL for the photo file; each photo also contains other information, such as the copyright
notice and a reference number, which displays on the page for the user. One way to handle
this additional information is to create a separate object definition for a photo database. Such
a definition may look like this:

function photo(name, URL, copyright, refNum) {
this.name = name;
this.URL = URL;
this.copyright = copyright;
this.refNum = refNum;

}

You then need to create individual photo objects for each picture. One such definition may
look like this:

mercuryPhoto = new photo(“Planet Mercury”, “/images/merc44.gif”,
“(c)1990 NASA”, 28372);

Attaching a photo object to a planet object requires modifying the planet constructor func-
tion to accommodate one more property. The new planet constructor looks like this:

function planet(name, diameter, distance, year, day, photo) {
this.name = name;
this.diameter = diameter;
this.distance = distance;
this.year = year;
this.day = day;
this.showPlanet = showPlanet;
this.photo = photo; // add photo property

}

Once the photo objects are created, you can then create each planet object by passing one
more parameter — a photo object you want associated with that object:

// create new planet objects, and store in a series of variables
Mercury = new planet(“Mercury”, “3100 miles”, “36 million miles”,

“88 days”, “59 days”, mercuryPhoto);

To access a property of a photo object, your scripts then have to assemble a reference that
works its way through the connection with the planet object:

copyrightData = Mercury.photo.copyright;

The potential of custom objects of this type is enormous. For example, you can embed all the
copy elements and image URLs for an online catalog in a single document. As the user selects
items to view (or cycles through them in sequence), a new JavaScript-written page displays
the information in an instant. This requires only the image to be downloaded — unless the
image was precached, as described in the image object discussion in Chapter 18. In this case,
everything works instantaneously — no waiting for page after page of catalog.

If, by now, you think you see a resemblance between this object-within-an-object construction
and a relational database, give yourself a gold star. Nothing prevents multiple objects from
having the same subobject as their properties — like multiple business contacts having the
same company object property.

1001Chapter 33 ✦ Functions and Custom Objects

More ways to create objects
The examples in Listings 33-5 and 33-6 show a way of creating objects that works with all
scriptable browsers. If your audience is limited to users with more modern browsers, addi-
tional ways of creating custom objects exist.

From NN3+ and IE4+ onward (including W3C browsers), you can use the new Object() con-
structor to generate a blank object. From that point on, you can define property and method
names by simple assignment, as in the following:

var Earth = new Object();
Earth.diameter = “7920 miles”;
Earth.distance = “93 million miles”;
Earth.year = “365.25”;
Earth.day = “24 hours”;
Earth.showPlanet = showPlanet; // function reference

When you create a lot of like-structured objects, the custom object constructor shown in
Listing 33-6 is more efficient. But for single objects, the new Object() constructor is more
efficient.

For more modern browsers, you can also benefit from a shortcut literal syntax for creating a
new object. You can set pairs of property names and their values inside a set of curly braces,
and you can assign the whole construction to a variable that becomes the object name. The
following script shows how to organize this kind of object constructor:

var Earth = {diameter:”7920 miles”, distance:”93 million miles”, year:”365.25”,
day:”24 hours”, showPlanet:showPlanet};

Colons link name-value pairs, and commas separate multiple name-value pairs. The value por-
tion of a name-value pair can even be an array (using the [...] constructor shortcut) or a
nested object (using another pair of curly braces). In fact, you can nest arrays and objects to
your heart’s content to create exceedingly complex objects. All in all, this is a very compact
way to embed data in a page for script manipulation. If your CGI, XML, and database skills
are up to the task, consider using a server program to convert XML data into this compact
JavaScript version with each XML record being its own JavaScript object. For multiple records,
assign the curly-braced object definitions to an array entry. Then your scripts on the client
can iterate through the data and generate the HTML to display the data in a variety of forms
and sorted according to different criteria (thanks to the JavaScript array-sorting powers).

Defining object property getters and setters
A future version of the ECMA-262 language specification will likely include a pair of facilities
called getter and setter. Until such time as the formal syntax is finalized, you can begin to
experiment with this technique in NN6+/Moz1+ using temporary syntax that adheres to the
likely format (but intentionally uses different keywords until the standard is adopted). When
the standard is adopted, a subsequent version of NN/Moz will include the standard keywords.

I introduced the idea of creating a getter and setter for an object briefly in Chapter 14, where
the NN6 syntax style extended properties of some W3C DOM objects to include some of the
Microsoft-specific (and very convenient) DOM syntax. Most notably, you can define a getter
for any container to return an array of nested elements just like the IE-only document.all
collection.

The purpose of a getter is to assign a new property to the prototype of an object and to define
how the value returned by the property should be evaluated. A setter does the same, but it also
defines how a new value assigned to the property should apply the value to the object. Both

1002 Part IV ✦ JavaScript Core Language Reference

definitions are written in the form of anonymous functions, such that reading or writing an
object’s property value can include sophisticated processing for either operation.

Getters and setters are assigned to the prototype property of an object, thus enabling you to
customize native and DOM objects. The NN6 syntax fashions getters, setters, and methods of
an object’s prototype with the following syntax:

object.prototype.__defineGetter__(“propName”, function)
object.prototype.__defineSetter__(“propName”, function)

Note that the underscores before and after the method names are actually pairs of underscore
characters (that is, _, _, defineGetter, _, _). This double underscore was chosen as a syn-
tax that the ECMA standard will not use, so it will not conflict with the eventual syntax for
this facility.

The first parameter of the method is the name of the property for which the getter or setter is
defined. This can be an existing property name that you want to override. The second param-
eter can be a function reference; but more likely it will be an anonymous function defined in
place. By using an anonymous function, you can take advantage of the context of the object
for which the property is defined. For each property, define both a getter and setter — even if
the property is meant to be read-only or write-only.

To see how this mechanism works, let’s use the getter and setter shown in Chapter 14 to add
an innerText property to HTML elements in NN6+. This property is read/write, so functions
are defined for both the getter and setter. The getter definition is as follows:

HTMLElement.prototype.__defineGetter__(“innerText”, function () {
var rng = document.createRange();
rng.selectNode(this);
return rng.toString();

})

The modified object is the basic HTMLElement object — the object that NN6+ uses to create
instances of every HTML element for the page. After the preceding statement executes, every
HTML element on the page inherits the new innerText property. Each time the innerText
property is read for an element, the anonymous function in this getter executes. Thus, after a
text range object is created, the range is set to the node that is the current element. This is an
excellent example of how the context of the current object allows the use of the this keyword
to refer to the very same object. Finally, the string version of the selected range is returned. It is
essential that a getter function include a return statement and that the returned value is of the
desired data type. Also take notice of the closing of the function’s curly brace and the getter
method’s parenthesis.

By executing this function each time the property is read, the getter always returns the cur-
rent state of the object. If content of the element has changed since the page loaded, you are
still assured of getting the current text inside the element. This is far superior to simply run-
ning the statements inside this function once as the page loads to capture a static view of the
element’s text.

The corresponding setter definition is as follows:

HTMLElement.prototype.__defineSetter__(“innerText”, function (txt) {
var rng = document.createRange();
rng.selectNodeContents(this);
rng.deleteContents();
var newText = document.createTextNode(txt);
this.appendChild(newText);
return txt;

})

1003Chapter 33 ✦ Functions and Custom Objects

To assign a value to an object’s property, the setter function requires that a parameter vari-
able receive the assigned value. That parameter variable plays a role somewhere within the
function definition. For this particular setter, the current object (this) also manipulates the
text range object. The contents of the current element are deleted, and a text node compris-
ing the text passed as a parameter is inserted into the element. To completely simulate the IE
behavior of setting the innerText property, the text is returned. While setters don’t always
return values, this one does so that the expression that assigns a value to the innerText
property evaluates to the new text.

If you want to create a read-only property, you still define a setter for the property but you
also assign an empty function, as in:

Node.prototype.__defineSetter__(“all”, function() {})

This prevents assignment statements to a read-only property from generating errors. A write-
only property should also have a getter that returns null or an empty string, as in:

HTMLElement.prototype.__defineGetter__(“outerHTML”, function() {return “”})

Because the getter and setter syntax shown here is unique to NN6, you must obviously
wrap such statements inside object detection or browser version detection statements.
And, to reiterate, this syntax will change in future browser versions once ECMA adopts the for-
mal syntax.

Using custom objects
There is no magic to knowing when to use a custom object instead of an array in your appli-
cation. The more you work with and understand the way custom objects work, the more
likely you will think about your data-carrying scripts in these terms — especially if an object
can benefit from having one or more methods associated with it. This avenue is certainly not
one for beginners, but I recommend that you give custom objects more than a casual perusal
once you gain some JavaScripting experience.

Object-Oriented Concepts
As stated several times throughout this book, JavaScript is object-based rather than object-
oriented. Instead of adhering to the class, subclass, and inheritance schemes of object-
oriented languages such as Java, JavaScript uses what is called prototype inheritance. This
scheme works not only for native and DOM objects but also for custom objects.

Adding a prototype
A custom object is frequently defined by a constructor function, which typically parcels out
initial values to properties of the object, as in the following example:

function car(plate, model, color) {
this.plate = plate;
this.model = model;
this.color = color;

}
var car1 = new car(“AB 123”, “Ford”, “blue”);

NN4+, IE4+, and W3C browsers offer a handy shortcut, as well, to stuff default values into
properties if none are provided (the supplied value is null, 0, or an empty string). The OR
operator (||) can let the property assignment statement apply the passed value, if present,

1004 Part IV ✦ JavaScript Core Language Reference

or a default value you hard-wire into the constructor. Therefore, you can modify the preced-
ing function to offer default values for the properties:

function car(plate, model, color) {
this.plate = plate || “missing”;
this.model = model || “unknown”;
this.color = color || “unknown”;

}
var car1 = new car(“AB 123”, “Ford”, “”);

After the preceding statements run, the car1 object has the following properties:

car1.plate // value = “AB 123”
car1.model // value = “Ford”
car1.color // value = “unknown”

If you then add a new property to the constructor’s prototype property, as in

car.prototype.companyOwned = true;

any car object you already created or are about to create automatically inherits the new
companyOwned property and its value. You can still override the value of the companyOwned
property for any individual car object. But if you don’t override the property for instances of
the car object, the car objects whose companyOwned property is not overridden automatically
inherit any change to the prototype.companyOwned value. This has to do with the way
JavaScript looks for prototype property values.

Prototype inheritance
Each time your script attempts to read or write a property of an object, JavaScript follows a
specific sequence in search of a match for the property name. The sequence is as follows:

1. If the property has a value assigned to the current (local) object, this is the value to
use.

2. If there is no local value, check the value of the property’s prototype of the object’s
constructor.

3. Continue up the prototype chain until either a match of the property is found (with a
value assigned to it) or the search reaches the native Object object.

Therefore, if you change the value of a constructor’s prototype property and you do not
override the property value in an instance of that constructor, JavaScript returns the current
value of the constructor’s prototype property.

Nested objects and prototype inheritance
When you begin nesting objects, especially when one object invokes the constructor of
another, there is an added wrinkle to the prototype inheritance chain. Let’s continue with the
car object defined earlier. In this scenario, consider the car object to be akin to a root object
that has properties shared among two other types of objects. One of the object types is a com-
pany fleet vehicle, which needs the properties of the root car object (plate, model, color) but
also adds some properties of its own. The other object that shares the car object is an object
representing a car parked in the company garage — an object that has additional properties
regarding the parking of the vehicle. This explains why the car object is defined on its own.

1005Chapter 33 ✦ Functions and Custom Objects

Now look at the constructor function for the parking record, along with the constructor for
the basic car object:

function car(plate, model, color) {
this.plate = plate || “missing”;
this.model = model || “unknown”;
this.color = color || “unknown”;

}
function carInLot(plate, model, color, timeIn, spaceNum) {

this.timeIn = timeIn;
this.spaceNum = spaceNum;
this.carInfo = car;
this.carInfo(plate, model, color);

}

The carInLot constructor not only assigns values to its unique properties (timeIn and
spaceNum) but it also includes a reference to the car constructor arbitrarily assigned to a
property called carInfo. This property assignment is merely a conduit that allows property
values intended for the car constructor to be passed within the carInLot constructor func-
tion. To create a carInLot object, use a statement like the following:

var car1 = new carInLot(“AA 123”, “Ford”, “blue”, “10:02AM”, “31”);

After this statement, the car1 object has the following properties and values:

car1.timeIn // value = “10:02AM”
car1.spaceNum // value = “31”
car1.carInfo // value = reference to car object constructor function
car1.plate // value = “AA 123”
car1.model // value = “Ford”
car1.color // value = “blue”

Let’s say that five carInLot objects are created in the script (car1 through car5). The proto-
type wrinkle comes into play if, for example, you assign a new property to the car construc-
tor prototype:

car.prototype.companyOwned = true;

Even though the carInLot objects use the car constructor, the instances of carInLot objects
do not have a prototype chain back to the car object. As the preceding code stands, even
though you’ve added a companyOwned property to the car constructor, no carInLot object
inherits that property (even if you were to create a new carInLot object after defining the
new prototype property for car). To get the carInLot instances to inherit the prototype.
companyOwned property, you must explicitly connect the prototype of the carInLot construc-
tor to the car constructor prior to creating instances of carInLot objects:

carInLot.prototype = new car();

The complete sequence, then, is as follows:

function car(plate, model, color) {
this.plate = plate || “missing”;
this.model = model || “unknown”;
this.color = color || “unknown”;

}
function carsInLot(plate, model, color, timeIn, spaceNum) {

this.timeIn = timeIn;
this.spaceNum = spaceNum;
this.carInfo = car;
this.carInfo(plate, model, color);

}

1006 Part IV ✦ JavaScript Core Language Reference

carsInLot.prototype = new car();
var car1 = new carsInLot(“123ABC”, “Ford”,”blue”,”10:02AM”, “32”);
car.prototype.companyOwned = true;

After this stretch of code runs, the car1 object has the following properties and values:

car1.timeIn // value = “10:02AM”
car1.spaceNum // value = “31”
car1.carInfo // value = reference to car object constructor function
car1.plate // value = “AA 123”
car1.model // value = “Ford”
car1.color // value = “blue”
car1.companyOwned // value = true

NN4+ provides one extra, proprietary bit of syntax in this prototype world. The __proto__
property (that’s with double underscores before and after the word “proto”) returns a refer-
ence to the object that is next up the prototype chain. For example, if you inspect the proper-
ties of car1.__proto__ after the preceding code runs, you see that the properties of the
object next up the prototype chain are as follows:

car1.__proto__.plate // value = “AA 123”
car1.__proto__.model // value = “Ford”
car1.__proto__.color // value = “blue”
car1.__proto__.companyOwned // value = true

This property can be helpful in debugging custom objects and prototype inheritance chain
challenges, but the property is not part of the ECMA standard. Therefore, I discourage you
from using the property in your production scripts.

Object Object

Properties Methods

constructor hasOwnProperty()
prototype isPrototypeOf()

propertyIsEnumerable()
toLocaleString()
toString()
valueOf()

Syntax
Creating an object object:

function constructorName([arg1,...[,argN]]) {
statement(s)

}
var objName = new constructorName([“argName1”,...[,”argNameN”]);
var objName = new Object();
var objName = {propName1:propVal1[, propName2:propVal2[,...N]}}

objectObject

1007Chapter 33 ✦ Functions and Custom Objects

Accessing an object object properties and methods:

objectReference.property | method([parameters])

Compatibility: WinIE4+, MacIE4+, NN3+, Moz1+, Safari1+

About this object
While it might sound like doubletalk, the Object object is a vital native object in the JavaScript
environment. It is the root object on which all other native objects — such as Date, Array,
String, and the like — are based. This object also provides the foundation for creating custom
objects, as described earlier in this chapter.

By and large, your scripts do not access the properties of the native Object object. The same
is true for many of its methods, such as toString() and valueOf(), which internally allow
debugging alert dialog boxes (and The Evaluator) to display something when referring to an
object or its constructor.

You can use a trio of methods to perform some inspection of the prototype environment of an
object instance. They are of interest primarily to advanced scripters who are building exten-
sive, simulated object-oriented applications.

Methods
hasOwnProperty(“propName”)

Returns: Boolean.
Compatibility: WinIE5.5+, MacIE-, NN6+, Moz1+, Safari-

The hasOwnProperty() method returns true if the current object instance has the property
defined in its constructor or in a related constructor function. But if this property is defined
externally, as via assignment to the object’s prototype property, the method returns false.

Using the example of the car and carInLot objects from earlier in this chapter, the following
expressions evaluate to true:

car1.hasOwnProperty(“spaceNum”);
car1.hasOwnProperty(“model”);

Even though the model property is defined in a constructor that is invoked by another con-
structor, the property belongs to the car1 object. The following statement, however, evalu-
ates to false:

car1.hasOwnProperty(“companyOwned”);

This property is defined by way of the prototype of one of the constructor functions and is
not a built-in property for the object instance.

isPrototypeOf(objRef)
Returns: Boolean.
Compatibility: WinIE5.5+, MacIE-, NN6+, Moz1+, Safari-

The isPrototypeOf() method is intended to reveal whether or not the current object has a
prototype relation with an object passed as a parameter. In practice, the IE and NN/Moz ver-
sions of this method operate differently and return different results.

objectObject.isPrototypeOf()

1008 Part IV ✦ JavaScript Core Language Reference

propertyIsEnumerable(“propName”)
Returns: Boolean.
Compatibility: WinIE5.5+, MacIE-, NN6+, Moz1+, Safari-

In the terminology of the ECMA-262 language specification, a value is enumerable if construc-
tions such as the for-in property inspection loop (see Chapter 31) can inspect it.
Enumerable properties include values such as arrays, strings, and virtually every kind of
object. According to the ECMA specification, this method is not supposed to work its way up
the prototype chain.

✦ ✦ ✦

objectObject.propertyIsEnumerable()

Global Functions
and Statements

In addition to all the objects and other language constructs
described in the preceding chapters of this reference part of the

book, several language items need to be treated on a global scale.
These items apply to no particular objects (or any object), and you
can use them anywhere in a script. If you read earlier chapters, you
were introduced to many of these functions and statements. This
chapter serves as a convenient place to highlight these all-important
items that are otherwise easily forgotten. At the end of the chapter,
note the brief introduction to several objects that are built into the
Windows-only versions of Internet Explorer.

This chapter begins with coverage of the following global functions
and statements that are part of the core JavaScript language:

Functions Statements

decodeURI() // and /*...*/ (comment)

decodeURIComponent() const
encodeURI() var
encodeURIComponent()
escape()
eval()
isFinite()
isNaN()
Number()
parseFloat()
parseInt()
toString()
unescape()
unwatch()
watch()

Global functions are not tied to the document object model. Instead,
they typically enable you to convert data from one type to another
type. The list of global statements is short, but a couple of them
appear extensively in your scripting.

3434C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Converting strings into
object references

Creating URL-friendly
strings

Adding comments to
scripts

✦ ✦ ✦ ✦

1010 Part IV ✦ JavaScript Core Language Reference

Functions
decodeURI(“encodedURI”)
decodeURIComponent(“encodedURIComponent”)
encodeURI(“URIString”)
encodeURIComponent(“URIComponentString”)

Returns: String.
Compatibility: WinIE5.5+, MacIE-, NN6+, Moz1+, Safari-

The ECMA-262 Edition 3 standard, as implemented in IE5.5+, NN6+, and Mozilla, provides util-
ity functions that perform a more rigorous conversion of strings to valid URI strings and vice
versa than was achieved earlier via the escape() and unescape() functions (described later
in this chapter). The purpose of the encoding functions is to convert any string to a version
that you can use as a Uniform Resource Identifier, such as a Web page address or an invoca-
tion of a server CGI script. While Latin alphanumeric characters pass through the encoding
process untouched, you must use the encoding functions to convert some symbols and other
Unicode characters to a form (hexadecimal representations of the character numbers) that
the Internet can pass from place to place. The space character, for example, must be encoded
to its hex version: %20.

Perhaps the biggest difference between the encodeURI() and escape() functions (and their
decodeURI() and unescape() counterparts) is that the more modern versions do not encode
a wide range of symbols that are perfectly acceptable as URI characters according to the syntax
recommended in RFC2396 (http://www.ietf.org/rfc/rfc2396.txt). Thus, the following
characters are not encoded via the encodeURI() function:

; / ? : @ & = + $, - _ . ! ~ * ‘ () #

Use the encodeURI() and decodeURI() functions only on complete URIs. Applicable URIs can
be relative or absolute, but these two functions are wired especially so symbols that are part
of the protocol (://), search string (? and =, for instance), and directory-level delimiters (/)
are not encoded. The decodeURI() function should work with URIs that arrive from servers as
page locations, but be aware that some server CGIs encode spaces into plus symbols (+) that
are not decoded back to spaces by the JavaScript function. If the URIs your script needs to
decode contain plus symbols in place of spaces, you need to run your decoded URI through a
string replacement method to finish the job (regular expressions come in handy here). If you
are decoding URI strings that your scripts encoded, use the decode functions only on URIs
that were encoded via the corresponding encode function. Do not attempt to decode a URI
that was created via the old escape() function because the conversion processes work
according to different rules.

The difference between a URI and a URI component is that a component is a single piece
of a URI, generally not containing delimiter characters. For example, if you use the
encodeURIComponent() function on a complete URI, almost all of the symbols (other
than things such as periods) are encoded into hexadecimal versions — including directory
delimiters. Therefore, you should use the component-level conversion functions only on
quite granular pieces of a URI. For example, if you assemble a search string that has a
name-value pair, you can use the encodeURIComponent() function separately on the name
and on the value. But if you use that function on the pair that is already in the form
name=value, the function encodes the equal symbol to a hexadecimal equivalent.

decodeURI()

1011Chapter 34 ✦ Global Functions and Statements

Example
Use The Evaluator (Chapter 13) to experiment with the differences between encoding a full
URI and a component and encoding and escaping a URI string. For example, compare the
results of the following three statements:

escape(“http://www.giantco.com/index.html?code=42”)
encodeURI(“http://www.giantco.com/index.html?code=42”)
encodeURIComponent(“http://www.giantco.com/index.html?code=42”)

Because the sample URI string is valid as is, the encodeURI() version makes no changes.
Experiment further by making the search string value into a string with a space, and see how
each function treats that character.

escape(“URIString” [,1])
unescape(“escapedURIString”)

Returns: String.
Compatibility: WinIE3+, MacIE3+, NN2+, Moz1+, Safari1+

If you watch the content of the Location field in your browser, you may occasionally see URLs
that include a lot of % symbols plus some numbers. The format you see is URL encoding (more
accurately called URI encoding — Uniform Resource Identifier rather than Uniform Resource
Locator). This format allows even multiple word strings and nonalphanumeric characters to
be sent as one contiguous string of a very low, common denominator character set. This
encoding turns a character, such as a space, into its hexadecimal equivalent value preceded
by a percent symbol. For example, the space character (ASCII value 32) is hexadecimal 20, so
the encoded version of a space is %20.

All characters, including tabs and carriage returns, can be encoded in this way and sent as a
simple string that can be decoded on the receiving end for reconstruction. You can also use
this encoding to preprocess multiple lines of text that must be stored as a character string
in databases. To convert a plain-language string to its encoded version, use the escape()
method. This function returns a string consisting of the encoded version. For example:

var theCode = escape(“Hello there”);
// result: “Hello%20there”

Most, but not all, non-alphanumeric characters are converted to escaped versions with the
escape() function. One exception is the plus sign, which URLs use to separate components of
search strings. If you must encode the plus symbol, too, then add the optional second param-
eter to the function to make the plus symbol convert to its hexadecimal equivalent (2B):

var a = escape(“Adding 2+2”);
// result: “Adding%202+2

var a = escape(“Adding 2+2”,1);
// result: “Adding%202%2B2

To convert an escaped string back into plain language, use the unescape() function. This
function returns a string and converts all URL-encoded strings — including those encoded
with the optional parameter.

The escape() function operates in a way that is approximately midway between the newer
functions encodeURI() and encodeComponentURI(). The escape() function is best used on
portions of URIs, such as the search string. If your scripts bounce back and forth between
escaped and unescaped strings, be sure to balance the functions of the same type; use
unescape() only on URI strings that are encoded via the escape() function.

escape()

1012 Part IV ✦ JavaScript Core Language Reference

Finally, be aware of slightly different behavior with regard to the @ symbol in various
browsers. This character is not encoded in IE, but it is encoded (to %40) in NN.

eval(“string”)
Returns: Object reference.
Compatibility: WinIE3+, MacIE3+, NN2+, Moz1+, Safari1+

Expression evaluation, as you probably are well aware by now, is an important concept to
grasp in scripting with JavaScript (and programming in general). An expression evaluates to
some value. But occasionally you need to force an additional evaluation on an expression to
receive the desired results. The eval() function acts on a string value to force an evaluation
of that string expression. Perhaps the most common application of the eval() function is to
convert a string version of an object reference to a genuine object reference.

Example
The eval() function can evaluate any JavaScript statement or expression stored as a string.
This includes string equivalents of arithmetic expressions, object value assignments, and
object method invocation. I do not recommend that you rely on the eval() function, how-
ever, because this function is inherently inefficient (from the standpoint of performance).
Fortunately, you may not need the eval() function to get from a string version of an object’s
name to a valid object reference. For example, if your script loops through a series of objects
whose names include serial numbers, you can use the object names as array indices rather
than use eval() to assemble the object references. The inefficient way to set the value of a
series of fields named data0, data1, and so on, is as follows:

function fillFields() {
var theObj;
for (var i = 0; i < 10; i++) {

theObj = eval(“document.forms[0].data” + i);
theObj.value = i;

}
}

A more efficient way is to perform the concatenation within the index brackets for the object
reference:

function fillFields() {
for (var i = 0; i < 10; i++) {

document.forms[0].elements[“data” + i].value = i;
}

}

Whenever you are about to use an eval() function, look for ways to use string index val-
ues of arrays of objects instead. The W3C DOM makes it even easier with the help of the
document.getElementById() method, which takes a string as a parameter and returns
a reference to the named object.

isFinite(number)
Returns: Boolean.
Compatibility: WinIE4+, MacIE4+, NN4+, Moz1+, Safari1+

It is unlikely that you will ever need the isFinite() function, but its purpose is to advise
whether a number is beyond the absolute minimum or maximum values that JavaScript can
handle. If a number is outside of that range, the function returns false. The parameter to the
function must be a number data type.

Tip

escape()

1013Chapter 34 ✦ Global Functions and Statements

isNaN(expression)
Returns: Boolean.
Compatibility: WinIE3+, MacIE3+, NN2+, Moz1+, Safari1+

For those instances in which a calculation relies on data coming from a text field or other
string-oriented source, you frequently need to check whether the value is a number. If the
value is not a number, the calculation may result in a script error.

Example
Use the isNaN() function to test whether a value is a number prior to passing the value onto
the operation. The most common use of this function is to test the result of a parseInt() or
parseFloat() function. If the strings submitted for conversion to those functions cannot be
converted to a number, the resulting value is NaN (a special symbol indicating “not a number”).
The isNaN() function returns true if the value is not a number.

A convenient way to use this function is to intercept improper data before it can do damage,
as follows:

function calc(form) {
var inputValue = parseInt(form.entry.value);
if (isNaN(inputValue)) {

alert(“You must enter a number to continue.”);
} else {

statements for calculation
}

}

Probably the biggest mistake scripters make with this function is failing to observe the case
of all the letters in the function name. The trailing uppercase “N” is easy to miss.

Number(“string”)
parseFloat(“string”)
parseInt(“string” [,radix])

Returns: Number.
Compatibility: WinIE3+, MacIE3+, NN2+, Moz1+, Safari1+

All three of these functions convert a string value into a numeric value. The parseInt() and
parseFloat() functions are compatible across all versions of all browsers; the Number()
function was introduced in NN4 and IE4.

Use the Number() function when your script is not concerned with the precision of the value
and prefers to let the source string govern whether the returned value is a floating-point number
or an integer. The function takes a single parameter — a string to convert to a number value.

The parseFloat() function also lets the string source value determine whether the returned
value is a floating-point number or an integer. If the source string includes any non-zero value
to the right of the decimal, the result is a floating-point number. But if the string value were,
say, “3.00”, the returned value would be an integer value.

An extra, optional parameter for parseInt() enables you to define the number base for use in
the conversion. If you don’t specify a radix parameter, JavaScript tries to look out for you; but
in doing so, JavaScript may cause some difficulty for you. The primary problem arises when
the string parameter for parseInt() starts with a zero, which a text box entry or database
field might do. In JavaScript, numbers starting with zero are treated as octal (base-8) numbers.
Therefore, parseInt(“010”) yields the decimal value 8.

parseFloat()

1014 Part IV ✦ JavaScript Core Language Reference

When you apply the parseInt() function, always specify the radix of 10 if you are working in
base-10 numbers. You can, however, specify any radix value from 2 through 36. For example,
to convert a binary number string to its decimal equivalent, assign a radix of 2 as follows:

var n = parseInt(“011”,2);
// result: 3

Similarly, you can convert a hexadecimal string to its decimal equivalent by specifying a
radix of 16:

var n = parseInt(“4F”,16);
// result: 79

Example
Both parseInt() and parseFloat() exhibit a very useful behavior: If the string passed as a
parameter starts with at least one number followed by, say, letters, the functions do their jobs on
the numeric part of the string and ignore the rest. This is why you can use parseFloat() on the
navigator.appVersion string to extract just the reported version number without having to
parse the rest of the string. For example, NN6 for Windows reports a navigator.appVersion
value as

5.0 (Windows; en-US)

But you can get just the numeric part of the string via parseFloat():

var ver = parseFloat(navigator.appVersion);

Because the result is a number, you can perform numeric comparisons to see, for instance,
whether the version is greater than or equal to 4.

toString([radix])
Returns: String.
Compatibility: WinIE4+, MacIE4+, NN4+, Moz1+, Safari1+

Every JavaScript core language object and every DOM document object has a toString()
method associated with it. This method is designed to render the contents of the object in as
meaningful a way as possible. Table 34-1 shows the result of applying the toString()
method on each of the convertible core language object types.

Table 34-1: toString() Method Results for Object Types

Object Type Result

String The same string

Number String equivalent (but numeric literals cannot be converted)

Boolean “true” or “false”
Array Comma-delimited list of array contents (with no spaces after commas)

Function Decompiled string version of the function definition

Many DOM objects can be converted to a string. For example, a location object returns its
URL. But when an object has nothing suitable to return for its content as a string, it usually
returns a string in the following format:

parseFloat()

1015Chapter 34 ✦ Global Functions and Statements

[object objectType]

Example
The toString() method is available on all versions of all browsers. By setting the optional
radix parameter between 2 and 16, you can convert numbers to string equivalents in differ-
ent number bases. Listing 34-1 calculates and draws a conversion table for decimal, hexadeci-
mal, and binary numbers between 0 and 20. In this case, the source of each value is the value
of the index counter variable each time the for loop’s statements execute.

Listing 34-1: Using toString() with Radix Values

<html>
<head>

<title>Number Conversion Table</title>
</head>
<body>

Using toString() to convert to other number bases:
<hr />
<table border=”1”>

<tr>
<th>Decimal</th>
<th>Hexadecimal</th>
<th>Binary</th>
<script type=”text/javascript”>
var content = “”;
for (var i = 0; i <= 20; i++) {

content += “<tr>”;
content += “<td>” + i.toString(10) + “<\/td>”;
content += “<td>” + i.toString(16) + “<\/td>”;
content += “<td>” + i.toString(2) + “<\/td><\/tr>”;

}
document.write(content);
</script>

</tr>
</table>

</body>
</html>

The toString() method of user-defined objects does not convert the object into a meaningful
string, but you can create your own method to do just that. For example, if you want to make
your custom object’s toString() method behave like an array’s method, define the action of
the method and assign that function to a property of the object (as shown in Listing 34-2).

Listing 34-2: Creating a Custom toString() Method

<html>
<head>

<title>Custom toString()</title>
<script type=”text/javascript”>
function customToString() {

var dataArray = new Array();

Continued

toString()

1016 Part IV ✦ JavaScript Core Language Reference

Listing 34-2 (continued)

var count = 0;
for (var i in this) {

dataArray[count++] = this[i];
if (count > 2) {

break;
}

}
return dataArray.join(“,”);

}
var book = {title:”The Aeneid”, author:”Virgil”, pageCount:543};
book.toString = customToString;
</script>

</head>
<body>

A user-defined toString() result:
<hr />
<script type=”text/javascript”>
document.write(book.toString());
</script>

</body>
</html>

When you run Listing 34-2, you can see how the custom object’s toString() handler extracts
the values of all elements of the object. You can customize how the data should be labeled
and/or formatted.

unwatch(property)
watch(property, handler)

Returns: Nothing.
Compatibility: WinIE-, MacIE-, NN4+, Moz-, Safari-

To supply the right kind of information to external debuggers, JavaScript in NN4+ implements
two global functions that belong to every object — including user-defined objects. The watch()
function keeps an eye on a desired object and property. If that property is set by assignment,
the function invokes another user-defined function that receives information about the prop-
erty name, its old value, and its new value. The unwatch() function turns off the watch func-
tionality for a particular property.

Statements
//
/*...*/

Compatibility: WinIE3+, MacIE3+, NN2+, Moz1+, Safari1+

Comments are statements that the JavaScript interpreter (or server-side compiler) ignores.
However, these statements enable authors to leave notes about how things work in their
scripts. While lavish comments are useful to authors during a script’s creation and mainte-
nance, the full content of a client-side comment is downloaded with the document. Every

toString()

1017Chapter 34 ✦ Global Functions and Statements

byte of non-operational content of the page takes a bit more time to download. Still, I recom-
mend lots of comments — particularly as you create a script.

JavaScript offers two styles of comments. One style consists of two forward slashes (no spaces
between them). JavaScript ignores any characters to the right of those slashes on the same line,
even if they appear in the middle of a line. You can stack as many lines of these single-line com-
ments as is necessary to convey your thoughts. I typically place a space between the second
slash and the beginning of my comment. The following are examples of valid, one-line comment
formats:

// this is a comment line usually about what’s to come
var a = “Fred”; // a comment about this line
// You may want to capitalize the first word of a comment
// sentence if it runs across multiple lines.
//
// And you can leave a completely blank line, like the one above.

For longer comments, it is usually more convenient to enclose the section in the other style of
comment. The following comment opens with a forward slash and asterisk (/*) and ends with
an asterisk and forward slash (*/). JavaScript ignores all statements in between — including
multiple lines. If you want to comment out briefly a large segment of your script for debugging
purposes, it is easiest to bracket the segment with these comment symbols. To make these
comment blocks easier to find, I generally place these symbols on their own lines as follows:

/*
some
commented-out
statements

*/

If you are developing rather complex documents, you might find using comments a conve-
nient way to help you organize segments of your scripts and make each segment easier to
find. For example, you can define a comment block above each function and describe what
the function is about, as in the following example.

/*---
calculate()
Performs a mortgage calculation based on
parameters blah, blah, blah. Called by blah
blah blah.

---*/
function calculate(form) {

statements
}

const
Compatibility: WinIE-, MacIE-, NN6+, Moz1+, Safari-

The const keyword initializes a constant. Unlike a variable, whose data is subject to change
while a page loads, a constant’s value cannot be modified once it is assigned. It is common
practice in many programming languages to define constant identifiers with all uppercase
letters, usually with underscore characters to delimit multiple words. This style makes it
easier to see a constant’s application later in the program.

Example
Listing 34-3 shows how you can use a constant in NN6+/Moz1+. The page conveys tempera-
ture data for several cities. (Presumably, this data is updated on the server and fashioned

const

1018 Part IV ✦ JavaScript Core Language Reference

into an array of data when the user requests the page.) For temperatures below freezing, the
temperature is shown in a distinctive text style. Because the freezing temperature is a con-
stant reference point, it is assigned as a constant.

Listing 34-3: Using the const Keyword

<html>
<head>

<title>const(ant)</title>
<style type=”text/css”>
.cold {font-weight:bold; color:blue}
td {text-align:center}
</style>
<script type=”text/javascript”>
const FREEZING_F = 32;
var cities = [“London”, “Moscow”, “New York”, “Tokyo”, “Sydney”];
var tempsF = [33, 12, 20, 40, 75];
function showData() {

var tableData = “”;
for (var i = 0; i < cities.length; i++) {

tableData += “<tr><td>” + cities[i] + “<\/td><td “;
tableData += (tempsF[i] < FREEZING_F) ? “class=’cold’” : “”;
tableData += “>” + tempsF[i] + “<\/td><\/tr>”;

}
document.getElementById(“display”).innerHTML = tableData;

}
</script>

</head>
<body onload=”showData()”>

<h1>The const keyword</h1>
<hr />
<table id=”temps”>

<tr>
<th>City</th>
<th>Temperature</th>

</tr>
<tbody id=”display”></tbody>

</table>
</body>

</html>

The const keyword likely will be adopted in the next version of the ECMA-262 standard and
will become part of the JavaScript vernacular in future browsers.

var
Compatibility: WinIE3+, MacIE3+, NN2+, Moz1+, Safari1+

Before using any variable, you should declare it (and optionally initialize it with a value) via
the var statement. If you omit the var keyword, the variable is automatically assigned as a
global variable within the current document. To keep a variable local to a function, you must
declare or initialize the variable with the var keyword inside the function’s braces.

If you assign no value to a variable, it evaluates to null. Because a JavaScript variable is not
limited to one variable type during its lifetime, you don’t need to initialize a variable to an

const

1019Chapter 34 ✦ Global Functions and Statements

empty string or zero unless that initial value helps your scripting. For example, if you initial-
ize a variable as an empty string, you can then use the add-by-value operator (+=) to append
string values to that variable in a future statement in the document.

To save statement lines, you can declare and/or initialize multiple variables with a single var
statement. Separate each varName=value pair with a comma, as in

var name, age, height; // declare as null
var color = “green”, temperature = 85.6; // initialize

Variable names (also known as identifiers) must be one contiguous string of characters, and the
first character must be a letter. Many punctuation symbols are also banned, but the underscore
character is valid and often is used to separate multiple words in a long variable name. All vari-
able names (like most identifiers in JavaScript) are case-sensitive, so you must name a particu-
lar variable identically throughout the variable’s scope.

WinIE Objects
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-

Microsoft prides itself on the integration between Web browser functionality and the
Windows operating system. The linkage between browser and OS is most apparent in IE’s
facilities for accessing ActiveX objects. Microsoft has fashioned several such objects for
access to scripters — again, provided the deployment is intended only for Windows versions
of Internet Explorer. Some objects also exist as a way to expose some Visual Basic Script
(VBScript) functionality to JavaScript. Because these objects are more within the realm of
Windows and ActiveX programming, the details and quirks of working with them from WinIE
is best left to other venues. But in case you are not familiar with these facilities, the following
discussions introduce the basic set of WinIE objects. You can find more details at the
Microsoft Developer Network (MSDN) Web site at http:// msdn.microsoft.com/.

The objects mentioned here are the ActiveXObject, Dictionary, Enumerator, and VBArray
objects. Microsoft documents these objects as if they are part of the native JScript language.
However, you can be sure that they will remain proprietary certainly to Internet Explorer, if
not exclusively for Windows-only versions.

ActiveXObject
ActiveXObject is a generic object that allows your script to open and access what Microsoft
sometimes calls automation objects. An automation object is an executable program that might
run on the client or be served from a server. This can include local applications, such as applica-
tions from the Microsoft Office suite, executable DLLs (dynamic-link libraries), and so on.

Use the constructor for the ActiveXObject to obtain a reference to the object according to
the following syntax:

var objRef = new ActiveXObject(appName.className[, remoteServerName]);

This JScript syntax is the equivalent of the VBScript CreateObject() method. You need to
know a bit about Windows programming to determine the application name and the classes
or types available for that application. For example, to obtain a reference to an Excel work-
sheet, use this constructor:

var mySheet = new ActiveXObject(“Excel.Sheet”);

Once you have a reference to the desired object, you must also know the names of the proper-
ties and methods of the object you’ll be addressing. You can access much of this information
via Microsoft’s developer tools, such as Visual Studio .NET or the tools that come with Visual

ActiveXObject

1020 Part IV ✦ JavaScript Core Language Reference

Basic .NET. These tools enable you to query an object to discover its properties and methods.
Unfortunately, an ActiveXObject’s properties are not enumerable through a typical JavaScript
for-in property inspector.

Accessing an ActiveXObject, especially one on the client, involves some serious security
considerations. The typical security setup for an IE client prevents scripts from accessing
client applications, at least not without asking the user if it’s okay to do so. While it’s foolhardy
to state categorically that you cannot perform surreptitious inspection or damage to a client
without the user’s knowledge (hackers find holes from time to time), it is highly unlikely. In a
corporate environment, where some level of access to all clients is desirable, the client may be
set up to accept instructions to work with ActiveX objects when they come from trusted
sources. The bottom line is that unless you are well versed in Windows programming, don’t
expect the ActiveXObject to become some kind of magic portal that enables you to invade
the privacy or security of unsuspecting users.

Dictionary
While the Dictionary object is very helpful to VBScript authors, JavaScript already provides
the equivalent functionality natively. A Dictionary object behaves very much like a JavaScript
array that has string index values (similar to a Java hash table), although numeric index values
are also acceptable in the Dictionary. Indexes are called keys in this environment. VBScript
arrays do not have this facility natively, so the Dictionary object supplements the language
for the sake of convenience. Unlike a JavaScript array, however, you must use the various prop-
erties and methods of the Dictionary object to add, access, or remove items from it.

You create a Dictionary object via ActiveXObject as follows:

var dict = new ActiveXObject(“Scripting.Dictionary”);

You must create a separate Dictionary object for each array. Table 34-2 lists the properties
and methods of the Dictionary object. After you create a blank Dictionary object, popu-
late it via the Add() method for each entry. For example, the following statements create a
Dictionary object to store U.S. state capitals:

var stateCaps = new ActiveXObject(“Scripting.Dictionary”);
stateCaps.Add(“Illinois”, “Springfield”);

You can then access an individual item via the Key property (which, thanks to its VBScript
heritage, looks more like a JavaScript method). One convenience of the Dictionary object is
the Keys() method, which returns an array of all the keys in the dictionary — something that
a string-indexed JavaScript array could use.

Table 34-2: Dictionary Object Properties and Methods

Property Description

Count Integer number of entries in the dictionary (read-only)

Item(“key”) Reads or writes a value for an entry whose name is key
Key(“key”) Assigns a new key name to an entry

Method Description

Add(“key”, value) Adds a value associated with a unique key name

Exists(“key”) Returns Boolean true if key exists in dictionary

ActiveXObject

1021Chapter 34 ✦ Global Functions and Statements

Method Description

Items() Returns VBArray of values in dictionary

Keys() Returns VBArray of keys in dictionary

Remove(“key”) Removes key and its value

RemoveAll() Removes all entries

Enumerator
An Enumerator object provides JavaScript with access to collections that otherwise do not
allow direct access to their items via index number or name. This object isn’t necessary
when working with DOM collections, such as document.all, because you can use the
item() method to obtain a reference to any member of the collection. But if you are script-
ing ActiveX objects, some of these objects’ methods or properties may return collections
that cannot be accessed through this mechanism or the JavaScript for-in property inspec-
tion technique. Instead, you must wrap the collection inside an Enumerator object.

To wrap a collection in an Enumerator, invoke the constructor for the object, passing the col-
lection as the parameter:

var myEnum = new Enumerator(someCollection);

This enumerator instance must be accessed via one of its four methods to position a “pointer”
to a particular item and then extract a copy of that item. In other words, you don’t access a
member directly (that is, by diving into the collection with an item number to retrieve). Instead,
you move the pointer to the desired position and then read the item value. As you can see from
the list of methods in Table 34-3, this object is truly intended for looping through the collection.
Pointer control is limited to positioning it at the start of the collection and incrementing its
position along the collection by one:

myEnum.moveFirst();
for (; !myEnum.atEnd(); myEnum.moveNext()) {

val = myEnum.item();
// more statements that work on value

}

Table 34-3: Enumerator Object Methods

Method Description

atEnd() Returns true if pointer is at end of collection

item() Returns value at current pointer position

moveFirst() Moves pointer to first position in collection

moveNext() Moves pointer to next position in collection

VBArray
The VBArray object provides JavaScript access to Visual Basic safe arrays. Such an array is
read-only and is commonly returned by ActiveX objects. Such arrays can be composed in

VBArray

1022 Part IV ✦ JavaScript Core Language Reference

VBScript sections of client-side scripts. Visual Basic arrays by their very nature can have mul-
tiple dimensions. For example, the following code creates a three-by-two VB array:

<script type=”text/vbscript”>
Dim myArray(2, 1)
myArray(0, 0) = “A”
myArray(0, 1) = “a”
myArray(1, 0) = “B”
myArray(1, 1) = “b”
myArray(2, 1) = “C”
myArray(2, 2) = “c”
</script>

Once you have a valid VB array, you can convert it to an object that the JScript interpreter
can’t choke on:

<script type=”text/javascript”>
var theVBArray = new VBArray(myArray);
</script>

Global variables from one script language block can be accessed by another block, even in a
different language. But at this point, the array is not in the form of a JavaScript array yet. You
can either convert it to such via the VBArray.toArray() method or access information
about the VBArray object through its other methods (described briefly in Table 34-4). Once
you convert a VBArray to a JavaScript array, you can then iterate through the values just like
any JavaScript array.

Table 34-4: VBArray Object Methods

Method Description

dimensions() Returns number of dimensions of the original array

getItem(dim1[, dim2[,...dimN]]) Returns value at array location defined by dimension
addresses

ibound(dim) Returns lowest index value for a given dimension

toArray() Returns JavaScript array version of VBArray
ubound(dim) Returns highest index value for a given dimension

When you use the toArray() method and the source array has multiple dimensions, values
from dimensions after the first “row” are simply appended to the JavaScript array with no
nesting structure.

✦ ✦ ✦

VBArray

Body Text Objects

Alarge number of HTML elements fall into a catchall category of
elements whose purposes are slightly more targeted than contex-

tual elements covered in Chapter 15. In this group are some very
widely used elements, such as the h1 through h6 header elements, plus
several elements that are not yet widely used because their full sup-
port may be lacking in even some of the most modern browsers. In this
chapter, you find all sorts of text-related objects, excluding those
objects that act as form controls (text boxes and such, which are cov-
ered in Chapter 23). For the most part, properties, methods, and event
handlers of this chapter’s objects are the generic ones covered in
Chapter 15. Only those items that are unique to each object are cov-
ered in this chapter (as will be the case in all succeeding chapters).

Beyond the HTML element objects covered in this chapter, you also
meet the TextRange object, first introduced in IE4, and the corre-
sponding Range object from the W3C DOM. This object is a very pow-
erful one for scripters because it allows scripts to work very closely
with body content — not in terms of, for example, the innerText or
nodeValue properties of elements, but rather in terms of the text as it
appears on the page in what users see as paragraphs, lists, and the
like. The TextRange and Range objects essentially give your scripts
cursor control over running body text for functions, such as cutting,
copying, pasting, and applications that extend from those basic opera-
tions — search and replace, for instance. Bear in mind that everything
you read in this chapter requires at minimum the dynamic object mod-
els of IE4+ and NN6+/W3C; some items require IE5+. Unfortunately, the
IE TextRange object is not implemented in MacIE5.

blockquote and q Element Objects
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

For HTML element properties, methods, and event handlers, see
Chapter 15.

Properties Methods Event Handlers

cite

3535C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Objects that display
running body text in
documents

Using the NN/Mozilla
Range and IE
TextRange objects

Scripting search-and-
replace actions

✦ ✦ ✦ ✦

1024 Part IV ✦ JavaScript Core Language Reference

Syntax
Accessing blockquote or q element object properties or methods:

(IE4+) [window.]document.all.elemID.property | method([parameters])
(IE5+/W3C) [window.]document.getElementById(“elemID”).property |
method([parameters])

About these objects
The blockquote element is a special-purpose text container. Browsers typically start the con-
tent on its own line in the body and indent on both the left and right margins approximately 40
pixels. An inline quotation can be encased inside a q element, which does not force the quoted
material to start on the next line.

From an object point of view, the only property that distinguishes these two objects from any
other kind of contextual container is the cite property, which comes from the HTML 4.0
cite attribute. This attribute simply provides a URL reference for the citation and does not
act as an src or href attribute to load an external document.

Property
cite

Value: String. Read/Write
Compatibility: WinIE6, MacIE5+, NN6+, Moz1+, Safari1+

The cite property can contain a URL (as a string) that points to the source of the quotation
in the blockquote or q element. Future browsers may provide some automatic user interface
link to the source document, but none of the browsers that support the cite property do
anything special with this information.

br Element Object
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

For HTML element properties, methods, and event handlers, see Chapter 15.

Properties Methods Event Handlers

clear

Syntax
Accessing br element object properties or methods:

(IE4+) [window.]document.all.elemID.property | method([parameters])
(IE5+/W3C) [window.]document.getElementById(“elemID”).property |
method([parameters])

blockquote

1025Chapter 35 ✦ Body Text Objects

About this object
The br element forces a carriage return and line feed for rendered content on the page. This
element does not provide the same kind of vertical spacing that goes between paragraphs in
a series of p elements. Only one attribute (clear) distinguishes this element from generic
HTML elements and objects.

Property
clear

Value: String. Read/Write
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

The clear property defines how any text in an element following the br element wraps
around a floating element (for example, an image set to float along the right margin). While
recent browsers expose this property, the attribute on which it is based is deprecated in the
HTML 4.0 specification in an effort to encourage the use of the clear stylesheet attribute for
a br element.

Values for the clear property can be one of the following strings: all, left, or right.

Related Items: clear stylesheet property.

font Element Object
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

For HTML element properties, methods, and event handlers, see Chapter 15.

Properties Methods Event Handlers

color
face
size

Syntax
Accessing font element object properties or methods:

(IE4+) [window.]document.all.elemID.property | method([parameters])
(IE5+/W3C) [window.]document.getElementById(“elemID”).property |
method([parameters])

About this object
In a juxtaposition of standards implementations, the font element is exposed as an object
only in browsers that also support Cascading Style Sheets as the preferred way to control
font faces, colors, and sizes. This doesn’t mean that you shouldn’t use font elements in your
page with modern browsers — using this element may be necessary for a single page that

font

1026 Part IV ✦ JavaScript Core Language Reference

needs to be backward compatible with older browsers. But it does present a quandary for
scripters who want to use scripts to modify font characteristics of body text after the page
has loaded. A good rule of thumb to follow is to use the font element (and script the font-
HTML element object’s properties) when the page must work in all browsers; use stylesheets
(and their scriptable properties) on pages that will be running exclusively in IE4+ and
NN6+/W3C.

Properties
color

Value: String. Read/Write
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

A font object’s text color can be controlled via the color property. Values can be either hex-
adecimal triplets (for example, #FFCCFF) or the plain-language color names recognized by
most browsers. In either case, the values are case-insensitive strings.

Example
Listing 35-1 contains a page that demonstrates changes to the three font element object
properties: color, face, and size. Along the way, you can see an economical use of the
setAttribute() method to do the work for all of the property changes. This page loads suc-
cessfully in all browsers, but the select lists make changes to the text only in IE4+ and
NN6+/W3C.

A p element contains a nested font element that encompasses three words whose appear-
ance is controlled by three select lists. Each list controls one of the three font object prop-
erties, and their name attributes are strategically assigned the names of the properties (as
you see in a moment). value attributes for option elements contain strings that are to be
assigned to the various properties. Each select element invokes the same setFontAttr()
function, passing a reference to itself so that the function can inspect details of the element.

The first task of the setFontAttr() function is to make sure that only browsers capable of
treating the font element as an object get to the meat of the function. The test for the exis-
tence of document.all and the myFONT element blocks all older browsers from changing the
font characteristics.

For suitably equipped browsers, the function next extracts the string from the value property
of the select object that was passed to the function. If a selection is made (meaning other than
the first, empty one), the single nested statement uses the setAttribute() method to assign
the value to the attribute whose name matches the name of the select element.

An odd bug in MacIE5 doesn’t let the rendered color change when changing the color
property. But the setting is valid, as proven by selecting any of the other two property
choices.

Listing 35-1: Dynamically Changing Font Properties

<html>
<head>

<title>Font Object Properties</title>
<script type=”text/javascript”>
// one function does all!

Note

font

1027Chapter 35 ✦ Body Text Objects

function setFontAttr(select) {
var choice = select.options[select.selectedIndex].value;
if (choice) {

document.getElementById(“myFONT”).setAttribute(select.name,
choice);

}
}
</script>

</head>
<body>

<h1>Font Object Properties</h1>

<p>This may look like a simple sentence, but THESE

THREE WORDS are contained by a FONT element.</p>
<form>

Select a text color: <select name=”color”
onchange=”setFontAttr(this)”>

<option></option>
<option value=”red”>Red</option>
<option value=”green”>Green</option>
<option value=”blue”>Blue</option>
<option value=”#FA8072”>Some Hex Triplet Value</option>

</select>

Select a font face: <select name=”face” onchange=”setFontAttr(this)”>

<option></option>
<option value=”Helvetica”>Helvetica</option>
<option value=”Times”>Times</option>
<option value=”Comic Sans MS, sans-serif”>Comic Sans MS,
sans-serif</option>
<option value=”Courier, monospace”>Courier, monospace</option>
<option value=”Zapf Dingbats, serif”>Zapf Dingbats, serif</option>

</select>

Select a font size: <select name=”size” onchange=”setFontAttr(this)”>

<option></option>
<option value=”3”>3 (Default)</option>
<option value=”+1”>Increase Default by 1</option>
<option value=”-1”>Decrease Default by 1</option>
<option value=”1”>Smallest</option>
<option value=”7”>Biggest</option>

</select>
</form>

</body>
</html>

Related Items: color stylesheet attribute.

face
Value: String. Read/Write
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

A font object’s font face is controllable via the face property. Just as the face attribute (and
the corresponding font-family stylesheet attribute), you can specify one or more font names
in a comma-delimited string. Browsers start with the leftmost font face and look for a match in
the client computer’s system. The first matching font face that is found in the client system is
applied to the text surrounded by the font element. You should list the most specific fonts first,

font.face

1028 Part IV ✦ JavaScript Core Language Reference

and generally allow the generic font faces (sans-serif, serif, and monospace) to come last;
that way you exert at least some control over the look of the font on systems that don’t have
your pretty fonts. If you know that Windows displays a certain font you like and the Macintosh
has something that corresponds to that font but with a different name, you can specify both
names in the same property value. The browser skips over font face names not currently
installed on the client.

Example
See Listing 35-1 for an example of values that can be used to set the face property of a font
element object. While you will notice visible changes to most choices on the page, the font
face selections may not change from one choice to another, since that all depends on the
fonts that are installed on your PC.

Related Items: font-family style sheet attribute.

size
Value: String. Read/Write
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

The size of text contained by a font element can be controlled via the size property. Unlike
the more highly recommended font-size stylesheet attribute, the size property of the
font element object (and its corresponding SIZE attribute) are restricted to the relative font
size scale imposed by early HTML implementations: a numbering scale from 1 to 7.

Values for the size property are strings, even though most of the time they are single
numeral values. You can also specify a size relative to the default value by including a plus or
minus sign before the number. For example, if the default font size (as set by the browser’s
user preferences) is 3, you can bump up the size of a text segment by encasing it inside a
font element and then setting its size property to “+2”.

For more accurate font sizing using units, such as pixels or points, use the font-size
stylesheet attribute.

Example
See Listing 35-1 for an example of values that can be used to set the size property of a font
element object. Notice that incrementing or decrementing the size property is applied only
to the size assigned to the size attribute of the element (or the default, if none is specified)
and not the current setting adjusted by script.

Related Items: font-size style sheet attribute.

h1...h6 Element Objects
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

For HTML element properties, methods, and event handlers, see Chapter 15.

Properties Methods Event Handlers

align

font.face

1029Chapter 35 ✦ Body Text Objects

Syntax
Accessing h1 through h6 element object properties or methods:

(IE4+) [window.]document.all.elemID.property | method([parameters])
(IE5+/W3C) [window.]document.getElementById(“elemID”).property |
method([parameters])

About these objects
The so-called “heading” elements (denoted by h1, h2, h3, h4, h5, and h6) provide shortcuts
for formatting up to six different levels of headings and subheadings. While you can simulate
the appearance of these headings with p elements and stylesheets, the heading elements very
often contain important contextual information about the structure of the document. With
the IE5+ and NN6+/W3C powers of inspecting the node hierarchy of a document, a script can
generate its own table of contents or outline of a very long document by looking for elements
whose nodeName properties are in the hn family. Therefore, it is a good idea to continue using
these elements for contextual purposes, even if you intend to override the default appear-
ance by way of stylesheet templates.

As for the scriptable aspects of these six objects, they are essentially the same as the generic
contextual objects with the addition of the align property. Because each hn element is a
block-level element, you can use stylesheets to set their alignment rather than the corre-
sponding attribute or property. The choice is up to you.

Property
align

Value: String. Read/Write
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

String values of the align property control whether the heading element is aligned with the
left margin (left), center of the page (center), or right margin (right). The corresponding
align attribute is deprecated in HTML 4.0 in favor of the text-align stylesheet attribute.

Related Items: text-align stylesheet attribute.

hr Element Object
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

For HTML element properties, methods, and event handlers, see Chapter 15.

Properties Methods Event Handlers

align
color
noShade
width

hr

1030 Part IV ✦ JavaScript Core Language Reference

Syntax
Accessing hr element object properties or methods:

(IE4+) [window.]document.all.elemID.property | method([parameters])
(IE5+/W3C) [window.]document.getElementById(“elemID”).property |
method([parameters])

About this object
The hr element draws a horizontal rule according to size, dimension, and alignment charac-
teristics normally set by the attributes of this element. Stylesheets can also specify many of
those settings, the latter route being recommended for pages that will be loaded exclusively
in pages that support CSS. In IE4+ and NN6+/W3C DOM browsers, your scripts can modify the
appearance of an hr element either directly through element object properties or through
stylesheet properties. To reference a specific hr element by script, you must assign an id
attribute to the element — a practice that you are probably not accustomed to observing.

Properties

align
Value: String. Read/Write
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

An hr object’s horizontal alignment can be controlled via the align property. String values
enable you to set it to align with the left margin (left), the center of the page (center), or
right margin (right). By default, the element is centered.

Example
Listing 35-2 contains a page that demonstrates the changes to the five hr element object prop-
erties: align, color, noShade, size, and width. Along the way, you can see an economical use
of the setAttribute() method to do the work for all of the property changes. This page loads
successfully in all browsers, but the select lists make changes to the text only in IE4+ and
NN6+/W3C DOM browsers (because they treat the element as an object).

An hr element (whose id is myHR) is displayed with the browser default settings (100% width,
centered, and its “magic” color). Each list controls one of the five hr object properties, and
their name attributes are strategically assigned the names of the properties (as you see in a
moment). value attributes for option elements contain strings that are to be assigned to the
various properties. Each select element invokes the same setHRAttr() function, passing a
reference to itself so that the function can inspect details of the element.

The first task of the setHRAttr() function is to make sure that only browsers capable of
treating the hr element as an object get to the meat of the function. As the page loads, the
document.all property is set for NN6+/W3C using a normalization technique described in
Chapter 14.

For suitably equipped browsers, the function next reads the string from the value property
of the select object that is passed to the function. If a selection is made (that is, other than
the first, empty one), the single, nested statement uses the setAttribute() method to
assign the value to the attribute whose name matches the name of the select element.

hr

1031Chapter 35 ✦ Body Text Objects

Listing 35-2: Controlling hr Object Properties

<html>
<head>

<title>hr Object Properties</title>
<script type=”text/javascript”>
// one function does all!
function setHRAttr(select) {

var choice = select.options[select.selectedIndex].value;
if (choice) {

document.getElementById(“myHR”).setAttribute(select.name, choice);
}

}
</script>

</head>
<body>

<h1>hr Object Properties</h1>

<p>Here is the hr element you will be controlling:</p>
<hr id=”myHR” />
<form>

Select an alignment: <select name=”align” onchange=”setHRAttr(this)”>
<option></option>
<option value=”left”>Left</option>
<option value=”center”>Center</option>
<option value=”right”>Right</option>

</select>

Select a rule color (IE only): <select name=”color”
onchange=”setHRAttr(this)”>

<option></option>
<option value=”red”>Red</option>
<option value=”green”>Green</option>
<option value=”blue”>Blue</option>
<option value=”#FA8072”>Some Hex Triplet Value</option>

</select>

Select a rule shading: <select name=”noShade”
onchange=”setHRAttr(this)”>

<option></option>
<option value=”true”>No Shading</option>
<option value=”false”>Shading</option>

</select>

Select a rule height: <select name=”size” onchange=”setHRAttr(this)”>

<option></option>
<option value=”2”>2 (Default)</option>
<option value=”4”>4 Pixels</option>
<option value=”10”>10 Pixels</option>

</select>

Select a rule width: <select name=”width” onchange=”setHRAttr(this)”>

<option></option>
<option value=”100%”>100% (Default)</option>
<option value=”80%”>80%</option>
<option value=”300”>300 Pixels</option>

</select>
</form>

</body>
</html>

hr.align

1032 Part IV ✦ JavaScript Core Language Reference

Related Items: text-align stylesheet attribute.

color
Value: String. Read/Write
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-

An hr object’s color can be controlled via the color property. Values can be either hexa-
decimal triplets (for example, #FFCCFF) or the plain-language color names recognized by
most browsers. In either case, the values are case-insensitive strings. If you change the
color from the default, the default shading (3-D effect) of the rule disappears. I have yet to
find the magic value that lets you return the color to the browser default after it has been
set to another color.

Example
See Listing 35-2 earlier in this chapter for an example of values that can be used to set the
color property of an hr element object.

Related Items: color stylesheet attribute.

noShade
Value: Boolean. Read/Write
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

A default hr element is displayed with a kind of three-dimensional effect, called shading. You
can turn shading off under script control by setting the noShade property to true. But be
aware that in IE4+, the noShade property is a one-way journey: You cannot restore shading
after it is removed. Moreover, default shading is lost if you assign a different color to the rule.

Example
See Listing 35-2 earlier in this chapter for an example of values that can be used to set the
noShade property of an hr element object. Because of the buggy behavior associated with
setting this property, adjusting the property in the example has unexpected (and usually
undesirable) consequences.

Related Items: color stylesheet attribute.

size
Value: Integer. Read/Write
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

The size of an hr element is its vertical thickness, as controlled via the size property. Values
are integers, representing the number of pixels occupied by the rule. Safari 1.0 does not
change the element’s rendered size via this property.

Example
See Listing 35-2 earlier in this chapter for an example of values that can be used to set the
size property of an hr element object.

width
Value: Integer or string. Read/Write
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

hr.align

1033Chapter 35 ✦ Body Text Objects

The width of an hr element is controlled via the width property. By default, the element
occupies the entire width of its parent container (usually the Body).

You can specify width as either an absolute number of pixels (as an integer) or as a percent-
age of the width of the parent container. Percentage values are strings that include a trailing
percent character (%).

Example
See Listing 35-2 earlier in this chapter for an example of values that can be used to set the
width property of an hr element object.

Related Items: width stylesheet attribute.

label Element Object
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

For HTML element properties, methods, and event handlers, see Chapter 15.

Properties Methods Event Handlers

accessKey
form
htmlFor

Syntax
Accessing label element object properties or methods:

(IE4+) [window.]document.all.elemID.property | method([parameters])
(IE5+/W3C) [window.]document.getElementById(“elemID”).property |
method([parameters])

About this object
The label element lets you assign a contextual relationship between a form control (text
field, radio button, select list, and so on) and the otherwise freestanding text that is used to
label the control on the page. This element does not control the rendering or physical rela-
tionship between the control and the label — the HTML source code order does that.
Wrapping a form control label inside a label element is important if scripts will be navigating
the element hierarchy of a page’s content and the relationship between a form control and its
label is important to the results of the document parsing.

Properties
accessKey

Value: String. Read/Write
Compatibility: WinIE4+, MacIE5+, NN6+, Moz1+, Safari1+

For most other HTML element objects, the accessKey property description is covered in the
generic element property descriptions of Chapter 15. The function of the property for the

label.accessKey

1034 Part IV ✦ JavaScript Core Language Reference

label object is the same as the IE implementation for all other elements. The single-
character string value is the character key to be used in concert with the OS- and browser-
specific modifier key (for example, Ctrl in IE for Windows) to bring focus to the form control
associated with the label. This value is best set initially via the accesskey attribute for the
label element.

Related Items: accessKey property of generic elements.

form
Value: Form object reference. Read-Only
Compatibility: WinIE6+, MacIE5+, NN6+, Moz1+, Safari1+

The form property of a label element object returns a reference to the form object that con-
tains the form control with which the label is associated. This property can be useful in a
node parsing script that wants to retrieve the form container from the perspective of the
label rather than from the form control. The form object reference returned from the label
element object is the same form object reference returned by the form property of any form
control object.

Related Items: form property of input element objects.

htmlFor
Value: String. Read/Write
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

The htmlFor property is a string that contains the id of the form control element with which
the label is associated. This value is normally set via the htmlfor attribute in the label ele-
ment’s tag. Modifying this property does not alter the position or rendering of the label, but it
does change the relationships between label and control.

marquee Element Object
Compatibility: WinIE4+, MacIE4+, NN7+, Moz1+, Safari-

For HTML element properties, methods, and event handlers, see Chapter 15.

Properties Methods Event Handlers

behavior start() onbounce
bgColor stop() onfinish
direction onstart
height
hspace
loop
scrollAmount
scrollDelay
trueSpeed
vspace
width

label.accessKey

1035Chapter 35 ✦ Body Text Objects

Syntax
Accessing marquee element object properties or methods:

(IE4+) [window.]document.all.elemID.property | method([parameters])
(IE5+) [window.]document.getElementById(“elemID”).property |
method([parameters])

About this object
The marquee element is a Microsoft proprietary element that displays scrolling text within a
rectangle specified by the width and height attributes of the element. Text that scrolls in the
element goes between the element’s start and end tags. The IE4+ object model exposes the
element and many properties to the object model for control by script. The element and
some of its scriptability is implemented in NN7+/Moz1+.

Properties
behavior

Value: String. Read/Write
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-

The behavior property controls details in the way scrolled text moves within the scrolling
space. Values for this property are one of the following three strings: alternate, scroll, and
slide. NN7/Moz allows only alternate. When set to alternate, scrolling alternates
between left and right (or up and down, depending on the direction property setting). A
value of scroll means that the text marches completely to and through the space before
appearing again. And a value of slide causes the text to march into view until the last char-
acter is visible. When the slide value is applied as a property (instead of as an attribute
value in the tag), the scrolling stops when the text reaches an edge of the rectangle. Default
behavior for the marquee element is the equivalent of scroll.

Example
Listing 35-3 contains a page that demonstrates the changes to several marquee element
object properties: behavior, bgColor, direction, scrollAmount, and scrollDelay.
NN7+/Moz do not react to all property settings. See the description of Listing 35-1 for details
on the attribute setting script.

Listing 35-3: Controlling marquee Object Properties

<html>
<head>

<title>marquee Object Properties</title>
<script type=”text/javascript”>
// one function does all!
function setMARQUEEAttr(select) {

var choice = select.options[select.selectedIndex].value;
if (choice) {

document.getElementById(“myMARQUEE”).setAttribute(select.name,
choice);

}
}

Continued

marquee.behavior

1036 Part IV ✦ JavaScript Core Language Reference

Listing 35-3 (continued)

</script>
</head>
<body>

<h1>marquee Object Properties</h1>

<hr />
<marquee id=”myMARQUEE” width=”400” height=”24”>This is the marquee
element object you will be controlling.</marquee>
<form>

<input type=”button” value=”Start Marquee”
onclick=”document.getElementById(‘myMARQUEE’).start()” /> <input
type=”button” value=”Stop Marquee”
onclick=”document.getElementById(‘myMARQUEE’).stop()” />

Select a behavior: <select name=”behavior”
onchange=”setMARQUEEAttr(this)”>

<option></option>
<option value=”alternate”>Alternate</option>
<option value=”scroll”>Scroll</option>
<option value=”slide”>Slide</option>

</select>

Select a background color: <select name=”bgColor”
onchange=”setMARQUEEAttr(this)”>

<option></option>
<option value=”red”>Red</option>
<option value=”green”>Green</option>
<option value=”blue”>Blue</option>
<option value=”#FA8072”>Some Hex Triplet Value</option>

</select>

Select a scrolling direction: <select name=”direction”
onchange=”setMARQUEEAttr(this)”>

<option></option>
<option value=”left”>Left</option>
<option value=”right”>Right</option>
<option value=”up”>Up</option>
<option value=”down”>Down</option>

</select>

Select a scroll amount: <select name=”scrollAmount”
onchange=”setMARQUEEAttr(this)”>

<option></option>
<option value=”4”>4</option>
<option value=”6”>6 (Default)</option>
<option value=”10”>10</option>

</select>

Select a scroll delay: <select name=”scrollDelay”
onchange=”setMARQUEEAttr(this)”>

<option></option>
<option value=”50”>Short</option>
<option value=”85”>Normal</option>
<option value=”125”>Long</option>

</select>
</form>

</body>
</html>

Related Items: direction property of marquee object.

marquee.behavior

1037Chapter 35 ✦ Body Text Objects

bgColor
Value: Hexadecimal triplet or color name string. Read/Write
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-

The bgColor property determines the color of the background of the marquee element’s rectan-
gular space. To set the color of the text, either surround the marquee element with a font
element or apply the color stylesheet attribute to the marquee element. Values for all color
properties can be either the common HTML hexadecimal triplet value (for example, “#00FF00”)
or any of the Netscape color names (a list is available at http://developer.netscape.com/
docs/manuals/htmlguid/colortab.htm).

Example
See Listing 35-3 earlier in this chapter for an example of how to apply values to the bgColor
property.

direction
Value: String. Read/Write
Compatibility: WinIE4+, MacIE4+, NN7+, Moz1+, Safari-

The direction property lets you get or set the horizontal or vertical direction in which the
scrolling text moves. Four possible string values are left, right, down, up. NN7/Moz observe
left and right only. The default value is left.

Example
See Listing 35-3 earlier in this chapter for an example of how to apply values to the direction
property.

Related Items: behavior property of marquee object.

height
width

Value: Integer. Read/Write
Compatibility: WinIE4+, MacIE4+, NN7+, Moz1+, Safari-

The height and width properties enable you to get or set the pixel size of the rectangle
occupied by the element. NN7/Moz implement width only. You can adjust each property
independently of the other, but like most attribute-inspired properties of IE objects, if no
height or width attributes are defined in the element’s tag, you cannot use these properties
to get the size of the element as rendered by default.

hspace
vspace

Value: Integer. Read/Write
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-

The hspace and vspace properties let you get or set the amount of blank margin space sur-
rounding the marquee element. Adjustments to the hspace property affect both the left and
right (horizontal) margins of the element; vspace governs both top and bottom (vertical)
margins. Margin thicknesses are independent of the height and width of the element.

marquee.hspace

1038 Part IV ✦ JavaScript Core Language Reference

loop
Value: Integer. Read/Write
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-

The loop property allows you to discover the number of times the marquee element was set
to repeat its scrolling according to the loop attribute. Although this property is read/write,
modifying it by script does not cause the text to loop only that number of times more before
stopping. Treat this property as read-only.

scrollAmount
scrollDelay

Value: Integers. Read/Write
Compatibility: WinIE4+, MacIE4+, NN7+, Moz1+, Safari-

The scrollAmount and scrollDelay properties control the perceived speed and scrolling
smoothness of the marquee element text. The number of pixels between redrawings of the
scrolling text is controlled by the scrollAmount property. The smaller the number, the less
jerky the scrolling is (the default value is 6). At the same time, you can control the time in
milliseconds between each redrawing of the text with the scrollDelay property. The smaller
the number, the more frequently redrawing is performed (the default value is 85 or 90, depend-
ing on the operating system). Thus, a combination of low scrollAmount and scrollDelay
property values presents the smoothest (albeit slow) perceived scrolling.

Example
See Listing 35-3 earlier in this chapter for an example of how to apply values to the
scrollAmount and scrollDelay properties.

Related Items: trueSpeed property of marquee object.

trueSpeed
Value: Boolean. Read/Write
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-

IE has a built-in regulator that prevents scrolldelay attribute or scrollDelay property
settings below 60 from causing the marquee element text to scroll too quickly. But if you gen-
uinely want to use a speed faster than 60 (meaning, a value lower than 60), then also set the
trueSpeed property to true.

Related Items: scrollDelay property of marquee object.

Methods
start()
stop()

Returns: Nothing.
Compatibility: WinIE4+, MacIE4+, NN7+, Moz1+, Safari-

Scripts can start or stop (pause) a marquee element via the start() and stop() methods.
Neither method takes parameters, and you are free to invoke them as often as you like after
the page loads. Be aware that the start() method does not trigger the onstart event han-
dler for the object.

marquee.loop

1039Chapter 35 ✦ Body Text Objects

Example
See Listing 35-3 earlier in this chapter for examples of both the start() and stop() meth-
ods, which are invoked in event handlers of separate controlling buttons on the page. Notice,
too, that when you have the behavior set to slide, stopping and restarting the marquee does
not cause the scroll action to start from a blank region.

Event Handlers
onbounce

Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-

The onbounce event handler fires only when the marquee element has its behavior set to
alternate. In that back-and-forth mode, each time the text reaches a boundary and is about
to start its return trip, the onbounce event fires. If you truly want to annoy your users, you
could have the onbounce event handlers play a sound at each bounce (I’m kidding — please
don’t do this).

Related Items: behavior property of marquee object.

onfinish
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-

The onfinish event handler fires only when the marquee element has its loop set to a spe-
cific value of 1 or greater. After the final text loop has completed, the onfinish event fires.

Related Items: loop property of marquee object.

onstart
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-

The onstart event handler fires as the marquee element begins its scrolling, but only as a
result of the page loading. The start() method does not trigger this event handler.

Related Items: start() method of marquee object.

Range Object
Compatibility: WinIE-, MacIE-, NN6+, Moz1+, Safari1+

Properties Methods Event Handlers

collapsed cloneContents()
commonAncestorContainer cloneRange()
endContainer collapse()
endOffset compareBoundaryPoints()

compareNode()
comparePoint()

startContainer createContextualFragment()

Range

1040 Part IV ✦ JavaScript Core Language Reference

Properties Methods Event Handlers

startOffet deleteContents()
detach()
extractContents()
insertNode()
intersectsNode()
isPointInRange()
selectNode()
selectNodeContents()
setEnd()
setEndAfter()
setEndBefore()
setStart()
setStartAfter()
setStartBefore()
surroundContents()
toString()

Syntax
Creating a Range object:

var rangeRef = document.createRange();

Accessing Range object properties or methods:

(NN6+/Moz1+) rengeRef.property | method([parameters])

About this object
The Range object is the W3C DOM (Level 2) version of what Microsoft had implemented ear-
lier as its TextRange object. A number of important differences (not the least of which is an
almost entirely different property and method vocabulary) distinguish the behaviors and
capabilities of these two similar objects. Although Microsoft participated in the W3C DOM
Level 2 working groups, no participant from the company is credited on the DOM specifica-
tion chapter regarding the Range object. Because the W3C version has not been implemented
as of IE6, it is unknown if or when IE will eventually implement the W3C version. In the mean-
time, see the WinIE TextRange object section later in this chapter for comparisons between
the two objects. Neither the W3C DOM Range nor Microsoft TextRange objects are imple-
mented in MacIE5.

The purpose of the W3C DOM Range object is to provide hooks to a different “slice” of content
(most typically a portion of a document’s content) that is not necessarily restricted to the node
hierarchy (tree) of a document. While a Range object can be used to access and modify nodes
and elements, it can also transcend node and element boundaries to encompass arbitrary seg-
ments of a document’s content. The content contained by a range is sometimes referred to as a
selection, but this does not mean that the text is highlighted on the page, such as a user selec-
tion. Instead, the term “selection” here means a segment of the document’s content that can be

Range

1041Chapter 35 ✦ Body Text Objects

addressed as a unit, separate from the node tree of the document. As soon as the range is cre-
ated, a variety of methods let scripts examine, modify, remove, replace, and insert content on
the page.

A range object (meaning, an instance of the static Range object) has a start point and an end
point, which together define the boundaries of the range. The points are defined in terms of
an offset count of positions within a container. These counts are usually character positions
within text nodes (ignoring any HTML tag or attribute characters), but when both boundaries
are at the edges of the same node, the offsets may also be counts of nodes within a container
that surrounds both the start and end points. An example helps clarify these concepts.

Consider the following simplified HTML document:

<html>
<body>
<p>This paragraph has an emphasized segment.</p>
</body>

</html>

You can create a range that encompasses the text inside the em element from several points
of view, each with its own offset counting context:

1. From the em element’s only child node (a text node). The offset of the start point is zero,
which is the location of the insertion point in front of the first character (lowercase
“e”); the end point offset is 10, which is the character position (zero-based) following
the lowercase “d”.

2. From the em element. The point of view here is that of the child text node inside the em
element. Only one node exists here, and the offset for the start point is 0, while the off-
set for the end point is 1.

3. From the p element’s child nodes (two text nodes and an element node). You can set the
start point of a range to the very end (counting characters) of the first child text node
of the p element; you can then set the end point to be in front of the first character of
the last child text node of the p element. The resulting range encompasses the text
within the em element.

4. From the p element. From the point of view of the p element, the range can be set with
an offset starting with 1 (the second node nested inside the p element) and ending with
2 (the start of the third node).

Although these different points of view provide a great deal of flexibility, they also can make it
more difficult to imagine how you can use this power. The W3C vocabulary for the Range
methods, however, helps you figure out what kind of offset measure to use.

A range object’s start point could be in one element, and its end point in another. For exam-
ple, consider the following HTML:

<p>And now to introduce our very special guest:</p>

If the text shown in boldface indicates the content of a range object, you can see that the
range crosses element boundaries in a way that would make HTML element or node object
properties difficult to use for replacing that range with some other text. The W3C specifica-
tion provides guidelines for browser makers on how to handle the results of removing or
inserting HTML content that crosses node borders.

An important aspect of the Range object is that the size of a range can be zero or more charac-
ters. Start and end points always position themselves between characters. When the start point
and end point of a range are at the same location, the range acts like a text insertion pointer.

Range

1042 Part IV ✦ JavaScript Core Language Reference

Working with ranges
To create a range object, use the document.createRange() method and assign the range
object returned by this method to a variable that you can use to control the range:

var rng = document.createRange();

With an active range stored in a variable, you can use many of the object’s methods to adjust
the start and end points of the range. If the range is to consist of all of the contents of a node,
you have two convenience methods that do so from different points of view: selectNode()
and selectNodeContents(). The sole parameter passed with both methods is a reference to
the node whose contents you want to turn into a range. The difference between the two meth-
ods is how the offset properties of the range are calculated as a result (see the discussion
about these methods later in the chapter for details). Another series of methods
(setStartBefore(), setStartAfter(), setEndBefore(), and setEndAfter()) let you
adjust each end point individually to a position relative to a node boundary. For the most
granular adjustment of boundaries, the setStart() and setEnd() methods let you specify a
reference node (where to start counting the offset) and the offset integer value.

If you need to select an insertion point (for example, to insert some content into an existing
node), you can position either end point where you want it, and then invoke the collapse()
method. A parameter determines whether the collapse should occur at the range’s start or
end point.

A suite of other methods lets your scripts work with the contents of a range directly. You
can copy (cloneContents()), delete (deleteContents(), extractContents()), insert
a node (insertNode()), and even surround a range’s contents with a new parent node
(surroundContents()). Several properties let your scripts examine information about the
range, such as the offset values, the containers that hold the offset locations, whether the
range is collapsed, and a reference to the next outermost node that contains both the start
and end points.

Mozilla adds a proprietary method to the Range object (which is actually a method of an
object that is built around the Range object) called createContextualFragment(). This
method lets scripts create a valid node (of type DocumentFragment) from arbitrary strings of
HTML content — a feature that the W3C DOM does not (yet) offer. This method was devised
at first as a substitute for what eventually became the NN6+/Moz innerHTML property.

Using the Range object can be a bit tedious, because it often requires a number of script
statements to execute an action. Three basic steps are generally required to work with a
Range object:

1. Create the text range.

2. Set the start and end points.

3. Act on the range.

As soon as you are comfortable with this object, you will find it provides a lot of flexibility in
scripting interaction with body content. For ideas about applying the Range object in your
scripts, see the examples that accompany the descriptions of individual properties and meth-
ods in the following sections.

The Evaluator (Chapter 13) automatically initializes a W3C DOM Range object in browsers
that support the feature. You can access the object via the rng global variable to work with
examples in the following sections.

Note

Range

1043Chapter 35 ✦ Body Text Objects

Properties
collapsed

Value: Boolean. Read-Only
Compatibility: WinIE-, MacIE-, NN6+, Moz1+, Safari1+

The collapsed property reports whether a range has its start and end points set to the same
position in a document. If the value is true, the range’s start and end containers are the same
and the offsets are also the same. You can use this property to verify that a range is in the
form of an insertion pointer just prior to inserting a new node:

if (rng.collapsed) {
rng.insertNode(someNewNodeReference);

}

Example
Use The Evaluator’s predefined rng object to experiment with the collapsed property.
Reload the page and set the range to encompass a node:

rng.selectNode(document.body)

Enter a.collapsed into the top text box. The expression returns false because the end
points of the range are not the same.

Related Items: endContainer, endOffset, startContainer, startOffset properties;
Range.collapse() method.

commonAncestorContainer
Value: Node object reference. Read-Only
Compatibility: WinIE-, MacIE-, NN6+, Moz1+, Safari1+

The commonAncestorContainer property returns a reference to the document tree node that
both the start and end points have in common. It is not uncommon for a range’s start point to
be in one node and the end point to be in another. Yet a more encompassing node most likely
contains both of those nodes, perhaps even the document.body node. The W3C DOM specifi-
cation also calls the shared ancestor node the root node for the range (a term that may make
more sense to you).

Example
Use The Evaluator’s predefined rng object to experiment with the commonAncestorContainer
property. Reload the page. Now set the start point to the beginning of the contents of the myEM
element and set the end point to the end of the surrounding myP element:

rng.setStartBefore(document.getElementById(“myEM”).firstChild)
rng.setEndAfter(document.getElementById(“myP”).lastChild)

Verify that the text range is set to encompass content from the myEM node (the word “all”)
and end of myP nodes (note that Safari 1.0 returns the wrong data here):

rng.toString()

Verify, too, that the two end point containers are different nodes:

rng.startContainer.tagName
rng.endContainer.tagName

Range.commonAncestorContainer

1044 Part IV ✦ JavaScript Core Language Reference

Finally, see what node contains both of these two end points:

rng.commonAncestorContainer.id

The result is the myP element, which both the myP and myEM nodes have in common.

Related Items: endContainer, endOffset, startContainer, startOffset properties; all
“set” and “select” methods of the Range object.

endContainer
startContainer

Value: Node object reference. Read-Only
Compatibility: WinIE-, MacIE-, NN6+, Moz1+, Safari1+

The endContainer and startContainer properties return a reference to the document tree
node that contains the range’s end point and start point, respectively. Be aware that the object
model calculates the container, and the container may not be the reference you used to set the
start and end points of a range. For example, if you use the selectNode() method to set the
start and end points of a range to encompass a particular node, the containers of the end
points are most likely the next outermost nodes. Thus, if you want to expand a range to the
start of the node that contains the current range’s start point, you can use the value returned
by the startContainer property as a parameter to the setStartBefore() method:

rng.setStartBefore(rng.startContainer)

Example
Use The Evaluator’s predefined rng object to experiment with the endContainer and
startContainer properties. Reload the page and set the range to encompass the myEM
element:

rng.selectNode(document.getElementById(“myEM”)

Inspect the containers for both the start and end points of the selection:

rng.startContainer.id
rng.endContainer.id

The range encompasses the entire myEM element, so the start and end points are outside of
the element. Therefore, the container of both start and end points is the myP element that
also surrounds the myEM element.

Related Items: commonAncestor, endOffset, startOffset properties; all “set” and “select”
methods of the Range object.

endOffset
startOffset

Value: Integer. Read-Only
Compatibility: WinIE-, MacIE-, NN6+, Moz1+, Safari1+

The endOffset and startOffset properties return an integer count of the number of charac-
ters or nodes for the location of the range’s end point and start point, respectively. These
counts are relative to the node that acts as the container node for the position of the boundary
(see the Range.endContainer and Range.startContainer properties earlier in this chapter).

Range.commonAncestorContainer

1045Chapter 35 ✦ Body Text Objects

When a boundary is at the edge of a node (or perhaps “between” nodes is a better way to say
it), the integer returned is the offset of nodes (zero-based) within the boundary’s container.
But when the boundary is in the middle of a text node, the integer returned is an index of the
character position within the text node. The fact that each boundary has its own measuring
system (nodes versus characters, relative to different containers) can get confusing if you’re
not careful, because conceivably the integer returned for an end point could be smaller than
that for the start point. Consider the following nested elements:

<p>This paragraph has an emphasized segment.</p>

The next script statements set the start of the range to a character within the first text node
and the end of the range to the end of the em node:

var rng = document.createRange();
rng.setStart(document.getElementById(“myP”).firstChild, 19);
rng.setEndAfter(document.getElementById(“myEM”));

Using boldface to illustrate the body text that is now part of the range and the pipe (|) char-
acter to designate the boundaries as far as the nodes are concerned, here is the result of the
preceding script execution:

<p id=”myP”>This paragraph has |an <em id=”myEM”>emphasized| segment.</p>

Because the start of the range is in a text node (the first child of the p element), the range’s
startOffset value is 19, which is the zero-based character position of the “a” of the word
“an.” The end point, however, is at the end of the em element. The system recognizes this
point as a node boundary, and thus counts the endOffset value within the context of the end
container: the p element. The endOffset value is 2 (the p element’s text node is node index 0;
the em element is node index 1; and the position of the end point is at the start of the p ele-
ment’s final text node, at index 2).

For the endOffset and startOffset values to be of any practical use to a script, you must
also use the endContainer and startContainer properties to read the context for the offset
integer values.

Example
Use The Evaluator’s predefined rng object to experiment with the endOffset and startOffset
properties, following similar paths you just saw in the description. Reload the page and set
the range to encompass the myEM element and then move the start point outward to a charac-
ter within the myP element’s text node:

rng.selectNode(document.getElementById(“myEM”))
rng.setStart(document.getElementById(“myP”).firstChild, 7)

Inspect the node types of the containers for both the start and end points of the selection:

rng.startContainer.nodeType
rng.endContainer.nodeType

The startContainer node type is 3 (text node), while the endContainer node type is 1 (ele-
ment). Now inspect the offsets for both the start and end points of the selection:

rng.startOffset
rng.endOffset

Related Items: endContainer, startContainer properties; all “set” and “select” methods of
the Range object.

Range.endOffset

1046 Part IV ✦ JavaScript Core Language Reference

Methods
cloneContents()
cloneRange()

Returns: DocumentFragment node reference; Range object reference.
Compatibility: WinIE-, MacIE-, NN7+, Moz1+, Safari1+

The cloneContents() method (available in NN7+) takes a snapshot copy of the contents of a
Range object and returns a reference to that copy. The copy is stored in the browser’s mem-
ory, but is not part of the document tree. The cloneRange() method (available in NN6+) per-
forms the same action on an entire range and stores the range copy in the browser’s memory.
A range’s contents can consist of portions of multiple nodes and may not be surrounded by
an element node; that’s why its data is of the type DocumentFragment (one of the W3C DOM’s
node types). Because a DocumentFragment node is a valid node, it can be used with other
document tree methods where nodes are required as parameters. Therefore, you can clone a
text range to insert a copy elsewhere in the document.

In contrast, the cloneRange() method deals with range objects. While you are always free
to work with the contents of a range object, the cloneRange() method returns a reference
to a range object, which acts as a kind of wrapper to the contents (just as it does when the
range is holding content in the main document). You can use the cloneRange() method to
obtain a copy of one range to compare the end points of another range (via the Range.
compareBoundaryPoints() method).

Example
Use The Evaluator’s predefined rng object in NN7+/Moz/Safari to see the cloneContents()
method in action. Begin by reloading the page and setting the range to the myP paragraph
element:

rng.selectNode(document.getElementById(“myP”)

Next, clone the original range and preserve the copy in variable b:

b = rng.cloneContents()

Move the original range so that it is an insertion point at the end of the body by first expand-
ing it to encompass the entire body and then collapse it to the end:

rng.selectNode(document.body)
rng.collapse(false)

Now, insert the copy at the very end of the body:

rng.insertNode(b)

If you scroll to the bottom of the page, you see a copy of the text in NN7/Moz. Safari 1.0 appears
to miscalculate the range’s boundary points after collapse(), causing a DOM hierarchy error
when invoking insertNode(). But you can also use appendChild() or insertBefore() on
any element node to put the cloned range into the document tree.

See the description of the compareBoundaryPoints() method later in this chapter to see an
example of the cloneRange() method.

Related Items: compareBoundaryPoints(), extractContents() methods.

Range.cloneContents()

1047Chapter 35 ✦ Body Text Objects

collapse([startBoolean])
Returns: Nothing.
Compatibility: WinIE-, MacIE-, NN6+, Moz1+, Safari1+

Use the collapse() method to shrink a range from its current size down to a single insertion
point between characters. Collapsing a range becomes more important than you may think at
first, especially in a function that is traversing the body or large chunk of text. For example, in
a typical looping word-counting script, you create a text range that encompasses the body
fully. To begin counting words, you can first collapse the range to the insertion point at the
very beginning of the range. Next, use the expand() method to set the range to the first word
of text (and increment the counter if the expand() method returns true). At that point, the
text range extends around the first word. You want the range to collapse at the end of the cur-
rent range so that the search for the next word starts after the current one. Use collapse()
once more, but this time with a twist of parameters.

The optional parameter of the collapse() method is a Boolean value that directs the range
to collapse itself either at the start or end of the current range. The default behavior is the
equivalent of a value of true, which means that unless otherwise directed, a collapse()
method shifts the text range to the point in front of the current range. This method works
great at the start of a word-counting script, because you want the text range to collapse to
the start of the text. But for subsequent movements through the range, you want to collapse
the range so that it is after the current range. Thus, you include a false parameter to the
collapse() method.

Example
See Listings 35-11 and 15-14 to see the collapse() method at work (albeit with the IE
TextRange object).

Related Items: Range.setEnd(), Range.setStart() methods.

compareBoundaryPoints(typeInteger, sourceRangeRef)
Returns: Integer (-1, 0, or 1).
Compatibility: WinIE-, MacIE-, NN6+, Moz1+, Safari1+

Generating multiple range objects and assigning them to different variables is not a prob-
lem. You can then use the compareBoundaryPoints() method to compare the relative
positions of start and end points of both ranges. One range is the object you use to invoke
the compareBoundaryPoints() method, and the other range is the second parameter of
the method. The order in which you reference the two ranges influences the results, based
on the value assigned to the first parameter.

Values for the first parameter can be one of four constant values that are properties of the
static Range object: Range.START_TO_START, Range.START_TO_END, Range.END_TO_START,
and Range.END_TO_END. What these values specify is which point of the current range is
compared with which point of the range passed as the second parameter. For example, con-
sider the following body text that has two text ranges defined within it:

It was the best of times.

The first text range (assigned in our discussion here to variable rng1) is shown in boldface,
while the second text range (rng2) is shown in bold-italic. In other words, rng2 is nested
inside rng1. We can compare the position of the start of rng1 against the position of the
start of rng2 by using the Range.START_TO_START value as the first parameter of the
compareBoundaryPoints() method:

var result = rng1.compareBoundaryPoints(Range.START_TO_START, rng2);

Range.compareBoundaryPoints()

1048 Part IV ✦ JavaScript Core Language Reference

The value returned from the compareBoundaryPoints() method is an integer of one of three
values. If the positions of both points under test are the same, then the value returned is 0. If
the start point of the (so-called source) range is before the range on which you invoke the
method, the value returned is -1; in the opposite positions in the code, the return value is 1.
Therefore, from the example above, because the start of rng1 is before the start of rng2, the
method returns -1. If you change the statement to invoke the method on rng2, as in

var result = rng2.compareBoundaryPoints(Range.START_TO_START, rng1);

the result is 1.

In practice, this method is helpful in knowing if two ranges are the same, if one of the bound-
ary points of both ranges is the same, or if one range starts where the other ends.

Example
The page rendered by Listing 35-4 lets you experiment with text range comparisons in NN6+/
Moz. The bottom paragraph contains a span element that has a Range object assigned to its
nested text node after the page loads (in the init() function). That fixed range becomes a
solid reference point for you to use while you select text in the paragraph.

After you make a selection, all four versions of the compareBoundaryPoints() method run
to compare the start and end points of the fixed range against your selection. One column of
the results table shows the raw value returned by the compareBoundaryPoints() method,
while the third column puts the results into plain language.

To see how this page works, begin by selecting the first word of the fixed text range (carefully
drag the selection from the first red character). You can see that the starting positions of
both ranges are the same, because the returned value is 0. Because all of the invocations of
the compareBoundaryPoints() method are on the fixed text range, all comparisons are from
the point of view of that range. Thus, the first row of the table for the START_TO_END parame-
ter indicates that the start point of the fixed range comes before the end point of the selec-
tion, yielding a return value of -1.

Other selections to make include:

✦ Text that starts before the fixed range and ends inside the range

✦ Text that starts inside the fixed range and ends beyond the range

✦ Text that starts and ends precisely at the fixed range boundaries

✦ Text that starts and ends before the fixed range

✦ Text that starts after the fixed range

Study the returned values and the plain language results and see how they align with the
selection you made.

Listing 35-4: Lab for NN6+/Moz compareBoundaryPoints() Method

<html>
<head>

<title>TextRange.compareBoundaryPoints() Method</title>
<style type=”text/css”>
td {text-align:center}
.propName {font-family:Courier, monospace}
#fixedRangeElem {color:red; font-weight:bold}

Range.compareBoundaryPoints

1049Chapter 35 ✦ Body Text Objects

</style>
<script type=”text/javascript”>
var fixedRange;

function setAndShowRangeData() {
try {

var selectedRange = window.getSelection();
selectedRange = selectedRange.getRangeAt(0);
var result1 = fixedRange.compareBoundaryPoints(Range.START_TO_END,

selectedRange);
var result2 = fixedRange.compareBoundaryPoints(

Range.START_TO_START, selectedRange);
var result3 = fixedRange.compareBoundaryPoints(Range.END_TO_START,

selectedRange);
var result4 = fixedRange.compareBoundaryPoints(Range.END_TO_END,

selectedRange);

document.getElementById(“B1”).innerHTML = result1;
document.getElementById(“compare1”).innerHTML =

getDescription(result1);
document.getElementById(“B2”).innerHTML = result2;
document.getElementById(“compare2”).innerHTML =

getDescription(result2);
document.getElementById(“B3”).innerHTML = result3;
document.getElementById(“compare3”).innerHTML =

getDescription(result3);
document.getElementById(“B4”).innerHTML = result4;
document.getElementById(“compare4”).innerHTML =

getDescription(result4);
}
catch(err) {

alert(“Vital Range or Selection object services are not yet
implemented in

this browser.”);
}

}

function getDescription(comparisonValue) {
switch (comparisonValue) {
case -1 :

return “comes before”;
break;

case 0 :
return “is the same as”;
break;

case 1 :
return “comes after”;
break;

default :
return “vs.”;

}
}

function init() {
fixedRange = document.createRange();
fixedRange.selectNodeContents(document.getElementById(

“fixedRangeElem”).firstChild);
fixedRange.setEnd(fixedRange.endContainer,

Continued

Range.compareBoundaryPoints

1050 Part IV ✦ JavaScript Core Language Reference

Listing 35-4 (continued)

fixedRange.endContainer.nodeValue.length);
}
</script>

</head>
<body onload=”init()”>

<h1>TextRange.compareBoundaryPoints() Method</h1>
<hr />
<p>Select text in the paragraph in various places relative to the fixed

text range (shown in red). See the relations between the fixed and
selected ranges with respect to their start and end points.</p>

<table id=”results” border=”1” cellspacing=”2” cellpadding=”2”>
<tr>

<th>Property</th>
<th>Returned Value</th>
<th>Fixed Range vs. Selection</th>

</tr>
<tr>

<td class=”propName”>StartToEnd</td>
<td class=”count” id=”B1”> </td>
<td class=”count” id=”C1”>Start of Fixed <span
id=”compare1”>vs. End of Selection</td>

</tr>
<tr>

<td class=”propName”>StartToStart</td>
<td class=”count” id=”B2”> </td>
<td class=”count” id=”C2”>Start of Fixed <span
id=”compare2”>vs. Start of Selection</td>

</tr>
<tr>

<td class=”propName”>EndToStart</td>
<td class=”count” id=”B3”> </td>
<td class=”count” id=”C3”>End of Fixed <span
id=”compare3”>vs. Start of Selection</td>

</tr>
<tr>

<td class=”propName”>EndToEnd</td>
<td class=”count” id=”B4”> </td>
<td class=”count” id=”C4”>End of Fixed <span
id=”compare4”>vs. End of Selection</td>

</tr>
</table>
<hr />
<p onmouseup=”setAndShowRangeData()”>Lorem ipsum dolor sit,

consectetaur adipisicing elit, sed
do eiusmod tempor incididunt ut labore et dolore aliqua. Ut enim
adminim veniam, quis nostrud exercitation ullamco laboris nisi ut
aliquip ex ea commodo consequat.</p>

</body>
</html>

compareNode(nodeReference)
Returns: Integer (0, 1, 2, or 3).
Compatibility: WinIE-, MacIE-, NN6+, Moz1+, Safari1+

Range.compareBoundaryPoints

1051Chapter 35 ✦ Body Text Objects

The compareNode() method returns an integer code that indicates the relative position of the
specified node with respect to the range. The node is passed as the only parameter to the
method, and the value returned indicates the relative location of the node. The following four
constants may be returned from the compareNode() method, and correspond to integer values
in the range 0–3: Range.NODE_BEFORE, Range.NODE_AFTER, Range.NODE_BEFORE_AND_AFTER,
Range.NODE_INSIDE. The first two values explain themselves, but the third value (Range.
NODE_BEFORE_AND_AFTER) indicates that the node begins before the range and ends after the
range. The final value (Range.NODE_INSIDE), on the other hand, indicates that the node is con-
tained in its entirety by the range.

Related Items: comparePoint() method.

comparePoint(nodeReference, offset)
Returns: Integer (-1, 0, or 1).
Compatibility: WinIE-, MacIE-, NN6+, Moz1+, Safari1+

The comparePoint() method returns an integer code that indicates the relative position of
the specified node at a certain offset with respect to the range. The node (as an object refer-
ence) and its offset (an integer count of an element’s nodes or a text node’s characters) are
passed as parameters to the method, and the value returned indicates the relative location of
the node. This location is specified with respect to the point (node and offset), not the range.
The location of the node is indicated by the integer values –1, 0, and 1, where –1 indicates
that the point comes before the start of the range, 0 indicates that the point is located within
the range, and 1 reveals that the point comes after the end of the range.

Related Items: compareNode() method.

createContextualFragment(“text”)
Returns: W3C DOM document fragment node.
Compatibility: WinIE-, MacIE-, NN6+, Moz1+, Safari1+

The createContextualFragment() method provides a way, within the context of the W3C
DOM Level 2 node hierarchy to create a string of HTML text (with or without HTML tags, as
needed) for insertion or appendage to existing node trees. During the development of the
NN6 browser, this method filled a gap that was eventually filled by Netscape’s adoption of the
Microsoft proprietary innerHTML property. The method obviates the need for tediously assem-
bling a complex HTML element via a long series of document.createElement() and document
.createTextNode() methods for each segment, plus the assembly of the node tree prior to
inserting it into the actual visible document. The existence of the innerHTML property of all
element objects, however, reduces the need for the createContextualFragment() method,
while allowing more code to be shared across browser brands.

The parameter to the createContextualFragment() method is any text, including HTML
tags. To invoke the method, however, you need to have an existing range object available.
Therefore, the sequence used to generate a document fragment node is

var rng = document.createRange();
rng.selectNode(document.body); // any node will do
var fragment = rng.createContextualFragment(“<h1>Howdy</h1>”);

As a document fragment, the node is not part of the document node tree until you use the
fragment as a parameter to one of the tree modification methods, such as
Node.insertBefore() or Node.appendChild().

Range.createContextualFragment()

1052 Part IV ✦ JavaScript Core Language Reference

Example
Use The Evaluator’s predefined rng object to replace an existing document tree node with
the fragment. Begin by creating the fragment from The Evaluator’s built-in range:

b = rng.createContextualFragment(“a bunch of
”)

This fragment consists of a span element node with a text node nested inside. At this point, you
can inspect the properties of the document fragment by entering b into the bottom text box.

To replace the myEM element on the page with this new fragment, use the replaceChild()
method on the enclosing myP element:

document.getElementById(“myP”).replaceChild(b, document.getElementById(“myEM”))

The fragment now becomes a legitimate child node of the myP element and can be referenced
like any node in the document tree. For example, if you enter the following statement into the
top text box of The Evaluator, you can retrieve a copy of the text node inside the new span
element:

document.getElementById(“myP”).childNodes[1].firstChild.nodeValue

Related Items: Node object (Chapter 15).

deleteContents()
Returns: Nothing.
Compatibility: WinIE-, MacIE-, NN6+, Moz1+, Safari1+

The deleteContents() method removes all contents of the current range from the docu-
ment tree. After deletion, the range collapses to an insertion point where any surrounding
content (if any) cinches up to its neighbors.

Some alignment of a range’s boundaries forces the browser to make decisions about how ele-
ment boundaries inside the range are treated after the deletion. An easy deletion is one for
which the range boundaries are symmetrical. For example, consider the following HTML with
a range highlighted in bold:

<p>One paragraph with an emphasis inside.</p>

After you delete the contents of this range, the text node inside the em element disappears,
but the em element remains in the document tree (with no child nodes). Similarly, if the range
is defined as being the entire second child node of the p element, as follows

<p>One paragraph with an emphasis inside.</p>

then deleting the range contents removes both the text node and the em element node, leav-
ing the p element with a single, unbroken text node as a child (although in the previous case,
an extra space would be between the words “an” and “inside” because the em element does
not encompass a space on either side).

When range boundaries are not symmetrical, the browser does its best to maintain document
tree integrity after the deletion. Consider the following HTML and range:

<p>One paragraph with an emphasis inside.</p>

After deleting this range’s contents, the document tree for this segment looks like the following:

<p>One paragraph phasis inside.</p>

The range collapses to an insertion point just before the tag. But notice that the em ele-
ment persisted to take care of the text still under its control. Many other combinations of range

Range.createContextualFragment

1053Chapter 35 ✦ Body Text Objects

boundaries and nodes are possible, so be sure that you check out the results of a contents dele-
tion for asymmetrical boundaries before applying the deletion.

Example
Use The Evaluator’s predefined rng object to experiment with deleting contents of both a text
node and a complete element node. Begin by adjusting the text range to the text node inside the
myEM element (enter the third statement, which wraps below, as one continuous expression):

rng.setStart(document.getElementById(“myEM”).firstChild, 0)
rng.setEnd(document.getElementById(“myEM”).lastChild,

document.getElementById(“myEM”).lastChild.length)

Verify the makeup of the range by entering a into the bottom text box and inspect its proper-
ties. Both containers are text nodes (they happen to be the same text node), and offsets are
measured by character positions.

Now, delete the contents of the range:

rng.deleteContents()

The italicized word “all” is gone from the tree, but the myEM element is still there. To prove it,
put some new text inside the element:

document.getElementById(“myEM”).innerHTML = “a band of “

The italic style of the em element applies to the text, as it should.

Next, adjust the range boundaries to include the myEM element tags, as well:

rng.selectNode(document.getElementById(“myEM”))

Inspect the Range object’s properties again by entering rng into the bottom text box. The
container nodes are the p element that surrounds the em element; the offset values are mea-
sured in nodes. Delete the range’s contents:

rng.deleteContents()

Not only is the italicized text gone, but the myEM element is gone, too. The myP element now
has two child nodes: the two text nodes that used to flank the em element. The following
entries into the top text box of The Evaluator verify this fact:

document.getElementById(“myP”).childNodes.length
document.getElementById(“myP”).childNodes[0].nodeValue

To combine the two sibling text nodes into one, invoke the normalize() method of the
container:

document.getElementById(“myP”).normalize()

Check the number of child nodes again to verify the results.

Related Items: Range.extractContents() method.

detach()
Returns: Nothing.
Compatibility: WinIE-, MacIE-, NN6+, Moz1+, Safari1+

The detach() method instructs the browser to release the current range object from the
object model. In the process, the range object is nulled out to the extent that an attempt to
access the object results in a script error. You can still assign a new range to the same variable
if you like. You are not required to detach a range when you’re finished with it, and the browser

Range.detach()

1054 Part IV ✦ JavaScript Core Language Reference

resources employed by a range are not that large. But it is good practice to “clean up after your-
self,” especially when a script repetitively creates and manages a series of new ranges.

Related Items: document.createRange() method.extractContents()

extractContents()
Returns: DocumentFragment node reference.
Compatibility: WinIE-, MacIE-, NN7+, Moz1+, Safari1+

The extractContents() method deletes the contents of the range and returns a reference to
the document fragment node that is held in the browser memory, but which is no longer part
of the document tree. A range’s contents can consist of portions of multiple nodes and may
not be surrounded by an element node; that’s why its data is of the type DocumentFragment
(one of the W3C DOM’s node types). Because a DocumentFragment node is a valid node, it
can be used with other document tree methods where nodes are required as parameters.
Therefore, you can extract a text range from one part of a document to insert elsewhere in
the document.

Example
Use The Evaluator’s predefined rng object in NN7+/Moz/Safari to see how the
extractContents() method works. Begin by setting the built-in range object to contain
the text of the myP paragraph element.

rng.selectNode(document.getElementById(“myP”))

Next, extract the original range’s content and preserve the copy in variable b:

b = a.extractContents()

Now, insert the extracted fragment at the very end of the body:

document.body.appendChild(b)

If you scroll to the bottom of the page, you see a copy of the text.

Related Items: cloneContents(), deleteContents() methods.

insertNode(nodeReference)
Returns: Nothing.
Compatibility: WinIE-, MacIE-, NN7+, Moz1+, Safari1+

The insertNode() method inserts a node at the start point of the current range. The node
being inserted may be an element or text fragment node, and its source can be any valid node
creation mechanism, such the document.createTextNode() method or any node extraction
method.

Example
Listing 35-5 demonstrates the insertNode() method plus some additional items from the
selection object. The example even includes a rudimentary undo buffer for scripted changes
to a text range. In the page generated by this listing, users can select any text in a paragraph and
have the script automatically convert the text to all uppercase characters. The task of replacing
a selection with other text requires several steps, starting with the selection, which is retrieved
via the window.getSelection() method. After making sure the selection contains some text
(that is, the selection isn’t collapsed), the selection is preserved as a range object so that the
starting text can be stored in a global variable (as a property of the undoBuffer global variable
object). After that, the selection is deleted from the document tree, leaving the selection as a

Range.detach

1055Chapter 35 ✦ Body Text Objects

collapsed insertion point. A copy of that selection in the form of a range object is preserved
in the undoBuffer object so that the undo script knows where to reinsert the original text.
A new text node is created with an uppercase version of the original text, and, finally, the
insertNode() method is invoked to stick the converted text into the collapsed range.

Undoing this operation works in reverse. Original locations and strings are copied from the
undoBuffer object. After creating the range with the old start and end points (which repre-
sent a collapsed insertion point), the resurrected text (converted to a text node) is inserted
into the collapsed range. For good housekeeping, the undoBuffer object is restored to its
unused form.

Listing 35-5: Inserting a Node into a Range

<html>
<head>

<title>NN Selection Object Replacement</title>
<script type=”text/javascript”>
var undoBuffer = {rng:{}, txt:””};

function convertSelection() {
var sel, grossRng, netRng, newText;
try {

sel = window.getSelection();
if (!sel.isCollapsed) {

grossRng = sel.getRangeAt(0);
undoBuffer.txt = grossRng.toString();
undoBuffer.rng.startContainer = grossRng.startContainer;
undoBuffer.rng.startOffset = grossRng.startOffset;
undoBuffer.rng.endContainer = grossRng.endContainer;
undoBuffer.rng.endOffset = grossRng.endOffset;
sel.deleteFromDocument();
netRng = sel.getRangeAt(0);
newText = document.createTextNode(undoBuffer.txt.toUpperCase());
netRng.insertNode(newText);
netRng.commonAncestorContainer.parentNode.normalize();

}
}
catch(err) {

alert(“Vital Range or Selection object services are not yet
implemented “ +

“in this browser.”);
}

}

function undoConversion() {
var rng, oldText;
if (undoBuffer.rng) {

rng = document.createRange();
rng.setStart(undoBuffer.rng.startContainer,

undoBuffer.rng.startOffset);
rng.setEnd(undoBuffer.rng.endContainer, undoBuffer.rng.endOffset);
rng.extractContents();
oldText = document.createTextNode(undoBuffer.txt);
rng.insertNode(oldText);
undoBuffer.rng = {};

Continued

Range.insertNode()

1056 Part IV ✦ JavaScript Core Language Reference

Listing 35-5 (continued)

undoBuffer.txt = “”;
}

}
</script>

</head>
<body>

<h1 id=”H1_1”>NN6+/Moz Selection Object Replacement</h1>
<hr />
<p id=”P_1” onmouseup=”convertSelection()”>This paragraph contains text

that you can select. Selections are deleted and replaced by all
uppercase versions of the selected text.</p>

<button onclick=”undoConversion()”>Undo Last</button> <button
onclick=”location.reload(true)”>Start Over</button>

</body>
</html>

intersectsNode(nodeReference)
Returns: Boolean.
Compatibility: WinIE-, MacIE-, NN6+, Moz1+, Safari1+

The intersectsNode() method returns a Boolean value that indicates whether (true) or not
(false) any part of the range overlaps the node whose reference is passed as the method’s
parameter.

Related Items: compareNode() method.

isPointInRange(nodeReference, offset)
Returns: Boolean.
Compatibility: WinIE-, MacIE-, NN6+, Moz1+, Safari1+

The isPointInRange() method returns a Boolean value that indicates whether (true) or
not (false) the specified node (a node object reference) and offset (integer count of an ele-
ment’s nodes or a text node’s characters) are located entirely within the range.

selectNode(nodeReference)
selectNodeContents(nodeReference)

Returns: Nothing.
Compatibility: WinIE-, MacIE-, NN6+, Moz1+, Safari1+

The selectNode() and selectNodeContents() methods are convenience methods for set-
ting both end points of a range to surround a node or a node’s contents. The kind of node you
supply as the parameter to either method (text node or element node) has a bearing on the
range’s container node types and units of measure for each (see the container- and offset-
related properties of the Range object earlier in this chapter).

Starting with the selectNode() method, if you specify an element node as the one to select,
the start and end container node of the new range is the next outermost element node; offset
values count nodes within that parent element. If you specify a text node to be selected, the

Range.insertNode()

1057Chapter 35 ✦ Body Text Objects

container node for both ends is the parent element of that text node; offset values count the
nodes within that parent.

With the selectNodeContents() method, the start and end container nodes are the very
same element specified as the parameter; offset values count the nodes within that element.
If you specify a text node’s contents to be selected, the text node is the start and end parent,
but the range is collapsed at the beginning of the text.

By and large, you specify element nodes as the parameter to either method, allowing you to
set the range to either encompass the element (via selectNode()) or just the contents of the
element (via selectNodeContents()).

Example
Use The Evaluator’s predefined rng object to see the behavior of both the selectNode() and
selectNodeContents() methods work. Begin by setting the range object’s boundaries to
include the myP element node:

rng.selectNode(document.getElementById(“myP”))

Enter a into the bottom text box to view the properties of the range. Notice that because the
range has selected the entire paragraph node, the container of the range’s start and end
points is the body element of the page (the parent element of the myP element).

Now change the range so that it encompasses only the contents of the myP element:

rng.selectNodeContents(document.getElementById(“myP”))

Click the List Properties button to view the current properties of the range. The container of
the range’s boundary points is the p element that holds the element’s contents.

Related Items: setEnd(), setEndAfter(), setEndBefore(), setStart(),
setStartAfter(), setStartBefore() methods.

setEnd(nodeReference, offset)
setStart(nodeReference, offset)

Returns: Nothing.
Compatibility: WinIE-, MacIE-, NN6+, Moz1+, Safari1+

You can adjust the start and end points of a text range independently via the setStart() and
setEnd() methods. While not as convenient as the selectNode() or
selectNodeContents() methods, these two methods give you the ultimate in granularity
over precise positioning of a range boundary.

The first parameter to both methods is a reference to a node. This reference can be an ele-
ment or text node, but your choice here also influences the kind of measure applied to the
integer offset value supplied as the second parameter. When the first parameter is an element
node, the offset counts are in increments of child nodes inside the specified element node.
But if the first parameter is a text node, the offset counts are in increments of characters
within the text node.

When you adjust the start and end points of a range with these methods, you have no restric-
tions to the symmetry of your boundaries. One boundary can be defined relative to a text
node, while the other relative to an element node — or vice versa.

To set the end point of a range to the last node or character within a text node (depending on
the unit of measure for the offset parameter), you can use the length property of the units
being measured. For example, to set the end point to the end of the last node within an element

Range.setEnd()

1058 Part IV ✦ JavaScript Core Language Reference

(perhaps there are multiple nested elements and text nodes within that outer element), you can
use the first parameter reference to help you get there:

rng.setEnd(document.getElementById(“myP”),
document.getElementById(“myP”).childNodes.length);

These kinds of expressions get lengthy, so you may want to make a shortcut to the reference
to simplify the values of the parameters, as shown in this version that sets the end point to
after the last character of the last text node of a p element:

var nodeRef = document.getElementById(“myP”).lastChild;
rng.setEnd(nodeRef, nodeRef.nodeValue.length);

In both previous examples with the length properties, the values of those properties are
always pointing to the node or character position after the final object because the index val-
ues for those objects’ counts are zero-based. Also bear in mind that if you want to set a range
end point at the edge of a node, you have four other methods to choose from
(setEndAfter(), setEndBefore(), setStartAfter(), and setStartBefore()). The
setEnd() and setStart() methods are best used when an end point needs to be set at a
location other than at a node boundary.

Example
Use The Evaluator’s predefined rng object to experiment with both the setStart() and
setEnd() methods. For the first range, set the start and end points to encompass the second
node (the myEM element) inside the myP element:

rng.setStart(document.getElementById(“myP”), 1)
rng.setEnd(document.getElementById(“myP”), 2)

The text encompassed by the range consists of the word “all” plus the trailing space that is
contained by the myEM element. Prove this by entering the following statement into the top
text box (Safari 1.0 returns an incorrect value):

rng.toString()

If you then click the Results box to the right of the word “all,” you see that the results contain
the trailing space. Yet, if you examine the properties of the range (enter a into the bottom
text box), you see that the range is defined as actually starting before the myEM element and
ending after it.

Next, adjust the start point of the range to a character position inside the first text node of
the myP element:

rng.setStart(document.getElementById(“myP”).firstChild, 11)

Click the List Properties button to see that the startContainer property of the range is the
text node, and that the startOffset measures the character position. All end boundary
properties, however, have not changed. Enter rng.toString() in the top box again to see
that the range now encompasses text from two of the nodes inside the myP element.

You can continue to experiment by setting the start and end points to other element and text
nodes on the page. After each adjustment, verify the properties of the a range object and the
text it encompasses (via rng.toString()).

Related Items: selectNode(), selectNodeContents(), setEndAfter(), setEndBefore(),
setStartAfter(), setStartBefore() methods.

Range.setEnd()

1059Chapter 35 ✦ Body Text Objects

setEndAfter(nodeReference)
setEndBefore(nodeReference)
setStartAfter(nodeReference)
setStartBefore(nodeReference)

Returns: Nothing.
Compatibility: WinIE-, MacIE-, NN6+, Moz1+, Safari1+

You can adjust the start and end points of a text range relative to existing node boundaries
via your choice of these four methods. The “before” and “after” designations are used to specify
which side of the existing node boundary the range should have for its boundary. For example,
using setStartBefore() and setEndAfter() with the same element node as a parameter
is the equivalent of the selectNode() method on that element. You may also specify a text
node as the parameter to any of these methods. But because these methods work with node
boundaries, the offset values are always defined in terms of node counts, rather than charac-
ter counts. At the same time, however, the boundaries do not need to be symmetrical, so that
one boundary can be inside one node and the other boundary inside another node.

Example
Use The Evaluator’s predefined rng object to experiment with all four methods. For the first
range, set the start and end points to encompass the myEM element inside the myP element:

rng.setStartBefore(document.getElementById(“myEM”))
rng.setEndAfter(document.getElementById(“myEM”))

The text encompassed by the range consists of the word “all” plus the trailing space that is
contained by the myEM element. Prove this by entering the following statement into the top
text box (Safari 1.0 returns an incorrect value):

rng.toString()

Next, adjust the start point of the range to the beginning of the first text node of the myP
element:

rng.setStartBefore(document.getElementById(“myP”).firstChild)

Enter rng into the bottom text box to see that the startContainer property of the range is
the p element node, while the endContainer property points to the em element.

You can continue to experiment by setting the start and end points to before and after other
element and text nodes on the page. After each adjustment, verify the properties of the a range
object and the text it encompasses (via rng.toString()).

Related Items: selectNode(), selectNodeContents(), setEnd (), setStart() methods.

surroundContents(nodeReference)
Returns: Nothing.
Compatibility: WinIE-, MacIE-, NN7+, Moz1+, Safari1+

The surroundContents() method surrounds the current range with a new parent element.
Pass the new parent element as a parameter to the method. No document tree nodes or ele-
ments are removed or replaced in the process, but the current range becomes a child node of
the new node; if the range coincides with an existing node, then the relationship between that
node and its original parent becomes that of grandchild and grandparent. An application of
this method may be to surround user-selected text with a span element whose class renders
the content with a special font style or other display characteristic based on a stylesheet
selector for that class name.

Range.surroundContents()

1060 Part IV ✦ JavaScript Core Language Reference

When the element node being applied as the new parent has child nodes itself, those nodes are
discarded before the element is applied to its new location. Therefore, for the most predictable
results, using content-free element nodes as the parameter to the surroundContents()
method is best.

Example
Listing 35-6 demonstrates how the surroundContents() method wraps a range inside a new
element. As the page loads, a global variable (newSpan) stores a span element that is used as
a prototype for elements to be used as new surrounding parent nodes. When you select text in
either of the two paragraphs, the selection is converted to a range. The surroundContents()
method then wraps the range with the newSpan element. Because that span element has a class
name of hilite, the element and its contents pick up the stylesheet properties as defined for
that class selector.

NN7 and Mozilla (at least through version 1.4) exhibit a bug in this method when used with
a range derived from a selection object or when the range is not aligned with element
boundaries. Until this bug is fixed, Listing 35-6 will follow its exception execution track.

Listing 35-6: Using the Range.surroundContents() Method

<html>
<head>

<title>Range.surroundContents() Method</title>
<style type=”text/css”>
.hilite {background-color:yellow; color:red; font-weight:bold}
</style>
<script type=”text/javascript”>
var newSpan = document.createElement(“span”);
newSpan.className = “hilite”;

function highlightSelection() {
var sel, rng;
try {

sel = window.getSelection();
if (!sel.isCollapsed) {

rng = sel.getRangeAt(0);
rng.surroundContents(newSpan.cloneNode(false));

}
}
catch(err) {

alert(“Vital Range or Selection object services are not yet
implemented in

this browser.”);
}

}
</script>

</head>
<body>

<h1>Range.surroundContents() Method</h1>
<hr />
<p onmouseup=”highlightSelection()”>These paragraphs contain text that

you can select. Selections are surrounded by span elements that share
a stylesheet class selector for special font and display
characteristics.</p>

Note

Range.surroundContents()

1061Chapter 35 ✦ Body Text Objects

<p onmouseup=”highlightSelection()”>Lorem ipsum dolor sit amet,
consectetaur adipisicing elit, sed do eiusmod tempor incididunt ut
labore et dolore magna aliqua. Ut enim adminim veniam, quis nostrud
exercitation ullamco laboris nisi ut aliquip ex ea commodo
consequat.</p>

</body>
</html>

Related Items: Range.insertNode() method.

toString()
Returns: String.
Compatibility: WinIE-, MacIE-, NN6+, Moz1+, Safari1+

Use the toString() method to retrieve a copy of the body text that is contained by the current
text range. The text returned from this method is ignorant of any HTML tags or node bound-
aries that exist in the document tree. You also use this method to get the text of a user selec-
tion, after it has been converted to a text range. Safari 1.0 commonly returns text beyond the
range, even though the range’s property values reflect correct characteristics.

Example
Use The Evaluator’s predefined rng object to see the results of the toString() method.
Enter the following sequence of statements into the top text box:

rng.selectNode(document.getElementById(“myP”))
rng.toString()

If you type only rng into the top text box, you see the text contents of the range, but don’t
be fooled. Internal workings of The Evaluator attempt to evaluate any expression entered
into that text field. Assigning a range object to a text box forces an internal application of the
toString() method (just as the Date object does when you create a new object instance in
The Evaluator).

Related Items: Selection.getRangeAt(), Range.extractContents() methods.

selection Object
Compatibility: WinIE4+, MacIE-, NN6+, Moz1+, Safari-

Properties Methods Event Handlers

anchorNode addRange()
anchorOffset clear()
focusNode collapse()
focusOffset collapseToEnd()
isCollapsed collapseToStart()
rangeCount containsNode()
type createRange()

Continued

selection

1062 Part IV ✦ JavaScript Core Language Reference

Properties Methods Event Handlers

typeDetail deleteFromDocument()
empty()
extend()
getRangeAt()
removeAllRanges()
removeRange()
selectAllChildren()
toString()

Syntax
Accessing selection object properties or methods:

(IE4+) [window.]document.selection.property | method()
(NN6+/Moz) window.selection.property | method()

About this object
The selection object provides scripted access to any body text or text in a form text control
that is selected either by the user or by script. A selection object of one character or more
is always highlighted on the page, and only one selection object can be active at any given
instant.

Take advantage of the selection object when your page invites a user to select text for some
operation that utilizes the selected text. The best event to use for working with a selection is
the onmouseup event handler. This event fires on every release of the mouse, and your script
can investigate the document.selection object to see if any text has been selected (using
the selection’s type property).

If you intend to perform some action on a selection, you may not be able to trigger that action
by way of a button or link. In some browser versions and operating systems, clicking one of
these elements automatically deselects the body selection.

One important difference between the IE and NN selections is that the NN6+/Moz selection
object works only on body text, and not on selections inside text-oriented form controls. An
NN6/Moz selection object has relationships with the document’s node tree in that the object
defines itself by the nodes (and offsets within those nodes) that encase the start and end points
of a selection. When a user drags a selection, the node in which the selection starts is called
the anchor node; the node holding the text at the point of the selection release is called the
focus node; for double- or triple-clicked selections, the direction between anchor and focus
nodes is in the direction of the language script (for example, left-to-right in Latin-based script
families). In many ways, an NN6+/Moz selection object behaves just as the W3C DOM Range
object, complete with methods to collapse and extend the selection. Unlike a range, however,
the text encompassed by a selection object is highlighted on the page. If your scripts need
to work with the nodes inside a selection, the getRangeAt() method of the selection object
returns a range object whose boundary points coincide with the selection’s boundary points.

selection

1063Chapter 35 ✦ Body Text Objects

Properties
anchorNode
focusNode

Value: Node reference. Read-Only
Compatibility: WinIE-, MacIE-, NN6+, Moz1+, Safari-

These two properties return a reference to the node where the user started (anchorNode) and
ended (focusNode) the selection. If the selection is modified via the addRange() method,
these properties point to the node boundaries of the most recently added range.

Related Items: anchorOffset and focusOffset properties.

anchorOffset
focusOffset

Value: Integer. Read-Only
Compatibility: WinIE-, MacIE-, NN6+, Moz1+, Safari-

These two properties return an integer count of the number of characters or nodes from the
beginning of the selection to the anchor node (anchorOffset) and focus node (focusOffset).
The count represents characters for text nodes, and nodes for element nodes. If the selection
is modified via the addRange() method, these properties point to the node offsets of the most
recently added range.

Related Items: anchorNode and focusNode properties.

isCollapsed
Value: Boolean. Read-Only
Compatibility: WinIE-, MacIE-, NN6+, Moz1+, Safari-

The isCollapsed property returns a Boolean value indicating whether or not the anchor and
focus boundaries of the selection are the same. If they are the same (true), it means the selec-
tion has zero length between two characters (or before the first or after the last character of
the document).

Related Items: anchorNode and focusNode properties.

rangeCount
Value: Integer. Read-Only
Compatibility: WinIE-, MacIE-, NN6+, Moz1+, Safari-

The rangeCount property returns an integer count of the range objects contained within the
selection. A manual user selection always results in a single range being selected, but the
addRange() method can result in multiple ranges being contained by the selection.

Related Items: getRangeAt() method.

selection.rangeCount

1064 Part IV ✦ JavaScript Core Language Reference

type
Value: String. Read-Only
Compatibility: WinIE4+, MacIE-, NN-, Moz-, Safari-

The type property returns Text whenever a selection exists on the page. Otherwise the prop-
erty returns None. A script can use this information to determine if a selection is made on
the page:

if (document.selection.type == “Text”) {
// process selection
...

}

Microsoft indicates that this property can sometimes return Control, but that terminology is
associated with an edit mode outside the scope of this book.

Example
Listing 35-7 contains a page that demonstrates several features of the IE selection object.
When you make a selection with the Deselect radio button selected, you see the value of the
selection.type property (in the status bar) before and after the selection is deselected.
After the selection goes away, the type property returns None.

Listing 35-7: Using the document.selection Object

<html>
<head>

<title>selection Object</title>
<script type=”text/javascript”>
function processSelection() {

if (document.choices.process[0].checked) {
status = “Selection is type: “ + document.selection.type;
setTimeout(“emptySelection()”, 2000);

} else if (document.choices.process[1].checked) {
var rng = document.selection.createRange();
document.selection.clear();

}
}
function emptySelection() {

document.selection.empty();
status = “Selection is type: “ + document.selection.type;

}
</script>

</head>
<body>

<h1>IE selection Object</h1>
<hr />
<form name=”choices”>

<input type=”radio” name=”process” checked=”checked” />De-select after
two seconds

<input type=”radio” name=”process” />Delete selected text.

</form>

selection.type

1065Chapter 35 ✦ Body Text Objects

<p onmouseup=”processSelection()”>Lorem ipsum dolor sit amet,
consectetaur adipisicing elit, sed do eiusmod tempor incididunt ut
labore et dolore magna aliqua. Ut enim adminim veniam, quis nostrud
exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.
Duis aute irure dolor in reprehenderit involuptate velit esse cillum
dolore eu fugiat nulla pariatur.</p>

</body>
</html>

Related Items: TextRange.select() method.

typeDetail
Value: See text. Read-Only
Compatibility: WinIE5.5+, MacIE-, NN-, Moz-, Safari-

The typeDetail property serves as a placeholder for applications that use the IE browser
component, in which case the property can serve as a means of providing additional selec-
tion type information.

Related Items: type property.

Methods
addRange(rangeRef)

Returns: Nothing.
Compatibility: WinIE-, MacIE-, NN6+, Moz1+, Safari-

The addRange() method is used to highlight a selection on a page based upon a Range object.
You can add multiple ranges to a selection by making repeated calls to the addRange()
method.

Related Items: removeRange() method.

clear()
Returns: Nothing.
Compatibility: WinIE4+, MacIE-, NN-, Moz-, Safari-

Use the clear() method to delete the current selection from the document. To the user, the
clear() method has the same effect as setting the TextRange.text property to an empty
string. The difference is that you can use the clear() method without having to generate a
text range for the selection. After you delete a selection, the selection.type property
returns None.

Example
See Listing 35-7 earlier in this chapter to see the selection.clear() method at work.

Related Items: selection.empty() method.

selection.clear()

1066 Part IV ✦ JavaScript Core Language Reference

collapse(nodeRef, offset)
Returns: Nothing.
Compatibility: WinIE-, MacIE-, NN6+, Moz1+, Safari-

The collapse() method collapses the current selection to a location specified by the two
parameters, which consist of a node reference and an offset. The nodeRef parameter is a text
or element node in the document tree to which the collapsed selection is to be moved, while
the offset parameter is an integer count of characters or nodes within the target node where
the collapsed selection should be moved.

Related Items: collapseToEnd() and collapseToStart() methods.

collapseToEnd()
collapseToStart()

Returns: Nothing.
Compatibility: WinIE-, MacIE-, NN6+, Moz1+, Safari-

These methods collapse the current selection to a location at the start (collapseToStart())
or end (collapseToEnd()) of the selection. After the collapse, any previously highlighted
selection returns to normal display and the selection contains only one range.

Related Items: collapse() method.

containsNode(nodeRef, entirelyFlag)
Returns: Boolean.
Compatibility: WinIE-, MacIE-, NN6+, Moz1+, Safari-

The containsNode() method returns a Boolean value indicating whether or not the specified
node is contained in the selection. The nodeRef parameter is the node you are checking for
selection containment, while the entirelyFlag parameter specifies whether or not the node
must be contained in its entirety (passing null for the entirelyFlag parameter is usually
sufficient).

createRange()
Returns: TextRange object.
Compatibility: WinIE4+, MacIE-, NN-, Moz-, Safari-

To generate a text range for a user selection in IE, invoke the createRange() method of the
selection object. I’m not sure why the method for the selection object is called create
Range() while text ranges for other valid objects are created with a createTextRange()
method. The result of both methods is a full-fledged TextRange object.

Example
See Listings 15-36 and 15-45 to see the selection.createRange() method turn user selections
into text ranges.

Related Items: TextRange object.

deleteFromDocument()
Returns: Nothing.
Compatibility: WinIE-, MacIE-, NN6+, Moz1+, Safari-

The deleteFromDocument() method deletes the current selection from the document tree.

Related Items: removeRange() method.

selection.collapse

1067Chapter 35 ✦ Body Text Objects

empty()
Returns: Nothing.
Compatibility: WinIE4+, MacIE-, NN-, Moz-, Safari-

The empty() method deselects the current IE selection. After deselection, the selection.
type property returns None. The action of the empty() method is the same as the UnSelect
command invoked via the execCommand() method for a document. If the selection was made
from a TextRange object (via the TextRange.select() method), the empty() method affects
only the visible selection and not the text range.

Example
See Listing 35-7 earlier in this chapter to view the selection.empty() method at work.

Related Items: selection.clear() method.

extend(nodeRef, offset)
Returns: Nothing.
Compatibility: WinIE-, MacIE-, NN6+, Moz1+, Safari-

The extend() method extends the boundary of the selection to the specified node (nodeRef)
and offset (offset) within that node. The start of the boundary (anchor node) remains unaf-
fected by this method; only the end of the boundary (focus node) is altered.

getRangeAt(rangeIndex)
Returns: Range object.
Compatibility: WinIE-, MacIE-, NN6+, Moz1+, Safari-

The getRangeAt() method obtains the range at the specified zero-based index (rangeIndex)
within the selection. You can use the rangeCount property to determine how many ranges
are contained within the selection.

Related Items: rangeCount property.

removeAllRanges()
Returns: Nothing.
Compatibility: WinIE-, MacIE-, NN6+, Moz1+, Safari-

The removeAllRanges() method empties the selection by removing all of the ranges from it.
Upon calling this method, the selection collapses and the rangeCount property goes to zero;
the document tree remains unaffected.

Related Items: removeRange() method.

removeRange(rangeRef)
Returns: Nothing.
Compatibility: WinIE-, MacIE-, NN6+, Moz1+, Safari-

The removeRange() method removes the specified range (rangeRef) from the selection, but
not from the document tree.

Related Items: removeAllRanges() method.

selection.removeRange()

1068 Part IV ✦ JavaScript Core Language Reference

selectAllChildren(elementNodeRef)
Returns: Nothing.
Compatibility: WinIE-, MacIE-, NN6+, Moz1+, Safari-

The selectAllChildren() method forces the selection to encompass the specified node
(elementNodeRef) and all of its children. Calling this method on an element node results in
the anchor and focus nodes being set to that node.

toString()
Returns: String.
Compatibility: WinIE-, MacIE-, NN6+, Moz1+, Safari-

The toString() method returns a string representation of the selection, which is the body
content from the selection minus tags and attributes.

Text and TextNode Objects
Compatibility: WinIE5+, MacIE5+, NN6+, Moz1+, Safari1+

Properties Methods Event Handlers

attributes† appendChild()†

childNodes† appendData()
data cloneNode()†

firstChild† deleteData()
lastChild† hasChildNodes()†

length† insertBefore()†

localName† insertData()
namespaceURI† normalize()†

nextSibling† removeChild()†

nodeName† replaceChild()†

nodeType† replaceData()
nodeValue† splitText()
ownerDocument† substringData()
parentNode†

prefix†

previousSibling†

†See Chapter 15.

selection.selectAllChildren()

1069Chapter 35 ✦ Body Text Objects

Syntax
Accessing Text and TextNode object properties or methods:

(IE5+/W3C) [window.]document.getElementById(“id”).textNodeRef.property | method()

About this object
Discussing the Text object of the W3C DOM (as implemented in NN6+/Moz) in the same
breath as the IE5+ TextNode object is a little tricky. Conceptually, they are the same kind of
object in that they are the document tree objects — text nodes — that contain an HTML ele-
ment’s text (see Chapter 14 for details on the role of the text node in the document object
hierarchy). Generating a new text node by script is achieved the same way in both object mod-
els: document.createTextNode(). What makes the discussion of the two objects tricky is
that while the W3C DOM version comes from a strictly object-oriented specification (in which
a text node is an instance of a CharacterData object, which, in turn is an instance of the
generic Node object), the IE object model is not quite as complete. For example, while the
W3C DOM Text object inherits all of the properties and methods of the CharacterData and
Node definitions, the IE TextNode object exposes only those properties and method that
Microsoft deems appropriate.

No discrepancy in terminology gets in the way as to what to call these objects because their
object names never become part of the script. Instead script statements always refer to text
nodes by other means, such as through a child node-related property of an element object or
as a variable that receives the result of the document.createTextNode() method.

Although both objects share a number of properties and one method, the W3C DOM Text
object contains a few methods that have “data” in their names. These properties and methods
are inherited from the CharacterData object in the DOM specification. They are discussed
as a group in the section about object methods in this chapter. In all cases, check the browser
version support for each property and method described here.

Properties
data

Value: String. Read/Write
Compatibility: WinIE5+, MacIE5+, NN6+, Moz1+, Safari1+

The data property contains the string comprising the text node. Its value is identical to the
nodeValue property of a text node. See the description of the nodeValue property in
Chapter 15.

Example
In the example for the nodeValue property used in a text replacement script (in Chapter 1 of
this book), you can substitute the data property for nodeValue to accomplish the same result.

Related Items: nodeValue property of all element objects (Chapter 15).

TextNode.data

1070 Part IV ✦ JavaScript Core Language Reference

Methods
appendData(“text”)
deleteData(offset, count)
insertData(offset, “text”)
replaceData(offset, count, “text”)
substringData(offset, count)

Returns: See text.
Compatibility: WinIE6+, MacIE5+, NN6+, Moz1+, Safari1+

These five methods of the W3C DOM Text object provide scripted manipulation of the text
inside a text node. Methods that modify the node’s data automatically change the values of
both the data and nodeValue properties.

The purposes of these methods are obvious for the most part. Any method that requires an
offset parameter uses this integer value to indicate where in the existing text node the dele-
tion, insertion, or replacement starts. Offsets are zero-based, meaning that to indicate the
action should take place starting with the first character, specify a zero for the parameter. A
count parameter is another integer, but one that indicates how many characters are to be
included. For example, consider a text node that contains the following data:

abcdefgh

This node could be a node of an element on the page or a node that has been created and
assigned to a variable but not yet inserted into the page. To delete the first three characters
of that text node, the statement is

textNodeReference.deleteData(0,3)

This leaves the text node content as

defgh

As for the replaceData() method, the length of the text being put in place of the original
chunk of text need not match the count parameter. The count parameter, in concert with the
offset parameter, defines what text is to be removed and replaced by the new text.

The substringData() method is similar to the JavaScript core language String.substr()
method in that both require parameters indicating the offset within the string to start reading
and for how many characters. You get the same result with the substringData() method of
a text node as you do from a nodeValue.substr() method when both are invoked from a
valid text node object.

Of all five methods discussed here, only substringData() returns a value: a string.

Example
The page created by Listing 35-8 is a working laboratory that you can use to experiment with
the five data-related methods in NN6+/Moz/Safari. The text node that invokes the methods is
a simple sentence in a p element. Each method has its own clickable button, followed by two
or three text boxes into which you enter values for method parameters. Don’t be put off by
the length of the listing. Each method’s operation is confined to its own function and is fairly
simple.

TextNode.appendData()

1071Chapter 35 ✦ Body Text Objects

Each of the data-related methods throws exceptions of different kinds. To help handle these
errors gracefully, the method calls are wrapped inside a try/catch construction. All caught
exceptions are routed to the handleError() function where details of the error are inspected
and friendly alert messages are displayed to the user. See Chapter 39 on the CD-ROM for details
on the try/catch approach to error handling in W3C DOM-capable browsers.

Listing 35-8: Text object Data Method Laboratory

<html>
<head>

<title>Data Methods of a W3C Text Object</title>
<script type=”text/javascript”>
function doAppend(form) {

var node = document.getElementById(“myP”).firstChild;
var newString = form.appendStr.value;
try {

node.appendData(newString);
}
catch(err) {

handleError(err);
}

}

function doDelete(form) {
var node = document.getElementById(“myP”).firstChild;
var offset = form.deleteOffset.value;
var count = form.deleteCount.value;
try {

node.deleteData(offset, count);
}
catch(err) {

handleError(err);
}

}

function doInsert(form) {
var node = document.getElementById(“myP”).firstChild;
var offset = form.insertOffset.value;
var newString = form.insertStr.value;
try {

node.insertData(offset, newString);
}
catch(err) {

handleError(err);
}

}

function doReplace(form) {
var node = document.getElementById(“myP”).firstChild;
var offset = form.replaceOffset.value;
var count = form.replaceCount.value;
var newString = form.replaceStr.value;

Continued

TextNode.appendData()

1072 Part IV ✦ JavaScript Core Language Reference

Listing 35-8 (continued)

try {
node.replaceData(offset, count, newString);

} catch(err) {
handleError(err);

}
}

function showSubstring(form) {
var node = document.getElementById(“myP”).firstChild;
var offset = form.substrOffset.value;
var count = form.substrCount.value;
try {

alert(node.substringData(offset, count));
}
catch(err) {

handleError(err);
}

}

// error handler for these methods
function handleError(err) {

switch (err.name) {
case “NS_ERROR_DOM_INDEX_SIZE_ERR”:

alert(“The offset number is outside the allowable range.”);
break;

case “NS_ERROR_DOM_NOT_NUMBER_ERR”:
alert(“Make sure each numeric entry is a valid number.”);
break;

default:
alert(“Double-check your text box entries.”);

}
}
</script>

</head>
<body>

<h1>Data Methods of a W3C Text Object</h1>
<hr />
<p id=”myP” style=”font-weight:bold; text-align:center”>

So I called myself Pip, and became to be called Pip.</p>
<form name=”choices”>

<p><input type=”button” onclick=”doAppend(this.form)”
value=”appendData()” /> String:<input type=”text” name=”appendStr”
size=”30” /></p>

<p><input type=”button” onclick=”doDelete(this.form)”
value=”deleteData()” /> Offset:<input type=”text”
name=”deleteOffset” size=”3” /> Count:<input type=”text”
name=”deleteCount” size=”3” /></p>

<p><input type=”button” onclick=”doInsert(this.form)”
value=”insertData()” /> Offset:<input type=”text”
name=”insertOffset” size=”3” /> String:<input type=”text”
name=”insertStr” size=”30” /></p>

<p><input type=”button” onclick=”doReplace(this.form)”
value=”replaceData()” /> Offset:<input type=”text”
name=”replaceOffset” size=”3” /> Count:<input type=”text”
name=”replaceCount” size=”3” /> String:<input type=”text”
name=”replaceStr” size=”30” /></p>

TextNode.appendData()

1073Chapter 35 ✦ Body Text Objects

<p><input type=”button” onclick=”showSubstring(this.form)”
value=”substringData()” /> Offset:<input type=”text”
name=”substrOffset” size=”3” /> Count:<input type=”text”
name=”substrCount” size=”3” /></p>

</form>
</body>

</html>

Related Items: appendChild(), removeChild(), replaceChild() methods of element
objects (Chapter 15).

splitText(offset)
Returns: Text or TextNode object.
Compatibility: WinIE6+, MacIE5+, NN6+, Moz1+, Safari1+

The splitText() method performs multiple actions with one blow. The offset parameter is
an integer indicating the zero-based index position within the text node at which the node is
to divide into two nodes. After you invoke the method on the current text node, the current
node consists of the text from the beginning of the node up to the offset position. The method
returns a reference to the text node whose data starts with the character after the dividing
point and extends to the end of the original node. Users won’t notice any change in the ren-
dered text: This method influences only the text node structure of the document. Using this
method means, for example, that an HTML element that starts with only one text node will
have two after the splitText() method is invoked. The opposite action (combining contigu-
ous text node objects into a single node) is performed by the NN6+ normalize() method
(see Chapter 15).

Example
Use The Evaluator (Chapter 13) to see the splitText() method in action. Begin by verifying
that the myEM element has but one child node, and that its nodeValue is the string “all”:

document.getElementById(“myEM”).childNodes.length
document.getElementById(“myEM”).firstChild.nodeValue

Next, split the text node into two pieces after the first character:

document.getElementById(“myEM”).firstChild.splitText(1)

Two text nodes are now inside the element:

document.getElementById(“myEM”).childNodes.length

Each text node contains its respective portion of the original text:

document.getElementById(“myEM”).firstChild.nodeValue
document.getElementById(“myEM”).lastChild.nodeValue

If you are using NN6+/Moz/Safari, now bring the text nodes back together:

document.getElementById(“myEM”).normalize()
document.getElementById(“myEM”).childNodes.length

At no time during these statement executions does the rendered text change.

Related Items: normalize() method (Chapter 15).

TextNode.splitText()

1074 Part IV ✦ JavaScript Core Language Reference

TextRange Object
Compatibility: WinIE4+, MacIE-, NN-, Moz-, Safari-

Properties Methods Event Handlers

boundingHeight collapse()
boundingLeft compareEndPoints()
boundingTop duplicate()
boundingWidth execCommand()
htmlText expand()
offsetLeft† findText()
offsetTop† getBookmark()
text getBoundingClientRect()†

getClientRects()†

inRange()
isEqual()
move()
moveEnd()
moveStart()
moveToBookmark()
moveToElementText()
moveToPoint()
parentElement()
pasteHTML()
queryCommandEnabled()
queryCommandIndeterm()
queryCommandState()
queryCommandSupported()
queryCommandValue()
scrollIntoView()†

select()
setEndPoint()

†See Chapter 15.

Syntax
Creating a TextRange object:

var rangeRef = document.body.createTextRange();
var rangeRef = buttonControlRef.createTextRange();
var rangeRef = textControlRef.createTextRange();
var rangeRef = document.selection.createRange();

Accessing TextRange object properties or methods:

(IE4+) rangeRef.property | method([parameters])

TextRange

1075Chapter 35 ✦ Body Text Objects

About this object
Unlike most of the objects covered in Part III of the book, the IE4+ TextRange object is not tied
to a specific HTML element. The TextRange object is, instead, an abstract object that repre-
sents text content anywhere on the page (including text content of a text-oriented form control)
between a start point and an end point (collectively, the boundaries of the range). The user
may not necessarily know that a TextRange object exists, because no requirement exists to
force a TextRange object to physically select text on the page (although the TextRange object
can be used to assist scripts in automating the selection of text; or a script may turn a user
selection into a TextRange object for further processing).

The purpose of the TextRange object is to give scripts the power to examine, modify, remove,
replace, and insert content on the page. Start and end points of an IE TextRange object are
defined exclusively in terms of character positions within the element that is used to create
the range (usually the body element, but also button- and text-related form control elements).
Character positions of body text do not take into account source code characters that may
define HTML elements. This factor is what distinguishes a TextRange’s behavior from, for
instance, the various properties and methods of HTML elements that let you modify or copy
elements and their text (for example, innerText and outerText properties). A TextRange
object’s start point can be in one element, and its end point in another. For example, consider
the following HTML:

<p>And now to introduce our very special guest:</p>

If the text shown in boldface indicates the content of a TextRange object, you can see that the
range crosses element boundaries in a way that makes HTML element object properties diffi-
cult to use for replacing that range with some other text. Challenges still remain in this exam-
ple, however. Simply replacing the text of the range with some other text forces your script
(or the browser) to reconcile the issue of what to do about the nested em element, because
the TextRange object handles only its text. (Your word processing program must address the
same kind of issue when you select a phrase that starts in italic but ends in normal font, and
then you paste text into that selection.)

An important aspect of the TextRange object is that the size of the range can be zero or more
characters. Start and end points always position themselves between characters. When the
start point and end point of a range are at the same location, the range acts as a text insertion
pointer. In fact, when the TextRange object represents text inside a text-related form control,
the select() method of the TextRange object can be used to display the text insertion pointer
where your script desires. Therefore, through the TextRange object you can script your forms
to always display the text insertion pointer at the end of existing text in a text box or textarea
when the control receives focus.

Working with text ranges
To create a TextRange object, use the createTextRange() method with the document.body
object or any button- or text-related form control object. If you want to convert a block of
selected text to a text range, use the special createRange() method of the document.
selection object. Regardless of how you create it, the range encompasses the entire text of
the object used to generate the range. In other words, the start point is at the very beginning
of the text and the end point is at the very end. Note that when you create a TextRange object
from the body element, text that is inside text-related form controls is not part of the text of
the TextRange (just as text field content isn’t selected if you select manually the entire text
of the page).

TextRange

1076 Part IV ✦ JavaScript Core Language Reference

After you create a TextRange object (assigned to a variable), the typical next steps involve
some of the many methods associated with the object that help narrow the size of the range.
Some methods (move(), moveEnd(), moveStart(), and sentEndPoint()) offer manual
control over the intra-character position for the start and end points. Parameters of some
of these methods understand concepts, such as words and sentences, so not every action
entails tedious character counts. Another method, moveToElementText(), automatically
adjusts the range to encompass a named element. The oft-used collapse() method brings
the start and end points together at the beginning or end of the current range — helpful when
a script must iterate through a range for tasks, such as word counting or search and replace.
The expand() method can extend a collapsed range to encompass the whole word, whole
sentence, or entire range surrounding the insertion point. Perhaps the most powerful method
is findText(), which allows scripts to perform single or global search-and-replace opera-
tions on body text.

After the range encompasses the desired text, several other methods let scripts act on the
selection. The types of operations include scrolling the page to make the text represented by
the range visible to the user (scrollIntoView()) and selecting the text (select()) to pro-
vide visual feedback to the user that something is happening (or to set the insertion pointer
at a location in a text form control). An entire library of additional commands are accessed
through the execCommand() method for operations, such as copying text to the clipboard
and a host of formatting commands that can be used in place of stylesheet property changes.
To swap text from the range with new text accumulated by your script, you can modify the
text property of the range.

Using the TextRange object can be a bit tedious, because it often requires a number of script
statements to execute an action. Three basic steps are generally required to work with a
TextRange object:

1. Create the text range.

2. Set the start and end points.

3. Act on the range.

As soon as you are comfortable with this object, you will find it provides a lot of flexibility in
scripting interaction with body content. For ideas about applying the TextRange object in
your scripts, see the examples that accompany the following descriptions of individual prop-
erties and methods.

About browser compatibility
The TextRange object is available only for 32-bit versions of IE4 and later. There is no sup-
port for the TextRange object in MacIE.

The W3C DOM and NN6+ implement a slightly different concept of text ranges in what they
call the Range object. In many respects, the fundamental way of working with a Range object
is the same as for a TextRange object: create, adjust start and end points, and act on the range.
But the W3C version (like the W3C DOM itself) is more conscious of the node hierarchy of a
document. Properties and methods of the W3C Range object reflect this node-centric point of
view, so that most of the terminology for the Range object differs from that of the IE TextRange
object. As of this writing, it is unknown if or when IE will implement the W3C Range object.

At the same time, the W3C Range object lacks a couple of methods that are quite useful with
the IE TextRange object — notably findText() and select(). On the other hand, the Range
object, as implemented in NN6+/Moz, works on all OS platforms and is also implemented in
Apple Safari for Mac OS X.

TextRange

1077Chapter 35 ✦ Body Text Objects

The bottom-line question, then, is whether you can make range-related scripts work in both
browsers. While the basic sequence of operations is the same for both objects, the scripting
vocabulary is quite different. Table 35-1 presents a summary of the property and method
behaviors that the two objects have in common and their respective vocabulary terms (some-
times the value of a property in one object is accessed via a method in the other object).
Notice that the ways of moving individual end points are not listed in the table because the
corresponding methods for each object (for example, moveStart() in TextRange versus
setStart() in Range) use very different spatial paradigms.

Table 35-1: TextRange versus Range Common Denominators

TextRange Object Range Object

text toString()
collapse() collapse()
compareEndPoints() compareEndPoints()
duplicate() clone()
moveToElementText() selectContents()
parentElement() commonParent

To blend text range actions for both object models into a single scripted page, you have to
include script execution branches for each category of object model or create your own API
to invoke library functions that perform the branching. On the IE side of things, too, you
have to script around actions that can cause script errors when run on MacOS and other
non-Windows versions of the browser.

Properties
boundingHeight
boundingLeft
boundingTop
boundingWidth

Value: Integer. Read-Only
Compatibility: WinIE4+, MacIE-, NN-, Moz-, Safari-

Every text range has physical dimension and location on the page, even if you cannot see the
range reflected graphically with highlighting. Even a text insertion pointer (meaning a col-
lapsed text range) has a rectangle whose height equals the line height of the body text in
which the insertion point resides; its width, however, is zero.

The pixel dimensions of the rectangle of a text range can be retrieved via the boundingHeight
and boundingWidth properties of the TextRange object. When a text range extends across
multiple lines, the dimensions of the rectangle are equal to the smallest single rectangle that
can contain the text (a concept identical to the bounding rectangle of inline body text, as
described in the TextRectangle object later in this chapter). Therefore, even a range con-
sisting of one character at the end of one line and another character at the beginning of the
next, force the bounding rectangle to be as wide as the paragraph element.

TextRange.boundingHeight

1078 Part IV ✦ JavaScript Core Language Reference

A text range rectangle has a physical location on the page. The top-left position of the rectangle
(with respect to the browser window edge) is reported by the boundingTop and boundingLeft
properties. In practice, text ranges that are generated from selections can report very odd
boundingTop values in IE4 when the page scrolls. Use the offsetTop and offsetLeft prop-
erties for more reliable results.

Example
Listing 35-9 provides a simple playground to explore the four bounding properties (and two
offset properties) of a TextRange object. As you select text in the big paragraph, the values of
all six properties are displayed in the table. Values are also updated if you resize the window
via an onresize event handler.

Notice, for example, if you simply click in the paragraph without dragging a selection, the
boundingWidth property shows up as zero. This action is the equivalent of a TextRange
acting as an insertion point.

Listing 35-9: Exploring the Bounding TextRange Properties

<html>
<head>

<title>TextRange Object Dimension Properties</title>
<style type=”text/css”>
td {text-align:center}
.propName {font-family: Courier, monospace}
</style>
<script type=”text/javascript”>
function setAndShowRangeData() {

var range = document.selection.createRange();
B1.innerText = range.boundingHeight;
B2.innerText = range.boundingWidth;
B3.innerText = range.boundingTop;
B4.innerText = range.boundingLeft;
B5.innerText = range.offsetTop;
B6.innerText = range.offsetLeft;

}
</script>

</head>
<body onresize=”setAndShowRangeData()”>

<h1>TextRange Object Dimension Properties</h1>
<hr />
<p>Select text in the paragraph below and observe the “bounding” property

values for the TextRange object created for that selection.</p>
<table id=”results” border=”1” cellspacing=”2” cellpadding=”2”>

<tr>
<th>Property</th>
<th>Pixel Value</th>

</tr>
<tr>

<td class=”propName”>boundingHeight</td>
<td class=”count” id=”B1”> </td>

</tr>
<tr>

<td class=”propName”>boundingWidth</td>
<td class=”count” id=”B2”> </td>

</tr>

TextRange.boundingHeight

1079Chapter 35 ✦ Body Text Objects

<tr>
<td class=”propName”>boundingTop</td>
<td class=”count” id=”B3”> </td>

</tr>
<tr>

<td class=”propName”>boundingLeft</td>
<td class=”count” id=”B4”> </td>

</tr>
<tr>

<td class=”propName”>offsetTop</td>
<td class=”count” id=”B5”> </td>

</tr>
<tr>

<td class=”propName”>offsetLeft</td>
<td class=”count” id=”B6”> </td>

</tr>
</table>
<hr />
<p onmouseup=”setAndShowRangeData()”>Lorem ipsum dolor sit amet,

consectetaur adipisicing elit, sed do eiusmod tempor incididunt ut
labore et dolore magna aliqua. Ut enim adminim veniam, quis nostrud
exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.
Duis aute irure dolor in reprehenderit involuptate velit esse cillum
dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat
non proident, sunt in culpa qui officia deseruntmollit anim id est
laborum Et harumd und lookum like Greek to me, dereud facilis est er
expedit.</p>

</body>
</html>

Related Items: offsetLeft, offsetTop properties of element objects (Chapter 15).

htmlText
Value: String. Read-Only
Compatibility: WinIE4+, MacIE-, NN-, Moz-, Safari-

The htmlText property returns the HTML of the text contained by a text range. If a range’s
start and end points are at the very edges of an element’s text, the HTML tag for that element
becomes part of the htmlText property value. Also, if the range starts in one element and
ends partway in another, the tags that influence the text of the end portion become part of
the htmlText. This property is read-only, so you cannot use it to insert or replace HTML
in the text range (see the pasteHTML() method and various insert commands associated
with the execCommand() method in the following section).

Example
Use The Evaluator (Chapter 13) to investigate values returned by the htmlText property. Use
the top text box to enter the following statements and see the values in the Results box.

Begin by creating a TextRange object for the entire body and store the range in local variable a:

a = document.body.createTextRange()

Next, use the findText() method to set the start and end points of the text range around the
word “all,” which is an em element inside the myP paragraph:

a.findText(“all”)

TextRange.htmlText

1080 Part IV ✦ JavaScript Core Language Reference

The method returns true (see the findText() method) if the text is found and the text range
adjusts to surround it. To prove that the text of the text range is what you think it is, examine
the text property of the range:

a.text

Because the text range encompasses all of the text of the element, the htmlText property
contains the tags for the element as well:

a.htmlText

If you want to experiment by finding other chunks of text and looking at both the text and
htmlText properties, first restore the text range to encompass the entire body with the fol-
lowing statement:

a.expand(“textEdit”)

You can read about the expand() method later in this chapter. In other tests, use findText()
to set the range to “for all” and just “for al.” Then, see how the htmlText property exposes
the em element’s tags.

Related Items: text property.

text
Value: String. Read/Write
Compatibility: WinIE4+, MacIE-, NN-, Moz-, Safari-

Use the text property to view or change the string of visible characters that comprise a text
range. The browser makes some decisions for you if the range you are about to change has
nested elements inside. By and large, the nested element (and any formatting that may be
associated with it) is deleted, and the new text becomes part of the text of the container that
houses the start point of the text range. By the same token, if the range starts in the middle of
one element and ends in the parent element’s text, the tag that governs the start point now
wraps all of the new text.

Example
See Listing 35-11 later in this chapter for the findText() method to see the text property
used to perform the replace action of a search-and-replace function.

Related Items: htmlText property.

Methods
collapse([startBoolean])

Returns: Nothing.
Compatibility: WinIE4+, MacIE-, NN-, Moz-, Safari-

Use the collapse() method to shrink a text range from its current size down to a single
insertion point between characters. This method becomes more important than you may
think at first, especially in a function that is traversing the body or large chunk of text. For
example, in a typical looping word-counting script, you create a text range that encompasses
the full body (or text in a textarea). When the range is created, its start point is at the very
beginning of the text, and its end point is at the very end. To begin counting words, you can
first collapse the range to the insertion point at the very beginning of the range. Next, use the
expand() method to set the range to the first word of text (and increment the counter if the

TextRange.htmlText

1081Chapter 35 ✦ Body Text Objects

expand() method returns true). At that point, the text range extends around the first word.
What you want is for the range to collapse at the end of the current range so that the search
for the next word starts after the current one. Use collapse() once more, but this time with
a twist of parameters.

The optional parameter of the collapse() method is a Boolean value that directs the range
to collapse itself either at the start or end of the current range. The default behavior is the
equivalent of a value of true, which means that unless otherwise directed, a collapse()
method shifts the text range to the point in front of the current range. That works great as an
early step in the word-counting example, because you want the text range to collapse to the
start of the text before doing any counting. But for subsequent movements through the range,
you want to collapse the range so that it is after the current range. Thus, you include a false
parameter to the collapse() method.

Example
See Listings 35-11 and 15-14 to see the collapse() method at work.

Related Items: Range.collapse(), TextRange.expand() methods.

compareEndPoints(“type”, rangeRef)
Returns: Integer (-1, 0, or 1).
Compatibility: WinIE4+, MacIE-, NN-, Moz-, Safari-

Generating multiple TextRange objects and assigning them to different variables is no prob-
lem. You can then use the compareEndPoints() method to compare the relative positions of
start and end points of two ranges. One range is the object that you use to invoke the compare
EndPoints() method, and the other range is the second parameter of the method. The order
doesn’t matter, because the first parameter of the method determines which points in each
range you will be comparing.

Values for the first parameter can be one of four explicit strings: StartToEnd, StartToStart,
EndToStart, and EndToEnd. What these values specify is which point of the current range is
compared with which point of the range passed as the second parameter. For example, con-
sider the following body text that has two text ranges defined within it:

It was the best of times.

The first text range (assigned in our discussion here to variable rng1) is shown in boldface,
while the second text range (rng2) is shown in bold-italic. In other words, rng2 is nested inside
rng1. We can compare the position of the start of rng1 against the position of the start of rng2
by using the StartToStart parameter of the compareEndPoints() method:

var result = rng1.compareEndPoints(“StartToStart”, rng2);

The value returned from the compareEndPoints() method is an integer of one of three values.
If the positions of both points under test are the same, the value returned is 0. If the first point
is before the second, the value returned is -1; if the first point is after the second, the value is
1. Therefore, from the example above, because the start of rng1 is before the start of rng2,
the method returns -1. If you changed the statement to invoke the method on rng2, as in

var result = rng2.compareEndPoints(“StartToStart”, rng1);

the result would be 1.

In practice, this method is helpful in knowing if two ranges are the same, if one of the bound-
ary points of both ranges is the same, or if one range starts where the other ends.

TextRange.compareEndPoints()

1082 Part IV ✦ JavaScript Core Language Reference

Example
The page rendered by Listing 35-10 lets you experiment with text range comparisons. The
bottom paragraph contains a span element that has a TextRange object assigned to its text
after the page loads (in the init() function). That fixed range becomes a solid reference
point for you to use while you select text in the paragraph. After you make a selection, all
four versions of the compareEndPoints() method run to compare the start and end points
of the fixed range against your selection. One column of the results table shows the raw value
returned by the compareEndPoints() method, while the third column puts the results into
plain language.

To see how this page works, begin by selecting the first word of the fixed text range (double-
click the word). You can see that the starting positions of both ranges are the same, because
the returned value is 0. Because all of the invocations of the compareEndPoints() method
are on the fixed text range, all comparisons are from the point of view of that range. Thus, the
first row of the table for the StartToEnd parameter indicates that the start point of the fixed
range comes before the end point of the selection, yielding a return value of -1.

Other selections to make include:

✦ Text that starts before the fixed range and ends inside the range

✦ Text that starts inside the fixed range and ends beyond the range

✦ Text that starts and ends precisely at the fixed range boundaries

✦ Text that starts and ends before the fixed range

✦ Text that starts after the fixed range

Study the returned values and the plain language results and see how they align with the
selection you make.

Listing 35-10: Lab for compareEndPoints() Method

<html>
<head>

<title>TextRange.compareEndPoints() Method</title>
<style type=”text/css”>
td {text-align:center}
.propName {font-family:Courier, monospace}
#fixedRangeElem {color:red; font-weight:bold}
</style>
<script type=”text/javascript”>
var fixedRange;

function setAndShowRangeData() {
var selectedRange = document.selection.createRange();
var result1 = fixedRange.compareEndPoints(“StartToEnd”,

selectedRange);
var result2 = fixedRange.compareEndPoints(“StartToStart”,

selectedRange);
var result3 = fixedRange.compareEndPoints(“EndToStart”,

selectedRange);
var result4 = fixedRange.compareEndPoints(“EndToEnd”, selectedRange);

B1.innerText = result1;
compare1.innerText = getDescription(result1);
B2.innerText = result2;

TextRange.compareEndPoints()

1083Chapter 35 ✦ Body Text Objects

compare2.innerText = getDescription(result2);
B3.innerText = result3;
compare3.innerText = getDescription(result3);
B4.innerText = result4;
compare4.innerText = getDescription(result4);

}

function getDescription(comparisonValue) {
switch (comparisonValue) {
case -1 :

return “comes before”;
break;

case 0 :
return “is the same as”;
break;

case 1 :
return “comes after”;
break;

default :
return “vs.”;

}
}

function init() {
fixedRange = document.body.createTextRange();
fixedRange.moveToElementText(fixedRangeElem);

}
</script>

</head>
<body onload=”init()”>

<h1>TextRange.compareEndPoints() Method</h1>
<hr />
<p>Select text in the paragraph in various places relative to the fixed

text range (shown in red). See the relations between the fixed and
selected ranges with respect to their start and end points.</p>

<table id=”results” border=”1” cellspacing=”2” cellpadding=”2”>
<tr>

<th>Property</th>
<th>Returned Value</th>
<th>Fixed Range vs. Selection</th>

</tr>
<tr>

<td class=”propName”>StartToEnd</td>
<td class=”count” id=”B1”> </td>
<td class=”count” id=”C1”>Start of Fixed <span
id=”compare1”>vs. End of Selection</td>

</tr>
<tr>

<td class=”propName”>StartToStart</td>
<td class=”count” id=”B2”> </td>
<td class=”count” id=”C2”>Start of Fixed <span
id=”compare2”>vs. Start of Selection</td>

</tr>
<tr>

<td class=”propName”>EndToStart</td>
<td class=”count” id=”B3”> </td>
<td class=”count” id=”C3”>End of Fixed <span
id=”compare3”>vs. Start of Selection</td>

Continued

TextRange.compareEndPoints()

1084 Part IV ✦ JavaScript Core Language Reference

Listing 35-10 (continued)

</tr>
<tr>

<td class=”propName”>EndToEnd</td>
<td class=”count” id=”B4”> </td>
<td class=”count” id=”C4”>End of Fixed <span
id=”compare4”>vs. End of Selection</td>

</tr>
</table>
<hr />
<p onmouseup=”setAndShowRangeData()”>Lorem ipsum dolor sit,

consectetaur adipisicing elit,
sed do eiusmod tempor incididunt ut labore et dolore aliqua.
Ut enim adminim veniam, quis nostrud exercitation ullamco laboris
nisi ut aliquip ex ea commodo consequat.</p>

</body>
</html>

Related Items: Range.compareEndPoints() method.

duplicate()
Returns: TextRange object.
Compatibility: WinIE4+, MacIE-, NN-, Moz-, Safari-

The duplicate() method returns a TextRange object that is a snapshot copy of the current
TextRange object. In a way, a non-intuitive relationship exists between the two objects. If you
alter the text property of the copy without moving the start or end points of the original, the
original takes on the new text. But if you move the start or end points of the original, the text
and htmlText of the original obviously change, while the copy retains its properties from the
time of the duplication. Therefore, this method can be used to clone text from one part of the
document to other parts.

Example
Use The Evaluator (Chapter 13) to see how the duplicate() method works. Begin by creating
a new TextRange object that contains the text of the myP paragraph element:

a = document.body.createTextRange()
a.moveToElementText(myP)

Next, clone the original range and preserve the copy in variable b:

b = a.duplicate()

The method returns no value, so don’t be alarmed by the “undefined” that appears in the
Results box. Move the original range so that it is an insertion point at the end of the body
by first expanding it to encompass the entire body, and then collapse it to the end:

a.expand(“textedit”)
a.collapse(false)

Now, insert the copy at the very end of the body:

a.text = b.text

TextRange.compareEndPoints()

1085Chapter 35 ✦ Body Text Objects

If you scroll to the bottom of the page, you’ll see a copy of the text.

Related Items: Range.clone(), TextRange.isEqual() methods.

execCommand(“commandName”[, UIFlag[, value]])
Returns: Boolean.
Compatibility: WinIE4+, MacIE-, NN-, Moz-, Safari-

IE4+ for Win32 operating systems lets scripts access a very large number of commands that
act on insertion points, abstract text ranges, and selections that are made with the help of the
TextRange object. Access to these commands is through the execCommand() method, which
works with TextRange objects and the document object (see the document.execCommand()
method discussion in Chapter 18 and list of document- and selection-related commands in
Table 18-3).

The first, required parameter is the name of the command that you want to execute. Only a
handful of these commands offer unique capabilities that aren’t better accomplished within
the IE object model and stylesheet mechanism. Of particular importance is the command that
lets you copy a text range into the Clipboard. Most of the rest of the commands modify styles
or insert HTML tags at the position of a collapsed text range. These actions are better handled
by other means, but they are included in Table 35-2 for the sake of completeness only (see
Table 18-3 for additional commands).

Table 35-2: TextRange.execCommand() Commands

Command Parameter Description

Bold None Encloses the text range in a tag pair

Copy None Copies the text range into the Clipboard

Cut None Copies the text range into the Clipboard and deletes it from
the document or text control

Delete None Deletes the text range

InsertButton ID String Inserts a <button> tag at the insertion point, assigning
the parameter value to the id attribute

InsertFieldset ID String Inserts a <fieldset> tag at the insertion point, assigning
the parameter value to the id attribute

InsertHoritontalRule ID String Inserts an <hr> tag at the insertion point, assigning the
parameter value to the id attribute

InsertIFrame ID String Inserts an <iframe> tag at the insertion point, assigning
the parameter value to the id attribute

InsertInputButton ID String Inserts an <input type=”button”> tag at the insertion
point, assigning the parameter value to the id attribute

InsertIntpuCheckbox ID String Inserts an <input type=”checkbox”> tag at the inser-
tion point, assigning the parameter value to the id attribute

InsertInputFileUpload ID String Inserts an <input type=”FileUpload”> tag at the
insertion point, assigning the parameter value to the id
attribute

InsertInputHidden ID String Inserts an <input type=”hidden”> tag at the insertion
point, assigning the parameter value to the id attribute

Continued

TextRange.execCommand()

1086 Part IV ✦ JavaScript Core Language Reference

Table 35-2 (continued)

Command Parameter Description

InsertInputImage ID String Inserts an <input type=”image”> tag at the insertion
point, assigning the parameter value to the id attribute

InsertInputPassword ID String Inserts an <input type=”password”> tag at the inser-
tion point, assigning the parameter value to the id attribute

InsertInputRadio ID String Inserts an <input type=”radio”> tag at the insertion
point, assigning the parameter value to the id attribute

InsertInputReset ID String Inserts an <input type=”reset”> tag at the insertion
point, assigning the parameter value to the id attribute

InsertInputSubmit ID String Inserts an <input type=”submit”> tag at the insertion
point, assigning the parameter value to the id attribute

InsertIntputText ID String Inserts an <input type=”text”> tag at the insertion
point, assigning the parameter value to the id attribute

InsertMarquee ID String Inserts a <marquee> tag at the insertion point, assigning
the parameter value to the id attribute

InsertOrderedList ID String Inserts an tag at the insertion point, assigning the
parameter value to the id attribute

InsertParagraph ID String Inserts a <p> tag at the insertion point, assigning the
parameter value to the id attribute

InsertSelectDropdown ID String Inserts a <select type=”select-one”> tag at the
insertion point, assigning the parameter value to the id
attribute

InsertSelectListbox ID String Inserts a <select type=”select-multiple”> tag at
the insertion point, assigning the parameter value to the
id attribute

InsertTextArea ID String Inserts an empty <textarea> tag at the insertion point,
assigning the parameter value to the id attribute

InsertUnorderedList ID String Inserts a tag at the insertion point, assigning the
parameter value to the id attribute

Italic None Encloses the text range in an <i> tag pair

OverWrite Boolean Sets the text input control mode to overwrite (true) or
insert (false)

Paste None Pastes the current Clipboard contents into the insertion
point or selection

PlayImage None Begins playing dynamic images if they are assigned to the
dynsrc attribute of the img element

Refresh None Reloads the current page

StopImage None Stops playing dynamic images if they are assigned to the
dynsrc attribute of the img element

Underline None Encloses the text range in a <u> tag pair

An optional second parameter is a Boolean flag to instruct the command to display any user
interface artifacts that may be associated with the command. The default is false. For the
third parameter, some commands require an attribute value for the command to work. For
example, to insert a new paragraph at an insertion point, you pass the identifier to be assigned
to the id attribute of the p element. The syntax is

TextRange.execCommand()

1087Chapter 35 ✦ Body Text Objects

myRange.execCommand(“InsertParagraph”, true, “myNewP”);

The execCommand() method returns Boolean true if the command is successful; false if not
successful. Some commands can return values (for example, finding out the font name of a
selection), but these values are accessed through the queryCommandValue() method.

Although the commands in Table 35-2 work on text ranges, even the commands that work on
selections (Table 18-3) can frequently benefit from some preprocessing with a text range.
Consider, for example, a function whose job it is to find every instance of a particular word in
a document and set its background color to a yellow highlight. Such a function utilizes the
powers of the findText() method of a text range to locate each instance. Then the select()
method selects the text in preparation for applying the BackColor command. Here is a sample:

function hiliteIt(txt) {
var rng = document.body.createTextRange();
for (var i = 0; rng.findText(txt); i++) {

rng.select();
rng.execCommand(“BackColor”, “false”, “yellow”);
rng.execCommand(“Unselect”);
// prepare for next search
rng.collapse(false);

}
}

This example is a rare case that makes the execCommand() method way of modifying HTML
content more efficient than trying to wrap some existing text inside a new tag. The downside
is that you don’t have control over the methodology used to assign a background color to
a span of text (in this case, IE wraps the text in a tag with a style attribute set to
background-color:yellow— probably not the way you’d do it on your own).

Example
Use The Evaluator (Chapter 13) to see how to copy a text range’s text into the client computer’s
Clipboard. Begin by setting the text range to the myP element:

a = document.body.createTextRange()
a.moveToElementText(myP)

Now use execCommand() to copy the range into the Clipboard:

a.execCommand(“Copy”)

To prove that the text is in the Clipboard, click the bottom text field and choose Paste from
the Edit menu (or type Ctrl+V).

Related Items: Several query command methods of the TextRange object.

expand(“unit”)
Returns: Boolean.
Compatibility: WinIE4+, MacIE-, NN-, Moz-, Safari-

The single expand() method can open any range — collapsed or not — to the next largest
character, word, or sentence or to the entire original range (for example, encompassing the
text of the body element if the range was generated by document.body.createTextRange()).
The parameter is a string designating which unit to expand outward to: character, word,
sentence, or textedit. If the operation is successful, the method returns true; otherwise it
returns false.

TextRange.expand()

1088 Part IV ✦ JavaScript Core Language Reference

When operating from an insertion point, the expand() method looks for the word or sentence
that encloses the point. The routine is not very smart about sentences, however. If you have
some text prior to a sentence that you want to expand to, but that text does not end in a period,
the expand() routine expands outward until it can find either a period or the beginning of the
range. Listing 15-14 demonstrates a workaround for this phenomenon. When expanding from
an insertion point to a character, the method expands forward to the next character in language
order. If the insertion point is at the end of the range, it cannot expand to the next characters,
and the expand() method returns false.

It is not uncommon in an extensive script that needs to move the start and end points all over
the initial range to perform several collapse() and expand() method operations from time
to time. Expanding to the full range is a way to start some range manipulation with a clean
slate, as if you just created the range.

Example
You can find examples of the expand() method in Listing 15-14.

Related Items: TextRange.collapse() method.

findText(“searchString”[, searchScope, flags])
Returns: Boolean.
Compatibility: WinIE4+, MacIE-, NN-, Moz-, Safari-

One of the most useful methods of the TextRange object is findText(), whose default behav-
ior is to look through a text range starting at the range’s start point up to the end of the range
in search of a case-insensitive match for a search string. If an instance is found in the range,
the start and end points of the range are cinched up to the found text and the method returns
true; otherwise it returns false, and the start and end points do not move. Only the rendered
text is searched and not any of the tags or attributes.

Optional parameters let you exert some additional control over the search process. You can
restrict the distance from a collapsed range to be used for searching. The searchScope param-
eter is an integer value indicating the number of characters from the start point. The larger the
number, the more text of the range is included in the search. Negative values force the search
to operate backward from the current start point. If you want to search backward to the begin-
ning of the range, but you don’t know how far away the start of the range is, you can specify
an arbitrarily huge number that would encompass the text.

The optional flags parameter lets you set whether the search is to be case-sensitive and/or
to match whole words only. The parameter is a single integer value that uses bit-wise math to
calculate the single value that accommodates one or both settings. The value for matching
whole words is 2; the value for matching case is 4. If you want only one of those behaviors,
then supply just the desired number. But for both behaviors, use the bit-wise XOR operator
(the ^ operator) on the values to reach a value of 6.

The most common applications of the findText() method include a search-and-replace
action and format changes to every instance of a string within the range. This iterative pro-
cess requires some extra management of the process. Because searching always starts with
the range’s current start point, advancing the start point to the end of the text found in the
range is necessary. This advancing allows a successive application of findText() to look
through the rest of the range for another match. And because findText() ignores the arbi-
trary end point of the current range and continues to the end of the initial range, you can use
the collapse(false) method to force the starting point to the end of the range that con-
tains the first match.

TextRange.expand()

1089Chapter 35 ✦ Body Text Objects

A repetitive search can be accomplished by a while or for repeat loop. The Boolean returned
value of the findText() method can act as the condition for continuing the loop. If the num-
ber of times the search succeeds is not essential to your script, a while loop works nicely:

while (rng.findText(searchString)) {
...
rng.collapse(false);

}

Or you can use a for loop counter to maintain a count of successes, such as a counter of how
many times a string appears in the body:

for (var i = 0; rng.findText(searchString); i++) {
...
rng.collapse(false);

}

Some of the operations you want to perform on a range (such as many of the commands
invoked by the execCommand() method) require that a selection exists for the command to
work. Be prepared to use the select() method on the range after the findText() method
locates a matching range of text.

Example
Listing 35-11 implements two varieties of text search-and-replace operation, while showing you
how to include extra parameters for case-sensitive and whole-word searches. Both approaches
begin by creating a TextRange for the entire body, but they immediately shift the starting point
to the beginning of the div element that contains the text to search.

One search-and-replace function prompts the user to accept or decline replacement for each
instance of a found string. The select() and scrollIntoView() methods are invoked to
help the user see what is about to be replaced. Notice that even when the user declines to
accept the replacement, the text range is collapsed to the end of the found range so that the
next search can begin after the previously found text. Without the collapse() method, the
search can get caught in an infinite loop as it keeps finding the same text over and over (with
no replacement made). Because no counting is required, this search-and-replace operation is
implemented inside a while repeat loop.

The other search-and-replace function goes ahead and replaces every match and then dis-
plays the number of replacements made. After the loop exits (because there are no more
matches), the loop counter is used to display the number of replacements made.

Listing 35-11: Two Search-and-Replace Approaches (with Undo)

<html>
<head>

<title>TextRange.findText() Method</title>
<script type=”text/javascript”>
// global range var for use with Undo
var rng;

// return findText() third parameter arguments
function getArgs(form) {

var isCaseSensitive = (form.caseSensitive.checked) ? 4 : 0;
var isWholeWord = (form.wholeWord.checked) ? 2 : 0;
return isCaseSensitive ^ isWholeWord;

Continued

TextRange.findText()

1090 Part IV ✦ JavaScript Core Language Reference

Listing 35-11 (continued)

}

// prompted search and replace
function sAndR(form) {

var srchString = form.searchString.value;
var replString = form.replaceString.value;
if (srchString) {

var args = getArgs(form);
rng = document.body.createTextRange();
rng.moveToElementText(rights);
clearUndoBuffer();
while (rng.findText(srchString, 10000, args)) {

rng.select();
rng.scrollIntoView();
if (confirm(“Replace?”)) {

rng.text = replString;
pushUndoNew(rng, srchString, replString);

}
rng.collapse(false);

}
}

}

// unprompted search and replace with counter
function sAndRCount(form) {

var srchString = form.searchString.value;
var replString = form.replaceString.value;
var i;
if (srchString) {

var args = getArgs(form);
rng = document.body.createTextRange();
rng.moveToElementText(rights);
for (i = 0; rng.findText(srchString, 10000, args); i++) {

rng.text = replString;
pushUndoNew(rng, srchString, replString);
rng.collapse(false);

}
if (i > 1) {

clearUndoBuffer();
}

}
document.getElementById(“counter”).innerText = i;

}

// BEGIN UNDO BUFFER CODE
// buffer global variables
var newRanges = new Array();
var origSearchString;

// store original search string and bookmarks of each replaced range
function pushUndoNew(rng, srchString, replString) {

origSearchString = srchString;
rng.moveStart(“character”, -replString.length);
newRanges[newRanges.length] = rng.getBookmark();

}

TextRange.findText()

1091Chapter 35 ✦ Body Text Objects

// empty array and search string global
function clearUndoBuffer() {

document.getElementById(“counter”).innerText = “0”;
origSearchString = “”;
newRanges.length = 0;

}

// perform the undo
function undoReplace() {

if (newRanges.length && origSearchString) {
for (var i = 0; i < newRanges.length; i++) {

rng.moveToBookmark(newRanges[i]);
rng.text = origSearchString;

}
document.getElementById(“counter”).innerText = i;
clearUndoBuffer();

}
}
</script>

</head>
<body>

<h1>TextRange.findText() Method</h1>
<hr />
<form>

<p>Enter a string to search for in the following text: <input
type=”text” name=”searchString” size=”20” value=”Law” />
<input type=”checkbox” name=”caseSensitive” />Case-sensitive
<input type=”checkbox” name=”wholeWord” />Whole words only</p>

<p>Enter a string with which to replace found text: <input type=”text”
name=”replaceString” size=”20” value=”legislation” /></p>

<p><input type=”button” value=”Search and Replace (with prompt)”
onclick=”sAndR(this.form)” /></p>

<p><input type=”button” value=”Search, Replace, and Count (no prompt)”
onclick=”sAndRCount(this.form)” /> 0
items found and replaced.</p>

<p><input type=”button” value=”Undo Search and Replace”
onclick=”undoReplace()” /></p>

</form>
<div id=”rights”>

<h2>ARTICLE I</h2>
<p>Congress shall make no law respecting an establishment of religion,

or prohibiting the free exercise thereof; or abridging the freedom
of speech, or of the press; or the right of the people peaceably to
assemble, and to petition the government for a redress of
grievances.</p>

[The rest of the text is snipped for printing here, but it is on the
CD-ROM version.]

</div>
</body>

</html>

Having a search-and-replace function available in a document is only one-half of the battle The
other half is offering the facilities to undo the changes. To that end, Listing 35-11 includes an
undo buffer that accurately undoes only the changes made in the initial replacement actions.

TextRange.findText()

1092 Part IV ✦ JavaScript Core Language Reference

The undo buffer stores its data in two global variables. The first, origSearchString, is simply
the string used to perform the original search. This variable is the string that has to be put back
in the places where it had been replaced. The second global variable is an array that stores
TextRange bookmarks (see getBookmark() later in this chapter). These references are string
values that don’t mean much to humans, but the browser can use them to re-create a range
with its desired start and end point. Values for both the global search string and bookmark
specifications are stored in calls to the pushUndoNew() method each time text is replaced.

A perhaps unexpected action of setting the text property of a text range is that the start and
end points collapse to the end of the new text. Because the stored bookmark must include the
replaced text as part of its specification, the start point of the current range must be adjusted
back to the beginning of the replacement text before the bookmark can be saved. Thus, the
pushUndoNew() function receives the replacement text string so that the moveStart() method
can be adjusted by the number of characters matching the length of the replacement string.

After all of the bookmarks are stored in the array, the undo action can do its job in a rather
simple for loop inside the undoReplace() function. After verifying that the undo buffer
has data stored in it, the function loops through the array of bookmarks and replaces the
bookmarked text with the old string. The benefit of using the bookmarks rather than using
the replacement function again is that only those ranges originally affected by the search-
and-replace operation are touched in the undo operation. For example, in this document if
you replace a case-sensitive “states” with “States” two replacements are performed. At that
point, however, the document has four instances of “States,” two of which existed before.
Redoing the replacement function by inverting the search-and-replace strings would convert
all four back to the lowercase version — not the desired effect.

Related Items: TextRange.select() method.

getBookmark()
Returns: Bookmark string.
Compatibility: WinIE4+, MacIE-, NN-, Moz-, Safari-

In the context of a TextRange object, a bookmark is not to be confused with the kinds of
bookmarks you add to a browser list of favorite Web sites. Instead, a bookmark is a string
that represents a definition of a text range, including its location in a document, its text, and
so on. Viewing the string is futile, because it contains string versions of binary data, so the
string means nothing in plain language. But a bookmark allows your scripts to save the cur-
rent state of a text range so that it may be restored at a later time. The getBookmark()
method returns the string representation of a snapshot of the current text range. Some other
script statement can adjust the TextRange object to the exact specifications of the snapshot
with the moveToBookmark() method (described later in this chapter).

Example
Listing 35-11 earlier in this chapter shows how the getBookmark() method is used to pre-
serve specifications for text ranges so that they can be called upon again to be used to undo
changes made to the text range. The getBookmark() method is used to save the snapshots,
while the moveToBookmark() method is used during the undo process.

Related Items: TextRange.moveToBookmark() method.

TextRange.findText()

1093Chapter 35 ✦ Body Text Objects

inRange(otherRangeRef)
Returns: Boolean.
Compatibility: WinIE4+, MacIE-, NN-, Moz-, Safari-

You can compare the physical stretches of text contained by two different text ranges via the
inRange() method. Typically, you invoke the method on the larger of two ranges and pass a
reference to the smaller range as the sole parameter to the method. If the range passed as a
parameter is either contained by or equal to the text range that invokes the method, the
method returns true; otherwise the method returns false.

Example
Use The Evaluator (Chapter 13) to see the inRange() method in action. The following state-
ments generate two distinct text ranges, one for the myP paragraph element and the other for
the myEM element nested within:

a = document.body.createTextRange()
a.moveToElementText(myP)
b = document.body.createTextRange()
b.moveToElementText(myEM)

Because the myP text range is larger than the other, invoke the inRange() method on it, fully
expecting the return value of true:

a.inRange(b)

But if you switch the references, you see that the larger text range is not “in” the smaller one:

b.inRange(a)

Related Items: TextRange.isEqual() method.

isEqual(otherRangeRef)
Returns: Boolean.
Compatibility: WinIE4+, MacIE-, NN-, Moz-, Safari-

If your script has references to two independently adjusted TextRange objects, you can use
the isEqual() method to test whether the two objects are identical. This method tests for a
very literal equality, requiring that the text of the two ranges be character-for-character and
position-for-position equal in the context of the original ranges (for example, body or text
control content). To see if one range is contained by another, use the inRange() method
instead.

Example
Use The Evaluator (Chapter 13) to try the isEqual() method. Begin by creating two separate
TextRange objects, one for the myP element and one for myEM:

a = document.body.createTextRange()
a.moveToElement(myP)
b = document.body.createTextRange()
b.moveToElement(myEM)

Because these two ranges encompass different sets of text, they are not equal, as the results
show from the following statement:

a.isEqual(b)

But if you now adjust the first range boundaries to surround the myEM element, both ranges
are the same values:

TextRange.isEqual()

1094 Part IV ✦ JavaScript Core Language Reference

a.moveToElement(myEM)
a.isEqual(b)

Related Items: TextRange.inRange() method.

move(“unit”[, count])
Returns: Integer.
Compatibility: WinIE4+, MacIE-, NN-, Moz-, Safari-

The move() method performs two operations. First, the method collapses the current text
range to become an insertion point at the location of the previous end point. Next, it moves
that insertion point to a position forward or backward any number of character, word, or sen-
tence units. The first parameter is a string specifying the desired unit (character, word,
sentence, or textedit). A value of textedit moves the pointer to the beginning or end of
the entire initial text range. If you omit the second parameter, the default value is 1.
Otherwise you can specify an integer indicating the number of units the collapsed range
should be moved ahead (positive integer) or backward (negative). The method returns an
integer revealing the exact number of units the pointer is able to move — if you specify more
units than are available, the returned value lets you know how far it can go.

Bear in mind that the range is still collapsed after the move() method executes. Expanding
the range around desired text is the job of other methods.

You can also use the move() method in concert with the select() method to position the
flashing text insertion pointer within a text box or textarea. Thus, you can script a text field,
upon receiving focus or the page loading, to have the text pointer waiting for the user at the
end of existing text. A generic function for such an action is shown in the following:

function setCursorToEnd(elem) {
if (elem) {

if (elem.type && (elem.type == “text” || elem.type == “textarea”)) {
var rng = elem.createTextRange();
rng.move(“textedit”);
rng.select();

}
}

}

You can then invoke this method from a text field’s onfocus event handler:

<input type=”text” ... onfocus=”setCursorToEnd(this)” />

The function previously shown includes a couple of layers of error checking, such as making
sure that the function is invoked with a valid object as a parameter and that the object has a
type property whose value is one capable of having a text range made for its content.

Example
Use The Evaluator (Chapter 13) to experiment with the move() method. To see how the
method returns just the number of units it moves the pointer, begin by creating a text range
and set it to enclose the myP element:

a = document.body.createTextRange()
a.moveToElementText(myP)

Now enter the following statement to collapse and move the range backward by 20 words:

a.move(“word”, -20)

TextRange.isEqual()

1095Chapter 35 ✦ Body Text Objects

Continue to click the Evaluate button and watch the returned value in the Results box. The
value shows 20 while it can still move backward by 20 words. But eventually the last move-
ment will be some other value closer to zero. And after the range is at the beginning of the
body element, the range can move no more in that direction, so the result is zero.

Related Items: TextRange.moveEnd(), TextRange.moveStart() methods.

moveEnd(“unit”[, count])
moveStart(“unit”[, count])

Returns: Integer.
Compatibility: WinIE4+, MacIE-, NN-, Moz-, Safari-

The moveEnd() and moveStart() methods are similar to the move() method, but they each
act only on the end and starting points of the current range, respectively. In other words, the
range does not collapse before the point is moved. These methods allow you to expand or
shrink a range by a specific number of units by moving only one of the range’s boundaries.

The first parameter is a string specifying the desired unit (character, word, sentence, or
textedit). A value of textedit moves the pointer to the beginning or end of the entire ini-
tial text range. Therefore, if you want the end point of the current range to zip to the end of
the body (or text form control), use moveEnd(“textedit”). If you omit the second parame-
ter, the default value is 1. Otherwise you can specify an integer indicating the number of units
the collapsed range is to move ahead (positive integer) or backward (negative). Moving
either point beyond the location of the other forces the range to collapse and move to the
location specified by the method. The method returns an integer revealing the exact number
of units the pointer is able to move — if you specify more units than are available, the
returned value lets you know how far it can go.

Example
Use The Evaluator (Chapter 13) to experiment with the moveEnd() and moveStart() meth-
ods. Begin by creating a text range and set it to enclose the myEM element:

a = document.body.createTextRange()
a.moveToElementText(myEM)

To help you see how movements of the pointers affect the text enclosed by the range, type a
into the bottom text box and view all the properties of the text range. Note especially the
htmlText and text properties.

Now enter the following statement to move the end of the range forward by one word:

a.moveEnd(“word”)

Click the List Properties button to see that the text of the range now includes the word fol-
lowing the em element. Try each of the following statements in the top text box and examine
both the integer results and (by clicking the List Properties button) the properties of the
range after each statement:

a.moveStart(“word”, -1)
a.moveEnd(“sentence”)

Notice that for a sentence, a default unit of 1 expands to the end of the current sentence. And
if you move the start point backward by one sentence, you’ll see that the lack of a period-
ending sentence prior to the myP element causes strange results.

TextRange.moveEnd()

1096 Part IV ✦ JavaScript Core Language Reference

Finally, force the start point backward in increments of 20 words and watch the results as the
starting point nears and reaches the start of the body:

a.moveStart(“word”, -20)

Eventually the last movement will be some other value closer to zero. And as soon as the
range is at the beginning of the body element, the range can move no more in that direction,
so the result is zero.

Related Items: TextRange.move() method.

moveToBookmark(“bookmarkString”)
Returns: Boolean.
Compatibility: WinIE4+, MacIE-, NN-, Moz-, Safari-

If a snapshot of a text range specification has been preserved in a variable (with the help of
the getBookmark() method), the moveToBookmark() method uses that bookmark string as
its parameter to set the text range to exactly the way it appeared when the bookmark was
originally obtained. If the method is successful, it returns a value of true, and the text range
is set to the same string of text as originally preserved via getBookmark(). It is possible that
the state of the content of the text range has been altered to such an extent that resurrecting
the original text range is not feasible. In that case, the method returns false.

Example
Listing 35-11 earlier in this chapter shows how to use the moveToBookmark() method to
restore a text range so that changes that created the state saved by the bookmark can be
undone. The getBookmark() method is used to save the snapshots, while the
moveToBookmark() method is used during the undo process.

Related Items: TextRange.getBookmark() method.

moveToElementText(elemObjRef)
Returns: Nothing.
Compatibility: WinIE4+, MacIE-, NN-, Moz-, Safari-

The fastest way to cinch up a text range to the boundaries of an HTML element on the page is
to use the moveToElementText() method. Any valid reference to the HTML element object is
accepted as the sole parameter — just don’t try to use a string version of the object ID unless
it is wrapped in the document.getElementById() method (IE5+). When the boundaries are
moved to the element, the range’s htmlText property contains the tags for the element.

Example
A majority of examples for other TextRange object methods in this chapter use the
moveToElementText() method. Listings 35-10 and 35-11 earlier in this chapter show the
method within an application context.

Related Items: TextRange.parentElement() method.

moveToPoint(x, y)
Returns: Nothing.
Compatibility: WinIE4+, MacIE-, NN-, Moz-, Safari-

TextRange.moveEnd()

1097Chapter 35 ✦ Body Text Objects

The moveToPoint() method shrinks the current text range object to an insertion point and
then moves it to a position in the current browser window or frame. You control the precise
position via the x (horizontal) and y (vertical) pixel coordinates specified as parameters.
The position is relative to the visible window, and not the document, which may have been
scrolled to a different position. Invoking the moveToPoint() method is the scripted equiva-
lent of the user clicking that spot in the window. Use the expand() method to flesh out the
collapsed text range to encompass the surrounding character, word, or sentence.

Using the moveToPoint() method on a text range defined for a text form control may
cause a browser crash. The method appears safe with the document.body text ranges, even
if the x,y position falls within the rectangle of a text control. Such a position, however, does
not drop the text range into the form control or its content.

Example
Use The Evaluator (Chapter 13) to see the moveToPoint() method in action. Begin by creating
a text range for the entire body element:

a = document.body.createTextRange()

Now, invoke the moveToPoint() method to a location 100,100, which turns out to be in the
rectangle space of the Results textarea:

a.moveToPoint(100,100)

If you type a into the bottom text box and view the properties, both the htmlText and text
properties are empty because the insertion point represents no visible text content. But if you
gradually move, for example, the start point backward one character at a time, you will see
the htmlText and text properties begin to fill in with the body text that comes before the
textarea element, namely the “Results:” label and the
 tag between it and the textarea
element. Enter the following statement into the top text box and click the Evaluate button
several times:

a.moveStart(“character”, -1)

Enter a into the bottom text box after each evaluation to list the properties of the range.

Related Items: TextRange.move(), TextRange.moveStart(), TextRange.moveEnd()
methods.

parentElement()
Returns: Element object reference.
Compatibility: WinIE4+, MacIE-, NN-, Moz-, Safari-

The parentElement() method returns a reference to the next outermost HTML element con-
tainer that holds the text range boundaries. If the text range boundaries are at the boundaries
of a single element, the parentElement() method returns that element’s reference. But if the
boundaries straddle elements, the object returned by the method is the element that contains
the text of the least-nested text portion. In contrast to the expand() and various move-related
methods, which understand text constructs, such as words and sentences, the parentElement
() method is concerned solely with element objects. Therefore, if a text range is collapsed to
an insertion point in body text, you can expand it to encompass the HTML element by using
the parentElement() method as a parameter to moveToElementText():

rng.moveToElementText(rng.parentElement());

Note

TextRange.parentElement()

1098 Part IV ✦ JavaScript Core Language Reference

Example
Use The Evaluator (Chapter 13) to experiment with the parentElement() method. Begin by
setting the text range to the myEM element:

a = document.body.createTextRange()
a.moveToElementText(myEM)

To inspect the object returned by the parentElement() method, enter the following state-
ment in the lower text box:

a.parentElement()

If you scroll down to the outerHTML property, you see that the parent of the text range is the
myEM element, tag and all.

Next, extend the end point of the text range by one word:

a.moveEnd(“word”)

Because part of the text range now contains text of the myP object, the outerHTML property
of a.parentElement() shows the entire myP element and tags.

Related Items: TextRange.expand(), TextRange.move(), TextRange.moveEnd(),
TextRange.moveStart() methods.

pasteHTML(“HTMLText”)
Returns: Nothing.
Compatibility: WinIE4+, MacIE-, NN-, Moz-, Safari-

While the execCommand() method offers several commands that insert HTML elements into a
text range, it is probably more convenient to simply paste fully formed HTML into the current
text range (assuming you need to be working with a text range instead of even more simply
setting new values to an element object’s outerHTML property). Provide the HTML to be
inserted as a string parameter to the pasteHTML() method.

Use the pasteHTML() method with some forethought. Some HTML that you may attempt to
paste into a text range may force the method to wrap additional tags around the content you
provide to ensure the validity of the resulting HTML. For example, if you were to replace a
text range consisting of a portion of text of a p element with, for instance, an li element, the
pasteHTML() method has no choice but to divide the p element into two pieces, because a p
element is not a valid container for a solo li element. This division can greatly disrupt your
document object hierarchy, because the divided p element assumes the same ID for both
pieces. Existing references to that p element will break, because the reference now returns an
array of two like-named objects.

Example
Use The Evaluator (Chapter 13) to experiment with the pasteHTML() method. The goal of the
following sequence is to change the tag to a tag whose style attribute sets the
color of the original text that was in the em element.

Begin by creating the text range and setting the boundaries to the myEM element:

a = document.body.createTextRange()
a.moveToElementText(myEM)

TextRange.parentElement()

1099Chapter 35 ✦ Body Text Objects

While you can pass the HTML string directly as a parameter to pasteHTML(), storing the HTML
string in its own temporary variable may be more convenient (and more easily testable),
such as:

b = “” + a.text + “”

Notice that we concatenate the text of the current text range, because it has not yet been
modified. Now we can paste the new HTML string into the current text range:

a.pasteHTML(b)

At this point the em element is gone from the object model, and the span element is in its
place. Prove it to yourself by looking at the HTML for the myP element:

myP.innerHTML

As noted earlier, the pasteHTML() method is not the only way to insert or replace HTML in a
document. This method makes excellent sense when the user selects some text in the docu-
ment to be replaced, because you can use the document.selection.createRange() method
to get the text range for the selection. But if you’re not using text ranges for other related oper-
ations, consider the other generic object properties and methods available to you.

Related Items: outerHTML property; insertAdjacenHTML() method.

queryCommandEnabled(“commandName”)
queryCommandIndeterm(“commandName”)
queryCommandState(“commandName”)
queryCommandSupported(“commandName”)
queryCommandText(“commandName”)
queryCommandValue(“commandName”)

Returns: See document.queryCommandEnabled() in Chapter 18.
Compatibility: WinIE4+, MacIE-, NN-, Moz-, Safari-

See descriptions under document.queryCommandEnabled() in Chapter 18.

select()
Returns: Nothing.
Compatibility: WinIE4+, MacIE-, NN-, Moz-, Safari-

The select() method selects the text inside the boundaries of the current text range. For
some operations, such as prompted search and replace, it is helpful to show the user the text
of the current range to highlight what text is about to be replaced. In some other operations,
especially several commands invoked by execCommand(), the operation works only on a text
selection in the document. Thus, you can use the TextRange object facilities to set the
boundaries, followed by the select() method to prepare the text for whatever command
you like. Text selected by the select() method becomes a selection object (covered ear-
lier in this chapter).

Example
See Listing 35-11 earlier in this chapter for an example of the select() method in use.

Related Items: selection object.

TextRange.select()

1100 Part IV ✦ JavaScript Core Language Reference

setEndPoint(“type”, otherRangeRef)
Returns: Nothing.
Compatibility: WinIE4+, MacIE-, NN-, Moz-, Safari-

In contrast to the moveEnd() method, which adjusts the end point of the current range with
respect to characters, words, sentences, and the complete range, the setEndPoint() method
sets a boundary of the current range (not necessarily the ending boundary) relative to a
boundary of another text range whose reference is passed as the second parameter. The first
parameter is one of four types that control which boundary of the current range is to be
adjusted and which boundary of the other range is the reference point. Table 35-3 shows the
four possible values and their meanings.

Table 35-3: setEndPoint() Method Types

Type Description

StartToEnd Moves the start point of the current range to the end of the other range

StartToStart Moves the start point of the current range to the start of the other range

EndToStart Moves the end point of the current range to the start of the other range

EndToEnd Moves the end point of the current range to the end of the other range

Note that the method moves only one boundary of the current range at a time. If you want to
make two ranges equal to each other, you have to invoke the method twice, once with Start
ToStart and once with EndToEnd. At that instant, the isEqual() method applied to those
two ranges returns true.

Setting a boundary point with the setEndPoint() method can have unexpected results when
the revised text range straddles multiple elements. Don’t be surprised to find that the new
HTML text for the revised range does not include tags from the outer element container.

Example
Use The Evaluator (Chapter 13) to experiment with the setEndPoint() method. Begin by
creating two independent text ranges, one for the myP element and one for myEM:

a = document.body.createTextRange()
a.moveToElementText(myP)
b = document.body.createTextRange()
b.moveToElementText(myEM)

Before moving any end points, compare the HTML for each of those ranges:

a.htmlText
b.htmlText

Now, move the start point of the a text range to the end point of the b text range:

a.setEndPoint(“StartToEnd”, b)

If you now view the HTML for the a range,

a.htmlText

TextRange.setEndPoint()

1101Chapter 35 ✦ Body Text Objects

you see that the <p> tag of the original a text range is nowhere to be found. This demonstra-
tion is a good lesson to use the setEndPoint() method primarily if you are concerned only
with visible body text being inside ranges, rather than an element with its tags.

Related Items: TextRange.moveEnd(), TextRange.moveStart(),
TextRange.moveToElementText() methods.

TextRectangle Object
Compatibility: WinIE5+, MacIE-, NN-, Moz-, Safari-

Properties Methods Event Handlers

bottom
left
right
top

Syntax
Accessing TextRectangle object properties:

(IE5+) [window.]document.getElementById(“elemID”).
getBoundingClientRect().property

(IE5+) [window.]document.getElementById(“elemID”).
getClientRects()[i].property

About this object
The IE5+ TextRectangle object exposes to scripts a concept that is described in the HTML
4.0 specification, whereby an element’s rendered text occupies a rectangular space on the
page just large enough to contain the text. For a single word, the rectangle is as tall as the line
height for the font used to render the word and no wider than the space occupied by the text.
But for a sequence of words that wraps to multiple lines, the rectangle is as tall as the line
height times the number of lines and as wide as the distance between the leftmost and right-
most character edges, even if it means that the rectangle encloses some other text that is not
part of the element.

If you extract the TextRectangle object for an element by way of, for example, the
getBoundingClientRect() method, be aware that the object is but a snapshot of the rectan-
gle when the method was invoked. Resizing the page may very well alter dimensions of the
actual rectangle enclosing the element’s text, but the TextRectangle object copy that you
made previously does not change its values to reflect the element’s physical changes. After a
window resize or modification of body text, any dependent TextRectangle objects should
be recopied from the element.

TextRectangle

1102 Part IV ✦ JavaScript Core Language Reference

Properties
bottom
left
right
top

Values: Integers. Read-Only
Compatibility: WinIE5+, MacIE-, NN-, Moz-, Safari-

The screen pixel coordinates of its four edges define every TextRectangle object. These
coordinates are relative to the window or frame displaying the page. Therefore, if you intend
to align a positioned element with an inline element’s TextRectangle, your position assign-
ments must take into account the scrolling of the body.

To my eye, the left edge of a TextRectangle does not always fully encompass the left-most
pixels of the rendered text. You may have to fudge a few pixels in the measure when trying to
align a real element with the TextRectangle of another element.

Example
Listing 35-12 lets you click one of four nested elements to see how the TextRectangle is
treated. When you click one of the elements, that element’s TextRectangle dimension prop-
erties are used to set the size of a positioned element that highlights the space of the rectangle.
Be careful not to confuse the visible rectangle object that you see on the page with the abstract
TextRectangle object that is associated with each of the clicked elements.

An important part of the listing is the way the action of sizing and showing the positioned ele-
ment is broken out as a separate function (setHiliter()) from the one that is the onclick
event handler function (handleClick()). This is done so that the onresize event handler
can trigger a script that gets the current rectangle for the last element clicked, and the posi-
tioned element can be sized and moved to maintain the highlight of the same text. As an
experiment, try removing the onresize event handler from the <body> tag and watch what
happens to the highlighted rectangle after you resize the browser window: the rectangle that
represents the TextRectangle remains unchanged and loses track of the abstract
TextRectangle associated with the actual element object.

Listing 35-12: Using the TextRectangle Object Properties

<html>
<head>

<title>TextRectangle Object</title>
<script type=”text/javascript”>
// preserve reference to last clicked elem so resize can re-use it
var lastElem;
// TextRectangle left tends to be out of registration by a couple of
// pixels
var rectLeftCorrection = 2;

// process mouse click

TextRectangle.bottom

1103Chapter 35 ✦ Body Text Objects

function handleClick() {
var elem = event.srcElement;
if (elem.className && elem.className == “sample”) {

// set hiliter element only on a subset of elements
lastElem = elem;
setHiliter();

} else {
// otherwise, hide the hiliter
hideHiliter();

}
}

function setHiliter() {
if (lastElem) {

var textRect = lastElem.getBoundingClientRect();
hiliter.style.pixelTop = textRect.top + document.body.scrollTop;
hiliter.style.pixelLeft = textRect.left +

document.body.scrollLeft - rectLeftCorrection;
hiliter.style.pixelHeight = textRect.bottom - textRect.top;
hiliter.style.pixelWidth = textRect.right - textRect.left;
hiliter.style.visibility = “visible”;

}
}

function hideHiliter() {
hiliter.style.visibility = “hidden”;
lastElem = null;

}
</script>

</head>
<body onclick=”handleClick()” onresize=”setHiliter()”>

<h1>TextRectangle Object</h1>
<hr />
<p>Click on any of the four colored elements in the paragraph below and

watch the highlight rectangle adjust itself to the element’s
TextRectangle object.</p>

<p class=”sample”>Lorem ipsum dolor sit amet, <span class=”sample”
style=”color:red”>consectetaur adipisicing elit, sed do eiusmod
tempor incididunt ut labore
et dolore magna aliqua.
Ut enim adminim veniam, quis nostrud exercitation ullamco
laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor
in reprehenderit involuptate velit esse cillum dolore eu fugiat nulla
pariatur.</p>

<div id=”hiliter”
style=”position:absolute; background-color:salmon; z-index:-1;
visibility:hidden”>
</div>

</body>
</html>

Related Items: getBoundingClientRect(), getClientRects() methods of element objects
(Chapter 15).

✦ ✦ ✦

TextRectangle.bottom

Appendixes

✦ ✦ ✦ ✦

In This Part

Appendix A
JavaScript and
Browser Object
Quick Reference

Appendix B
JavaScript Reserved
Words

Appendix C
Answers to Tutorial
Exercises

Appendix D
JavaScript and DOM
Internet Resources

Appendix E
What’s on the CD-ROM

✦ ✦ ✦ ✦

P A R T

VV

JavaScript and
Browser Object
Quick Reference

AAA P P E N D I X

✦ ✦ ✦ ✦

1108 Part V ✦ Appendixes

(1
)M

et
ho

d
of

 th
e

st
at

ic
 S

tr
in

g
ob

je
ct

.
(2

)A
dd

ed
 b

eh
av

io
r

in
 N

4
in

cl
ud

es
: a

bi
lit

y
to

 a
cc

ep
t a

 r
eg

ex
p

pa
ra

m
et

er
; s

ec
on

d
pa

ra
m

et
er

 (
lim

it
in

te
ge

r)
 to

 li
m

it
th

e
nu

m
be

r
of

sp

lit
s

to
 b

e
in

cl
ud

ed
; a

 s
pa

ce
 s

tr
in

g
pa

ra
m

et
er

 s
ig

ni
fy

in
g

an
y

w
hi

te

sp
ac

e
ch

ar
ac

te
r.

co
ns

tr
uc

to
rN

4,
 IE

4

le
ng

th
pr

ot
ot

yp
e

N
4,

 J
2

an
ch

or
("

an
ch

or
N

am
e

")
bi

g(
)

bl
in

k(
)

bo
ld

()
ch

ar
A

t(
in

de
x

)
ch

ar
C

od
eA

t(
[i

])N
4,

 IE
4

co
nc

at
(s

tr
in

g2
)N

4,
 IE

4

fix
ed

()
fo

nt
co

lo
r(

#
rr

gg
bb

)
fo

nt
si

ze
(1

to
7)

fr
om

C
ha

rC
od

e(
n1

...
)(

1)
,N

4,
 IE

4

in
de

xO
f(

"s
tr

"
[,i

])
ita

lic
s(

)
la

st
In

de
xO

f(
" s

tr
"

[,i
])

lin
k(

U
R

L)
lo

ca
le

C
om

pa
re

()
N

6,
 W

5.
5

m
at

ch
(r

eg
ex

p
)N

4,
 IE

4

re
pl

ac
e(

re
ge

xp
,s

tr
)N

4,
 IE

4

se
ar

ch
(r

eg
ex

p
)N

4,
 IE

4

sl
ic

e(
i,j

)N
4,

 IE
4

sm
al

l()
sp

lit
(c

ha
r)

N
3,

 (
2)

, I
E

4

st
rik

e(
)

su
b(

)
su

bs
tr

(s
ta

rt
,le

ng
th

)N
4,

 IE
4

su
bs

tr
in

g(
in

tA
, i

nt
B

)
su

p(
)

to
Lo

ca
le

Lo
w

er
C

as
e(

)N
6,

 W
5.

5

to
Lo

ca
le

U
pp

er
C

as
e(

)N
6,

 W
5.

5

to
Lo

w
er

C
as

e(
)

to
S

tr
in

g(
)N

4,
 IE

4

to
U

pp
er

C
as

e(
)

va
lu

eO
f(

)N
4,

 IE
4

S
tr

in
g

(1
)P

ro
pe

rt
y

of
 th

e
st

at
ic

 R
eg

E
xp

 o
bj

ec
t.

(2
)R

et
ur

ns
 a

n
ar

ra
y

w
ith

 p
ro

pe
rt

ie
s:

 in
de

x,
 in

pu
t,

[0
],

[1
],.

..[
n]

.

gl
ob

al
ig

no
re

C
as

e
M

5,
W

5.
5

in
pu

t(
1)

, I
E

5.
5

la
st

In
de

x
m

ul
til

in
e

(1
),

 W
5.

5

la
st

M
at

ch
(1

),
 W

5.
5

la
st

P
ar

en
(1

),
 W

5.
5

le
ftC

on
te

xt
(1

),
W

5.
5

pr
ot

ot
yp

e
rig

ht
C

on
te

xt
(1

)

so
ur

ce
$1

...
$9

co
m

pi
le

(r
eg

ex
p

)
ex

ec
("

st
rin

g
")(

2)

te
st

("
st

rin
g

")
st

r.
m

at
ch

(r
eg

ex
p

)
st

r.
re

pl
ac

e(
re

ge
xp

,s
tr

)
st

r.
se

ar
ch

(r
eg

ex
p

)
st

r.
sp

lit
(r

eg
ex

p
[,l

im
it

])

R
eg

ul
ar

 E
xp

re
ss

io
ns

N
4,

IE
4

ar
gu

m
en

ts
ar

ity
N

4

ca
lle

r
co

ns
tr

uc
to

rN
4,

 IE
4

le
ng

th
pr

ot
ot

yp
e

ap
pl

y(
th

is
, a

rg
sA

rr
ay

)N
6,

 W
5.

5

ca
ll(

th
is

[,a
rg

1[
,..

.a
rg

N
]])

N
6,

 W
5.

5

to
S

tr
in

g(
)

va
lu

eO
f(

)

F
un

ct
io

nN
3,

J2

pr
ot

ot
yp

e
co

ns
tr

uc
to

r
de

sc
rip

tio
n

W
5

fil
eN

am
e

N
6

lin
eN

um
be

rN
6

m
es

sa
ge

N
6,

 IE
5.

5

na
m

e
N

6,
 IE

5.
5

nu
m

be
rW

5

to
S

tr
in

g(
)

E
rr

or
N

6,
W

5

co
ns

tr
uc

to
rN

4,
 IE

4

M
A

X
_V

A
LU

E
IE

4

M
IN

_V
A

LU
E

IE
4

N
aN

IE
4

N
E

G
A

T
IV

E
_I

N
F

IN
IT

Y
IE

4

P
O

S
IT

IV
E

_I
N

F
IN

IT
Y

IE
4

pr
ot

ot
yp

e

to
E

xp
on

en
tia

l(
n)

N
6,

 W
5.

5

to
F

ix
ed

(n
)N

6,
 IE

5.
5

to
Lo

ca
le

S
tr

in
g(

)N
6,

 W
5.

5,
M

5

to
S

tr
in

g(
[r

ad
ix

])N
4,

 IE
4

to
P

re
ci

si
on

(
n)

N
6,

 W
5.

5

va
lu

eO
f(

)N
4,

 IE
4

N
um

be
rN

3,
J2

co
ns

tr
uc

to
rN

4,
 IE

4

pr
ot

ot
yp

e
N

3,
 IE

4
ge

tF
ul

lY
ea

r(
)N

4,
 J

2

ge
tY

ea
r(

)
ge

tM
on

th
()

ge
tD

at
e(

)
ge

tD
ay

()
ge

tH
ou

rs
()

ge
tM

in
ut

es
()

ge
tS

ec
on

ds
()

ge
tT

im
e(

)
ge

tM
ill

is
ec

on
ds

()
N

4,
 J

2

ge
tU

T
C

F
ul

lY
ea

r(
)N

4,
 J

2

ge
tU

T
C

M
on

th
()

N
4,

 J
2

ge
tU

T
C

D
at

e(
)N

4,
 J

2

ge
tU

T
C

D
ay

()
N

4,
 J

2

ge
tU

T
C

H
ou

rs
()

N
4,

 J
2

ge
tU

T
C

M
in

ut
es

()
N

4,
 J

2

ge
tU

T
C

S
ec

on
ds

()
N

4,
 J

2

ge
tU

T
C

M
ill

is
ec

on
ds

()
N

4,
 J

2

se
tY

ea
r(

va
l)

se
tF

ul
lY

ea
r(

va
l)

N
4,

 J
2

se
tM

on
th

(v
al

)
se

tD
at

e(
va

l)
se

tD
ay

(v
al

)
se

tH
ou

rs
(v

al
)

se
tM

in
ut

es
(

va
l)

se
tS

ec
on

ds
(

va
l)

se
tM

ill
is

ec
on

ds
(

va
l)

N
4,

 J
2

se
tT

im
e(

va
l)

se
tU

T
C

F
ul

lY
ea

r(
va

l)
N

4,
 J

2

se
tU

T
C

M
on

th
(v

al
)N

4,
 J

2

se
tU

T
C

D
at

e(
va

l)
N

4,
 J

2

se
tU

T
C

D
ay

(v
al

)N
4,

 J
2

se
tU

T
C

H
ou

rs
(v

al
)N

4,
 J

2

se
tU

T
C

M
in

ut
es

(v
al

)N
4,

 J
2

se
tU

T
C

S
ec

on
ds

(v
al

)N
4,

 J
2

se
tU

T
C

M
ill

is
ec

on
ds

(
va

l)
N

4,
 J

2

ge
tT

im
ez

on
eO

ffs
et

()
to

D
at

eS
tr

in
g(

)W
5.

5

to
G

M
T

S
tr

in
g(

)
to

Lo
ca

le
D

at
eS

tr
in

g(
)

W
5.

5,
 N

6

to
Lo

ca
le

S
tr

in
g(

)
to

Lo
ca

le
T

im
eS

tr
in

g(
)

W
5.

5,
 N

6

to
S

tr
in

g(
)

to
T

im
eS

tr
in

g(
)I

E
5.

5

to
U

T
C

S
tr

in
g(

)N
4,

 J
2

D
at

e.
pa

rs
e(

"d
at

eS
tr

in
g

")
D

at
e.

U
T

C
(d

at
e

va
lu

es
)

D
at

e

co
ns

tr
uc

to
rN

4,
 IE

4

pr
ot

ot
yp

e
to

S
tr

in
g(

)N
4,

 IE
4

va
lu

eO
f(

)N
4,

 IE
4

B
oo

le
an

N
3,

J2

co
ns

tr
uc

to
rN

4,
 IE

4

le
ng

th
pr

ot
ot

yp
e

co
nc

at
(a

rr
ay

2)
N

4,
 IE

4

jo
in

("
ch

ar
")I

E
4

pu
sh

()
N

4,
 W

5.
5

po
p(

)N
4,

 W
5.

5

re
ve

rs
e(

)IE
4

sh
ift

()
N

4,
 W

5.
5

sl
ic

e(
i,[

j])
N

4,
 IE

4

so
rt

(c
om

pa
re

F
un

c
)IE

4

sp
lic

e(
i,j

[,
ite

m
s

])N
4,

 W
5.

5

to
Lo

ca
le

S
tr

in
g(

)N
6,

 W
5.

5

to
S

tr
in

g(
)I

E
4

un
sh

ift
()

N
4,

 W
5.

5

A
rr

ay
N

3,
J2

(1
)A

ll
pr

op
er

tie
s

&
 m

et
ho

ds
 a

re
 o

f t
he

 s
ta

tic
 M

at
h

ob
je

ct
.

E LN
2

LN
10

LO
G

2E
LO

G
10

E
P

I
S

Q
R

T
1_

2
S

Q
R

T
2

ab
s(

va
l)

ac
os

(v
al

)
as

in
(v

al
)

at
an

(v
al

)
at

an
2(

va
l1

, v
al

2
)

ce
il(

va
l)

co
s(

va
l)

ex
p(

va
l)

flo
or

(v
al

)
lo

g(
va

l)
m

ax
(v

al
1

, v
al

2
)

m
in

(v
al

1
, v

al
2

)
po

w
(v

al
1

, p
ow

er
)

ra
nd

om
()

ro
un

d(
va

l)
si

n(
va

l)
sq

rt
(v

al
)

ta
n(

va
l)

M
at

h
(1

)

F
u

n
ct

io
n

s
de

co
de

U
R

I(
"e

nc
od

ed
U

R
I"

)N
6,

 W
5.

5

de
co

de
U

R
IC

om
po

ne
nt

("
en

cC
om

p
")N

6,
 W

5.
5

en
co

de
U

R
I(

"U
R

IS
tr

in
g

")N
6,

 W
5.

5

en
co

de
U

R
IC

om
po

ne
nt

("
co

m
pS

tr
in

g
")N

6,
 W

5.
5

es
ca

pe
("

st
rin

g
"

[,1
])

ev
al

("
st

rin
g

")

is
F

in
ite

(n
um

be
r)

N
4,

 IE
4

is
N

aN
(e

xp
re

ss
io

n
)

N
um

be
r(

st
rin

g
)N

4,
 IE

4

pa
rs

eF
lo

at
("

st
rin

g
")

pa
rs

eI
nt

("
st

rin
g

"
[,r

ad
ix

])
to

S
tr

in
g(

[r
ad

ix
])

un
es

ca
pe

("
st

rin
g

")
un

w
at

ch
(p

ro
p)

N
4

w
at

ch
(p

ro
p,

 h
an

dl
er

)N
4

G
lo

ba
ls S

ta
te

m
en

ts
//

/*

...
*/

co
ns

tN
6

va
r

if
(c

on
di

tio
n

)
 {

st
at

em
en

ts
IfT

ru
e

} if
(c

on
di

tio
n

)
 {

st
at

em
en

ts
IfT

ru
e

}
el

se
 {

st
at

em
en

ts
IfF

al
se

} re
su

lt
 =

 c
on

di
tio

n
 ?

 e
xp

r1
 :

ex
pr

2

fo
r

([i
ni

t e
xp

r]
; [

co
nd

iti
on

];
[u

pd
at

e
 e

xp
r]

)
{

st
at

em
en

ts
} fo

r
(v

ar
 in

 o
bj

ec
t)

 {

st

at
em

en
ts

} w
hi

le
 (

co
nd

iti
on

)
{

st
at

em
en

ts
} sw

itc
h

(e
xp

re
ss

io
n

)
{

 c

as
e

la
be

lN
 :

st
at

em
en

ts

 [
br

ea
k]

 .

..

 [
de

fa
ul

t :

st

at
em

en
ts

]
}N

4,
 IE

4

la
be

l :
 N

4,
 IE

4

co
nt

in
ue

 [
la

be
l]

N
4,

 IE
4

br
ea

k
[la

be
l]

N
4,

 IE
4

tr
y

{

st

at
em

en
ts

 to
 te

st
} [c

at
ch

 (
er

ro
rI

nf
o)

 {

st

at
em

en
ts

 if
 e

xc
ep

tio
n

oc
cu

rs
 in

 tr
y

bl
oc

k
}] [fi

na
lly

 {

st

at
em

en
ts

 to
 r

un
, e

xc
ep

tio
n

or
 n

ot
}]N

6,
 W

5

th
ro

w
 v

al
ue

N
6,

 W
5

C
on

tr
ol

 S
ta

te
m

en
ts

w
ith

 (
ob

je
ct

)
{

st
at

em
en

ts
}

do
 {

st

at
em

en
ts

}
w

hi
le

 (
co

nd
iti

on
)N

4,
 IE

4

C
or

e
Ja

va
Sc

ri
pt

/J
Sc

ri
pt

/E
C

M
A

Sc
ri

pt
 Q

ui
ck

 R
ef

er
en

ce
©

 2
00

4
D

an
ny

 G
oo

dm
an

 (
w

w
w

.d
an

ny
g.

co
m

).
 A

ll
R

ig
ht

s
R

es
er

ve
d.

JS
B

5

30 29

27 42 28

28

28 33 34

3131

1109Appendix A ✦ JavaScript and Browser Object Quick Reference

T
hi

s
gu

id
e

co
nt

ai
ns

 q
ui

ck
 r

ef
er

en
ce

 in
fo

 f
or

 th
e

co
re

 J
av

aS
cr

ip
t

la
ng

ua
ge

, t
he

 o
ri

gi
na

l d
oc

um
en

t o
bj

ec
t m

od
el

 (
2

pp
),

 th
e

IE
4+

D
H

T
M

L
ob

je
ct

 m
od

el
 (

4
pp

),
 a

nd
 th

e
W

3C
 D

O
M

 o
bj

ec
t m

od
el

(4
 p

p)
 a

s
im

pl
em

en
te

d
in

 I
E

5+
,

N
N

6,
 M

oz
ill

a,
 a

nd
 S

af
ar

i b
ro

w
se

rs
. A

ll-
up

pe
rc

as
e

ob
je

ct
 n

am
es

 r
ef

er
 to

 H
T

M
L

 e
le

m
en

ts
 (

IE
4+

 a
nd

 W
3C

D

O
M

s)
. T

he
 th

re
e

co
lu

m
ns

 in
 e

ac
h

bo
x

lis
t t

he
 o

bj
ec

t’
s

pr
op

er
tie

s,
m

et
ho

ds
, a

nd
 e

ve
nt

 h
an

dl
er

s
in

 th
at

 o
rd

er
. R

ea
d

th
e

co
m

pa
tib

ili
ty

 g
ui

de
s

fo
r

ea
ch

 s
ec

tio
n.

N
um

be
rs

 in
 th

e
up

pe
r

ri
gh

t c
or

ne
rs

 o
f

ob
je

ct
 s

qu
ar

es
 a

re
 c

ha
pt

er

nu
m

be
rs

 in
 w

hi
ch

 th
e

ob
je

ct
 is

 c
ov

er
ed

 in
 d

et
ai

l.

B
as

ic
 b

ro
w

se
r

an
d

op
er

at
in

g
sy

st
em

 n
ot

at
io

n
co

de
s

ar
e

as
 f

ol
lo

w
s:

N

 —
 N

et
sc

ap
e

N
av

ig
at

or
 (

in
cl

ud
in

g
M

oz
ill

a
w

he
n

N
6

or
 h

ig
he

r)

IE
 —

 M
S

In
te

rn
et

 E
xp

lo
re

r

W
 —

 W
in

do
w

s
M

SI
E

M
 —

 M
ac

in
to

sh
 M

SI
E

Se
e

th
e

ac
co

m
pa

ny
in

g
fi

le
 f

or
 p

ri
nt

in
g

an
d

co
lla

tin
g

in
st

ru
ct

io
ns

in
 b

oo
kl

et
 o

r
br

oa
ds

id
e

co
nf

ig
ur

at
io

ns
.

Ja
va

Sc
ri

pt
 a

nd
B

ro
w

se
r

O
bj

ec
ts

Q
ui

ck
 R

ef
er

en
ce

A
pp

en
di

x
A

Ja
va

Sc
ri

pt
 B

ib
le

, 5
th

 E
di

tio
n

by
 D

an
ny

 G
oo

dm
an

H
ow

 to
 U

se
 T

hi
s

Q
ui

ck
 R

ef
er

en
ce

C
o

m
p

ar
is

o
n

=
=

E

qu
al

s
=

=
=

 N
4,

 IE
4

S
tr

ic
tly

 e
qu

al
s

!=

D
oe

s
no

t e
qu

al
!=

=
 N

4,
 IE

4
S

tr
ic

tly
 d

oe
s

no
t e

qu
al

>

Is
 g

re
at

er
 th

an
>

=

Is
 g

re
at

er
 th

an
 o

r
eq

ua
l t

o
<

Is

 le
ss

 th
an

<
=

Is

 le
ss

 th
an

 o
r

eq
ua

l t
o

A
ri

th
m

et
ic

+

P
lu

s
(a

nd
 s

tr
in

g
co

nc
at

.)
-

M
in

us
*

M
ul

tip
ly

/
D

iv
id

e
%

M

od
ul

o
+

+

In
cr

em
en

t
--

D

ec
re

m
en

t
- v

al

N
eg

at
io

n

A
ss

ig
n

m
en

t
=

E

qu
al

s
+

=

A
dd

 b
y

va
lu

e
-=

S

ub
tr

ac
t b

y
va

lu
e

*=

M
ul

tip
ly

 b
y

va
lu

e
/=

D

iv
id

e
by

 v
al

ue
%

=

M
od

ul
o

by
 v

al
ue

<
<

=

Le
ft

sh
ift

 b
y

va
lu

e
>

>
=

R

ig
ht

 s
hi

ft
by

 v
al

ue
>

>
>

=

Z
er

o
fil

l b
y

va
lu

e
&

=

B
itw

is
e

A
N

D
 b

y
va

lu
e

|=

B
itw

is
e

O
R

 b
y

va
lu

e
^=

B

itw
is

e
X

O
R

 b
y

va
lu

e

B
o

o
le

an
&

&

A
N

D
||

O
R

!
N

O
T

B
it

w
is

e
&

B

itw
is

e
A

N
D

|
B

itw
is

e
O

R
^

B
itw

is
e

X
O

R
~

B

itw
is

e
N

O
T

<
<

Le

ft
sh

ift
>

>

R
ig

ht
 s

hi
ft

>
>

>

Z
er

o
fil

l r
ig

ht
 s

hi
ft

M
is

ce
lla

n
eo

u
s

,

 S
er

ie
s

de
lim

ite
r

de
le

te
N

4,
 IE

4

P

ro
pe

rt
y

de
st

ro
ye

r
in

N
6,

 W
5.

5

 It
em

 in
 o

bj
ec

t
in

st
an

ce
of

N
6,

W
5

 In
st

an
ce

 o
f

ne
w

 O

bj
ec

t c
re

at
or

th
is

 O

bj
ec

t s
el

f-
re

fe
re

nc
e

ty
pe

of
N

3,
 IE

3

 V

al
ue

 ty
pe

vo
id

N
3,

 IE
3

 R

et
ur

n
no

 v
al

ue

O
pe

ra
to

rs
T

ex
t

&
 F

o
n

ts
co

lo
rI

E
4,

 N
6

fo
nt

IE
4,

 N
6

fo
nt

F
am

ily
IE

4,
 N

6

fo
nt

S
iz

e
IE

4,
 N

6

fo
nt

S
iz

eA
dj

us
t

M
5,

 N
6

fo
nt

S
tr

et
ch

M
5,

 N
6

fo
nt

S
ty

le
IE

4,
 N

6

fo
nt

V
ar

ia
nt

IE
4,

 N
6

fo
nt

W
ei

gh
tI

E
4,

 N
6

le
tte

rS
pa

ci
ng

IE
4,

 N
6

lin
eB

re
ak

IE
5

lin
eH

ei
gh

tI
E

4,
 N

6

qu
ot

es
M

5,
 N

6

ru
by

A
lig

n
IE

5

ru
by

O
ve

rh
an

g
IE

5

ru
by

P
os

iti
on

IE
5

te
xt

A
lig

n
IE

4,
 N

6

te
xt

A
lig

nL
as

t
IE

5.
5

te
xt

A
ut

os
pa

ce
W

5

te
xt

D
ec

or
at

io
n

IE
4,

 N
6

te
xt

D
ec

or
at

io
nB

lin
k

IE
-O

nl
y

te
xt

D
ec

or
at

io
nL

in
eT

hr
ou

gh
IE

-O
nl

y

te
xt

D
ec

or
at

io
nN

on
e

IE
-O

nl
y

te
xt

D
ec

or
at

io
nO

ve
rli

ne
IE

-O
nl

y

te
xt

D
ec

or
at

io
nU

nd
er

lin
e

IE
-O

nl
y

te
xt

In
de

nt
IE

4,
 N

6

te
xt

Ju
st

ify
IE

5

te
xt

Ju
st

ify
T

rim
IE

5

te
xt

K
as

hi
da

S
pa

ce
IE

5.
5

te
xt

O
ve

rf
lo

w
W

6

te
xt

S
ha

do
w

M
5,

 N
6

te
xt

T
ra

ns
fo

rm
IE

4,
 N

6

te
xt

U
nd

er
lin

eP
os

iti
on

IE
5.

5

un
ic

od
eB

id
i

IE
5,

 N
6

w
hi

te
S

pa
ce

IE
4,

 N
6

w
or

dB
re

ak
W

5

w
or

dS
pa

ci
ng

M
4,

 N
6,

 W
6

w
or

dW
ra

pW
5.

5

w
rit

in
gM

od
e

W
5.

5

st
yl

e
IE

4,
N

6

In
lin

e
D

is
p

la
y

&
 L

ay
o

u
t

cl
ea

rI
E

4,
 N

6

cl
ip

IE
4,

 N
6

cl
ip

B
ot

to
m

W
5

cl
ip

Le
ft

W
5

cl
ip

R
ig

ht
W

5

cl
ip

T
op

W
5

co
nt

en
tM

5,
 N

6

co
un

te
rI

nc
re

m
en

tM
5,

 N
6

co
un

te
rR

es
et

M
5,

 N
6

cs
sF

lo
at

M
5,

 N
6

cu
rs

or
IE

4,
 N

6

di
re

ct
io

n
IE

5,
 N

6

di
sp

la
y

IE
4,

 N
6

fil
te

rW
4

la
yo

ut
G

rid
W

5

la
yo

ut
G

rid
C

ha
rW

5

la
yo

ut
G

rid
Li

ne
W

5

la
yo

ut
G

rid
M

od
e

W
5

la
yo

ut
G

rid
T

yp
e

W
5

m
ar

ke
rO

ffs
et

M
5,

 N
6

m
ar

ks
M

5,
 N

6

m
ax

H
ei

gh
tM

5,
 N

6

m
ax

W
id

th
M

5,
 N

6

m
in

H
ei

gh
tM

5,
 N

6,
 W

6

m
in

W
id

th
M

5,
 N

6

M
oz

O
pa

ci
ty

N
6

ov
er

flo
w

IE
4,

 N
6

ov
er

flo
w

X
W

5

ov
er

flo
w

Y
W

5

st
yl

eF
lo

at
IE

-O
nl

y

ve
rt

ic
al

A
lig

n
IE

4,
 N

6

vi
si

bi
lit

y
IE

4,
 N

6

w
id

th
IE

4,
 N

6

zo
om

W
5.

5

L
is

ts
lis

tS
ty

le
IE

4,
 N

6

lis
tS

ty
le

Im
ag

e
IE

4,
 N

6

lis
tS

ty
le

P
os

iti
on

IE
4,

 N
6

lis
tS

ty
le

T
yp

e
IE

4,
 N

6

S
cr

o
llb

ar
s

sc
ro

llb
ar

3d
Li

gh
tC

ol
or

W
5.

5

sc
ro

llb
ar

A
rr

ow
C

ol
or

W
5.

5

sc
ro

llb
ar

B
as

eC
ol

or
W

5.
5

sc
ro

llb
ar

D
ar

kS
ha

do
w

C
ol

or
W

5.
5

sc
ro

llb
ar

F
ac

eC
ol

or
W

5.
5

sc
ro

llb
ar

H
ig

hl
ig

ht
C

ol
or

W
5.

5

sc
ro

llb
ar

S
ha

do
w

C
ol

or
W

5.
5

sc
ro

llb
ar

T
ra

ck
C

ol
or

W
5.

5

M
is

ce
lla

n
eo

u
s

ac
ce

le
ra

to
rW

5

be
ha

vi
or

W
5

cs
sT

ex
tI

E
4,

 N
6

im
eM

od
e

W
5

P
ri

n
ti

n
g

or
ph

an
s

M
5,

 N
6

w
id

ow
s

M
5,

 N
6

pa
ge

M
5,

 N
6

pa
ge

B
re

ak
A

fte
rI

E
4,

 N
6

pa
ge

B
re

ak
B

ef
or

e
IE

4,
 N

6

pa
ge

B
re

ak
In

si
de

M
5,

 N
6

si
ze

N
6

T
ab

le
s

bo
rd

er
C

ol
la

ps
e

M
5,

 N
6

bo
rd

er
S

pa
ci

ng
M

5,
 N

6

ca
pt

io
nS

id
e

M
5,

 N
6

em
pt

yC
el

ls
M

5,
 N

6

ta
bl

eL
ay

ou
tI

E
5,

 N
6

B
o

rd
er

s
&

 E
d

g
es

bo

rd
er

IE
4,

 N
6

bo
rd

er
B

ot
to

m
IE

4,
 N

6

bo
rd

er
Le

ftI
E

4,
 N

6

bo
rd

er
R

ig
ht

IE
4,

 N
6

bo
rd

er
T

op
IE

4,
 N

6

bo
rd

er
B

ot
to

m
C

ol
or

IE
4,

 N
6

bo
rd

er
Le

ftC
ol

or
IE

4,
 N

6

bo
rd

er
R

ig
ht

C
ol

or
IE

4,
 N

6

bo
rd

er
T

op
C

ol
or

IE
4,

 N
6

bo
rd

er
B

ot
to

m
S

ty
le

IE
4,

 N
6

bo
rd

er
Le

ftS
ty

le
IE

4,
 N

6

bo
rd

er
R

ig
ht

S
ty

le
IE

4,
 N

6

bo
rd

er
T

op
S

ty
le

IE
4,

 N
6

bo
rd

er
B

ot
to

m
W

id
th

IE
4,

 N
6

bo
rd

er
Le

ftW
id

th
IE

4,
 N

6

bo
rd

er
R

ig
ht

W
id

th
IE

4,
 N

6

bo
rd

er
T

op
W

id
th

IE
4,

 N
6

bo
rd

er
C

ol
or

IE
4,

 N
6

bo
rd

er
S

ty
le

IE
4,

 N
6

bo
rd

er
W

id
th

IE
4,

 N
6

m
ar

gi
n

IE
4,

 N
6

m
ar

gi
nB

ot
to

m
IE

4,
 N

6

m
ar

gi
nL

ef
tI

E
4,

 N
6

m
ar

gi
nR

ig
ht

IE
4,

 N
6

m
ar

gi
nT

op
IE

4,
 N

6

ou
tli

ne
M

5,
 N

6

ou
tli

ne
C

ol
or

M
5,

 N
6

ou
tli

ne
S

ty
le

M
5,

 N
6

ou
tli

ne
W

id
th

M
5,

 N
6

pa
dd

in
g

IE
4,

 N
6

pa
dd

in
gB

ot
to

m
IE

4,
 N

6

pa
dd

in
gL

ef
tI

E
4,

 N
6

pa
dd

in
gR

ig
ht

IE
4,

 N
6

pa
dd

in
gT

op
IE

4,
 N

6

B
ac

kg
ro

u
n

d

ba
ck

gr
ou

nd
IE

4,
 N

6

ba
ck

gr
ou

nd
A

tta
ch

m
en

t
IE

4,
 N

6

ba
ck

gr
ou

nd
C

ol
or

IE
4,

 N
6

ba
ck

gr
ou

nd
Im

ag
e

IE
4,

 N
6

ga
ck

gr
ou

nd
P

os
iti

on
IE

4,
 N

6

ba
ck

gr
ou

nd
P

os
iti

on
X

IE
-O

nl
y

ba
ck

gr
ou

nd
P

os
iti

on
Y

IE
-O

nl
y

ba
ck

gr
ou

nd
R

ep
ea

tI
E

4,
 N

6

P
o

si
ti

o
n

in
g

bo
tto

m
IE

5,
 N

6

he
ig

ht
IE

4,
 N

6

le
ft

IE
4,

 N
6

pi
xe

lB
ot

to
m

IE
/W

-O
nl

y

pi
xe

lH
ei

gh
t

IE
-O

nl
y

pi
xe

lL
ef

tI
E

-O
nl

y

pi
xe

lR
ig

ht
IE

/W
-O

nl
y

pi
xe

lT
op

IE
-O

nl
y

pi
xe

lW
id

th
IE

-O
nl

y

po
sB

ot
to

m
IE

/W
-O

nl
y

po
sH

ei
gh

tI
E

-O
nl

y

po
sL

ef
tI

E
-O

nl
y

po
sR

ig
ht

IE
/W

-O
nl

y

po
sT

op
IE

-O
nl

y

po
sW

id
th

IE
-O

nl
y

po
si

tio
n

IE
4,

 N
6

rig
ht

IE
5,

 N
6

to
p

IE
4,

 N
6

w
id

th
IE

4,
 N

6

zI
nd

ex
IE

4,
 N

6

IE
4+

, N
N

6+
 s

ty
le

 O
bj

ec
t P

ro
pe

rt
ie

s
©

 2
00

4
D

an
ny

 G
oo

dm
an

 (
w

w
w

.d
an

ny
g.

co
m

).
 A

ll
R

ig
ht

s
R

es
er

ve
d.

JS
B

5

32
26

1110 Part V ✦ Appendixes

ca
pt

ur
eE

ve
nt

s(
ty

pe
)N

4-
O

nl
y

cl
ea

r(
)

cl
os

e(
)

ge
tS

el
ec

tio
n(

)
N

4,
(2

)

ha
nd

le
E

ve
nt

(
ev

en
t)

N
4-

O
nl

y

op
en

("
m

im
et

yp
e

"
[,r

ep
la

ce
])(

3)

re
le

as
eE

ve
nt

s(
ty

pe
)N

4-
O

nl
y

ro
ut

eE
ve

nt
(e

ve
nt

)N
4-

O
nl

y

w
rit

e(
"s

tr
in

g
")

w
rit

el
n(

"s
tr

in
g

")

al
in

kC
ol

or
an

ch
or

s[
]

ap
pl

et
s[

]N
3,

 IE
4

bg
C

ol
or

co
ok

ie
do

m
ai

n
N

3,
 IE

4

em
be

ds
[]

N
3,

 IE
4

fg
C

ol
or

fo
rm

s[
]

he
ig

ht
N

4

im
ag

es
[]

N
3,

 IE
4

la
st

M
od

ifi
ed

la
ye

rs
[]

N
4-

O
nl

y

lin
kC

ol
or

lin
ks

[]
lo

ca
tio

n
(1

)

re
fe

rr
er

tit
le

U
R

LN
3,

 IE
4

vl
in

kC
ol

or
w

id
th

N
4

do
cu

m
en

t
(N

on
e)

(1
)

R
ep

la
ce

d
by

 th
e

U
R

L
pr

op
er

ty
 in

 N
av

ig
at

or
 3

.
(2

)
M

4
ha

s
a

do
cu

m
en

t.s
el

ec
tio

n
pr

op
er

ty
 to

 r
et

rie
ve

 th
e

cu
rr

en
tly

 s
el

ec
te

d
te

xt
.

(3
)

m
im

et
yp

e
pa

ra
m

et
er

 n
ew

 in
 M

4,
 b

ut
 o

nl
y

"t
ex

t/h
tm

l"
ty

pe
 s

up
po

rt
ed

.

ap
pC

or
eN

6

cl
ie

nt
In

fo
rm

at
io

n
IE

4
cl

ip
bo

ar
dD

at
a

W
5

cl
os

ed
N

3,
 IE

4

co
m

po
ne

nt
s[

]N
6

co
nt

ro
lle

rs
[]

N
6

cr
yp

to
N

6

de
fa

ul
tS

ta
tu

s
di

al
og

A
rg

um
en

ts
IE

4

di
al

og
H

ei
gh

tW
4

di
al

og
Le

ft
IE

4

di
al

og
T

op
IE

4

di
al

og
W

id
th

W
4

di
re

ct
or

ie
s

N
4,

(S
)

do
cu

m
en

t
ev

en
tI

E
4

ex
te

rn
al

W
4

fr
am

eE
le

m
en

tW
5.

5

fr
am

es
[]

hi
st

or
y

in
ne

rH
ei

gh
tN

4

in
ne

rW
id

th
N

4

le
ng

th
N

6,
 IE

4

lo
ad

in
g

N
4-

O
nl

y

lo
ca

tio
n

lo
ca

tio
nb

ar
N

4,
(S

)

m
en

ub
ar

N
4,

(S
)

na
m

e
na

vi
ga

to
rN

6,
 IE

4

of
fs

cr
ee

nB
uf

fe
rin

g
IE

4
op

en
er

 IE
3,

 N
3

ou
te

rH
ei

gh
t

N
4

ou
te

rW
id

th
 N

4

pa
ge

X
O

ffs
et

 N
4

pa
ge

Y
O

ffs
et

 N
4

pa
re

nt

pe
rs

on
al

ba
r

N
4,

(S
)

pk
cs

11
N

6

pr
om

pt
er

N
6

re
tu

rn
V

al
ue

W
4,

M
5

sc
re

en
 N

6,
 IE

4

sc
re

en
Le

ft
W

5

sc
re

en
T

op
W

5

sc
re

en
X

N
6

sc
re

en
Y

N
6

sc
ro

llb
ar

s
N

4,
(S

)

sc
ro

llX
N

6

sc
ro

llY
N

6

se
lf

si
de

ba
rN

4,
(S

)

st
at

us

st
at

us
ba

rN
4,

(S
)

to
ol

ba
r

N
4,

(S
)

to
p

w
in

do
w

w
in

do
w

(1
)N

ew
 w

in
do

w
 s

pe
cs

 fo
r

al
l b

ro
w

se
rs

: h
ei

gh
t,

w
id

th
, t

oo
lb

ar
, l

oc
at

io
n,

 d
ire

ct
or

ie
s,

 s
ta

tu
s,

 m
en

ub
ar

,

 s
cr

ol
lb

ar
s,

 r
es

iz
ab

le
, c

op
yh

is
to

ry
. A

dd
'l

sp
ec

s
fo

r
N

4+
: a

lw
ay

sL
ow

er
ed

(S
),

 a
lw

ay
sR

ai
se

d(
S

),

 d

ep
en

de
nt

, h
ot

ke
ys

, i
nn

er
H

ei
gh

t,
in

ne
rW

id
th

, o
ut

er
H

ei
gh

t,
ou

te
rW

id
th

, s
cr

ee
nX

, s
cr

ee
nY

, t
itl

eb
ar

(S
),

 z
-lo

ck
(S

).
 A

dd
'l

sp
ec

s
fo

r
IE

4+
: c

ha
nn

el
m

od
e,

 fu
lls

cr
ee

n,
 le

ft,
 to

p.
 A

dd
'l

sp
ec

 fo
r

IE
5+

: t
itl

e.

 N
6

+
 in

cl
ud

es
 le

ft,
 to

p.
(2

)O
pt

io
na

l a
rg

s
pa

ra
m

et
er

 a
dd

ed
 to

 N
4;

 3
rd

 p
ar

am
et

er
 in

 IE
4

is
 fo

r
sc

rip
tin

g
la

ng
ua

ge
.

O
ri

gi
na

l D
O

M
 (

N
N

2+
, I

E
3+

)
Q

ui
ck

 R
ef

er
en

ce
 —

 P
ag

e
1

of
 2

©

 2
00

4
D

an
ny

 G
oo

dm
an

 (
w

w
w

.d
an

ny
g.

co
m

).
 A

ll
R

ig
ht

s
R

es
er

ve
d.

JS
B

5

al
er

t(
"m

sg
")

at
ta

ch
E

ve
nt

("
ev

t"
,fu

nc
)IE

5

ba
ck

()
N

4

bl
ur

()
N

3,
 IE

4

ca
pt

ur
eE

ve
nt

s(
ty

pe
)

N
4-

O
nl

y

cl
ea

rI
nt

er
va

l(I
D

)N
4,

 IE
4

cl
ea

rT
im

eo
ut

(I
D

)
cl

os
e(

)
co

nf
irm

("
m

sg
")

cr
ea

te
P

op
up

()
W

5.
5

de
ta

ch
E

ve
nt

("
ev

t"
,fu

nc
)IE

5

di
sa

bl
eE

xt
er

na
lC

ap
tu

re
()

N
4-

O
nl

y

en
ab

le
E

xt
er

na
lC

ap
tu

re
()

N
4-

O
nl

y

ex
ec

S
cr

ip
t(

"e
xp

rs
"[

,la
ng

])I
E

4

fin
d(

["
st

r"
][,

ca
se

, b
kw

d
])N

4

fir
eE

ve
nt

("
ev

t"
[,e

vt
O

bj
])W

5.
5

fo
cu

s(
)N

3,
 IE

4

fo
rw

ar
d(

) N
4

ha
nd

le
E

ve
nt

(
ev

en
t)

N
4-

O
nl

y

ho
m

e(
)N

4

m
ov

eB
y(

∆
x,

∆y
)N

4,
 IE

4

m
ov

eT
o(

x,
y)

N
4,

 IE
4

na
vi

ga
te

()
IE

3

op
en

(U
R

L,
"n

am
e

",
"s

pe
cs

")(
1)

,(
S

)

pr
in

t(
)N

4,
 IE

5

pr
om

pt
("

m
sg

",
"re

pl
y

")
re

le
as

eE
ve

nt
s(

ty
pe

)N
4-

O
nl

y

re
si

ze
B

y(
∆

x,
∆y

)N
4-

O
nl

y,
 IE

4

re
si

ze
T

o(
w

id
th

,h
ei

gh
t)

N
4-

O
nl

y,
 IE

4

ro
ut

eE
ve

nt
(e

ve
nt

)N
4-

O
nl

y

sc
ro

ll(
x,

y)
N

3,
 IE

4

sc
ro

llB
y(

∆
x,

∆y
)N

4,
 IE

4

sc
ro

llT
o(

x,
y)

N
4,

 IE
4

se
tA

ct
iv

e(
)

W
5.

5

se
tIn

te
rv

al
(f

un
c

, m
se

c
 [,

ar
gs

])N
4,

IE
4,

(2
)

se
tT

im
eo

ut
(f

un
c

, m
se

c
 [,

ar
gs

])(
2)

sh
ow

H
el

p(
)W

4

sh
ow

M
od

al
D

ia
lo

g(
)

IE
4

sh
ow

M
od

el
es

sD
ia

lo
g(

)
W

5

si
ze

T
oC

on
te

nt
()

N
6

st
op

()
N

4

on
ab

or
tN

6

on
af

te
rp

rin
tW

5

on
be

fo
re

pr
in

tW
5

on
be

fo
re

un
lo

ad
IE

4

on
bl

ur
N

3,
 IE

4

on
ch

an
ge

N
6

on
cl

ic
k

N
6

on
cl

os
e

N
6

on
dr

ag
dr

op
N

4-
O

nl
y

on
er

ro
rN

3,
 IE

4

on
fo

cu
s

N
3,

 IE
4

on
he

lp
IE

4

on
ke

yd
ow

n
N

6

on
ke

yp
re

ss
N

6

on
ke

yu
p

N
6

on
lo

ad
on

m
ou

se
sd

ow
n

N
6

on
m

ou
se

m
ov

e
N

6

on
m

ou
se

ou
tN

6

on
m

ou
se

ov
er

N
6

on
m

ou
se

up
N

6

on
m

ov
e

N
4-

O
nl

y

on
re

se
tN

6

on
re

si
ze

N
4,

 IE
4

on
sc

ro
ll

IE
4

on
se

le
ct

N
6

on
su

bm
it

N
6

on
un

lo
ad

16
18

ab
ov

e
ba

ck
gr

ou
nd

be
lo

w
bg

C
ol

or
cl

ip
.b

ot
to

m
cl

ip
.h

ei
gh

t
cl

ip
.le

ft
cl

ip
.r

ig
ht

cl
ip

.to
p

cl
ip

.w
id

th
do

cu
m

en
t

le
ft

na
m

e
pa

ge
X

pa
ge

Y
pa

re
nt

La
ye

r
si

bl
in

gA
bo

ve
si

bl
in

gB
el

ow
sr

c
to

p
vi

si
bi

lit
y

zI
nd

ex

la
ye

rN
4-

O
nl

y

lo
ad

("
fil

en
am

e
",

 y
)

m
ov

eA
bo

ve
(l

ay
er

O
bj

)
m

ov
eB

el
ow

(l
ay

er
O

bj
)

m
ov

eB
y(

∆
x,

 ∆
y)

m
ov

eT
o(

x,
 y

)
m

ov
eT

oA
bs

ol
ut

e(
x,

 y
)

re
si

ze
B

y(
∆

x,
 ∆

y)
re

si
ze

T
o(

w
id

th
, h

ei
gh

t)

on
bl

ur
on

fo
cu

s
on

lo
ad

on
m

ou
se

ou
t

on
m

ou
se

ov
er

on
m

ou
se

up

39

lo
ca

tio
n

as
si

gn
("

U
R

L"
)

re
lo

ad
([

un
co

nd
iti

on
al

])N
3,

IE
4

re
pl

ac
e(

"U
R

L"
)N

3,
IE

4

ha
sh

ho
st

ho
st

na
m

e
hr

ef
pa

th
na

m
e

po
rt

pr
ot

oc
ol

se
ar

ch

(N
on

e)

17

hi
st

or
y

cu
rr

en
t(

S
),

(1
)

le
ng

th
ne

xt
(S

),
(1

)

pr
ev

io
us

(S
),

(1
)

ba
ck

()
fo

rw
ar

d(
)

go
(in

t
| "

U
R

L"
)

(N
on

e)

(1
)

A
va

ila
bl

e
in

 N
N

4+
/M

oz
ill

a
w

ith
 s

ig
ne

d
sc

rip
ts

.

17

ha
sh

ho
st

ho
st

na
m

e
hr

ef
pa

th
na

m
e

po
rt

pr
ot

oc
ol

se
ar

ch
ta

rg
et

on
cl

ic
k

N
4

on
m

ou
se

ou
t

on
m

ou
se

ov
er

N
3,

IE
4

ar
ea

(N
on

e)

20

bo
rd

er
co

m
pl

et
e

he
ig

ht
hs

pa
ce

lo
w

sr
c

na
m

e
sr

c
vs

pa
ce

w
id

th
xN

4-
O

nl
y

yN
4-

O
nl

y

im
ag

eN
3,

(1
),

IE
4

on
ab

or
t

on
er

ro
r

on
lo

ad

(N
on

e)

(1
)

Im
pl

em
en

te
d

in
 IE

3.
01

/M
ac

in
to

sh
 b

ut
 n

ot
 W

in
do

w
s

un
til

 IE
4.

20

na
m

e
N

4,
 IE

4

te
xt

N
4-

O
nl

y

xN
4-

O
nl

y

yN
4-

O
nl

y

(N
on

e)
(N

on
e)

an
ch

or
 (

 <a
 n

am
e=

...
>

<
/a

>
)

19

ha
sh

ho
st

ho
st

na
m

e
hr

ef
pa

th
na

m
e

po
rt

pr
ot

oc
ol

se
ar

ch
ta

rg
et

te
xt

N
4-

O
nl

y

xN
4-

O
nl

y

yN
4-

O
nl

y

on
cl

ic
k

on
db

lc
lic

k
N

4,
(1

),
IE

4

on
m

ou
se

do
w

n
N

4,
 IE

4

on
m

ou
se

ou
tN

4,
 IE

4

on
m

ou
se

ov
er

on
m

ou
se

up
N

4,
 IE

4

(N
on

e)

(1
)

N
ot

 im
pl

em
en

te
d

in
 N

N
4/

M
ac

.

lin
k

(<
a

hr
ef

=
...

>
<

/a
>

)
19

1111Appendix A ✦ JavaScript and Browser Object Quick Reference

Pa
ge

 2
 o

f
2

—
 O

ri
gi

na
l D

O
M

 (
N

N
2+

, I
E

3+
)

Q
ui

ck
 R

ef
er

en
ce

©
 2

00
4

D
an

ny
 G

oo
dm

an
 (

w
w

w
.d

an
ny

g.
co

m
).

 A
ll

R
ig

ht
s

R
es

er
ve

d.

JS
B

5

O
ri

gi
na

l D
O

M
C

om
pa

ti
bi

lit
y

G
ui

de
B

as
el

in
e

br
ow

se
rs

 f
or

 th
is

 s
ec

tio
n

ar
e

N
N

2,
 W

in
IE

3/
J1

, a
nd

 M
ac

IE
3.

01
. A

n
ite

m
 w

ith

no
 n

ot
at

io
n

is
 c

om
pa

tib
le

 b
ac

k
to

 th
at

 le
ve

l,
an

d
is

fo
un

d
in

 a
ll

ne
w

 s
cr

ip
ta

bl
e

br
ow

se
rs

 s
in

ce
 th

en
.

N
ot

at
io

ns
 in

di
ca

te
 th

e
br

ow
se

r
an

d
ve

rs
io

n
in

 w
hi

ch
 th

e
pr

op
er

ty
, m

et
ho

d,
 o

r
ev

en
t h

an
dl

er

w
as

 in
tr

od
uc

ed
.

E
xc

ep
t f

or
 th

e
w

in
do

w
 a

nd
 n

av
ig

at
or

 o
bj

ec
ts

(w

ho
se

 li
st

in
gs

 c
ov

er
al

l
br

ow
se

rs
 a

nd
ve

rs
io

ns
),

 n
ew

 f
ea

tu
re

s
lis

te
d

in
 th

is
 s

ec
tio

n
co

ve
r

on
ly

 th
ro

ug
h

N
N

4
(a

nd
 I

E
4

w
he

n
th

ey

m
at

ch
ed

 a
 n

ew
 N

N
4

fe
at

ur
e)

. N
ot

at
io

ns
 a

re

as
 f

ol
lo

w
s:

 N

3
—

 N
ew

 in
 N

N
3

 N

4
—

 N
ew

 in
 N

N
4

 J

2
 —

 N
ew

 in
 I

E
3,

 J
Sc

ri
pt

.d
ll

ve
r.

2

 I
E

4
—

 N
ew

 in
 I

E
4,

 a
ll

O
Se

s

 (
S)

 —
 R

eq
ui

re
s

si
gn

ed
 s

cr
ip

ts
 (

N
N

)
A

dd
iti

on
al

w

in
do

w
 a

nd
 n

av
ig

at
or

 o
bj

ec
t

no
ta

tio
ns

 a
re

:

 W
4

—
 I

E
4+

/W
in

do
w

s
on

ly

 W
5

—
 I

E
5+

/W
in

do
w

s
on

ly

 I
E

5
—

 I
E

5+
 a

ll
O

Se
s

 W

5.
5

—
 I

E
5.

5+
/W

in
do

w
s

on
ly

 W

6
—

 I
E

6+
/W

in
do

w
s

on
ly

 M

4
—

 I
E

4+
/M

ac
 o

nl
y

 M

5
—

 I
E

5+
/M

ac
 o

nl
y

 N

6
—

 N
ew

 in
 N

N
6

&
 M

oz
ill

a
E

xc
ep

t f
or

 it
em

s
m

ar
ke

d
N

4-
O

nl
y

(w
hi

ch
 a

re
no

t c
ar

ri
ed

 o
ve

r
in

to
 N

N
6)

, a
n

ite
m

 li
st

ed
 f

or
an

 e
ar

ly
 b

ro
w

se
r

is
 a

ls
o

av
ai

la
bl

e
in

 th
e

IE
4+

an
d/

or
 W

3C
 D

O
M

 o
bj

ec
t m

od
el

s.
“(

N
on

e)
”

m
ea

ns
 th

at
 n

o
m

et
ho

ds
 o

r
ev

en
ts

ex
is

t f
or

 th
e

cu
rr

en
t o

bj
ec

t t
hr

ou
gh

 I
E

3
an

d
N

N
4.

ac
tio

n
el

em
en

ts
[]

en
co

di
ng

le
ng

th
m

et
ho

d
na

m
e

ta
rg

et

ha
nd

le
E

ve
nt

(
ev

t)
N

4

re
se

t(
)N

3,
 IE

4

su
bm

it(
)

on
re

se
tN

3,
 IE

4

on
su

bm
it

fo
rm

21

fo
rm

na
m

e
ty

pe
N

3,
 IE

4

va
lu

e

cl
ic

k(
)

ha
nd

le
E

ve
nt

(
ev

t)
N

3

bu
tto

n,
 r

es
et

, s
ub

m
it

on
cl

ic
k

on
m

ou
se

do
w

n
N

4,
 IE

4

on
m

ou
se

up
N

4,
 IE

4

22

ch
ec

ke
d

de
fa

ul
tC

he
ck

ed
fo

rm
na

m
e

ty
pe

N
3,

 IE
4

va
lu

e

cl
ic

k(
)

ha
nd

le
E

ve
nt

(
ev

t)
N

3

ch
ec

kb
ox

on
cl

ic
k

on
m

ou
se

do
w

n
N

4,
 IE

4

on
m

ou
se

up
N

4,
 IE

4

22

ch
ec

ke
d

de
fa

ul
tC

he
ck

ed
fo

rm
le

ng
th

na
m

e
ty

pe
N

3,
 IE

4

va
lu

e

cl
ic

k(
)

ha
nd

le
E

ve
nt

(
ev

t)
N

3

ra
di

o
on

cl
ic

k
on

m
ou

se
do

w
n

N
4,

 IE
4

on
m

ou
se

up
N

4,
 IE

4

22

le
ng

th
na

m
e

op
tio

ns
[i]

op
tio

ns
[i]

.d
ef

au
ltS

el
ec

te
d

op
tio

ns
[i]

.in
de

x
op

tio
ns

[i]
.s

el
ec

te
d

op
tio

ns
[i]

.te
xt

op
tio

ns
[i]

.v
al

ue
se

le
ct

ed
In

de
x

ty
pe

N
3,

 IE
4

bl
ur

()
N

3,
 IE

4

fo
cu

s(
)N

3,
 IE

4

ha
nd

le
E

ve
nt

(
ev

t)
N

4

se
le

ct
on

bl
ur

on
ch

an
ge

on
fo

cu
s

24

ap
pC

od
eN

am
e

ap
pM

in
or

V
er

si
on

IE
4

ap
pN

am
e

ap
pV

er
si

on
br

ow
se

rL
an

gu
ag

e
IE

4

co
ok

ie
E

na
bl

ed
N

6,
 IE

4

cp
uC

la
ss

IE
4

la
ng

ua
ge

N
4

m
im

eT
yp

es
[]

N
3,

 M
4

on
Li

ne
IE

4

os
cp

u
N

6

pl
at

fo
rm

N
4,

 IE
4

pl
ug

in
s[

]N
3,

 M
4

pr
od

uc
tN

6

pr
od

uc
tS

ub
N

6

se
cu

rit
yP

ol
ic

y
N

4

sy
st

em
La

ng
ua

ge
IE

4

us
er

A
ge

nt
us

er
La

ng
ua

ge
IE

4

us
er

P
ro

fil
e

IE
4

ve
nd

or
N

6

ve
nd

or
S

ub
N

6

ja
va

E
na

bl
ed

()
N

3,
 M

4

pr
ef

er
en

ce
(n

am
e

[,
va

l]
)N

4,
(S

)

ta
in

tE
na

bl
ed

()
N

3,
 IE

4

na
vi

ga
to

r
38

de
sc

rip
tio

n
en

ab
le

dP
lu

gi
n

ty
pe

su
ffi

xe
s

(N
on

e)

N
3,

M
4

m
im

eT
yp

e
38

na
m

e
fil

en
am

e
de

sc
rip

tio
n

le
ng

th

re
fr

es
h(

)

pl
ug

in
N

3,
M

4
38

(1
)N

4+
 o

nl
y.

(2
)W

in
IE

4+
 o

nl
y.

av
ai

lH
ei

gh
t

av
ai

lL
ef

t(
1)

av
ai

lT
op

(1
)

av
ai

lW
id

th
bu

ffe
rD

ep
th

(2
)

co
lo

rD
ep

th
fo

nt
S

m
oo

th
in

gE
na

bl
ed

(2
)

he
ig

ht
pi

xe
lD

ep
th

up
da

te
In

te
rv

al
(2

)

w
id

th

(N
on

e)

sc
re

en
N

4,
IE

4
38

(1
)

N
ot

 a
va

ila
bl

e
fo

r
te

xt
ar

ea
 o

bj
ec

t.
(2

)
P

as
sw

or
d

va
lu

e
pr

op
er

ty
 r

et
ur

ns
 e

m
pt

y
st

rin
g

in
 N

N
2.

de
fa

ul
tV

al
ue

(1
)

fo
rm

na
m

e
ty

pe
N

3,
 IE

4

va
lu

e
(2

)

bl
ur

()
fo

cu
s(

)
ha

nd
le

E
ve

nt
(

ev
t)

N
4

se
le

ct
()

te
xt

, t
ex

ta
re

a,
 p

as
sw

or
d,

 h
id

de
n

on
bl

ur
on

ch
an

ge
on

fo
cu

s
on

ke
yd

ow
n

N
4,

 IE
4

on
ke

yp
re

ss
N

4,
 IE

4

on
ke

yu
p

N
4,

 IE
4

on
se

le
ct

23

(1
)

A
so

 c
al

le
d

th
e

fil
eU

pl
oa

d
ob

je
ct

.

fo
rm

na
m

e
ty

pe
va

lu
e

bl
ur

()
fo

cu
s(

)
ha

nd
le

E
ve

nt
(

ev
t)

N
4

se
le

ct
()

N
3,

(1
),

IE
4

fil
e

in
pu

t c
on

tr
ol

on
bl

ur
on

fo
cu

s
on

se
le

ct

24

1112 Part V ✦ Appendixes

ac
ce

ss
K

ey

al
l[]

be

ha
vi

or
U

rn
s[

]W
5

ca
nH

av
eC

hi
ld

re
n

W
5

ca
nH

av
eH

T
M

L
W

5.
5

ch
ild

re
n

cl
as

sN
am

e
cl

ie
nt

H
ei

gh
t

cl
ie

nt
Le

ft
cl

ie
nt

T
op

cl

ie
nt

W
id

th

co
nt

en
tE

di
ta

bl
e

W
5.

5

cu
rr

en
tS

ty
le

IE
5

da
ta

F
ld

 W
4,

M
5

da
ta

F
or

m
at

A
s

W
4,

M
5

da
ta

S
rc

W
4,

M
5

di
sa

bl
ed

do

cu
m

en
t

fil
te

rs
[]

W
4

hi
de

F
oc

us
W

5.
5

id

in
ne

rH
T

M
L

in
ne

rT
ex

t
is

C
on

te
nt

E
di

ta
bl

e
W

5.
5

is
D

is
ab

le
d

W
5.

5

is
M

ul
tiL

in
e

W
5.

5

is
T

ex
tE

di
t

W
4

la
ng

la

ng
ua

ge

le
ng

th
(1

)

of
fs

et
H

ei
gh

t
of

fs
et

Le
ft

of
fs

et
P

ar
en

t
of

fs
et

T
op

of

fs
et

W
id

th

ou
te

rH
T

M
L

ou
te

rT
ex

t
pa

re
nt

E
le

m
en

t
pa

re
nt

T
ex

tE
di

t
re

ad
yS

ta
te

re
co

rd
N

um
be

rW
4

ru
nt

im
eS

ty
le

IE
5

sc
op

eN
am

e
W

5

sc
ro

llH
ei

gh
t

sc
ro

llL
ef

t
sc

ro
llT

op
sc

ro
llW

id
th

so
ur

ce
In

de
x

st
yl

e
ta

bI
nd

ex
ta

gN
am

e
ta

gU
rn

W
5

tit
le

un
iq

ue
ID

W
5

on
ac

tiv
at

e
W

5.
5

on
be

fo
re

co
py

 W
5

on
be

fo
re

cu
tW

5

on
be

fo
re

de
ac

tiv
at

e
W

5.
5

on
be

fo
re

ed
itf

oc
us

W
5

on
be

fo
re

pa
st

e
W

5

on
bl

ur
on

cl
ic

k
on

co
nt

ex
tm

en
u

W
5

on
co

nt
ro

ls
el

ec
t

W
5.

5

on
co

py
W

5

on
cu

tW
5

on
db

lc
lic

k
on

de
ac

tiv
at

e
W

5.
5

on
dr

ag
W

5

on
dr

ag
en

d
W

5

on
dr

ag
en

te
rW

5

on
dr

ag
le

av
e

W
5

on
dr

ag
ov

er
W

5

on
dr

ag
st

ar
tW

5

on
dr

op
W

5

on
fil

te
rc

ha
ng

e
W

4

on
fo

cu
s

on
fo

cu
si

n
W

6(
2)

on
fo

cu
so

ut
W

6(
2)

on
he

lp
W

4,
M

5

on
ke

yd
ow

n
on

ke
yp

re
ss

on
ke

yu
p

on
lo

se
ca

pt
ur

e
W

5

on
m

ou
se

do
w

n
on

m
ou

se
en

te
rW

5.
5

on
m

ou
se

le
av

e
W

5.
5

on
m

ou
se

m
ov

e
on

m
ou

se
ou

t
on

m
ou

se
ov

er
on

m
ou

se
up

on
m

ou
se

w
he

el
W

6

on
m

ov
e

W
5.

5(
2)

on
m

ov
ee

nd
W

5.
5(

2)

on
m

ov
es

ta
rt

W
5.

5(
2)

on
pa

st
e

W
5

on
pr

op
er

ty
ch

an
ge

W
5

on
re

ad
ys

ta
te

ch
an

ge
on

re
si

ze
on

re
si

ze
en

d
W

5.
5

on
re

si
ze

st
ar

tW
5.

5

on
se

le
ct

st
ar

t

ad
dB

eh
av

io
r(

"U
R

L"
) W

5

ap
pl

yE
le

m
en

t(
el

em
[,t

yp
e

])W
5

at
ta

ch
E

ve
nt

("
ev

t"
,fu

nc
)W

5

bl
ur

()

cl
ea

rA
ttr

ib
ut

es
()

W
5

cl
ic

k(
)

co
m

po
ne

nt
F

ro
m

P
oi

nt
(

x,
y)

W
5

co
nt

ai
ns

(e
le

m
)

de
ta

ch
E

ve
nt

("
ev

t"
,fu

nc
) W

5

fir
eE

ve
nt

("
ev

t"
[,e

vt
])W

5.
5

fo
cu

s(
)

ge
tA

dj
ac

en
tT

ex
t(

)
W

5

ge
tA

ttr
ib

ut
e(

"a
ttr

"[
,c

as
e

])

ge
tB

ou
nd

in
gC

lie
nt

R
ec

t(
)

W
5

ge
tC

lie
nt

R
ec

ts
()

W
5

ge
tE

xp
re

ss
io

n(
)

W
5

in
se

rt
A

dj
ac

en
tE

le
m

en
t(

)
W

5

in
se

rt
A

dj
ac

en
tH

T
M

L(
)

in
se

rt
A

dj
ac

en
tT

ex
t(

)
ite

m
(i

nd
ex

[,s
ub

in
de

x
])(

1)

m
er

ge
A

ttr
ib

ut
es

()
W

5

re
le

as
eC

ap
tu

re
()

W
5

re
m

ov
eA

ttr
ib

ut
e(

"a
ttr

"[
,c

as
e

])

re
m

ov
eB

eh
av

io
r(

ID
)W

5

re
m

ov
eE

xp
re

ss
io

n(
"

pr
op

")W
5

re
m

ov
eN

od
e(

ch
ild

re
n

)W
5

re
pl

ac
eA

dj
ac

en
tT

ex
t(

"
lo

c
",

"tx
t"

) W
5

re
pl

ac
eN

od
e(

ne
w

)W
5

sc
ro

llI
nt

oV
ie

w
(

to
p

)
se

tA
ct

iv
e(

)
W

5.
5

se
tA

ttr
ib

ut
e(

"a
ttr

",v
al

[,c
as

e
])

se

tC
ap

tu
re

(c
on

ta
in

er
)W

5

se
tE

xp
re

ss
io

n(
"

pr
op

",
"e

xp
r"

,"l
an

g
")

 W
5

sw
ap

N
od

e(
no

de
)W

5

ta
gs

("
ta

g"
) (

1)

ur
ns

("
U

R
N

")W
5,

(1
)

A
ll

H
T

M
L

E
le

m
en

ts

(1
)P

ro
pe

rt
y

or
 m

et
ho

d
of

 a
ll

ob
je

ct
 c

ol
le

ct
io

ns
.

 (

2)
IE

 c
on

te
nt

 e
di

tin
g

m
od

e
on

ly
.

do
cu

m
en

t
is

O
pe

n
(N

on
e)

hi
de

()
sh

ow
()

po
pu

pW
5.

5

co
lo

r
fa

ce
si

ze

B
A

S
E

F
O

N
T

te
xt

T
IT

LE

hr
ef

ta
rg

et

B
A

S
E

IE
4+

 D
H

T
M

L
 D

O
M

 Q
ui

ck
 R

ef
er

en
ce

 —
 P

ag
e

1
of

 4

©
 2

00
4

D
an

ny
 G

oo
dm

an
 (

w
w

w
.d

an
ny

g.
co

m
).

 A
ll

R
ig

ht
s

R
es

er
ve

d.

JS
B

5

bo
rd

er
bo

rd
er

C
ol

or
co

ls
fr

am
eB

or
de

r
fr

am
eS

pa
ci

ng
ro

w
s

F
R

A
M

E
S

E
T

ch
ar

se
t

co
nt

en
t

ht
tp

E
qu

iv

na
m

e
ur

l

M
E

T
A

15 16

al
ig

n
al

lo
w

T
ra

ns
pa

re
nc

y
W

6

co
nt

en
tW

in
do

w
W

5.
5

he
ig

ht
, w

id
th

hs
pa

ce
, v

sp
ac

e
lo

ng
de

sc
W

6,
M

5

m
ar

gi
nH

ei
gh

t
m

ar
gi

nW
id

th
na

m
e

sc
ro

lli
ng

sr
c

IF
R

A
M

E
16

al
lo

w
T

ra
ns

pa
re

nc
y

W
6

bo
rd

er
C

ol
or

co

nt
en

tW
in

do
w

W
5.

5

fr
am

eB
or

de
r

he

ig
ht

, w
id

th
m

ar
gi

nH
ei

gh
t

W
6,

M
5

m
ar

gi
nW

id
th

W
6,

M
5

na
m

e
no

R
es

iz
e

sc
ro

lli
ng

sr
c

F
R

A
M

E
1616 36 36 36 36

al
in

k
ba

ck
gr

ou
nd

bg

C
ol

or

bg
P

ro
pe

rt
ie

s
bo

tto
m

M
ar

gi
n

le
ftM

ar
gi

n,
 r

ig
ht

M
ar

gi
n

lin
k

no
W

ra
p

sc
ro

ll
sc

ro
llL

ef
t,

sc
ro

llT
op

te
xt

to
pM

ar
gi

n
vL

in
k

on
A

fte
rP

rin
tW

5

on
B

ef
or

eP
rin

tW
5

on
S

cr
ol

l

cr
ea

te
C

on
tr

ol
R

an
ge

()
W

5

cr
ea

te
T

ex
tR

an
ge

()
do

S
cr

ol
l([

"s
cr

ol
lA

ct
io

n
"]

)W
5

B
O

D
Y

18

ac
tiv

eE
le

m
en

t
al

in
kC

ol
or

al

l
an

ch
or

s[
]

ap
pl

et
s[

]
bg

C
ol

or

bo
dy

ch

ar
se

t
co

m
pa

tM
od

e
W

6

co
ok

ie

de
fa

ul
tC

ha
rs

et

de
si

gn
M

od
e

W
5

do
ct

yp
e

M
5

do

m
ai

n
em

be
ds

[]
ex

pa
nd

o
fg

C
ol

or

fil
eC

re
at

ed
D

at
e

fil
eM

od
ifi

ed
D

at
e

fil
eS

iz
e

fo

rm
s[

]
fr

am
es

[]
im

ag
es

[]

la
st

M
od

ifi
ed

lin
kC

ol
or

lin

ks
[]

lo

ca
tio

n
m

ed
ia

W
5.

5

m
im

eT
yp

e
W

5

na
m

eP
ro

p
W

6

na
m

es
pa

ce
s[

]
W

5.
5

pa
re

nt
W

in
do

w

pl
ug

in
s[

]

pr
ot

oc
ol

re

ad
yS

ta
te

re

fe
rr

er

sc
rip

ts
[]

se
cu

rit
y

W
5.

5

se
le

ct
io

n

st
yl

eS
he

et
s[

]

tit
le

un

iq
ue

ID

U
R

L

U
R

LU
ne

nc
od

ed
W

5.
5

vl
in

kC
ol

or

on
ac

tiv
at

e
W

5.
5

on
be

fo
re

cu
tW

5

on
be

fo
re

de
ac

tiv
at

e
W

5.
5

on
be

fo
re

ed
itf

oc
us

W
5

on
be

fo
re

pa
st

e
W

5

on
cl

ic
k

on
co

nt
ex

tm
en

u
W

5

on
co

nt
ro

ls
el

ec
t

W
5.

5

on
cu

t
on

db
lc

lic
k

on
de

ac
tiv

at
e

W
5.

5

on
dr

ag
W

5

on
dr

ag
en

d
W

5

on
dr

ag
en

te
rW

5

on
dr

ag
le

av
e

W
5

on
dr

ag
ov

er
W

5

on
dr

ag
st

ar
tW

5

on
dr

op
W

5

on
he

lp
W

4,
M

5

on
ke

yd
ow

n
on

ke
yp

re
ss

on
ke

yu
p

on
m

ou
se

do
w

n
on

m
ou

se
m

ov
e

on
m

ou
se

ou
t

on
m

ou
se

ov
er

on
m

ou
se

up
on

pa
st

e
on

pr
op

er
ty

ch
an

ge
W

5

on
re

ad
ys

ta
te

ch
an

ge
on

re
si

ze
en

d
W

5.
5

on
re

si
ze

st
ar

tW
5.

5

on
se

le
ct

io
nc

ha
ng

e
W

5.
5

on
st

op
IE

5

at
ta

ch
E

ve
nt

("
ev

t"
,fu

nc
)IE

5

cl
ea

r(
)

cl
ea

rA
ttr

ib
ut

es
()

IE
5

cl
os

e(
)

cr
ea

te
E

le
m

en
t(

"t
ag

")

cr
ea

te
E

ve
nt

O
bj

ec
t(

[
ev

t]
)W

5.
5

cr
ea

te
S

ty
le

S
he

et
([

"
U

R
L"

[,i
nd

ex
]])

de

ta
ch

E
ve

nt
("

ev
t"

,fu
nc

)IE
5

el
em

en
tF

ro
m

P
oi

nt
(x

,y
)

ex
ec

C
om

m
an

d(
"c

m
d

"[
,U

I][
,a

rg
])

fo

cu
s(

)
m

er
ge

A
ttr

ib
ut

es
(o

bj
)W

5

op
en

([
"m

im
eT

yp
e

"[
,re

pl
ac

e
])

qu

er
yC

om
m

an
dE

na
bl

ed
("

cm
d

")

qu
er

yC
om

m
an

dI
nd

te
rm

("
cm

d
")

qu

er
yC

om
m

an
dS

ta
te

("
cm

d
")

qu

er
yC

om
m

an
dS

up
po

rt
ed

("
cm

d
")

qu

er
yC

om
m

an
dT

ex
t(

"c
m

d
")

qu

er
yC

om
m

an
dV

al
ue

("
cm

d
")

re

ca
lc

(a
llF

la
g

)W
5

re
le

as
eC

ap
tu

re
()

 I
E

5

se
tA

ct
iv

e(
)

W
5.

5

w
rit

e(
"s

tr
")

w

rit
el

n(
"s

tr
")do

cu
m

en
t

18

1113Appendix A ✦ JavaScript and Browser Object Quick Reference

ht
m

lF
or

(N
on

e)
(N

on
e)

LA
B

E
L

B
U

T
T

O
N

IN
P

U
T

 (
bu

tto
n,

 r
es

et
, s

ub
m

it,
 r

ad
io

, c
he

ck
bo

x)
(S

ee
 o

rig
in

al
 o

bj
ec

t m
od

el
 b

ut
to

n,
 r

es
et

, s
ub

m
it,

 r
ad

io
, a

nd
 c

he
ck

bo
x

ob
je

ct
 li

st
in

gs
.)

co
m

pl
et

e
fo

rm
na

m
e

sr
c

ty
pe

(N
on

e)
(N

on
e)

IN
P

U
T

 (
im

ag
e)

ha
sh

ho

st

ho
st

na
m

e
hr

ef

M
et

ho
ds

m

im
eT

yp
e

na
m

e
na

m
eP

ro
p

pa
th

na
m

e
po

rt
pr

ot
oc

ol
pr

ot
oc

ol
Lo

ng
re

l
re

v
se

ar
ch

ta
rg

et

ur
n

A
 (

an
ch

or
/li

nk
)

co
m

pa
ct

st
ar

t
ty

pe

O
L

co
m

pa
ct

ty
pe

U
L

ty
pe

va
lu

e

LI

co
m

pa
ct

D
L,

 D
T

, D
D

, D
IR

, M
E

N
U

 P
ag

e
2

of
 4

 —
 I

E
4+

 D
H

T
M

L
 D

O
M

 Q
ui

ck
 R

ef
er

en
ce

©
 2

00
4

D
an

ny
 G

oo
dm

an
 (

w
w

w
.d

an
ny

g.
co

m
).

 A
ll

R
ig

ht
s

R
es

er
ve

d.

JS
B

5

IE
4+

 D
H

T
M

L
 D

O
M

C
om

pa
ti

bi
lit

y
G

ui
de

T
he

 b
as

el
in

e
br

ow
se

r
fo

r
th

is
 s

ec
tio

n
is

M
SI

E
 4

. A
n

ite
m

 w
ith

 n
o

no
ta

tio
n

is
co

m
pa

tib
le

 b
ac

k
to

 th
at

 le
ve

l f
or

 a
ll

O
S

ve
rs

io
ns

. N
ot

at
io

ns
 a

s
fo

llo
w

s:

 W
4

—
 I

E
4+

/W
in

do
w

s
on

ly

 W
5

—
 I

E
5+

/W
in

do
w

s
on

ly

 I
E

5
—

 I
E

5+
 a

ll
O

Se
s

 W

5.
5

—
 I

E
5.

5+
/ W

in
do

w
s

on
ly

 W

6
—

 I
E

6+
/W

in
do

w
s

on
ly

 M

5
—

 I
E

5+
/M

ac
A

ll
H

T
M

L
 e

le
m

en
t o

bj
ec

ts
 s

ha
re

ite
m

s
fr

om
 “

A
ll

H
T

M
L

”
bo

x
on

 P
ag

e
1.

“(
N

on
e)

”
m

ea
ns

 n
o

sp
ec

ia
l m

et
ho

ds
 o

r
ev

en
ts

 f
or

 th
e

cu
rr

en
t o

bj
ec

t.

de
fa

ul
tS

el
ec

te
d

fo
rm

se
le

ct
ed

te
xt

va
lu

e

(N
on

e)

O
P

T
IO

N
(N

on
e)

ac
tio

n
au

to
co

m
pl

et
e

W
5

el
em

en
ts

[]
en

co
di

ng
en

ct
yp

e
le

ng
th

m
et

ho
d

na
m

e
ta

rg
et

on
re

se
t

on
su

bm
it

re
se

t(
)

su
bm

it(
)

F
O

R
M

21 35 22 22

m
ax

Le
ng

th
re

ad
O

nl
y

si
ze

on
af

te
ru

pd
at

e
W

4

on
be

fo
re

up
da

te
W

4

on
er

ro
ru

pd
at

eW
4

(N
on

e)

IN
P

U
T

 (
te

xt
, p

as
sw

or
d,

 h
id

de
n)

(S
ee

 o
rig

in
al

 o
bj

ec
t m

od
el

 te
xt

, p
as

sw
or

d,
 a

nd
 h

id
de

n
ob

je
ct

 li
st

in
gs

.)

23

co
ls

re
ad

O
nl

y
ro

w
s

w
ra

p

on
af

te
ru

pd
at

e
W

4

on
be

fo
re

up
da

te
W

4

on
er

ro
ru

pd
at

eW
4

cr
ea

te
T

ex
tR

an
ge

()

T
E

X
T

A
R

E
A

(S
ee

 o
rig

in
al

 o
bj

ec
t m

od
el

 te
xt

ar
ea

 o
bj

ec
t l

is
tin

g.
)

23

le
ng

th
m

ul
tip

le
si

ze
va

lu
e

(N
on

e)
ite

m
(i

nd
ex

[,s
ub

in
de

x
]IE

5

na
m

ed
Ite

m
("

id
")W

6

op
tio

ns
[i]

.a
dd

(
el

em
[,i

nd
ex

])
op

tio
ns

[i]
.r

em
ov

e(
)

S
E

LE
C

T
(S

ee
 o

rig
in

al
 o

bj
ec

t m
od

el
 s

el
ec

t o
bj

ec
t l

is
tin

g.
)

24 24

373737

19

al
ig

n
al

t
bo

rd
er

co
m

pl
et

e
dy

ns
rc

fil
eC

re
at

ed
D

at
e

W
4,

M
5

fil
eM

od
ifi

ed
D

at
e

W
4,

M
5

fil
eS

iz
e

W
4,

M
5

fil
eU

pd
at

ed
D

at
e

W
5.

5,
M

5

he
ig

ht
hr

ef
hs

pa
ce

is
M

ap
lo

op
lo

w
sr

c
m

im
eT

yp
e

W
6

na
m

e
na

m
eP

ro
p

W
5

pr
ot

oc
ol

sr
c

st
ar

t
us

eM
ap

vs
pa

ce
w

id
th

on
ab

or
t

on
er

ro
r

on
lo

ad

(N
on

e)

IM
G

20

al
t

co
or

ds
ha

sh
ho

st
ho

st
na

m
e

hr
ef

no
H

re
f

pa
th

na
m

e
po

rt
pr

ot
oc

ol
se

ar
ch

sh
ap

e
ta

rg
et

(N
on

e)
(N

on
e)

A
R

E
A

20

ar
ea

s[
]

na
m

e
on

sc
ro

ll
(N

on
e)

M
A

P
20

be
ha

vi
or

bg

C
ol

or
di

re
ct

io
n

he
ig

ht
hs

pa
ce

lo
op

sc
ro

llA
m

ou
nt

sc
ro

llD
el

ay
tr

ue
S

pe
ed

vs
pa

ce

w
id

th

on
bo

un
ce

on
fin

is
h

on
st

ar
t

st
ar

t(
)

st
op

()

M
A

R
Q

U
E

E
35

1114 Part V ✦ Appendixes

al
ig

n
bg

C
ol

or
ro

w
s

vA
lig

n

(N
on

e)
de

le
te

R
ow

(i
)

in
se

rt
R

ow
(i

)
m

ov
eR

ow
(s

rc
In

de
x

,d
es

tIn
de

x
)

i

T
B

O
D

Y
, T

F
O

O
T

, T
H

E
A

D

al
ig

n
ba

ck
gr

ou
nd

bg
C

ol
or

bo
rd

er
bo

rd
er

C
ol

or
bo

rd
er

C
ol

or
D

ar
k

bo
rd

er
C

ol
or

Li
gh

t
ca

pt
io

n
ce

llP
ad

di
ng

ce
lls

[]
W

5

ce
llS

pa
ci

ng
co

ls
[]

da
te

P
ag

eS
iz

e
fr

am
e

he
ig

ht
ro

w
s[

]
ru

le
s

tB
od

ie
s[

]
tF

oo
t

tH
ea

d
w

id
th

on
sc

ro
ll

cr
ea

te
C

ap
tio

n(
)

cr
ea

te
T

F
oo

t(
)

cr
ea

te
T

H
ea

d(
)

de
le

te
C

ap
tio

n(
)

de
le

te
R

ow
(i)

de
le

te
T

F
oo

t(
)

de
le

te
T

H
ea

d(
)

fir
st

P
ag

e(
)I

E
5

in
se

rt
R

ow
(i

)
la

st
P

ag
e(

)I
E

5

m
ov

eR
ow

(s
rc

In
de

x
,d

es
tIn

de
x

)W
5

ne
xt

P
ag

e(
)W

4,
M

5

pr
ev

io
us

P
ag

e(
)W

4,
M

5

re
fr

es
h(

)

T
A

B
LE al

ig
n

vA
lig

n

C
A

P
T

IO
N

al
ig

n
sp

an
vA

lig
n

w
id

thC
O

L,
 C

O
LG

R
O

U
P

al
ig

n
ba

ck
gr

ou
nd

bg
C

ol
or

bo
rd

er
C

ol
or

bo
rd

er
C

ol
or

D
ar

k
bo

rd
er

C
ol

or
Li

gh
t

ce
llI

nd
ex

co
lS

pa
n

he
ig

ht
no

W
ra

p
ro

w
S

pa
n

vA
lig

n
w

id
th

T
D

, T
H

al
ig

n
bg

C
ol

or
bo

rd
er

C
ol

or
bo

rd
er

C
ol

or
D

ar
k

bo
rd

er
C

ol
or

Li
gh

t
ce

lls
[]

he
ig

ht
ro

w
In

de
x

se
ct

io
nR

ow
In

de
x

vA
lig

n

(N
on

e)
de

le
te

C
el

l(
i)

in
se

rt
C

el
l(

i)

T
R

co
lo

r
fa

ce
si

ze

F
O

N
T

al
ig

n
co

lo
r

no
S

ha
de

si
ze

w
id

th

H
R

al
ig

n

H
1.

..H
6

B
R

cl
ea

r

bo
un

di
ng

H
ei

gh
t

bo
un

di
ng

Le
ft

bo
un

di
ng

T
op

bo

un
di

ng
W

id
th

ht
m

lT
ex

t
of

fs
et

Le
ft

of
fs

et
T

op
te

xt

(N
on

e)
co

lla
ps

e(
[s

ta
rt

])
co

m
pa

re
E

nd
P

oi
nt

s(
"

ty
pe

",r
an

ge
)

du
pl

ic
at

e(
)

ex
ec

C
om

m
an

d(
" c

m
d

"[
,U

I[,
va

l]
])

ex
pa

nd
("

un
it

")
fin

dT
ex

t(
" s

tr
"[

,s
co

pe
,fl

ag
s

])
ge

tB
oo

km
ar

k(
)

ge
tB

ou
nd

in
gC

lie
nt

R
ec

t(
)

ge
tC

lie
nt

R
ec

ts
()

in
R

an
ge

(r
an

ge
)

is
E

qu
al

(
ra

ng
e)

m
ov

e(
" u

ni
t"

[,c
ou

nt
])

m
ov

eE
nd

("
un

it
"[

,c
ou

nt
])

m
ov

eS
ta

rt
("

un
it

"[
,c

ou
nt

])
m

ov
eT

oB
oo

km
ar

k(
"b

oo
km

ar
k

")
m

ov
eT

oE
le

m
en

tT
ex

t(
el

em
)

m
ov

eT
oP

oi
nt

(x
,y

)
pa

re
nt

E
le

m
en

t(
)

pa
st

eH
T

M
L(

"H
T

M
LT

ex
t"

)
qu

er
yC

om
m

an
dE

na
bl

ed
("

cm
d

")
qu

er
yC

om
m

an
dI

nd
et

er
m

("
cm

d
")

qu
er

yC
om

m
an

dS
ta

te
("

cm
d

")
qu

er
yC

om
m

an
dS

up
po

rt
ed

("
cm

d
")

qu
er

yC
om

m
an

dT
ex

t(
"c

m
d

")
qu

er
yC

om
m

an
dV

al
ue

("
cm

d
")

sc
ro

llI
nt

oV
ie

w
()

se
le

ct
()

se
tE

nd
P

oi
nt

("
ty

pe
",r

an
ge

)

T
ex

tR
an

ge
W

4

ty
pe

ty
pe

D
et

ai
lW

5.
5

(N
on

e)
cl

ea
r(

)
cr

ea
te

R
an

ge
()

em
pt

y(
)

se
le

ct
io

nW
4

da
ta

le

ng
th

ne

xt
S

ib
lin

g
no

de
N

am
e

no
de

T
yp

e
no

de
V

al
ue

pa

re
nt

N
od

e
pr

ev
io

us
S

ib
lin

g

(N
on

e)
ap

pe
nd

D
at

a(
"t

ex
t"

)M
5,

W
6

de
le

te
D

at
a(

st
ar

t,
 c

ou
nt

)M
5,

W
6

in
se

rt
D

at
a(

st
ar

t,
 "

te
xt

")M
5,

W
6

re
pl

ac
eD

at
a(

st
ar

t,
 c

ou
nt

, "
te

xt
")M

5,
W

6

sp
lit

T
ex

t(
of

fs
et

)M
5,

W
6

su
bs

tr
in

gD
at

a(
st

ar
t,

 c
ou

nt
)M

5,
W

6

T
ex

tN
od

e
IE

5

bo
tto

m
le

ft
rig

ht
to

p

(N
on

e)
(N

on
e)

T
ex

tR
ec

ta
ng

le
W

5

IE
4+

 D
H

T
M

L
 D

O
M

 Q
ui

ck
 R

ef
er

en
ce

 —
 P

ag
e

3
of

 4
©

 2
00

4
D

an
ny

 G
oo

dm
an

 (
w

w
w

.d
an

ny
g.

co
m

).
 A

ll
R

ig
ht

s
R

es
er

ve
d.

JS
B

5

IE
4+

 D
H

T
M

L
 D

O
M

C
om

pa
ti

bi
lit

y
G

ui
de

T
he

 b
as

el
in

e
br

ow
se

r
fo

r
th

is
 s

ec
tio

n
is

M
SI

E
 4

. A
n

ite
m

 w
ith

 n
o

no
ta

tio
n

is
co

m
pa

tib
le

 b
ac

k
to

 th
at

 le
ve

l f
or

 a
ll

O
S

ve
rs

io
ns

. N
ot

at
io

ns
 a

s
fo

llo
w

s:

 W
4

—
 I

E
4+

/W
in

do
w

s
on

ly

 W
5

—
 I

E
5+

/W
in

do
w

s
on

ly

 I
E

5
—

 I
E

5+
 a

ll
O

Se
s

 W

5.
5

—
 I

E
5.

5+
/W

in
do

w
s

on
ly

 M

5
—

 I
E

5+
/M

ac
A

ll
H

T
M

L
 e

le
m

en
t o

bj
ec

ts
 s

ha
re

ite
m

s
fr

om
 “

A
ll

H
T

M
L

”
bo

x
on

 P
ag

e
1.

“(
N

on
e)

”
m

ea
ns

 n
o

sp
ec

ia
l m

et
ho

ds
 o

r
ev

en
ts

 f
or

 th
e

cu
rr

en
t o

bj
ec

t.
T

hi
s

Q
ui

ck
 R

ef
er

en
ce

 d
oe

s
no

t c
on

ta
in

lis

tin
gs

 f
or

 M
ic

ro
so

ft
’s

 s
ep

ar
at

e
X

M
L

 D
O

M
.

37 37

35 35 35 35

37 37
37

37

35 35 35 35

1115Appendix A ✦ JavaScript and Browser Object Quick Reference

al
tK

ey
al

tL
ef

tI
E

5.
5

be
ha

vi
or

C
oo

ki
e

W
5.

5

be
ha

vi
or

P
ar

tW
5.

5

bo
ok

m
ar

ks
W

4

bo
un

dE
le

m
en

ts
bu

tto
n

ca
nc

el
B

ub
bl

e
cl

ie
nt

X
cl

ie
nt

Y
co

nt
en

tO
ve

rf
lo

w
ct

rlK
ey

ct
rlL

ef
tI

E
5.

5

da
ta

F
ld

W
4

da
ta

T
ra

ns
fe

rW
5

fr
om

E
le

m
en

t
ke

yC
od

e
ne

xt
P

ag
e

W
5.

5

of
fs

et
X

of
fs

et
Y

pr
op

er
ty

N
am

e
W

5

qu
al

ifi
er

W
4

re
as

on
W

4

re
co

rd
se

tW
4

re
pe

at
W

5

re
tu

rn
V

al
ue

sa
ve

T
yp

e
W

5.
5

sc
re

en
X

sc
re

en
Y

sh
ift

K
ey

sh
ift

Le
ft

IE
5.

5

sr
cE

le
m

en
t

sr
cF

ilt
er

W
4

sr
cU

rn
W

5

to
E

le
m

en
t

ty
pe

w
he

el
D

at
a

W
6

x y

ev
en

t
m

ed
ia

ty
pe

(N
on

e)
(N

on
e)

S
T

Y
LE

cs
sT

ex
tI

E
5

di
sa

bl
ed

hr

ef

id

im
po

rt
s[

]
m

ed
ia

ow
ni

ng
E

le
m

en
t

pa
ge

s[
]W

5.
5

pa
re

nt
S

ty
le

S
he

et
re

ad
O

nl
y

ru
le

s[
]

tit
le

ty
pe

(N
on

e)
ad

dI
m

po
rt

("
U

R
L"

[,i
nd

ex
])

ad
dR

ul
e(

"s
el

ec
to

r"
,"s

ty
le

S
pe

c
"[

,in
de

x
])

re
m

ov
eR

ul
e(

in
de

x
)

st
yl

eS
he

et

re
ad

O
nl

y
se

le
ct

or
T

ex
t

st
yl

e

(N
on

e)
(N

on
e)

ru
le

(S
ee

 s
ty

le
 o

bj
ec

t)

cu
rr

en
tS

ty
le

 ,
 r

un
tim

eS
ty

le
IE

5
W

5.
5

al
ig

n
he

ig
ht

hi

dd
en

na
m

e
pl

ug
in

sp
ag

e
sr

c
un

its
w

id
th

on
lo

ad
on

sc
ro

ll
(N

on
e)

E
M

B
E

D

al
ig

n
al

tH
T

M
L

ar
ch

iv
e

W
6

co
de

co

de
B

as
e

he
ig

ht

hs
pa

ce

na
m

e
ob

je
ct

vs
pa

ce
w

id
th

on
ce

llc
ha

ng
e

W
5

on
da

ta
av

ai
la

bl
e

W
5

on
da

ta
se

tc
ha

ng
ed

W
5

on
da

ta
se

tc
om

pl
et

e
W

5

on
lo

ad
on

ro
w

en
te

rW
5

on
ro

w
ex

it
W

5

on
ro

w
sd

el
et

e
W

5

on
ro

w
si

ns
er

te
d

W
5

on
sc

ro
ll

(N
on

e)

A
P

P
LE

T

al
ig

n
al

tH
T

M
L

B

as
eH

re
f

cl
as

si
d

co
de

co

de
B

as
e

co
de

T
yp

e
da

ta

he
ig

ht
hs

pa
ce

na
m

e
ob

je
ct

ty
pe

vs
pa

ce
w

id
th

on
ce

llc
ha

ng
e

W
5

on
da

ta
av

ai
la

bl
e

W
5

on
da

ta
se

tc
ha

ng
ed

W
5

on
da

ta
se

tc
om

pl
et

e
W

5

on
lo

ad
on

ro
w

en
te

rW
5

on
ro

w
ex

it
W

5

on
ro

w
sd

el
et

e
W

5

on
ro

w
si

ns
er

te
d

W
5

on
sc

ro
ll

(N
on

e)

O
B

JE
C

T

ch
ar

se
t

di
sa

bl
ed

hr

ef

hr
ef

la
ng

m

ed
ia

re

l
re

v
st

yl
eS

he
et

W
5

ta
rg

et
ty

pe

on
lo

ad
(N

on
e)

LI
N

K

de
fe

r
ev

en
t

ht
m

lF
or

sr

c

te
xt

ty

pe

(N
on

e)
(N

on
e)

S
C

R
IP

T

Pa
ge

 4
 o

f
4

—
 I

E
4+

 D
H

T
M

L
 D

O
M

 Q
ui

ck
 R

ef
er

en
ce

©
 2

00
4

D
an

ny
 G

oo
dm

an
 (

w
w

w
.d

an
ny

g.
co

m
).

 A
ll

R
ig

ht
s

R
es

er
ve

d.

JS
B

5

363626262626
25

40 40 40

sr
c

X
M

LD
oc

um
en

t
(N

on
e)

(N
on

e)

X
M

L
41

W
5

1116 Part V ✦ Appendixes

at
tr

ib
ut

es
[]

ch
ild

N
od

es
[]

cl
as

sN
am

e
cl

ie
nt

H
ei

gh
t

(1
)

cl
ie

nt
Le

ft
(1

)

cl
ie

nt
T

op
(1

)

cl
ie

nt
W

id
th

(1
)

di
r

fir
st

C
hi

ld
id in

ne
rH

T
M

L
(1

)

la
ng

la
st

C
hi

ld
le

ng
th

(3
)

lo
ca

lN
am

e
na

m
es

pa
ce

U
R

I
ne

xt
S

ib
lin

g
no

de
N

am
e

no
de

T
yp

e
no

de
V

al
ue

of
fs

et
H

ei
gh

t(
1)

of
fs

et
Le

ft
(1

)

of
fs

et
P

ar
en

t(
1)

of
fs

et
T

op
(1

)

of
fs

et
W

id
th

(1
)

ow
ne

rD
oc

um
en

t
pa

re
nt

N
od

e
pr

ef
ix

pr
ev

io
us

S
ib

lin
g

sc
ro

llH
ei

gh
t,

sc
ro

llL
ef

t,
sc

ro
llT

op
, s

cr
ol

lW
id

th
(1

)

st
yl

e
ta

bI
nd

ex
ta

gN
am

e
tit

le

on
bl

ur
on

cl
ic

k
on

co
nt

ex
tm

en
u

(1
)

on
db

lc
lic

k
on

fo
cu

s
on

ke
yd

ow
n

on
ke

yp
re

ss
on

ke
yu

p
on

m
ou

se
do

w
n

on
m

ou
se

m
ov

e
on

m
ou

se
ou

t
on

m
ou

se
ov

er
on

m
ou

se
up

on
re

si
ze

ad
dE

ve
nt

Li
st

en
er

("
ev

t"
,fu

nc
,c

ap
t)

(2
)

ap
pe

nd
C

hi
ld

(e
le

m
)

bl
ur

()
cl

ic
k(

)
cl

on
eN

od
e(

de
ep

)
di

sp
at

ch
E

ve
nt

(
ev

t)
(2

)

fo
cu

s(
)

ge
tA

ttr
ib

ut
e(

"a
ttr

")
ge

tA
ttr

ib
ut

eN
od

e(
"a

ttr
")W

6

ge
tA

ttr
ib

ut
eN

od
eN

S
("

ns
ur

i"
,"l

oc
al

")(
2)

ge
tA

ttr
ib

ut
eN

S
("

ns
ur

i"
,"l

oc
al

")(
2)

ge
tE

le
m

en
ts

B
yT

ag
N

am
e(

"
ta

g
")

ha
sA

ttr
ib

ut
e(

"a
ttr

")(
2)

ha
sA

ttr
ib

ut
eN

S
("

ns
ur

i"
,"l

oc
al

")(
2)

ha
sA

ttr
ib

ut
es

()
(2

)

ha
sC

hi
ld

N
od

es
()

in
se

rt
B

ef
or

e(
ne

w
[,r

ef
])

is
S

up
po

rt
ed

("
fe

at
ur

e"
,"v

er
")(

2)

ite
m

(i
nd

ex
)(3

)

no
rm

al
iz

e(
)(

2)

re
m

ov
eA

ttr
ib

ut
e(

"a
ttr

")
re

m
ov

eA
ttr

ib
ut

eN
od

e(
no

de
)(2

)

re
m

ov
eC

hi
ld

(n
od

e
)

re
m

ov
eE

ve
nt

Li
st

en
er

("
ev

t"
,fu

nc
,c

ap
t)

(2
)

re
pl

ac
eC

hi
ld

(
ne

w
,o

ld
)

sc
ro

llI
nt

oV
ie

w
()

(1
)

se
tA

ttr
ib

ut
e(

"a
ttr

",v
al

)
se

tA
ttr

ib
ut

eN
od

e(
no

de
)(2

)

A
ll

H
T

M
L

E
le

m
en

ts

(1
)N

on
-W

3C
 it

em
 o

rig
in

at
ed

 in
 I

E
4

O
bj

ec
t M

od
el

, b
ut

 im
pl

em
en

te
d

in
 N

6+
/M

oz
/S

af
 fo

r
co

nv
en

ie
nc

e.
(2

)N
ot

 im
pl

em
en

te
d

in
 IE

 th
ro

ug
h

6.

 (

3)
P

ro
pe

rt
y

or
 m

et
ho

d
of

 a
ll

ob
je

ct
 c

ol
le

ct
io

ns
.

(1
)N

ot
 im

pl
em

en
te

d
in

 IE
 th

ro
ug

h
6.

pr
of

ile
(1

)

H
E

A
D

hr
ef

ta
rg

et

B
A

S
E

co
lo

r
fa

ce
si

ze

B
A

S
E

F
O

N
T

ch
ar

se
t

co
nt

en
t

ht
tp

E
qu

iv
na

m
e

sc
he

m
e

M
5,

W
6

ur
l

M
E

T
A

W
3C

 D
O

M
 (

IE
5+

, N
N

6+
, M

oz
ill

a,
 S

af
ar

i)
 Q

ui
ck

 R
ef

er
en

ce
 —

 P
ag

e
1

of
 4

©
 2

00
4

D
an

ny
 G

oo
dm

an
 (

w
w

w
.d

an
ny

g.
co

m
).

 A
ll

R
ig

ht
s

R
es

er
ve

d.

JS
B

5

W
3C

 D
O

M
C

om
pa

ti
bi

lit
y

G
ui

de
B

as
el

in
e

br
ow

se
rs

 f
or

 th
is

 s
ec

tio
n

ar
e

IE
5,

 N
N

6,
 M

oz
ill

a
1,

 a
nd

 S
af

ar
i 1

. A
n

ite
m

 w
ith

 n
o

no
ta

tio
n

is
 c

om
pa

tib
le

 w
ith

th

es
e

br
ow

se
rs

 (
ex

ce
pt

 o
cc

as
io

na
lly

Sa

fa
ri

).
 S

om
e

ite
m

s
ar

e
ne

w
 to

 N
et

sc
ap

e
7

(N
7)

 a
nd

 M
oz

ill
a

or
 W

in
IE

6
(W

6)
.

O
bs

er
ve

 f
oo

tn
ot

es
 f

or
 it

em
s

m
is

si
ng

fr

om
 I

E
, a

nd
 s

ee
 th

e
bo

ok
’s

 te
xt

 f
or

Sa

fa
ri

 d
et

ai
ls

. A
ll

H
T

M
L

 e
le

m
en

t o
bj

ec
ts

sh

ar
e

ite
m

s
fr

om
 “

A
ll

H
T

M
L

”
bo

x
on

Pa

ge
 1

. “
(N

on
e)

”
m

ea
ns

 n
o

sp
ec

ia
l

m
et

ho
ds

 o
r

ev
en

ts
 f

or
 th

e
cu

rr
en

t o
bj

ec
t.

15
36 36 36 36

te
xt

T
IT

LE
36

(1
)N

ot
 im

pl
em

en
te

d
in

 IE
 th

ro
ug

h
6.

ve
rs

io
n

(1
)

(N
on

e)
(N

on
e)

H
T

M
L

36

co
ls

ro
w

s
(N

on
e)

(N
on

e)

F
R

A
M

E
S

E
T

16

(1
)N

ot
 im

pl
em

en
te

d
in

 IE
 th

ro
ug

h
6.

co
nt

en
tD

oc
um

en
t

(1
)

co
nt

en
tW

in
do

w
N

7

fr
am

eB
or

de
r

lo
ng

D
es

c
M

5,
N

6

m
ar

gi
nH

ei
gh

t,
m

ar
gi

nW
id

th
na

m
e

no
R

es
iz

e
sc

ro
lli

ng
sr

c

(N
on

e)
(N

on
e)

F
R

A
M

E
16

(1
)N

ot
 im

pl
em

en
te

d
in

 IE
 th

ro
ug

h
6.

al
ig

n
co

nt
en

tD
oc

um
en

t
(1

)

lo
ng

D
es

c
M

5,
W

6

m
ar

gi
nH

ei
gh

t
m

ar
gi

nW
id

th
sc

ro
lli

ng
sr

c

IF
R

A
M

E
16

al
in

kC
ol

or
an

ch
or

s[
]

ap
pl

et
s[

]
at

tr
ib

ut
es

[]
bg

C
ol

or
bo

dy
ch

ar
ac

te
rS

et
(1

)

ch
ild

N
od

es
[]

co
m

pa
tM

od
e

W
6,

N
7

co
ok

ie
de

fa
ul

tV
ie

w
(1

)

do
ct

yp
e

(1
)

do
cu

m
en

tE
le

m
en

t
do

m
ai

n
em

be
ds

[]
fg

C
ol

or
fir

st
C

hi
ld

fo
rm

s[
]

he
ig

ht
(1

)

im
ag

es
[]

im
pl

em
en

ta
tio

n
(1

)

la
st

C
hi

ld
la

st
M

od
ifi

ed
lin

kC
ol

or
lin

ks
[]

lo
ca

tio
n

na
m

es
pa

ce
U

R
I

ne
xt

S
ib

lin
g

no
de

N
am

e
no

de
T

yp
e

ow
ne

rD
oc

um
en

t(
1)

pa
re

nt
N

od
e

pl
ug

in
s[

]
pr

ev
io

us
S

ib
lin

g
re

fe
rr

er
st

yl
eS

he
et

s[
]

tit
le

U

R
L

vl
in

kC
ol

or
w

id
th

(1
)

on
bl

ur
on

cl
ic

k
on

db
lc

lic
k

on
fo

cu
s

on
ke

yd
ow

n
on

ke
yp

re
ss

on
ke

yu
p

on
m

ou
se

do
w

n
on

m
ou

se
m

ov
e

on
m

ou
se

ou
t

on
m

ou
se

ov
er

on
m

ou
se

up
on

re
si

ze

cl
ea

r(
)

cl
os

e(
)

cr
ea

te
A

ttr
ib

ut
e(

" n
am

e
")

cr
ea

te
C

om
m

en
t(

" t
ex

t"
)W

6

cr
ea

te
D

oc
um

en
tF

ra
gm

en
t(

)W
6

cr
ea

te
E

le
m

en
t(

"t
ag

")
cr

ea
te

E
ve

nt
("

ty
pe

")(
1)

cr
ea

te
R

an
ge

()
(1

)

cr
ea

te
T

ex
tN

od
e(

"t
xt

")
cr

ea
te

T
re

eW
al

ke
r(

ro
ot

, w
ha

t,

fil
te

rF
un

c
, e

xp
an

d
)N

7,
(1

)

fo
cu

s(
)

ge
tE

le
m

en
tB

yI
d(

"
ID

")
ge

tE
le

m
en

ts
B

yN
am

e(
"

na
m

e
")

ge
tE

le
m

en
ts

B
yT

ag
N

am
e(

"
ta

g
")

op
en

("
m

im
eT

yp
e

"[
,re

pl
ac

e
])

w
rit

e(
" s

tr
")

w
rit

el
n(

"s
tr

")do
cu

m
en

t

(1
)N

ot
 im

pl
em

en
te

d
in

 IE
 th

ro
ug

h
6.

18

al
in

k
ba

ck
gr

ou
nd

bg

C
ol

or

lin
k

sc
ro

llL
ef

t,
sc

ro
llT

op
N

7,
(1

)

te
xt

vL
in

k

(N
on

e)
(N

on
e)

B
O

D
Y

18

(1
)O

rig
in

at
ed

 in
 IE

 O
bj

ec
t M

od
el

, b
ut

 im
pl

em
en

te
d

in
 N

7/
M

oz
ill

a
fo

r
co

nv
en

ie
nc

e.

1117Appendix A ✦ JavaScript and Browser Object Quick Reference

ch
ar

se
t(

1)

co
or

ds
(1

)

ha
sh

ho
st

ho
st

na
m

e
hr

ef
hr

ef
la

ng
(1

)

na
m

e
pa

th
na

m
e

po
rt

pr
ot

oc
ol

re
l

re
v

se
ar

ch
sh

ap
e

(1
)

ta
rg

et
ty

pe
(1

)A
 (

an
ch

or
/li

nk
)

(1
)N

ot
 im

pl
em

en
te

d
in

 IE
 th

ro
ug

h
5.

5.

 P
ag

e
2

of
 4

 —
 W

3C
 D

O
M

 (
IE

5+
, N

N
6+

, M
oz

ill
a,

 S
af

ar
i)

 Q
ui

ck
 R

ef
er

en
ce

©
 2

00
4

D
an

ny
 G

oo
dm

an
 (

w
w

w
.d

an
ny

g.
co

m
).

 A
ll

R
ig

ht
s

R
es

er
ve

d.

JS
B

5

19

ar
ea

s
na

m
e

M
A

P
20

al
t

co
or

ds
ha

sh
ho

st
ho

st
na

m
e

hr
ef

no
H

re
f

pa
th

na
m

e
po

rt
pr

ot
oc

ol
se

ar
ch

sh
ap

e
ta

rg
et

A
R

E
A

20

al
ig

n
al

t
bo

rd
er

co
m

pl
et

e
he

ig
ht

hr
ef

hs
pa

ce
is

M
ap

lo
ng

D
es

c
(1

)

lo
w

sr
c

lo
w

S
rc

(1
)

na
m

e
na

tu
ra

lH
ei

gh
t,

na
tu

ra
lW

id
th

N
6

sr
c

us
eM

ap
vs

pa
ce

w
id

th

on
A

bo
rt

on
E

rr
or

on
Lo

ad

(N
on

e)

IM
G

(1
)N

ot
 im

pl
em

en
te

d
in

 IE
 th

ro
ug

h
6.

co
m

pa
ct

st
ar

t
ty

pe

O
L

co
m

pa
ct

ty
pe

U
L

ty
pe

va
lu

e

LI

co
m

pa
ct

D
L,

 D
T

, D
D

, D
IR

, M
E

N
U

ac
ce

pt
C

ha
rs

et
(1

)

ac
tio

n
el

em
en

ts
[]

en
co

di
ng

en
ct

yp
e

le
ng

th
m

et
ho

d
na

m
e

ta
rg

et

on
re

se
t

on
su

bm
it

re
se

t(
)

su
bm

it(
)

F
O

R
M

(1
)N

ot
 im

pl
em

en
te

d
in

 IE
 th

ro
ug

h
6.

21

al
ig

n
fo

rm
(N

on
e)

(N
on

e)F
IE

LD
S

E
T

, L
E

G
E

N
D

21

ac
ce

ss
K

ey
fo

rm
M

5,
W

6

ht
m

lF
or

(N
on

e)
(N

on
e)

LA
B

E
L

35

di
sa

bl
ed

fo
rm

na
m

e
sr

c
ty

pe

(N
on

e)
(N

on
e)

IN
P

U
T

 (
im

ag
e)

22

di
sa

bl
ed

m
ax

Le
ng

th
re

ad
O

nl
y

si
ze

(N
on

e)
(N

on
e)

IN
P

U
T

 (
te

xt
, p

as
sw

or
d,

 h
id

de
n)

(S
ee

 o
rig

in
al

 o
bj

ec
t m

od
el

 te
xt

, p
as

sw
or

d,
 a

nd
 h

id
de

n
ob

je
ct

 li
st

in
gs

.)

23

co
ls

di
sa

bl
ed

re
ad

O
nl

y
ro

w
s

(N
on

e)
(N

on
e)

T
E

X
T

A
R

E
A

(S
ee

 o
rig

in
al

 o
bj

ec
t m

od
el

 te
xt

ar
ea

 o
bj

ec
t l

is
tin

g.
)

23

37
37 3720

fo
rm

(1
)

la
be

l(
1)

(N
on

e)
(N

on
e)

O
P

T
G

R
O

U
P

(1
)N

ot
 im

pl
em

en
te

d
in

 IE
/W

in
do

w
s

th
ro

ug
h

6,
 b

ut
 is

 im
pl

em
en

te
d

in
 IE

5/
M

ac
.

24

de
fa

ul
tS

el
ec

te
d

di
sa

bl
ed

fo
rm

la
be

lM
5,

W
6

se
le

ct
ed

te
xt

va
lu

e

(N
on

e)
(N

on
e)

O
P

T
IO

N
24

di
sa

bl
ed

le
ng

th
m

ul
tip

le
si

ze
va

lu
e

(N
on

e)
op

tio
ns

[i
].r

em
ov

e(
)

S
E

LE
C

T
(S

ee
 o

rig
in

al
 o

bj
ec

t m
od

el
 s

el
ec

t o
bj

ec
t l

is
tin

g.
)

24

B
U

T
T

O
N

IN
P

U
T

 (
bu

tto
n,

 r
es

et
, s

ub
m

it,
 r

ad
io

, c
he

ck
bo

x)
22

di
sa

bl
ed

(S
ee

 o
rig

in
al

 o
bj

ec
t m

od
el

 b
ut

to
n,

 r
es

et
, s

ub
m

it,
 r

ad
io

, a
nd

 c
he

ck
bo

x
ob

je
ct

 li
st

in
gs

.)

be
ha

vi
or

di
re

ct
io

n
sc

ro
llA

m
ou

nt
sc

ro
llD

el
ay

w
id

th

M
A

R
Q

U
E

E
35

st
ar

t(
)

st
op

()

(1
)

(1
)F

ro
m

 IE
, b

ut
 im

pl
em

en
te

d
in

 N
7/

M
oz

ill
a.

1118 Part V ✦ Appendixes

cl
ea

r

B
R

al
ig

n

H
1.

..H
6

ci
te

M
5,

W
6

B
LO

C
K

Q
U

O
T

E
, Q

co
lo

r
fa

ce
si

ze

F
O

N
T

al
ig

n
co

lo
r

no
S

ha
de

si
ze

w
id

th

H
R

(N
on

e)
al

ig
n

bg
C

ol
or

bo
rd

er
ca

pt
io

n
ce

llP
ad

di
ng

ce
llS

pa
ci

ng
fr

am
e

he
ig

ht
ro

w
s[

]
ru

le
s

su
m

m
ar

y
W

6

tB
od

ie
s

tF
oo

t
tH

ea
d

w
id

th

on
sc

ro
ll

cr
ea

te
C

ap
tio

n(
)

cr
ea

te
T

F
oo

t(
)

cr
ea

te
T

H
ea

d(
)

de
le

te
C

ap
tio

n(
)

de
le

te
R

ow
(i

)
de

le
te

T
F

oo
t(

)
de

le
te

T
H

ea
d(

)
in

se
rt

R
ow

(i
)

T
A

B
LE

al
ig

n
vA

lig
n

C
A

P
T

IO
N

de
le

te
R

ow
(i

)
in

se
rt

R
ow

(i
)

al
ig

n
bg

C
ol

or
ch

W
6

ch
O

ff
W

6

ro
w

s
vA

lig
n

(N
on

e)

T
B

O
D

Y
, T

F
O

O
T

, T
H

E
A

D

co
lla

ps
ed

co
m

m
on

A
nc

es
to

rC
on

ta
in

er
en

dC
on

ta
in

er
en

dO
ffs

et
st

ar
tC

on
ta

in
er

st
ar

tO
ffe

t

cl
on

eC
on

te
nt

s(
)N

7

cl
on

eR
an

ge
()

N
7

co
lla

ps
e(

[s
ta

rt
])

co
m

pa
re

B
ou

nd
ar

yP
oi

nt
s(

ty
pe

,s
rc

)N
7

co
m

pa
re

N
od

e(
no

de
)

co
m

pa
re

P
oi

nt
(n

od
e

, o
ffs

et
)

cr
ea

te
C

on
te

xt
ua

lF
ra

gm
en

t(
"t

ex
t"

)
de

le
te

C
on

te
nt

s(
)

de
ta

ch
()

ex
tr

ac
tC

on
te

nt
s(

)N
7

in
se

rt
N

od
e(

no
de

)N
7

in
te

rs
ec

ts
N

od
e(

no
de

)
is

P
oi

nt
In

R
an

ge
(

no
de

, o
ffs

et
)

se
le

ct
N

od
e(

no
de

)
se

le
ct

N
od

eC
on

te
nt

s(
no

de
)

se
tE

nd
(n

od
e

,o
ffs

et
)

se
tE

nd
A

fte
r(

no
de

)
se

tE
nd

B
ef

or
e(

no
de

)
se

tS
ta

rt
(n

od
e

,o
ffs

et
)

se
tS

ta
rt

A
fte

r(
no

de
)

se
tS

ta
rt

B
ef

or
e(

no
de

)
su

rr
ou

nd
C

on
te

nt
s(

no
de

)N
7

to
S

tr
in

g(
)R
an

ge
(1

)

(1
)N

ot
 im

pl
em

en
te

d
in

 IE
 th

ro
ug

h
6.

al
ig

n
ch

W
6

ch
O

ff
W

6

sp
an

vA
lig

n
w

id
thC

O
L,

 C
O

LG
R

O
U

P

al
ig

n
bg

C
ol

or
ce

lls
[]

ch
W

6

ch
O

ff
W

6

ro
w

In
de

x
se

ct
io

nR
ow

In
de

x
vA

lig
n

(N
on

e)
de

le
te

C
el

l(
i)

in
se

rt
C

el
l(

i)

T
R

ab
br

M
5,

W
6

al
ig

n
ax

is
M

5,
W

6

ba
ck

gr
ou

nd
bg

C
ol

or
ce

llI
nd

ex
ch

W
6

ch
O

ff
W

6

co
lS

pa
n

he
ad

er
s

M
5,

W
6

he
ig

ht
no

W
ra

p
ro

w
S

pa
n

vA
lig

n
w

id
th

T
D

, T
H

W
3C

 D
O

M
 (

IE
5+

, N
N

6+
, M

oz
ill

a,
 S

af
ar

i)
 Q

ui
ck

 R
ef

er
en

ce
 —

 P
ag

e
3

of
 4

©

 2
00

4
D

an
ny

 G
oo

dm
an

 (
w

w
w

.d
an

ny
g.

co
m

).
 A

ll
R

ig
ht

s
R

es
er

ve
d.

JS
B

5

37 37 37

35 35 35 35 35

37
37 37

N
od

e
T

yp
es

E
LE

M
E

N
T

_N
O

D
E

A
T

T
R

IB
U

T
E

_N
O

D
E

T
E

X
T

_N
O

D
E

C
D

A
T

A
_S

E
C

T
IO

N
_N

O
D

E
E

N
T

IT
Y

_R
E

F
E

R
E

N
C

E
_N

O
D

E
E

N
T

IT
Y

_N
O

D
E

P
R

O
C

E
S

S
IN

G
_I

N
S

T
R

U
C

T
IO

N
_N

O
D

E
C

O
M

M
E

N
T

_N
O

D
E

D
O

C
U

M
E

N
T

_N
O

D
E

D
O

C
U

M
E

N
T

_T
Y

P
E

_N
O

D
E

D
O

C
U

M
E

N
T

_F
R

A
G

M
E

N
T

_N
O

D
E

N
O

T
A

T
IO

N
_N

O
D

E

1 2 3 4 5 6 7 8 9 10 11 12

35

da
ta

le
ng

th
(N

on
e)

ap
pe

nd
D

at
a(

"t
ex

t"
)

de
le

te
D

at
a(

of
fs

et
,c

ou
nt

)
in

se
rt

D
at

a(
of

fs
et

,"t
ex

t"
)

re
pl

ac
eD

at
a(

of
fs

et
,c

ou
nt

,"t
ex

t"
)

sp
lit

T
ex

t(
of

fs
et

)
su

bs
tr

in
gD

at
a(

of
fs

et
,c

ou
nt

)

T
ex

t(1
)

(1
)N

ot
 im

pl
em

en
te

d
in

 IE
 th

ro
ug

h
6.

35

an
ch

or
N

od
e

an
ch

or
O

ffs
et

fo
cu

sN
od

e
fo

cu
sO

ffs
et

is
C

ol
la

ps
ed

ra
ng

eC
ou

nt

(N
on

e)
ad

dR
an

ge
(r

an
ge

)
cl

ea
rS

el
ec

tio
n(

)
co

lla
ps

e(
no

de
,o

ffs
et

)
co

lla
ps

eT
oE

nd
()

co
lla

ps
eT

oS
ta

rt
()

co
nt

ai
ns

N
od

e(
no

de
,r

ec
ur

se
)

de
le

te
F

ro
m

D
oc

um
en

t(
)

ex
te

nd
(n

od
e

,o
ffs

et
)

ge
tR

an
ge

A
t(

)
re

m
ov

eA
llR

an
ge

s(
)

re
m

ov
eR

an
ge

(r
an

ge
)

se
le

ct
A

llC
hi

ld
re

n(
no

de
)

to
S

tr
in

g(
)

se
le

ct
io

n(1
)

(1
)N

ot
 im

pl
em

en
te

d
in

 IE
 th

ro
ug

h
6.

35

(N
on

e)

1119Appendix A ✦ JavaScript and Browser Object Quick Reference

al
tK

ey

bu
bb

le
s

bu
tto

n
ca

nc
el

B
ub

bl
e

ca
nc

el
ab

le

ch
ar

C
od

e
cl

ie
nt

X

cl
ie

nt
Y

ct

rlK
ey

cu
rr

en
tT

ar
ge

t
de

ta
il

ev
en

tP
ha

se
is

C
ha

r
ke

yC
od

e
la

ye
rX

la
ye

rY
m

et
aK

ey
or

ig
in

al
T

ar
ge

t
pa

ge
X

pa
ge

Y
re

la
te

dT
ar

ge
t

sc
re

en
X

sc
re

en
Y

sh
ift

K
ey

ta
rg

et
tim

eS
ta

m
p

ty
pe

vi
ew

(N
on

e)
in

itE
ve

nt
("

ty
pe

",b
ub

bl
e

,c
an

ce
la

bl
e

)
in

itK
ey

E
ve

nt
("

ty
pe

",
 e

vt
A

rg
s

)
in

itM
ou

se
E

ve
nt

("
ty

pe
",

 e
vt

A
rg

s
)

in
itM

ut
at

io
nE

ve
nt

("
ty

pe
",

 e
vt

A
rg

s
)

in
itU

IE
ve

nt
("

ty
pe

",
 e

vt
A

rg
s

)
pr

ev
en

tD
ef

au
lt(

)
st

op
P

ro
pa

ga
tio

n(
)

ev
en

t(1
)

(1
)N

ot
 im

pl
em

en
te

d
in

 IE
 th

ro
ug

h
6.

m
ed

ia
ty

pe
(N

on
e)

(N
on

e)

S
T

Y
LE

cs
sR

ul
es

[]
di

sa
bl

ed
hr

ef
m

ed
ia

ow
ne

rN
od

e
(1

)

ow
ne

rR
ul

e
(1

)

pa
re

nt
S

ty
le

S
he

et
tit

le
ty

pe

(N
on

e)
de

le
te

R
ul

e(
in

de
x

)(1
)

in
se

rt
R

ul
e(

"r
ul

e
",i

nd
ex

)(1
)

st
yl

eS
he

et

(1
)N

ot
 im

pl
em

en
te

d
in

 IE
 th

ro
ug

h
5.

5.

al
ig

n
al

tW
6

ba
se

U
R

IN
7

bo
rd

er
W

6

co
de

co

de
B

as
e

co
de

T
yp

e
co

nt
en

tD
oc

um
en

t
(1

)

he
ig

ht
hs

pa
ce

na
m

e
ob

je
ct

ty
pe

vs
pa

ce
w

id
th

O
B

JE
C

T

cs
sT

ex
t(

2)

pa
re

nt
S

ty
le

S
he

et
(2

)

se
le

ct
or

T
ex

t
st

yl
e

ty
pe

(1
)

(N
on

e)
(N

on
e)

cs
sR

ul
e

(1
)N

ot
 im

pl
em

en
te

d
in

 IE
 th

ro
ug

h
6.

(2
)N

ot
 im

pl
em

en
te

d
in

 IE
 th

ro
ug

h
6,

 b
ut

 im
pl

em
en

te
d

in
 IE

5/
M

ac
. P
ag

e
4

of
 4

 —
 W

3C
 D

O
M

 (
IE

5+
, N

N
6+

, M
oz

ill
a,

 S
af

ar
i)

 Q
ui

ck
 R

ef
er

en
ce

©
 2

00
4

D
an

ny
 G

oo
dm

an
 (

w
w

w
.d

an
ny

g.
co

m
).

 A
ll

R
ig

ht
s

R
es

er
ve

d.

JS
B

5

W
3C

 D
O

M
C

om
pa

ti
bi

lit
y

G
ui

de
B

as
el

in
e

br
ow

se
rs

 f
or

 th
is

 s
ec

tio
n

ar
e

IE
5,

 N
N

6,
 M

oz
ill

a
1,

 a
nd

 S
af

ar
i 1

. A
n

ite
m

w

ith
 n

o
no

ta
tio

n
is

 c
om

pa
tib

le
 w

ith
 th

es
e

br
ow

se
rs

 (
ex

ce
pt

 o
cc

as
io

na
lly

 S
af

ar
i)

. S
om

e
ite

m
s

ar
e

ne
w

 to
 N

et
sc

ap
e

7
(N

7)
 a

nd

M
oz

ill
a

or
 W

in
IE

6
(W

6)
. O

bs
er

ve
 f

oo
tn

ot
es

fo

r
ite

m
s

m
is

si
ng

 f
ro

m
 I

E
, a

nd
 s

ee
 th

e
bo

ok
’s

 te
xt

 f
or

 S
af

ar
i d

et
ai

ls
. A

ll
H

T
M

L

el
em

en
t o

bj
ec

ts
 s

ha
re

 it
em

s
fr

om
 “

A
ll

H
T

M
L

”
bo

x
on

 P
ag

e
1.

 “
(N

on
e)

”
m

ea
ns

 n
o

sp
ec

ia
l m

et
ho

ds
 o

r
ev

en
ts

 f
or

 th
e

cu
rr

en
t

ob
je

ct
.

26 26 26

(1
)N

ot
 im

pl
em

en
te

d
in

 IE
 th

ro
ug

h
6.

ch
ar

se
t

di
sa

bl
ed

hr
ef

hr
ef

la
ng

m
ed

ia
re

l
re

v
sh

ee
t(

1)

ta
rg

et
ty

pe

(N
on

e)
(N

on
e)

LI
N

K
36

de
fe

r
ev

en
t

ht
m

lF
or

sr
c

te
xt

ty
pe

(N
on

e)
(N

on
e)

S
C

R
IP

T
36

al
ig

n
he

ig
ht

na
m

e
w

id
th

on
lo

ad
on

sc
ro

ll
(N

on
e)

E
M

B
E

D
40

al
ig

n
al

tW
6

ar
ch

iv
e

W
6

co
de

co
de

B
as

e
da

ta
he

ig
ht

hs
pa

ce
na

m
e

ty
pe

us
eM

ap
W

6

vs
pa

ce
w

id
th

A
P

P
LE

T
40

4025

(1
)N

ot
 im

pl
em

en
te

d
in

 IE
 th

ro
ug

h
6.

JavaScript
Reserved Words

Every programming language has a built-in vocabulary of key-
words that you cannot use for the names of variables and the

like. Because a JavaScript function is an object that uses the function
name as an identifier for the object, you cannot employ reserved
words for function names either. Netscape’s list of reserved words
closely echoes that of the Java language; thus, many of the keywords
in the list do not — at least yet — apply to JavaScript. Remember that
JavaScript keywords are case-sensitive. Although you may get away
with using these words in other cases, it may lead to unnecessary
confusion for someone reading your scripts.

abstract boolean break byte
case catch char class
const continue debugger default
delete do double else
enum export extends false
final finally float for
function goto if implements
import in instanceof int
interface long native new
null package private protected
public return short static
super switch synchronized this
throw throws transient true
try typeof var void
volatile while with

✦ ✦ ✦

BBA P P E N D I X

✦ ✦ ✦ ✦

Answers to
Tutorial Exercises

This appendix provides answers to the tutorial exercises that
appear in Part II of this book (Chapters 4 through 12).

Chapter 4 Answers
1. The music jukebox (a) and temperature calculator (d) are good

client-side JavaScript applications. Even though the jukebox
relies on server storage of the music files, you can create a more
engaging and responsive user interface of buttons, swappable
images, and information from a plugin, such as Windows Media
Player or QuickTime. The temperature calculator is a natural,
because all processing is done instantaneously on the client,
rather than having to access the server for each conversion.

The Web site visit counter (b) that accumulates the number of
different visitors to a Web site is a server-side CGI application,
because the count must be updated and maintained on the
server. At best, a client-side counter could keep track of the
number of visits the user has made to a site and report to the
user how many times he or she has been to the site. The stor-
age requires scripting the cookie (see Chapter 16). A chat room
application (c) done properly requires server facilities to open
up communication channels among all users connected simul-
taneously. Client-side scripting by itself cannot create a live
chat environment.

2. a. Valid, because it is one contiguous word. InterCap
spelling is fine.

b. Valid, because an underscore character is acceptable
between words.

c. Not valid, because an identifier cannot begin with a
numeral.

d. Not valid, because no spaces are allowed.

e. Not valid, because apostrophes and most other punctua-
tion are not allowed.

CCA P P E N D I X

✦ ✦ ✦ ✦

1124 Part V ✦ Appendixes

3. The diagram is shown below. The paragraph element reference is:

document.getElementById(“formPar”)

4. In common:

• Both are types of nodes, derived from the basic DOM node

• Both may be children of parent nodes that act as containers

Different:

• An element node is created by a tag, while a text node has no tag associated
with it

• A text node cannot be a parent to any other node, but an element node can be
either a parent (branch node) or end node (leaf node)

5. <input type=”button” name=”Hi” value=”Howdy” onclick=”alert(‘Hello to
you, too!’)” />

Chapter 5 Answers
1. <script type=”text/javascript”>

<!--
document.write(“Hello, world.”);
// -->
</script>

2. <html>
<body>
<script type=”text/javascript”>

document

html

head body

“Search Form”

title

img

p

form

p

input input“Search For: ”

1125Appendix C ✦ Answers to Tutorial Exercises

<!--
document.write(“Hello, world.”);
// -->
</script>
</body>
</html>

3. <html>
<body>
<script type=”text/javascript”>
<!--
// write a welcome message to the world
document.write(“Hello, world.”);
// -->
</script>
</body>
</html>

4. My answer is written so that both event handlers call separate functions. You can also
have each event handler invoke the alert() method inline. If you prefer to follow the
XHTML format, include a space and forward slash character before the right angle
bracket of the input element’s tag.

<html>
<head>
<title>An onload script</title>
<script type=”text/javascript”>
<!--
function done() {

alert(“The page has finished loading.”);
}
function alertUser() {

alert(“Ouch!”);
}
// -->
</script>
</head>
<body onload=”done()”>
Here is some body text.
<form>

<input type=”button” name=”oneButton” value=”Press Me!”
onclick=”alertUser()”>
</form>
</body>
</html>

5. a. The page displays two text fields.

b. The user enters text into the first field and either clicks or tabs out of the field to
trigger the onchange event handler.

c. The function displays an all-uppercase version of one field into the other.

1126 Part V ✦ Appendixes

Chapter 6 Answers
1. a. Valid.

b. Not valid. The variable needs to be a single word, such as howMany or how_many.

c. Valid. The trailing semicolon is missing, but because it is optional for a one-line
statement, browsers accept the statement as written.

d. Not valid. The variable name cannot begin with a numeral. If the variable needs a
number to help distinguish it from other similar variables, then put the numeral
at the end: address1.

2. a. 4

b. 40

c. “4020”

d. “Robert”

3. The functions are parseInt() and parseFloat(). Strings to be converted are passed
as parameters to the functions:
parseInt(document.getElementById(“entry”).value).

4. Both text field values are strings that must be converted to numbers before they
can be arithmetically added together. You can use the parseFloat() functions either
on the variable assignment expressions (for example, var value1 = parseFloat
(document.getElementById(“inputA”).value)) or in the addition expression
(document.getElementById(“output”).value = parseFloat(value1) +
parseFloat(value2)).

5. Concatenate means to join together two strings to become one string.

Chapter 7 Answers
1. The following answer shows the HTML markup portion in XHTML, where elements not

acting as containers (notably the input elements) include a space and forward slash to
simulate XHTML’s required close tag.

<html>
<head>
<script type=”text/javascript”>
var USStates = new Array(51);
USStates[0] = “Alabama”;
USStates[1] = “Alaska”;
USStates[2] = “Arizona”;
USStates[3] = “Arkansas”;
USStates[4] = “California”;
USStates[5] = “Colorado”;
USStates[6] = “Connecticut”;
USStates[7] = “Delaware”;
USStates[8] = “District of Columbia”;
USStates[9] = “Florida”;

1127Appendix C ✦ Answers to Tutorial Exercises

USStates[10] = “Georgia”;
USStates[11] = “Hawaii”;
USStates[12] = “Idaho”;
USStates[13] = “Illinois”;
USStates[14] = “Indiana”;
USStates[15] = “Iowa”;
USStates[16] = “Kansas”;
USStates[17] = “Kentucky”;
USStates[18] = “Louisiana”;
USStates[19] = “Maine”;
USStates[20] = “Maryland”;
USStates[21] = “Massachusetts”;
USStates[22] = “Michigan”;
USStates[23] = “Minnesota”;
USStates[24] = “Mississippi”;
USStates[25] = “Missouri”;
USStates[26] = “Montana”;
USStates[27] = “Nebraska”;
USStates[28] = “Nevada”;
USStates[29] = “New Hampshire”;
USStates[30] = “New Jersey”;
USStates[31] = “New Mexico”;
USStates[32] = “New York”;
USStates[33] = “North Carolina”;
USStates[34] = “North Dakota”;
USStates[35] = “Ohio”;
USStates[36] = “Oklahoma”;
USStates[37] = “Oregon”;
USStates[38] = “Pennsylvania”;
USStates[39] = “Rhode Island”;
USStates[40] = “South Carolina”;
USStates[41] = “South Dakota”;
USStates[42] = “Tennessee”;
USStates[43] = “Texas”;
USStates[44] = “Utah”;
USStates[45] = “Vermont”;
USStates[46] = “Virginia”;
USStates[47] = “Washington”;
USStates[48] = “West Virginia”;
USStates[49] = “Wisconsin”;
USStates[50] = “Wyoming”;

var stateEntered = new Array(51);
stateEntered[0] = 1819;
stateEntered[1] = 1959;
stateEntered[2] = 1912;
stateEntered[3] = 1836;
stateEntered[4] = 1850;
stateEntered[5] = 1876;
stateEntered[6] = 1788;
stateEntered[7] = 1787;

1128 Part V ✦ Appendixes

stateEntered[8] = 0000;
stateEntered[9] = 1845;
stateEntered[10] = 1788;
stateEntered[11] = 1959;
stateEntered[12] = 1890;
stateEntered[13] = 1818;
stateEntered[14] = 1816;
stateEntered[15] = 1846;
stateEntered[16] = 1861;
stateEntered[17] = 1792;
stateEntered[18] = 1812;
stateEntered[19] = 1820;
stateEntered[20] = 1788;
stateEntered[21] = 1788;
stateEntered[22] = 1837;
stateEntered[23] = 1858;
stateEntered[24] = 1817;
stateEntered[25] = 1821;
stateEntered[26] = 1889;
stateEntered[27] = 1867;
stateEntered[28] = 1864;
stateEntered[29] = 1788;
stateEntered[30] = 1787;
stateEntered[31] = 1912;
stateEntered[32] = 1788;
stateEntered[33] = 1789;
stateEntered[34] = 1889;
stateEntered[35] = 1803;
stateEntered[36] = 1907;
stateEntered[37] = 1859;
stateEntered[38] = 1787;
stateEntered[39] = 1790;
stateEntered[40] = 1788;
stateEntered[41] = 1889;
stateEntered[42] = 1796;
stateEntered[43] = 1845;
stateEntered[44] = 1896;
stateEntered[45] = 1791;
stateEntered[46] = 1788;
stateEntered[47] = 1889;
stateEntered[48] = 1863;
stateEntered[49] = 1848;
stateEntered[50] = 1890;

function getStateDate() {
var selectedState = document.getElementById(“entry”).value;
for (var i = 0; i < USStates.length; i++) {

if (USStates[i] == selectedState) {
break;

}
}

1129Appendix C ✦ Answers to Tutorial Exercises

alert(“That state entered the Union in “ + stateEntered[i] + “.”);
}
</script>
</head>
<body>
<form name=”entryForm”>
Enter the name of a state:
<input type=”text” name=”entry” />
<input type=”button” value=”Look Up Entry Date”
onclick=”getStateDate()” />
</form>
</body>
</html>

2. Several problems plague this function definition. Parentheses are missing from the first
if construction’s condition statement. Curly braces are missing from the second
nested if...else construction. A mismatch of curly braces also exists for the entire
function. The following is the correct form (changes and additions in boldface):

function format(ohmage) {
var result;
if (ohmage >= 10e6) {

ohmage = ohmage / 10e6;
result = ohmage + “ Mohms”;

} else {
if (ohmage >= 10e3) {

ohmage = ohmage / 10e3;
result = ohmage + “ Kohms”;

} else {
result = ohmage + “ ohms”;

}
}
alert(result);

}

3. Here is one possibility:

for (var i = 1; i < tomatoes.length; i++) {
if (tomatoes[i].looks == “mighty tasty”) {

break;
}

}
var myTomato = tomatoes[i]

4. The new version defines a different local variable name for the dog.

<html>
<head>
<script type=”text/javascript”>
var aBoy = “Charlie Brown”; // global
var hisDog = “Snoopy”; // global
function demo() {

var WallacesDog = “Gromit”; // local version of hisDog

1130 Part V ✦ Appendixes

var output = WallacesDog + “ does not belong to “ + aBoy +
“.
”;

document.write(output);
}
</script>
<body>
<script type=”text/javascript”>
demo(); // runs as document loads
document.write(hisDog + “ belongs to “ + aBoy + “.”);
</script>
</body>
</html>

5. The application uses three parallel arrays and is structured very much like the solution
to question 1. Learn to reuse code whenever you can.

<html>
<head>
<script type=”text/javascript”>
var planets = new Array(4);
planets[0] = “Mercury”;
planets[1] = “Venus”;
planets[2] = “Earth”;
planets[3] = “Mars”;

var distance = new Array(4);
distance[0] = “36 million miles”;
distance[1] = “67 million miles”;
distance[2] = “93 million miles”;
distance[3] = “141 million miles”;

var diameter = new Array(4);
diameter[0] = “3100 miles”;
diameter[1] = “7700 miles”;
diameter[2] = “7920 miles”;
diameter[3] = “4200 miles”;

function getPlanetData() {
var selectedPlanet = document.getElementById(“entry”).value;
for (var i = 0; i < planets.length; i++) {

if (planets[i] == selectedPlanet) {
break;

}
}
var msg = planets[i] + “ is “ + distance[i];
msg += “ from the Sun and “;
msg += diameter[i] + “ in diameter.”;
document.getElementById(“output”).value = msg;

}
</script>
</head>
<body>

1131Appendix C ✦ Answers to Tutorial Exercises

<form name=”entryForm”>
Enter the name of a planet:
<input type=”text” name=”entry” id=”entry” />
<input type=”button” value=”Look Up a Planet”
onclick=”getPlanetData()” />

<input type=”text” size=”70” name=”output” id=”output” />
</body>
</html>

Chapter 8 Answers
1. a. Close, but no cigar. Array references are always plural:

window.document.forms[0]

b. Not valid: self refers to a window and entryForm must refer to a form. Where’s
the document? It should be self.document.entryForm.entryField.value.

c. Valid. This reference points to the name property of the third form in the
document.

d. Not valid. The uppercase “D” in the method name is incorrect.

e. Valid, assuming that newWindow is a variable holding a reference to a subwindow.

2. window.status = “Welcome to my Web page.”

3. document.write(“<h1>Welcome to my Web page.</h1>”)

4. A script in the Body portion invokes a function that returns the text entered in a
prompt() dialog box.

<html>
<head>
<script type=”text/javascript”>
function askName() {

var name = prompt(“What is your name, please?”,””);
return name;

}
</script>
</head>
<body>
<script type=”text/javascript”>
document.write(“Welcome to my web page, “ + askName() + “.”);
</script>
</body>
</html>

5. The URL can be derived from the href property of the location object.

<html>
<head>
<script type=”text/javascript”>

1132 Part V ✦ Appendixes

function showLocation() {
alert(“This page is at: “ + location.href);

}
</script>
</head>
<body onload=”showLocation()”>
Blah, blah, blah.
</body>
</html>

Chapter 9 Answers
1. For Listing 9-1, pass the text input element object because that’s the only object

involved in the entire transaction.

<html>
<head>
<title>Text Object value Property</title>
<script type=”text/javascript”>
function upperMe(field) {

field.value = field.value.toUpperCase();
}
</script>
</head>
<body>
<form onsubmit=”return false”>
<input type=”text” name=”convertor” value=”sample”
onchange=”upperMe(this)”>
</form>
</body>
</html>

For Listing 9-2, the button invokes a function that communicates with a different ele-
ment in the form. Pass the form object.

<html>
<head>
<title>Checkbox Inspector</title>
<script type=”text/javascript”>
function inspectBox(form) {

if (form.checkThis.checked) {
alert(“The box is checked.”);

} else {
alert(“The box is not checked at the moment.”);

}
}
</script>
</head>
<body>
<form>
<input type=”checkbox” name=”checkThis”>Check here

1133Appendix C ✦ Answers to Tutorial Exercises

<input type=”button” value=”Inspect Box”
onclick=”inspectBox(this.form)”>
</form>
</body>
</html>

For Listing 9-3, again the button invokes a function that looks at other elements in the
form. Pass the form object.

<html>
<head>
<title>Extracting Highlighted Radio Button</title>
<script type=”text/javascript”>
function fullName(form) {

for (var i = 0; i < form.stooges.length; i++) {
if (form.stooges[i].checked) {

break;
}

}
alert(“You chose “ + form.stooges[i].value + “.”);

}
</script>
</head>

<body>
<form>
<p>Select your favorite Stooge:
<input type=”radio” name=”stooges” value=”Moe Howard” checked>Moe
<input type=”radio” name=”stooges” value=”Larry Fine”> Larry
<input type=”radio” name=”stooges” value=”Curly Howard”> Curly

<input type=”button” name=”Viewer” value=”View Full Name...”
onclick=”fullName(this.form)”></p>
</form>
</body>
</html>

For Listing 9-4, all action is triggered by and confined to the select object. Pass only
that object to the function.

<html>
<head>
<title>Select Navigation</title>
<script type=”text/javascript”>
function goThere(list) {

location = list.options[list.selectedIndex].value;
}
</script>
</head>

<body>
<form>
Choose a place to go:

1134 Part V ✦ Appendixes

<select name=”urlList” onchange=”goThere(this)”>
<option selected value=”index.html”>Home Page
<option value=”store.html”>Shop Our Store
<option value=”policies”>Shipping Policies
<option value=”http://www.google.com”>Search the Web

</select>
</form>
</body>
</html>

2. Here are the most likely ways to reference the text box object:

document.getElementById(“email”)
document.forms[0].elements[0]
document.forms[“subscription”].elements[0]
document.subscription.elements[0]
document.forms[0].elements[“email”]
document.forms[“subscription”].elements[“email”]
document.subscription.elements[“email”]
document.forms[0].email
document.forms[“subscription”].email
document.subscription.email

The reference document.all.email (or any reference starting with document.all)
works only in Internet Explorer and other browsers that emulate IE, but not in
Mozilla or Safari, as requested. Other valid references may include the W3C DOM
getElementsByTagName() method. Since the question indicates that there is only one
form on the page, the text box is the first input element in the page, indicating that
document.body.getElementsByTagName(“input”)[0] would be valid for this page.

3. The this keyword refers to the text input object, so that this.value refers to the
value property of that object.

function showText(txt) {
alert(txt);

}

4. document.accessories.acc1.value = “Leather Carrying Case”;

document.forms[1].acc1.value = “Leather Carrying Case”;

5. The select object invokes a function that does the job.

<html>
<head>
<title>Color Changer</title>
<script type=”text/javascript”>
function setColor(list) {

var newColor = list.options[list.selectedIndex].value;
document.bgColor = newColor;

}
</script>
</head>

1135Appendix C ✦ Answers to Tutorial Exercises

<body>
<form>
Select a background color:
<select onchange=”setColor(this)”>
<option value=”red”>Stop
<option value=”yellow”>Caution
<option value=”green”>Go
</select>
</form>
</body>
</html>

Chapter 10 Answers
1. Use string.indexOf() to see if the field contains the “@” symbol.

<html>
<head>
<title>E-mail @ Validator</title>
<script type=”text/javascript”>
function checkAddress(form) {

if (form.email.value.indexOf(“@”) == -1) {
alert(“Check the e-mail address for accuracy.”);
return false;

}
return true;

}
</script>
</head>

<body>
<form onsubmit=”return checkAddress(this)”>
Enter your e-mail address:
<input type=”text” name=”email” size=”30”>

<input type=”submit”>
</form>
</body>
</html>

2. Remember that the substring goes up to, but does not include, the index of the second
parameter. Spaces count as characters.

myString.substring(0,3) // result = “Int”
myString.substring(11,17) // result = “plorer”
myString.substring(5,12) // result = “net Exp”

3. The missing for loop is in boldface. You could also use the increment operator on the
count variable (++count) to add 1 to it for each letter “e.”

function countE(form) {
var count = 0;
var inputString = form.mainstring.value.toLowerCase();

1136 Part V ✦ Appendixes

for (var i = 0; i < inputString.length; i++) {
if (inputString.charAt(i) == “e”) {

count += 1;
}

}
var msg = “The string has “ + count;
msg += “ instances of the letter e.”;
alert(msg);

}

4. The formula for the random throw of one die is in the chapter.

<html>
<head>
<title>Roll the Dice</title>
<script type=”text/javascript”>
function roll(form) {

form.die1.value = Math.floor(Math.random() * 6) + 1
form.die2.value = Math.floor(Math.random() * 6) + 1

}
</script>
</head>

<body>
<form>
<input type=”text” name=”die1” size=”2”>
<input type=”text” name=”die2” size=”2”>

<input type=”button” value=”Roll the Dice” onclick=”roll(this.form)”>
</form>
</body>
</html>

5. If you used the Math.round() method in your calculations, that is fine for your current
exposure to the Math object. Another method, Math.ceil(), may be more valuable
because it rounds up any fractional value.

<html>
<head>
<title>Waiting for Santa</title>
<script type=”text/javascript”>
function daysToXMAS() {

var oneDay = 1000 * 60 * 60 * 24;
var today = new Date();
var XMAS = new Date(“December 25, 2001”);
var diff = XMAS.getTime() - today.getTime();
return Math.ceil(diff/oneDay);

}
</script>
</head>

<body>
<script type=”text/javascript”>

1137Appendix C ✦ Answers to Tutorial Exercises

document.write(daysToXMAS() + “ days until Christmas.”);
</script>
</body>
</html>

Chapter 11 Answers
1. onload=”parent.currCourse = ‘history101’”

2.

3. All three frames are siblings, so references include the parent.

parent.mechanics.location.href = “french201M.html”;
parent.description.location.href = “french201D.html”;

4. A script in one of the documents is attempting to reference the selector object in one
of the frames but the document has not fully loaded, causing the object to not yet be in
the browser’s object model. Rearrange the script so that it fires in response to the
onload event handler of the framesetting document.

5. From the subwindow, the opener property refers back to the frame containing the
window.open() method. To extend the reference to the frame’s parent, the reference
includes both pieces: opener.parent.location.

Chapter 12 Answers
1. As the document loads, the tag creates a document image object. A memory

image object is created with the new Image() constructor. Both objects have the same
properties, and assigning a URL to the src property of a memory object loads the
image into the browser’s image cache.

2. var janeImg = new Image(100,120);

janeImg.src = “jane.jpg”;

3. document.images[“people”].src = janeImg.src;

4. Surround tags with link (<a>) tags, and use the link’s onclick, onmouseover,
and onmouseout event handlers. Set the image’s border attribute to zero if you don’t
want the link highlight to appear around the image.

5. The following works in all W3C DOM-compatible browsers. The order of the first two
statements may be swapped without affecting the script.

Top Parent

<Framesets>

mechanics description navigation

<Frame> <Frame><Frame>

1138 Part V ✦ Appendixes

var newElem = document.createElement(“a”);
var newText = document.createTextNode(“Next Page”);
newElem.href = “page4.html”;
newElem.appendChild(newText);
document.getElementById(“forwardLink”).appendChild(newElem);

✦ ✦ ✦

JavaScript and DOM
Internet Resources

As an online technology, JavaScript has plenty of support online
for scripters. Items recommended here were taken as a snap-

shot of Internet offerings in late 2003. But beware! Sites change. URLs
change. Be prepared to hunt around for these items if the information
provided here becomes out-of-date by the time you read this.

Support and Updates for This Book
The most up-to-date list of errata and other notes of interest pertain-
ing to this edition of the JavaScript Bible can be found at the official
Support Center, located at:

http://www.dannyg.com/support/index.html

If you are experiencing difficulty with the example listings in this
book, first check with the Support Center to see if your question has
been answered. As mentioned earlier, you are encouraged to enter
the tutorial listings yourself to get used to typing JavaScript (and
HTML) code. If, after copying the examples from Part II, you can’t
make something work (and a fix hasn’t already been posted to the
Support Center), send the file you’ve typed to me via e-mail, along
with a description of what’s not working for you. Also tell me the
browser version and operating system that you’re using. My e-mail
address is dannyg@dannyg.com. Regretfully, I am unable to answer
general questions about JavaScript or how to apply examples from
the book to your own projects.

Newsgroups
The best places to get quick answers to your pressing questions are
online newsgroups. Here are the top JavaScript-related newsgroups:

On most news servers:

comp.lang.javascript

DDA P P E N D I X

✦ ✦ ✦ ✦

1140 Part V ✦ Appendixes

On news://msnews.microsoft.com:

microsoft.public.scripting.jscript
microsoft.public.windows.inetexplorer.ie5.programming.dhtml
microsoft.public.windows.inetexplorer.ie5.programming.dhtml.scripting
microsoft.public.inetsdk.programming.scripting.jscript

On news://secnews.netscape.com:

netscape.public.mozilla.dom
netscape.public.mozilla.jseng

Before you post a question to a newsgroup, however, read about FAQs in the following sec-
tion and also use the extremely valuable newsgroup archive search facility of Google Groups.
Visit the Google Groups search page at:

http://groups.google.com/

Enter the keyword or phrase into the top text box, but then also try to narrow your search by
limiting the newsgroup(s) to search. For example, if you have a question about weird behavior
you are experiencing with the borderCollapse style property in IE, enter borderCollapse
into the search field, and then try narrowing the search to a specific newsgroup (forum) such
as comp.lang.javascript.

If you post a question to a newsgroup, you will most likely get a quick and intelligent
response if you also provide either some sample code that’s giving you a problem, or a link to
a temporary file on your server that others can check out. Visualizing a problem you’ve spent
days on is very hard for others. Be as specific as possible, including the browser(s) on which
the code must run and the nature of the problem.

FAQs
One situation that arises with a popular and accessible technology, such as JavaScript and
DHTML authoring, is that the same questions get asked over and over, as newcomers arrive
on the scene daily. Rather than invoke the ire of newsgroup users, look through existing FAQ
files to see if your concern has already been raised and answered. Here are some of the best
JavaScript FAQ sites:

javascript.faqts.com
developer.irt.org/script/script.htm

For less-frequently asked questions — but previously asked and answered in a public form —
use the Google Groups search, described earlier in this appendix.

Online Documentation
Locations of Web sites that dispense official documentation for one browser or another are
extremely fluid. Therefore, the following information contains links only to top-level areas of
appropriate Web sites, along with tips on what to look for after you are at the site.

Microsoft has condensed its developer documentation into a massive site called MSDN
(Microsoft Developer Network). The place to begin is:

http://msdn.microsoft.com/workshop/

1141Appendix D ✦ JavaScript and DOM Internet Resources

This page is the portal to many technologies, but the one most applicable to JavaScript and
client-side scripting is one labeled “Web Development.” Within that heading you’ll find a sec-
tion named “Scripting.” Here you’ll find plenty of documentation and technical articles for
Microsoft scripting technologies, including JScript (Microsoft’s flavor of JavaScript).

For Netscape browser technologies, start at:

http://developer.netscape.com/docs/

You can also find some interesting future-oriented developer documentation at:

http://www.mozilla.org/docs

Finally, you can read the industry standards for HTML, CSS, and ECMAScript technologies
online. Be aware that these documents are primarily intended for developers of tools that we
use — browsers, WYSIWYG editors, and so forth — to direct them on how their products should
respond to tags, stylesheets, scripts, and so on. Reading these documents has frequently been
cited as a cure for insomnia.

http://www.ecma-international.org/publications/standards/ECMA-262.HTM
http://www.w3.org/TR/html4
http://www.w3.org/Markup
http://www.w3.org/TR/REC-CSS2
http://www.w3.org/DOM/

Please note that just because a particular item is described in an industry standard doesn’t
mean that it is implemented in any or all browsers. In the real world, we must develop for the
way the technologies are actually implemented in browsers.

World Wide Web
The number of Web sites devoted to JavaScript tips and tricks is mind-boggling. Many sites come
and go in the middle of the night, leaving no trace of their former existence. If you are looking for
more example code for applications not covered in this book, perhaps the best place to begin
your journey is through the traditional search engines. Narrowing your search through careful
keyword choice is vital. In addition to the Netscape and (heavily Windows-oriented) Microsoft
developer Web sites (plus numerous online articles of mine listed at http://www.dannyg.com/
pubs/index.html), a couple other venerable sites are:

http://builder.com
http://www.webreference.com

These sites are by no means the only worthwhile JavaScript and DHTML destinations on the
Web. Sometimes having too many sources is as terrifying as having not enough. The links and
newsgroups described in this appendix should take you a long way.

✦ ✦ ✦

What’s on
the CD-ROM

The accompanying Windows–Macintosh CD-ROM contains addi-
tional chapters including many more JavaScript examples, elec-

tronic versions of the Quick Reference shown in Appendix A for
printing in several formats, a complete, searchable version of the
entire book, and the Adobe Acrobat Reader.

System Requirements
To derive the most benefit from the example listings, you should have
both Netscape Navigator 7 (or later) and Internet Explorer 6 (or later)
installed on your computer. Although many scripts run in these and
other browsers, several scripts demonstrate features that are available
on only a limited range of browsers. To write scripts, you can use a
simple text editor, word processor, or dedicated HTML editor.

To use the Adobe Acrobat Reader (version 6.0), you need the following:

✦ For Windows 98, Windows ME, Windows NT4.0 (with SP6),
Windows 2000 (with SP2), Windows XP Pro/Home, or Windows
XP Table PC Edition, you should be using a Pentium computer
with 32MB of RAM and 60MB of hard disk space.

✦ Macintosh users require a PowerPC, OS X v10.2.2 or later, at
least 32MB of RAM, and 70MB of disk space.

Disc Contents
When you view the contents of the CD-ROM, you will see files tailored
for your operating system. The contents include the following items.

JavaScript listings for text editors
Starting with Part III of the book, almost all example listings are on
the CD-ROM in the form of complete HTML files, which you can load
into a browser to see the language item in operation. A directory
called Listings contains the example files, with nested folders
named for each chapter. Each HTML file’s name is keyed to the list-
ing number in the book. For example, the file for Listing 15-1 is
named lst15-01.htm. Note that no listing files are provided for the
tutorial chapters of Part II, because you are encouraged to enter
HTML and scripting code manually.

EEA P P E N D I X

✦ ✦ ✦ ✦

1144 Part V ✦ Appendixes

For your convenience, the _index.html file in the Listings folder provides a front-end table of
contents to the HTML files for the book’s program listings. Open that file from your browser
whenever you want to access the program listing files. If you intend to access that index page
frequently, you can bookmark it in your browser(s). Using the index file to access the listing files
can be very important in some cases, because several individual files must be opened within
their associated framesets to work properly. Accessing the files through the _index.html file
ensures that you open the frameset. The _index.html file also shows browser compatibility rat-
ings for all the listings. This saves you time from opening listings that are not intended to run on
your browser. To examine and modify the HTML source files, open them from your favorite text
editor program (for Windows editors, be sure to specify the .htm file extension in the Open File
dialog box).

You can open all example files directly from the CD-ROM, but if you copy them to your hard
drive, access is faster and you will be able to experiment with modifying the files more read-
ily. Copy the folder named Listings from the CD-ROM to any location on your hard drive.

JavaScript and Browser Object Quick Reference
from Appendix A (Adobe Acrobat format)
If you like the quick reference in Appendix A, you can print it out on two sides of seven sheets
of paper with the help of the Adobe Acrobat Reader, included with the CD-ROM. You can
choose from four versions, depending on the type of layout you prefer and kind of printer you
use. Open the JS Object Reference folder and read the file Choose a Version.txt for
details on each Quick Reference printout type. Then read the “howtoprt” file for your desired
version to understand details about Page Setup settings, paper feed options, and assembly
after printing.

Adobe Acrobat Reader
The Adobe Acrobat Reader is a helpful program that enables you to view the reference exam-
ple sections for Parts III and IV of the book, the Quick Reference from Appendix A, and the
searchable version of this book, all of which are in .pdf format on the CD-ROM. To install and
run Adobe Acrobat Reader, follow these steps:

For Windows
1. Start Windows Explorer and then open the Acrobat folder on the CD-ROM.

2. In the Acrobat folder, double-click the lone executable file and follow the instructions
presented on-screen for installing Adobe Acrobat Reader.

For Macintosh
1. Open the Acrobat folder on the CD-ROM.

2. In the Acrobat folder, double-click the Adobe Acrobat Reader disk image icon
(AdbeRdXX_enu_full.dmg), this will mount the disk image on your computer, then open
the mounted image and copy the Adobe Reader folder to the Applications directory of
your computer.

1145Appendix E ✦ What’s on the CD-ROM

Acrobat version of book with topical references
In many places throughout the reference chapters of Parts III and IV, you see notations direct-
ing you to the CD-ROM for a particular topic being discussed. All of these topics are located
in the chapters as they appear in complete Adobe Acrobat form on the CD-ROM. A single PDF
file is located on the CD-ROM, and it serves as an electronic version of the entire book, com-
plete with full topics that are listed as CD-ROM references in the printed book. For the fastest
access to these topics, copy the entire PDF file for the book to your hard disk.

Like any Acrobat document, the PDF version of the book is searchable. Current versions of
Acrobat should automatically load the Acrobat index file (with the .pdx extension) to supply
indexed search capabilities (which is much faster than Acrobat’s Find command).

To begin an actual search, click the Search icon (binoculars in front of a sheet of paper).
Enter the text for which you’re searching. To access the index and search facilities in future
sessions, the CD-ROM must be in your CD-ROM drive; unless, of course, you’ve copied both
the .pdx and .pdf files to your hard drive.

Troubleshooting
If you have difficulty installing or using the CD-ROM programs, try the following solutions:

✦ Turn off any anti-virus software that you may have running. Installers sometimes
mimic virus activity and can make your computer incorrectly believe that a virus is
infecting it. (Be sure to turn the antivirus software back on later.)

✦ Close all running programs. The more programs you’re running, the less memory is
available to other programs. Installers also typically update files and programs; if you
keep other programs running, installation may not work properly.

If you still have trouble with the CD-ROM, please call the Wiley Product Technical Support
phone number: (800) 762-2974. Outside the United States, call 1(317) 572-3994. You can also
contact Wiley Product Technical Support through the Internet at: http://www.wiley.com/
techsupport.Wiley Publishing will provide technical support only for installation and other
general quality control items; for technical support on the applications themselves, consult
the program’s vendor or author.

To place additional orders or to request information about other Wiley products, please
call (800) 225-5945.

✦ ✦ ✦

Bonus Chapters

Chapter 36
HTML Directive Objects

Chapter 37
Table and List Objects

Chapter 38
The Navigator and Other Environment Objects

Chapter 39
Positioned Objects

Chapter 40
Embedded Objects

Chapter 41
XML Objects

Chapter 42
The Regular Expression and RegExp Objects

Chapter 43
Data-Entry Validation

Chapter 44
Scripting Java Applets and Plug-Ins

Chapter 45
Debugging Scripts

Chapter 46
Security and Netscape Signed Scripts

Chapter 47
Cross-Browser Dynamic HTML Issues

Chapter 48
Internet Explorer Behaviors

Chapter 49
Application: Tables and Calendars

✦ ✦ ✦ ✦

P A R T

VIVI

Chapter 50
Application: A Lookup Table

Chapter 51
Application: A “Poor Man’s” Order Form

Chapter 52
Application: Outline-Style Table of Contents

Chapter 53
Application: Calculations and Graphics

Chapter 54
Application: Intelligent “Updated” Flags

Chapter 55
Application: Decision Helper

Chapter 56
Application: Cross-Browser DHTML Map Puzzle

Chapter 57
Application: Transforming XML Data

HTML Directive
Objects

Thanks to the modern browser’s desire to expose all HTML ele-
ments to the document object model, we can now (in IE4+ and

W3C DOM browsers) access a variety of objects that represent many
HTML elements that are normally invisible to the human viewer of a
page. These elements are called directive elements because they pre-
dominantly contain instructions for the browser — instructions that
direct the browser to locate associated content on the page, link in
external specifications, treat content as executable script statements,
and more.

As you browse through the objects of this chapter, you may wonder
why they have so many properties that normally indicate that the ele-
ments occupy space on the rendered page. After all, how can a meta
element have dimension or position on the page when it has no render-
able content? The reason is that modern browsers internally employ
some form of object-oriented behavior that lets all HTML elements —
rendered or not — inherit the same set of properties, methods, and
event handlers that any generic element has (see Chapter 15). The
logical flaw is that unrendered elements can have properties and meth-
ods that don’t genuinely apply to them. In such cases, their property
values may be zero, an empty string, or an empty array. Yet the prop-
erties and methods exist in the objects just the same. Therefore,
despite the large number of objects covered in this chapter, there are
relatively few properties and methods that are not shared already
with all HTML elements (as covered in Chapter 15).

HTML Element Object
For HTML element properties, methods, and event handlers, see
Chapter 15.

Properties Methods Event Handlers

version

3636C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Accessing non-displayed
element objects

Linking operating-system
specific stylesheet
definitions

HTML, head, link,
title, meta, base,
and script elements

✦ ✦ ✦ ✦

BC4 Part VI ✦ Bonus Chapters

Syntax
Accessing html element object properties or methods:

(IE4+) [window.]document.all.elemID.property | method([parameters])
(IE5+/W3C) [window.]document.body.parentNode.property | method([parameters])
(IE5+/W3C) [window.]document.getElementById(“elemID”).property |
method([parameters])
(IE4+) [window.]document.body.parentElement.property | method([parameters])

About this object
The html element is the big wrapper around all other elements of the page. In the object tree,
the html element sits between the all-encompassing document object and the element’s most
common children, the head and body elements. Other than one deprecated property (version),
the html element object offers nothing of importance to the scripter — with one possible
exception. When your script needs to use methods on the child nodes of the html element,
you must invoke most of those methods from the point of view of the html element. Therefore,
you should know how to create a reference to the html element object (shown in the preceding
“Syntax” section) just in case you need it.

Property

version
Value: String. Read-Only
Compatibility: WinIE6+, MacIE5+, NN6+, Moz1+, Safari1+

The version property is an artifact of an “ancient” way an HTML document used to specify
the HTML version of its content. These days, the preferred way to declare the HTML version
for a document is through a Document Type Declaration (DTD) statement that precedes the
<html> tag. An example of a modern DTD statement that accommodates HTML 4 plus depre-
cated elements and attributes as well as frameset support is

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.0 Frameset//EN”
“http://www.w3.org/TR/REC-html40/frameset.dtd”>

See http://www.w3.org/TR/REC-html40/struct/global.html#h-7.2 for several other
possibilities. A DTD statement does not affect the version property of an html element object.

head Element Object
For HTML element properties, methods, and event handlers, see Chapter 15.

Properties Methods Event Handlers

profile

html

BC5Chapter 36 ✦ HTML Directive Objects

Syntax
Accessing head element object properties or methods:

(IE4+) [window.]document.all.elemID.property | method([parameters])
(IE5+/W3C) [window.]document.getElementById(“elemID”).property |
method([parameters])

About this object
The purpose of the head element is primarily to act as a container for most of the other HTML
directive elements. Other than as a reference point to the child elements nested within, the
head element object rarely comes into play when scripting a document.

Property

profile
Value: String. Read-Only
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

The profile property is the script version of the optional profile attribute of a head element.
While the attribute and property are supported in many browsers, they are not used in prac-
tice yet. You can find details about the attribute at http://www.w3.org/TR/REC-html40/
struct/global.html#profiles.

Related Items: meta element object.

base Element Object
For HTML element properties, methods, and event handlers, see Chapter 15.

Properties Methods Event Handlers

href
target

Syntax
Accessing base element object properties or methods:

(IE4+) [window.]document.all.elemID.property | method([parameters])
(IE5+/W3C) [window.]document.getElementById(“elemID”).property |
method([parameters])

base

BC6 Part VI ✦ Bonus Chapters

About this object
The base element enables the page author to specify a default server directory and/or link
target for the entire page. If you omit the base element from the HTML, browsers use the
current page’s path as the base URL and the current window or frame as the default target.
Occasionally, a page generated entirely by way of document.write() has difficulty establish-
ing the same base URL as the document that generates the content, particularly if the primary
page is written out by a server script (in Perl or in another language). Including a <base> tag
in the dynamically written new page solves the problem; the new page can fetch images or
other external elements via relative URLs within the page.

The two distinctive properties of the base element object are rarely scripted, if ever.

Properties

href
Value: URL string. Read/Write
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

The href property is generally an absolute URL to the directory you wish to declare as the
default directory for the page. Even though browsers automatically set the base href to the
document’s own directory, this object and property do not have any values unless you explic-
itly set them in a <base> tag. In IE, changing this property after a page loads causes the page
to re-resolve all relative URLs on the page to the new base href. Therefore, if images have
relative URLs assigned to their src properties (either by way of the tag attribute or script), a
change to the base element’s href property forces the browser to look for those same relative
URLs in the new directory. If the files aren’t there, the images show up broken on the page.

target
Value: String. Read/Write
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

The target property governs the default window or frame that is to receive any content com-
ing from a server in response to a click on a link or any other element that has its own target
attribute. Valid values include the name of any frame (as assigned to the name attribute of the
<frame> tag) or window (as defined by the second attribute of the window.open() method).
You can also assign standard HTML targets (_blank, _parent, _self, and _top) to this prop-
erty as strings.

basefont Element Object
For HTML element properties, methods, and event handlers, see Chapter 15.

Properties Methods Event Handlers

color
face
size

base

BC7Chapter 36 ✦ HTML Directive Objects

Syntax
Accessing basefont element object properties or methods:

(IE4+) [window.]document.all.elemID.property | method([parameters])
(IE5+/W3C) [window.]document.getElementById(“elemID”).property |
method([parameters])

About this object
The basefont element enables authors to define a font face, size, and color for an entire
section of an HTML document — or the entire document. Although page authors still fre-
quently use the basefont element, font control in modern browsers should fall in the hands of
stylesheets. (The element is deprecated in HTML 4.0.) The paradox of this is that the basefont
element is accessible as a scriptable object only in browsers that support stylesheets. Even so,
I recommend avoiding dynamic font changes by way of the basefont element and use scripts
to control stylesheets instead.

The basefont element has no end tag, so IE’s outerHTML property consists of all HTML in
the document starting with the element itself.

The three distinctive properties of the basefont element object are rarely, if ever, scripted.

Properties

color
face
size

Value: String. Read/Write
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

These three properties define the characteristics of font rendering for all content following the
element’s tag in the document. Color specifications can be hexadecimal triplets or Netscape
color names (a list is available at http://developer.netscape.com/docs/manuals/
htmlguid/colortab.htm). Font faces can include a list of comma-separated font face names.
And because this is HTML as opposed to stylesheet fonts, the size property is in terms of the
1 through 7 scale of font sizes. You can also use relative sizes (for example, +1).

isindex Element Object
For HTML element properties, methods, and event handlers, see Chapter 15.

Properties Methods Event Handlers

alt
border
checked

Continued

Note

isindex

BC8 Part VI ✦ Bonus Chapters

Properties Methods Event Handlers

complete
dynsrc
form
height
hspace
indeterminate
loop
lowsrc
maxLength
name
prompt
readOnly
size
start
status
value
vrml
vspace
width

Syntax
Accessing isindex element object properties or methods:

(IE4+) [window.]document.all.elemID.property | method([parameters])
(IE5+/W3C) [window.]document.getElementById(“elemID”).property |
method([parameters])

About this object
The isindex element is a holdover from the early beginnings of HTML. It offered the first text
input field prior to the addition of form and input elements to the HTML specification. IE
treats this element as if it were an input element, so isindex takes on all possible input
element properties (including those of buttons). This element is deprecated in HTML 4.0 and
should not be part of your development vocabulary. Use forms and genuine input elements
instead (see Chapters 21–24).

link Element Object
For HTML element properties, methods, and event handlers, see Chapter 15.

isindex

BC9Chapter 36 ✦ HTML Directive Objects

Properties Methods Event Handlers

charset onload
disabled
href
hreflang
media
rel
rev
sheet
styleSheet
target
type

Syntax
Accessing link element object properties or methods:

(IE4+) [window.]document.all.elemID.property | method([parameters])
(IE5+/W3C) [window.]document.getElementById(“elemID”).property |
method([parameters])

About this object
The link element (not to be confused with the a element that is often referred to as a “link”
element when it contains an href attribute pointing to another document) has many poten-
tial uses in pointing to external documents that relate to the current document. Its most com-
mon usage today is for linking an external stylesheet specification to the document. In fact,
it’s not uncommon for sophisticated site designs to use document.write() to generate the
<link> tag so that operating-system–specific stylesheets are applied to the page. In the
following code fragment (which goes inside a document’s head element), the page loads a
Macintosh-specific stylesheet when the page is running on a Macintosh; otherwise, it loads a
Windows-specific stylesheet:

<script type=”text/javascript”>
var isMac = navigator.userAgent.indexOf(“Mac”) != -1;
var linkTagStart = “<link rel=’stylesheet’ type=’text/css’ href=’”;
var linkTagEnd = “.css’>”;
if (isMac) {

document.write(linkTagStart + “mac” + linkTagEnd;
} else {

document.write(linkTagStart + “windows” + linkTagEnd;
}
</script>

Although it may appear that the link element can load a variety of content into a page, do
not use it for multimedia (in which case you should use the embed or object elements) or
external HTML (where you should use an iframe element).

link

BC10 Part VI ✦ Bonus Chapters

Many of the properties of the link element object are script representations of HTML 4.0
attributes for the element. However, browsers don’t take full advantage of the possibilities
available from the link element yet. (For example, a browser can provide arrows to the pre-
vious and next documents in a series, as specified by the rev and rel attributes. But so far,
no browser implements this.) Properties unique to this object offer scripted access (in vari-
ous browser versions) to attribute values of the link element. Therefore, this chapter does
not spend a lot of time on properties that are not in current use.

Properties

charset
Value: String. Read/Write
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

The charset property advises the browser about the character encoding of the content that
will arrive from the external document (assuming you also have the href attribute set). Values
for this property must match the encoding naming conventions defined in an industry standard
registry (http://www.iana.org/assignments/character-sets).

disabled
Value: Boolean. Read/Write
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

By changing the disabled property (default is false), you can turn externally linked content
on and off. For example, you can define two different stylesheet links in a document that has
two <link> tags with one’s disabled attribute set. You can switch between the two style-
sheets by setting the disabled property of one to true and the other to false.

href
Value: String. See Text
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

Another way to swap stylesheets is to modify the value of a single link element object’s href
property (although the property is read-only in MacIE4+). The property’s value is a URL string.

hrefLang
Value: String. Read/Write
Compatibility: WinIE6+, MacIE6+, NN6+, Moz1+, Safari1+

The hrefLang property is an advisory for the browser (if the browser takes advantage of it)
about the written language used for the content to which the link element’s href attribute
points. Values for this property must be in the form of the standard language codes (for exam-
ple, en-us for U.S. English).

media
Value: String. Read/Write
Compatibility: WinIE4+, MacIE-, NN6+, Moz1+, Safari1+

link

BC11Chapter 36 ✦ HTML Directive Objects

The media property is an advisory for the browser about the target output device intended for
the content to which the link element’s href attribute points. This is an outgrowth of HTML
4.0 efforts to make way for future browsers and content that can be optimized for devices such
as printers, handheld computers, and audio digitizers. The W3C specifies a preliminary set of
constant string values for this property’s equivalent attribute. So far, browsers (at most) rec-
ognize all (default), print, and screen.

rel
rev

Value: String. Read/Write
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

The rel and rev properties are intended to define relationships in the forward and back
directions with respect to the current document. Browsers have yet to exploit most of the
potential of these attributes and properties. For the most part, the attributes solely direct
the browser to treat the external content as a stylesheet definition file.

A long list of values is predefined for these properties, based on the corresponding attribute
values specified in HTML 4.0. If the browser does not respond to a particular value, the value
is simply ignored. You can string together multiple values in a space-delimited list inside a
single string. Accepted values are as follows:

alternate contents index start
appendix copyright next stylesheet
bookmark glossary prev subsection
chapter help section

sheet
Value: Object. Read-Only
Compatibility: WinIE-, MacIE-, NN6+, Moz1+, Safari-

When a link element loads an external stylesheet, the W3C DOM sheet property of the link
element object provides scripted access to the stylesheet rules that belong to that external
file. Use properties of the sheet object to access specifics about the imported rules.

styleSheet
Value: Object. Read-Only

Compatibility: WinIE5+, MacIE-, NN-, Moz-, Safari-

When a link element loads an external stylesheet, the IE-specific styleSheet property of
the link element object provides scripted access to the stylesheet rules that belong to that
external file. Use properties of the styleSheet object (see Chapter 26) to access specifics
about the imported rules.

target
Value: String. Read/Write
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

link.target

BC12 Part VI ✦ Bonus Chapters

In the context of using link elements to point to other content associated with the current
document (for example, the next and previous documents within a series), the target prop-
erty can advise the browser which frame or window to use to display that content. For exam-
ple, a suitably equipped browser can display a glossary in a separate window. No browsers
currently implement these extended features of the link element, so the property is provided
in browsers only for compatibility with the W3C standards. If the property were truly func-
tional, it would accept values in the form of a string name for a frame or one of the window
constants (_blank, _parent, _self, or _top).

type
Value: String. Read/Write
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

The type property specifies the mime type for the content that will arrive from the external
document to which the element’s href attribute points. link elements are used primarily for
Cascading Style Sheets, so the property value is text/css.

Event handlers

onload
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-

The onload event handler fires when the external content pointed to by the link element’s
href attribute completes loading. WinIE5 fires this event handler even if the loading does not
succeed, so use this event handler with care.

meta Element Object
For HTML element properties, methods, and event handlers, see Chapter 15.

Properties Methods Event Handlers

charset
content
httpEquiv
name
url

Syntax
Accessing meta element object properties or methods:

(IE4+) [window.]document.all.elemID.property | method([parameters])
(IE5+/W3C) [window.]document.getElementById(“elemID”).property |
method([parameters])

link.target

BC13Chapter 36 ✦ HTML Directive Objects

About this object
In computer terminology, metadata usually consists of extra information about the primary
data of a document or information collection. In HTML documents, metadata can be additional
hidden information about the document, such as the name of the author and keywords. If the
browser is suitably equipped, metadata can also include some instructions, such as when to
reload the page by itself. meta elements add all of this metadata to HTML documents. Both
fact and folklore surround the application of meta elements within pages. One fact is that
Internet search engine robots used to scour pages for certain kinds of keyword meta tags to
help place your page within relevant categories when Web surfers are looking for specific con-
tent (but thanks to keyword loading by unscrupulous Web sites, search engines now rarely
consider meta keywords). More on the folklore side is that browsers always respond to meta
element wording that prevents browsers from copying pages into the cache — when in fact,
this behavior is not universal among browsers.

Complete details about meta element usage is beyond the scope of this JavaScript book, but
you should be aware of one widely accepted composition that enables you to set a page to
reload itself (or another page) at a fixed time interval. This is especially useful if your page
retrieves very timely information from a database. The format is

<meta http-equiv=”refresh” content=”n,url=url” />

n is the number of seconds to delay before reloading the page, and url is the complete URL of
the page to be reloaded. Note that you can specify any page you like. This allows for a kind
of slide show to be sequenced in a freestanding kiosk, because each page’s meta element
points to the next page in the series after a fixed amount of time.

Unique properties for the meta element object mimic the HTML attributes for the <meta>
tag. Browsers read most attributes only at load time, which means that scripted changes to
values after the page loads have no effect. These properties are rarely, if ever, accessed from
a script, so I mention them here only briefly.

Properties

charset
Value: String. Read/Write
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-

The charset property advises the browser about the character encoding of the content for
the page. Values for this property must match the encoding naming conventions defined in an
industry standard registry (http://www.iana.org/assignments/character-sets).

content
Value: String. Read/Write
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

For many applications of the meta element, the content property contains the primary value
associated with the element. For example, search engines look for a meta element whose name
attribute is “keywords”. The value of the content attribute is a comma-delimited string of
keywords that the search engine reads and indexes in its own database. The content prop-
erty simply represents the content attribute string. Changing the values by script obviously
does nothing to alter the tag values of the page on the server.

meta.content

BC14 Part VI ✦ Bonus Chapters

httpEquiv
Value: String. Read/Write
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

A meta element can simulate and extend the transmission of server instructions to the
browser — instructions that normally arrive in the form of http headers. These header supple-
ments are supplied in meta elements via the http-equiv attribute, which is represented in
the object model by the httpEquiv property. Common values include refresh and expires.
Each of these also requires a content attribute that provides necessary details for carrying out
the instructions. If you assign a string value to the httpEquiv property, be sure the content
property has a suitable string assigned to it.

name
Value: String. Read/Write
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

A meta element that includes genuine metadata about the page (for example, author or key-
words) usually has a name attribute that identifies what the metadata is (analogous to the name
of a name-value pair). The name and content properties go hand in hand because the content
string usually must be in a particular form for an external process (for example, a search
engine) to read the data successfully. Values for the name attribute are rarely case-sensitive.

url
Value: String. Read/Write
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-

If a meta element needs to point to a document on the Internet for any reason, the URL of that
document is assigned to the url attribute of the element. You can modify the value via the url
property of a meta element object. I recommend a complete URL string for the url property
value.

script Element Object
For HTML element properties, methods, and event handlers, see Chapter 15.

Properties Methods Event Handlers

defer
event
htmlFor
src
text
type

meta.httpEquiv

BC15Chapter 36 ✦ HTML Directive Objects

Syntax
Accessing script element object properties or methods:

(IE4+) [window.]document.all.elemID.property | method([parameters])
(IE5+/W3C) [window.]document.getElementById(“elemID”).property |
method([parameters])

About this object
The <script> tag is well known to scripters, and modern browsers (IE4+ and W3C DOM-
compatible) treat the script element as an object that, itself, can be scripted. The circularity
of this description isn’t as far-fetched as it sounds. Although scripting an existing script is a rar-
ity in practice, it is not out of the question to generate a new script element after the page
loads. If you use W3C DOM syntax to create a new script element, you then need to assign
values to the properties that are normally set via the tag’s attributes. Thus, scripting a script
does make sense.

Unless you have experience with IE’s option of binding event handlers to <script> tags (see
Chapter 14), some of the properties described next will be foreign to you. Even so, these prop-
erties are now a part of the W3C DOM specification, so they are implemented in IE5+/NN6+/
Mozilla/Safari as well.

Properties

defer
Value: Boolean. Read/Write
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

The default process of loading a page that contains scripts is to wait for any immediate script
execution to complete before the rest of the page loads. But if you include a defer attribute
in the tag, modern browsers (except Safari 1.0) continue to load the rest of the page without
waiting for immediate scripts to run. The defer property enables you to inspect or set that
property; its default value is false. Once a page loads, any change you make to an existing
script element’s defer property has no effect.

event
htmlFor

Value: String. Read-Only
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

Internet Explorer enables you to bind events to script statements when you specify both a
for and event attribute in the <script> tag. Statements inside the tag execute only when
the object named by the for attribute receives the event named by the event attribute. You
can examine the event attribute by way of the script element object’s event property, and
you can view the for attribute through the htmlFor property. Both properties simply mimic
whatever values are assigned to their respective attributes, such as onclick() and myDIV.

script.event

BC16 Part VI ✦ Bonus Chapters

src
Value: String. See Text
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

The src property is a string of the URL of an external .js script file to be linked into a page.
You can change this property in IE after you load the external script, but the old script does
not go away from the page. If the new script defines the same variable and function names,
the new versions overwrite the old. Other browsers may not load a new external script.

text
Value: String. Read-Only
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

The full text of a script element is available for reading through the text property. Although
IE5+ may give the impression that you can modify this property, the script that loads with the
page is what is stored in the browser’s memory. Thus, the original script statements continue
to work even though the object’s property is different.

type
Value: String. Read-Only
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

The type attribute was added to the <script> tag in HTML 4.0 to help resolve the conflict that
the deprecated language attribute created for all HTML elements. The value of the attribute
(and thus the type property) is a mime type string. For JavaScript, that value is text/java
script.

title Element Object
For HTML element properties, methods, and event handlers, see Chapter 15.

Properties Methods Event Handlers

text

Syntax
Accessing title element object properties or methods:

(IE4+) [window.]document.all.elemID.property | method([parameters])
(IE5+/W3C) [window.]document.getElementById(“elemID”).property |
method([parameters])

script.src

BC17Chapter 36 ✦ HTML Directive Objects

About this object
Before the title element was accessible to scripting as an object, the prescribed way to get
to the content of the page’s <title> tag was through the document.title property. Although
that property is still available for backward compatibility, scripts written exclusively for newer
browsers should access the text property of the title element object. As a useful exercise,
you can modify Listing 18-17 (loaded via Listing 18-16) to use the IE4+ or W3C DOM syntax to
retrieve and display the document’s title.

Property

text
Value: String. Read/Write
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

The text property represents the text between the start and end tags of the title element
object (Safari 1.0 returns an empty string). This is simply a convenience property because the
text can be referenced by other ways in IE4+ (innerText property), NN6+ (innerHTML), and
W3C DOM (firstChild.nodeValue) syntaxes. For backward compatibility with earlier
browsers, you can alternatively use the document.title property.

Related Items: document.title property.

✦ ✦ ✦

title.text

Table and List
Objects

Tables are incredibly popular HTML constructions. When you con-
sider that a lot of CGI programs search SQL databases and dis-

play data gathered from SQL tables, it’s not unusual to find the table
concept carried over from data storage to data display. Spreadsheet
programs certainly put the notion of tabular display into the minds of
most computer users.

One of the truly beneficial properties of tables in HTML is that they
pack a lot of page organization and alignment punch in just a few tags
and attributes. Even if you’re not a graphics designer or a dedicated
HTML jockey, you can get rows and columns of text and images to line
up perfectly on the page. This behavior also lures many page designers
to sculpt elaborately detailed pages out of what appear to be posi-
tioned elements. Earlier browsers didn’t offer positioning facilities, so
borderless tables were torqued into performing all kinds of placement
tricks with the help of precisely sized, transparent images creating the
illusion of white space between carefully placed elements. If you use
some of the WYSIWYG authoring tools for HTML pages, you may not
realize how much table-related HTML code is generated for you as
you use the tool to drag an image to a particular location on the page.

Using tables to specify design and page layout is giving way to CSS
techniques that achieve a similar look with less code. This trend is
driven by Web standards goals of using HTML markup to denote con-
text rather than layout. Even so, many Web pages need to display
genuinely columnar data — a purpose for which HTML tables are still
ideally suited. The first part of this chapter focuses on the scriptable
aspects of table element objects and the shopping list of elements
that support tables. All of these objects became scriptable objects
starting with IE4 and NN6/W3C DOM-compatible browsers. Later in the
chapter, I discuss element objects that create formatted lists in pages.

The Table Object Family Hierarchy
The repertoire of table-related elements expanded a bit with the
HTML 4.0 specification, and the W3C DOM built upon that foundation.
While most of this discussion is best left to HTML texts, the structure
of a full-fledged table and the relationships among the elements —
particularly the parent-child relationships — may affect your scripting
and event handling.

3737C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Modifying table cell
content

Adding and deleting
table rows

table, caption,
tbody, tfoot, thead,
col, colgroup, th,
tr, and td element
objects

ol, ul, li, and dl list
element objects

✦ ✦ ✦ ✦

BC20 Part VI ✦ Bonus Chapters

You are probably very familiar with the most basic table structure that predates HTML 4.0.
Such a table (in a 2×2 layout) can have the following form:

<table>
<tr>

<td></td>
<td></td>

</tr>
<tr>

<td></td>
<td></td>

</tr>
</table>

If you want to place a row of cells at the top of each column such that the contents of the
cells act as headers for each column, add such a row as follows:

<table>
<tr>

<th></th>
<th></th>

</tr>
<tr>

<td></td>
<td></td>

</tr>
<tr>

<td></td>
<td></td>

</tr>
</table>

You can also include a caption associated with the table. Its tag goes immediately after the
table element’s start tag:

<table>
<caption></caption>
<tr>

<th></th>
<th></th>

</tr>
<tr>

<td></td>
<td></td>

</tr>
<tr>

<td></td>
<td></td>

</tr>
</table>

In line with its emphasis on providing contextual tags, HTML 4.0 includes three tags that enable
you to define groups of table rows according to whether they are the header, body, or footer
of the table (thead, tbody, and tfoot elements, respectively). A table footer, for example, can
display column totals. The only seemingly illogical rule about these elements is that you should
define the tfoot element and its row contents before the tbody element(s) in the table. Even
with this source code placement, the tfoot row appears at the bottom of the table.

BC21Chapter 37 ✦ Table and List Objects

Some browsers produce visual dividers between these sections (WinIE5+ does a nice job of
this). Moreover, you can have multiple tbody sections within a table. Some browsers render
dividers between these tbody sections (again, WinIE5+ does it well). Regardless of the built-in
divider support, these contextual groupings also enable you to assign stylesheets to HTML
tag selectors rather than having to dream up a scheme of class and id names tied to stylesheet
rules. Building upon the skeletal table shown thus far, you add the thead and tbody elements
like this:

<table>
<caption></caption>
<thead>

<tr>
<th></th>
<th></th>

</tr>
</thead>
<tbody>

<tr>
<td></td>
<td></td>

</tr>
<tr>

<td></td>
<td></td>

</tr>
</tbody>

</table>

That’s the extent of table-oriented HTML containers. The remaining two elements, colgroup
and col, provide a different “slice” of the table for stylesheets and other visual groupings.
One of the most obvious purposes of these two elements is to assign a width or other style to
all cells in a particular column or group of columns. You can also use these elements to group
adjacent columns so that dividers are drawn between groups of columns — if the browser
(such as WinIE5+) supports dividers between column groups — without specifying global table
borders. You can see an example of the HTML for a complex table in the HTML 4.0 specification
(http://www.w3.org/tr/REC-html40/struct/tables.html#h-11.5). Elsewhere on that
same page, you can find the formal specification for all table-related tags and attributes as
defined by the W3C.

Populating table cells
Source material for a table’s content can come from many different places. Most of the tables
you see on the Web are hard-coded in the HTML. That is, the content of the table is fixed inside
a static HTML file on the server.

But tables may also convey content from live databases or content that changes more fre-
quently than the Web site’s author manually updates other content. The source and your Web
development infrastructure (not to mention your technical skills) dictate other avenues for
populating tables.

After hard-coded HTML files, the next most common way to generate tables is through server-
based CGI programs. These programs (written in Perl, C, and many other languages, including
server-side JavaScript on those few servers that support it) generally compose a query for the
database and then repackage the data returned from the database into HTML-formatted pages.

BC22 Part VI ✦ Bonus Chapters

A more client-side–oriented approach is to let JavaScript apply the document.write() method
to compose the table’s tags as the page loads. Data for the cells can come from JavaScript
arrays defined at the beginning of the document or defined in external .js library files that
are linked in as the page loads. In the newest browsers, the data may come from blocks of XML-
formatted data stuffed into the document. These solutions can work in situations where you
need to update the table data periodically, but the table delivered to the client does not reflect
the instantaneous state of a database. For example, a daily batch program on a server can
capture the day’s sales totals and write out a .js text file to a known place on the server. The
file consists entirely of JavaScript array definitions. When the HTML page loads, the current
.js file is automatically loaded into the page, and document.write() statements compose
the table’s HTML from the data supplied in the arrays. Although the script that assembles the
HTML for the tables might appear formidable to a nonscripter, a nonscripter can also manu-
ally update the array data by following a template format supplied by the programmer.

Finally, if your page visitors run IE4+, you can take advantage of a Microsoft-specific technology
called data binding. Data binding invokes the powers of one or more ActiveX controls that come
with the IE browser (simulated in MacIE). These objects (collectively called Data Source
Objects) let HTML pages access ODBC databases and structured text files (MacIE works only
with text files). As the page loads, the table fills with data pulled live from the database. You
can see an example of data binding in Chapter 15 under the description of the data binding
property: dataFld. The HTML file carries tags for only one row of cells, but data binding fills
in the rest of the rows and cells.

Modifying table cell content
You can modify the HTML content of a table cell directly in IE4+ and W3C DOM-compatible
browsers. Some tricks with positioned elements in NN4 can, under some circumstances, make
it appear to the user as if the table content is being modified.

By far, the most compatible way to modify a table cell’s content in IE4+ and W3C DOM browsers
is via the td element’s innerHTML property (a Microsoft invention that is not sanctioned by
the W3C DOM Level 2 but is supported elsewhere as a de facto standard). Even if the content
is simply text that is to inherit the style format of the surrounding td element, you can still
use the innerHTML property. If the size of the new content affects the dimensions of the cell’s
column width or row height, the browser reflows the rest of the table content around the new
content.

If you prefer to follow the W3C DOM form of modifying an element’s content (for IE5+ and
NN6+/Mozilla/Safari), you can generate the new content via the document.createElement()
or document.createTextNode() sequence and assign that new content to the cell by way of
the td element’s replaceChild() method.

The situation for NN4 is quite gnarled because the content you replace must be within its own
layer (either a layer element or positioned container element, such as a div or span). No
matter how you create the layer in your HTML, you must overcome the problem that a layer
floats in its own plane and must be positioned precisely where the table cell is. Table cells are
not objects in NN4, so you must create a positioning context in the cell by first creating a
relative-positioned layer that can contain nothing more than an “invisible” nonbreaking space
character (). The layer displaying the content must be absolute-positioned with respect
to that relative-positioned layer. Nesting of layers in NN4 causes headaches, especially when
scripts reference the deeply nested content — content that is, essentially, an HTML document
inside the nested layer.

BC23Chapter 37 ✦ Table and List Objects

Listing 37-1 shows a synthesis of different techniques to effect cell content replacement,
including script code branches that emulate the appearance of replacement in NN4. The table
represents only one line of what might be an order form for several products. As the user
makes a selection of the quantity, the extended total is displayed in the rightmost column.

You can find the key features of the NN4 implementation in the script that dynamically writes
the table cell content within the HTML as the page loads. The cell begins with a relative-
positioned span element. This span is positioned at the top left of the table cell, as planned.
That spot now is the positioning context for the absolute-positioned span nested inside it. This
second span is the layer whose document contains the displayed content. The content, itself,
is yet another span element because it simplifies the application of a stylesheet rule (to display
the total in red) when you replace the content. Because a newly written NN4 layer does not
inherit the stylesheet of its next outermost layer, you must apply the style as part of the new
content.

The initial span content contains a series of nonbreaking space characters that force NN4 to
open space for eventual replacement content. Recall that an NN4 page does not reflow the
page to accommodate resized content. This means that whatever you intend to insert in the
table cell can be no larger than the original space allocated for it.

Although the page shown in Listing 37-1 consists of only one row of data, the scripts and
naming conventions are intended to be carried out among multiple rows. The product name
appears in several object names and ids in each row, and the scripts count on the convention
being followed throughout. In fact, the regularity of the namings can allow the content for a
table’s row to form a script function that is invoked for each table row. The product code name
can be passed as the parameter, and all object names and ids can be assembled in that func-
tion. The regularity of table content often lends itself to script-generated construction.

For NN4, when the table gets complicated, you will have more success defining the absolute-
positioned elements outside of the table entirely. They should be defined on their own at the
bottom of the body. You can still position them with respect to the relative-positioned ele-
ments in the table, but all such layers are now only one level deep within the main document.

Listing 37-1: Replacing Table Cell Content

<html>
<head>

<title>Modifying Table Cell Content</title>
<style type=”text/css”>
.absoluteWrap {position:absolute}
.relativeWrap {position:relative}
.total {color:red}
</style>
<script type=”text/javascript”>
var Ver4 = parseInt(navigator.appVersion) == 4;
var Ver4Up = parseInt(navigator.appVersion) >= 4;
var Nav4 = ((navigator.appName == “Netscape”) && Ver4);
var modifiable;

// calculate and display a row’s total

Continued

Note

BC24 Part VI ✦ Bonus Chapters

Listing 37-1 (continued)

function showTotal(qtyList) {
var qty = qtyList.options[qtyList.selectedIndex].value;
var prodID = qtyList.name;
var total = “US$” + (qty * parseFloat(qtyList.form.elements[prodID +

“Price”].value));
var newCellHTML = “” + total + “”;

if(Nav4) {
document.layers[prodID + “TotalWrapper”].document.layers[prodID +

“Total”].document.write(newCellHTML);
document.layers[prodID + “TotalWrapper”].document.layers[prodID +

“Total”].document.close();
} else if (modifiable) {

if (document.all) {
document.all(prodID + “Total”).innerHTML = newCellHTML;

} else {
document.getElementById(prodID + “Total”).innerHTML =

newCellHTML;
}

}
}

// initialize global flag for browsers capable of modifiable content
function init() {

modifiable = (Ver4Up && document.body && document.body.innerHTML);
}

// display content for all products (e.g., in case of Back navigation)
function showAllTotals(form) {

for (var i = 0; i < form.elements.length; i++) {
if (form.elements[i].type == “select-one”) {

showTotal(form.elements[i]);
}

}
}
</script>

</head>
<body onload=”init(); showAllTotals(document.orderForm)”>

<h1>Modifying Table Cell Content</h1>
<hr />
<form name=”orderForm”>

<table border=”1”>
<colgroup width=”150”></colgroup>
<colgroup width=”100”></colgroup>
<colgroup width=”50”></colgroup>
<colgroup width=”100”></colgroup>
<tr>

<th>Product Description</th>
<th>Price Each</th>
<th>Quantity</th>
<th>Total</th>

</tr>
<tr>

<td>Wonder Widget 9000</td>
<td>US$125.00</td>
<td><select name=”ww9000” onchange=”showTotal(this)”>

BC25Chapter 37 ✦ Table and List Objects

<option value=”0”>0</option>
<option value=”1”>1</option>
<option value=”2”>2</option>
<option value=”3”>3</option>

</select> <input type=”hidden” name=”ww9000Price”
value=”125.00” /></td>

<td>
<script type=”text/javascript”>
if (Nav4) {

var placeHolder =
“ ”;

placeHolder +=
“ ”;

document.write(“<span id=’ww9000TotalWrapper’
class=’relativeWrap’>”);

document.write(“<span id=’ww9000Total’
class=’absoluteWrap’><\/span>”);

document.write(“” + placeHolder +
“<\/span><\/span>”);

} else {
document.write(“<span id=’ww9000Total’

class=’relativeWrap’><p> <\/p><\/span>”);
}
</script>

</td>
</tr>

</table>
</form>

</body>
</html>

Modifying table rows
In IE4+ and W3C DOM browsers, all table-related elements are full-fledged objects within the
browser’s object model. This means that you are free to use your choice of DOM element
modification techniques on the row and column makeup of a table. But due to the frequent
complexity of tables and all of their nested elements, the code required to manage a table can
balloon in size. To the rescue come some methods that enable you to add and remove rows
and cells from a table. Despite minor differences in the implementations of these methods
across DOMs, the syntax exhibits sufficient unanimity to allow one set of code to work on
both browsers — especially for adding elements to a table.

Table 37-1 provides a quick summary of the key methods used to add or remove elements
within a table, a table section (thead, tbody, or tfoot), and a row (tr). For simple tables
(in other words, those that do not define thead or tfoot segments), you can work exclusively
with the row modification methods of the table element object (and then the cell modification
methods of the rows within the table element). The reason for the duplication of the row
methods in the table section objects is that instead of having to worry about row index num-
bers lining up among the combined total of head, body, and foot rows, you can treat each
segment as a distinct unit. For example, if you want to add a row just to the beginning of the
tfoot section, you can use the insertRow() method for the tfoot element object and not
have to count up the tr elements and perform arithmetic to arrive at the desired row number.
Instead, simply use the insertRow() method on the tfoot element object and supply the
method with parameters that ensure the row is inserted as the first row of the element.

BC26 Part VI ✦ Bonus Chapters

IE5 for the Macintosh offers unpredictable results when inserting rows of a table via these
methods. The browser does behave when modifying the HTML elements by accumulating the
HTML for a row as a string and then adding the row to the table via IE DOM methods such as
insertAdjacentHTML(). If your pages must modify the composition of tables after the page
loads — and your audience includes Mac IE5 users — use the element and node insertion
techniques rather than the methods shown in Table 37-1 and techniques described next.

Table 37-1: IE4+ and NN6+/W3C Table Modification Methods

table thead, tbody, tfoot tr

insertRow() insertRow() insertCell()
deleteRow() deleteRow() deleteCell()
createTHead()
deleteTHead()
createTFoot()
deleteTFoot()
createCaption()
deleteCaption()

The basic sequence for inserting a row into a table entails the following steps:

1. Invoke insertRow() and capture the returned reference to the new, unpopulated row.

2. Use the reference to the row to invoke insertCell() for each cell in the row, capturing
the returned reference to each new, unpopulated cell.

3. Assign values to properties of the cell, including its content.

The following code fragment appends a new row to a table (myTABLE) and supplies information
for the two cells in that row:

// parameter of -1 appends to table
// (you can use document.all.myTABLE.insertRow(-1) for IE4+ only)
var newRow = document.getElementById(“myTABLE”).insertRow(-1);
// parameter of 0 inserts at first cell position
var newCell = newRow.insertCell(0);
newCell.innerHTML = “Mighty Widget 2000”;
// parameter of 1 inserts at second cell position
newCell = newRow.insertCell(1);
newCell.innerHTML = “Release Date TBA”;

A key point to note about this sequence is that the insertRow() and insertCell() methods
do their jobs before any content is handed over to the table. In other words, you first create
the HTML space for the content and then add the content.

Listing 37-2 presents a living environment that adds and removes thead, tr, and tfoot ele-
ments to an empty table in the HTML. The only subelement inside the table element is a
tbody element, which directs the insertion of table rows so as not to disturb any existing
thead or tfoot elements. You can also see how to add or remove a caption from a table via
caption-specific methods.

Note

BC27Chapter 37 ✦ Table and List Objects

Each table row consists of the hours, minutes, seconds, and milliseconds of a time stamp gen-
erated when you add the row. The color of any freshly added row in the tbody is a darker
color than the normal tbody rows. This is so you can see what happens when you specify an
index value to the insertRow() method. Some of the code here concerns itself with enabling
and disabling form controls and updating select elements, so don’t be deterred by the
length of Listing 37-2.

Listing 37-2: Inserting/Removing Row Elements

<html>
<head>

<title>Modifying Table Cell Content</title>
<style type=”text/css”>
thead {background-color:lightyellow; font-weight:bold}
tfoot {background-color:lightgreen; font-weight:bold}
#myTABLE {background-color:bisque}
</style>
<script type=”text/javascript”>
var theTable, theTableBody;
function init() {

theTable = (document.all) ? document.all.myTABLE :
document.getElementById(“myTABLE”);

theTableBody = theTable.tBodies[0];
}
function appendRow(form) {

insertTableRow(form, -1);
}

function addRow(form) {
insertTableRow(form, form.insertIndex.value);

}

function insertTableRow(form, where) {
var now = new Date();
var nowData = [now.getHours(), now.getMinutes(), now.getSeconds(),

now.getMilliseconds()];
clearBGColors();
var newCell;
var newRow = theTableBody.insertRow(where);
for (var i = 0; i < nowData.length; i++) {

newCell = newRow.insertCell(i);
newCell.innerHTML = nowData[i];
newCell.style.backgroundColor = “salmon”;

}
updateRowCounters(form);

}

function removeRow(form) {
theTableBody.deleteRow(form.deleteIndex.value);
updateRowCounters(form);

}

Continued

BC28 Part VI ✦ Bonus Chapters

Listing 37-2 (continued)

function insertTHEAD(form) {
var THEADData = [“Hours”,”Minutes”,”Seconds”,”Milliseconds”];
var newCell;
var newTHEAD = theTable.createTHead();
newTHEAD.id = “myTHEAD”;
var newRow = newTHEAD.insertRow(-1);
for (var i = 0; i < THEADData.length; i++) {

newCell = newRow.insertCell(i);
newCell.innerHTML = THEADData[i];

}
updateRowCounters(form);
form.addTHEAD.disabled = true;
form.deleteTHEAD.disabled = false;

}

function removeTHEAD(form) {
theTable.deleteTHead();
updateRowCounters(form);
form.addTHEAD.disabled = false;
form.deleteTHEAD.disabled = true;

}

function insertTFOOT(form) {
var TFOOTData = [“Hours”,”Minutes”,”Seconds”,”Milliseconds”];
var newCell;
var newTFOOT = theTable.createTFoot();
newTFOOT.id = “myTFOOT”;
var newRow = newTFOOT.insertRow(-1);
for (var i = 0; i < TFOOTData.length; i++) {

newCell = newRow.insertCell(i);
newCell.innerHTML = TFOOTData[i];

}
updateRowCounters(form);
form.addTFOOT.disabled = true;
form.deleteTFOOT.disabled = false;

}

function removeTFOOT(form) {
theTable.deleteTFoot();
updateRowCounters(form);
form.addTFOOT.disabled = false;
form.deleteTFOOT.disabled = true;

}

function insertCaption(form) {
var captionData = form.captionText.value;
var newCaption = theTable.createCaption();
newCaption.innerHTML = captionData;
form.addCaption.disabled = true;
form.deleteCaption.disabled = false;

}

function removeCaption(form) {
theTable.deleteCaption();
form.addCaption.disabled = false;
form.deleteCaption.disabled = true;

BC29Chapter 37 ✦ Table and List Objects

}

// housekeeping functions
function updateRowCounters(form) {

var sel1 = form.insertIndex;
var sel2 = form.deleteIndex;
sel1.options.length = 0;
sel2.options.length = 0;
for (var i = 0; i < theTableBody.rows.length; i++) {

sel1.options[i] = new Option(i, i);
sel2.options[i] = new Option(i, i);

}
form.removeRowBtn.disabled = (i==0);

}

function clearBGColors() {
for (var i = 0; i < theTableBody.rows.length; i++) {

for (var j = 0; j < theTableBody.rows[i].cells.length; j++) {
theTableBody.rows[i].cells[j].style.backgroundColor = “”;

}
}

}
</script>

</head>
<body onload=”init()”>

<h1>Modifying Tables</h1>
<hr />
<form name=”controls”>

<fieldset>
<legend>Add/Remove Rows</legend>
<table width=”100%” cellspacing=”20”>

<tr>
<td><input type=”button” value=”Append 1 Row”

onclick=”appendRow(this.form)” /></td>
<td><input type=”button” value=”Insert 1 Row”

onclick=”addRow(this.form)” /> at index: <select
name=”insertIndex”>

<option value=”0”>0</option>
</select></td>

<td><input type=”button” name=”removeRowBtn”
value=”Delete 1 Row” disabled=”disabled”
onclick=”removeRow(this.form)” /> at index: <select
name=”deleteIndex”>

<option value=”0”>0</option>
</select></td>

</tr>
</table>

</fieldset>
<fieldset>

<legend>Add/Remove THEAD and TFOOT</legend>
<table width=”100%” cellspacing=”20”>

<tr>
<td><input type=”button” name=”addTHEAD” value=”Insert THEAD”

onclick=”insertTHEAD(this.form)” />

<input type=”button” name=”deleteTHEAD”
value=”Remove THEAD” disabled=”disabled”
onclick=”removeTHEAD(this.form)” /></td>

Continued

BC30 Part VI ✦ Bonus Chapters

Listing 37-2 (continued)

<td><input type=”button” name=”addTFOOT” value=”Insert TFOOT”
onclick=”insertTFOOT(this.form)” />

<input type=”button” name=”deleteTFOOT”
value=”Remove TFOOT” disabled=”disabled”
onclick=”removeTFOOT(this.form)” /></td>

</tr>
</table>

</fieldset>
<fieldset>

<legend>Add/Remove Caption</legend>
<table width=”100%” cellspacing=”20”>

<tr>
<td><input type=”button” name=”addCaption”

value=”Add Caption”
onclick=”insertCaption(this.form)” /></td>

<td>Text: <input type=”text” name=”captionText” size=”40”
value=”Sample Caption” /></td>

<td><input type=”button” name=”deleteCaption”
value=”Delete Caption” disabled=”disabled”
onclick=”removeCaption(this.form)” /></td>

</tr>
</table>

</fieldset>
</form>
<hr />
<table id=”myTABLE” cellpadding=”10” border=”1”>

<tbody></tbody>
</table>

</body>
</html>

Modifying table columns
Unlike the table row-oriented elements, such as tbody, the col and colgroup elements are
not containers of cells. Instead, these elements serve as directives for the rendering of columns
within a table. But through scripting, you can add or remove one or more columns from a table
on the fly. There is no magic to it; you simply insert or delete the same-indexed cell from every
row of the table.

Listing 37-3 demonstrates adding and removing a left-hand column of a table. The table pre-
sents the four longest rivers in Africa, and the new column provides the numeric ranking.
Thanks to the regularity of this table, the values for the rankings can be calculated dynami-
cally. Note, too, that the className property of each new table cell is set to a class that has
a stylesheet rule defined for it. Instead of inheriting the style of the table, the cells obey the
more specific background color and font weight rules defined for the cells.

BC31Chapter 37 ✦ Table and List Objects

Listing 37-3: Modifying Table Columns

<html>
<head>

<title>Modifying Table Columns</title>
<style type=”text/css”>
thead {background-color:lightyellow; font-weight:bold}
.rankCells {background-color:lightgreen; font-weight:bold}
#myTABLE {background-color:bisque}
</style>
<script type=”text/javascript”>
var theTable, theTableBody;
function init() {

theTable = (document.all) ? document.all.myTABLE :
document.getElementById(“myTABLE”);

theTableBody = theTable.tBodies[0];
}

function insertColumn(form) {
var oneRow, newCell, rank;
if (theTable.tHead) {

oneRow = theTable.tHead.rows[0];
newCell = oneRow.insertCell(0);
newCell.innerHTML = “Ranking”;

}
rank = 1;
for (var i = 0; i < theTableBody.rows.length; i++) {

oneRow = theTableBody.rows[i];
newCell = oneRow.insertCell(0);
newCell.className = “rankCells”;
newCell.innerHTML = rank++;

}
form.addColumn.disabled = true;
form.removeColumn.disabled = false;

}

function deleteColumn(form) {
var oneRow;
if (theTable.tHead) {

oneRow = theTable.tHead.rows[0];
oneRow.deleteCell(0);

}
for (var i = 0; i < theTableBody.rows.length; i++) {

oneRow = theTableBody.rows[i];
oneRow.deleteCell(0);

}
form.addColumn.disabled = false;
form.removeColumn.disabled = true;

}
</script>

</head>
<body onload=”init()”>

<h1>Modifying Table Columns</h1>
<hr />

Continued

BC32 Part VI ✦ Bonus Chapters

Listing 37-3 (continued)

<form name=”controls”>
<fieldset>

<legend>Add/Remove Left Column</legend>
<table width=”100%” cellspacing=”20”>

<tr>
<td><input type=”button” name=”addColumn”

value=”Insert Left Column”
onclick=”insertColumn(this.form)” /></td>

<td><input type=”button” name=”removeColumn”
value=”Remove Left Column” disabled=”disabled”
onclick=”deleteColumn(this.form)” /></td>

</tr>
</table>

</fieldset>
</form>
<hr />
<table id=”myTABLE” cellpadding=”5” border=”1”>

<thead id=”myTHEAD”>
<tr>

<td>River</td>
<td>Outflow</td>
<td>Miles</td>
<td>Kilometers</td>

</tr>
</thead>
<tbody>

<tr>
<td>Nile</td>
<td>Mediterranean</td>
<td>4160</td>
<td>6700</td>

</tr>
<tr>

<td>Congo</td>
<td>Atlantic Ocean</td>
<td>2900</td>
<td>4670</td>

</tr>
<tr>

<td>Niger</td>
<td>Atlantic Ocean</td>
<td>2600</td>
<td>4180</td>

</tr>
<tr>

<td>Zambezi</td>
<td>Indian Ocean</td>
<td>1700</td>
<td>2740</td>

</tr>
</tbody>

</table>
</body>

</html>

BC33Chapter 37 ✦ Table and List Objects

W3C DOM table object classes
If you ever read the W3C DOM Level 2 specification, notice that the objects defined for tables
do not align themselves fully with the actual elements defined in the HTML 4.0 specification.
That’s not to say the DOM scoffs at the HTML spec; rather, the needs of a DOM with respect
to tables differ a bit. For example, as far as the W3C DOM is concerned, the thead, tbody, and
tfoot are all regarded as table sections and are thus known as HTMLTableSectionElement
objects. In other words, in the W3C DOM, there is no particular distinction among the types
of table section elements. They’re all lumped together, and they bear the same properties and
methods. With their strong adherence to the W3C DOM, Mozilla-based browsers and Safari
stick to the W3C DOM object constructions.

When you work in both the IE and W3C DOMs at the same time, it’s helpful to know the relation-
ships between the object naming conventions used in each. Table 37-2 provides a quick cross-
reference between the object types in both DOMs. None of the terminology in Table 37-2 affects
the way scripts construct references to elements or the way elements are nested within one
another. The containment hierarchy is driven by the HTML element containment — and that
remains the same regardless of DOM exposure.

Table 37-2: Table Object Classifications

W3C DOM (NN6+/Mozilla/Safari) IE4+ and HTML

HTMLTableElement table
HTMLTableCaptionElement caption
HTMLTableColElement col, colgroup
HTMLTableSectionElement tbody, tfoot, thead
HTMLTableRowElement tr
HTMLTableCellElement td, th

Although the following object-specific discussions list the objects according to their HTML tag
name, I group these objects according to the W3C DOM classifications because element objects
that share a classification also share the same properties, methods, and event handlers.

table Element Object
For HTML element properties, methods, and event handlers, see Chapter 15.

Properties Methods Event Handlers

align createCaption() onscroll
background createTFoot()
bgColor createTHead()
border deleteCaption()
borderColor deleteRow()
borderColorDark deleteTFoot()

Continued

table

BC34 Part VI ✦ Bonus Chapters

Properties Methods Event Handlers

borderColorLight deleteTHead()
caption firstPage()
cellPadding insertRow()
cells lastPage()
cellSpacing moveRow()
cols nextPage()
datePageSize previousPage()
frame refresh()
height
rows
rules
summary
tbodies
tFoot
tHead
width

Syntax
Accessing table element object properties and methods:

(IE4+) [window.]document.all.elemID.property | method([parameters])
(IE5+/W3C) [window.]document.getElementById(“elemID”).property |
method([parameters])

Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

About this object
The table element object is the outermost container of table-related information. The HTML
element has a large number of attributes, most of which are echoed by their counterpart
properties in the object model. You rarely will modify these properties if the values are set in
the tag’s attributes. However, if you construct a new table element object for insertion into
the page, use these properties to assign values to the equivalents of the element’s attributes.

A number of additional properties return collections of cell, row, and row section objects; still
more properties return references to other, singular objects within the table (such as the
caption element object). For example, if your script needs to iterate through all rows within
just the tbody elements (in other words, without affecting the rows in the thead element),
your script can perform a nested for loop to access each row:

var oneTBody, oneRow;
for (var i = 0; i < tableRef.tBodies.length; i++) {

oneTBody = tableRef.tBodies[i];
for (var j = 0; j < oneTBody.rows.length; j++) {

oneRow = oneTBody.rows[j];
// more stuff working on each row

}
}

table

BC35Chapter 37 ✦ Table and List Objects

For a simple table that does not define table row sections, you can iterate through the rows
collection property of a table element object. You can even access cells directly; but it may
be easier to keep track of cells in a loop by going through them row by row (via the cells
property of each tr element object).

A large number of methods enable you to modify the structure of a table (as described earlier
in this chapter), but they primarily work with rows. Column modifications require a different
approach, as also demonstrated earlier.

Properties

align
Value: String (center, left, right). Read/Write
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

The align property controls the horizontal alignment of the table with respect to the next
outermost container that provides positioning context. Most typically, the next outermost
positioning container is the body element. Modifications to this property on an existing table
cause the surrounding content to reflow on the page. Be sure you test the consequences of
any modification with a variety of browser window sizes.

Example
Use The Evaluator (Chapter 13) to see the align property at work. The default value (left)
is in force when the page loads. But you can shift the table to right-align with the body by
entering the following statement into the top text box for IE5+ and NN6+/Mozilla/Safari:

document.getElementById(“myTable”).align = “right”

Related Item: style.align property.

background
Value: URL string. Read/Write
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-

Only IE4+ makes a provision for assigning a background image to a table, and the background
property controls that value. You can swap out an image by assigning a new URL to the
background property. The image appears in front of any background color assigned to the
table. Thus, you can assign attributes for both characteristics so that there is at least a back-
ground color (and an image for IE users).

Example
Treat the background property of a table like you do the src property of an img element
object. If you precache an image, you can assign the src property of the precached image
object to the background property of the table for quick image changing. Such an assignment
statement looks like the following:

document.all.myTable.background = imgArray[“myTableAlternate”].src;

Related Item: IMG.src property.

table.background

BC36 Part VI ✦ Bonus Chapters

bgColor
Value: Color value string. Read/Write
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

The bgColor attribute controls the background color of a table (the bgcolor attribute). Colors
assigned to the entire table are overridden if colors are assigned to row, row groups, or cells
within the table. If you set the bgColor property, the backgroundColor style property is not
affected. Assign values in any acceptable color string format, such as hexadecimal triplets
(for example, “#FCFC00”) or the generally recognized plain-language names (for example,
“cornflowerblue”).

Example
Use The Evaluator (Chapter 13) to assign a color to the table. After looking at the table to see
its initial state, enter the following IE5+/W3C statement into the top text box:

document.getElementById(“myTable”).bgColor = “lightgreen”

When you look at the table again, you see that only some of the cells turned to green. This is
because colors also are assigned to table elements nested inside the outermost table element,
and the color specification closest to the actual element wins the context.

Related Item: style.backgroundColor property.

border
Value: Integer. Read/Write
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

The border property controls the thickness of the table’s borders. Values indicate the number
of pixels thick the border should be. A value of zero removes all visible borders surrounding
the table. Different browsers render table cell borders differently depending on background
colors and other visual attributes of tables and table elements. Be sure to verify the appear-
ance on as many browsers and operating systems as possible.

Example
To remove all traces of an outside border of a table (and, in some combinations of attributes
of other table elements, borders between cells), use the following statement (in IE5+/W3C
syntax):

document.getElementById(“myTable”).border = 0;

Related Item: borderColor property.

borderColor
borderColorDark
borderColorLight

Value: Color value string. Read/Write
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-

IE4+ provides attributes and corresponding properties to control the border colors of a table.
When table borders have enough thickness to display a three-dimensional raised look, the
appearance is created by generating two dark and two light edges (simulating a light source
coming from the upper-left or lower-right corner). If you want to do a better job of specifying
the color combinations for the light and dark edges, you can control them individually via the
borderColorLight and borderColorDark properties, respectively. You can assign colors in

table.bgColor

BC37Chapter 37 ✦ Table and List Objects

any valid color value (hexadecimal triplet or plain-language name); but when you read the
property, the value is returned as a hexadecimal triplet (for example, “#008000”).

Example
Assuming that you have set the initial light and dark color attributes of a table, the following
function swaps the light and dark colors to shift the light source to the opposite corner:

function swapColors(tableRef) {
var oldLight = tableRef.borderColorLight;
tableRef.borderColorLight = tableRef.borderColorDark;
tableRef.borderColorDark = oldLight;

}

Although you can easily invoke this function over and over by ending it with a setTimeout()
method that calls this function after a fraction of a second, the results are very distracting to
the person trying to read your page. Please don’t do it.

Related Item: td.borderColor property.

caption
Value: caption element object reference. Read/Write (see text)
Compatibility: WinIE4+, MacIE5+, NN6+, Moz1+, Safari1+

The caption property returns a reference to the caption element object that is nested inside
the current table. If there is no caption element, the value is null. You can use this property
as a shortcut reference to the caption element if you need to read or modify that element’s
properties. The property is read/write in NN6+/Moz, provided you create a valid caption ele-
ment object and assign that new object to the caption property.

Example
The following example, for use with The Evaluator (Chapter 13) in NN6+/Moz, demonstrates
the sequence of assigning a new caption element object to a table. Although the table in The
Evaluator already has a caption element, the following statements replace it with an entirely
new one. Enter each of the following statements into the top text box, starting with the one
that saves a long reference into a variable for multiple use at the end:

t = document.getElementById(“myTable”)
a = document.createElement(“caption”)
b = document.createTextNode(“A Brand New Caption”)
a.appendChild(b)
t.replaceChild(a, t.caption)

A view of the table shows that the new caption has replaced the old one because a table can
have only one caption element.

Related Item: caption element object.

cellPadding
cellSpacing

Value: Integer. Read/Write
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

The cellPadding property is a table-wide specification for the blank space inserted between
the edge of a table cell and the content of the cell. One value affects the padding on all four
sides. The effect of cell padding is especially apparent when there are borders between cells;
in this case, the padding provides welcome breathing space between the border and content.

table.cellPadding

BC38 Part VI ✦ Bonus Chapters

The cellSpacing property influences the thickness of borders between cells. If no visible
borders are present between cells in a table, you can usually set either cellpadding or
cellspacing to provide the desired blank space between cells.

Example
Use The Evaluator (Chapter 13) to adjust the cellPadding and cellSpacing properties of
the demonstrator table. First, adjust the padding (IE5+/W3C syntax):

document.getElementById(“myTable”).cellPadding = 50

Now, adjust the cell spacing:

document.getElementById(“myTable”).cellSpacing = 15

Notice how cellSpacing affected the thickness of inter-cell borders.

Related Item: border property.

cells
Value: Array. Read-Only
Compatibility: WinIE5+, MacIE-, NN-, Moz-, Safari-

The cells property returns an array (collection) of all td and th element objects within the
entire table. From the perspective of the table element object, this “view” encompasses all
cells — whether they are inside a table row segment (for example, a thead) or in a freestand-
ing row. In the W3C DOM, the cells collection is accessible only as a property of a tr object.
However, a rows collection is available from all table container elements, thus enabling you to
iterate through all cells of all rows.

Example
Use The Evaluator (Chapter 13) with WinIE5+ to have JavaScript calculate the number of
columns in the demonstrator table with the help of the cells and rows properties. Enter
the following statement into the top text box:

document.all.myTable.cells.length/document.all.myTable.rows.length

The result is the number of columns in the table.

Related Items: rows, tr.cells properties.

cols
Value: Integer. Read/Write
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-

The cols property represents the IE-specific cols attribute for table elements. Specifying
this attribute should speed table rendering. If you don’t specify the attribute explicitly in your
HTML, the property has a value of zero — the property does not tell you dynamically the size
of your table. Although this property is read/write, you cannot use this property to add or
remove columns from a table. Instead, use the table modification methods discussed later in
this section.

Related Item: rows property.

table.cellPadding

BC39Chapter 37 ✦ Table and List Objects

dataPageSize
Value: Integer. Read/Write
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-

When using IE4+ data binding to obtain table data from a data source, there may be more rows
or data (records) than you wish to display in one table. If so, you can define the number of
rows (records) that constitutes a “page” of data within the table. With this limit installed for
the table, you can then use the firstPage(), previousPage(), nextPage(), and lastPage()
methods to access another page relative to the currently viewed page. While you usually
establish this value via the datapagesize attribute of the table element, you can adjust it
later via the dataPageSize property to show more or fewer records per “page” in the table.

Example
If you want to change the number of visible rows of linked data in the table to 15, use the
following statement:

document.all.myTable.dataPageSize = 15;

Related Items: dataSrc, dataFld properties; firstPage(), lastPage(), nextPage(),
previousPage() methods.

frame
Value: String constant. Read/Write
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

The frame property enables you to control which side or sides of the table’s border should
be displayed. Values for this property can be any of a fixed set of string constants. Table 37-3
lists the acceptable values. Hiding or showing table border edges under script control can
have an effect on the layout and placement of both the table and surrounding elements. Note
that Safari 1.0 does not change the border rendering when you change this property value.

Table 37-3: Table frame Property Values

Value Description

above Top edge only

below Bottom edge only

border All four sides (same as box)

box All four sides (same as border)

hsides Horizontal (top and bottom) edges only

lhs Left-hand side edge only

rhs Right-hand side edge only

void No borders

vsides Vertical (left and right) edges only

Example
Listing 37-4 presents a page that cycles through all possible settings for the frame property.
The frame property value is displayed in the table’s caption.

table.frame

BC40 Part VI ✦ Bonus Chapters

Listing 37-4: Cycling Through Table frame Property Values

<html>
<head>

<title>table.frame Property</title>

<script type=”text/javascript”>
var timeoutID;
var frameValues = [“box”, “above”, “rhs”, “below”, “lhs”, “hsides”,

“vsides”, “border”, “void”];
function rotateBorder(i) {

document.getElementById(“myTABLE”).frame = frameValues[i];
document.getElementById(“myCAPTION”).innerHTML = frameValues[i];
i = (++i == frameValues.length) ? 0 : i;
timeoutID = setTimeout(“rotateBorder(“ + i + “)”, 2000);

}
function stopRotate() {

clearTimeout(timeoutID);
document.getElementById(“myTABLE”).frame = “box”;
document.getElementById(“myCAPTION”).innerHTML = “box”;

}
</script>

</head>
<body>

<h1>table.frame Property</h1>
<hr />
<form name=”controls”>

<fieldset>
<legend>Cycle Table Edge Visibility</legend>
<table width=”100%” cellspacing=”20”>

<tr>
<td><input type=”button” value=”Cycle”

onclick=”rotateBorder(0)” /></td>
<td><input type=”button” value=”Stop”

onclick=”stopRotate()” /></td>
</tr>

</table>
</fieldset>

</form>
<hr />
<table id=”myTABLE” cellpadding=”5” border=”3” align=”center”>

<caption id=”myCAPTION”>
Default

</caption>
<thead id=”myTHEAD”>

<tr>
<th>River</th>
<th>Outflow</th>
<th>Miles</th>
<th>Kilometers</th>

</tr>
</thead>
<tbody>

<tr>
<td>Nile</td>
<td>Mediterranean</td>
<td>4160</td>
<td>6700</td>

table.frame

BC41Chapter 37 ✦ Table and List Objects

</tr>
<tr>

<td>Congo</td>
<td>Atlantic Ocean</td>
<td>2900</td>
<td>4670</td>

</tr>
<tr>

<td>Niger</td>
<td>Atlantic Ocean</td>
<td>2600</td>
<td>4180</td>

</tr>
<tr>

<td>Zambezi</td>
<td>Indian Ocean</td>
<td>1700</td>
<td>2740</td>

</tr>
</tbody>

</table>
</body>

</html>

Related Items: border, borderColor, rules properties.

height
width

Value: Integer or length string. Read/Write
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

The height (IE4+) and width (IE4+/W3C) properties represent the height and width attributes
assigned to the table element. If no values are assigned to the element in the tag, the proper-
ties do not reveal the rendered size of the table (use the offsetHeight and offsetWidth
properties for that information). Values for these properties can be integers representing pixel
dimensions or strings containing percentage values, just like the attribute values. Scripts can
shrink the dimensions of a table no smaller than the minimum space required to render the
cell content. Notice that only the width property is W3C DOM-sanctioned (as well as the cor-
responding property in the HTML 4.0 specification).

Example
Use The Evaluator (Chapter 13) to adjust the width of the demonstrator table. Begin by
increasing the width to the full width of the page:

document.getElementById(“myTable”).width = “100%”

To restore the table to its minimum width, assign a very small value to the property:

document.getElementById(“myTable”).width = 50

If you have IE4+, you can perform similar experiments with the height property of the table.

Related Items: offsetHeight, offsetWidth properties.

table.height

BC42 Part VI ✦ Bonus Chapters

rows
Value: Array of row objects. Read-Only
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

The rows property returns an array (collection) of tr element objects in the current table. This
array includes rows in the thead, tbody, and tfoot row sections if the table is segmented.
You can use the rows property to create a cross-browser script that accesses each cell of a
table. Such a nested for loop looks like the following:

var oneCell;
for (var i = 0; i < tableRef.rows.length; i++) {

for (var j = 0; j < tableRef.rows[i].cells.length; j++) {
oneCell = tableRef.rows[i].cells[j];
// more statements working with the cell

}
}

If you want to limit the scope of the rows property to rows within a row segment (for example,
just in the tbody), you can access this property for any of the three types of row segment
objects.

Example
Use The Evaluator (Chapter 13) to examine the number of rows in the demonstrator table.
Enter the following statement into the top text box:

document.getElementById(“myTable”).rows.length

In contrast, notice how the rows property sees only the rows within the demonstrator table’s
tbody element:

document.getElementById(“myTbody”).rows.length

Related Items: tbody.rows, tfoot.rows, thead.rows properties.

rules
Value: String constant. Read/Write
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

In contrast to the frame property, the rules property governs the display of borders between
cells. Values for this property can be any of a fixed set of string constants. Table 37-4 lists the
acceptable values. Hiding or showing table cell border edges under script control can have
an effect on the layout and placement of both the table and surrounding elements. Note that
Safari 1.0 does not change the rules rendering when you change this property value.

Table 37-4: Table rules Property Values

Value Description

all Borders around every cell

cols Vertical borders between columns

groups Vertical borders between column groups; horizontal borders between row groups

none No borders between cells

rows Horizontal borders between row groups

table.rows

BC43Chapter 37 ✦ Table and List Objects

Example
Listing 37-5 presents a page that cycles through all possible settings for the rules property.
The rules property value is displayed in the table’s caption. When you run this script, notice
the nice border display for this table’s combination of colgroup and table row segment
elements.

Listing 37-5: Cycling Through Table rules Property Values

<html>
<head>

<title>table.rules Property</title>
<script type=”text/javascript”>
var timeoutID;
var rulesValues = [“all”, “cols”, “groups”, “none”, “rows”];
function rotateBorder(i) {

document.getElementById(“myTABLE”).rules = rulesValues[i];
document.getElementById(“myCAPTION”).innerHTML = rulesValues[i];
i = (++i == rulesValues.length) ? 0 : i;
timeoutID = setTimeout(“rotateBorder(“ + i + “)”, 2000);

}
function stopRotate() {

clearTimeout(timeoutID);
document.getElementById(“myTABLE”).rules = “all”;
document.getElementById(“myCAPTION”).innerHTML = “all”;

}
</script>

</head>
<body>

<h1>table.rules Property</h1>
<hr />
<form name=”controls”>

<fieldset>
<legend>Cycle Table Rule Visibility</legend>
<table width=”100%” cellspacing=”20”>

<tr>
<td><input type=”button” value=”Cycle”

onclick=”rotateBorder(0)” /></td>
<td><input type=”button” value=”Stop”

onclick=”stopRotate()” /></td>
</tr>

</table>
</fieldset>

</form>
<hr />
<table id=”myTABLE” cellpadding=”5” border=”3” align=”center”>

<caption id=”myCAPTION”>
Default

</caption>
<colgroup span=”1”>
</colgroup>
<colgroup span=”3”>
</colgroup>
<thead id=”myTHEAD”>

Continued

table.rules

BC44 Part VI ✦ Bonus Chapters

Listing 37-5 (continued)

<tr>
<th>River</th>
<th>Outflow</th>
<th>Miles</th>
<th>Kilometers</th>

</tr>
</thead>
<tbody>

<tr>
<td>Nile</td>
<td>Mediterranean</td>
<td>4160</td>
<td>6700</td>

</tr>
<tr>

<td>Congo</td>
<td>Atlantic Ocean</td>
<td>2900</td>
<td>4670</td>

</tr>
<tr>

<td>Niger</td>
<td>Atlantic Ocean</td>
<td>2600</td>
<td>4180</td>

</tr>
<tr>

<td>Zambezi</td>
<td>Indian Ocean</td>
<td>1700</td>
<td>2740</td>

</tr>
</tbody>

</table>
</body>

</html>

Related Items: border, borderColor, frame properties.

summary
Value: String. Read/Write
Compatibility: WinIE6+, MacIE-, NN6+, Moz1+, Safari1+

The summary property represents the HTML 4.0 summary attribute. The text assigned to this
attribute is intended for use by browsers that present a page’s content through nonvisual
means. For example, a browser equipped to use speech synthesis to read the page aloud can
use the text of the summary to describe the table for the user.

Related Item: caption property.

tBodies
Value: Array of tbody element objects. Read-Only
Compatibility: WinIE4+, MacIE5+, NN6+, Moz1+, Safari1+

table.rules

BC45Chapter 37 ✦ Table and List Objects

The tBodies property returns an array of all tbody elements in the table. Even if you don’t
specify a tbody element, every table contains an implied tbody element. Thus, to access a
batch of rows of a simple table other than the thead and tfoot sections, you can use the
tBodies[0] array notation. From there, you can get the rows of the table body section via
the rows property.

Example
Use The Evaluator (Chapter 13) to access the tBodies array and reveal the number of rows
in the one tbody segment of the demonstrator table. Enter the following statement into the
top text box:

document.getElementById(“myTable”).tBodies[0].rows.length

Related Items: tFoot, tHead properties.

tFoot
tHead

Value: Row segment element object. Read/Write (see text)
Compatibility: WinIE4+, MacIE5+, NN6+, Moz1+, Safari1+

Each table can have (at most) one tfoot and one thead element. If you specify one of these
for the table, the tFoot and tHead properties, respectively, return references to those element
objects. These properties are read-only in IE, but NN6+/Moz enables you to assign valid tfoot
and thead element objects to these properties in order to insert or replace the elements
in the current table. The process for doing this is similar to the sequence described in the
caption property. For either of these two elements, however, you have to construct the
desired number of table cell objects (and row objects if you want multiple rows) for the newly
created row segment object. See the discussions of these two objects for details on accessing
rows and cells of the segments.

Related Items: tbody, tfoot, thead objects.

width
(See height)

Methods

createCaption()
deleteCaption()

Returns: Reference to new caption element object; Nothing.
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

The createCaption() and deleteCaption() convenience methods enable you to add or
remove a caption element object from the current table. When you create a new caption, the
action simply inserts the equivalent of a blank caption element tag into the table element
(this may not, however, be reflected in the source view of the page). You must populate the
caption element with text or HTML before it appears on the page. Because the method returns
a reference to the newly created object, you can use that reference to assign content to its
innerHTML property or you can append a child text node.

Because a table can have only one caption element nested within, the deleteCaption()
method belongs to the table element object. The method returns no value.

table.createCaption()

BC46 Part VI ✦ Bonus Chapters

Example
See Listing 37-2 for an example of creating, inserting, and removing a caption element object
from a table.

Related Item: caption element object.

createTFoot()
createTHead()
deleteTFoot()
deleteTHead()

Returns: Element references (create methods); Nothing.
Compatibility: WinIE4+, MacIE5+, NN6+, Moz1+, Safari1+

These four methods enable you to add or remove tfoot and thead table row section objects.
When you create a thead or tfoot element, the methods return references to the newly
inserted elements. But, as with createCaption(), these methods do nothing to display con-
tent. Instead, use the returned references to populate the row(s) of the header and footer with
cells. Regardless of the number of rows associated with a thead or tfoot element, the delete
TFoot() and deleteTHead() methods remove all associated rows and return no values.

Although these methods are available in IE4, you may not have complete write access to the
properties of the objects returned by the creation methods. For example, you may not be able
to assign a value to the id property of the tfoot or thead element returned by their respective
creation methods.

Example
See Listing 37-2 for an example of creating, inserting, and removing tfoot and thead elements
object from a table.

Related Items: tfoot, thead element objects.

deleteRow(rowIndex)
insertRow(rowIndex)

Returns: Nothing; Reference to newly created row.
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

The insertRow() and deleteRow() convenience methods assist in adding tr elements to,
and removing them from, a table element. Inserting a row does little more than the equivalent
of inserting a pair of empty tr element tags into the HTML (although you may not see them in
the source view of the page). It is up to the rest of your scripts to assign properties to the row
and populate it with new cells (see the insertCell() method of the tr element object).

Attributes for both methods are zero-based index numbers. In the case of insertRow(), the
number indicates the row before which the new row is to be inserted. To append the row to
the end of the table, use -1 as a shortcut parameter. To delete a row, use the index value for
that row. Be aware that if you intend to employ deleteRow() to remove all rows from a table
(presumably to repopulate the table with a new set), the most efficient way is to use a while
loop that continues to remove the first row until there are no more:

while (tableRef.rows.length > 0) {
tableRef.deleteRow(0);

}

table.createCaption

BC47Chapter 37 ✦ Table and List Objects

Example
See Listing 37-2 for examples of inserting and deleting table rows.

Related Item: td.insertCell() method.

firstPage()
lastPage()

Returns: Nothing.
Compatibility: WinIE5+, MacIE5+, NN-, Moz-, Safari-

For tables that are bound to external data sources via IE4+ data binding, the firstPage() and
lastPage() methods zoom to the first and last pages of the data, respectively. You must spec-
ify the table’s data page size for the Data Source Object to know how many records to assign
to a “page” of data. Note that while related methods —nextPage() and previousPage()—
are available in IE4, firstPage() and lastPage() entered the picture in IE5.

Related Items: dataPageSize, dataSrc, dataFld properties; nextPage(),
previousPage() methods.

moveRow(sourceRowIndex, destinationRowIndex)
Returns: Row element object.
Compatibility: WinIE5+, MacIE-, NN-, Moz-, Safari-

The IE5+ moveRow() convenience method enables you to move a row from one position to
another within the same table. Both parameters are integer index values. The first parameter
is the index of the row you want to move; the second is the index of the row to where you want
to move the row. Because no movement takes place when the method is invoked, the removal
of the source row does not impact the index count of the destination row. But after the method
executes, the row that was in the destination row is now pushed down one row. This method
returns a reference to the moved row.

You can accomplish this same functionality in W3C DOM-compatible syntax (for IE5+, NN6+,
Mozilla, and Safari) via the replaceChild() method of the table element.

Example
If you want to shift the bottom row of a table to the top, you can use the shortcut reference
to the last item’s index value (-1) for the first parameter:

var movedRow = document.all.someTable.moveRow(-1, 0);

Related Item: replaceChild() method.

nextPage()
previousPage()

Returns: Nothing.

Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-

For tables that are bound to external data sources via IE4+ data binding, the nextPage() and
previousPage() methods jump ahead and back one page of the data, respectively. You must
specify the table’s data page size for the Data Source Object to know how many records to
assign to a “page” of data. Typically, navigational buttons associated with the table invoke
these methods.

table.nextPage()

BC48 Part VI ✦ Bonus Chapters

Related Items: dataPageSize, dataSrc, dataFld properties; firstPage(), lastPage()
methods.

refresh()
Returns: Nothing.
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-

For tables that are bound to external data sources via IE4+ data binding, the refresh() method
retrieves the current data source data for display in the table. A script can use setTimeout()
to invoke a function that calls this method at an interval of your choice. If you frequently
update the database associated with the table, this method can help keep the table up to date
without requiring the client to download the entire page (and perhaps run into cache conflicts).

Related Items: dataPageSize, dataSrc, dataFld properties.

tbody, tfoot, and thead Element Objects
For HTML element properties, methods, and event handlers, see Chapter 15.

Properties Methods Event Handlers

align† deleteRow()†
bgColor† insertRow()†
ch moveRow()†
chOff
rows†
vAlign

†See table element object.

Syntax
Accessing tbody, tfoot, and thead element object properties and methods:

(IE4+) [window.]document.all.elemID.property | method([parameters])
(IE5+/W3C) [window.]document.getElementById(“elemID”).property |
method([parameters])

Accessing tbody element object properties and methods:

(IE4+) [window.]document.all.tableID.tBodies[i].property |
method([parameters])
(IE5+/W3C) [window.]document.getElementById(“tableID”).tBodies[i].property |
method([parameters])

Accessing tfoot element object properties and methods:

(IE4+) [window.]document.all.tableID.tFoot.property | method([parameters])
(IE5+/W3C) [window.]document.getElementById(“tableID”).tFoot.property |
method([parameters])

Accessing thead element object properties and methods:

table.nextPage()

BC49Chapter 37 ✦ Table and List Objects

(IE4+) [window.]document.all.tableID.tHead.property | method([parameters])
(IE5+/W3C) [window.]document.getElementById(“tableID”).tHead.property |
method([parameters])

Compatibility: WinIE4+, MacIE5, NN6+, Moz1+, Safari1+

About these objects
Each of these element objects represents a row grouping within a table element (an HTML
TableSectionElement in the syntax of the W3C DOM specification). A table can have only
one thead and one tfoot, but it can have as many tbody elements as your table organization
requires.

These elements share many properties and methods with the table element in that they all
contain rows. The benefit of defining table segments is apparent if you use table rules (see
the table.rules property earlier in this chapter) and if you wish to limit the scope of row
activities only to rows within one segment. For instance, if your table has a thead that is to
remain static, your scripts can merrily loop through the rows of only the tbody section with-
out coming anywhere near the row(s) in the thead.

Properties

ch
chOff

Value: One-character string. Read/Write
Compatibility: WinIE6+, MacIE5+, NN6+, Moz1+, Safari1+

The ch and chOff properties represent the optional char and charoff attributes of table
row section elements in the HTML 4.0 specification. As of IE6 and NN7.1, these properties are
yet to be implemented in a browser; eventually they will help align cell content within a col-
umn or column group similar to the way word processors allow for formatting features such
as decimal tabs. For details on these attributes, see http://www.w3.org/tr/REC-
html40/struct/tables.html#adef-char.

Related Items: col, colgroup objects.

vAlign
Value: String constant. Read/Write
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

Providing the cell-oriented vAlign property for a table row section enables you to specify a
vertical alignment to apply to all cells within that section rather than specify the valign
attribute for each td element. By default, browsers render cell content with a middle vertical
alignment within the cell. If you want to modify the setting for an existing table section (or
assign it to a new one you create), the values must be one of the following string constants:
baseline, bottom, middle, or top.

Example
Use The Evaluator (Chapter 13) to modify the vertical alignment of the content of the tbody
element in the demonstrator table. Enter the following statement in the top text box to shift
the content to the bottom of the cells:

document.getElementById(“myTBody”).vAlign = “bottom”

tbody.vAlign

BC50 Part VI ✦ Bonus Chapters

Notice that the cells of the thead element are untouched by the action imposed on the tbody
element.

Related Item: td.vAlign property.

caption Element Object
For HTML element properties, methods, and event handlers, see Chapter 15.

Properties Methods Event Handlers

align†
vAlign††

†See table element object.

††See tbody element object.

Syntax
Accessing caption element object properties and methods:

(IE4+) [window.]document.all.elemID.property | method([parameters])
(IE5+/W3C) [window.]document.getElementById(“elemID”).property |
method([parameters])

Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

About this object
A caption element is a simple HTML container whose only prerequisite is that it must be
nested inside a table element. That nesting allows the table element object to control inser-
tion and removal of a caption element at will. You can modify the content of a caption ele-
ment just like you do any HTML element (in DOMs that allow such modification). You can see
an example of how the table element object uses some of its methods to create and remove
a caption element in Listing 37-2.

The only properties that lift the caption element object above a mere contextual element
(described in Chapter 15) are vAlign (IE4+) and the W3C DOM-sanctioned align (IE4+/NN6+/
Mozilla/Safari). I describe these properties and their values for other objects in this chapter.

col and colgroup Element Objects
For HTML element properties, methods, and event handlers, see Chapter 15.

Properties Methods Event Handlers

align†
ch††
chOff††

tbody.vAlign

BC51Chapter 37 ✦ Table and List Objects

Properties Methods Event Handlers

Span
vAlign††
width

†See table element object.

††See tbody element object.

Syntax
Accessing col and colgroup element object properties and methods:

(IE4+) [window.]document.all.elemID.property | method([parameters])
(IE5+/W3C) [window.]document.getElementById(“elemID”).property |
method([parameters])

Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

About these objects
The purpose of the col and colgroup elements is to allow cells within one or more columns
to be treated as a single entity for purposes of stylesheet and other style-related control.
In other words, if you want one column of a table to be all boldface, you can assign that
stylesheet rule to the col element that encompasses that column. All cells within that col-
umn inherit the stylesheet rule definition. Having two different element names allows for the
nesting of column groups, which can come in handy for complex tables. For instance, con-
sider a table that reports the forecasted and actual sales for a list of products across four
quarters of a year. The left column of the table stands alone with the product item numbers.
To the right is one large grouping of eight columns that encompasses the four pairs of fore-
casted/actual sales pairs. All eight columns of cells are to be formatted with a particular font
style to help differentiate the pairs of columns for each quarter. You also want to assign a dif-
ferent background color. Therefore, you designate each pair of columns as its own subgroup
within the eight-column master grouping. The colgroup and col tags for this nine-column
table are as follows:

<col id=”productIDs”>
<colgroup id=”fiscalYear” span=”8” width=”40”>

<col id=”Q1” span=”2”>
<col id=”Q2” span=”2”>
<col id=”Q3” span=”2”>
<col id=”Q4” span=”2”>

</colgroup>

Up in the head section of this document are stylesheet rules similar to the following:

<style type=”text/css”>
#productIDs {font-weight:bold}
#fiscalYear {font-family: Courier, “Courier New”, monospace}
#Q1 {background-color: lightyellow}
#Q2 {background-color: pink}
#Q3 {background-color: lightblue}
#Q4 {background-color: lightgreen}
</style>

col

BC52 Part VI ✦ Bonus Chapters

The HTML code for the column groups demonstrates the two key attributes: span and width.
Both of these attributes are reflected as properties of the objects, and I describe them in the
following section. Notice, however, that col and colgroup elements act cumulatively and in
source code order to define the column groups for the table. In other words, if the style of the
left-hand column is not important, the table still requires the initial one-column col element
before the eight-column colgroup element. Otherwise, the browser makes the first eight
columns the column group. Therefore, it is a good idea to account for every column with col
and/or colgroup elements if you intend to use any column grouping in your table.

From a scripter’s point of view, you are more likely to modify styles for a column or column
group than you are to alter properties such as span or width. But, if your scripts generate
new tables, you may create new col or colgroup elements whose properties you definitely
should initialize with values.

Properties

span
Value: Integer. Read/Write
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

The span property represents the number of columns that the column group should encom-
pass. Don’t confuse this property with the colSpan property of td and th elements. A col or
colgroup span does not have any impact on the rendering or combination of multiple cells
into one. It simply draws an imaginary lasso around as many columns as are specified, signi-
fying that these columns can be treated as a group for style purposes (and also for drawing of
divider rules, if you set the table’s rules property to groups).

Example
The following statement assigns a span of 3 to a newly created colgroup element stored in
the variable colGroupA:

colGroupA.span = 3;

Related Item: width property.

width
Value: Length string. Read/Write
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

The only reason the width property is highlighted for these objects is that the property (and
corresponding attribute) impacts the width of table cells inside the scope of the column group-
ing. For example, if you assign a width of 50 pixels to a colgroup whose span attribute is set
to 3, all cells in all three columns inherit the 50-pixel width specification. For more details on
the values acceptable to this property, see the table.width property description earlier in
this chapter.

Related Item: table.width property.

tr Element Object
For HTML element properties, methods, and event handlers, see Chapter 15.

col

BC53Chapter 37 ✦ Table and List Objects

Properties Methods Event Handlers

Align† deleteCell()
bgColor† insertCell()
borderColor†
borderColorDark†
borderColorLight†
Cells
ch††
chOff††
height
rowIndex
sectionRowIndex
vAlign††

†See table element object.

††See tbody element object.

Syntax
Accessing tr element object properties and methods:

(IE4+) [window.]document.all.elemID.property | method([parameters])
(IE4+) [window.]document.all.tableID.rows[i].property | method([parameters])
(IE4+) [window.]document.all.tableRowSectionID.rows[i].property |
method([parameters])
(IE5+/W3C) [window.]document.getElementById(“elemID”). property |
method([parameters])
(IE5+/W3C) [window.]document.getElementById(“tableID”).rows[i].property |
method([parameters])
(IE5+/W3C)
[window.]document.getElementById(“tableRowSectionID”).rows[i].property |
method([parameters])

Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

About this object
Table rows are important objects within the complex nesting of table-related elements and
objects. When a table represents server database data, one row usually equals one record.
And, although you can employ scripting to add columns to a table, the more common table
modifications are to add or delete rows — hence the presence of the table element object’s
insertRow() and deleteRow() methods.

The primary job of the tr element is to act as a container for td elements. All the cells in a
row inherit some attributes and properties that you apply to that row. An array of cell objects
is available for iteration via for loops. A tr element object, therefore, also has methods that
insert and remove individual cells in that row.

The number of columns in a row is determined by the number of td elements or, more specifi-
cally, by the number of columns that the cells intend to span. One row can have four td
elements, while the next row can have only two td elements — each of which is defined to

tr

BC54 Part VI ✦ Bonus Chapters

occupy two columns. The row of the table with the most td elements and column reserva-
tions determines the column width for the entire table.

Of the properties just listed, the ones related to border color are available in IE4+ only. In IE4+,
the border is drawn around each cell of the row rather than the entire row. The HTML 4.0
specification (and the W3C DOM Level 2 specification by extension) does not recognize bor-
der colors for rows alone, nor are stylesheet border rules inherited by the cell children of a
row. However, you can define borders for individual cells or classes of cells.

Properties

cells
Value: Array of td element objects. Read-Only
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

The cells property returns an array (collection) of td element objects nested inside the cur-
rent tr object. The length property of this array indicates the number of actual td elements
in the row, which may not be the number of columns if one or more cells occupy multiple
columns.

Use the cells property in for loops to iterate through all cells within a row. Assuming your
script has a reference to a single row, the loop should look like the following:

for (var i = 0; i < rowRef.cells.length; i++) {
oneCell = rowRef.cells[i];
// more statements working with the cell

}

Example
Use The Evaluator (Chapter 13) to retrieve the number of td elements in the second row of
the demonstrator table. Enter the following statement into the top text box (W3C DOM syntax
shown here):

document.getElementById(“myTable”).rows[1].cells.length

Related Items: table.rows, td.cellIndex properties.

height
Value: Integer or length string. Read/Write
Compatibility: WinIE5+, MacIE5+, NN-, Moz-, Safari-

IE5+ enables page authors to predefine a height for a table row; this attribute is echoed by the
height property. The value can be a number of pixels or a percentage length value. Note that
this property does not reveal the rendered height of the row unless you explicitly set the
attribute in the HTML. To get the actual height (in IE5+ and NN6+), use the offsetHeight prop-
erty. You cannot adjust the height property to be smaller than the table normally renders
the row.

Example
Use The Evaluator (Chapter 13) in IE5+ to expand the height of the second row of the demon-
strator table. Enter the following statement into the top text box:

document.all.myTable.rows[1].height = 300

tr

BC55Chapter 37 ✦ Table and List Objects

If you attempt to set the value very low, the rendered height goes no smaller than the default
height.

Related Item: offsetHeight property (Chapter 15).

rowIndex
sectionRowIndex

Value: Integer. Read-Only
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

Each row occupies a position within the collection of rows in the table as well as within the
collection of rows for a table section (thead, tbody, or tfoot). The rowIndex property
returns the zero-based index value of the row inside the rows collection for the entire table,
regardless of table section composition. In contrast, the sectionRowIndex property returns
the zero-based index value of the row inside its row section container. If the table has no row
sections defined for it, a single, all-encompassing tbody element is assumed; in this case, the
sectionRowIndex and rowIndex values are equal.

These properties serve in functions that are passed a reference to a row. However, the functions
might also need to know the position of the row within the table or section. Although there is
no tr object property that returns a reference to the next outermost table row section or the
table itself, the parent and parent’s parent elements, respectively, can reference these objects.

Example
Use The Evaluator (Chapter 13) to explore the rowIndex and sectionRowIndex property
values for the second physical row in the demonstrator table. Enter each of the following
statements into the top text box (W3C DOM syntax shown here):

document.getElementById(“myTable”).rows[1].rowIndex
document.getElementById(“myTable”).rows[1].sectionRowIndex

The result of the first statement is 1 because the second row is the second row of the entire
table. But the sectionRowIndex property returns 0 because this row is the first row of the
tbody element in this particular table.

Related Items: table.rows, tbody.rows, tfoot.rows, thead.rows properties.

Methods

deleteCell(cellIndex)
insertCell(cellIndex)

Returns: Nothing; Reference to new cell.
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

The act of inserting a row into a table is not complete until you also insert cells into the row.
The insertCell() method does just that, with a parameter indicating the zero-based index
of the cell’s position among other cells in the row. A value of -1 appends the cell to the end of
existing cells in the row.

When you invoke the insertCell() method, it returns a reference to the new cell. This gives
you the opportunity to adjust other properties of that cell before moving onto the next cell.
For example, if you want to insert a cell that has a column span of 2, you adjust the colSpan
property of the cell whose reference just returned, as in the following:

tr.deleteCell()

BC56 Part VI ✦ Bonus Chapters

var oneCell = tableRowRef.insertCell(-1);
oneCell.colSpan = 2;

Scripts that add rows and cells must make sure that they add the identical number of cells
(or cell column spaces) from one row to the next. Otherwise, you have an unbalanced table
with ugly blank spaces where you probably don’t want them.

To remove a cell from a row, use the deleteCell() method. The parameter is a zero-based
index value of the cell you want to remove. If all you want to do is replace the content of a
cell, apply the new content to the innerHTML property of the td element. This is smoother
and safer than deleting and reinserting a cell because any execution error that occurs in the
process results in an unbalanced table. Finally, to rid yourself of all cells in a row, use the
deleteRow() method of the table and table row section element objects.

Example
See Listing 37-2 for an example of inserting cells during the row insertion process.

Related Item: table.insertRow() method.

td and th Element Objects
For HTML element properties, methods, and event handlers, see Chapter 15.

Properties Methods Event Handlers

abbr
align†
axis
background†
bgColor†
borderColor†
borderColorDark†
borderColorLight†
cellIndex
ch††
chOff††
colSpan
headers
height
noWrap
rowSpan
vAlign††
width

†See table element object.

††See tbody element object.

tr.deleteCell()

BC57Chapter 37 ✦ Table and List Objects

Syntax
Accessing td and th element object properties and methods:

(IE4+) [window.]document.all.elemID.property | method([parameters])
(IE4+) [window.]document.all.tableID.cells[i].property |
method([parameters])
(IE4+) [window.]document.all.tableRowSectionID.cells[i].property |
method([parameters])
(IE4+) [window.]document.all.tableRowID.cells[i].property |
method([parameters])
(IE5+/W3C) [window.]document.getElementById(“elemID”). property |
method([parameters])
(IE5+/W3C) [window.]document.getElementById(“tableID”).cells[i].property |
method([parameters])
(IE5+/W3C)
[window.]document.getElementById(“tableRowSectionID”).cells[i].property |
method([parameters])
(IE5+/W3C) [window.]document.getElementById(“tableRowID”).rows[i].property |
method([parameters])

Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

About these objects
td (table data) and th (table header) elements create cells within a table. By common con-
vention, a th element is rendered in today’s browsers with a distinctive style — usually with a
bold font and center alignment — but the context as a table header is a key ingredient of the
table. A table cell is as deeply nested as you can get with table-related elements.

Properties of cells that are delivered in the HTML of the page are rarely modified (with the
exception of the innerHTML property). But you still need full access to properties of cells if
your scripts add rows to a table dynamically. After creating each blank table cell object, your
scripts can adjust colSpan, rowSpan, noWrap, and other properties that influence the charac-
teristics of that cell within the table.

See the beginning of this chapter for discussions and examples of how to add rows of cells
and modify cell content under script control.

Properties

abbr
axis
headers

Value: See text. Read/Write
Compatibility: WinIE6+, MacIE5+, NN6+, Moz1+, Safari1+

These three properties are defined for table cell element objects in the W3C DOM. They all
represent attributes for these elements in the HTML 4.0 specification. The purposes of these
attributes and properties are geared toward browsers that provide alternate means of render-
ing content, such as through speech synthesis. Although these properties are definitely valid
for W3C browsers, they have no practical effect. For general application, you can ignore these
properties — consider them reserved for future use.

td.abbr

BC58 Part VI ✦ Bonus Chapters

cellIndex
Value: Integer. Read-Only
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

The cellIndex property returns an integer indicating the zero-based count of the current
cell within its row. Thus, if a script is passed a reference to a cell, the cellIndex property
reveals its position within the row. Inserting or deleting cells in the row at lower index values
influences the cellIndex value after the alteration.

Example
You can rewrite the cell addition portion of Listing 37-2 to utilize the cellIndex property.
The process entails modifying the insertTableRow() function so that it uses a do...while
construction to keep adding cells to match the number of data slots. The function looks like
the following (changes shown in boldface):

function insertTableRow(form, where) {
var now = new Date();
var nowData = [now.getHours(), now.getMinutes(), now.getSeconds(),

now.getMilliseconds()];
clearBGColors();
var newCell;
var newRow = theTableBody.insertRow(where);
var i = 0;
do {

newCell = newRow.insertCell(i);
newCell.innerHTML = nowData[i++];
newCell.style.backgroundColor = “salmon”;

} while (newCell.cellIndex < nowData.length)
updateRowCounters(form);

}

This version is merely for demonstration purposes and is not as efficient as the sequence
shown in Listing 37-2. But the cellIndex property version can give you some implementation
ideas for the property. It also shows how dynamic the property is, even for brand new cells.

Related Item: tr.rowIndex property.

colSpan
rowSpan

Value: Integer. Read/Write
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

The colSpan and rowSpan properties represent the colspan and rowspan attributes of table
cell elements. Assign values to these properties only when you are creating new table rows
and cells — and you are firm in your table cell design. If you fail to assign the correct values to
either of these properties, your table cell alignment will get out of whack. Modifying these prop-
erty values on an existing table is extremely risky unless you are performing other cell manip-
ulation to maintain the balance of rows and columns. Values for both properties are integers
greater than or equal to 1.

Example
Use The Evaluator (Chapter 13) to witness how modifying either of these properties in an
existing table can destroy the table. Enter the following statement into the top text box:

document.getElementById(“myTable”).rows[1].cells[0].colSpan = 3

td.cellIndex

BC59Chapter 37 ✦ Table and List Objects

Now that the first cell of the second row occupies the space of three columns, the browser has
no choice but to shift the two other defined cells for that row out beyond the original bound-
ary of the table. Experiment with the rowSpan property the same way. To restore the original
settings, assign 1 to each property.

Related Item: col.span property.

height
width

Value: Integer and length string. Read/Write
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

Table cells may be specified to be larger than their default rendered size. This usually hap-
pens in the height and width attributes of the cell. Settings of the width attribute of a col or
colgroup element (IE4+ and NN6+/W3C) may also govern the width of a cell. A cell’s height
can be inherited from the height attribute setting of a table row or row section (IE4+). Both
height and width attributes are deprecated in HTML 4.0 in favor of the height and width
stylesheet attributes. That said, the height and width properties of a table cell echo only the
settings of the explicit attributes in the cell’s tag. If a stylesheet in the element tag governs a
cell’s dimensions, visit the cell object’s style property to determine the dimensions. Explicit
attributes override stylesheet rules.

Values for these two properties are length values. These can be pixel integers or percentage
values as strings. Attempts to set the sizes smaller than their default rendered size results in
a cell of default size. Also be aware that enlarging a cell affects the width of the entire column
and/or height of the entire row occupied by that cell.

Example
Use The Evaluator (Chapter 13) to see the results of setting the height and width properties
of an existing table cell. Enter each of the following statements into the top text box and study
the results in the demonstrator table (W3C DOM syntax used here):

document.getElementById(“myTable”).rows[1].cell[1].height = 100
document.getElementById(“myTable”).rows[2].cell[0].width = 300

You can restore both cells to their original sizes by assigning very small values, such as 1 or 0,
to the properties. The browser prevents the cells from rendering any smaller than is necessary
to show the content.

Related Items: col.width, tr.height properties.

noWrap
Value: Boolean. Read/Write
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

The default behavior of a table cell is to wrap text lines within the cell if the text would extend
beyond the right edge of the cell as calculated from the width of the entire table. But you can
force the table to be wider to accommodate the text in an unwrapped line of text by setting
the noWrap property (or nowrap attribute) of the cell to true. The nowrap attribute is depre-
cated in HTML 4.0.

Example
The following statement creates a new cell in a row and sets its noWrap property to prevent
text from word-wrapping inside the cell:

td.noWrap

BC60 Part VI ✦ Bonus Chapters

newCell = newRow.insertCell(-1);
newCell.noWrap = true;

You need to set this property only if the cell must behave differently than the default, word-
wrapping style.

rowSpan
(See colSpan)

width
(See height)

ol Element Object
For HTML element properties, methods, and event handlers, see Chapter 15.

Properties Methods Event Handlers

compact
start
type

Syntax
Accessing ol element object properties and methods:

(IE4+) [window.]document.all.elemID.property | method([parameters])
(IE5+/W3C) [window.]document.getElementById(“elemID”). property |
method([parameters])

Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

About this object
The ol (ordered list) element is a container of li (list item) elements. An ordered list means
that the list items have a sequence and are preceded by a number or letter to signify the posi-
tion within the sequence. The few element-specific attributes are being deprecated in favor of
stylesheet definitions. For the sake of backward compatibility with existing content, however,
it is likely that many future generations of browsers will continue to support these deprecated
attributes. These attributes are therefore available as properties of the element object.

Most of the special appearance of a list (notably indentation) is handled automatically by the
browser’s interpretation of how an ordered list should look. You have control over the num-
bering or lettering schemes and the starting point for those sequences. With CSS you can sig-
nificantly override the browser’s formatting — even eliminating the traditional list appearance
via other choices for the display style property.

td.noWrap

BC61Chapter 37 ✦ Table and List Objects

Properties

compact
Value: Boolean. Read/Write
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

Although the property is defined for the browsers just shown, the compact property (and the
deprecated attribute it echoes) has no impact on the density of the listing.

start
Value: Integer. Read/Write
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

The start property governs which number or letter begins the sequence of leading charac-
ters for nested li items. If the type attribute specifies numbers, the corresponding number is
used; if it specifies letters, the letter of the alphabet corresponding to the number becomes
the starting character. You can change the numbering in the middle of a sequence via the
li.value property.

It is an extremely rare case that requires you to modify this property for an existing ol ele-
ment. But if your script is creating a new element for a segment of ordered list items that has
some other content intervening from an earlier ol element, you can use the property to assign
a starting value to the ol group.

Example
The following statements generate a new ol element and assign a value to the start property:

var newOL = document.createElement(“ol”);
newOL.start = 5;

Related Items: type, li.value properties.

type
Value: String constant. Read/Write
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

An ol element can use any of five different numbering schemes. Each scheme has a type
code, whose value you can use for the type property. The following table shows the property
values and examples:

Value Example

A A, B, C, ...
a a, b, c, ...
I I, II, III, ...
i i, ii, iii, ...
1 1, 2, 3, ...

ol.type

BC62 Part VI ✦ Bonus Chapters

The default value is 1. You are free to adjust the property after the table has rendered, and you
can even stipulate a different type for specific li elements nested inside (see the li.type
property). If you want to have further nesting with a different numbering scheme, you can nest
the ol elements and specify the desired type for each nesting level, as shown in the following
HTML example:

<ol type=”A”>
One
Two
Three

<ol type=”a”>
Sub One
Sub Two
Sub Three

Four

Indenting the HTML is optional, but it may help you to keep the nesting straight.

Example
The following statements generate a new ol element and assign a value to the type property
so that the sequence letters are uppercase Roman numerals:

var newOL = document.createElement(“ol”);
newOL.type = “I”;

Related Items: start, UL.type, LI.type properties.

ul Element Object
For HTML element properties, methods, and event handlers, see Chapter 15.

Properties Methods Event Handlers

compact†
type

†See ol element object.

Syntax
Accessing ul element object properties and methods:

(IE4+) [window.]document.all.elemID.property | method([parameters])
(IE5+/W3C) [window.]document.getElementById(“elemID”).property |
method([parameters])

Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

About this object
The ul (unordered list) element is a container of li (list item) elements. An unordered list
means that the list items have no sequence and are preceded by symbols that don’t signify any

ol.type

BC63Chapter 37 ✦ Table and List Objects

particular order. The few element-specific attributes are being deprecated in favor of stylesheet
definitions. For the sake of backward compatibility with existing content, however, it is likely
that many future generations of browsers will continue to support these deprecated attributes.
These attributes are therefore available as properties of the element object.

Most of the special appearance of a list (notably indentation) is handled automatically by
the browser’s interpretation of how an ordered list should look. You have control over the
three possible characters that precede each item. With CSS you can significantly override the
browser’s formatting — even eliminating the traditional list appearance via other choices for
the display style property.

Properties

type
Value: String constant. Read/Write
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

A ul element can use any of three different leading characters. Each character type has a
type code whose value you can employ for the type property. Property values are circle,
disc, and square. The difference between a circle and disc is that the circle is unfilled,
while the disc is solid. The default value is disc.

Example
The following statements generate a new ul element and assign a value to the type property
so that the bullet characters are empty circles:

var newUL = document.createElement(“ul”);
newUL.type = “circle”;

Related Items: OL.type, UL.type properties.

li Element Object
For HTML element properties, methods, and event handlers, see Chapter 15.

Properties Methods Event Handlers

type
value

Syntax
Accessing li element object properties and methods:

(IE4+) [window.]document.all.elemID.property | method([parameters])
(IE5+/W3C) [window.]document.getElementById(“elemID”).property |
method([parameters])

Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

li

BC64 Part VI ✦ Bonus Chapters

About this object
An li (list item) element contains the HTML that is displayed for each item within an ol or
ul list. Note that you can put any HTML you want inside a list item, including images. Attributes
and properties of this element enable you to override the specifications declared in the ol or
ul containers (except in MacIE).

Properties

type
Value: String constant. Read/Write
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

Because either an ol or ul container can own an li element, the type property accepts any
of the values that you assign to the type properties of both the ol and ul element objects.
See the ol.type and ul.type properties earlier in this chapter for lists of those values.

Exercise caution, however, if you attempt to mix and match types. For example, if you try to
set the li.type property of an li element to circle inside an ol element, the results vary
from browser to browser. NN6+/Moz, for example, follows your command; however, IE may
display some other characters.

Example
See the examples for the ol.type and ul.type properties earlier in this chapter.

Related Items: ol.type, ul.type properties.

value
Value: Integer. Read/Write
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

The value property governs which number or letter is used for the current list item inside an
ordered list. Employ this attribute and property to override the natural progression. Because
these sequence characters can be letters, numbers, or Roman numerals, the integer you spec-
ify for this property is converted to the numbering scheme in force by the li or ol element’s
type property.

Example
The following statements generate a new li element and assign a value to the start property:

var newLI = document.createElement(“li”);
newLI.start = 5;

Related Item: ol.start property.

dl, dt, and dd Element Objects
For HTML element properties, methods, and event handlers, see Chapter 15.

li

BC65Chapter 37 ✦ Table and List Objects

Properties Methods Event Handlers

compact†

†See ol element object.

Syntax
Accessing dl, dt, and dd element object properties and methods:

(IE4+) [window.] document.all.elemID.property | method([parameters])
(IE5+/W3C) [window.] document.getElementById(“elemID”). property |
method([parameters])

Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

About these objects
Three elements —dl, dt, and dd— provide context and (optionally) formatting for definitions
in a document. The dl element is the outer wrapper signifying a definition list. Each definition
term should be inside a dt element, while the definition description should be in the nested
dd element. The HTML for a simple definition list has the following structure:

<dl>
<dt>First term</dt>
<dd>First term’s definition</dd>
<dt>Second term</dt>
<dd>Second term’s definition</dd>

</dl>

Although there are no specific requirements for rendering definition lists by convention, the
term and description are usually on different lines with the description indented. With CSS
you can significantly override the browser’s formatting — even eliminating the traditional list
appearance via other choices for the display style property.

All three of these elements are treated as element objects, sharing the same properties, meth-
ods, and event handlers of generic element objects. The only one of the three that has any-
thing special is the dl element, which has a compact property. WinIE4+ does respond to this
attribute and property by putting the description and term on the same line if the term is
shorter than the usual indentation space of the description.

dir and menu Element Objects
For HTML element properties, methods, and event handlers, see Chapter 15.

Properties Methods Event Handlers

compact†

†See ol element object.

dir

BC66 Part VI ✦ Bonus Chapters

Syntax
Accessing dir and menu element object properties and methods:

(IE4+) [window.]document.all.elemID.property | method([parameters])
(IE5+/W3C) [window.]document.getElementById(“elemID”). property |
method([parameters])

Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

About these objects
The dir and menu elements are treated in modern browsers as if they were ul elements for
unordered lists of items. Both elements are deprecated in HTML 4.0; yet, because they are
acknowledged in that standard, they are also acknowledged in the W3C DOM (and the IE DOM,
too). Originally intended to assist in creating single and double columns of text (long since
supplanted by tables), usage of these elements has fallen out of favor and is discouraged.

✦ ✦ ✦

dir

The Navigator and
Other Environment
Objects

Client-side scripting primarily focuses on the document inside a
browser window and the content of the document. As discussed

in Chapter 16, the window, too, is an important part of how you apply
JavaScript on the client. But stepping out even one more level is the
browser application itself. Scripts sometimes need to know about the
browser and the computing environment in which it runs so that they
can tailor dynamic content for the current browser and operating
system.

To that end, browsers provide objects that expose as much about the
client computer and the browser as is feasible within accepted princi-
ples of preserving a user’s privacy. In addition to providing some of
the same information that CGI programs on the server receive as
environment variables, these browser-level objects in some browsers
also include information about how well equipped the browser is
with regard to plug-ins and Java. Another object defined for version 4
browsers and on reveals information about the user’s video monitor,
which may influence the way your scripts calculate information dis-
played on the page.

The objects in this chapter don’t show up on the document object
hierarchy diagrams, except as free-standing groups (see Appendix A).
The IE4+ object model, however, incorporates these environmental
objects as properties of the window object. Because the window refer-
ence is optional, you can omit it and wind up with a cross-browser,
compatible script in many cases.

Although these objects were first implemented outside of the object
model hierarchy, they are now treated as belonging to the window
object. As you learn in this chapter, the IE for Windows methodology
can be a bit roundabout. And yet the Macintosh version of IE5 adopted
the approach initiated by NN3. Go figure.

3838C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Determining which
browser the user has

Branching scripts
according to the user’s
operating system

Detecting plug-in support

✦ ✦ ✦ ✦

BC68 Part VI ✦ Bonus Chapters

clientInformation Object (IE4+)
and navigator Object (All)

Properties Methods Event Handlers

appCodeName javaEnabled()
appMinorVersion preference()
appName taintEnabled()
appVersion
browserLanguage
cookieEnabled
cpuClass
language
mimeTypes
onLine
oscpu
platform
plugins
product
productSub
securityPolicy
systemLanguage
userAgent
userLanguage
userProfile
vendor
vendorSub

Syntax
Accessing clientInformation and navigator object properties and methods:

(All) navigator.property | method()
(IE4+/NN6+) [window.]navigator.property | method()
(IE4+/NN6+) [window.]clientInformation.property | method()

About this object
In Chapter 16, I repeatedly mention that the window object is the top banana of the document
object hierarchy. In other programming environments, you likely can find a level higher than
the window — perhaps referred to as the application level. You may think that an object known
as the navigator object is that all-encompassing object. That is not the case, however.

navigator

BC69Chapter 38 ✦ The Navigator and Other Environment Objects

Although Netscape originally invented the navigator object for the Navigator 2 browser,
Microsoft Internet Explorer also supports this object in its object model. For those who exhibit
partisan feelings toward Microsoft, IE4+ provides an alternate object —clientInformation—
that acts as an alias to the navigator object. You are free to use the IE-specific terminology
if your development is intended only for IE browsers. All properties and methods of the
navigator and clientInformation objects are identical. In the rest of this section, all
references to the navigator object also apply to the clientInformation object.

Be aware that the number of properties for this object has grown with virtually every browser
version. Moreover, other than some basic items that have been around since the early days,
most of the more recent properties are browser-specific. Observe the compatibility ratings
for each of the following properties very carefully.

Most of the properties of the navigator object deal with the browser program the user runs
to view documents. Properties include those for extracting the version of the browser and
the platform of the client running the browser. Because so many properties of the navigator
object are related to one another, I begin this discussion by grouping four of the most popular
ones together.

Properties

appCodeName
appName
appVersion
userAgent

Value: String. Read-Only
Compatibility: WinIE3+, MacIE3+, NN2+, Moz1+, Safari1+

These four properties reveal just about everything that browser-sniffing code needs to know
about the user’s browser brand, version, and other tidbits. Of these four, only the last three
are particularly valuable. The first property in the list, appCodeName, defines a class of client
that encompasses essentially every standard browser. The value returned by browsers,
Mozilla, is the code name of the first browser engine on which NN and IE browsers at one
time were based (the NCSA Mosaic browser). This information does nothing to help your
scripts distinguish among browser flavors, so you can ignore the property. But the other
three properties are the ones with all the goodies.

The appName property returns the official name for the browser application. For Netscape and
Mozilla browsers, the appName value is Netscape; for Internet Explorer, the value is Microsoft
Internet Explorer. The situation is murkier for other browsers. For example, Opera gives
users a preference option to have the browser identify itself as IE, NN, or Opera — and the
appName property value changes accordingly. And Safari 1.0 identifies itself as Netscape in
the appName property. Thus, the appName property is no longer a reliable browser brand
determinant.

The appVersion and userAgent properties provide more meaningful detail. I start with the
appVersion property because it is revealing and, at times, misleading.

navigator.appCodeName

BC70 Part VI ✦ Bonus Chapters

Using the appVersion property
A typical appVersion property value looks like the following (one from NN7, one from IE6):

5.0 (Windows; en-US)
4.0 (compatible; MSIE 6.0; Windows NT 5.1; .NET CLR 1.0.3705)

Because most version decisions are based on numeric comparisons (for example, the version
is equal to or greater than 4), you frequently need to extract just the number part of the string
returned by the appVersion property. The cleanest way to do this is via the parseInt() or
parseFloat() methods. Use

parseInt(navigator.appVersion)

if you are interested only in the number to the left of the decimal; to get the complete leading
floating-point number, use

parseFloat(navigator.appVersion)

All other characters after the leading numbers are ignored.

Also notice that the number does not always accurately represent the version of the browser
at hand. For instance, IE6 reports that it is version 4.0. The number is more indicative of a
broad generation number rather than a specific browser version number. In other words, the
browser exhibits characteristics of the first browsers to wear the appVersion of 4 (IE 4.0, it
turns out). Although this means that IE6 can use everything that is in the language and object
model of IE4, this obviously doesn’t help your script to know if the browser is capable of IE6
scripting features.

At the same time, however, buried elsewhere in the appVersion string is the wording
MSIE 6.0— the “true” version of the browser. IE uses this technique to distinguish the actual
version number from the generational number. Therefore, for IE, you may have to dig deeper
by using string methods such as indexOf() to see if the appVersion contains the desired
string. For example, to see if the browser is a variant of IE6, you can test for just “MSIE 6” as
follows:

var isIE6x = navigator.appVersion.indexOf(“MSIE 6”) != -1

There is a hazard in doing this kind of testing, however. Going forward, your code will break if
future versions of IE have larger version numbers. Therefore, if you want to use IE6 features
with an IE8 browser (assuming such a browser becomes available), your testing for the pres-
ence of “MSIE 6” fails and the script thinks that it cannot use IE6 features even though they
most certainly would be available in IE8. To find out if the current IE browser is the same or
newer than a particular version, you must use JavaScript string parsing to deal with the MSIE
x.x substring of the appVersion (or userAgent) property. The following example shows one
function that extracts the precise IE version name and another function that confirms
whether the version is at least IE6.0 for Windows.

var ua = navigator.userAgent;
function getIEVersion() {

var IEOffset = ua.indexOf(“MSIE “);
return parseFloat(ua.substring(IEOffset + 5, ua.indexOf(“;”, IEOffset)));

}
function qualifyBrowser() {

var qualified = false;
if (navigator.appName == “Microsoft Internet Explorer”) {

if (parseInt(getIEVersion()) >= 6) {
if (ua.indexOf(“Windows”) != -1) {

qualified = true;
}

navigator.appVersion

BC71Chapter 38 ✦ The Navigator and Other Environment Objects

}
}
if (!qualified) {

var msg = “These scripts are currently certified to run on:\n”;
msg += “ - MS Internet Explorer 6.0 or later for Windows\n”;
alert(msg);

}
return qualified;

}

As clever as the preceding code looks, using it assumes that the version string surrounding
the MSIE characters will be immutable in the future. We do not have that kind of guarantee,
so you have to remain vigilant for possible changes in future versions.

Thus, with each browser generation’s pollution of the appVersion and userAgent properties,
the properties become increasingly less useful for browser sniffing — unless you wish to
burden your code with a lot of general-purpose sniffing code, very little of which any one
browser uses.

Even NN is not free of problems. For example, the main numbering in the appVersion prop-
erty for NN7 is 5 (in other words, the fifth generation of the original Mozilla code). A poten-
tially thornier problem arises due to Netscape’s decision to eliminate some nonstandard NN4
DOM features from the NN6 DOM (layer objects and some event object behaviors). Many
scripters followed the previously recommended technique of “prepare for the future” by
using an appVersion of 4 as a minimum:

var isNN4 = parseInt(navigator.appVersion) >= 4;

But any code that relies on the isNN4 variable to branch to code that talks to the dead-end
NN4 objects and properties breaks when it runs in NN6+.

The bottom-line question is, “What do I do for browser version detection?” Unfortunately,
there are dozens of answers to that question, depending on what you need browser detection
to do and what level of code you produce.

At one end of the spectrum is code that tries to be many things to many browsers, implement-
ing multiple levels of features for many different generations of browser. This is clearly the
most difficult tactic, and you have to create quite a long list of variables for the conditions for
which you establish branches. Some branches may work on one combination of browsers,
while you may need to split other branches differently because the scripted features have
more browser-specific implementations.

At the other end of the spectrum is the code that tries to support, say, only IE5+ and other
modern browsers with W3C DOM-compatible syntax to the extent that both browser families
implement the object model features. Life for this scripter is much easier in that the amount
of branching is little or none depending on what the scripts do with the objects.

Between these two extremes, situations call for many different solutions. Object detection
(for example, seeing if document.images exists before manipulating image objects) is a good
solution at times, but not so much for determining the browser version as for knowing whether
some code that addresses those objects works. As described in Chapter 14, it is hazardous to
use the existence of, say, document.all as an indicator that the browser is IE4+. Some other
browser in the future may also implement the document.all property, but not necessarily all
the other IE4+ objects and syntax. Code that thinks it’s running in IE4+ just because document.
all exists can easily break if document.all is implemented in another browser but not all
the rest of the IE4+ DOM. Using object detection to branch code that addresses the detected
objects is, however, very desirable in the long run because it frees your code from getting
trapped in the ever-changing browser version game.

navigator.appVersion

BC72 Part VI ✦ Bonus Chapters

Don’t write off the appVersion and userAgent properties entirely. The combination of features
that you script may benefit from some of the data in that string, especially when the decisions
are made in concert with the navigator.appName property. A number of other properties can
also provide the sufficient clues for your code to perform the branching that your application
needs. For instance, it may be very helpful to your scripts to know whether the navigator.
platform property informs them that they are running in a Windows or Macintosh environ-
ment because of the way each operating system renders fonts.

userAgent property details
The string returned by the navigator.userAgent property contains a more complete run-
down of the browser. The userAgent property is a string similar to the USER_AGENT header
that the browser sends to the server at certain points during the connection process between
client and server.

Unfortunately, there is no standard for the way information in the userAgent property is for-
matted. It may be instructive, however, to view what kinds of values come from a variety of
browsers on different platforms. Table 38-1 shows some of the values that your scripts are
likely to see. This table does not include, of course, the many values that are not reflected by
browsers that do not support JavaScript. The purpose of the table is to show you just a sam-
pling of data that the property can contain from a variety of browsers and operating systems
(particularly enlightening if you do not have access to Macintosh or UNIX computers).

Table 38-1: Typical navigator.userAgent Values

navigator.userAgent Description

Mozilla/5.0 (Macintosh; U; PPC Mac OS X Mozilla 1.4 for MacOS X
X Mach-O; en-US; rv:1.4) Gecko/2003624
Mozilla/5.0 (Windows; U; Windows NT 5.1; Navigator 7.1 for Windows, running under
en-US; rv:1.4 Gecko/2003624 Netscape/ Windows XP Home Edition
7.1 (ax)
Mozilla/4.74 [en] (X11; U; Linux Navigator 4.74, English edition for Linux with U.S.
2.2.154mdksmp i686) encryption

Mozilla/4.73 (Macintosh; U; PPC) Navigator 4.73 for PowerPC Macintosh with U.S.
encryption

Mozilla/4.02 [en] (Win95; I; Nav) Navigator-only version of Communicator 4.02,
English edition for Windows 95, and export
encryption

Mozilla/4.01 [fr] (Win95; I) Navigator 4.01, French edition for Windows 95,
export encryption

Mozilla/3.01Gold (Win95; I) Navigator 3.01 Gold for Windows 95

Mozilla/3.01 (Macintosh; I; PPC) Navigator 3.01 for PowerPC Macintosh

Mozilla/3.01 (X11; I; HP-UX A.09.05 Navigator 3.01 for HP-UX on RS-9000
9000/720)
Mozilla/3.01 (X11; I; SunOS 5.4 sun4m) Navigator 3.01 for SunOS 5.4

Mozilla/3.01Gold [de] (Win16; I) Navigator 3.01, German edition for Windows 3.0x

Mozilla/4.0 (compatible; MSIE 6.0; IE 6.0 running under Windows XP Home Edition
Windows NT 5.1; .NET CLR 1.0.3705)
Mozilla/4.0 (compatible; MSIE 5.5; IE 5.5 running under Windows NT 5.0
Windows NT 5.0)

navigator.appVersion

BC73Chapter 38 ✦ The Navigator and Other Environment Objects

navigator.userAgent Description

Mozilla/4.0 (compatible; MSIE 5.0; IE 5.0 for Windows 98 with digital signature
Windows 98; DigExt)
Mozilla/4.0 (compatible; MSIE 5.0; IE 5.0 running on a PowerPC-equipped
Mac_PowerPC) Macintosh

Mozilla/3.0 WebTV/1.2 (compatible; IE 2 built into a WebTV box, emulating Navigator 3
MSIE 2.0) (its scripting compatibility with Navigator 3 is in

question)

Mozilla/2.0 (compatible; MSIE 3.0; IE 3 (version for America Online software AOL
3.0; Windows 3.1) version 3) for Windows 3.1, emulating Navigator 2

Mozilla/2.0 (compatible; MSIE 3.02; IE 3.02, Update a for Windows 95, emulating
Update a; Windows 95) Navigator 2

Mozilla/2.0 (compatible; MSIE 3.0B; IE 3 (beta) emulating Navigator 2
Windows NT)
Mozilla/5.0 (Macintosh; U; PPC Mac OS X; Apple Safari 1.0 (release no. 85) for MacOS X
en-us) AppleWebKit/85 (KHTML, like
Gecko) Safari/85
Opera/7.10 (Windows 98; U) [en] Opera 7.1 (set to identify as Opera) for

Windows 98

Because the userAgent property contains a lot of the same information as the appVersion
property, the same cautions just described apply to the userAgent string and the environment
data it returns.

Speaking of compatibility and browser versions, the question often arises whether your scripts
should distinguish among incremental releases within a browser’s generation (for example,
6.0, 6.01, 6.02, and so on). The latest incremental release occasionally contains bug fixes and
(rarely) new features on which you may rely. If that is the case, I suggest you look for this infor-
mation when the page loads and recommend to the user that he or she download the latest
browser version. Beyond that, I suggest scripting for the latest version of a given generation
and not bothering with branching for incremental releases.

See Chapters 13 and 14 for more information about designing pages for cross-platform
deployment.

Example
Listing 38-1 provides a number of reusable functions that your scripts can employ to determine
a variety of information about the currently running browser. This is not intended in any way
to be an all-inclusive browser-sniffing routine; instead, I offer samples of how to extract infor-
mation from the key navigator properties to determine various browser conditions.

All functions in Listing 38-1 return a Boolean value inline with the pseudo-question presented
in the function’s name. For example, the isWindows() function returns true if the browser is
any type of Windows browser; otherwise, it returns false. (In Internet Explorer 3, the values
are 0 for false and -1 for true, but those values are perfectly usable in if conditional phrases).
If this kind of browser detection occurs frequently in your pages, consider moving these func-
tions into an external .js source library for inclusion in your pages (see Chapter 13).

When you load this page, it presents fields that display the results of each function depending
on the type of browser and client operating system you use.

navigator.userAgent

BC74 Part VI ✦ Bonus Chapters

Listing 38-1: Functions to Examine Browsers

<html>
<head>

<title>UserAgent Property Library</title>
<script type=”text/javascript”>
// basic brand determination
function isNav() {

return (navigator.appName == “Netscape” && !isOpera() && !isSafari());
}

function isIE() {
return (navigator.appName == “Microsoft Internet Explorer”);

}

function isOpera() {
return (navigator.userAgent.indexOf(“Opera”) != -1);

}

function isSafari() {
return (navigator.userAgent.indexOf(“Safari”) != -1);

}

// operating system platforms
function isWindows() {

return (navigator.appVersion.indexOf(“Win”) != -1);
}

function isWin95NT() {
return (isWindows() && (navigator.appVersion.indexOf(“Win16”) == -1 &&

navigator.appVersion.indexOf(“Windows 3.1”) == -1));
}

function isMac() {
return (navigator.appVersion.indexOf(“Mac”) != -1);

}

function isMacPPC() {
return (isMac() && (navigator.appVersion.indexOf(“PPC”) != -1 ||

navigator.appVersion.indexOf(“PowerPC”) != -1));
}

function isUnix() {
return (navigator.appVersion.indexOf(“X11”) != -1);

}

// browser versions
function isGeneration2() {

return (parseInt(navigator.appVersion) == 2);
}

function isGeneration3() {
return (parseInt(navigator.appVersion) == 3);

}

function isGeneration3Min() {
return (parseInt(navigator.appVersion.charAt(0)) >= 3);

}

navigator.userAgent

BC75Chapter 38 ✦ The Navigator and Other Environment Objects

function isNav4_7() {
return (isNav() && parseFloat(navigator.appVersion) == 4.7);

}

function isMSIE4Min() {
return (isIE() && navigator.appVersion.indexOf(“MSIE”) != -1);

}

function isMSIE6_0() {
return (navigator.appVersion.indexOf(“MSIE 6.0”) != -1);

}

function isNN6Min() {
return (isNav() && parseInt(navigator.appVersion) >= 5);

}

// element referencing syntax
function isDocAll() {

return (document.all) ? true : false;
}

function isDocW3C() {
return (document.getElementById) ? true : false;

}

// fill in the blanks
function checkBrowser() {

var form = document.forms[0];
form.brandNN.value = isNav();
form.brandIE.value = isIE();
form.brandSaf.value = isSafari();
form.brandOp.value = isOpera();
form.win.value = isWindows();
form.win32.value = isWin95NT();
form.mac.value = isMac();
form.ppc.value = isMacPPC();
form.unix.value = isUnix();
form.ver3Only.value = isGeneration3();
form.ver3Up.value = isGeneration3Min();
form.Nav4_7.value = isNav4_7();
form.Nav6Up.value = isNN6Min();
form.MSIE4.value = isMSIE4Min();
form.MSIE6_0.value = isMSIE6_0();
form.doc_all.value = isDocAll();
form.doc_w3c.value = isDocW3C();

}
</script>

</head>
<body onload=”checkBrowser()”>

<h1>About This Browser</h1>
<form>

<h2>Brand</h2>
Netscape Navigator: <input type=”text” name=”brandNN” size=”5” />
Internet Explorer: <input type=”text” name=”brandIE” size=”5” />
Apple Safari: <input type=”text” name=”brandSaf” size=”5” />
Opera: <input type=”text” name=”brandOp” size=”5” />
<hr />
<h2>Browser Version</h2>

Continued

navigator.userAgent

BC76 Part VI ✦ Bonus Chapters

Listing 38-1 (continued)

3.0x Only (any brand): <input type=”text” name=”ver3Only” size=”5” />
<p>3 or Later (any brand): <input type=”text” name=”ver3Up”

size=”5” /></p>
<p>Navigator 4.7: <input type=”text” name=”Nav4_7” size=”5” /></p>
<p>Navigator 6+: <input type=”text” name=”Nav6Up” size=”5” /></p>
<p>MSIE 4+: <input type=”text” name=”MSIE4” size=”5” /></p>
<p>MSIE 6.0: <input type=”text” name=”MSIE6_0” size=”5” /></p>
<hr />
<h2>OS Platform</h2>
Windows: <input type=”text” name=”win” size=”5” /> Windows
95/98/2000/NT: <input type=”text” name=”win32” size=”5” />
<p>Macintosh: <input type=”text” name=”mac” size=”5” /> Mac PowerPC:

<input type=”text” name=”ppc” size=”5” /></p>
<p>Unix: <input type=”text” name=”unix” size=”5” /></p>
<hr />
<h2>Element Referencing Style</h2>
Use <tt>document.all</tt>: <input type=”text” name=”doc_all”
size=”5” />
<p>Use <tt>document.getElementById()</tt>: <input type=”text”

name=”doc_w3c” size=”5” /></p>
</form>

</body>
</html>

Related Items: appMinorVersion, cpuClass, oscpu, platform properties.

appMinorVersion
Value: One-character string. Read-Only
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-

In IE parlance, the minor version is indicated by the first digit to the right of the decimal in a full
version number. But the “version number” referred to here is the number that the navigator.
appVersion property reports, not the actual version of the browser. For example, although
IE5.5 seems to have a version number of 5 and a minor version number of 5, the appVersion
reports version 4.0. In this case, the minorAppVersion reports 0. Thus, you cannot use the
appMinorVersion property to detect differences between, say, IE5 and IE5.5. That information
is buried deeper within the string returned by appVersion and userAgent.

Example
Use The Evaluator (Chapter 13) to examine the two related version properties of your IE
browser(s). Type the following two statements into the top text box and observe the results:

navigator.appVersion
navigator.minorAppVersion

There is a good chance that the values returned are not related to the browser version number
shown after MSIE in the appVersion value.

Related Item: appVersion property.

navigator.userAgent

BC77Chapter 38 ✦ The Navigator and Other Environment Objects

browserLanguage
Value: String. Read-Only
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-

The browserLanguage property in IE4+ (and the language property in NN4+) returns the
identifier for a localized language version of the program (it has nothing to do with scripting
or programming language). The value of the browserLanguage property almost always is the
same as the other IE language-related properties, unless the user changes the Windows con-
trol panel for regional settings after installing IE. In that case, browserLanguage returns the
original language of the browser application, while the other properties report the language
indicated in the system-level preferences panel.

Users of the multilanguage version of Windows 2000/XP can choose alternate languages for
menus and dialog boxes. The browserLanguage property returns the language you choose
for those settings.

These short strings may resemble, but are not identical to, the URL suffixes for countries.
Moreover, when a language has multiple dialects, the dialect can also be a part of the identi-
fier. For example, en is the identifier for English. However, en-us (or en-US) represents the
American dialect of English, while en-gb (or en-GB) represents the dialect recognized in
Great Britain. NN sometimes includes these values as part of the userAgent data as well.
Table 38-2 shows a sampling of language identifiers used for all language-related properties
of the navigator object.

Table 38-2: Sample navigator.browserLanguage Values

navigator.language Language

en English

de German

es Spanish

fr French

ja Japanese

da Danish

it Italian

ko Korean

nl Dutch

pt Brazilian Portuguese

sv Swedish

You can assume that a user of a particular language version of the browser or system is also
interested in content in the same language. If your site offers multiple language paths, you
can use this property setting to automate the navigation to the proper section for the user.

Related Items: navigator.userAgent, navigator.language, navigator.
systemLanguage, navigator.userLanguage properties.

Note

navigator.browserLanguage

BC78 Part VI ✦ Bonus Chapters

cookieEnabled
Value: Boolean. Read-Only
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

The cookieEnabled property allows your scripts to determine easily if the browser has
cookie functionality turned on. You can surround cookie-related statements with an if con-
struction as follows:

if (navigator.cookieEnabled) {
// do cookie stuff here

}

This works reliably only on browsers that implement the property. Because older browsers
do not have this navigator object property, the if condition appears false (even though
cookies may be turned on).

You can still check for cookie functionality in older browsers, but only clumsily. The technique
entails assigning a “dummy” cookie value to the document.cookie property and attempting
to read back the cookie value. If the value is there, cookies are enabled.

Example
Use The Evaluator (Chapter 13) to see the value of the navigator.cookieEnabled property
on your browsers. Enter the following statement into the top text box:

navigator.cookieEnabled

Feel free to change the cookie preferences setting temporarily to see the new value of the
property. You do not have to relaunch the browser for the new setting to take effect.

Related Item: document.cookie property.

cpuClass
Value: String. Read-Only
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-

The cpuClass property returns one of several fixed strings that identifies the family of central
processing units running IE. Possible values and their meanings are as follows:

cpuClass Description

x86 Intel processor (and some emulators)

PPC Motorola Power PC processor (for example, Macintosh)

68K Motorola 68000-family processor (for example, Macintosh)

Alpha Digital Equipment Alpha processor

Other Other processors, such as SPARC

The processor is not a good guide to determining the operating system because you can
run multiple operating systems on most of the preceding processor families. Moreover, the
cpuClass value represents the processor that the browser “thinks” it is running on. For
example, when a Windows version of IE is hosted by the Virtual PC emulator on a PowerPC
Macintosh, the cpuClass is reported as x86 even though the actual hardware processor is PPC.

navigator.cookieEnabled

BC79Chapter 38 ✦ The Navigator and Other Environment Objects

Example
Use The Evaluator (Chapter 13) to see how IE reports the cpuClass of your PC. Enter the
following statement into the top text box:

navigator.cpuClass

Related Item: navigator.oscpu property.

language
Value: String. Read-Only
Compatibility: WinIE-, MacIE-, NN4+, Moz1+, Safari1+

The NN4+ language property returns the language code for the browser application. Although
the comparable IE property (navigator.browserLanguage) has morphed in later versions
to focus on the operating system language, NN’s property deals exclusively with the language
for which the browser application is written.

Related Item: navigator.browserLanguage property.

mimeTypes
Value: Array of mimeType objects. Read-Only
Compatibility: WinIE-, MacIE5, NN4+, Moz1+, Safari1+

A mime (Multipurpose Internet Mail Extension) type is a file format for information that travels
across the Internet. Browsers usually have a limited capability for displaying or playing infor-
mation beyond HTML text and one or two image standards (.gif and .jpg are the most
common formats). To fill in the gap, browsers maintain an internal list of mime types with cor-
responding instructions on what to do when information of a particular mime type arrives at
the client. For example, when a CGI program serves up an audio stream in an audio format, the
browser locates that mime type in its table (the mime type is among the first chunk of informa-
tion to reach the browser from the server) and then launches a helper application or activates
a plug-in capable of playing that mime type. Your browser is not equipped to display every
mime type, but it does know how to alert you when you don’t have the helper application or
plug-in needed to handle an incoming file. For instance, the browser may ask if you want to
save the file for later use or switch to a Web page containing more information about the nec-
essary plug-in.

The mimeTypes property of the navigator object is simply the array of mime types about
which your browser knows (see the “mimeType Object” section later in this chapter). NN3+
browsers come with dozens of mime types already listed in their tables (even if the browser
doesn’t have the capability to handle all those items automatically). If you have third-party
plug-ins in Navigator’s plug-ins directory/folder or helper applications registered with
Navigator, that array contains these new entries as well.

If your Web pages are media-rich, you want to be sure that each visitor’s browser is capable
of playing the media your page has to offer. With JavaScript and NN3+, you can cycle through
the mimeTypes array to find a match for the mime type of your media. Then use the properties
of the mimeType object (detailed later in this chapter) to ensure the optimum plug-in is avail-
able. If your media still requires a helper application instead of a plug-in, the array only lists
the mime type; thus, you can’t determine whether a helper application is assigned to this mime
type from the array list.

navigator.mimeTypes

BC80 Part VI ✦ Bonus Chapters

Example
For examples of the mimeTypes property and details about using the mimeType object, see the
discussion of this object later in the chapter. A number of simple examples showing how to
use this property to see whether the navigator object has a particular MIME type do not go
far enough in determining whether a plug-in is installed and enabled to play the incoming data.

Related Item: navigator.plugins property; mimeType object.

onLine
Value: Boolean. Read-Only
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-

The onLine property lets scripts determine the state of the offline browsing setting for the
browser. Bear in mind that this property does not reveal whether the page is accessed via the
Net or a local hard disk. The browser can be in online mode and still access a local page; in
this case, the onLine property returns true.

With the offline browsing capabilities of IE4+, users may prefer to download copies of pages
they wish to reference frequently (perhaps on a disconnected laptop computer). In such cases,
your pages may want to avoid network-reliant content when accessed offline. For example, if
your page includes a link to a live audio feed, you can dynamically generate that link with
JavaScript — but do so only if the user is online:

if (navigator.onLine) {
document.write(“Listen to Audio”);

}

Example
Use The Evaluator (Chapter 13) to see the online state of your IE browsers. Enter the following
statement into the top text box:

navigator.onLine

Verify your browsing mode by checking the Work Offline choice in the File menu. If it is
checked, the onLine property should return false.

oscpu
Value: String. Read-Only
Compatibility: WinIE-, MacIE-, NN6+, Moz1+, Safari-

The oscpu property of Mozilla-based browsers returns a string that reveals OS- or CPU-related
information about the user’s environment. The precise string varies widely with the client
OS. For instance, a Windows 98 machine reports Win98, while a Macintosh running MacOS X
reports PPC Mac OS X Mach-O. The string formats for Windows NT/XP versions are not stan-
dardized, so they offer values such as WinNT4.0 and Windows NT 5.0. Windows XP reports
as being Windows NT in the oscpu property (as it does in the userAgent property). UNIX
platforms reveal more details, such as the system version and hardware.

Example
Use The Evaluator (Chapter 13) with NN6 to see what your client machine reports to you by
entering the following statement into the top text box:

navigator.oscpu

Related Item: navigator.cpuClass property.

navigator.mimeTypes

BC81Chapter 38 ✦ The Navigator and Other Environment Objects

platform
Value: String. Read-Only
Compatibility: WinIE4+, MacIE4+, NN4+, Moz1+, Safari1+

The navigator.platform value reflects the operating system according to the codes estab-
lished initially by Netscape for its userAgent values. Table 38-3 lists typical values of several
operating systems.

In the long list of browser detection functions in Listing 38-1, I elected not to use the navigator.
platform property because it is not backward-compatible. Meanwhile, the other properties
in that listing are available to all scriptable browsers.

Table 38-3: Sample navigator.platform Values

navigator.platform Operating System

Win32 Windows XP

Win98 Windows 98

WinNT Windows NT

Win16 Windows 3.x

Mac68k Mac (680x0 CPU)

MacPPC Mac (PowerPC CPU)

SunOS Solaris

Notice that the navigator.platform property does not go into versioning of the operating
system. Only the raw name is provided.

Example
Use The Evaluator (Chapter 13) to see what your computer reports as its operating system.
Enter the following statement into the top text box:

navigator.platform

Related Item: navigator.userAgent property.

plugins
Value: Array of plug-in objects. Read-Only
Compatibility: WinIE-, MacIE5, NN3+, Moz1+, Safari1+

You rarely find users involved with Web page design who have not heard about plug-ins — the
technology that enables you to embed new media types and foreign file formats directly into
Web documents. For instance, instead of requiring you to view a video clip in a separate win-
dow atop the main browser window, a plug-in enables you to make that viewer as much a part
of the page design as a static image. The same goes for audio players, 3-D animation, chat
sessions — even the display of Microsoft Office documents, such as PowerPoint and Word.

When many browsers launch, they create an internal list of available plug-ins located in a
special directory/folder (the name varies with the browser and operating system). The
navigator.plugins array lists the items registered at launch time. Each plug-in is, itself, an
object with several properties.

navigator.plugins

BC82 Part VI ✦ Bonus Chapters

The Windows version of IE4+ supports this property only to return an empty array. In other
words, the property is defined, but it does not contain plugin objects — a nonexistent object
in IE for Windows. But on the Macintosh side, IE5 supports the way Netscape Navigator, Mozilla,
and Safari allow script inspection of mime types and plug-ins. To see ways of determining plug-
in support for WinIE, see the section ‘“Plug-in” detection in WinIE’ later in this chapter.

Having your scripts investigate the visitor’s browser for a particular installed plug-in is a valu-
able capability if you want to guide the user through the process of downloading and installing
a plug-in (if the system does not have it currently).

Example
For examples of the plugins property and for details about using the plugin object, see the
section “plugin Object” later in this chapter. Also see Chapter 40 on the CD-ROM for information
on embedded element objects.

Related Items: navigator.mimeTypes property; plugin object.

product
productSub
vendor
vendorSub

Value: String. Read-Only
Compatibility: WinIE-, MacIE-, NN6+, Moz1+, Safari1+

With the Mozilla browser engine being developed in an Open Source environment, any number
of vendors might adapt the engine for any number of browser products. Some distributors of
the browser, such as ISPs and computer manufacturers, may also tailor the browser slightly
for their customers. These four properties can reveal some of the pedigree of the browser
currently running scripts on the page.

Two categories of properties — one for the product, one for the vendor — each have a pair of
fields (a primary and secondary field) that can be populated as the vendor sees fit. Some of
this information may contain data, such as an identifying number of the build (development
version) used to generate the product. A script at a computer maker’s Web site page may look
for a particular series of values in these properties to welcome the customer or to advise the
customer of a later build version that is recommended as an upgrade.

Example
Use The Evaluator (Chapter 13) on NN6+/Moz to see the values returned for these four prop-
erties (Safari 1.0 doesn’t support vendorSub). Enter each of the following statements into the
top text box of the page and see the values for each in the Results box:

navigator.product
navigator.productSub
navigator.vendor
navigator.vendorSub

Also check the value of the navigator.userAgent property to see how many of these four
property values are revealed in the userAgent property.

Related Item: navigator.userAgent property.

navigator.plugins

BC83Chapter 38 ✦ The Navigator and Other Environment Objects

securityPolicy
Value: String. Read-Only
Compatibility: WinIE-, MacIE-, NN4+, Moz1+, Safari-

The Netscape-specific securityPolicy property returns a string that indicates which crypto-
graphic scheme is implemented in the current browser. Typical string values include US and
CA domestic policy and export policy. Each policy indicates the number of bits used for
encryption, usually governed by technology export laws. The corresponding IE property is
document.security. All Mozilla-based browsers have only one version, and the property’s
value is an empty string.

Related Item: document.security property.

systemLanguage
userLanguage

Value: Language code string. Read-Only
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-

These two IE-specific properties report the language code of the written language specified
for the operating system. For most operating system versions, these two values are the same.
Some Windows versions enable you to set system preferences differently for the base operating
system and the language for a given user. Both of these property values can differ from the
navigator.browserLanguage property if the user downloads and installs the browser with
the system set to one language and then changes the system settings to another language.

Example
Use The Evaluator (Chapter 13) with your IE4+ browser to compare the values of the three
language-related properties running on your computer. Enter each of the following statements
into the top text box:

navigator.browserLanguage
navigator.systemLanguage
navigator.userLanguage

Don’t be surprised if all three properties return the same value.

Related Item: navigator.browserLanguage property.

userAgent
(See appCodeName)

userLanguage
(See systemLanguage)

userProfile
Value: userProfile object. Read-Only
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-

The userProfile property returns a reference to the IE userProfile object. This object
provides scripted access to a limited range of user profile settings with the user’s permission.
For details, see the userProfile object discussion later in this chapter.

Related Item: userProfile object.

navigator.userProfile

BC84 Part VI ✦ Bonus Chapters

vendor
vendorSub

(See product)

Methods

javaEnabled()
Returns: Boolean.
Compatibility: WinIE4+, MacIE4+, NN3+, Moz1+, Safari1+

Although most modern browsers ship with Java support turned on, a user can easily turn it
off in a preferences dialog box (or even elect not to install it with the browser). Some corporate
installations may also turn off Java as the default setting for their users. If your pages specify
Java applets, you don’t normally have to worry about this property because the applet tag’s
alternate text fills the page in the places where the applet normally goes. But if you script
applets from JavaScript (via LiveConnect, Chapter 44), you don’t want your scripts making calls
to applets or Java classes if Java support is turned off. In a similar vein, if you create a page
with JavaScript, you can fashion two different layouts depending on the availability of Java.

The navigator.javaEnabled() method returns a Boolean value reflecting the preferences
setting. This value does not reflect Java support in the browser necessarily (and especially
not the Java version supported), but rather whether Java is turned on inside the browsers for
which this method is supported. A script cannot change the browser’s preference setting, but
its value does change immediately upon toggling the Preference setting.

Related Items: navigator.preference() method; LiveConnect (Chapter 44).

preference(name [, val])
Returns: Preference value.
Compatibility: WinIE-, MacIE-, NN4+, Moz-, Safari-

The user normally sets browser preferences. Until NN4 and the advent of signed scripts, almost
all settings were completely out of view of scripts — even when it made sense to expose them.
But with signed scripts and the navigator.preference() method, many NN preferences are
now viewable and settable with the user’s permission. These preferences were exposed to
scripting primarily for the purposes of centralized configuration administration for enterprise
installations. I don’t recommend altering the browser preferences of a public Web site visitor,
even if given permission to do so — the user may not know how much trouble you can cause.

When you want to read a particular preference setting, you pass only the preference
name parameter with the method. Reading a preference requires a signed script with the
target of UniversalPreferencesRead (see Chapter 46 on the CD-ROM). To change a
preference, pass both the preference name and the value (with a signed script target of
UniversalPreferencesWrite).

Table 38-4 shows a handful of scriptable preferences in Mozilla-based browsers (learn more
about Mozilla preferences at http://www.mozilla.org/catalog/end-user/customizing/
briefprefs.html). Most items have corresponding entries in the preferences window in
NN4+ (shown in parentheses). Notice that the preference name uses dot syntax. The cookie
security level is a single preference value with a matrix of integer values indicating the level.

navigator.vendor

BC85Chapter 38 ✦ The Navigator and Other Environment Objects

Table 38-4: navigator.preference() Values Sampler

navigator.preference Value Preference Dialog Listing

security.enable_java Boolean (Advanced) Enables Java

javascript.enabled Boolean (Advanced) Enables JavaScript

autoupdate.enabled Boolean (Advanced) Enables AutoInstall

network.cookie.cookieBehavior 0 (Advanced) Accepts all cookies

network.cookie.cookieBehavior 1 (Advanced) Accepts only cookies that get
sent back to the originating server

network.cookie.cookieBehavior 2 (Advanced) Disables cookies

network.cookie.warnAboutCookies Boolean (Advanced) Warns you before accepting a
cookie

One preference to watch out for is the one that disables JavaScript. If you disable JavaScript,
only the user can reenable JavaScript by manually changing the setting in the browser’s pref-
erences dialog box.

Example
The page in Listing 38-2 displays checkboxes or radio buttons for several preference settings
plus one text box to show a preference setting value for the size of the browser’s disk cache.
You will receive a security warning each time the scripts enable the Privilege Manager.

One function reads all the preferences and sets the form control values accordingly. Another
function sets a preference when you click its checkbox. Rerunning the showPreferences()
function also helps verify that you set the preference.

Listing 38-2: Reading and Writing Browser Preferences

<html>
<head>

<title>Reading/Writing Browser Preferences</title>
<script type=”text/javascript”>
function setPreference(pref, value) {

netscape.security.PrivilegeManager.enablePrivilege(
“UniversalPreferencesWrite”);

navigator.preference(pref, value);
netscape.security.PrivilegeManager.revertPrivilege(

“UniversalPreferencesWrite”);
showPreferences();

}

function showPreferences() {
var form = document.forms[0];
netscape.security.PrivilegeManager.enablePrivilege(

“UniversalPreferencesRead”);
form.cacheSize.value =

Continued

Tip

navigator.preference()

BC86 Part VI ✦ Bonus Chapters

Listing 38-2 (continued)

navigator.preference(“browser.cache.disk.capacity”);
form.autoIEnable.checked = navigator.preference(“autoupdate.enabled”);
var cookieSetting =

navigator.preference(“network.cookie.cookieBehavior”);
for (var i = 0; i < 3; i++) {

document.getElementById(“cookie” + i).checked = (i == cookieSetting)
?

true : false;
}
var toolbarSetting =

navigator.preference(“browser.chrome.toolbar_style”);
for (var i = 0; i < 3; i++) {

document.getElementById(“toolbar” + i).checked = (i ==
toolbarSetting) ?

true : false;
}
form.cookieWarn.checked = navigator.preference(

“network.cookie.warnAboutCookies”);
netscape.security.PrivilegeManager.revertPrivilege(

“UniversalPreferencesRead”);
}
</script>

</head>
<body onload=”showPreferences()”>

<h1>Mozilla Browser Preferences Settings Sampler</h1>
<hr />
<form>

<input type=”checkbox” name=”autoIEnable”
onclick=”setPreference(‘autoupdate.enabled’,this.checked)”

/>AutoInstall
Enabled

Toolbar Buttons:
<input type=”radio” name=”toolbarPriv” id=”toolbar0”
onclick=”setPreference(‘browser.chrome.toolbar_style’,0)” />Toolbar
Pictures Only
<input type=”radio” name=”toolbarPriv” id=”toolbar1”
onclick=”setPreference(‘browser.chrome.toolbar_styler’,1)” />Toolbar
Text Only
<input type=”radio” name=”toolbarPriv” id=”toolbar2”
onclick=”setPreference(‘browser.chrome.toolbar_style’,2)” />Toolbar
Pictures & Text

Cookie Permissions:
<input type=”radio” name=”cookiePriv” id=”cookie0”
onclick=”setPreference(‘network.cookie.cookieBehavior’,0)” />Accept
All Cookies
<input type=”radio” name=”cookiePriv” id=”cookie1”
onclick=”setPreference(‘network.cookie.cookieBehavior’,1)” />Accept
Only Cookies Sent Back to Server
<input type=”radio” name=”cookiePriv” id=”cookie2”
onclick=”setPreference(‘network.cookie.cookieBehavior’,2)” />Disable
Cookies

<input type=”checkbox” name=”cookieWarn”

navigator.preference()

BC87Chapter 38 ✦ The Navigator and Other Environment Objects

onclick=”setPreference(‘network.cookie.warnAboutCookies’,this.checked)”
/>

Warn Before Accepting Cookies

Disk cache is <input type=”text” name=”cacheSize” size=”10” />
KB

</form>
</body>

</html>

Related Item: navigator.javaEnabled() method.

taintEnabled()
Returns: Boolean.
Compatibility: WinIE4+, MacIE4+, NN3+, Moz-, Safari-

Navigator 3 featured a partially implemented security feature called data tainting, which was
turned off by default. This feature was replaced by signed scripts; but for backward compati-
bility, the navigator.taintEnabled() method is available in more modern browsers that
don’t employ tainting (in which case, the method always returns false). Do not employ this
method in your scripts.

mimeType Object

Properties Methods Event Handlers

description
enabledPlugin
type
suffixes

Syntax
Accessing mimeType properties:

navigator.mimeTypes[i].property
navigator.mimeTypes[“MIMEtype”].property

Compatibility: WinIE-, MacIE5, NN3+, Moz1+, Safari1+

About this object
A mimeType object is essentially an entry in the internal array of mime types about which the
browser knows. NN3+, for example, ships with an internal list of more than five dozen mime
types. Only a handful of these types are associated with helper applications or plug-ins. But
add to that list all of the plug-ins and other helpers you’ve added, and the number of mime
types can grow to more than a hundred.

mimeTypeObject

BC88 Part VI ✦ Bonus Chapters

The mime type for the data is usually among the first bits of information to arrive at a browser
from the server. A mime type consists of two pieces of information: type and subtype. The tra-
ditional way of representing these pieces is as a pair separated by a slash, as in

text/html
image/gif
audio/wav
video/quicktime
application/pdf
application/x-zip-compressed

If a file does not contain the mime type “header” (or a CGI program sending the file does not
precede the transmission with the mime type string), the browser receives the data as a text/
plain mime type. When you load the file from a local hard drive, the browser looks to the file-
name’s extension (the suffix after the period) to figure out the file’s type.

Regardless of the way it determines the mime type of the incoming data, the browser then acts
according to instructions it maintains internally. You can see these settings by looking at pref-
erences settings usually associated with the name “Applications.”

By having the mimeType object available to JavaScript, your page can query a visitor’s NN3+,
MacIE5, or Safari browser to discover whether it has a particular mime type listed currently and
whether the browser has a corresponding plug-in installed and enabled. In such queries, the
mimeType and plugin objects work together to help scripts make these determinations. (For
plug-in detection for WinIE, see the section ‘“Plug-in” detection in WinIE’ later in this chapter.)

Because of the close relationship between mimeType and plugin objects, I save the examples
of using these objects and their properties for a section later in this chapter. There you can
see how to build functions into your scripts that enable you to examine how well a visitor’s
browser is equipped for either a mime type or data that requires a specific plug-in. In the mean-
time, be sure that you understand the properties of both objects.

Properties

description
Value: String. Read-Only
Compatibility: WinIE-, MacIE5, NN3+, Moz1+, Safari1+

While registering with the browser at launch time, plug-ins provide the browser with an extra
field of information: a plain-language description of the plug-in. If a particular mime type has a
plug-in associated with it and enabled for it, the plug-in’s description passes through to
become the description of the mimeType object. For example, the Adobe Acrobat plug-in
(whose mime type is application/pdf) supplies the following description fields:

(NN3/NN4) Acrobat
(NN6+) Acrobat (*.pdf)

When a mime type does not have a plug-in associated with it (either no plug-in is installed or a
helper application is used instead), you often see the type property value repeated in the
description field.

enabledPlugin
Value: plugin object. Read-Only
Compatibility: WinIE-, MacIE5, NN3+, Moz1+, Safari1+

mimeTypeObject

BC89Chapter 38 ✦ The Navigator and Other Environment Objects

The descriptions of the mimeType and plugin objects seem to come full circle when you reach
the mimeType.enabledPlugin property. The reason is that the property is a vital link between
a known mime type and the plug-in that the browser engages when data of that type arrives.

Knowing which plug-in is associated with a mime type is very important when you have more
than one plug-in capable of playing a given mime type. For example, the Crescendo midi audio
plug-in can take the place of the default audio plug-in if you set up your browser that way.
Therefore, all midi data streams play through the Crescendo plug-in. If you prefer to have
your Web page’s midi sound played only through another plug-in, your script needs to know
which plug-in is set to receive your data and perhaps alert the user accordingly. These kinds
of conflicts are not common, except where there is strong competition for players of various
audio and video media. For other kinds of content, each plug-in developer typically creates a
new type of data that has a unique mime type. But you have no guarantee of such uniqueness,
so I highly recommend a careful check of mime type and plug-in if you want your page to look
professional.

The enabledPlugin property evaluates to a plugin object. Therefore, you can dig a bit
deeper with this information to fetch the name or filename properties of a plug-in directly
from a mimeType object. You can use The Evaluator (with NN3+, MacIE5, and Safari) to study
the relationship between mimeType and plugin objects:

1. Enter the following statement into the bottom text box to examine the properties of a
mimeType object:

navigator.mimeTypes[0]

Notice that the mimeTypes array returns an object.

2. Inspect the plugin object from the bottom text box:

navigator.mimeTypes[0].enabledPlugin

You then see properties and values for a plugin object (described later in this chapter).

3. Check the plugin object for a different mimeType object by using a different index value:

navigator.mimeTypes[7].enabledPlugin

The mimeTypes array index values vary almost with every browser, depending on what the
user has installed. Therefore, do not rely on the index position in a script to assume that a
particular mimeType object is in that position on all browsers.

Example
See the section “Looking for mime Types and Plug-ins” later in this chapter.

Related Item: plugin object.

type
Value: String. Read-Only
Compatibility: WinIE-, MacIE5, NN3+, Moz1+, Safari1+

A mimeType object’s type property is the combination of the type and subtype commonly
used to identify the kind of data coming from the server. CGI programs, for example, typically
precede a data transmission with a special header string in the following format:

Content-type: type/subtype

mimeTypeObject.type

BC90 Part VI ✦ Bonus Chapters

This string prompts a browser to look up how to treat an incoming data stream of this kind.
As you see later in this chapter, knowing whether a particular mime type is listed in the
navigator.mimeTypes array is not enough. A good script must dig deeper to uncover addi-
tional information about what is truly available for your data.

The type property has a special place in the mimeType object in that its string value can act
as the index to the navigator.mimeTypes array. Therefore, to get straight to the mimeType
object for, say, the audio/wav mime type, your script can reference it directly through the
mimeTypes array:

navigator.mimeTypes[“audio/wav”]

This same reference can then get you straight to the enabled plug-in (if any) for the mime type:

navigator.mimeTypes[“audio/wav”].enabledPlugin

Example
See the section “Looking for mime Types and Plug-ins” later in this chapter.

Related Item: description property.

suffixes
Value: String. Read-Only
Compatibility: WinIE-, MacIE5, NN3+, Moz1+, Safari1+

Every mime type has one or more filename extensions, or suffixes, associated with it. You can
read this information for any mimeType object via the suffixes property. The value of this
property is a string. If the mime type has more than one suffix associated with it, the string
contains a comma-delimited listing as in

mpg, mpeg, mpe

Multiple versions of a suffix have no distinction among them. Those mime types that are best
described in four or more characters (derived from a meaningful acronym, such as mpeg) have
three-character versions to accommodate the “8-dot-3” filename conventions of MS-DOS and
its derivatives.

Example
See the section “Looking for mime Types and Plug-ins” later in this chapter.

plugin Object

Properties Methods Event Handlers

name refresh()
filename
description
length

mimeTypeObject.type

BC91Chapter 38 ✦ The Navigator and Other Environment Objects

Syntax
Accessing plugin object properties or method:

navigator.plugins[i].property | method()
navigator.plugins[“plugInName”].property | method()

Compatibility: WinIE-, MacIE5, NN3+, Moz1+, Safari1+

About this object
The plugin object offers a view of the plug-in mechanism from the browser’s perspective: The
software items registered with the browser at launch time stand ready for any matching mime
type that comes from the Net. One of the main purposes of having these objects scriptable is
to let your scripts determine whether a desired plug-in is currently registered with the
browser and to help with installing a plug-in.

The close association between the plugin and mimeType objects, demonstrated by the
mimeType.enabledPlugin property, is equally visible coming from the direction of the plug-
in. A plugin object evaluates to an array of mime types that the plug-in interprets. Use The
Evaluator (Chapter 13) to experiment with mime types from the point of view of a plug-in. Begin
by finding the name of the plug-in that your browser uses for a common animation mime type:

1. Enter the following statement into the top text box:

navigator.mimeTypes[“application/x-shockwave-flash”].enabledPlugin.name

If you use NN7+, MacIE5, or Safari, the value returned is probably “Shockwave Flash”.
Copy the name into the clipboard so that you can use it in subsequent statements. The
remaining examples show “LiveAudio” where you should paste in your plug-in’s name.

2. Enter the following statement into the top text box:

navigator.plugins[“Shockwave Flash”].length

Instead of the typical index value for the array notation, use the actual name of the
plug-in. This expression evaluates to a number indicating the total number of different
mime types that the plug-in recognizes.

3. Look at the first mime type specified for the plug-in by entering the following statement
into the top text box:

navigator.plugins[“Shockwave Flash”][0].type

The two successive pairs of square brackets is not a typo: Because the entry in the plugins
array evaluates to an array itself, the second set of square brackets describes the index of the
array returned by plugins[“Shockwave Flash”]— a period does not separate the sets of
brackets. In other words, this statement evaluates to the type property of the first mimeType
object contained by the Shockwave/Flash plug-in.

I doubt that you will have to use this kind of construction much; if you know the name of the
desired plug-in, you know what mime types it already supports. In most cases, you come at
the search from the mime type direction and look for a specific, enabled plug-in. See the sec-
tion “Looking for mime Types and Plug-ins” later in this chapter for details on how to use the
plugin object in a production setting.

pluginObject

BC92 Part VI ✦ Bonus Chapters

Properties

name
filename
description
length

Value: String. Read-Only
Compatibility: WinIE-, MacIE5, NN3+, Moz1+, Safari1+

The first three properties of the plugin object provide descriptive information about the
plug-in file. The plug-in developer supplies the name and description. It’s unclear whether
future versions of plug-ins will differentiate themselves from earlier ones via either of these
fields. Thus, while there is no explicit property that defines a plug-in’s version number, that
information may be part of the string returned by the name or description properties.

Be aware that plug-in authors may not assign the same name to every OS platform version of
a plug-in. Be prepared for discrepancies across platforms. You should hope that the plug-in
that you’re interested in has a uniform name across platforms because the value of the name
property can function as an index to the navigator.plugins array to access a particular
plugin object directly.

Another piece of information available from a script is the plug-in’s filename. On some plat-
forms, such as Windows, this data comes in the form of a complete pathname to the plug-in
DLL file; on other OS platforms, only the plug-in filename appears.

Finally, the length property of a plugin object counts the number of mime types that the
plug-in recognizes (but is not enabled for necessarily). Although you can use this information
to loop through all possible mime types for a plug-in, a more instructive way is to have your
scripts approach the issue via the mime type (as discussed later in this chapter).

Example
See the section “Looking for mime Types and Plug-ins” later in this chapter.

Related Item: mimeType.description property.

Methods

refresh()
Returns: Nothing.
Compatibility: WinIE-, MacIE5, NN3+, Moz1+, Safari1+

You may have guessed that many browsers determine their lists of installed plug-ins while
they launch. If you drop a new plug-in file into the plug-ins directory/folder, you have to quit
the browser and relaunch it before the browser sees the new plug-in file. But that isn’t a very
friendly approach if you take pains to guide a user through downloading and installing a new
plug-in file. The minute the user quits the browser, you have a slim chance of getting that per-
son right back. That’s where the refresh() method comes in.

The refresh() method is directed primarily at the browser, but the syntax of the call reminds
the browser to refresh just the plug-ins:

navigator.plugins.refresh()

pluginObject.name()

BC93Chapter 38 ✦ The Navigator and Other Environment Objects

Interestingly, this command works only for adding a plug-in to the existing collection. If the user
removes a plug-in and invokes this method, the removed one stays in the navigator.plugins
array — although it may not be available for use. Only the act of quitting and relaunching the
browser makes a plug-in removal take full effect.

Looking for mime Types and Plug-Ins
If you go to great lengths to add new media and data types to your Web pages, you certainly
want your visitors to reap the benefits of those additions. But you cannot guarantee that they
have the requisite plug-ins installed to accommodate that fancy data. Most modern browser
versions provide a bit of internal “smarts” by noticing when data requiring an uninstalled plug-
in is about to load and trying to help the user install a missing plug-in. You may wish, however,
to take more control over the process by examining the user’s browser plug-in functionality
prior to loading the external data file.

The best source of information, when available, is the software developer of the plug-in.
Macromedia, for example, provides numerous technical notes on its Web site (www.
macromedia.com) about plug-in detection for its various plug-ins and versions. Unfortunately,
that kind of assistance is not always easy to find from other vendors.

A lot of the discussion thus far in this chapter addresses the objects that make plug-in and
mime type support detection possible in some browsers. Netscape for NN3 initially introduced
these objects. Since then, they have been adopted by MacIE5 and Safari. Microsoft makes it
possible — but not easy — to determine whether a particular plug-in is available for WinIE.
The approach for WinIE is entirely different from what I have covered so far; if you wish to
perform cross-browser detection, you have to branch your code accordingly. I outline each
approach next in its own section, starting with the NN3+/MacIE5/Safari way.

Overview: Using mimeType and plugin objects
The value of performing your own inspection of plug-in support is that you can maintain bet-
ter control of your site visitors who don’t have the necessary plug-in yet. Rather than merely
providing a link to the plug-in’s download site, you can build a more complete interface around
the download and installation of the plug-in without losing your visitor. I have some suggestions
about such an interface at the end of this discussion.

How you go about inspecting a visitor’s plug-in library depends on what information you have
about the data file or stream and how precise you must be in locating a particular plug-in.
Some plug-ins may override mime type settings that you normally expect to find in a browser.
Another issue that complicates matters is that the same plug-in may have a different name
(navigator.plugins[i].name property), depending on the operating system. Therefore,
searching your script for the presence of a plug-in by name is not good enough if the name
differs from the Macintosh version to the Windows version. Fortunately, this is less of an
issue today than it was in earlier plug-in generations.

One other point that can help you decide the precise approach to take is which information
about the plug-in — support for the data mime type or the presence of a particular plug-in — is
important to your page and scripts. If your scripts rely on the existence of a plug-in that you
can script via LiveConnect, be sure that the plug-in is present and enabled for the desired mime
type (so that the plug-in is ensured of loading when it encounters a reference to the URL of
the external data). But if you care only that a plug-in of any kind supports your data’s mime
type, you can simply make sure that any plug-in is enabled for your MIME type.

To help you jump-start the process in your scripts, I discuss three utility functions you can use
in your own scripts. These functions are excerpts from a long listing (Listing 38-3), which is

BC94 Part VI ✦ Bonus Chapters

located in its entirety among the Chapter 38 listing files on this CD-ROM. The pieces not shown
here are merely user interface elements that enable you to experiment with these functions.

Verifying a mime type
Listing 38-3a is a function whose narrow purpose is to determine if the browser currently has
plug-in support enabled for a given mime type (in the type/subtype format as a string). The first
if construction verifies that there is a mimeType object for the supplied mime type string. If
such an object exists, the next if construction determines whether the enabledPlugin prop-
erty of the mimeType object returns a valid object. If so, the function returns true— meaning
that the mime type has a plug-in (of unknown supplier) available to play the external media.

Listing 38-3a: Verifying a MIME Type

// Pass “<type>/<subtype>” string to this function to find
// out if the MIME type is registered with this browser
// and that at least some plug-in is enabled for that type.
function mimeIsReady(mime_type) {

if (navigator.mimeTypes[mime_type]) {
if (navigator.mimeTypes[mime_type].enabledPlugin) {

return true;
}

}
return false;

}

Verifying a plug-in
In Listing 38-3b, you let JavaScript see if the browser has a specific plug-in registered in the
navigator.plugins array. This method approaches the installation question from a different
angle. Instead of querying the browser about a known mime type, the function inquires about
the presence of a known plug-in. But because more than one registered plug-in can support a
given mime type, this function explores one step further to see whether at least one of the
plug-in’s mime types (of any kind) is enabled in the browser.

Listing 38-3b: Verifying a Plug-In

// Pass the name of a plug-in for this function to see
// if the plug-in is registered with this browser and
// that it is enabled for at least one MIME type of any kind.
function pluginIsReady(plug_in) {

plug_in = plug_in.toLowerCase();
for (var i = 0; i < navigator.plugins.length; i++) {

if (navigator.plugins[i].name.toLowerCase().indexOf(plug_in) != -1) {
for (var j = 0; j < navigator.plugins[i].length; j++) {

if (navigator.plugins[i][j].enabledPlugin) {
return true;

}
}
return false;

}

BC95Chapter 38 ✦ The Navigator and Other Environment Objects

}
return false;

}

The parameter for the pluginIsReady() function is a string consisting of the plug-in’s name.
As discussed earlier, the precise name may vary from OS to OS or from version to version. The
function here assumes that you aren’t concerned about plug-in versioning. It also assumes
(with reasonably good experience behind the assumption) that a brand-name plug-in con-
tains a string with the brand in it. Thus, the pluginIsRead() function simply looks for the
existence of the passed name within the plugin object’s name property. For example, this
function accepts “QuickTime” as a parameter and agrees that there is a match with the plug-
in named “QuickTime Plug-in 6.0.2”. The script loops through all registered plug-ins for
a substring comparison (converting both strings to all lowercase to help overcome discrep-
ancies in capitalization).

Next comes a second repeat loop, which looks through the mime types associated with a plug-
in (in this case, only a plug-in whose name contains the parameter string). Notice the use of
the strange, double-array syntax for the most nested if statement: For a given plug-in (denoted
by the i index), you have to loop through all items in the mime types array (j) connected to
that plug-in. The conditional phrase for the last if statement has an implied comparison
against null (see another way of explicitly showing the null comparison in Listing 38-3a).
The conditional statement evaluates to either an object or null, which JavaScript can accept
as true or false, respectively. The point is that if an enabled plug-in is found for the given
mime type of the given plug-in, this function returns true.

Verifying both plug-in and mime type
The last utility function (Listing 38-3c) is the safest way of determining whether a visitor’s
browser is equipped with the “right stuff” to play your media. This function requires both a
MIME type and plug-in name as parameters and also makes sure that both items are supported
and enabled in the browser before returning true.

Listing 38-3c: Verifying Plug-in and mime Type

// Pass “<type>/<subtype>” and plug-in name strings for this
// function to see if both the MIME type and plug-in are
// registered with this browser, and that the plug-in is
// enabled for the desired MIME type.
function mimeAndPluginReady(mime_type,plug_in) {

if (mimeIsReady(mime_type)) {
var plugInOfRecord = navigator.mimeTypes[mime_type].enabledPlugin;
plug_in = plug_in.toLowerCase();
for (var i = 0; i < navigator.plugins.length; i++) {

if (navigator.plugins[i].name.toLowerCase().indexOf(plug_in) != -1) {
if (navigator.plugins[i] == plugInOfRecord) {

return true;
}

}
}

}
return false;

}

BC96 Part VI ✦ Bonus Chapters

This function starts by calling the mimeIsReady() function from Listing 38-3a. After that, the
function resembles the one in Listing 38-3b until you reach the most nested statements. Here,
instead of looking for any old mime type, you insist on the existence of an explicit match
between the mime type passed as a parameter and an enabled mime type associated with the
plug-in. To see how these functions work on your NN3+, MacIE5, or Safari browser, open the
complete file (lst38-03.htm) from this CD-ROM. The actual listing also includes code that
branches around IE for Windows and other browsers that don’t support this way of inspect-
ing mime types and plug-ins.

Managing manual plug-in installation
If your scripts determine that a visitor does not have the plug-in your data expects, you may
want to consider providing an electronic guide to installing the plug-in. One way to do this is
to open a new frameset (in the main window). One frame can contain step-by-step instructions
with links to the plug-in’s download site. The download site’s page can appear in the other
frame of this temporary window. The steps must take into account all installation requirements
for every platform, or, alternatively, you can create a separate installation document for each
unique class of platform. For instance, you must decode Macintosh files frequently from binhex
format and then uncompress them before you move them into the plug-ins folder. Other plug-
ins have their own, separate installation program. The final step should include a call to

navigator.plugins.refresh()

to make sure that the browser updates its internal listings. After that, the script can return to
the document.referrer, which should be the page that sends the visitor to the installation
pages. All in all, the process is cumbersome — it’s not like downloading a Java applet. But if
you provide some guidance, you stand a better chance of the user returning to play your cool
media. Also consider letting the browser’s own updating facilities handle the job (albeit not
as smoothly in many cases) by simply loading the data into the page, ready or not.

“Plug-in” detection in WinIE
WinIE4+ provides some built-in facilities that may take the place of plug-in detection in some
circumstances. First of all, it’s important to recognize that WinIE does not use the term “plug-
in” in the same way that Netscape and other browsers use it. Due to the integration between
IE and the Windows operating system, WinIE employs system-wide ActiveX controls to handle
the job of rendering external content. Some of these controls are designed to be accessed
from outside their walls, thus allowing client-side scripts to get and set properties or invoke
methods built into the controls. These controls behave a lot like plug-ins, so you frequently
see them referenced as “plug-ins,” as they are in this book.

WinIE prefers the <object> tag for both loading the plug-in (ActiveX control) and assigning
external content to it. One of the attributes of the object element is classid, which points
to a monstrously long string of hexadecimal numbers known as the guid (Globally Unique
Identifier). When the browser encounters one of these guids, it looks into the Windows
Registry to get the path to the actual plug-in file. If the plug-in is not installed on the user’s
machine, the object doesn’t load and any other HTML nested inside the <object> tag renders
instead. Thus, you can display a static image placeholder or HTML message about the lack of
the plug-in. But plug-in detection comes in most handy when your scripts need to communi-
cate with the plug-in, such as directing an embedded Windows Media Player plug-in to change
sound files or to play. When you build code around a scriptable plug-in, your scripts should
make sure that the plug-in object is indeed present so they don’t generate errors.

BC97Chapter 38 ✦ The Navigator and Other Environment Objects

The idea of using the <object> tag instead of the <embed> tag is that the <object> tag loads
a specific plug-in, whereas the mime type of the data referenced by the <embed> tag lets the
browser determine which plug-in to use for that mime type. It’s not uncommon, therefore, to
see an <object> tag definition surround an <embed> tag — both referencing the same exter-
nal data file. If the optimum plug-in fails to load, the <embed> tag is observed, and the
browser tries to find any plug-in for the file’s mime type.

With an object element as part of the HTML page, the element itself is a valid object — even
if the plug-in fails to load. Therefore, you must do more to validate the existence of the loaded
plug-in than simply test for the existence of the object element. To that end, you need to
know at least one scriptable property of the plug-in. Unfortunately, not all scriptable plug-ins
are fully documented, so you occasionally must perform some detective work to determine
which scriptable properties are available. While you’re on the search for clues, you can also
determine the version of the plug-in and make it a minimum version that your object ele-
ment allows to load.

Tracking down plug-in details
Not everyone has access to the Microsoft programming development environments (for exam-
ple, Visual Studio) through which you can find out all kinds of information about an installed
ActiveX control. If you don’t have access, you can still dig deep to get most (if not all) of the
information you need. The tools you can use include the Windows Registry Editor (regedit),
The Evaluator (Chapter 13), and, of course, your text editor and WinIE4+ browser. The following
steps take you through finding out everything you need to know about the Windows Media
Player control:

1. If you don’t know the guid for the Media Player (most people get it by copying some-
one else’s code that employs it), you can use the Registry Editor (regedit.exe) to find
it. Open the Registry Editor (in Win95/98/NT/XP, choose Run from the Start menu and
enter regedit; if that option is not available in your Windows version, search for the
file named regedit).

2. Expand the HKEY_CLASSES_ROOT folder.

3. Scroll down to the nested folder named CLSID, and click that folder.

4. Choose Edit/Find, and enter Windows Media Player. If you were searching for a differ-
ent plug-in, you would enter an identifying name (usually the product name) in this place.

5. Keep pressing F3 (Find Next) until the editor lands upon a folder whose default value
(in the right side of the Registry Editor window) shows Windows Media Player.

6. The number inside curly braces next to the highlighted folder is the plug-in’s guid. Right-
click the number and choose Copy Key Name. Paste the number into your document
somewhere for future reference. Eventually, it will be part of the value assigned to the
classid attribute of the object element.

7. Expand the highlighted folder.

8. Click the folder named InprocServer32. The default value should show a pathname
to the actual ActiveX control for the Windows Media Player plug-in.

9. Right-click the (Default) name for the path and choose Modify. The full pathname is
visible in an editable field.

10. Armed with this pathname information, open My Computer and locate the actual file
inside a directory listing.

BC98 Part VI ✦ Bonus Chapters

11. Right-click the file and choose Properties.

12. Click the Version tab (if present).

13. Copy the version number (generally four sets of numbers delimited by commas), and
paste it into your document for future reference. Eventually, it will be assigned to the
codebase attribute of the object element.

You are now ready to try loading the plug-in as an object and look for properties you
can test for.

14. Add an object tag to The Evaluator source code. This can go inside the head or just
before the </body> tag. For example, your tag should look something like the following:

<object id=”wmp” width=”1” height=”1”
classid=”CLSID:0A4286EA-E355-44FB-8086-AF3DF7645BD9”
codebase=”#Version=9,0,0,2980”>
</object>

Copy and paste the numbers for the guid and version. Two points to watch out for: First,
be sure that the guid value is preceded by CLSID: in the value assigned to classid;
second, be sure the version numbers are preceded by the prefix shown.

15. Load (or reload) the page in WinIE4+.

At this point, the wmp object should exist. If the associated plug-in loads successfully,
the wmp object’s properties include properties exposed by the plug-in.

16. Enter wmp into the bottom text box to inspect properties of the wmp object. Be patient:
It may take many seconds for the retrieval of all properties.

In case you can’t readily distinguish between the object element object properties and
properties of the scriptable plug-in, scroll down to the wmp.innerHTML property and its
values. When an object loads successfully, any parameters that it accepts are reflected
in the innerHTML for the object element. Each param element has a name — the name
of one of the scriptable properties of the plug-in.

17. Look for one of the properties that has some kind of value by default (in other words,
other than an empty string or false). In Windows Media Player, this can be Creation
Date. Use this property as an object detection condition in scripts that need to access
the Windows Media Player properties or methods:

if (wmp && wmp.CreationDate) {
// statements that “talk to” plug-in

}

Setting a minimum version number
The four numbers that you grab in step 13 in the previous section represent the version of the
plug-in as installed on your computer. Unless you have a way of verifying that your external
content runs on earlier versions of the plug-in (if there are earlier versions), you can safely
specify your version as the minimum.

Specificity rankings for the four numbers of a version decrease as you move from left to right.
For example, version 9,0,25,2 is later than 9,0,0,0; version 10,0,0,0 is later than both of them. If
you specify 9,0,25,2, and the user has 9,0,24,0 installed, the plug-in does not load and the object
isn’t available for scripting. On the other hand, a user with 9,0,26,0 has the object present
because the codebase attribute for the version specifies a minimum allowable version to load.

BC99Chapter 38 ✦ The Navigator and Other Environment Objects

When an object requires VBScript
Not all objects that load via the object element are scriptable through JavaScript (JScript).
Occasionally, an object is designed so that its properties are exposed only to VBScript. This
happens, for example, with the Microsoft Windows Media Rights Manager (DRM) object. To
find out if the browser (operating system) is equipped with DRM, your page loads the object
via the object element as usual; however, a separate VBScript section must access the object
to test for the existence of one of its properties. Because script segments written in either lan-
guage can access each other, this isn’t a problem provided you know what the property or
method is for the object. The following fragment from the Head section of a document demon-
strates how JavaScript and VBScript can interact so that JavaScript code can branch based
on the availability of DRM:

<head>
<object id=”drmObj” height=”1” width=”1”
classid=”CLSID:760C4B83-E211-11D2-BF3E-00805FBE84A6”></object>
<script type=”text/vbscript”>
function hasDRM()

on error resume next
drmObj.StoreLicense(“”)
if (err.number = 0) then

hasDRM = true
else

hasDRM = false
end if

end function
</script>
<script type=”text/javascript”>
var gHasDRM;
if (drmObj && hasDRM()) {

gHasDRM = true;
} else {

gHasDRM = false;
}
</script>
</head>

The JavaScript segment sets a Boolean global variable to indicate whether the object has
loaded correctly. Part of the job is accomplished via the hasDRM() function in the VBScript
segment. From VBScript, the drmObj object responds to the StoreLicense() method call,
but it throws a VBScript error indicating that no parameter was sent along with the method.
Any subsequent scripts in this page can use the gHasDRM global variable as a conditional
expression before performing any actions requiring the object (which works in tandem with
the Windows Media Player).

screen Object

Properties Methods Event Handlers

availHeight
availLeft
availTop
availWidth

Continued

screen

BC100 Part VI ✦ Bonus Chapters

Properties Methods Event Handlers

bufferDepth
colorDepth
fontSmoothingEnabled
height
pixelDepth
updateInterval
width

Syntax
Accessing screen object properties:

(All) screen.property
(IE4+) [window.]navigator.screen.property

Compatibility: WinIE4+, MacIE4+, NN4+, Moz1+, Safari1+

About this object
Browsers other than from the earliest generations provide a screen object that lets your
scripts inquire about the size and color settings of the video monitor used to display a page.
Properties are carefully designed to reveal not only the raw width and height of the monitor
(in pixels), but also what the available width and height are once you take into account the
operating system’s screen-hogging interface elements (for example, the Windows taskbar and
the Mac menu bar).

Internet Explorer 4 provides a screen object, although it appears as a property of the window
object in the IE4+ object model. Only three properties of the IE4+ screen object —height,
width, and colorDepth— share the same syntax as NN4+’s screen object.

Properties

availHeight
availWidth
height
width

Value: Integer. Read-Only
Compatibility: WinIE4+, MacIE4+, NN4+, Moz1+, Safari1+

With the availability of window sizing methods in version 4 browsers and later, your scripts
may want to know how large the user’s monitor is. This is particularly important if you set up
an application to run in kiosk mode, which occupies the entire screen. Two pairs of properties
let scripts extract the dimensions of the screen. All dimensions are in pixels.

You can extract the gross height and width of the monitor from the screen.height and
screen.width properties. Thus, a monitor rated as a 1024 × 768 monitor returns values of
1024 and 768 for width and height, respectively.

screen

BC101Chapter 38 ✦ The Navigator and Other Environment Objects

But not every pixel of the screen’s gross size is available as displayable area for a window. To
the rescue come the screen.availWidth and screen.availHeight properties. For example,
32-bit Windows operating systems display the taskbar. The default location for this bar is at
the bottom of the window, but users can reorient it along any edge of the screen. If the default
behavior of always showing the taskbar is in force, the bar takes away from the screen real
estate available for window display (unless you intentionally size or position a window so that
part of the window extends under the bar). When along the top or bottom edge of the screen,
the taskbar occupies 28 vertical pixels; when positioned along one of the sides, the bar occu-
pies 60 horizontal pixels. On the Macintosh platform, the 20-pixel-deep menu bar occupies a
top strip of the screen. Although you can position and size windows so the menu bar partially
covers them, it is not a good idea to open a window in (or move a window into) that location.

You can use the available screen size values as settings for window properties. For example,
to arrange a window so that it occupies all available space on the monitor, you must position
the window at the top left of the screen and then set the outer window dimensions to the
available sizes as follows:

function maximize() {
window.moveTo(0,0);
window.resizeTo(screen.availWidth, screen.availHeight);

}

The preceding function positions the window appropriately on the Macintosh just below the
menu bar so that the menu bar does not obscure the window. If, however, the client is running
Windows and the user positions the taskbar at the top of the screen, the window is partially
hidden under the taskbar (you cannot query the available screen space’s coordinates). Also
in Windows, the appearance is not exactly the same as a maximized window. See the discus-
sion of the window.resizeTo() method in Chapter 16 for more details. Note that MacIE gen-
erally returns a value for screen.availHeight that is about 24 pixels fewer than the actual
available height (even after taking into account the Mac menu bar).

For Navigator 3+ and Mozilla, you can use LiveConnect to access a native Java class that reveals
the overall screen size (not the available screen size). If the user runs Navigator 3 and Java is
enabled, you can place the following script fragment in the Head portion of your document to
set variables with screen width and height:

var toolkit = java.awt.Toolkit.getDefaultToolkit();
var screenSize = toolkit.getScreenSize();

The screenSize variable is an object whose properties (width and height) contain the pixel
measures of the current screen. This LiveConnect technique works only in Netscape and
Mozilla browsers (IE does not provide direct access to Java classes). In fact, you can also
extract the screen resolution (pixels per inch) in the same manner. The following statement,
added after the preceding ones, sets the variable resolution to that value:

var resolution = toolkit.getScreenResolution();

Related Items: window.innerHeight, window.innerWidth, window.outerHeight,
window.outerWidth properties; window.moveTo(), window.resizeTo() methods.

availLeft
availTop

FTR:screen.availLeft

Value: Integer. Read-Only
Compatibility: WinIE-, MacIE-, NN4+, Moz1+, Safari1+

screen.availLeft

BC102 Part VI ✦ Bonus Chapters

The availLeft and availTop properties return the pixel measure of where the available space
of the screen begins. The only time these values are anything other than zero is when a user
positions the taskbar along the left or top edges of the screen. For example, if the user positions
the taskbar along the top of the screen, you do not want to position a window any higher than
the 28 pixels occupied by the taskbar. There are no corresponding properties for IE.

Example
If you are a Windows user, you can experiment with these NN4+ properties via The Evaluator
(Chapter 13). With the taskbar at the bottom of the screen, enter these two statements into
the top text box:

screen.availLeft
screen.availTop

Next, drag the taskbar to the top of the screen and try both statements again. Now, drag the
taskbar to the left edge of the screen and try the statements once more.

Related Items: screen.availWidth, screen.availHeight properties;
window.moveTo() method.

bufferDepth
Value: Integer. Read/Write
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-

By default, IE does not use any offscreen buffering of page content. But adjusting the
bufferDepth property enables you to turn on offscreen buffering and control the color depth
of the buffer. Using offscreen buffering may improve the smoothness of path-oriented anima-
tion through positioning.

The default value (buffering turned off) is 0. By setting the property to -1, you instruct IE to
set the color depth of the offscreen buffer to the same color depth as the screen (as set in the
control panel). This should be the optimum value, but you can also force the offscreen buffer
to have one of the following bit depths: 1, 4, 8, 15, 16, 24, or 32.

Related Items: screen.colorDepth, screen.pixelDepth properties.

colorDepth
pixelDepth

Value: Integer. Read-Only
Compatibility: WinIE4+, MacIE4+, NN4+, Moz1+, Safari1_

You can design a page with different color models in mind because your scripts can query the
client to find out how many colors the user sets the monitor to display. This is helpful if you
have more subtle color schemes that require 16-bit color settings or images tailored to specific
palette sizes.

Both the screen.colorDepth and screen.pixelDepth properties return the number of color
bits to which the color client computer’s video display control panel is set. The screen.
colorDepth value may take into account a custom color palette; so for NN4+, you may prefer
to rely only on the screen.pixelDepth value. (IE4+, however, supports only the screen.
colorDepth property of this pair.) You can use this value to determine which of two image
versions to load, as shown in the following script fragment that runs as the document loads:

screen.availLeft

BC103Chapter 38 ✦ The Navigator and Other Environment Objects

if (screen.colorDepth > 8) {
document.write(“”);

} else {
document.write(“”);

}

In this example, the logoHI.jpg image is designed for 16-bit displays or better, while the
colors in logoLO.jpg are tuned for 8-bit display.

Related Item: screen.bufferDepth property.

fontSmoothingEnabled
Value: Boolean. Read-Only
Compatibility: WinIE4+, MacIE-, NN-, Moz-, Safari-

Some versions of the Windows OS have a Display control panel setting for “Smooth Edges”
on screen fonts. The fontSmoothingEnabled property lets your script see the state of that
setting. This setting can affect, for example, which stylesheet you enable because it has font
specifications that look good only when smoothing is enabled. A default installation of
Windows has this feature turned off.

updateInterval
Value: Integer. Read/Write
Compatibility: WinIE4+, MacIE-, NN-, Moz-, Safari-

The updateInterval property is the number of milliseconds between screen updates. The
default value of zero lets IE arbitrate among the demands for screen updates in a highly ani-
mated setting. If you set this value to a large number, more screen updates are accumulated
in a buffer — preventing some animated steps from updating the screen.

userProfile Object

Properties Methods Event Handlers

addReadRequest()
clearRequest()
doReadRequest()
getAttribute()

Syntax
Accessing userProfile object methods:

(IE4+) [window.]navigator.userProfile.method()

Compatibility: WinIE4+, MacIE-, NN-, Moz-, Safari-

userProfile

BC104 Part VI ✦ Bonus Chapters

About this object
The userProfile object is an IE-specific (and Windows, at that) property that acts as the
gateway to the user profile information that the client computer collects from the user. You
can retrieve none of this information via JavaScript without permission from the user. Access
to this information is performed in a strict sequence, part of which enables you to define how
the request for this private information is worded when the user is presented with the request.

User profile data consists of nearly 30 fields of personal information about the user’s contact
information. Each of these fields has a name, which by and large conforms to the vCard stan-
dard. Your scripts can request one or more specific fields from the list, rather than having to
deal with the entire set of fields.

The sequence for accessing this data entails four basic steps:

1. Put the request for each vCard field into a queue that is maintained in the browser’s
memory (via the addReadRequest() method).

2. Execute the batch request, which displays a detailed dialog box to the user (via the
doReadRequest() method). If a user profile is in effect, the user sees which fields you
are requesting plus the data in the vCard. The user then has the chance to deselect one
or more of your choices — or disallow access completely.

3. Get each attribute by name (via the getAttribute() method). You invoke this method
once for each vCard field.

4. Clear the queue of requests (via the clearRequest() method).

Returned values are strings. Thus, you can prefill the customer information for an order form
or capture the information in hidden fields that are submitted with a visible form.

Listing 38-4 demonstrates the use of the four key methods of the userProfile object. After
the page loads, it attempts to extract the data from every vCard field and displays both the
attribute name and the value as associated with the current user profile in a table. Notice that
the names of the attributes are hard-wired because the object does not provide a list of imple-
mented attributes.

Listing 38-4: Accessing userProfile Data

<html>
<head>

<title>userProfile Object</title>
<script type=”text/javascript”>
var attrs = [“Business.City”,”Business.Country”,”Business.Fax”,

“Business.Phone”,”Business.State”,”Business.StreetAddress”,
“Business.URL”,”Business.Zipcode”,”Cellular”,”Company”,”Department”,
“DisplayName”,”Email”,”FirstName”,”Gender”,”Home.City”,”Home.Country”,
“Home.Fax”,”Home.Phone”,”Home.State”,”Home.StreetAddress”,
“Home.Zipcode”,”Homepage”,”JobTitle”,”LastName”,”MiddleName”,
“Office”,”Pager”];

function loadTable() {
// make sure this executes only in IE4+ for Windows
if ((navigator.userAgent.indexOf(“Win”) != -1) &&

navigator.userProfile) {
var newRow, newCell, attrValue;
// queue up requests for every vCard attribute
for (var i = 0; i < attrs.length; i++) {

navigator.userProfile.addReadRequest(“vCard.” + attrs[i]);

userProfile

BC105Chapter 38 ✦ The Navigator and Other Environment Objects

}
// dispatch the request to let user accept or deny access
navigator.userProfile.doReadRequest(1, “JavaScript Bible”);
// append rows to the table with attribute/value pairs
for (var j = 0; j < attrs.length; j++) {

newRow = document.all.attrTable.insertRow(-1);
newRow.bgColor = “#FFFF99”;
newCell = newRow.insertCell(0);
newCell.innerText = “vCard.” + attrs[j];
newCell = newRow.insertCell(1);
// get the actual value
attrValue = navigator.userProfile.getAttribute(“vCard.” +

attrs[j]);
newCell.innerHTML = (attrValue) ? attrValue : “ ”;

}
// clean up after ourselves
navigator.userProfile.clearRequest();

} else {
alert(“This example requires IE4+ for Windows.”);

}
}
</script>

</head>
<body onload=”loadTable()”>

<h1>userProfile Object</h1>
<hr />
<table id=”attrTable” border=”1” cellpadding=”5”>

<tr bgcolor=”#CCFFFF”>
<th>vCard Property</th>
<th>Value</th>

</tr>
</table>

</body>
</html>

It appears that the newer the version of Windows that the user runs, the more likely that user
profile data is available. Even so, there may be little more than name and address data for
those users who are careful not to fill out optional fields of Microsoft Web site forms requesting
personal information.

Comparable information may be available from NN4+ users on any OS platform via signed
scripts that access ldap preferences. See the discussion earlier in this chapter about the
navigator.preference() method.

Methods

addReadRequest(“attributeName”)
Returns: Boolean.
Compatibility: WinIE4+, MacIE-, NN-, Moz-, Safari-

Before the user is asked for permission to reveal any personal information, you must queue
up requests — even if there is just one field in which you are interested. For each field, use
the addReadRequest() method and specify as the parameter a string of the attribute name.
Acceptable attribute names are as follows:

userProfile.addReadRequest()

BC106 Part VI ✦ Bonus Chapters

vCard.Business.City
vCard.Business.Country
vCard.Business.Fax
vCard.Business.Phone
vCard.Business.State
vCard.Business.StreetAddress
vCard.Business.URL
vCard.Business.Zipcode
vCard.Cellular
vCard.Company
vCard.Department
vCard.DisplayName
vCard.Email
vCard.FirstName
vCard.Gender
vCard.Home.City
vCard.Home.Country
vCard.Home.Fax
vCard.Home.Phone
vCard.Home.State
vCard.Home.StreetAddress
vCard.Home.Zipcode
vCard.Homepage
vCard.JobTitle
vCard.LastName
vCard.MiddleName
vCard.Office
vCard.Pager

All attribute values are case-insensitive.

This method returns a Boolean value of true if the addition to the queue succeeds. A
returned value of false usually means that the attribute value is not valid or that a request
for that attribute name is already in the queue. If you fail to clear the queue after compiling
one list of attributes, attempts to read the attribute result in a return value of false.

Example
See Listing 38-4 for an example of the addReadRequest() method in action. You can also
invoke it from the top text box in The Evaluator. For example, enter the following statement
to queue one request:

navigator.userProfile.addReadRequest(“vCard.LastName”)

To continue the process, see examples for doReadRequest() and getAttribute() later in
this chapter.

Related Items: clearRequest(), doReadRequest(), and getAttribute() methods.

clearRequest()
Returns: Nothing.
Compatibility: WinIE4+, MacIE-, NN-, Moz-, Safari-

After retrieving the attributes whose names are stacked in the request queue, invoke the
clearRequest() method to empty the queue. It is always good programming practice to
clean up after yourself, especially when security concerns are involved.

Related Items: addReadRequest(), doReadRequest(), and getAttribute() methods.

userProfile.addReadRequest()

BC107Chapter 38 ✦ The Navigator and Other Environment Objects

doReadRequest(reasonCode, identification[,
domain[, path[, expiration]]])

Returns: Nothing.
Compatibility: WinIE4+, MacIE-, NN-, Moz-, Safari-

Once the names of the desired vCard attributes are stacked in the queue (via the
addReadRequest() method), invoke the doReadRequest() method to prompt the user for
the permission that your scripts need to gain access to the data. The user sees a detailed
dialog box that lists the vCard fields you are requesting, as well as a description about your
reason for wanting the data and who you are.

The first required parameter is an integer representing one of the standard descriptions as
defined by the Internet Privacy Working Group. Associated text is displayed in the permission
request dialog box that the user sees. The codes and their strings are as follows:

Code Description String

0 Used for system administration.

1 Used for research and/or product development.

2 Used for completion and support of current transaction.

3 Used to customize the content and design of a site.

4 Used to improve the content of the site, including advertisements.

5 Used for notifying visitors about updates to the site.

6 Used for contacting visitors for marketing of services or products.

7 Used for linking other collected information.

8 Used by site for other purposes.

9 Disclosed to others for customization or improvement of the content and design of the site.

10 Disclosed to others, who may contact you, for marketing of services and/or products.

11 Disclosed to others, who may contact you, for marketing of services and/or products; you
have the opportunity to ask a site not to do this.

12 Disclosed to others for any other purpose.

Although these description strings are fixed, you do have an opportunity to include some
customized information in the second parameter. The parameter is intended to enable you to
identify the Web site or organization requesting the information. Standards recommendations
suggest you include a URL to the site, as well. In any case, the second parameter can be any
string. But it is not treated like HTML, so do not attempt to include a clickable link here.

Two optional parameters enable you to specify a domain and path within that domain for
which the user permissions are to apply. Both of these parameters closely mirror their usage in
cookies, but they also depend on the capability to set an expiration date via the fifth parame-
ter. Through IE6, however, the expiration date parameter is ignored. Therefore, permissions
expire when the user quits the browser (just like temporary cookies do).

Example
See Listing 38-4 for an example of the doReadRequest() method in action. If you entered the
addReadRequest() example for The Evaluator earlier in this chapter, you can now bring up
the permissions dialog box (if you have a user profile for your version of Windows) by enter-
ing the following statement into the top text box:

userProfile.doReadRequest()

BC108 Part VI ✦ Bonus Chapters

navigator.userProfile.doReadRequest(1, “Just me!”)

Related Items: addReadRequest(), clearRequest(), and getAttribute() methods.

getAttribute(“attributeName”)
Returns: String.
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-

The getAttribute() method attempts to retrieve the vCard data based on the items queued
via the addReadRequest() method. A permission dialog box provides the user an opportu-
nity to choose which of the requested items to reveal or to deny all access to the information.
Only one attribute name is permitted as a parameter to the getAttribute() method, requir-
ing that you invoke the method for each attribute you want to fetch.

Example
See Listing 38-4 for an example of the getAttribute() method in action. Also, if you followed
The Evaluator examples for this object, you can now extract the desired information (provided
it is in your user profile). Enter the following statement into the top text box:

navigator.userProfile.getAttribute(“vCard.LastName”)

Related Items: addReadRequest(), clearRequest(), and doReadRequest() methods.

✦ ✦ ✦

userProfile.doReadRequest()

Positioned Objects

This chapter tackles positioned objects and layers, and investigates
the history of Dynamic HTML — the capability to alter content on

the fly in response to user interaction — particularly with respect to
Netscape Navigator 4, chronologically the first browser to offer these
features. The original impetus for this chapter was the NN4 layer
element and its associated object. What makes this discussion awk-
ward is that the layer element and object became dead-end entities
that never made it into the W3C standards process. NN6+/Moz instead
have adopted the W3C standards for dynamic content, which more
closely mimic the way Microsoft implemented its DHTML features
starting with IE4. NN6+/Moz explicitly do not provide backward com-
patibility with scripted layer element objects, which also means that
you must rewrite legacy Netscape Navigator applications to work in
NN6+/Moz, if you haven’t been done so already.

That leaves an ungainly task in this chapter to create a bridge between
the old layer element and the more modern way of working with
elements that can be positioned on the page, flown across the page,
stacked in front of other elements, or hidden from view. The IE4+ and
NN6+/W3C DOM way to accomplish all of this is through Cascading
Style Sheets and the scripting thereof.

The NN4 layer element is well on its way to becoming a distant
memory. But for the sake of historical completeness, the first half of
this chapter covers the details of the now defunct layer and ilayer
objects. The second half demonstrates how to apply CSS and modern
DOM techniques to manage positioned elements in Mozilla-based
browsers, Safari, and others.

What Is a Layer?
Terminology in the area of positioned elements has become a bit con-
fusing over time. Because NN4 was the earliest browser to be released
with positioned elements (the layer element), the term layer became
synonymous with any positioned element. When IE4 came on the
scene, it was convenient to call a stylesheet-positioned element (in
other words, an element governed by a stylesheet rule with the posi-
tion attribute) a layer as a generic term for any positioned element.
In fact, NN4 even treated an element that was positioned through
stylesheets as if it were a genuine layer object (although with some
minor differences).

In the end, the layer term made good sense because no matter how it
was achieved, a positioned element acted like a layer in front of the
body content of a page. Perhaps you have seen how animated car-
toons were created before computer animation changed the art.

3939C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Layer concepts

How to move, hide, and
show content

The end of the layer
element

✦ ✦ ✦ ✦

BC110 Part VI ✦ Bonus Chapters

Layers of clear acetate sheets were assembled atop a static background. Each sheet contained
one character or portion of a character. When all the sheets were carefully positioned atop
each other, the view (as captured by a still camera) formed a composite frame of the cartoon.
To create the next frame of the cartoon, the artist moved one of the layers a fraction of an
inch along its intended path and then took another picture.

If you can visualize how that operation works, you have a good starting point for understand-
ing how layers work. Each layer contains some kind of HTML content that exists in its own
plane above the main document that loads in a window. You can change or replace the con-
tent of an individual layer on the fly without affecting the layout of the other layers; you can
also reposition, resize, or hide the entire layer under script control.

One aspect of layers that goes beyond the cartoon analogy is that a layer can contain other
layers. When that happens, any change that affects the primary layer — such as moving the
layer 10 pixels downward — also affects the layers nested inside. It’s as if the nested layers
are passengers of the outer layer. When the outer layer goes somewhere, the passengers do,
too. And yet, within the “vehicle,” the passengers may change seats by moving around with-
out regard for what’s going on outside.

With this analogy in mind, many commercial DHTML development tools and content authors
refer to positioned elements as layers, which you can move, resize, stack, and hide indepen-
dently of the body background. Therefore, references throughout this book to layers may
mean anything from the NN4 layer object to an element positioned by way of stylesheets.

NN4 layer Object

Properties Methods Event Handlers

above captureEvents() onblur
background handleEvent() onfocus
below load() onload
bgcolor moveAbove() onmouseout
clip.bottom moveBelow() onmouseover
clip.left moveBy()
clip.right moveTo()
clip.top moveToAbsolute()
document releaseEvents()
left resizeBy()
name resizeTo()
pageX routeEvent()
pageY
parentLayer
siblingAbove
siblingBelow
src
top
visibility
zIndex

document.layerObject

BC111Chapter 39 ✦ Positioned Objects

Syntax
Accessing layer object properties or methods:

[window.]document.layerName.[document.layerName. ...] property |
method([parameters])
[window.]document.layers[index].[document.layerName. ...]property |
method([parameters])

Compatibility: WinIE-, MacIE-, NN4, Moz-, Safari-

About this object
You can create a layer object in NN4 in one of three ways. The first two ways use NN4-only
syntax: the <layer> tag in HTML and the new Layer() constructor in JavaScript. The tag
offers numerous attributes that establish the location, stacking order, and visibility. These
attributes, in turn, become scriptable properties. If you create the layer through the construc-
tor, you then use JavaScript to assign values to the object’s properties.

The third way to create an NN4 layer object is to assign an absolute-positioned stylesheet
rule to a block-level element — most typically a div element. This is the way that IE4+ and NN6+
do it, too. In practice, however, a positioned div element is not as robust (from rendering and
scriptability standpoints) in NN4 as a genuine layer element. Therefore, it is sometimes nec-
essary to branch a page’s code to use document.write() for a <layer> tag in NN4 and a
<div> tag in IE4+ and NN6+.

Layer references
The task of assembling JavaScript references to NN4 layers and the objects they contain resem-
bles the same process for framesets (in fact, conceptually, a layer is like a dynamically mov-
able and resizable free-floating frame). Therefore, before you start writing the reference, you
must know the relationship between the document containing the script and the target of the
reference.

To demonstrate how this works, I start with a script in the base document loaded into a win-
dow that needs to change the background color (bgColor property) of a layer defined in the
document. The skeletal HTML is as follows:

<html>
<head>
</head>
<body>

<layer name=”Flintstones” src=”flintstonesFamily.html”></layer>
</body>

</html>

From a script in the Head section, the statement that changes the layer’s bgColor property
is this:

document.Flintstones.bgColor = “yellow”;

This syntax looks like the way you address any object in a document, such as a link or image.
However, things get tricky in that each layer automatically contains a document object of its
own. That document object is what holds the content of the layer. Therefore, if you want to
inspect the lastModified property of the HTML document loaded into the layer, use this
statement:

var modDate = document.Flintstones.document.lastModified;

document.layerObject

BC112 Part VI ✦ Bonus Chapters

The situation gets more complex if the layer has another layer nested inside it (one of those
“passengers” that goes along for the ride). If the structure changes to

<html>
<head>
</head>
<body>

<layer name=”Flintstones” src=”flintstonesFamily.html”>
<layer name=”Fred” src=”fredFlintstone.html”></layer>
<layer name=”Wilma” src=”wilmaFlintstone.html”></layer>

</layer>
</body>

</html>

references to items in the second level of layers get even longer. For example, to get the
lastModified property of the fredFlintstone.html file loaded into the nested Fred layer,
use this reference from the Head script:

document.Flintstones.document.Fred.document.lastModified

The reason for this is that NN4 does not have a shortcut access to every layer defined in a top-
level document. As stated in the description of the document.layers property in Chapter 18,
the property reflects only the first level of layers defined in a document. You must know the
way to San Jose if you want to get its lastModified property.

Layers and forms
Because each layer has its own document, you cannot spread a form across multiple layers.
Each layer’s document must define its own <form> tags. If you need to submit one form from
content located in multiple layers, one of the forms should have an onsubmit event handler
to harvest all the related form values and place them in hidden input fields in the document
containing the submitted form. In this case, you need to know how to devise references from
a nested layer outward.

As a demonstration of reverse-direction references, I start with the following skeletal structure
that contains multiple nested layers:

<html>
<head>
</head>
<body>

<form name=”personal”>
<input type=”text” name=”emailAddr” />

</form>
<layer name=”product” src=”ultraGizmoLine.html”>

<layer name=”color” src=”colorChoice.html”></layer>
<layer name=”size” src=”sizeChoice.html”></layer>
<layer name=”sendIt” src=”submission.html”></layer>

</layer>
</body>

</html>

Each of the HTML files loaded into the layers also has a <form> tag defining some fields or
select lists for relevant user choices, such as which specific model of the UltraGizmo line is
selected, what color, and in what size. (These last two are defined as separate layers because
their positions are animated when they are displayed.) The assumption here is that the Submit
button is in the sendIt layer. That layer’s document also includes hidden input fields for data
to be pulled from the main document’s form and three other layer forms. Two of those layers

document.layerObject

BC113Chapter 39 ✦ Positioned Objects

are at the same nested level as sendIt, one is above it, and the main document’s form is at the
highest level.

To reach the value property of a field named theColor in the color layer, a script in the
sendIt layer uses this reference:

parentLayer.document.color.document.forms[0].theColor.value

Analogous to working with frames, the reference starts with a reference to the next higher
level (parentLayer) and then starts working its way down through the parent layer’s docu-
ment, the color layer, the color layer’s document, and finally the form therein.

To reach the value property of a field named modelNum in the product layer, the reference
starts the same way; but because the form is at the parent layer level, the reference goes
immediately to that layer’s document and form:

parentLayer.document.forms[0].modelNum.value

It may seem odd that a reference to an object at a different layer level is shorter than one at
the same level (for example, the color layer), but the route to the parent layer is shorter than
going via the parent layer to a sibling. Finally, to reach the value of the emailAddr field in the
base document, the reference must ratchet out one more layer as follows:

parentLayer.parentLayer.document.forms[0].emailAddr.value

The two parentLayer entries step the reference out two levels, at which point the scope is in
the base layer containing the main document and its form.

Layers and tables
The document-centered nature of NN4 layers also makes it difficult — if not impossible at
times — to incorporate them inside tables. Even defining a layer that is contained by a td
table cell can cause countless problems.

If you need to have absolute-positioned elements that look as though they are part of a table,
I suggest you define the layers as freestanding elements outside of the table. After that, you
can position the layers to make them look like they live in the table. You may also need to cre-
ate empty placeholders in your table to make room for the overlaid layer. You can do this by
way of a relative-positioned element inside the table cell whose visibility is hidden. This allows
the element to flow as the page loads to accommodate the current browser window dimen-
sions. Scripts can then read the location of the relative-positioned element and use those
coordinates to move the absolute-positioned elements that are to overlay the hidden elements.

Properties

above
below
siblingAbove
siblingBelow

Value: Layer object. Read-Only
Compatibility: WinIE-, MacIE-, NN4, Moz-, Safari-

Each layer object is its own physical layer. Given that the variables x and y traditionally repre-
sent width and height, the third dimension — the position of a layer relative to the stack of

document.layerObject.above

BC114 Part VI ✦ Bonus Chapters

layers — is called the z-order. Layer orders are assigned automatically according to the loading
order, with the highest number being the topmost layer. That topmost layer is the one closest
to you as you view the page on the monitor.

If two layers are on a page, one layer must always be in front of the other even if they both
appear to be transparent and visually overlap each other. Knowing which layer is above the
other is important for scripting purposes, especially if your script needs to reorder the layer-
ing in response to user action. Layer objects have four properties to help you determine the
layers adjacent to a particular layer.

The first pair of properties, layerObject.above and layerObject.below, takes a global look
at all layers defined on the page regardless of the fact that one layer may contain any number
of nested layers separate from other batches on the screen. If a layer lies above the one in
question, the property contains a reference to that other layer; if no layer exists in that direc-
tion, the value is null. Attempts to retrieve properties of a nonexistent layer result in runtime
scripting errors indicating that the object does not have properties (of course not — an object
must exist before it can have properties).

To understand these two properties better, consider a document that contains three layers
(in any nesting arrangement you like). The first layer to be defined is on the bottom of the
stack. It has a layer above it, but none below it. The second layer in the middle has a layer
both above and below it. And the topmost layer has a layer only below it, with no more layers
above it (that is, coming toward your eye).

Another pair of properties, layerObject.siblingAbove and layerObject.siblingBelow,
confines itself to the group of layers inside a parent layer container. Just as in real family life,
siblings are descended from (teens might say “contained by”) the same parent. An only
child layer has no siblings, so both the layerObject.siblingAbove and layerObject.
siblingBelow values are null. For two layers from the same parent, the first one to be
defined has a sibling layer above it; the other has a sibling layer below it.

It is important to understand the difference between absolute layering and sibling layering to
use these properties correctly. A nested layer might be the fifth layer from the bottom among
all layers on the page but at the same time be the first layer among siblings within its family
group. As you can see, these two sets of properties enable your script to be very specific
about the relationships under examination.

Positioned objects in IE4+ and NN6+ have no comparable properties to the four described in
this section.

Example
Listing 39-1 enables you to experiment with just one set of these properties: layerObject.
above and layerObject.below. The page is almost in the form of a laboratory/quiz that
enables you to query yourself about the values of these properties for two swappable layers.

Listing 39-1: A Layer Quiz

<html>
<head>

<title></title>
<script type=”text/javascript”>
function checkAbove(oneLayer) {

document.forms[0].errors.value = “”;
document.forms[0].output.value = oneLayer.above.name;

}

document.layerObject.above

BC115Chapter 39 ✦ Positioned Objects

function checkBelow(oneLayer) {
document.forms[0].errors.value = “”;
document.forms[0].output.value = oneLayer.below.name;

}
function swapLayers() {

if (document.yeller.above) {
document.yeller.moveAbove(document.greeny);

} else {
document.greeny.moveAbove(document.yeller);

}
}
function onerror(msg) {

document.forms[0].output.value = “”;
document.forms[0].errors.value = msg;
return true;

}
</script>

</head>
<body>

<h1>Layer Ordering</h1>
<hr />
<form>

Results:<input type=”text” name=”output” />
<p><input type=”button” value=”Who’s ABOVE the Yellow layer?”

onclick=”checkAbove(document.yeller)” />

<input type=”button” value=”Who’s BELOW the Yellow layer?”
onclick=”checkBelow(document.yeller)” /></p>

<p><input type=”button” value=”Who’s ABOVE the Green layer?”
onclick=”checkAbove(document.greeny)” />

<input type=”button” value=”Who’s BELOW the Green layer?”
onclick=”checkBelow(document.greeny)” /></p>

<p><input type=”button” value=”Swap Layers” onclick=”swapLayers()” />
</p>
<p>If there are any errors caused by missing

properties, they will appear below:

<textarea name=”errors” cols=”30” rows=”3” wrap=”virtual”>
</textarea></p>

</form>
<layer name=”yeller” bgcolor=”yellow” top=”110” left=”300” width=”200”
height=”200”>

This is just a yellow layer.
</layer>
<layer name=”greeny” bgcolor=”lightgreen” top=”150” left=”340”
width=”200” height=”200”>

This is just a green layer.
</layer>

</body>
</html>

The page contains two layers: one colored yellow and the other light green. Legends on four
buttons ask you to guess whether one layer is above or below the other. For example, if you
click the button labeled “Who’s ABOVE the Yellow layer?” and the green layer is above it, the
name of that green layer appears in the Results field. But if layers are oriented such that the
returned value is null, the error message (indicating that the nonexistent object doesn’t
have a name property) appears in the error field at the bottom. Another button enables you
to swap the order of the layers so you can try your hand at predicting the results based on
your knowledge of layers and the above and below properties.

document.layerObject.above

BC116 Part VI ✦ Bonus Chapters

Positioned objects in IE4+ and NN6 have no comparable properties to the four described in
this section.

Related Items: layer.parentLayer property; layer.moveAbove(),
layer.moveBelow() methods.

background
Value: Image object. Read/Write
Compatibility: WinIE-, MacIE-, NN4, Moz-, Safari-

You can assign a background image to a layer. The background attribute of the <layer> tag
usually sets the initial image, but you can assign a new image whenever you like via the
layerObject.background property.

Layer background images are typically like those used for entire Web pages. They tend to be
subtle — or at least of such a design and color scheme as not to distract from the primary
content of the layer. On the other hand, the background image may in fact be the content. If
so, then have a blast with whatever images suit you.

The value of the layerObject.background property is an image object (see Chapter 20). To
change the image in that property on the fly, you must set the layerObject.background.
src property to the URL of the desired image (just like changing document.imageName.src
on the fly). You can remove the background image by setting the layerObject.background.
src property to null. Background images smaller than the rectangle of the layer repeat them-
selves, just like document background pictures; images larger than the rectangle clip
themselves to the rectangle of the layer rather than scaling to fit.

The IE4+ and NN6+ way of handling background images is through the
style.backgroundImage property.

Example
A simple example (see Listing 39-2) defines one layer that features five buttons to change the
background image of a second layer. I put the buttons in a layer because I want to make sure
the buttons and background layer rectangles align themselves along their top edges on all
platforms.

As the second layer loads, I merely assign a gray background color to it and write some
reverse (white) text. Most of the images are of the small variety that repeats in the layer. One
is a large photograph to demonstrate how images are clipped to the layer’s rectangle. Along
the way, I hope you also heed the lesson of readability demonstrated by the difficulty of read-
ing text on a wild-looking background. For an example compatible with IE5+ and NN6+, see
Listing 39-13.

Listing 39-2: Setting Layer Backgrounds

<html>
<head>

<title>Layer Backgrounds</title>
<script type=”text/javascript”>
function setBg(URL) {

document.bgExpo.background.src = URL;
}
</script>

</head>
<body>

document.layerObject.above

BC117Chapter 39 ✦ Positioned Objects

<h1>Layer Backgrounds</h1>
<hr />
<layer name=”buttons” top=”100”>

<form>
<input type=”button” value=”The Usual”
onclick=”setBg(‘cr_kraft.gif’)” />

<input type=”button” value=”A Big One”
onclick=”setBg(‘arch.gif’)” />

<input type=”button” value=”Not So Usual”
onclick=”setBg(‘wh86.gif’)” />

<input type=”button” value=”Decidedly Unusual”
onclick=”setBg(‘sb23.gif’)” />

<input type=”button” value=”Quick as...”
onclick=”setBg(‘lightnin.gif’)” />

</form>
</layer>
<layer name=”bgExpo” bgcolor=”gray” top=”100” left=”250” width=”300”
height=”260”>

Some text, which may or may not read well with
the various backgrounds.

</layer>
</body>

</html>

Related Items: layer.bgColor property; image object.

bgColor
Value: String. Read/Write
Compatibility: WinIE-, MacIE-, NN4, Moz-, Safari-

A layer’s background color fills the entire rectangle with the color set in the <layer> tag or
from a script at a later time. Color values are the same as for document-related values; they
may be in the hexadecimal triplet format or in one of the plain-language color names. You can
turn a layer transparent by setting its bgColor property to null.

You control the corresponding behavior in IE4+ and NN6+ via the style.backgroundColor
property.

Example
You can have some fun with Listing 39-3, which uses a number of layer scripting techniques.
The page presents a kind of palette of eight colors, each one created as a small layer. Another,
larger layer’s bgColor property changes as you roll the mouse over any color in the palette.

To save HTML lines to create those eight color palette layers, I use a script to establish an
array of colors and then document.write() the <layer> tags with appropriate attribute set-
tings so the layers all line up in a contiguous row. By predefining a number of variable values
for the size of the color layers, I can make all of them larger or smaller with the change of
only a few script characters.

The document object handles the job of capturing the mouseOver events. I turn on the docu-
ment’s captureEvents() method such that it traps all mouseOver events and hands them to
the setColor() function. The setColor() function reads the target object’s bgColor and
sets the larger layer’s bgColor property to the same. If this page had other objects that could
receive mouseOver events for other purposes, I would use routeEvents() to let those events
pass on to their intended targets. For the purposes of this example, however, the events need
to go no further. Listing 39-14 shows the same functionality working in IE5+ and NN6+.

document.layerObject.bgColor

BC118 Part VI ✦ Bonus Chapters

Listing 39-3: Layer Background Colors

<html>
<head>

<title>Layer Background Colors</title>
<script type=”text/javascript”>
function setColor(e) {

document.display.bgColor = e.target.bgColor;
}
document.captureEvents(Event.MOUSEOVER);
document.onmouseover = setColor;
</script>

</head>
<body>

<h1>Layer Background Colors</h1>
<hr />
<script type=”text/javascript”>
var oneLayer;
var colorTop = 100;
var colorLeft = 20;
var colorWidth = 40;
var colorHeight = 40;
var colorPalette = new Array(“aquamarine”,”coral”,”forestgreen”,

“goldenrod”,”red”,”magenta”,”navy”,”teal”);
for (var i = 0; i < colorPalette.length; i++) {

oneLayer = “<layer name=swatch” + i + “ top=” + colorTop;
oneLayer += “ left=” + ((colorWidth * i) + colorLeft);
oneLayer += “ width=” + colorWidth + “ height=” + colorHeight;
oneLayer += “ bgcolor=” + colorPalette[i] + “><\/layer>\n”;
document.write(oneLayer);

}
</script>
<layer name=”display” bgcolor=”gray” top=”150” left=”80” width=”200”
height=”200”>

<center>Some reversed text to test against
background colors.</center>

</layer>
</body>

</html>

Related Items: layer.background property; layer.onmouseover event handler.

clip
Value: String. Read/Write
Compatibility: WinIE-, MacIE-, NN4, Moz-, Safari-

The layerObject.clip property is an object (the only one in NN4’s document object model
that exposes itself as a rectangle object) with six geographical properties defining the posi-
tion and size of a rectangular area of a layer visible to the user. Those six properties are

document.layerObject.bgColor

BC119Chapter 39 ✦ Positioned Objects

✦ clip.top

✦ clip.left

✦ clip.bottom

✦ clip.right

✦ clip.width

✦ clip.height

The unit of measure is pixels, and the values are relative to the top-left corner of the layer
object.

A clip region can be the same size as or smaller than the layer object. If the clip attribute is
not defined in the <layer> tag, the clipping region is the same size as the layer. In this case,
the clip.left and clip.top values are automatically zero because the clip region starts at
the very top-left corner of the layer’s rectangle (measurement is relative to the layer object
whose clip property you’re dealing with). The height and width of the layer object are not
available properties in NN4. Therefore, you may have to use other means to get that informa-
tion into your scripts if you need it. (I do it in Listing 39-4.) Also be aware that even if you set
the height and width attributes of a layer tag, the content rules the initial size of the visible
layer unless the tag also includes specific clipping instructions. Images, for example, expand
a layer to fit the height and width attributes of the tag; text (either from an external
HTML file or inline in the current file) adheres to the <layer> tag’s width attribute but flows
down as far as necessary to display every character.

Setting a clip property does not move the layer or the content of the layer — only the visible
area of the layer. Each adjustment has a unique impact on the apparent motion of the visible
region. For example, if you increase the clip.left value from its original position of 0 to 20,
the entire left edge of the rectangle shifts to the right by 20 pixels. No other edge moves.
Changes to the clip.width property affect only the right edge; changes to the clip.height
property affect only the bottom edge. Unfortunately, no shortcuts exist to adjust multiple
edges at once. JavaScript is fast enough on most client machines to give the impression that
multiple sides are moving if you issue assignment statements to different edges in sequence.

IE4+ and NN6+ have the style.clip property to assist in adjusting the clipping rectangle of a
layer. But the W3C DOM’s style.clip object does not offer additional subproperties to access
individual edges or dimensions of the clipping rectangle. IE5’s read-only currentStyle object
does provide properties for the four edge dimensions. Listing 39-15 demonstrates how to
adjust clipping in IE5+ and NN6+ syntax.

Example
Because of the edge movement behavior of adjustments to layerObject.clip properties,
Listing 39-4 enables you to experiment with adjustments to each of the six properties. The
document loads one layer that you can adjust by entering alternative values into six text
fields — one per property.

As you enter values, all properties are updated to show their current values (via the show
Values() function). Pay particular attention to the apparent motion of the edge and the effect
the change has on at least one other property. For example, a change to the layerObject.
clip.left value also affects the layerObject.clip.width property value.

document.layerObject.clip

BC120 Part VI ✦ Bonus Chapters

Listing 39-4: Adjusting layer.clip Properties

<html>
<head>

<title>Layer Clip</title>
<script type=”text/javascript”>
var origLayerWidth = 0;
var origLayerHeight = 0;
function initializeXY() {

origLayerWidth = document.display.clip.width;
origLayerHeight = document.display.clip.height;
showValues();

}

function setClip(field) {
var clipVal = parseInt(field.value);
document.display.clip[field.name] = clipVal;
showValues();

}
function showValues() {

var form = document.layers[0].document.forms[0];
var propName;
for (var i = 0; i < form.elements.length; i++) {

propName = form.elements[i].name;
if (form.elements[i].type == “text”) {

form.elements[i].value = document.display.clip[propName];
}

}
}
var intervalID;
function revealClip() {

var midWidth = Math.round(origLayerWidth /2);
var midHeight = Math.round(origLayerHeight /2);
document.display.clip.left = midWidth;
document.display.clip.top = midHeight;
document.display.clip.right = midWidth;
document.display.clip.bottom = midHeight;
intervalID = setInterval(“stepClip()”,1);

}
function stepClip() {

var widthDone = false;
var heightDone = false;
if (document.display.clip.left > 0) {

document.display.clip.left += -2;
document.display.clip.right += 2;

} else {
widthDone = true;

}
if (document.display.clip.top > 0) {

document.display.clip.top += -1;
document.display.clip.bottom += 1;

} else {
heightDone = true;

}
showValues();
if (widthDone && heightDone) {

clearInterval(intervalID);
}

document.layerObject.clip

BC121Chapter 39 ✦ Positioned Objects

}
</script>

</head>
<body onload=”initializeXY()”>

<h1>Layer Clipping Properties</h1>
<hr />
Enter new clipping values to adjust the visible area of the layer.
<layer top=”130” left=”5”>

<form>
<table>

<tr>
<td align=”right”>layer.clip.left:</td>
<td><input type=”text” name=”left” size=”3”

onchange=”setClip(this)” /></td>
</tr>
<tr>

<td align=”right”>layer.clip.top:</td>
<td><input type=”text” name=”top” size=”3”

onchange=”setClip(this)” /></td>
</tr>
<tr>

<td align=”right”>layer.clip.right:</td>
<td><input type=”text” name=”right” size=”3”

onchange=”setClip(this)” /></td>
</tr>
<tr>

<td align=”right”>layer.clip.bottom:</td>
<td><input type=”text” name=”bottom” size=”3”

onchange=”setClip(this)” /></td>
</tr>
<tr>

<td align=”right”>layer.clip.width:</td>
<td><input type=”text” name=”width” size=”3”

onchange=”setClip(this)” /></td>
</tr>
<tr>

<td align=”right”>layer.clip.height:</td>
<td><input type=”text” name=”height” size=”3”

onchange=”setClip(this)” /></td>
</tr>

</table>
<input type=”button” value=”Reveal Original Layer”
onclick=”revealClip()” />

</form>
</layer>
<layer name=”display” bgcolor=”coral” top=”130” left=”200” width=”360”
height=”180”>

<h2>ARTICLE I</h2>
<p>Congress shall make no law respecting an establishment of religion,

or prohibiting the free exercise thereof; or abridging the freedom
of speech, or of the press; or the right of the people peaceably to
assemble, and to petition the government for a redress of
grievances.</p>

</layer>
</body>

</html>

document.layerObject.clip

BC122 Part VI ✦ Bonus Chapters

Listing 39-4 has a lot of other scripting in it to demonstrate a couple of other clip area tech-
niques. After the document loads, the onload event handler initializes two global variables that
represent the starting height and width of the layer as determined by the clip.height and
clip.width properties. Because the <layer> tag does not specify any clip attributes, the
layerObject.clip region is ensured of being the same as the layer’s dimensions at load time.

I preserve the initial values for a somewhat advanced set of functions that act in response to
the Reveal Original Layer button. The goal of this button is to temporarily shrink the clipping
area to nothing and then expand the clip rectangle gradually from the very center of the layer.
The effect is analogous to a zoom-out visual effect.

The clip region shrinks to practically nothing by setting all four edges to the same point mid-
way along the height and width of the layer. The script then uses setInterval() to control
the animation in setClip(). To make the zoom even on both axes, I first make sure that the
initial size of the layer is an even ratio: twice as wide as it is tall. Each time through the
setClip() function, the clip.left and clip.right values are adjusted in their respective
directions by 2 pixels and clip.top and clip.bottom are adjusted by 1 pixel.

To make sure the animation stops when the layer is at its original size, I check whether the
clip.top and clip.left values are their original zero values. If they are, I set a Boolean
variable for each side. When both variables indicate that the clip rectangle is its original size,
the script cancels the setInterval() action.

Listing 39-15 demonstrates how to adjust clipping in IE5+ and NN6+ syntax.

Related Items: layer.pageX, layer.pageY properties; layer.resizeTo() method.

document
Value: document object. Read-Only
Compatibility: WinIE-, MacIE-, NN4, Moz-, Safari-

Your scripts practically never have to retrieve the document property of a layer. But it is
important to remember that it is always there as the actual container of content in the layer.
As described at length in the opening section about the layer object, the document object
reference plays a large role in assembling addresses to content items and properties in other
layers. A document inside a layer has the same powers, properties, and methods of the main
document in the browser window or in a frame.

Related Items: document object.

left
top

Value: Integer. Read/Write
Compatibility: WinIE-, MacIE-, NN4, Moz-, Safari-

The layerObject.left and layerObject.top properties correspond to the left and top
attributes of the <layer> tag. These integer values determine the horizontal and vertical pixel
coordinate point of the top-left corner of the layer relative to the browser window, frame, or
parent layer in which it lives. The coordinate system of the layer’s most immediate container
is the one that these properties reflect.

Adjustments to these properties reposition the layer without adjusting its size. Clipping area
values are untouched by changes in these properties. Thus, if you create a draggable layer
object that needs to follow a dragged mouse pointer in a straight line along the x or y axis, it
is more convenient to adjust one of these properties than to use the layerObject.moveTo()
method.

document.layerObject.clip

BC123Chapter 39 ✦ Positioned Objects

IE4+ and NN6+ provide various properties to determine the coordinate location of a positioned
element — all through the style object.

Example
To enable you to experiment with manually setting layerObject.top and layerObject.left
properties, Listing 39-5 is a modified version of the layer.clip example (Listing 39-4). The
current example again has the one modifiable layer, but it has only four text fields in which you
can enter values. Two fields are for the layerObject.left and layerObject.top properties;
the other two are for the layerObject.clip.left and layerObject.clip.top properties. I
present both sets of values here to help reinforce the lack of connection between layer and
clip location properties in the same layer object.

You can find the corresponding syntax for IE5+ and NN6+ in Listing 39-16.

Listing 39-5: Comparison of Layer and Clip Location Properties

<html>
<head>

<title>Layer vs. Clip</title>
<script type=”text/javascript”>
function setClip(field) {

var clipVal = parseInt(field.value);
document.display.clip[field.name] = clipVal;
showValues();

}
function setLayer(field) {

var layerVal = parseInt(field.value);
document.display[field.name] = layerVal;
showValues();

}
function showValues() {

var form = document.layers[0].document.forms[0];
form.elements[0].value = document.display.left;
form.elements[1].value = document.display.top;
form.elements[2].value = document.display.clip.left;
form.elements[3].value = document.display.clip.top;

}
</script>

</head>
<body onload=”showValues()”>

Layer vs. Clip Location Properties
<hr />
Enter new layer and clipping values to adjust the layer.
<layer top=”80” left=”5”>

<form>
<table>

<tr>
<td align=”right”>layer.left:</td>
<td><input type=”text” name=”left” size=”3”

onchange=”setLayer(this)” /></td>
</tr>
<tr>

<td align=”right”>layer.top:</td>
<td><input type=”text” name=”top” size=”3”

onchange=”setLayer(this)” /></td>

Continued

document.layerObject.left

BC124 Part VI ✦ Bonus Chapters

Listing 39-5 (continued)

</tr>
<tr>

<td align=”right”>layer.clip.left:</td>
<td><input type=”text” name=”left” size=”3”

onchange=”setClip(this)” /></td>
</tr>
<tr>

<td align=”right”>layer.clip.top:</td>
<td><input type=”text” name=”top” size=”3”

onchange=”setClip(this)” /></td>
</tr>

</table>
</form>

</layer>
<layer name=”display” bgcolor=”coral” top=”80” left=”200” width=”360”
height=”180”>

<h2>ARTICLE I</h2>
<p>Congress shall make no law respecting an establishment of religion,

or prohibiting the free exercise thereof; or abridging the freedom
of speech, or of the press; or the right of the people peaceably to
assemble, and to petition the government for a redress of
grievances.</p>

</layer>
</body>

</html>

Related Items: layer.clip, layer.parentLayer properties.

name
Value: String. Read-Only
Compatibility: WinIE-, MacIE-, NN4, Moz-, Safari-

The layerObject.name property reflects the name attribute of the <layer> tag or name you
assign to a positioned div or span element. This property is read-only. If you don’t assign a
name to a layer when you create it, Navigator generates a name for the layer in this format:

js_layer_nn

Here, nn is a serial number. That serial number is not the same every time the page loads, so
you cannot rely on the automatically generated name to help you script an absolute reference
to the layer.

pageX
pageY

Value: Integer. Read/Write
Compatibility: WinIE-, MacIE-, NN4, Moz-, Safari-

document.layerObject.left

BC125Chapter 39 ✦ Positioned Objects

In Netscape’s coordinate terminology, the page is the content area of a document. The top-left
corner of the page space is point 0,0, and you can position any layer (including a nested layer)
on the page relative to this corner. In the <layer> tag, the attributes that enable authors to
set the position are pagex and pagey. These values are retrievable and modifiable as the
layerObject.pageX and layerObject.pageY properties, respectively. Note the capitaliza-
tion of the final letters of these property names.

The layerObject.pageX and layerObject.pageY values are identical to layerObject.
left and layerObject.top only when the layer in question is at the main document level.
That’s because the layerObject.left and layerObject.top values are measured by the
next higher container’s coordinate system — which, in this case, is the same as the page.

The situation gets more interesting when you’re dealing with nested layers. For a nested layer,
the layerObject.pageX and layerObject.pageY values are still measured relative to the
page, while layerObject.left and layerObject.top are measured relative to the next
higher layer. If trying to conceive of these differences makes your head hurt, the example in
Listing 39-6 should help clear things up for you.

Adjusting the layerObject.pageX and layerObject.pageY values of any layer has the
same effect as using the layerObject.moveToAbsolute() method, which measures its
coordinate system based on the page. If you create flying layers on your page, you can’t go
wrong by setting the layerObject.pageX and layerObject.pageY properties (or using the
moveToAbsolute() method) in your script. That way, should you add another layer in the
hierarchy between the base document and the flying layer, the animation is in the same coor-
dinate system as before the new layer was added.

IE4+ does not provide a pair of properties to determine the location of a positioned element
relative to the page, but the offsetLeft and offsetTop properties provide coordinates
within the element’s next outermost positioning context. Thus, you may have to “walk” the
offsetParent trail to accumulate complete coordinate values. In NN6+/W3C, the offset
Left and offsetTop properties use the page as the positioning context.

Example
Listing 39-6 defines one outer layer and one nested inner layer of different colors. The inner
layer contains some text content; the outer layer is sized initially to present a colorful border
by being below the inner layer and 10 pixels wider and taller.

Two sets of fields display (and enable you to change) the layerObject.pageX, layerObject.
pageY, layerObject.left, and layerObject.top properties for each of the nested layers.
Each set of fields is color-coded to its corresponding layer.

When you change any value, all values are recalculated and displayed in the other fields. For
example, the initial pageX position for the outer layer is 200 pixels; for the inner layer, the
pageX value is 205 pixels (accounting for the 5-pixel “border” around the inner layer). If you
change the outer layer’s pageX value to 220, the outer layer moves to the right by 20 pixels,
taking the inner layer along for the ride. The layer.pageX value for the inner layer after the
move is 225 pixels.

The outer layer values for the pairs of values are always the same no matter what. But for the
inner layer, the page values are significantly different from the layer.left and layer.top
values because these latter values are measured relative to their containing layer — the
outer layer. If you move the outer layer, the inner layer values for layerObject.left and
layerObject.top don’t change one iota. Listing 39-17 shows the comparable syntax for IE5+
and NN6+/W3C.

document.layerObject.pageX

BC126 Part VI ✦ Bonus Chapters

Listing 39-6: Testing Nested Layer Coordinate Systems

<html>
<head>

<title>Nested Layer PageX/PageY</title>
<script type=”text/javascript”>
function setOuterPage(field) {

var layerVal = parseInt(field.value);
document.outerDisplay[field.name] = layerVal;
showValues();

}
function setOuterLayer(field) {

var layerVal = parseInt(field.value);
document.outerDisplay[field.name] = layerVal;
showValues();

}
function setInnerPage(field) {

var layerVal = parseInt(field.value);
document.outerDisplay.document.innerDisplay[field.name] = layerVal;
showValues();

}
function setInnerLayer(field) {

var layerVal = parseInt(field.value);
document.outerDisplay.document.innerDisplay[field.name] = layerVal;
showValues();

}
function showValues() {

var form = document.layers[0].document.forms[0];
form.elements[0].value = document.outerDisplay.pageX;
form.elements[1].value = document.outerDisplay.pageY;
form.elements[2].value = document.outerDisplay.left;
form.elements[3].value = document.outerDisplay.top;
form.elements[4].value =

document.outerDisplay.document.innerDisplay.pageX;
form.elements[5].value =

document.outerDisplay.document.innerDisplay.pageY;
form.elements[6].value =

document.outerDisplay.document.innerDisplay.left;
form.elements[7].value =

document.outerDisplay.document.innerDisplay.top;
}
</script>

</head>
<body onload=”showValues()”>

Coordinate Systems for Nested Layers
<hr />
Enter new page and layer coordinates for the outer
layer and inner layer objects.
<layer top=”80” left=”5”>

<form>
<table>

<tr>
<td align=”right” bgcolor=”coral”>

layer.pageX:
</td>
<td bgcolor=”coral”>

<input type=”text” name=”pageX” size=”3”
onchange=”setOuterPage(this)” />

</td>

document.layerObject.pageX

BC127Chapter 39 ✦ Positioned Objects

</tr>
<tr>

<td align=”right” bgcolor=”coral”>
layer.pageY:

</td>
<td bgcolor=”coral”>

<input type=”text” name=”pageY” size=”3”
onchange=”setOuterPage(this)” />

</td>
</tr>
<tr>

<td align=”right” bgcolor=”coral”>
layer.left:

</td>
<td bgcolor=”coral”>

<input type=”text” name=”left” size=”3”
onchange=”setOuterLayer(this)” /></td>

</tr>
<tr>

<td align=”right” bgcolor=”coral”>layer.top:</td>
<td bgcolor=”coral”><input type=”text” name=”top” size=”3”

onchange=”setOuterLayer(this)” /></td>
</tr>
<tr>

<td align=”right” bgcolor=”aquamarine”>layer.pageX:</td>
<td bgcolor=”aquamarine”><input type=”text” name=”pageX”

size=”3” onchange=”setInnerPage(this)” /></td>
</tr>
<tr>

<td align=”right” bgcolor=”aquamarine”>layer.pageY:</td>
<td bgcolor=”aquamarine”><input type=”text” name=”pageY”

size=”3” onchange=”setInnerPage(this)” /></td>
</tr>
<tr>

<td align=”right” bgcolor=”aquamarine”>layer.left:</td>
<td bgcolor=”aquamarine”><input type=”text” name=”left”

size=”3” onchange=”setInnerLayer(this)” /></td>
</tr>
<tr>

<td align=”right” bgcolor=”aquamarine”>layer.top:</td>
<td bgcolor=”aquamarine”><input type=”text” name=”top”

size=”3” onchange=”setInnerLayer(this)” /></td>
</tr>

</table>
</form>

</layer>
<layer name=”outerDisplay” bgcolor=”coral” top=”80” left=”200”
width=”370” height=”190”>

<layer name=”innerDisplay” bgcolor=”aquamarine” top=”5” left=”5”
width=”360” height=”180”>

<h2>ARTICLE I</h2>
<p>Congress shall make no law respecting an establishment of

religion, or prohibiting the free exercise thereof; or abridging
the freedom of speech, or of the press; or the right of the
people peaceably to assemble, and to petition the government for
a redress of grievances.</p>

</layer>
</layer>

</body>
</html>

document.layerObject.pageX

BC128 Part VI ✦ Bonus Chapters

Related Items: layer.left, layer.top, window.innerHeight, window.innerWidth
properties; layer.moveToAbsolute() method.

parentLayer
Value: Object. Read-Only
Compatibility: WinIE-, MacIE-, NN4, Moz-, Safari-

Every layer has a parent that contains that layer. In the case of a layer defined at the main
document level, its parent layer is the window or frame containing that document (the “page”).
For this kind of layer, the layerObject.parentLayer property object is a window object. But
for any nested layer contained by a layer, the parentLayer property is a layer object.

Be aware of the important distinction between layerObject.parentLayer and layerObject.
below. As a parent layer can contain multiple layers in the next containment level, each of
those layers’ parentLayer properties evaluate to that same parent layer. But because each
layer object is its own physical layer among the stack of layers on a page, the layer.below
property in each layer points to a different object — the layer next lower in z-order.

Keeping the direction of things straight can get confusing. On the one hand, you have a layer’s
parent, which, by connotation, is higher up the hierarchical chain of layers. On the other hand,
the order of physical layers is such that a parent more than likely has a lower z-order than its
children because it is defined earlier in the document.

Use the layerObject.parentLayer property to assemble references to other nested layers.
See the discussion about layer references at the beginning of this chapter for several syntax
examples.

IE4+ offers an offsetParent property, which comes close to the functionality of the
layerObject.parentLayer property.

Related Items: layer.above, layer.below properties.

siblingAbove
siblingBelow

(See layer.above and layer.below properties earlier in this chapter)

src
Value: String. Read/Write
Compatibility: WinIE-, MacIE-, NN4, Moz-, Safari-

Content for a layer may come from within the document that defines the layer or from an
external source, such as an HTML or image file. If defined by a <layer> tag, an external file is
specified by the src attribute. This attribute is reflected by the layerObject.src property.

The value of this property is a string of the URL of the external file. If you do not specify an
src attribute in the <layer> tag, the value returns null. Do not set this property to an empty
string in an effort to clear the layer of content: document.write() or load an empty page
instead. Otherwise, the empty string is treated like a URL, and it loads the current client
directory.

You can, however, change the content of a layer by loading a new source file into the layer.
Simply assign a new URL to the layerObject.src property. Again, if a layer has nested layers
inside it, those nested layers are blown away by the content that loads into the layer whose
src property you change. The new file, of course, can be an HTML file that defines its own
nested layers, which then become part of the page’s object model.

document.layerObject.pageX

BC129Chapter 39 ✦ Positioned Objects

Netscape also provides the layerObject.load() method to insert new content into a layer.
One advantage of this method is that an optional second parameter enables you to redefine
the width of the layer at the same time you specify a new document. But if you are simply
replacing the content in the same width layer, you can use either way of loading new content.

Be aware that the height and width of a replacement layer are governed as much by their hard-
coded content size as by the initial loading of any layer. For example, if your layer is initially
sized at a width of 200 pixels and your replacement layer document includes an image whose
width is set to 500 pixels, the layer expands its width to accommodate the larger content —
unless you also restrict the view of the layer via the layerObject.clip properties. Similarly,
longer text content flows beyond the bottom of the previously sized layer unless restricted
by clipping properties.

Positioned elements in IE4+ and NN6+/W3C do not provide a direct way to load external con-
tent into them. That’s what the W3C sees as the purpose of the iframe element. Even so, as
Listing 39-18 shows, you can script your way around this limitation if it’s absolutely necessary.

Example
Setting the layerObject.src property of a layer that is a member of a layer family (that is,
a family with at least one parent and one child) can be tricky business if you’re not careful.
Listing 39-7 presents a workspace for you to see how changing the src property of outer and
inner layers affects the scenery.

When you first load the document, one outer layer contains one inner layer (each with a differ-
ent background color). Control buttons on the page enable you to set the layerObject.src
property of each layer independently. Changes to the inner layer content affect only that layer.
Long content forces the inner layer to expand its depth, but the inner layer’s view is automat-
ically clipped by its parent layer.

Changing the outer layer content, however, removes the inner layer completely. Code in the
following listing shows one way to examine for the presence of a particular layer before
attempting to load new content in it. If the inner layer doesn’t exist, the script creates a new
layer on the fly to replace the original inner layer.

Listing 39-7: Setting Nested Layer Source Content

<html>
<head>

<title>Layer Source</title>
<script type=”text/javascript”>
function loadOuter(doc) {

document.outerDisplay.src = doc;
}
function loadInner(doc) {

var nested = document.outerDisplay.document.layers;
if (nested.length > 0) {

// inner layer exists, so load content or restore
if (doc) {

nested[0].src = doc;
} else {

restoreInner(nested[0]);
}

} else {
// prompt user about restoring inner layer

Continued

document.layerObject.src

BC130 Part VI ✦ Bonus Chapters

Listing 39-7 (continued)

if (confirm(“The inner layer has been removed by loading an outer
document. Restore the original layers?”)) {
restoreLayers(doc);

}
}

}
function restoreLayers(doc) {

// reset appearance of outer layer
document.outerDisplay.bgColor = “coral”;
document.outerDisplay.resizeTo(370,190); // sets clip
document.outerDisplay.document.write(“”);
document.outerDisplay.document.close();
// generate new inner layer
var newInner = new Layer(360, document.layers[“outerDisplay”]);
newInner.bgColor = “aquamarine”;
newInner.moveTo(5,5);
if (doc) {

// user clicked an inner content button
newInner.src = doc;

} else {
// return to pristine look
restoreInner(newInner);

}
newInner.visibility = “show”;

}
function restoreInner(inner) {

inner.document.write(“<html><body><p>Placeholder text for raw inner
layer.<\/b><\/p><\/body><\/html>”);

inner.document.close();
inner.resizeTo(360,180); // sets clip

}
</script>

</head>
<body>

Setting the <tt>layer.src</tt> Property of Nested Layers
<hr />
Click the buttons to see what happens when you load new source documents
into the outer layer and inner layer objects.
<layer top=”100” bgcolor=”coral”>

<form>
Load into outer layer:

<input type=”button” value=”Article I”
onclick=”loadOuter(‘article1.htm’)” />

<input type=”button” value=”Entire Bill of Rights”
onclick=”loadOuter(‘bofright.htm’)” />

</form>
</layer>
<layer top=”220” bgcolor=”aquamarine”>

<form>
Load into inner layer:

<input type=”button” value=”Article I”
onclick=”loadInner(‘article1.htm’)” />

<input type=”button” value=”Entire Bill of Rights”

document.layerObject.src

BC131Chapter 39 ✦ Positioned Objects

onclick=”loadInner(‘bofright.htm’)” />

<input type=”button” value=”Restore Original”
onclick=”loadInner()” />

</form>
</layer>
<layer name=”outerDisplay” bgcolor=”coral” top=”100” left=”200”
width=”370” height=”190”>

<layer name=”innerDisplay” bgcolor=”aquamarine” top=”5” left=”5”
width=”360” height=”180”>

<p>Placeholder text for raw inner layer.</p>
</layer>

</layer>
</body>

</html>

Restoring the original layers via script (as opposed to reloading the document) does not
perform a perfect restoration. The key difference is that the scripts use the layerObject.
resizeTo() method to set the layers to the height and width established by the <layer>
tags that create the layers in the first place. This method, however, sets the clipping rectangle
of the layer — not the layer’s size. Therefore, if you use the script to restore the layers, load-
ing the longer text file into either layer does not force the layer to expand to display all the
content; the clipping region governs the view.

Related Items: layer.load(), layer.resizeTo() methods.

visibility
Value: String. Read/Write
Compatibility: WinIE-, MacIE-, NN4, Moz-, Safari-

A layer’s visibility property can use one of three settings: show, hide, or inherit— the
same values you can assign to the visibility attribute of the <layer> tag. But NN4 also
enables you to set the property to hidden and visible, which are the values for the style.
visibility property used in IE4+ and NN6+/W3C.

Unlike many other layer properties, you can set the visibility property such that a layer
can either follow the behavior of its parent or strike out on its own. By default, a layer’s
visibility property is set to inherit, which means the layer’s visibility is governed solely
by that of its parent (and of its parent, if the nesting includes many layers). When the govern-
ing parent’s property is, say, hide, the child’s property remains inherit. Thus, you cannot
tell whether an inheriting layer is presently visible or not without checking up the hierarchy
(with the help of the layerObject.parentLayer property). However, you can override the
parent’s behavior by setting the current layer’s property explicitly to show or hide. This
action does not alter in any way other parent-child relationships between layers.

Example
Use the page in Listing 39-8 to see how the layerObject.visibility property settings
affect a pair of nested layers. When the page first loads, the default inherit setting is in
effect. Changes you make to the outer layer by clicking the outer layer buttons affect the
inner layer, but setting the inner layer’s properties to hide or show severs the visibility rela-
tionship between parent and child. Listing 39-19 shows this example with IE5+ and NN6+/W3C
DOM syntax.

document.layerObject.visibility

BC132 Part VI ✦ Bonus Chapters

Listing 39-8: Nested Layer Visibility Relationships

<html>
<head>

<title>Layer Source</title>
<script type=”text/javascript”>
function setOuterVis(type) {

document.outerDisplay.visibility = type;
}
function setInnerVis(type) {

document.outerDisplay.document.innerDisplay.visibility = type;
}
</script>

</head>
<body>

Setting the <tt>layer.visibility</tt> Property of Nested Layers
<hr />
Click the buttons to see what happens when you change the visibility of
the outer layer and inner layer objects.
<layer top=”100” bgcolor=”coral”>

<form>
Control outer layer property:

<input type=”button” value=”Hide Outer Layer”
onclick=”setOuterVis(‘hide’)” />

<input type=”button” value=”Show Outer Layer”
onclick=”setOuterVis(‘show’)” />

</form>
</layer>
<layer top=”220” bgcolor=”aquamarine”>

<form>
Control inner layer property:

<input type=”button” value=”Hide Inner Layer”
onclick=”setInnerVis(‘hide’)” />

<input type=”button” value=”Show Inner Layer”
onclick=”setInnerVis(‘show’)” />

<input type=”button” value=”Inherit Outer Layer”
onclick=”setInnerVis(‘inherit’)” />

</form>
</layer>
<layer name=”outerDisplay” bgcolor=”coral” top=”100” left=”200”
width=”370” height=”190”>

<layer name=”innerDisplay” bgcolor=”aquamarine” top=”5” left=”5”
width=”360” height=”180”>

<p>Placeholder text for raw inner layer.</p>
</layer>

</layer>
</body>

</html>

document.layerObject.visibility

BC133Chapter 39 ✦ Positioned Objects

zIndex
Value: Integer. Read/Write
Compatibility: WinIE-, MacIE-, NN4, Moz-, Safari-

Close relationships exist among the layerObject.above, layerObject.below, and
layerObject.zIndex properties. When you define a layer in a document with the <layer>
tag, you can supply only one of the three attributes (above, below, and z-index). After the
layer is generated with any one of those attributes, the document object model automatically
assigns values to at least two of those properties (layerObject.above and layerObject.
below) unless you specify the z-index attribute; in this case, all three properties are assigned
to the layer. If you don’t specify any of these properties, the physical stacking order of the
layers is the same as in the HTML document. The layerObject.above and layerObject.
below properties are set as described in their discussion earlier in this chapter. But the
layerObject.zIndex properties for all layers are zero.

The CSS attribute is spelled with a hyphen after the “z.” Because a JavaScript property name
cannot contain a hyphen, the character was removed for the property name. The capital “I”
is important because JavaScript properties are case-sensitive.

Changes to layerObject.zIndex values affect the stacking order only of sibling layers. You
can assign the same value to two layers, but the last layer to have its layerObject.zIndex
property set lies physically above the other one. Therefore, if you want to ensure a stacking
order, set the zIndex values for all layers within a container. Each value should be a unique
number.

Stacking order is determined simply by the value of the integer assigned to the property. If
you want to stack three sibling layers, the order is the same if you assign them the values of
1, 2, 3 or 10, 13, 50. As you modify a layerObject.zIndex value, the layerObject.above
and layerObject.below properties for all affected layers change as a result.

Avoid setting zIndex property values to negative numbers in NN4. Negative values are
treated as their absolute (positive) values for ordering.

For IE4+ and NN6+/W3C, the style.zIndex property controls z-order.

Example
The relationships among the three stacking property values can be difficult to visualize.
Listing 39-9 offers a way to see the results of changing the layerObject.zIndex properties
of three overlapping sibling layers.

The sequence of the <layer> tags in the document governs the original stacking order.
Because the attribute is not set in the HTML, the initial values appear as zero for all three lay-
ers. But, as the page reveals, the layerObject.above and layerObject.below properties
are automatically established. When a layer has no other layer object above it, the page shows
(none). Also, if the layer below the bottom of the stack is the main window, a strange inner
layer name is assigned (something like _js_layer_21).

To experiment with this page, first make sure you understand the layerObject.above and
layerObject.below readings for the default order of the layers. Then, assign different orders
to the layers with value sequences such as 3-2-1, 1-3-2, 2-2-2, and so on. Each time you enter
one new value, check the actual layers to see if their stacking order changed and how that
affected the other properties of all layers.

Listing 39-20 shows how to achieve the same action with IE5+ and NN6+/W3C syntax.

Note

document.layerObject.zIndex

BC134 Part VI ✦ Bonus Chapters

Listing 39-9: Relationships Among zIndex, above, and below

<html>
<head>

<title>Layer zIndex</title>
<script type=”text/javascript”>
function setZ(field) {

switch (field.name) {
case “top” :

document.top.zIndex = parseInt(field.value);
break;

case “mid” :
document.middle.zIndex = parseInt(field.value);
break;

case “bot” :
document.bottom.zIndex = parseInt(field.value);

}
showValues();

}
function showValues() {

document.layers[0].document.forms[0].bot.value =
document.bottom.zIndex;

document.layers[1].document.forms[0].mid.value =
document.middle.zIndex;

document.layers[2].document.forms[0].top.value = document.top.zIndex;

document.layers[0].document.forms[0].above.value =
(document.bottom.above) ? document.bottom.above.name : “(none)”;

document.layers[1].document.forms[0].above.value =
(document.middle.above) ? document.middle.above.name : “(none)”;

document.layers[2].document.forms[0].above.value =
(document.top.above) ? document.top.above.name : “(none)”;

document.layers[0].document.forms[0].below.value =
(document.bottom.below) ? document.bottom.below.name : “(none)”;

document.layers[1].document.forms[0].below.value =
(document.middle.below) ? document.middle.below.name : “(none)”;

document.layers[2].document.forms[0].below.value =
(document.top.below) ? document.top.below.name : “(none)”;

}
</script>

</head>
<body onload=”showValues()”>

Setting the <tt>layer.zIndex</tt> Property of Sibling Layers
<hr />
Enter new zIndex values to see the effect on three layers.
<layer top=”90” left=”5” width=”240” bgcolor=”coral”>

<form>
Control Original Bottom Layer:

<table>

<tr>
<td align=”right”>Layer zIndex:</td>
<td><input type=”text” name=”bot” size=”3”

onchange=”setZ(this)” /></td>
</tr>

document.layerObject.zIndex

BC135Chapter 39 ✦ Positioned Objects

<tr>
<td align=”right”>Layer above:</td>
<td><input type=”text” name=”above” size=”13” /></td>

</tr>
<tr>

<td align=”right”>Layer below:</td>
<td><input type=”text” name=”below” size=”13” /></td>

</tr>
</table>

</form>
</layer>
<layer top=”220” left=”5” width=”240” bgcolor=”aquamarine”>

<form>
Control Original Middle Layer:

<table>

<tr>
<td align=”right”>Layer zIndex:</td>
<td><input type=”text” name=”mid” size=”3”

onchange=”setZ(this)” /></td>
</tr>
<tr>

<td align=”right”>Layer above:</td>
<td><input type=”text” name=”above” size=”13” /></td>

</tr>
<tr>

<td align=”right”>Layer below:</td>
<td><input type=”text” name=”below” size=”13” /></td>

</tr>
</table>

</form>
</layer>
<layer top=”350” left=”5” width=”240” bgcolor=”yellow”>

<form>
Control Original Top Layer:

<table>

<tr>
<td align=”right”>Layer zIndex:</td>
<td><input type=”text” name=”top” size=”3”

onchange=”setZ(this)” /></td>
</tr>
<tr>

<td align=”right”>Layer above:</td>
<td><input type=”text” name=”above” size=”13” /></td>

</tr>
<tr>

<td align=”right”>Layer below:</td>
<td><input type=”text” name=”below” size=”13” /></td>

</tr>
</table>

</form>
</layer>
<layer name=”bottom” bgcolor=”coral” top=”90” left=”260” width=”300”
height=”190”>

<p>Original Bottom Layer</p>
</layer>
<layer name=”middle” bgcolor=”aquamarine” top=”110” left=”280”

Continued

document.layerObject.zIndex

BC136 Part VI ✦ Bonus Chapters

Listing 39-9 (continued)

width=”300” height=”190”>
<p>Original Middle Layer</p>

</layer>
<layer name=”top” bgcolor=”yellow” top=”130” left=”300” width=”300”
height=”190”>

<p>Original Top Layer</p>
</layer>

</body>
</html>

Related Items: layer.above, layer.below properties; layer.moveAbove(), layer.
moveBelow() methods.

Methods

load(“URL”, newLayerWidth)
Returns: Nothing.
Compatibility: WinIE-, MacIE-, NN4, Moz-, Safari-

One way to change the content of an NN4 layer after it loads is to use the layerObject.load()
method. This method has an advantage over setting the layerObject.src property because
the second parameter is a new layer width for the content if one is desired. If you don’t specify
the second parameter, a small default value is substituted for you (unless the new document
hard-wires widths to its elements that must expand the current width). If you are concerned
about a new document being too long for the existing height of the layer, use the layerObject.
resizeTo() method or set the individual layerObject.clip properties before loading the
new document. This keeps the viewable area of the layer at a fixed size.

IE4+ and NN6+/W3C object models don’t have a method like this, but you can work around
the situation (as shown in Listing 39-18) and then adjust the style.width property of the
positioned element.

Example
Buttons in Listing 39-10 enable you to load short and long documents into a layer. The first
two buttons don’t change the width (in fact, the second parameter to layerObject.load()
is the layerObject.clip.left value). For the second two buttons, a narrower width than
the original is specified. Click the Restore button frequently to return to a known state.

Listing 39-10: Loading Documents into Layers

<html>
<head>

<title>Layer Loading</title>
<script type=”text/javascript”>
function loadDoc(URL,width) {

if (!width) {
width = document.myLayer.clip.width;

}

document.layerObject.zIndex

BC137Chapter 39 ✦ Positioned Objects

document.myLayer.load(URL, width);
}
</script>

</head>
<body>

Loading New Documents
<hr />
<layer top=”90” width=”240” bgcolor=”yellow”>

<form>
Loading new documents:

<input type=”button” value=”Small Doc/Existing Width”
onclick=”loadDoc(‘article1.htm’)” />

<input type=”button” value=”Large Doc/Existing Width”
onclick=”loadDoc(‘bofright.htm’)” />
<p><input type=”button” value=”Small Doc/Narrower Width”

onclick=”loadDoc(‘article1.htm’,200)” />

<input type=”button” value=”Large Doc/Narrower Width”
onclick=”loadDoc(‘bofright.htm’,200)” /></p>

<p><input type=”button” value=”Restore”
onclick=”location.reload()” /></p>

</form>
</layer>
<layer name=”myLayer” bgcolor=”yellow” top=”90” left=”300” width=”300”
height=”190”>

<p>Text loaded in original document.</p>
</layer>

</body>
</html>

Related Item: layer.src property.

moveAbove(layerObject)
moveBelow(layerObject)

Returns: Nothing.
Compatibility: WinIE-, MacIE-, NN4, Moz-, Safari-

With the exception of the layerObject.zIndex property, the layer object does not let
you adjust properties that affect the global stacking order of layers. The layerObject.
moveAbove() and layerObject.moveBelow() methods enable you to adjust a layer in rela-
tion to another layer object. Both layers in the transaction must be siblings — they must be in
the same container, whether it be the base document window or some other layer. You cannot
move existing layers from one container to another; you must delete the layer from the source
and create a new layer in the destination. Neither of these methods affects the viewable size
or coordinate system location of the layer.

The syntax for these methods is a little strange at first because the statement that makes
these work has two layer object references in it. Named first in the statement (to the left of
the method name, separated by a period) is the layer object you want to move. The sole
parameter for each method is a reference to the layer object that is the physical reference
point for the trip. For example, in this statement,

document.fred.moveAbove(document.ginger);

the instruction moves the fred layer above the ginger layer. The fred layer can be in any
stacking relation to ginger; but, again, both layers must be in the same container.

document.layerObject.moveAbove()

BC138 Part VI ✦ Bonus Chapters

Obviously, after one of these moves, the layerObject.above and layerObject.below prop-
erties of some or all layers in the container feel the ripple effects of the shift in order. If you
have several layers that are out of order because of user interaction with your scripts, you
can reorder them using these methods — or, more practically, by setting their layerObject.
zIndex properties. In the latter case, it is easier to visualize through your code how the order-
ing is handled with increasing zIndex values for each layer.

There is no comparable method for IE4+ or NN6+/W3C.

Example
You can see the layerObject.moveAbove() method at work in Listing 39-1.

Related Items: layer.above, layer.below, layer.zIndex properties.

moveBy(deltaX,deltaY)
moveTo(x,y)
moveToAbsolute(x,y)

Returns: Nothing.
Compatibility: WinIE-, MacIE-, NN4, Moz-, Safari-

Much of what CSS-Positioning is all about is being able to precisely plant an element on a Web
page. The unit of measure is the pixel, with the coordinate space starting at an upper-left corner
at location 0,0. That coordinate space for a layer is typically the container (parent layer) for
that layer. The layerObject.moveTo() and layerObject.moveBy() methods let scripts
adjust the location of a layer inside that coordinate space — very much the way window.
moveTo() and window.moveBy() work for window objects.

Moving a layer entails moving it (and its nested layers) without adjusting its size or stacking
order. You can accomplish animation of a layer by issuing a series of layerObject.moveTo()
methods if you know the precise points along the path. Or you can nudge the layer by incre-
ments in one or both axes with the layerObject.moveBy() method.

In case you need to position a layer with respect to the page’s coordinate system (for example,
you are moving items from multiple containers to a common point), the layerObject.
moveToAbsolute() method bypasses the layer’s immediate container. The 0,0 point for this
method is the top-left corner of the document. Be aware, however, that you can move a layer
to a position such that some or all of it lies out of range of the container’s clip rectangle.

Moving positioned layers in IE4+ and NN6+/W3C requires adjusting the style.left and
style.top properties (or the style.pixelLeft, style.pixelTop, style.posLeft,
and style.posTop properties in IE4+).

Example
Listing 39-11 shows a demonstration of the layerObject.moveTo() method. It is a simple
script that enables you to click and drag a layer around the screen. The script employs the
coordinate values of the mousemove event; after compensating for the offset within the layer
at which the click occurs, the script moves the layer to track the mouse action.

I want to present this example for an additional reason: to explain an important user interface
difference between Windows and Macintosh versions of NN4. In Windows versions, you can
click and hold the mouse button down on an object and let the object receive all the mousemove
events as you drag the cursor around the screen. On the Macintosh, however, NN4 tries to

document.layerObject.moveAbove()

BC139Chapter 39 ✦ Positioned Objects

compensate for the lack of a second mouse button by popping up a context-sensitive menu at
the cursor position when the user holds the mouse button down for more than just a click. To
prevent the pop-up menu from appearing, the engage() method invoked by the onmousedown
event handler ends with return false.

Notice in the following listing how the layer captures a number of mouse events. Each one plays
an important role in creating a mode that is essentially like a mouseStillDown event (which
doesn’t exist in NN4’s event model). The mousedown event sets a Boolean flag (engaged) indi-
cating that the user clicked down in the layer. At the same time, the script records how far
away from the layer’s top-left corner the mousedown event occurred. This offset information
is needed so that any setting of the layer’s location takes this offset into account (otherwise,
the top-left corner of the layer would jump to the cursor position and be dragged from there).

During the drag (mousedown events firing with each mouse movement), the dragIt() func-
tion checks whether the drag mode is engaged. If so, the layer is moved to the page location
calculated by subtracting the original downstroke offset from the mousemove event location
on the page. When the user releases the mouse button, the mouseup event turns off the drag
mode Boolean value.

Listing 39-21 shows a version of this example for IE5+ and NN6+/W3C.

Listing 39-11: Dragging a Layer

<html>
<head>

<title>Layer Dragging</title>
<script type=”text/javascript”>
var engaged = false;
var offsetX = 0;
var offsetY = 0;
function dragIt(e) {

if (engaged) {
document.myLayer.moveTo(e.pageX - offsetX, e.pageY - offsetY);

}
}
function engage(e) {

engaged = true;
offsetX = e.pageX - document.myLayer.left;
offsetY = e.pageY - document.myLayer.top;
return false;

}
function release() {

engaged = false;
}
</script>

</head>
<body>

Dragging a Layer
<hr />
<layer name=”myLayer” bgcolor=”lightgreen” top=”90” left=”100”
width=”300” height=”190”>

<p>Drag me around the window.</p>
</layer>
<script type=”text/javascript”>

Continued

document.layerObject.moveBy()

BC140 Part VI ✦ Bonus Chapters

Listing 39-11 (continued)

document.myLayer.captureEvents(Event.MOUSEDOWN | Event.MOUSEUP |
Event.MOUSEMOVE);

document.myLayer.onmousedown = engage;
document.myLayer.onmouseup = release;
document.myLayer.onmousemove = dragIt;
</script>

</body>
</html>

Related Items: layer.resizeBy(), layer.resizeTo(), window.moveBy(),
window.moveTo() methods.

resizeBy(deltaX,deltaY)
resizeTo(width,height)

FTR:document.layerObject.resizeBy()

Returns: Nothing.
Compatibility: WinIE-, MacIE-, NN4, Moz-, Safari-

The basic functionality and parameter requirements of the layerObject.resizeBy() and
layerObject.resizeTo() methods are similar to the identically named methods of the
window object. You should, however, be cognizant of some considerations unique to layers.

Unlike resizing a window, which causes all content to reflow to fit the new size, the layer sizing
methods don’t adjust the size of the layer. Instead, these methods control the size of the clip-
ping region of the layer. Therefore, the content of the layer does not reflow automatically when
you use these methods any more than it does when you change individual
layerObject.clip values.

Another impact of this clipping region relationship deals with content that extends beyond
the bounds of the layer. For example, if you provide height and width attributes to a <layer>
tag, content that requires more space to display itself than those attribute settings afford auto-
matically expands the viewable area of the layer. To rein in such runaway content, you can set
the clip attribute. But because the layer resize methods adjust the clipping rectangle, outsized
content doesn’t overflow the <layer> tag’s height and width settings. This may or may not
be beneficial for you, depending on your design intentions. Adjusting the size of a layer with
either method affects only the position of the right and bottom edges of the layer. The top-left
location of the layer does not move.

Neither IE4+ nor NN6+/W3C provides a similar method, but you can accomplish the same
effects by adjusting the style properties of a positioned element.

Example
It is important to understand the ramifications of content flow when these two methods resize
a layer. Listing 39-12a (and the companion document Listing 39-12b) shows you how to set the
lower-right corner of a layer to be dragged by a user for resizing the layer (much like grabbing
the resize corner of a document window). Three radio buttons enable you to choose whether
and when the content should be redrawn to the layer — never, after resizing, or during resizing.

document.layerObject.moveBy()

BC141Chapter 39 ✦ Positioned Objects

Event capture is very much like that in Listing 39-11 for layer dragging. The primary difference
is that drag mode is engaged only when the mouse event takes place in the region of the lower-
right corner. A different kind of offset value is saved here because, for resizing, the script needs
to know the mouse event offset from the right and bottom edges of the layer.

Condition statements in the resizeIt() and release() functions verify whether a specific
radio button is checked to determine when (or if) the content should be redrawn. I designed
this page with the knowledge that its content might be redrawn. Therefore, I built the content
of the layer as a separate HTML document that loads in the <layer> tag.

Redrawing the content requires reloading the document into the layer. I use the layerObject.
load() method because I want to send the current layerObject.clip.width as a parameter
for the width of the clip region to accommodate the content as it loads.

An important point to know about reloading content into a layer is that all property settings
for the layer’s event capture are erased when the document loads. Overcoming this behavior
requires setting the layer’s onload event handler to set the layer’s event capture mechanism.
If the layer event capturing is specified as part of the statements at the end of the document,
the layer ignores some important events needed for the dynamic resizing after the document
reloads the first time.

As you experiment with the different ways to resize and redraw, you see that redrawing during
resizing is a slow process because of the repetitive loading (from cache) needed each time.
On slower client machines, it is easy for the cursor to outrun the layer region, causing the
layer to not get mouseOver events at all. It may not be the best-looking solution, but I prefer
to redraw after resizing the layer.

Listing 39-22 shows a version designed for the IE5+ and NN6+/W3C object models. Because
content automatically reflows in those browsers, you do not have to load the content of the
positioned element from an external document.

Listing 39-12a: Resizing a Layer

<html>
<head>

<title>Layer Resizing</title>
<script type=”text/javascript”>
var engaged = false;
var offsetX = 0;
var offsetY = 0;
function resizeIt(e) {

if (engaged) {
document.myLayer.resizeTo(e.pageX + offsetX, e.pageY + offsetY);
if (document.forms[0].redraw[2].checked) {

document.myLayer.load(“lst39-12b.htm”,
document.myLayer.clip.width);

}
}

}
function engage(e) {

if (e.pageX > (document.myLayer.clip.right - 10) &&
e.pageY > (document.myLayer.clip.bottom - 10)) {
engaged = true;
offsetX = document.myLayer.clip.right - e.pageX;
offsetY = document.myLayer.clip.bottom - e.pageY;

Continued

document.layerObject.resizeBy()

BC142 Part VI ✦ Bonus Chapters

Listing 39-12a (continued)

}
}
function release() {

if (engaged && document.forms[0].redraw[1].checked) {
document.myLayer.load(“lst39-12b.htm”,

document.myLayer.clip.width);
}
engaged = false;

}
function grabEvents() {

document.myLayer.captureEvents(Event.MOUSEDOWN | Event.MOUSEUP |
Event.MOUSEMOVE);

}
</script>

</head>
<body>

Resizing a Layer
<hr />
<form>

Redraw layer content:

<input type=”radio” name=”redraw” checked=”checked” />Never <input
type=”radio” name=”redraw” />After resize <input type=”radio”
name=”redraw” />During resize

</form>
<layer name=”myLayer” src=”lst39-12b.htm” bgcolor=”lightblue” top=”120”
left=”100” width=”300” height=”190” onload=”grabEvents()”>
</layer>
<script type=”text/javascript”>
document.myLayer.onmousedown = engage;
document.myLayer.onmouseup = release;
document.myLayer.onmousemove = resizeIt;
</script>

</body>
</html>

Listing 39-12b: Content for the Resizable Layer

<html>
<head>

<title></title>
</head>
<body>

<p>Resize me by dragging the lower right corner.</p>
<script type=”text/javascript”>
if (navigator.userAgent.indexOf(“Mac”) != -1) {

document.write(“(Mac users: Ctrl-Click me first; then Click to stop
dragging.)”);

}
</script>

</body>
</html>

document.layerObject.resizeBy()

BC143Chapter 39 ✦ Positioned Objects

Related Items: layer.moveBy(), layer.moveTo(), window.resizeBy(),
window.resizeTo() methods.

Event handlers

onblur
onfocus

Compatibility: WinIE-, MacIE-, NN4, Moz-, Safari-

A user gets no visual cue when a layer receives focus. But a click on the clipping region of a
layer triggers a focus event that can be handled with an onFocus event handler. Clicking any-
where on the page outside of that layer area fires a blur event. Changing the stacking order
of sibling layers does not fire either event unless mouse activity occurs in one of the layers.

If your layer contains elements that have their own focus and blur events (such as text
fields), those objects’ event handlers still fire even if you also have the same event handlers
defined for the layer. The layer’s events fire after the text field’s events.

Unlike comparable event handlers in windows, layer events for blur and focus do not have
companion methods to bring a layer into focus or to blur it. However, if you use the focus()
and/or blur() methods on applicable form elements in a layer, the layer’s corresponding
event handlers are triggered as a result.

Related Items: textbox.blur(), textbox.focus() methods.

onload
Compatibility: WinIE-, MacIE-, NN4, Moz-, Safari-

Scripting layers can sometimes lead to instances of unfortunate sequences of loading. For
example, if you want to set some layer object properties via a script (that is, not in the <layer>
tag), you can do so only after the layer object exists in the document object model. One way
to make sure the object exists is to place the scripting in <script> tags at the end of the docu-
ment. Another way is to specify an onload event handler in the tag, as shown in Listing 39-12a.

Each time you load a document into the layer — either via the src attribute in the <layer>
tag or by invoking the layerObject.load() method — the onload event handler runs. But
also be aware that an interaction occurs between a layer’s onload event handler and an
onload event handler in the <body> tag of a document loaded into a layer. If the document
body has an onload event handler, the layer’s onload event handler does not fire. You get
one or the other, but not both.

Related Item: window.onload event handler.

onmouseout
onmouseover

Compatibility: WinIE-, MacIE-, NN4, Moz-, Safari-

A layer knows when the cursor rolls into and out of its clipping region. Like several other
objects in the document object model, the layer object has onmouseover and onmouseout
event handlers that enable you to perform any number of actions in response to those user
activities. Typically, a layer’s onmouseover event handler changes colors, hides, or shows
pseudo-borders devised of colored layers behind the primary layer; sometimes, it even
changes the text or image content. The status bar is also available to plant plain-language
legends about the purpose of the layer or offer other relevant help.

document.layerObject.onmouseout

BC144 Part VI ✦ Bonus Chapters

Both events occur only once per entrance to, and egress from, a layer’s region by the cursor.
If you want to script actions dependent upon the location of the cursor in the layer, you can
use layerObject.captureEvents() to grab mousemove and all types of mouse button events.
This kind of event capture generates an event object (see Chapter 25) that includes informa-
tion about the coordinate position of the cursor at the time of the event.

Related Items: link.onmouseout, link.onmouseover, area.onmouseout, area.
onmouseover event handlers.

Positioned Elements in the Modern DOM
With the dwindling NN4 installed base, you can focus on applying “layer” techniques in
browsers whose object models expose every element of an object and whose rendering
engines automatically reflow content in response to changes. This section follows the
sequence of examples in the discussion about NN4’s layer object but shows you how to
accomplish the same operations and learn the behavior of positioned elements in IE4+, NN6+,
and W3C-compatible browsers.

An important facet that these newer browsers have in common is the style property of every
renderable element object. Most adjustments to the location, layering, size, and visibility of
positioned elements use the style object associated with each element. Cross-browser com-
plications ensue, however, with some aspects of nested layers. Plus, there is the ever-present
difference between the IE- and NN-class browsers with respect to the event objects — how to
reference the event object and the names of its properties. Some of the examples that follow
have more code in them than their corresponding NN4 layer version shown earlier in this
chapter. Most of the additional code concerns itself with accommodating the different event
object models.

One more point about the following examples: The syntax adopted for references to element
objects uses the W3C DOM document.getElementById() method, which is supported in
IE5+, NN6+/Mozilla, and Safari. If you intend to apply any of the techniques in these examples
to applications that run exclusively in an IE environment (and must be compatible with IE4),
you can substitute the document.all referencing syntax.

Changing element backgrounds
Listing 39-13 demonstrates the syntax and behavior of setting background images via the
style.backgroundImage property. Note the CSS-style syntax for the URL value assigned to
the style.backgroundImage property. It’s a good lesson to learn that most style properties
are strings, and their values are in the same format as the values normally assigned in a
stylesheet definition.

Removing a background image requires setting the URL to null. Also, a background image
overlays whatever color (if any) you assign to the element. If the background image has trans-
parent regions, the background color shows through.

Listing 39-13: Setting Layer Backgrounds (W3C)

<html>
<head>

<title>Layer Backgrounds (W3C)</title>
<script type=”text/javascript”>
function setBg(URL) {

document.getElementById(“bgExpo”).style.backgroundImage =

BC145Chapter 39 ✦ Positioned Objects

“url(“ + URL + “)”;
}
</script>

</head>
<body>

<h1>Layer Backgrounds (W3C)</h1>
<hr />
<div id=”buttons” style=”position:absolute; top:100”>

<form>
<input type=”button” value=”The Usual”
onclick=”setBg(‘cr_kraft.gif’)” />

<input type=”button” value=”A Big One”
onclick=”setBg(‘arch.gif’)” />

<input type=”button” value=”Not So Usual”
onclick=”setBg(‘wh86.gif’)” />

<input type=”button” value=”Decidedly Unusual”
onclick=”setBg(‘sb23.gif’)” />

<input type=”button” value=”Quick as...”
onclick=”setBg(‘lightnin.gif’)” />
<p><input type=”button” value=”Remove Image”

onclick=”setBg(null)” />
</p>
</form>

</div>
<div id=”bgExpo”
style=”position:absolute; top:100; left:250; width:300; height:260;

background-color:gray”>
Some text, which may or
may not read well with the various backgrounds.

</div>
</body>

</html>

Listing 39-14 focuses on background color. A color palette is laid out as a series of rectangles.
As the user rolls atop a color in the palette, the color is assigned to the background of the
layer. Because of the regularity of the div elements generated for the palette, this example
uses scripts to write them dynamically to the page as the page loads. This lets the for loop
handle all the positioning math based on initial values set as global variables.

Perhaps of more interest here than the background color setting is the event handling. First of
all, because the target browsers all employ event bubbling, the page lets a single event han-
dler at the document level wait for mouseover events to bubble up to the document level. But
because the mouseover event of every element on the page bubbles there, the event handler
must filter the events and process only those on the palette elements.

The setColor() method begins by equalizing the IE4+ and NN6+/W3C DOM event object mod-
els. If an object is assigned to the evt parameter variable, that means the W3C DOM browser
is processing the event; otherwise, it’s IE4+ — meaning that the window.event object con-
tains the event information. Whichever browser performs the processing, the event object is
assigned to the evt variable. After verifying that a valid event triggered the function, the next
step is to equalize the different, event-model–specific property names for the event’s target
element. For W3C DOM browsers, the property is target, while IE4+ uses srcElement. The
final validation is to check the className property of the event’s target element. Because all
elements acting as palette colors share the same class attribute, the className property is
examined. If the value is palette, the mouseover event has occurred on one of the colors.
Now it’s time to extract the target element’s style.backgroundColor property and assign
that color to the same property of the main positioned element.

BC146 Part VI ✦ Bonus Chapters

Listing 39-14: Layer Background Colors (W3C)

<html>
<head>

<title>Layer Background Colors (W3C)</title>
<script type=”text/javascript”>
function setColor(evt) {

evt = (evt) ? evt : (window.event) ? window.event : “”;
if (evt) {

var elem = (evt.target) ? evt.target : evt.srcElement;
if (elem.className == “palette”) {

document.getElementById(“display”).style.backgroundColor =
elem.style.backgroundColor;

}
}

}
document.onmouseover = setColor;
</script>

</head>
<body>

<h1>Layer Background Colors (W3C)</h1>
<hr />
<script type=”text/javascript”>
var oneLayer;
var colorTop = 100;
var colorLeft = 20;
var colorWidth = 40;
var colorHeight = 40;
var colorPalette = new Array(“aquamarine”,”coral”,”forestgreen”,

“goldenrod”,”red”,”magenta”,”navy”,”teal”);
for (var i = 0; i < colorPalette.length; i++) {

oneLayer = “<div id=’swatch” + i + “‘ class=’palette’”;
oneLayer += “style=’position:absolute; top:” + colorTop + “;”;
oneLayer += “left:” + ((colorWidth * i) + colorLeft) + “;”;
oneLayer += “width:” + colorWidth + “; height:” + colorHeight + “;”;
oneLayer += “background-color:” + colorPalette[i] + “‘><\/div>\n”;
document.write(oneLayer);

}
</script>
<div id=”display”
style=”position:absolute; top:150; left:80; width:200; height:200;

background-color:gray”>
Some
reversed text to test against background colors.

</div>
</body>

</html>

Layer clipping
Working with clipping rectangles is a bit cumbersome using CSS syntax because the object
model standard does not provide separate readouts or controls over individual edges of a
clipping rectangle. IE5+ enables you to read individual edge dimensions via the currentStyle
object (for example, currentStyle.clipTop), but these properties are read-only.

BC147Chapter 39 ✦ Positioned Objects

Based on these limitations, Listing 39-15 is implemented in a way that, for the sake of conve-
nience, preserves the current clipping rectangle edge values as global variables. Any adjust-
ments to individual edge values are first recorded in those variables (in the setClip()
function), and then the style.clip property is assigned the long string of values in the
required format (in the adjustClip() function). The showValues() function reads the
variable values and displays updated values after making the necessary calculations for the
width and height of the clipping rectangle.

As a demonstration of a “reveal” visual effect (which you can carry out more simply in WinIE4+
via a transition filter), the revealClip() function establishes beginning clip values at the mid-
points of the width and height of the layer. Then the setInterval() method loops through
stepClip() until the clipping rectangle dimensions match those of the layer.

Listing 39-15: Adjusting Layer clip Properties (W3C)

<html>
<head>

<title>Layer Clip</title>
<script type=”text/javascript”>
var origLayerWidth = 0
var origLayerHeight = 0
var currTop, currRight, currBottom, currLeft
function init() {

origLayerWidth =
parseInt(document.getElementById(“display”).style.width);

origLayerHeight =
parseInt(document.getElementById(“display”).style.height);

currTop = 0;
currRight = origLayerWidth;
currBottom = origLayerHeight;
currLeft = 0;
showValues();

}

function setClip(field) {
var val = parseInt(field.value);
switch (field.name) {
case “top” :

currTop = val;
break;

case “right” :
currRight = val;
break;

case “bottom” :
currBottom = val;
break;

case “left” :
currLeft = val;
break;

case “width” :
currRight = currLeft + val;
break;

case “height” :
currBottom = currTop + val;
break;

}

Continued

BC148 Part VI ✦ Bonus Chapters

Listing 39-15 (continued)

adjustClip();
showValues();

}

function adjustClip() {
document.getElementById(“display”).style.clip = “rect(“ + currTop +

“px “ + currRight + “px “ + currBottom + “px “ + currLeft + “px)”;
}

function showValues() {
var form = document.forms[0];
form.top.value = currTop;
form.right.value = currRight;
form.bottom.value = currBottom;
form.left.value = currLeft;
form.width.value = currRight - currLeft;
form.height.value = currBottom - currTop;

}
var intervalID;
function revealClip() {

var midWidth = Math.round(origLayerWidth /2);
var midHeight = Math.round(origLayerHeight /2);
currTop = midHeight;
currBottom = midHeight;
currRight = midWidth;
currLeft = midWidth;
intervalID = setInterval(“stepClip()”,1);

}
function stepClip() {

var widthDone = false;
var heightDone = false;
if (currLeft > 0) {

currLeft += -2;
currRight += 2;

} else {
widthDone = true;

}
if (currTop > 0) {

currTop += -1;
currBottom += 1;

} else {
heightDone = true;

}
adjustClip();
showValues();
if (widthDone && heightDone) {

clearInterval(intervalID);
}

}
</script>

</head>
<body onload=”init()”>

<h1>Layer Clipping Properties (W3C)</h1>
<hr />
Enter new clipping values to adjust the visible area of the layer.
<div style=”position:absolute; left:10; top:130”>

<form>

BC149Chapter 39 ✦ Positioned Objects

<table>
<tr>

<td align=”right”>layer.style.clip (left):</td>
<td><input type=”text” name=”left” size=”3”

onchange=”setClip(this)” /></td>
</tr>
<tr>

<td align=”right”>layer.style.clip (top):</td>
<td><input type=”text” name=”top” size=”3”

onchange=”setClip(this)” /></td>
</tr>
<tr>

<td align=”right”>layer.style.clip (right):</td>
<td><input type=”text” name=”right” size=”3”

onchange=”setClip(this)” /></td>
</tr>
<tr>

<td align=”right”>layer.style.clip (bottom):</td>
<td><input type=”text” name=”bottom” size=”3”

onchange=”setClip(this)” /></td>
</tr>
<tr>

<td align=”right”>layer.style.clip (width):</td>
<td><input type=”text” name=”width” size=”3”

onchange=”setClip(this)” /></td>
</tr>
<tr>

<td align=”right”>layer.style.clip (height):</td>
<td><input type=”text” name=”height” size=”3”

onchange=”setClip(this)” /></td>
</tr>

</table>
<input type=”button” value=”Reveal Original Layer”
onclick=”revealClip()” />

</form>
</div>
<div id=”display”
style=”position:absolute; top:130; left:220; width:360; height:180;

clip:rect(0px 360px 180px 0px); background-color:coral”>
<h2>ARTICLE I</h2>
<p>Congress shall make no law respecting an establishment of religion,

or prohibiting the free exercise thereof; or abridging the freedom
of speech, or of the press; or the right of the people peaceably to
assemble, and to petition the government for a redress of
grievances.</p>

</div>
</body>

</html>

Listing 39-16 enables you to compare the results of adjusting a clipping rectangle versus the
size of a positioned element. This example goes a bit further than the corresponding NN4
layer version (Listing 39-5) in that it enables you to adjust the dimensions of the entire layer
(via the style.left and style.right properties) as well as the right and bottom edges of
the clipping rectangle associated with the layer. As a bonus, the code includes a function that
converts the style.clip string into an object representing the rectangle of the clipping rect-
angle (in other words, with four properties, one for each edge). Values from that rectangle
object populate two of the fields on the page, providing dynamic readouts of the clipping
rectangle’s right and bottom edges.

BC150 Part VI ✦ Bonus Chapters

Global variables still temporarily store the clipping rectangle values so that the adjustClip()
function can operate just as it does in Listing 39-15. Note that the clipping rectangle is explicitly
defined in the stylesheet rule for the positioned element. This is necessary for the element’s
style.clip property to have some values with which to start.

Listing 39-16: Comparison of Layer and Clip Location Properties (W3C)

<html>
<head>

<title>Layer vs. Clip</title>
<script type=”text/javascript”>
var currClipTop = 0;
var currClipLeft = 0;
var currClipRight = 360;
var currClipBottom = 180;
function setClip(field) {

var val = parseInt(field.value);
switch (field.name) {
case “clipBottom” :

currClipBottom = val;
break;

case “clipRight” :
currClipRight = val;
break;

}
adjustClip();
showValues();

}
function adjustClip() {

document.getElementById(“display”).style.clip =
“rect(“ + currClipTop + “px “ + currClipRight + “px “ +
currClipBottom + “px “ + currClipLeft + “px)”;

}

function setLayer(field) {
var val = parseInt(field.value);
switch (field.name) {
case “width” :

document.getElementById(“display”).style.width = val + “px”;
break;

case “height” :
document.getElementById(“display”).style.height = val + “px”;
break;

}
showValues();

}
function showValues() {

var form = document.forms[0];
var elem = document.getElementById(“display”);
var clipRect = getClipRect(elem);
form.width.value = parseInt(elem.style.width);
form.height.value = parseInt(elem.style.height);
form.clipRight.value = clipRect.right;
form.clipBottom.value = clipRect.bottom;

}
// convert clip property string to an object
function getClipRect(elem) {

var clipString = elem.style.clip;

BC151Chapter 39 ✦ Positioned Objects

// assumes “rect(npx, npx, npx, npx)” form
// get rid of “rect(“
clipString = clipString.replace(/rect\(/,””);
// get rid of “px)”
clipString = clipString.replace(/px\)/,””);
// get rid of remaining “px” strings
clipString = clipString.replace(/px/g,”,”);
// turn remaining string into an array
clipArray = clipString.split(“,”);
// make object out of array values
var clipRect = {top:parseInt(clipArray[0]),

right:parseInt(clipArray[1]), bottom:parseInt(clipArray[2]),
left:parseInt(clipArray[3])};

return clipRect;
}
</script>

</head>
<body onload=”showValues()”>

<h1>Layer vs. Clip Dimension Properties (W3C)</h1>
<hr />
Enter new layer and clipping values to adjust the layer.
<div style=”position:absolute; left:10; top:130”>

<form>
<table>

<tr>
<td align=”right”>layer.style.width:</td>
<td><input type=”text” name=”width” size=”3”

onchange=”setLayer(this)” /></td>
</tr>
<tr>

<td align=”right”>layer.style.height:</td>
<td><input type=”text” name=”height” size=”3”

onchange=”setLayer(this)” /></td>
</tr>
<tr>

<td align=”right”>layer.style.clip (right):</td>
<td><input type=”text” name=”clipRight” size=”3”

onchange=”setClip(this)” /></td>
</tr>
<tr>

<td align=”right”>layer.style.clip (bottom):</td>
<td><input type=”text” name=”clipBottom” size=”3”

onchange=”setClip(this)” /></td>
</tr>

</table>
</form>

</div>
<div id=”display”
style=”position:absolute; top:130; left:250; width:360; height:180;

clip:rect(0px, 360px, 180px, 0px); background-color:coral”>
<h2>ARTICLE I</h2>
<p>Congress shall make no law respecting an establishment of religion,

or prohibiting the free exercise thereof; or abridging the freedom
of speech, or of the press; or the right of the people peaceably to
assemble, and to petition the government for a redress of
grievances.</p>

</div>
</body>

</html>

BC152 Part VI ✦ Bonus Chapters

Scripting nested layers
Working with nested layer locations, especially in a cross-browser manner, presents numer-
ous browser-specific syntax problems that need equalization to behave the same to all users.
Some discrepancies even appear between Windows and Macintosh versions of IE.

The scenario for Listing 39-17 consists of one positioned layer (greenish) nested inside another
(reddish). The inner layer is initially sized and positioned so that the outer layer extends 5 pix-
els in each direction. Text boxes enable you to adjust the coordinates for either layer relative
to the entire page as well as the layer’s positioning context. If you make a change to any one
value, all the others are recalculated and displayed to show you the effect the change has on
other coordinate values.

As you see when you load the page, the outer element’s positioning context is the page, so
the “page” and “container” coordinates are the same (although the calculations to achieve
this equality are not so simple across all browsers). The inner layer’s initial page coordinates
are to the right and down 5 pixels in each direction, and the coordinates within the container
show those 5 pixels.

Because of browser idiosyncrasies, calculating the coordinates within the page takes the
most work. The getGrossOffsetLeft() and getGrossOffsetTop() functions perform
those calculations in the page. Passed a reference to the positioned element to be measured,
the first number to grab is whatever the browser returns as the offsetLeft or offsetTop
value of the element (see Chapter 15). These values are independent of the style property,
and they can report different values for different browsers. IE, for example, measures the off-
set with respect to whatever it determines as the next outermost positioning context. NN6+,
on the other hand, treats the page as the positioning context regardless of nesting. So, as
long as there is an offsetParent element, a while loop starts accumulating the offsetLeft
measures of each succeeding offset parent element going outward from the element. But even
before that happens, a correction for MacIE must be accounted for. If there is a difference
between the style.left and offsetLeft property values of an element, that difference is
added to the offset. In MacIE5, for example, failure to correct this results in the “page” and
“container” values of the outer layer being 10 pixels different in each direction. Values returned
from these two gross measures are inserted in the readouts for the “page” measures of both
inner and outer elements.

Reading the coordinates relative to each element’s “container” is easy: The style.left and
style.top properties have the correct values for all browsers. Moving a layer with respect
to its positioning context (the “container” values) is equally easy: assign the entered values
to the same style.left and style.top properties.

Moving the layers with respect to the page coordinate planes (via the setOuterPage() and
setInnerPage() functions) involves going the long way to assign values that take each
browser’s positioning idiosyncrasies into account. The way you move a positioned element
(cross-browser, anyway) is to assign a value to the style.left and style.top properties.
These values are relative to their positioning context, but NN6+ doesn’t offer any shortcuts to
reveal what element is the positioning context for a nested element. Calls to the getNetOffset
Left() and getNetOffsetTop() functions do the inverse of the getGrossOffsetLeft()
and getGrossOffsetTop() functions. Because the values received from the text box are rela-
tive to the entire page, the values must have any intervening positioning contexts subtracted
from that value in order to achieve the net positioning values that can be applied to the style.
left and style.top properties. To get there, however, a call to the getParentLayer() func-
tion cuts through the browser-specific implementations of container references to locate the
positioning context so that its coordinate values can be subtracted properly. The same kind of

BC153Chapter 39 ✦ Positioned Objects

correction for MacIE is required here as in the gross offset calculations; but here, the correc-
tion is subtracted from the value that eventually is returned as the value for either the style.
left or style.top of the layer.

Let me add one quick word about the condition statements of the while constructions in the
getNetOffsetLeft() and getNetOffsetTop() functions. You see here a construction not
used frequently in this book, but one that is perfectly legal. When the conditional expression
evaluates, the getParentLayer() method is invoked, and its returned value is assigned to
the elem variable. That expression evaluates to the value returned by the function. As you
can see from the getParentLayer() function definition, a value is returned as either an ele-
ment reference or null. The while condition treats a value of null as false; any reference
to an object is treated as true. Thus, the conditional expression does not use a comparison
operator but rather executes some code and branches based on the value returned by that
code. NN6+ reports JavaScript warnings (not errors) for this construction because it tries to
alert you to a common scripting bug that occurs when you use the = operator when you
really mean the == operator. But an NN warning is not the same as a script error, so don’t be
concerned when you see these messages in the JavaScript Console window during your
debugging.

Listing 39-17: Testing Nested Layer Coordinate Systems (W3C)

<html>
<head>

<title>Nested Layer Coordinates (W3C)</title>
<script type=”text/javascript”>
// offsets within page
function getGrossOffsetLeft(elem) {

var offset = 0;
while (elem.offsetParent) {

// correct for MacIE discrepancy between offset and style
// coordinates, but not if the parent is HTML element (NN6+)
offset += (elem.offsetParent.tagName != “HTML”) ?

parseInt(elem.style.left) - parseInt(elem.offsetLeft) : 0;
elem = elem.offsetParent;
offset += elem.offsetLeft;

}
return offset;

}
function getGrossOffsetTop(elem) {

var offset = 0;
while (elem.offsetParent) {

// correct for MacIE discrepancy between offset and style
// coordinates, but not if the parent is HTML element (NN6+)
offset += (elem.offsetParent.tagName != “HTML”) ?

parseInt(elem.style.top) - parseInt(elem.offsetTop) : 0;
elem = elem.offsetParent;
offset += elem.offsetTop;

}
return offset;

}

// offsets within element’s positioning context

Continued

BC154 Part VI ✦ Bonus Chapters

Listing 39-17 (continued)

function getNetOffsetLeft(offset, elem) {
while (elem = getParentLayer(elem)) {

// correct for MacIE discrepancy between offset and style
// coordinates, but not if the parent is HTML element (NN6+)
offset -= (elem.offsetParent.tagName != “HTML”) ?

parseInt(elem.style.left) - parseInt(elem.offsetLeft) : 0;
offset -= elem.offsetLeft;

}
return offset;

}
function getNetOffsetTop(offset, elem) {

while (elem = getParentLayer(elem)) {
// correct for MacIE discrepancy between offset and style
// coordinates, but not if the parent is HTML element (NN6+)
offset -= (elem.offsetParent.tagName != “HTML”) ?

parseInt(elem.style.top) - parseInt(elem.offsetTop) : 0;
offset -= elem.offsetTop;

}
return offset;

}
// find positioning context parent element
function getParentLayer(elem) {

if (elem.parentNode) {
while (elem.parentNode != document.body) {

elem = elem.parentNode;
while (elem.nodeType != 1) {

elem = elem.parentNode;
}
if (elem.style.position == “absolute” || elem.style.position ==

“relative”) {
return elem;

}
elem = elem.parentNode;

}
return null;

} else if (elem.offsetParent && elem.offsetParent.tagName != “HTML”) {
return elem.offsetParent;

} else {
return null;

}
}

// functions that respond to changes in text boxes
function setOuterPage(field) {

var val = parseInt(field.value);
var elem = document.getElementById(“outerDisplay”);
switch (field.name) {
case “pageX” :

elem.style.left = ((elem.offsetParent) ?
getNetOffsetLeft(val, elem) : val) + “px”;

break;
case “pageY” :

elem.style.top = ((elem.offsetParent) ?
getNetOffsetTop(val, elem) : val) + “px”;

break;
}

BC155Chapter 39 ✦ Positioned Objects

showValues();
}
function setOuterLayer(field) {

var val = parseInt(field.value);
switch (field.name) {
case “left” :

document.getElementById(“outerDisplay”).style.left = val + “px”;
break;

case “top” :
document.getElementById(“outerDisplay”).style.top = val + “px”;
break;

}
showValues();

}
function setInnerPage(field) {

var val = parseInt(field.value);
var elem = document.getElementById(“innerDisplay”);
switch (field.name) {
case “pageX” :

elem.style.left = ((elem.offsetParent) ?
getNetOffsetLeft(val, elem) : val) + “px”;

break;
case “pageY” :

elem.style.top = ((elem.offsetParent) ?
getNetOffsetTop(val, elem) : val) + “px”;

break;
}
showValues();

}
function setInnerLayer(field) {

var val = parseInt(field.value);
switch (field.name) {
case “left” :

document.getElementById(“innerDisplay”).style.left = val + “px”;
break;

case “top” :
document.getElementById(“innerDisplay”).style.top = val + “px”;
break;

}
showValues();

}
function showValues() {

var form = document.forms[0];
var outer = document.getElementById(“outerDisplay”);
var inner = document.getElementById(“innerDisplay”);
form.elements[0].value = outer.offsetLeft +

((outer.offsetParent) ? getGrossOffsetLeft(outer) : 0);
form.elements[1].value = outer.offsetTop +

((outer.offsetParent) ? getGrossOffsetTop(outer) : 0);
form.elements[2].value = parseInt(outer.style.left);
form.elements[3].value = parseInt(outer.style.top);
form.elements[4].value = inner.offsetLeft +

((inner.offsetParent) ? getGrossOffsetLeft(inner) : 0);
form.elements[5].value = inner.offsetTop +

((inner.offsetParent) ? getGrossOffsetTop(inner) : 0);
form.elements[6].value = parseInt(inner.style.left);
form.elements[7].value = parseInt(inner.style.top);

}

Continued

BC156 Part VI ✦ Bonus Chapters

Listing 39-17 (continued)

</script>
</head>
<body onload=”showValues()”>

<h1>Nested Layer Coordinates (W3C)</h1>
<hr />
Enter new page and layer coordinates for the outer
layer and inner layer objects.
<div style=”position:absolute; left:10; top:130”>

<form>
<table>

<tr>
<td align=”right” bgcolor=”coral”>Page X:</td>
<td bgcolor=”coral”><input type=”text” name=”pageX” size=”3”

onchange=”setOuterPage(this)” /></td>
</tr>
<tr>

<td align=”right” bgcolor=”coral”>Page Y:</td>
<td bgcolor=”coral”><input type=”text” name=”pageY” size=”3”

onchange=”setOuterPage(this)” /></td>
</tr>
<tr>

<td align=”right” bgcolor=”coral”>Container X:</td>
<td bgcolor=”coral”><input type=”text” name=”left” size=”3”

onchange=”setOuterLayer(this)” /></td>
</tr>
<tr>

<td align=”right” bgcolor=”coral”>Container Y:</td>
<td bgcolor=”coral”><input type=”text” name=”top” size=”3”

onchange=”setOuterLayer(this)” /></td>
</tr>
<tr>

<td align=”right” bgcolor=”aquamarine”>Page X:</td>
<td bgcolor=”aquamarine”><input type=”text” name=”pageX”

size=”3” onchange=”setInnerPage(this)” /></td>
</tr>
<tr>

<td align=”right” bgcolor=”aquamarine”>Page Y:</td>
<td bgcolor=”aquamarine”><input type=”text” name=”pageY”

size=”3” onchange=”setInnerPage(this)” /></td>
</tr>
<tr>

<td align=”right” bgcolor=”aquamarine”>Container X:</td>
<td bgcolor=”aquamarine”><input type=”text” name=”left”

size=”3” onchange=”setInnerLayer(this)” /></td>
</tr>
<tr>

<td align=”right” bgcolor=”aquamarine”>Container Y:</td>
<td bgcolor=”aquamarine”><input type=”text” name=”top”

size=”3” onchange=”setInnerLayer(this)” /></td>
</tr>

</table>
</form>

</div>
<div id=”outerDisplay”
style=”position:absolute; top:130; left:200; width:370; height:190;

BC157Chapter 39 ✦ Positioned Objects

background-color:coral”>
<div id=”innerDisplay”
style=”position:absolute; top:5; left:5; width:360; height:180;
background-color:aquamarine”>

<h2>ARTICLE I</h2>
<p>Congress shall make no law respecting an establishment of

religion, or prohibiting the free exercise thereof; or abridging
the freedom of speech, or of the press; or the right of the
people peaceably to assemble, and to petition the government for
a redress of grievances.</p>

</div>
</div>

</body>
</html>

Try entering a variety of values in all text boxes to see what happens. Here is one possible
sequence of tests and explanations:

1. Increase the red Page X value to 250. This moves the outer layer to the right by 50 pixels.
Because the green layer is nested inside, it moves along with it. The green’s Page X value
also increases by 50, but its Container X value remains the same because the inner layer
maintains the same relationship with the outer layer as before.

2. Increase the green Page X value to 300. This action shifts the position of the green inner
layer by 45 pixels, making it a total of 50 pixels inset within its positioning context.
Because the outer layer does not have its clipping rectangle set, the inner layer’s con-
tent bleeds beyond the width of the red layer.

3. Set the Container Y value to –50. This action moves the green inner layer upward so
that its top is 50 pixels above the top of its red container. As a result, the Page Y value
of the inner layer is 80, while the Page Y value of the red outer layer remains at 130
(thus, the 50-pixel difference).

As you experiment with moving the layers around, you may encounter some screen refresh
problems where traces of the inner layer remain when moved beyond the outer layer’s rect-
angle. Take these bugs into account when you design the actions of your script-controlled
positioning.

Loading external HTML into a layer
The NN4 layer object had an unfair advantage when it came to loading external content into
it: the element was designed to do just that, acting in some ways like the W3C-endorsed
iframe element.

Because the IE4+ and W3C DOM object models embrace the iframe element, using that ele-
ment may be the easy way for you to designate a space within a page for external content. In
fact, you can even assign a stylesheet rule that absolute-positions the iframe precisely on
the page where you want it. Be sure to set the frameborder attribute to 0 unless you want
the border to be visible to the user (and then watch out for content that may overrun the
rectangle and cause scrollbars to appear). In this case, you must then leave all the formatting
and stylesheet control of that content to the HTML loaded into the iframe, just as if it were
in a separate window or frame. To load different content into the element, assign a different
URL to the src property of the iframe element object.

BC158 Part VI ✦ Bonus Chapters

As one more example that more closely simulates the loading of external content into a layer,
Listing 39-18 demonstrates a somewhat ugly workaround that lets a layer’s background color
or image show through some kinds of HTML content. The technique works only in IE5.5+ and
NN6+/W3C because these browser generations are the first to offer scripted access to the
HTML you need to load into an intermediate (and hidden) iframe before stuffing the content
into the layer.

A hidden iframe element is the initial recipient of the external HTML file, as loaded by the
loadOuter() method. When that file loads, the transferHTML() method is invoked to copy
the innerHTML of just the body element of the content window of the iframe (note the differ-
ent syntax for NN6+ — the contentDocument property — and IE5.5+ — the contentWindow
property). By eliminating the body element and any tags in the head, you prevent the tags in
the layer from conflicting with the tags for the main document. As a result, however, notice
how the background color set for the layer shows through the HTML plugged into the layer.

HTML element objects (other than iframe) were not designed to get their content from
external files. But, as Listing 39-18 shows, where there is a will there is a way — even if the
workaround isn’t pretty.

Listing 39-18: Setting Layer Source Content (W3C)

<html>
<head>

<title>Loading External Content into a Layer (W3C)</title>
<script type=”text/javascript”>
function loadOuter(doc) {

document.getElementById(“hiddenContent”).src = doc;
// workaround for missing onload event in iframe for NN6+
if (!document.getElementById(“hiddenContent”).onload) {

setTimeout(“transferHTML()”, 1000);
}

}
function transferHTML() {

var srcFrame = document.getElementById(“hiddenContent”);
var srcContent = (srcFrame.contentDocument) ?

srcFrame.contentDocument.getElementsByTagName(“BODY”)[0].innerHTML
: (srcFrame.contentWindow) ?
srcFrame.contentWindow.document.body.innerHTML : “”;

document.getElementById(“outerDisplay”).innerHTML = srcContent;
}
</script>

</head>
<body>

<h1>Loading External Content into a Layer (W3C)</h1>
<hr />
<p>Click the buttons to see what happens when you load new source

documents into the layer object.</p>
<div
style=”position:absolute; top:150; width:200; background-color:coral”>

<form>
Load into outer layer:

<input type=”button” value=”Article I”
onclick=”loadOuter(‘article1.htm’)” />

<input type=”button” value=”Entire Bill of Rights”
onclick=”loadOuter(‘bofright.htm’)” />

</form>
</div>

BC159Chapter 39 ✦ Positioned Objects

<div id=”outerDisplay”
style=”position:absolute; top:150; left:250; width:370; height:190;

background-color:coral”>
<p>Placeholder text for layer.</p>

</div>
<iframe id=”hiddenContent” style=”visibility:hidden”
onload=”transferHTML()”></iframe>

</body>
</html>

Positioned element visibility behavior
There is very little code in Listing 39-19 because it simply adjusts the style.visibility
property of an outer layer and a nested, inner layer. You can see that when the page loads,
the green inner layer’s visibility is automatically set to inherit the visibility of its con-
taining outer layer. When you click the outer layer buttons, the inner layer blindly follows the
settings.

Things change, however, once you start adjusting the properties of the inner layer indepen-
dently of the outer layer. With the outer layer hidden, you can show the inner layer (except in
Safari 1.0). Only by setting the visibility property of the inner layer to inherit can you
make it rejoin the outer layer in its behavior.

Listing 39-19: Nested Layer Visibility Relationships (W3C)

<html>
<head>

<title>layer.style.visibility (W3C)</title>
<script type=”text/javascript”>
function setOuterVis(type) {

document.getElementById(“outerDisplay”).style.visibility = type;
}
function setInnerVis(type) {

document.getElementById(“innerDisplay”).style.visibility = type;
}
</script>

</head>
<body>

<h1>Setting the <tt>layer.style.visibility</tt> Property of Nested Layers
(W3C)</h1>

<hr />
Click the buttons to see what happens when you change the visibility of
the outer layer and inner layer objects.
<div
style=”position:absolute; top:150; width:180; background-color:coral”>

<form>
Control outer layer property:

<input type=”button” value=”Hide Outer Layer”
onclick=”setOuterVis(‘hidden’)” />

<input type=”button” value=”Show Outer Layer”
onclick=”setOuterVis(‘visible’)” />

</form>

Continued

BC160 Part VI ✦ Bonus Chapters

Listing 39-19 (continued)

</div>
<div
style=”position:absolute; top:270; width:180;

background-color:aquamarine”>
<form>

Control inner layer property:

<input type=”button” value=”Hide Inner Layer”
onclick=”setInnerVis(‘hidden’)” />

<input type=”button” value=”Show Inner Layer”
onclick=”setInnerVis(‘visible’)” />

<input type=”button” value=”Inherit Outer Layer”
onclick=”setInnerVis(‘inherit’)” />

</form>
</div>
<div id=”outerDisplay”
style=”position:absolute; top:150; left:200; width:370; height:190;

background-color:coral”>
<div id=”innerDisplay”
style=”position:absolute; top:5; left:5; width:360; height:180;

background-color:aquamarine”>
<p>Placeholder text for raw inner layer.</p>

</div>
</div>

</body>
</html>

Scripting layer stacking order
Listing 39-20 is simpler than its NN4 layer-specific version (Listing 39-9) because the W3C
DOM, as implemented in IE4+ and NN6+/Mozilla/Safari, does not have properties that reveal
the equivalent of the layerObject.above or layerObject.below properties. Therefore,
Listing 39-20 confines itself to enabling you to adjust the style.zIndex property values of
three overlapping layers. All three layers (none of which are nested inside another) initially
set their zIndex values to 0, meaning that the source code order rules the stacking order.

Listing 39-20: Relationships Among zIndex Values (W3C)

<html>
<head>

<title>layer.style.zIndex</title>
<script type=”text/javascript”>
function setZ(field) {

switch (field.name) {
case “top” :

document.getElementById(“topLayer”).style.zIndex =
parseInt(field.value);

break;
case “mid” :

document.getElementById(“middleLayer”).style.zIndex =
parseInt(field.value);

BC161Chapter 39 ✦ Positioned Objects

break;
case “bot” :

document.getElementById(“bottomLayer”).style.zIndex =
parseInt(field.value);

}
showValues();

}
function showValues() {

var botLayer = document.getElementById(“bottomLayer”);
var midLayer = document.getElementById(“middleLayer”);
var topLayer = document.getElementById(“topLayer”);

document.forms[0].bot.value = botLayer.style.zIndex;
document.forms[1].mid.value = midLayer.style.zIndex;
document.forms[2].top.value = topLayer.style.zIndex;

}
</script>

</head>
<body onload=”showValues()”>

<h1><tt>layer.style.zIndex</tt> Property of Sibling Layers</h1>
<hr />
Enter new zIndex values to see the effect on three layers.
<div
style=”position:absolute; top:140; left:10; width:240;

background-color:coral”>
<form>

Control Original Bottom Layer:

<table>

<tr>
<td align=”right”>Layer zIndex:</td>
<td><input type=”text” name=”bot” size=”3”

onchange=”setZ(this)” /></td>
</tr>

</table>
</form>

</div>
<div
style=”position:absolute; top:220; left:10; width:240;

background-color:aquamarine”>
<form>

Control Original Middle Layer:

<table>

<tr>
<td align=”right”>Layer zIndex:</td>
<td><input type=”text” name=”mid” size=”3”

onchange=”setZ(this)” /></td>
</tr>

</table>
</form>

</div>
<div
style=”position:absolute; top:300; left:10; width:240;

background-color:yellow”>
<form>

Control Original Top Layer:

<table>

Continued

BC162 Part VI ✦ Bonus Chapters

Listing 39-20 (continued)

<tr>
<td align=”right”>Layer zIndex:</td>
<td><input type=”text” name=”top” size=”3”

onchange=”setZ(this)” /></td>
</tr>

</table>
</form>

</div>
<div id=”bottomLayer”
style=”position:absolute; top:140; left:260; width:300; height:190;

z-Index:0; background-color:coral”>
Original Bottom Layer

</div>
<div id=”middleLayer”
style=”position:absolute; top:160; left:280; width:300; height:190;

z-Index:0; background-color:aquamarine”>
Original Middle div

</div>
<div id=”topLayer”
style=”position:absolute; top:180; left:300; width:300; height:190;

z-Index:0; background-color:yellow”>
Original Top Layer

</div>
</body>

</html>

Dragging and resizing a layer
Listing 39-21 is an IE4+- and W3C-compatible version of the layer dragging example shown
earlier in Listing 39-11. The basic structure is the same, with event handler functions for
engaging the drag mode, handling the mouse movement while in drag mode, and releasing
the element at the end of the journey.

There is a lot more code in this version for several reasons. The main reason is to accommo-
date the two event object models in IE and NN6+/W3C browsers. First of all, event bubbling is
used so that all mouse events are handled at the document level. Thus, all of the event han-
dlers need to equalize the event object and event target element, as well as filter events so
that the action occurs only when a draggable element (as identified by its className prop-
erty) is the target of the event action.

The toughest job involves the engage() function because it must use the two different event
and element object models to establish the offset of the mousedown event within the drag-
gable element. For WinIE, this also means taking the scrolling of the body into account. To get
the element to reposition itself with mouse motion, the dragIt() function applies browser-
specific coordinate values to the style.left and style.top properties of the draggable
element. This function is invoked very frequently in response to the mousemove event.

Nothing in this example, however, treats the zIndex stacking order, which must be addressed
if the page contains multiple, draggable items. See the map puzzle game in Chapter 56 on the
CD-ROM for an example of processing multiple, draggable items.

BC163Chapter 39 ✦ Positioned Objects

Listing 39-21: Dragging a Layer (W3C)

<html>
<head>

<title>Layer Dragging</title>
<style type=”text/css”>
.draggable {cursor:hand}
</style>
<script type=”text/javascript”>
var draggedElem;
var offsetX = 0;
var offsetY = 0;
function dragIt(evt) {

evt = (evt) ? evt : (window.event) ? window.event : “”;
var targElem = (evt.target) ? evt.target : evt.srcElement;
if (draggedElem) {

targElem = draggedElem;
if (targElem.className == “draggable”) {

while (targElem.id != “myLayer” && targElem.parentNode) {
targElem = targElem.parentNode;

}
if (evt.pageX) {

targElem.style.left = evt.pageX - offsetX + “px”;
targElem.style.top = evt.pageY - offsetY + “px”;

} else {
targElem.style.left = evt.clientX - offsetX + “px”;
targElem.style.top = evt.clientY - offsetY + “px”;

}
return false;

}
}

}
function engage(evt) {

evt = (evt) ? evt : (window.event) ? window.event : “”;
var targElem = (evt.target) ? evt.target : evt.srcElement;
if (targElem.className == “draggable”) {

while (targElem.id != “myLayer” && targElem.parentNode) {
targElem = targElem.parentNode;

}
if (targElem.id == “myLayer”) {

draggedElem = targElem;
if (evt.pageX) {

offsetX = evt.pageX - targElem.offsetLeft;
offsetY = evt.pageY - targElem.offsetTop;

} else {
offsetX = evt.offsetX - document.body.scrollLeft;
offsetY = evt.offsetY - document.body.scrollTop;
if (navigator.userAgent.indexOf(“Win”) == -1) {

offsetX += document.body.scrollLeft;
offsetY += document.body.scrollTop;

}
}
return false;

Continued

BC164 Part VI ✦ Bonus Chapters

Listing 39-21 (continued)

}
}

}
function release(evt) {

evt = (evt) ? evt : (window.event) ? window.event : “”;
var targElem = (evt.target) ? evt.target : evt.srcElement;
if (targElem.className == “draggable”) {

while (targElem.id != “myLayer” && targElem.parentNode) {
targElem = targElem.parentNode;

}
if (draggedElem && targElem.id == “myLayer”) {

draggedElem = null;
}

}
}
</script>

</head>
<body>

<h1>Dragging a Layer</h1>
<hr />
<div id=”myLayer” class=”draggable”
style=”position:absolute; top:90; left:100; width:300; height:190;

background-color:lightgreen”>
Drag me around the window.
<script type=”text/javascript”>
document.onmousedown = engage;
document.onmouseup = release;
document.onmousemove = dragIt;
</script>

</div>
</body>

</html>

The final listing in this section, Listing 39-22, applies many example components used thus far
to let scripts control the resizing of a positionable element by dragging the lower-right, 20-pixel
region. A lot of the hairy code in the engage() function is for determining if the onmousedown
event occurs in the invisible 20-pixel square.

The resizeIt() function resembles the dragIt() function of Listing 39-21, but the adjust-
ments are made to the width and height of the positionable element. A fair amount of math
determines the width of the element in response to the cursor’s instantaneous location and
sets the style.width and style.height properties accordingly.

Listing 39-22: Resizing a Layer (W3C)

<html>
<head>

<title>Layer Resizing</title>
<script type=”text/javascript”>
var draggedElem;
var offsetX = 0;
var offsetY = 0;

BC165Chapter 39 ✦ Positioned Objects

function resizeIt(evt) {
evt = (evt) ? evt : (window.event) ? window.event : “”;
var targElem = (evt.target) ? evt.target : evt.srcElement;
if (draggedElem) {

if (evt.pageX) {
targElem.style.width = (evt.pageX - targElem.offsetLeft –

offsetX) + “px”;
targElem.style.height = (evt.pageY - targElem.offsetTop –

offsetY) + “px”;
} else {

var elemWidth = evt.clientX - targElem.offsetLeft - offsetX –
(parseInt(targElem.style.left) –
parseInt(targElem.offsetLeft));

var elemHeight = evt.clientY - targElem.offsetTop - offsetY –
(parseInt(targElem.style.top) –
parseInt(targElem.offsetTop));

targElem.style.width = elemWidth + “px”;
targElem.style.height = elemHeight + “px”;

}
}

}

function engage(evt) {
evt = (evt) ? evt : (window.event) ? window.event : “”;
var targElem = (evt.target) ? evt.target : evt.srcElement;
if (targElem.className == “draggable”) {

while (targElem.id != “myLayer” && targElem.parentNode) {
targElem = targElem.parentNode;

}
if (targElem.id == “myLayer”) {

if (evt.pageX && (evt.pageX > ((parseInt(targElem.style.width) –
20) + targElem.offsetLeft)) && (evt.pageY >
((parseInt(targElem.style.height) - 20) +
targElem.offsetTop))) {
offsetX = evt.pageX - parseInt(targElem.style.width) –

targElem.offsetLeft;
offsetY = evt.pageY - parseInt(targElem.style.height) –

targElem.offsetTop;
draggedElem = targElem;

} else if ((evt.offsetX > parseInt(targElem.style.width) - 20)
&& (evt.offsetY > parseInt(targElem.style.height) - 20)) {
offsetX = evt.offsetX - parseInt(targElem.style.width) –

document.body.scrollLeft;
offsetY = evt.offsetY - parseInt(targElem.style.height) –

document.body.scrollTop;
draggedElem = targElem;
if (navigator.userAgent.indexOf(“Win”) == -1) {

offsetX += document.body.scrollLeft;
offsetY += document.body.scrollTop;

}
}
return false;

}
}

}
function release(evt) {

evt = (evt) ? evt : (window.event) ? window.event : “”;
var targElem = (evt.target) ? evt.target : evt.srcElement;

Continued

BC166 Part VI ✦ Bonus Chapters

Listing 39-22 (continued)

if (targElem.className == “draggable”) {
while (targElem.id != “myLayer” && targElem.parentNode) {

targElem = targElem.parentNode;
}
if (draggedElem && targElem.id == “myLayer”) {

draggedElem = null;
}

}
}
</script>

</head>
<body>

<h1>Resizing a Layer (W3C)</h1>
<hr />
<div id=”myLayer” class=”draggable”
style=”position:absolute; top:170; left:100; width:300; height:190;

background-color:lightblue”>
Here is some content inside the layer. See what happens to it as
you resize the layer via the bottom-right 20-pixel handle.

</div>
<script type=”text/javascript”>
document.onmousedown = engage;
document.onmouseup = release;
document.onmousemove = resizeIt;
</script>

</body>
</html>

This chapter only scratches the surface in the kinds of positioned element actions you can
control via scripts. You may have seen examples of positioned element scripting at sites around
the Web. For example, some pages have subject headers fly into place — even “bounce” around
until they settle into position. Or elements can go in circles or spirals to get your attention (or
distract you, as the case may be). The authors of those tricks apply formulas from other dis-
ciplines (such as games programming) to the style object properties of a positioned element.

Sometimes the effects are there just for the sake of looking cool (at first, anyway) or because
the page author knows how to script those effects. Your chief guide in implementing such fea-
tures, however, should be whether the scripting genuinely adds value to the content offering.
If you don’t improve the content by adding a flying doo-dad or pulsating images, then leave
them out. A greater challenge is finding meaningful ways to apply positioning techniques. Done
the right way and for the right reason, they can significantly enhance the visitor’s enjoyment
of your application.

✦ ✦ ✦

Embedded Objects

In addition to the typical content that you see in Web pages —
primarily text and images — you can embed other kinds of content

into the page. Such embedded content usually requires the powers of
additional software, such as plug-in players or other external code
processors, to load and display the content. All of this external content
is added to a page by one of three HTML elements: applet, embed, or
object. In the HTML 4.0 standard, the applet element, which was
intended originally for loading Java applets, is deprecated in favor of
the newer object element. An object element is intended to be more
extensible, meaning that it has enough attributes and power to sum-
mon the Java virtual machine if the incoming code is a Java applet, or
run an ActiveX program (in IE for Windows, that is). The embed ele-
ment is commonly used to display a plug-in control panel directly in
the document, rather than having the panel appear in a separate
window, but it, too, is gradually giving way to the object element.

In all cases, when a visual element is embedded via any of these ele-
ments, the control panel or applet occupies a segregated rectangular
space on the page and generally confines its activities to that rectan-
gle. But in some browsers and plug-in player types, JavaScript can
also interact with the content or the player, allowing your scripts to
extend themselves with powers for actions, such as controlling audio
playback or the operation of a Java applet. Don’t expect universal
browser support for controlling plug-ins.

This chapter’s primary focus is not on the content and players that
you can control as it is on the HTML element objects that load the
content or players into the page in the first place. Most of the proper-
ties represent nothing more than scriptable access to the element
HTML attributes. The property descriptions in this chapter are there-
fore not extensive. Online HTML references (including the W3C HTML
4.0 specification and the Microsoft Developer Network documentation)
should fill in the attribute value information quite well. In practice,
scripts have very little interaction with these element objects, but if
you ever need to know what’s scriptable, you’ll find that information
here. As for controlling applets and plug-ins, you can find information
about that in Chapter 44.

applet Element Object
For HTML element properties, methods, and event handlers, see
Chapter 15.

4040C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Using embed element
objects

Exploring the object
element object

Understanding the
unusual param element

✦ ✦ ✦ ✦

BC168 Part VI ✦ Bonus Chapters

Properties Methods Event Handlers

align (Applet methods) oncellchange
alt ondataavailable
altHTML ondatasetchanged
archive ondatasetcomplete
code onload
codeBase onrowenter
height onrowexit
hspace onrowsdelete
name onrowsinserted
object onscroll
vspace
width
(Applet variables)

Syntax
Accessing applet element object properties or methods:

(NN3+/IE4+) [window.]document.appletName.property | method([parameters])
(NN3+/IE4+) [window.]document.applets[index].property | method([parameters])
(IE4+) [window.]document.all.appletID.property | method([parameters])
(IE5+/W3C) [window.]document.getElementById(“appletID”).property |
method([parameters])

Compatibility: WinIE4+, MacIE4+, NN3+, Moz1+, Safari1+

About this object
The fact that the applet, itself, can expose public instance variables and public methods as
properties and methods of the applet object means that the scriptable characteristics of an
applet object are highly dependent upon the way the applet was written. You can learn more
about how to compose an applet that exposes its innards to JavaScript in Chapter 44.

Perhaps the most important point to remember about accessing applets is that you must have
them loaded and running before you can address them as objects. Although you cannot query
an applet to find out whether it’s loaded (as you can with an image), you can rely on the onload
event handler of a window to fire only when all applets in the window are loaded and running
(with the occasional version- or platform-specific bug in frames, as described in the window.
onload event handler discussion in Chapter 16). IE4+ also features an onload event handler for
the applet element directly, but applets tend to be the last things to load on a page. Therefore,
you won’t be able to use an applet embedded in a document to help you create the HTML
content of that page as it loads, but an applet can provide content for new documents or for
modifiable elements of a page. With the highly dynamic object models of IE4+ and W3C, this
can lead to all kinds of possibilities.

applet

BC169Chapter 40 ✦ Embedded Objects

Java applets have also been used to maintain contact with a server after the page has loaded
by way of a servlet running on the server. A servlet allows the applet to query or be refreshed
with instantaneously updated information without having to reload the page. Of course, getting
a sophisticated applet to run in a wide range of browsers and operating systems is a challenge
unto itself.

A large set of event handlers for this element (all but onload and onscroll) is related to the
application of WinIE data binding for param elements nested inside an applet element. These
events fire when a variety of actions occur to the data source or recordset associated with
the applet. For more about applying data binding to an applet element, see http://msdn.
microsoft.com/workshop/author/databind/dataconsumer.asp.

Properties

align
Value: String. Read/Write
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

The align property controls either the horizontal or vertical alignment of the element with
regard to surrounding content. String values of left or right cause the applet rectangle to
cling to the left or right edges of its next outermost positioning context. String values of abs-
bottom, absmiddle, baseline, bottom, middle, texttop, or top influence the vertical align-
ment with respect to adjacent text, with the same kind of results as corresponding values of
the style.verticalAlign property.

Related Items: style.verticalAlign property.

alt
Value: String. Read/Write
Compatibility: WinIE6+, MacIE6+, NN6+, Moz1+, Safari1+

The alt property represents the alt attribute, which should contain text that displays in
the browser in the event that the applet does not load or the user has Java turned off in the
browser preferences. This information should be set as the applet element’s attribute, because
assigning text to the property after the applet attempts to load does not insert the text into
the page.

Related Items: altHTML property.

altHTML
Value: String. Read/Write
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-

The altHTML property is supposed to provide an applet element with HTML content to render
if the applet doesn’t load. In practice, assigning an HTML string to this property has no effect
on an applet element.

Related Items: alt property.

applet.altHTML

BC170 Part VI ✦ Bonus Chapters

archive
Value: String. Read/Write
Compatibility: WinIE6+, MacIE-, NN6+, Moz1+, Safari+

The archive property represents the archive attribute, which points to the URL of a com-
pressed (.zip) file containing Java class files needed for the applet. The archive must include
the class file that is assigned to the code attribute to get the applet loaded and started.

Related Items: code property.

code
Value: String. Read-Only
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

The code property is the URL string of the Java class file that is to begin loading the applet
(or the property may be the entire applet if it consists of a single class file). You cannot change
the code assigned to an applet after the element has loaded (even if the applet code did not
load successfully).

Related Items: codeBase property.

codeBase
Value: String. Read-Only
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

The codeBase property is the string of the path on the server to the Java class file that is to
begin loading the applet (or the property may be the entire applet if it consists of a single class
file). The actual Java class filename is not part of the codeBase property.

Related Items: code property.

height
width

Value: Integer. Read/Write
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

The height and width properties represent the height and width attributes of the applet
element. Although these values should be set via attributes in the tag, these properties can
adjust the size of the applet after the fact in IE5+.

Related Items: hspace, vspace properties.

hspace
vspace

Value: Integer. Read/Write
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

The hspace and vspace properties represent the hspace and vspace attributes of the applet
element, which control the number of pixels of transparent padding around the applet element
on the page. Although these values should be set via attributes in the tag, these properties
can adjust the size of the applet padding after the fact in IE5+.

Related Items: height, width properties.

applet.archive

BC171Chapter 40 ✦ Embedded Objects

name
Value: String. Read-Only
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

The name property represents the name attribute, a holdover from the early implementations
of the applet element before id attributes were used to identify elements. The value assigned
to the name attribute is the name you can use to reference applets in all browsers that support
accessing applets: document.appletName.

object
Value: String. Read-Only
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-

The object property represents the object attribute, which, according to the W3C HTML
standard, points to the URL of a serialized (that is, “saved”) version of the applet’s current
state.

Related Items: code property.

vspace
(See hspace)

width
(See height)

object Element Object
For HTML element properties, methods, and event handlers, see Chapter 15.

Properties Methods Event Handlers

align (Object methods) oncellchange
alt ondataavailable
altHTML ondatasetchanged
archive* ondatasetcomplete
BaseHref onload
baseURI onrowenter
border onrowexit
classid onrowsdelete
code onrowsinserted
codeBase onscroll
codeType
contentDocument
data
declare*

form
Continued

object

BC172 Part VI ✦ Bonus Chapters

Properties Methods Event Handlers

height
hspace
name
object
standby*

type
useMap
vspace
width
(Object variables)

*See text.

Syntax
Accessing object element object properties or methods:

(IE4+) [window.]document.all.objectID.property | method([parameters])
(IE5+/W3C) [window.]document.getElementById(“objectID”).property |
method([parameters])

Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

About this object
The object element is intended to be the primary way to add external content (that is, content
that the browser itself does not render) to a page. For example, WinIE uses it to load ActiveX
controls (whether from the server or locally). The object element is also destined to replace
usage of the applet and embed elements.

As with the applet element object, scripts can frequently control the programs and plug-ins
that get loaded into the browser through the object tag. Chapter 44 shows you how to do that
for common objects. The property listings here are merely for the properties of the element,
most of which mimic the attributes available for the object element. Even though the prop-
erties are exposed, they are very rarely scripted, except perhaps to adjust the size of the space
occupied by a media controller. Most properties are read-only after their values are set by
attributes in the element’s tag. But if your scripts are creating the object element anew, scripts
can set the property values the first time to initialize the object.

In the list of properties that begins this object’s coverage, several are marked with an asterisk
(*). These properties are defined in the W3C DOM Level 2 specification, and placeholders are
included in version 6 browsers (and NN7/Mozilla1.4). But as of this writing, there is no indica-
tion that these properties are “connected.”

A large set of event handlers for this element (all but onload and onscroll) is related to the
application of WinIE data binding for param elements nested inside an object element. These
events fire when a variety of actions occur to the data source or recordset associated with the
program associated with the element. For more about applying data binding to an object ele-
ment, see http://msdn.microsoft.com/workshop/author/databind/dataconsumer.asp.

object

BC173Chapter 40 ✦ Embedded Objects

Properties

align
Value: String. Read/Write
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari1+

The align property controls either the horizontal or vertical alignment of the element with
regard to surrounding content. String values of left or right cause the object rectangle to
cling to the left or right edges of its next outermost positioning context. String values of abs-
bottom, absmiddle, baseline, bottom, middle, texttop, or top influence the vertical align-
ment with respect to adjacent text, with the same kind of results as corresponding values of
the style.verticalAlign property.

Related Items: style.verticalAlign property.

alt
Value: String. Read/Write
Compatibility: WinIE6+, MacIE-, NN-, Moz-, Safari-

The alt property represents the alt attribute, which should contain text that displays in the
browser in the event that the object or its data do not load. This information should be set as
the object element’s attribute, because assigning text to the property after the object attempts
to load does not insert the text into the page.

Related Items: altHTML property.

altHTML
Value: String. Read/Write
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-

The altHTML property is supposed to provide an object element with HTML content to render
if the object doesn’t load. In practice, assigning an HTML string to this property has no effect
on an object element.

Related Items: alt property.

BaseHref
Value: String. Read-Only
Compatibility: WinIE4+, MacIE-, NN-, Moz-, Safari-

The BaseHref property returns the full URL path to the current document.

Related Items: baseURI property.

baseURI
Value: String. Read-Only
Compatibility: WinIE-, MacIE-, NN7+, Moz1+, Safari-

The baseURI property returns the full URL (URI) path to the current document.

Related Items: BaseHref property.

object.baseURI

BC174 Part VI ✦ Bonus Chapters

border
Value: Number as string. Read/Write
Compatibility: WinIE6+, MacIE-, NN6+, Moz1+, Safari1+

The border property controls the thickness of the border around the object, in pixels. You
must specify the border thickness as a string, as in “6” for 6 pixels.

classid
Value: String. Read-Only
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-

The classid property represents the classid attribute of the object element. IE for Windows
uses this attribute to assign the Globally Unique ID (GUID) of an ActiveX control. For example,
to load a (nearly) invisible Windows Media Player object into a page, the HTML is as follows:

<object id=”medPlayer” width=”1” height=”1”
classid=”CLSID:22d6f312-b0f6-11d0-94ab-0080c74c7e95”
codebase=”#Version=1,0,0,0”>

If your script then accesses the classid property of the medPlayer object, the value returned
is the complete string as assigned to the attribute:

CLSID:22d6f312-b0f6-11d0-94ab-0080c74c7e95

Note that the CLSID: prefix is also part of the string value. Even if the object does not load
(for example, because the object is missing or an error is in the long classid string), the
property value reports the value as assigned to the attribute.

The HTML 4.0 specification indicates that the classid attribute be used for any kind of exter-
nal class files, including Java applets. But in practice, IE wants applet URLs supplied to the code
attribute (a non-HTML 4.0 attribute).

Related Items: code property.

code
Value: String. Read-Only
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

The code property is the URL string of a Java class file that is to begin loading the applet (or
the property may be the entire applet if it consists of a single class file). You cannot change
the code assigned to an applet after the element has loaded (even if the applet code did not
load successfully).

Related Items: codeBase property.

codeBase
Value: String. Read-Only
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

The codeBase property is the string of the path on the server to the source of the applet or
ActiveX control referenced by the classid or code attributes. IE4+ also uses the codebase
attribute to specify a minimum version of control that is to load, if the attribute is available.
This facet is discussed in Chapter 38’s coverage of plug-in detection for WinIE.

Related Items: code property.

object.border

BC175Chapter 40 ✦ Embedded Objects

codeType
Value: String. Read-Only
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

The codeType property is a string of the mime type of whatever object is pointed to by the
code attribute value.

Related Items: type property.

contentDocument
Value: Document node reference. Read-Only
Compatibility: WinIE-, MacIE-, NN6+, Moz1+, Safari-

The contentDocument property returns the document node created by the object, if it exists.

data
Value: URL as string. Read-Only
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

The data property provides access to the URL of a file containing data for the object, as
opposed to the object itself.

form
Value: Object reference. Read-Only
Compatibility: WinIE4+, MacIE5, NN6+, Moz1+, Safari1+

The form property returns a reference to the form element that contains the object, if there
is one. This property only applies if the object is acting as a control within a form.

height
width

Value: Integer. Read/Write
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

The height and width properties represent the height and width attributes of the object
element. Although these values should be set via attributes in the tag, these properties can
adjust the size of the embedded element after the fact in IE5+.

Related Items: hspace, vspace properties.

hspace
vspace

Value: Integer. Read/Write
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

The hspace and vspace properties represent the hspace and vspace attributes of the object
element, which control the number of pixels of transparent padding around the object ele-
ment on the page. Although these values should be set via attributes in the tag, these proper-
ties can adjust the size of the padding around the element after the fact in IE5+.

Related Items: height, width properties.

object.hspace

BC176 Part VI ✦ Bonus Chapters

name
Value: String. Read-Only
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

The name property represents the name attribute of the object element. The better form is to
assign an id to the object element and use accepted reference syntax for element IDs.

object
Value: External object. Read-Only
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-

The object property returns a reference to the object contained by the object element. This
property is essential if the program running inside the object element has the same property
or method names as the object element itself. For example, consider a Java applet loaded
into the object element as follows:

<object code=”coolApplet” id=”myAPPLET” ... >

If the applet code contained a public variable called height, an attempt to read or write that
property through the object element will cause the element’s properties to be read, and not
the applet’s properties. Therefore, if you insert the object property in the reference, the
script reaches into the applet object for the property:

document.getElementById(“myAPPLET”).object.height = 40;

If there is no ambiguity between element and object property and method names, the browser
looks first at the element and then the object to find a match.

type
Value: String. Read-Only
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari1+

The type property represents the type attribute of the object element, which is intended to
warn the browser about the mime type of data that is to be loaded into the object’s process.

Related Items: codeType property.

useMap
Value: String. Read/Write
Compatibility: WinIE6+, MacIE-, NN6+, Moz1+, Safari1+

The useMap property identifies the URL of an image map; the image map is described by the
map element in the same document. The value of the useMap property includes a hash mark
followed by the name of the image map, as specified in the usemap attribute of the object
element.

vspace
(See hspace)

width
(See height)

object.name

BC177Chapter 40 ✦ Embedded Objects

embed Element Object
For HTML element properties, methods, and event handlers, see Chapter 15.

Properties Methods Event Handlers

align (Object methods) onload
height onscroll
hidden
name
pluginspage
src
units
width
(Object variables)

Syntax
Accessing embed element object properties or methods:

(IE4+) [window.]document.all.objectID.property | method([parameters])
(IE5+/W3C) [window.]document.getElementById(“objectID”).property |
method([parameters])

Compatibility: WinIE4+, MacIE4+, NN3+, Moz1+, Safari-

About this object
An embed element is a carryover from the early browser days. Although never adopted by the
W3C HTML standard, the embed element has been used in NN and IE as a way to embed non-
native content (for example, sounds, video clips, and custom mime types for plug-ins, such as
Shockwave) into a page. What gets embedded into the page is the controller or viewer for
whatever kind of data the embed element points to (via the src attribute).

The embed element is far less sophisticated than the object element, but current browsers
continue to support it. If you have been using the embed element in previous applications, it
may be a good idea to start gravitating toward the object element. For backward-compatibility
purposes, nesting an embed element inside an object element is not uncommon, both of which
attempt to load the same content and plug-in. Browsers that know about the object element
will load the content that way; older browsers will use the embed element and its attributes
and parameters.

Because an embed element loads a plug-in (including ActiveX control types of plug-ins in WinIE),
you can reference the plug-in’s properties and methods through the embed object’s reference.

embed

BC178 Part VI ✦ Bonus Chapters

Properties

align
Value: String. Read/Write
Compatibility: WinIE-, MacIE5+, NN6+, Moz1+, Safari-

The align property controls either the horizontal or vertical alignment of the element with
regard to surrounding content. String values of left or right cause the object rectangle
to cling to the left or right edges of its next outermost positioning context. String values of
absbottom, absmiddle, baseline, bottom, middle, texttop, or top influence the vertical
alignment with respect to adjacent text, with the same kind of results as corresponding val-
ues of the style.verticalAlign property.

Related Items: style.verticalAlign property.

height
width

Value: Integer. Read/Write
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari-

The height and width properties represent the height and width attributes of the embed
element. Although these values should be set via attributes in the tag, these properties can
adjust the size of the element after the fact in IE5+.

hidden
Value: Boolean. Read/Write
Compatibility: WinIE4+, MacIE-, NN-, Moz-, Safari-

The hidden property represents the hidden attribute of the embed element. When an embed
element is hidden, neither controller nor the content is shown. Application of this element in
modern browsers should use stylesheets to hide and show the element.

Related Items: style.visibility property.

name
Value: String. Read-Only
Compatibility: WinIE4+, MacIE4+, NN6+, Moz1+, Safari-

The name property represents the name attribute of the embed element. The better form is to
assign an id to the embed element and use accepted reference syntax for element IDs.

pluginspage
Value: String. Read-Only
Compatibility: WinIE4+, MacIE-, NN-, Moz-, Safari-

The pluginspage property represents the pluginspage attribute of the embed element. This
attribute is a URL that gets applied to a link in the browser if the plug-in associated with the
external file’s mime type cannot be found on the client.

embed.align

BC179Chapter 40 ✦ Embedded Objects

src
Value: String. Read/Write
Compatibility: WinIE4+, MacIE-, NN-, Moz-, Safari-

The src property represents the src attribute of the embed element. This attribute points to
the external file that is to be loaded into the browser via the associated plug-in. Scripts can
assign a new URL string to this property to load a different file into the current plug-in.

units
Value: String. Read-Only
Compatibility: WinIE4+, MacIE-, NN-, Moz-, Safari-

The units property returns the unit of measure assigned with the length value of the height
and width properties, in pixels.

Related Items: height, width properties.

The Odd Case of the param Element
HTML pages pass parameters to Java applets, plug-ins, and ActiveX controls by way of param
elements that are nested inside applet, embed, and object elements. Although a param ele-
ment object is defined by the W3C DOM Level 2 specification, it does not show up on some
browsers’ radar when you try to reference the param element by itself. Even assigning an id
to a param element or using document.getElementsByTagName(“param”) fail to allow refer-
ences to access an individual param element object. At most, you can retrieve the innerHTML
property of the surrounding element. But even here, the values returned may not necessarily
be precisely the HTML you specify in the document.

In practice, this limitation is not particularly important. For one thing, even if you could access
the param elements of an embedded object or program, attempts to modify the values would
be wasted: Those values are read at load time only. Secondly, a well-designed plug-in, applet,
or ActiveX control will provide its own properties or methods to retrieve the current settings
of whatever properties are initialized via the param elements.

✦ ✦ ✦

param

XML Objects

XML (eXtensible Markup Language) is an undeniably hot topic in
the Internet world, and has been for the past few years. Not only

has the W3C organization formed multiple working groups and rec-
ommendations for XML and its offshoots, but the W3C DOM recom-
mendation also has XML in mind when it comes to defining how
elements, attributes, and data of any kind — not just the HTML
vocabulary — are exposed to browsers as an object model. Most of
the arcana of the W3C DOM Core specification — especially the
structure based on the node — are in direct response to the XML
possibilities of documents that are beginning to travel the Internet.

During its early explorations into XML and browsers, Microsoft
devised a custom HTML element — the <xml> tag — that allowed
authors to embed XML data into an HTML document. These tags cre-
ated what were called XML data islands. A more practical solution
came slightly later with the creation of an ActiveX control that could
retrieve XML data (from either a static .xml file or a Web service that
returns XML-structured data) into a Web page without disturbing the
HTML portion. Scripts could then use W3C DOM methods and prop-
erties to read the node tree as needed. Mozilla browsers emulate the
behavior of this XMLHttpRequest control so that both WinIE and
Mozilla-based browsers (all OSes) can load external XML data into a
page for script inspection and manipulation.

This chapter covers both WinIE XML data islands and the more flexi-
ble XMLHttpRequest object. Out of necessity, this book assumes that
you are already familiar with XML such that your server-based appli-
cations serve up XML data exclusively, embed XML islands into
HTML documents, or convert database data into XML. The focus of
this chapter, and application examples of Chapters 52 and 57, is how
to access XML data and apply that data to rendered HTML content.

Elements and Nodes
Once you leave the specialized DOM vocabulary of HTML elements,
the world can appear rather primitive — a highly granular world of
node hierarchies, elements, element attributes, and node data. This
granularity is a necessity in an environment in which the elements
are far from generic and the structure of data in a document does not
have to follow a format handed down from above. One Web applica-
tion can describe an individual’s contact information with one set of
elements, while another application uses a completely different
approach to element names, element nesting, and their sequence.

4141C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Treating XML elements
as objects

Creating IE XML data
islands

Accessing XML element
attributes

Using the
XMLHttpRequest
object

✦ ✦ ✦ ✦

BC182 Part VI ✦ Bonus Chapters

Fortunately, most, if not all, scripting you do on XML data is on data served up by your own
applications. Therefore, you know what the structure of the data is — or you know enough of
it to let your scripts access the data.

The discussion of the W3C DOM in Chapter 14 should serve as a good introduction to the way
you need to think about elements and their content. All relevant properties and methods are
listed among the items shared by all elements in Chapter 15.

XML data, whether delivered “raw” or embedded in a WinIE HTML document as a data island
is a hierarchy of nodes. Typically, the outermost nodes are elements. Some elements have
attributes, each of which is a typical name/value pair. Some elements have data that goes
between the start and end tags of the element (such data is a text node nested inside the ele-
ment node). And some elements can have both attributes and data. When an XML data collec-
tion contains the equivalent of multiple database records, an element container whose tag
name is the same as each of the other records surrounds each record. Thus, the
getElementsByTagName() method frequently accesses a collection of like-named elements.

Once you have a reference to an element node, you can reference that element’s attributes as
properties; however, a more formal access route is via the getAttribute() method of the
element. If the element has text data between its start and end tags, you can access that data
from the element’s reference by calling the firstChild.data property (although you may
want to verify that the element has a child node of the text type before committing to retriev-
ing the data).

Of course, your specific approach to xml elements and their data varies with what you intend
to script with the data. For example, you may wish to do nothing more with scripting than
enable a different stylesheet for the data based on a user choice. The XSL (eXtensible
Stylesheet Language) standard is a kind of (non-JavaScript) scripting language for transform-
ing raw xml data into a variety of presentations. But you can still use JavaScript to connect
user-interface elements that control which of several stylesheets renders the data. Or, as
demonstrated in Chapters 52 and 57, you may wish to use JavaScript for more explicit control
over the data and its rendering, taking advantage of JavaScript sorting and data manipulation
facilities along the way.

Table 41-1 is a summary of W3C DOM Core objects, properties, and methods that you are
most likely to use in extracting data from xml elements. You can find details of all of these
items in Chapter 15.

Table 41-1: Properties and Methods for XML Element Reading

Property or Method Description

Node.nodeValue Data of a text node

Node.nodeType Which node type

Node.parentNode Reference to parent node

Node.childNodes Array of child nodes

Node.firstChild First of all child nodes

Node.lastChild Last of all child nodes

Node.previousSibling Previous node at same level

Node.nextSibling Next node at same level

Element.parentNode Reference to parent node

Element.childNodes Array of child nodes

BC183Chapter 41 ✦ XML Objects

Property or Method Description

Element.firstChild First of all child nodes

Element.lastChild Last of all child nodes

Element.previousSibling Previous node at same level

Element.nextSibling Next node at same level

Element.tagName Tag name

Element.getAttribute(name) Retrieves attribute (Attr) object

Element.getElementsByTagName(name) Array of nested, named elements

Attr.name Name part of attribute object’s name/value pair

Attr.value Value part of attribute object’s name/value pair

xml Element Object
For HTML element properties, methods, and event handlers, see Chapter 15.

Properties Methods Event Handlers

src
XMLDocument

Syntax
Accessing xml element object properties or methods:

(IE5+) [window.]document.all.elementID.property | method([parameters])

Compatibility: WinIE5+, MacIE-, NN-, Moz-, Safari-

About this object
The xml element object is the primary container of an xml data island within an HTML page.
If your scripts intend to traverse the node hierarchy within the element, or simply access
properties of nested elements, you should assign an identifier to the id attribute of the XML
element. For example, if the XML data contains results from a database query for music
recordings that match some user-entered criteria, each returned record might be denoted as
a recording element as follows:

<xml id=”results”>
<searchresults>

<recording>
...elements with details...

</recording>
<recording>

...elements with details...
</recording>

xml

BC184 Part VI ✦ Bonus Chapters

<recording>
...elements with details...

</recording>
</searchresults>

</xml>

Your script can now obtain an array of references to recording elements as follows:

var recs =
document.getElementById(“results”).getElementsByTagName(“recording”);

Although it is also true that there is no known HTML element with the tag name recording
(which enables you to use document.getElementsByTagName(“recording”)), the unpre-
dictability of xml data element names is reason enough to limit the scope of the
getElementsByTagName() method to the xml data island.

The W3C DOM Level 2 does not define an xml element object within the HTML section. You
cannot simply embed an XML document inside an HTML document: The standards clearly
indicate that a document can be one or the other, but not both. Although the NN6/7 DOM can
recognize custom elements, the browser understandably gets confused when custom ele-
ments have tag names that already belong to the HTML DTD. Therefore, I do not recommend
attempting to embed custom elements into an HTML document for NN6/7 unless it someday
implements a mechanism similar to IE’s XML data islands.

Properties
src

Value: String. Read/Write
Compatibility: WinIE5+, MacIE-, NN-, Moz-, Safari-

The src property represents the src attribute of the xml element. The attribute points to
the URL of an external xml document whose data is embedded within the current HTML
document.

XMLDocument
Value: Object reference. Read-Only
Compatibility: WinIE5+, MacIE-, NN-, Moz-, Safari-

The XMLDocument property returns a reference to Microsoft’s proprietary XML document
object and the object model associated with it (the so-called XML DOM). A lot of this object
model is patterned after the W3C DOM model, but access to these properties is via a rather
roundabout way. For more details, visit

http://msdn.microsoft.com/xml/reference/xmldom/start.asp

XMLHttpRequest Object

Properties Methods Event Handlers

readyState abort()
responseText getAllResponseHeaders()

xml

BC185Chapter 41 ✦ XML Objects

Properties Methods Event Handlers

responseXML getResponseHeader()
status open()
statusText send()

Syntax
Accessing XMLHttpRequest object properties or methods:

(IE5+/Moz) XMLHttpRequestObjectRef.property | method([parameters])

Compatibility: WinIE5+, MacIE-, NN7+, Moz1+, Safari-

About this object
The XMLHttpRequest object is an abstract object that lets your scripts retrieve XML data
from, or send XML data to, any URL designed for that purpose. All of the action occurs invisi-
bly to the user, and it is the responsibility of your scripts to make the connection with the
server and process the XML data either after retrieval or prior to submission. This object was
originally designed by Microsoft as part of its XML Core Services (MSXML), as first released
as part of Internet Explorer 5 for Windows. Mozilla engineers have implemented much of the
same functionality in Mozilla browsers, with almost identical syntax.

Where the IE and Mozilla variations differ is how you create the object to begin. Because the
IE version is an ActiveX control, you create the object using the ActiveXObject constructor
function. For Mozilla, the XMLHttpRequest object has its own constructor. Therefore, to
equalize the creation of the two versions in a single document, you need to branch your code
accordingly. Use object detection to handle the branching most effectively:

var req;
if (window.XMLHttpRequest) {

req = new XMLHttpRequest();
} else if (window.ActiveXObject) {

req = new ActiveXObject(“Microsoft.XMLHTTP”);
}

After the object is created, the basic syntax for opening a connection, sending the request,
and retrieving the response data is the same for both WinIE and Mozilla. To retrieve an XML
document (node tree) from a URL source, the basic sequence is as follows:

req.open(“GET”, “sourceURL”, false);
req.send(null);
var xmlDocument = req.responseXML;

At this point, scripts can inspect the contents of the xmlDocument value by way of W3C DOM
node properties and methods.

The XMLHttpRequest object in Mozilla-based browsers must reference pages served from
a Web server, and not a local file. You can experiment successfully from a “personal Web
server” running on your PC, but not with files accessed through the file: protocol.

Listing 41-1 shows a utility script that retrieves XML content from a URL (passed as a param-
eter to the loadXML() function) in a cross-browser manner. Additional error checking verifies

Note

xmlHttpRequest

BC186 Part VI ✦ Bonus Chapters

that the retrieval is successful, or reports the error to the user. If the browser running the
script does not support the XML reading feature, the user is alerted of that, as well. The XML
document object is preserved in a global variable called xDoc.

Listing 41-1: Utility XML Data Reading Script

// XML document
var xDoc;

// retrieve XML document as document object
function loadXMLDoc(url) {

var req;
if (window.XMLHttpRequest) {

req = new XMLHttpRequest();
req.open(“GET”, url, false);
req.send(null);

} else if (window.ActiveXObject) {
req = new ActiveXObject(“Microsoft.XMLHTTP”);
if (req) {

req.open(“GET”, url, false);
req.send();

}
}
if (req) {

if (req.status == 200) {
xDoc = req.responseXML;
if (xDoc && typeof xDoc.childNodes != “undefined” &&

xDoc.childNodes.length == 0) {
xDoc = null;

}
} else {

alert(“There was a problem retrieving the XML data:\n” +
req.statusText);

}
} else {

alert(“Sorry, this browser isn\’t equipped to read XML data.”);
}

}

Properties and methods described in this chapter are those that the object has in common
for both WinIE and Mozilla browsers. The WinIE object has some additional features, which
you can study at Microsoft’s MSXML 4.0 developer pages at http://msdn.microsoft.com/
library/en-us/xmlsdk/htm/dom_reference_2kdh.asp. You can see examples of this
object within the applications of Chapters 52 and 57.

Properties
readyState

Value: Integer. Read-Only
Compatibility: WinIE5+, MacIE-, NN7+, Moz1+, Safari-

Your scripts can read the value of the readyState property to determine the state of the
XMLHttpRequest object, particularly while it is operating during its initialization or data

xmlHttpRequest

BC187Chapter 41 ✦ XML Objects

transfer. Values are the same as for other objects that offer this property. See Table 15-6 for
integer values and their meanings. If you are scripting exclusively for WinIE, you can assign
an onreadystatechange event handler to the XMLHttpRequest object; the event function
can then inspect the readyState property for further processing.

Related Items: status property.

responseText
Value: String. Read-Only
Compatibility: WinIE5+, MacIE-, NN7+, Moz1+, Safari-

After the send() method executes, and if the server returns any data (as it will with a GET
operation), you can access a string version of the returned data via the responseText prop-
erty. If the returned data is an XML document, this property provides a string-only version of
the entire content.

Related Items: responseXML property.

responseXML
Value: XML document object. Read-Only
Compatibility: WinIE5+, MacIE-, NN7+, Moz1+, Safari-

After the send() method executes, and if the server returns any data (as it will with a GET
operation), you can access the returned W3C DOM-compliant document object via the
responseXML property. The object to which this property points is a genuine document node
(nodeType of 9), which gives your scripts the power to walk the node tree, and retrieve tags,
attributes, and text nodes inside elements, as you would with any DOM document.

As the examples in Chapters 52 and 57 demonstrate, you can use the data from the XML doc-
ument to build HTML that displays the XML content in the format of your choice (using
JavaScript as a more flexible alternative to XSL). If your page is interactive to the extent that
users can modify the content, you may then modify the document tree stored in your script
variable and send the revised XML back to the server by opening a new XMLHttpRequest
connection pointing to the URL that accepts the posted data.

Related Items: responseText property; open() method.

status
Value: Integer. Read-Only
Compatibility: WinIE5+, MacIE-, NN7+, Moz1+, Safari-

After the send() method executes, you can read the status of the transaction via the status
property. The value is an integer corresponding to the response issued by the server at the
end of the transaction. A successful transaction value is 200 (corresponding to the OK
statusText property value). Perhaps the other most common status value is 404, which
occurs if the URL you supply to the open() method points to a file or source not found on the
server. As shown in Listing 41-1, you can use the 200 value as the key to determining if the
transaction is a success, and then simply report any other value to the user (although inexpe-
rienced users may not understand the meaning of the status text). A complete list of status
values can be found at http://msdn.microsoft.com/library/en-us/xmlsdk/htm/
xml_pro_sz_0h4k.asp.

Related Items: statusText property.

xmlHttpRequest.status

BC188 Part VI ✦ Bonus Chapters

statusText
Value: String. Read-Only
Compatibility: WinIE5+, MacIE-, NN7+, Moz1+, Safari-

After the send() method executes, you can read the plain-language status of the transaction
via the statusText property. The value is a string corresponding to the response integer by
the server at the end of the transaction. A successful transaction value is OK (corresponding
to the 200 status property value). Use the status property for testing the results in your
script, and the statusText property to report errors to users. See Listing 41-1.

Related Items: status property.

Methods
abort()

Returns: Nothing.
Compatibility: WinIE5+, MacIE-, NN7+, Moz1+, Safari-

The abort() method stops any transaction currently in progress. This method is the
scripted equivalent of clicking a browser’s Stop button while it retrieves contents of a Web
page.

Related Items: readyState property; send() method.

getAllResponseHeaders()
getResponseHeader(“headerName”)

Returns: String.
Compatibility: WinIE5+, MacIE-, NN7+, Moz1+, Safari-

For each transaction, the server transmits a series of name/value pairs as a header to the
actual data. The getAllResponseHeaders() method returns the complete set as received by
the XMLHttpRequest object. Such a header set may look like the following:

Date: Mon, 06 Oct 2003 03:12:59 GMT
Server: Apache/1.3.27 (Darwin)
Last-Modified: Sun, 05 Oct 2003 22:13:04 GMT
Etag: “12babe-3a2-3f809770”
Accept-Ranges: bytes
Content-Length: 930
Keep-Alive: timeout=15, max=100
Connection: Keep-Alive
Content-Type: text/xml

If you want to retrieve the value of just one of the headers, use the getResponseHeader()
method and pass as a parameter a string with only the name portion of one of the headers.
For example:

var size = req.getResponseHeader(“Content-Length”);

The parameter is not case-sensitive, but the spelling (along with any hyphen in the name) is
critical.

Related Items: readyState property; send() method.

xmlHttpRequest.statusText

BC189Chapter 41 ✦ XML Objects

open(“method”, “URL”[, asyncFlag[,
“userName”[, “password”]]])

Returns: Nothing.
Compatibility: WinIE5+, MacIE-, NN7+, Moz1+, Safari-

Use the open() method to specify the transaction type and URL of the destination of the
request. The method parameter may be either GET (for retrieving data from a server) or POST
(for sending XML to a server). The URL may be either relative to the current page, or a com-
plete http: URL.

Three additional parameters are optional. The first is a Boolean value for whether the request
should be asynchronous. If true (the default), the XMLHttpRequest object does not wait for
a response (after the send() method) before continuing with script processing. By setting
this parameter to false, you ensure that processing continues only after the transaction has
completed or timed out. If you’d rather not wait for the transaction to complete, but instead
have some action occur when the returned data has arrived, you can assign an onload event
handler to the XMLHttpRequest object, and let that event handler process the incoming data:

var req;
if (window.XMLHttpRequest) {

req = new XMLHttpRequest();
} else if (window.ActiveXObject) {

req = new ActiveXObject(“Microsoft.XMLHTTP”);
}
req.onload = processXML; // event handler function reference
req.open(“GET”, “sourceURL”, false);
req.send(null);

The other optional parameters are strings for a username and password if one is needed to
access the URL.

Note that the open() method merely fills various properties of the request, and that the
request does not occur until the send() method is invoked.

Related Items: open() method.

send(content)
Returns: Nothing.
Compatibility: WinIE5+, MacIE-, NN7+, Moz1+, Safari-

After setting the characteristics of the request via the open() method and its parameters,
invoke the send() method to trigger the actual request over the network. For a GET opera-
tion, specify null as the parameter. But for a POST operation, the parameter should be a ref-
erence to a DOM document that has been assembled in script. You may also specify a string
as the value being posted to the request’s URL.

Related Items: open() method.

✦ ✦ ✦

xmlHttpRequest.send()

The Regular
Expression and
RegExp Objects

Web programmers who have worked in Perl (and other Web
application programming languages) know the power of regu-

lar expressions for processing incoming data and formatting data for
readability in an HTML page or for accurate storage in a server
database. Any task that requires extensive search and replacement of
text can greatly benefit from the flexibility and conciseness of regular
expressions. Version 4 browsers brought that power to JavaScript,
although it is more fully fleshed out in IE5.5+.

Most of the benefit of JavaScript regular expressions accrues to those
who script their CGI programs on servers that support a JavaScript
version that contains regular expressions. But that’s not to exclude
the client-side from application of this “language within a language.”
If your scripts perform client-side data validations or any other exten-
sive text entry parsing, consider using regular expressions rather
than cobbling together comparatively complex JavaScript functions
to perform the same tasks.

Regular Expressions and Patterns
In several chapters earlier in this book, I describe expressions as any
sequence of identifiers, keywords, and/or operators that evaluate to
some value. A regular expression follows that description, but has
much more power behind it. In essence, a regular expression uses a
sequence of characters and symbols to define a pattern of text. Such
a pattern is used to locate a chunk of text in a string by matching up
the pattern against the characters in the string.

An experienced JavaScript writer may point out the availability of the
string.indexOf() and string.lastIndexOf() methods that can
instantly reveal whether a string contains a substring and even where
in the string that substring begins. These methods work perfectly
well when the match is exact, character for character. But if you want
to do more sophisticated matching (for example, does the string con-
tain a five-digit ZIP code?), you’d have to cast aside those handy
string methods and write some parsing functions. That’s the beauty
of a regular expression: It lets you define a matching substring that
has some intelligence about it and can follow guidelines you set as
to what should or should not match.

4242C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

What regular
expressions are

How to use regular
expressions for text
search-and-replace

How to apply regular
expressions to string
object methods

✦ ✦ ✦ ✦

BC192 Part VI ✦ Bonus Chapters

The simplest kind of regular expression pattern is the same kind you use in the string.
indexOf() method. Such a pattern is nothing more than the text that you want to match. In
JavaScript, one way to create a regular expression is to surround the expression by forward
slashes. For example, consider the string

Oh, hello, do you want to play Othello in the school play?

This string and others may be examined by a script whose job it is to turn formal terms into
informal ones. Therefore, one of its tasks is to replace the word “hello” with “hi.” A typical
brute force search-and-replace function starts with a simple pattern of the search string. In
JavaScript, you define a pattern (a regular expression) by surrounding it with forward
slashes. For convenience and readability, I usually assign the regular expression to a variable,
as in the following example:

var myRegExpression = /hello/;

In concert with some regular expression or string object methods, this pattern matches the
string “hello” wherever that series of letters appears. The problem is that this simple pattern
causes problems during the loop that searches and replaces the strings in the example string:
It finds not only the standalone word “hello,” but also the “hello” in “Othello.”

Trying to write another brute force routine for this search-and-replace operation that looks
only for standalone words would be a nightmare. You can’t merely extend the simple pattern
to include spaces on either or both sides of “hello,” because there could be punctuation — a
comma, a dash, a colon, or whatever — before or after the letters. Fortunately, regular expres-
sions provide a shortcut way to specify general characteristics, including a feature known as
a word boundary. The symbol for a word boundary is \b (backslash, lowercase b). If you
redefine the pattern to include these specifications on both ends of the text to match, the reg-
ular expression creation statement looks like this:

var myRegExpression = /\bhello\b/;

When JavaScript uses this regular expression as a parameter in a special string object
method that performs search-and-replace operations, it changes only the standalone word
“hello” to “hi,” and passes over “Othello” entirely.

If you are still learning JavaScript and don’t have experience with regular expressions in other
languages, you have a price to pay for this power: Learning the regular expression lingo filled
with so many symbols means that expressions sometimes look like cartoon substitutions for
swear words. The goal of this chapter is to introduce you to regular expression syntax as
implemented in JavaScript rather than engage in lengthy tutorials for this language. Of more
importance in the long run is understanding how JavaScript treats regular expressions as
objects and distinctions between instances of regular expression objects and the RegExp
static object. I hope the examples in the following sections begin to reveal the powers of regu-
lar expressions.

Language Basics
To cover the depth of the regular expression syntax, I divide the subject into three sections.
The first covers simple expressions (some of which you’ve already seen). Then I get into the
wide range of special characters used to define specifications for search strings. Last comes
an introduction to the usage of parentheses in the language, and how they not only help in
grouping expressions for influencing calculation precedence (as they do for regular math
expressions), but also how they temporarily store intermediate results of more complex
expressions for use in reconstructing strings after their dissection by the regular expression.

BC193Chapter 42 ✦ The Regular Expression and RegExp Objects

Simple patterns
A simple regular expression uses no special characters for defining the string to be used in a
search. Therefore, if you want to replace every space in a string with an underscore charac-
ter, the simple pattern to match the space character is

var re = / /;

A space appears between the regular expression start-end forward slashes. The problem with
this expression, however, is that it knows only how to find a single instance of a space in a
long string. Regular expressions can be instructed to apply the matching string on a global
basis by appending the g modifier:

var re = / /g;

When this re value is supplied as a parameter to the replace() method that uses regular
expressions (described later in this chapter), the replacement is performed throughout the
entire string, rather than just once on the first match found. Notice that the modifier appears
after the final forward slash of the regular expression creation statement.

Regular expression matching — like a lot of other aspects of JavaScript — is case-sensitive.
But you can override this behavior by using one other modifier that lets you specify a case-
insensitive match. Therefore, the following expression

var re = /web/i;

finds a match for “web,” “Web,” or any combination of uppercase and lowercase letters in the
word. You can combine the two modifiers together at the end of a regular expression. For
example, the following expression is both case-insensitive and global in scope:

var re = /web/gi;

In compliance with the ECMA-262 Edition 3 standard, IE5.5+, NN6+/Moz, and Safari also allow
a flag to force the regular expression to treat carriage-return-delimited lines of a multiline
string as separate substrings with their own start and end boundaries. That modifier is the
letter m.

Special characters
The regular expression in JavaScript borrows most of its vocabulary from the Perl regular
expression. In a few instances, JavaScript offers alternatives to simplify the syntax, but also
accepts the Perl version for those with experience in that arena.

Significant programming power comes from the way regular expressions allow you to include
terse specifications about such facets as types of characters to accept in a match, how the
characters are surrounded within a string, and how often a type of character can appear in
the matching string. A series of escaped one-character commands (that is, letters preceded
by the backslash) handle most of the character issues; punctuation and grouping symbols
help define issues of frequency and range.

You saw an example earlier how \b specified a word boundary on one side of a search string.
Table 42-1 lists the escaped character specifiers in JavaScript regular expressions. The vocab-
ulary forms part of what are known as metacharacters — characters in expressions that are
not matchable characters themselves, but act more as commands or guidelines of the regular
expression language.

BC194 Part VI ✦ Bonus Chapters

Table 42-1: JavaScript Regular Expression Matching Metacharacters

Character Matches Example

\b Word boundary /\bor/ matches “origami” and “or” but not “normal”

/or\b/ matches “traitor” and “or” but not “perform”

/\bor\b/ matches full word “or” and nothing else

\B Word non-boundary /\Bor/ matches “normal” but not “origami”

/or\B/ matches “normal” and “origami” but not “traitor”

/\Bor\B/ matches “normal” but not “origami” or
“traitor”

\d Numeral 0 through 9 /\d\d\d/ matches “212” and “415” but not “B17”

\D Non-numeral /\D\D\D/ matches “ABC” but not “212” or “B17”

\s Single white space /over\sbite/ matches “over bite” but not “overbite”
or “over bite”

\S Single non-white space /over\Sbite/ matches “over-bite” but not “overbite”
or “over bite”

\w Letter, numeral, /A\w/ matches “A1” and “AA” but not “A+”
or underscore

\W Not letter, numeral, /A\W/ matches “A+” but not “A1” and “AA”
or underscore

. Any character except /.../ matches “ABC”, “1+3”, “A 3”, or any three
characters
newline

[...] Character set /[AN]BC/ matches “ABC” and “NBC” but not “BBC”

[^...] Negated character set /[^AN]BC/ matches “BBC” and “CBC” but not “ABC”
or “NBC”

Not to be confused with the metacharacters listed in Table 42-1 are the escaped string char-
acters for tab (\t), newline (\n), carriage return (\r), formfeed (\f), and vertical tab (\v).

Let me further clarify about the [...] and [^...] metacharacters. You can specify either
individual characters between the brackets (as shown in Table 42-1) or a contiguous range
of characters or both. For example, the \d metacharacter can also be defined by [0-9],
meaning any numeral from zero through nine. If you only want to accept a value of 2 and a
range from 6 through 8, the specification would be [26-8]. Similarly, the accommodating
\w metacharacter is defined as [A-Za-z0-9_], reminding you of the case-sensitivity of
regular expression matches not otherwise modified.

All but the bracketed character set items listed in Table 42-1 apply to a single character in
the regular expression. In most cases, however, you cannot predict how incoming data will
be formatted — the length of a word or the number of digits in a number. A batch of extra
metacharacters lets you set the frequency of the occurrence of either a specific character or
a type of character (specified like the ones in Table 42-1). If you have experience in command-
line operating systems, you can see some of the same ideas that apply to wildcards also
apply to regular expressions. Table 42-2 lists the counting metacharacters in JavaScript regu-
lar expressions.

BC195Chapter 42 ✦ The Regular Expression and RegExp Objects

Table 42-2: JavaScript Regular Expression Counting Metacharacters

Character Matches Last Character Example

* Zero or more times /Ja*vaScript/ matches “JvaScript”, “JavaScript”, and
“JaaavaScript” but not “JovaScript”

? Zero or one time /Ja?vaScript/ matches “JvaScript” or “JavaScript” but
not “JaaavaScript”

+ One or more times /Ja+vaScript/ matches “JavaScript” or “JaavaScript”
but not “JvaScript”

{n} Exactly n times /Ja{2}vaScript/ matches “JaavaScript” but not
“JvaScript” or “JavaScript”

{n,} n or more times /Ja{2,}vaScript/ matches “JaavaScript” or
“JaaavaScript” but not “JavaScript”

{n,m} At least n, at most m times /Ja{2,3}vaScript/ matches “JaavaScript” or
“JaaavaScript” but not “JavaScript”

Every metacharacter in Table 42-2 applies to the character immediately preceding it in the
regular expression. Preceding characters may also be matching metacharacters from Table
42-1. For example, a match occurs for the following expression if the string contains two dig-
its separated by one or more vowels:

/\d[aeiouy]+\d/

The last major contribution of metacharacters is helping the regular expression search a par-
ticular position in a string. By position, I don’t mean something such as an offset — the
matching functionality of regular expressions can tell me that. But, rather, whether the string
to look for should be at the beginning or end of a larger string or (if the m modifier is added to
the regular expression assignment) a line of that larger string. Table 42-3 shows the positional
metacharacters for JavaScript’s regular expressions.

Table 42-3: JavaScript Regular Expression Positional Metacharacters

Character Matches Located Example

^ At beginning of a string /^Fred/ matches “Fred is OK” but not “I’m with Fred”
or line or “Is Fred here?”

$ At end of a string or line /Fred$/ matches “I’m with Fred” but not “Fred is OK”
or “Is Fred here?”

For example, you may want to make sure that a match for a Roman numeral is found only
when it is at the start of a string, rather than when it is used inline somewhere else. If the doc-
ument contains Roman numerals in an outline, you can match all the top-level items that are
flush left with the document with a regular expression, such as the following:

/^[IVXMDCL]+\./m

BC196 Part VI ✦ Bonus Chapters

This expression matches any combination of Roman numeral characters at the start of a line
followed by a period (the period is a special character in regular expressions, as shown in
Table 42-1, so that you have to escape the period to offer it as a character), provided the
Roman numeral is at the beginning of a line and has no tabs or spaces before it. There would
also not be a match in a line that contains, for example, the phrase “see Part IV” because the
Roman numeral is not at the beginning of a line.

Speaking of lines, a line of text is a contiguous string of characters delimited by a newline
and/or carriage return (depending on the operating system platform). Word wrapping in
textarea elements does not affect the starts and ends of true lines of text.

Grouping and backreferencing
Regular expressions obey most of the JavaScript operator precedence laws with regard to
grouping by parentheses and the logical Or operator. One difference is that the regular
expression Or operator is a single pipe character (|) rather than JavaScript’s double pipe.

Parentheses have additional powers that go beyond influencing the precedence of calcula-
tion. Any set of parentheses (that is, a matched pair of left and right) stores the results of a
found match of the expression within those parentheses. Parentheses can be nested inside
one another. Storage is accomplished automatically, with the data stored in an indexed array
accessible to your scripts and to your regular expressions (although through different syn-
tax). Access to these storage bins is known as backreferencing, because a regular expression
can point backward to the result of an expression component earlier in the overall expres-
sion. These stored subcomponents come in handy for replace operations, as demonstrated
later in this chapter.

Object Relationships
JavaScript has a lot going on behind the scenes when you create a regular expression and
perform the simplest operation with it. As important as the regular expression language
described earlier in this chapter is to applying regular expressions in your scripts, the
JavaScript object interrelationships are perhaps even more important if you want to exploit
regular expressions to the fullest.

The first concept to master is that two entities are involved: a regular expression instance
object and the RegExp static object. Both objects are core objects of JavaScript and are not
part of the document object model. Both objects work together, but have entirely different
sets of properties that may be useful to your application.

When you create a regular expression (even via the /.../ syntax), JavaScript invokes the
new RegExp() constructor, much the way a new Date() constructor creates a date object
around one specific date. The regular expression instance object returned by the constructor
is endowed with several properties containing details of its data. At the same time, the single,
static RegExp object maintains its own properties that monitor regular expression activity in
the current window (or frame).

To help you see the typically unseen operations, I step you through the creation and applica-
tion of a regular expression. In the process, I show you what happens to all of the related
object properties when you use one of the regular expression methods to search for a match.

Several properties of both the regular expression instance object and the static RegExp object
shown in the following “walk-through” are not available in IE until version 5.5. All are avail-
able in NN4+. See the individual property listings later in this chapter for compatibility ratings.

Note

BC197Chapter 42 ✦ The Regular Expression and RegExp Objects

The starting text that I use to search through is the beginning of Hamlet’s soliloquy (assigned
to an arbitrary variable named mainString):

var mainString = “To be, or not to be: That is the question:”;

If my ultimate goal is to locate each instance of the word “be,” I must first create a regular
expression that matches the word “be.” I set the regular expression up to perform a global
search when eventually called upon to replace itself (assigning the expression to an arbitrary
variable named re):

var re = /\bbe\b/g;

To guarantee that only complete words “be” are matched, I surround the letters with the
word boundary metacharacters. The final “g” is the global modifier. The variable to which the
expression is assigned, re, represents a regular expression object whose properties and val-
ues are as follows:

Object.PropertyName Value

re.source “\bbe\bg”
re.global true
re.ignoreCase false
re.lastIndex 0

A regular expression’s source property is the string consisting of the regular expression syn-
tax (less the literal forward slashes). Each of the two possible modifiers, g and i, have their
own properties, global and ignoreCase, whose values are Booleans indicating whether the
modifiers are part of the source expression. The final property, lastIndex, indicates the index
value within the main string at which the next search for a match should start. The default
value for this property in a newly hatched regular expression is zero so that the search starts
with the first character of the string. This property is read/write, so your scripts may want to
adjust the value if they must have special control over the search process. As you see in a
moment, JavaScript modifies this value over time if a global search is indicated for the object.

The RegExp constructor does more than just create regular expression objects. Like the Math
object, the RegExp object is always “around” — one RegExp per window or frame — and
tracks regular expression activity in a script. Its properties reveal what, if any, regular expres-
sion pattern matching has just taken place in the window. At this stage of the regular expres-
sion creation process, the RegExp object has only one of its properties set:

Object.PropertyName Value

RegExp.input
RegExp.multiline false
RegExp.lastMatch
RegExp.lastParen
RegExp.leftContext
RegExp.rightContext
RegExp.$1
...
RegExp.$9

BC198 Part VI ✦ Bonus Chapters

The last group of properties ($1 through $9) is for storage of backreferences. But because the
regular expression I define above doesn’t have any parentheses in it, these properties are
empty for the duration of this examination and omitted from future listings in this “walk-
through” section.

With the regular expression object ready to go, I invoke the exec() regular expression
method, which looks through a string for a match defined by the regular expression. If the
method is successful in finding a match, it returns a third object whose properties reveal a
great deal about the item it found (I arbitrarily assign the variable foundArray to this
returned object):

var foundArray = re.exec(mainString);

JavaScript includes a shortcut for the exec() method if you turn the regular expression
object into a method:

var foundArray = re(mainString);

Normally, a script would check whether foundArray is null (meaning that there was no
match) before proceeding to inspect the rest of the related objects. Because this is a con-
trolled experiment, I know at least one match exists, so I first look into some other results.
Running this simple method has not only generated the foundArray data, but also altered
several properties of the RegExp and regular expression objects. The following shows you the
current stage of the regular expression object:

Object.PropertyName Value

re.source “\bbe\bg”
re.global true
re.ignoreCase false
re.lastIndex 5

The only change is an important one: The lastIndex value has bumped up to 5. In other
words, this one invocation of the exec() method must have found a match whose offset plus
length of matching string shifts the starting point of any successive searches with this regular
expression to character index 5. That’s exactly where the comma after the first “be” word is
in the main string. If the global (g) modifier had not been appended to the regular expression,
the lastIndex value would have remained at zero, because no subsequent search would be
anticipated.

As the result of the exec() method, the RegExp object has had a number of its properties
filled with results of the search:

Object.PropertyName Value

RegExp.input
RegExp.multiline false
RegExp.lastMatch “be”
RegExp.lastParen
RegExp.leftContext “To “
RegExp.rightContext “, or not to be: That is the question:”

BC199Chapter 42 ✦ The Regular Expression and RegExp Objects

From this object you can extract the string segment that was found to match the regular
expression definition. The main string segments before and after the matching text are also
available individually (in this example, the leftContext property has a space after “To”).
Finally, looking into the array returned from the exec() method, some additional data is read-
ily accessible:

Object.PropertyName Value

foundArray[0] “be”
foundArray.index 3
foundArray.input “To be, or not to be: That is the question:”

The first element in the array, indexed as the zeroth element, is the string segment found to
match the regular expression, which is the same as the RegExp.lastMatch value. The com-
plete main string value is available as the input property. A potentially valuable piece of infor-
mation to a script is the index for the start of the matched string found in the main string.
From this last bit of data, you can extract from the found data array the same values as
RegExp.leftContext (with foundArray.input.substring(0, foundArray.index)) and
RegExp. rightContext (with foundArray.input.substring(foundArray.index,
foundArray[0].length)).

Because the regular expression suggested a multiple execution sequence to fulfill the global
flag, I can run the exec() method again without any change. While the JavaScript statement
may not be any different, the search starts from the new re.lastIndex value. The effects of
this second time through ripple through the resulting values of all three objects associated
with this method:

var foundArray = re.exec(mainString);

Results of this execution are as follows (changes are in boldface).

Object.PropertyName Value

re.source “\bbe\bg”
re.global true
re.ignoreCase false
re.lastIndex 19
RegExp.input
RegExp.multiline false
RegExp.lastMatch “be”
RegExp.lastParen
RegExp.leftContext “, or not to “
RegExp.rightContext “: That is the question:”
foundArray[0] “be”
foundArray.index 17
foundArray.input “To be, or not to be: That is the question:”

BC200 Part VI ✦ Bonus Chapters

Because there was a second match, foundArray comes back again with data. Its index prop-
erty now points to the location of the second instance of the string matching the regular
expression definition. The regular expression object’s lastIndex value points to where the
next search would begin (after the second “be”). And the RegExp properties that store the left
and right contexts have adjusted accordingly.

If the regular expression were looking for something less stringent than a hard-coded word,
some other properties may also be different. For example, if the regular expression defined a
format for a ZIP code, the RegExp.lastMatch and foundArray[0] values would contain the
actual found ZIP codes, which would likely be different from one match to the next.

Running the same exec() method once more does not find a third match in my original
mainString value, but the impact of that lack of a match is worth noting. First of all, the
foundArray value is null— a signal to our script that no more matches are available. The
regular expression object’s lastIndex property reverts to zero, ready to start its search from
the beginning of another string. Most importantly, however, the RegExp object’s properties
maintain the same values from the last successful match. Therefore, if you put the exec()
method invocations in a repeat loop that exits after no more matches are found, the RegExp
object still has the data from the last successful match, ready for further processing by your
scripts.

Using Regular Expressions
Despite the seemingly complex hidden workings of regular expressions, JavaScript provides a
series of methods that make common tasks involving regular expressions quite simple to use
(assuming you figure out the regular expression syntax to create good specifications). In this
section, I present examples of syntax for specific kinds of tasks for which regular expressions
can be beneficial in your pages.

Is there a match?
I said earlier that you can use string.indexOf() or string.lastIndexOf() to look for the
presence of simple substrings within larger strings. But if you need the matching power of
regular expression, you have two other methods to choose from:

regexObject.test(string)
string.search(regexObject)

The first is a regular expression object method, the second a string object method. Both per-
form the same task and influence the same related objects, but they return different values: a
Boolean value for test() and a character offset value for search() (or -1 if no match is
found). Which method you choose depends on whether you need only a true/false verdict on
a match or the location within the main string of the start of the substring.

Listing 42-1 demonstrates the search() method on a page that lets you get the Boolean and
offset values for a match. Some default text and regular expression is provided (it looks for a
five-digit number). You can experiment with other strings and regular expressions. Because
this script creates a regular expression object with the new RegExp() constructor method,
you do not include the literal forward slashes around the regular expression.

BC201Chapter 42 ✦ The Regular Expression and RegExp Objects

Listing 42-1: Looking for a Match

<html>
<head>

<title>Got a Match?</title>
<script type=”text/javascript”>
function findIt(form) {

var re = new RegExp(form.regexp.value);
var input = form.main.value;
if (input.search(re) != -1) {

form.output[0].checked = true;
} else {

form.output[1].checked = true;
}

}
function locateIt(form) {

var re = new RegExp(form.regexp.value);
var input = form.main.value;
form.offset.value = input.search(re);

}
</script>

</head>
<body>

Use a regular expression to test for the existence of a string:
<hr />
<form>

Enter some text to be searched:

<textarea name=”main” cols=”40” rows=”4” wrap=”virtual”>

The most famous ZIP code on Earth may be 90210.</textarea>

Enter a regular expression to search:

<input type=”text” name=”regexp” size=”30” value=”\b\d\d\d\d\d\b” />
<p><input type=”button” value=”Is There a Match?”

onclick=”findIt(this.form)” /> <input type=”radio”
name=”output” />Yes <input type=”radio” name=”output” />No</p>

<p><input type=”button” value=”Where is it?”
onclick=”locateIt(this.form)” /> <input type=”text” name=”offset”
size=”4” /></p>

<p><input type=”reset” /></p>
</form>

</body>
</html>

Getting information about a match
For the next application example, the task is not only to verify that a one-field date entry is in
the desired format, but also to extract match components of the entry and use those values to
perform further calculations in determining the day of the week. The regular expression in the
example that follows is a fairly complex one, because it performs some rudimentary range
checking to make sure the user doesn’t enter a month over 12 or a date over 31. What it does

BC202 Part VI ✦ Bonus Chapters

not take into account is the variety of lengths of each month. But the regular expression and
method invoked with it extract each date object component in such a way that you can perform
additional validation on the range to make sure the user doesn’t try to give September 31 days.
Also be aware that this is not the only way to perform date validations in forms. Chapter 43
offers additional thoughts on the matter that work without regular expressions for backward
compatibility.

Listing 42-2 contains a page that has a field for date entry, a button to process the date, and
an output field for display of a long version of the date, including the day of the week. At the
start of the function that does all the work, I create two arrays to hold the plain language
names of the months and days. These arrays are used only if the user enters a valid date.

Next comes the regular expression to be matched against the user entry. If you can decipher
all the symbols, you see that three components are separated by potential hyphen or forward
slash entries ([\-\/]). These symbols must be escaped in the regular expression. Importantly,
each of the three component definitions is surrounded by parentheses, which are essential
for the various objects created with the regular expression to remember their values for
extraction later.

Here is a brief rundown of what the regular expression is looking for:

✦ A string beginning after a word break

✦ A string value for the month that contains a 1 plus a 0 through 2; or an optional 0 plus
a 1 through 9

✦ A hyphen or forward slash

✦ A string value for the date that starts with a 0 plus a 1 through 9; or starts with a 1 or 2
and ends with a 0 through 9; or starts with a 3 and ends with 0 or 1

✦ Another hyphen or forward slash

✦ A string value for the year that begins with 19 or 20, followed by two digits

An extra pair of parentheses must surround the 19|20 segment to make sure that either one
of the matching values is attached to the two succeeding digits. Without the parentheses, the
logic of the expression attaches the digits only to 20.

For invoking the regular expression action, I select the exec() method, assigning the returned
object to the variable matchArray. I can also use the string.match() method here. Only if
the match is successful (that is, all conditions of the regular expression specification are met)
does the major processing continue in the script.

The parentheses around the segments of the regular expression instruct JavaScript to assign
each found value to a slot in the matchArray object. The month segment is assigned to
matchArray[1], the date to matchArray[2], and the year to matchArray[3] (matchArray[0]
contains the entire matched string). Therefore, the script can extract each component to build
a plain-language date string with the help of the arrays defined at the start of the function. I
even use the values to create a new date object that calculates the day of the week for me.
After I have all pieces, I concatenate them and assign the result to the value of the output
field. If the regular expression exec() method doesn’t match the typed entry with the expres-
sion, the script provides an error message in the field.

BC203Chapter 42 ✦ The Regular Expression and RegExp Objects

Listing 42-2: Extracting Data from a Match

<html>
<head>

<title>Got a Match?</title>
<script type=”text/javascript”>
function extractIt(form) {

var months = [“January”,”February”,”March”,”April”,”May”,”June”,
“July”,”August”,”September”,”October”,”November”,”December”];

var days = [“Sunday”,”Monday”,”Tuesday”,”Wednesday”,”Thursday”,
“Friday”,”Saturday”];

var re = /\b(1[0-2]|0?[1-9])[\-\/](0?[1-9]|[12][0-9]|3[01])[\-
\/]((19|20)\d{2})/;

var input = form.entry.value;
var matchArray = re.exec(input);
if (matchArray) {

var theMonth = months[matchArray[1] - 1] + “ “;
var theDate = matchArray[2] + “, “;
var theYear = matchArray[3];
var dateObj = new Date(matchArray[3],

matchArray[1]-1,matchArray[2]);
var theDay = days[dateObj.getDay()] + “ “;
form.output.value = theDay + theMonth + theDate + theYear;

} else {
form.output.value = “An invalid date.”;

}
}
</script>

</head>
<body>

Use a regular expression to extract data from a string:
<hr />
<form>

Enter a date in the format mm/dd/yyyy or mm-dd-yyyy:

<input type=”text” name=”entry” size=”12” />
<p><input type=”button” value=”Extract Date Components”

onclick=”extractIt(this.form)” /></p>
<p>The date you entered was:

<input type=”text” name=”output” size=”40” /></p>
<p><input type=”reset” /></p>

</form>
</body>

</html>

String replacement
To demonstrate using regular expressions for performing search-and-replace operations, I
choose an application that may be of value to many page authors who have to display and
format large numbers. Databases typically store large integers without commas. After five or
six digits, however, such numbers are difficult for users to read. Conversely, if the user needs
to enter a large number, commas help ensure accuracy.

BC204 Part VI ✦ Bonus Chapters

Helping the procedure in JavaScript regular expressions is the string.replace() method
(see Chapter 27). The method requires two parameters, a regular expression to search the
string and a string to replace any match found in the string. The replacement string can be
properties of the RegExp object as it stands after the most recent exec() method.

Listing 42-3 demonstrates how only a handful of script lines can do a lot of work when regular
expressions handle the dirty work. The page contains three fields. Enter any number you
want in the first one. A click of the Insert Commas button invokes the commafy() function in
the page. The result is displayed in the second field. You can also enter a comma-filled num-
ber in the second field and click the Remove Commas button to see the inverse operation
executed through the decommafy() function.

Specifications for the regular expression accept any positive or negative string of numbers.
The keys to the action of this script are the parentheses around two segments of the regular
expression. One set encompasses all characters not included in the second group: a required
set of three digits. In other words, the regular expression is essentially working from the rear
of the string, chomping off three-character segments and inserting a comma each time a set is
found.

A while repeat loop cycles through the string and modifies the string (in truth, the string
object is not being modified, but, rather, a new string is generated and assigned to the old
variable name). I use the test() method because I don’t need the returned value of the exec()
method. The test() method impacts the regular expression and RegExp object properties
the same way as the exec() method, but more efficiently. The first time the test() method
runs, the part of the string that meets the first segment is assigned to the RegExp.$1 prop-
erty; the second segment, if any, is assigned to the RegExp.$2 property. Notice that I’m not
assigning the results of the exec() method to any variable, because for this application I
don’t need the array object generated by that method.

Next comes the tricky part. I invoke the string.replace() method, using the current value
of the string (num) as the starting string. The pattern to search for is the regular expression
defined at the head of the function. But the replacement string may look strange to you. The
replacement string is replacing whatever the regular expression matches with the value of
RegExp.$1, a comma, and the value of RegExp.$2. The RegExp object should not be part of
the references used in the replace() method parameter. Because the regular expression
matches the entire num string, the replace() method is essentially rebuilding the string from
its components, plus adding a comma before the second component (the last freestanding
three-digit section). Each replace() method invocation sets the value of num for the next
time through the while loop and the test() method.

Looping continues until no matches occur — meaning that no more freestanding sets of three
digits appear in the string. Then the results are written to the second field on the page.

Listing 42-3: Replacing Strings via Regular Expressions

<html>
<head>

<title>Got a Match?</title>
<script type=”text/javascript”>
function commafy(form) {

var re = /(-?\d+)(\d{3})/;
var num = form.entry.value;
while (re.test(num)) {

num = num.replace(re, “$1,$2”);
}
form.commaOutput.value = num;

BC205Chapter 42 ✦ The Regular Expression and RegExp Objects

}
function decommafy(form) {

var re = /,/g;
form.plainOutput.value = form.commaOutput.value.replace(re,””);

}
</script>

</head>
<body>

Use a regular expression to add/delete commas from numbers:
<hr />
<form>

Enter a large number without any commas:

<input type=”text” name=”entry” size=”15” />
<p><input type=”button” value=”Insert commas”

onclick=”commafy(this.form)” /></p>
<p>The comma version is:

<input type=”text” name=”commaOutput” size=”20” /></p>
<p><input type=”button” value=”Remove commas”

onclick=”decommafy(this.form)” /></p>
<p>The un-comma version is:

<input type=”text” name=”plainOutput” size=”15” /></p>
<p><input type=”reset” /></p>

</form>
</body>

</html>

Removing the commas is an even easier process. The regular expression is a comma with the
global flag set. The replace() method reacts to the global flag by repeating the process until
all matches are replaced. In this case, the replacement string is an empty string. For further
examples of using regular expressions with string objects, see the discussions of the string.
match(), string.replace(), and string.split() methods in Chapter 27.

Regular Expression Object

Properties Methods Event Handlers

constructor compile()
global exec()
ignoreCase test()
lastIndex
multilane
source

Syntax
Accessing regular expression properties or methods:

regularExpressionObject.property | method([parameters])

Compatibility: WinIE4+, MacIE4+, NN4+, Moz1+, Safari1+

regularExpressionObject

BC206 Part VI ✦ Bonus Chapters

About this object
The regular expression object is created on the fly by your scripts. Each regular expression
object contains its own pattern and other properties. Deciding which object creation style to
use depends on the way the regular expression will be used in your scripts.

When you create a regular expression with the literal notation (that is, with the two forward
slashes), the expression is automatically compiled for efficient processing as the assignment
statement executes. The same is true when you use the new RegExp() constructor and specify
a pattern (and optional modifier flags) as a parameter. Whenever the regular expression is
fixed in the script, use the literal notation; when some or all of the regular expression is derived
from an external source (for example, user input from a text field), assemble the expression
as a parameter to the new RegExp() constructor. A compiled regular expression should be
used at whatever stage the expression is ready to be applied and reused within the script.
Compiled regular expressions are not saved to disk or given any more permanence beyond
the life of a document’s script (that is, it dies when the page unloads).

However, there may be times in which the specification for the regular expression changes
with each iteration through a loop construction. For example, if statements in a while loop
modify the content of a regular expression, compile the expression inside the while loop, as
shown in the following skeletal script fragment:

var srchText = form.search.value;
var re = new RegExp(); // empty constructor
while (someCondition) {

re.compile(“\\s+” + srchText + “\\s+”, “gi”);
statements that change srchText

}

Each time through the loop, the regular expression object is both given a new expression
(concatenated with metacharacters for one or more white spaces on both sides of some
search text whose content changes constantly) and compiled into an efficient object for use
with any associated methods.

Properties

constructor
(See string.constructor in Chapter 27)

global
ignoreCase

Value: Booleans. Read-Only
Compatibility: WinIE5.5+, MacIE5+, NN4+, Moz1+, Safari1+

These two properties reflect the regular expression g and i modifier flags, if any, associated
with a regular expression. Settings are read-only and are determined as the object is created.
Each property is independent of the other.

regularExpressionObject

BC207Chapter 42 ✦ The Regular Expression and RegExp Objects

lastIndex
Value: Integer. Read/Write
Compatibility: WinIE4+, MacIE4+, NN4+, Moz1+, Safari1+

The lastIndex property indicates the index counter of the main string to be searched against
the current regular expression object. When a regular expression object is created, this value
is zero, meaning that there have been no searches with this object, and the default behavior
of the first search is to start at the beginning of the string.

If the regular expression has the global modifier specified, the lastIndex property value
advances to some higher value after the object is used in a method to match within a main
string. The value is the position in the main string immediately after the previous matched
string (and not including any character of the matched string). After locating the final match
in a string, the method resets the lastIndex property to zero for the next time. You can also
influence the behavior of matches by setting this value on the fly. For example, if you want
the expression to begin its search at the fourth character of a target string, you change the
setting immediately after creating the object, as follows:

var re = /somePattern/;
re.lastIndex = 3; // fourth character in zero-based index system

Related Items: Match result object index property.

multiline
Value: Boolean. Read-Only
Compatibility: WinIE5.5+, MacIE5, NN6+, Moz1+, Safari1+

The multiline property reveals whether searches extend across multiple lines of a target
string, as directed by the optional m modifier flag for a regular expression. NN4+ also includes
the same-named property for the RegExp object (see the following section).

Related Items: RegExp.multiline property.

source
Value: String. Read-Only
Compatibility: WinIE4+, MacIE4+, NN4+, Moz1+, Safari1+

The source property is simply the string representation of the regular expression used to
define the object. This property is read-only.

Methods

compile(“pattern”, [“g” | “i” | “m”])
Returns: Regular expression object.
Compatibility: WinIE4+, MacIE4+, NN4+, Moz1+, Safari-

Use the compile() method to compile on the fly a regular expression whose content changes
continually during the execution of a script. See the discussion earlier about this object for
an example. Other regular expression creation statements (the literal notation and the new
RegExp() constructor that passes a regular expression) automatically compile their expres-
sions. The m pattern modifier is available in IE5.5+ and NN6+/W3C.

regularExpressionObject.compile()

BC208 Part VI ✦ Bonus Chapters

exec(“string”)
Returns: Match array object or null.
Compatibility: WinIE4+, MacIE4+, NN4+, Moz1+, Safari1+

The exec() method examines the string passed as its parameter for at least one match of the
specification defined for the regular expression object. The behavior of this method is similar
to that of the string.match() method (although the match() method is more powerful in
completing global matches). Typically, a call to the exec() method is made immediately after
the creation of a regular expression object, as in the following example:

var re = /somePattern/;
var matchArray = re.exec(“someString”);

Much happens as a result of the exec() method. Properties of both the regular expression
object and window’s RegExp object are updated based on the success of the match. The
method also returns an object that conveys additional data about the operation. Table 42-4
shows the properties of this returned object.

Table 42-4: Match Found Array Object Properties

Property Description

index Zero-based index counter of the start of the match inside the string

input Entire text of original string

[0] String of most recent matched characters

[1],...[n] Parenthesized component matches

Some of the properties in this returned object echo properties in the RegExp object. The
value of having them in the regular expression object is that their contents are safely stowed
in the object while the RegExp object and its properties may be modified soon by another call
to a regular expression method. Items the two objects have in common are the [0] property
(mapped to the RegExp.lastMatch property) and the [1],. . .[n] properties (the first
nine of which map to RegExp.$1. . .RegExp.$9). Although the RegExp object stores only
nine parenthesized subcomponents, the returned array object stores as many as are needed
to accommodate parenthesis pairs in the regular expression.

If no match turns up between the regular expression specification and the string, the returned
value is null. See Listing 42-2 for an example of how this method can be applied. An alternate
shortcut syntax may be used for the exec() method. Turn the regular expression into a func-
tion, as in

var re = /somePattern/;
var matchArray = re(“someString”);

Related Items: string.match() method.

test(“string”)
Returns: Boolean.
Compatibility: WinIE4+, MacIE4+, NN4+, Moz1+, Safari1+

regularExpressionObject.exec()

BC209Chapter 42 ✦ The Regular Expression and RegExp Objects

The most efficient way to find out if a regular expression has a match in a string is to use the
test() method. Returned values are true if a match exists and false if not. In case you need
more information, a companion method, string.search(), returns the starting index value
of the matching string. See Listing 42-1 for an example of this method in action.

Related Items: string.search() method.

RegExp Object

Properties Methods Event Handlers

input (None) (None)

lastMatch
lastParen
leftContext
multilane
prototype
rightContext
$1, ... $9

Syntax
Accessing RegExp properties:

RegExp.property

Compatibility: WinIE4+, MacIE4+, NN4+, Moz1+, Safari-

About this object
Beginning with version 4 browsers, the browser maintains a single instance of a RegExp object
for each window or frame. The object oversees the action of all methods that involve regular
expressions (including the few related string object methods). Properties of this object are
exposed not only to JavaScript in the traditional manner, but also to a parameter of the method
string.replace() for some shortcut access (see Listing 42-3).

With one RegExp object serving all regular expression-related methods in your document’s
scripts, you must exercise care in accessing or modifying this object’s properties. You must
make sure that the RegExp object has not been affected by another method. Most properties
are subject to change as the result of any method involving a regular expression. This may be
reason enough to use the properties of the array object returned by most regular expression
methods instead of the RegExp properties. The former stick with a specific regular expression
object even after other regular expression objects are used in the same script. The RegExp prop-
erties reflect the most recent activity, irrespective of the regular expression object involved.

In the following listings, I supply the long, JavaScript-like property names. But each property
also has an abbreviated, Perl-like manner to refer to the same properties. You can use these
shortcut property names in the string.replace() method if you need the values.

RegExp

BC210 Part VI ✦ Bonus Chapters

Properties

input
Value: String. Read/Write
Compatibility: WinIE4+, MacIE4+, NN4+, Moz-, Safari-

The RegExp.input property is the main string against which a regular expression is compared
in search of a match. In all of the example listings earlier in this chapter, the property was null.
Such is the case when the main string is supplied as a parameter to the regular expression-
related method.

But many text-related document objects have an unseen relationship with the RegExp object.
If a text, textarea, select, or link object contains an event handler that invokes a function
containing a regular expression, the RegExp.input property is set to the relevant textual data
from the object. You don’t have to specify any parameters for the event handler call or in the
function called by the event handler. For text and textarea objects, the input property value
becomes the content of the object; for the select object, it is the text (not the value) of the
selected option; and for a link, it is the text highlighted in the browser associated with the
link (and reflected in the link’s text property).

Having JavaScript set the RegExp.input property for you may simplify your script. You can
invoke either of the regular expression methods without having to specify the main string
parameter. When that parameter is empty, JavaScript applies the RegExp.input property
to the task. You can also set this property on the fly if you want. The short version of this
property is $_ (dollar sign underscore).

Related Items: Matching array object input property.

multiline
Value: Boolean. Read/Write
Compatibility: WinIE5.5+, MacIE5+, NN4+, Moz1+, Safari-

The RegExp.multiline property determines whether searches extend across multiple lines
of a target string. This property is automatically set to true as an event handler of a textarea
triggers a function containing a regular expression. You can also set this property on the fly if
you want. The short version of this property is $. This version of the property (as distinct
from the multiline property of an instance of a regular expression) is not defined in the
ECMA-262 specification and is based on an early, incorrect implementation.

Related Items: Regular expression instance object multiline property.

lastMatch
Value: String. Read-Only
Compatibility: WinIE5.5+, MacIE5+, NN4+, Moz1+, Safari-

After execution of a regular expression–related method, any text in the main string that matches
the regular expression specification is automatically assigned to the RegExp.lastMatch prop-
erty. This value is also assigned to the [0] property of the object array returned after the
exec() and string.match() methods find a match. The short version of this property is $&.

Related Items: Matching array object [0] property.

RegExp.input

BC211Chapter 42 ✦ The Regular Expression and RegExp Objects

lastParen
Value: String. Read-Only
Compatibility: WinIE5.5+, MacIE5+, NN4+, Moz1+, Safari-

When a regular expression contains many parenthesized subcomponents, the RegExp object
maintains a list of the resulting strings in the $1,...$9 properties. You can also extract the
value of the last matching parenthesized subcomponent with the RegExp.lastParen property,
which is a read-only property. The short version of this property is $+.

Related Items: RegExp.$1,...$9 properties.

leftContext
rightContext

Value: String. Read-Only
Compatibility: WinIE5.5+, MacIE5+, NN4+, Moz1+, Safari-

After a match is found in the course of one of the regular expression methods, the RegExp
object is informed of some key contextual information about the match. The leftContext
property contains the part of the main string to the left of (up to but not including) the matched
string. Be aware that the leftContext starts its string from the point at which the most recent
search began. Therefore, for second or subsequent times through the same string with the
same regular expression, the leftContext substring varies widely from the first time through.

The rightContext consists of a string starting immediately after the current match and
extending to the end of the main string. As subsequent method calls work on the same string
and regular expression, this value obviously shrinks in length until no more matches are
found. At this point, both properties revert to null. The short versions of these properties
are $` and $’ for leftContext and rightContext, respectively.

prototype
(See String.prototype in Chapter 27)

$1...$9
Value: String. Read-Only
Compatibility: WinIE4+, MacIE4+, NN4+, Moz1+, Safari-

As a regular expression method executes, any parenthesized result is stored in RegExp’s nine
properties reserved for just that purpose (called backreferences). The same values (and any
beyond the nine that RegExp has space for) are stored in the array object returned with the
exec() and string.match() methods. Values are stored in the order in which the left paren-
thesis of a pair appears in the regular expression, regardless of nesting of other components.

You can use these backreferences directly in the second parameter of the string.replace()
method, without using the RegExp part of their address. The ideal situation is to encapsulate
components that need to be rearranged or recombined with replacement characters. For
example, the following script function turns a name that is last name first into first name last:

function swapEm() {
var re = /(\w+),\s*(\w+)/;
var input = “Lincoln, Abraham”;
return input.replace(re,”$2 $1”);

}

RegExp.$1

BC212 Part VI ✦ Bonus Chapters

In the replace() method, the second parenthesized component (just the first name) is placed
first, followed by a space and the first component. The original comma is discarded. You are
free to combine these shortcut references as you like, including multiple times per replacement,
if it makes sense to your application.

Related Items: Matching array object [1]. . .[n] properties.

✦ ✦ ✦

RegExp.$1

Data-Entry
Validation

Give users a field in which to enter data and you can be sure that
some users will enter the wrong kind of data. Often the “mistake”

is accidental — a slip of the pinkie on the keyboard; other times, users
intentionally type the incorrect entry to test the robustness of your
application. Whether you solicit a user’s entry for client-side scripting
purposes or for input into a server-based CGI or database, you should
use JavaScript on the client to handle validation of the user’s entry.
Even for a form connected to a CGI script, it’s far more efficient (from
the perspective of bandwidth, server load, and execution speed) to
let client-side JavaScript get the data straight before your server pro-
gram deals with it.

Real-Time versus Batch Validation
You have two opportunities to perform data-entry validation in a form:
as the user enters data into a form and just before the form is submit-
ted. I recommend you take advantage of both of these opportunities.

Real-time validation triggers
The most convenient time to catch an error is immediately after the
user makes it — especially for a long form that requests a wide variety
of information. You can make the user’s experience less frustrating if
you catch an entry mistake just after the user enters the information:
his or her attention is already focused on the nature of the content
(or some paper source material may already be in front of the user).
It is much easier for the user to address the same information entry
right away.

A valid question for the page author is how to trigger the real-time
validation. Backward-compatible text boxes have two potential event
handlers for this purpose: onchange and onblur. I personally avoid
onblur event handlers, especially ones that can display an alert dialog
box (as a data-entry validation is likely to do). Because a good valida-
tion routine brings focus to the errant text box, you can get some odd
behavior with the interaction of the focus() method and the onblur
event handler. Users who wish to continue past an invalid field are
locked in a seemingly endless loop.

4343C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Validating data as it is
being entered

Validating data
immediately prior
to submission

Organizing complex
data-validation tasks

✦ ✦ ✦ ✦

BC214 Part VI ✦ Bonus Chapters

The problem with using onchange as the validation trigger is that a user can defeat the valida-
tion. A change event occurs only when the text of a field indeed changes when the user tabs
or clicks out of the field. If the user is alerted about some bad entry in a field and doesn’t fix
the error, the change event doesn’t fire again. In some respects, this is good because a user
may have a legitimate reason for passing by a particular form field initially with the intention
of returning to the entry later. Because a user can defeat the onchange event handler trigger, I
recommend you also perform batch validation prior to submission.

In NN4+, IE4+, and W3C browsers, you also have the luxury of letting keyboard events trigger
validations. This is most helpful when you want to prevent some character(s) from being
entered into a field. For example, if a field is supposed to contain only a positive integer value,
you can use the onkeypress event handler of the text box to verify that the character just
typed is a number. If the character is not a number, the event is trapped and no character
reaches the text box. You should also alert the user in some way about what’s going on.
Listing 43-1 demonstrates a simplified version of this kind of keyboard trapping, compatible
with NN4+/IE4+/W3C event models (but not fully functional in Safari 1.0). The message to the
user is displayed in the status bar. Displaying the message there has the advantage of being
less intrusive than an alert dialog box (and keeps the text insertion cursor in the text box),
but it also means that users might not see the message. The onsubmit event handler in the
listing prevents a press of the Enter key in this one-field form from reloading this sample page.

Listing 43-1: Allowing Only Numbers into a Text Box

<html>
<head>

<title>Letting Only Numbers Pass to a Form Field</title>
<script type=”text/javascript”>
function checkIt(evt) {

evt = (evt) ? evt : window.event;
var charCode = (evt.charCode) ? evt.charCode :

((evt.which) ? evt.which : evt.keyCode);
if (charCode > 31 && (charCode < 48 || charCode > 57)) {

status = “This field accepts numbers only.”;
return false;

}
status = “”;
return true;

}
</script>

</head>
<body>

<h1>Letting Only Numbers Pass to a Form Field</h1>
<hr />
<form onsubmit=”return false”>

Enter any positive integer: <input type=”text” name=”numeric”
onkeypress=”return checkIt(event)” />

</form>
</body>

</html>

BC215Chapter 43 ✦ Data-Entry Validation

Keyboard event monitoring isn’t practical for most validation actions, however. For example,
if the user is supposed to enter an e-mail address, you need to validate the complete entry for
the presence of an @ symbol (via the onchange event handler). On the other hand, you can be
granular about your validations and use both the onchange and onkeypress event handlers;
you employ the latter for blocking invalid characters in e-mail addresses (such as spaces).

Batch mode validation
In all scriptable browsers, a form’s onsubmit event handler cancels the submission if the
handler evaluates to return false. Additional submission event cancelers include setting
the IE4+ event.returnValue property to false and invoking the evt.preventDefault()
method in NN6+/W3C (see Chapter 25 on event objects for details). You can see an example of
the basic return false behavior in Listing 23-4 of Chapter 23. That example uses the results
of a window.confirm() dialog box to determine the return value of the event handler. But you
can also use a return value from a series of individual text box validation functions. If any one
of the validations fails, the user is alerted and the submission is canceled.

Before you worry about two versions of validation routines loading down the scripts in your
page, you’ll be happy to know that you can reuse the same validation routines in both the
real-time and batch validations. Later in this chapter, I demonstrate what I call “industrial-
strength” data-entry validation adapted from a real intranet application. But before you get
there, you should learn about general validation techniques that you can apply to both types
of validations.

Designing Filters
The job of writing data-validation routines essentially involves designing filters that weed out
characters or entries that don’t fit your programming scheme. Whenever your filter detects
an incorrect entry, it should alert the user about the nature of the problem and enable the
user to correct the entry.

Before you put a text or textarea object into your document that invites users to enter data,
you must decide if any possible entry can disturb the execution of the rest of your scripts. For
example, if your script must have a number from that field to perform calculations, you must
filter out any entry that contains letters or punctuation — except for periods if the program
can accept floating-point numbers. Your task is to anticipate every possible entry users can
make and allow only those entries your scripts can use.

Not every entry field needs a data-validation filter. For example, you may prompt a user for
information that is eventually stored as a document.cookie or in a string database field on
the server for future retrieval. If no further processing takes place on that information, you
may not have to worry about the specific contents of that field.

One other design consideration is whether a text field is even the proper user interface element
for the data required of the user. If the range of choices for a user entry is small (a dozen or
fewer), a more sensible method is to avoid the data-entry problem altogether by turning that
field into a select element. Your HTML attributes for the object ensure that you control the
kind of entry made to that object. As long as your script knows how to deal with each of the
options defined for that object, you’re in the clear.

BC216 Part VI ✦ Bonus Chapters

Building a Library of Filter Functions
A number of basic data-validation processes function repeatedly in form-intensive HTML pages.
Filters for integers only, numbers only, empty entries, alphabet letters only, and the like are
put to use every day. If you maintain a library of generalizable functions for each of your data-
validation tasks, you can drop these functions into your scripts at a moment’s notice and be
assured that they will work. For NN3+ and IE4+, you can also create the library of validation
functions as a separate .js library file and link the scripts into any HTML file that needs them.

Making validation functions generalizable requires careful choice of wording and logic so
that they return Boolean values that make syntactical sense when called from elsewhere in
your scripts. As you see later in this chapter, when you build a larger framework around
smaller functions, each function is usually called as part of an if...else conditional state-
ment. Therefore, assign a name that fits logically as part of an if clause in plain language. For
example, you can name a function that checks whether an entry is empty isEmpty(). The
calling statement for this function is

if (isEmpty(value)) { ... }

From a plain-language perspective, the expectation is that the function returns true if the
passed value is empty. With this design, the statements nested in the if construction handle
empty entry fields. I revisit this design later in this chapter when I start stacking multiple-
function calls together in a larger validation routine.

To get you started with your library of validation functions, this chapter provides some build-
ing blocks that you can learn from and use as starting points for more specific filters of your
own design. You can choose between fully backward-compatible (a) and regular expression (b)
versions for many of them. Some of these functions are put to use in the JavaScript application
in Chapter 50.

isEmpty()
This first function, shown in Listing 43-2a, checks to see if the incoming value is either empty
or null. Adding a check for null means that you can use this function for purposes other than
just text-object validation. For example, if another function defines three parameter variables,
but the calling function passes only two, the third variable is set to null. If the script then per-
forms a data-validation check on all parameters, the isEmpty() function responds that the
null value is devoid of data.

Listing 43-2a: Is an Entry Empty or Null?

// general purpose function to see if an input value has been
// entered at all
function isEmpty(inputStr) {

if (inputStr == null || inputStr == “”) {
return true;

}
return false;

}

BC217Chapter 43 ✦ Data-Entry Validation

This function uses a Boolean or operator (||) to test for the existence of a null value or an
empty string in the value passed to the function. Because the name of the function implies a
true response if the entry is empty, that value is the one that returns to the calling statement
if either condition is true. Because a return statement halts further processing of a function,
the return false statement lies outside of the if construction. If processing reaches this
statement, the inputStr value has failed the test.

If this seems like convoluted logic —return true when the value is empty — you can also
define a function that returns the inverse values. You can name it isNotEmpty(). As it turns
out, however, typical processing of an empty entry is better served when the test returns a
true than when the value is empty — aiding the if construction that calls the function in the
first place.

The regular expression version, shown in Listing 43-2b, examines whether the input string has
one or more characters of any kind in it.

Listing 43-2b: Is an Entry Empty or Null? (regexp version)

// regular expression function to see if an input value has been
// entered at all
function isEmpty(inputStr) {

var re = /.+/;
if (!inputStr.match(re)) {

return true;
}
return false;

}

isPosInteger()
This next function examines each character of the value to make sure that only numbers from
0 through 9 with no punctuation or other symbols exist. The goal of the function in Listing 43-3a
is to weed out any value that is not a positive integer.

Listing 43-3a: Test for Positive Integers

// general purpose function to see if a suspected numeric input
// is a positive integer
function isPosInteger(inputVal) {

inputStr = inputVal.toString();
for (var i = 0; i < inputStr.length; i++) {

var oneChar = inputStr.charAt(i);
if (oneChar < “0” || oneChar > “9”) {

return false;
}

}
return true;

}

BC218 Part VI ✦ Bonus Chapters

Notice that this function makes no assumption about the data type of the value that is passed
as a parameter. If the value had come directly from a text object, it would already be a string
and the line that forced data conversion to a string would be unnecessary. But to generalize
the function, the conversion is included to accommodate the possibility that it may be called
from another statement that has a numeric value to check.

The function requires you to convert the input value to a string because it performs a character-
by-character analysis of the data. A for loop picks apart the value one character at a time.
Rather than force the script to invoke the string.charAt() method twice for each time
through the loop (inside the if condition), one statement assigns the results of the method
to a variable, which is then used twice in the if condition. Placing the results of the charAt()
method into a variable makes the if condition shorter and easier to read and also is micro-
scopically more efficient.

In the if condition, the ASCII value of each character is compared against the range of
0 through 9. This method is safer than comparing numeric values of the single characters
because one of the characters can be nonnumeric. (You can encounter all kinds of other prob-
lems trying to convert that character to a number for numeric comparison.) The ASCII value,
on the other hand, is neutral about the meaning of a character: If the ASCII value is less than 0
or greater than 9, the character is not valid for a genuine positive integer. The function bounces
the call with a false reply. On the other hand, if the for loop completes its traversal of all
characters in the value without a hitch, the function returns true.

You may wonder why this validation function doesn’t use the parseInt() global function
(see Chapter 34). That function returns NaN only if the first character of the input string is not
a number. But because parseInt() and parseFloat() peel off any initial numeric values
from a string, neither returns NaN if the input string is, for example, 35a.

The regular expression version (Listing 43-3b) allows a string consisting entirely of any num-
ber of numerals.

Listing 43-3b: Test for Positive Integers (regexp version)

// regular expression function to see if a suspected numeric input
// is a positive integer
function isPosInteger(inputStr) {

var re = /^\d*$/;
inputStr = inputStr.toString();
if (!inputStr.match(re)) {

return false;
}
return true;

}

isInteger()
The next possibility includes the entry of a negative integer value. Listing 43-4a shows that
you must add an extra check for a leading negation sign.

BC219Chapter 43 ✦ Data-Entry Validation

Listing 43-4a: Checking for Leading Minus Sign

// general purpose function to see if a suspected numeric input
// is a positive or negative integer
function isInteger(inputVal) {

inputStr = inputVal.toString();
for (var i = 0; i < inputStr.length; i++) {

var oneChar = inputStr.charAt(i);
if (i == 0 && oneChar == “-”) {

continue;
}
if (oneChar < “0” || oneChar > “9”) {

return false;
}

}
return true;

}

When a script can accept a negative integer, the filter must enable the leading minus sign to
pass unscathed. You cannot just add the minus sign to the if condition of Listing 43-4a because
you can accept that symbol only when it appears in the first position of the value — anywhere
else makes the value an invalid number. To handle the possibility of a leading minus sign, you
add another if statement whose condition looks for a special combination: the first charac-
ter of the string (as indexed by the loop-counting variable) and the minus character. If both of
these conditions are met, execution immediately loops back around to the update expression
of the for loop (because of the continue statement) rather than carrying out the second if
statement, which would obviously fail. By putting the i == 0 comparison operation at the front
of the condition, you ensure the entire condition short circuits to false for all subsequent
iterations through the loop.

The regular expression version (Listing 43-4b) is identical to the one for isPosInteger()
except that the regular expression allows for one leading hyphen.

Listing 43-4b: Checking for Leading Minus Sign (regexp version)

// regular expression function to see if a suspected numeric input
// is a positive or negative integer
function isInteger(inputStr) {

var re = /^[-]?\d*$/;
inputStr = inputStr.toString();
if (!inputStr.match(re)) {

return false;
}
return true;

}

BC220 Part VI ✦ Bonus Chapters

isNumber()
The final numeric filter function in this series enables any integer or floating-point number to
pass while filtering out all others (Listing 43-5a). All that distinguishes an integer from a floating-
point number for data-validation purposes is the decimal point.

Listing 43-5a: Testing for a Decimal Point

// general purpose function to see if a suspected numeric input
// is a positive or negative number
function isNumber(inputVal) {

oneDecimal = false;
inputStr = inputVal.toString();
for (var i = 0; i < inputStr.length; i++) {

var oneChar = inputStr.charAt(i);
if (i == 0 && oneChar == “-”) {

continue;
}
if (oneChar == “.” && !oneDecimal) {

oneDecimal = true;
continue;

}
if (oneChar < “0” || oneChar > “9”) {

return false;
}

}
return true;

}

Anticipating the worst, however, the function cannot simply treat a decimal point at any posi-
tion within the string as a valid character. Such an act assumes that no one would ever enter
more than one decimal point into a numeric text field. Only one decimal point is allowed
for this function (as well as for JavaScript math). Therefore, you add a Boolean flag variable
(oneDecimal) to the function and a separate if condition that sets that flag to true when
the function encounters the first decimal point. Should another decimal point appear in the
string, the final if statement gets a crack at the character. Because the character falls outside
the ASCII range of 0 through 9, it fails the entire function.

If you want to accept only positive floating-point numbers, you can make a new version of
this function by removing the statement that lets the leading minus sign through. Be aware
that this function works only for values that are not represented in exponential notation.

A slight modification to the regular expression from Listing 43-4b — allowing a single decimal
point between any number of numerals — turns the validation function into one that tests for
any positive or negative number, with or without numbers to the right of the decimal, as shown
in Listing 43-5b.

BC221Chapter 43 ✦ Data-Entry Validation

Listing 43-5b: Testing for a Decimal Point (regexp version)

// regular expression function to see if a suspected numeric input
// is a positive or negative number
function isNumber(inputStr) {

var re = /^[-]?\d*\.?\d*$/;
inputStr = inputStr.toString();
if (!inputStr.match(re)) {

return false;
}
return true;

}

Custom validation functions
The listings shown so far in this chapter should give you plenty of source material to use in
writing customized validation functions for your applications. Listing 43-6 shows an example
of such an application-specific variation (extracted from the application in Chapter 50).

Listing 43-6: A Custom Validation Function

// function to determine if value is in acceptable range
// for this application
function inRange(inputStr) {

num = parseInt(inputStr);
if (num < 1 || num > 586 && num < 596 || num > 599 && num < 700 ||

num > 728) {
return false;

}
return true;

}

For this application, you need to see if an entry falls within multiple ranges of acceptable num-
bers. The first statement of the inRange() function converts the incoming value to a number
(via the parseInt() function) so that the value can be compared numerically against maxi-
mum and minimum values of several ranges within the database. Following the logic of the
previous validation functions, the if condition looks for values outside the acceptable range,
so it can alert the user and return a false value.

The if condition is quite a long sequence of operators. As you noticed in the list of operator
precedence (see Chapter 32), the Boolean and operator (&&) has precedence over the Boolean
or operator (||). Therefore, the and expressions evaluate first, followed by the or expressions.
Parentheses may help you better visualize what’s going on in that monster condition:

if (num < 1 || (num > 586 && num < 596) ||(num > 599 && num < 700) ||
num > 728)

BC222 Part VI ✦ Bonus Chapters

In other words, you exclude four possible ranges from consideration:

✦ Values less than 1

✦ Values between 586 and 596

✦ Values between 599 and 700

✦ Values greater than 728

Any value for which any one of these tests is true yields a Boolean false from this function.
Combining all these tests into a single condition statement eliminates the need to construct
an otherwise complex series of nested if constructions.

Combining Validation Functions
When you design a page that requests a particular kind of text input from a user, you often
need to call more than one data-validation function to handle the entire job. For example, if
you merely want to test for a positive integer entry, your validation should test for the pres-
ence of any entry as well as the validation as an integer.

After you know the kind of permissible data that your script will use after validation, you’re
ready to plot the sequence of data validation. Because each page’s validation task is different,
I supply some guidelines to follow in this planning rather than prescribe a fixed route for all
to take.

My preferred sequence is to start with examinations that require less work and increase the
intensity of validation detective work with succeeding functions. I borrow this tactic from real
life: When a lamp fails to turn on, I look for a pulled plug or a burned-out lightbulb before tear-
ing the lamp’s wiring apart to look for a short.

Using the data-validation sequence from the data-entry field (which must be a three-digit num-
ber within a specified range) in Chapter 50, I start with the test that requires the least amount
of work: Is there an entry at all? After my script is ensured an entry of some kind exists, it next
checks whether that entry is “all numbers as requested of the user.” If so, the script compares
the number against the ranges of numbers in the database.

To make this sequence work together efficiently, I create a master validation function consist-
ing of nested if...else statements. Each if condition calls one of the generalized data-
validation functions. Listing 43-7 shows the master validation function.

Listing 43-7: Master Validation Function

// Master value validator routine
function isValid(inputStr) {

if (isEmpty(inputStr)) {
alert(“Please enter a number into the field before clicking the

button.”);
return false;

} else {
if (!isNumber(inputStr)) {

alert(“Please make sure entries are numbers only.”);
return false;

} else {
if (!inRange(inputStr)) {

BC223Chapter 43 ✦ Data-Entry Validation

var msg = “Sorry, the number you entered is not part of our
database.”;

msg += “Try another three-digit number.”;
alert(msg);
return false;

}
}

}
return true;

}

This function, in turn, is called by the function that controls most of the work in this applica-
tion. All that the main function wants to know is whether the entered number is valid. The
details of validation are handed off to the isValid() function and its special-purpose valida-
tion testers.

I construct the logic in Listing 43-7 so that if the input value fails to be valid, the isValid()
function alerts the user of the problem and returns false. That means I have to watch my
trues and falses very carefully.

In the first validation test, an empty value is a bad thing; thus, when the isEmpty() function
returns true, the isValid() function returns false because an empty string is not a valid
entry. In the second test, a number value is good so the logic has to flip 180 degrees. The
isValid() function returns false only if the isNumber() function returns false. But because
isNumber() returns true when the value is a number, I switch the condition to test for the
opposite results of the isNumber() function by negating the function name (preceding the
function with the Boolean not (!) operator). This operator works only with a value that eval-
uates to a Boolean expression — which the isNumber() function always does. The final test
for being within the desired range works on the same basis as isNumber(), using the Boolean
not operator to turn the results of the inRange() function into the method that works best
for this sequence.

Finally, if all validation tests fail to find bad or missing data, the entire isValid() function
returns true. The statement that calls this function can now proceed with processing, ensured
that the value entered by the user will work.

The Boolean logic of the backward-compatible and regular expression versions of the core val-
idation functions is the same. Therefore, you can use either version with the master validation
function.

There is one additional point worth reinforcing, especially for newcomers. Although all these
functions seem to be passing around the same input string as a parameter, notice that any
changes made to the value (such as converting it to a string or number) are kept private to
each function. These subfunctions never touch the original value in the calling function —
they work only with copies of the original value. Therefore, even after the data validation
takes place, the original value is in its original form and ready to go.

Date and Time Validation
You can scarcely open a bigger can of cultural worms than when trying to program around
the various date and time formats in use around the world. If you have ever looked through
the possible settings in your computer’s operating system, you can begin to understand the
difficulty of this issue.

BC224 Part VI ✦ Bonus Chapters

Trying to write JavaScript that accommodates all of the world’s date and time formats for
validation is an enormous, if not wasteful, challenge. It’s one thing to validate that a text box
contains data in the form xx/xx/xxxx, but there are also valid value concerns that can get
very messy on an international basis. For example, while North America typically uses the
mm/dd/yyyy format, a large portion of the rest of the world uses dd/mm/yyyy (with different
delimiter characters, as well). Therefore, how should your validation routine treat the entry
20/03/2002? Is it incorrect because there are not 20 months in a year; or is it correct as
March 20th? To query a user for this kind of information, I suggest you divide the components
into individually validated fields (separate text objects for hours and minutes) or make select
element entries whose individual values can be assembled at submit time into a hidden date
field for processing by the database that needs the date information. (Alternately, you can let
your server CGI handle the conversion.)

Despite my encouragement to “divide and conquer” date entries, there may be situations in
which you feel it’s safe to provide a single text box for date entry (perhaps for a form that is
used on a corporate intranet strictly by users in one country). You see some more sophisti-
cated code later in this chapter, but a “quick-and-dirty” solution runs along these lines:

1. Use the entered data (for example, in mm/dd/yyyy format) as a value passed to the new
Date() constructor function.

2. From the newly created date object, extract each of the three components (month, day,
and year) into separate numeric values (with the help of parseInt()).

3. Compare each of the extracted values against the corresponding date, month, and year
values returned by the date object’s getDate(), getMonth(), and getFullYear()
methods (adjusting for zero-based values of getMonth()).

4. If all three pairs of values match, the entry is apparently valid.

Listing 43-8a puts this action sequence to work in a backward-compatible way. The validDate()
function receives a reference to the field being checked. A copy of the field’s value is made
into a date object, and its components are read. If any part of the date conversion or compo-
nent extraction fails (because of improperly formatted data or unexpected characters), one
or more of the variable values becomes NaN. This code assumes that the user enters a date in
the mm/dd/yyyy format, which is the sequence that the Date object constructor expects its
data. If the user enters dd/mm/yyyy, the validation fails for any day beyond the twelfth.

Listing 43-8a: Simple Date Validation

<html>
<head>

<title>Simple Date Validation</title>
<script type=”text/javascript”>
function validDate(fld) {

var testMo, testDay, testYr, inpMo, inpDay, inpYr, msg;
var inp = fld.value;
status = “”;
// attempt to create date object from input data
var testDate = new Date(inp);
// extract pieces from date object
testMo = testDate.getMonth() + 1;
testDay = testDate.getDate();
testYr = testDate.getFullYear();

BC225Chapter 43 ✦ Data-Entry Validation

// extract components of input data
inpMo = parseInt(inp.substring(0, inp.indexOf(“/”)), 10);
inpDay = parseInt(inp.substring((inp.indexOf(“/”) + 1),

inp.lastIndexOf(“/”)), 10);
inpYr = parseInt(inp.substring((inp.lastIndexOf(“/”) + 1),

inp.length), 10);
// make sure parseInt() succeeded on input components
if (isNaN(inpMo) || isNaN(inpDay) || isNaN(inpYr)) {

msg = “There is some problem with your date entry.”;
}
// make sure conversion to date object succeeded
if (isNaN(testMo) || isNaN(testDay) || isNaN(testYr)) {

msg = “Couldn’t convert your entry to a valid date. Try again.”;
}
// make sure values match
if (testMo != inpMo || testDay != inpDay || testYr != inpYr) {

msg = “Check the range of your date value.”;
}
if (msg) {

// there’s a message, so something failed
alert(msg);
// work around IE timing problem with alert by
// invoking a focus/select function through setTimeout();
// must pass along reference of fld (as string)
setTimeout(“doSelection(document.forms[‘“ +

fld.form.name + “‘].elements[‘“ + fld.name + “‘])”, 0);
return false;

} else {
// everything’s OK; if browser supports new date method,
// show just date string in status bar
status = (testDate.toLocaleDateString) ?

testDate.toLocaleDateString() : “Date OK”;
return true;

}
}

// separate function to accommodate IE timing problem
function doSelection(fld) {

fld.focus();
fld.select();

}
</script>

</head>
<body>

<h1>Simple Date Validation</h1>
<hr />
<form name=”entryForm” onsubmit=”return false”>

Enter any date (mm/dd/yyyy): <input type=”text” name=”startDate”
onchange=”validDate(this)” />

</form>
</body>

</html>

You can also use regular expressions for date validation. A version of the above listing using
regular expressions at the core is found in Listing 43-8b.

BC226 Part VI ✦ Bonus Chapters

Listing 43-8b: Simple Date Validation

<html>
<head>

<title>Simple Date Validation (regexp)</title>
<script type=”text/javascript”>
function validDate(fld) {

var testMo, testDay, testYr, inpMo, inpDay, inpYr, msg;
var inp = fld.value;
status = “”;
var re = /\b\d{1,2}[\/-]\d{1,2}[\/-]\d{4}\b/;
if (re.test(inp)) {

var delimChar = (inp.indexOf(“/”) != -1) ? “/” : “-”;
var delim1 = inp.indexOf(delimChar);
var delim2 = inp.lastIndexOf(delimChar);
mo = parseInt(inp.substring(0, delim1), 10);
day = parseInt(inp.substring(delim1+1, delim2), 10);
yr = parseInt(inp.substring(delim2+1), 10);
var testDate = new Date(yr, mo-1, day);
if (testDate.getDate() == day) {

if (testDate.getMonth() + 1 == mo) {
if (testDate.getFullYear() == yr) {

msg = “”;
} else {

msg = “There is a problem with the year entry.”;
}

} else {
msg = “There is a problem with the month entry.”;

}
} else {

msg = “There is a problem with the date entry.”;
}

} else {
msg = “Incorrect date format. Enter as mm/dd/yyyy.”;

}
if (msg) {

// there’s a message, so something failed
alert(msg);
// work around IE timing problem with alert by
// invoking a focus/select function through setTimeout();
// must pass along reference of fld (as string)
setTimeout(“doSelection(document.forms[‘“ +

fld.form.name + “‘].elements[‘“ + fld.name + “‘])”, 0);
return false;

} else {
// everything’s OK; if browser supports new date method,
// show just date string in status bar
window.status = (testDate.toLocaleDateString) ?

testDate.toLocaleDateString() : “Date OK”;
return true;

}
}

BC227Chapter 43 ✦ Data-Entry Validation

// separate function to accommodate IE timing problem
function doSelection(fld) {

fld.focus();
fld.select();

}
</script>

</head>
<body>

<h1>Simple Date Validation</h1>
<hr />
<form name=”entryForm” onsubmit=”return false”>

Enter any date (mm/dd/yyyy): <input type=”text” name=”startDate”
onchange=”validDate(this)” />

</form>
</body>

</html>

Selecting Text Fields for Reentry
During both real-time and batch validations, it is especially helpful to the user if your code —
upon discovering an invalid entry — not only brings focus to the subject text field, but also
selects the content for the user. By preselecting the entire field, you make it easy for the user
to just retype the data into the field for another attempt (or to begin using the left and right
arrow keys to move the insertion cursor for editing). The reverse type on the field text also
helps bring attention to the field. (Not all operating systems display a special rectangle around
a focused text field.)

Form fields have both focus() and select() methods, which you should invoke for the sub-
ject field in that order. IE for Windows, however, exhibits undesirable behavior when trying to
focus and select a field immediately after you close an alert dialog box. In most cases, the field
does not keep its focus or selection. This is a timing problem, but one that you can cure by
processing the focus and select actions through a setTimeout() method. The bottom of the
script code of Listing 43-9 demonstrates how to do this.

Method calls to the form field reside in a separate function (called doSelection() in this
example). Obviously, the methods need a reference to the desired field, so the doSelection()
function requires access to that reference. You can use a global variable to accomplish this
(set the value in the validation function; read it in the doSelection() function), but globals
are not elegant solutions to passing transient data. Even though the validation function receives
a reference to the field, that is an object reference, and the setTimeout() function’s first
parameter cannot be anything but a string value. Therefore, the reference to the text field pro-
vides access to names of both the form and field. The names fill in as index values for arrays
so that the assembled string (upon being invoked) evaluates to a valid object reference:

“doSelection(document.forms[‘“ + fld.form.name + “‘].elements[‘“ + fld.name +
“‘])”

Notice the generous use of built-in forms and elements object arrays, which allow the form
and field names to assemble the reference without resorting to the onerous eval() function.

BC228 Part VI ✦ Bonus Chapters

For timing problems such as this one, no additional time is truly needed to let IE recover from
whatever ails it. Thus, the time parameter is set to 0 milliseconds. Using the setTimeout()
portal is enough to make everything work. There is no penalty for using this construction with
NN or MacIE, even though they don’t need it.

An “Industrial-Strength” Validation Solution
I had the privilege of working on a substantial intranet project that included dozens of forms,
often with two or three different kinds of forms displayed simultaneously within a frameset.
Data-entry accuracy was essential to the validity of the entire application. My task was to
devise a data-entry validation strategy that not only ensured accurate entry of data types for
the underlying (SQL) database, but also intelligently prompted users who made mistakes in
their data entry.

Structure
From the start, the validation routines were to be in a client-side library linked in from an exter-
nal .js file. That would allow all forms to share the validation functions. Because there were
multiple forms displayed in a frameset, it would prove too costly in download time and mem-
ory requirements to include the validations.js file in every frame’s document. Therefore,
the library was moved to load in with the frameset. The <script src=”validations.js”>
</script> tag set went in the Head portion of the framesetting document.

This logical placement presented a small challenge for the workings of the validations because
there had to be two-way conversations between a validation function (in the frameset) and a
form element (nested in a frame). The mechanism required that a reference to the frame con-
taining the form element be passed as part of the validation routine so that the validation
script could make corrections, automatic formatting, and erroneous field selections from the
frameset document’s script. (In other words, the frameset script needed a path back to the
form element making the validation call.)

Dispatch mechanism
From the specification drawn up for the application, it is clear that there are more than two
dozen specific types of validations across all the forms. Moreover, multiple programmers work
on different forms. It is helpful to standardize the way validations are called, regardless of the
validation type (number, string, date, phone number, and so on).

My idea was to create one validate() function that contained parameters for the current
frame, the current form element, and the type of validation to perform. This would make it
clear to anyone reading the code later that an event handler calling validate() performed
validation, and the details of the code were in the validations.js library file.

In validations.js, I converted a string name of a validation type into the name of the func-
tion that performs the validation in order to make this idea work. As a bridge between the
two, I created what I called a dispatch lookup table for all the primary validation routines that
would be called from the forms. Each entry of the lookup table had a label consisting of the
name of the validation and a method that invoked the function. Listing 43-9 shows an excerpt
of the entire lookup table creation mechanism.

BC229Chapter 43 ✦ Data-Entry Validation

Listing 43-9: Creating the Dispatch Lookup Table

/*
Begin validation dispatching mechanism

*/
function dispatcher(validationFunc) {

this.doValidate = validationFunc;
}
var dispatchLookup = new Array();
dispatchLookup[“isNotEmpty”] = new dispatcher(isNotEmpty);
dispatchLookup[“isPositiveInteger”] = new dispatcher(isPositiveInteger);
dispatchLookup[“isDollarsOnly8”] = new dispatcher(isDollarsOnly8);
dispatchLookup[“isUSState”] = new dispatcher(isUSState);
dispatchLookup[“isZip”] = new dispatcher(isZip);
dispatchLookup[“isExpandedZip”] = new dispatcher(isExpandedZip);
dispatchLookup[“isPhone”] = new dispatcher(isPhone);
dispatchLookup[“isConfirmed”] = new dispatcher(isConfirmed);
dispatchLookup[“isNY”] = new dispatcher(isNY);
dispatchLookup[“isNum16”] = new dispatcher(isNum16);
dispatchLookup[“isM90_M20Date”] = new dispatcher(isM90_M20Date);
dispatchLookup[“isM70_0Date”] = new dispatcher(isM70_0Date);
dispatchLookup[“isM5_P10Date”] = new dispatcher(isM5_P10Date);
dispatchLookup[“isDateFormat”] = new dispatcher(isDateFormat);

Each entry of the array is assigned a dispatcher object, whose custom object constructor
assigns a function reference to the object’s doValidate() method. For these assignment
statements to work, their corresponding functions must be defined earlier in the document.
You can see some of these functions later in this section.

The link between the form elements and the dispatch lookup table is the validate() function,
shown in Listing 43-10. A call to validate() requires a minimum of three parameters, as shown
in the following example:

<input type=”text” name=”phone” size=”10”
onchange=”parent.validate(window, this, ‘isPhone’)” />

The first is a reference to the frame containing the document that is calling the function (passed
as a reference to the current window). The second parameter is a reference to the form control
element itself (using the this operator). After that, you see one or more individual validation
function names as strings. This last design allows more than one type of validation to take place
with each call to validate() (for example, in case a field must check for a data type and check
that the field is not empty).

Listing 43-10: Main Validation Function

// main validation function called by form event handlers
function validate(frame, field, method) {

gFrame = frame;
gField = window.frames[frame.name].document.forms[0].elements[field.name];
var args = validate.arguments;

Continued

BC230 Part VI ✦ Bonus Chapters

Listing 43-10 (continued)

for (i = 2; i < args.length; i++) {
if (!dispatchLookup[args[i]].doValidate()) {

return false;
}

}
return true;

}

In the validate() function, the frame reference is assigned to a global variable that is declared
at the top of the validations.js file. Validation functions in this library need this information
to build a reference back to a companion field required of some validations (explained later in
this section). A second global variable contains a reference to the calling form element. Because
the form element reference by itself does not contain information about the frame in which it
lives, the script must build a reference out of the information passed as parameters. The refer-
ence must work from the framesetting document down to the frame, its form, and form element
name. Therefore, I use the frame and field object references to get their respective names
(within the frames and elements arrays) to assemble the text field’s object reference; the
resulting value is assigned to the gField global variable. I choose to use global variables in
this case because passing these two values to numerous nested validation functions could be
difficult to track reliably. Instead, the only parameter passed to specific validation functions
is the value under test.

Next, the script creates an array of all arguments passed to the validate() function. A for
loop starts with an index value of 2, the third parameter containing the first validation function
name. For each one, the named item’s doValidate() method is called. If the validation fails,
this function returns false; but if all validations succeed, this function returns true. Later you
see that this function’s returned value is the one that allows or disallows a form submission.

Sample validations
Above the dispatching mechanism in the validations.js are the validation functions them-
selves. Many of the named validation functions have supporting utility functions that other
named validation functions often use. Because of the eventual large size of this library file
(the production version was about 40KB), I organized the functions into two groups: the
named functions first, and the utility functions below them (but still before the dispatching
mechanism at the bottom of the document).

To demonstrate how some of the more common data types are validated for this application,
I show several validation functions and, where necessary, their supporting utility functions.
Figure 43-1 shows a sample form that takes advantage of these validations. (You have a chance
to try it later in this chapter.) When you are dealing with critical corporate data, you must go
to extreme lengths to ensure valid data. And to help users see their mistakes quickly, you need
to build some intelligence into validations where possible.

U.S. state name
The design specification for forms that require entry of a U.S. state calls for entry of the
state’s two-character abbreviation. A companion field to the right displays the entire state
name as user feedback verification. The onchange event handler not only calls the validation,
but it also feeds the focus to the field following the expanded state field so users are less
likely to type into it.

BC231Chapter 43 ✦ Data-Entry Validation

Figure 43-1: Sample form for industrial-strength validations.

Before the validation can even get to the expansion part, it must first validate that the entry
is a valid, two-letter abbreviation. Because I need both the abbreviation and the full state
name for this validation, I create an array of all the states using each state abbreviation as the
index label for each entry. Listing 43-11 shows that array creation.

Listing 43-11: Creating a U.S. States Array

// States array
var USStates = new Array(51);
USStates[“AL”] = “ALABAMA”;
USStates[“AK”] = “ALASKA”;
USStates[“AZ”] = “ARIZONA”;
USStates[“AR”] = “ARKANSAS”;
USStates[“CA”] = “CALIFORNIA”;
USStates[“CO”] = “COLORADO”;
USStates[“CT”] = “CONNECTICUT”;
USStates[“DE”] = “DELAWARE”;
USStates[“DC”] = “DISTRICT OF COLUMBIA”;
USStates[“FL”] = “FLORIDA”;
USStates[“GA”] = “GEORGIA”;
USStates[“HI”] = “HAWAII”;
USStates[“ID”] = “IDAHO”;
USStates[“IL”] = “ILLINOIS”;
USStates[“IN”] = “INDIANA”;

Continued

BC232 Part VI ✦ Bonus Chapters

Listing 43-11 (continued)

USStates[“IA”] = “IOWA”;
USStates[“KS”] = “KANSAS”;
USStates[“KY”] = “KENTUCKY”;
USStates[“LA”] = “LOUISIANA”;
USStates[“ME”] = “MAINE”;
USStates[“MD”] = “MARYLAND”;
USStates[“MA”] = “MASSACHUSETTS”;
USStates[“MI”] = “MICHIGAN”;
USStates[“MN”] = “MINNESOTA”;
USStates[“MS”] = “MISSISSIPPI”;
USStates[“MO”] = “MISSOURI”;
USStates[“MT”] = “MONTANA”;
USStates[“NE”] = “NEBRASKA”;
USStates[“NV”] = “NEVADA”;
USStates[“NH”] = “NEW HAMPSHIRE”;
USStates[“NJ”] = “NEW JERSEY”;
USStates[“NM”] = “NEW MEXICO”;
USStates[“NY”] = “NEW YORK”;
USStates[“NC”] = “NORTH CAROLINA”;
USStates[“ND”] = “NORTH DAKOTA”;
USStates[“OH”] = “OHIO”;
USStates[“OK”] = “OKLAHOMA”;
USStates[“OR”] = “OREGON”;
USStates[“PA”] = “PENNSYLVANIA”;
USStates[“RI”] = “RHODE ISLAND”;
USStates[“SC”] = “SOUTH CAROLINA”;
USStates[“SD”] = “SOUTH DAKOTA”;
USStates[“TN”] = “TENNESSEE”;
USStates[“TX”] = “TEXAS”;
USStates[“UT”] = “UTAH”;
USStates[“VT”] = “VERMONT”;
USStates[“VA”] = “VIRGINIA”;
USStates[“WA”] = “WASHINGTON”;
USStates[“WV”] = “WEST VIRGINIA”;
USStates[“WI”] = “WISCONSIN”;
USStates[“WY”] = “WYOMING”;

The existence of this array comes in handy in determining if the user enters a valid, two-state
abbreviation. Listing 43-12 shows the actual isUSState() validation function that puts this
array to work.

The function’s first task is to assign an uppercase version of the entered value to a local
variable (inputStr), which is the value being analyzed throughout the rest of the function.
If the user enters something in the field (length > 0) but no entry in the USStates array
exists for that value, the entry is not a valid state abbreviation. Time to go to work to help out
the user.

BC233Chapter 43 ✦ Data-Entry Validation

Listing 43-12: Validation Function for U.S. States

// input value is a U.S. state abbreviation; set entered value to all uppercase
// also set companion field (NAME=”<xxx>_expand”) to full state name
function isUSState() {

var inputStr = gField.value.toUpperCase();
if (inputStr.length > 0 && USStates[inputStr] == null) {

var msg = “”;
var firstChar = inputStr.charAt(0);
if (firstChar == “A”) {

msg += “\n(Alabama = AL; Alaska = AK; Arizona = AZ; Arkansas = AR)”;
}
if (firstChar == “D”) {

msg += “\n(Delaware = DE; District of Columbia = DC)”;
}
if (firstChar == “I”) {

msg += “\n(Idaho = ID; Illinois = IL; Indiana = IN; Iowa = IA)”;
}
if (firstChar == “M”) {

msg += “\n(Maine = ME; Maryland = MD; Massachusetts = MA; “ +
“Michigan = MI; Minnesota = MN; Mississippi = MS; “ +
“Missouri = MO; Montana = MT)”;

}
if (firstChar == “N”) {

msg += “\n(Nebraska = NE; Nevada = NV)”;
}
alert(“Check the spelling of the state abbreviation.” + msg);
gField.focus();
gField.select();
return false;

}
gField.value = inputStr;
var expandField =

window.frames[gFrame.name].document.forms[0].elements[gField.name +
“_expand”];

expandField.value = USStates[inputStr];
return true;

}

The function assumes that the user tried to enter a valid state abbreviation but either had
incorrect source material or momentarily forgot a particular state’s abbreviation. Therefore,
the function examines the first letter of the entry. If that first letter is any one of the five identi-
fied as causing the most difficulty, a legend for all states beginning with that letter is assigned
to the msg variable (for running on newer browsers only, a switch construction is preferred).
An alert message displays the generic alert, plus any special legend if one is assigned to the
msg variable. When the user closes the alert, the field has focus and its text is selected. (This
application runs solely on Navigator, so the IE setTimeout() workaround isn’t needed — but
you can add it very easily, especially thanks to the global variable reference for the field.) The
function returns false at this point.

BC234 Part VI ✦ Bonus Chapters

If, on the other hand, the abbreviation entry is a valid one, the field is handed the uppercase
version of the entry. The script then uses the two global variables set in validate() to create
a reference to the expanded display field (whose name must be the same as the entry field
plus “_expand”). That expanded display field is then supplied the USStates array entry value
corresponding to the abbreviation label. All is well with this validation, so it returns true.

You can see here that the so-called validation routine is doing far more than simply checking
validity of the data. By communicating with the field, converting its contents to uppercase,
and talking to another field in the form, a simple call to the validation function yields a lot
of mileage.

Date validation
Many of the forms in this application have date fields. In fact, dates are an important part of
the data maintained in the database behind the forms. All users of this application are famil-
iar with standard date formats in use in the United States, so I don’t have to worry about the
possibility of cultural variations in date formats. Even so, I want the date entry to accommo-
date the common date formats, such as mmddyyyy, mm/dd/yyyy, and mm-dd-yyyy (as well as
accommodate two-digit year entries spanning 1930 to 2029).

The plan also calls for going further in helping users enter dates within certain ranges. For
example, a field used for a birth date (the listings are for medical professionals) should recom-
mend dates starting no more than 90 years, and no less than 20 years, from the current date.
And to keep this application running well into the future, the ranges should be on a sliding
scale from the current year, no matter when it might be. Whatever the case, the date range
validation is only a recommendation and not a transaction stopper.

Rather than create separate validation functions for each date field, I create a system of
reusable validation functions for each date range (several fields on different forms require the
same date ranges). Each one of these individual functions calls a single, generic date-validation
function that handles the date-range checking. Listing 43-13 shows a few examples of these
individual range-checking functions.

Listing 43-13: Date Range Validations

// Date Minus 90/Minus 20
function isM90_M20Date() {

if (gField.value.length == 0)
return true;

var thisYear = getTheYear();
return isDate((thisYear - 90),(thisYear - 20));

}

// Date Minus 70/Minus 0
function isM70_0Date() {

if (gField.value.length == 0)
return true;

var thisYear = getTheYear();
return isDate((thisYear - 70),(thisYear));

}

// Date Minus 5/Plus 10

BC235Chapter 43 ✦ Data-Entry Validation

function isM5_P10Date() {
if (gField.value.length == 0)

return true;
var thisYear = getTheYear();
return isDate((thisYear - 5),(thisYear + 10));

}

The naming convention I create for the functions includes the two range components relative
to the current date. A letter “M” means the range boundary is minus a number of years from
the current date; “P” means the range is plus a number of years. If the boundary should be the
current year, a zero is used. Therefore, the isM5_P10Date() function performs range checking
for boundaries between 5 years before and 10 years after the current year.

Before performing any range checking, each function makes sure there is some value to vali-
date. If the field entry is empty, the function returns true. This is fine here because dates are
not required when the data is unknown.

Next, the functions get the current four-digit year. The code here had to work originally with
browsers that did not have the getFullYear() method available yet. Therefore, the Y2K fix
described in Chapter 29 was built into the application:

function getTheYear() {
var thisYear = (new Date()).getYear();
thisYear = (thisYear < 100) ? thisYear + 1900 : thisYear;
return thisYear;

}

The final call from the range validations is to a common isDate() function, which handles not
only the date range validation but also the validation for valid dates (for example, making sure
that September has only 30 days). Listing 43-14 shows this monster-sized function. Because of
the length of this function, I interlace commentary within the code listing.

Listing 43-14: Primary Date Validation Function

// date field validation (called by other validation functions that specify
// minYear/maxYear)
function isDate(minYear,maxYear,minDays,maxDays) {

var inputStr = gField.value;

To make it easier to work with dates supplied with delimiters, I first convert hyphen delimiters
to slash delimiters. The pre-regular expression replaceString() function is the same one
described in Chapter 27; it is located in the utility functions part of the validations.js file.

// convert hyphen delimiters to slashes
while (inputStr.indexOf(“-”) != -1) {

inputStr = replaceString(inputStr,”-”,”/”);
}

For validating whether the gross format is OK, I check whether zero or two delimiters appear.
If the value contains only one delimiter, the overall formatting is not acceptable. The error
alert shows models for acceptable date-entry formats.

BC236 Part VI ✦ Bonus Chapters

var delim1 = inputStr.indexOf(“/”);
var delim2 = inputStr.lastIndexOf(“/”);
if (delim1 != -1 && delim1 == delim2) {

// there is only one delimiter in the string
alert(“The date entry is not in an acceptable format.\n\nYou can enter

dates in the following formats: mmddyyyy, mm/dd/yyyy, or mm-dd-yyyy. (If the
month or date data is not available, enter \’01\’ in the appropriate
location.)”);

gField.focus();
gField.select();
return false;

}

If there are two delimiters, I tear apart the string into components for month, day, and year.
Because two-digit entries can begin with zeros, I make sure the parseInt() functions specify
base-10 conversions.

if (delim1 != -1) {
// there are delimiters; extract component values
var mm = parseInt(inputStr.substring(0,delim1),10);
var dd = parseInt(inputStr.substring(delim1 + 1,delim2),10);
var yyyy = parseInt(inputStr.substring(delim2 + 1, inputStr.length),10);

For no delimiters, I tear apart the string and assume two-digit entries for the month and day
and two or four digits for the year.

} else {
// there are no delimiters; extract component values
var mm = parseInt(inputStr.substring(0,2),10);
var dd = parseInt(inputStr.substring(2,4),10);
var yyyy = parseInt(inputStr.substring(4,inputStr.length),10);

}

The parseInt() functions reveal whether any entry is not a number by returning NaN, so I
check whether any of the three values is not a number. If so, an alert signals the formatting
problem and supplies acceptable models.

if (isNaN(mm) || isNaN(dd) || isNaN(yyyy)) {
// there is a non-numeric character in one of the component values
alert(“The date entry is not in an acceptable format.\n\nYou can enter

dates in the following formats: mmddyyyy, mm/dd/yyyy, or
mm-dd-yyyy.”);

gField.focus();
gField.select();
return false;

}

Next, I perform some gross range validation on the month and date to make sure that months
are entered from 1 to 12 and dates from 1 to 31. I take care of aligning exact month lengths
later.

if (mm < 1 || mm > 12) {
// month value is not 1 thru 12
alert(“Months must be entered between the range of 01 (January) and 12

(December).”);
gField.focus();
gField.select();
return false;

}

BC237Chapter 43 ✦ Data-Entry Validation

if (dd < 1 || dd > 31) {
// date value is not 1 thru 31
alert(“Days must be entered between the range of 01 and a maximum of 31

(depending on the month and year).”);
gField.focus();
gField.select();
return false;

}

Before getting too deep into the year validation, I convert any two-digit year within the speci-
fied range to its four-digit equivalent.

// validate year, allowing for checks between year ranges
// passed as parameters from other validation functions
if (yyyy < 100) {

// entered value is two digits, which we allow for 1930-2029
if (yyyy >= 30) {

yyyy += 1900;
} else {

yyyy += 2000;
}

}

var today = new Date();

I designed this function to work with a pair of year ranges or date ranges (so many days before
and/or after today). If the function is passed date ranges, the first two parameters must be
passed as null. This first batch of code works with the date ranges (because the minYear
parameter is null).

if (!minYear) {
// function called with specific day range parameters
var dateStr = new String(monthDayFormat(mm) + “/” + monthDayFormat(dd) +

“/” + yyyy);
var testDate = new Date(dateStr);
if (testDate.getTime() < (today.getTime() + (minDays * 24 * 60 * 60 *

1000))) {
alert(“The most likely range for this entry begins “ + minDays +

“ days from today.”);
}
if (testDate.getTime() > today.getTime() + (maxDays * 24 * 60 * 60 *

1000)) {
alert(“The most likely range for this entry ends “ + maxDays +

“ days from today.”);
}

You can also pass hard-wired, four-digit years as parameters. The following branch compares
the entered year against the range specified by those passed year values.

} else if (minYear && maxYear) {
// function called with specific year range parameters
if (yyyy < minYear || yyyy > maxYear) {

// entered year is outside of range passed from calling function
alert(“The most likely range for this entry is between the years “ +

minYear + “ and “ + maxYear + “. If your source data indicates a
date outside this range, then enter that date.”);

}
} else {

BC238 Part VI ✦ Bonus Chapters

For year parameters passed as positive or negative year differences, I begin processing by
getting the four-digit year for today’s date. Then I compare the entered year against the passed
range values. If the entry is outside the desired range, an alert reveals the preferred year range
within which the entry should fall. But the function does not return any value here because
an out-of-range value is not critical for this application.

// default year range (now set to (this year - 100) and (this year + 25))
var thisYear = today.getYear();
if (thisYear < 100) {

thisYear += 1900;
}
if (yyyy < minYear || yyyy > maxYear) {

alert(“It is unusual for a date entry to be before “ + minYear + “ or
after “ + maxYear + “. Please verify this entry.”);

}
}

One more important validation is to make sure that the entered date is valid for the month
and year. Therefore, the various date components are passed to functions to check against
month lengths, including the special calculations for the varying length of February. Listing
43-15 shows these functions. The alert messages they display are smart enough to inform the
user what the maximum date is for the entered month and year.

if (!checkMonthLength(mm,dd)) {
gField.focus();
gField.select();
return false;

}
if (mm == 2) {

if (!checkLeapMonth(mm,dd,yyyy)) {
gField.focus();
gField.select();
return false;

}
}

The final task is to reassemble the date components into a format that the database wants
for its date storage and stuff it into the form field. If the user enters an all-number or hyphen-
delimited date, it is automatically reformatted and displayed as a slash-delimited, four-digit-
year date.

// put the Informix-friendly format back into the field
gField.value = monthDayFormat(mm) + “/” + monthDayFormat(dd) + “/” + yyyy;
return true;

}

A utility function invoked multiple times in the previous function converts a single-digit
month or day number to a string that might have a leading zero:

// convert month or day number to string,
// padding with leading zero if needed
function monthDayFormat(val) {

if (isNaN(val) || val == 0) {
return “01”;

} else if (val < 10) {
return “0” + val;

}
return “” + val;

}

BC239Chapter 43 ✦ Data-Entry Validation

Listing 43-15: Functions to Check Month Lengths

// check the entered month for too high a value
function checkMonthLength(mm,dd) {

var months = new Array(“”,”January”,”February”,”March”,”April”,”May”,
“June”,”July”,”August”,”September”,”October”,”November”,”December”);

if ((mm == 4 || mm == 6 || mm == 9 || mm == 11) && dd > 30) {
alert(months[mm] + “ has only 30 days.”);
return false;

} else if (dd > 31) {
alert(months[mm] + “ has only 31 days.”);
return false;

}
return true;

}

// check the entered February date for too high a value
function checkLeapMonth(mm,dd,yyyy) {

if (yyyy % 4 > 0 && dd > 28) {
alert(“February of “ + yyyy + “ has only 28 days.”);
return false;

} else if (dd > 29) {
alert(“February of “ + yyyy + “ has only 29 days.”);
return false;

}
return true;

}

This is a rather extensive date-validation routine, but it demonstrates how thorough you must
be when a database relies on accurate entries. The more prompting and assistance you can
give to users to ferret out problems with invalid entries, the happier those users will be.

Cross-confirmation fields
The final validation type that I cover here is probably not a common request, but it demon-
strates how the dispatch mechanism created at the outset expands so easily to accommodate
this enhanced client request. The situation is that some fields (mostly dates in this applica-
tion) are deemed critical pieces of data because this data triggers other processes from the
database. As a further check to ensure entry of accurate data, a number of values are set up
for entry twice in separate fields — and the fields have to match exactly. In many ways, this
mirrors the two passes you are often requested to make when you set a password: enter two
copies and let the computer compare them to make sure you typed what you intended to type.

I established a system that places only one burden on the many programmers working on the
forms: although you can name the primary field anything you want (to help alignment with
database column names, for example), you must name the secondary field the same plus
“_xcfm”— which stands for cross-confirm. Then, pass the isConfirmed validation name to
the validate() function after the date range validation name, as follows:

onchange=”parent.validate(window, this, ‘isM5_P10Date’,’isConfirmed’)”

In other words, after the entered value is initially checked against a required date range, the
isConfirmed() validation function compares the fully vetted, properly formatted date in the
current field against its parallel entry.

BC240 Part VI ✦ Bonus Chapters

Listing 43-16 shows the one function in validations.js that handles the confirmation in
both directions. After assigning a copy of the entry field value to the inputStr variable, the
function next sets a Boolean flag (primary) that lets the rest of the script know if the entry
field is the primary or secondary field. If the string “_xcfm” is missing from the field name,
the entry field is the primary field.

For the primary field branch, the script assembles the name of the secondary field and com-
pares the content of the secondary field’s value against the inputStr value. If they are not
the same, the user is entering a new value into the primary field, and the script empties the
secondary field to force reentry to verify that the user enters the proper data.

For the secondary field entry branch, the script assembles a reference to the primary field
by stripping away the final five characters of the secondary field’s name. I can use the
lastIndexOf() string method instead of the longer way involving the string’s length; but
after experiencing so many platform-specific problems with lastIndexOf() in Navigator, I
decided to play it safe. Finally, the two values are compared, with an appropriate alert dis-
played if they don’t match.

Listing 43-16: Cross-Confirmation Validation

// checks an entry against a parallel, duplicate entry to
// confirm that correct data has been entered
// Parallel field name must be the main field name plus “_xcfm”
function isConfirmed() {

var inputStr = gField.value;
// flag for whether field under test is primary (true) or confirmation field
var primary = (gField.name.indexOf(“_xcfm”) == -1);
if (primary) {

// clear the confirmation field if primary field is changed
var xcfmField =

window.frames[gFrame.name].document.forms[0].elements[gField.name + “_ xcfm”];
var xcfmValue = xcfmField.value;
if (inputStr != xcfmValue) {

xcfmField.value = “”;
return true;

}
} else {

var xcfmField =
window.frames[gFrame.name].document.forms[0].elements[gField.name.substring(0,(g
Field.name.length-5))];

var xcfmValue = xcfmField.value;
if (inputStr != xcfmValue) {

alert(“The main and confirmation entry field contents do not match.
Both fields must have EXACTLY the same content to be accepted by
the database.”);

gField.focus();
gField.select();
return false;

}
}
return true;

}

BC241Chapter 43 ✦ Data-Entry Validation

Last-minute check
Every validation event handler is designed to return true if the validation succeeds. This
comes in handy for the batch validation that performs one final check of the entries triggered
by the form’s onsubmit event handler. This event handler calls a checkForm() function and
passes the form control object as a parameter. That parameter helps create a reference to the
form element that is passed to each validation function.

Because successful validations return true, you can nest consecutive validation tests so that
the most nested statement of the construction is return true because all validations have
succeeded. The form’s onsubmit event handler is as follows:

onsubmit=”return checkForm(this)”

And the following code fragment is an example of a checkForm() function. A separate
isDateFormat() validation function called here checks whether the field contains an entry
in the proper format — meaning that it has likely survived the range checking and format
shifting of the real-time validation check.

function checkForm(form) {
if (parent.validate(window, form.birthdate, “isDateFormat”)) {

if (parent.validate(window, form.phone, “isPhone”)) {
if (parent.validate(window, form.name, “isNotEmpty”)) {

return true;
}

}
}
return false;

}

If any one validation fails, the field is given focus and its content is selected (controlled by the
individual validation function). In addition, the checkForm() function returns false. This, in
turn, cancels the form submission.

Try it out
Listing 43-17 is a definition for a frameset that not only loads the validation routines described
in this section, but also loads a page with a form that exercises the validations in real-time and
batch mode just prior to submission. The form appears earlier in this chapter in Figure 43-1.

Listing 43-17: Frameset for Trying validation.js

<html>
<head>

<title>GiantCo Contractor Database</title>
<script type=”text/javascript” src=”validation.js”>
</script>
<script type=”text/javascript”>
function blank() {

return “<html><body bgcolor=’lightsteelblue’><\/body><\/html>”;
}

Continued

BC242 Part VI ✦ Bonus Chapters

Listing 43-17 (continued)

</script>
</head>
<frameset frameborder=”” cols=”20%,80%”>

<frame name=”toc” src=”javascript:parent.blank()” />
<frame name=”entries” src=”lst43-18.htm” />

</frameset>
</html>

The application scenario for the form is the entry of data into a company’s contractor database.
Some fields are required, and the date field must be cross-confirmed with a second entry of
the same data. If the form passes its final validation prior to submission, the form reloads and
you see a readout of the form data that would have been submitted from the previous form
had the action been set to a server CGI program URI.

Plan for Data Validation
I devoted this entire chapter to the subject of data validation because it represents the one area
of error checking that almost all JavaScript authors should be concerned with. If your scripts
(client-side or server-side) perform processing on user entries, you want to prevent script
errors at all costs.

✦ ✦ ✦

Scripting Java
Applets and
Plug-Ins

Netscape was the first to implement the facility enabling
JavaScript scripts, Java applets, and plug-ins to communicate

with each other under one technology umbrella, called LiveConnect
(first implemented in NN3). Microsoft met the challenge and imple-
mented a large part of that technology for WinIE4, but of course with-
out using the Netscape-trademarked name for the technology. The
name is a convenient way to refer to the capability, so you find it used
throughout this chapter applying to any browser that supports such
facilities. This chapter focuses on the scripting side of LiveConnect:
approaching applets and plug-ins from scripts and accessing scripts
from Java applets.

Except for the part about talking to scripts from inside a Java applet, I
don’t assume you have any knowledge of Java programming. The pri-
mary goal here is to help you understand how to control applets and
plug-ins (including ActiveX controls in WinIE) from your scripts. If
you’re in a position to develop specifications for applets, you also
learn what to ask of your Java programmers. But if you are also a Java
applet programmer, you learn the necessary skills to get your applets
in touch with HTML pages and scripts.

LiveConnect Overview
Before you delve too deeply into the subject, you should be aware
that LiveConnect features are not available in all modern browsers,
much to the chagrin of many. The following browsers do not support
this technology:

✦ MacIE

✦ NN4.6 (due to an oversight when the version was released)

✦ NN6.0 (although it is supported in NN7+)

✦ Safari 1.0

Such a broad swath of browsers not supporting the feature makes it
difficult to design a public Web application that relies on LiveConnect
features. Design your pages accordingly.

4444C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Communicating with
Java applets from scripts

Accessing scripts
and objects from
Java applets

Controlling scriptable
plug-ins

✦ ✦ ✦ ✦

BC244 Part VI ✦ Bonus Chapters

The internal mechanisms that allow scripts to communicate with applets and plug-ins are quite
different for NN and IE. NN3 and NN4 relied exclusively on the Java virtual machine (JVM) that
shipped with most OS platform versions of the browsers. In NN4+, the JVM doesn’t load until
it is needed, sometimes causing a brief delay in initial execution. For the most part, though,
the underlying Java engine is invisible to the scripter (you) and certainly to the visitors of your
sites. At most, visitors see status bar messages about applets loading and running.

WinIE, on the other hand, has its own internal architecture for communicating between pro-
cesses. To Windows, most processes are treated as components that have properties and
methods accessible to other components.

Whether you use the technology to communicate with a Java applet or an ActiveX control,
the advantage to you as an author is that LiveConnect extends the document object model to
include objects and data types that are not a part of the HTML world. HTML, for instance, does
not have a form control element that displays real-time stock ticker data; nor does HTML have
the capability to treat a sound file like anything more than a URL to be handed off to a helper
application. With LiveConnect, however, your scripts can treat the applet that displays the
stock ticker as an object whose properties and methods can be modified after the applet loads;
scripts can also tell the sound when to play or pause by controlling the plug-in that manages
the incoming sound file.

Why Control Java Applets?
A question I often hear from experienced Java programmers is, “Why bother controlling an
applet via a script when you can build all the interactivity you want into the applet itself?”
This question is valid if you come from the Java world, but it takes a viewpoint from the
HTML and scripting world to fully answer it.

Java applets exist in their own private rectangles, remaining largely oblivious to the HTML
surroundings on the page. Applet designers who don’t have extensive Web page experience
tend to regard their applets as the center of the universe rather than as components of
HTML pages.

As a scripter, on the other hand, you may want to use those applets as powerful components
to spiff up the overall presentation. Using applets as prewritten objects enables you to make
simple changes to the HTML pages — including the geographic layout of elements and
images — at the last minute, without having to rewrite and recompile Java program code. If
you want to update the look with an entirely new graphical navigation or control bar, you can
do it directly via HTML and scripting.

When it comes to designing or selecting applets for inclusion into my scripted page, I prefer
using applet interfaces that confine themselves to data display, putting any control of the
data into the hands of the script, rather than using onscreen buttons in the applet rectangle.
I believe this setup enables much greater last-minute flexibility in the page design — not to
mention consistency with HTML form element interfaces — than putting everything inside the
applet rectangle.

BC245Chapter 44 ✦ Scripting Java Applets and Plug-Ins

A Little Java
If you plan to look at a Java applet’s scripted capabilities, you can’t escape having to know a
little about Java applets and some terminology. The discussion goes more deeply into object
orientation than you have seen with JavaScript, but I’ll try to be gentle.

Java building blocks classes
One part of Java that closely resembles JavaScript is that Java programming deals with objects,
much the way JavaScript deals with a page’s objects. Java objects, however, are not the famil-
iar HTML objects but rather more basic building blocks, such as tools that draw to the screen
and data streams. But both languages also have some non-HTML kinds of objects in common:
strings, arrays, numbers, and so on.

Every Java object is known as a class — a term from the object-orientation world. When you use
a Java compiler to generate an applet, that applet is also a class, which happens to incorporate
many Java classes, such as strings, image areas, font objects, and the like. The applet file you
see on the disk is called a class file and its file extension is .class. This file is the one you
specify for the code attribute of an <applet> tag, or the newer <object> tag (the <applet>
tag is deprecated in HTML 4.0).

Java methods
Most JavaScript objects have methods attached to them that define what actions the objects
are capable of performing. A string object, for instance, has the toUpperCase() method that
converts the string to all uppercase letters. Java classes also have methods. Many methods
are predefined in the base Java classes embedded inside the virtual machine. But inside a Java
applet, the author can write methods that either override the base method or deal exclusively
with a new class created in the program. These methods are, in a way, like the functions you
write in JavaScript for a page.

Not all methods, however, are created the same. Java lets authors determine how visible a
method is to outsiders. The types of methods that you, as a scripter, are interested in are the
ones declared as public methods. You can access such methods from JavaScript via a syntax
that falls very much in line with what you already know. For example, a common public method
in applets stops an applet’s main process. Such a Java method may look like this:

public void stop() {
if(thread != null) {

thread = null;
}

}

The void keyword simply means that this method does not return any values (compilers need
to know this stuff). Assuming that you have one applet loaded in your page, the JavaScript
call to this applet method is

document.applets[0].stop();

BC246 Part VI ✦ Bonus Chapters

Listing 44-1a shows how all this works with the <applet> tag for a scriptable digital clock
applet example. The script includes calls to two of the applet’s methods: to stop and to start
the clock.

Listing 44-1a: Stopping and Starting an Applet

<html>
<head>

<title>A Script That Could Stop a Clock</title>
<script type=”text/javascript”>
function pauseClock() {

document.clock1.stop();
}
function restartClock() {

document.clock1.start();
}
</script>

</head>
<body>

<h1>Simple control over an applet</h1>
<hr />
<applet code=”ScriptableClock.class” name=”clock1” width=”500”
height=”45”>

<param name=”bgColor” value=”Green” />
<param name=”fgColor” value=”Blue” />

</applet>
<form name=”widgets1”>

<input type=”button” value=”Pause Clock” onclick=”pauseClock()” />
<input type=”button” value=”Restart Clock” onclick=”restartClock()” />

</form>
</body>

</html>

The syntax for accessing the method (in the two functions) is just like JavaScript in that the
references to the applet’s methods include the applet object (clock1 in the example), which
is contained by the document object.

XHTML-friendly applets
Because the XHTML standard does not recognize the <applet> tag, you need to work a
little markup magic to use modern <object> tags that operate in both IE and Mozilla-based
browsers. The difficulty arises in the way the two browsers specify some attribute or parame-
ter values for Java applets. To demonstrate how you can embed an applet into a document
exclusively with the <object> tag and work simultaneously in IE and Mozilla-based browsers,
Listing 44-1b shows a modified version of Listing 44-1a.

An important feature of the listing is a Microsoft proprietary markup feature called condi-
tional comments (msdn.microsoft.com/workshop/author/dhtml/overview/ccomment_
ovw.asp). These HTML comment tags, with their special comment text, allow IE to skip over
HTML markup. In Listing 44-1b, only the first <object> tag is rendered in WinIE; Mozilla, on

BC247Chapter 44 ✦ Scripting Java Applets and Plug-Ins

the other hand, loads both, but does not load the applet in the first tag because the attribute
and parameter values are not in the format that Mozilla requires for loading a Java applet. In
addition to the tag markup differences, note that the functions controlling the applet create
references to the applet object differently. Mozilla has two object elements with the same
name deal with, meaning that there is an array of objects with that name; thus the script pulls
a reference to the second one when two are detected.

Listing 44-1b: Stopping and Starting an Applet (XHTML)

<html>
<head>

<title>A Script That Could Stop a Clock</title>
<script type=”text/javascript”>
function pauseClock() {

// get ref to second object for non-WinIE
var applet = (document.clock1.length) ? document.clock1[1] :

document.clock1;
applet.stop();

}
function restartClock() {

var applet = (document.clock1.length) ? document.clock1[1] :
document.clock1;

applet.start();
}
</script>

</head>
<body>

<h1>Simple control over an applet</h1>
<hr />
<object name=”clock1” classid=”clsid:8AD9C840-044E-11D1-B3E9-00805F499D93”

width=”500” height=”45”>
<param name=”code” value=”ScriptableClock.class” />
<param name=”codebase” value=”.” />
<param name=”bgColor” value=”Green” />
<param name=”fgColor” value=”Blue” />
<!--[if !IE]> Non-WinIE Browsers -->
<object name=”clock1” classid=”java:ScriptableClock.class”

codebase=”.”
width=”500” height=”45”>
<param name=”bgColor” value=”Green” />
<param name=”fgColor” value=”Blue” />

</object>
<!-- <![endif]-->

</object>

<form name=”widgets1”>
<input type=”button” value=”Pause Clock” onclick=”pauseClock()” />
<input type=”button” value=”Restart Clock” onclick=”restartClock()” />

</form>
</body>

</html>

BC248 Part VI ✦ Bonus Chapters

Java applet “properties”
The Java equivalents of JavaScript object properties are called public instance variables. These
variables are akin to JavaScript global variables. If you have access to some Java source code,
you can recognize a public instance variable by its public keyword:

public String fontName;

Java authors must specify a variable’s data type when declaring any variable. That’s why the
String data type appears in the preceding example.

Your scripts can access these variables with the same kind of syntax that you use to access
JavaScript object properties. If the fontName variable in ScriptableClock.class had been
defined as a public variable (it is not), you could access or set its value directly, as shown in
the following example:

var theFont = document.applets[0].fontName;
document.applets[0].fontName = “Courier”;

Accessing Java fields
In a bit of confusing lingo, public variables and methods are often referred to as fields. These
elements are not the kind of text entry fields that you see on the screen; rather, they’re like
slots (another term used in Java) where you can slip in your requests and data. Remember
these terms, because they may appear from time to time in error messages as you begin
scripting applets.

Scripting Applets in Real Life
Because the purpose of scripting an applet is to gain access to the inner sanctum of a compiled
program, the program should be designed to handle such rummaging around by scripters. If
you can’t acquire a copy of the source code or don’t have any other documentation about the
scriptable parts of the applet, you may have a difficult time knowing what to script and how
to do it.

Getting to scriptable methods
If you write your own applets or are fortunate enough to have the source code for an existing
applet, the safest way to modify the applet variable settings or the running processes is
through applet methods. Although setting a public variable value may enable you to make
a desired change, you don’t know how that change may impact other parts of the applet. An
applet designed for scriptability should have a number of methods defined that enable you
to make scripted changes to variable values.

To view a sample of an applet designed for scriptability, open the Java source code file for
Listing 44-2 from the CD-ROM. A portion of that program listing is shown in the following
example.

BC249Chapter 44 ✦ Scripting Java Applets and Plug-Ins

Listing 44-2: Partial Listing for ScriptableClock.java /*

Begin public methods for getting
and setting data via LiveConnect

*/
public void setTimeZone(String zone) {

stop();
timeZone = (zone.startsWith(“GMT”)) ? true : false;
start();

}

public void setFont(String newFont, String newStyle, String newSize) {
stop();
if (newFont != null && newFont != “”)

fontName = newFont;
if (newStyle != null && newStyle != “”)

setFontStyle(newStyle);
if (newSize != null && newSize != “”)

setFontSize(newSize);
displayFont = new Font(fontName, fontStyle, fontSize);
start();

}

public void setColor(String newbgColor, String newfgColor) {
stop();
bgColor = parseColor(newbgColor);
fgColor = parseColor(newfgColor);
start();

}

public String getInfo() {
String result = “Info about ScriptableClock.class\r\n”;
result += “Version/Date: 1.0d1/2 May 1996\r\n”;
result += “Author: Danny Goodman (dannyg@dannyg.com)\r\n”;
result += “Public Variables:\r\n”;
result += “ (None)\r\n\r\n”;
result += “Public Methods:\r\n”;
result += “ setTimeZone(\”GMT\” | \”Locale\”)\r\n”;
result += “ setFont(\”fontName\”,\”Plain\” |\”Bold\” | \”Italic\”,

\”fontSize\”)\r\n”;
result += “ setColor(\”bgColorName\”, \”fgColorName\”)\r\n”;
result += “ colors: Black, White, Red, Green, Blue, Yellow\r\n”;
return result;

}
/*

End public methods for scripted access.
*/

BC250 Part VI ✦ Bonus Chapters

The methods shown in Listing 44-2 are defined specifically for scripted access. In this case, they
safely stop the applet thread before changing any values. The last method is one I recommend
to applet authors. The method returns a small bit of documentation containing information
about the kind of methods that the applet likes to have scripted and what you can have as
the passed parameter values.

Now that you see the amount of scriptable information in this applet, look at Listing 44-3,
which takes advantage of that scriptability by providing several HTML form elements as
user controls for the clock. The results are shown in Figure 44-1.

Listing 44-3: A More Fully Scripted Clock

<html>
<head>

<title>Clock with Lots o’ Widgets</title>
<script type=”text/javascript”>
function setTimeZone(popup) {

var choice = popup.options[popup.selectedIndex].value;
document.clock2.setTimeZone(choice);

}

function setColor(form) {
var bg = form.backgroundColor.options[

form.backgroundColor.selectedIndex].value;
var fg = form.foregroundColor.options[

form.foregroundColor.selectedIndex].value;
document.clock2.setColor(bg, fg);

}

function setFont(form) {
var fontName = form.theFont.options[form.theFont.selectedIndex].value;
var fontStyle = form.theStyle.options[

form.theStyle.selectedIndex].value;
var fontSize = form.theSize.options[form.theSize.selectedIndex].value;
document.clock2.setFont(fontName, fontStyle, fontSize);

}
function getAppletInfo(form) {

form.details.value = document.clock2.getInfo();
}

function showSource() {
var newWindow = window.open(“ScriptableClock.java”,””,

“width=450,height=300,resizable,scrollbars”);
}
</script>

</head>
<body>

<applet code=”ScriptableClock.class” name=”clock2” width=”500”
height=”45”>

<param name=”bgColor” value=”Black” />
<param name=”fgColor” value=”Red” />

</applet>
<form name=”widgets2”>

BC251Chapter 44 ✦ Scripting Java Applets and Plug-Ins

Select Time Zone: <select name=”zone” onchange=”setTimeZone(this)”>
<option selected=”selected” value=”Locale”>Local Time</option>
<option value=”GMT”>Greenwich Mean Time</option>

</select>
<p>Select Background Color: <select name=”backgroundColor”

onchange=”setColor(this.form)”>
<option value=”White”>White</option>
<option selected=”selected” value=”Black”>Black</option>
<option value=”Red”>Red</option>
<option value=”Green”>Green</option>
<option value=”Blue”>Blue</option>
<option value=”Yellow”>Yellow</option>

</select> Select Color Text Color: <select name=”foregroundColor”
onchange=”setColor(this.form)”>

<option value=”White”>White</option>
<option value=”Black”>Black</option>
<option selected=”selected” value=”Red”>Red</option>
<option value=”Green”>Green</option>
<option value=”Blue”>Blue</option>
<option value=”Yellow”>Yellow</option>

</select></p>
<p>Select Font: <select name=”theFont” onchange=”setFont(this.form)”>

<option selected=”selected” value=”TimesRoman”>Times
Roman</option>

<option value=”Helvetica”>Helvetica</option>
<option value=”Courier”>Courier</option>
<option value=”Arial”>Arial</option>

</select>

Select Font Style: <select name=”theStyle”
onchange=”setFont(this.form)”>

<option selected=”selected” value=”Plain”>Plain</option>
<option value=”Bold”>Bold</option>
<option value=”Italic”>Italic</option>

</select>

Select Font Size: <select name=”theSize”
onchange=”setFont(this.form)”>

<option value=”12”>12</option>
<option value=”18”>18</option>
<option selected=”selected” value=”24”>24</option>
<option value=”30”>30</option>

</select></p>
<hr />
<input type=”button” name=”getInfo” value=”Applet Info”
onclick=”getAppletInfo(this.form)” />
<p><textarea name=”details” rows=”11” cols=”70”>

</textarea></p>
</form>
<hr />

</body>
</html>

BC252 Part VI ✦ Bonus Chapters

Figure 44-1: Scripting more of the ScriptableClock applet.

Very little of the code here controls the applet — only the handful of functions near the top.
The rest of the code makes up the HTML user interface for the form element controls. After
you open this document from the CD-ROM, be sure to click the Applet Info button to see the
methods that you can script and the way that the parameter values from the JavaScript side
match up with the parameters on the Java method side.

Applet limitations
Because of concerns about security breaches via LiveConnect, Netscape clamps down on
some powers that would be nice to have via a scripted applet. The most noticeable barrier is
the one that prevents applets from accessing the network under scripted control. Therefore,
even though a Java applet has no difficulty reading or writing text files from the server, such
capabilities — even if built into an applet of your own design — won’t be carried out if triggered
by a JavaScript call to the applet.

Some clever hacks used to be posted on the Web, but they were rather cumbersome to imple-
ment and may no longer work on more modern browsers. You can also program the Java applet
to fetch a text file after it starts up and then script the access of that value from JavaScript
(as described in the following section). Signed scripts (see Chapter 46) and applets can break
through these security barriers after the user has given explicit permission to do so.

BC253Chapter 44 ✦ Scripting Java Applets and Plug-Ins

Faceless applets
Until LiveConnect came along, Java applets were generally written to show off data and
graphics — to play a big role in the presentation on the page. But if you prefer to let an applet
do the heavy algorithmic lifting for your pages while the HTML form elements and images (or
Dynamic HTML facilities of newer browsers) do the user interface, you essentially need what
I call a faceless applet.

The method for embedding a faceless applet into your page is the same as embedding
any applet: Use the <applet> and/or <object> tag; the <object> tag is the recommended
approach for modern browsers, but the <applet> tag is better supported in early Java-
powered browsers. For a faceless applet, specify only 1 pixel for both the height and width
attributes (0 has strange side effects). This setting creates a dot on the screen, which, depend-
ing on your page’s background color, may be completely invisible to page visitors. Place it at
the bottom of the page, if you like.

To show how nicely this method can work, Listing 44-4 provides the Java source code for a
simple applet that retrieves a specific text file and stores the results in a Java variable available
for fetching by the JavaScript shown in Listing 44-5. The HTML even automates the loading
process by triggering the retrieval of the Java applet’s data from an onload event handler.

Listing 44-4: Java Applet Source Code

import java.net.*;
import java.io.*;

public class FileReader extends java.applet.Applet implements Runnable {

Thread thread;
URL url;
String output;
String fileName = “Bill of rights.txt”;

public void getFile(String fileName) throws IOException {
String result, line;
InputStream connection;
DataInputStream dataStream;
StringBuffer buffer = new StringBuffer();

try {
url = new URL(getDocumentBase(),fileName);

}
catch (MalformedURLException e) {

output = “AppletError “ + e;
}

try {
connection = url.openStream();
dataStream = new DataInputStream(new BufferedInputStream(connection));

Continued

BC254 Part VI ✦ Bonus Chapters

Listing 44-4 (continued)

while ((line = dataStream.readLine()) != null) {
buffer.append(line + “\n”);

}
result = buffer.toString();

}
catch (IOException e) {

result = “AppletError: “ + e;
}
output = result;

}
public String fetchText() {

return output;
}

public void init() {
}

public void start() {
if (thread == null) {

thread = new Thread(this);
thread.start();

}
}
public void stop() {

if (thread != null) {
thread = null;

}
}

public void run(){
try {

getFile(fileName);
}
catch (IOException e) {

output = “AppletError: “ + e;
}

}
}

All the work of actually retrieving the file is performed in the getFile() method (which runs
immediately after the applet loads). Notice that the name of the file to be retrieved, Bill of
Rights.txt, is stored as a variable near the top of the code, making it easy to change for a
recompilation, if necessary. You can also modify the applet to accept the filename as an
applet parameter, specified in the HTML code. Meanwhile, the only hook that JavaScript
needs is the one public method called fetchText(), which merely returns the value of the
output variable, which in turn holds the file’s contents.

This Java source code must be compiled into a Java class file (already compiled and included
on the CD-ROM as FileReader.class) and placed in the same directory as the HTML file
that loads this applet. Also, no explicit pathname for the text file is supplied in the source
code, so the text file is assumed to be in the same directory as the applet.

BC255Chapter 44 ✦ Scripting Java Applets and Plug-Ins

Listing 44-5: HTML Asking Applet to Read Text File

<html>
<head>

<title>Letting an Applet Do The Work</title>
<script type=”text/javascript”>
function getFile(form) {

var output = document.readerApplet.fetchText();
form.fileOutput.value = output;

}
function autoFetch() {

var output = document.readerApplet.fetchText();
if (output != null) {

document.forms[0].fileOutput.value = output;
return;

}
var t = setTimeout(“autoFetch()”,1000);

}
</script>

</head>
<body onload=”autoFetch()”>

<h1>Text from a text file...</h1>
<form name=”reader”>

<input type=”button” value=”Get File” onclick=”getFile(this.form)” />
<p><textarea name=”fileOutput” rows=”10” cols=”60” wrap=”hard”>

</textarea></p>
<p><input type=”Reset” value=”Clear” /></p>

</form>
<applet code=”FileReader.class” name=”readerApplet” width=”1” height=”1”>
</applet>

</body>
</html>

Because an applet is usually the last detail to finish loading in a document, you can’t use an
applet to generate the page immediately. At best, an HTML document can display a pleasant
welcome screen while the applet finishes loading itself and running whatever it does to prepare
data for the page’s form elements. In IE4+ and NN6+/MoZ, the page can then be dynamically
constructed out of the retrieved data; for NN4, you can create a new layer object, and use
document.write() to install content into that layer. Notice in Listing 44-5 that the onload
event handler calls a function that checks whether the applet has supplied the requested
data. If not, the same function is called repeatedly in a timer loop until the data is ready and
the textarea can be set. The <applet> tag is located at the bottom of the Body, set to 1 pixel
square — invisible to the user. No user interface exists for this applet, so you have no need to
clutter up the page with any placeholder or bumper sticker.

Figure 44-2 shows the page generated by the HTML and applet working together. The Get File
button is merely a manual demonstration of calling the same applet method that the onload
event handler calls.

A faceless applet may be one way for Web authors to hide what may otherwise be JavaScript
code that is open to any visitor’s view. For example, if you want to deliver a small data collec-
tion lookup with a document, but don’t want the array of data to be visible in the JavaScript
code, you can create the array and lookup functionality inside a faceless applet. Then use

BC256 Part VI ✦ Bonus Chapters

form controls and JavaScript to act as query entry and output display devices (or dynami-
cally generate a table in IE4+ and W3C DOM browsers). Because the parameter values passed
between JavaScript and Java applets must be string, numeric, or Boolean values, you won’t
be able to pass arrays without performing some amount of conversion either within the
applet or the JavaScript code (JavaScript’s string.split() and array.join() methods
help a great deal here).

Data type conversions
The example in this chapter does not pass any parameters to the applet’s methods, but you
are free to do so. You need to pay attention to the way in which values are converted to Java
data types. JavaScript strings and Boolean values are converted to Java String and Boolean
objects. All JavaScript numbers, regardless of their subtype (that is, integer or floating-point
number), are converted to Float objects. Therefore, if a method must accept a numeric param-
eter from a script, the parameter variable in the Java method must be defined as a Float type.

The distinction between JavaScript string values and string objects can impact data being
passed to an applet. If an applet method requires a string object as a parameter, you may
have to explicitly convert a JavaScript string value (for example, a string from a text field)
to a string object via the new String() constructor (see Chapter 27).

You can also pass references to objects, such as form control elements. Such objects get
wrapped with a JSObject type (see discussion about this class later in the chapter). Therefore,
parameter variables must be established as type JSObject (and the netscape.javascript.
JSObject class must be imported into the applet).

Figure 44-2: The page with text retrieved from a server file.

BC257Chapter 44 ✦ Scripting Java Applets and Plug-Ins

Applet-to-Script Communication
The flip side of scripted applet control is having an applet control script and HTML content
in the page. Before you undertake this avenue in page design, you must bear in mind that any
calls made from the applet to the page are hard-wired for the specific scripts and HTML ele-
ments in the page. If this level of tight integration and dependence suits the application, the
link up will be successful.

The discussion of applet-to-script communication assumes you have experience writing Java
applets. I use Java jargon quite freely in this discussion.

What your applet needs
NN3 and later (including Mozilla) come with a zipped set of special class files tailored for use
in LiveConnect. In NN3, the file is named java_30 or java_301, the latter one being the latest
version; in NN4, the file is named java40.jar. For NN6+/Moz, the class files are located in an
archive called jaws.jar (Windows) or MRJPlugin.jar (Mac). Use the file search facility of
the OS to locate the relevant file on your system. Microsoft versions of these class files are
also included in IE4+, buried in one of the large .zip files in the Windows\Java\Packages
directory (the files you need are in one of the multi-megabyte .zip files, whose gibberish
names change from version to version — open each with an unzip utility and look for the two
packages mentioned next). The browser must see these class files (and have both Java and
JavaScript enabled in the preferences screens) for LiveConnect to work.

The easiest way to access the ZIP file for LiveConnect classes is to install the Java SDK, which
includes the jaws.jar file in its runtime lib directory. You then need to add the file to the
Java classpath environment variable. Following is an example of how this is accomplished
at the command line:

set classpath=c:\j2sdk1.4.1_02\jre\lib\jaws.jar

Of course, your specific Java SDK installation may be different in terms of version numbering,
but the command should be very similar. With the jaws.jar file available in the classpath,
you’re ready to use LiveConnect objects in Java code and build an applet.

Following are the two vital classes in the netscape package (yes, even in IE), which is the
Java package made available in the LiveConnect ZIP file (jaws.jar):

netscape.javascript.JSObject
netscape.javascript.JSException

Both classes must be imported to your applet via the Java import compiler directive:

import netscape.javascript.*;

When the applet runs, the LiveConnect-aware browser knows how to find the two classes, so
that the user doesn’t have to do anything special as long as the supporting files are in their
default locations.

What your HTML needs
As a security precaution, an <applet> tag requires one extra attribute to give the applet per-
mission to access the HTML and scripting inside the document. That attribute is the single
word mayscript, and it can go anywhere inside the <applet> tag, as follows:

<applet code=”myApplet.class” height=”200” width=”300” mayscript=”mayscript” />

Note

BC258 Part VI ✦ Bonus Chapters

If you are using the <object> tag, add the mayscript feature as a parameter:

<param name=”mayscript” value=”true” />

Permission is not required for JavaScript to access an applet’s methods or properties, but if
the applet initiates contact with the page, this attribute is required.

About JSObject class
The portal between the applet and the HTML page that contains it is the netscape.
javascript.JSObject class. This object’s methods let the applet contact document objects
and invoke JavaScript statements. Table 44-1 shows the object’s methods and one static
method.

Table 44-1: JSObject Class Methods

Method Description

call(String functionName, Invokes JavaScript function, argument(s) passed as an array
Object args[])
eval(String expression) Invokes a JavaScript statement

getMember(String elementName) Retrieves a named object belonging to a container

getSlot(Int index) Retrieves indexed object belonging to a container

getWindow(Applet applet) Static method retrieves applet’s containing window

removeMember(String elementName) Removes a named object belonging to a container

setMember(String elementName, Sets value of a named object belonging to a container
Object value)
setSlot(int index, Object value) Sets value of an indexed object belonging to a container

toString() Returns string version of JSObject

Just as the window object is the top of the document object hierarchy for JavaScript references,
the window object is the gateway between the applet code and the scripts and document
objects. To open that gateway, use the JSObject.getWindow() method to retrieve a reference
to the document window. Assign that object to a variable that you can use throughout your
applet code. The following code fragment shows the start of an applet that assigns the window
reference to a variable named mainwin:

import netscape.javascript.*;

public class myClass extends java.applet.Applet {
private JSObject mainwin;

public void init() {
mainwin = JSObject.getWindow(this);

}
}

BC259Chapter 44 ✦ Scripting Java Applets and Plug-Ins

If your applet will be making frequent trips to a particular object, you may want to create a
variable holding a reference to that object. To accomplish this, the applet needs to make pro-
gressively deeper calls into the document object hierarchy with the getMember() method. For
example, the following sequence assumes mainwin is a reference to the applet’s document
window. Eventually the statements set a form’s field object to a variable for use elsewhere in
the applet:

JSObject doc = (JSObject) mainwin.getMember(“document”);
JSObject form = (JSObject) doc.getMember(“entryForm”);
JSObject phonefld = (JSObject) form.getMember(“phone”);

Another option is to use the Java eval() method to execute an expression from the point of
view of any object. For example, the following statement gets the same field object from the
preceding fragment:

JSObject phonefld = mainwin.eval(“document.entryForm.phone”);

As soon as you have a reference to an object, you can access its properties via the getMember()
method, as shown in the following example, which reads the value property of the text box,
and casts the value into a Java String object:

String phoneNum = (String) phonefld.getMember(“value”);

Two JSObject class methods let your applet execute arbitrary JavaScript expressions and
invoke object methods: the eval() and call() methods. Use these methods with any
JSObject. If a value is to be returned from the executed statement, you must cast the result
into the desired object type. The parameter for the eval() method is a string of the expression
to be evaluated by JavaScript. Scope of the expression depends on the object attached to the
eval() method. If you use the window object, the expression would exist as if it were a state-
ment in the document script (not defined inside a function).

Using the call() method is convenient for invoking JavaScript functions in the document,
although it requires a little more preparation. The first parameter is a string of the function
name. The second parameter is an array of arguments for the function. Parameters can be of
mixed data types, in which case the array would be of type Object. If you don’t need to pass
a parameter to the function call, you can define an array of a single empty string value (for
example, String arg[] = {“”}) and pass that array as the second parameter.

Data type conversions
The strongly typed Java language is a mismatch for loosely typed JavaScript. As a result, with
the exception of Boolean and string objects (which are converted to their respective JavaScript
objects), you should be aware of the way LiveConnect adapts data types to JavaScript.

Any Java object that contains numeric data is converted to a JavaScript number value. Because
JavaScript numbers are ieee doubles, they can accommodate just about everything Java can
throw its way.

If the applet extracts an object from the document and then passes that JSObject type back to
JavaScript, that passed object is converted to its original JavaScript object type. But objects of
other classes are passed as their native objects wrapped in JavaScript “clothing.” JavaScript
can access the applet object’s methods and properties as if the object were a JavaScript object.
Finally, Java arrays are converted to the same kind of JavaScript array created via the new
Array() constructor. Elements can be accessed by integer index values (not named index
values). All other JavaScript array properties and methods apply to this object as well.

BC260 Part VI ✦ Bonus Chapters

Example applet-to-script application
To demonstrate several techniques for communicating from an applet to both JavaScript
scripts and document objects, I present an applet that displays two simple buttons (see
Figure 44-3). One button generates a new window, spawned from the main window, filling the
window with dynamically generated content from the applet. The second button communicates
from the applet to that second window by invoking a JavaScript function in the document.
One last part of the demonstration shows the applet changing the value of a text box when
the applet starts up.

Listing 44-6 shows the source code for the Java applet.

Because the applet generates two buttons, the code begins by importing the AWT interface
builder classes. I also import the netscape.javascript package to get the JSObject class.
The name of this sample class is JtoJSDemo. I declare four global variables: two for the win-
dows, two for the applet button objects.

Listing 44-6: Java Applet Source Code

import java.awt.*;
import java.awt.event.*;
import netscape.javascript.*;

public class JtoJSDemo extends java.applet.Applet implements ActionListener {
private JSObject mainwin, subwin;
private Button newWinButton, toggleButton;

The applet’s init() method establishes the user interface elements for this simple applet. A
white background is matched in the HTML with a white document background color, making
the applet appear to blend in with the page. I use this opportunity to set the mainwin variable
to the browser window that contains the applet.

public void init() {
setBackground(Color.white);
newWinButton = new Button(“New Browser Window”);
toggleButton = new Button(“Toggle SubWindow Color”);
this.add(newWinButton);
this.add(toggleButton);
newWinButton.addActionListener(this);
toggleButton.addActionListener(this);
mainwin = JSObject.getWindow(this);

}

As soon as the applet starts, it changes the value property of a text box in the HTML form.
Because this is a one-time access to the field, I elected to use the eval() method from the
point of view of the main window, rather than build successive object references through the
object hierarchy with the getMember() method.

public void start() {
mainwin.eval(“document.indicator.running.value = ‘Yes’”);

}

BC261Chapter 44 ✦ Scripting Java Applets and Plug-Ins

Figure 44-3: The applet displays two buttons seamlessly on the page.

Event handling is quite simple in this application. A click of the first button invokes
doNewWindow(); a click of the second invokes toggleColor(). Both methods are defined
later in the applet.

public void actionPerformed(ActionEvent evt) {
Button source = (Button)evt.getSource();
if (source == newWinButton) {

doNewWindow();
} else if (source == toggleButton) {

toggleColor();
}

}

One of the applet’s buttons calls the doNewWindow() method defined here. I use the eval()
method to invoke the JavaScript window.open() method. The string parameter of the eval()
method is exactly like the statement that appears in the page’s JavaScript to open a new win-
dow. The window.open() method returns a reference to that subwindow, so that the statement
here captures the returned value, casting it as a JSObject type for the subwin variable. That
subwin variable can then be used as a reference for another eval() method that writes to
that second window. Notice that the object to the left of the eval() method governs the
recipient of the eval() method’s expression. The same is true for closing the writing stream
to the subwindow.

BC262 Part VI ✦ Bonus Chapters

Unfortunately, the IE4+ implementation of JSObject does not provide a suitable reference
to the external window after it is created. Therefore, the window does not receive its content
or respond to color changes in this example. Due to other anomalies with subwindows, I
advise against using LiveConnect powers with multiple windows in IE4+.

Listing 44-6 (continued): Java Applet Source Code

void doNewWindow() {
subwin = (JSObject) mainwin.eval(

“window.open(‘’,’fromApplet’,’height=200,width=200’)”);
subwin.eval(“document.write(‘<html><body bgcolor=white>Howdy from the

applet!</body></html>’)”);
subwin.eval(“document.close()”);

}

The second button in the applet calls the toggleColor() method. In the HTML document, a
JavaScript function named toggleSubWindowColor() takes a window object reference as an
argument. Therefore, I first assemble a one-element array of type JSObject consisting of the
subwin object. That array is the second parameter of the call() method, following a string
version of the JavaScript function name being called.

void toggleColor() {
if (subwin != null) {

JSObject arg[] = {subwin};
mainwin.call(“toggleSubWindowColor”, arg);

}
}

}

Now onto the HTML that loads the preceding applet class and is the recipient of its calls. The
document is shown in Listing 44-7. One function is called by the applet. A text box in the form
is initially set to “No” but gets changed to “Yes” by the applet after it has finished its initializa-
tion. The only other item of note is that the <applet> tag includes a mayscript attribute to
allow the applet to communicate with the page.

Listing 44-7: HTML Document Called by Applet

<html>
<head>

<title>Java-to-JavaScript Demo</title>
<script type=”text/javascript”>
function toggleSubWindowColor(wind) {

if (wind.closed) {
alert(“The subwindow is closed. Can’t change it’s color.”);

} else {
wind.document.bgColor = (wind.document.bgColor == “#ffffff”) ?

“red” : “white”;
}

}
</script>

</head>

Note

BC263Chapter 44 ✦ Scripting Java Applets and Plug-Ins

<body bgcolor=”#FFFFFF”>
Here’s the applet:

<applet code=”JtoJSDemo.class” name=”demoApplet” height=”150” width=”200”
mayscript=”mayscript”>
</applet>
<form name=”indicator”>

Is the applet running yet?<input type=”text” name=”running” size=”4”
value=”No” />

</form>
</body>

</html>

Scripting Plug-Ins
Controlling a plug-in (or Windows ActiveX control in IE) from JavaScript is much like controlling
a Java applet. But you have more browser-specific concerns to worry about, even at the HTML
level. Not all plug-ins are scriptable, of course, nor do all browsers permit such scripting, as
described at the start of this chapter. Yet even when you have found the right combination of
browser version(s) and plug-in(s), you must also learn what the properties and/or methods
of the plug-in are so that your scripts can control them. For common plug-in duties, such as
playing audio, the likelihood that all users will have the same audio playback plug-in installed
in a particular browser brand and operating system is perhaps too small to entrust your pro-
gramming to a single plug-in. If, on the other hand, you are using a plug-in that works only with
a special data type, your page need check only that the plug-in is installed (and that it is the
desired minimum version).

In this section of the chapter, you’ll begin to understand the HTML issues and then examine
two separate audio playback examples. One example lets users change tunes being played
back; the other arrives with five sounds, each of which is controlled by a different onscreen
interface element. Both of these audio playback examples employ a library that has been
designed to provide basic audio playback interfaces to the most popular scriptable audio
playback plug-in, Windows Media Player.

The main goal of the library is to act as an API (Application Programming Interface) between
your scripts and the player. The API presents a simple vocabulary to let your scripts control
the Windows Media Player. If you wish to control only a more modern version of the player
(version 9 or later), you can modify the details for that player’s more complex syntax in the
API, while leaving your other interface code untouched.

The HTML side
Depending on the browser, operating system, and plug-in technology that you’re using, one of
two tags can be used to put a plug-in’s powers into the page. With the plug-in embedded within
the page (even if you don’t see it), the plug-in becomes part of the document’s object model,
which means that your scripts can address it.

Using embed
The old way of embedding non-document content into a page was to use the <embed> tag. Even
though the W3C HTML standard has never recognized the embed element, it has been a part
of browser implementations since the first embeddable media. The element is also a bit of a
chameleon, because beyond a common set of recognized attributes, such as the src attribute

BC264 Part VI ✦ Bonus Chapters

that points to the content file to be loaded into the plug-in, its attributes are extensible to
include items that apply only to a given plug-in. Uncovering the precise lists of attributes and
values for a plug-in is not always easy, and frequently requires digging deeply into the devel-
oper documentation of the plug-in’s producer. It is not unusual for a page author to anticipate
that multiple plug-ins could play a particular kind of data (as is the case in the audio examples
later in this chapter). Therefore, a single embed element may include attributes that apply to
more than one plug-in. You have to hope that the plug-ins’ developers chose unique names
for their attributes or that like-named attributes mean the same thing in multiple plug-ins. Any
attributes that a plug-in doesn’t recognize are ignored.

Typical behavior for a plug-in is to display some kind of controller or other panel in a rectangle
associated with the media. You definitely need to specify the height and width attribute val-
ues of such an embed element if it is to display visual media (some video plug-ins let you hide
the controls, while still showing the viewing area). For audio, however, you can specify a 1-pixel
value for both dimensions, and leave the controls to your HTML content. Browsers that recog-
nize stylesheets can also set embed elements to be invisible.

As an example of what an embed element may look like, the following code could be used in
Netscape 4 to load a QuickTime or LiveAudio player into a page (with the goal of using scripts
to control the player):

<embed name=”jukebox”
height=”1”
width=”1”
src=”Beethoven.aif”
hidden=”true”
autostart=”false”
autoplay=”false”
enablejavascript=”true”
mastersound=”mastersound”>

</embed>

After the page loads and encounters this tag, the browser reaches out to the server and loads
the sound file into the plug-in, where it sits quietly until the plug-in is instructed to play it.

WinIE/W3C object
The more modern and now preferred way to get external media into the document is to load
the plug-in as an object via the <object> tag. The object element is endorsed by the W3C
HTML standard, and has been supported in IE since IE4. In many ways the <object> tag works
like the <applet> tag in that aside from specifying attributes that load the plug-in, additional
nested param elements let you make numerous settings to the plug-in while it loads, including
the name of the file to pre-load. As with a plug-in’s attributes, an object’s parameters are unique
to the object and are documented (somewhere) for every object intended to be put into an
HTML page.

The Windows operating system has a special (that is, far from intuitive) way it refers to the
plug-in program (ActiveX control): through its class id (also known as a guid). You must
know this long string of numbers and letters in order to embed the object into your page.

The following example is an object element that loads the Windows Media Player 9.x plug-in
(ActiveX control) into a page:

<object id=”jukebox” width=”1” height=”1”
classid=”CLSID:6BF52A52-394A-11d3-B153-00C04F79FAA6”
<param name=”FileName” value=”Beethoven.aif” />
<param name=”AutoStart” value=”false” />

</object>

BC265Chapter 44 ✦ Scripting Java Applets and Plug-Ins

When you compare the embed and object approaches, you can see many similar properties
and values, which are just expressed differently (for example, attributes versus param elements).

Using embed and object together
Because a public Web page must usually appeal to a broad range of browsers, you should
design such a page to work with as many browsers as possible. For the convenience of your
scripting, referring to a plug-in object by the same identifier is helpful, whether it is loaded
via an embed or object element.

To the rescue comes a handy behavior of the object element. It is designed in such a way
that you can nest the associated embed element inside the object element’s tag set. If the
browser doesn’t know about the object element, that element is ignored, but the embed ele-
ment is picked up. Similarly, if the browser that knows about the object element fails to load
the plug-in identified in its attributes, the nested embed elements also get picked up. Therefore,
you can combine the object and embed elements as shown in the following example, which
demonstrates loading a movie file into a QuickTime plug-in:

<object classid=”clsid:02BF25D5-8C17-4B23-BC80-D3488ABDDC6B”
codebase=”http://www.apple.com/qtactivex/qtplugin.cab”
width=”180” height=”160” id=”clip1” >

<param name=”src” value=”videoClip.mov” />
<embed width=”180” height=”160” src=”videoClip.mov”

name=”clip1” enablejavascript=”true”>
</embed>

</object>

Notice that the identifier assigned to the id of the object element and to the name of the
embed element are the same. In NN3 and NN4 only one of these two elements will be valid in
the document, but because Mozilla browsers recognize both types of elements, you’ll have to
reference only one of the identically named elements (as described with Listing 44-1b earlier
in this chapter).

The API approach
In this section, you see one version of an API that is tailor-made for the Windows Media Player.
The API has its own initialization routine, which alerts users of ill-equipped browsers with a
relevant message about why their browser can’t get the most out of the page.

This API is far from the be-all, end-all library, although you will see that it does quite a bit as-is.
The code is offered as a starting point for your further development. Such development may
take the shape of adding more operations to the API or adding capabilities for additional
scriptable plug-ins. For example, although the API as shown supports the older Windows
Media Player 6, Microsoft continues to upgrade the Player to new versions (with new guids
for your object tags) that have new command vocabularies. There is no reason that the API
cannot be extended for new generations of Windows Media Player, while maintaining back-
ward compatibility for the Version 6 generation.

You can find the complete API code on the CD-ROM within the folder of example listings for this
chapter. The API file is named MPAudioAPI.js. Check out the following high points of this
library.

Loading the library
Adding the library to your page is no different from any external .js library file. Include the
following tag in the head of your page:

<script type=”text/javascript” src=”MPAudioAPI.js”></script>

BC266 Part VI ✦ Bonus Chapters

Except for two global variable initializations, no immediate code runs from the library. All of
its activity is invoked from event handlers or other script statements in the main page.

Initializing the library
The first job for the library is to validate that the player has loaded successfully. Before the
library can do this, all loading of the object or embed elements must be concluded so that
the objects exist for the initialization routine to examine. Therefore, use the onload event han-
dler in the body to invoke the initAudioAPI() function. Parameters to be passed to this
function are IDs of the object elements that represent individual players (in case there are
more than one).

The following is an excerpt from Listing 44-9, which shows how the jukebox player object is
initialized (all sound files for examples in this chapter have the .aif filename extension):

onload=”initAudioAPI(‘jukebox’)”

As you see later in Listing 44-10, the initAudioAPI() function lets you initialize multiple
player objects. Each object has its own ID. For example, the following initializes the library
for two different embedded plug-in objects:

onload=”initAudioAPI(‘cNatural’,’cSharp’)”

When the function receives multiple arguments, it loops through them, performing the initial-
izations in sequence. The initAudioAPI() function follows:

function initAudioAPI() {
var args = initAudioAPI.arguments;
var id;
for (var i = 0; i < args.length; i++) {

// don’t init any more if browser lacks scriptable sound
if (OKToTest) {

id = args[i];
players[id] = new API(id);
validateSupport(id);

}
}

}

Notice that parameter variables are not explicitly declared for the function, but are, instead,
retrieved via the arguments property of the function. The global OKToTest flag, initialized to
true when the library loads, is set to false if the validation of a plug-in fails. The conditional
construction here prevents multiple alerts from appearing when multiple plug-in parameters
are passed to the initialization function.

Sound player API objects
One of the jobs of the initialization routine is to create a player object for each plug-in identifier.
The object’s constructor is as follows:

// AudioAPI object constructor
function API(id) {

this.id = id;
this.play = API_play;
this.stop = API_stop;
this.pause = API_pause;
this.rewind = API_rewind;
this.load = API_load;
this.getVolume = API_getVolume;
this.setVolume = API_setVolume;

}

BC267Chapter 44 ✦ Scripting Java Applets and Plug-Ins

The object becomes a convenient place to preserve properties for each sound controller. But
the bulk of the object is reserved for assigning methods — the methods that your main page’s
scripts invoke to play and stop the player, adjust its volume, and so on. The method names to
the left of the assignment statements in the object constructor are the names your scripts
use; the functions in the library (for example, API_play()) are the ones that send the right
command to the right plug-in.

Each of these objects (even if there is only one for the page) is maintained in a hash table-like
array (named players[]) in the library. The plug-in object’s identifier is the string index for
the array entry. This provides the gateway to your page’s scripts. For example, if you initialize
the library with a single identifier, jukebox, you access the methods of the library’s jukebox-
related player object through the array and the identifier:

players[“jukebox”].rewind();

Invoking methods
Many of the player’s method names are simple enough as-is (e.g., play()), but developing an
API allows you to devise your own vocabulary for more complex operations. For example,
Windows Media Player has no explicit method for rewinding the current tune, but you can
assemble the equivalent operations into your own rewind() method, as shown in Listing 44-8.
When your script invokes players[“jukebox”].rewind(), the combined operations of the
API_rewind() method do their jobs.

Listing 44-8: The API’s Primary Functions

function API_play(n) {
if (document.all(this.id).HasError) {

alert(“MediaPlayer Alert: “ + document.all(this.id).ErrorDescription);
} else {

document.all(this.id).PlayCount = n;
document.all(this.id).Play();

}
}

function API_stop() {
document.all(this.id).Stop();

}

function API_pause() {
// Pause() method broken for IE5+
document.all(this.id).Stop();

}

function API_rewind() {
document.all(this.id).Stop();
document.all(this.id).CurrentPosition = 0;

}

function API_load(URL) {
document.all(this.id).Open(URL);

}

BC268 Part VI ✦ Bonus Chapters

Building a jukebox
The first example that utilizes the MPAudioAPI.js library is a jukebox that provides an inter-
face (admittedly not pretty — that’s for you to whip up) for selecting and controlling multiple
sound files with a single plug-in tag set. The assumption for this application is that only one
sound at a time need be handy for immediate playing.

Listing 44-9 shows the code for the jukebox. All sound files specified in the example are in the
same folder as the listing on the companion CD-ROM (the AIFF-format files sound better in
some plug-ins than others, so don’t worry about the audio quality of these demo sounds).

Listing 44-9: A Scripted Jukebox

<html>
<head>

<title>Oldies but Goody’s</title>
<script type=”text/javascript” src=”MPAudioAPI.js”></script>
<script type=”text/javascript”>
// make sure currently selected tune is preloaded
function loadFirst(id) {

var choice = document.forms[0].musicChoice;
var sndFile = choice.options[choice.selectedIndex].value;
players[id].load(sndFile);

}
// swap tunes
function changeTune(id, choice) {

players[id].load(choice.options[choice.selectedIndex].value);
}
// control and display volume setting
function raiseVol(id) {

var currLevel = players[id].getVolume();
currLevel += Math.ceil(Math.abs(currLevel)/10);
players[id].setVolume(currLevel);
displayVol(id);

}
function lowerVol(id) {

var currLevel = players[id].getVolume();
currLevel -= Math.floor(Math.abs(currLevel)/10);
players[id].setVolume(currLevel);
displayVol(id);

}
function displayVol(id) {

document.forms[0].volume.value = players[id].getVolume();
}
</script>

</head>
<body onload=”initAudioAPI([‘jukebox’); loadFirst(‘jukebox’);

displayVol(‘jukebox’)”>
<form>

<table border=”2” align=”center”>
<caption align=”top”>

Classical Piano Jukebox
</caption>

BC269Chapter 44 ✦ Scripting Java Applets and Plug-Ins

<tr>
<td colspan=”2” align=”center”>

<select name=”musicChoice”
onchange=”changeTune(‘jukebox’, this)”>

<option value=”Beethoven.aif” selected=”selected”>
Beethoven’s Fifth Symphony (Opening)

</option>
<option value=”Chopin.aif”>

Chopin Ballade #1 (Opening)
</option>
<option value=”Scriabin.aif”>

Scriabin Etude in D-sharp minor (Finale)
</option>

</select>
</td>

</tr>
<tr>

<th rowspan=”4”>Action:</th>
<td><input type=”button” value=”Play”

onclick=”players[‘jukebox’].play(parseInt(this.form.frequency[
this.form.frequency.selectedIndex].value))” />
<select name=”frequency”>

<option value=”1” selected=”selected”>
Once

</option>
<option value=”2”>

Twice
</option>
<option value=”3”>

Three times
</option>
<option value=”TRUE”>

Continually
</option>

</select></td>
</tr>
<tr>

<td><input type=”button” value=”Stop”
onclick=”players[‘jukebox’].stop()” /></td>

</tr>
<tr>

<td><input type=”button” value=”Pause”
onclick=”players[‘jukebox’].pause()” /></td>

</tr>
<tr>

<td><input type=”button” value=”Rewind”
onclick=”players[‘jukebox’].rewind()” /></td>

</tr>
<tr>

<th rowspan=”3”>Volume:</th>
<td>Current Setting:<input type=”text” size=”10” name=”volume”

onfocus=”this.blur()” /></td>
</tr>
<tr>

<td><input type=”button” value=”Higher”
onclick=”raiseVol(‘jukebox’)” /></td>

Continued

BC270 Part VI ✦ Bonus Chapters

Listing 44-9 (continued)

</tr>
<tr>

<td><input type=”button” value=”Lower”
onclick=”lowerVol(‘jukebox’)” /></td>

</tr>
</table>

</form>

<object classid=”clsid:22d6f312-b0f6-11d0-94ab-0080c74c7e95”
codebase=”#Version=6,0,0,0”
width=”2” height=”2” id=”jukebox” >

<param name=”autstart” value=”false” />
</object>

</body>
</html>

You can see the user interface in Figure 44-4. One select element contains a list of three
possible choices. Most of the interface, however, consists of buttons that ultimately invoke
methods of the current plug-in.

Figure 44-4: The jukebox page.

BC271Chapter 44 ✦ Scripting Java Applets and Plug-Ins

All functions defined for this page are designed to be as generalizable as possible. Thus, the
identifier of the plug-in is passed as a parameter to each. If another plug-in were added to this
page, the same functions could be used without modification, provided calls to the functions
passed the identifier of the other plug-in.

All of the button controls are pretty straightforward except the Play button’s onclick event
handler. It invokes the players[id].play() method, but that method requires a parameter
of how many times the sound should be played. In this user interface, a select element con-
trols that information. Getting the value of the selected item creates a lengthy reference, but
that’s what is taking up so much space in the parameter slot of the play() method call.

Embedding multiple sounds
The final example of embedded media serves as a base on which you can build a page that
needs to play multiple sounds without the user explicitly loading them. For example, you may
have buttons generate different sounds after users click them (I’m not recommending this
interface, but that won’t necessarily stop you). Figure 44-5 shows you the simple five-key piano
keyboard. The page loads five different sounds into the page, one for each note (actual piano
sounds in this case). Each sound was recorded for about four seconds, so that you can get the
action of attack and delay, just like a real piano. If you mouse-down on a key, the sound plays
for up to four seconds (getting softer all the time) or until you mouse up on the key (the attack
time on the sample sounds on the CD-ROM is not instantaneous, so you may have to hold a
key down for a fraction of a second to start the sound). The colors of the keys also change
slightly to provide further user feedback to the action.

Figure 44-5: Controller for five sounds.

BC272 Part VI ✦ Bonus Chapters

Thanks to the MPAudioAPI.js library, very little code in this page is associated with the
sounds. Far more is involved with the image swaps and the loading of the five plug-ins.
Listing 44-10 shows the code for the page.

Listing 44-10: Scripting Multiple Sounds

<html>
<head>

<title>Tickling the Ivories</title>
<style type=”text/css”>
object {visibility:hidden}
</style>
<script type=”text/javascript” src=”MPAudioAPI.js”></script>
<script type=”text/javascript”>
// pre-cache 10 images
var onImages = new Array();
onImages[“c”] = new Image(35, 140);
onImages[“c”].src = “whiteDown.gif”;
onImages[“d”] = new Image(35, 140);
onImages[“d”].src = “whiteDown.gif”;
onImages[“e”] = new Image(35, 140);
onImages[“e”].src = “whiteDown.gif”;
onImages[“cHalf”] = new Image(26, 90);
onImages[“cHalf”].src = “blackDown.gif”;
onImages[“dHalf”] = new Image(26, 90);
onImages[“dHalf”].src = “blackDown.gif”;

var offImages = new Array();
offImages[“c”] = new Image(35, 140);
offImages[“c”].src = “whiteUp.gif”;
offImages[“d”] = new Image(35, 140);
offImages[“d”].src = “whiteUp.gif”;
offImages[“e”] = new Image(35, 140);
offImages[“e”].src = “whiteUp.gif”;
offImages[“cHalf”] = new Image(26, 90);
offImages[“cHalf”].src = “blackUp.gif”;
offImages[“dHalf”] = new Image(26, 90);
offImages[“dHalf”].src = “blackUp.gif”;

// swap images (on)
function imgOn(img) {

if (document.images) {
// handle NN4 layers that hold images
if (document.layers) {

if (img.length == 1) {
document.ivories.document.images[img].src = onImages[img].src;

} else {
document.ivories.document.layers[“ivory” +
img].document.images[img].src = onImages[img].src;

}
} else {

document.images[img].src = onImages[img].src;
}

}
}

BC273Chapter 44 ✦ Scripting Java Applets and Plug-Ins

// swap images (off)
function imgOff(img) {

if (document.images) {
// handle NN4 layers that hold images
if (document.layers) {

if (img.length == 1) {
document.ivories.document.images[img].src =

offImages[img].src;
} else {

document.ivories.document.layers[“ivory” +
img].document.images[img].src = offImages[img].src;

}
} else {

document.images[img].src = offImages[img].src;
}

}
}

// play a note (mousedown)
function playNote(id) {

players[id].rewind();
players[id].play(1);

}
// stop playing (mouseup)
function stopNote(id) {

players[id].stop();
players[id].rewind();

}
</script>

</head>
<body
onload=”initAudioAPI(‘cNatural’,’cSharp’,’dNatural’,’dSharp’,’eNatural’)”>

<h1>
Playing Multiple Sounds

</h1>
<hr />
<table align=”center”>

<tr>
<td><div id=”ivories” style=”position:relative”>

<a href=”#”
onmousedown=”playNote(‘cNatural’);imgOn(‘c’);return false”
onmouseup=”imgOff(‘c’);stopNote(‘cNatural’)”><img alt=”image”
name=”c” src=”whiteUp.gif” height=”140” width=”35”
border=”0” /><a href=”#”
onmousedown=”playNote(‘dNatural’);imgOn(‘d’);return false”
onmouseup=”imgOff(‘d’);stopNote(‘dNatural’)”><img alt=”image”
name=”d” src=”whiteUp.gif” height=”140” width=”35”
border=”0” /><a href=”#”
onmousedown=”playNote(‘eNatural’);imgOn(‘e’);return false”
onmouseup=”imgOff(‘e’);stopNote(‘eNatural’)”><img alt=”image”
name=”e” src=”whiteUp.gif” height=”140” width=”35”
border=”0” /> <span id=”ivorycHalf”
style=”position:absolute; left:22px”><a href=”#”
onmousedown=”playNote(‘cSharp’);imgOn(‘cHalf’);return false”
onmouseup=”imgOff(‘cHalf’);stopNote(‘cSharp’)”><img
alt=”image” name=”cHalf” src=”blackUp.gif” height=”90”

Continued

BC274 Part VI ✦ Bonus Chapters

Listing 44-10 (continued)

width=”26” border=”0” /> <span id=”ivorydHalf”
style=”position:absolute; left:57px”><a href=”#”
onmousedown=”playNote(‘dSharp’);imgOn(‘dHalf’);return false”
onmouseup=”imgOff(‘dHalf’);stopNote(‘dSharp’)”><img
alt=”image” name=”dHalf” src=”blackUp.gif” height=”90”
width=”26” border=”0” />

</div></td>
</tr>

</table>
<object id=”cNatural” width=”1” height=”1”
classid=”clsid:22d6f312-b0f6-11d0-94ab-0080c74c7e95”
codebase=”#Version=6,0,0,0”>

<param name=”FileName” value=”c.aif” />
<param name=”AutoStart” value=”false” />
<param name=”BufferingTime” value=”30” />

</object> <object id=”cSharp” width=”1” height=”1”
classid=”clsid:22d6f312-b0f6-11d0-94ab-0080c74c7e95”
codebase=”#Version=6,0,0,0”>

<param name=”FileName” value=”cSharp.aif” />
<param name=”AutoStart” value=”false” />
<param name=”BufferingTime” value=”30” />

</object> <object id=”dNatural” width=”1” height=”1”
classid=”clsid:22d6f312-b0f6-11d0-94ab-0080c74c7e95”
codebase=”#Version=6,0,0,0”>

<param name=”FileName” value=”d.aif” />
<param name=”AutoStart” value=”false” />
<param name=”BufferingTime” value=”30” />

</object> <object id=”dSharp” width=”1” height=”1”
classid=”clsid:22d6f312-b0f6-11d0-94ab-0080c74c7e95”
codebase=”#Version=6,0,0,0”>

<param name=”FileName” value=”dSharp.aif” />
<param name=”AutoStart” value=”false” />
<param name=”BufferingTime” value=”30” />

</object> <object id=”eNatural” width=”1” height=”1”
classid=”clsid:22d6f312-b0f6-11d0-94ab-0080c74c7e95”
codebase=”#Version=6,0,0,0”>

<param name=”FileName” value=”e.aif” />
<param name=”AutoStart” value=”false” />
<param name=”BufferingTime” value=”30” />

</object>
</body>

</html>

Perhaps the trickiest part of this entire demonstration lies in the way the keyboard art and
user interface are created. Because the white keys are not rectangular, the black key art is
dropped atop the white keys by way of positioned elements.

BC275Chapter 44 ✦ Scripting Java Applets and Plug-Ins

When you use the page, you may notice a slight delay in getting the sound to be heard after
pressing down on a key. On older, slower machines, this delay is even more noticeable. Take
this behavior into account when designing interactive sound.

Scripting Java Classes Directly
LiveConnect, as implemented in Netscape and Mozilla browsers, allows scripts to access Java
classes as if they were part of the JavaScript environment. Because you need to know your
way around Java before programming Java classes directly from JavaScript, I won’t get into
too much detail in this book. Fortunately, the designers of JavaScript have done a good job of
creating JavaScript equivalents for the most common Java language functionality, so there is
not a strong need to access Java classes on a daily basis.

To script Java classes, it helps to have a good reference guide to the classes built into Java.
Though intended for experienced Java programmers, Java in a Nutshell (O’Reilly & Associates,
Inc.) offers a condensed view of the classes, their constructors, and their methods.

Java’s built-in classes are divided into major groups (called packages) to help programmers
find the right class and method for any need. Each package focuses on one particular aspect of
programming, such as classes for user interface design in application and applet windows, net-
work access, and basic language constructs, such as strings, arrays, and numbers. References
to each class (object) defined in Java are “dot” references, just as in JavaScript. Each item fol-
lowing a dot helps zero-in on the desired item. As an example, consider one class that is part
of the base language class. The base language class is referred to as

java.lang

One of the objects defined in java.lang is the String object, whose full reference is

java.lang.String

To access one of its methods, you use an invocation syntax with which you are already familiar:

java.lang.String.methodName([parameters])

To demonstrate accessing Java from JavaScript, I call upon one of Java’s String object meth-
ods, java.lang.String.equalsIgnoreCase(), to compare two strings. Equivalent ways are
available for accomplishing the same task in JavaScript (for example, comparing both strings
in their toUpperCase() or toLowerCase() versions), so don’t look to this Java demonstration
for some great new powers along these lines.

Before you can work with data in Java, you have to construct a new object. Of the many ways
to construct a new String object in Java, you use the one that accepts the actual string as the
parameter to the constructor:

var mainString = new java.lang.String(“TV Guide”);

At this point, your JavaScript variable, mainString, contains a reference to the Java object.
From here, you can call this object’s Java methods directly:

var result = mainString.equalsIgnoreCase(“tv Guide”);

BC276 Part VI ✦ Bonus Chapters

Even from JavaScript, you can use Java classes to create objects that are Java arrays and
access them via the same kind of array references (with square brackets) as JavaScript arrays.
In a few cases, you can use Java classes to obtain additional information about the user envi-
ronment, such as the user’s IP address (but not e-mail address). The process involves a couple
of Java class calls, as follows:

var localHost = java.net.InetAddress.getLocalHost();
var IP = localhost.getHostAddress();

The more you work with these two languages, the more you see how much Java and
JavaScript have in common.

✦ ✦ ✦

Debugging Scripts

One of the first questions that an experienced programmer asks
about a programming environment is what support is there for

debugging code. Even the best coders in the world make mistakes
when they draft programs. Sometimes, the mistakes are a mere slip of
a finger on the keyboard; other times, they result from not being care-
ful with expression evaluation or object references. The cause of the
mistake is not the issue: finding the mistake and getting help to fix it is.

Some debugging tools are available for the latest browsers. For the
most part, they have come from the browser makers themselves, or
they are tied very closely to a particular authoring environment. Some
of these tools are very quirky; others require significant investments
in authoring environments. Discussion about debugging tools in this
chapter, however, focuses on simple tools you can download online.
By understanding the true meaning of error messages and working
out the problem with the tools provided here, you should be able to
overcome your bugs.

Syntax versus Runtime Errors
As a page loads into a JavaScript-enabled browser, the browser
attempts to create an object model out of the HTML and JavaScript
code in the document. Some types of errors crop up at this point.
These are mostly syntax errors, such as failing to include a closing
brace after a function’s statements. Such errors are structural in
nature, rather than about values or object references.

Runtime errors involve failed connections between function calls and
their functions, mismatched data types, and undeclared variables
located on the wrong side of assignment operators. Such runtime
errors can occur as the page loads if the script lines run immediately
as the page loads. Runtime errors located in functions won’t crop up
until the functions are called — either as the page loads or in response
to user action.

Because of the interpreted nature of JavaScript, the distinction
between syntax and runtime errors blurs. But as you work through
whatever problem halts a page from loading or a script from running,
you have to be aware of differences between true errors in language
and your errors in logic or evaluation.

4545C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Identifying the type of
error plaguing a script

Interpreting error
messages

Preventing problems
before they occur

✦ ✦ ✦ ✦

BC278 Part VI ✦ Bonus Chapters

Error Message Notification
As the browsers have evolved through several generations, the ways in which script errors
are reported to the user (and to you as the author) have also changed. The biggest changes
came in WinIE4 and NN4.5. Prior to those versions, script errors always displayed some kind
of alert dialog box with information about the error. Because these alerts could confuse non-
technical users, the newer browsers are much more subtle about the presence of errors. In
fact the notification mechanism is so subtle, that it is easy to miss the fact that a script error
has occurred. Even if you do notice, you must then exercise your mouse a bit more to view
the details.

When a script error occurs in WinIE4+, the status bar displays a yellow alert icon plus a brief
text message indicating that an error has occurred. A syntax error that occurs while the page
loads usually signifies that the page has loaded, but with errors. A runtime error’s message
simply indicates that an error occurred. To view details about the error, you must double-click
the yellow icon in the status bar. The default appearance of the error message alert dialog box
window includes a button named Show Details. Clicking this button expands the window
to reveal whatever details the browser is reporting about the error. If you leave the window
expanded, the next time it opens, it will also be expanded. It is a good idea for scripters to
also check the box that forces the browser to show the error dialog box whenever an error
occurs. This is simply a shortcut to manually double-clicking the status bar error icon.

Netscape/Mozilla console windows
For NN4 browsers starting with NN4.5, a user receives error notification through a message in
the status bar. The instructions there indicate how to view the error details: If you type

javascript:

into the toolbar’s Location box or into the dialog box that lets you open a new page, an entirely
new, non-modal window appears. This window is called the Communicator Console. In contrast
to the one message per window approach of IE, the Communicator Console window continues
to record all script errors in sequence (in a scrolling frame), even when the Console window
is closed. You can keep this window open all the time, and simply bring it to the front when-
ever you need to view errors. If you are developing on a large video monitor, you can let the
Console window stick out to the right of the browser window. If an error occurs, not only does
the message appear in the browser status bar, but you’ll also see the scrollbar of the Console
window’s top frame appear — an even more explicit indication that an error occurred (assum-
ing you click the Clear Console button every time you are ready to try another test run).

Netscape changed the name of the window for NN6+, now calling it the JavaScript Console.
Opening this window is less cryptic than before: Choose Tasks/Tools/JavaScript Console from
the menu bar. NN6+/Mozilla does not provide notification of errors in the status bar, so it is
up to you to be vigilant for something running amok. This is all the more reason to keep the
JavaScript Console window open while you are writing and debugging your scripts. Even if
things appear to be OK, periodically check the Console window to be sure.

Safari errors
As delivered to users, Safari 1.0 completely conceals script errors. To be able to see script
errors at all, you must enter a command into the MacOS X Terminal program window. The
first step is to enable an otherwise hidden Debug menu in the Safari application. With Safari
closed, launch Terminal and enter the following command exactly as shown:

BC279Chapter 45 ✦ Debugging Scripts

defaults write com.apple.Safari IncludeDebugMenu 1

Launch Safari and another MacOS X utility application called Console. In the Safari Debug
menu, choose “Log JavaScript Exceptions” so that the menu item is checked. Hereafter in
the current session, all script errors appear in the Console window (along with other system-
generated messages). Each time you launch Safari, you must enable the logging feature in the
Debug menu.

Multiple error messages
The modality of IE error message alert dialog boxes tends to force just one message to appear.
In other words, when the first error occurs, the browser stops recording further errors. In
NN/Moz, however, it is not uncommon for multiple errors to be listed (or, in older versions,
multiple error windows to show up). But you need to understand how to treat these multiple
errors to get to the root of the problem.

The usual reaction is to look at the last message to appear in the sequence. That, however,
is usually the error message least likely to lead you to the true problem. Error messages are
dumped to the NN/Moz Console window in the order in which they occur. This means that
the first error in the list is the most important error message of them all. More than likely, the
first error points to a problem that throws off the rest of the script, thus triggering all of the
other error messages. For example, if a statement that initializes a variable has a syntax error
in it, all other statements that rely on that variable will fail, because the variable appears to
be undefined.

When you encounter multiple errors, don’t start any serious debugging until you locate the
first error message. You must tackle this one before any others. The solution to the first one
may cause the other errors to go away. This is all the more reason, when authoring in NN4.5+,
to keep the Console window open, and clear it before loading any page or executing any scripts.

Error Message Details
Error reporting comes in three flavors depending on the browser: NN/Moz, WinIE, or MacIE.
One of these groups may be better (that is, more accurate and explicit) at reporting some kinds
of errors than the other groups. By and large, however, you can count on error details to
include three basic clues to help you track down the error: the file in which the error occurred,
the location of the error within the source code, and a textual description of the error. Browsers
outside of NN/Moz and IE typically utilize an approach similar to one of the three mentioned
here, but Safari 1.0’s error reporting supplies precious little detail about any error. The Mozilla-
based browsers tend to furnish the most accurate and helpful error messages.

Error filename
Although MacIE error messages do not explicitly reveal the name of the file whose source code
contains the error, in practice, only the NN/Moz browsers do the best job of telling the truth.
Of course, when the script and HTML are all on one page, it doesn’t require a brain surgeon
to know that the error occurs from that page’s source code. But if you link in external .js
libraries, the NN/Moz browsers provide the URL to the .js file. WinIE, on the other hand,
indicates the HTML page that loads the external library, making it difficult to know precisely
where the error is.

BC280 Part VI ✦ Bonus Chapters

Error location
All browsers (except Safari 1.0) provide a source code line number and character position
where the error supposedly occurs. For self-contained pages with no dynamically created
content, the reporting tends to be accurate (also see the IE “Object expected” error message
details described later in this chapter), but the accuracy is much closer in NN browsers than
IE. And if your page links in an external library, the line number provided by WinIE and MacIE
is practically useless. The sense you get is that the lines of the .js file become embedded
within the main page’s script, but how that is supposed to help an author find the precise
problem line is a mystery — even the most feature-laden text editor knows only how to display
line numbers for a single document.

NN/Moz browsers, however, not only point to the correct .js file, but to the line number
within that file. You are much more likely to get to the root of a problem, especially in an
external .js file, through NN/Moz error messages.

Line number reporting has improved with each browser generation, but anomalies still exist.
Perhaps the most egregious is the tendency for IE to report a problem at a line number whose
source code is HTML with an event handler. The problem, it turns out, will be somewhere in
the function being invoked by the event handler. Another possibility in all browsers is that the
line number being reported is below the line that contains the problem. Consider the following
simple source code listing (with line numbers from the source code editor) that intentionally
contains a syntax error (a missing brace after the first function):

1: <html>
2: <head>
3: <script type=”text/javascript”>
4: function tarzan() {
5: var x = 1;
6:
7: function jane() {
8: var y = 3;
9: }
10: </script>
11: </head>
12: <body>
13: Hello.
14: </body>
15: </html>

When you load this page into browsers, all of them report a problem with a missing right
brace (NN is a bit more explicit with its message, indicating that a right brace is missing after
a function body). But where do the browsers point to the error? By looking at the code as a
human, you can see that the missing brace belongs in Line 6. But now examine the code from
the point of view of a script interpreter engine: It sees the opening brace on Line 4, and then a
new function declaration starting on Line 7. To the interpreter, this means that the jane()
function is probably nested inside the tarzan() function, and it is the tarzan() function that
is lacking the right brace following the jane() function. Therefore, the error line number comes
in at Line 10 (although MacIE5 reports Line 9). Your scripts won’t likely be this simple, so the
distance between the reported error line number and the location of the actual problem can
be substantial and difficult to spot without using some of the tips and tools described later in
this chapter.

BC281Chapter 45 ✦ Debugging Scripts

IE sometimes has a nasty habit of identifying the location of the problem at Line 1, Character 1.
All this means is that you need to put your detective skills to work that much harder. Common
causes for this behavior are references to HTML objects that don’t exist (or there is a mismatch
between the identifier of the element and your script reference to it) and errors that affect
global functions or window methods. To find the genuine problem line, you can use tracing
techniques described later in this chapter.

Error message text
Because so many permutations exist of the potential errors you can make in scripts and the
ways the JavaScript interpreters in different browsers regard these errors, presenting hard-
and-fast solutions to every JavaScript error message is impossible. What I can do, however, is
list the most common and head-scratch–inducing error messages and relate the kinds of non-
obvious problems that can trigger such messages.

“Object expected”
This error message is often one of the least helpful that you see in IE. The line number associ-
ated with the message typically points to a line in the source code that invokes a function. If
you define event handlers as attributes of element tags, the line number being reported may
correspond to the line containing that HTML tag.

The most obvious problem is that the function being invoked is not regarded as a valid function
in the page (the “object” referred to here is the function object). This problem can be the result
of an HTML or script error earlier in the document. The problem can also be the result of some
error in the function itself that failed to let the interpreter treat the function as a genuine func-
tion object. Most typically, these kinds of problems are detected as syntax errors while the
page loads (for example, an imbalanced set of parentheses or braces), but not always.

As a first-strike tactic, you need to determine if the function is being invoked at all. By placing
an alert in the first line of the function and triggering the function, you can see if script execu-
tion is reaching that point. If that works okay, move the alert downward through the function
to find out where the error is actually being triggered. The line before the alert that fails is the
likely culprit.

“Expected <something>”
This message usually points straight at the problem line. Most of the “things” that the state-
ment expects are self-explanatory. If a right parenthesis is missing from a pair, that is the
“thing” shown to be expected. Detecting in the message the difference between a brace and
parenthesis isn’t always easy, so look at the message carefully. Not quite as intuitive is when
the message says “Expected identifier”. This error refers to an expression that typically is try-
ing to use a reserved word as a variable name. Look into Appendix B for a list of reserved
words, none of which you may use as names of things or variables.

“<Something> is undefined”
This message is fairly easy to understand, yet at times difficult to diagnose. For variable names,
the message usually means that you have an uninitialized variable name sitting in the position
of a right-hand operand or a unary operand. This variable name has not been declared or
assigned with any value prior to this erroneous statement. Perhaps you’re attempting to use a
variable name that has been initialized only as a local variable in another function. You may

BC282 Part VI ✦ Bonus Chapters

also have intended the right-hand value to be a string, but you forgot to enclose it in quotes,
forcing JavaScript to look upon it as a reference to something. Another possibility is that you
misspelled the name of a previously declared variable. JavaScript rightly regards this item as
a new, undeclared variable. Misspellings, you will recall, include errors in upper- and lower-
case in the very case-sensitive JavaScript world.

If the item is a function name, you may have to perform a bit of detective work. Though the
function may be defined properly, a problem in the script above the function (for example,
imbalanced braces) makes JavaScript fail to see the function. In other cases, you may be try-
ing to invoke a function in another window or frame but forgot to include the reference to
that distant spot in the call to the function.

A less likely case, but a confusing one to diagnose, is when you are assembling string versions
of function calls or array references out of literal strings and variable values. The following
simplified example is assembling a string that is a function call to be triggered by
setTimeout():

function doA() {
var x = “joe”;
setTimeout(“doB(“ + x + “)”, 5000);

}

Even though the value of x is a string when it is concatenated to the call to the doB() function,
the value gets evaluated as if it were a variable name. An error crops up saying that “joe is
undefined”. Because you want to pass the value of x as a parameter, you must nest its value
inside a pair of quotes, as follows:

function doA() {
var x = “joe”;
setTimeout(“doB(‘“ + x + “‘)”, 5000);

}

The difference in the code is extremely subtle, but absolutely necessary.

“<Something> is not a function”
As with the preceding one, this error message can be one of the most frustrating, because
when you look at the script, it appears as though you have clearly defined a function by that
name, and you’re simply having an event handler or other running statement call that function.
The first problems to look for are mismatched case of letters in the calling statement and
function and the reuse of a variable or HTML object name by the function name.

This latter item is a no-no — it confuses JavaScript into thinking that the function doesn’t
exist, even though the object name doesn’t have parentheses appended to it and the function
does. I’ve also seen this error appear when other problems existed in the script above the
function named in the error message, and the named function was the last one in a script.

In NN, this message appears when you attempt to invoke a function that is not implemented
for a particular object. For example, if you attempt to use a W3C DOM method in NN4, the
error reports that the method you tried to invoke “is not a function.”

“Object doesn’t support this property or method”
This IE message reports that a valid object does not provide support for a method you just
attempted to invoke. In practice, this message rarely appears as the result of referencing an
object’s nonexistent property, because the language allows for extending an object’s list of
properties by assignment. If you do a lot of development in IE5+ for Windows, you may see a
lot of this message when testing the page in IE5 for the Macintosh, whose complement of
implemented object methods is somewhat smaller.

BC283Chapter 45 ✦ Debugging Scripts

“Unterminated string literal”
“Unterminated string constant”
NN is far more helpful with this type of message, because along with the error message, it
displays the code fragment that tripped the error. You will see the beginning (or all) of the
string that is the culprit. If you simply forgot to close a string quote pair, the error most fre-
quently appears when you try to concatenate strings or nest quoted strings. Despite the
claim that you can nest alternating double and single quotes, I often have difficulties using
this nesting method beyond the second nested level (single quotes inside a double-quoted
string). At different times, I’ve gotten away with using a pair of \” inline quote symbols for a
third layer. If that syntax fails, I break up the string so that nesting goes no deeper than two
layers. If necessary, I even back out the most nested string and assign it to a variable in the
preceding line — concatenating it into the more complex string in the next line.

In all versions of Navigator through NN4, avoid statements in scripts that extend for more than
255 characters. If you use a text editor that counts the column number as you type, use this
measure as a guide for long statements. Break up long statements into shorter strings, but
make sure to close the string at the end of the line. If you place a carriage return in the middle
of a string in your source code, the first line’s string is unterminated. If you want to break long
lines into shorter ones, close the string at the end of each line and use the + operator:

var myString = “Lorem ipsum dolor sit amet, consectetaur “ +
“adipisicing elit, sed do eiusmod tempor incididunt “ +
“ut labore et dolore magna aliqua.”

“Missing } after function body”
“Expected }”
This error usually is easy to recognize in a simple function definition because the closing brace
is missing at the end of the function. But when the function includes additional nested items,
such as if...else or for loop constructions, you begin dealing with multiple pairs of braces
within the function. The JavaScript interpreter doesn’t always determine exactly where the
missing brace belongs, and thus it simply defaults to the end of the function. This location is
a natural choice, I guess, because from a global perspective of the function, one or more of
the right braces that ripple down to the end of the function usually are missing.

In any case, this error message means that a brace is missing somewhere in a function above
the referenced line number. Do an inventory count for left and right braces and see whether a
discrepancy occurs in the counts. One of those nested constructions is probably missing a
closing brace. Some programmer-oriented text editors also include tools for finding balanced
pairs of braces and parentheses.

“<Something> is not a number”
The variable name singled out in this error message is most likely a string or null value. The
line of JavaScript that trips it up has an operator that demands a number. When in doubt
about the data type of a variable destined for a math operation, use the parseInt() or
parseFloat() functions to convert strings to numbers.

I have also encountered this error when it provides no clue about what isn’t a number — the
error message simply says, “is not a number.” The root of the problem ended up having nothing
to do with numbers. A structural imbalance in the script triggered this bogus error message.

BC284 Part VI ✦ Bonus Chapters

“<Something> has no property named . . .”
“<Something> has no properties”
When a statement trips this error message, an object reference has usually gone awry in an
assignment or comparison expression. You probably attempted to reference a property of an
object, but something is wrong with the object reference, or you’re trying to retrieve a property
that doesn’t exist for that object. If the reference is an extended one, you may have to dig
to find the precise problem with the reference. Consider the following two statements that
attempt to access the value property of a button named calcMe:

document.forms.calcme.value
document.forms[0].calcme.value

The NN errors for these two statements would read “document.forms.calcme has no proper-
ties” and “document.forms[0].calcme has no properties”. Causes for the two errors are quite
different. The obvious problem with them both may seem to be that the button’s name is
incorrectly referenced as calcme instead of calcMe. That, indeed, is the error for the second
statement. But a more fundamental problem also plagues the first statement: the document.
forms reference (a valid object, returning an array of forms) needs an array index in this
instance, because it needs to look into a particular form for one of its objects. Unfortunately,
both error messages look alike at first glance, and you cannot tell from them which statement
has two errors and which has one.

But what you can do when this kind of error appears is use the reference that is returned with
the error message to check your work. Start verifying the accuracy of your references from
left to right. Later in this chapter, you see how to use the embeddable Evaluator tool to verify
the existence of object references.

“<Something> is null or not an object”
This message is the IE version of the previous NN error message. A big difference is that the
reference returned as part of the error message includes the complete reference. Therefore,
a reference to a nonexistent calcme button in a form yields the error message “‘document.
forms[0].calcme.value’ is null or not an object”. Your first instinct is to be suspicious of the
value property part of the reference. The detective work to find the problem is the same as
in the NN version: verify the reference piece by piece, working from left to right. Again, the
embeddable Evaluator described later in this chapter can assist in this task.

“<Something> has no property indexed by [i]”
Look carefully at the object reference in this error message. The last item has an array index
in the script, but the item is not an array value type. Users commonly make this mistake within
the complex references necessary for radio buttons and select options. Make sure that you
know which items in those lengthy references are arrays and which are simply object names
that don’t require array values.

“<Something> can’t be set by assignment”
This error message tells you either that the property shown is read-only or that the reference
points to an object, which must be created via a constructor function rather than by simple
assignment.

BC285Chapter 45 ✦ Debugging Scripts

“Test for equality (==) mistyped as assignment (=)?
Assuming equality test.”
The first time I received this error, I was amazed by JavaScript’s intelligence. I had, indeed,
meant to use the equality comparison function (==) but had entered only a single equal sign.
JavaScript is good at picking out these situations where Boolean values are required. In NN6+,
this message is demoted to just a warning rather than an error.

“Function does not always return a value”
Often while designing deeply nested if...else constructions, your mind follows a single logic
path to make sure that a particular series of conditions is met, and that the function returns
the desired values under those conditions. What is easy to overlook is that there may be cases
in which the decision process may “fall through” all the way to the bottom without returning
any value, at which point the function must indicate a value that it returns, even if it is a 0 or
empty (but most likely a Boolean value). JavaScript checks the organization of functions to
make sure that each condition has a value returned to the calling statement. The error mes-
sage doesn’t tell you where you’re missing the return statement, so you have to do a bit of
logic digging yourself.

“Access disallowed from scripts at <URL> to documents at <URL>”
“Access is denied”
These messages (NN and IE versions, respectively) indicate that a script in one frame or window
is trying to access information in another frame or window that has been deemed a potential
security threat. Such threats include any location object property or other information about
the content of the other frame when the other frame’s document comes from a protocol, server,
or host that is different from the one serving up the document doing the fetching.

Even the best of intentions can be thwarted by these security restrictions. For example, you
may be developing an application that blends data in cooperation with another site. Security
restrictions, of course, don’t know that you have a cooperative agreement with the other Web
site, and you have no workaround for accessing a completely different domain unless you use
signed scripts for NN (see Chapter 46) or an IE user has browser security levels set danger-
ously loose.

Another possible trigger for these errors is that you are using two different servers in the
same domain or different protocols (for example, using https: for the secure part of your
commerce site, while all catalog info uses the http: protocol). If the two sites have the same
domain (for example, giantco.com) but different server names or protocols, you can set the
document.domain properties of documents so that they recognize each other as equals. See
Chapter 46 for details on these issues and the restrictions placed on scripts that mean well,
but that can be used for evil purposes.

IE, especially Windows versions, frequently clamps down too severely on inter-window and
inter-frame communication. Don’t be surprised to encounter security problems trying to
communicate between a main window and another window whose content is dynamically
generated by scripts in the main window. This error can be incredibly frustrating. Sometimes,
serving the main page from a server (instead of reading it from a local hard disk) can solve
the problem, but not always. You are safest if the content of both windows or frames are
documents served from the same server and domain.

BC286 Part VI ✦ Bonus Chapters

“Unspecified error”
This completely unhelpful IE error message is not a good sign because it means that what-
ever error is occurring is not part of the well-traveled decision tree that the browser uses to
report errors. All is not lost, however. That the browser has not crashed means that you can
still attempt to get at the root of the problem through various tracing tactics described later
in this chapter.

“Uncaught exception”
You may encounter these messages in NN6+/Moz, although usually not as a result of your
scripts unless you are using some of the browser’s facilities to dive into inner workings of the
browser. These messages are triggered by the browser’s own programming code, and indicate
a processing error that was not properly wrapped inside error trapping mechanisms. The
details associated with such an error point to the Mozilla browser’s own source code modules
and internal routines. If you can repeat the error and can do so in a small test case page, you
are encouraged to submit a report to http://bugzilla.mozilla.org, the bug tracking site
for the Mozilla browser.

“Too many JavaScript errors”
You may see this message in NN if it detects a runaway train generating errors uncontrollably.
This message was far more important in the days of separate error windows, because a buggy
repeat loop could cause NN to generate more error windows than it could do safely.

Warnings in Mozilla’s Console
The Mozilla browser’s JavaScript Console window reports both outright errors and another
class of notices called warnings. Whereas an error may cause script execution to stop, a warn-
ing is generally less catastrophic. A warning typically alerts the content author of looming
problems, such as deprecated DOM terms that are still supported merely for backward
compatibility — but that should be avoided going forward.

Another common warning advises that the server delivered some external content without
correct headers. This happens frequently when a server supplies .css filters for link elements
without the correct content-type header (text/css or similar). These are server configuration
issues that should be fixed if they’re under your control. You may turn off warnings in the
JavaScript Console window by clicking the Errors button.

Sniffing Out Problems
It doesn’t take many error-tracking sessions to get you in the save-switch-reload mode quickly.
Assuming that you know this routine (described in Chapter 3), the following are some tech-
niques I use to find errors in my scripts when the error messages aren’t being helpful in
directing me right to the problem.

Check the HTML tags
Before I look into the JavaScript code, I review the document carefully to make sure that I’ve
written all my HTML tags properly. That includes making sure that all tags have closing angle
brackets and that all tag pairs have balanced opening and closing tags. Digging deeper, espe-
cially in tags near the beginning of scripts, I make sure that all tag attributes that must be

BC287Chapter 45 ✦ Debugging Scripts

enclosed in quotes have the quote pairs in place. Running your document through an HTML
validator can help you spot markup mistakes in complex documents. The W3C’s Markup
Validation Service is a good place to start (validator.w3c.org).

A browser may be forgiving about sloppy HTML as far as layout goes, but the JavaScript inter-
preter isn’t as accommodating. Finally, I ensure that the <script> tag pairs are in place (they
may be in multiple locations throughout my document) and that the type=”text/javascript”
attribute value has both of its quotes.

View the source
Your success in locating bugs by viewing the source in the browser varies widely with the
kind of content on the page and the browser you use. Very frequently, authors place perhaps
too much importance in what they see in the source window.

For a straight, no-frame HTML page, viewing the source provides a modicum of comfort by
letting you know that the entire page has arrived from the server. Some versions of NN might
flash a questionable HTML construction, but don’t expect miracles.

NN4 exhibits a notorious bug in the source view if your HTML tags include style attributes for
element-specific stylesheets. You may “see double” in these lines, whereby the style attribute
appears to be repeated (although usually beginning with “ttyle...”) in what looks to be gib-
berish. This problem is a bug in the source viewer and does not accurately represent what
the browser-rendering engine is using as source code.

Examining the source code for framesetting documents or individual frames, you must first
give focus to the desired element. For an individual frame, click in the frame, and then right-
click (or Ctrl-click on the Mac) on the frame’s background to get the contextual menu. One
of the items should indicate a source view of the frame. To view the framesetter’s source,
press the Tab key until the Address/Location field of the browser is selected. Then choose
to view the source from the Edit menu.

Where the source view would be most helpful, but often fails, is to display dynamically gener-
ated HTML. Your best chance will be for pages whose entire content is generated by script.
This is about the only place you can appreciate the difference between document.write()
and document.writeln(), because the latter puts carriage returns after the end of each string
passed as a parameter to the method. The result is a more readable source view. Most recent
browsers, with the exception of NN6+/Moz, display the HTML as written by your script. NN4
does this in a window whose URL indicates the wysiwyg: protocol — an internal indication of
dynamically generated content.

But when only part of the page is generated by script, few browsers combine the hard-wired
and dynamic code in the source view. Instead, you see only the hard-wired HTML and scripts.
To work around this for IE4+ and NN6+, you can use the embeddable Evaluator (later in this
chapter) and read the innerHTML property of any elements you want.

Timing problems
One problem category that is very difficult to diagnose is the so-called timing problem. There
are no hard-and-fast rules that govern when you are going to experience such a problem. Very
experienced scripters develop an instinct about when timing is causing a problem that has no
other explanation.

Note

BC288 Part VI ✦ Bonus Chapters

A timing problem usually means that one or more script statements are executing before the
complete action of an earlier statement has finished its task. JavaScript runs within a single
thread inside the browser, meaning that only one statement can run at a time. But there are
times when a statement invokes some browser service that operates in its own thread and
therefore doesn’t necessarily finish before the next JavaScript statement runs. If the next
JavaScript statement relies on the previous statement’s entire task having been completed,
the script statement appears to fail, even though it actually runs as it should.

These problems crop up especially when scripts work with another browser window, and
especially in IE for Windows (ironic in a way). In discussions in this book about form field
validation, for example, I recommend that after an instructive alert dialog box notifies the user
of the problem with the form, the affected text field should be given focus and its content
selected. In WinIE, however, after the user closes the alert dialog box, the script statements
that focus and select operate before the operating system has finished putting the alert away
and refreshing the screen. The result is that the focused and selected text box loses its focus
by the time the alert has finally disappeared.

The solution is to artificially slow down the statements that perform the focus and select oper-
ations. By placing these statements in a separate function, and invoking this function via the
window.setTimeout() method, the browser catches its breath before executing the separate
function — even when the delay parameter is set to zero. A similar delay is utilized when open-
ing and writing to a new window, as shown in the example for window.open() in Chapter 16.

Reopen the file
If I make changes to the document that I truly believe should fix a problem, but the same
problem persists after a reload, I reopen the file via the File menu. Sometimes, when you run
an error-filled script more than once, the browser’s internals get a bit confused. Reloading
does not clear the bad stuff, although sometimes an unconditional reload (clicking Reload
while holding Shift) does the job. Reopening the file, however, clears the old file entirely from
the browser’s memory and loads the most recently fixed version of the source file. I find this
situation to be especially true with documents involving multiple frames and tables and those
that load external .js script library files. In severe cases, you may even have to restart the
browser to clear its cobwebs, but this is less necessary in recent browsers. You should also
consider turning off the cache in your development browser(s).

Find out what works
When an error message supplies little or no clue about the true location of a runtime problem,
or when you’re faced with crashes at an unknown point (even during document loading), you
need to figure out which part of the script execution works properly.

If you have added a lot of scripting to the page without doing much testing, I suggest remov-
ing (or commenting out) all scripts except the one(s) that may get called by the document’s
onload event handler. This is primarily to make sure that the HTML is not way out of whack.
Browsers tend to be quite lenient with bad HTML, so that this tactic won’t necessarily tell
the whole story. Next, add back the scripts in batches. Eventually, you want to find where the
problem really is, regardless of the line number indicated by the error message alert.

BC289Chapter 45 ✦ Debugging Scripts

To narrow down the problem spot, insert one or more alert dialog boxes into the script
with a unique, brief message that you will recognize as reaching various stages (such as
alert(“HERE-1”)). Start placing alert dialog boxes at the beginning of any groups of state-
ments that execute and try the script again. Keep moving these dialog boxes deeper into the
script (perhaps into other functions called by outer statements) until the error or crash
occurs. You now know where to look for problems. See also an advanced tracing mechanism
described later in this chapter.

Comment out statements
If the errors appear to be syntactical (as opposed to errors of evaluation), the error message
may point to a code fragment several lines away from the problem. More often than not, the
problem exists in a line somewhere above the one quoted in the error message. To find the
offending line, begin commenting out lines one at a time (between reloading tests), starting
with the line indicated in the error message. Keep doing this until the error message clears
the area you’re working on and points to some other problem below the original line (with
the lines commented out, some value is likely to fail below). The most recent line you com-
mented out is the one that has the beginning of your problem. Start looking there.

Check runtime expression evaluation
I’ve said many times throughout this book that one of the two most common problems
scripters face is an expression that evaluates to something you don’t expect (the other
common problem is an incorrect object reference). In lieu of a debugger that would let you
step through scripts one statement at a time while watching the values of variables and
expressions, you have a few alternatives to displaying expression values while a script runs.

The simplest approaches to implement are an alert box and the status bar. Both the alert dia-
log box and status bar show you almost any kind of value, even if it is not a string or number.
An alert dialog box can even display multiple-line values.

Because most expression evaluation problems come within function definitions, start such
explorations from the top of the function. Every time you assign an object property to a vari-
able or invoke a string, math, or date method, insert a line below that line with an alert()
method or window.status assignment statement (window.status = someValue) that
shows the contents of the new variable value. Do this one statement at a time, save, switch,
and reload. Study the value that appears in the output device of choice to see if it’s what you
expect. If not, something is amiss in the previous line involving the expression(s) you used to
achieve that value.

This process is excruciatingly tedious for debugging a long function, but it’s absolutely essen-
tial for tracking down where a bum object reference or expression evaluation is tripping up
your script. When a value comes back as being undefined or null, more than likely the problem
is an object reference that is incomplete (for example, trying to access a frame without the
parent.frames[i] reference), using the wrong name for an existing object (check case), or
accessing a property or method that doesn’t exist for that object.

When you need to check the value of an expression through a long sequence of script state-
ments or over the lifetime of a repeat loop’s execution, you are better off with a listing of values
along the way. In the section “A Simple Trace Utility” later in this chapter, I show you how to
capture trails of values through a script.

BC290 Part VI ✦ Bonus Chapters

Debugging Tools
For a truly interactive debugger to work effectively with client-side JavaScript, the debugger
must be highly integrated into the browser. This appears to have been a primary stumbling
block in the availability of JavaScript debuggers. At best, we have some browser-specific
debuggers, but this leaves other browsers completely out in the cold. The only browsers that
have debuggers available for them are Internet Explorer for Windows, Netscape 4, and Mozilla.

WinIE Script Debugger
You can download the Microsoft Script Debugger and documentation from http://msdn.
microsoft.com/downloads/list/webdev.asp. The debugger that is being used with IE6 is
essentially the same debugger that has been around since IE4.

After you install the Script Debugger, you must tell your copy of IE to enable it. Go to the
Tools ➪ Internet Options menu, click on the Advanced tab, and look for the “Disable script
debugging” item in the Browsing category. Make sure that this box is unchecked. For good
measure, quit and relaunch the browser. If script errors appear as usual, without an option
letting you go into the debugger, help it along by choosing View ➪ Script Debugger ➪ Open.

When a runtime error occurs, you will be brought to the Debugger window, which will highlight
the affected line. Script execution is paused, allowing you to inspect the value of variables and
such. Open the Command window, and type any variable name (local or global) that should
be active at the paused line. Press Enter, and the next line of the Command window shows the
value of that variable.

You can also explicitly set breakpoints in the code, and single-step through the code. At each
step, you can enter another variable name or property reference to see its current value.

Be prepared, however, for a less than satisfactory experience with this debugger. If your scripts
are loaded from external .js files, the debugger does not track that code or line numbers reli-
ably. In fact, it’s not uncommon for the debugger to open with the completely wrong line of
code highlighted, making single stepping impossible. Simply said, don’t bring high expecta-
tions to the Script Debugger.

Perhaps Microsoft would rather you use the more sophisticated debugging facilities of their
Visual Studio development software. It is a rather expensive solution if all you need is script
debugging.

Mozilla’s Venkman Debugger
When you install the Mozilla browser, you automatically receive its debugger, codenamed
Venkman. This is a new component designed for the new Mozilla browser generation. You
may also install it into Netscape 7 and other Mozilla-based browsers.

Access the debugger via the Tools->Web Development menu. With the debugger open, any
script error brings the debugger window to the front, with execution paused at the problem
line. If the code is from an external .js file, that file’s source code is displayed, with the prob-
lem line highlighted. This debugger automatically tracks objects and their property values in
one of the window’s panes. You may also set breakpoints in code so that you can single-step
through code and observe values at each step.

For more information about Venkman, visit www.mozilla.org/projects/venkman. To obtain
the latest copy and pointers to documentation, visit www.hacksrus.com/~glinda/venkman.

BC291Chapter 45 ✦ Debugging Scripts

Using the embeddable Evaluator
As soon as a page loads or after some scripts run, the window contains objects whose proper-
ties very likely reveal a lot about the environment at rest (that is, not while scripts are running).
Those values are normally disguised from you, and the only way to guarantee successful access
to view those values is through scripting within the same window or frame. That’s where the
embeddable Evaluator comes in handy.

As you probably recall from Chapter 13 and the many example sections of Parts III and IV of this
book, the code within the standalone Evaluator provides two text boxes for entry of expres-
sions (in the top box) and object references (the bottom box). Results of expression evalua-
tion and object property dumps are displayed in the Results textarea between the two input
boxes. A compact version of The Evaluator is contained by a separate library version called
evaluator.js (located in the Chapter 45 folder of listings on the CD-ROM). As you embark
on any substantial page development project, you should link in the library with the following
tag at the top of your head section:

<script type=”text/javascript” src=”evaluator.js”></script>

Be sure to either have a copy of the evaluator.js file in the same directory as the document
under construction or specify a complete file: URL to the library file on your hard drive for
the SRC attribute.

Immediately above the closing body tag of your document, include the following:

<script type=”text/javascript”>
printEvaluator();
</script>

If your page contains lots of positioned content, you’ll need to put The Evaluator into its own
positioned layer, out of the way of your primary content. For example:

<div style=”position:absolute; top:800px; left:100px”>
<script type=”text/javascript”>
printEvaluator();
</script>

</div>

The printEvaluator() function draws a horizontal rule (hr) followed by the complete control
panel of The Evaluator, including the codebase principal support for NN4+/Moz. From this
control panel, you can reference any document object supported by the browser’s object
model or global variable. You can even invoke functions located in other scripts of the page
by entering them into the top text box. Whatever references are available to other scripts on
the page are also available to The Evaluator, including references to other frames of a frame-
set and even other windows (provided a reference to the newly opened window has been pre-
served as a global variable, as recommended in Chapter 16).

If you are debugging a page on multiple browsers, you can switch between the browsers and
enter property references into The Evaluator on each browser and make sure all browsers
return the same values. Or, you can verify that a DOM object and property are available on
all browsers under test. If you are working on W3C DOM–compatible browsers, invoke the
walkChildNodes() function of The Evaluator to make sure that modifications your scripts
make to the node tree are achieving the desired goals. Experiment with direct manipulation
of the page’s objects and node tree by invoking DOM methods as you watch the results on
the page.

BC292 Part VI ✦ Bonus Chapters

You should be aware of only two small cautions when you embed The Evaluator into the
page. First, The Evaluator declares its own one-letter lowercase global variable names (a
through z) for use in experiments. Your own code should therefore avoid one-letter global
variables (but local variables, such as the i counter of a for loop, are fine provided they
are initialized inside a function with a var keyword). Second, while embedding The Evaluator
at the bottom of the page should have the least impact on the rest of your HTML and scripts,
any scripts that rely on the length of the document.forms array will end up including
the form that is part of The Evaluator. You can always quickly turn off The Evaluator by
commenting out the printEvaluator() statement in the bottom script to test your page
on its own.

The embeddable Evaluator is without question the most valuable and frequently used debug-
ging tool in my personal arsenal. It provides x-ray vision into the object model of the page at
any resting point.

Emergency evaluation
Using The Evaluator assumes that you thought ahead of time that you want to view property
values of a page. But what if you haven’t yet embedded The Evaluator, and you encounter a
state that you’d like to check out without disturbing the currently loaded page?

To the rescue comes the javascript: URL and the Location/Address box in your browser’s
toolbar. By invoking the alert() method through this URL, you can view the value of any
property. For example, to find out the content of the cookie for the current document, enter
the following into the Location/Address box in the browser:

javascript:alert(document.cookie)

Object methods or script functions can also be invoked this way, but you must be careful to
prevent return values from causing the current page to be eliminated. If the method or func-
tion is known to return a value, you can display that value in an alert dialog box. The syntax
for a function call is:

javascript:alert(myFunction(“myParam1”))

And if you want to invoke a function that does not necessarily return a value, you should also
protect the current page by using the void operator, as follows:

javascript:void myFunction(“myParam1”)

One more way to grab a “snapshot” of the current document tree, complete with all tags, is to
use the following pseudo-URL in the Location/Address box:

javascript: “<textarea cols=120 rows=40>” + document.body.parentNode.innerHTML +
“</textarea>”

When you execute this script, the current page goes away, replaced by a page containing a
textarea filled with the current HTML state of the entire document (except for the <html>
tag). If your scripts perform document tree modification, and you want to observe the cur-
rent tree state, this command acts as a cross-browser x-ray into the document. You should
consider making a bookmark out of the above URL, and keep it handy.

BC293Chapter 45 ✦ Debugging Scripts

A Simple Trace Utility
Single-stepping through running code with a JavaScript debugger is a valuable aid when you
know where the problem is. But when the bug location eludes you, especially in a complex
script, you may find it more efficient to follow a rapid trace of execution and viewing interme-
diate values along the way. The kinds of questions that this debugging technique addresses
include:

✦ How many times is that loop executing?

✦ What are the values being retrieved each time through the loop?

✦ Why won’t the while loop exit?

✦ Are comparison operators behaving as I’d planned in if...else constructions?

✦ What kind of value is a function returning?

A bonus feature of the embeddable Evaluator is a simple trace utility that lets you control where
in your running code values can be recorded for viewing after the scripts run. The resulting
report you get after running your script can answer questions like these and many more.

The trace() function
Listing 45-1 shows the trace() function that is built into the evaluator.js library file. By
embedding the Evaluator into your page under construction, you can invoke the trace()
function wherever you want to capture an interim value.

Listing 45-1: trace() function

function trace(flag, label, value) {
if (flag) {

var msg = “”;
if (trace.caller) {

var funcName = trace.caller.toString();
funcName = funcName.substring(9, funcName.indexOf(“)”) + 1);
msg += “In “ + funcName + “: “;

}
msg += label + “=” + value + “\n”;
document.forms[“ev_evaluator”].ev_output.value += msg;

}
}

The trace() function takes three parameters. The first, flag, is a Boolean value that deter-
mines whether the trace should proceed (I show you a shortcut for setting this flag later).
The second parameter is a string used as a plain-language way for you to identify the value
being traced. The value to be displayed is passed as the third parameter. Virtually any type of
value or expression can be passed as the third parameter — which is precisely what you want
in a debugging aid.

BC294 Part VI ✦ Bonus Chapters

Only if the flag parameter is true does the bulk of the trace() function execute. The first
task is to extract the name of the function from which the trace() function was called. By
retrieving the rarely used caller property of a function, the script grabs a string copy of the
entire function that has just called trace(). A quick extraction of a substring from the first
line yields the name of the function. That information becomes part of the message text that
records each trace. The message identifies the calling function followed by a colon; after that
comes the label text passed as the second parameter plus an equal sign and the value param-
eter. The format of the output message adheres to the following syntax:

In <funcName>: <label>=<value>

The results of the trace — one line of output per invocation — are appended to the Results
textarea in The Evaluator. It’s a good idea to clear the textarea before running a script that
has calls to trace() so that you can get a clean listing.

Preparing documents for trace.js
As you build your document and its scripts, you need to decide how granular you want tracing
to be: global or function-by-function. This decision affects at what level you place the Boolean
“switch” that turns tracing on and off.

You can place one such switch as the first statement in the first script of the page. For exam-
ple, specify a clearly named variable and assign either false or zero to it so that its initial
setting is off:

var TRACE = 0;

To turn debugging on at a later time, simply edit the value assigned to TRACE from zero to one:

var TRACE = 1;

Be sure to reload the page each time you edit this global value.

Alternatively, you can define a local TRACE Boolean variable in each function for which you
intend to employ tracing. One advantage of using function-specific tracing is that the list of
items to appear in the Results textarea will be limited to those of immediate interest to you,
rather than all tracing calls throughout the document. You can turn each function’s tracing
facility on and off by editing the values assigned to the local TRACE variables.

Invoking trace()
All that’s left now is to insert the one-line calls to trace() according to the following syntax:

trace(TRACE,”label”,value);

By passing the current value of TRACE as a parameter, you let the library function handle the
decision to accumulate and display the trace. The impact on your running code is kept to a
one-line statement that is easy to remember. To demonstrate how to make the calls to trace(),
Listing 45-2 shows a pair of related functions that convert a time in milliseconds to the string
format “hh:mm”. To help verify that values are being massaged correctly, the script inserts a
few calls to trace().

BC295Chapter 45 ✦ Debugging Scripts

Listing 45-2: Calling trace()

function timeToString(input) {
var TRACE = 1;
trace(TRACE,”input”,input);
var rawTime = new Date(eval(input));
trace(TRACE,”rawTime”,rawTime);
var hrs = twoDigitString(rawTime.getHours());
var mins = twoDigitString(rawTime.getMinutes());
trace(TRACE,”result”, hrs + “:” + mins);
return hrs + “:” + mins;

}

function twoDigitString(val) {
var TRACE = 1;
trace(TRACE,”val”,val);
return (val < 10) ? “0” + val : “” + val;

}

After running the script, the Results box in The Evaluator shows the following trace:

In timeToString(input): input=976767964655
In timeToString(input): rawTime=Wed Dec 13 20:26:04 GMT-0800 2000
In twoDigitString(val): val=20
In twoDigitString(val): val=26
In timeToString(input): result=20:26

Having the name of the function in the trace is helpful in cases in which you might justifiably
reuse variable names (for example, i loop counters). You can also see more clearly when one
function in your script calls another.

One of the most valuable applications of the trace() function comes when your scripts accu-
mulate HTML that gets written to other windows or frames, or replaces HTML segments of the
current page. Because the source view may not display the precise HTML that you assembled,
you can output it via the trace() function to the Results box. From there, you can copy the
HTML and paste it into a fresh document to test in the browser by itself. You can also verify
that the HTML content is being formatted the way that you want it.

Browser Crashes
Each new browser generation is less crash-prone than its predecessor, which is obviously
good news for everyone. It seems that most crashes, if they occur, do so as the page loads.
This can be the result of some ill-advised HTML, or something happening as the result of
script statements that either run immediately as the page loads or in response to the onload
event handler.

BC296 Part VI ✦ Bonus Chapters

Finding the root of a crash problem is perhaps more time consuming because you must
relaunch the browser each time (and in some cases, even reboot your computer). But the basic
tactics are the same. Reduce the page’s content to the barest minimum HTML by commenting
out both scripts and all but head and body tags. Then begin enabling small chunks to test
reloading of the page. Be suspicious of meta tags inserted by authoring tools. Their removal
can sometimes clear up all crash problems. Eventually you will add something into the mix
that will cause the crash. It means that you are close to finding the culprit.

Preventing Problems
Even with help of authoring and debugging tools, you probably want to avoid errors in the
first place. I offer a number of suggestions that can help in this regard.

Getting structure right
Early problems in developing a page with scripts tend to be structural: knowing that your
objects are displayed correctly on the page; making sure that your <script> tags are complete;
and completing brace, parenthesis, and quoted pairs. I start writing my page by first getting
down the HTML parts — including all form definitions. Because so much of a scripted page
tends to rely on the placement and naming of interface elements, you will find it much easier
to work with these items after you lay them out on the page. At that point, you can start filling
in the JavaScript.

When you begin defining a function, repeat loop, or if construction, fill out the entire struc-
ture before entering any details. For example, when I define a function named verifyData(),
I enter the entire structure for it:

function verifyData() {

}

I leave a blank line between the beginning of the function and the closing brace in anticipation
of entering at least one line of code.

After I decide on a parameter to be passed and assign a variable to it, I may want to insert an
if construction. Again, I fill in the basic structure:

function verifyData(form) {
if (form.checkbox.checked) {

}
}

This method automatically pushes the closing brace of the function lower, which is what I
want — putting it securely at the end of the function where it belongs. It also ensures that I
line up the closing brace of the if statement with that grouping. Additional statements in the
if construction push down the two closing braces.

If you don’t like typing or don’t trust yourself to maintain this kind of discipline when you’re
in a hurry to test an idea, you should prepare a separate document that has templates for the
common constructions: <script> tags, function, if, if...else, for loop, while loop, and
conditional expressions. Then if your editor and operating system support it, drag and drop
the necessary segments into your working script.

BC297Chapter 45 ✦ Debugging Scripts

Build incrementally
The worst development tactic you can follow is to write tons of code before trying any of it.
Error messages may point to so many lines away from the source of the problem that it could
take hours to find the true source of difficulty. The save-switch-reload sequence is not painful,
so the better strategy is to try your code every time you have written a complete thought —
or even enough to test an intermediate result in an alert dialog box — to make sure that you’re
on the right track.

Test expression evaluation
Especially while you are learning the ins and outs of JavaScript, you may feel unsure about
the results that a particular string, math, or date method yields on a value. The longer your
scripted document gets, the more difficult it will be to test the evaluation of a statement.
You’re better off trying the expression in a more controlled, isolated environment, such as
The Evaluator. By doing this kind of testing in the browser, you save a great deal of time
experimenting by going back and forth between the source document and the browser.

Build function workbenches
A similar situation exists for building and testing functions, especially generalizable ones.
Rather than test a function inside a complex scripted document, drop it into a skeletal docu-
ment that contains the minimum number of user interface elements that you need to test the
function. This task gets difficult when the function is closely tied to numerous objects in the
real document, but it works wonders for making you think about generalizing functions for
possible use in the future. Display the output of the function in a text or textarea object or
include it in an alert dialog box.

Testing Your Masterpiece
If your background strictly involves designing HTML pages, you probably think of testing as
determining your user’s ability to navigate successfully around your site. But a JavaScript-
enhanced page — especially if the user enters input into fields or implements Dynamic HTML
techniques — requires a substantially greater amount of testing before you unleash it to the
online masses.

A large part of good programming is anticipating what a user can do at any point and then
being sure that your code covers that eventuality. With multiframe windows, for example,
you need to see how unexpected reloading of a document affects the relationships between
all the frames — especially if they depend on each other. Users will be able to click Reload at
any time or suspend document loading in the middle of a download from the server. How do
these activities affect your scripting? Do they cause script errors based on your current
script organization?

The minute you enable a user to type an entry into a form, you also invite the user to enter
the wrong kind of information into that form. If your script expects only a numeric value from
a field, and the user (accidentally or intentionally) types a letter, is your script ready to handle
that “bad” data? Or no data? Or a negative floating-point number?

BC298 Part VI ✦ Bonus Chapters

Just because you, as author of the page, know the “proper” sequence to follow and the “right”
kind of data to enter into forms, your users will not necessarily follow your instructions. In days
gone by, such mistakes were relegated to “user error.” Today, with an increasingly consumer-
oriented Web audience, any such faults rest solely on the programmer — you.

If I sound as though I’m trying to scare you, I have succeeded. I was serious in the early chap-
ters of this book when I said that writing JavaScript is programming. Users of your pages are
expecting the same polish and smooth operation (no script errors and certainly no crashes)
from your site as from the most professional software publisher on the planet. Don’t let them
or yourself down. Test your pages extensively on as many browsers and as many operating
systems as you can and with as wide an audience as possible before putting the pages on the
server for all to see.

✦ ✦ ✦

Security and
Netscape Signed
Scripts

The paranoia levels about potential threats to security and privacy
on the Internet are at an all-time high. As more people rely on

e-mail and Web site content for their daily lives and transactions, the
fears will only increase for the foreseeable future (an indeterminate
number of Web Weeks). As a jokester might say, though, “I may be
paranoid, but how do I know someone really isn’t out to get me?” The
answer to that question is that you don’t know, and such a person
may be out there.

But Web software developers are doing their darnedest to put up road-
blocks to those persons out to get you — hence, the many levels of
security that pervade browsers. Unfortunately, these roadblocks also
get in the way of scripters who have completely honest intentions.
Designing a Web site around these barriers is one of the greatest chal-
lenges that many scripters face.

Battening Down the Hatches
When Navigator 2 first shipped to the world way back in the previous
century (February 1996), it was the first browser released to include
support for Java applets and scripting — two entirely different but
often confused technologies. It didn’t take long for clever programmers
in the Internet community to find the ways in which one or the other
technology provided inadvertent access to client computer informa-
tion (such as reading file directories) and Web surfer activities (such
as histories of where you’ve been on the Net and even the passwords
you may have entered to access secure sites).

JavaScript, in particular, was the avenue that many of these program-
mers used to steal such information from Web site visitors’ browsers.
The sad part is that the same features that provide the access to the
information were intentionally made a part of the initial language to
aid scripters who would put those features to beneficial use in con-
trolled environments, such as intranets. But out in the Wild Wide Web,
a scripter could capture a visitor’s e-mail address by having the site’s
home page surreptitiously send a message to the site’s author without
the visitor even knowing it.

4646C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Exploring browser
security policies

Applying JavaScript to
Navigator security
mechanisms

Using Netscape
signed scripts

✦ ✦ ✦ ✦

BC300 Part VI ✦ Bonus Chapters

Word of security breaches of this magnitude not only circulated throughout the Internet, but
also reached both the trade and mainstream press. As if the security issues weren’t bad enough
on their own, the public relations nightmare compounded the sense of urgency to fix the prob-
lem. To that end, Netscape released two revised editions of Navigator 2. The final release of
that generation of browser, Navigator 2.02, took care of the scriptable security issues by turning
off some of the scripted capabilities that had been put into the original 2.0 version. No more
capturing visitors’ browser histories; no more local file directory listings; no more silent e-mail.
Users could even turn off JavaScript support entirely if they so desired.

The bottom line on security is that scripts are prevented from performing automated pro-
cesses that invade the private property of a Web author’s page or a client’s browser. Thus,
any action that may be suspect, such as sending an e-mail message, requires an explicit
action on the part of the user — clicking a Submit button, in this case — to carry it out.
Security restrictions must also prevent a Web site from tracking your activity beyond the
boundaries of that Web site.

When Worlds Collide
If a script tries to do something that is not allowed or is a potential personal security breach,
the browser reports the situation to the user. For example, browsers display a warning to the
user when a script in a subwindow tries to close the main window.

Another security error message often confuses scripters who don’t understand the possible
privacy invasions that can accrue from one window or frame having access to the URL infor-
mation in another window or frame. In WinIE5+, for example, an ominous error message —
“Access denied” — warns users of an attempt to access URL information from another frame
if that URL is from a different Web site.

Despite the fact that a scripted Web site may have even loaded the foreign URL into the other
frame, the security restrictions guard against unscrupulous usage of the ability to snoop in
other windows and frames.

The Java Sandbox
Much of the security model for JavaScript is similar to that originally defined for Java applets.
Applets had a potentially dangerous facility of executing Java code on the client machine.
That is a far cry from the original deployment of the World Wide Web as a read-only publishing
medium on the Internet. Here were mini-programs downloaded into a client computer that, if
unchecked, could have the same access to the system as a local software program.

Access of this type would clearly be unacceptable. Imagine the dismay caused by someone
clicking a link that said “Free Money,” only to have the linked page download an applet that
read or damaged local disk files unbeknownst to the user. In anticipation of pranksters, the
designers of Java and the Java virtual machine built in a number of safeguards to prevent
applets from gaining access to local machines. This mechanism is collectively referred to as
the sandbox, a restricted area in which applets can operate. Applets cannot extend their reach
outside of the sandbox to access local file systems and many sensitive system preferences.
Any applet runs only while its containing page is still loaded in the browser. When the page
goes away, so does the applet, without being saved to the local disk cache.

BC301Chapter 46 ✦ Security and Netscape Signed Scripts

JavaScript adopted similar restrictions. The language provided no read or write access to local
files beyond the highly regulated cookie file. Moreover, because JavaScript works more closely
with the browser and its documents than applets typically do, the language had to build in
extra restrictions to prevent browser-specific privacy invasions. For example, it was not possi-
ble for a script in one window to monitor the user’s activity in another window, including the
URL of the other window, if the page didn’t come from the same server as the first window.
Sometimes the restrictions on the JavaScript side are even more severe than in Java. For exam-
ple, while a Java applet is permitted to access the network anytime after the applet is loaded,
an applet is prevented from reaching out to the Net if the trigger for that transaction comes
from JavaScript via LiveConnect (see Chapter 44). Only partial workarounds are available.

Neither the Java nor JavaScript security blankets were fully bug-free at the outset. Some holes
were uncovered by the languages’ creators and others in the community. To their credit, Sun,
Netscape, and Microsoft are quick to plug any holes that are discovered. Although the plugs
don’t necessarily fix existing copies of insecure browsers out there, it means that a Bad Guy
can’t count on every browser to offer the same security hole for exploitation. That generally
makes the effort not worth the bother.

Security Policies
Netscape has defined security mechanism under the term policies. This usage of the word
mirrors that of institutions and governments: A policy defines the way potentially insecure or
invasive requests are handled by the browser or scripting language. NN4+/Mozilla includes
two different security policies: same origin and signed script policies. The same origin policy
dates back to Navigator 2, although some additional rules have been added to that policy as
Navigator has matured. The signed script policy started with NN4 and utilizes the state of the
art in cryptographic signatures of executable code inside a browser, whether that code is a
plug-in, a Java applet, or a JavaScript script. Because of the signed script facilities, NN4 was
designed to allow scripts to have wider range of control over the browser’s interior working
parts, provided the user granted permission for such activity (more about this later in the
chapter). These same facilities are built into today’s Mozilla-based browsers. NN3 included a
partially implemented prototype of another policy known as data tainting. Signed scripts
supersede data tainting, so if you encounter any writings about data tainting, you can ignore
them because the technology was abandoned long ago.

By and large, the same origin policy is in force inside IE3 and after. Precise details may not
match up with NN one-for-one, but the most common features are identical. The signed script
policy is implemented only in NN4+. While Microsoft offers digital signatures for some items
that may be embedded within an HTML page (such as ActiveX controls and other components),
scripts that are in an HTML page’s source code or linked in as a .js library cannot be signed
for IE. Although everything you read in this chapter about signed scripts applies only to NN4+,
you should find the next couple of sections informative even if you develop solely for IE.

The Same Origin Policy
The “origin” of the same origin policy means the protocol and domain of a source document.
If all of the source files currently loaded in the browser come from the same server and domain,
scripts in any one part of the environment can poke around the other documents. Restrictions
come into play when the script doing the poking and the document being poked come from
different origins. The potential security and privacy breaches this kind of access can cause
put this access out of bounds within the same origin policy.

BC302 Part VI ✦ Bonus Chapters

An origin is not the complete URL of a document. Consider the two popular URLs for
Netscape’s Web sites:

http://home.netscape.com
http://devedge.netscape.com

The protocol for both sites is http:. Both sites also share the same domain name: netscape.
com. But the sites run on two different servers: home and devedge (at least this is how the sites
appear to browsers accessing them; the physical server arrangement may be quite different).

If a frameset contains documents from the same server at netscape.com, and all frames are
using the same protocol, they have the same origin. Completely open and free access to infor-
mation, such as location object properties, is available to scripts in any frame’s document.
But if one of those frames contains a document from the other server, their origins don’t match.
A script in a document from one server would display an “access disallowed” or “permission
denied” error message if it tried to get the location property of that other document.

A similar problem occurs if you were creating a Web-based shopping service that displays the
product catalog in one window and displays the order form from a secure server in another
window. The order form, whose protocol might be https:, would not be granted access to
the location object properties in a catalog page whose protocol is http:, even though both
share the same server and domain name.

Setting the document.domain
When both pages in an origin-protected transaction are from the same domain (but different
servers or protocols), you can instruct JavaScript to set the document.domain properties of
both pages to the domain that they share. When this property is set to that domain, the pages
are treated as if from the same origin. Making this adjustment is safe, because JavaScript
doesn’t allow setting the document.domain property to any domain other than the origin of
the document making the setting. See the document.domain property entry in Chapter 18 for
further details.

Origin checks
Scattered throughout the language reference chapters are notes about items that undergo
what you now know to be origin checks. For the sake of convenience, I list them all here to
help you get a better feeling for the kind of information that is protected. The general rule is
that any object property or method that exposes a local file in a user’s system or can trace
Web surfing activity in another window or frame undergoes an origin check. Failure to satisfy
the same origin rule yields an “access disallowed” or “permission denied” error message on
the client’s machine.

Window object checks
The document object models of windows and frames that don’t share the same origin are not
available to each other. Each separate origin window or frame is its own little world that has
very little ability to communicate with another window or frame. IE sometimes takes this to
the extreme, causing problems between a main window and a subwindow whose content is
entirely dynamically generated from the main window’s scripts.

Location object checks
All location object properties are restricted to same origin access. Of all same origin policy
restrictions, this one seems to interfere with well-meaning page authors’ plans when they
want to provide a frame for users to navigate around the Web. Such access, however, would
allow spying on your users.

BC303Chapter 46 ✦ Security and Netscape Signed Scripts

Document object checks
A document object’s properties are by necessity loaded with information about the content of
that document. Just about every property other than the ones that specify color properties
are off-limits if the origin of the target document is different from the one making the request:

anchors[] lastModified
applets[] length
cookie links[]
domain referrer
embeds title
forms[] URL

In addition, no normally modifiable document property can be modified if the origin check
fails. This, of course, does not prevent you from using document.write() to write an entirely
new page of content to the frame to replace a document from a different origin. But in IE4+
and W3C DOM browsers, scripts from one origin won’t be able to modify (or even copy) par-
tial content from a frame whose content comes from another origin.

NN4 layer object checks
Although most of a NN4 layer’s content is protected by the restrictions that apply to the
document object inside, a layer object also has a potentially revealing src property. This is
essentially similar to the location.href property of a frame. Thus the src property requires
an origin check before yielding its information.

Form object checks
Form data is generally protected by the restriction to a document’s forms[] array. But should
a script in another window or frame also know the name of the form, that, too, won’t enable
access unless both documents come from the same origin.

Applet object checks
The same goes for named Java applets. A script cannot retrieve information about the class
filename unless both documents are from the same origin (although the applet can be from
anywhere).

LiveConnect access from a Java applet to JavaScript is not an avenue to other windows and
frames from other origins. Any calls from the applet to the objects and protected properties
described here undergo origin checks when those objects are in other frames and windows.
The applet assumes the origin of the document that contains the applet, not the applet
codebase.

Image object checks
While image objects are accessible from other origins, their src and lowsrc properties are
not. These URLs could reveal some or all the URL info about the document containing them.

Linked script library checks
To prevent a network-based script from hijacking a local script library file, NN4+ prevents a
page from loading a file: protocol library in the src attribute of a <script> tag unless the
main document also comes from a file: protocol source. If you are beginning to think that
security engineers are a suspicious and paranoid lot, you are starting to get the idea. It’s not
easy to curb potential abuses of Bad Guys in a networked environment initially established
for openness and free exchange of information among trusted individuals.

BC304 Part VI ✦ Bonus Chapters

The Netscape Signed Script Policy
Just as there are excellent reasons to keep Web pages from poking around your computer and
browser, there are equally good reasons to allow such access to a Web site you trust not to be
a Bad Guy. To permit trusted access to the client machine and browser, Sun Microsystems and
Netscape (in cooperation with other sources) developed a way for Web application authors
to identify themselves officially as authors of the pages and to request permission of the user
to access well-defined parts of the computer system and browser.

The technology is called object signing. In broad terms, object signing means that an author
can electronically lock down a chunk of computer code (whether it be a Java applet, a plug-in,
or a script) with the electronic equivalent of a wax seal stamped by the author’s signet ring. At
the receiving end, a user is informed that a sealed chunk of code is requesting some normally
protected access to the computer or browser. The user can examine the “seal” to see who
authored the code and the nature of access being requested. If the user trusts the author not
to be a Bad Guy, the user grants permission for that code to execute; otherwise the code does
not run at all. Additional checks take place before the code actually runs. That electronic “seal”
contains an encrypted, reduced representation of the code as it was locked by the author. If
the encrypted representation cannot be re-created at the client end (it takes only a fraction of
a second to check), it means the code has been modified in transit and will not run.

In truth, nothing prevents an author from being a Bad Guy, including someone you may nor-
mally trust. The point of the object signing system, however, is that a trail leads back to the
Bad Guy. An author cannot use this technology to sneak into your computer or browser with-
out your explicit knowledge and permission.

Signed objects and scripts
A special version of the signed object technology is the one that lets scripts be locked down
by their author and electronically signed. Virtually any kind of script in a document can be
signed: a linked .js library, scripts in the document, event handlers, and JavaScript entities.
As described later in this chapter, you must prepare your scripts for being signed, and then
run the entire page through a special tool that attaches your electronic signature to the scripts
within that page.

What you get with signed scripts
If you sign your scripts and the user grants your page permission to do its job, signed scripts
open up your application to a long list of capabilities, some of which border on acting like gen-
uine local applications. Because the designers of NN4+ know that signed scripts are available
to authors, a huge number of properties and actions are exposed to authors.

The most obvious power you get with signed scripts is freedom from the restrictions of the
same origin policy. All object properties and methods that perform origin checks for access
in other frames and windows become available to your scripts without any special interaction
with the user beyond the dialog box that requests the one-time permission for the page.

Some operations that normally display warnings about impending actions — sending a form to
a mailto: URL or closing the main browser window under script control — lose those warning
dialog boxes if the user grants the appropriate permission to a signed script. Object proper-
ties considered private information, such as individual URLs stored in the history object and
browser preferences, are opened up, including the possibility of altering browser preferences.

BC305Chapter 46 ✦ Security and Netscape Signed Scripts

Existing windows can have their chrome elements hidden. New windows can be set to be
always raised or lowered, sized to very small sizes, or positioned offscreen. The dragdrop
event of a window reveals its URL. All of these are powerful points of access, provided the
user grants permission.

Again, however, I emphasize that these capabilities are accessible via Netscape’s signed
script policy only. Internet Explorer, at least through Version 6, does not support Netscape’s
signed script policy.

The Digital Certificate
Before you can sign a script or other object, you must apply for a digital certificate. A digital
certificate (also called a digital id) is a small piece of software that gets downloaded and bound
to the developer’s Navigator browser on a particular computer. Each downloaded digital cer-
tificate is accessible from the Privacy & Security window of Navigator 7’s Preferences, which
are found by selecting Preferences from the Edit menu. Open the Privacy & Security category
by double-clicking it, which reveals a list of subcategories. The Certificates category contains
a button named Manage Certificates, which leads you to the Certificate Manager. The Certificate
Manager displays a list of the certificates currently available on your system. If you have not
yet applied for a certificate, the list is empty. When you sign a page with the certificate, infor-
mation about the certificate is included in the file generated by the signing tool.

Possession of a certificate makes you what is known as a principal. If a user loads a page that
has signed “stuff” in it, a security alert advises the user that a Web site is requesting enhanced
privileges.

Certificates are issued by organizations established as certificate authorities. A certificate
authority (known as a ca for short), or a certificate server authorized by a ca, registers appli-
cants and issues certificates to individuals and software developers. When you register for a
certificate, the ca queries you for identification information, which it verifies as best it can.
The certificate that is issued to you identifies you as the holder of the certificate. Under the
“Authorities” category of the Security Manager window are the certificate authorities loaded
into the browser when you installed the browser. These are organizations that issue certifi-
cates. The ca of the organization that issues your certificate must be listed for you to sign
scripts.

How to get a certificate
You must visit a certificate vendor to obtain your certificate. The cost ranges from about $20
to many hundreds of dollars depending on the vendor and the type of certificate you want to
obtain. One vendor that is aware of the needs of Netscape object signing is Thawte Digital
Certificate Services (www.thawte.com). This ca offers a certificate expressly for developers
performing Netscape object signing. Verisign (www.verisign.com) is also recommended.

Because one of the foundations of a certificate is the identity of the certificate owner, registra-
tion requires submitting documentation that proves the identity of your organization. Each ca
has different requirements, so check the latest information at the ca’s enrollment Web site.
After the ca processes your application, the company sends you an e-mail message with a code
number to pick up your certificate at the ca’s Web site. The act of picking up the certificate is
actually downloading the certificate into your browser. Therefore, be sure you are using the
Navigator browser on the computer with which you will use to sign your pages.

BC306 Part VI ✦ Bonus Chapters

Activating the codebase principal
If you want to try out the capabilities available to signed scripts from a server without purchas-
ing a certificate (or without going through the signing process described later in this chapter
during script development and debugging), you can set up your copy of Navigator to accept
what is called a codebase principal in place of a genuine certificate. A codebase principal
means that the browser accepts the source file as a legitimate principal, although it contains
no identification as to the owner or certificate.

You can experiment with properties and methods that normally require signed scripts without
modifying the codebase principal preferences or signing scripts with a certificate. Each time
you activate the Privilege Manager (as The Evaluator does when you check the “Use NN
Codebase Security” checkbox), a security alert lets you elect to continue with the untrusted
access to your browser or system. Do not check the box in the alert dialog that remembers
this choice because it could leave your browser and system vulnerable to other unsigned
scripts without your knowledge.

Depending on which version of Navigator you are running, if you set up your browser for
codebase principals, you may not be able to verify a certificate that is presented to you when
accessing someone else’s Web site — even if it is a valid cryptographic certificate. Therefore,
even though secure requests won’t slip past you silently, your Navigator won’t necessarily
have the protective shield it normally does to identify certificate holders beyond the URL of
the code. Enable codebase principals only on a copy of Navigator that doesn’t venture beyond
your development environment. To activate codebase principals for your copy of Navigator,
follow these steps:

1. Quit Navigator.

2. Search your hard disk for a Navigator 4 support file named prefs.js or Navigator 6+
support file named all.js.

3. Edit the version-specific file in a text editor as follows:

a. For NN4, add the following line to the end of the prefs.js file:

user_pref(“signed.applets.codebase_principal_support”, true);

b. For NN6+, change the codebase_principal preference in all.js from false
to true:

pref(“signed.applets.codebase_principal_support”, true);

4. Save the file.

To deactivate codebase principals, quit Navigator and then change the true setting of the
affected line to false. Because NN/Moz rebuilds the preference file upon quitting, the entry
will be in alphabetical order rather than at the end of the file where you first entered it. This
preferences setting does not affect your ability to sign scripts with your certificate as described
in the rest of this chapter.

Signing Scripts
The process of signing scripts entails some new concepts for even experienced JavaScript
authors. You must use a separate signing tool program. You must also prepare the page that
bears scripts so that the tool and the object signing facilities of the browser can do their jobs.

Note

BC307Chapter 46 ✦ Security and Netscape Signed Scripts

Signing tool
Download the latest version of Netscape’s SignTool from links you find at http://developer.
netscape.com:80/software/signedobj/jarpack.html (you find different versions for a
variety of Windows and UNIX versions). This tool includes a utility program called a JAR
Packager. A JAR file is a special kind of zipped file collection that has been designed to work
with the Navigator security infrastructure. The letters of the name stand for Java ARchive,
which is a file format standard developed primarily by Sun Microsystems in cooperation with
Netscape and others.

A JAR file’s extension is .jar, and when it contains signed script information, it holds at least
one file, known as the manifest, or list of items zipped together in the file. Among the items in
the manifest is certificate information and data (a hash value code) about the content of the
signed items at the instant they were signed. In the case of a single page containing signed
scripts, the JAR file contains only the certificate and hash values of the signed scripts within
the document. If the document links in an external .js script library file, that library file is
also packaged in the JAR file. Thus, a page with signed scripts occupies space on the server
for the HTML file and its companion JAR file.

The SignTool program combines the JAR Packager with the script signing functions (originally
a separate program called zigbert.exe). Follow links on the SignTool download page to the
latest instructions on packaging and signing your finished files from the command line (there
is no gui for this tool). But before you reach that point, you need to compose your pages in a
way that the security mechanism can protect your scripts.

Preparing scripts for signing
Signifying which items in a page are script items that require signing is up to the page author.
It is important to remember that if you want to sign even one script element in a document,
every script in the document must be signed. By “document,” I mean an object model docu-
ment. Because the content of an NN4-only <layer> tag exists in its own document, you don’t
have to sign its scripts if they don’t require it, nor communicate with the signed scripts in the
main document.

The first concept you have to master is recognizing what a script is. For signing purposes, a
script is more than just the set of statements between a <script> and </script> tag bound-
ary. An event handler — even one that calls a function living in a <script> tag — is also a
script that needs signing. So, too, is a JavaScript entity used to supply a value to an HTML tag
attribute. Each one of these items is a script as far as script signing is concerned.

Your job is to mark up the file with special tag attributes that do two things: 1) help SignTool
know what items to sign in a file; and 2) help the browser loading the signed document know
what items to run through the hash routine again to compare against the values stored in the
JAR file.

The archive attribute
The first attribute goes in the first <script> tag of the file, preferably near the very top of the
document in the <head> portion. This attribute is the archive attribute, and its value is the
name of the JAR file to be associated with the HTML file. For example:

<script type=”text/javascript” archive=”myArchive.jar” id=”1”>

You can add script statements to this tag or immediately end it with a </script> tag.

BC308 Part VI ✦ Bonus Chapters

The SignTool utility uses the archive attribute to assign a name to its archive output file.
After the signed page loads into the visitor’s browser, the attribute points to the file contain-
ing signed script information. Having more than one JAR archive file associated with a signed
page is possible. Typically, such a situation calls for a second JAR archive overseeing a con-
fined portion of the page. That second archive file may even be embedded in the primary
archive file, allowing a script segment signed by one principal to be combined with scripts
signed by a different principal.

The id attribute
More perplexing to scripters coming to script signing for the first time is the id attribute. The
id attribute is merely a label for each script. Each script must have a label that is unique
among all labels specified for a JAR archive file.

As with the archive attribute, the id plays a dual role. When you run your page through
SignTool, the utility scans the page for these id attributes. When SignTool encounters one,
it calculates a hash value (something like a checksum) on the content of the script. For a
<script> tag set, it is for the entire content of the tag set; for an event handler, it is for the
event handler text. The hash value is associated with the id attribute label and stored inside
the JAR file. After the document loads into the client’s browser, the browser also scans for the
id attributes and performs the same hash calculations on the script items. Then the browser
can compare the id/hash value pairs against the list in the JAR file. If they match, then the file
has arrived without being modified by a Bad Guy (or a dropped bit in the network).

Most examples show id attribute values to be numbers, but the attributes are actually strings.
No sequence or relationship exists among id attribute values: you can use the names of your
favorite cartoon show characters, as long as no two id attributes are given the same name.
The only time the same id attribute value may appear in a document is if another JAR file is
embedded within the main JAR file. Even so, I recommend avoiding reusing names inside the
same HTML file, no matter how many JAR files are embedded.

With one exception, each script item in a document must have its own id attribute. The excep-
tion is a <script> tag that specifies a src attribute for an external .js file. That file is part of
the JAR file, so the browser knows it’s a signed script.

For other <script> tags, include the id attribute anywhere within the opening tag, as follows:

<script type=”text/javascript” id=”3”>
statements

</script>

For a function handler, the id attribute comes after the event handler inside the object tag,
as follows:

<input type=”button” value=”Calculate” onclick=”doCalc(this.form)” id=”bart” />

And for a JavaScript entity, the id attribute must be specified in an empty <script> tag
immediately before the tag that includes the entity for an attribute value, as follows:

<script id=”20”>
<input type=”text” name=”date” value=&{getToday()}; />

Listing 46-1 shows a skeletal structure of a document that references a single JAR file and
includes five signed scripts: one external .js file and four script items in the document itself.
The fetchFile() function invokes a function imported from access.js. Notice that the
archive attribute appears in the very first <script> tag in the document. This also happens
to be a tag that imports an external .js file, so that no id attribute is required. If there were

BC309Chapter 46 ✦ Security and Netscape Signed Scripts

no external library file for this page, the archive attribute would be located in the main
<script> tag, which also has the id attribute. I arbitrarily assigned increasing numbers as
the id attribute values, but I could have used any identifiers. Notice, too, that each script has
its own id value. Just because an event handler invokes a function in a <script> tag that has
an id value doesn’t mean a relationship exists between the id attribute values in the <script>
tag and in the event handler that invokes a function there.

Listing 46-1: Basic Signed Script Structure

<html>
<head>

<title>Signed Scripts Testing</title>
<script type=”text/javascript” archive=”myArchive.jar” src=”access.js”>
</script>
<script type=”text/javascript” id=”1”>
function fetchFile(form) {

form.output.value = getFile();
}
function newRaisedWindow() {

// statements for this function
}
</script>

</head>
<body>

A Source Code Example Only
<form>

<textarea name=”output” cols=”60” rows=”10” wrap=”virtual”>
</textarea>

<input type=”button” value=”Read File”
onclick=”this.form.output.value = ‘’; fetchFile(this.form);”
id=”2” />

<textarea name=”input” cols=”60” rows=”10” wrap=”virtual”>
</textarea>

<input type=”button” value=”Save File”
onclick=”setFile(this.form.input.value);” id=”3” />
<p><input type=”button” value=”New WindowÉ”

onclick=”newRaisedWindow();” id=”4” /></p>
</form>

</body>
</html>

Editing and moving signed scripts
The nature of the script signing process requires that even the slightest modification you
make to a signed script source code requires re-signing the page. For this reason, enabling
codebase principals while you create and debug your early code is a convenient alternative.

The rigid link between the hash value of a script element at both the signing and visitor load-
ing times means that you must exercise care when shifting an HTML file that contains signed
script elements between servers of differing operating systems. Windows, UNIX, and Macintosh
have different ways of treating carriage returns. If you change the representation of an HTML
source file when you move the source from, say, a Windows machine to a UNIX server, the

BC310 Part VI ✦ Bonus Chapters

signature may no longer work. However, if you perform a purely binary transfer of the HTML
files, every byte is the same, and the signature should work. This operating system-specific
text representation affects only how files are stored on servers, not how various client plat-
forms interpret the source code.

Accessing Protected Properties and Methods
For the browser to allow access to protected properties or methods, it must have its privileges
enabled. Only the user can grant permission to enable privileges, but it is up to your code to
request those privileges of the user.

Gaining privileges
NN4+ comes with some Java classes that allow signed scripts and other signed objects to dis-
play the privilege request alert windows, and then turn on the privileges if the user clicks the
“OK” or “Grant” button. A lot of these classes show up in the netscape.security package,
but scripters only work directly with one class and three of its methods:

netscape.security.PrivilegeManager.enablePrivilege([“targetName”])
netscape.security.PrivilegeManager.revertPrivilege([“targetName”])
netscape.security.PrivilegeManager.disablePrivilege([“targetName”])

The enablePrivilege() method is the one that displays the security alert for the user. In
NN4, the specific target named as a parameter influenced the details of the security alert
message; for NN6+, the security alert is generic (and far less intimidating).

If the user grants the privilege, script processing continues with the next statement. But if the
user denies access, then processing stops, and the PrivilegeManager class throws a Java
exception that gets displayed as a JavaScript error message. Later in this chapter I show you
how to gracefully handle the user’s denial of access.

Enabling a privilege in JavaScript is generally not as risky as enabling a Java applet. The latter
can be more easily hijacked by an alien class to piggyback on the trusted applet’s privileges.
Even though the likelihood of such activity taking place in JavaScript is very low, turning
privileges off after the statement that requires privileges is always a good idea. Use the
revertPrivilege() method to temporarily turn off the privilege; another statement that
enables the same privilege target will go right ahead without asking the user again. Disable
privileges only when the script requiring privileged access won’t be run again until the page
reloads.

Specifying a target
Rather than opening blanket access to all protected capabilities in one blow, the Netscape
security model defines narrow capabilities that are opened up when privileges are granted.
Each set of capabilities is called a target. Netscape defines dozens of different targets, but not
all of them are needed to access the kinds of methods and properties available to JavaScript.
You will likely confine your targets to the nine discussed here.

Because NN4’s security alerts provided (at times excruciating) detail about the nature of the
privilege being requested by the Web site, targets had various risk levels and categories. These
concerns are less of an issue in NN6+, but they are provided here for your more complete
understanding of the mechanisms beneath the Privilege Manager.

BC311Chapter 46 ✦ Security and Netscape Signed Scripts

Each target has associated with it a risk level (low, medium, or high) and two plain-language
descriptions about the kinds of actions the target exposes to code. This information appears
in the NN4 security privilege dialog box that faces a user the first time a particular signature
requests privileges. All of the targets related to scripted access are medium or high risk,
because they tend to open up local hard disk files and browser settings.

Netscape has produced two categories of targets: primitive and macro. A primitive target is the
most limited target type. It usually confines itself to either reading or writing of a particular
kind of data, such as a local file or browser preference. A macro target usually combines two
or more primitive targets into a single target to simplify the user experience when your scripts
require multiple kinds of access. For example, if your script must both read and write a local
file, it could request privileges for each direction, but the user would be presented with a quick
succession of two similar-looking security dialog boxes. Instead, you can use a macro target
that combines both reading and writing into the privilege. The user sees one security dialog
box, which, in NN4, explains that the request is for both read and write access to the local
hard disk.

Likely targets for scripted access include a combination of primitive and macro targets.
Table 46-1 shows the most common script-related targets and the information that appears
in the security dialog box.

For each call to netscape.security.PrivilegeManager.enablePrivilege(), you specify
a single target name as a string, as in

netscape.security.PrivilegeManager.enablePrivilege(“UniversalBrowserRead”);

This specification allows you to enable, revert, and disable individual privileges as required
in your script.

Table 46-1: Scripting-Related Privilege Targets

Target Name

Risk Short Description Long Description

Universal BrowserAccess
High Reading or modifying browser Reading or modifying browser data that may be considered

data private, such as a list of Web sites visited or the contents of
Web forms you may have filled in. Modifications may also
include creating windows that look like they belong to
another program or positioning windows anywhere on the
screen.

Universal BrowserRead
Medium Reading browser data Access to browser data that may be considered private,

such as a list of Web sites visited or the contents of Web
page forms you may have filled in.

Universal BrowserWrite
High Modifying the browser Modifying the browser in a potentially dangerous way,

such as creating windows that may look like they belong to
another program or positioning windows anywhere on the
screen.

Continued

BC312 Part VI ✦ Bonus Chapters

Table 46-1 (continued)

Target Name

Risk Short Description Long Description

Universal FileAccess
High Reading, modifying, or deleting This form of access is typically required by a program such

any of your files as a word processor or a debugger that needs to create,
read, modify, or delete files on hard disks or other storage
media connected to your computer.

Universal FileRead
High Reading files stored in your Reading any files stored on hard disks or other storage

computer media connected to your computer.

Universal FileWrite
High Modifying files stored in your Modifying any files stored on hard disks or other storage

computer media connected to your computer.

Universal PreferencesRead
Medium Reading preferences settings Access to read the current settings of your preferences.

Universal PreferencesWrite
High Modifying preferences settings Modifying the current settings of your preferences.

Universal SendMail
Medium Sending e-mail messages on

your behalf

Blending Privileges into Scripts
The implementation of signed scripts in Navigator protects scripters from many of the potential
hazards that Java applet and plug-in developers must watch for. The chance that a privilege
enabled in a script can be hijacked by code from a Bad Guy is very small. Still, exercising safe
practices in case you someday work with other kinds of signed objects is good practice.

Keep the window small
Privilege safety is predicated on limiting exposure according to two techniques. The first
technique is to enable only the level of privilege required for the protected access your
scripts need. For example, if your script only needs to read a normally protected document
object property, enable the UniversalBrowserRead target rather than the wider
UniversalBrowserAccess macro target.

The second technique is to keep privileges enabled only as long as the scripts need them
enabled. If a statement calls a function that invokes a protected property, enable the privilege
for that property in the called function, not at the level of the calling statement. If a privilege
is enabled inside a function, the browser automatically reverts the privilege at the end of the
function. Even so, if the privilege isn’t needed all the way to the end of the function, you should
explicitly revert it after you are through with the privilege.

BC313Chapter 46 ✦ Security and Netscape Signed Scripts

Think of the users
One other deployment concern focuses more on the user’s experience with your signed page.
You should recognize that the call to the Java PrivilegeManager class is a LiveConnect call
from JavaScript in NN4. Because the Java virtual machine does not start up automatically
when Navigator 4 does, a brief delay occurs the first time a LiveConnect call is made in a
session (the status bar displays “Starting Java...”). Such a delay may interrupt the user flow
through your page if, for example, a click of a button needs access to a privileged property.
Therefore, consider gaining permission for protected access as the page loads. Execute an
enablePrivilege() and revertPrivilege() method in the very beginning. If Java isn’t yet
loaded into the browser, the delay is added to the other loading delays for images and the
rest of the page. Thereafter, when privileges are enabled again for a specific action, neither
the security dialog box nor the startup delay get in the way for the user.

Also remember that users don’t care for security dialog boxes to interrupt their navigation. If
your page utilizes a couple of related primitive targets, at the outset enable the macro target
that encompasses those primitive targets. The user gets one security dialog box covering all
potential actions in the page. Then let your script enable and revert each primitive target as
needed.

Example
To demonstrate signed scripts in action, I show a page that accesses a typical target that
allows the script to open an always-raised new window. No error checking occurs for the
user’s denial of privilege in this example. Therefore, if you experiment with this page (either
with codebase principals turned on or signing them yourself), you will see the JavaScript
error that displays the Java exception. Error detection is covered later in the chapter.

Accessing a protected window property
Listing 46-2 is a small document that contains one button. The button calls a function that
opens a new window with the NN-proprietary alwaysRaised parameter turned on. Setting
protected window.open() parameters in NN4+ requires the UniversalBrowserWrite privilege
target. Inside the function, the privilege is enabled only for the creation of the new window.
For this simple example, I do not enable the privilege when the document loads.

Listing 46-2: Creating an alwaysRaised Window

<html>
<head>

<title>Simple Signed Script</title>
<script type=”text/javascript” archive=”myJar.jar” id=”1”>
function newRaisedWindow() {

netscape.security.PrivilegeManager.enablePrivilege(
“UniversalBrowserWrite”);

var newWindow =
window.open(“”,””,”HEIGHT=100,WIDTH=300,alwaysRaised”);

netscape.security.PrivilegeManager.disablePrivilege(
“UniversalBrowserWrite”);

Continued

BC314 Part VI ✦ Bonus Chapters

Listing 46-2 (continued)

var newContent = “<html><body>It\’s good to be the King!<\/b>”;
newContent += “<form><center><input type=’button’ value=’OK’”;
newContent +=

“onclick=’self.close()’><\/center><\/form><\/body><\/html>”;
newWindow.document.write(newContent);
newWindow.document.close();

}
</script>

</head>
<body>

This button generates an always-raised new window.
<form>

<input type=”button” value=”New ‘Always Raised’ Window”
onclick=”newRaisedWindow()” id=”2” />

</form>
</body>

</html>

Listing 46-2 has two script items that need signing: the <script> tag and the event handler for
the button. Also, the archive attribute points to the JAR file that contains the script signature.
Note that this example file is not signed, and therefore does not include a companion JAR
archive on the CD-ROM.

Handling Privilege Manager Errors
The change between the ways NN4 and NN6+ allows scripts to intercept errors causes no small
problem if you need to serve both browser versions. The primary reason you want to handle
errors is that when a user denies access to advanced privileges, the PrivilegeManager gen-
erates an error. Although the error is not destructive in any way, and it appears only in the
JavaScript Console window (NN4.5+), accounting for such factors is good coding practice.
Unfortunately, the mechanism that works for NN4 doesn’t work in NN6+; the mechanism that
works in NN6+ cannot even be placed in a page that loads into NN4 without generating syntax
errors. So, if you plan on still supporting NN4, you’ll need to serve up different pages for NN4
and NN6+.

For NN4, you can define an onerror() function that looks for the specific error message
thrown by the PrivilegeManager class through LiveConnect. That function looks like the
following:

function onerror(msg, URL, lineNum) {
var errorMsg = msg;
if (msg.indexOf(“ForbiddenTargetException”) != -1) {

errorMsg = “You have elected not to grant privileges to this script.”;
}
alert(errorMsg);
return true;

}

Of course, you don’t have to display any message, but it may be a good place to advise users
about what they’re missing by not granting privilege.

BC315Chapter 46 ✦ Security and Netscape Signed Scripts

For NN6+, you can use the native try...catch exception handling, which means that the
calls to the enablePrivilege() method of the PrivilegeManager class must be wrapped
inside a try block. The function from Listing 46-2 is modified as follows:

function newRaisedWindow() {
try {

netscape.security.PrivilegeManager.enablePrivilege(
“UniversalBrowserWrite”);

}
catch(err) {

alert(“You have elected not to grant privileges to this script.”);
return;

}
var newWindow = window.open(“”,””,”HEIGHT=100,WidTH=300,alwaysRaised”);
netscape.security.PrivilegeManager.disablePrivilege(“UniversalBrowserWrite”)
var newContent = “<html><body>It\’s good to be the King!”;
newContent += “<form><center><input type=’button’ value=’OK’”;
newContent += “onclick=’self.close()’ /></center></form></body></html>”;
newWindow.document.write(newContent);
newWindow.document.close();
return;

}

Signed Script Miscellany
In this last section of the chapter, I list some of the more esoteric issues surrounding signed
scripts. Three in particular are: 1) how to allow unsigned scripts in other frames, windows, or
layers to access signed scripts; 2) how to make sure your signed scripts are not stolen and
reused; and 3) special notes about international text characters.

Exporting and importing signed scripts
JavaScript provides an escape route that lets you intentionally expose functions from signed
scripts for access by unsigned pages. If such a function contains a trusted privilege without
careful controls on how that privilege is used, a page that is not as well intentioned as yours
could hijack the trust.

The command for exposing this function is export. The following example exports a function
named fileAccess():

export fileAccess;

A script in another window, frame, or layer can use the import command to bring that function
into its own set of scripts:

import fileAccess;

Even though the function is now also a part of the second document, it executes within the
context of the original document, whose signed script governs the privilege. For example, if
you exported a function that did nothing but enable a file access privilege, a Bad Guy who
studies your source code could write a page that imports that function into a page that now
has unbridled file access.

If you wish to share functions from signed scripts in unsigned pages loaded into your own
frames or layers, avoid exporting functions that enable privileges. Other kinds of functions,
if hijacked, can’t do the same kind of damage as a privileged function can.

BC316 Part VI ✦ Bonus Chapters

Locking down your signed pages
Speaking of hijacking scripts, it would normally be possible for someone to download your
HTML and JAR archive files and copy them to another site. When a visitor comes to that other
site and loads your copied page and JAR file, your signature is still attached to the scripts.
Although this may sound good from a copyright point of view, you may not want your signa-
ture to appear as coming from someone else’s Web server. You can, however, employ a quick
trick to ensure that your signed scripts work only on your server. By embedding the domain
of the document in the code, you can branch execution so that scripts work only if the file
comes from your server.

The following script segment demonstrates one way to employ this technique:

<script type=”text/javascript” archive=”myPage.jar” id=”1”>
if (document.URL.match(/^http:\/\/www.myDomain.com\//)) {

privileges statements execute only from my server
}
</script>

Even though this branching code is visible in the HTML file, the hash value of your code is
saved and signed in the archive. If someone modifies the HTML, the hash value that is recal-
culated when a visitor loads the page won’t match the JAR file manifest, and the script signa-
ture fails.

International characters
Although international characters are fine for HTML content, they should not be used in signed
scripts. The problem is that international characters are often converted to other character
sets for display. This conversion invalidates the signature, because the signed and recalculated
hash values don’t match. Therefore, do not put international characters in any signable script
item. If you must include such a character, you can escape it or, in NN4, put such scripts in
unsigned layers.

✦ ✦ ✦

Cross-Browser
Dynamic HTML
Issues

Version 4 browsers — NN4 and IE4 — were the first browsers to
include World Wide Web technologies that gave page authors

far more control over the display and interactive behavior of Web
page content. Lumped together under the heading of Dynamic HTML
(DHTML), these technologies dramatically extended the simple format-
ting of standard HTML that page authors had used for years. These
days, scripters and designers coming to Web development for the first
time take DHTML capabilities for granted; they are probably unaware
that plain ol’ HTML is little more than a specification to assign context
to static text and images on a page.

A lot of what the user gets with DHTML had previously been accom-
plished only via Java applets and plug-ins, such as early versions of
Shockwave (pre-Flash). Not that DHTML eliminates these technologies
from the Web author’s arsenal (DHTML doesn’t do sound or video, for
example), but because DHTML can accomplish much more of what
authors look for in assembling page content and layout without the
long downloads of applets or plug-in content, it becomes an attractive
way for nonprogrammers to spice up Web applications.

Perhaps categorizing DHTML authors as “nonprogrammers” is not
quite right. DHTML also adds significantly to the vocabulary required
to incorporate dynamic content into pages. Suddenly HTML becomes
a lot more programming than simply adding tags to existing content.
And if you want to do dynamic positioning of elements, be prepared
to put your JavaScript skills to use.

What Is DHTML?
You can practically find as many definitions of Dynamic HTML as there
are people to ask. My definition covers a broad range, because DHTML
is not really any one “thing.” Instead it is an amalgam of several tech-
nologies, each of which has a standards effort in varying stages of
readiness. The key technologies are as follows: Cascading Style Sheets
(CSS); Document Object Model (DOM); and client-side scripting. It will
help your authoring skills if you have a little historical perspective on
how the Web arrived at DHTML.

4747C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Introducing
Dynamic HTML

The common
denominator of
DHTML functionality
across browsers

Upgrading to modern
compatibility techniques

✦ ✦ ✦ ✦

BC318 Part VI ✦ Bonus Chapters

For many years, the HTML standard was intended for the rendering of static content — not
much more than an electronic version of a printed page. The most interactive part of a page
was a form, which included buttons to click and text boxes to fill in. But for anything to change
on the page, the content had to be served up again from the host computer.

Client-side scripting, as first implemented through JavaScript in NN2, opened the way for HTML
pages to not only contain some “smarts,” but also control individual pieces of content on the
page without fetching a modified page from the server. At first, only form control elements were
scriptable. Soon thereafter, images could be swapped, although the rectangular space for the
image was fixed when the page loaded. More dynamism accrued to pages in NN4 by way of
the layer, which acted like a borderless, transparent or opaque window that could contain its
own HTML document content and be positioned anywhere on the page, including overlapping
content on the main page or other layers. A layer’s entire content could be modified without
touching the rest of the page or other layers.

But the real breakthrough in dynamism came in IE4, whose rendering engine permitted any
element to be modified, inserted, or removed on the fly, while the rest of the page reflowed its
content quickly and automatically in response to the change. At the same time, an accepted
standard for stylesheets (Cascading Style Sheets) opened the way for scripts to modify the
look of content already on the page. Text could change colors when a cursor rolled atop it by
either adjusting the stylesheet property associated with the text or changing the stylesheet
rule that applies to the text.

Development activity at both Netscape and Microsoft eventually led to a standard for the
Document Object Model as a way for scripts to control HTML content directly. Unfortunately,
the browser makers frequently implemented first, and only then tried to establish their imple-
mentations as standards. Sometimes the implementations were not as complete as the stan-
dards became, leaving the browsers in states that only partially implement the standards,
while paying homage to legacy implementations. Netscape used the occasion of developing
an entirely new code base for what became the Mozilla browser family to try to sever some
ties with the past. In many respects the Mozilla browser represents the state of the standard
art as implemented so far. Newest versions of IE, on the other hand, must try to cater to both
the legacy implementation and the standards, creating a massive DOM implementation with
significant overlap in functionality with different syntaxes. Thus, the result of proprietary
explorations and industry standards is a choice of modern browsers that permit a wide range
of dynamic activity on content that reaches the browser. Browsers that had started life as
sleepy renderers of a tiny HTML vocabulary have grown into powerful front ends for server
applications, if not self-contained applications of a sort that execute entirely on the client
computer.

Standards for CSS, DOM, and ECMA scripting have been well covered earlier in this book. The
purpose of this chapter is to demonstrate approaches to accommodating the sometimes vast
differences in specific implementations of these technologies (including browser-specific vari-
ations) to produce content that runs on as many DHTML-capable browsers as possible. Most
of the problems, as you are well aware from Chapters 15 and 39, are caused by page authors
trying to develop for essentially three different document object models: NN4, IE4+, and W3C
DOM (as implemented in IE5+/NN6+/Mozilla/Safari).

BC319Chapter 47 ✦ Cross-Browser Dynamic HTML Issues

Striving for Compatibility
With as many as three object models to support (you can, of course, elect to support only a
subset of browsers if you like) you should look for ways to minimize your pain. If the NN4
object model is in your mix, you will very likely experience moments of sheer torture, as you
try to get even the CSS-supported HTML to behave as it does in browsers of the other object
models. Thankfully, the NN4 browser’s installed base is quickly becoming a remnant of the past.

Two keys to survival are among the object models: knowing each DOM’s limitations and find-
ing common denominators.

In the area of DHTML limitations, NN4 is the clear winner. Compared to the automatic content
reflowing of IE4+ and W3C DOM browsers, the NN4 object model is painfully static. For exam-
ple, dynamically changing the color of a chunk of text in response to a rollover is a difficult
task in NN4 requiring the careful positioning of a layer atop main page text; and making any
inline modification to content (other than swapping an image of the same size) is completely
out of the question. Between the IE4+ and W3C DOMs, the biggest differences fall more along
operating system and browser brand lines. Microsoft takes advantage of the integration of the
IE browser and the Windows operating system to such an extent that it can provide IE services
that work only on Windows versions of IE. MacIE users are out of luck (for text filters, for
instance), as are users of any other browser brand.

Looking for areas of commonality — or at least gaining a clear understanding of where the
models diverge — can be a tedious, yet personally rewarding pursuit. For example, one of the
biggest problems facing designers for all three DOMs is the way scripts must reference ele-
ments that are to be moved or hidden (something that all three object models can do). NN4
requires references that take the layer object structure into account; IE4+ has the Microsoft
syntax of document.all, which provides a reference avenue to any element whose id attribute
is set; and the W3C DOM (as implemented in IE5+/NN6+/Mozilla/Safari) users a finger-twisting
(albeit now industry standard) document.getElementById() method to obtain a reference
to any ID’d element.

As soon as your script has a valid reference to an element, the next step is to read or write
some property, or invoke some method of that object that governs the element’s position
(and possibly other style) attributes. Here, again, the object models diverge, but not quite as
severely. NN4 has a singular implementation that provides properties and methods of posi-
tioned elements (layer objects) directly; the IE4+ and W3C DOMs, on the other hand, work
their positioning magic through the style property of a positioned element. In some cases
the “last-dot” property names are identical across all three models (for example, document.
myLayer.zIndex, document.all.myLayer.style.zIndex, and document.getElementById
(“myLayer”).style.zIndex). Building a reference to reach that last dot, though, is where
some of your hard work must go.

Each DOM also has its own event model. Whereas IE5+ overlaps its DOM features with both
the IE4+ and to some extent the W3C DOM, the event models don’t follow the same lines of
implementation. As of WinIE6 and MacIE5, IE does not implement any of the W3C DOM event
model, although Mozilla-based browsers do.

BC320 Part VI ✦ Bonus Chapters

The bottom line, then, is letting your scripts decide how to perform actions based on the
browser version is not a good idea. Instead, the scripts should be smart enough to act based
on the capabilities of the browser that is currently running the script. As you see in the rest
of this chapter, it is possible to develop fairly sophisticated DHTML into a page and make it
work with all three DOMs without one iota of browser version detection.

Working Around Incompatibilities
To create DHTML for multiple DOMs, you must find ways to accommodate incompatible
object references and occasionally incompatible property names. Scripting gives you several
alternatives to working your way around these potential problems. Some of the approaches
you can take are now passe, but they are described here partly for the sake of historical refer-
ence, but also because you will see many instances of these approaches taken in legacy
DHTML applications from the days when authors had to worry about only two DOMs (NN4
and IE4). The real “meat” of this discussion comes later, when you learn more about object
detection and custom APIs.

Old-fashioned compatibility tricks
In a simpler time (until late 2000), it was possible to write cross-browser DHTML applications
that had to run on only two classes of browser: NN4 and IE4. Two approaches to writing code
for these two DOMs grew in popularity: inline branching and platform equivalency. They are
described here, not for you to apply, but for you to understand what the pioneers did, in case
you encounter their code in your Web surfing.

Inline branching
The idea behind inline branching is that your scripts will use if...else decisions to execute
one branch of code for one browser and another branch for the other browser. Before you
can begin to write code that creates branches for each browser, you should define two global
variables at the top of the page that act as Boolean flags for your if...else constructions
later. Therefore, at the first opportunity for a <script> tag in a page, include the following
code fragment to set flags named isNav4 and isIE4:

var isNav4, isIE4;
if (parseInt(navigator.appVersion) == 4) {

if (navigator.appName == “Netscape”) {
isNav4 = true;

} else if (navigator.appVersion.indexOf(“MSIE”) != -1) {
isIE4 = true;

}
}

Version checking here is quite specific. First of all, it intentionally limits access to browsers
whose versions come back as version 4. This code, written when the browsers were still at
version 4, was remarkably prescient. My concern at the time was that DHTML was so volatile
that it was unknown if future browser versions would be backward compatible with the code
to be run inside branches governed by the two global variables. As it turned out, NN6 (whose
navigator.appVersion reports 5) is not backward compatible with the layer structure of NN4,
so that locking the NN4 branches to NN4 became a good thing. On the IE side, the navigator.
appVersion property continues to report 4, even through IE6, which is backward compatible

BC321Chapter 47 ✦ Cross-Browser Dynamic HTML Issues

with IE4. Thus, any branch dedicated to IE4 executes under this scheme and remains syntac-
tically accurate.

Another aspect of the flag-setting script I should mention is that the example provides no
escape route for browsers that aren’t level 4 or aren’t either Navigator or Internet Explorer
(should there be a level 4 browser from another brand). In a production environment, I would
either prefilter access to the page or redirect ill-equipped users to a page that explains why
they can’t view the page. In the structure of the preceding script, redirection would have to
be made in two places, as follows:

var isNav4, isIE4;
if (parseInt(navigator.appVersion) == 4) {

if (navigator.appName == “Netscape”) {
isNav4 = true;

} else if (navigator.appVersion.indexOf(“MSIE”) != -1) {
isIE4 = true;

} else {
location = “sorry.html”;

}
} else {

location = “sorry.html”;
}

Later in this chapter, I discuss the issue of designing DHTML pages that degrade gracefully in
pre-DHTML browsers.

With the global variables defined in the document (and unsupported browsers redirected
elsewhere), you can use them as condition values in branching statements that address an
object according to the reference appropriate for each platform. For example, to change the
visibility property of an object named instructions, you use the flags as follows:

if (isNav4) {
document.instructions.visibility = “hidden”;

} else {
document.all.instructions.style.visibility = “hidden”;

}

As the browser DOMs evolve, expand, and fragment, inline branching becomes increasingly
less practical. With so many permutations of DOM according to browser brand, browser ver-
sion, and operating system, you can drive yourself crazy trying to accommodate them all and
maintain the code going forward. This approach also eliminates from consideration any non-
NN or non-IE browser (such as Opera), which may have the capabilities needed to play your
DHTML scripts. This approach also limits the possibility that future browsers with higher
navigator.appVersion values can take advantage of your scripts.

Platform equivalency
Another technique attempts to limit the concern for the different ways each platform refers
to a positionable element (because cross-browser DHTML is pretty much limited to the prop-
erties affecting positionable elements). If you examine the formats for each platform’s object
references, you see that all formats contain a reference to the document and to the object name
or ID. The IE4+ DOM syntax also includes property words, such as all and style. If you assign
these extra property names to variables for IE4 and leave those variables as empty strings for
NN4, you can assemble an object reference for those two platforms in one statement.

BC322 Part VI ✦ Bonus Chapters

To begin using this technique, set two global variables that store reference components for
the scope (all in IE4) and the style object (style in IE4):

var range = “”;
var styleObj = “”;
if (parseInt(navigator.appVersion) == 4) {

if (navigator.appVersion.indexOf(“MSIE”) != -1) {
range = “all.”;
styleObj = “.style”;

}
}

From this point, you can assemble an object reference with the help of the JavaScript eval()
function, as follows:

var instrux = eval(“document.” + range + “instructions” + styleObj);
instrux.visibility = “hidden”;

Or, you can use the eval() function to handle the entire property assignment in one state-
ment, as follows:

eval(“document.” + range + “instructions” + styleObj +
“.visibility = ‘hidden’”);

If your page does not have a lot of objects that your scripts will be adjusting, you can use this
platform equivalency approach to create global variables holding references to your position-
able objects at load time (triggered by the onload event handler so that all objects exist and
can be referenced by the eval() function). Then, use those variables for object references
throughout the scripts.

Unfortunately, the platform equivalency methodology breaks down when an NN4 layer object
is nested inside another layer. The platform equivalency formulas assume that each object is
directly addressable from the outermost document object. If your objects have a variety of
nested locations, you can use either the inline branching method described earlier, or batch-
assign objects to global variables at load time using platform branching techniques along the
lines of the following example:

var instrux;
function initObjectVars() {

if (isNav4) {
instrux = document.outerLayer.document.instructions;

} else {
instrux = document.all.instructions.style;

}
}

As soon as the variable contains a valid reference to the object for the current platform, your
scripts can treat the object without further concern for platform when addressing properties
that have the same name in both platforms:

instrux.visibility = “hidden”;

The nested layer situation is not the only potential problem for the platform equivalency
approach. In fact, the W3C DOM format for referencing objects (using the document.
getElementById() method) makes for some hair-raising string assembly and global variable
assignment. Another truly negative aspect is the frequent usage of the eval() function. As
mentioned in Chapter 34, this function is a performance speed thief.

BC323Chapter 47 ✦ Cross-Browser Dynamic HTML Issues

Modern approaches to compatibility
Although in-line branching and platform equivalency were suitable for their generations, the
profusion of browser versions calls for better approaches to simplifying authoring for multiple
DOMs. “Browser sniffing” is no longer a workable strategy except in rare instances. Techniques
more suitable for today — object detection and custom APIs — are not really new. But these
techniques are the preferred way to build cross-browser scripts with an eye to compatibility
both backward and forward.

Object detection
The subject of object detection has been mentioned in several places in earlier chapters of this
book. The technique has been used for a long time to let a browser not equipped to handle
image objects gracefully skip over image swapping script segments:

if (document.images) {
// statements to work with image objects

}

If there is no document.images property for a browser, the condition evaluates to undefined,
which the condition treats as being false.

But object detection has also been misused in the past, especially in the DHTML realm, to
substitute for browser version detection. For example, if a browser supported the document.
all collection, a global variable was set to indicate that the browser was IE4 or later; the exis-
tence of document.layers supposedly meant that the browser was NN4. While both of those
assertions are true (as of the browsers released so far), it was a mistake to link a browser ver-
sion with the existence of an object or property. Instead, object detection should be used only
if your script statements will be addressing that object, just as the document.images condition
does in the previous example.

To demonstrate this tactic, consider the need to assemble a reference to an object so that it
is ready to have one of its DHTML properties adjusted. Each of the three DOMs has its own
syntax for assembling such a reference, and each syntax relies on the existence of a particu-
lar object or property. The function shown in Listing 47-1 (not by itself, but included in Listing
47-2) lets you pass the name or ID of a positioned element (either in string form or object
form) to receive back a valid reference to the object with which style-related properties are
associated — all without resorting to the eval() function in any form:

Listing 47-1: Using Object Detection to Assemble an
Element Object Reference

function getObject(obj) {
var theObj;
if (document.layers) {

if (typeof obj == “string”) {
// just one layer deep
return document.layers[obj];

} else {
// can be a nested layer
return obj;

}
}

Continued

BC324 Part VI ✦ Bonus Chapters

Listing 47-1 (continued)

if (document.all) {
if (typeof obj == “string”) {

return document.all(obj).style;
} else {

return obj.style;
}

}
if (document.getElementById) {

if (typeof obj == “string”) {
return document.getElementById(obj).style;

} else {
return obj.style;

}
}
return null;

}

The primary object detection for each of the three sections of this function looks for the
presence of categories of objects (document.layers and document.all) or a particular
method (document.getElementById()), and then — this is the important part — the script
uses those detected objects in the statements. The script doesn’t know IE4 from NN7; it does
know how to derive valid references for three different object models, and employs the syntax
of the first one for which the associated object property or method is supported.

In practice, the order of the three sections should have no bearing on your scripts, but you
should be aware of one subtlety: IE5+ can work with either of the last two sections, because
those browsers detect document.all and document.getElementById as valid references. If
you were to switch the position of the last two sections, IE5+ would be using W3C DOM termi-
nology. The results, however, are the same: A valid reference to the style object associated
with an element.

Custom APIs
Notions of object detection and simplifications of your scripts come together in the final
approach to building cross-browser DHTML: Writing a custom API (Application Programming
Interface). A JavaScript custom API is a library of functions you design to act as an intermediary
between your scripts and other scriptable entities. Ideally, an API simplifies access to, or con-
trol of, other entities. In the context of designing a cross-browser DHTML page, an API can
offer a single function that smoothes over the differences in object references and/or property
names among several platforms. Your custom function provides a single access point that is
consistent across all platforms. In essence, you are creating your own metavocabulary for
methods and property settings.

The element object reference maker in Listing 47-1 is a good start for such an API, because all
other functions for moving, hiding, showing, and changing the stacking order of a positionable
element need a valid style-oriented reference to the element. Now look at a function from an
API whose job is to alter the stacking order of a positionable element:

BC325Chapter 47 ✦ Cross-Browser Dynamic HTML Issues

// set the z-order of an object
function setZIndex(obj, zOrder) {

var theObj = getObject(obj);
theObj.zIndex = zOrder;

}

Your main page script would use the ID of the positioned div element as the first parameter
to this function, with an integer indicating the value that would be assigned to the element’s
stylesheet z-Index attribute:

setZIndex(“myLayer”, 100);

All of the branching for the various DOMs in this function is done in the getObject() function
(Listing 47-1), which returns the valid reference for whichever of the three supported DOMs
is running the script. All three DOMs, it turns out, have the same zIndex property represent-
ing the z-Index style attribute, so that no further branching is needed here.

As one more example, the next API function offers an interface to incompatible ways of adjust-
ing the location of a positionable element. In this case, the act of moving an element has differ-
ent syntax in different DOMs. One group (NN4 for layers) uses the moveTo() method; the rest
support left and top properties of their style object:

// position an object at a specific pixel coordinate
function shiftTo(obj, x, y) {

var theObj = getObject(obj);
if (theObj.moveTo) {

theObj.moveTo(x,y);
} else if (typeof theObj.left != “undefined”) {

theObj.left = x + “px”;
theObj.top = y + “px”;

}
}

Notice one workaround, which, on the surface, isn’t pretty: The second branch must perform
an odd way of object detection. We’re stuck with having to make a tradeoff when it comes to
checking for the existence of a style property. If the page uses stylesheets defined in <style>
tags (or imported into the page from external stylesheet files), the element affected by the rule
does not yield the rule’s property values through the element’s style property. The property
exists, but its value in this case (or until it is set by script) is an empty string. IE5+ provides a
currentStyle property to give us the effective values, but that property is not (yet) a part of
the DOM standard. It’s true that you can derive the effective style property of an element (see
Chapter 26), but even if you assign the stylesheet via the element’s style attribute (in which
case the style property values come through), detecting the presence of the property with the
conditional expression

if (theObj.left)

is not practical here anyway. If the effective value of the left and top properties were an
empty string (or zero for a numeric style property value), the conditional expression would
evaluate to the equivalent of false, making it appear as though the property doesn’t exist. To
validate the existence of the property, the conditional expression verifies that the value of a
named property has a type other than “undefined.” It may seem like a long way to go to prove
the existence of a property, but it works, even if the value is an empty string or zero.

BC326 Part VI ✦ Bonus Chapters

It is important that both branches perform object detection. Although it is unlikely (but, as we
learned from the transition between NN4 and NN6, not impossible), if a future browser should
completely alter its vocabulary, omitting the objects being detected here, the function ends
gracefully, without generating script errors.

An API is usually best deployed as an external .js file. One such API file is described later in
this chapter. Bear in mind, however, that a lengthy API gets downloaded to the browser, no
matter how much or how little of it your main scripts use. Blindly linking in a big library just
to use a few of its functions is a mistake. You serve your users better if you create a subset
of the API, and link the subset to the page (or drop the few functions directly into the page’s
scripts if the combination is not reused on a lot of pages).

Handling non-DHTML browsers
An important question to ask yourself as you embark on a DHTML-enhanced page is how you
intend to treat visitors whose browsers aren’t up to the task. In many respects the problem is
similar to the problem of treating nonscriptable browsers when your page relies on scripting
(see Chapter 13).

The moment your page uses DHTML to position an element, you must remember that non-
DHTML browsers display the content according to traditional HTML rendering rules. No ele-
ments are allowed to overlap. Any block-level tag is rendered at the left margin of the page,
unless some other non-DHTML alignment (center or right) is at work. This goes for elements
that you design to be DHTML-positioned to sit offscreen (perhaps with a clickable tab) until
called by the user. An element defined as being hidden or not displayed in DHTML will be
visible. In most cases, your carefully designed DHTML page will look terrible.

However, a page that does not use too radical a layout strategy may still be usable in non-
DHTML browsers. You should always check your DHTML-enabled page in an older browser to
see how it looks. Perhaps there isn’t too much you need to do to degrade the DHTML so that
the page is acceptable in older browsers.

The ultimate responsibility for deciding your compatibility strategy with older browsers rests
with you and your perceptions about your page visitors. If they are in need of vital information
from your site and that information is readable in non-DHTML browsers, that may be enough.
Otherwise, you must provide a separate content path for both levels of browsers, much as
you may be doing for scriptable versus nonscriptable browsers.

A DHTML API Example
Now it’s time to get to a real DHTML API that you can use and build upon for your own appli-
cations. Listing 47-2 contains the API code, which is most likely to be deployed as an external
.js library file. In fact, this API is used as-is in a map puzzle game application in Chapter 56.
You can see there how it is used to control element positioning, dragging, and layering for the
three DOM families. The code in Listing 47-2 is longer than most listings in this book, so for
your convenience, I interlace commentary amid the long listing.

No global variables are needed for this API. Because all browser branching is performed via
object detection, there is no need for browser version detection. Instead, the library starts with
the getObject() function shown earlier in this chapter. Virtually every other function in this
library makes a trip to getObject() to convert the name of the object passed as a parameter
to an object reference whose positionable (or other style-related property) can be adjusted.

BC327Chapter 47 ✦ Cross-Browser Dynamic HTML Issues

Listing 47-2: The Custom API (DHTMLapi.js)

// convert object name string or object reference
// into a valid object reference ready for style change
function getObject(obj) {

var theObj;
if (document.layers) {

if (typeof obj == “string”) {
return document.layers[obj];

} else {
return obj;

}
}
if (document.all) {

if (typeof obj == “string”) {
return document.all(obj).style;

} else {
return obj.style;

}
}
if (document.getElementById) {

if (typeof obj == “string”) {
return document.getElementById(obj).style;

} else {
return obj.style;

}
}
return null

}

A pair of functions handles all motion of positionable elements. The first function, shiftTo()
takes three parameters: the ID of the object being moved, and the horizontal and vertical pixel
coordinates of the top-left corner of the element. The assumption is that the main page script
that invokes this library function performs the calculation of the coordinates. You see that code
in Chapter 56. Branches inside this function handle the NN4 layer.moveTo() method or the
setting of style properties for other DOMs. In these other browsers, moving the element
requires adjusting two positional properties, left and top. Even though the adjustments are
made in separate statements, the action on the screen does not follow the action statement-
by-statement. Between screen buffering and quick execution, the repositioning appears as a
single shift.

// position an object at a specific pixel coordinate
function shiftTo(obj, x, y) {

var theObj = getObject(obj);
if (theObj.moveTo) {

theObj.moveTo(x,y);
} else if (typeof theObj.left != “undefined”) {

theObj.left = x + “px”;
theObj.top = y + “px”;

}
}

BC328 Part VI ✦ Bonus Chapters

The shiftBy() function mimics NN4’s layer.moveBy() method. The second and third param-
eters represent the number of pixels that the object should be moved on the page. A positive
number means to the right or down; a negative number means to the left or up; a value of zero
means no change to the axis. For NN4, the script uses the layer.moveBy() method. But for the
rest, the passed values are added to the left and top properties. Notice that because these
properties return strings that include the units for the measurements, the incremental values
are added to integer extractions from the current settings. And because the units being used
here are the default (pixels), no units have to be assigned with the new values (although they
could without penalty).

// move an object by x and/or y pixels
function shiftBy(obj, deltaX, deltaY) {

var theObj = getObject(obj);
if (theObj.moveBy) {

theObj.moveBy(deltaX, deltaY);
} else if (typeof theObj.left != “undefined”) {

theObj.left = parseInt(theObj.left) + deltaX + “px”;
theObj.top = parseInt(theObj.top) + deltaY + “px”;

}
}

Both platforms use the same property name for setting the stacking order of positionable thin-
gies. Therefore, the setZIndex() function does little more than convert the object reference
and assign the incoming value to the zIndex property.

// set the z-order of an object
function setZIndex(obj, zOrder) {

var theObj = getObject(obj);
theObj.zIndex = zOrder;

}

NN4 and browsers with style objects have their own way of referring to the background
color. The setBGColor() function applies the correct syntax based on whichever property
is detected in the object.

// set the background color of an object
function setBGColor(obj, color) {

var theObj = getObject(obj);
if (theObj.bgColor) {

theObj.bgColor = color;
} else if (typeof theObj.backgroundColor != “undefined”) {

theObj.backgroundColor = color;
}

}

Allowable values for the visibility property are very unprogrammatic in my opinion. I expect
a Boolean value rather than strings. To accede to reality while making the process of showing
and hiding elements more logical to me, I created API functions called show() and hide().

// set the visibility of an object to visible
function show(obj) {

var theObj = getObject(obj);
theObj.visibility = “visible”;

}

// set the visibility of an object to hidden
function hide(obj) {

var theObj = getObject(obj);
theObj.visibility = “hidden”;

}

BC329Chapter 47 ✦ Cross-Browser Dynamic HTML Issues

Although the left and top properties of NN4 layers do not include unit values, it is still safe
to use parseInt() on the values returned from the properties, whether they be retrieved in
NN4 or browsers that have style objects (whose properties return units). The need for these
API functions came from the way the map puzzle application in Chapter 56 works. For a couple
of operations, it calculates the destination for an object with respect to the position of one
of the other positioned elements. These functions return the values needed for the main pro-
gram’s calculation. This is also an example of how you may need to embellish the API for your
own application.

// retrieve the x coordinate of a positionable object
function getObjectLeft(obj) {

var theObj = getObject(obj);
return parseInt(theObj.left);

}

// retrieve the y coordinate of a positionable object
function getObjectTop(obj) {

var theObj = getObject(obj);
return parseInt(theObj.top);

}

The previous API is generalizable enough to be used as a library with any cross-platform
DHTML application using positioning. The API can even be used with a platform-specific
page. It is more efficient, however, to use a browser’s native objects, properties, and methods
if you know for sure that users will have only one brand of browser.

✦ ✦ ✦

Internet Explorer
Behaviors

Internet Explorer 5 for Windows was the first browser to deploy what
Microsoft calls behaviors. Microsoft and others have proposed the

behaviors concept to the W3C, and it could some day become one of
the W3C standard recommendations. Such a standard might not be
implemented exactly the way Microsoft currently implements behav-
iors, but most of the concepts are the same, and the syntax being dis-
cussed so far is similar. While there is no guarantee that the W3C will
adopt behaviors as a standard, you will see that the concept seems to
be a natural extension to the work that has already been adopted for
both CSS and XML.

The W3C effort is called Behavioral Extensions to CSS. For the latest
document describing the work of the participants of the standards
discussions, visit http://www.w3.org/TR/becss.

Stylesheets for Scripts
You can best visualize what a behavior is in terms of the way you use
stylesheets. Consider a stylesheet rule whose selector is a tag or a
class name. The idea behind the stylesheet is that one rule, which can
define dozens of rendering characteristics of a chunk of HTML content,
can be applied to perhaps dozens, if not hundreds, of elements within
the document. A corporation may design a series of rules for the way
its Web documents will look throughout the Web site. If the designer
decides to alter the font family or color for, say, h1 elements, that
change is made in one place (the external stylesheet file), and the
impact is felt immediately across the entire site. Any page that includes
an h1 element renders the header with the newly modified style.

Imagine now that instead of visual styles associated with an element,
you want to define a behavioral style for a particular group of elements.
A behavioral style is the way an element responds to predominantly
user interaction with the element. For example, if the design specifica-
tions for a Web site indicate that all links should have their text col-
ored a certain way when at rest, but on mouse rollovers, the text
color changes to a more contrasting color, the font weight increases
to bold, and the text becomes underlined. Those modifications require
scripts to change the style properties of the element in response to
the mouse action of the user. The scripts that fire in response to spe-
cific user actions (events) are written in an external file known as a
behavior, and a behavior is associated with an element, class, or tag
through the same CSS syntax that you use for other style properties.

4848C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Introducing IE behaviors

Understanding the
structure of behavior
XML files

Exploring behavior
samples

✦ ✦ ✦ ✦

BC332 Part VI ✦ Bonus Chapters

A behavior, of course, assumes that its scripts can work with whatever HTML element is asso-
ciated with the behavior. Just as it would be illogical to associate the tableLayout style prop-
erty with an element that wasn’t a table, so, too, would it be illogical to associate a behavior,
whose scripts employed table object properties and methods, to a p element. Even so, a
well-designed behavior can obtain details about the element being manipulated through the
element object’s properties. The better you are at writing generalizable JavaScript functions,
the more successful you will be in implementing behaviors.

Embedding Behavior Components
IE treats each behavior as a component, or add-on building block for the browser. IE5+ comes
equipped with a handful of behaviors built into the browser (the so-called default behaviors,
which happen to rely on specific XML elements embedded in a document). Behaviors that you
create most likely exist as separate files on the server, just like external .css and .js files do.
The file extension for a behavior file is .htc (standing for HTML Component).

Linking in a behavior component
To associate a behavior with any single element, class of elements, or tag as the page loads,
use CSS rule syntax and the IE-specific behavior attribute. The basic syntax is as follows:

selector {behavior:url(componentReference)}

As with any stylesheet rule, you can combine multiple rule properties, delimiting them with
semicolons. The format of the componentReference depends on whether you are using one
of the IE default behaviors or a behavior you’ve written to an external file. For default behav-
iors, the reference is in the format:

#default#componentName

For example, if you want to associate the download behavior with any element of class
downloads use:

.downloads {behavior:url(#default#download)}

Relative or absolute URIs to external .htc files can also be specified. For example, if your site
contains a directory named behaviors and a file named hilite.htc, the stylesheet rule from
the root directory is:

.hiliters {behavior:url(behaviors/hilite.htc)}

As with all Cascading Style Sheet rules, behaviors can be specified in a style element of the
page, in the style attribute of an individual element, or in a rule defined inside an imported
.css file.

Enabling and disabling behaviors
In Chapter 15, you can find details of WinIE5+ methods for all HTML elements that let scripts
manage the association of a behavior with an element after the page has loaded. Invoking the
addBehavior() method on an element assigns an external .htc file to that element. When you
no longer need that behavior associated with the element, invoke the removeBehavior()
method.

BC333Chapter 48 ✦ Internet Explorer Behaviors

Component Structure
An .htc behavior file is a text file consisting of script statements inside a <script> tag set
and some special XML tags that WinIE5+ knows how to parse. You create .htc files in the
same kind of plain text editor that you use for external .js or .css files.

Script statements
Unlike external .js files, an .htc behavior file includes <script> tags, which surround any
JavaScript (or VBScript, if you like) statements that control the behavior. Because a behavior
most typically is written to control one or more aspects of the HTML element to which it is
connected, statements tend to operate only on the associated object element. A special refer-
ence —element— is used to refer to the element object itself (much like the way the this
keyword in a custom object’s method self-refers to the object associated with the method).

If your behavior will be modifying either the content or style of the element, use the element
reference as a foundation to the reference to one of that element object’s properties or meth-
ods. For example, if a statement in a behavior needs to set the style.visibility property
so that the element hides itself, the statement in the behavior script is:

element.style.visibility = “hidden”;

Any valid reference from the point of view of the element object is fair game, including refer-
ences to the element’s parentElement, even though the parent element is not explicitly asso-
ciated with the behavior.

Variable scope
Except for the special element reference, script content of a behavior is completely self-
contained. You can define global variables in the behavior that are accessible to any script
statement in the behavior. But a global variable in a behavior does not become a global vari-
able for the main document’s scripts to use. You can expose variables so that scripts outside
of the behavior can get to them (as described later in the chapter), but this exposure is not
automatic.

Most of the script content of a behavior consists of functions that usually interact in some
fashion with the associated element (via the element’s properties and/or methods). Local
variables in functions have the same scope and operate just like they do in regular script
functions. Global variables you define in a behavior, if any, are usually there for the purpose
of preserving values between separate invocations of the functions.

Assigning event handlers
Functions in a behavior are triggered from outside the behavior through two means: event
handlers and direct invocation of functions declared as public (described in the next section).
Event handler binding is performed in a way that is not used elsewhere in the IE4+ DOM. Each
event type (for example, onmouseover, onkeypress) requires its own special XML tag at the
top of the behavior file. The format for the event handler tag is as follows:

<public:attach event=”eventName” onevent=”behaviorFunctionName()” />

BC334 Part VI ✦ Bonus Chapters

As the behavior loads, the public:attach tag instructs the browser to expose to the “public”
(that is, the world outside of the behavior) an event type (whose name always begins with
the “on” prefix in the IE4+ event model); whenever an event of that type reaches the behav-
ior’s element, the function (defined within the behavior file) is invoked. In XML terminology,
the public: part of the tag is known as a namespace, and IE includes a built-in parser for the
public namespace. Notice, too, the XML syntax at the end of the tag that allows a single set
of angle brackets to act as a start and end tag set (there is no content for this tag, just the
attributes and their values).

To demonstrate, imagine that a behavior has a function named underlineIt(), which sets
the element.style.textDecoration property to underline. To get the element to display
the underline decoration as the user rolls the mouse atop the element, bind this function to
the element’s onmouseover event handler as follows:

<public:attach event=”onmouseover” onevent=”underlineIt()” />

If you compare the wording of the opening part of the tag, you may recognize a connection to
the IE4+ event model’s attachEvent() method of all HTML elements (see Chapter 15). You
can have as many event binding tags as your element needs. To invoke multiple functions in
response to a single event type, simply add the subsequent function invocation statements to
the onevent attribute, separating the calls by semicolons (the same as with regular JavaScript
statement delimiters).

Exposing properties and methods
XML tags with the public: namespace are also used (with different attributes) to expose a
behavior’s global variables as properties of the element and a behavior’s functions as methods
of the element. The syntax for both types of “public” announcements is as follows:

<public:property name=”globalVarName” />
<public:method name=”functionName” />

Values for both items are string versions of references to the variable and function (no paren-
theses). Again, you can define as many properties and methods for a behavior as you need.

As soon as a property and/or method is made public in a behavior, scripts from outside the
behavior can access those items as if they were properties or methods of the element associ-
ated with the behavior:

document.all.elementID.behaviorProperty
document.all.elementID.behaviorMethod()

If you associate a behavior with a stylesheet class selector, and several document elements
share that class name, each one of those elements gains the public properties and methods
of that behavior, accessible through references to the individual elements. That’s because a
behavior’s scripts are written to read or modify properties of whatever element receives a
bound event or is referenced along the way to the public property or method.

Behavior Examples
The two following examples are intentionally simple to help you grasp the concepts of behav-
iors if they are new to you. The first example interacts with multiple elements strictly through
event binding; the second example exposes a property and method that the main page’s scripts
access to good effect.

BC335Chapter 48 ✦ Internet Explorer Behaviors

Example 1: Element dragging behavior
This book contains several examples of how to script a page to let a user drag an element
around the browser window (Chapters 39 and 56 in particular). In all those examples, the
dragging code and event handling was embedded in some fashion into the page’s scripts.
The first example of a behavior, however, drives home the notion of separating an element’s
behavior from its content (just as a CSS2 style sheet separates an element’s appearance from
its content).

Imagine that it’s your job to design a page that employs three draggable elements. Two of the
elements are images, while the third is a panel layer that also includes a form. If you haven’t
scripted DHTML before, this may sound like a daunting task at first, one rife with the possibility
of including multiple versions of the same scripts to accommodate different kinds of draggable
elements.

Now imagine that to the rescue comes a scripter who has built a behavior that takes care of
all of the dragging scripting for you. All you do is assign that behavior by way of one attribute
of each draggable element’s stylesheet rule. Absolutely no other scripting is required on the
main page to achieve the element dragging.

Listing 48-1 shows the behavior file (drag.htc) that controls basic dragging of a positionable
element on the page. You may recognize some of the code as an IE4+ version of the cross-
browser dragging code used elsewhere in this book (for a blow-by-blow account of these
functions, see the description of the map puzzle game in Chapter 56). The names of the three
operative functions and the basic way they do their jobs are identical to the other dragging
scripts. Event binding, however, follows the behavior format through the XML tags. All inter-
action with the outside world occurs through the “public” event handlers.

Listing 48-1: An Element Dragging Behavior

<public:attach event=”onmousedown” onevent=”engage()” />
<public:attach event=”onmousemove” onevent=”dragIt()” />
<public:attach event=”onmouseup” onevent=”release()” />
<public:attach event=”onmouseover” onevent=”setCursor()” />
<public:attach event=”onmouseout” onevent=”release();restoreCursor()” />

<script type=”text/javascript”>
// global declarations
var offsetX = 0;
var offsetY = 0;
var selectedObj;
var oldZ, oldCursor;

// initialize drag action on mousedown
function engage() {

selectedObj = (element == event.srcElement) ? element : null;
if (selectedObj) {

offsetX = event.offsetX - element.document.body.scrollLeft;
offsetY = event.offsetY - element.document.body.scrollTop;
oldZ = element.runtimeStyle.zIndex;
element.style.zIndex = 10000;
event.returnValue = false;

}
}

Continued

BC336 Part VI ✦ Bonus Chapters

Listing 48-1 (continued)

// move element on mousemove
function dragIt() {

if (selectedObj) {
selectedObj.style.pixelLeft = event.clientX - offsetX;
selectedObj.style.pixelTop = event.clientY - offsetY;
event.cancelBubble = true;
event.returnValue = false;

}
}

// restore state on mouseup
function release() {

if (selectedObj) {
selectedObj.style.zIndex = oldZ;

}
selectedObj = null;

}

// make cursor look draggable on mouseover
function setCursor() {

oldCursor = element.runtimeStyle.cursor;
element.style.cursor = “hand”;

}

// restore cursor on mouseout
function restoreCursor() {

element.style.cursor = oldCursor;
}
</script>

Notice a subtlety in Listing 48-1 that is implied by the element-specific scope of a behavior.
Two statements in the engage() function need to reference scroll-related properties of the
document.body object. Because the only connection between the behavior and the docu-
ment is via the element reference, that reference is used along with the document property
(a property of every HTML element object in IE4+, as shown in Chapter 15). From there, the
body object and the required properties can be accessed.

Listing 48-2 is a simple page that contains three elements that are associated with the drag.
htc behavior through a stylesheet rule definition (for the draggable class). The document is
incredibly uncomplicated. Even the drag.htc file isn’t very big. But together they produce a
far more interesting page for the user than a couple of static images and a form.

Listing 48-2: Three Draggable Elements Using the Behavior

<html>
<head>

<title>IE5+ Behavior Demo (Dragging)</title>
<style type=”text/css”>
.draggable {position:absolute; behavior:url(drag.htc)}
#img1 {left:150px; top:150px}
#img2 {left:170px; top:170px}

BC337Chapter 48 ✦ Internet Explorer Behaviors

#txt1 {left:190px; top:190px; background-color:aqua; width:150px;
height:50px; text-align:center}

</style>
</head>
<body>

<h1>IE5+ Behavior Demo (Dragging)</h1>
<hr />

<div class=”draggable” id=”txt1”>

A form inside a div element.
<form>

<input type=”button” value=”Does Nothing” />
</form>

</div>
</body>

</html>

Obviously, the dragging example here is very rudimentary. It isn’t clear from the sample code
what the user gets from the page, other than the joy of moving things around. If you were
designing an application that genuinely benefits from draggable objects (for example, the
map puzzle in Chapter 56), you can easily enhance the behavior to perform actions, such as
snapping a dragged element into place when it is within a few pixels of its proper destination.
For such an implementation, the behavior can be given some extra global variables, akin to
the values assigned to the state objects in Chapter 56, including the pixel coordinates of the
ideal destination for a dragged element. An onload event handler for the page can fire a pub-
lic init() function in each element’s behavior to assign those coordinate values. Any event
that can bubble (such as mouse events) does so from the behavior to the target. Therefore,
you can extend the event action of the behavior by adding a handler for the same event to
the element outside of the behavior.

Example 2: Text rollover behavior
In the second example, you see how a behavior exposes a global variable and function as a
public property and method, respectively. The demonstration reinforces the notion that even
if a single behavior file is associated with multiple elements (for example, the elements share
the same class, and the behavior is assigned to the class), each behavior maintains its own
variable values, independent of the other elements and their behaviors.

The nature of this behavior is to set the color style property of the associated element to
either a default color (red) or to another color that has been passed into the behavior via one
of its public methods. The color setting is preserved in one of the behavior’s global variables,
and that variable is exposed as a public property.

Listing 48-3 shows the .htc behavior file’s content. Only two events are bound to this behavior:
onmouseover and onmouseout— the typical rollover events. The onmouseover event invokes
the makeHot() function, while the onmouseout event invokes the makeNormal() function.
Before the makeHot() function makes any changes to the color and fontWeight style prop-
erties of the element, existing settings are preserved in (non-public) global variables in the
behavior. This allows the makeNormal() function to restore the original settings, regardless of
what document styles may be applied to the element in a variety of pages. That’s something
to keep in mind when you design behaviors: they can be deployed in pages controlled by any
number of stylesheets. Don’t assume any basic style setting; instead, use the currentStyle
property to read and preserve the effective property values before touching them with your
behavior’s modification scripts.

BC338 Part VI ✦ Bonus Chapters

Neither of the event handler functions are exposed as public methods. This was a conscious
decision for a couple of reasons. The most important reason is that both functions rely on
being triggered by a known event occurring on the element. If either function were invoked
externally, the event object would contain none of the desired information. Another reason
behind this is from a common programming style for components that protects inner workings,
while exposing only those methods and properties that are “safe” for others to invoke. For
this code, the public method does little more than set a property. It’s an important property,
to be sure, and one of the protected functions relies on it. But by allowing the public method
little room to do any damage other than execution of the behavior, the design makes the
behavior component that more robust.

Assigning a color value to the public property and passing one as a parameter to the public
method accomplishes the same result in this code. As you will see, the property gets used in
the demonstration page to retrieve the current value of the global variable. In a production
behavior component, the programmer would probably choose to expose this value strictly as
a read/write property or expose two methods, one for getting and one for setting the value.
The choice would be at the whim of the programmer’s style and would likely not be both.
Using a method, however, especially for setting a value, creates a framework in which the
programmer can also perform validation of the incoming value before assigning it to the
global variable (something the example here does not do).

Listing 48-3: Rollover Behavior (makeHot.htc)

<public:attach event=”onmouseover” onevent=”makeHot()” />
<public:attach event=”onmouseout” onevent=”makeNormal()” />
<public:property name=”hotColor” />
<public:method name=”setHotColor” />
<script type=”text/javascript”>
var oldColor, oldWeight;
var hotColor = “red”;

function setHotColor(color) {
hotColor = color;

}

function makeHot() {
if (event.srcElement == element) {

oldColor = element.currentStyle.color;
oldWeight = element.currentStyle.fontWeight;
element.style.color = hotColor;
element.style.fontWeight = “bold”;

}
}

function makeNormal() {
if (event.srcElement == element) {

element.style.color = oldColor;
element.style.fontWeight = oldWeight;

}
}
</script>

BC339Chapter 48 ✦ Internet Explorer Behaviors

To put the public information and the behavior, itself, to work, a demonstration page includes
three spans within a paragraph that are associated with the behavior. Listing 48-4 shows the
code for the demo page.

In addition to the text with rollover spans, the page contains two select controls, which let
you assign a separate color to each of the three elements associated with the behavior. The
first select element lets you choose one of the three elements. Making that choice invokes
the readColor() function in the same page. This is the function that reads the hotColor pub-
lic property of the chosen span. That color value is used to select the color name for display
in the second select element. If you make a choice in the list of colors, the applyVals()
function invokes the public setHotColor() method of the element currently selected from
the list of elements. Rolling the mouse over that element now highlights in the newly selected
color, while the other elements maintain their current settings.

Listing 48-4: Applying the Rollover Behavior

<html>
<head>

<title>IE5+ Behavior Demo (Styles)</title>
<style type=”text/css”>
.hotStuff {font-weight:bold; behavior:url(makeHot.htc)}
</style>
<script type=”text/javascript”>
function readColor(choice) {

var currColor = document.all(choice.value).hotColor
var colorList = choice.form.color
for (var i = 0; i < colorList.options.length; i++) {

if (colorList.options[i].value == currColor) {
colorList.selectedIndex = i
break

}
}

}
function applyVals(form) {

var elem = form.elem.value
document.all(elem).setHotColor(form.color.value)

}
</script>

</head>
<body>

<h1>IE5+ Behavior Demo (Styles)</h1>
<hr />
<form>

Choose Hilited Element: <select name=”elem”
onchange=”readColor(this)”>

<option value=”elem1”>First</option>
<option value=”elem2”>Second</option>
<option value=”elem3”>Third</option>

</select> Choose Hilite Color: <select name=”color”
onchange=”applyVals(this.form)”>

<option value=”red” selected=”selected”>Red</option>
<option value=”blue”>Blue</option>
<option value=”green”>Green</option>

Continued

BC340 Part VI ✦ Bonus Chapters

Listing 48-4 (continued)

</select>
</form>
<p>Lorem ipsum dolor sit amet, <span id=”elem1”

class=”hotStuff”>consectetaur adipisicing elit, sed do eiusmod
tempor incididunt ut labore et
dolore magna aliqua. Ut enim adminim veniam, quis nostrud
exercitation ullamco laboris nisi ut
aliquip ex ea commodo consequat.</p>

</body>
</html>

Behaviors are not the solution for every scripting requirement. As demonstrated here, they
work very well for generic style manipulation, but you are certainly not limited to that
sphere. By having a reference back to the element associated with the behavior, and then
to the document that contains the element, a behavior’s scripts can have free run over the
page — provided the actions are either generic among any page or generic among a design
template that is used to build an entire Web site or application.

Even if you don’t elect to use behaviors now (perhaps because you must support browsers
other than WinIE5+), they may be in your future. Behaviors are fun to think about and also
instill good programming practice in the art of creating reusable, generalizable code.

For More Information
In addition to the address of W3C activity on behaviors, Microsoft devotes many pages of its
developer site to behaviors. Here are some useful pointers.

Overview:

http://msdn.microsoft.com/workshop/author/behaviors/overview.asp

Using DHTML Behaviors:

http://msdn.microsoft.com/workshop/author/behaviors/howto/using.asp

Default Behaviors Reference:

http://msdn.microsoft.com/workshop/author/behaviors/reference/reference.asp

IE5.5 Element Behaviors (an extension to the original behaviors):

http://msdn.microsoft.com/workshop/author/behaviors/overview/elementb_ovw.asp

Each of these locations ends with yet more links to related pages at the Microsoft Developer
Network (MSDN) Web site.

✦ ✦ ✦

Application: Tables
and Calendars

Working with HTML tables is a lot of fun, especially if, like me,
you are not a born graphics designer. By adding a few tags to

your page, you can make your columnar data look more organized,
professional, and appealing. Having this power under scripting control
is even more exciting, because it means that in response to a user
action or other variable information (such as the current date or time),
a script can do things to the table as the table is being built. In IE4+ and
W3C DOMs, scripts can modify the content and structure of a table
even after the page has loaded, allowing the page to almost “dance.”

You have three options when designing scripted tables for your
pages, although only two are backward compatible with non-DHTML
browsers:

✦ Static tables

✦ Dynamic tables

✦ Dynamic HTML tables

The design path you choose is determined by whether you need to
dynamically update some or all fields of a table (data inside <td>...
</td> tags) and which browser levels you need to support. To high-
light the differences among the three styles, this chapter traces the
implementation of a monthly calendar display in all three formats.

About the Calendars
Because the emphasis here is on the way tables are scripted and dis-
played, I quickly pass over structural issues of the calendar versions
described in the following sections. The first two examples are back-
ward compatible to all but the first-generation scriptable browsers.
The final example, however, is a much more modern affair, utilizing
table-related DOM objects and methods to simplify the code. It
requires WinIE4+ (unfortunately, a bug in MacIE causes problems
with the amount of table object modification the script does) or a
W3C-compatible browser.

4949C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Accommodating older
browsers

Scripted tables

Date calculations

✦ ✦ ✦ ✦

BC342 Part VI ✦ Bonus Chapters

All three calendars follow similar (if not over-simplified) rules for displaying calendar data.
English names of the months are coded into the script, so that they can be plugged into the
calendar heading as needed. To make some of the other calendar calculations work (such as
figuring out which day of the week is the first day of a given month in a given year), I define a
method for my month objects. The method returns the JavaScript date object value for the day
of the week of a month’s first date. Virtually everything I do to implement the month objects
is adapted from the custom objects discussion of Chapter 27.

Static Tables
The issue of updating the contents of a table’s fields is tied to the nature of an HTML document
being loaded and fixed in the browser’s memory. Recall that for early browsers, you can mod-
ify precious few elements of a document and its objects after the document has loaded. That
case certainly applies for typical data points inside a table’s <td> tag pair. After a document
loads — even if JavaScript has written part of the page — none of its content (except for text
and textarea field contents and a few limited form element properties) can be modified with-
out a complete reload.

Listing 49-1 contains the static version of a monthly calendar. The scripted table assembly
begins in the Body portion of the document. Figure 49-1 shows the results.

Figure 49-1: The static table calendar generated by Listing 49-1.

BC343Chapter 49 ✦ Application: Tables and Calendars

Listing 49-1: A Static Table Generated by JavaScript

<html>
<head>

<title>JavaScripted Static Table</title>
<script type=”text/javascript”>
// function becomes a method for each month object
function getFirstDay(theYear, theMonth){

var firstDate = new Date(theYear,theMonth,1);
return firstDate.getDay() + 1;

}
// number of days in the month
function getMonthLen(theYear, theMonth) {

var oneHour = 1000 * 60 * 60;
var oneDay = oneHour * 24;
var thisMonth = new Date(theYear, theMonth, 1);
var nextMonth = new Date(theYear, theMonth + 1, 1);
var len = Math.ceil((nextMonth.getTime() -

thisMonth.getTime() - oneHour)/oneDay);
return len;

}
// correct for Y2K anomalies
function getY2KYear(today) {

var yr = today.getYear();
return ((yr < 1900) ? yr + 1900 : yr);

}
// create array of month names
theMonths = new Array(“January”, “February”, “March”, “April”, “May”,

“June”, “July”, “August”, “September”, “October”, “November”,
“December”);

</script>
</head>
<body>

<h1>Month at a Glance (Static)</h1>
<hr />
<script type=”text/javascript”>
// initialize some variables for later
var today = new Date();
var theYear = getY2KYear(today);
var theMonth = today.getMonth(); // for index into our array

// which is the first day of this month?
var firstDay = getFirstDay(theYear, theMonth);
// total number of <TD>...</TD> tags needed in for loop below
var howMany = getMonthLen(theYear, theMonth) + firstDay;

// start assembling HTML for table
var content = “<center><table border=’1’>”;
// month and year display at top of calendar
content += “<tr><th colspan=’7’>” + theMonths[theMonth] + “ “ + theYear +

“<\/th><\/tr>”;

Continued

BC344 Part VI ✦ Bonus Chapters

Listing 49-1 (continued)

// days of the week at head of each column
content += “<tr><th>Sun<\/th><th>Mon<\/th><th>Tue<\/th><th>Wed<\/th>”;
content += “<th>Thu<\/th><th>Fri<\/th><th>Sat<\/th><\/tr>”;
content += “<tr>”;

// populate calendar
for (var i = 1; i < howMany; i++) {

if (i < firstDay) {
// ‘empty’ boxes prior to first day
content += “<td><\/td>”;

} else {
// enter date number
content += “<td align=’center’>” + (i - firstDay + 1) + “<\/td>”;

}
// start new row after each week
if (i % 7 == 0 && i != howMany) {

content += “<\/tr><tr>”;
}

}
content += “<\/table><\/center>”;

// blast entire table’s HTML to the document
document.write(content);
</script>

</body>
</html>

In this page, a little bit of the HTML — the <h1> heading and <hr> divider — is unscripted.
The rest of the page consists entirely of the table definition, all of which is constructed in
JavaScript. Most of the work for assembling the calendar’s data points occurs inside of the
for loop. Because not every month starts on a Sunday, the script determines the day of the
week on which the current month starts. For all fields prior to that day, the for loop writes
empty <td></td> tags as placeholders. After the numbered days of the month begin, the for
loop writes the date number inside the <td>...</td> tags. Whatever the script puts inside
the tag pair is written to the page as flat HTML. Under script control like that in the example,
however, the script can designate what goes into each data point — rather than writing fixed
HTML for each month’s calendar.

The important point to note in this example is that although the content of the page may
change automatically over time (without having to redo any HTML for the next month), after
the page is written, its contents cannot be changed. If you want to add controls or links that
are to display another month or year, you have to rewrite the entire page. This can be accom-
plished by passing the desired month and year as a search string for the current page’s URL
and then assigning the combination to the location.href property. You also have to add
script statements to the page that look for a URL search string, extract the passed values, and
use those values to generate the calendar while the page loads (see Chapter 17 for examples
of how to accomplish this feat). But to bring a calendar such as this even more to life (while
avoiding page reloading between views), you can implement it as a dynamic table.

BC345Chapter 49 ✦ Application: Tables and Calendars

Dynamic Tables
The only way to make data points of a table dynamically updatable in backward-compatible
browsers is to turn those data points into text (or textarea) objects. The approach to this
implementation is different from the static table because it involves the combination of imme-
diate and deferred scripting. Immediate scripting facilitates the building of the table framework,
complete with fields for every modifiable location in the table. Deferred scripting enables users
to make choices from other interface elements, causing a new set of variable data to appear
in the table’s fields.

Listing 49-2 turns the preceding static calendar into a dynamic one by including controls that
enable the user to select a month and year to display in the table. As testament to the support
for absolute backward compatibility, a button triggers the redrawing of the calendar contents,
rather than onchange event handlers in the select elements; a bug in NN2 for Windows
caused that event not to work for the select object. Don’t worry, the last example you see a
bit later in the chapter does away with backward compatibility in favor of a sleeker design.

Form controls aside, the look of this version is quite different from the static calendar. Compare
the appearance of the dynamic version shown in Figure 49-2 against the static version in
Figure 49-1.

Figure 49-2: Dynamic calendar generated by Listing 49-2.

BC346 Part VI ✦ Bonus Chapters

Listing 49-2: A Dynamic Calendar Table

<html>
<head>

<title>JavaScripted Dynamic Table</title>
<script type=”text/javascript”>
// function becomes a method for each month object
function getFirstDay(theYear, theMonth){

var firstDate = new Date(theYear,theMonth,1);
return firstDate.getDay();

}
// number of days in the month
function getMonthLen(theYear, theMonth) {

var oneHour = 1000 * 60 * 60;
var oneDay = oneHour * 24;
var thisMonth = new Date(theYear, theMonth, 1);
var nextMonth = new Date(theYear, theMonth + 1, 1);
var len = Math.ceil((nextMonth.getTime() -

thisMonth.getTime() - oneHour)/oneDay);
return len;

}
// correct for Y2K anomalies
function getY2KYear(today) {

var yr = today.getYear();
return ((yr < 100) ? yr + 1900 : yr);

}
// create array of month names
theMonths = new Array(“January”, “February”, “March”, “April”, “May”,

“June”, “July”, “August”, “September”, “October”, “November”,
“December”); // deferred function to fill fields of table

function populateFields(form) {
// initialize variables for later from user selections
var theMonth = form.chooseMonth.selectedIndex;
var theYear =

form.chooseYear.options[form.chooseYear.selectedIndex].value;
// initialize date-dependent variables

// which is the first day of this month?
var firstDay = getFirstDay(theYear, theMonth);
// total number of <TD>...<\/TD> tags needed in for loop below
var howMany = getMonthLen(theYear, theMonth);

// set month and year in top field
form.oneMonth.value = theMonths[theMonth] + “ “ + theYear;
// fill fields of table
for (var i = 0; i < 42; i++) {

if (i < firstDay || i >= (howMany + firstDay)) {
// before and after actual dates, empty fields
// address fields by name and [index] number
form.oneDay[i].value = “”;

} else {
// enter date values
form.oneDay[i].value = i - firstDay + 1;

}
}

}
</script>

</head>

BC347Chapter 49 ✦ Application: Tables and Calendars

<body>
<h1>Month at a Glance (Dynamic)</h1>
<hr />
<script type=”text/javascript”>
// initialize variable with HTML for each day’s field
// all will have same name, so we can access via index value
// empty event handler prevents
// reverse-loading bug in some platforms
var oneField = “<input type=’text’ name=’oneDay’ size=’2’ onfocus=’’>”;
// start assembling HTML for raw table
var content = “<form><center><table border=’1’>”;
// field for month and year display at top of calendar
content += “<tr><th colspan=’7’><input type=’text’

name=’oneMonth’><\/th><\/tr>”;
// days of the week at head of each column
content += “<tr><th>Sun<\/th><th>Mon<\/th><th>Tue<\/th><th>Wed<\/th>”;
content += “<th>Thu<\/th><th>Fri<\/th><th>Sat<\/th><\/tr>”;
content += “<tr>”;

// layout 6 rows of fields for worst-case month
for (var i = 1; i < 43; i++) {

content += “<td align=’middle’>” + oneField + “<\/td>”;
if (i % 7 == 0) {

content += “<\/tr><tr>”;
}

}

content += “<\/table>”;
// blast empty table to the document
document.write(content);
</script>
<select name=”chooseMonth”>

<option value=”January” selected=”selected”>January</option>
<option value=”February”>February</option>
<option value=”March”>March</option>
<option value=”April”>April</option>
<option value=”May”>May</option>
<option value=”June”>June</option>
<option value=”July”>July</option>
<option value=”August”>August</option>
<option value=”September”>September</option>
<option value=”October”>October</option>
<option value=”November”>November</option>
<option value=”December”>December</option>

</select> <select name=”chooseYear”>
<option value=”2003” selected=”selected”>2003</option>
<option value=”2004”>2004</option>
<option value=”2005”>2005</option>
<option value=”2006”>2006</option>
<option value=”2007”>2007</option>
<option value=”2008”>2008</option>
<option value=”2009”>2009</option>
<option value=”2010”>2010</option>

</select>

<input type=”button” name=”updater” value=”Update Calendar”
onclick=”populateFields(this.form)” />

</form> <!--start tag written by script -->
</body>

</html>

BC348 Part VI ✦ Bonus Chapters

When you first load Listing 49-2, it creates an empty table along with numerous text objects.
An onload event handler in the Body definition also could easily set the necessary items to
load the current month.

From a cosmetic point of view, the dynamic calendar may not be as pleasing as the static one
in Figure 49-1. Several factors contribute to this appearance.

From a structural point of view, creating a table that can accommodate any possible layout of
days and dates that a calendar may require is essential. That means a basic calendar consisting
of six rows of fields. For many months, the last row remains completely empty. But because
the table definition must be fixed when the page loads, this layout cannot change on the fly.

The more obvious cosmetic comparison comes from the font and alignment of data in text
objects. Except for capabilities of browsers capable of using stylesheets, you’re stuck with
what the browser presents in both categories. In the static version, you can define different
font sizes and colors for various fields, if you want (such as coloring the entry for today’s
date). Not so in text objects in a backward-compatible program.

This cosmetic disadvantage, however, is a boon to functionality and interactivity on the page.
Instead of the user being stuck with an unchanging calendar month, this version includes pop-
up menus from which the user can select a month and year of choice. Clicking the Update
Calendar button refills the calendar fields with data from the selected month.

One more disadvantage to this dynamic table surfaces, however: All text objects can be edited
by the user. For many applications, this capability may not be a big deal. But if you’re creating
a table-based application that encourages users to enter values in some fields, be prepared
(in other words, have event handlers in place) to either handle calculations based on changes
to any field or to alert users that the fields cannot be changed (and restore the correct value).

Hybrids
It will probably be the rare scripted table that is entirely dynamic. In fact, the one in Figure 49-2
is a hybrid of static and dynamic table definitions. The days of the week at the top of each
column are hard-wired into the table as static elements. If your table design can accommodate
both styles, implement your tables that way. The fewer the number of text objects defined for
a page, the better the performance for rendering the page, and the less confusion for the
page’s users.

Dynamic HTML Tables
If you have the luxury of developing for IE4+ or NN6+/W3C, you have all the resources of the
table and related element objects, as described in Chapter 37. The resulting application will
appear to be much more polished, because not only does your content flow inside a table
(which you can style to your heart’s delight), but the content is dynamic within the table.

Listing 49-3 blends the calendar calculations from the earlier two calendar versions with the
powers of IE4+ and W3C DOMs. A change to a requested calendar month or year instantly
redraws the body of the table, without disturbing the rest of the page (see Figure 49-3).

BC349Chapter 49 ✦ Application: Tables and Calendars

Figure 49-3: DHTML table.

Basic date calculations are identical to the other two versions. Because this page has to be
used with more modern browsers, it can use the shortcut array creation syntax for the month
names array. Also, the way the table must be constructed each time is very different from two
previous versions. In this version, the script creates new table rows, creates new cells for
those rows, and then populates those cells with the date numbers. Repeat loop logic is quite
different, relying on a combination of while and for loops to get the job done.

Other features made possible by more modern browsers include automatic population of the
list of available years. This page will never go out of style (unless browsers in 2050 no longer
use JavaScript). There is also more automation in the triggers of the function that populates
the table.

Listing 49-3: Dynamic HTML Calendar

<html>
<head>

<title>JavaScripted Dynamic HTML Table</title>
<style type=”text/css”>
td, th {text-align:center}
</style>
<script type=”text/javascript”>
/*******************

Continued

BC350 Part VI ✦ Bonus Chapters

Listing 49-3 (continued)

UTILITY FUNCTIONS
********************/
// day of week of month’s first day
function getFirstDay(theYear, theMonth){

var firstDate = new Date(theYear,theMonth,1);
return firstDate.getDay();

}
// number of days in the month
function getMonthLen(theYear, theMonth) {

var oneHour = 1000 * 60 * 60;
var oneDay = oneHour * 24;
var thisMonth = new Date(theYear, theMonth, 1);
var nextMonth = new Date(theYear, theMonth + 1, 1);
var len = Math.ceil((nextMonth.getTime() -

thisMonth.getTime() - oneHour)/oneDay);
return len;

}
// create array of English month names
var theMonths = [“January”,”February”,”March”,”April”,”May”,”June”,

“July”,”August”,”September”,”October”,”November”,”December”];
// return IE4+ or W3C DOM reference for an ID
function getObject(obj) {

var theObj;
if (document.all) {

if (typeof obj == “string”) {
return document.all(obj);

} else {
return obj.style;

}
}
if (document.getElementById) {

if (typeof obj == “string”) {
return document.getElementById(obj);

} else {
return obj.style;

}
}
return null;

}

/************************
DRAW CALENDAR CONTENTS
*************************/
// clear and re-populate table based on form’s selections
function populateTable(form) {

var theMonth = form.chooseMonth.selectedIndex;
var theYear = parseInt(

form.chooseYear.options[form.chooseYear.selectedIndex].text);
// initialize date-dependent variables
var firstDay = getFirstDay(theYear, theMonth);
var howMany = getMonthLen(theYear, theMonth);

BC351Chapter 49 ✦ Application: Tables and Calendars

// fill in month/year in table header
getObject(“tableHeader”).innerHTML = theMonths[theMonth] +

“ “ + theYear;

// initialize vars for table creation
var dayCounter = 1;
var TBody = getObject(“tableBody”);
// clear any existing rows
while (TBody.rows.length > 0) {

TBody.deleteRow(0);
}
var newR, newC;
var done=false;
while (!done) {

// create new row at end
newR = TBody.insertRow(TBody.rows.length);
for (var i = 0; i < 7; i++) {

// create new cell at end of row
newC = newR.insertCell(newR.cells.length);
if (TBody.rows.length == 1 && i < firstDay) {

// no content for boxes before first day
newC.innerHTML = “”;
continue;

}
if (dayCounter == howMany) {

// no more rows after this one
done = true;

}
// plug in date (or empty for boxes after last day)
newC.innerHTML = (dayCounter <= howMany) ?

dayCounter++ : “”;
}

}
}

/*******************
INITIALIZATIONS
********************/
// create dynamic list of year choices
function fillYears() {

var today = new Date();
var thisYear = today.getFullYear();
var yearChooser = document.dateChooser.chooseYear;
for (i = thisYear; i < thisYear + 5; i++) {

yearChooser.options[yearChooser.options.length] = new Option(i, i);
}
setCurrMonth(today);

}
// set month choice to current month
function setCurrMonth(today) {

document.dateChooser.chooseMonth.selectedIndex = today.getMonth();
}
</script>

</head>

Continued

BC352 Part VI ✦ Bonus Chapters

Listing 49-3 (continued)

<body onload=”fillYears(); populateTable(document.dateChooser)”>
<h1>Month at a Glance (Dynamic HTML)</h1>
<hr />
<table id=”calendarTable” border=”1” align=”center”>

<tr>
<th id=”tableHeader” colspan=”7”></th>

</tr>
<tr>

<th>Sun</th>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
<th>Sat</th>

</tr>
<tbody id=”tableBody”></tbody>
<tr>

<td colspan=”7”>
<form name=”dateChooser”>

<select name=”chooseMonth”
onchange=”populateTable(this.form)”>

<option selected=”selected”>January</option>
<option>February</option>
<option>March</option>
<option>April</option>
<option>May</option>
<option>June</option>
<option>July</option>
<option>August</option>
<option>September</option>
<option>October</option>
<option>November</option>
<option>December</option>

</select> <select name=”chooseYear”
onchange=”populateTable(this.form)”>
</select>

</form>

</td>
</tr>

</table>
</body>

</html>

BC353Chapter 49 ✦ Application: Tables and Calendars

Further Thoughts
The best deployment of an interactive calendar requires the kind of Dynamic HTML currently
available in IE4+ and NN6+/W3C DOMs. Moreover, the cells in those DOMs can receive mouse
events so that a user can click a cell and it will highlight perhaps in a different color or dis-
play some related, but otherwise hidden, information.

A logical application for such a dynamic calendar would be in a pop-up window or frame that
lets a user select a date for entry into a form date field. It eliminates typing in a specific date
format, thereby ensuring a valid date entry every time. Without DHTML, you can create a
static version of the calendar that renders the numbers in the calendar cells as HTML links.
Those links can use a javascript: URL to invoke a function call that sets a date field in the
main form.

✦ ✦ ✦

Application:
A Lookup Table

One of the first ideas that intrigued me about JavaScript was the
notion of delivering CGI-like functionality along with an HTML

document. On the Web, numerous, small data collections currently
require CGI scripting and a back-end database engine to drive them.
Of course, not everyone who has information to share has access to
the server environment (or the expertise) to implement such a solu-
tion. JavaScript provides that power.

A Serverless Database
Before you get too carried away with the idea of letting JavaScript
take the place of your SQL database, you need to recognize several
limitations that prevent JavaScript from being a universal solution.
First, any database that you embed into an HTML document is read-
only. Although you can script an interface and lookup routines for the
user, no provisions are available for writing revised information back
to the server, if that is your intention.

A second consideration is the size of the data collection. Unlike data-
bases residing on servers, the entire JavaScript database (or subset
you define for inclusion into a single HTML document) must be down-
loaded to the user’s browser before the user can work with the data.
As a point of reference, think about image files. At 56.6 Kbps through
a dial-up connection, how large an image file would you tolerate
downloading? Whatever that limit may be (anywhere from 10 to 35K,
depending on your patience) is what your database size limit should
be. For many special-purpose collections, this is plenty of space,
assuming one byte per character. Unlike what happens when the user
downloads an embedded image file, the user doesn’t see special status
bar messages about your database: To the browser, these messages
are all part of the HTML coming in with the document.

The kind of data I’m talking about here is obviously text data. That’s
not to say you can’t let your JavaScript-enhanced document act as a
front end to data files of other types on your server. The data in your
embedded lookup table can be URLs to images that get swapped into
the page as needed.

5050C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Serverless data
collection lookup

Data-entry validation

✦ ✦ ✦ ✦

BC356 Part VI ✦ Bonus Chapters

The Database
As I was thinking about writing a demonstration of a serverless database, I encountered a small
article in the Wall Street Journal that related information I had always suspected. The Social
Security numbers assigned to virtually every U.S. citizen are partially coded to indicate the
state in which you registered for your Social Security number. This information often reveals
the state in which you were born (another study indicates that two-thirds of U.S. citizens live
their entire lives in the same state). The first three digits of the nine-digit number comprise
this code.

When the numbering system was first established, each state was assigned a block of three-
digit numbers. Therefore, if the first three digits fall within a certain range, the Social Security
Administration has you listed as being registered in the corresponding state or territory. I
thought this would be an interesting demonstration for a couple of reasons: first, the database
is not that large, so it can be easily embedded into an HTML document without making the
document too big to download, even on slow Internet connections; second, it offers some
challenges to data-entry validation, as you see in a moment.

Before young people from populous states write to tell me that their numbers are not part of
the database, let me emphasize that I am well aware that several states have been assigned
number blocks not reflected in the database. This example is only a demonstration of scripting
techniques, not an official Social Security Administration page.

The Implementation Plan
For this demonstration, all I started with was a printed table of data. I figured that the user
interface for this application would probably be very plain: a text field in which the user can
enter a three-digit number, a clickable button to initiate the search, and a text field to show
the results of the lookup. Figure 50-1 shows the page. Pretty simple by any standards.

Given that user interface (I almost always start a design from the interface — how my page’s
users will experience the information presented on the page), I next planned the internals. I
needed the equivalent of two tables: one for the numeric ranges, and one for the state names.
Because most of the numeric ranges are contiguous, I could get by with a table of the high
number of each range. This meant that the script would have to trap elsewhere for the occa-
sional numbers that fall outside of the table’s ranges — the job of data validation.

Because the two tables were so closely related to each other, I had the option of creating two
separate arrays, so that any given index value would correspond to both the numeric and
state name entries in both tables (parallel arrays, I call them). The other option was to create
a two-dimensional array (see Chapter 30), in which each array entry has data points for both
the number and state name. For purposes of demonstration to first-time database builders, I
decided to stay with two parallel arrays. This method makes visualizing how the lookup pro-
cess works with two separate arrays a little easier.

Note

BC357Chapter 50 ✦ Application: A Lookup Table

Figure 50-1: The Social Security number lookup page.

The Code
The HTML document starts normally through the definition of the document title:

<html>
<head>

<title>Where Were You Born?</title>

In this application, you will see that I place utility function definitions close to the top of the
script sections and put any action-oriented scripts (functions acting in response to event han-
dlers) closer to the bottom of the script sections. My preference is to have all dependencies
resolved before the script needs them. This philosophy carries over from the logic that dictates
putting as many scripts in the Head as possible, so that even if the user (or network) should
interrupt downloading of a page before every line of HTML reaches the browser, any user inter-
face element relying on scripts will have those scripts loaded and ready to go. The order of
functions in this example is not critical, because as long as they all reside in the Head section,
they are defined and loaded by the time the field and button appear at the bottom of the page.
But after I develop a style, I find it easier to stick with it — one less matter to worry about while
scripting a complex application.

BC358 Part VI ✦ Bonus Chapters

After creating an array (named ssn) with 57 empty slots, the script populates all 57 data points
of the array, starting with the first entry going into the slot numbered 0. These data numbers
correspond to the top end of each range in the 57-entry table. For example, any number greater
than 3 but less than or equal to 7 falls into the range of the second data entry of the array
(ssn[1]).

<script type=”text/javascript”>
// create array listing all the top end of each numeric range
var ssn = new Array(57);
ssn[0] = 3;
ssn[1] = 7;
ssn[2] = 9;
ssn[3] = 34;
ssn[4] = 39;
ssn[5] = 49;
ssn[6] = 134;
ssn[7] = 158;
ssn[8] = 211;
ssn[9] = 220;
ssn[10] = 222;
ssn[11] = 231;
ssn[12] = 236;
ssn[13] = 246;
ssn[14] = 251;
ssn[15] = 260;
ssn[16] = 267;
ssn[17] = 302;
ssn[18] = 317;
ssn[19] = 361;
ssn[20] = 386;
ssn[21] = 399;
ssn[22] = 407;
ssn[23] = 415;
ssn[24] = 424;
ssn[25] = 428;
ssn[26] = 432;
ssn[27] = 439;
ssn[28] = 448;
ssn[29] = 467;
ssn[30] = 477;
ssn[31] = 485;
ssn[32] = 500;
ssn[33] = 502;
ssn[34] = 504;
ssn[35] = 508;
ssn[36] = 515;
ssn[37] = 517;
ssn[38] = 519;
ssn[39] = 520;
ssn[40] = 524;
ssn[41] = 525;
ssn[42] = 527;
ssn[43] = 529;
ssn[44] = 530;
ssn[45] = 539;
ssn[46] = 544;
ssn[47] = 573;
ssn[48] = 574;

BC359Chapter 50 ✦ Application: A Lookup Table

ssn[49] = 576;
ssn[50] = 579;
ssn[51] = 580;
ssn[52] = 584;
ssn[53] = 585;
ssn[54] = 586;
ssn[55] = 599;
ssn[56] = 728;

I do the same for the array containing the states and territory names. Both of these array
populators seem long but pale in comparison to what you would have to do with a database
of many kilobytes. Unfortunately, JavaScript doesn’t give you the power to load existing data
files into arrays (but see the recommendations at the end of the chapter), so any time you
want to embed a database into an HTML document, you must go through this array-style
assignment frenzy:

// create parallel array listing all the states/territories
// that correspond to the top range values in the first array
var geo = new Array(57);
geo[0] = “New Hampshire”;
geo[1] = “Maine”;
geo[2] = “Vermont”;
geo[3] = “Massachusetts”;
geo[4] = “Rhode Island”;
geo[5] = “Connecticut”;
geo[6] = “New York”;
geo[7] = “New Jersey”;
geo[8] = “Pennsylvania”;
geo[9] = “Maryland”;
geo[10] = “Delaware”;
geo[11] = “Virginia”;
geo[12] = “West Virginia”;
geo[13] = “North Carolina”;
geo[14] = “South Carolina”;
geo[15] = “Georgia”;
geo[16] = “Florida”;
geo[17] = “Ohio”;
geo[18] = “Indiana”;
geo[19] = “Illinois”;
geo[20] = “Michigan”;
geo[21] = “Wisconsin”;
geo[22] = “Kentucky”;
geo[23] = “Tennessee”;
geo[24] = “Alabama”;
geo[25] = “Mississippi”;
geo[26] = “Arkansas”;
geo[27] = “Louisiana”;
geo[28] = “Oklahoma”;
geo[29] = “Texas”;
geo[30] = “Minnesota”;
geo[31] = “Iowa”;
geo[32] = “Missouri”;
geo[33] = “North Dakota”;
geo[34] = “South Dakota”;
geo[35] = “Nebraska”;
geo[36] = “Kansas”;
geo[37] = “Montana”;
geo[38] = “Idaho”;

BC360 Part VI ✦ Bonus Chapters

geo[39] = “Wyoming”;
geo[40] = “Colorado”;
geo[41] = “New Mexico”;
geo[42] = “Arizona”;
geo[43] = “Utah”;
geo[44] = “Nevada”;
geo[45] = “Washington”;
geo[46] = “Oregon”;
geo[47] = “California”;
geo[48] = “Alaska”;
geo[49] = “Hawaii”;
geo[50] = “District of Columbia”;
geo[51] = “Virgin Islands”;
geo[52] = “Puerto Rico”;
geo[53] = “New Mexico”;
geo[54] = “Guam, American Samoa, N. Mariana Isl., Philippines”;
geo[55] = “Puerto Rico”;
geo[56] = “Long-time or retired railroad workers”;

Now comes the beginning of the data validation functions. Under control of a master valida-
tion function shown in a minute, the stripZeros() function removes any leading 0s that the
user may have entered. Notice that the instructions tell the user to enter the first three digits
of a Social Security number. For 001 through 099, that means the numbers begin with one
or two 0s. JavaScript, however, treats any numeric value starting with 0 as an octal value.
Because I have to do some numeric comparisons for the search through the ssn[] array, the
script must make sure that the entries (which are strings to begin with, coming as they do
from text objects) can be converted to decimal numbers. The parseInt() function, with the
all-important second parameter indicating Base 10 numbering, does the job. But because the
remaining validations assume a string value, the integer is reconverted to a string value
before it is returned:

// **BEGIN DATA VALIDATION FUNCTIONS**
// JavaScript sees numbers with leading 0’s as octal values, so strip 0’s
function stripZeros(inputStr) {

return parseInt(inputStr, 10).toString();
}

The next three functions are described in full in Chapter 43, which discusses data validation.
In the last function, a copy of the input value is converted to an integer to enable the function
to make necessary comparisons against the boundaries of acceptable ranges:

// general purpose function to see if an input value has been entered
function isEmpty(inputStr) {

if (inputStr == “” || inputStr == null) {
return true;

}
return false;

}

// general purpose function to see if a suspected numeric input
// is a positive integer
function isNumber(inputStr) {

for (var i = 0; i < inputStr.length; i++) {
var oneChar = inputStr.substring(i, i + 1);
if (oneChar < “0” || oneChar > “9”) {

return false;
}

}

BC361Chapter 50 ✦ Application: A Lookup Table

return true;
}

// function to determine if value is in acceptable range
function inRange(inputStr) {

num = parseInt(inputStr);
if (num < 1 || num > 586 && num < 596 || num > 599 &&

num < 700 || num > 728) {
return false;

}
return true;

}

The master validation controller function (named isValid() in this application) is also cov-
ered in depth in Chapter 43. A statement that wants to know if it should proceed with the
lookup process calls this function. If any one validation test fails, the function returns false,
and the search does not proceed:

// Master value validator routine
function isValid(inputStr) {

if (isEmpty(inputStr)) {
alert(“Please enter a number into the field before clicking the

button.”);
return false;

} else {
if (!isNumber(inputStr)) {

alert(“Please make sure entries are numbers only.”);
return false;

} else {
if (!inRange(inputStr)) {

alert(“Sorry, the number you entered is not part of our
database. Try another three-digit number.”);

return false;
}

}
}
return true;

}
// **END DATA VALIDATION FUNCTIONS**

The search() function is invoked by two different event handlers (and indirectly by a third).
The two direct calls come from the input field’s onchange event handler and the Search but-
ton’s onclick event handler. The handler passes a reference to the form, which includes the
button and both text objects.

To search the database, the script repeatedly compares each succeeding entry of the ssn[]
array against the value entered by the user. For this process to work, a little bit of preliminary
work is needed. First comes an initialization of a variable, foundMatch, which comes into play
later. Initially set to false, the variable is set to true only if there is a successful match —
information you need later to set the value of the result text object correctly for all possible
conditions:

// Roll through ssn DB to find index; apply index to geography DB
function search(form) {

var foundMatch = false;
var inputStr = stripZeros(form.entry.value);
if (isValid(inputStr)) {

inputValue = inputStr;

BC362 Part VI ✦ Bonus Chapters

for (var i = 0; i < ssn.length; i++) {
if (inputValue <= ssn[i]) {

foundMatch = true;
break;

}
}

}
form.result.value = (foundMatch) ? geo[i] : “”;
form.entry.focus();
form.entry.select();

}

Next comes all the data preparation. After the entry is passed through the zero stripper, a
copy is dispatched to the master validation controller, which, in turn, sends copies to each of
its special-purpose minions. If the master validator detects a problem from the results of any
of those minions, it returns false to the condition that wants to know if the input value is
valid. Should the value not be valid, processing skips past the for loop and proceeds immedi-
ately to an important sequence of three statements.

The first is a conditional statement that relies on the value of the foundMatch variable that
was initialized at the start of this function. If foundMatch is still false, that means that some-
thing is wrong with the entry and it cannot be processed. To prevent any incorrect informa-
tion from appearing in the result field, that field is set to an empty string if foundMatch is
false. The next two statements set the focus and selection to the entry field, inviting the
user to try another number.

On the other hand, if the entry is a valid number, the script finally gets to perform its lookup
task. Looping through every entry of the ssn[] array starting with entry 0 and extending
until the loop counter reaches the last item (based on the array’s length property), the script
compares the input value against each entry’s value. If the number is less than or equal to a
particular entry, the value of the loop counter (i) is frozen, the foundMatch variable is set to
true, and execution breaks out of the for loop.

This time through the conditional expression, with foundMatch being true, the statement
plugs the corresponding value of the geo[] array (using the frozen value of i) into the result
field. Focus and selection are set to the entry field to make it easy to enter another value.

Browsers that recognize keyboard events benefit by allowing the search to be initiated if the
user presses the Enter key after entering a number. An onkeypress event handler for the
input text box invokes the searchOnReturn() function. This function employs cross-browser
event parsing to find out if the Return key had been pressed while the text pointer was in the
text box. If so, the search() function, described earlier, is asked to do its job. Any characters
other than the Return key are allowed to pass unchanged to the input box:

// start search if input field receives a Return character
function searchOnReturn(form, evt) {

evt = (evt) ? evt : (window.event) ? window.event : “”;
if (evt) {

var theKey = (evt.charCode) ? evt.charCode :
((evt.which) ? evt.which : evt.keyCode);

if (theKey == 13) {
search(form);
return false;

}
}
return true;

BC363Chapter 50 ✦ Application: A Lookup Table

}
</script>

</head>

The balance of the code is the Body part of the document. The real action takes place within
the Form definition:

<body>
<h1>Where Were You Born?</h1>
<hr />
According to an article in the <cite>Wall Street Journal</cite>, the
first three digits of a U.S. Social Security number is a code that may
indicate the state or territory in which your application stated you
were born (because the code reveals the state in which you registered).
For recent immigrants, the number is supposed to match up with the state
or territory in which you were living when you received proper working
papers.
<p>Note: The database in this document is not 100 percent complete.

Populous states have added numeric ranges not contained here.</p>
<p>Instructions:</p>

Enter the first three digits of a U.S. Social Security number in
question.

Click on the Search button.
See the corresponding state or territory in the field.

<p>For the paranoid: No information you enter here is recorded or

monitored--it stays entirely within your browser.</p>
<hr />

The form’s onsubmit event handler is set to prevent accidental submission (or pseudo-sub-
mission, because no action attribute is specified for the form) that MacIE does from any
form’s text box (other browsers submit on Return from only a single-field form). Each of the
text objects is sized to fit the expected data. A handful of event handlers invoke the search()
function (directly and indirectly), passing a reference to the form as a parameter:

<form onsubmit=”return false”>
Enter the first three digits of a Social Security number:<input
type=”text” name=”entry” size=”3”
onkeypress=”return searchOnReturn(this.form, event)”
onchange=”search(this.form)” /> <input type=”button” value=”Search”
onclick=”search(this.form)” />
<p>The Feds link this number to:<input type=”text” name=”result”

size=”50” /></p>
</form>

</body>
</html>

Further Thoughts
If I were doing this type of application for production purposes, I would turn each pairing of
range high number and geographical location into separate objects and store the objects in
an array. Making that technique work requires one extra function and a different way of popu-
lating the data. The following is an example using the same variable names as the preceding
listing:

BC364 Part VI ✦ Bonus Chapters

// specify an array entry with two items
function dataRecord(ssn, geo) {

this.ssn = ssn;
this.geo = geo;
return this;

}

// initialize basic array
var numberState = new Array(57);

// populate main array with smaller arrays
numberState[0] = new dataRecord(3,”New Hampshire”);
numberState[1] = new dataRecord(7,”Maine”);
numberState[2] = new dataRecord(9,”Vermont”);

The other changes (marked in boldface) occur in the search() function, which must address
this data in a slightly different way than it did before:

function search(form) {
var foundMatch = false;
var inputStr = stripZeros(form.entry.value);
if (isValid(inputStr)) {

inputValue = inputStr;
for (var i = 0; i < numberState.length; i++) {

if (inputValue <= numberState[i].ssn) {
foundMatch = true;
break;

}
}

}
form.result.value = (foundMatch) ? numberState[i].geo : “”;
form.entry.focus();
form.entry.select();

}

All references to data are to the numberState[] array and properties of its objects (either
ssn or geo). With the data for each record arranged in a comma-delimited fashion, it may be
easier to transfer data exported from an existing database to your script with less copying
and pasting or dragging and dropping.

Another possibility would be to use JavaScript’s capability to load .js files that have the
arrays already populated or have variables preloaded with comma-delimited values. By using
the string.split() method (see Chapter 27), you can easily assign data in this format to an
array.

From a user interface perspective, the searchOnReturn() function can do more with the
event object. For instance, it could filter data entry so that only numbers ever reach the input
text field. You would still want to perform the data-entry validation in case someone were to
paste some non-numeric text into the text box.

I truly believe that serverless data lookups offer a great opportunity to many creative
JavaScripters.

✦ ✦ ✦

Application:
A “Poor Man’s”
Order Form

Ihesitate to call the application described in this chapter an “order
form” because it is not in any way intended for use as a client-side

shopping cart or some of the more advanced e-commerce applica-
tions you see on the Web. No, the goal here is to demonstrate how
JavaScript can be used to assist users with column-and-row arithmetic,
very much like the kinds of arithmetic needed to calculate the total
for an order of goods.

Although this order form is not linked to any particular online catalog,
some or all of it can be used as a piece for a small e-commerce site.
The form in the example here requires that users input product
descriptions and prices, but there is no reason that a client-side
JavaScript shopping cart can’t accumulate the shopper’s choices from
catalog pages, and then present them in an order form with product
descriptions and prices hard-wired into the table. There still are entry
boxes for quantity and selecting local sales tax rates. But all the arith-
metic products and sums are calculated quickly on the client with
JavaScript.

Along the way, you should also discover how to design code — more
specifically, JavaScript data structures — in such a way that they are
easily editable by non-scripters who are responsible for updating the
embedded data. Therefore, even if you prefer to leave professional
e-commerce order processing to server CGIs, you may still pick up a
scripting tip or two from this “poor man’s” version of an order form.

Defining the Task
I doubt that any two order forms on the Web are executed precisely
the same way. Much of the difference has to do with the way a CGI
program on the server wants to receive the data on its way to an
order-entry system or database. The rest has to do with how clever
the HTML programmer is. To come up with a generalized demonstra-
tion, I had to select a methodology and stay with it.

5151C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Live math on table rows
and columns

Number formatting

Code reusability

✦ ✦ ✦ ✦

BC366 Part VI ✦ Bonus Chapters

Because the intended goal of this demonstration is to focus on the rows and columns of an
order form, I omit the usual name-and-address input elements. Instead, the code deals exclu-
sively with the tabular part of the form, including the footer “stuff” of a form for subtotals,
sales tax, shipping, and the grand total.

Another goal is to design the order form with an eye to as much reusability as possible. In
other words, I may design the form for one page, but I also want to adapt it to another order
form quickly without having to muck around too deeply in complicated HTML and JavaScript
code. One giant annoyance that this approach eliminates is the normal HTML repetition of row
after row of tags for input fields and table cells. JavaScript can certainly help you out there.

The order form code also demonstrates how to perform math and display results in two
decimal places, use the String.split() method to make it easy to build arrays of data
from comma-delimited lists, and enable JavaScript arrays to handle tons of repetitive work.

The Form Design
Figure 51-1 shows a rather simplified version of an order form as provided in the listings. Many
elements of the form are readily adjustable by changing only a few characters near the top of
the JavaScript listing. At the end of the chapter, I provide several suggestions for improving
the user experience of a form, such as this one.

Figure 51-1: The order form display.

BC367Chapter 51 ✦ Application: A “Poor Man’s” Order Form

Form HTML and Scripting
Because this form is generated as the document loads, JavaScript writes most of the document
to reflect the variable choices made in the reusable parts of the script. In fact, in this example,
only the document heading is hard-wired in HTML.

The order form example page starts innocently enough:

<html>
<head>

<title>Scripted Order Form</title>

Global adjustments
The first important section of the example is the start of the JavaScript statements and func-
tions that do most of the work. The script begins by initializing three very important global
variables. This location is where the author, defining the details for the order form, also enters
information about the column headings, column widths, and number of data entry rows:

<script type=”text/javascript”>
// ** BEGIN GLOBAL ADJUSTMENTS ** //
// Order form columns and rows specifications
// **Column titles CANNOT CONTAIN PERIODS
var columnHeads = “Qty,Stock#,Description,Price,Total”.split(“,”);
var columnWidths = “3,7,20,7,8”.split(“,”);
var numberOfRows = 5;

The first two assignment statements perform double duty. Not only do they provide the loca-
tion for customized settings to be entered by the HTML author, but they use the string.
split() method to literally create arrays out of their series of comma-delimited strings. At
first, this may seem to be a roundabout way to generate an array, because you can also create
the array directly with

var columnHeads = new Array(“Qty”,”Stock”,...);

But the way shown here minimizes the possibility of goofing up the quotes and commas when
modifying the data, especially if modification might be attempted by a non-scripter.

So much of the repetitive work to come in this application is built around arrays that it will
prove to be extraordinarily convenient to have the column title names and column widths in
parallel arrays. The number-of-rows value also plays a role in not only drawing the form, but
calculating it as well.

Notice the caveat about periods in column heading strings. You will soon see that these column
names are assigned as text object names, which, in turn, are used to build object references
to text boxes. Object names cannot have periods in them, so for these column headings to
perform their jobs, you have to leave periods out of their names.

As part of the global adjustment area, the extendRow() method requires knowledge about
which columns are to be multiplied to reach a total for any row:

// data entry row math
function extendRow(form,rowNum) {

// **change ‘Qty’ and ‘Price’ to match your column names
var rowSum = form.Qty[rowNum].value * form.Price[rowNum].value;
// **change ‘Total’ to match your corresponding column name
form.Total[rowNum].value = formatNum(rowSum,2);

}

BC368 Part VI ✦ Bonus Chapters

This example uses the Qty, Price, and Total fields for math calculations. Those field names
are inserted into the references within this function. To calculate the total for each row, the
function receives the form object reference and the row number as parameters. As described
later, the order form is generated as a kind of array. Each field in a column intentionally has the
same name. This scheme enables scripts to access a given field in that column by row number
when using the row number as an index to the array of objects bearing the same name. For
example, for the first row (row 0), you calculate the total by multiplying the quantity field of
row 0 (form.Qty[0].value) times the price field of row 0 (form.Price[0].value). You then
format that value to two places to the right of the decimal and plug that number into the value
of the total field for row 0 (form.Total[0].value).

The final place where you have to worry about customized information is in the function that
adds up the total columns. The function must know the name that you assigned to the total
column:

function addTotals(form) {
var subTotal = 0;
for (var i = 0; i < numberOfRows; i++) {

// **change ‘Total’ in both spots to match your column name
subTotal += (form.Total[i].value != “”) ?

parseFloat(form.Total[i].value) : 0;
}
form.subtotal.value = formatNum(subTotal,2);
form.tax.value = formatNum(getTax(form,subTotal),2);
form.total.value = “$” + formatNum((parseFloat(form.subtotal.value) +

parseFloat(form.tax.value) + parseFloat(form.shipping.value)),2);
}
// ** END GLOBAL ADJUSTMENTS ** //

The addTotals() function receives the form reference as a parameter, which it uses to read
and write data around the form. The first task is to add up the values of the total fields from
each of the data-entry rows. Here you need to be specific about the name you assign to that
column. To keep code lines to a minimum, you use a conditional expression inside the for
loop to make additions to the subTotal amount only when a value appears in a row’s total
field. Because all values from text fields are strings, you use parseFloat() to convert the
values to floating-point numbers before adding them to the subTotal variable.

Three more assignment statements fill in the subtotal, tax, and total fields. The subtotal is
nothing more than a formatted version of the amount reached at the end of the for loop.
The task of calculating the sales tax is passed off to another function (described in a follow-
ing section), but its value is also formatted before being plugged into the sales tax field. For
the grand total, you add floating-point-converted values of the subtotal, tax, and shipping
fields before slapping a dollar sign in front of the result. Even though the three fields contain
values formatted to two decimal places, any subsequent math on such floating-point values
incurs the minuscule errors that send formatting out to 16 decimal places. Thus, you must
reformat the results after the addition.

Do the math
As you can see from Figure 51-1, the user interface for entering the sales tax is a pair of select
elements. This type of interface minimizes the possibility of users entering the value in all
kinds of weird formats that, in some cases, would be impossible to parse. The function that
calculates the sales tax of the subtotal looks to these select objects for their current settings:

BC369Chapter 51 ✦ Application: A “Poor Man’s” Order Form

function getTax(form,amt){
var chosenPercent = form.percent[form.percent.selectedIndex].value;
var chosenFraction = form.fraction[form.fraction.selectedIndex].value;
var rate = parseFloat(chosenPercent + “.” + chosenFraction) / 100;
return amt * rate;

}

After receiving the form object reference and subtotal amount as parameters, the function
reads the two values chosen in the select elements. The string value properties of the
select objects are temporarily stored in local variables. To arrive at the actual rate, you
concatenate the two portions of the string (joined by an artificial decimal point) and
parseFloat() the string to get a number that you can then divide by 100. The product of the
subtotal times the rate is returned to the calling statement (in the preceding addTotals()
function).

All of the calculation that ripples through the order form is controlled by a single calculate()
function:

function calculate(form,rowNum) {
extendRow(form,rowNum);
addTotals(form);

}

This function is called by any object that affects the total of any row. Such a request includes
both the form object reference and the row number. This information lets the single affected
row, and then the totals column, be recalculated. Changes to some objects, such as the sales
tax select objects, affect only the totals column, so they will call addTotals() function
directly rather than this function (the rows don’t need recalculation).

Number formatting, as explained in Chapter 28, is a detail that scripters must handle them-
selves (unless you are designing for IE5.5+ and NN6+/W3C, which include the number.
toFixed() method for number formatting). We can borrow the formatting code from
Chapter 28, and use it here as-is:

function formatNum(expr,decplaces) {
var str = (Math.round(parseFloat(expr) *

Math.pow(10,decplaces))).toString();
while (str.length <= decplaces) {

str = “0” + str;
}
var decpoint = str.length - decplaces;
return str.substring(0,decpoint) + “.” +

str.substring(decpoint,str.length);
}

Being able to pick up this function from a different application should reinforce the advantage
to writing functions to be as generalizable as possible. Rather than building page-specific ref-
erences into the formatting function, it accepts parameters that could come from anywhere.
Page specifics are left to another function that deals with reading and writing text box values.

Cooking up some HTML
As we near the end of the scripting part of the document’s Head section, we come to two
functions that are invoked later to assemble some table-oriented HTML based on the global
settings made at the top. One function assembles the row of the table that contains the col-
umn headings:

BC370 Part VI ✦ Bonus Chapters

function makeTitleRow() {
var titleRow = “<tr>”;
for (var i = 0; i < columnHeads.length; i++) {

titleRow += “<th>” + columnHeads[i] + “<\/th>”;
}
titleRow += “<\/tr>”;
return titleRow;

}

The heart of the makeTitleRow() function is the for loop, which makes simple <th> tags out
of the text entries in the columnHeads array defined earlier. All this function does is assemble
the HTML. A document.write() method in the Body puts this HTML into the document.

function makeOneRow(rowNum) {
var oneRow = “<tr>”;
for (var i = 0; i < columnHeads.length; i++) {

oneRow += “<td align=middle><input type=text size=” +
columnWidths[i] + “ name=\’” + columnHeads[i] +
“\’ onchange=’calculate(this.form,” + rowNum + “)’><\/td>”;

}
oneRow += “<\/tr>”;
return oneRow;

}

Creating a row of entry fields is a bit more complex, but not much. Instead of assigning
just a word to each cell, you assemble an entire <input> object definition. You use the
columnWidths array to define the size for each field (which therefore defines the width of the
table cell in the column). columnHead values are assigned to the field’s name attribute. Each
column’s fields have the same name, no matter how many rows exist. Finally, the onchange
event handler invokes the calculate() method, passing the form and, most importantly, the
row number, which comes into this function as a parameter (see the following section).

The next block of code closes up the head, opens up the body, and prepares the page for a
table to hold the order form:

</script>
</head>
<body>

<center>
<h1>ORDER FORM</h1>
<form>

<table border=’2’>

Tedium lost
Believe it or not, all of the rows of data-entry fields in the table are defined by the handful of
JavaScript statements that follow:

<script type=”text/javascript”>
document.write(makeTitleRow());
// order form entry rows
for (var i = 0; i < numberOfRows; i++) {

document.write(makeOneRow(i));
}

The first function to be called is the makeTitleRow() function, which returns the HTML for
the table’s column headings. Then a very simple for loop writes as many rows of the field cells

BC371Chapter 51 ✦ Application: A “Poor Man’s” Order Form

as defined in the global value near the top of the document. Notice how the index of the loop,
which corresponds to the row number, is passed to the makeOneRow() function, so that it can
assign that row number to its relevant statements. Therefore, these few statements generate
as many entry rows as you need.

Tedium regained
What follows in the script writes the rest of the form to the screen. To make these fields as
intelligent as possible, the scripts must take the number of columns into consideration. A
number of empty-space cells must also be defined (again, calculated according to the number
of columns). Finally, the code-consuming select element definitions must also be in this
segment of the code:

// order form footer stuff (subtotal, sales tax, shipping, total)
var colSpacer = “<tr><td colspan=” + (columnWidths.length - 2) +

“><\/td>”;
document.write(colSpacer);
document.write(“<th>Subtotal:<\/th>”);
document.write(“<td><input type=text size=” +

columnWidths[columnWidths.length - 1] +
“ name=subtotal><\/tr>”);

document.write(“<tr><td colspan=” + (columnWidths.length - 3) +
“><\/td>”);

var tax1 = “<select name=percent
onchange=’addTotals(this.form)’><option value=0>0”;

tax1 += “<option value=1>1<option value=2>2<option value=3>3”;
tax1 += “<option value=4>4<option value=5>5<option value=6>6”;
tax1 += “<option value=7>7<option value=8>8<option value=9>9”;
tax1 += “<\/select>”;
var tax2 = “<select name=fraction

onchange=’addTotals(this.form)’>”;
tax2 += “<option value=0>00<option value=25>25”;
tax2 += “<option value=5>50<option value=75>75<\/select>”;
document.write(“<th align=right>” + tax1 + “.” + tax2 +

“\%<\/th>”);
document.write(“<th align=right>Sales Tax:<\/th>”);
document.write(“<td><input type=text size=” +

columnWidths[columnWidths.length - 1] +
“ name=tax value=0.00><\/tr>”);

document.write(colSpacer);
document.write(“<th>Shipping:<\/th>”);
document.write(“<td><input type=text size=” +

columnWidths[columnWidths.length - 1] +
“ name=shipping value=0.00
onchange=’addTotals(this.form)’><\/tr>”);

document.write(colSpacer);
document.write(“<th>Total:<\/th>”);
document.write(“<td><input type=text size=” +

columnWidths[columnWidths.length - 1] + “ name=total><\/tr>”);
</script>
</table>

</form>
</center>

</body>
</html>

BC372 Part VI ✦ Bonus Chapters

To gain a better understanding of how the script assembles the HTML for this part of the
table, start by looking at the colSpacer variable. This variable contains a table cell definition
that must span all but the rightmost two columns. Thus, the colspan attribute is calculated
based on the length of the columnWidths array (minus two for the columns we need for data).
Therefore, to write the line for the subtotal field, you start by writing one of these column
spacers, followed by the <th> type of cell with the label in it. For the actual field, you must
size it to match the fields for the rest of the column. That’s why you summon the value of the
last columnWidths value for the size attribute. You use similar machinations for the Shipping
and Total lines of the form footer material.

In between these locations, you define the Sales Tax select objects (and a column spacer
that is one cell narrower than the other one you used). To reduce the risk of data-entry error
and to allow for a wide variety of values without needing a 40-item pop-up list, I divided the
choices into two components and then display the decimal point and percentage symbol in
hard copy. Both select objects trigger the addTotals() function to recalculate the right-
most column of the form.

Sometimes, it seems odd that you can script 4 lines of code to get 20 rows of a table, yet it
takes 20 lines of code to get only 4 more complex rows of a table. Such are the incongruities
of the JavaScripter’s life.

Further Thoughts
Depending on the catalog of products or services being sold through this order form, the first
improvement I would make is to automate the entry of stock number and description. For
example, if the list of all product numbers isn’t that large, you may want to consider dropping
a select element into each cell of the Description column. Then, after a user makes a selection,
the onchange event handler performs a lookup through a product array and automatically
plugs in the description and unit price. In any version of this form, you also need to perform
data validation for crucial calculation fields, such as quantity.

Some of the other online order forms I’ve seen include reset buttons for every row or a column
of checkmarks that lets users select one or more rows for deletion or resetting. Remember
that people make mistakes and change their minds while ordering online. Give them plenty of
opportunity to recover easily. If getting out of jam is too much trouble, they will head for the
History list or Back button, and that valued order will be, well, history.

✦ ✦ ✦

Application:
Outline-Style Table
of Contents

In your Web surfing, you may have encountered sites that implement
an expandable, outline type of table of contents. I’ve long thought

that these elements were great ideas, especially for sites with lots of
information. An outline, such as the Windows Explorer or text-style
Macintosh Finder windows, enables the author to present a large table
of contents in a way that doesn’t necessarily take up a ton of page
space or bandwidth. From listings of top-level entries, a user can drill
down to reveal only those items of interest.

No matter how much I like the idea, however, I dislike visiting these
sites. A CGI program on the server responds to each click, chews on
my selection, and then sends back a completely new screen, showing
my choice expanded or collapsed. After working with outlines in the
operating system and outliner programs on personal computers, the
delays in this processing seem interminable. It occurred to me that
implementing the outline interface as a client-side JavaScript can sig-
nificantly reduce the delay problem and make outlines a more viable
interface to a site’s table of contents. This chapter documents the
process that went into an early version of the outliner, which works
with most older browsers. Some newer versions are also presented.

Design Challenges
The more I looked into implementing an outline in the early scripting
days, the more challenges I found ahead of me.

The first problem was making the little icons (widgets) clickable so
that they respond to user mouse actions. Even though images are
objects in NN3 and IE4+, NN images don’t have mouse-oriented event
handlers until you reach NN6 (although you can make some mouse
events work in some versions of WinNN4). Therefore, it was necessary
to surround each image with a link object whose href attribute called
a javascript: URL and function to do the job. This technique also
helped solve the next problem.

5252C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Multiple frames

Clickable images

Custom objects

Image caching

Persistent data

Dynamic HTML
positioning

Reading XML data

✦ ✦ ✦ ✦

BC374 Part VI ✦ Bonus Chapters

After a user clicks an outline widget, the script must update the window or frame containing the
outline to expand or collapse a portion of the outline. The original design predated dynami-
cally updated pages of IE4+ and NN6+/W3C DOM, so the entire page had to be rewritten. But
to make that work, the script needed a way to represent and temporarily preserve the current
state of the outline — a line-by-line rundown on whether a line was currently expanded or col-
lapsed. If the script could save that state somewhere, the widget’s link href attribute could
summon a JavaScript function whose job is to perform a soft reload of the current page with-
out reopening it — with the history.go() method. Therefore, as a user clicked a widget, the
state of the outline created by that click would be generated in the script, saved, and then used
to specify the expanded or collapsed state of each line as the page reloaded.

Just when I was congratulating myself on how clever I was, I realized that any attempt to save
the state of the new outline in a variable was doomed: Even a soft reload restores variables to
their original state. I’d have to find another way to maintain the data.

The first method I used was to store the outline state (a string of 0s and 1s, in which a 1 indi-
cated that the item was expanded) in a text box. Text and textarea objects in early browsers
maintain their contents even through a document reload (but not a reopen). Although this
method was convenient, it was ugly because it meant that the field would have to be in the
frame. One tactic was to make the frame a non-scrolling frame and stuff the field out of sight
by pushing it to the far right with padding spaces inside a <pre>...</pre> tag.

Next, it was time to try Netscape’s mechanism for storing persistent data on the client com-
puter: the document.cookie property. Cookies are not unique to JavaScript. Any CGI can
also store data, such as a user’s login name and password for a site, in a cookie. The cookie
did the trick. Information about the outline lasts in the cookie of any user’s computer only as
long as the browser stays running.

Another detail that I wanted to overcome was the initial delay experienced the first time a
user clicked one of the collapsed widgets in the outline. At that point, only one of three icon
image files had been loaded and cached in the browser. In the very first version of this appli-
cation for NN2, I arranged to display all three widgets as decoration on the page to get them
loaded up front. But with NN3+ and IE4+, I can precache all the widget art files and deploy
them instantly when needed.

The Implementation Plan
I admit to approaching the outline technique the first time without a specific data-display goal
in mind — not always the best way to go about it. In search of some logical and public domain
data that I could use as an example, I came upon the tables of information about food compo-
sition (grams of protein, fat, calories, and so on) published by the U.S. government. For this
demonstration, I created one HTML document containing data for two hierarchical categories
of foods: peas and pickles. At the beginning of each food category, I assigned an anchor to
which the text entries of the outline point.

My design for this implementation calls for two frames set up as columns (see Figure 52-1).
The narrower left column houses the outline interface. After the frameset loads, the wider
right frame initially shows an introductory HTML document. Clicking any of the links in the
outline changes the view of the right-hand frame from the introductory document to the food
data document. A link at the bottom of the food data document enables the user to view the
introductory document again in the same frame, if desired.

BC375Chapter 52 ✦ Application: Outline-Style Table of Contents

Figure 52-1: The outline in the left frame is dynamic and local.

In addition to image caching, modern browsers gave me reason to make some other improve-
ments to the outliner over a version originally created for NN2. They include

✦ Adjustable indentation spacing

✦ Easier specification of widget art files

✦ Easier way to specify a target frame for the results

✦ Additional array field for status bar display text

All adapter-adjustable elements appear near the top of the script to make it easy for scripters
without a lot of experience to modify the application for their own sites.

The Code
All files for this implementation of the outline are on the CD-ROM accompanying this book,
so I display here only the code for the framesetting document (index.htm) and the outline
(toc4.htm). Earlier numbered filenames were used for previous editions of this book.

Setting the frames
To establish the frames, the script creates a two-column format, assigning 35 percent of the
page as a column to contain the outline:

BC376 Part VI ✦ Bonus Chapters

<html>
<head>

<title>Outline Table of Contents</title>
</head>
<frameset cols=”35%,*”>

<noframes>
<body>

<h1>It’s really cool...</h1>
<h2>...but only if you have a frames-capable browser.</h2>
<hr />
Back

</body>
</noframes>
<frame name=”Frame1” src=”toc4.htm” />
<frame name=”Frame2” src=”intro.htm” />

</frameset>
</html>

Because pages designed for multiple frames and JavaScript don’t fare well in browsers inca-
pable of displaying frames, a good approach is to surround HTML with a <noframes> tag for
display to users of old browsers or browsers on portable devices that have limited feature
sets. You can substitute any link you like for the one shown here, which goes back to the main
JavaScript page at my Web site.

The names that I assign to the two frames aren’t very original or clever, but they help me
remember which frame is which. Because the nature of the contents of the second frame
changes (either the introductory document or the data document), I couldn’t think of a good
name to reflect its purpose.

Outline code
Now we come to some lengthy code for the outline (in file toc4.htm). Much of the code deals
with managing the binary representation of the current state of the outline. For each line of
the completely exploded outline, the code designates a 0 for a line that has no nested items
showing and a 1 for a line that has a nested item showing. This sequence of 0s and 1s (as one
string) is the road map that the script follows when redrawing the outline. Cues from the 0
and 1 settings let the script know whether it should display a nested item (if one exists) or
leave that item collapsed.

To help me visualize the inner workings of these scripts, I developed a convention that calls
any item with nested items beneath it a mother. Any nested item is that mother’s daughter. A
daughter can also be a mother if it has an item nested beneath it. You see how this plays out
in the code shortly.

The food outline document starts out simply enough, with the standard opening of a JavaScript
script. The first specification set apart for easy modification is the size of the indentation level
in pixels:

<html>
<head>

<title>Food Selection Outline</title>
<script type=”text/javascript”>
// ** BEGIN OUTLINE AUTHOR-ADUSTABLE SPECIFICATIONS **//

// size of horizontal indent per level
var indentPixels = 20;

BC377Chapter 52 ✦ Application: Outline-Style Table of Contents

Outline level indentations are controlled by the width of a transparent image file. Indentation
size is uniform throughout the outline, and the value is controlled via the indentPixels
global variable. The image file is actually only a single pixel large, but by setting the width as
needed (see the following example), it occupies a known amount of space, without affecting
the font characteristics of the outline text.

Two more groups of adjustable items come next. The first group takes care of the widget
images. This group is where you specify the filenames for the three widgets and provide the
script with their height and width measurements:

// art files and sizes for three widget styles
// (all three widgets must have same height/width)
var collapsedWidget = “plus.gif”;
var expandedWidget = “minus.gif”;
var endpointWidget = “end.gif”;
var widgetWidth = 12;
var widgetHeight = 12;

// Target for documents loaded when user clicks on a link.
// Specify your target frame name here.
var displayTarget = “Frame2”;

When you design your widget art (if you don’t like mine), be sure to design all three to be the
same size. This practice prevents scaling of the images later.

If you deploy the outliner for your site, be sure to change the name of the frame assigned to
the displayTarget global variable. This value eventually becomes part of the text links in
the outline. If you want a click of a link to completely replace the current frameset with a
different page, specify _top as the display target.

Assembling outline content
The last of the easily modifiable areas defines the content of the outline. After defining the
primary array (db), a second dimension is added to create an array of custom objects. The
dbRecord array (defined in the following listing) helps populate the db array with specifics
provided in the comma-delimited statements here:

// Create array object containing outline content and attributes.
// To adapt outline for your use, modify this table.
// Start the array with [1], and continue without gaps to your last item.
// The order of the five parameters:
// 1. Boolean (true or false) whether _next_ item is indented.
// 2. String to display in outline entry (including or style
// tags).
// 3. URL of link for outline entry; Use empty string (“”) for no link
// 4. Integer of indentation level (0 is leftmost margin level)
// 5. String for status line during onMouseOver (apostrophes require
// \\’)
var db = new Array();
db[db.length] = new dbRecord(true, “Peas”, “”,0,””);
db[db.length] = new dbRecord(false, “Boiled”, “foods.htm#boiled”,1,

“Mmm, boiled peas...”);
db[db.length] = new dbRecord(true, “Canned”, “foods.htm#canned”,1,

“Check out canned peas...”);
db[db.length] = new dbRecord(false, “Alaska”,”foods.htm#alaska”,2,

“Alaska\\’s finest...”);

BC378 Part VI ✦ Bonus Chapters

db[db.length] = new dbRecord(false, “Low-Sodium”,”foods.htm#losodium”,2,
“A healthy treat...”);

db[db.length] = new dbRecord(true,
“Pickles”,””,0,””);

db[db.length] = new dbRecord(true, “Cucumber”,”foods.htm#cucumber”,1,
“What\\’s new in cukes...”);

db[db.length] = new dbRecord(false, “Dill”, “foods.htm#dill”,2,
“Pucker up...”);

db[db.length] = new dbRecord(false, “Fresh”, “foods.htm#fresh”,2,
“You\\’d prefer stale?”);

db[db.length] = new dbRecord(false,”Sour”, “foods.htm#sour”,2,
“For sweeties...”);

// add more records to complete your outline
// ** END AUTHOR-ADJUSTABLE SPECIFICATIONS **//

Each record consists of five items. The first item is a Boolean value, which denotes whether
the item is a mother item (that is, the next item in the list is nested one level deeper). The
HTML that displays in the outline comes next. This text can be multiple-word strings, or any
HTML that you like (some users have assigned tags to show pictures instead of text).
For the third item, you can insert any valid URL, whether it be to a separate site, an anchor in
another document (as shown here), or even a javascript: URL to execute another function.
If you don’t want an entry in the outline to be a link — just plain, flat text — leave this third item
as an empty string, as I do here for the topmost items in both categories. The fourth item is a
number representing how many nested levels the item has. And finally, the last item is a string
containing the text that appears in the status bar when the user rolls the mouse over the item
in the outline. Because of a quirk in the way the status bar responds to quoted characters, any
string literal character (normally preceded with a backslash) requires two backslashes (one
to alert the browser of the other).

Be sure to keep the items for the db array in the same top-to-bottom order as you’d expect
to see in a fully expanded outline. Notice that the index values of the array are automatically
inserted for you: The length property of an array is always one more than the highest index.
By inserting references to the db.length property in the brackets, you instruct JavaScript to
“walk the ladder” upward from zero. If you move things around the outline, however, don’t
forget to adjust the indentation levels if they are affected by the content changes.

The bottom of the array creation section marks the end of the code that you need to modify
after you deploy the outliner. The rest of the JavaScript code works silently for you, but if you
intend to perform further customizations to the outliner, understanding how it all works
will help.

On to the constructor function for the dbRecord entries. This function is the classic JavaScript
way to build a custom object (see Chapter 33):

// object constructor for each outline entry
function dbRecord(mother,display,URL,indent,statusMsg){

this.mother = mother; // is this item a parent?
this.display = display; // text to display
this.URL = URL; // link tied to text; if empty string, item

// appears as straight text
this.indent = indent; // how many levels nested?
this.statusMsg = statusMsg; // descriptive text for status bar
return this;

}

To preload all the images into the browser’s image cache, you create new Image objects for
each and assign the filenames to their src properties. Notice that these statements are not in
functions, but rather execute as the page loads:

BC379Chapter 52 ✦ Application: Outline-Style Table of Contents

// pre-load all images into cache
var fillerImg = new Image(1,1);
fillerImg.src = “filler.gif”;
var collapsedImg = new Image(widgetWidth,widgetHeight);
collapsedImg.src = collapsedWidget;
var expandedImg = new Image(widgetWidth,widgetHeight);
expandedImg.src = expandedWidget;
var endpointImg = new Image(widgetWidth,widgetHeight);
endpointImg.src = endpointWidget;

Cookie storage
To preserve the binary digit string between redraws of the outline, this script must save the
string to a place that won’t be overwritten or emptied during the document reload. The
document.cookie fills that requirement nicely. Excerpting and adapting parts of Bill Dortch’s
cookie functions (see Chapter 18), this script simplifies the writing of a cookie that disappears
when the user quits the browser:

// ** functions that get and set persistent cookie data **
// set cookie data
var mycookie = document.cookie;
function setCurrState(setting) {

mycookie = document.cookie = “currState=” + escape(setting);
}
// retrieve cookie data
function getCurrState() {

var label = “currState=”;
var labelLen = label.length;
var cLen = mycookie.length;
var i = 0;
while (i < cLen) {

var j = i + labelLen;
if (mycookie.substring(i,j) == label) {

var cEnd = mycookie.indexOf(“;”,j);
if (cEnd == -1) {

cEnd = mycookie.length;
}
return unescape(mycookie.substring(j,cEnd));

}
i++;

}
return “”;

}

A global variable is used to act as a speedy intermediary between the actual browser cookie
and the functions here that need to access cookie data. The setCurrState() function contains
a construction that you don’t see much in this book, but is quite valid. Notice the three-piece
assignment statement. Evaluation of this statement works from right to left. The rightmost
expression concatenates a cookie label and the value passed in as a parameter to the function.
Note, too, that the value is passed through the escape() function to properly URL-encode
the data for the sake of data integrity (so that spaces and odd punctuation don’t mess up the
mechanism). The concatenated value is assigned to the document.cookie property. With the
value safely dropped into the cookie (it may be just one of several name/value pairs for this
domain), the value of the document.cookie property (which includes all name/value pairs
for the domain) is assigned to the mycookie global variable.

BC380 Part VI ✦ Bonus Chapters

Retrieving information from the cookie still requires a bit of parsing to be on the safe side. If
other cookie writing were to come from the current server path, more than one cookie would
be available to the current document. Parsing the entire cookie for just the portion that corre-
sponds to the currState labeled cookie ensures that the script gets only the data previously
saved to that label.

The focal point
The toggle() function, which is pivotal in this outline scheme, receives as a parameter the
index number of the db array element whose content the user just clicked. The purpose of
this function is to grab a copy of the current outline state from the cookie, alter the binary
representation of the clicked item, and feed the revised binary number back to the cookie
(where it governs the display of the outline after the document reloads):

// **function that updates persistent storage of state**
// toggles an outline mother entry, storing new value in the cookie
function toggle(n) {

var newString = “”;
var currState = getCurrState();
var expanded = currState.charAt(n); // of clicked item
newString += currState.substring(0,n);
newString += expanded ^ 1; // Bitwise XOR clicked item
newString += currState.substring(n+1,currState.length);
setCurrState(newString); // write new state back to cookie

}

To make this happen, you must extract two pieces of information before any processing: the
current state from the cookie and the current setting of the clicked item. The latter is saved
in a local variable named expanded because its 0 or 1 value represents the expanded state of
that particular entry in the outline.

With those information morsels in hand, the script starts building the new binary string that
gets written back to the cookie. The new string consists of three pieces: the front part of the
existing string up to (but not including) the digit representing the clicked item, the changed
entry, and the rest of the original string.

Changing the setting of the clicked item from a 0 to a 1, or vice versa, is necessary. Although I
can implement this task a few different ways (for example, using a conditional expression or
an if...else construction), I thought I’d exercise an operator that otherwise gets little use:
the bitwise XOR operator (^). Because the values involved here are 0 and 1, performing an
XOR operation with the value of 1 inverts the original value:

0 ^ 1 = 1
1 ^ 1 = 0

Okay, perhaps using an XOR operator is showing off. But the experience forced me to under-
stand a JavaScript power that may come in handy for the future.

Selecting a widget image for an entry
At this point, the script starts defining functions to help the script statements in the Body write
the HTML for the new version of the outline. The getGIF() function determines which of the
three widget image files needs to be specified for a particular entry in the outline. The function
receives the index value to the db array of entries created earlier in the script. As the Body
script assembles the HTML for the outline, it calls this function once for each item in the out-
line. In return, the function provides a reference to one of three Image objects created earlier:

BC381Chapter 52 ✦ Application: Outline-Style Table of Contents

// **functions used in assembling updated outline**
// returns the proper GIF file name for each entry’s control
function getGIF(n, currState) {

var mom = db[n].mother; // is entry a parent?
var expanded = currState.charAt(n); // of clicked item
if (!mom) {

return endpointWidget;
} else {

if (expanded == 1) {
return expandedWidget;

}
}
return collapsedWidget;

}

The decision process for this function first tries to eliminate any item that ends a mother–
daughter chain. Any item that is as deeply nested as it can be (which means the item is not a
mother) automatically gets the endpointWidget image.

Now you’re left with trying to figure out whether the item in the display should get an expanded
or collapsed icon. The holder of this information is the cookie. Thus, the script extracts the
binary setting for the entry under scrutiny. If the cookie shows that entry to be a 1, it means
that the item has nested items showing and that it should get the expandedWidget image;
otherwise, it should get the collapsedWidget image. Notice that you’re returning references
to the Image objects, not the names of the image files.

A similar excursion through each item determines what status message is assigned to the
onmouseover event handler for each of the widget images. The decision tree is identical to
that of the getGIF() function:

// returns the proper status line text based on the icon style
function getGIFStatus(n, currState) {

var mom = db[n].mother; // is entry a parent
var expanded = currState.charAt(n); // of rolled item
if (!mom) {

return “No further items”;
} else {

if (expanded == 1) {
return “Click to collapse nested items”;

}
}
return “Click to expand nested items”;

}

Initialize the cookie
The final task of the script running in the Head is to initialize the cookie if it’s empty. Using
the length of the db array as a counter, you build a string of 0s, with one 0 for each item in the
outline:

// initialize ‘current state’ storage field
if (getCurrState() == “” || getCurrState().length != (db.length)) {

initState = “”;
for (i = 0; i < db.length; i++) {

initState += “0”;
}
setCurrState(initState);

}
</script>

</head>

BC382 Part VI ✦ Bonus Chapters

Each of those 0s in the parameter to the setCurrState() function corresponds to a collapsed
setting for an entry in the outline. In other words, the first time the outline appears, all items
are in the collapsed mode. If you modify the outline for your own use by creating your own db
array of data, the initial state of the cookie will be set for you automatically based on the length
of the db array.

Writing the outline
At last we reach the document Body, where the outline is assembled and written to the page.
Script statements here are immediate, meaning that they execute while the page loads. I have
you begin by initializing some variables that you will need in a moment. The most important
variable is newOutline, which will be used to accumulate the contents of the outline for
eventual writing to the page:

<body>
<script type=”text/javascript” language=”JavaScript1.1”>
// build new outline based on the values of the cookie
// and data points in the outline data array.
// This fires each time the user clicks on a control,
// because the HREF for each one reloads the current document.
var newOutline = “”;
var prevIndentDisplayed = 0;
var showMyDaughter = 0;
var currState = getCurrState(); // get whole state string
document.write(“<center><h3>Composition of Selected Foods</h3>

<hr /></center>”);

The following section is the real beef of this script: the part that assembles the HTML for the
outline that displays as the document loads. In other words, this part must read the current
state data from the cookie and assemble widget images and text links according to the map of
expanded and collapsed items in the cookie data. These activities take place within a for
loop that cycles through every item in the database. Each value of the i index refers to one
listing in the db array. Trace the logic of one entry:

// cycle through each entry in the outline array
for (var i = 0; i < db.length; i++) {

var theGIF = getGIF(i, currState); // get the image
var theGIFStatus = getGIFStatus(i, currState); // get the status msg
var currIndent = db[i].indent; // get the indent level
var expanded = currState.charAt(i); // current state

// display entry only if it meets one of three criteria
if (currIndent == 0 || currIndent <= prevIndentDisplayed ||

(showMyDaughter == 1 && (currIndent - prevIndentDisplayed == 1))) {
newOutline += “<img src=\”filler.gif\” height=’1’ width=’” +

(indentPixels * currIndent) + “‘ />”;
newOutline += “<a href=\”javascript:history.go(0)\” “ +

“onmouseover=\”window.status=\’” + theGIFStatus +
“\’;return true;\” onclick=\”toggle(“ + i + “);return “ +
(theGIF != endpointWidget) + “\”>”;

newOutline += “<img src=\”” + theGIF + “\” height=’” +
widgetHeight + “‘ width=’” + widgetWidth +
“‘ border=’0’ />”;

if (db[i].URL == “” || db[i].URL == null) {
newOutline += “ “ + db[i].display + “
”; // no link

} else {
newOutline += “ <a href=\”” + db[i].URL + “\” target=\”” +

BC383Chapter 52 ✦ Application: Outline-Style Table of Contents

displayTarget + “\” onmouseover=\”window.status=\’” +
db[i].statusMsg + “\’;return true;\”>” + db[i].display +
“
”;

}
prevIndentDisplayed = currIndent;
showMyDaughter = expanded;
if (db.length > 25) {

document.write(newOutline);
newOutline = “”;

}
}

}

First, you call upon two previously defined functions to grab the widget image object and cor-
responding onmouseover message for the status bar. Two more variables contain the indent
property for the item (that is, how many steps indented the item will appear in the outline
structure) and the current expanded state, based on the cookie’s entry for that item.

Not every entry in the outline database is displayed. For instance, a nested item whose mother
is collapsed won’t need to be displayed. To find out if an entry should be displayed, the script
performs a number of tests on some of its values. An item can be displayed if any of the fol-
lowing conditions are met:

✦ The item is a topmost item, with an indentation factor of 0.

✦ The item is at the same or smaller indentation level as the previous item displayed.

✦ The previous item was tagged as being expanded, and the current item is indented
from the previous item by one level.

Over the next few statements, the script pieces together the HTML for the outline entry, start-
ing with the width necessary for the transparent filler image (based on the number of pixels
specified for indentations near the top of the script). Next comes the link definition that wraps
around the widget image. The following concepts apply to each link:

✦ The href attribute is the javascript: URL to invoke the history.go() method.

✦ The onmouseover event handler is set to adjust the status message to the previously
retrieved message (notice the return true statement to make the setting take effect).

✦ The onclick event handler is set to call the toggle() function, passing the number of
the item within the outline database. An onclick event handler is carried out before
the browser responds to the click of the link by navigating to the URL. Therefore, the
toggle() function changes the setting of the cookie a fraction of a second before the
browser refreshes the document (which relies on that new cookie setting). But click
events on widgets that have no children do not need to hit the toggle() function.
Therefore, the content of the return statement is influenced by whether or not the
widget image is an endpoint image.

In the next statement, the newOutline string accumulation continues with the tag
specifications for the widget art. Specifying the height and width attributes for the image is
important, partly to help the browser lay out the page more quickly, partly to avoid pesky
performance inconsistencies.

Next comes a decision about whether to display the item text as a link or as plain text. The
script inspects the db[i].URL property to see if it is empty. If so, that means no URL is speci-
fied for a link, and the item should be built as plain text.

BC384 Part VI ✦ Bonus Chapters

If a URL is specified for the item, the script instead constructs a link around the text. In this
HTML assembly process, numerous calls to properties of the db array fetch properties of the
entry for the URL, the status bar message, and the text to display. Notice, too, that the link sets
the target of the link to the frame name assigned to displayTarget near the top of the script.

As you near the end of the loop, two variable values, prevIndentDisplayed and
showMyDaughter, are updated with settings from the current traversal through the loop. These
values influence the display of nested items for the next entry’s journey through the loop.

But before looping around again, the script inspects whether the outline is longer than 25
entries. If so, the script writes the outline entries that have accumulated so far, resetting the
newOutline variable to empty for the next time through the loop. The reasoning behind this
last routine is to help long outlines start to display their goods faster. I have seen Web site
authors use this outline for literally hundreds of entries. At that quantity, the usually fast
JavaScript begins to bog down a bit. By writing lines from a big outline to the page early, the
user gets visual feedback that something is happening.

Once outside the loop, the script writes whatever last items may have accumulated in the
newOutline variable. For outlines with less than 25 items, the whole outline is written in one
push; for longer outlines, the value is empty at this point, because the intermediate writings
have completed the job.

All that’s left is to close up standard tags to finish the document definition:

document.write(newOutline);
</script>

</body>
</html>

Notice that the document.write() statement here is not followed by document.close().
Because this content is being written as the page loads, the output stream is closed at the
end of the page’s HTML.

Customization possibilities
Although this DHTML-free outliner is not the fanciest to be found on the Web, it is, neverthe-
less, quite popular probably due to its ease of customizability and backward compatibility to
all but the earliest browsers (you can find the very original version at my Web site). Other
page authors have pushed and pulled on this code to tailor it to a variety of special needs.

Alternative displays
At the root of almost all significant customization jobs lie modifications to the dbRecord object
constructor near the beginning of the page and the HTML assembly portion in the Body. They
work hand in hand. For example, one user wants different links in the outline to load pages
into different targets. Most links are to load content into another frame of the same frameset,
while others are to replace the frameset entirely. In the version provided previously, one target
is assumed, and it is set as a global variable. But if you need to provide different targets for
each item, you can add a new property (perhaps named target) to the dbRecord constructor,
and assign the string name of the target (for example, “Frame2”, “_top”) to the property
for each item. Then, in the HTML accumulation portion, assign the value of db[i].target to
that target attribute (watching out for the necessary pairings of quote symbols, as shown in
other attribute assignments).

BC385Chapter 52 ✦ Application: Outline-Style Table of Contents

Another request asked that the text associated with the plus/minus images be clickable, not
to navigate to another page, but to expand and collapse the nested content. All the pieces for
this variation are already in place. By performing minor reconstructive surgery on the HTML
accumulator script, you can add a branch that looks for the db[i].mother property. If it’s
true, don’t write the closing tag after the widget. Instead, branch to write the db[i].
display text without its own URL link, and write the widget’s tag after the text. Now the
widget and text share the same link as the widget originally had.

Cookie-free zones
Not everyone likes to develop with cookies. That’s not a problem for this outliner, even though
the previous example uses them liberally. The data that preserves the state of the outline is
nothing but a string of 1s and 0s. If you are using a frameset, that string can be preserved as a
global variable in the framesetting document.

To minimize the changes needed to the existing code, you can continue to use the same
functions —setCurrState() and getCurrState()— as the interfaces to the reading and
writing of the state. Begin by defining a global variable in the Head portion of the framesetting
document, initializing it as an empty string:

<script type=”text/javascript”>
outlineState = “”;
</script>

Now you can modify the two functions in the outliner page as follows:

// ** functions that get and set state data **
// set cookie data
var mycookie = document.cookie;
function setCurrState(setting) {

mycookie = parent.outlineState = setting;
}
// retrieve cookie data
function getCurrState() {

return parent.outlineState;
}

Notice that there is no need for the label that has to be assigned to a cookie. The variable
name keeps this data separate from the rest of the script space.

The only downside to not using a cookie is that the outline state is not preserved if the frame-
set goes away. If the user revisits the frameset in the same session, the outline state will be
reinitialized at its beginning state.

Expanding/collapsing all at once
If you have an extensive outline, you may want to provide a shortcut to the user to expand
everything at once or close up the entire outline. Because the string of 1s and 0s maintains
the state of the outline, you can use the db array to help you create a new state string, and
then apply it to the page. Here are two functions that do the job:

function expandAll() {
expState = “”;
for (i = 1; i < db.length; i++) {

expState += (db[i].mother) ? “1” : “0”;
}

BC386 Part VI ✦ Bonus Chapters

setCurrState(expState);
history.go(0);

}

function collapseAll() {
collState = “”;
for (i = 1; i < db.length; i++) {

collState += “0”;
}
setCurrState(collState);
history.go(0);

}

All you need are a couple of buttons to invoke these functions, and you’re in business.

Reducing server access
Through the lifetime of this outliner application, it has seen wildly different behaviors of the
various browsers with regard to how much the browser reaches out to the server for each
redisplay of the outline. Although the history.go(0) type of reloading is supposed to be the
least onerous, some browsers seem to read the entire file from scratch. This approach is still
faster than having a CGI script completely reconfigure a page, but for an extensive outline and
a slow Internet connection, the results can be objectionable.

One possible solution is to avoid reloading the page at all. Instead, place all of the code for the
outliner management and creation in the framesetting document. Code that currently writes
the outline as the page loads can be encapsulated in a function that writes to the frame desig-
nated as the outline frame (don’t forget the document.close() for this writing!). Function
calls from the outliner (to toggle(), for instance) have to be modified so that the reference
is to the function in the parent frame (parent.toggle(n)).

Distributing the code around frames may not be as convenient as keeping it all together, but
user experience should weigh more heavily than programmer expedience. This practice also
opens the possibility for putting all of the outliner code, except for the calls to the constructor
functions, in an external .js library. You can then put multiple outline contents into multiple
.js libraries and load the pairs that you need into a frameset.

Using document.write() to another frame may still not avoid server access entirely. It is not
uncommon for the application of any image file — including those that have been precached —
to check the cached version against the modification date of the file on the server. This activity
is much faster than downloading the image again, but if you see network activity even after
shifting the outliner’s scripts to the frameset, at least you understand what’s happening. A
version of the application directed from the parent window is contained on the CD-ROM.

Multiple outlines
The example in this chapter assumes that a site will be using only one outline-style table of
contents. You can, of course, have multiple outlines for different sections of a Web site or
application. But if the outlines all share the same cookie data, the state of the most recent
outline will be applied to the next one that loads. Items will be magically opened. And if the
number of items between the two outlines is different, the cookie data can get a bit messy.

To solve this problem, assign a different cookie label for each outline. That prevents one
outline’s state from stepping on another.

BC387Chapter 52 ✦ Application: Outline-Style Table of Contents

Cascading Style Sheet Version
The advent of Cascading Style Sheets (CSS) brought a number of intriguing possibilities for an
application, such as the outliner. Not only can stylesheets be used to control the look of the
items in the outline, but additional properties make it possible to hide and show elements,
including inserting or removing elements from the rendered content. Alas, not all of these
features work in NN4, so the version under discussion in this section resorts to redrawing
the outline for NN4. But for IE4+ and NN6+/W3C DOMs, the response is very fast, and no page
reloading is necessary. One of the goals, too, in this application was to reuse as much of the
code from earlier versions as possible. Note that this version does not work (or work correctly)
with browsers prior to NN4 or IE4.

CSS implementation plan
Many of the compromises in this version resulted from quirky behavior of NN4 with some
types of elements and stylesheets. I chose to render the outline content as a series of nested
div elements. If this were being implemented strictly in more well-behaved browsers, style-
sheet control over ul and li elements would be even more convenient because those elements
already have an indentation scheme built into them. With so much HTML code needed to gen-
erate the div elements and their contents, I decide to trade the cleverness of multidimensional
array storage of outline content for the better performance of straight HTML. Each row of
content in the outline is set in its own <div> block tag set. Any row that had children nested
inside contains those items as a nested block.

Stylesheets afforded the design a handy behavior. Hiding and showing blocks via the CSS-
Positioning visibility property (see Chapter 26) is not an apt solution here, because hiding
an item does not remove it from the page rendering. Therefore, unless the page included a
ton of positioning code to overlap hidden items with visible items (which would have worked
in NN4, but at the price of substantial increases in code and inflexibility), the outline would
not cinch up if a branch is collapsed. To the rescue comes the display property of a style.
One value of this property (none) not only hides the block, but it temporarily removes it from
the rendering order of the page. Any items rendered below it that are visible (that is, whose
display property is set to block) scoot up to render after the previous visible item.

Setting the display property has slightly different results in NN4 and more modern DOMs. In
NN4, you can set the property after the block has been rendered on the page, but its appear-
ance does not change; in both the IE4+ and NN6+/W3C DOMs, the change is immediate, with
the rest of the page reflowing to adjust to the change in the block’s visibility and presence.
Therefore, for NN4, the page still needs to reload itself and remember the state of the outline
between reloads (via the same cookie mechanism used for the earlier version) so that the
page can set the property value as the page loads. And except for only a couple of places in
the code, both the IE4+ and NN6+/W3C DOMs share positioning code.

The CSS version uses the same cookie value (a sequence of 1 and 0 values) to represent the
visible or hidden state of each item as in the old version. To convey the change of state, how-
ever, the function called by the click of an icon widget must pass the index values of the child
items affected by the expansion or collapse of a node. This means that more of the HTML —
in this case, the parameters of the functions — has to be hard-wired to the structure of the
outline, as you see shortly. Less of this would be necessary if NN4’s implementation of CSS
offered the same level of scriptable introspection into HTML elements as IE4’s implementation:

BC388 Part VI ✦ Bonus Chapters

We’d be able to employ the style property inheritance behavior to simplify the way blocks are
shown and hidden. Because the two classes of browsers supported in this example are so dif-
ferent in this regard, the scripting reflects the lowest common denominator for controlling
the toggle of expanded and collapsed states.

The CSS code
By putting so much of the content directly into HTML, the scripting component of the CSS
outliner version is significantly smaller than the older version. Where possible, I stayed with
the same function and variable naming schemes of the previous version.

At the top of the document, I define three styles for the amount of indentation required by the
three indentation levels of my sample outline. If the outline were to go to more levels, I would
add styles accordingly:

<html>
<head>

<title></title>
<style type=”text/css”>
div.indent0 {margin-left:0}
div.indent1 {margin-left:10}
div.indent2 {margin-left:20}
</style>

Scripting begins by setting some global variables. Browser-specific branching comes into play
later, but in an effort to stamp out explicit version detection, the code here relies on object
detection to set the requisite flags. Only browsers capable of the CSS style scripting needed
here have a document.styleSheets property, so flags are set for the two supported browser
classes. These flags are set here primarily as a convenience for writing branching code later.
Rather than constantly retesting for the presence of the property, the global flags are shorter
and marginally faster. Two more variables hold their respective browser class state values,
with the NN4 version maintaining a copy of the cookie as a variable for performance reasons:

<script type=”text/javascript”>
// global variables
var isNN4, isCSS, CSScurrState, NN4Cookie = document.cookie;
if (document.styleSheets) {

isCSS = true;
isNN4 = false;

} else {
isCSS = false;
isNN4 = true;

}

To each of the cookie storage functions from the original version, I add a branch to handle
the storage and retrieval of state data for CSS browsers, simply setting and getting the global
variable. This may seem to be more indirect than is necessary, but it is essential to allow the
reuse of many functions in other parts of the code so that those areas don’t have to worry
about browser platform. Notice that the label for this outline’s cookie is slightly different from
that of the earlier version. This difference allows you to open both outliners with NN4 in the
same session and not worry about one cookie value overlapping with the other:

// ** functions that get and set persistent data **
// set persistent data
function setCurrState(setting) {

if (isNN4) {
NN4Cookie = document.cookie = “currState2=” + escape(setting);

} else {

BC389Chapter 52 ✦ Application: Outline-Style Table of Contents

// for CSS, data is saved as a global variable instead of cookie
CSScurrState = setting;

}
}

// retrieve persistent data
function getCurrState() {

if (isCSS) {
// for CSS, data is in global var instead of cookie
return CSScurrState;

}
var label = “currState2=”;
var labelLen = label.length;
var cLen = NN4Cookie.length;
var i = 0;
while (i < cLen) {

var j = i + labelLen;
if (NN4Cookie.substring(i,j) == label) {

var cEnd = NN4Cookie.indexOf(“;”,j);
if (cEnd == -1) {

cEnd = NN4Cookie.length;
}
return unescape(NN4Cookie.substring(j,cEnd));

}
i++;

}
return “”;

}

The toggle() function is called by the onclick event handler of the links surrounding the
widget icon art in the outline. A variable number of parameters are passed to this function, so
that the parameters are extracted and analyzed via the arguments property of the function.
Both browsers with only a few small browser-specific branches use a great deal of the code.
Inside the large for loop, a CSS branch dynamically changes the setting of the style.display
property. For NN4, the page is reloaded after all changes to the cookie version of the state are
saved. After the NN4 version goes off to reload the page, the CSS version swaps the image of
the toggled widget. As a final touch, the window is given focus so that WinIE browsers lose the
dotted rectangle around the clicked image:

// **function that updates persistent storage of state**
// toggles an outline mother entry, storing new value
function toggle() {

var newString = “”;
var expanded, n;
// get all <DIV> tag objects in IE4/W3C DOMs
if (document.all) {

var allDivs = document.all.tags(“div”);
} else if (document.getElementsByTagName) {

var allDivs = document.getElementsByTagName(“div”);
}
var currState = getCurrState() // of whole outline
// assemble new state string based on parameters passed from link
for (var i = 0; i < arguments.length; i++) {

n = arguments[i];
expanded = currState.charAt(n); // of clicked item
newString += currState.substring(0,n);
newString += expanded ^ 1; // Bitwise XOR clicked item
newString += currState.substring(n+1,currState.length);

BC390 Part VI ✦ Bonus Chapters

currState = newString;
newString = “”;
if (isCSS) {

// dynamically change display style without reloading
if (expanded == “0”) {

allDivs[n].style.display = “block”;
} else {

allDivs[n].style.display = “none”;
}

}
}
setCurrState(currState); // write new state back to cookie
if (isNN4) {

location.reload();
}
// swap images in CSS versions
var img = document.images[“widget” + (arguments[0]-1)];
img.src = (img.src.indexOf(“plus.gif”) != -1) ?

“minus.gif” : “plus.gif”;
window.focus();

}

A prerequisite for loading the page to begin with is setting the initial value of the state. This is
the only part of the script that must be hard-wired based on the structure of the outline —
string assigned to initState will be different with each outline. The goal here is to set each
block assigned to the indent0 style class to 1 while all others are set to 0. These settings allow
the first display of the outline to show all the root nodes, with all other items collapsed:

// initialize ‘current state’ storage field
if (!getCurrState()) {

// must be hard-wired to outline structure with “1” for
// each indent0 class item, “0” for all others
initState = “1000010000”;
setCurrState(initState);

}

With the initial outline state saved in the preceding code, the following statements execute at
load time to write a <style> tag set for NN4. This tag sets the display property of all col-
lapsed blocks to none. As you see in the HTML coming up, blocks are assigned id attributes
with the letter “a” followed by a sequence number starting with zero:

// for Navigator 4, set display style for flagged IDs to ‘none’
// each time the page (re)loads
if (isNN4) {

document.write(“<style type=’text/css’>”);
var visState = getCurrState();
for (var i = 0; i < visState.length; i++) {

if (visState.charAt(i) == “0”) {
document.write(“#a” + i + “ {display:none}\n”);

}
}
document.write(“</style>”);

}

Initial settings of the display property for IE4+ can be done programmatically only after the
document loads (the tags must exist before their properties can be adjusted). The following
init() function is called from the onload event handler. Each browser class has a different
set of initialization tasks. Both branches rely on the current state setting, so that value is

BC391Chapter 52 ✦ Application: Outline-Style Table of Contents

retrieved just once. In the CSS branch, the style.display properties for hidden blocks are
set to none. For NN4, on the other hand, the style.display properties are set as the page
reloads, but this loop swaps the widget image for expanded blocks to the minus.gif version:

// for CSS, initialize flagged tags to style display = “none”
// for NN4, set affected images to minus.gif
function init() {

var visState = getCurrState();
if (isCSS) {

for (var i = 0; i < visState.length; i++) {
if (visState.charAt(i) == “0”) {

if (document.all) {
document.all(“a” + i).style.display = “none”;

} else if (document.getElementsByTagName) {
document.getElementById(“a” + i).style.display = “none”;

}
}

}
} else if (isNN4) {

for (i = 0; i < visState.length; i++) {
if (visState.charAt(i) == “1”) {

if (i+1 < visState.length && visState.charAt(i+1) == “1”) {
if (document.images[“widget” + i]) {

document.images[“widget” + i].src = “minus.gif”;
}

}
}

}
}

}
</script>

</head>
<body onload=”init()”>

<center>
<h3>Composition of Selected Foods</h3>
<hr />

</center>

Now begins the HTML that defines the content of the outline. For readability, I have formatted
the <div> tag sets to follow the indentation of the outline data (this listing looks much better
if you open the file from the CD-ROM in your text editor with word wrap turned off). Each tag
includes a class attribute pointing to a class defined in the first <style> tag of the page. Each
tag also includes an id attribute whose name begins with the letter “a” and a sequential serial
number, starting with zero. Navigator uses the id attributes to help it assign display property
settings during each reload.

Like the older version of the outliner, each entry includes an image (surrounded by a clickable
link) and a text entry (which may or may not be a link to a document). The link around the
image includes a javascript: URL for the href attribute. When a link is for a widget that is a
mother item, the parameters to the toggle() function are the serial numbers of the immedi-
ate children IDs whose display properties are to be adjusted in the toggle() function. These
passed items only need to be in the immediate children, because any of their children inherit
the display property of their parents. For example, the first widget toggles items 1 and 2 (ids
a1 and a2). Item 2 happens to be a parent to items 3 and 4. But when the display property of
item 2 is set to none, none of its children (items 3 and 4) are displayed, no matter how their
display properties are set.

BC392 Part VI ✦ Bonus Chapters

img elements associated with each toggled div are named along similar lines, with the name
starting with “widget” and the same serial number as the containing div. If you look at the
end of the toggle() function again, you’ll see that the name for the img element is derived
from the first parameter received by the toggle() function. That first parameter will always
be one number higher than the serial number for the widget image to swap. To help you visu-
alize the numbering scheme used within the example, the numbered identifiers and methods
that relay associated numbers are shown in boldface:

<div class=”indent0” id=”a0”>
<a href=”javascript:toggle(1,2)”
onmouseover=”status=’Click to expand/collapse nested items’;

return true”
onmouseout=”status=’’;return true”><img alt=”image” name=”widget0”
src=”plus.gif” height=”12” width=”12” border=”0” />
 Peas

<div class=”indent1” id=”a1”>

<a href=”javascript:void(0)”
onmouseover=”status=’No further items’;return true”
onmouseout=”status=’’;return true”><img alt=”image” src=”end.gif”
height=”12” width=”12” border=”0” /> Boiled

</div>
<div class=”indent1” id=”a2”>

<a href=”javascript:toggle(3,4)”
onmouseover=”status=’Click to expand/collapse nested items’;

return true”
onmouseout=”status=’’;return true”><img alt=”image” name=”widget2”
src=”plus.gif” height=”12” width=”12” border=”0” /> Canned

<div class=”indent2” id=”a3”>

<a href=”javascript:void(0)”
onmouseover=”status=’No further items’;return true”
onmouseout=”status=’’;return true”><img alt=”image”
src=”end.gif” height=”12” width=”12” border=”0” /> Alaska

</div>
<div class=”indent2” id=”a4”>

<a href=”javascript:void(0)”
onmouseover=”status=’No further items’;return true”
onmouseout=”status=’’;return true”><img alt=”image”
src=”end.gif” height=”12” width=”12” border=”0” /> Low-Sodium

</div>
</div>

</div>
<div class=”indent0” id=”a5”>

<a href=”javascript:toggle(6)”
onmouseover=”status=’Click to expand/collapse nested items’;

return true”
onmouseout=”status=’’;return true”><img alt=”image” name=”widget5”
src=”plus.gif” height=”12” width=”12” border=”0” />
 Pickles

<div class=”indent1” id=”a6”>

<a href=”javascript:toggle(7,8,9)”
onmouseover=”status=’Click to expand/collapse nested items’;

return true”
onmouseout=”status=’’;return true”><img alt=”image” name=”widget6”

BC393Chapter 52 ✦ Application: Outline-Style Table of Contents

src=”plus.gif” height=”12” width=”12” border=”0” /> Cucumber

<div class=”indent2” id=”a7”>

<a href=”javascript:void(0)”
onmouseover=”status=’Click to expand nested items’;return true”
onmouseout=”status=’’;return true”><img alt=”image”
src=”end.gif” height=”12” width=”12” border=”0” /> Dill

</div>
<div class=”indent2” id=”a8”>

<a href=”javascript:void(0)”
onmouseover=”status=’No further items’;return true”
onmouseout=”status=’’;return true”><img alt=”image”
src=”end.gif” height=”12” width=”12” border=”0” /> Fresh

</div>
<div class=”indent2” id=”a9”>

<a href=”javascript:void(0)”
onmouseover=”status=’No further items’;return true”
onmouseout=”status=’’;return true”><img alt=”image”
src=”end.gif” height=”12” width=”12” border=”0” /> Sour

</div>
</div>

</div>
</body>

</html>

The CSS version (for the identical outline content) is a slightly smaller file size than the older,
compatible one, but not so big a difference as to influence your choice. Browser compatibility
should be your number one criterion. Ease of modification for changing content and improved
user experience for browsers following the CSS branch are tied in second.

A Futuristic (XML) Outline
Only a handful of browsers — WinIE5+ and Mozilla-based browsers — are capable of working
directly with XML data, but I believe this capability will grow more important as the concept
of “Web services” becomes more ingrained in the mainstream internet. Therefore, I’ve mod-
ernized the many generations of scriptable outliner described earlier in this chapter to use
the XMLHttpRequest object described in Chapter 41. The data for this outline version is set
apart in a more easily maintainable XML data file. At the same time, I’ve “prettied up” the
hierarchical interface of the outliner display.

Birth of an XML specification
Collapsible outlines provide convenient ways to organize hierarchical information all around
us. You’d be hard-pressed to find a more active proponent of the outline than Dave Winer,
founder of UserLand Software, Inc. (http://www.userland.com). Dave is a veteran software
developer, as well as author and outspoken Web publisher. His www.scripting.com Web
site is a popular destination if you want to find out the latest Internet and computing technol-
ogy “buzz.”

BC394 Part VI ✦ Bonus Chapters

As an outgrowth of development for his company’s Web tools, Dave looked to the XML struc-
ture to assist in representing outline content in a shareable, easily parseable format. The result
is a specification called Outline Processor Markup Language, or OPML for short. You can read
all about the formal specification at http://www.opml.org/spec. Like virtually all XML, OPML
is intended to be written by software, not humans (although humans input the data via a
user-friendly front-end provided by the software). Even so, the format of an OPML outline is
extremely readable by humans, and, with little more trouble than writing basic HTML tags
manually, you can represent an outline in this format yourself.

A plain OPML file, saved as an .xml file, can be viewed through the native XML parsers of IE5+
and NN6+/Moz. These parsers automatically render XML tags in the same hierarchical fashion
as OPML encourages outlines to be structured. But such rendering is under strict control of
the browser, unless you also get involved with XML stylesheets (the XSL and XSLT standards),
at which point, browser implementation incompatibilities can make the going tough.

I liked the OPML data format when I first saw it, and I think it’s a convenient way to convey an
outline’s data to the client, at which point JavaScript and the browser’s DOM can take over to
provide interesting visuals for the content and interaction with the content. Thus was born
this last example of the chapter, in which the outliner’s data is delivered not in the form of
scripted arrays or hard-wired HTML div elements. Instead, the data arrives in its native XML
(OPML) format from a separate file. Scripts take over to do the rest.

OPML outliner prep
The appearance of widgets and text for the new outliner has changed to more closely emulate
the kinds of outline presentations that you see in some Windows programs (see Figure 52-2).
For demonstration purposes, the same frameset structure and outline content from earlier
examples are used for the OPML version so that you can more easily see the differences in
implementations and grasp new concepts presented here. For example, the comparison of
how the outline data is delivered in the form of JavaScript objects (the first example) and
OPML is enlightening.

As you recall, a custom object constructor function generated one JavaScript object for each
outline entry. The properties of the object are completely under your control, so that you can
add properties (such as the target of an entry’s link) whose values influence the way the entry
is rendered and the way it behaves. OPML has a similar extensibility feature. Each outline
entry is nothing more than a tag. An entry that does not have any nested child nodes can use
the XML shortcut of combining a start and end tag inside one set of angle brackets:

<tagName attribute=”value” ... />

And any entry that has nested nodes contains the nested nodes between its start and end
tags, as shown here with the actual tag names used in OPML (indentation is optional, but
increases readability):

<outline text=”text”>
<outline text=”text” />
<outline text=”text” />

</outline>

If you want to associate more information about an entry, simply add an attribute. For example,
if an entry is to behave as a link, you can convey that information with an attribute whose
name you determine. When it comes time for your scripts to render the content in HTML, the
scripts access the attribute values and generate the associated HTML for the attributes (you
see an example of this in the code).

BC395Chapter 52 ✦ Application: Outline-Style Table of Contents

Figure 52-2: OPML-based outliner style.

The true beauty of the OPML structure (and XML in general) is that the parent–child relation-
ships are automatically implied by the element containment. Unlike the JavaScript custom
object in the first example, the author does not have to specify how many levels deep an
entry is, or whether it has any child nodes: The XML containment hierarchy describes all of
that information. Suddenly, all of the W3C DOM gobbledygook about nodes, child nodes, and
attributes become your friend, as your scripts convert the element hierarchy into a render-
able hierarchy of your design.

The XML and HTML code
Because our focus is so tight on the outliner content, the first code to view is that of the XML
document, named outlineData.xml:

<?xml version=”1.0” ?>
<opml version=”1.0”>

<head>
<title>A Modern Outline</title>
<dateCreated>Thu, 13 Nov 2003 02:40:00 GMT</dateCreated>
<dateModified>Fri, 19 Dec 2003 19:35:00 GMT</dateModified>
<ownerName>Danny Goodman</ownerName>
<ownerEmail>dannyg@dannyg.com</ownerEmail>
<expansionState></expansionState>
<vertScrollState>1</vertScrollState>
<windowTop></windowTop>
<windowLeft></windowLeft>
<windowBottom></windowBottom>
<windowRight></windowRight>

BC396 Part VI ✦ Bonus Chapters

</head>
<body>

<outline text=”Peas”>
<outline text=”Boiled” uri=”foods.htm#boiled”/>
<outline text=”Canned” uri=”foods.htm#canned”>

<outline text=”Alaska” uri=”foods.htm#alaska”/>
<outline text=”Low-Sodium” uri=”foods.htm#losodium”/>

</outline>
</outline>
<outline text=”Pickles”>

<outline text=”Cucumber” uri=”foods.htm#cucumber”>
<outline text=”Dill” uri=”foods.htm#dill”/>
<outline text=”Fresh” uri=”foods.htm#fresh”/>
<outline text=”Sour” uri=”foods.htm#sour”/>

</outline>
</outline>

</body>
</opml>

This file is textbook OPML version 1.0 form. Notice that the OPML syntax reuses element
names that are found in all HTML files (for example, head, title, body). This element name
duplication makes it essential to isolate the XML from any HTML rendering area (such as an
iframe), which would automatically add its own body element and thus destroy the OPML
node tree.

The HTML body of the toc6.html file is sparse to say the least:

<body onload=”init(‘outlineData.xml’)”>
<div id=”content”></div>
</body>

The only other HTML delivered in the document body is an empty div element, which is used
as the container for the outline HTML that the scripts generate as a result of the onload event
handler’s invocation of the init() function.

Setting the scripted stage
All scripts for this page are in the Head (although they could also be linked in from an external
.js file). First on the docket is establishing several global variables that get used a lot within
the rest of the code and make it easy to customize important visible properties, especially
widget art. Due to the art choices made for this version, there are separate versions for items
that appear as first, middle, and end items for different nesting states:

<script type=”text/javascript”>
// global variables
// art files and sizes for widget styles and spacers
// (all images must have same height/width)
var collapsedWidget = “oplus.gif”;
var collapsedWidgetStart = “oplusStart.gif”;
var collapsedWidgetEnd = “oplusEnd.gif”;
var expandedWidget = “ominus.gif”;
var expandedWidgetStart = “ominusStart.gif”;
var expandedWidgetEnd = “ominusEnd.gif”;
var nodeWidget = “onode.gif”;
var nodeWidgetEnd = “onodeEnd.gif”;
var emptySpace = “oempty.gif”;
var chainSpace = “ochain.gif”;

BC397Chapter 52 ✦ Application: Outline-Style Table of Contents

var widgetWidth = “20”;
var widgetHeight = “16”;
var currState = “”;
var displayTarget = “Frame2”;

The init() function, invoked by the onload event handler, starts the content creation in
motion. The basic sequence is to first load the external XML data into a scripted document
object global variable (named xDoc). If the data loads successfully, a reference to the Body
portion of the outline data is retrieved so that many other functions are able to dive into the
outliner hierarchy. The reference to the OPML body element is passed to the makeHTML()
function, which returns the entire outline HTML to be assigned to the innerHTML property of
the empty div element delivered with the document:

// initialize first time
function init(outlineDataURL) {

loadXMLDoc(outlineDataURL);
if (xDoc) {

// demo how to get outline head elements
var hdr = xDoc.getElementsByTagName(“head”)[0];
// get outline body elements for iteration and conversion to HTML
var ol = xDoc.getElementsByTagName(“body”)[0];
// wrap whole outline HTML in a span
var olHTML = “” + makeHTML(ol) + “”;
// throw HTML into ‘content’ div for display
document.getElementById(“content”).innerHTML = olHTML;
initExpand();

}
}

Loading the XML file is performed in the loadXMLDoc() function. The function also handles
alerts to users due to a missing XML file, connection problems, or lack of support for the
feature:

// XML document
var xDoc;

// retrieve XML document as document object
function loadXMLDoc(url) {

var req;
if (window.XMLHttpRequest) {

req = new XMLHttpRequest();
req.open(“GET”, url, false);
req.send(null);

} else if (window.ActiveXObject) {
req = new ActiveXObject(“Microsoft.XMLHTTP”);
if (req) {

req.open(“GET”, url, false);
req.send();

}
}
if (req) {

if (req.status == 200) {
xDoc = req.responseXML;
if (xDoc && typeof xDoc.childNodes != “undefined” &&

xDoc.childNodes.length == 0) {
xDoc = null;

}

BC398 Part VI ✦ Bonus Chapters

} else {
alert(“There was a problem retrieving the XML data:\n” +
req.statusText);

}
} else {

alert(“Sorry, this browser isn\’t equipped to read XML data.”);
}

}

Accumulating the HTML
From the init() function, a call to the makeHTML() function starts the most complex actions
of the scripts on this page. This function walks the node hierarchy of the outline’s body ele-
ments, deciphering which ones are containers and which ones are end points.

Two global variables are used to keep track of how far the node walk progresses because this
function calls itself from time to time to handle nested branches of the node tree. Because a
reflexive call to a function starts out with new values for local variables, the globals operate
as pointers to let statements in the function know which node is being accessed. The numbers
get applied to an id attribute assigned to the div elements holding the content.

One of the fine points of the design of this outline is the way space to the left of each entry is
assembled. Unlike the earlier outlines in this chapter, this one displays vertical dotted lines
connecting nodes at the same level. There isn’t a vertical line for every clickable node appear-
ing above the item, because a clickable node may have no additional siblings, meaning that
the space is blank. To see what I mean, open the OPML example, and expand the Peas and
Canned nodes (or see Figure 52-2). The Canned node is the end of the second “column,” so
the space beneath the icon is blank. That’s what some of the code in makeHTML() named
“prefix” is dealing with: Accumulating just the right combination of dotted line (chain.gif)
and blank (empty.gif) images in sequence before the outline entry.

Another frequent construction throughout this function is a three-level conditional expres-
sion. This construction is used to determine whether the image just to the left of the item’s
text should be a start, middle, or end version of the image. The differences among them are
subtle (having to do with how the vertical dotted line extends above or below the widgets).
All of these decisions are made from information revealed by the inherent structure of the
OPML element nesting. The listing in the book looks longer than it truly is because so many
long or deeply nested lines must be wrapped to the next line. Viewing the actual file in your
text editor should calm your fears a bit.

// counters for reflexive calls to makeHTML()
var currID = 0;
var blockID = 0;
// generate HTML for outline
function makeHTML(outlineID, ol, prefix) {

var output = “”;
var nestCount, link, nestPrefix;
prefix = (prefix) ? prefix : “”;
for (var i = 0; i < ol.childNodes.length ; i++) {

nestCount = ol.childNodes[i].childNodes.length;
output += “<div class=’row’ id=’line” + currID++ + “‘>\n”;
if (nestCount > 0) {

output += prefix;
output += “<img id=’widget” + (currID-1) + “‘ src=’” +

BC399Chapter 52 ✦ Application: Outline-Style Table of Contents

((i== ol.childNodes.length-1) ? collapsedWidgetEnd : (blockID==0) ?
collapsedWidgetStart : collapsedWidget);

output += “‘ height=” + widgetHeight + “ width=” + widgetWidth;
output += “ title=’Click to expand/collapse nested items.’

onclick=’toggle(this,” + blockID + “)’>”;
link = (ol.childNodes[i].getAttribute(“uri”)) ?

ol.childNodes[i].getAttribute(“uri”) : “”;
if (link) {

output += “ <a href=’” + link + “‘
class=’itemTitle’ title=’” +
link + “‘ target=’” + displayTarget + “‘>”;

} else {
output += “ ”;

}
output += “ ” + ol.childNodes[i].getAttribute(“text”) + “”;
currState += calcBlockState(outlineID, currID-1);
output += “<span class=’OLBlock’ blocknum=’” + blockID +

“‘ id=’OLBlock” + blockID++ + “‘>”;
nestPrefix = prefix;
nestPrefix += (i == ol.childNodes.length - 1) ?

“” :
“”;

output += makeHTML(outlineID, ol.childNodes[i], nestPrefix);
output += “</div>\n”;

} else {
output += prefix;
output += “<img id=’widget” + (currID-1) + “‘ src=’” +

((i == ol.childNodes.length - 1) ? nodeWidgetEnd : nodeWidget);
output += “‘ height=” + widgetHeight + “ width=” + widgetWidth + “>”;
link = (ol.childNodes[i].getAttribute(“uri”)) ?

ol.childNodes[i].getAttribute(“uri”) : “”;
if (link) {

output += “ <a href=’” + link + “‘
class=’itemTitle’ title=’” +
link + “‘ target=’” + displayTarget + “‘>”;

} else {
output += “ ”;

}
output += ol.childNodes[i].getAttribute(“text”) + “”;
output += “</div>\n”;

}
}
return output;

}

As with the HTML assembly code of the first outliner, if you were to add attributes to outline
elements in an OPML outline (for example, a URL for an icon to display in front of the text), it
is in makeHTML() that the values would be read and applied to the HTML being created.

The only other function invoked by the makeHTML() function is calcBlockState(). This
function looks into one of the OPML outline’s head elements, called expansionstate. This
element’s values can be set to a comma-delimited list of numbers corresponding to nodes that
are to be shown expanded when the outline is first displayed. The calcBlockState() function
is invoked for each parent element. The element’s location is compared against values in the
expansionstate element, if there are any, and returns the appropriate 1 or 0 value for the
state string being assembled for the rendered outline:

BC400 Part VI ✦ Bonus Chapters

// apply default expansion state from outline’s header
// info to the expanded state for one element to help
// initialize currState variable
function calcBlockState(outlineID, n) {

var ol = document.getElementById(outlineID).getElementsByTagName(“body”)[0];
var outlineLen = ol.getElementsByTagName(“outline”).length;
// get OPML expansionState data
var expandElem = document.getElementById(

outlineID).getElementsByTagName(“expansionState”)[0];
var expandedData = (expandElem.childNodes.length) ?

expandElem.firstChild.nodeValue.split(“,”) : null;
if (expandedData) {

for (var j = 0; j < expandedData.length; j++) {
if (n == expandedData[j] - 1) {

return “1”;
}

}
}
return “0”;

}

The final act of the initialization process is a call to the initExpand() function. This function
loops through the currState global variable (whose value was written in makeHTML() with the
help of calcBlockState()) and sets the display property to block for any element designed
to be expanded at the outset. HTML element construction in makeHTML() is performed in such
a way that each parent div has a span nested directly inside of it; and inside that span are all
the child nodes. The display property of the span determines whether all of those children
are seen or not.

// expand items set in expansionState XML tag, if any
function initExpand(outlineID) {

for (var i = 0; i < currState.length; i++) {
if (currState.charAt(i) == 1) {

document.getElementById(“OLBlock” + i).style.display = “block”;
}

}
}

By the time the initExpand() function has run — a lot of setup code that executes pretty
quickly — the rendered outline is in a steady state. Users can now expand or collapse portions
by clicking the widget icons.

Toggling node expansion
All of the widget images in the outline have onclick event handlers assigned to them. The
handlers invoke the toggle() function, passing parameters consisting of a reference to the
img element object receiving the event and the serial number of the span block nested just
inside the div that holds the image. With these two pieces of information, the toggle() func-
tion sets in motion the act of inverting the expanded/collapsed state of the element and the
plus or minus version of the icon image. The blockNum parameter corresponds to the position
within the currState string of 1s and 0s holding the flag for the expanded state of the block.
With the current value retrieved from currState, the value is inverted through swapState().
Then, based on the new setting, the display property of the block is set accordingly, and
widget art is changed through two special-purpose functions:

BC401Chapter 52 ✦ Application: Outline-Style Table of Contents

// toggle an outline mother entry, storing new state value;
// invoked by onclick event handlers of widget image elements
function toggle(img, blockNum) {

var newString = “”;
var expanded, n;
// modify state string based on parameters from img
expanded = currState.charAt(blockNum);
currState = swapState(currState, expanded, blockNum);
// dynamically change display style
if (expanded == “0”) {

document.getElementById(“OLBlock” + blockNum).style.display = “block”;
img.src = getExpandedWidgetState(img.src);

} else {
document.getElementById(“OLBlock” + blockNum).style.display = “none”;
img.src = getCollapsedWidgetState(img.src);

}
}

Swapping the state of the currState variable utilizes the same XOR operator employed by
the first outliner in this chapter. The entire currState string is passed as a parameter. The
indicated digit is segregated and inverted, and the string is reassembled before being returned
to the calling statement in toggle():

// invert state
function swapState(currState, currVal, n) {

var newState = currState.substring(0,n);
newState += currVal ^ 1; // Bitwise XOR item n
newState += currState.substring(n+1,currState.length);
return newState;

}

As mentioned earlier, each of the clickable widget icons (plus and minus) can be one of three
states, depending on whether the widget is at the start, middle, or end of a vertical-dotted
chain. The two image swapping functions find out (by inspecting the URLs of the images cur-
rently occupying the img element) which version is currently in place so that, for instance, a
starting plus (collapsed) widget is replaced with a starting minus (expanded) widget. This is
a case of going the extra mile for the sake of an improved user interface:

// retrieve matching version of ‘minus’ images
function getExpandedWidgetState(imgURL) {

if (imgURL.indexOf(“Start”) != -1) {
return expandedWidgetStart;

}
if (imgURL.indexOf(“End”) != -1) {

return expandedWidgetEnd;
}
return expandedWidget;

}

// retrieve matching version of ‘plus’ images
function getCollapsedWidgetState(imgURL) {

if (imgURL.indexOf(“Start”) != -1) {
return collapsedWidgetStart;

}
if (imgURL.indexOf(“End”) != -1) {

return collapsedWidgetEnd;
}

return collapsedWidget;
}

BC402 Part VI ✦ Bonus Chapters

Wrap up
There’s no question that the amount and complexity of the code involved for the OPML version
of the outliner are significant. The “pain” associated with developing an application such as
this is all up front. After that, the outline content is easily modifiable in the OPML format (or
perhaps by some future editor that produces OPML output).

Even if you don’t plan to implement an OPML outline, the explanation of how this example
works should drive home the importance of designing data structures that assist not only
the visual design but also the scripting that you use to manipulate the visual design.

Further Thoughts
The advent of CSS and element positioning has prompted numerous JavaScripters to develop
another kind of hierarchical system of pop-up or drop-down menus. You can find examples of
this interface at many of the JavaScript source Web sites listed in Appendix D. Making these
kinds of menus work well in NN4, IE4+, and NN6+/W3C DOM browsers is a lot of hard work,
and if you can adopt code already ironed out by others, then all the better.

Most of the code you find, however, will require a fair amount of tweaking to blend the function-
ality into the visual design that you have or are planning for your Web site. Finding two imple-
mentations on the Web that look or behave the same way is rare. As long as you’re aware of
what you’ll be getting yourself into, you are encouraged to check out these interface elements.
By hiding menu choices except when needed, valuable screen real estate is preserved for more
important, static content.

✦ ✦ ✦

Application:
Calculations
and Graphics

When the scripting world had its first pre-release peeks at
JavaScript (while Netscape was still calling the language

LiveScript), the notion of creating interactive HTML-based calculators
captured the imaginations of many page authors. Somewhere on the
World Wide Web, you can find probably every kind of special-purpose
calculation normally done by scientific calculators and personal com-
puter programs — leaving only weather-modeling calculations to the
supercomputers of the world.

In the search for my calculator gift to the JavaScript universe, I looked
around for something more graphical. Numbers, by themselves, are
pretty boring; so any way the math could be enlivened was fine by me.
Having been an electronics hobbyist since I was a kid, I recalled the
color-coding of electronic resistor components. The values of these
gizmos aren’t printed in plain numbers anywhere. You have to know
the code and the meaning of the location of the colored bands to arrive
at the value of each one. I thought that this calculator would be fun to
play with, even if you don’t know what a resistor is.

5353C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Precached images

Math calculations

CGI-like image
assembly

✦ ✦ ✦ ✦

BC404 Part VI ✦ Bonus Chapters

The Calculation
To give you an appreciation for the calculation that goes into determining a resistor’s value,
here is the way the system works. Three closely spaced color bands determine the resistance
value in ohms. The first (leftmost) band is the tens digit; the second (middle) band is the
ones digit. Each color has a number from 0 through 9 assigned to it (black = 0, brown = 1, and
so on). Therefore, if the first band is brown and the second band is black, the number you
start off with is 10. The third band is a multiplier. Each color determines the power of ten by
which you multiply the first digits. For example, the red color corresponds to a multiplier of
102, so that 10 × 102 equals 1,000 ohms.

A fourth band, if present, indicates the tolerance of the component — how far, plus or minus,
the resistance measurement can fluctuate due to variations in the manufacturing process.
Gold means a tolerance of plus-or-minus 5 percent; silver means plus-or-minus 10 percent;
and no band means a 20 percent tolerance. A pinch of extra space typically appears between
the main group of three-color bands and the one tolerance band.

User Interface Ideas
The quick-and-dirty, non-graphical approach for a user interface was to use a single frame
with four select elements defined as pop-up menus (one for each of the four color bands
on a resistor), a button to trigger calculation, and a field to show the numeric results.

How dull.

It occurred to me that if I design the art carefully, I can have JavaScript assemble an updated
image of the resistor consisting of different slices of art: static images for the resistor’s left and
right ends, and variable slivers of color bands for the middle. Rather than use the brute force
method of creating an image for every possible combination of colors (3,600 images total!), a
far more efficient approach is to have one image file for each color (12 colors plus 1 empty)
and enable JavaScript to call them from the server, as needed, in the proper order. If not for
client-side JavaScript, a CGI script on the server would have to handle this kind of intelligence
and user interaction. But with this system, any dumb server can dish up the image files as
called by the JavaScript script.

The first generation of this resistor calculator used two frames, primarily because I needed a
second frame to update the calculator’s art dynamically while keeping the pop-up color menus
stationary. Images couldn’t be swapped back in those frontier days, so the lower frame had to
be redrawn for each color choice. Fortunately, modern browsers enabled me to update indi-
vidual image objects in a loaded document without any document reloading. Moreover, with
all the images precached in memory, page users experience no (or virtually no) delay in making
a change from one value to another.

The design for the new version is a simple, single-document interface (see Figure 53-1). Four
pop-up menus let you match colors of a resistor, whereas the onchange event handler in each
menu automatically triggers an image and calculation update. To hold the art together on the
page, a table border surrounds the images on the page, whereas the numeric value of the
component appears in a text field.

BC405Chapter 53 ✦ Application: Calculations and Graphics

Figure 53-1: The Resistor Calculator with images inside a table border.

The Code
All the action takes place in the file named resistor.htm. A second document is an introduc-
tory HTML text document that explains what a resistor is and why you need a calculator
to determine a component’s value. The article, called The Path of Least Resistance, can be
viewed in a secondary window from a link in the main window. Here you will be looking only
at resistor.htm, which has been updated to include stylesheets.

The document begins in the traditional way without any surprises:

<html>
<head>

<title>Graphical Resistance Calculator</title>
<style type=”text/css”>
body {font-family:Arial, Helvetica, serif}
</style>
<script type=”text/javascript”>

BC406 Part VI ✦ Bonus Chapters

Basic arrays
In calculating the resistance, the script needs to know the multiplier value for each color. If
not for the last two multiplier values actually being negative multipliers (for example, 10-1
and 10-2), I could have used the index values without having to create this array. But the two
out-of-sequence values at the end make it easier to work with an array rather than to try spe-
cial-casing these instances in later calculations:

// create array listing all the multiplier values
var multiplier = new Array();
multiplier[0] = 0;
multiplier[1] = 1;
multiplier[2] = 2;
multiplier[3] = 3;
multiplier[4] = 4;
multiplier[5] = 5;
multiplier[6] = 6;
multiplier[7] = 7;
multiplier[8] = 8;
multiplier[9] = 9;
multiplier[10] = -1;
multiplier[11] = -2;

// create array listing all tolerance values
var tolerance = new Array();
tolerance[0] = “+/-5%”;
tolerance[1] = “+/-10%”;
tolerance[2] = “+/-20%”;

Although the script doesn’t do any calculations with the tolerance percentages, it needs to
have the strings corresponding to each color for display in the pop-up menu. The tolerance
array is there for that purpose.

Calculations and formatting
Before the script displays the resistance value, it needs to format the numbers in values that
are meaningful to those who know about these values. Just as measures of computer storage
bytes, high quantities of ohms are preceded with “kilo” and “meg” prefixes, commonly abbre-
viated with the “K” and “M” letters. The format() function determines the order of magnitude
of the final calculation (from another function shown in the following section) and formats
the results with the proper unit of measure:

// format large values into kilo and meg
function format(ohmage) {

if (ohmage >= 1e6) {
ohmage /= 1e6;
return “” + ohmage + “ Mohms”;

} else {
if (ohmage >= 1e3) {

ohmage /= 1e3;
return “” + ohmage + “ Kohms”;

} else {
return “” + ohmage + “ ohms”;

}
}

}

BC407Chapter 53 ✦ Application: Calculations and Graphics

The selections from the pop-up menus meet the calculation formulas of resistors in the
calcOhms() function. Because this function is triggered indirectly by each of the select
objects, sending any of their parameters to the function is a waste of effort. Moreover, the
calcOhms() function is invoked by the onload event handler, which is not tied to the form
or its controls. Therefore, the function obtains the reference to the form and then extracts
the necessary values of the four select objects by using explicit (named) references. Each
value is stored in a local variable for convenience in completing the ensuing calculation.

Recalling the rules used to calculate values of the resistor bands, the first statement of the
calculation multiplies the “tens” pop-up value times 10 to determine the tens digit and then
adds the ones digit. From there, the combined value is multiplied by the exponent value of
the selected multiplier value. Notice that the expression first assembles the value as a string
to concatenate the exponent factor and then evaluates it to a number. Although I try to avoid
the eval() function because of its slow performance, the one call per calculation is not a per-
formance issue at all. The evaluated number is passed to the format() function for proper for-
matting (and setting of order of magnitude). In the meantime, the tolerance value is extracted
from its array, and the combined string is plugged into the result text field (which is in a sepa-
rate form, as described later):

// calculate resistance and tolerance values
function calcOhms() {

var form = document.forms[“input”];
var d1 = form.tensSelect.selectedIndex;
var d2 = form.onesSelect.selectedIndex;
var m = form.multiplierSelect.selectedIndex;
var t = form.toleranceSelect.selectedIndex;
var ohmage = (d1 * 10) + d2;
ohmage = eval(“” + ohmage + “e” + multiplier[m]);
ohmage = format(ohmage);
var tol = tolerance[t];
document.forms[“output”].result.value = ohmage + “, “ + tol;

}

Preloading images
As part of the script that runs when the document loads, the next group of statements pre-
caches all possible images that can be displayed for the resistor art. For added scripting con-
venience, the color names are loaded into an array. With the help of that just-created array of
color names, you then create another array (imageDB), which both generates Image objects
for each image file and assigns a URL to each image. Notice an important subtlety about the
index values being used to create each entry of the imageDB array: Each index is a colorArray
entry, which is the name of the color. As you found out in Chapter 30, if you create an array
element with a named index, you must use that style of index to retrieve the data thereafter;
you cannot switch arbitrarily between numeric indexes and names. As you see in a moment,
this named index provides a critical link between the choices a user makes in the pop-up lists
and the image objects being updated with the proper image file.

// pre-load all color images into image cache
var colorArray = new Array(“Black”,”Blue”,”Brown”,”Gold”,”Gray”,

“Green”,”None”,”Orange”,”Red”,”Silver”,”Violet”,”White”,”Yellow”);
var imageDB = new Array();
for (i = 0; i < colorArray.length; i++) {

imageDB[colorArray[i]] = new Image(21,182);
imageDB[colorArray[i]].src = colorArray[i] + “.gif”;

}

BC408 Part VI ✦ Bonus Chapters

The act of assigning a URL to the src property of an Image object instructs the browser to
pre-load the image file into memory. This pre-loading happens as the document is loading, so
another few seconds of delay won’t be noticed by the user.

Changing images on the fly
The next four functions are invoked by their respective select object’s onchange event
handler. For example, after a user makes a new choice in the first select object (the “tens”
value color selector), that select object reference is passed to the setTens() function. Its
job is to extract the text of the choice and use that text as the index into the imageDB array.
Alternatively, the color name can also be assigned to the value attribute of each option,
and the value property read here. You need this connection to assign the src property of
that array entry to the src property of the image that you see on the page (defined in the
following section). This assignment is what enables the images of the resistor to be updated
instantaneously — just the one image “slice” affected by the user’s choice in a select object:

function setTens(choice) {
var tensColor = choice.options[choice.selectedIndex].value;
document.tens.src = imageDB[tensColor].src;
calcOhms();

}
function setOnes(choice) {

var onesColor = choice.options[choice.selectedIndex].value;
document.ones.src = imageDB[onesColor].src;
calcOhms();

}
function setMult(choice) {

var multColor = choice.options[choice.selectedIndex].value;
document.mult.src = imageDB[multColor].src;
calcOhms();

}
function setTol(choice) {

var tolColor = choice.options[choice.selectedIndex].value;
document.tol.src = imageDB[tolColor].src;
calcOhms();

}

The rest of the script for the Head portion of the document merely provides the statements
that open the secondary window to display the introductory document:

function showIntro() {
window.open(“resintro.htm”,””,”width=400,height=320,

left=100,top=100”);
}
</script>

</head>

Creating the select objects
A comparatively lengthy part of the document is consumed with the HTML for the four select
objects. Notice, however, that the document contains an onload event handler in the <body>
tag. This handler calculates the results of the currently selected choices whenever the docu-
ment loads or reloads. If it weren’t for this event handler, you would not see the resistor art

BC409Chapter 53 ✦ Application: Calculations and Graphics

when the document first appears. Also, because many browsers maintain their form controls’
setting while the page is in history, a return to the page later must display the images previ-
ously selected in the form:

<body onload=”calcOhms()”>
<center>

<h1>Calculate <a href=”javascript:showIntro()”
onmouseover=”status=’An introduction to the resistor electronic

component...’;return true”>
Resistor Values from Color Codes</h1>

<form name=”input”>
<select name=”tensSelect” onchange=”setTens(this)”>

<option value=”Black” selected=”selected”>Black</option>
<option value=”Brown”>Brown</option>
<option value=”Red”>Red</option>
<option value=”Orange”>Orange</option>
<option value=”Yellow”>Yellow</option>
<option value=”Green”>Green</option>
<option value=”Blue”>Blue</option>
<option value=”Violet”>Violet</option>
<option value=”Gray”>Gray</option>
<option value=”White”>White</option>

</select> <select name=”onesSelect” onchange=”setOnes(this)”>
<option value=”Black” selected=”selected”>Black</option>
<option value=”Brown”>Brown</option>
<option value=”Red”>Red</option>
<option value=”Orange”>Orange</option>
<option value=”Yellow”>Yellow</option>
<option value=”Green”>Green</option>
<option value=”Blue”>Blue</option>
<option value=”Violet”>Violet</option>
<option value=”Gray”>Gray</option>
<option value=”White”>White</option>

</select> <select name=”multiplierSelect” onchange=”setMult(this)”>
<option value=”Black” selected=”selected”>Black</option>
<option value=”Brown”>Brown</option>
<option value=”Red”>Red</option>
<option value=”Orange”>Orange</option>
<option value=”Yellow”>Yellow</option>
<option value=”Green”>Green</option>
<option value=”Blue”>Blue</option>
<option value=”Violet”>Violet</option>
<option value=”Gray”>Gray</option>
<option value=”White”>White</option>
<option value=””>Gold</option>
<option value=””>Silver</option>

</select> <select name=”toleranceSelect”
onchange=”setTol(this)”>
<option value=”Gold” selected=”selected”>Gold</option>
<option value=”Silver”>Silver</option>
<option value=”None”>None</option>

</select>
</form>
<hr />

BC410 Part VI ✦ Bonus Chapters

Drawing the initial images
The balance of the document, mostly in JavaScript, is devoted to creating the table and image
objects whose src properties will be modified with each choice of a select object. The act
of assembling the HTML for the image table occurs right after the select objects have ren-
dered. References to those select elements are required in order to extract the currently
selected values. If the form element that holds the select elements is not closed, you can’t
build a valid (and backward-compatible) reference to the select elements. Therefore, the
page contains two forms: One for the select elements; one for the output text box inside
the table:

<script type=”text/javascript”>
var form = document.forms[“input”];
var tensDigit = form.tensSelect.selectedIndex;
var tensColor = form.tensSelect.options[tensDigit].value;
var onesDigit = form.onesSelect.selectedIndex;
var onesColor = form.onesSelect.options[onesDigit].value;
var multDigit = form.multiplierSelect.selectedIndex;
var multColor = form.multiplierSelect.options[multDigit].value;
var tolDigit = form.toleranceSelect.selectedIndex;
var tolColor = form.toleranceSelect.options[tolDigit].value;

var table =”<table border=’2’><form name=’output’>”;
table += “<tr><th align=’middle’>Resistance Value:<\/th>”;
table +=” <th align=’middle’><input type=’text’ name=’result’ size=20

onfocus=’this.blur()’>”;
table +=”<\/th><\/tr><tr><td colspan=2> ”;
table +=”<img” +

“ src=’” + tensColor +
“.gif’ name=’tens’ width=21 height=182><img” +
“ src=’” + onesColor +
“.gif’ name=’ones’ width=21 height=182><img” +
“ src=’” + multColor +
“.gif’ name=’mult’ width=21 height=182><img” +
“ src=’spacer.gif’ width=17 height=182><img” +
“ src=’” + tolColor + “.gif’ name=’tol’ width=21 height=182><img” +
“ src=’resright.gif’ width=127 height=182>”;

table += “ <\/td><\/tr><\/form><\/table>”;
document.write(table);
</script> Illustration Copyright 1996 Danny Goodman.
All Rights Reserved.

</center>
</body>

</html>

As you can see, the resistor images appear in one table cell (in the second row) that contains
all seven image objects smashed against each other. To keep the images flush against each
other, there can be no spaces or carriage returns between tags.

BC411Chapter 53 ✦ Application: Calculations and Graphics

Further Thoughts
I am very pleased with the improvements to performance and perceived quality that swap-
pable images and image precaching bring to the current version of this calculator. Images
change crisply. Network latency is no longer an issue.

In the layout department, however, annoying differences still exist among different platforms.
At one point in the design process, I considered trying to align the pop-up menus with images
of the resistor (or callout line images), but the differences in platform rendering of pop-up
menus made that idea impractical. At best, I now separate the three left select objects from
the right one by way of hard-coded spaces ().

You should notice from this exercise that I look for ways to blend JavaScript object data
structures with my own data’s structure. For example, the select objects serve multiple
duties in these scripts. Not only does the text of each option point to an image file of the
same name, but the index values of the same options are applied to the calculations. Things
don’t always work out that nicely, but whenever your scripts bring together user interface
elements and data elements, look for algorithmic connections involving names or index inte-
gers that you can leverage to create elegant, concise code.

✦ ✦ ✦

Application:
Intelligent
“Updated”
Flags

It happens to every active Web user all the time: You visit a site
periodically and never know for sure what material is new since

your last visit. Often, Web page authors may flag items with “New” or
“Updated” .gif images after they update those items themselves. But
if you fail to visit the site over a few modification sessions, the only
items you find flagged are those that are new as of the most recent
update by the page’s author. Several new items from a few weeks back
may be of vital interest to you, but you won’t have the time to look
through the whole site in search of material that is more recent than
your last visit. Even if the items display their modification dates, do
you remember for sure the date and time of your last visit to the page?

As much as I might expect a CGI program and database on a Web site
to keep track of my last visit, that really is asking a great deal of the
Web site. Besides, not every Web site has the wherewithal to build
such a database system — if it can even put up its own CGIs. Plus,
some users won’t visit sites if they need to identify themselves or
register.

After surveying the way scriptable browsers store cookie information
and how time calculations are performed under popular Web browsers,
I found that a feasible alternative is to build this functionality into
HTML documents and let the scripting manage the feature for users.
The goal is to save in the visitor’s cookie file the date and time of the
last visit to a page and then use that point as a measure against items
that have an authorship time stamp in the HTML document.

The Cookie Conundrum
Managing the cookie situation in this application is a bit more compli-
cated than you may think. The reason is that you have to take into
account the possible ways visitors may come and go from your site
while surfing the Web. You cannot use just one cookie to store the
last time a user visits the site, because you cannot predict when you
should update that information with today’s date and time. For exam-
ple, if you have a cookie with the previous visit in it, you eventually

5454C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Temporary and
persistent cookies

World time calculations

CGI-like intelligence

✦ ✦ ✦ ✦

BC414 Part VI ✦ Bonus Chapters

need to store today’s visit. But you cannot afford to overwrite the previous visit immediately
(say, in onload) because your scripts need that information to compare against items on the
page not only right now, but even after the visitor vectors off from a link and comes back later.
That also means you cannot update that last visit cookie solely via an onunload event handler,
because that, too, would overwrite information that you need when the visitor comes back a
minute later.

To solve the problem, I devised a system of two cookies. One is written to the cookie that is
given an expiration date of some time out in the future — the hard cookie, I call it. The other is
a temporary cookie — the soft cookie — which stays in cookie memory but is never written to
the file. Such temporary cookies are automatically erased as the browser quits.

The hard cookie stores the time stamp when a visitor first loads the page since the last launch
of the browser. In other words, the hard cookie contains a time stamp of the current visit.
Before the previous entry is overwritten, however, it is copied into the soft cookie. That soft
cookie maintains the time stamp of the previous visit and becomes the measure against which
author time stamps in the HTML document are compared. To guard against inadvertent over-
writing of both cookies, a function triggered by the document’s onload event handler looks
to see if the soft cookie has any data in it. If so, the function knows that the visitor has been
to this page in the current session and leaves the current settings alone. Thus, the visitor can
come to the site and see what’s new, vector off to some other location, and come back to see
the same new items flagged and pick up from there.

One potential downside to this system is that if a user never quits the browser (or if the
browser quits only by crashing), the cookies will never be updated. If you discover that a
great deal of your users keep their computers and browsers running all the time, you can
build in a kind of timeout that invalidates the soft cookie if the hard cookie is more than,
say, 12 hours old.

Time’s Not on Your Side
Thanks to more than 15 years’ experience programming applications that involve tracking
time, I am overly sensitive to the way computers and programming languages treat time on a
global basis. This issue is a thorny one, what with the vagaries of Daylight Savings Time and
time zones in some parts of the world that differ from their neighbors by increments other
than whole hours.

To accomplish a time tracking scheme for this application, I had to be aware of two times: the
local time of the visitor and the local time of the page author. Making times match up in what
can be widely disparate time zones, I use one time zone — GMT — as the reference point.

When a visitor arrives at the page, the browser needs to save that moment in time so that it
can be the comparison measure for the next visit. Fortunately, whenever you create a new date
object in JavaScript, it does so internally as the GMT date and time. Even though the way you
attempt to read the date and time created by JavaScript shows you the results in your com-
puter’s local time, the display is actually filtered through the time zone offset as directed by
your computer’s time control panel. In other words, the millisecond value of every date object
you create is maintained in memory in its GMT form. That’s fine for the visitor’s cookie value.

BC415Chapter 54 ✦ Application: Intelligent “Updated” Flags

For the page author, however, I was presented with a different problem. Rather than force the
author to convert the time stamps throughout the document to GMT, I wanted to let the author
enter dates and times in local time. Aside from the fact that many people have trouble doing
time zone conversions, looking at an existing item in the HTML with a local time stamp and
instantly recognizing when that was last updated is much easier.

The problem, then, is how to let the visitor’s browser know what time the author’s time stamp
is in GMT terms. To solve the issue, the author’s time stamp needs to include a reference to the
author’s time zone relative to GMT. An Internet convention provides a couple of ways to do
this: specifying the number of hours and minutes difference from GMT or, where supported by
the browser, the abbreviation of the time zone. In JavaScript, you can create a new date object
out of one of the specially formatted strings containing the date, time, and time zone. Three
examples follow for the Christmas Eve dinner that starts at 6 p.m. in the Eastern Standard
Time zone of North America:

var myDate = new Date(“24 Dec 1997 23:00:00 GMT”);
var myDate = new Date(“24 Dec 1997 18:00:00 GMT-0500”);
var myDate = new Date(“24 Dec 1997 18:00:00 EST”);

The first assumes you know the Greenwich Mean Time for the date and time that you want to
specify. But if you don’t, you can use the GMT designation and offset value. The syntax indi-
cates the date and time is in a time zone exactly five hours west of GMT (values to the east
would be positive numbers) in hhmm format. Browsers also know all of the time zone abbrevi-
ations for North America (EST, EDT, CST, CDT, MST, MDT, PST, and PDT, where “S” is for stan-
dard time and “D” is for daylight time).

When a user visits a page with this application embedded in it, the visitor’s browser converts
the author’s time stamp to GMT (with the help of the author’s zone offset parameter), so that
both the author time stamp and last visit time stamp (in the soft cookie) are comparing
apples to apples.

The Application
All of this discussion may make the application sound complicated. That may be true, inter-
nally. But the goal, as in most of the samples in this book, is to make the application easy to
use in your site, even if you’re not sure how everything works inside.

The sample page described in this chapter and on the CD-ROM (whatsnew.htm) is pretty bor-
ing to look at, because the power all lies in the scripting that users don’t see (see Figure 54-1).
Though this figure may be the most uninspired graphic presentation of the book, the function-
ality may be the most valuable addition that you make to your Web site.

When you first open the document (do so from a copy on your hard disk so that you can mod-
ify the author time stamp in a moment), all you see are the two items on the page without any
flags. Although both entries have author time stamps that pre-date the time you’re viewing
the page, a soft cookie does not yet exist against which to compare those times. But the act of
making the first visit to the page has created a hard cookie of the date and time that you first
opened the page.

BC416 Part VI ✦ Bonus Chapters

Figure 54-1: An item flagged as being new since my last visit to the page.

Quit the browser to get that hard cookie officially written to the cookie file. Then open the
whatsnew.htm file in your script editor. Scroll to the bottom of the document, where you see
the <body> tag and the interlaced scripts that time stamp anything that you want on the page.
This application is designed to display a special .gif image that says “NEW 4U” whenever an
item has been updated since your last visit.

Each interlaced script looks like this:

<script type=”text/javascript”>
document.write(newAsOf(“12 Oct 2003 13:36:00 PDT”))
</script>

The document.write() method writes to the page whatever HTML comes back from the
newAsOf() function. The parameter to the newAsOf() function is what holds the author time
stamp and zone offset information. The time stamp value must be in the string format, as
shown in the preceding example, with the date and time following the exact order (“dd mmm
yyyy hh:mm:ss”). Month abbreviations are in English (Jan, Feb, Mar, Apr, May, Jun, Jul, Aug,
Sep, Oct, Nov, Dec).

As you see in the code that follows, the newAsOf() function returns an tag with the
“NEW 4U” image if the author time stamp (after appropriate conversion) is later than the soft
cookie value. This image can be placed anywhere in a document. For example, at my Web site,
I sometimes place the image before a contents listing rather than at the end. This means, too,
that if part of your page is written by document.write() methods, you can just insert the
newAsOf() function call as a parameter to your own document.write() calls.

If you want to see the author time stamping work, edit one of the time stamps in the whatsnew.
htm file to reflect the current time. Save the document and relaunch the browser to view the
page. The item whose author time stamp you modified should now show the bright “NEW 4U”
image.

BC417Chapter 54 ✦ Application: Intelligent “Updated” Flags

The Code
The sample page starts by initializing three global variables that are used in the statements that
follow. One variable is a Boolean value indicating whether the visitor has been to the page
before. Another variable, lastVisit, holds the value of the soft cookie whenever the visitor
is at this page. One other variable, dateAdjustment, is (unfortunately) necessary to take into
account a date bug that persists in Macintosh versions of Navigator (times of new date objects
can be off by one hour). I use this variable to automatically handle any discrepancies:

<html>
<head>

<title>Showing What’s New</title>
<script type=”text/javascript”>
// globals
var repeatCustomer = false;
var lastVisit = 0; // to hold date & time of previous access in GMT ms
var dateAdjustment = 0; // to accommodate date bugs on some platforms

For reading and writing cookie data, I use virtually the same cookie functions from the outline
table of contents (see Chapter 52). The only difference is that the cookie writing function
includes an expiration date, because I want this cookie to hang around in the cookie file for
a while — at least until the next visit, whenever that may be:

// shared cookie functions
var mycookie = document.cookie;
// read cookie data
function getCookieData(name) {

var label = name + “=”;
var labelLen = label.length;
var cLen = mycookie.length;
var i = 0;
while (i < cLen) {

var j = i + labelLen;
if (mycookie.substring(i,j) == label) {

var cEnd = mycookie.indexOf(“;”,j);
if (cEnd == -1) {

cEnd = mycookie.length;
}
return unescape(mycookie.substring(j,cEnd));

}
i++;

}
return “”;

}

// write cookie data
function setCookieData(name,dateData,expires) {

mycookie = document.cookie = name + “=” + dateData + “; expires=” +
expires;

}

Notice that the setCookieData() function still maintains a level of reusability by requiring a
name for the cookie to be passed as a parameter along with the data and expiration date. I
could have hard-wired the name into this function, but that goes against my philosophy of
designing for reusability.

BC418 Part VI ✦ Bonus Chapters

Next comes a function that figures out if any problems with JavaScript date accuracy exist on
any platform. Essentially, the function creates two date objects, one to serve as a baseline.
Even the baseline date can be bad, so to test against it, you want to use the second object to
create another date using the first date object’s own values as a parameter. If any major dis-
crepancies occur, they will show up loud and clear:

// set dateAdjustment to accommodate Mac bug in Navigator 3
function adjustDate() {

var base = new Date();
var testDate = base;
testDate = testDate.toLocaleString();
testDate = new Date(testDate);
dateAdjustment = testDate.getTime() - base.getTime();

}

In truth, this function always shows some adjustment error, because both the baseline date
and test date cannot be created simultaneously. Even in an accurate system, the two will vary
by some small number of milliseconds. For the purposes here, this amount of variance is
insignificant.

Setting the stage
Functions in the next part of the script get your cookies all in a row. The first function
(saveCurrentVisit()) deals with the visitor’s local time, converting it to a form that will be
useful on the next visit. Although one of the local variables is called nowGMT, all the variable
does is take the new date object and convert it to the GMT milliseconds value (minus any
dateAdjustment value) by invoking the getTime() method of the date object. I use this
name in the variable to help me remember what the value represents:

// write date of current visit (in GMT time) to cookie
function saveCurrentVisit() {

var visitDate = new Date();
var nowGMT = visitDate.getTime() - dateAdjustment;
var expires = (nowGMT + (180 * 24 * 60 * 60 *1000));
expires = new Date(expires);
expires = expires.toGMTString();
setCookieData(“lastVisit”, nowGMT, expires);

}

From the current time, I create an expiration date for the cookie. The example shows a date
roughly six months (180 days, to be exact) from the current time. I leave the precise expiration
date up to your conscience and how long you want the value to linger in a user’s cookie file.

The final act of the saveCurrentVisit() function is to pass the relevant values to the function
that actually writes the cookie data. I assign the name lastVisit to the cookie. If you want to
manage this information for several different pages, assign a different cookie name for each
page. This setup can be important in case a user gets to only part of your site during a visit.
On the next visit, the code can point to page-specific newness of items.

The “temporary” cookie also needs to set an expiration date for itself. Normally, temporary
cookies disappear when the user quits the browser. But these days, it’s not uncommon for
users to keep their computers and applications running for days (with fewer crashes than not
too long ago). To force the browser to visit the site after awhile as if coming fresh (to look for
new flags), the nextPrevVisit cookie is set to expire one hour after it is set:

BC419Chapter 54 ✦ Application: Intelligent “Updated” Flags

// set cookie with next previous visit with one-hour expiration
function saveNextPrevVisit(lastStoredVisit) {

var visitDate = new Date();
var nowGMT = visitDate.getTime() - dateAdjustment;
var expires = (nowGMT + (60*1000));
expires = new Date(expires);
expires = expires.toGMTString();
setCookieData(“nextPrevVisit”, lastStoredVisit, expires);

}

The bulk of what happens in this application takes place in an initialization function. All the
cookie swapping occurs there, as well as the setting of the repeatCustomer global variable
value:

// set up global variables and establish whether user is repeat customer
function initialize() {

var lastStoredVisit = getCookieData(“lastVisit”);
var nextPrevStoredVisit = getCookieData(“nextPrevVisit”);

adjustDate();

if (!lastStoredVisit) { // never been here before
saveCurrentVisit();
repeatCustomer = false;

} else { // been here before...
if (!nextPrevStoredVisit) { // but first time this session

saveNextPrevVisit(lastStoredVisit); // expires in one hour
lastVisit = parseFloat(lastStoredVisit);
saveCurrentVisit();
repeatCustomer = true;

} else { // back again during this session (perhaps reload or Back)
lastVisit = parseFloat(nextPrevStoredVisit);
repeatCustomer = true;

}
}

}

initialize();

The first two statements retrieve both hard (lastVisit) and soft (nextPrevVisit) cookie val-
ues. After calling the function that sets any necessary date adjustment, the script starts exam-
ining the values of the cookies to find out where the visitor stands upon coming to the page.

The first test is whether the person has ever been to the page before. You do this by checking
whether a hard cookie value (which would have been set in a previous visit) exists. If no such
cookie value exists, the current visit time is written to the hard cookie and repeatCustomer
is set to false. These actions prepare the visitor’s cookie value for the next visit.

Should a user already be a repeat customer, you have to evaluate whether this visit is the user’s
first visit since launching the browser. You do that by checking for a value in the soft cookie.
If that value doesn’t exist, it means the user is here for the first time “today.” You then grab
the hard cookie and drop it into the soft cookie before writing today’s visit to the hard cookie.

For repeat customers who have been here earlier in this session, you update the lastVisit
global variable from the cookie value. The variable value will have been destroyed when the
user left the page just a little while ago, whereas the soft cookie remains intact, enabling you
to update the variable value now.

BC420 Part VI ✦ Bonus Chapters

Outside of the function definition, the script automatically executes the initialize() func-
tion by that single statement. This function runs every time the page loads.

The date comparison
Every interlaced script in the body of the document calls the newAsOf() function to find out
if the author’s time stamp is after the last visit of the user to the page. This function is where
the time zone differences between visitor and author must be neutralized so that a valid com-
parison can be made:

function newAsOf(authorDate) {
authorDate = new Date(authorDate);
var itemUpdated = authorDate.getTime();
alert(itemUpdated + “:” + lastVisit);
return ((itemUpdated > lastVisit) && repeatCustomer) ?

“” : “”;
}
</script>

</head>

As you saw earlier, calls to this function require one parameter: a specially formatted date
string that includes time zone information. The first task in the function is to re-cast the
author’s date string to a date object. You reuse the variable name (authorDate) because its
meaning is quite clear. The date object created here is stored internally in the browser in
GMT time, relative to the time zone data supplied in the parameter. To assist in the compari-
son against the lastVisit time (stored in milliseconds), the getTime() method converts
authorDate to GMT milliseconds.

The last statement of the function is a conditional expression that returns the tag defini-
tion for the “NEW 4U” image only if the author’s time stamp is later than the soft cookie value
and the visitor has been here before. Otherwise, the function returns an empty string. Any
document.write() method that calls this function and executes via this branch writes an
empty string — nothing — to the page.

A live <body>
For the sample document, I have you create a simple bulleted list of two entries, imaginatively
called “First item” and “Second item.” Interlaced into the HTML are scripts that are ready to
insert the “NEW 4U” image if the author time stamp is new enough:

<body>

First item <script type=”text/javascript”>
document.write(newAsOf(“19 Nov 2003 19:55:00 PST”))</script>

Second item <script type=”text/javascript”>
document.write(newAsOf(“18 Nov 2003 13:36:00 PST”))</script>

</body>

</html>

All these script tags make the HTML a bit hard to read, but I believe the functionality is worth
the effort.

BC421Chapter 54 ✦ Application: Intelligent “Updated” Flags

Further Thoughts
You can, perhaps, go overboard with the way that you use this technique at a Web site. Like
most features in JavaScript, I recommend using it in moderation and confining the flags to
high-traffic areas that repeat visitors frequent. One hazard is that you can run out of the
20 cookies if you have too many page-specific listings.

You can share the same cookie among documents in related frames. Locate all the functions
from the script in this chapter’s Head section into a Head section of a framesetting document.
Then, modify the call to the newAsOf() function by pointing it to the parent:

document.write(parent.newAsOf(“18 Nov 2003 17:40:00 PDT”));

That way, one cookie can take care of all documents that you display in that frameset.

✦ ✦ ✦

Application:
Decision Helper

The list of key concepts for this chapter’s application looks like the
grand finale to a fireworks show. As JavaScript implementations

go, the application is, in some respects, over the top, yet not out of
the question for presenting a practical interactive application on a
Web site without any server programming.

The Application
I wanted to implement a classic application often called a decision
support system. My experience with the math involved here goes back
to the first days of Microsoft Excel. Rather than design a program that
had limited appeal (covering only one possible decision tree), I set
out to make a completely user-customizable decision helper. All the
user has to do is enter values into fields on a series of screens; the
program performs the calculations to let the user know how the vari-
ous choices rank against each other.

Although I won’t be delving too deeply into the math inside this appli-
cation, you will find it helpful to understand how a user approaches
this program and what the results look like. The basic scenario is a
user who is trying to evaluate how well a selection of choices measure
up to his or her expectations of performance. User input includes:

✦ The name of the decision

✦ The names of up to five alternatives (people, products, ideas,
and so on)

✦ The factors or features of concern to the user

✦ The importance of each of the factors to the user

✦ A user ranking of the performance of every alternative in each
factor

What makes this kind of application useful is that it forces the user to
rate and weigh a number of often-conflicting factors. By assigning hard
numbers to these elements, the user leaves the difficult process of
figuring out the weights of various factors to the computer.

5555C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Multiple frames

Multiple-document
applications

Multiple windows

Persistent storage
(cookies)

Scripted image maps

Scripted charts

✦ ✦ ✦ ✦

BC424 Part VI ✦ Bonus Chapters

Results come in the form of floating-point numbers between 0 and 100. As an extra touch, I’ve
added a graphical charting component to the results display.

The Design
With so much user input necessary for this application, conveying the illusion of simplicity
was important. Rather than lump all text objects on a single scrolling page, I decided to break
them into five pages, each consisting of its own HTML document. As an added benefit, I could
embed information from early screens into the HTML of later screens, rather than having to
create all changeable items out of text objects so that the application would work with older
browsers. This “good idea” presented one opportunity and one rather large challenge.

The opportunity was to turn the interface for this application into something resembling a mul-
timedia application using multiple frames. The largest frame would contain the forms the user
fills out as well as the results page. Another frame would contain a navigation panel with arrows
for moving forward and backward through the sequence of screens, plus buttons for going
back to a home page and getting information about the program. I also thought a good idea
would be to add a frame that provides instructions or suggestions for the users at each step.
And so, the three-frame window was born, as shown in the first entry screen in Figure 55-1.

Using a navigation bar also enables me to demonstrate how to script a client-side image
map — not an obvious task with JavaScript.

Figure 55-1: The Decision Helper window consists of three frames.

BC425Chapter 55 ✦ Application: Decision Helper

On the challenge side of this design, finding a way to maintain data globally as the user navi-
gates from screen to screen was necessary. Every time one of the entry pages unloads, none
of its text fields is available to a script. My first attack at this problem was to store the data as
global variable data (mostly arrays) in the parent document that creates the frames. Because
JavaScript enables you to reference any parent document’s object, function, or variable (by
preceding the reference with parent), I thought this task would be a snap. A nasty bug in
Navigator 2 (the prominent browser when this application was first developed) got in the way
at the time: If a document in any child window unloaded, the variables in the parent window
got jumbled. The other hazard here is that a reload of the frameset could erase the current
state of those variables.

My next hope was to use the document.cookie as the storage bin for the data. A major
problem I faced was that this program needs to store a total of 41 individual data points, yet
no more than 20 uniquely named cookies can be allotted to a given domain. But the cookie
proved to be the primary solution for this application (although see the “Further Thoughts”
section at the end of the chapter about a non-cookie version on the CD-ROM). For some of
the data points (which are related in an array-like manner), I fashioned my own data struc-
tures so that one named cookie could contain up to five related data points. That reduced my
cookie demands to 17. Note that the application with cookies works only from a Web server
(not locally) with Safari 1.0.

The Files
Before I get into the code, let me explain the file structure of this application. Table 55-1 gives
a rundown of the files used in the Decision Helper.

Table 55-1: Files Comprising the Decision Helper Application

File Description

index.htm Framesetting parent document

dhNav.htm Navigation bar document which contains some scripting

dhNav.gif Image displayed in dhNav.htm
dh1.htm First Decision Helper entry page

dh2.htm Second Decision Helper entry page

dh3.htm Third Decision Helper entry page

dh4.htm Fourth Decision Helper entry page

dh5.htm Results page

chart.gif Tiny image file used to create bar charts in dh5.htm
dhHelp.htm Sample data and instructions document for lower-right frame

dhAbout.htm Document that loads into a second window

A great deal of interdependence exists among these files. As you see later, assigning the
names to some of these files was strategic for the implementation of the image map.

BC426 Part VI ✦ Bonus Chapters

The Code
With so many JavaScript-enhanced HTML documents in this application, you can expect a great
deal of code. To best grasp what’s going on here, first try to understand the structure and inter-
play of the documents, especially the way the entry pages rely on functions defined in the
parent document. My goal in describing this structure is not to teach you how to implement
this application, but rather how to apply the lessons I learned while building this application
to the more complex ideas that may be aching to get out of your head and into JavaScript.

index.htm
Taking a top-down journey through the JavaScript and HTML of the Decision Helper, start at
the document that loads the frames. Unlike a typical framesetting document, however, this
one contains JavaScript code in its Head section — code that many other documents rely on:

<html>
<head>

<title>Decision Helper</title>

An important consideration to remember is that in a multiple-frame environment, the title of
the parent window’s document is the name that appears in the window’s title bar, no matter
how many other documents are open inside its subframes.

The first items of the script control a global variable, currTitle, which is set by a number
of the subsidiary files as the user navigates through the application. This variable ultimately
helps the navigation bar buttons do their jobs correctly. Because this application relies on the
document.cookie so heavily, the cookie management functions (slightly modified versions of
Bill Dortch’s Cookie Functions — see Chapter 18) are located in the parent document so they
load only once. I simplified the cookie writing function because this application uses default
settings for pathname and expiration. With no expiration date, the cookies don’t survive the
current browser session, which is perfect for this application:

<script type=”text/javascript”>
// global variable settings of current dh document number
var currTitle = “”;
function setTitleVar(titleVal) {

currTitle = “” + titleVal;
}
function getCookieVal(offset) {

var endstr = document.cookie.indexOf (“;”, offset);
if ((“” + endstr) == “” || endstr == -1)

endstr = document.cookie.length;
return unescape(document.cookie.substring(offset, endstr));

}

function getCookie(name) {
var arg = name + “=”;
var alen = arg.length;
var clen = document.cookie.length;
var i = 0;
while (i < clen) {

var j = i + alen;
if (document.cookie.substring(i, j) == arg)

return getCookieVal (j);
i = document.cookie.indexOf(“ “, i) + 1;
if (i == 0)

break;
}

BC427Chapter 55 ✦ Application: Decision Helper

return null;
}

function setCookie(name, value) {
document.cookie = name + “=” + escape (value) + “;”;

}

When this application loads (or a user elects to start a new decision), it’s important to grab
the cookies you need and initialize them to basic values that the entry screens will use to fill
entry fields when the user first visits them. All statements inside the initializeCookies()
function call the setCookie() function, defined in the preceding listing. The parameters are
the name of each cookie and the initial value — mostly empty strings. Before going on, study
the cookie labeling structure carefully. I refer to it often in discussions of other documents in
this application:

function initializeCookies() {
setCookie(“decName”,””);
setCookie(“alt0”,””);
setCookie(“alt1”,””);
setCookie(“alt2”,””);
setCookie(“alt3”,””);
setCookie(“alt4”,””);
setCookie(“factor0”,””);
setCookie(“factor1”,””);
setCookie(“factor2”,””);
setCookie(“factor3”,””);
setCookie(“factor4”,””);
setCookie(“import”,”0”);
setCookie(“perf0”,””);
setCookie(“perf1”,””);
setCookie(“perf2”,””);
setCookie(“perf3”,””);
setCookie(“perf4”,””);

}

The following functions should look familiar to you. They were borrowed either wholesale or
with minor modification from the data-entry validation section of the Social Security number
database lookup in Chapter 50. I’m glad I wrote these as generic functions, making them easy
to incorporate into this script. Because many of the entry fields on two screens must be inte-
gers between 1 and 100, I brought the data validation functions to the parent document rather
than duplicating them in each of the subdocuments:

// JavaScript sees numbers with leading zeros as octal values, so strip
// zeros
function stripZeros(inputStr) {

var result = inputStr;
while (result.substring(0,1) == “0”) {

result = result.substring(1,result.length);
}
return result;

}

// general purpose function to see if a suspected numeric input
// is a positive integer
function isNumber(inputStr) {

for (var i = 0; i < inputStr.length; i++) {
var oneChar = inputStr.substring(i, i + 1);
if (oneChar < “0” || oneChar > “9”) {

return false;
}

BC428 Part VI ✦ Bonus Chapters

}
return true;

}

// function to determine if value is in acceptable range for this
// application
function inRange(inputStr) {

num = parseInt(inputStr);
if (num < 1 || num > 100) {

return false;
}
return true;

}

To control the individual data-entry validation functions in the master controller, I again was
able to borrow heavily from the application in Chapter 50:

// Master value validator routine
function isValid(inputStr) {

if (inputStr != “”) {
inputStr = stripZeros(inputStr);
if (!isNumber(inputStr)) {

alert(“Please make sure entries are numbers only.”);
return false;

} else {
if (!inRange(inputStr)) {

alert(“Entries must be numbers between 1 and 100. Try
another value.”);

return false;
}

}
}
return true;

}

Each of the documents containing entry forms retrieves and stores information in the cookie.
Because all cookie functions are located in the parent document, it simplifies coding in the
subordinate documents to have functions in the parent document acting as interfaces to the
primary cookie functions. For each category of data stored as cookies, the parent document
has a pair of functions for getting and setting data. The calling statements pass only the data
to be stored when saving information; the interface functions handle the rest, such as storing
or retrieving the cookie with the correct name.

In the following pair of functions, the decision name (from the first entry document) is passed
back and forth between the cookie and the calling statements. Not only must the script store
the data, but if the user returns to that screen later for any reason, the entry field must retrieve
the previously entered data:

function setDecisionName(str) {
setCookie(“decName”,str);

}
function getDecisionName() {

return getCookie(“decName”);
}

The balance of the storage and retrieval pairs does the same thing for their specific cookies.
Some cookies are named according to index values (factor1, factor2, and so on), so their
cookie-accessing functions require parameters for determining which of the cookies to access,
based on the request from the calling statement. Many of the cookie retrieval functions are
called to fill in data in tables of later screens during the user’s trip down the decision path:

BC429Chapter 55 ✦ Application: Decision Helper

function setAlternative(i,str) {
setCookie(“alt” + i,str);

}
function getAlternative(i) {

return getCookie(“alt” + i);
}
function setFactor(i,str) {

setCookie(“factor” + i,str);
}
function getFactor(i) {

return getCookie(“factor” + i);
}
function setImportance(str) {

setCookie(“import”,str);
}
function getImportance(i) {

return getCookie(“import”);
}
function setPerformance(i,str) {

setCookie(“perf” + i,str);
}
function getPerformance(i) {

return getCookie(“perf” + i);
}

One sequence of code that runs when the parent document loads is the one that looks to see
if a cookie structure is set up. If no such structure is set up (the retrieval of a designated cookie
returns a null value), the script initializes all cookies via the function described earlier:

if (getDecisionName() == null) {
initializeCookies();

}
</script>

</head>

The balance of the parent document source code defines the frameset for the browser win-
dow. It establishes some hard-wired pixel sizes for the navigation panel. This ensures that the
entire .gif file is visible whenever the frameset loads, without a ton of unwanted white space
if the browser window is large:

<frameset rows=”250,*”>
<frameset cols=”104,*”>

<frame name=”navBar” src=”dhNav.htm” scrolling=”no” marginheight=”2”
marginwidth=”1” />
<frame name=”entryForms” src=”dh1.htm” />

</frameset>
<frameset rows=”100%”>

<frame name=”instructions” src=”dhHelp.htm” />
</frameset>
<noframes>

<body>
<h1>It’s really cool...</h1>
<h2>...but only if your browser handles frames</h2>
<hr />
Back

</body>
</noframes>

</frameset>
</html>

BC430 Part VI ✦ Bonus Chapters

I learned an important lesson about scripting framesets along the way. Older browsers, espe-
cially NN through version 4, do not respond to changes in framesetting size attributes through
a simple reload of the page. I found it necessary to reopen the frameset file from time to time.
I also found it necessary to sometimes quit early Navigators altogether and relaunch to make
some changes visible. Therefore, if you seem to be making changes, but reloading the frameset
doesn’t make the changes appear, try reopening or — as a last resort — quitting the browser.

dhNav.htm
Because of its crucial role in controlling the activity around this program, look into the naviga-
tion bar’s document next. To accomplish the look and feel of a multimedia program, this doc-
ument was designed as a client-side image map that has four regions scripted corresponding
to the locations of the four buttons (see Figure 55-1). One function is connected to each button.

The first function is linked to the graphical Home button. For the listing here, I just present an
alert dialog box replicating the action of navigating back to a real Web site’s home page:

<html>
<head>

<title>Navigation Bar</title>
<script type=”text/javascript”>
function goHome() {

alert(“Navigate back to home page on a real site.”);
}

Each of the arrow navigation buttons brings the user to the next or previous entry screen in
the sequence. To facilitate this without building tables of document titles and names, you call
upon the currTitle global variable in the parent document. This value contains an integer in
the range between 1 and 5, corresponding to the main content documents, dh1.htm, dh2.htm,
and so on. As long as the offset number is no higher than the next-to-last document in the
sequence, the goNext() function increments the index value by one and concatenates a new
location for the frame. At the same time, the script advances the help document (in the bottom
frame) to the anchor corresponding to the chosen entry screen by setting the location.hash
property of that frame. Similar action navigates to the previous screen of the sequence through
the goPrev() function. This time, the index value is decremented by one, and an alert warns
the user if the current page is already the first in the sequence:

function goNext() {
var currOffset = parseInt(parent.currTitle);
if (currOffset <= 4) {

++currOffset;
parent.entryForms.location.href = “dh” + currOffset + “.htm”;
parent.instructions.location.hash = “help” + currOffset;

} else {
alert(“This is the last form.”);

}
}
function goPrev() {

var currOffset = parseInt(parent.currTitle);
if (currOffset > 1) {

--currOffset;
parent.entryForms.location.href = “dh” + currOffset + “.htm”;
parent.instructions.location.hash = “help” + currOffset;

} else {
alert(“This is the first form.”);

}
}

BC431Chapter 55 ✦ Application: Decision Helper

Clicking the Info button displays a smaller window containing typical About-box data for the
program (see Figure 55-2):

function goInfo() {
var newWindow = window.open(“dhAbout.htm”,””,”HEIGHT=250,WIDTH=380”);

}
</script>

</head>

Figure 55-2: The About Decision Helper
screen appears in a separate window.

The Body of the navigation document contains the part that enables you to script a client-side
image map. Mouse click events weren’t available to area elements until version 4 browsers,
so to let these image maps work with older versions, mouse action is converted to script action
by assigning a javascript: pseudo-URL to the HREF attribute for each area element. Instead
of pointing to an entirely new URL (as area elements usually work), the attributes point to
the JavaScript functions defined in the Head portion of this document. After a user clicks the
rectangle specified by an <area> tag, the browser invokes the function instead.

<body bgcolor=”white”>
<map id=”navigation” name=”navigation”>

<area shape=”rect” coords=”23,22,70,67” href=”javascript:goHome()” />
<area shape=”rect” coords=”25,80,66,116” href=”javascript:goNext()” />
<area shape=”rect” coords=”24,125,67,161”
href=”javascript:goPrev()” />
<area shape=”rect” coords=”35,171,61,211”
href=”javascript:goInfo()” />

</map> <img alt=”image” src=”dhNav.gif” height=”240” width=”96”
border=”0” usemap=”#navigation” />

</body>
</html>

Although not shown here, you can assign onmouseover event handlers to each area element
for NN3+ and IE4+ to display a friendly message about the action of each button.

dh1.htm
Of the five documents that display in the main frame, dh1.htm is the simplest (refer to
Figure 55-1). It contains a single entry field in which the user is invited to enter the name for
the decision.

Only one function adorns the Head. This function summons one of the cookie interface func-
tions in the parent window. A test is located here in case there is a problem with initializing
the cookies. Rather than show null in the field, the conditional expression substitutes an
empty string:

BC432 Part VI ✦ Bonus Chapters

<html>
<head>

<title>DH1</title>
<style type=”text/css”>
body {font-family:Arial, Helvetica, serif}
h2 {font-size:18px}
h4 {font-size:14px}
</style>
<script type=”text/javascript”>
function loadDecisionName() {

var result = parent.getDecisionName();
result = (result == null) ? “” : result;
document.forms[0].decName.value = result;

}
</script>

</head>

After the document loads, it performs three tasks (in the onload event handler). The first task
is to set the global variable in the parent to let it know which number of the five main docu-
ments is currently loaded. Next, the script must fill the field with the decision name stored
in the cookie. This task is important because users will want to come back to this screen to
review what they entered previously. A third statement in the onload event handler sets the
focus of the entire browser window to the one text object. This task is especially important in
a multi-frame environment, such as this design. After a user clicks on the navigation panel,
that frame has the focus. To begin typing into the field, the user has to tab (repeatedly) or
click the text box to give the text box focus for typing. By setting the focus in the script when
the document loads, you save the user time and aggravation:

<body onload=”parent.setTitleVar(1);
loadDecisionName();document.forms[0].decName.focus()”>

<h2>The Decision Helper</h2>
<hr />
<h4>Step 1 of 5: Type the name of the decision you’re making. Then click

the “Next” arrow.</h4>

In the text field itself, an onchange event handler saves the value of the field in the parent’s
cookie for the decision name. No special Save button or other instruction is necessary here
because any navigation that the user does via the navigation bar automatically causes the
text field to lose focus and triggers the onchange event handler:

<center>
<form>

Decision Name: <input type=”text” name=”decName” size=”40”
onchange=”parent.setDecisionName(this.value)” />

</form>
</center>

</body>
</html>

The copy of this file on the CD-ROM also has code that allows for plugging in sample data (as
seen on my Web site) and a (commented out) textarea object that you can use for debugging
cookie data.

dh2.htm
For the second data-entry screen (shown in Figure 55-3), five fields invite the user to enter
descriptions of the alternatives under consideration. As with the decision name screen, the
scripting for this page must both retrieve and save data displayed or entered in the fields.

BC433Chapter 55 ✦ Application: Decision Helper

Figure 55-3: The second data-entry screen.

In one function, the script retrieves the alternative cookies (five total) and stuffs them into
their respective text fields (as long as their values are not null). This function script uses a
for loop to cycle through all five items — a common process throughout this application.
Whenever a cookie is one of a set of five, the parent function has been written (in the following
example) to store or extract a single cookie, based on the index value. Text objects holding
like data (defined in the following listing) are all assigned the same name, so that JavaScript
lets you treat them as array objects — greatly simplifying the placement of values into those
fields inside a for loop:

<html>
<head>

<title>DH2</title>
<style type=”text/css”>
body {font-family:Arial, Helvetica, serif}
h2 {font-size:18px}
h4 {font-size:14px}
</style>
<script type=”text/javascript”>
function loadAlternatives() {

for (var i = 0; i < 5; i++) {
var result = parent.getAlternative(i);
result = (result == null) ? “” : result;
document.forms[0].alternative[i].value = result;

}
}
</script>

</head>

BC434 Part VI ✦ Bonus Chapters

After the document loads, the document number is sent to the parent’s global variable, its
fields are filled by the function defined in the Head, and the first field is handed the focus to
assist the user in entering data the first time:

<body onload=”parent.setTitleVar(2);
loadAlternatives();document.forms[0].alternative[0].focus()”>

<h2>The Decision Helper</h2>
<hr />
<h4>Step 2 of 5: Type up to five alternatives you are considering.</h4>

Any change that a user makes to a field is stored in the corresponding cookie. Each onchange
event handler passes its indexed value (relative to all like-named fields) plus the value entered
by the user as parameters to the parent’s cookie-saving function:

<center>
<form>

Alternative 1: <input type=”text” name=”alternative” size=”25”
onchange=”parent.setAlternative(0,this.value)” />

Alternative 2: <input type=”text” name=”alternative” size=”25”
onchange=”parent.setAlternative(1,this.value)” />

Alternative 3: <input type=”text” name=”alternative” size=”25”
onchange=”parent.setAlternative(2,this.value)” />

Alternative 4: <input type=”text” name=”alternative” size=”25”
onchange=”parent.setAlternative(3,this.value)” />

Alternative 5: <input type=”text” name=”alternative” size=”25”
onchange=”parent.setAlternative(4,this.value)” />

</form>
</center>

</body>
</html>

dh3.htm
With the third screen, the complexity increases a bit. Two factors contribute to this increase
in difficulty. One is that the limitation on the number of cookies available for a single domain
forces you to join into one cookie the data that might normally be distributed among five
cookies. Second, with the number of text objects on the page (see Figure 55-4), it becomes
more efficient (from the standpoint of tedious HTML writing) to let JavaScript deploy the
fields. The fact that two sets of five related fields exist facilitates using for loops to lay out
and populate them.

One initial function here is reminiscent of Head functions in previous entry screens. This
function retrieves a single factor cookie from the set of five cookies:

<html>
<head>

<title>DH3</title>
<style type=”text/css”>

body {font-family:Arial, Helvetica, serif}
h2 {font-size:18px}
h4 {font-size:14px}

</style>
<script type=”text/javascript”>
function getdh3Factor(i) {

var result = parent.getFactor(i);
if (result == null) {
return “”;
}
return result;

}

BC435Chapter 55 ✦ Application: Decision Helper

Figure 55-4: Screen for entering decision factors and their weights.

Values for the five possible weight entries are stored together in a single cookie. To make
this work, I had to determine a data structure for the five “fields” of a single cookie “record.”
Because all entries are integers, I can choose any nonnumeric character. I arbitrarily selected
the period:

function setdh3Importance() {
var oneRecord = “”;
for (var i = 0; i < 5; i++) {

var dataPoint = document.forms[0].importance[i].value;
if (!parent.isValid(dataPoint)) {

document.forms[0].importance[i].focus();
document.forms[0].importance[i].select();
return;

}
oneRecord += dataPoint + “.”;

}
parent.setImportance(oneRecord);
return;

}

The purpose of the setdh3Importance() function is to assemble all five values from the five
Weight entry fields (named “importance”) into a period-delimited record that is ultimately
sent to the cookie for safekeeping. Another of the many for loops in this application cycles
through each of the fields, checking for validity and then appending the value with its trailing
period to the variable (oneRecord) that holds the accumulated data. As soon as the loop fin-
ishes, the entire record is sent to the parent function for storage.

BC436 Part VI ✦ Bonus Chapters

Although the function shows two return statements, the calling statement does not truly
expect any values to be returned. Instead, I use the return statement inside the for loop as a
way to break out of the for loop without any further execution whenever an invalid entry is
found. Just prior to that, the script sets the focus and select to the field containing the invalid
entry. JavaScript, however, is sensitive to the fact that a function with a return statement in
one possible outcome doesn’t have a return statement for other outcomes (an error message
to this effect appears in some browsers if you try the function without balanced returns). By
putting a return statement at the end of the function, all other possibilities are covered to
the browser’s satisfaction.

The inverse of storing the weight entries is retrieving them. Because the parent.get
Importance() function returns the entire period-delimited record, this function must break
apart the pieces and distribute them into their corresponding Weight fields. A combination of
string methods determines the offset of the period and how far the data extraction should go
into the complete record. Before the for loop repeats each time, it is shortened by one “field’s”
data. In other words, as the for loop executes, the copy of the cookie data returned to this
function is pared down one entry at a time as each entry is stuffed into its text object for
display:

function getdh3Importance() {
var oneRecord = parent.getImportance();
if (oneRecord != null) {

for (var i = 0; i < 5; i++) {
var recLen = oneRecord.length;
var offset = oneRecord.indexOf(“.”);
var dataPoint = (offset >= 0) ?

oneRecord.substring(0,offset) : “”;
document.forms[0].importance[i].value = dataPoint;
oneRecord = oneRecord.substring(offset+1,recLen);

}
}

}
</script>

</head>

Upon loading the document, the only tasks that the onload event handler needs to do are to
update the parent global variable about the document number and to set the focus to the
first entry field of the form:

<body onload=”parent.setTitleVar(3);document.forms[0].factor[0].focus()”>
<h2>The Decision Helper</h2>
<hr />
<h4>Step 3 of 5: List the factors that will influence your decision, and

assign a weight (from 1 to 100) to signify the importance of each
factor in your decision.</h4>

Assembling the HTML for the form and its 10 data-entry fields needs only a few lines of
JavaScript code. Performed inside a for loop, the script assembles each line of the form, which
consists of a label for the Factor (and its number), the factor input field, the importance input
field, and the label for the Weight (and its number). A document.write() method writes each
line to the document:

<p>
<script type=”text/javascript”>
var output = “<center><form>”;
for (i = 0; i < 5; i++) {

output += “Factor “ + (i+1) + “--><input type=’text’ name=’factor’
size=’25’ “;

BC437Chapter 55 ✦ Application: Decision Helper

var eHandler = “ onchange=\’parent.setFactor(“ + i +
“,this.value)\’”;

output += eHandler + “value=’” + getdh3Factor(i) + “‘>”;

output += “<input type=’text’ name=’importance’ size=’3’ “;
var eHandler = “ onchange=\’setdh3Importance()\’”;
output += eHandler + “value=’’>”;

output += “<--Weight “ + (i+1) + “<br \/>”;
document.write(output);
output = “”;

}
document.write(“<\/form><\/center>”);
getdh3Importance();
</script>

</p>
</body>

</html>

Each of the scripted text objects has an event handler. Notice that each event handler is first
defined as a variable on a statement line just above its insertion into the string being assembled
for the input object definition. One reason for this fact is that the nested quote situation gets
quite complex when you are doing these tasks all in one massive assignment statement. Rather
than mess with matching several pairs of deeply nested quotes, I found it easier to break out
one portion (the event handler definition) as a variable value and then insert that preformatted
expression into the concatenated string for the input definition.

Notice, too, how the different ways of storing the data in the cookies influence the ways the
existing cookie data is filled into the fields as the page draws itself. For the factors, which
have one cookie per factor, the value attribute of the field is set with a specific indexed call
to the parent factor cookie retriever, one at a time. But for the importance values, which are
stored together in the period-delimited chunk, a separate function call (getdh3Importance())
executes after the fields are already drawn (with initial values of empty strings) and fills all
the fields in a batch operation.

dh4.htm
Step 4 of the decision process (shown in Figure 55-5) is the most complex step because of the
sheer number of entry fields: 25 in all. Notice that this screen retrieves data from two of the
previous screens (or rather from the cookies preserving the entries) and embeds the values
into the fixed parts of the table. All these tasks are possible when you create those tables
with JavaScript.

Functions for getting and setting performance data are complex because of the way I was
forced to combine data into five “field” records. In other words, one parent cookie exists for
each row of data cells in the table. To extract cell data for storage in the cookie, I use nested
for loop constructions. The outer loop counts the rows of the table, whereas the inner loop
(with the j counter variable) works its way across the columns for each row.

Because all cells are named identically, they are indexed with values from 0 to 24. Calculating
the row (i * 5) plus the column number establishes the cell index value. After you check for
validity, each cell’s value is added to the row’s accumulated data. Each row is then saved to
its corresponding cookie. As in the code for dh3.htm, the return statement is used as a way
to break out of the function if an entry is deemed invalid.

BC438 Part VI ✦ Bonus Chapters

Figure 55-5: A massive table includes label data from earlier screen entries.

Retrieving the data and populating the cells for the entire table requires an examination of
each of the five performance cookies, and for each labeled cookie’s data, a parsing for each
period-delimited entry. After a given data point is in hand (one entry for a cell), it must go
into the cell with the proper index:

<html>
<head>

<title>DH4</title>
<style type=”text/css”>
body {font-family:Arial, Helvetica, serif}
h2 {font-size:18px}
h4 {font-size:14px}
</style>
<script type=”text/javascript”>
function getdh4Performance() {

var oneRecord = “”;
var recLen = 0;
var offset = 0;
var dataPoint = “”;
var cellNum = 0;
for (var i = 0; i < 5; i++) {

oneRecord = parent.getPerformance(i);
if (oneRecord == null) {

continue;
}

BC439Chapter 55 ✦ Application: Decision Helper

for (var j = 0; j < 5; j++) {
recLen = oneRecord.length;
offset = oneRecord.indexOf(“.”);
dataPoint = oneRecord.substring(0,offset);
cellNum = j + (i * 5);
document.forms[0].ranking[cellNum].value = dataPoint;
oneRecord = oneRecord.substring(offset+1,recLen);

}
}

}
function setdh4Performance() {

var oneRecord = “”;
var cellNum = 0;
var dataPoint = “”;
for (var i = 0; i < 5; i++) {

oneRecord = “”;
for (var j = 0; j < 5; j++) {

cellNum = j + (i * 5);
dataPoint = document.forms[0].ranking[cellNum].value;
if (!parent.isValid(dataPoint)) {

document.forms[0].ranking[cellNum].focus();
document.forms[0].ranking[cellNum].select();
return;

}
oneRecord += dataPoint + “.”;

}
parent.setPerformance(i,oneRecord);

}
return;

}
</script>

</head>

After the document is loaded, the onload event handler sends the document number to the
parent global variable and brings focus to the first field of the table:

<body onload=”parent.setTitleVar(4);document.forms[0].ranking[0].focus()”>
<h2>The Decision Helper</h2>
<hr />
<h4>Step 4 of 5: On a scale of 1 to 100, rank each alternative’s

performance in each factor.</h4>

To lessen the repetitive HTML for all tables, JavaScript again assembles and writes the HTML
that defines the tables. In the first batch, the script uses yet another for loop to retrieve the
factor entries from the parent cookie so that the words can be embedded into <th> tags of
the first row of the table. If every factor field is not filled in, the table cell is set to empty:

<p>
<script type=”text/javascript”>
var output = “<div align=’center’><form name=’perfRankings’><table

border=’1’>”;
output += “<tr><td><\/td>”;
for (var i = 0; i < 5; i++) {

var oneFactor = parent.getFactor(i);
oneFactor = (oneFactor == null) ? “” : oneFactor;
output += “<th>” + oneFactor + “<\/th>”;

}

BC440 Part VI ✦ Bonus Chapters

Next comes the assembly of subsequent rows of the table. The first column displays the name
of each alternative (within <th> tags). The remaining columns are text boxes, all with the same
name and event handler. As each row of table definition is completed, it is written to the
document. After the table and form closing tags are also written, the getdh4Performance()
function retrieves all cookie data for the fields and distributes it accordingly:

for (var i = 0; i < 5; i++) {
var oneAlt = parent.getAlternative(i);
oneAlt = (oneAlt == null) ? “” : oneAlt;
output += “<tr><th>” + oneAlt + “<\/th>”;
for (var j = 0; j < 5; j++) {

output += “<td align=’center’><input type=’text’ size=’3’
name=’ranking’ value=’’
onchange=’setdh4Performance()’><\/td>”;

}
output += “<\/tr>”;
document.write(output);
output = “”;

}
document.write(“<\/table><\/form><\/div>”);
getdh4Performance();
</script>

</p>
</body>

</html>

dh5.htm
From a math standpoint, dh5.htm’s JavaScript gets pretty complicated. But because the
complexity is attributed to the decision support calculations that turn the user’s entries into
results, I treat the calculation script shown here as a black box. You’re free to examine the
details, if you’re so inclined.

Results appear in the form of a table (see Figure 55-6) with columns showing the numeric
results and an optional graphical chart.

For the purposes of this example, you only need to know a couple of things about the calcu-
late() function. First, this function calls all the numeric data stored in parent cookies to ful-
fill values in its formulas. Second, results are tabulated and placed into a five-entry indexed
array called itemTotal[i]. This array is defined as a global variable, so that its contents are
available to scripts coming up in the Body portion of the document:

<html>
<head>

<title>DH5</title>

<style type=”text/css”>
body {font-family:Arial, Helvetica, serif}
h2 {font-size:18px}
h4 {font-size:14px}
</style>
<script type=”text/javascript”>
var itemTotal = new Array();

function calculate() {
var scratchpad = “”;
var importanceSum = 0;
var oneRecord = parent.getImportance();
var weight = new Array();

BC441Chapter 55 ✦ Application: Decision Helper

for (i = 0; i < 5; i++) {
var recLen = oneRecord.length;
var offset = oneRecord.indexOf(“.”);
scratchpad = oneRecord.substring(0,offset);
importanceSum += (scratchpad == “” || scratchpad == “NaN”) ?

0 : parseInt(scratchpad);
oneRecord = oneRecord.substring(offset+1,recLen);

}
oneRecord = parent.getImportance();
for (i = 0; i < 5; i++) {

recLen = oneRecord.length;
offset = oneRecord.indexOf(“.”);
scratchpad = oneRecord.substring(0,offset);
weight[i] = (scratchpad == “” || scratchpad == “NaN”) ?

0 : parseInt(scratchpad)/importanceSum * 100;
oneRecord = oneRecord.substring(offset+1,recLen);

}
for (i = 0; i < 5; i++) {

oneRecord = parent.getPerformance(i);
if (oneRecord == null) {

continue;
}
scratchpad = 0;
for (var j = 0; j < 5; j++) {

var recLen = oneRecord.length;
var offset = oneRecord.indexOf(“.”);
var dataPoint = oneRecord.substring(0,offset);
scratchpad += (dataPoint != “” || dataPoint == “NaN”) ?

parseInt(dataPoint) * weight[j] / 100 : 0;
oneRecord = oneRecord.substring(offset+1,recLen);

}
itemTotal[i] = scratchpad;

}
}
calculate();
</script>

</head>

Constructing this function served up many reminders about keeping data types straight.
Because the data stored in cookies was in the form of strings, when it comes time to do some
real math with those values, careful placement of the parseInt() function is essential for
getting the math operators to work.

An onload event handler sends the document number to the global variable, as usual. The
results display in this document relies heavily on stored and calculated values, so the table is
constructed entirely out of JavaScript. That also means it can redisplay the decision name as
part of the page:

<body onload=”parent.setTitleVar(5)”>
<h2>The Decision Helper</h2>
<hr />
<script type=”text/javascript”>
document.write(“<h4>” + parent.getDecisionName() + “<\/h4><br \/>

<br \/>”);
var output = “<div align=’center’><form name=’Results’><table

border=’1’>”;
output += “<tr><td><\/td><th>Results<\/th><th>Ranking<\/th>”;
document.write(output);
output = “”;

BC442 Part VI ✦ Bonus Chapters

Figure 55-6: The results screen for a decision.

I need to break up the discussion of the for loop that produces the results because there are
two distinct parts of this HTML assembly. The first, shown in the following script segment,
assembles the first two cells of each row of the table. The first cell contains an embedded list-
ing of the alternative name (in <th> tags). To highlight the calculated values — and enable the
size attribute to do the artificial job of truncating the floating-point number — the results are
shown in text boxes. For each row, the corresponding result in itemTotal[i] is inserted as
the value attribute of the text box. The size attribute is set to 7, which allows the typical
double-digit results, a decimal point, and four digits to the right of the decimal (an extra pixel
shows on the Macintosh version, however):

for (var i = 0; i < 5; i++) {
var oneAlt = parent.getAlternative(i);
oneAlt = (oneAlt == null || oneAlt == “”) ? “” : oneAlt;
itemTotal[i] = (oneAlt == “”) ? 0 : itemTotal[i];
output += “<tr><th>” + oneAlt + “<\/th>”;
output += “<td align=’center’><input type=’text’ size=’7’

name=’ranking’ value=” + itemTotal[i] + “><\/td>”;

For extra pizzazz, a third column “draws” a bar chart within a 100-pixel-wide cell. The bars
are actually scalings of a one-pixel-wide .gif file (an orange line, 12 pixels tall). A single-color
.gif image scales to fill whatever width is assigned in the width attribute. This method is
faster and far better than a more tedious method (tedious from the Web page author’s point

BC443Chapter 55 ✦ Application: Decision Helper

of view) of creating 100 different .gif files, one for each possible width of the bar. I also could
have used a one-pixel square .gif file with equal ease:

output += “<td width=’100’>”;
chartWidth = Math.round(itemTotal[i]);
if (chartWidth > 0) {

output += “<img src=’chart.gif’ height=’12’ width=’” + chartWidth +
“‘ \/>”;

}
output += “<\/td><\/tr>”;
document.write(output);
output = “”;

}
document.write(“<\/table><\/form><\/div>”);
</script>

</body>
</html>

dhHelp.htm
The only other code worth noting in this application is in the dhHelp.htm document, which
appears in the lower-right frame of the window. At the end of this document are two links that
call separate JavaScript functions in this document’s Head section. The Head functions are as
follows:

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>

<title>Decision Helper Help</title>
<style type=”text/css”>
body {font-family:Arial, Helvetica, serif; font-size:12px}
h4 {font-size:18px}
div {align:right}
</style>
<script type=”text/javascript”>
function goFirst() {

parent.entryForms.location = “dh1.htm”;
self.location.hash = “help1”;

}
function restart() {

if (confirm(“Erase current decision and start a new one?”)) {
parent.initializeCookies();
parent.entryForms.location = “dh1.htm”;
self.location.hash = “help1”;

}
}
</script>

</head>

One function merely returns the user to the beginning of the sequences for both the entry
screens and the help screen. The second function is a rare instance in which a confirm dialog
box makes sense: It is about to erase all entered data. If the user says it’s okay to go ahead,
the parent window’s function for initializing all cookies is called, and the navigation for both
the entry and help screens goes back to the beginning.

BC444 Part VI ✦ Bonus Chapters

The links at the bottom of the document (see Figure 55-6) are coded to trigger JavaScript func-
tions (rather than navigate to URLs) and include onmouseover event handlers to provide more
information about the link in the status bar:

<a href=”javascript:goFirst()”
onmouseover=”window.status=’Go back to beginning to review
data...’;return true”>
Review This Decision || <a href=”javascript:restart()”
onmouseover=”window.status=’Erase current data and start over...’;
return true”>Start a New Decision...

Further Thoughts
If you’ve managed to follow through with this application’s discussions, you will agree that it’s
quite a JavaScript workout. But this application proves that, without a ton of code, JavaScript
provides enough functionality to add a great deal of interactivity and pseudo-intelligence to
an otherwise flat HTML document.

As an alternative to using cookies for data storage, I have also implemented a version of the
application that uses text boxes defined in a frame defined with a row height of 0. This tech-
nique further challenges the synchronization of frames during reloading when a user resizes
the browser window or navigates with the Back or Forward browser buttons. This alternate
version is located on the CD-ROM for your own investigation and comparison.

Dynamic HTML also offers some possibilities for this application. The entire program can be
presented in a no-frame window, with the navigation, interactive content, and instructions
frames incorporated into individual positionable objects. The interactive content area can be
treated almost like a slide show, with successive pages flying in from one edge.

Not only is this application instructive for many JavaScript techniques, but it is also fun to
play with as a user. Some financial Web sites have adapted it to assist visitors with investment
decisions. You can use it to dream about where to go on a dream vacation, or help you decide
the most ethical of a few paths confronting you in a personal dilemma. There’s something
about putting in data, turning a crank, and watching results (with a bar chart to boot!) magi-
cally appear on the screen.

✦ ✦ ✦

Application:
Cross-Browser
DHTML Map Puzzle

Dynamic HTML allows scripts to position, overlap, and hide or
show elements under the control of stylesheets and scripting.

To demonstrate modern cross-browser DHTML development tech-
niques, this chapter describes the details of a jigsaw puzzle game
using pieces of a map of the “lower 48” United States (I think every-
one would guess where Alaska and Hawaii go on a larger map of
North America). I chose this application because it allows me to
demonstrate several typical tasks you might want to script in DHTML:
hiding and showing elements; handling events for multiple elements;
tracking the position of an element with the mouse cursor; absolute
positioning of elements; changing the z-order of elements; changing
element colors; and animating movement of elements.

As with virtually any programming task, the example code here is not
laid out as the quintessential way to accomplish a particular task.
Each author brings his or her own scripting style, experience, and
implementation ideas to a design. Very often, you have available sev-
eral ways to accomplish the same end. If you find other strategies or
tactics for the operations performed in these examples, it means you
are gaining a good grasp of both JavaScript and Dynamic HTML.

The Puzzle Design
Figure 56-1 shows the finished map puzzle with the game in progress.
To keep the code to a reasonable length, the example provides posi-
tionable state maps for only seven western states. Also, the overall
design is intentionally Spartan so as to place more emphasis on the
positionable elements and their scripting, rather than on fancy design.

5656C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Applying a DHTML API

Scripting, dragging,
and layering of multiple
elements

Event handling for three
DOMs at once

✦ ✦ ✦ ✦

BC446 Part VI ✦ Bonus Chapters

Figure 56-1: The puzzle map game DHTML example.
(Images courtesy Map Resources — www.mapresources.com)

When the page initially loads, all the state maps are presented across the top of the puzzle
area. The state labels all have a red background, and the silhouette of the continental United
States has no features in it. To the right of the title is a question mark icon. A click of this icon
causes a panel of instructions to glide to the center of the screen from the right edge of the
browser window. That panel has a button that hides the panel.

To play the game (no scoring or time keeping is in this simplified version), a user clicks and
drags a state with the goal of moving it into its rightful position on the silhouette. While the
user drags the state, its label background to the right of the main map turns yellow to high-
light the name of the state being worked on. To release the state in its trial position, the user
releases the mouse button. If the state is within a 4-pixel square region around its true loca-
tion, the state snaps into its correct position and the corresponding label background color
turns green. If the state is not dropped close enough to its destination, the label background
reverts to red, meaning that the state still needs to be placed.

After the last state map is dropped into its proper place, all the label backgrounds will be
green, and a congratulatory message is displayed where the state map pieces originally lay.
Should a user then pick up a state and drop it out of position, the congratulatory message
disappears.

I had hoped that all versions of the application would look the same on all platforms. They
do, with one small exception. Because the labels are generated as positioned div elements
for all browsers, NN4 (especially on the Windows version) doesn’t do as good a rendering job
as other browsers. If I were to use genuine layer elements for the labels just for NN4, they’d

BC447Chapter 56 ✦ Application: Cross-Browser DHTML Map Puzzle

look better. And, while the code could use scripts to generate layers for NN4 and divs for
others, the choice here was to stay with div elements alone. If you try this game on NN4 and
other DHTML browsers, you will see minor differences in the way the labels are colored (red,
yellow, and green) during game play. All other rendering and behavior is identical (although a
rendering bug in NN6 is discussed later).

Implementation Details
Due to the number of different scripted properties being changed in this application, I decided
to implement a lot of the cross-platform scripting as a custom API loaded from an external .js
file library. The library, whose code is dissected and explained in Chapter 47, contains func-
tions for most of the scriptable items you can access in DHTML. Having these functions avail-
able simplified what would have been more complex functions in the main part of the
application.

Although I frown on using global variables except where absolutely necessary, I needed to
assign a few globals for this application. All of them store information about the state map
currently picked up by the user and the associated label. This information needs to survive
the invocations of many functions between the time the state is picked up until it is dropped
and checked against the “database” of state data.

That database is another global object — a global that I don’t mind using at all. Constructed
as a multidimensional array, each “record” in the database stores several fields about the
state, including its destination coordinates inside the outline map and a Boolean field to store
whether the state has been correctly placed in position.

Out of necessity for NN4, the state map images are encased in individual div elements. This
makes their positionable characteristics more stable, as well as making it possible to capture
mouse events that NN4’s image objects do not recognize. If the application were being done
only for IE4+ and W3C DOMs, the images themselves could be positionable, and the DHTML
API could be used without modification. You could certainly argue that it’s time to let go of
version 4 browsers and move forward, but to maximize compatibility across the broadest
possible user base, supporting version 4 browsers whenever possible still isn’t a bad idea.

The custom API
To begin the analysis of the code, you should be familiar with the API that is linked in from an
external .js library file. Listing 47-2 contains that code and its description.

The main program
Code for the main program is shown in Listing 56-1. The listing is a long document, so I inter-
lace commentary throughout the listing. Before diving into the code, however, allow me to
present a preview of the structure of the document. With two exceptions (the map silhouette
and the help panel), all positionable elements have their styles set via stylesheets in the head
of the document. Notice the way class and id selectors are used to minimize the repetitive
nature of the styles across so many similar items. After the stylesheets come the scripts for
the page. All of this material is inside the <head> tag section. I leave the <body> section to
contain the visible content of the page. This approach is an organization style that works well
for me, but you can adopt any style you like, provided various elements that support others
on the page are loaded before the dependent items (for example, define a style before assign-
ing its name to the corresponding content tag’s ID attributes).

BC448 Part VI ✦ Bonus Chapters

Listing 56-1: The Main Program (mapgame.htm)

<html>
<head>

<title>Map Game</title>

Most of the positionable elements have their CSS properties established in the <style> tag at
the top of the document. Positionable elements whose styles are defined here include a text
label for each state, a map for each state, and a congratulatory message. Notice that the
names of the label and state map objects begin with a two-letter abbreviation of the state.
This labeling comes in handy in the scripts when synchronizing the selected map and its
label.

The label objects are nested inside the background map object. Therefore, the coordinates
for the labels are relative to the coordinate system of the background map, not the page.
That’s why the first label has a top property of zero.

While both the background map and help panel are also positionable elements, scripts need
to read the positions of these elements without first setting the values. Recall that in the IE4+
and W3C DOMs, the style property of an object does not reveal property values that are set
in remote stylesheet rules. Although there are ways to read the effective style properties
applied to an element from stylesheets (the currentStyle property in IE5+ and the window.
getComputedStyle() method in NN6+/Moz), neither IE4 nor Safari 1.0 afford that luxury.
Therefore, the stylesheet rules for the background map and help panel are specified as style
attributes in those two elements’ tags later in the listing.

<style type=”text/css”>
.labels {position:absolute;

background-color:red; layer-background-color:red;
width:100; height:28; border:none; text-align:center}

#azlabel {left:310; top:0}
#calabel {left:310; top:29}
#orlabel {left:310; top:58}
#utlabel {left:310; top:87}
#walabel {left:310; top:116}
#nvlabel {left:310; top:145}
#idlabel {left:310; top:174}

#camap {position:absolute; left:20; top:100; width:1;}
#ormap {position:absolute; left:60; top:100; width:1;}
#wamap {position:absolute; left:100; top:100; width:1;}
#idmap {position:absolute; left:140; top:100; width:1;}
#nvmap {position:absolute; left:180; top:100; width:1;}
#azmap {position:absolute; left:220; top:100; width:1;}
#utmap {position:absolute; left:260; top:100; width:1;}

#congrats {position:absolute; visibility:hidden; left:20; top:100;
width:1; color:red}

</style>

The next statement loads the external .js library file that contains the API described in
Chapter 47. I tend to load external library files before listing any other JavaScript code
in the page, just in case the main page code relies on global variables or functions in its
initializations.

<script type=”text/javascript” src=”DHTMLapi.js”></script>

BC449Chapter 56 ✦ Application: Cross-Browser DHTML Map Puzzle

Now comes the main script, which contains all the document-specific functions and global
variables. Global variables here are ready to hold information about the selected state object
(and associated details), as well as the offset between the position of a click inside a map
object and the top-left corner of that map object. You will see that this offset is important to
allow the map to track the cursor at the same offset position within the map. And because
the tracking is done by repeated calls to a function (triggered by numerous mouse events),
these offset values must have global scope.

// global declarations
var offsetX = 0;
var offsetY = 0;
var selectedObj;
var states = new Array();
var statesIndexList = new Array();
var selectedStateLabel;

As you will see later in the code, an onload event handler for the document invokes an initial-
ization function, whose main job is to build the array of objects containing information about
each state. The fields for each state object record are for the two-letter state abbreviation,
the full name (not used in this application, but included for use in a future version), the x and
y coordinates (within the coordinate system of the background map) for the exact position of
the state, and a Boolean flag to be set to true whenever a user correctly places a state. I
come back to the last two statements of the constructor function in a moment.

Calculating the data for the x and y coordinates required some legwork during development.
As soon as I had the pieces of art for each state and the code for dragging them around the
screen, I disengaged the part of the script that tested for accuracy. Instead, I added a state-
ment to the code that revealed the x and y position of the dragged item in the status bar (rather
than being bothered by alerts). When I carefully positioned a state in its destination, I copied
the coordinates from the status bar into the statement that created that state record. Sure, it
was tedious, but after I had that info in the database, I could adjust the location of the back-
ground map and not have to worry about the destination coordinates, because they were
based on the coordinate system inside the background map.

// object constructor for each state; preserves destination
// position; invokes assignEvents()
function state(abbrev, fullName, x, y) {

this.abbrev = abbrev;
this.fullName = fullName;
this.x = x;
this.y = y;
this.done = false;
assignEvents(this);
statesIndexList[statesIndexList.length] = abbrev;

}
// initialize array of state objects
function initArray() {

states[“ca”] = new state(“ca”, “California”, 7, 54);
states[“or”] = new state(“or”, “Oregon”, 7, 24);
states[“wa”] = new state(“wa”, “Washington”, 23, 8);
states[“id”] = new state(“id”, “Idaho”, 48, 17);
states[“az”] = new state(“az”, “Arizona”, 45, 105);
states[“nv”] = new state(“nv”, “Nevada”, 27, 61);
states[“ut”] = new state(“ut”, “Utah”, 55, 69);

}

The act of creating each state object causes all statements in the constructor function to
execute. Moreover, they were executing within the context of the object being created. That
opened up channels for two important processes in this application. One was to maintain a

BC450 Part VI ✦ Bonus Chapters

list of abbreviations as its own array. This becomes necessary later on when the script needs
to loop through all objects in the states array to check their done properties. Because the
array is set up like a hash table (with string index values), a for loop using numeric index
values is out of the question. So, this extra statesIndexList array provides a numerically
indexed array that can be used in a for loop; values of that array can then be used as index
values of the states array. Yes, it’s a bit of indirection, but other parts of the application ben-
efit greatly by having the state information stored in a hash-table-like array.

We now come to the functions that operate while the user interacts with the map puzzle
pieces. The first function, acting as a vital behind-the-scenes utility function, is called
setSelectedMap(). It receives as its sole parameter an event object that is of the proper
type for the browser currently running (that’s done in the engage() function, described
next). This function has three jobs to do, two of which set global variables. The first global
variable, selectedObj, maintains a reference to the layer (puzzle piece) being dragged by
the user. At the same time, the selectedStateLabel variable holds onto a reference to the
layer that holds the label (recall that its color changes during dragging and release). All of
this requires DOM-specific references that are generated through the aid of object detecting
branches of the function. The last job of this function is to set the stacking order of the selected
map to a value higher than the others so that while the user drags the map, it is in front of
everything else on the page.

To assist in establishing references to the map and label layers, naming conventions of the
HTML objects (shown later in the code) play an important role. Despite the event handlers
being assigned to the divs that hold the images, the mouse events are actually targeted at
the image objects. The code must associate some piece of information about the event target
with the div that holds it (“parent” types of references don’t work across all browsers, so we
have to make the association the hard way). To prevent conflicts with so many objects on
this page named with the lowercase abbreviations of the states, the image objects are assigned
uppercase abbreviations of the state names. As setSelectedMap() begins to execute, it uses
object detection to extract a reference to the element object regarded as the target of the
event (target in W3C DOM browsers, srcElement in IE). To make sure that the event being
processed comes from an image, the next statement makes sure that the target has both name
and src properties, in which case a lowercase version of the name is assigned to the abbrev
local variable (if only IE4+ and W3C DOMs were in play here, a better verification is checking
that the tagName property of the event target is img). That abbrev variable then becomes
the basis for element names used in references to objects assigned to selectedObj and
selectedStateLabel. Notice how the NN4 version requires a double-layer nesting to the
reference for the label because labels are nested inside the bgmap layer.

The presence of a value assigned to selectedObj becomes an important case for all three
drag-related functions later. That’s why the setSelectedMap() function nulls out the value
if the event comes from some other source.

/***
BEGIN INTERACTION FUNCTIONS
**/

// set global reference to map being engaged and dragged
function setSelectedMap(evt) {

var target = (evt.target) ? evt.target : evt.srcElement;
var abbrev = (target.name && target.src) ?

target.name.toLowerCase() : “”;
if (abbrev) {

if (document.layers) {
selectedObj = document.layers[abbrev + “map”];
selectedStateLabel =

document.layers[“bgmap”].document.layers[abbrev + “label”];

BC451Chapter 56 ✦ Application: Cross-Browser DHTML Map Puzzle

} else if (document.all) {
selectedObj = document.all(abbrev + “map”);
selectedStateLabel = document.all(abbrev + “label”);

} else if (document.getElementById) {
selectedObj = document.getElementById(abbrev + “map”);
selectedStateLabel = document.getElementById(abbrev + “label”);

}
setZIndex(selectedObj, 100);
return;

}
selectedObj = null;
selectedStateLabel = null;
return;

}

Next comes the engage() function definition. This function is invoked by mousedown events
inside any of the state map layers (event handler assignment code comes later). NN4+/W3C
DOM browsers pass an event object as the sole parameter to the function (picked up by the
evt parameter variable). If that parameter contains a value, it stands as the event object for
the rest of the processing; but for IE, the window.event object is assigned to the evt variable.
After setting the necessary object globals through setSelectedMap(), the next major task
for engage() is to calculate and preserve in global variables the number of pixels within the
state map layer at which the mousedown event occurred. By preserving these values, the
dragIt() function makes sure that the motion of the state map layer keeps in sync with the
mouse cursor at the very same point within the state map. If it weren’t for taking the offset
into account, the layer would jump unexpectedly to bring the top-left corner of the layer
underneath the cursor. That’s not how users expect to drag items on the screen.

The calculations for the offsets require a variety of DOM-specific properties. For example,
both NN4 and NN6+ offer pageX and pageY properties of the event object, but the coordi-
nates of the layer itself require left/top properties for NN4 and offsetLeft/offsetTop
properties for NN6+. A nested object detection takes place in each assignment statement.
The IE branch has some additional branching within each of the assignment statements.
These extra branches cover a disparity in the way WinIE and MacIE report the offset proper-
ties of an event. WinIE ignores window scrolling, while MacIE takes scrolling into account.
Later calculations for positioning must take window scrolling into account, so that scrolling
is factored into the preserved offset global values if there are indications that the window
has scrolled and the values are being affected by the scroll (in which case the offset values
go very negative). The logic is confusing, and it won’t make much sense until you see later
how the positioning is invoked. Conceptually, all of these offset value calculations may seem
like a can of worms, but they are essential, and are performed amazingly compactly.

After the offsets are established, the state’s label layer’s background color is set to yellow.
The function ends with return false to make sure that the mousedown event doesn’t propa-
gate through the page (causing a contextual menu to appear on the Macintosh, for instance).

// set relevant globals onmousedown; set selected map
// object global; preserve offset of click within
// the map coordinates; set label color to yellow
function engage(evt) {

evt = (evt) ? evt : event;
setSelectedMap(evt);
if (selectedObj) {

if (evt.pageX) {
offsetX = evt.pageX - ((selectedObj.offsetLeft) ?

selectedObj.offsetLeft : selectedObj.left);
offsetY = evt.pageY - ((selectedObj.offsetTop) ?

selectedObj.offsetTop : selectedObj.top);

BC452 Part VI ✦ Bonus Chapters

} else if (evt.offsetX || evt.offsetY) {
offsetX = evt.offsetX - ((evt.offsetX < -2) ?

0 : document.body.scrollLeft);
offsetY = evt.offsetY - ((evt.offsetY < -2) ?

0 : document.body.scrollTop);
}
setBGColor(selectedStateLabel,”yellow”);
return false;

}
}

The dragIt() function, compact as it is, provides the main action in the application by keep-
ing a selected state object under the cursor as the user moves the mouse. This function is
called repeatedly by the mousemove events, although the actual event handling methodol-
ogy varies with platform (precisely the same way as with engage(), as shown previously).
Regardless of the event property detected, event coordinates (minus the previously pre-
served offsets) are passed the shiftTo() function in the API.

Before the dragging action branch of the function ends, the event object’s cancelBubble
property is set to true. In truth, only the IE4+ and W3C DOM event objects have such a prop-
erty, but assigning a value to a nonexistent object property for NN4 does no harm. It’s impor-
tant that this function operate as quickly as possible, because it must execute with each
mousemove event. Canceling event bubbling helps in a way, but more important, the cancella-
tion allows the mousemove event to be used for other purposes, as described in a moment.

// move div on mousemove
function dragIt(evt) {

evt = (evt) ? evt : event;
if (selectedObj) {

if (evt.pageX) {
shiftTo(selectedObj, (evt.pageX - offsetX), (evt.pageY –

offsetY));
} else if (evt.clientX || evt.clientY) {

shiftTo(selectedObj, (evt.clientX - offsetX), (evt.clientY –
offsetY));

}
evt.cancelBubble = true;
return false;

}
}

When a user drops the currently selected map object, the release() function invokes the
onTarget() function to find out if the current location of the map is within range of the
desired destination. If it is in range, the background color of the state label object is set to
green, and the done property of the selected state’s database entry is set to true. One addi-
tional test (the isDone() function call) looks to see if all the done properties are true in the
database. If so, the congrats object is shown. But if the object is not in the right place, the
label reverts to its original red color. In case the user moves a state that was previously okay,
its database entry is also adjusted. No matter what the outcome, however, the user has
dropped the map, so key global variables are set to null and the layer order for the item is
set to zero (bottom of the heap) so that it doesn’t interfere with the next selected map.

One more condition is possible in the release() function. As shown later in the initialization
function, the document object’s onmousemove event handler is assigned to the release()
function (to compare the onmousemove events for the state maps go to dragIt()). The rea-
soning behind this document-level event assignment is that no matter how streamlined the
dragging function may be, it is possible for the user to move the mouse so fast that the map
can’t keep up. At that point, mousemove events are firing at the document (or other object,

BC453Chapter 56 ✦ Application: Cross-Browser DHTML Map Puzzle

eventually bubbling up to the document), and not the state map. If that happens while a state
map is registered as the selected object, but the image is no longer the target of the event, the
code performs the same act as if the user had released the map. The label reverts to red, and
all relevant globals are set to null, preventing any further interaction with the map until the
user mouses down again on the map.

// onmouseup, see if dragged map is near its destination
// coordinates; if so, mark it as ‘done’ and color label green
function release(evt) {

evt = (evt) ? evt : event;
var target = (evt.target) ? evt.target : evt.srcElement;
var abbrev = (target.name && target.src) ?

target.name.toLowerCase() : “”;
if (abbrev && selectedObj) {

if (onTarget(evt)) {
setBGColor(selectedStateLabel, “green”);
states[abbrev].done = true;
if (isDone()) {

show(“congrats”);
}

} else {
setBGColor(selectedStateLabel, “red”);
states[abbrev].done = false;
hide(“congrats”);

}

setZIndex(selectedObj, 0);
} else if (selectedStateLabel) {

setBGColor(selectedStateLabel, “red”);
}
selectedObj = null;
selectedStateLabel = null;

}

To find out if a dropped map is in (or near) its correct position, the onTarget() function first
calculates the target spot on the page by adding the location of the bgmap object to the coor-
dinate positions stored in the states database. Because the bgmap object doesn’t come into
play in other parts of this script, it is convenient to pass merely the object name to the two
API functions that get the object’s left and top coordinate points.

Next, the script uses platform-specific properties to get the recently dropped state map
object’s current location. A large if condition checks whether the state map object’s coordi-
nate point is within a 4-pixel square region around the target point. If you want to make the
game easier, you can increase the cushion values from 2 to 3 or 4.

If the map is within the range, the script calls the shiftTo() API function to snap the map
into the exact destination position and reports back to the release() function the appropri-
ate Boolean value.

// compare position of dragged element against the destination
// coordinates stored in corresponding state object; after shifting
// element to actual destination, return true if item is within
// 2 pixels.
function onTarget(evt) {

evt = (evt) ? evt : event;
var target = (evt.target) ? evt.target : evt.srcElement;
var abbrev = (target.name && target.src) ?

target.name.toLowerCase() : “”;

BC454 Part VI ✦ Bonus Chapters

if (abbrev && selectedObj) {
var x = states[abbrev].x + getObjectLeft(“bgmap”);
var y = states[abbrev].y + getObjectTop(“bgmap”);
var objX, objY;
if (selectedObj.pageX) {

objX = selectedObj.pageX;
objY = selectedObj.pageY;

} else if (selectedObj.style) {
objX = parseInt(selectedObj.style.left);
objY = parseInt(selectedObj.style.top);

}
if ((objX >= x-2 && objX <= x+2) && (objY >= y-2 && objY <= y+2)) {

shiftTo(selectedObj, x, y);
return true;

}
return false;

}
return false;

}

A for loop cycles through the states database (with the help of the hash table values stored
indirectly in the statesIndexList array) to see if all of the done properties are set to true.
When they are, the release() function (which calls the isDone() function) displays the con-
gratulatory object.

// test whether all state objects are marked ‘done’
function isDone() {

for (var i = 0; i < statesIndexList.length; i++) {
if (!states[statesIndexList[i]].done) {

return false;
}

}
return true;

}

The help panel is created differently than the map and label objects (details coming up in a
moment). When the user clicks the Help button at the top of the page, the instructions panel
flies in from the right edge of the window (see Figure 56-2). The showHelp() function begins
the process by setting its location to the current right window edge, bringing its layer to the
very front of the heap, showing the object. To assist moveHelp() in calculating the center
position on the screen, the showHelp() function retrieves (just once per showing) the DOM-
specific property for the width of the help panel. That value is passed as a parameter to
moveHelp() as it is repeatedly invoked through the setInterval() mechanism.

/***
BEGIN HELP ELEMENT FUNCTIONS
**/
// initiate show action
function showHelp() {

var objName = “help”;
var helpWidth = 0;
shiftTo(objName, insideWindowWidth, 80);
setZIndex(objName,1000);
show(objName);
if (document.layers) {

helpWidth = document.layers[objName].document.width;
} else if (document.all) {

helpWidth = document.all(objName).offsetWidth;

BC455Chapter 56 ✦ Application: Cross-Browser DHTML Map Puzzle

} else if (document.getElementById) {
if (document.getElementById(objName).offsetWidth >= 0) {

helpWidth = document.getElementById(objName).offsetWidth;
}

}
intervalID = setInterval(“moveHelp(“ + helpWidth + “)”, 1);

}

Figure 56-2: Instruction panel “flies” in from left to center screen.

In the moveHelp() function, the help object is shifted in 5-pixel increments to the left. The
ultimate destination is the spot where the object is in the middle of the browser window. That
midpoint must be calculated each time the page loads, because the window may have been
resized. The width of the help object, received as a parameter to the function, gets a workout
in the mid-point calculation.

This function is called repeatedly under the control of a setInterval() method in showHelp().
But when the object reaches the middle of the browser window, the interval ID is canceled,
which stops the animation.

The help object processes a mouse event to hide the object. An extra clearInterval()
method is called here in case the user clicks the object’s Close button before the object has
reached mid-window (where moveHelp() cancels the interval). The script also shifts the
position to the right edge of the window, but it isn’t absolutely necessary, because the
showHelp() method positions the window there.

// iterative move help div to center of window
function moveHelp(w) {

shiftBy(“help”,-5,0);
var objectLeft = getObjectLeft(“help”);

BC456 Part VI ✦ Bonus Chapters

if (objectLeft <= (insideWindowWidth/2) - w/2) {
clearInterval(intervalID);

}
}
// hide the help div
function hideMe() {

clearInterval(intervalID);
hide(“help”);
shiftTo(“help”, insideWindowWidth, 80);

}

The document’s onload event handler invokes the init() function, which, in turn, calls
two functions and assigns the document object’s mouse event handlers. The first function is
initArray(), which builds the states[] database and assigns event handlers to the state
map layers. Because the layers are defined so late in the document, initializing their events
after the page has loaded is safest.

For convenience in moving the help window to the center of the browser window, the
setWinWidth() function sets a global variable (insideWindowWidth) to hold the width of
the browser window. This function is also invoked by the onresize event handler for the
window to keep the value up to date.

The most important parts of the init() function are the event handler assignments. The
trio — engaging the map on mousedown, dragging it on mousemove, releasing it on mouseup—
are assigned to the document object so that the events track correctly even if the cursor
speeds past a puzzle piece’s edge on a fast drag action.

// calculate center of window for help div
function setWinWidth() {

if (window.innerWidth) {
insideWindowWidth = window.innerWidth;

} else if (document.body.scrollWidth) {
insideWindowWidth = document.body.scrollWidth;

} else if (document.width) {
insideWindowWidth = document.width;

}
}

/***
INITIALIZE THE APPLICATION
**/
// initialize application
function init() {

initArray();
setWinWidth();
if (document.layers) {

document.captureEvents(Event.MOUSEDOWN | Event.MOUSEMOVE |
Event.MOUSEUP);

}
document.onmousedown = engage;
document.onmousemove = dragIt;
document.onmouseup = release;

}
</script>

</head>

Now comes the part of the document that generates the visible content. The <body> tag con-
tains the two event handlers just discussed. An image rollover for the help icon simply dis-
plays a message in the status bar.

BC457Chapter 56 ✦ Application: Cross-Browser DHTML Map Puzzle

<body onload=”init()” onresize=”setWinWidth()”>
<h1>”Lower 48” U.S. Map Puzzle <a href=”javascript:void showHelp()”

onmouseover=”status=’Show help panel...’;return true”
onmouseout=”status=’’;return true”><img alt=”image” src=”info.gif”
height=”22” width=”22” border=”0” /></h1>

<hr />

Next come tags for all of the div elements. The style attribute for the bgmap div lets scripts
read the positioned values to assist in calculating positions in the onTarget() function, as
shown previously. The bgmap layer also contains all labels so that if the design calls for mov-
ing the map to another part of the page, the labels follow automatically. Notice how the low-
ercase state abbreviations are part of the names of both the label and map layers. As you saw
in a few functions shown previously, a systematic approach to object naming can offer power-
ful shortcuts in determining references to elements.

<div id=”bgmap” style=”position:absolute; left:100; top:180; width:406”>
<img alt=”image” src=”us11.gif” width=”306” height=”202”
border=”1” />
<div class=”labels” id=”azlabel”>Arizona</div>
<div class=”labels” id=”calabel”>California</div>
<div class=”labels” id=”orlabel”>Oregon</div>
<div class=”labels” id=”utlabel”>Utah</div>
<div class=”labels” id=”walabel”>Washington</div>
<div class=”labels” id=”nvlabel”>Nevada</div>
<div class=”labels” id=”idlabel”>Idaho</div>

</div>
<div id=”camap”><img alt=”image” name=”CA” src=”ca.gif” width=”47”

height=”82” border=”0” /></div>
<div id=”ormap”><img alt=”image” name=”OR” src=”or.gif” width=”57”

height=”45” border=”0” /></div>
<div id=”wamap”><img alt=”image” name=”WA” src=”wa.gif” width=”38”

height=”29” border=”0” /></div>
<div id=”idmap”><img alt=”image” name=”ID” src=”id.gif” width=”34”

height=”55” border=”0” /></div>
<div id=”azmap”><img alt=”image” name=”AZ” src=”az.gif” width=”38”

height=”45” border=”0” /></div>
<div id=”nvmap”><img alt=”image” name=”NV” src=”nv.gif” width=”35”

height=”56” border=”0” /></div>
<div id=”utmap”><img alt=”image” name=”UT” src=”ut.gif” width=”33”

height=”41” border=”0” /></div>
<div id=”congrats”><h1>Congratulations!</h1></div>

In developing this application, I encountered an unfriendly NN4 bug. When defining the help
panel as a positioned div element in NN4, the browser exhibited unwanted behavior after the
instruction panel was shown and flown into place under script control. Even after hiding the
help layer, the page no longer received mouse events, making it impossible to pick up a state
map after the instructions appeared. The problem did not surface, however, if the help object
was defined in the document with a <layer> tag.

Therefore, I did what I don’t like to do unless absolutely necessary: I created branches in
the content that used document.write() to create the same content with different HTML
syntax, depending on the browser. For non-layer browsers, the page creates the same kind
of block (with the <div> tag pair) used elsewhere in the document. Positioning properties
are assigned to this block via a style attribute in the <div> tag. You cannot assign a style in
the <style> tag that is visible to the entire document, because that specification and a like-
named <layer> tag get confused.

BC458 Part VI ✦ Bonus Chapters

For NN4, the page uses the <layer> tag and loads the content of the object from a separate
HTML file (instrux.htm). One advantage I had with the <layer> tag was that I could assign
an initial horizontal position of the help object with a JavaScript entity. The entity reaches
into the window.innerWidth property to set the left attribute of the layer.

<script type=”text/javascript”>
var output = “”;
if (document.layers) {

output = “<layer id=’help’ top=’80’ left=&{window.innerWidth};
width=’300’ visibility=’hidden’ src=’instrux.htm’></layer>”;

} else {
output = “<div id=’help’ onclick=’hideMe()’ style=’position:absolute;

visibility:hidden; top:80; width:300; border:none;
background-color:#98FB98;’>\n”;

output += “<p style=’margin-top:5’>
<center>Instructions<\/b><\/center><\/p>\n”;

output += “<hr color=’seagreen’ \/>\n<ol style=’margin-right:20’>”;
output += “Click on a state map to pick it up. The label color

turns yellow.<\/li>”;
output += “Drag the map into position, and release the mouse to

drop the state map.<\/li>”;
output += “If you are close to the actual location, the state

snaps into place and the label color turns green.<\/li>”;
output += “<\/ol>\n<form>\n<center><input type=’button’

value=’Close’>\n<\/form><\/div>”;
}
document.write(output);
</script>

</body>
</html>

This page has a lot of code to digest in one reading. Run the application, study the structure
of the source code listing file, and re-read the previous explanations. It may take several read-
ings for a mental picture of the application to form.

Lessons Learned
As soon as the external cross-platform API was in place, it helped frame a lot of the other
code in the main program. The APIs provided great comfort in that they encouraged me to
reference a complex object fully in the main code as a platform-shared value (for example,
the selectedObj and selectedStateLabel global variables). At the same time, I could refer-
ence top-level elements (that is, non-nested objects) simply by their names when passing
them to API functions.

In many respects, the harder task was defining the stylesheet attributes and syntax that both
browsers would treat similarly. In the case of the label objects, I couldn’t reach complete par-
ity in a cross-platform environment (the labels look different in NN4), and in the case of the
help object, I had to code the HTML separately for each platform. Therefore, when approach-
ing this kind of project, work first with the HTML and CSS syntax to build the look that works
best for all platforms. Then start connecting the scripted wires. You may have to adjust the
CSS code if you find odd behavior in one platform or the other with your scripting, but start-
ing with a good layout is still easier.

BC459Chapter 56 ✦ Application: Cross-Browser DHTML Map Puzzle

But without a doubt the biggest lesson you learn from working on a project like this is how
important it is to test an application on as many browsers and operating systems as possible.
Designing a cross-platform application on one browser and having it run flawlessly on the
other the first time is nearly impossible. Be prepared to go back and forth among multiple
browsers, breaking and repairing existing working code along the way until you eventually
reach a version that works on every browser that you can test.

✦ ✦ ✦

Application:
Transforming
XML Data

Chapter 52 ends with an example of an interactive outliner whose
data arrives from an external XML file, a feature supported by

the Windows versions of IE5 or later and Mozilla-based browsers. The
application described in this chapter picks up from there.

As you recall from the Chapter 52 outline, the node structure of the
XML data was used as a guide to the structure for a one-time rendering
of HTML elements. There was a one-to-one correlation between XML
element nesting and the HTML element nesting. Adjusting stylesheet
properties for displaying or hiding elements controlled all interactivity.
What you’re about to see here is a case for converting XML into
JavaScript objects that can be used multiple times as a convenient
data source for HTML that is displayed in any number of formats. In
particular, you see how JavaScript’s array sorting prowess supplies
XML-supplied data with extraordinary flexibility in presentation.

You will see a lot of code in this chapter. The code is presented here
as a way to demonstrate the potential for rich data handling. At the
same time, the code may provide ideas for server-side processing of
XML data being output to the client. If a server program can convert
the XML data into the shortcut object and array notation of version 4
browsers or later, suddenly a broader range of browsers is capable of
dealing with data stored as XML on the server.

5757C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Mapping XML data to
JavaScript objects

Complex JavaScript
data structures

Advanced array sorting

Dynamic tables

✦ ✦ ✦ ✦

BC462 Part VI ✦ Bonus Chapters

Application Overview
Understanding the data is a good place to start in describing this application. The scenario is a
small American company (despite its grandiose name: GiantCo) that has divided the country
into three sales regions. Two of the regions have two sales representatives, while the third
region has three reps. The time is at the end of a fiscal year, at which point the management
wants to review and present the performance of each salesperson. An XML report (salesrpt.
xml) delivers the sales forecast and actual sales per quarter for each sales rep. An HTML and
JavaScript page is charged with not only loading the XML data displaying the raw tabular data,
but also allowing for a variety of views and sorting possibilities so that management can ana-
lyze performance by sales rep and region, as well as by quarter.

A server-based searching and reporting program collects the requested data and outputs
each sales rep’s record in an XML structure, such as the following one excerpted from the
salesrpt.xml file:

<salesrep>
<employeeid>12345</employeeid>
<contactinfo>

<firstname>Brenda</firstname>
<lastname>Smith</lastname>
<email>brendas@giantco.com</email>
<phone>312-555-9923</phone>
<fax>312-555-9901</fax>

</contactinfo>
<manager>

<employeeid>02934</employeeid>
<firstname>Alistair</firstname>
<lastname>Renfield</lastname>

</manager>
<region>Central</region>
<salesrecord>

<period>
<id>Q1_2000</id>
<forecast>300000</forecast>
<actual>316050</actual>

</period>
<period>

<id>Q2_2000</id>
<forecast>280000</forecast>
<actual>285922</actual>

</period>
<period>

<id>Q3_2000</id>
<forecast>423000</forecast>
<actual>432930</actual>

</period>
<period>

<id>Q4_2000</id>
<forecast>390000</forecast>
<actual>399200</actual>

</period>
</salesrecord>

</salesrep>

As you can see, the data consists of several larger blocks, such as contact information, a
pointer to the rep’s manager, and then the details of each quarterly period’s forecast and

BC463Chapter 57 ✦ Application: Transforming XML Data

actual sales. The goal is to present the data in table form with a structure similarly shown in
Figure 57-1. Not only is the raw data presented, but numerous calculations are also made on
the results, such as the percentage of quota attained for each reporting period, plus totals
along each axis of the spreadsheet-like table.

Just above the table are two select elements. These controls’ labels indicate that the table’s
data can be sorted by a number of criteria and the results of each sort can be ordered in dif-
ferent ways. Sorting in the example offers the following possibilities:

Representative’s Name
Sales Region
Q1 Forecast
Q1 Actual
Q1 Performance
[the last three also for Q2, Q3, Q4]
Total Forecast
Total Actual
Total Performance

Ordering of the sorted results is a choice between “Low to High” or “High to Low.” While
ordering of most sort categories is obviously based on numeric value, the sorting of the rep-
resentatives’ names is based on the alphabetical order of the last names. One other point
about the user interface is that the design needs to signify via table cell background color
the sales region of each representative. The colors aren’t easily distinguishable in Figure
57-1, but if you open the actual example listing in WinIE5+ or NN7+/Moz on your computer,
you will see the coloration.

Figure 57-1: One view of the XML data output.

BC464 Part VI ✦ Bonus Chapters

Implementation Plan
Clearly all the data needed for numerous sorted and ordered views arrives in one batch from
the XML file. Despite the element and node referencing properties and methods of the W3C
DOM, trying to use the XML elements as the sole data store for scripts to sort the data each
time would be impractical. For one thing, none of the elements have ID attributes — there’s
no need for it in the XML stored on the server database. And even if they did have IDs, how
would scripts that you desire to write for generalizability make use of them unless the IDs
were generated in a well-known sequence? Moreover, after a sales rep’s record is rendered in
the table, how easy would it be to dive back into that record and drill down for further infor-
mation, such as the name of a representative’s manager?

A solution that can empower the page author in this case is to use the node-walking proper-
ties and methods of the W3C DOM to assemble a JavaScript-structured database while the
page loads. In other words, the conversion is performed just once during page loading, and
the JavaScript version is preserved in an array (of XML “records” in this case) as a global
variable. Any transformations on the data can be done from the JavaScript database with the
help of additional powers of the language.

Given that route, the basic operation of the scripting of the page is schematically simple:

1. Convert the XML into an array of objects at load time.

2. Predefine all necessary sorting functions based on properties of those objects.

3. Provide a function that rebuilds the HTML table each time data is sorted.

With this sequence in mind, now look into the code that does the job.

The Code
Rather than work through the long document in source code order, the following descriptions
follow a more functional order. You can open the actual source code file (salesrpt.htm) to
see where the various functions are positioned. To best understand this application, seeing
the “how” rather than the “where” is more important. Also, many of the code lines (even some
single expressions) are too wide for the printed page and therefore break unnaturally in the list-
ings that follow. Trust the formatting of the source file on the CD-ROM.

Style sheets
For the example provided on the CD-ROM, one set of stylesheet rules is embedded in the
HTML document. As you can see from the rule selectors, many are tied to very specific
classes of table-related elements used to render the content. In a production version of this
application, I would expect that there would be more and quite different views of the data
available to the users, such as bar charts for each salesperson or region. Each view would
likely require its own unique set of stylesheet rules. In such a scenario, the proper imple-
mentation would be to use the LINK element to bring in a different external stylesheet file
for each view type. All could be linked in at the outset, but only the current styleSheet
object would be enabled.

<style type=”text/css”>
td {text-align:right}
td.rep, td.grandTotalLabel {text-align:center}

BC465Chapter 57 ✦ Application: Transforming XML Data

tr.East {background-color:#FFFFCC}
tr.Central {background-color:#CCFFFF}
tr.West {background-color:#FFCCCC}
tr.QTotal {background-color:#FFFF00}
td.repTotal {background-color:#FFFF00}
td.grandTotal{background-color:#00FF00}
h1 {font-family:”Comic Sans MS”,Helvetica,sans-serif}
</style>

One stylesheet rule is essential: The one that suppresses the rendering of any XML element.
That data is hidden from the user’s view.

Initialization sequence
An onload event handler invokes the init() function, which sets a lot of machinery in
motion to get the document ready for user interaction. After loading the XML file into the
xDoc global variable (via the loadXMLDoc() function), its most important job is running a
for loop that builds the JavaScript database from the XML elements. Next, it sorts the
database based on the current choice in the sorting select element. The sorting function
ends by triggering the rendering of the table. These three actions correspond to the funda-
mental operation of the entire application.

// initialize global variable that stores JavaScript data
var db = new Array();

// Initialization called by onLoad
function init() {

loadXMLDoc(“salesrpt.xml”);
if (xDoc) {

for (var i = 0; i < xDoc.getElementsByTagName(“salesrep”).length; i++) {
db[db.length] = getOneSalesRep(i);

}
selectSort(document.getElementById(“sortChooser”));

}
}

Converting the data
The controlling factor for creating the JavaScript database is the structure of the XML data. With
the complete XML document stored in the xDoc variable, scripts can use DOM methods to look
for elements bearing relevant tag names. Data for each sales rep is contained by a salesrep ele-
ment. The number of salesrep elements determines how many records (JavaScript objects) are
to be added to the db array. A call to the getOneSalesRep() function creates an object for each
sales representative’s data.

Despite the length of the getOneSalesRep() function, its operation is very straightfor-
ward. Most of the statements do nothing more than retrieve the data inside the various
XML elements within a salesrep container and assign that data to a like-named property
of the custom object. Following the structure of the XML example shown earlier in this
chapter, you can see where some properties of a JavaScript object representing the data
are, themselves, objects or arrays. For example, one of the properties is called manager,
corresponding to the manager element. But that element has nested items inside. Then,
making those nested elements properties of a manager object is only natural. Similarly,
the repetitive nature of the data within each of the four quarterly periods calls for even
greater nesting: The object property named sales is an array, with each item of the array

BC466 Part VI ✦ Bonus Chapters

corresponding to one of the periods. Each period also has three properties (a period ID,
forecast sales, and actual sales). Thus, the sales property is an array of objects.

function getOneSalesRep(i) {
var oneRecord = new Object();
var oneElem = xDoc.getElementsByTagName(“salesrep”)[i];
oneRecord.id =

oneElem.getElementsByTagName(“employeeid”)[0].firstChild.data;
var contactInfoElem = oneElem.getElementsByTagName(“contactinfo”)[0];
oneRecord.firstName =

contactInfoElem.getElementsByTagName(“firstname”)[0].firstChild.data;
oneRecord.lastName =

contactInfoElem.getElementsByTagName(“lastname”)[0].firstChild.data;
oneRecord.eMail =

contactInfoElem.getElementsByTagName(“email”)[0].firstChild.data;
oneRecord.phone =

contactInfoElem.getElementsByTagName(“phone”)[0].firstChild.data;
oneRecord.fax =

contactInfoElem.getElementsByTagName(“fax”)[0].firstChild.data;
oneRecord.manager = new Object();
var oneMgrElem = oneElem.getElementsByTagName(“manager”)[0];
oneRecord.manager.id =

oneMgrElem.getElementsByTagName(“employeeid”)[0].firstChild.data;
oneRecord.manager.firstName =

oneMgrElem.getElementsByTagName(“firstname”)[0].firstChild.data;
oneRecord.manager.lastName =

oneMgrElem.getElementsByTagName(“lastname”)[0].firstChild.data;
oneRecord.region =

oneElem.getElementsByTagName(“region”)[0].firstChild.data;
oneRecord.sales = new Array();
var allPeriods = oneElem.getElementsByTagName(“salesrecord”)[0].childNodes;
var temp;
var accumForecast = 0, accumActual = 0;
for (var i = 0; i < allPeriods.length; i++) {

if (allPeriods[i].nodeType == 1) {
temp = new Object();
temp.period =

allPeriods[i].getElementsByTagName(“id”)[0].firstChild.data;
temp.forecast = parseInt(allPeriods[i].getElementsByTagName(

“forecast”)[0].firstChild.data);
temp.actual = parseInt(allPeriods[i].getElementsByTagName(

“actual”)[0].firstChild.data);
temp.quotaPct = getPercentage(temp.actual, temp.forecast);
oneRecord.sales[temp.period] = temp;
accumForecast += temp.forecast;
accumActual += temp.actual;

}
}
oneRecord.totalForecast = accumForecast;
oneRecord.totalActual = accumActual;
oneRecord.totalQuotaPct = getPercentage(accumActual, accumForecast);
return oneRecord;

}
function getPercentage(actual, forecast) {

var pct = (actual/forecast * 100) + “”;
pct = pct.match(/\d*\.\d/);
return parseFloat(pct);

}

BC467Chapter 57 ✦ Application: Transforming XML Data

Assuming that the raw XML database stores only the sales forecast and actual dollar figures,
it is up to analysis programs to perform their own calculations, such as how the actual sales
compare against the forecasts. As you saw in the illustration of the rendered table, this appli-
cation not only displays the percentage differences between the pairs of values, but it also
provides sorting facilities on those percentages. To speed the sorting, the percentages are
calculated as the JavaScript database is being accumulated, and the percentages are stored
as properties of each object. Percentage calculation is called upon in two different statements
of the getOneSalesRep() function, so that the calculation is broken out to its own function,
getPercentage(). In that function, the two passed values are massaged to calculate the per-
centage value, and then the string result is formatted to no more than one digit to the right of
the decimal (by way of a regular expression). The value returned for the property assignment
is converted to a number data type, because sorting on these values needs to be done
according to numeric sorting, rather than string sorting.

You can already get a glimpse at the contribution JavaScript is making to the scripted represen-
tation of the data transmitted in XML form. By virtue of planning for subsequent calculations,
the JavaScript object contains considerably more information than was originally delivered, yet
all the properties are derived from “hard” data supplied by the server database.

Sorting the JavaScript database
With so many sorting keys for the user to choose from, it’s no surprise that sorting code
occupies a good number of script lines in this application. All sorting code consists of two
major blocks: dispatching and sorting.

The dispatching portion is nothing more than one gigantic switch construction that sends
execution to one of the 17 (!) sorting functions that match whichever sort key is chosen in the
select element on the page. This dispatcher function, selectSort(), is also invoked from
the init() function at load time. Thus, if the user makes a choice in the page, navigates to
another page, and then returns with the page still showing the previous selection, the onLoad
event handler will reconstruct the table precisely as it was. When sorting is completed, the
table is drawn, as you see shortly.

function selectSort(chooser) {
switch (chooser.value) {
case “byRep” :

db.sort(sortDBByRep);
break;

case “byRegion” :
db.sort(sortDBByRegion);
break;

case “byQ1Fcst” :
db.sort(sortDBByQ1Fcst);
break;

case “byQ1Actual” :
db.sort(sortDBByQ1Actual);
break;

case “byQ1Quota” :
db.sort(sortDBByQ1Quota);
break;

case “byQ2Fcst” :
db.sort(sortDBByQ2Fcst);
break;

case “byQ2Actual” :
db.sort(sortDBByQ2Actual);
break;

BC468 Part VI ✦ Bonus Chapters

case “byQ2Quota” :
db.sort(sortDBByQ2Quota);
break;

case “byQ3Fcst” :
db.sort(sortDBByQ3Fcst);
break;

case “byQ3Actual” :
db.sort(sortDBByQ3Actual);
break;

case “byQ3Quota” :
db.sort(sortDBByQ3Quota);
break;

case “byQ4Fcst” :
db.sort(sortDBByQ4Fcst);
break;

case “byQ4Actual” :
db.sort(sortDBByQ4Actual);
break;

case “byQ4Quota” :
db.sort(sortDBByQ4Quota);
break;

case “byTotalFcst” :
db.sort(sortDBByTotalFcst);
break;

case “byTotalActual” :
db.sort(sortDBByTotalActual);
break;

case “byTotalQuota” :
db.sort(sortDBByTotalQuota);
break;

}
drawTextTable();

}

Each specific sorting routine is a function that automatically works repeatedly on pairs of
entries of an array (see Chapter 30). Array entries here (from the db array) are objects — and
rather complex objects at that. The benefit of using JavaScript array sorting is that the sort-
ing can be performed on any property of objects stored in the array. For example, sorting on
the lastName property of each db array object is based on a comparison of the lastName
property for each of the pairs of array entries passed to the sortDBByRep() sort function.
But looking down a little further, you can see that the mechanism allows sorting on even
more deeply nested properties, such as the sales.Q1_2000.forecast property of each
array entry. If a property in an object can be referenced, it can be used as a sorting property
inside one of these functions.

function sortDBByRep(a, b) {
if (document.getElementById(“orderChooser”).value == “inc”) {

return (a.lastName < b.lastName) ? -1 : 1;
} else {

return (a.lastName > b.lastName) ? -1 : 1;
}

}
function sortDBByRegion(a, b) {

if (document.getElementById(“orderChooser”).value == “inc”) {
return (a.region < b.region) ? -1 : 1;

} else {
return (a.region > b.region) ? -1 : 1;

}
}

BC469Chapter 57 ✦ Application: Transforming XML Data

function sortDBByQ1Fcst(a, b) {
if (document.getElementById(“orderChooser”).value == “inc”) {

return (a.sales.Q1_2000.forecast - b.sales.Q1_2000.forecast);
} else {

return (b.sales.Q1_2000.forecast - a.sales.Q1_2000.forecast);
}

}
function sortDBByQ1Actual(a, b) {

if (document.getElementById(“orderChooser”).value == “inc”) {
return (a.sales.Q1_2000.actual - b.sales.Q1_2000.actual);

} else {
return (b.sales.Q1_2000.actual - a.sales.Q1_2000.actual);

}
}
function sortDBByQ1Quota(a, b) {

if (document.getElementById(“orderChooser”).value == “inc”) {
return (a.sales.Q1_2000.quotaPct - b.sales.Q1_2000.quotaPct);

} else {
return (b.sales.Q1_2000.quotaPct - a.sales.Q1_2000.quotaPct);

}
}
function sortDBByQ2Fcst(a, b) {

if (document.getElementById(“orderChooser”).value == “inc”) {
return (a.sales.Q2_2000.forecast - b.sales.Q2_2000.forecast);

} else {
return (b.sales.Q2_2000.forecast - a.sales.Q2_2000.forecast);

}
}
function sortDBByQ2Actual(a, b) {

if (document.getElementById(“orderChooser”).value == “inc”) {
return (a.sales.Q2_2000.actual - b.sales.Q2_2000.actual);

} else {
return (b.sales.Q2_2000.actual - a.sales.Q2_2000.actual);

}
}
function sortDBByQ2Quota(a, b) {

if (document.getElementById(“orderChooser”).value == “inc”) {
return (a.sales.Q2_2000.quotaPct - b.sales.Q2_2000.quotaPct);

} else {
return (b.sales.Q2_2000.quotaPct - a.sales.Q2_2000.quotaPct);

}
}
function sortDBByQ3Fcst(a, b) {

if (document.getElementById(“orderChooser”).value == “inc”) {
return (a.sales.Q3_2000.forecast - b.sales.Q3_2000.forecast);

} else {
return (b.sales.Q3_2000.forecast - a.sales.Q3_2000.forecast);

}
}
function sortDBByQ3Actual(a, b) {

if (document.getElementById(“orderChooser”).value == “inc”) {
return (a.sales.Q3_2000.actual - b.sales.Q3_2000.actual);

} else {
return (b.sales.Q3_2000.actual - a.sales.Q3_2000.actual);

}
}
function sortDBByQ3Quota(a, b) {

if (document.getElementById(“orderChooser”).value == “inc”) {
return (a.sales.Q3_2000.quotaPct - b.sales.Q3_2000.quotaPct);

} else {

BC470 Part VI ✦ Bonus Chapters

return (b.sales.Q3_2000.quotaPct - a.sales.Q3_2000.quotaPct);
}

}
function sortDBByQ4Fcst(a, b) {

if (document.getElementById(“orderChooser”).value == “inc”) {
return (a.sales.Q4_2000.forecast - b.sales.Q4_2000.forecast);

} else {
return (b.sales.Q4_2000.forecast - a.sales.Q4_2000.forecast);

}
}
function sortDBByQ4Actual(a, b) {

if (document.getElementById(“orderChooser”).value == “inc”) {
return (a.sales.Q4_2000.actual - b.sales.Q4_2000.actual);

} else {
return (b.sales.Q4_2000.actual - a.sales.Q4_2000.actual);

}
}
function sortDBByQ4Quota(a, b) {

if (document.getElementById(“orderChooser”).value == “inc”) {
return (a.sales.Q4_2000.quotaPct - b.sales.Q4_2000.quotaPct);

} else {
return (b.sales.Q4_2000.quotaPct - a.sales.Q4_2000.quotaPct);

}
}
function sortDBByTotalFcst(a, b) {

if (document.getElementById(“orderChooser”).value == “inc”) {
return (a.totalForecast - b.totalForecast);

} else {
return (b.totalForecast - a.totalForecast);

}
}
function sortDBByTotalActual(a, b) {

if (document.getElementById(“orderChooser”).value == “inc”) {
return (a.totalActual - b.totalActual);

} else {
return (b.totalActual - a.totalActual);

}
}
function sortDBByTotalQuota(a, b) {

if (document.getElementById(“orderChooser”).value == “inc”) {
return (a.totalQuotaPct - b.totalQuotaPct);

} else {
return (b.totalQuotaPct - a.totalQuotaPct);

}
}

For this application, all sorting functions branch in their execution based on the choice made in
the “Ordered” select element on the page. The relative position of the two array elements
under test in these simple subtraction comparison statements reverses when the sort order is
from low to high (increasing) and when it is from high to low (decreasing). This kind of array
sorting is extremely powerful in JavaScript and probably escapes the attention of most scripters.

Constructing the table
As recommended back in Chapter 37’s discussion of table and related elements, it is often
convenient to manipulate the structure of a table element by way of the specialized methods
for tables, rather than mess with nodes and elements. The drawTextTable() function is
devoted to employing those methods to create the rendered contents of the table below the

BC471Chapter 57 ✦ Application: Transforming XML Data

headers (which are hard-wired in the document’s HTML). Composing an 11-column table
requires a bit of code, and the drawTextTable()’s length attests to that fact. You can tell by
just glancing at the code, however, that for big chunks of it, there is a comfortable regularity
that is aided by the JavaScript object that holds the data.

Additional calculations take place while the table’s elements are being added to the table
element. Column totals are accumulated during the table assembly (row totals are calculated
as the object is generated and preserved as properties of the object). A large for loop cycles
through each (sorted) row of the db array; each row of the db array corresponds to a row
of the table. Class names are assigned to various rows or cells so that they will pick up the
stylesheet rules defined earlier in the document. Another subtlety of this version is that the
region property of a sales rep is assigned to the title property of a row. If the user pauses
the mouse pointer anywhere in that row, the name of the region pops up briefly.

function drawTextTable() {
var newRow;
var accumQ1F = 0, accumQ1A = 0, accumQ2F = 0, accumQ2A = 0;
var accumQ3F = 0, accumQ3A = 0, accumQ4F = 0, accumQ4A = 0;
deleteRows(document.getElementById(“mainTableBody”));
for (var i = 0; i < db.length; i++) {

newRow = document.getElementById(“mainTableBody”).insertRow(i);
newRow.className = db[i].region;
newRow.title = db[i].region + “ Region”;
appendCell(newRow, “rep”, db[i].firstName + “ “ + db[i].lastName);
appendCell(newRow, “Q1”, db[i].sales.Q1_2000.forecast + “
” +

db[i].sales.Q1_2000.actual);
appendCell(newRow, “Q1”, db[i].sales.Q1_2000.quotaPct + “%”);
appendCell(newRow, “Q2”, db[i].sales.Q2_2000.forecast + “
” +

db[i].sales.Q2_2000.actual);
appendCell(newRow, “Q2”, db[i].sales.Q2_2000.quotaPct + “%”);
appendCell(newRow, “Q3”, db[i].sales.Q3_2000.forecast + “
” +

db[i].sales.Q3_2000.actual);
appendCell(newRow, “Q3”, db[i].sales.Q3_2000.quotaPct + “%”);
appendCell(newRow, “Q4”, db[i].sales.Q4_2000.forecast + “
” +

db[i].sales.Q4_2000.actual);
appendCell(newRow, “Q4”, db[i].sales.Q4_2000.quotaPct + “%”);
accumQ1F += db[i].sales.Q1_2000.forecast;
accumQ1A += db[i].sales.Q1_2000.actual;
accumQ2F += db[i].sales.Q2_2000.forecast;
accumQ2A += db[i].sales.Q2_2000.actual;
accumQ3F += db[i].sales.Q3_2000.forecast;
accumQ3A += db[i].sales.Q3_2000.actual;
accumQ4F += db[i].sales.Q4_2000.forecast;
accumQ4A += db[i].sales.Q4_2000.actual;
appendCell(newRow, “repTotal”, db[i].totalForecast + “
” +

db[i].totalActual);
appendCell(newRow, “repTotal”, db[i].totalQuotaPct + “%”);

}
newRow = document.getElementById(“mainTableBody”).insertRow(i);
newRow.className = “QTotal”;
newRow.title = “Totals”;
appendCell(newRow, “grandTotalLabel”, “Grand Total”);
appendCell(newRow, “Q1”, accumQ1F + “
” + accumQ1A);
appendCell(newRow, “Q1”, getPercentage(accumQ1A, accumQ1F) + “%”);
appendCell(newRow, “Q2”, accumQ2F + “
” + accumQ2A);
appendCell(newRow, “Q2”, getPercentage(accumQ2A, accumQ2F) + “%”);
appendCell(newRow, “Q3”, accumQ3F + “
” + accumQ3A);
appendCell(newRow, “Q3”, getPercentage(accumQ3A, accumQ3F) + “%”);
appendCell(newRow, “Q4”, accumQ4F + “
” + accumQ4A);

BC472 Part VI ✦ Bonus Chapters

appendCell(newRow, “Q4”, getPercentage(accumQ4A, accumQ4F) + “%”);
var grandTotalFcst = accumQ1F + accumQ2F + accumQ3F + accumQ4F;
var grandTotalActual = accumQ1A + accumQ2A + accumQ3A + accumQ4A;
appendCell(newRow, “grandTotal”, grandTotalFcst + “
” +

grandTotalActual);
appendCell(newRow, “grandTotal”, getPercentage(grandTotalActual,

grandTotalFcst) + “%”);
}

function appendCell(Trow, Cclass, txt) {
var newCell = Trow.insertCell(Trow.cells.length);
newCell.className = Cclass;
newCell.innerHTML = txt;

}
function deleteRows(tbl) {

while (tbl.rows.length > 0) {
tbl.deleteRow(0);

}
}

Many standalone statements at the end of the drawTextTable() function are devoted exclu-
sively to generating the Grand Total row, in which the accumulated column totals are entered.
At the same time, the getPercentage() function, described earlier, is invoked several times
again to derive the quota percentage for the accumulated grand total values in each quarter
as well as the complete year.

select controls
To round out the code listing for this application, the values assigned to the two select ele-
ments obviously have a lot to do with the execution of numerous functions in this application.
Nothing magic takes place here, but you can see the extent of the detail required in assigning
script-meaningful hidden values, and human-meaningful text for both select elements. For
example, dividing lines help organize the long sort key list into three logical blocks.

<p>Sort by: <select id=”sortChooser” onchange=”selectSort(this)”>
<option value=”byRep”>Representative</option>
<option value=”byRegion”>Sales Region</option>
<option value=””>---------------------</option>
<option value=”byQ1Fcst”>Q1 Forecast</option>
<option value=”byQ1Actual”>Q1 Actual</option>
<option value=”byQ1Quota”>Q1 Performance</option>
<option value=”byQ2Fcst”>Q2 Forecast</option>
<option value=”byQ2Actual”>Q2 Actual</option>
<option value=”byQ2Quota”>Q2 Performance</option>
<option value=”byQ3Fcst”>Q3 Forecast</option>
<option value=”byQ3Actual”>Q3 Actual</option>
<option value=”byQ3Quota”>Q3 Performance</option>
<option value=”byQ4Fcst”>Q4 Forecast</option>
<option value=”byQ4Actual”>Q4 Actual</option>
<option value=”byQ4Quota”>Q4 Performance</option>
<option value=””>---------------------</option>
<option value=”byTotalFcst”>Total Forecast</option>
<option value=”byTotalActual”>Total Actual</option>
<option value=”byTotalQuota”>Total Performance</option>

</select> Ordered: <select id=”orderChooser”
onchange=”selectOrder()”>
<option value=”inc”>Low to High</option>
<option value=”dec”>High to Low</option>

</select></p>

BC473Chapter 57 ✦ Application: Transforming XML Data

Dreams of Other Views
Confining the example to just one type of view — a table of numbers — should help you grasp
the important processes taking place. But with the XML data converted to JavaScript objects,
you can build many other views of the same data into the same page. For example, a script
could completely hide the numeric table, and generate a different one that draws bar charts
for each sales representative or each region (see Chapter 55 for a scripted bar chart exam-
ple). The horizontal axis would be the four quarters, and the vertical axis would be dollars or
quota percentages. Clicking a bar opens a small window or layer to reveal more detail from
the sales representative’s record, such as the name of the person’s manager. More select
elements can let the user select any combination of subsets of the data in either bar chart or
numeric table form to facilitate visual comparisons. You might be even more creative and
devise ways of showing the data by way of overlapping positioned elements.

The point is that despite the kinds of rendering opportunities afforded by the XSL Transform
mechanism (even if you can get comfortable in the syntax and mental model it presents to
authors), JavaScript’s detailed access to the DOM offers far more potential. Eventually plenty
of content authors will mix the two technologies by embedding JavaScript into XSL
stylesheets to supplement XSL features.

✦ ✦ ✦

SYMBOLS
+= (add-by-value) operator, 112–113
+ (addition) operator, 66, 112
& (ampersand), 495
&& (AND) operator, 194
@ (at symbol), 27–28
{ } (curly braces), 76
/ (division) operator, 66, 494
“ (double quotes), 87
// (double slash), 23
= (equal sign), 66
== (equality) operator, 79
(hash) symbol, 622
% (modulus) operator, 71
* (multiplication) operator, 66
\n (newline) character, 161, 692
 (nonbreaking space character), BC22
!= (not equal to) operator, 67
() (parentheses), 24
% (percent character), 1033
| (pipe character), 407
+ (plus sign), 24, 66
\r (return character), 692
‘ (single quotes), 87
- (subtraction) operator, 66
_ (underscore), 991

A
a element object properties, 595–599
<a> tag, 137
abbr property, BC57
abort event, 264
abort() method, BC188
above property, BC113
absolute units, 812
AbsolutePosition property, 250
accelerator property, 836
acceptCharset property, 638

access
access denied warning, 487
cookies, 522
errors, BC285
properties, 43
server access, reducing, BC386

accessKey property
as generic object, 204–206
label object, 1033–1034

action attribute, 99, 108, 638
activeElement property, 513
ActiveX controls

ActiveXObject object, 1019–1020
plug-ins, 6

add() method, 710
addBehavior() method

discussed, 177, BC332
generic objects, 261–264
return values, 261

add-by-value (+=) operator, 112–113
AddDesktopComponent() method, 378
addEventListener() method

discussed, 191
generic methods, 264

addImport() method, 804–805
adding numbers, 64
addition (+) operator, 66, 112
add-ons, filters, 226
addRange() method, 1065
addReadRequest() method, BC105–BC106
addRow() function, 259
addRule() method, 805
addStyle() function, 558
addTotals() function, BC369
adjustClip() function, BC150
Adobe Acrobat Reader application, 6,

1144–1145
afterBegin parameter, 285
afterEnd parameter, 285

Index
Note: Page numbers preceded by BC refer to Bonus Chapters 36–57 on the CD-ROM.

1148 Index ✦ A

AIFF file format, BC268
alert dialog boxes, 53, 405
alert() method

functions and, 74
strings, 112
window object, 45, 87–88, 404–405

alertUser() function, 53–54
align property

applet object, BC169
discussed, 476–477
embed object, BC178
hr object, 1030
Image object, 604–605
object object, BC173
table object, BC35

alignment, images, 605
aLink property, 578
alinkColor property

discussed, 179, 514
document object, 179

all property, 206–207
allowTransparency property, 463, 477
alpha() method, 838
alt property

applet object, BC169
area element object, 623
Image object, 606
<meta> tag, 153
object object, BC173

altHTML property, BC169
altKey property

IE4+ event object, 755
NN6+ event object, 775

altLeft property, 756
ampersand (&), 495
anchors

anchorNode property, 1063
anchorOffset property, 1063
anchors property, 516–517
documents with, 488–489
Web page navigation, 517

AND (&&) operator, 194
animation effects, 255
anonymous functions, 189

API (Application Programming Interface),
BC263, BC324–BC326

appCodeName property, BC69
appCore property, 369
append() function, 267
appendChild() method

discussed, 139, 185
generic objects, 267–269

appendData() method, 1070
applets

applet object, BC167–BC171
applet-to-script communication,

BC257–BC258
applets property, 517–518
conditional comments, BC246–BC247
data type conversions, BC256
faceless, BC253
fields, accessing, BC248
limitations, BC252
LiveConnect features, BC243–BC244
reasons for, BC244
sample design, BC249–BC251
security, BC300–BC301
starting and stopping, BC246–BC247

application level objects, BC68
Application Programming Interface (API),

BC263, BC324–BC326
applications

Adobe Acrobat Reader, 6, 1144–1145
cross-browser, 304
Decision Helper, 31–32
HTAs (HTML applications), 177

apply() method, 987
applyElement() method, 269–270
appMinorVersion property, BC76
appName property, 44, 90, BC69
appVersion property, 44, 90, BC69
archives

archive property
applet object, BC170
security, BC307–BC308

jaws.jar, BC257
area element object

overview, 621–622
properties, list of, 623–624

1149Index ✦ A

<area> tag, 137
areas property, 625
arguments. See also parameters

arguments property, 984–985
defined, 44, 74
dialogArguments property, 374

arithmetic operators, 66
arity property, 985
arrays

all property, 206–207
Array object

array.concat() method, 918–921
array.join() method, 921–922
array.pop() method, 923
array.push() method, 923
array.reverse() method, 923–925
array.shift() method, 923
array.slice() method, 925
array.sort() method, 925–926
array.splice() method, 929–930
array.toLocaleString() method, 930
array.toString() method, 930
array.unshift() method, 923
properties, list of, 916–918
references, 1108

concatenation, 920–921
creating, 77–78, 910
data, accessing, 78
defined, 76
deleting, 912
dense, 911
document object in, 80
element, 80
forms and, 637
getSearchAsArray() function, 496
hash tables and, 916
imageLibrary, 133
indexes, 76–77
items in, accessing, 77
length property, 77, 143
literal notation, 911–912
lookups, 913–914
multidimensional, 915–916
objects in, 80

overview, 909–910
parallel, 78–80, 912–913
populating, 911
properties as, 166
return values, 926
spreadsheets and, 76
two-dimensional, BC356

assign() method, 499
assignment errors, BC284
assignment operators, 61, 967–968
assignment statements, 112
at symbol (@), 27–28
atEnd() method, 1021
attachEvent() method

discussed, 264
generic objects, 270

attachToEnd() function, 952
attributes. See also properties

action, 99, 108, 638
attributes property

discussed, 183
as generic object, 207–209

clearAttributes() method, 275
content, 151–153
createAttribute() method, 307
event, 145, 176
for, 145, 176
form attributes, changing, 636
getAttribute() method, 208–209,

286–287
getAttributeNodeNS() method, 288–289
getAttributeNS() method, 289
hasAttribute() method, 293
hasAttributeNS() method, 293
hasAttributes() method, 293–294
height, tag, 132
href, 137
id

name attribute versus, 40
naming objects, 39–40
security issues, B308, BC309

language, 48, 145
mergeAttributes() method, 209, 300–301

Continued

1150 Index ✦ A–B

attributes (continued)
method, 99
name

form object, 99
<form> tag, 91, 97
id attribute versus, 40

object properties, list of, 208
removeAttribute() method, 209,

306–307
removeAttributeNode() method, 307
removeAttributeNS(), 308
setAttribute() method, 187, 207, 209
setAttributeNode() method, 317
setAttributNS() method, 318
src, 47–48
target

form object, 99
window.open() method, 85

type
<input> tag, 100
<script> tag, 47, 145

width, 132
audio and video plug-ins, 6
aural properties, style object, 836–837
authoring environment, setting up

MacOS X setup, 19
reloading issues, 20
save-switch-reload sequence, 18
tools, 17
Windows setup, 18–19

autocomplete property, 639
automation objects, 1019
autoScroll() function, 439
availHeight property, BC100
availTop property, BC101–BC102
availWidth property, BC100
axis property, BC57
azimuth property, 837

B
back-end programs, 5
back() method

discussed, 406
history object, 504

BackColor command, documents, 563
BackCompat property, 519
backgrounds

background property
discussed, 579, 828
layer object, BC116–BC117
table object, BC35

backgroundAttachment property, 828
backgroundColor property, 828
backgroundImage property, 828
backgroundPosition property, 828
backgroundPositionX property, 829
backgroundPositionY property, 829
backgroundRepeat property, 829
layers, setting, BC144–BC146

backreferencing, regular expressions, BC196
bandwidth, 631
banners, 403
base object, BC5–BC6
basefont object, BC6–BC7
BaseHref property, BC173
baseURI property, BC173
BasicImage() method, 844
batch mode validation, BC215
BBEdit script utility, 18
beforeBegin parameter, 285
beforeEnd parameter, 285
behaviors

adding, 261
behavior property

discussed, 836
marquee object, 1035

behaviorCookie property, 756
behaviorPart property, 756
built-in, 261
defined, BC331
draggable element example, BC335–BC337
enabling/disabling, BC332
linking, BC332
namespaces, BC334
resources, BC340
statements and, BC333
text rollover example, BC337–BC340
variable scope, BC333

1151Index ✦ B

below property, BC113
beta versions, browsers, 156
bgColor property

body element object, 578–579
discussed, 166, 179, 514, 518
document object, 179
layer object, BC117–BC118
marquee object, 1037
table object, BC36

bgProperties property, 579
bidirectional event model, 190–192
bidirectional text, 820
binary files, 18
binding data, 220–222
bits, defined, 60
bitwise operators, 972–973
blank frames, 365
blank lines between elements, 211
blank space between cells, BC38
blendTrans() method, 840
Blinds() method, 844
blinking text, 34
block-level containers, 242
block-level elements, 179
blockquote object, 1024
blur effects

blur event, 264
blur() method

filter object, 839
generic objects, 271
text object, 683
window object, 272

onblur event, 326–327
body

body element object
aLink property, 578
background property, 579
bgColor property, 578–579
bgProperties property, 579
bottomMargin property, 580
createControlRange() method, 583
createTextRange() method, 583
doScroll() method, 583–584
leftMargin property, 580

link property, 578, 580
noWrap property, 580–581
onafterprint property, 583–584
onbeforeprint property, 584
onscroll property, 585
overview, 577
rightMargin property, 580–581
scroll property, 581
scrollLeft property, 581
scrollTop property, 581–582
text property, 578, 583
topMargin property, 580, 583
vLink property, 583

body property, 518
<body> tag, 168
scripts in, 49–50

bold
bold command, 1085
boldface text, 1045

bookmarks property, 756
Boolean operations

Boolean object, 890
operators, 968–972
values, 56

borders
border property

discussed, 470
Image object, 606
object object, BC174
style object, 829
table object, BC36

borderBottomColor property, 830
borderBottomStyle property, 830
borderBottomWidth property, 830
borderCollapse property, 834
borderColor property

discussed, 463, 471
style object, 830
table object, BC36

borderColorDark property, BC36
borderColorLight property, BC36–BC37
borderLeft property, 829
borderLeftColor property, 830

Continued

1152 Index ✦ B

borders (continued)
borderLeftStyle property, 830
borderLeftWidth property, 830
borderRight property, 829
borderRightColor property, 830
borderRightStyle property, 830
borderRightWidth property, 830
borderSpacing property, 834
borderStyle property, 830–831
borderTop property, 829
borderTopColor property, 830
borderTopStyle property, 830
borderTopWidth property, 830
borderWidth property, 831
edge properties and, style object, 829–833

bottom property
discussed, 826
TextRectangle object, 1102

bottomMargin property, 580
boundElements property, 756
bounding rectangles, 289–291
boundingHeight property, 1077
boundingLeft property, 1077
boundingTop property, 1077
boundingWidth property, 1077–1079
box property, BC39
br object, 1024–1025

 tag, 24
branching index pages, 151–153
branching variables, 194
break statement

discussed, 939–940
if construction, 79

browsers
beta versions, 156
browserLanguage property, BC77
compatibility issues

core language standard, 11–12
CSS (cascading style sheets), 13–14
DHTML (Dynamic HTML), 14
discussed, 9–10, 151
document objects, 11
DOM (Document Object Model),

12–13, 18
version numbering, 11–12

conflicts between, 177
crashes, BC295–BC296
cross-browser applications, 304
Firebird, 10
language systems, 235
markers, 10
Mozilla, 10
Netscape, 10
nonscriptable, 50–51, 149–150
Opera, 7, 10
output stream, 92
preferences, reading and writing,

BC85–BC86, BC887
Safari, 7–8, 55
selection considerations, 18
sniffer scripts, 151–153
standards, 10
switching between, 19
upgrades, 14–15
version detection, 148–150

bubbles property, 776
buffers

bufferDepth property, BC102
offscreenBuffering property, 386

built-in behaviors, 261
built-in objects, 158
buttons

back, 406
button object

click() method, 655
form property, 653–654
name property, 654
onclick event, 655–656
onmousedown event, 656
onmouseup event, 656
overview, 651–652
type property, 654
value property, 654

button property
IE4+ event object, 757–758
NN6+ event object, 776

in forms, 636
forward, 406
as objects, 102

1153Index ✦ C

C
caching

images, 132
loadCached() function, 133
precaching images, 132–133

calculate() method, BC370
calculations

Date object, 117–118
forms, 193
operators, 66
percentages, 240

calculators, graphical, 31
calendars

DHTML table example, BC348–BC352
discussed, BC341–BC342
dynamic tables and, BC345–BC347
static tables and, BC342–BC344

call() method
discussed, BC258
function object, 987–988

caller property, 985–986
calling functions, 73
cancelable property, 776–777
cancelableFlag property, 791
cancelBubble property

IE4+ event object, 758
NN6+ event object, 77

cancelDefault() function, 336
canceling events, 733–734
canHaveChildren property, 209–211
canHaveHTML property, 211
capitalization, text entries, 138
caption property, BC37
captionSide property, 834
captureEvents() method, 406–408, 551–552
carriage returns

inserting, 136
in text areas, 692

Cascading Style Sheets (CSS)
applying and creating, 558–559
browser compatibility issues, 13–14
className property, 138
createStyleSheet() method, 557–559
CSS1 (Cascading Style Sheets Level 1), 13

div element, 172
filters, 176
hyphenated words, 175
overview, 5
phantom page syndrome, 175
settings, changing, 138
span element, 172

case, strings, 113
case-sensitivity

functions, 40
properties, 166
strings, 292

catch construction, 950–952
cautions, dialog boxes, 446–447
cells

blank space between, BC38
cellIndex property, BC58
cellPadding property, BC37
cells property

table object, BC38
tr object, BC54

cellSpacing property, BC37–BC38
content, replacing, BC23–BC25
data in, editing, BC22–BC25
deleting, BC55
inserting, BC55–BC56
populating, BC21–BC23

center value, 446
centered class, 139
CGI. See Common Gateway Interface
ch property, BC49
change event, 264
characters

character codes, 344
escaped, 851
extracting, 114
inline, strings and, 851
international, security issues, BC316
keyboard characters, specifying, 204
metacharacters, BC194–BC195
number limitations, 112
positioning, runtime errors, BC280–BC281
special, BC193–BC196
string limitations, 112

1154 Index ✦ C

characterSet property, 519
charAt() method, 114
charCode property

discussed, 778–779
NN6+ event object, 77

CharSet parameter, 220
charset property

discussed, 518–519
a element object, 595
link object, BC10
meta object, BC13

checkboxes
input objects

checked property, 658–659
click() method, 661
defaultChecked property, 659
onclick event, 661–663
overview, 657
type property, 659
value property, 659–660

as objects, 102–103
checked property

checkbox input object, 658–659
discussed, 102
radio input object, 665–666

Checkerboard() method, 844
checkForEnter() function, 346
checkForm() function, BC241
checkFrameset() function, 497–498
checkNumeric() function, 684
checkTimer() function, 615–616
child nodes

appendChild() method, 139
childNodeDetail property, 190
childNodes property

discussed, 183–184
as generic object, 211–213

child-to-child references, 124, 362
child-to-parent references, 124, 362
defined, 42
discussed, 227
frames, 122–123

children property, 213–214
chOff property, BC49
chroma() method, 839, 844

chrome
elements, 368
windows, controlling, 376–377

circle value, BC63
cite property, 1024
classes

centered, 139
defined, BC245
JSObject, BC256, BC258–BC259
packages and, BC275
tables, BC33

classid property, BC174
className property

cascading style sheets, 138
as generic object, 215–216

clear() method
discussed, 552–553
selection object, 1065

clear property
br object, 1025
discussed, 821

clearAttributes() method, 275
clearData() method, 370, 764
clearInterval() method, 408–409
clearRequest() method, BC106
clearTimeout() method, 409–411
click event, 264
click() method

button object, 655
checkbox input object, 661
generic objects, 276
radio input object, 668

client-side scripting, 8
clientHeight property, 216–217
clientInformation object, BC68
clientInformation property, 370
clientLeft property, 217–218
clientTop property, 217–218
clientWidth property, 216–217
clientX property

IE4+ event object, 759
NN6+ event object, 780

clientY property
IE4+ event object, 759
NN6+ event object, 780

1155Index ✦ C

clip property
discussed, 821
layer object, BC118–BC122

clipboardData property, 370–371
clipBottom property, 821
clipLeft property, 821
clipping layers, BC146–BC147
clipRight property, 821
clipTop property, 821
cloneContents() method, 1046
cloneNode() method

discussed, 185
generic objects, 276–277

cloneRange() method, 1046
close() method

discussed, 553–554
window object, 85–86, 411–412

closed property, 371–372
closeNewWindow() function, 86
closing tags, 47
code examples. See listings
code property

applet object, BC170
object object, BC174

codebase principal, security, BC306
codeBase property

applet object, BC170
object object, BC174

codeType property, BC175
col object, BC50–BC52
colgroup object, BC50–BC52
collapse() method

Range object, 1047
selection object, 1066
TextRange object, 1080–1081

collapsed property, 1043
collapseToEnd() method, 1066
collapseToStart() method, 1066
collections

HTML, 300
layers and, 173

color
color property

basefont object, BC7
cascading style sheets, 138

font object, 1026
hr object, 1032
style object, 815

colorDepth property, BC102
layer backgrounds, BC118
of pages, changing, 209–210
of pop-up lists, changing, 712
of text, changing, 248

cols property
discussed, 471
frames, 364
table object, BC38
textarea object, 692

colSpan property, BC58
columns, in tables, editing, BC30–BC32
comma-delimited strings, BC13
command-line systems, events, 719–720
commands. See also functions; methods

bold, 1085
copy, 1085
cut, 331–332, BC324
document, 563
italic, 1086
paste, 331–332, BC325
query, 569
underline, 1086

CommandState query command, 569
comments

comment tags, 23
conditional, BC246–BC247
defined, 51
statements, 51

Common Gateway Interface (CGI)
overview, 27
prototyping, 33
serverless, 33

commonAncestorContainer property,
1043–1044

compact property, BC61
compareBoundaryPoints() method,

1047–1048
compareEndPoints() method, 1081–1084
comparePoint() method, 1051
comparison operators, 66–67, 962–963

1156 Index ✦ C

compatibility issues
browsers

core language standard, 11–12
CSS (cascading style sheets), 13–14
DHTML (Dynamic HTML), 14
discussed, 9–10, 151
document objects, 11
DOM (document object model),

12–13, 18
version numbering, 11–12

DHTML, BC319–BC320
events, 741–742
scripts, 145
Web pages, 155

compatMode property, 519–520
competitors, Web sites, 4
compile() method, BC207
complete property

image input object, 670
Image object, 606–607
isindex object, BC8

complete value, 249
componentFromPoint() method, 277–280
Components property, 369, 372
concatenation

arrays, 920–921
strings, 66, 112
text, 24

condition expressions, 70, 932–933
conditional comments, applets and,

BC246–BC247
confirm dialog boxes, 88, 413
confirm() method, 412–413
conflicts between browsers, 177
connubial operators, 965–967
console window, JavaScript, 55
const keyword, 1017–1018
constants

fixed, 579
MASK, 752

constructor property
Array object, 916
Boolean object, 890
Error object, 958

function object, 986
Math object, 887
RegExp object, BC206
string object, 853–854

containers
block-level, 242
forms as, 98
table-oriented, BC21

containment
hierarchy, 167
inheritance versus, 364

contains() method, 279–280
containsNode() method, 1066
content attribute, 151–153
content-oriented HTML, 5
content property

discussed, 821
meta object, BC13

contentDocument property
discussed, 463–464, 477
frames, 125
object object, BC175

contentEditable property, 218–219, 233
contentWindow property, 366, 464, 477
context-sensitive help, 342–343
control elements, forms, 98, 272–273, 321
control structures

conditions, 70
defined, 70
if constructions, 70
if...else constructions, 71

controllers property, 369, 372
conversions

data types, 64–66, BC256
decimal to hexadecimal, 880–881
numbers to strings, 65–66, 882
strings

case, 113
to numbers, 65, 881–882

cookies
access, 522
cookie property, 520–521
cookieEnabled property, BC78
data, retrieving, 524

1157Index ✦ C

discussed, 496
domain-specific, 521
expiration dates, 521–522
naming, 522
path settings, 523
saving, 522
security issues, 523
soft, BC414
storage, BC379
temporary, BC414

coordinate points, 45
coordinate systems, layers, BC126–BC128
coords property

area element object, 623
discussed, 595

copy command, 1085
copying disabled elements, 225
copyright notifications, 147
Core DOM (Document Object Model), 178
core language objects, 111
countDown() function, 483
countdown timers, 409–410
counterIncrement property, 821
counterReset property, 822
cpuClass property, BC78–BC79
crashes, browsers, BC295–BC296
createAttribute() method, 307, 554
CreateBookmark command, documents, 563
createCaption() method, BC45
createComment() method, 554
createContextualFragment() method,

1051–1052
createControlRange() method, 583
createDocumentFragment() method, 555
createElement() method, 186, 555–556
createEvent() method, 556
createEventObject() method, 557
CreateLink command, documents, 563
createPopup() method, 413
createRange() method

discussed, 234, 557
selection object, 1066

createStyleSheet() method, 557–559
createTextNode() method, 186, 559–560

createTextRange() method
body element object, 583
overview, 234
textarea object, 693

createTFoot() method, BC46
createTHead() method, BC46
createTreeWalker() method, 560
creating

arrays, 77–78, 910
Date object, 893–894
elements, 186
frames, 360
functions, 982–983
image rollovers, 134–137
placeholders, 236
pop-up lists, 413
style sheets, 558–559
variables, 61
windows, 85–86, 425–426

cross-browser applications, 304
cross-confirmation fields, validation,

BC239–BC240
crypto property, 373
CSS. See Cascading Style Sheets
cssFloat property, 822
cssRule object, 807–810
cssRules property, 799
cssText property

cssRule object, 808
style object, 836
styleSheet object, 799–800

ctrlKey property
IE4+ event object, 755
NN6+ event object, 775

ctrlLeft property, 756
cue property, 837
cueAfter property, 837
cueBefore property, 837
curly braces ({ }), 76
current property, 502
currentNode property, 587
currentStyle property, 219
currentTarget property, 783–785
currTitle variable, frames, 128

1158 Index ✦ C–D

cursor property
discussed, 446
style object, 822

custom APIs, BC324–BC326
custom functions

discussed, 982
validation functions, BC221–BC222

custom methods, 999–1000
cut command, 331–332, BC324

D
data

arrays, 78
binding, 220–222
data collections, data lookup, 29
data entry validation, 33
data property

NN4 event object, 748–749
object object, BC175
Text object, 1069

data tainting, BC87
dialog data, retrieving, 445
interactive, 30–31
processing, 107
sorting, 223–224
tab-delimited, 221
text information as, 59
validation, 33, 688
verification, BC296

Data Source Objects (DSOs), 220
data types

conversions, 64–66, BC256
list of, 60
placeholers, 60
undefined, 155

databases
back-end programs, 5
serverless, BC355

dataFld property
discussed, 219
IE4+ event object, 756

dataFormatAs property, 219
dataPageSize property, BC39
dataSrc property, 219–223

dataTransfer property, 763–765
DataURL parameter, 220
Date object

calculations, 117–118
creating, 893–894
form validation, 904–907
getMonth() method, 117
GMT (Greenwich Mean Time), 116, 892
methods, list of, 117, 895–896
nextWeek() function, 118
setMonth() method, 117
snapshots of, 116
strings and, 898
time intervals, adding and subtracting, 118
time zones, 891–892
today variable, 7116

date validation, BC224–BC227
Date.parse() method, 899
dd object, BC64–BC65
Debug menu (Safari), 55
debugging. See also errors

browser crashes, BC295–BC296
Evaluator utility, BC291–BC292
expression evaluation, BC289
Microsoft Script Debugger tool, BC290
snapshots, BC292
source code, BC287
statements, BC289
tags, BC286–BC287
timing problems, BC287–BC288
Venkman debugger tool, BC290

decimal to hexadecimal conversion, 880–881
Decision Helper application, 31–32
declaring variables, 61
decodeURI() function, 1010
decodeURIComponent() function, 1010
decoding, strings, 876
defaultCharset property, 529
defaultChecked property

checkbox input object, 659
radio input object, 666

defaultStatus property, 373–374
defaultValue property, 677–678
defaultView property, 529

1159Index ✦ D

defer property, BC15
deferred scripts, 52–54, BC345
defineGetter() method, 189
defineSetter() method, 189
delete operator, 973–974
deleteCaption() method, BC45–BC46
deleteCell() method, BC55
deleteContents() method, 1052–1053
deleteData() method, 1070
deleteFromDocument() method, 1066
deleteRow() method, BC46
deleteRule() method, 806
deleteTFoot() method, BC46
deleteTHead() method, BC46
deleting

arrays, 912
cells in tables, BC55
elements, 186
rows in tables, BC46

demo() function, 75
dense arrays, 911
deprecated properties, BC4
description property

discussed, 958
mimeType object, BC88
plugin object, BC92

designMode property, 530
detach() method, 1053–1054
detachEvent() method, 270–271, 280
detail property, 785
detection, plug-ins, BC96–BC99
dh1.htm file, BC431–BC432
dh2.htm file, BC432–BC434
dh3.htm file, BC434–BC437
dh4.htm file, BC437–BC440
dh5.htm file, BC440–BC443
dhHelp.htm file, BC443–BC444
dhNav.htm file, BC430–BC431
DHTML. See Dynamic HTML
dialing operations, 21
dialog boxes

alert, 53, 405
cautions, 446–447
confirm, 88, 413

displaying, 52
errors, preventing display of, 54–55
Internet Explorer, 54
modeless, 452–454
prompt, 88

dialog data, retrieving, 445
dialogArguments property, 374
dialogHeight property, 374
dialogLeft property, 375
dialogTop property, 375
dialogWidth property, 374–375
Dictionary object, 1020
digital certificates, security, BC305–BC306
dimensions() method, 1022
dir object, BC65–BC66
dir property, 225
direction property

discussed, 822
marquee object, 1037

directive elements, BC3
directories property, 375
disabled elements, selecting and copying, 225
disabled property

as generic object, 225–226, 234
link object, BC10
styleSheet object, 800

disabling behaviors, BC332
disc value, BC63
dispatch lookup tables, BC228–BC229
dispatchEvent() method

discussed, 271
generic objects, 280–282

display property, 822–823
div element

cascading style sheets, 172
discussed, 456

division (/) operator, 66, 494
dl object, BC64–BC65
doClickEvent() function, 407
doClicks() function, 416
doctype property, 530
DOCTYPE switching, 198–199
document object hierarchy, 164–165

1160 Index ✦ D

Document Object Model (DOM)
broswer compatibility issues, 12–13, 18
in browser window, 35–36
content, adding/replacing, 188
Core DOM, 178
DOM levels (W3C DOM), 178
form controls, 98
HTML structure and, 34–35
specification levels, 178
window object, 35

Document Type Declaration (DTD), BC4
documents

with anchors, 488–489
commands, list of, 563
document nodes, 42
document object

activeElement property, 513
alinkColor property, 179, 514
anchors property, 516–517
applets property, 517–518
in arrays, 80
bgColor property, 179, 514, 518
body property, 518
captureEvents() method, 551–552
characterSet property, 519
charset property, 518–519
clear() method, 552–553
close() method, 553–554
compatMode property, 519–520
cookie property, 520–521
createAttribute() method, 554
createComment() method, 554
createDocumentFragment()

method, 555
createElement() method, 555–556
createEvent() method, 556
createEventObject() method, 557
createRange() method, 557
createStyleSheet() method, 557–559
createTextNode() method, 559–560
createTreeWalker() method, 560
defaultCharset property, 529
defaultView property, 529
designMode property, 530

doctype property, 530
document.createElement()

method, 94
document.createTextNode()

method, 94
documentElement property, 530–531
document.forms property, 91
document.getElementById()

method, 94–95
document.images property, 91
document.write() method, 90, 92–94
domain property, 531
elementFromPoint() method, 560–562
embeds property, 531
execCommand() method, 562–564
expando property, 532
fgColor property, 514, 532
fileCreatedDate property, 532
fileModifiedDate property, 532
fileSize property, 532–534
forms property, 534–536
frames property, 536–537
getElementById() method, 90,

564–565
getElementsByName() method, 565
getSelection() method, 566–567
handleEvent() method, 567
height property, 537
ids property, 537
images property, 537–538
implementation property, 538–539
lastModified property, 539
layers property, 540–542
linkColor property, 179, 514, 542
links property, 542
location object versus, 89
location property, 543
media property, 545
mimeType property, 546
nameProp property, 546
namespaces property, 546
onselectionchange event, 575
onstop event, 575
open() method, 567–568

1161Index ✦ D

overview, 36, 512
parentWindow property, 546
plugins property, 546–547
protocol property, 547
queryCommandCommandState()

method, 569
queryCommandEnabled() method, 569
queryCommandIndterm() method, 569
queryCommandSupported()

method, 569
queryCommandText() method, 569
queryCommandValue() method,

569–570
recalc() method, 570
referrer property, 547–548
releaseEvents() method, 570
roles of, 36
routeEvent() method, 571
scripts property, 548–549
security checks, BC303
security property, 549
selection property, 549–550
styleSheets property, 550
subWrite() method, 93
syntax, 90
tags property, 550
title property, 550
URL property, 543–545, 551
URLUnencoded property, 551
vlinkColor property, 179, 514–516, 551
width property, 537, 551
write() method, 44, 571
writeln() method, 571–575

document property
discussed, 377–378
layer object, BC122

document.createElement() method, 94
document.createTextNode() method, 94
documentElement property, 530–531
document.forms property, 91
document.getElementById() method,

94–95
document.images property, 91

document.write() method, 24, 90, 92–94
.htc, 177
HTML, scripts in, 144–146

doDispatch() function, 280
doDisplay() function, 998
DOM. See Document Object Model
DOMActivate event, 264
domain property, 531
domain-specific cookies, 521
DOMAttrModified event, 264
DOMCharacterDataModified event, 264
doMerge() function, 301
DOMFocusIn event, 264
DOMFocusOut event, 264
DOMNodeInserted event, 264
DOMNodeInsertedIntoDocument event, 264
DOMNodeRemoved event, 264
DOMNodeRemovedFromDocument event, 264
DOMSubtreeModified event, 264
done() function, 52–53
doReadRequest() method, BC107–BC108
doScroll() method, 583–584
doSelection() function, BC227
dot notation, properties, 43
dot syntax, 164
double click events, 332–333
double quotes (“), 87
double slash (//), 23
doValidate() method, BC230
do-while loop, 942
drag-and-drop operations, 334–338
dragging layers, BC139–BC140, BC163–BC164
dragIt() function, BC451
drawing images, BC410
drawTextTable() function, BC470
DreamWeaver authoring tool, 17
dropEffect() method, 764
dropShadow() method, 839
DSOs (Data Source Objects), 220
dt object, BC64–BC65
DTD (Document Type Declaration), BC4
duplicate() method, 1084–1085
dynamic font changes, BC7

1162 Index ✦ D–E

Dynamic HTML (DHTML)
browser compatibility issues, 14
compatibility issues, BC319–BC320
inline branching, BC320–BC321
innerHTML property, 139
object detection, BC323–BC324
overview, 32, BC317–BC318
platform equivalency, BC321–BC322
stylesheet settings, changing, 138
tables, calendar example, BC348–BC352

dynamic properties, 320–321
dynamic styles, 194
dynamic tables, calendars and, BC345–BC347
dynsrc property

Image object, 608–609
isindex object, BC8

E
ECMA (European Computer Manufacturer’s

Association), 12
edge and border properties, style object,

829–833
edge value, 446
editors. See text editors
effectAllowed() method, 764
element array, 80
element containment hierarchy, 174–175
element referencing, W3C DOM, 180
elements

blank lines between, 211
block-level, 179
createElement() method, 186
deleting, 186
directive, BC3
disabled, selecting and copying, 225
div, 172, 456
elementFromPoint() method, 560–562
elements property, 639–640
floating, 1025
hierarchy, HTML, 35
iframe, 125
inserting into text nodes, 38–39
nested, 209
new, creating, 38
overlapped, 196

reading, 216
span, 138, 172
textarea, forms, 100

elevation property, 837
else keyword, 71
 tag, 38
e-mail, forms, 635–636
embed object, BC177–BC179
embeds property, 531
empty() method, 1067
emptyCells property, 835
Enabled query command, 569
enabledPlugin property, BC88–BC89
enablePrivilege() method, BC310
enabling behaviors, BC332
encodeURI() function, 1010
encodeURIComponent() function, 1010
encodeURLComponent() function, 1010
encoding

encoding property, 641
naming conventions, BC10
strings, 876

enctype property, 99, 641
endContainer property, 1044
endOffset property, 1044
engage() function, BC336
Enter/Return key, text boxes and, 676–677
entries, same word, 43
Enumerator object, 1021
equality

comparisons, operators, 963–964
equal sign (=), 66
equality (==) operator, 79
errors, BC285

errors. See also debugging
access, BC285
assignment, BC284
character positioning, BC280–BC281
dialog boxes, preventing display of, 54–55
equality, BC285
error event, 264
Error object

methods, list of, 959
overview, 957
properties, 958–959

1163Index ✦ E

exception, BC286
filename, BC279
function, BC282
line number reporting, BC280–BC281
message notification, BC278–BC279
methods, BC282
null, BC284
numbers, BC282
object expected, BC281
property, BC282
runtime

exception handling, 948–949
syntax errors versus, BC277

script errors, controlling, 387–388
simple script example, 24
trapping techniques, 160
undefined, BC281–BC282
viewing, 54–55
warnings and, BC286

escape() function
discussed, 493
global functions, 1011

EscapeChar parameter, 220
escaped characters, 851
European Computer Manufacturer’s

Association (ECMA), 12
eval() function

discussed, 207, 414
global functions, 1012

Evaluator debugger utility, BC291–BC292
event property

discussed, 378
script object, BC15
<script> tag, 145, 176

eventPhase property, 785
events

abort, 264
addEventListener() method, 191
attachEvent() method, 264, 270
bidirectional event model, 190–192
binding, 176
blur, 264
bubbling, 176
canceling, 733–734

captureEvents() method, 406–408,
551–552

change, 264
click, 408
command-line systems, 719–720
compatibility, 741–742
createEvent() method, 556
createEventObject() method, 557
default actions, canceling, 191
defined, 45
detachEvent() method, 270–271, 280
dispatchEvent() method, 271, 280–282
doClickEvent() function, 407
DOMActivate, 264
DOMAttrModified, 264
DOMCharacterDataModified, 264
DOMFocusIn, 264
DOMFocusOut, 264
DOMNodeInserted, 264
DOMNodeInsertedIntoDocument, 264
DOMNodeRemoved, 264
DOMNodeRemovedFromDocument, 264
DOMSubtreeModified, 264
done() function, 52–53
double click, 332–333
error, 264
event capture, 172, 721–724
event handlers, 45, 168–169
event listeners, 191
examples of, 45
fireEvent() method, 271, 282–285
handleEvent() method, 415–416, 567
IE4+ event object

altKey property, 755
altLeft property, 756
behaviorCookie property, 756
behaviorPart property, 756
bookmarks property, 756
boundElements property, 756
button property, 757–758
cancelBubble property, 758
clientX property, 759
clientY property, 759

Continued

1164 Index ✦ E

events, IE4+ event object (continued)
ctrlKey property, 755
ctrlLeft property, 756
dataFld property, 756
dataTransfer property, 763–765
fromElement property, 765
keyCode property, 767–769
nextPage property, 769
offsetX property, 759
offsetY property, 759
propertyName property, 769
qualifier property, 756
reason property, 756
recordset property, 756
repeat property, 769
returnValue property, 770
saveType property, 770
screenX property, 759
screenY property, 759
shiftKey property, 755–756
shiftLeft property, 756
srcElement property, 770–772
srcFilter property, 772
srcUrn property, 772
toElement property, 765–767, 772
type property, 772–773
wheelData property, 773
x property, 759
y property, 759–763

KeyEvents, 556
load, 264
menu-driven systems, 719–720
as methods, 168
modifier keys, 743–744
mousedown, 146, 264
MouseEvents, 556
mousemove, 264
mouseout, 264
mouseover, 264
mouseup, 264
MutationEvents, 556
NN4 event object

data property, 748–749
layerX property, 749

layerY property, 749
modifiers property, 752
pageX property, 749
pageY property, 749
screenX property, 749
screenY property, 749–751
target property, 752
type property, 753
which property, 753

NN6+ event object
altKey property, 775
bubbles property, 776
button property, 776
cancelable property, 776–777
cancelBubble property, 77
charCode property, 77
clientX property, 780
clientY property, 780
ctrlKey property, 775
currentTarget property, 783–785
detail property, 785
eventPhase property, 785
isChar property, 785
keyCode property, 777–779
layerX property, 780
layerY property, 780
metaKey property, 775
originalTarget property, 785–786
pageX property, 780
pageY property, 780
relatedTarget property, 786–787
screenX property, 780
screenY property, 780
shiftKey property, 775–776
target property, 787–789
timeStamp property, 789–790

objects and, 168–169
onabort, 619
onactivate, 323
onafterprint

body element object, 584
discussed, 456

onafterupdate, 685
onbeforecopy, 323–324

1165Index ✦ E

onbeforecut, 324–325
onbeforedeactivate, 323, 325
onbeforeeditfocus, 325
onbeforepaste, 325–326
onbeforeprint

body element object, 584
discussed, 456

onbeforeunload, 456–457
onbeforeupdate, 685
onblur

discussed, 326–327
layer object, BC143
text object, 686

onbounce, 1039
onchange

select object, 711–712
text object, 688
this keyword, 106

onclick
button object, 655–656
checkbox input object, 661–663
discussed, 168, 329
generic objects, 327–329
radio input object, 668

oncontextmenu, 330
oncontrolselect, 330
oncopy, 330
oncut, 330–331
ondblclick, 329, 332–333
ondeactivate, 323
ondrag, 333–337
ondragdrop, 457–458
ondragend, 333–337
ondragenter, 338
ondragleave, 338
ondragover, 338–339
ondragstart, 333–337, 339
ondrop, 339–340
onfilterchange, 340–341
onfinish, 1039
onfocus

discussed, 341–342
layer object, BC143
text object, 686

onhelp, 342–343, 458–459
onkeydown, 343
onkeypress, 343
onkeyup, 343–344
onload

<body> tag, 168
frames, 125
Image object, 619–620
layer object, BC143
link object, BC12
running scripts from, 53
window object, 52, 89

onlosecapture, 348–349
onmousedown

button object, 656
discussed, 349–350

onmouseenter, 351
onmouseleave, 351
onmousemove, 351
onmouseout

discussed, 153, 351
layer object, BC143

onmouseover
discussed, 153, 351
layer object, BC143

onmouseup
button object, 656
discussed, 349–351

onmove, 460
onpaste, 353–355
onpropertychange, 355–356
onreadystatechange, 356–357
onreset, 645–646
onresize, 357, 460–461
onresizeend, 357
onresizestart, 357
onscroll, 585
onselect, 686–687
onselectionchange, 575
onselectstart, 357–358
onstart, 1039
onstop, 575

Continued

1166 Index ✦ E–F

events (continued)
onsubmit

form object, 646
<form> tag, 102

onunload, 376, 461
passing, 725
propagation models, 190
as properties, 168–169
redirecting, 728–730
referencing, 720
releaseEvent() method, 429–430
removeEventListener() method, 191, 309
reset, 264
resize, 264
response to, 45
routeEvent() method, 432–433
scroll, 264
select, 264
static, 721
submit, 264
UIEvents, 556
unload, 264
window object and, 176

examples. See listings
exception handling

overview, 949–950
runtime errors, 948–949
throwing exceptions, 953–957

exec() method, BC208
execCommand() method

discussed, 562–564
TextRange object, 1085–1087

execScript() method, 414
executing scripts, 51
expand() method, 1087–1088
expandEntityReference property, 587
expando property, 532
expiration dates, cookies, 521–522
exporting signed scripts, BC315
expression evaluation

debugging, BC289
testing, 63

expression() method, 570
expressions

condition, 932–933
as conditions, 70

initial, 72
regular

backreferencing, BC196
discussed, 861–862
grouping, BC196
matching techniques, BC200–BC203
object relationships, BC196–BC200
patterns and, BC191–BC192
search-and-replace operations,

BC203–BC205
special characters, BC193–BC196
string replacement, BC203–BC205

testing, 63
update, 72
variables and, 64

extend() method, 1067
extendRow() method, BC367
eXtensible Markup Language (XML), 5
external property, 378–379
extractContents() method, 1054

F
face property

basefont object, BC7
font object, 1027–1028

faceless applets, BC253
factorial() function, 993
Fade() method, 844
false value

checked property, 102
comparison operators, 66
conditions, 70
discussed, 56
else keyword, 71
if constructions, 70

FAQs (Frequently Asked Questions), 1140
fetchFile() function, BC308
fetchText() method, BC254
fgColor property, 514, 532
FieldDelim parameter, 220
fields

applet fields, accessing, BC248
text fields, selecting, 684–685

fieldset element object, 646–647
file object, 717–718

1167Index ✦ F

fileAccess() function, BC315
fileCreatedDate property

discussed, 532
Image object, 609

fileModifiedDate property
discussed, 532
Image object, 609

filename errors, BC279
fileName property, 958
filename property, BC92
files

binary, 18
dh1.htm, BC431–BC432
dh2.htm, BC432–BC434
dh3.htm, BC434–BC437
dh4.htm, BC437–BC440
dh5.htm, BC440–BC443
dhHelp.htm, BC443–BC444
dhNav.htm, BC430–BC431
index.htm, BC426–BC430
mailto, 495
Winhelp, 444

fileSize property
discussed, 532–534
Image object, 609–610

fileUpdatedDate property, 609
filters

add-ons, 226
cascading style sheets, 176
filter object

filter names, 843–846
overview, 837–838
reveal transitions, 841–842
static filter types, 838–839
subproperties, reading and writing, 838
syntax changes, 842–843
transition filters, 840

filter property
discussed, 587
style object, 823

isempty() function, BC216–BC217
isInteger() function, BC218–BC219
isNumber() function, BC220–BC221
isPosInteger() function, BC217–BC218

finally construction, 950–952

find() method, 414–415
findText() method, 1088–1092
Firebird browsers, 10
fireEvent() method

discussed, 271
generic objects, 282–285

firstChild() method, 588
firstChild property

discussed, 183–184
as generic object, 226–228

firstPage() method, BC47
fixed constant, 579
Flash plug-ins, 6
flipH() method, 839
flipV() method, 839
floating elements, 1025
floating-point numbers

discussed, 877–879
integers versus, 65

focus() method
discussed, 168
generic objects, 271, 285
text object, 683–684

focusNode property, 1063
focusOffset property, 1063
fonts

dynamic font changes, BC7
font object, 1025–1028
font property, 815
FontColor command, documents, 563
fontFamily property, 815
FontName command, documents, 563
FontSize command, documents, 563
fontSize property, 816
fontSizeAdjust property, 816
fontSmoothingEnabled property, BC103
fontStretch property, 816
fontStyle property

discussed, 219
style object, 816

fontVariant property, 816
fontWeight property, 816
monospace, 1028
properties, changing, 1026–1027
sans serif, 1028
serif, 1028

1168 Index ✦ F

footers, tables, BC20
for attribute, 145, 176
for loop, 72, 936–937
formatting methods, strings, 874–876
forms

arrays and, 637
attributes, changing, 636
buttons in, 636
calculations, 193
as containers, 98
control elements, 98, 272–273, 321
data and elements, passing to functions,

106–108
e-mailing, 635–636
form object

acceptCharset property, 638
action attribute, 99, 108
action property, 638
autocomplete property, 639
elements property, 639–640
encoding property, 641
enctype attribute, 99
enctype property, 641
form.elements property, 99
handleEvent() method, 643
length property, 641
method attribute, 99
method property, 642
name attribute, 99
name property, 642
onreset event, 645–646
onsubmit event, 646
processData() function, 107
reset() method, 643–644
security checks, BC303
submit() method, 108–109, 644
target attribute, 99
target property, 642–643

form property
button object, 653–654
label object, 1034
object object, BC175
text object, 678

<form> tag
name attribute, 91, 97
onsubmit event, 102

form.elements property, 99
forms property, 534–536
getFormData() method, 448
<input> tag, 637–638
layers and, BC112–BC113
locking, 225
passing to functions, 631–634
simple example of, 535–536
submission, redirection after, 636–637
submitting, 108–109
textarea element, 100
validation, 30, 108–109
validation, Date object, 904–907

forward() method
discussed, 406
history object, 504–506
window object, 415

foundArray variable, BC198
foundMatch variable, BC362
frame property, BC39–BC41
frameBorder property, 464–465, 474
frameElement property, 379
frames

blank, 365
child, 122–123
child-to-child references, 124, 362
child-to-parent references, 124, 362
cols property, 364
contentDocument property, 125
creating, 360
currTitle variable, 128
discussed, 359
document relationship, 360–361
frame element objects versus, 365–366
frame object

allowTransparency property, 463
borderColor property, 463
contentDocument property, 463–464
contentWindow property, 464
frameBorder property, 464–465
height property, 465
longDesc property, 465
marginHeight property, 466
marginWidth property, 466
name property, 466
noResize property, 466

1169Index ✦ F

scrolling property, 467
src property, 468
width property, 465

frameless, switching between, 364
frameset object

border property, 470
borderColor property, 471
cols property, 471
frameBorder property, 474
frameSpacing property, 474
rows property, 471–473

framesets
discussed, 122
forcing to load, 363

goNext() function, 128
iframe element, 125
iframe object

align property, 476–477
allowTransparency property, 477
contentDocument property, 477
contentWindow property, 477
height property, 478
hspace property, 478
longDesc property, 478
marginHeight property, 478
marginWidth property, 478
name property, 479
scrolling property, 479
src property, 479–480
vspace property, 478
width property, 478

inheritance versus containment, 364
loading, 363
loading time, 125
location.hash property, 128
location.href property, 128
multiple

controlling, navigation bars, 126–128
discussed, 31–32

object model, 360–361
onload event, 125
parent window, 122–123
parent-to-child references, 123–124, 362
prevention, 362–363
printFrames() function, 426

referencing, 362
rows property, 364
scripting techniques, 125
single-frame window example, 122
source code, viewing, 365
synchronization, 364–365
top object, 123
two-frame window example, 122

frames property, 379–381, 536–537
frameSpacing property, 474
Frequently Asked Questions (FAQs), 1140
from property, BC8
fromElement property, 765
front end data collection lookup, 29
FrontPage authoring tool, 17
fullName() function, 104
fullScreen() function, 167
function object

apply() method, 987
arguments property, 984–985
arity property, 985
call() method, 987–988
caller property, 985–986
constructor property, 986
length property, 986–987
prototype property, 987
toString() method, 988
valueOf() method, 988

functions. See also commands; methods
addRow(), 259
addStyle(), 558
addTotals(), BC369
adjustClip(), BC150
alertUser(), 53–54
anonymous, 189
append(), 267
attachToEnd(), 952
autoScroll(), 439
calling, 73
cancelDefault(), 336
case-sensitivity, 40
checkForEnter(), 346
checkForm(), BC241
checkFrameset(), 497–498

Continued

1170 Index ✦ F

functions (continued)
checkNumeric(), 684
checkTimer(), 615–616
closeNewWindow(), 86
countDown(), 483
creating, 982–983
custom, 982
custom validation functions, BC221–BC222
decodeURI(), 1010
decodeURIComponent(), 1010
defined, 72
demo(), 75
doClickEvent(), 407
doClicks(), 416
document.write(), 24
doDispatch(), 280
doDisplay(), 998
doMerge(), 301
done(), 52–53
doSelection(), BC227
dragIt(), BC451
drawTextTable(), BC470
encodeURI(), 1010
encodeURLComponent(), 1010
engage(), BC336
errors, BC282
escape(), 493, 1011
eval(), 207, 414, 1012
factorial(), 993
fetchFile(), BC308
fileAccess(), BC315
form data and elements, 106–108
fullName(), 104
fullScreen(), 167
function references, 271
generalizable, 993–994
getColor(), 391
getCountDown(), 902
getElementById(), 40, 90
getErrorObject(), 955
getFormData(), 448
getGIF(), BC380
getGrossOffsetLeft(), BC152
getIEVersion(), 194

getNetOffsetTop(), BC152
getObject(), BC325
getParentLayer(), BC152
getSearchAsArray(), 496
getTimeUntil(), 902
goNext(), 128
handleApply(), 452
handleDrop(), 336
handleOK(), 448
highlight(), 304
hilite(), 290
imageOff(), 135
imageOn(), 135
init(), 448
initAudioAPI(), BC266
initExpand(), BC400
initializeCookies(), BC427
inspect(), 709
invoking, 52, 989
isDate(), BC235
isDone(), BC452
isempty(), BC216–BC217
isFinite(), 1012
isInteger() function, BC218–BC219
isNaN(), 1013
isNumber(), BC220–BC221
isPosInteger(), BC217–BC218
isRange(), BC221
isValid(), BC361
isWindows(), BC73
loadCached(), 133, 615
loadIndividual(), 615
loadXMLDoc(), BC397
makeAreas(), 625
makeHTML(), BC398–BC399
makeNewWindow(), 86
makeTitleRow(), BC370
naming, 73
nested, 983–984
newWindow(), 128
nextField(), 221
nextWeek(), 118
Number(), 1013
onClick event, 73

1171Index ✦ F–G

onTarget(), BC453
parameters

overview, 984
passing, 438–439
variables, 992

parseFloat()
converting strings to numbers, 65
discussed, 428
global functions, 1013

parseInt()
converting strings to numbers, 65
discussed, 375, 428
global functions, 1013–1014

passing
forms to, 631–634
text to, 682

prevField(), 221
printEvaluator(), BC291–BC292
printFrames(), 426
processData(), 107
recursion in, 992
release(), BC452
removeMember(), BC258
resetField(), 677
resetTab(), 257
restore(), 310, 376
revealClip(), BC147
saveCurrentVisit(), BC418
scripts and, 52
scrollMsg(), 403
searchOnReturn(), BC362
selectChunk(), 247
selectSort(), BC467
setBGColor(), BC328
setClip(), BC147
setCookie(), BC427
setCookieData(), BC417
setCount(), 700
setDocCapture(), 724
setFontAttr(), 1026
setImagePosition(), 242
setInitialColor(), 262
setInnerPage(), BC152
setLang(), 700

setMsg(), 136
setOuterPage(), BC152
setSelected(), 448
setupDrag(), 335–336
setWinWidth(), BC456
setZIndex(), BC328
shiftBy(), BC328
shiftTo(), BC327
showCountDown(), 410
showOffsets(), 393
showValues(), BC119
startTime(), 410
startTimer(), 410
stripZeros(), BC360
syntax, 73
testValues(), 990–991
timeIt(), 336
toggle(), BC380
toggleBar(), 376
toggleColor() BC261
toggleComplete(), 223
toggleDetails(), 374
toString(), 1014–1016
toUpperCase(), 101
trace(), BC293–BC295
trigonometric, 115
turnOn(), 262
unescape(), 493, 1011–1012
unhighlight(), 304
unwatch(), 1016
updateTime(), 443
validation functions, combining, BC222
validDate(), BC224
var keyword and, 74
variable scope, 989–992
verifyData(), BC296
walkChildNodes, 212
watch(), 1016

G
generalizable functions, 993–994
getAdjacentText() method, 285–286
getAllResponseHeaders() method, BC188

1172 Index ✦ G–H

getAttribute() method
generic objects, 286–287
userProfile object, BC108

getAttributeNode() method, 287–288
getAttributeNodeNS() method, 288–289
getAttributeNS() method, 289
getAttributes() method, 208–209
getBookmark() method, 1092
getBoundingClientRect() method,

289–291
getClientRects() method, 292
getColor() function, 391
getCountDown() function, 902
getData() method, 370
getDate() method, 117
getDay() method, 117
getElementById() function

document object, 90
objects, referencing, 40

getElementById() method, 564–565
getElementsByName() method, 565
getElementsByTagName() method

discussed, 238
generic objects, 292

getElementsByTagNameNS() method,
292–293

getErrorObject() function, 955
getExpression() method, 293
getFile() method, BC254
getFormData() function, 448
getFullYear() method, 117, 897
getGIF() function, BC380
getGrossOffsetLeft() function, BC152
getHours() method, 117
getIEVersion() function, 194
getItem() method, 1022
getMember() method, BC258
getMinutes() method, 117
getMonth() method, 117
getNetOffsetTop() function, BC152
getObject() function, BC325
getParentLayer() function, BC152
getRangeAt() method, 1067
getResponseHeader() method, BC188
getSearchAsArray() function, 496

getSeconds() method, 117
getSelection() method, 566–567
getSlot() method, BC258
getTime() method, 117
getTimeUntil() function, 902
getWindow() method, BC258
getYear() method, 117
global functions

decodeURI(), 1010
decodeURIComponent(), 1010
encodeURI(), 1010
encodeURLComponent(), 1010
escape(), 1011
eval(), 1012
isFinite(), 1012
isNaN(), 1013
Number(), 1013
parseFloat(), 1013
parseInt(), 1013–1014
toString(), 1014–1016
unescape(), 1011–1012
unwatch(), 1016
watch(), 1016

global property, BC206
global variables, 74–75, 989
Globally Unique Identifier (GUID), BC96
glow() method, 839
GMT (Greenwich Mean Time), 892
go() method, 506–507
goNext() function, 128
gray() method, 839
Greenwich Mean Time (GMT), 116, 892
grouping, regular expressions, BC196
GUID (Globally Unique Identifier), BC96

H
h1 object, 1029
h2 object, 1029
h3 object, 1029
h4 object, 1029
h5 object, 1029
h6 object, 1029
handleApply() function, 452
handleDrop() function, 336

1173Index ✦ H

handleEvent() method
discussed, 415–416, 567
form object, 643

handleOK() function, 448
hasAttribute() method, 293
hasAttributeNS() method, 293
hasAttributes() method, 293–294
hasChildNodes() method

discussed, 186
generic objects, 294–295

hasFeature() method, 538
hash property

a element object, 595
area element object, 624
discussed, 488–489

hash symbol (#), 622
hash tables, arrays and, 916
hasOwnProperty() method, 1007
head object, BC4–BC5
headers property, BC57
headers, tables, BC20
headings, scripts in, 48
height

of text, determining, 240
of windows, setting, 383–384

height attribute, 132
height property

applet object, BC169
discussed, 465, 478, 537
embed object, BC178
as generic object, 228
Image object, 610
isindex object, BC8
marquee object, 1037
object object, BC175
screen object, BC100
style object, 826
table object, BC41
td object, BC59
tr object, BC54–BC55

help options, context-sensitive, 342–343
helpers, plug-ins and, 5–6
hexadecimal values

converting to decimal values, 880–881
strings and, 876

hidden object, 689–690
hidden property, BC178
hidden text, 150
hide() method, 482
hideFocus property, 229
hiding

pop-up lists, 483–484
scripts, 50–51, 146–147
statements, 146

hierarchy
containment, 167
element containment, 174–175
inheritance, 167
of nodes, 180–182
object model, 163
table structure, BC19–BC21

high level risks, privilege targets,
BC311–BC312

highlight() function, 304
highlighting text, 1040
hilite() function, 290
history object

back() method, 504
current property, 502
forward() method, 504–506
go() method, 506–507
length property, 503–504
next property, 502
overview, 36, 502
previous property, 502–503
roles of, 36

history property, 382
hit counts, Web traffic, 4
home() method, 416
host environments, JavaScript as, 158
host property

a element object, 595
area element object, 624
discussed, 489–492

hostname property
a element object, 595
area element object, 624
discussed, 492

hours, date functions, 117
hr object, 1029–1033

1174 Index ✦ H–I

href attribute, 137
href property

a element object, 595–596
area element object, 624
base object, BC6
discussed, 89, 493–494
Image object, 610
link object, BC10
location object, 89
styleSheet object, 800

hreflang property
discussed, 596
link object, BC10

hsides property, BC39
hspace property

applet object, BC170
discussed, 478
Image object, 610
isindex object, BC8
marquee object, 1037
object object, BC175

HTAs (HTML applications), 177
.htc documents, 177
HTML. See Hypertext Markup Language
HTML object, BC3–BC4
htmlFor property

label element object, 649
label object, 1034
script object, BC15

HTMLParagraphElement object, 189
htmlText property, 1079–1080
httpEquiv property, BC14
Hypertext Markup Language (HTML)

collections, 300
content-oriented, 5
defined, 4
documents, scripts in, 144–146
DOM (document object model) and, 34–35
element hierarchy, 35
HTAs (HTML applications), 177
new features, 179–180
node trees, 41
node types, 182
tags, defined, 4

hyphenated words, cascading style sheets, 175

I
i variable, 79
ibound() method, 1022
id attribute

name attribute versus, 40
naming objects, 39–40
security issues, B308, BC309

id property
as generic object, 230
styleSheet object, 800

IDs (identifiers), 40
ids property, 537
IE. See Internet Explorer
IE4+ event object

altKey property, 755
altLeft property, 756
behaviorCookie property, 756
behaviorPart property, 756
bookmarks property, 756
boundElements property, 756
button property, 757–758
cancelBubble property, 758
clientX property, 759
clientY property, 759
ctrlKey property, 755
ctrlLeft property, 756
dataFld property, 756
dataTransfer property, 763–765
fromElement property, 765
keyCode property, 767–769
nextPage property, 769
offsetX property, 759
offsetY property, 759
propertyName property, 769
qualifier property, 756
reason property, 756
recordset property, 756
repeat property, 769
returnValue property, 770
saveType property, 770
screenX property, 759
screenY property, 759
shiftKey property, 755–756
shiftLeft property, 756
srcElement property, 770–772

1175Index ✦ I

srcFilter property, 772
srcUrn property, 772
toElement property, 765–767, 772
type property, 772–773
wheelData property, 773
x property, 759
y property, 759–763

if construction
break statement, 79
control structures, 70

if...else construction, 71
iframe element, 125
iframe object

align property, 476–477
allowTransparency property, 477
contentDocument property, 477
contentWindow property, 477
height property, 478
hspace property, 478
longDesc property, 478
marginHeight property, 478
marginWidth property, 478
name property, 479
scrolling property, 479
src property, 479–480
vspace property, 478
width property, 478

ignoreCase property, BC206
image maps, client-side example, 622–623
images

alignment, 605
caching, 132
document.images property, 91
drawing, BC410
Image object

align property, 604–605
alt property, 606
border property, 606
complete property, 606–607
dynsrc property, 608–609
fileCreatedDate property, 609
fileModifiedDate property, 609
fileSize property, 609–610
fileUpdatedDate property, 609
height property, 610

href property, 610
hspace property, 610
isMap property, 611
longDesc property, 611
loop property, 611
lowsrc property, 612
mimeType property, 612
name property, 612–613
nameProp property, 613
naturalHeight property, 613
naturalWidth property, 613–614
onabort event, 619
onerror property, 619
onload event, 619–620
overview, 602–603
protocol property, 614
src property, 614
start property, 618
useMap property, 618
vspace property, 610–611, 618
width property, 610, 618
x property, 618
y property, 618–619

image rollovers, creating, 134–137
imageLibrary array, 133
imageOff() function, 135
imageOn() function, 135
images property, 537–538
input objects, 669–671
interchangeable, 131–132
motion and still, switching between,

608–609
as objects, 153
precaching, 132–133
rotating, 616–617
scrolling, 434
spacer, 5
swapping, 134

 tag
height attribute, 132
src property, 132
width attribute, 132

immediate scripts, BC345
immediate statements, 52
implementation property, 538–539

1176 Index ✦ I

importing signed scripts, BC315
imports property, 801
in operator, 974
Indent command, documents, 563
indeterminate property, BC8
index values, strings, 115
indexes

arrays, 76–77
branching index pages, 151–153
tabindex property, 256–257
tabIndex value, 230
zero-based values, BC55
zIndex property, 175

index.htm file, BC426–BC430
indexOf() method, 114
in-document scripts, 147
Indterm query command, 569
inheritance hierarchy, 167
inheritance versus containment, frames, 364
init() function, 320, 448
initAudioAPI() function, BC266
initExpand() function, BC400
initial expressions, 72
initializeCookies() function, BC427
initializing variables, 61
inline branching, DHTML, BC320–BC321
inline characters, strings and, 850–851
inline content, 13
inline display and layout properties, style

object, 821–825
inline quotation, 1024
innerHeight property, 382
innerHTML property

Dynamic HTML, 139
as generic object, 230–232
read/write access, 174, 189

innerText property
as generic object, 230–232
read/write access, 174

innerWidth property, 382
input objects

checkboxes
checked property, 658–659
click() method, 661

defaultChecked property, 659
onclick event, 661–663
overview, 657
type property, 659
value property, 659–660

images, 669–671
radio objects

checked property, 665–666
click() method, 668
defaultChecked property, 666
length property, 667
name property, 667
onclick event, 668
overview, 663–664
type property, 667
value property, 667

input/output (I/O), 572
input property, BC210
<input> tag

forms, 637–638
type attribute, 100

inRange() method, 1093
insertAdjacentElement() method

discussed, 227
generic objects, 295–296

insertAdjacentHTML() method, 296
insertAdjacentText() method, 296–298
insertBefore() method

discussed, 186
generic objects, 298–299

insertCell() method, BC55–BC56
insertData() method, 1070
insertion pointers, 272
insertNode() method, 1054–1055
insertRow() method, BC46–BC47
insertRule() method, 806–807
inspect() function, 709
installation, plug-ins, BC96
instanceof operator, 974–975
integers, floating-point numbers versus, 65
interactive data, 30–31
interactive user interfaces, 28
interactive value, 249
interCap format, variable names, 61

1177Index ✦ I–K

interchangeable images, 131–132
interfaces, tree views, 28
international characters, security, BC316
Internet bandwidth, 631
Internet Explorer (IE)

dialog box, 54
getIEVersion() function, 194
IE4 object model extensions, 174–176
IE5 object model extensions, 177
version numbering, 11–12

Internet service providers (ISP), 21
intersectsNode() method, 1056
invert() method, 839
invoking

functions, 52, 989
methods, 44, BC267

I/O (input/output), 572
iris() method, 845
isChar property, 785
isCollapsed property, 1063
isContentEditable property

discussed, 219
as generic object, 232–233

isDate() function, BC235
isDisabled property, 233–234
isDone() function, BC452
isempty() function, BC216–BC217
isEqual() method, 1093–1094
isFinite() function, 1012
isindex object, BC7–BC8
isInteger() function, BC218–BC219
isMap property, 611
isMultiLine property, 234
isNaN() function, 1013
isNumber() function, BC220–BC221
isOpen property, 481–482
ISP (Internet service providers), 21
isPointInRange() method, 1056
isPosInteger() function, BC217–BC218
isPrototypeOf() method, 1007
isRange() function, BC221
isSupported() method

discussed, 186
generic objects, 299

isTextEdit property, 234

isValid() function, BC361
isWindows() function, BC73
italic command, 1086
italic text, 219
item() method

discussed, 207
Enumerator object, 1021
generic objects, 300
select object, 711

J
JAR Packager, security, BC307
Java applets. See applets
Java in a Nutshell (O’Reilly & Associates,

Inc.), BC275
javaEnabled() method, BC84
JavaScript language

advantages, 8
console window, 55
disadvantages, 8
ECMA compatible, 59
history of, 6–7
as host environment, 158
language essentials, 158–161
overview, 3
version implementation, 143–144
when to use, 33–34

JavaScript Scrambler shareware program, 147
jaws.jar archive, BC257
joining

strings, 112–113, 850
text, 24

.js libraries, 197
JSObject class, BC256, BC258–BC259
jukebox plug-in example, BC268–BC271
JustifyCenter command, documents, 563
JustifyFull command, documents, 563
JustifyLeft command, documents, 563
JustifyRight command, documents, 563
JVM (Java virtual machine), BC244

K
key codes, 344
keyboard characters, specifying, 204

1178 Index ✦ K–L

keyboard events. See events
keyboard shortcuts, 19
keyCode property

IE4+ event object, 767–769
NN6+ event object, 777–779

KeyEvents event, 556
keywords

const, 1017–1018
else, 71
new, 77
public, BC248
this, 106
var

discussed, 1018–1019
functions and, 74
local variables, 74
variables, creating, 61

void, BC245

L
label element object, 646–649
label object, 1033–1034
label property

optgroup object, 715–716
option object, 714

labeled statements, 944–946
lang property, 235
language attribute, <script> tag, 48, 145
Language parameter, 220
language property

discussed, 235
navigator object, BC79

language systems, browsers, 235
lastChild() method, 588
lastChild property

discussed, 183–184
as generic object, 226–228, 235

lastIndex property, BC207
lastMatch property, BC210
lastModified property, 539
lastPage() method, BC47
layers

backgrounds
colors, BC118
setting, BC144–BC146

clipping, BC146–BC147
collections and, 173
coordinate systems, BC126–BC128
defined, 154, BC109
dragging, BC139–BC140, BC163–BC164
forms and, BC112–BC113
layer object

above property, BC113
background property, BC116–BC117
below property, BC113
bgColor property, BC117–BC118
clip property, BC118–BC122
document property, BC122
left property, BC122
load() method, BC136–BC137
moveAbove() method, BC137
moveBelow() method, BC137–BC138
moveBy() method, BC138
moveTo() method, BC138
moveToAbsolute() method,

BC138–BC140
name property, BC124
onblur event, BC143
onfocus event, BC143
onload event, BC143
onmouseout event, BC143
onmouseover event, BC143
pageX property, BC124
pageY property, BC124–BC128
parentLayer property, BC128
resizeBy() method, BC140
resizeTo() method, BC140–BC143
siblingAbove property, BC113, BC128
siblingBelow property, BC113–BC116,

BC128
src property, BC128–BC131
top property, BC122–BC124
visibility property, BC131–BC132
zIndex property, BC133–BC136

layers property, 540–542
layerX property

NN4 event object, 749
NN6+ event object, 780

layerY property
NN4 event object, 749
NN6+ event object, 780

1179Index ✦ L

references, 172, BC111–BC112
resizing, BC141–BC142, BC164–BC166
source content, BC158–BC159
stacking order, 172, BC160–BC162
tables and, BC113
visibility behaviors, BC159–BC160

layout and inline display properties, style
object, 821–825

layoutGrid property, 823
layoutGridChar property, 823
layoutGridLine property, 823
layoutGridMode property, 823
layoutGridType property, 824
left property

discussed, 826
layer object, BC122
TextRectangle object, 1102

leftContext property, BC211
leftMargin property, 580
length property

Array object, 917
arrays, 77, 143
form object, 641
function object, 986–987
as generic object, 235–236
history object, 503–504
plugin object, BC92
radio input object, 667
select object, 704
string object, 854
strings, 115

letterSpacing property, 817
lhs property, BC39
li object, BC63–BC64
libraries

scripts and, 147–148, 197
security checks, BC303

light() method, 839
line number reporting, errors, BC280–BC281
lineHeight property, 817
lineNumber property, 958
link object, BC8–BC12
link property, 578, 580
linkBreak property, 817
linkColor property, 179, 514, 542

linking behaviors, BC332
links property, 542
list properties, style object, 833
listings

accessKey property, 205–206
addBehavior() method, 261–263
alertUser() function, 53–54
anchors, Web page navigation, 517
appendChild() method, 268–269
applets, starting and stopping,

BC246–BC247
applyElement() method, 269–270
arrays

array.reverse() method, 924
concatenation, 920–921
lookups, 913–914
populating, 911

banners, 403
behaviors

draggable element example,
BC335–BC337

text rollovers, BC338–BC339
browsers

nonscriptable, 150
preferences, reading and writing,

BC85–BC86, BC887
canHaveChildren property, 210–211
charCode property, 778–779
checkboxes, 103
childNodes property, 212–213
children property, 214
className property, 215–216
clientHeight property, 217
clientWidth property, 217
columns, in tables, editing, BC30–BC32
compareEndPoints() method, 1082–1084
componentFromPoint() method, 279–280
const keyword, 1018
contentEditable property, 218–219
context-sensitive help, 342–343
cut command, 331–332
data

binding, 221–222
sorting, 223–224
validation, 688

Continued

1180 Index ✦ L

listings (continued)
date calculations, 118
date validation, BC224–BC227
dialog boxes

alert, 405
confirm, 413
modeless, 452–454

dispatchEvent() method, 281–282
documents, with anchors, 488–489
document.write() method, 92–94
DOM content, adding/replacing, 188
DOM (Document Object Model), 188
drag-and-drop operations, 336–338
dynamic properties, 320–321
errors, script errors, controlling, 387–388
events

canceling, 733–734
event capture and release, 723
event handlers, 45
modifier keys, 743–744
redirecting, 728–730

exceptions, throwing, 953–955
expressions, regular, 861–862
fireEvent() method, 283–285
firstChild property, 227–228
font properties, changing, 1026–1027
forms

date validation in, 905–907
reset() method, 633–634
simple example of, 535–536
submit() method, 633–634
submitting, 109

frames
blank, 365
forcing to load, 363
navigation bars, 127

functions
calling, 73
form elements and objects, passing,

107–108
generalizable, 993–994
recursion in, 992

getBoundingClientRect() function,
290–291

global variables, 75
image maps, 622–623
images

align property, 605
image rollovers, 134
motion and still, switching between,

608–609
precaching, 133
rotating, 616–617
still and motion, switching between,

608–609
indexes, branching index pages, 151–153
innerHTML property, 231–232
innerText property, 231–232
insertBefore(), 298–299
isempty() function, BC216–BC217
isInteger() function, BC219
isNumber() function, BC220
isPosInteger() function, BC217–BC218
keyCode property, 778–779
lastChild property, 227–228
layers

backgrounds, color, BC118
backgrounds, setting, BC116–BC117,

BC144–BC146
coordinate systems, BC126–BC128
dragging, BC139–BC140, BC163–BC164
resizing, BC141–BC142, BC164–BC166
source content, BC158–BC159
stacking order, BC160–BC162
visibility behaviors, BC159–BC160

local variables, 75
location.replace() method, 501
marquee object, 1035–1036
mergeAttributes() method, 301
message status, setting default, 373
mime types, BC94
mouse, tracking, 561–562
node-related objects, 313–314
numbers, decimal to hexadecimal

conversion, 880–881
offsetParent property, 243
onbeforecopy, 324
onblur event, 326–327

1181Index ✦ L

onclick event, 329
ondblclick event, 329
onfilterchange event, 340–341
onload event, 53
onmousedown event, 350
onmouseup event, 350
onpropertychange event, 355–356
onselectstart event, 357–358
opener property, 391
optgroup object, 715–716
outerHTML property, 244–245
outerText property, 244–245
pageXOffset property, 393–394
pageYOffset property, 393–394
parentTextEdit property, 248
paste command, 331–332
placeholders, 545
plug-ins, verification, BC94–BC95
pop-up lists

color changes, 712
hiding and showing, 483–484

radio objects, 104
read-only properties, 190
recordNumber property, 250–251
relatedTarget property, 786–787
releaseCapture() function, 305–306
reloading, hard versus soft, 500
removeBehavior() method, 262–263
scripts

in body, 49–50
in headings, 48
hiding, 50
immediate statements, 52
<noscript> tag, 149

scroll values, determining, 582
scrolled images, 434
select object, 105–106
selection lists, 706
self property, 400–401
setCapture() method, 305–306
setInterval() method, 439–441
simple script example, 21–22
srcElement property, 771–772

statements
immediate, 52
labeled, 945–946

strings
nested, 875
prototypes, 855
reading, 869–870
replacing, BC204–BC205
slicing, 866–867
utility functions, 873–874

style sheets, applying and creating,
558–559

switch statement, 947–948
tabindex property, 255–257
tables

cells, replacing data in, BC23–BC25
DHTML, BC349–BC352
dynamic, BC346–BC347
rows, inserting and removing,

BC27–BC28, BC30–BC31
static, BC343–BC344

target property, 788–789
text

fields, selecting, 684–685
retrieving selected, 566–567
values, getting and setting, 681–682

TextRectangle object, 1102–1103
time stamps, 540
timers, countdown, 409–410
timeStamp property, 789–790
title property, 258–259
trace() function, BC295
uniqueID property, 259–260
userProfile object, BC104–BC105
validations

cross-confirmation, BC240
dispatch lookup tables, BC229
simple example of, BC231–BC232

Web pages
file information, displaying, 533–534
referrer pages, 548

window object, 86
Continued

1182 Index ✦ L

listings (continued)
windows

chrome, controlling, 376–377
click events, 408
closing, checking before, 372
creating, 425–426
height and width, setting, 383–384
main window document, 129
moving, 417–419
resizing, 431–432
subwindow document, 129

lists
ordered, BC60
unordered, 289, BC62

listStyle property, 833
listStyleImage property, 833
listStylePosition property, 833
listStyleType property, 833
literal notation, arrays, 911–912
literals, strings, 112, 850
LiveConnect features, applets and,

BC243–BC244
LiveScript language, 7
load event, 264
load() method, BC136–BC137
loadCached() function, 133
loaded value, 249
loadedCache() function, 615
loadIndividual() function, 615
loading

frames, 363
windows, 384

loading property, 384
loading value, 249
loadOuter() method, BC158
loadXMLDoc() function, BC397
local scope, variables, 75
local variables, 74–75
localName property

discussed, 183
as generic object, 236

location object
assign() method, 499
document object versus, 89

hash property, 488–489
host property, 489–492
hostname property, 492
href property, 89, 493–494
newWindow variable, 90
overview, 36, 486
pathname property, 494
port property, 494–495
protocol property, 495
reload() method, 499–500
replace() method, 500–501
roles of, 36
search property, 495
security checks, BC302
userAgent property, 90

location property, 385, 543
locationbar property, 375, 385
location.hash property, frames, 128
location.href property, 128
location.ref property, BC344
location.replace() method, 501
locking forms, 225
logos, positioning, 217
long string variables, 850
longDesc property

discussed, 465, 478
Image object, 611

lookups
arrays, 913–914
small data, 29

loops
do-while, 942
for, 72, 936–937
loop property

Image object, 611
isindex object, BC8
marquee object, 1038

repeat, 71–72, 534
while, 940–942

lowest common denominators, 165
lowsrc property

Image object, 612
isindex object, BC8

1183Index ✦ M

M
MacOS X, authoring environment, setting up, 19
macro targets, privileges, BC311
mailto file, 495
makeAreas() function, 625
makeHTML() function, BC398–BC399
makeNewWindow() function, 86
makeTitleRow() function, BC370
manipulation, strings, 873–874
map element object, 624–627
margin property, 831
marginBottom property, 831
marginHeight property, 466, 478
marginLeft property, 831
marginRight property, 831
marginTop property, 831
marginWidth property, 466, 478
markerOffset property, 824
markers, browsers, 10
marks property, 824
marquee object, 1034–1038
MASK constant, 752
mask() method, 839
maskfilter() method, 845
matching techniques, regular expressions,

BC200–BC203
Math object

methods, list of, 882, 884
properties, list of, 883–884
random() method, 115–116
trigonometric functions, 115

maxHeight property, 824
maximize() method, 167
maxLength property

isindex object, BC8
text object, 679

maxValue parameter, 72
MAX_VALUE property, 887
maxWidth property, 824
media property

discussed, 545
link object, BC10–BC11
style element object, 797
styleSheet object, 801

medium level risks, privilege targets,
BC311–BC312

memory
allocation, 160
RAM (random access memory), 36, 60
script control, 160

menu object, BC65–BC66
menubar property, 375
menu-driven systems, events, 719–720
mergeAttributes() method, 209, 300–301
message notification, errors, BC278–BC279
message property, 958–959
message status, setting default, 373
meta object, BC12–BC14
<meta> tag

alt attribute, 153
content attribute, 151–153

metacharacters, BC194–BC195
metadata, BC13
metaKey property, 775
method attribute, 99
method property, 642
methods. See also commands; functions

abort(), BC188
add(), 710
addBehavior()

discussed, 177, BC332
generic objects, 261–264

AddDesktopComponent(), 378
addEventListener(), 191, 264
addImport(), 804–805
adding to objects, 159
addRange(), 1065
addReadRequetst(), BC105–BC106
addRule() styleSheet object, 805
alert()

functions and, 74
strings, 112
window object, 45, 87–88, 404–405

appendChild()
discussed, 139, 185
generic objects, 267–269

appendData(), 1070
Continued

1184 Index ✦ M

methods (continued)
apply(), 987
applyElement(), 269–270
arguments, 44
array.concat(), 918–921
array.join(), 921–922
array.pop(), 923
array.push(), 923
array.reverse(), 923–925
array.shift(), 923
array.slice(), 925
array.sort(), 925–926
array.splice(), 929–930
array.toLocaleString(), 930
array.toString(), 930
array.unshift(), 923
assign(), 499
atEnd(), 1021
attachEvent(), 264, 270
back(), 406, 504
BasicImage(), 844
blendTrans(), 840
Blinds(), 844
blur()

filter object, 839
generic objects, 271
text object, 683
window object, 272

calculate(), BC370
call(), 987–988, BC258
captureEvents(), 406–408, 551–552
charAt(), 114
Checkerboard(), 844
chroma(), 839, 844
clear(), 552–553, 1065
clearAttributes(), 275
clearData(), 370
clearInterval(), 408–409
clearRequest(), BC106
clearTimeout(), 409–411
click()

button object, 655
checkbox input object, 661
generic objects, 276
radio input object, 668

cloneContents(), 1046
cloneNode(), 185, 276–277
cloneRange(), 1046
close()

discussed, 553–554
window object, 85–86, 411–412

collapse()
Range object, 1047
selection object, 1066
TextRange object, 1080–1081

collapseToEnd(), 1066
collapseToStart(), 1066
collisions between, 189
compareBoundaryPoints(), 1047–1048
compareEndPoints(), 1081–1084
comparePoint(), 1051
compile(), BC207
componentFromPoint(), 277–280
confirm(), 412–413
contains(), 279–280
containsNode(), 1066
createAttribute(), 307, 554
createCaption(), BC45
createComment(), 554
createContextualFragment(),

1051–1052
createControlRange(), 583
createDocumentFragment(), 555
createElement(), 186, 555–556
createEvent(), 556
createEventObject(), 557
createPopup(), 413
createRange(), 234, 557, 1066
CreateStyleSheet(), 557–559
createTextNode(), 186, 559–560
createTextRange(), 234, 583, 693
createTFoot(), BC46
createTHead(), BC46
createTreeWalker(), 560
custom methods, 999–1000
Date object, 895–896
Date.parse(), 899
dates, 117
defined, 44
defineGetter(), 189

1185Index ✦ M

defineSetter(), 189
deleteCaption(), BC45–BC46
deleteCell(), BC55
deleteContents(), 1052–1053
deleteData(), 1070
deleteFromDocument(), 1066
deleteRow(), BC46
deleteRule(), 806
deleteTFoot(), BC46
deleteTHead(), BC46
detach(), 1053–1054
detachEvent(), 270–271, 280
dimensions(), 1022
dispatchEvent(), 271, 280–282
document object, accessing, 90
document.createElement(), 94
document.createTextNode(), 94
document.getElementById(), 94–95
document.write(), 90, 92–94
doReadRequest(), BC107–BC108
doScroll(), 583–584
doValidate(), BC230
dropEffect(), 764
dropShadow(), 839
duplicate(), 1084–1085
effectAllowed(), 764
elementFromPoint(), 560–562
empty(), 1067
enablePrivilege(), BC310
errors in, BC282
events as, 168
exec(), BC208
execCommand()

discussed, 562–564
TextRange object, 1085–1087

execScript(), 414
expand(), 1087–1088
expression(), 570
extend(), 1067
extendRow(), BC367
extractContents(), 1054
Fade(), 844
fetchText(), BC254
find(), 414–415
findText(), 1088–1092

fireEvent(), 271, 282–285
firstChild(), 588
firstPage(), BC47
flipH(), 839
flipV(), 839
focus()

discussed, 168
generic objects, 271, 285
text object, 683–684

forward()
history object, 406, 504–505
window object, 415

getAdjacentText(), 285–286
getAllResponseHeaders(), BC188
getAttribute()

generic objects, 286–287
userProfile object, BC108

getAttributeNode(), 287–288
getAttributeNodeNS(), 288–289
getAttributeNS(), 289
getAttributes(), 208–209
getBookmark(), 1092
getBoundingClientRect(), 289–291
getClientRects(), 292
getData(), 370
getDate(), 117
getDay(), 117
getElementById(), 90, 564–565
getElementsByName(), 565
getElementsByTagName(), 38, 292
getElementsByTagNameNS(), 292–293
getExpression, 293
getFile(), BC254
getFullYear(), 117, 897
getHours(), 117
getItem(), 1022
getMember(), BC258
getMinutes(), 117
getMonth(), 117
getRangeAt(), 1067
getResponseHeader(), BC188
getSeconds(), 117
getSelection(), 566–567
getSlot(), BC258

Continued

1186 Index ✦ M

methods (continued)
getTime(), 117
getWindow(), BC258
getYear(), 117
glow(), 839
go(), 506–507
gray(), 839
handleEvent()

discussed, 415–416, 567
form object, 643

hasAttribute(), 293
hasAttributeNS(), 293
hasAttributes(), 293–294
hasChildNodes()

discussed, 186
generic objects, 294–295

hasFeature(), 538
hasOwnProperty(), 1007
hide(), 482
home(), 416
ibound(), 1022
indexOf(), 114
init(), 320
inRange(), 1093
insertAdjacentElement(), 227, 295–296
insertAdjacentHTML(), 296
insertAdjacentText(), 296–298
insertBefore(), 186, 298–299
insertCell(), BC55–BC56
insertData(), 1070
insertNode(), 1054–1055
insertRow(), BC46–BC47
insertRule(), 806–807
intersectsNode(), 1056
invert(), 839
invoking, 44, BC267
iris(), 845
isEqual(), 1093–1094
isPointInRange(), 1056
isPrototypeOf(), 1007
isSupported(), 186, 299
item()

discussed, 207
Enumerator object, 1021

generic objects, 300
select object, 711

javaEnabled(), BC84
lastChild(), 588
lastPage(), BC47
light(), 839
load(), BC136–BC137
loadOuter(), BC158
location.replace(), 501
mask(), 839
maskfilter(), 845
Math object, 882, 884
maximize(), 167
mergeAttributes(), 209, 300–301
motionblur(), 845
move(), 1094–1095
moveAbove(), BC137
moveBelow(), BC137–BC138
moveBy(), 416, BC138
moveEnd(), 1095
moveFirst(), 1021
moveNext(), 1021
moveRow(), BC47
moveStart(), 1095
moveTo(), 416–419, BC138
moveToAbsolute(), BC138–BC140
moveToBookmark(), 1095
moveToElementText(), 1095
moveToPoint(), 1096–1097
namedItem() method, 711
navigate(), 419–420
NavigateAndFind(), 378
navigator.Enabled(), 149
nextNode(), 588
nextPage(), BC47
nextSibling(), 588
node object, 185–186
normalize(), 302
objects and, 167
onerrorupdate(), 685–686
open()

discussed, 420, 567–568
xml object, BC189

openWindow(), 164

1187Index ✦ M

options(), 711
parameters, 44
parentElement(), 1097–1098
parentNode(), 588
pasteHTML(), 1098–1099
pop-up lists, 482–484
preference(), BC84–BC87
preventDefault(), 191, 280
previousNode(), 588–589
previousPage(), BC47–BC48
previousSibling(), 588
print(), 426–428
prompt(), 428–429
propertyIsEnumerable(), 1008
queryCommandCommandState(), 569
queryCommandEnabled(), 569, 1099
queryCommandIndeterm(), 1099
queryCommandIndterm(), 569
queryCommandState(), 1099
queryCommandSupported(), 569, 1099
queryCommandText(), 569, 1099
queryCommandValue(), 569–570, 1099
random(), 115–116
RandomDissolve(), 845
recalc(), 319, 570
refresh()

plugin object, BC92
table object, BC48

releaseCapture(), 302–303, 305–306
releaseEvents(), 429–430, 570
reload(), 499–500
remove(), 710–711
removeAllRanges(), 1067
removeAttribute(), 209, 306–307
removeAttributeNode(), 307
removeAttributeNS(), 308
removeBehavior(), 262–263
removeChild(), 186, 267, 309
removeEventListener(), 191,

264–267, 309
removeExpression(), 293, 309–310
removeNode(), 310–312
removeRange(), 1067
removeRule(), 805–806

replaceAdjacentText(), 298, 311–312
replaceChild(), 186–188, 267, 312
replaceData(), 1070
replaceNode(), 312–315
reset(), 643–644
resizeBy(), 430, BC140
resizeTo()

discussed, 430–432
layer object, BC140–BC143

revealTrans(), 840
revertPrivilege(), BC310
routeEvent(), 432–433, 571
scroll(), 433–435
scrollBy(), 435
scrollIntoView(), 204, 206, 315
scrollTo(), 435–437
select()

text object, 684–685
TextRange object, 1099

selectAllChildren(), 1068
selectNode(), 1056
selectNodeContents(), 1056–1057
send(), BC189
setActive(), 315–316
setAttribute()

discussed, 187, 207, 209
generic objects, 316–317

setAttributeNode(), 317
setAttributeNS(), 318
setCapture()

discussed, 264
generic objects, 302–306, 318

setColor(), BC145
setdata(), 330
setDate(), 117
setDay(), 117
setEnd(), 1057
setEndAfter(), 1059
setEndBefore(), 1059
setEndPoint(), 1100
setExpression()

discussed, 293
generic objects, 318–321

Continued

1188 Index ✦ M

methods (continued)
setHours(), 117
setInterval(), 437–441
setMember(), BC258
setMinutes(), 117
setMonth(), 117
setSeconds(), 117
setSlot(), BC258
setStart(), 1057–1058
setStartAfter(), 1059
setStartBefore(), 1059
setTime(), 117
setTimeout(), 273, 371, 441–444
setYear(), 117
shadow(), 839
show(), 482–484
showHelp(), 444
showModalDialog(), 397, 444
showModelessDialog(), 444–447
sizeToContent(), 455
splitText(), 1073
start(), 1038
stop(), 455–456, 1038
stopPropagation(), 736
string.charAt(), 855–856
string.charCodeAt(), 856–857
string.concat(), 859
string.indexOf() method, 113–114, 859
string.lastIndexOf(), 860
string.localeCompare(), 860
string.match(), 861–862
string.replace(), 862–865
string.search(), 865
string.slice(), 865–867
string.split(), 868
string.substr(), 868–870
string.substring(), 114–115, 870–871
string.toLocaleLowerCase(), 871
string.toLocaleUpperCase(), 871
string.toLowerCase(), 872
string.toString(), 872
string.toUpperCase(), 872
string.valueOf(), 872
submit(), 108–109, 643–644

substring(), 524
substringData(), 1070
subWrite(), 93
surroundContents(), 1059–1060
swapNode(), 312, 321
tags, 321–322
taintEnabled(), BC87
test(), BC208–BC209
toArray(), 1022
toString()

discussed, 959
function object, 988
Range object, 1061
selection object, 1068

ubound(), 1022
urns, 322
valueOf(), 988
wave(), 839
window.confirm(), 88
window.open(), 85, 128
window.prompt(), 88–89
windows, accessing, 84–85
write(), 44, 571
writeln(), 571–575
xRay(), 839

Methods property, 596
Microsoft Script Debugger tool, BC290
mime types, verifying, BC94
mimeType object, BC87–BC90
mimeType property

a element object, 596
discussed, 546
Image object, 612
navigator object, BC79–BC80

minHeight property, 824
minimum system requirements, 1143
minutes, date functions, 117
MIN_VALUE property, 887
minWidth property, 824
minYear parameter, BC237
modeless dialog boxes, 452–454
modification methods, table rows, BC26
modifier keys, events, 743–744
modifiers property, 752

1189Index ✦ M–N

modulus (%) operator, 71
monospace fonts, 1028
months, date functions, 117
motion images, switching to still images,

608–609
motionblur() method, 845
mouse

double click events, 332–333
rollovers, 13
tracking, 561–562

mousedown event, 146, 264
MouseEvents event, 556
mousemove event, 264
mouseout event, 264
mouseover event, 264
mouseup event, 264
move() method, 1094–1095
moveAbove() method, BC137
moveBelow() method, BC137–BC138
moveBy() method, 416, BC138
moveEnd() method, 1095
moveFirst() method, 1021
moveNext() method, 1021
moveRow() method, BC47
moveStart() method, 1095
moveTo() method, 416–419, BC138
moveToAbsolute() method, BC138–BC140
moveToBookmark() method, 1095
moveToElementText() method, 1095
moveToPoint() method, 1096–1097
moving

table rows, BC47
windows, 417–419

mozBorderRadius property, 831
mozBorderRadiusBottomLeft property, 831
mozBorderRadiusBottomRight property, 831
mozBorderRadiusTopLeft property, 831
mozBorderRadiusTopRight property, 831
Mozilla browsers, 10
mozOpacity property, 831
multidimensional arrays, 915–916
multi-frame navigation, 8
multiline property, BC207

multiple frames
controlling, navigation bars, 126–128
discussed, 31–32

multiple property, 704
multiplication (*) operator, 66
MutationEvents event, 556

N
name attribute

form object, 99
<form> tag, 91, 97
id attribute versus, 40

name property
a element object, 596–597
applet object, BC171
button object, 654
discussed, 466, 479
embed object, BC178
Error object, 959
form object, 642
Image object, 612–613
isindex object, BC8
layer object, BC124
meta object, BC14
object object, BC176
plugin object, BC92
radio input object, 667
text object, 679–680
window object, 385

named node maps, 287
namedItem() method, 711
nameProp property

a element object, 597
discussed, 546
Image object, 613

namespaces
behaviors and, BC334
namespaces property, 546
namespaceURI property, 183, 236

naming
cookies, 522
functions, 73

Continued

1190 Index ✦ N

naming (continued)
objects, 39–40
parameters, 106
strings, 134
variables, 61–62
windows, 385, 424

NaN property, 887–888
naturalHeight property, 613
naturalWidth property, 613–614
navigate() method, 419–420
NavigateAndFind() method, 378
navigation

multi-frame, 8
windows, 385

navigation bars, multiple frames, controlling,
126–128

navigator object
appCodeName property, BC69
appMinorVersion property, BC76
appName property, 44, 90, BC69
appVersion property, 44, 90, BC69
browserLanguage property, BC77
cookieEnabled property, BC78
cpuClass property, BC78–BC79
javaEnabled() method, BC84
language property, BC79
mimeTypes property, BC79–BC80
onLine property, BC80
oscpu property, BC80
overview, 36, BC68–BC69
platform property, BC81
plugins property, BC81–BC82
preference() method, BC84–BC87
product property, BC82
productSub property, BC82
roles of, 36
securityPolicy property, BC83
systemLanguage property, BC83
taintEnabled() method, BC87
userAgent property, BC69, BC83
userLanguage property, BC83
userProfile property, BC83
vendor property, BC82, BC84
vendorSub property, BC82, BC84

navigator property, 385
navigator.Enabled() method, 149
 (nonbreaking space character), BC22
NEGATIVE_INFINITY property, 887
nested elements, 209
nested functions, 983–984
nested strings, 73, 875–876
Netscape browsers, 10
new keyword, 77
newline (\n) character, 161, 692
newsgroups, 1139–1140
newWind variable, 371
newWindow() function, 128
newWindow variable

location object, 90
window object, 86

next property, 502
nextField() function, 221
nextNode() method, 588
nextPage() method, BC47
nextPage property, 769
nextSibling() method, 588
nextSibling property, 183–184, 237
nextWeek() function, 118
NN4 event object

data property, 748–749
layerX property, 749
layerY property, 749
modifiers property, 752
pageX property, 749
pageY property, 749
screenX property, 749
screenY property, 749–751
target property, 752
type property, 753
which property, 753

NN6+ event object
altKey property, 775
bubbles property, 776
button property, 776
cancelable property, 776–777
cancelBubble property, 77
charCode property, 77
clientX property, 780

1191Index ✦ N–O

clientY property, 780
ctrlKey property, 775
currentTarget property, 783–785
detail property, 785
eventPhase property, 785
isChar property, 785
keyCode property, 777–779
layerX property, 780
layerY property, 780
metaKey property, 775
originalTarget property, 785–786
pageX property, 780
pageY property, 780
relatedTarget property, 786–787
screenX property, 780
screenY property, 780
shiftKey property, 775–776
target property, 787–789
timeStamp property, 789–790

node maps, 226, 287
node trees, HTML structure, 41
nodeName property

discussed, 183–184
as generic object, 237–238

nodes
child

appendChild() method, 139
defined, 42
discussed, 227

content, replacing, 187–189
creatTextNode() method, 186
defined, 41
document, 42
hierarchy of, 180–182
HTML-related, 182
new content, generating, 186–187
node trees, 41
object methods, list of, 185–186
object properties, list of, 183
parent, 42
root, 1043
text, 38–39

nodeType property
discussed, 184
as generic object, 238–239

nodeValue property
discussed, 183–184
as generic object, 239–240

nonbreaking space character (), BC22
non-repeating objects, 250
nonscriptable browsers, 50–51, 149–150
noResize property, 466
normalize() method, 302
<noscript> tag, 148–149
noShade property, 1032
not equal to (!=) operator, 67
noWrap property

discussed, 580–581
td object, BC59–BC60

null value, 86
Number() function, 1013
Number object

methods, list of, 888–890
overview, 886
properties, list of, 887–888

number property, 959
numbers

adding, 64
converting

to strings, 65–66, 882
strings to, 65, 881–882

decimal to hexadecimal conversion,
880–881

errors in, BC282
floating-point, 65, 877–879
lowest common denominators, 165
maxValue parameter, 72
random number generation, 115–116
Roman numerals, BC64
startValue parameter, 72

O
object model, frames, 360–361
object object

align property, BC173
alt property, BC173
altHTML property, BC173
BaseHref property, BC173

Continued

1192 Index ✦ O

object object (continued)
baseURI property, BC173
border property, BC174
classid property, BC174
code property, BC174
codeBase property, BC174
codeType property, BC175
contentDocument property, BC175
data property, BC175
discussed, 1006–1008
form property, BC175
height property, BC175
hspace property, BC175
name property, BC176
object property, BC176
overview, BC171–BC172
type property, BC176
useMap property, BC176
vspace property, BC175–BC176
width property, BC175–BC176

object property
applet object, BC171
object object, BC176

object-oriented (OO) programming, 185
objects

a element, 595
ActiveXObject, 1019–1020
applet, BC167–BC171
application level, BC68
area element

overview, 621–622
properties, list of, 621–622

Array
array.concat() method, 918–921
array.join() method, 921–922
array.pop() method, 923
array.push() method, 923
array.reverse() method, 923–925
array.shift() method, 923
array.slice() method, 925
array.sort() method, 925–926
array.splice() method, 929–930
array.toLocaleString() method, 930
array.toString() method, 930

array.unshift() method, 923
properties, list of, 916–918

in arrays, 80
automation, 1019
base, BC5–BC6
basefont, BC6–BC7
blockquote, 1024
body element

aLink property, 578
background property, 579
bgColor property, 578–579
bgProperties property, 579
bottomMargin property, 580
createControlRange() method, 583
createTextRange() method, 583
doScroll() method, 583–584
leftMargin property, 580
link property, 578, 580
noWrap property, 580–581
onafterprint property, 583–584
onbeforeprint property, 584
onscroll property, 585
overview, 577
rightMargin property, 580–581
scroll property, 581
scrollLeft property, 581
scrollTop property, 581–582
text property, 578, 583
topMargin property, 580, 583
vLink property, 583

Boolean, 890
br, 1024–1025
built-in, 158
button

click() method, 655
form property, 653–654
name property, 654
onclick event, 655–656
onmousedown event, 656
onmouseup event, 656
overview, 651–652
type property, 654
value property, 654

1193Index ✦ O

buttons as, 102
checkboxes as, 102–103
clientInformation, BC68
col, BC50–BC52
colgroup, BC50–BC52
core language, 111
cssRule, 807–810
Date

calculations, 117–118
creating, 893–894
form validation, 904–907
getMonth() method, 117
GMT (Greenwich Mean Time), 892
methods, list of, 117, 895–896
references, 1108
setMonth() method, 117
snapshots of, 116
strings and, 898
time zones, 891–892
today variable, 116

dd, BC64–BC65
detection, DHTML, BC323–BC324
Dictionary, 1020
dir, BC65–BC66
dl, BC64–BC65
document

activeElement property, 513
alinkColor property, 179, 514
anchors property, 516–517
applets property, 517–518
in arrays, 80
bgColor property, 179, 514, 518
body property, 518
captureEvents() method, 551–552
characterSet property, 519
charset property, 518–519
clear() method, 552–553
close() method, 553–554
compatMode property, 519–520
cookie property, 520–521
createAttribute() method, 554
createComment() method, 554
createDocumentFragment()

method, 555

createElement() method, 555–556
createEvent() method, 556
createEventObject() method, 557
createRange() method, 557
createStyleSheet() method, 557–559
createTextNode() method, 559–560
createTreeWalker() method, 560
defaultCharset property, 529
defaultView property, 529
designMode property, 530
doctype property, 530
document.createElement()

method, 94
document.createTextNode()

method, 94
documentElement property, 530–531
document.forms property, 91
document.getElementById()

method, 94–95
document.images property, 91
document.write() method, 90, 92–94
domain property, 531
elementFromPoint() method, 560–562
embeds property, 531
execCommand() method, 562–564
expando property, 532
fgColor property, 514, 532
fileCreatedDate property, 532
fileModifiedDate property, 532
fileSize property, 532–534
forms property, 534–536
frames property, 536–537
getElementById() function, 90
getElementById() method, 564–565
getElementsByName() method, 565
getSelection() method, 566–567
handleEvent() method, 567
height property, 537
ids property, 537
images property, 537–538
implementation property, 538–539
lastModified property, 539
layers property, 540–542

Continued

1194 Index ✦ O

objects, document (continued)
linkColor property, 179, 514, 542
links property, 542
location object versus, 89
location property, 543
media property, 545
mimeType property, 546
nameProp property, 546
namespaces property, 546
onselectionchange event, 575
onstop event, 575
open() method, 567–568
overview, 36, 512
parentWindow property, 546
plugins property, 546–547
properties and methods, accessing, 90
protocol property, 547
queryCommandCommandState()

method, 569
queryCommandEnabled() method, 569
queryCommandIndterm() method, 569
queryCommandSupported()

method, 569
queryCommandText() method, 569
queryCommandValue() method,

569–570
recalc() method, 570
referrer property, 547–548
releaseEvents() method, 570
roles of, 36
routeEvent() method, 571
scripts property, 548–549
security checks, BC303
security property, 549
selection property, 549–550
styleSheets property, 550
subWrite() method, 93
syntax, 90
tags property, 550
title property, 550
URL property, 543–545, 551
URLUnencoded property, 551
vlinkColor property, 179, 514–516, 551
width property, 537, 551

write() method, 44, 571
writeln() method, 571–575

document object hierarchy, 164–165
dt, BC64–BC65
embed, BC177–BC179
Error

methods, list of, 959
overview, 957
properties, 958–959

event handlers and, 168–169
expected errors, BC281
fieldset element, 646–647
file, 717–718
filter

filter names, 843–846
overview, 837–838
reveal transitions, 841–842
static filter types, 838–839
subproperties, reading and writing, 838
syntax changes, 842–843
transition filters, 840

font, 1025–1028
form

acceptCharset property, 638
action attribute, 99, 108
action property, 638
autocomplete property, 639
elements property, 639–640
encoding property, 641
enctype attribute, 99
enctype property, 641
form.elements property, 99
handleEvent() method, 643
length property, 641
method attribute, 99
method property, 642
name attribute, 99
name property, 642
onreset() method, 645–646
onsubmit event, 646
processData() function, 107
reset() method, 643–644
security checks, BC303
submit() method, 108–109, 644

1195Index ✦ O

target attribute, 99
target property, 642–643

frame
allowTransparency property, 463
borderColor property, 463
contentDocument property, 463–464
contentWindow property, 464
frameBorder property, 464–465
height property, 465
longDesc property, 465
marginHeight property, 466
marginWidth property, 466
name property, 466
noResize property, 466
scrolling property, 467
src property, 468
width property, 465

frame element objects versus frames,
365–366

frameset
border property, 470
borderColor property, 471
cols property, 471
frameBorder property, 474
frameSpacing property, 474
rows property, 471–473

function
apply() method, 987
arguments property, 984–985
arity property, 985
call() method, 987–988
caller property, 985–986
constructor property, 986
length property, 986–987
prototype property, 987
toString() method, 988
valueOf() method, 988

h1, 1029
h2, 1029
h3, 1029
h4, 1029
h5, 1029
h6, 1029
head, BC4–BC5

hidden, 689–690
history

back() method, 503–504
current property, 502
forward() method, 504–506
go() method, 506–507
length property, 503–504
next property, 502–503
overview, 36
previous property, 502–503
roles of, 36

hr, 1029–1033
HTML, BC3–BC4
HTMLParagraphElement, 189
identifiers, 40
IE4+ event object

altKey property, 755
altLeft property, 756
behaviorCookie property, 756
behaviorPart property, 756
bookmarks property, 756
boundElements property, 756
button property, 757–758
cancelBubble property, 758
clientX property, 759
clientY property, 759
ctrlKey property, 755
ctrlLeft property, 756
dataFld property, 756
dataTransfer property, 763–765
fromElement property, 765
keyCode property, 767–769
nextPage property, 769
offsetX property, 759
offsetY property, 759
propertyName property, 769
qualifier property, 756
reason property, 756
recordset property, 756
repeat property, 769
returnValue property, 770
saveType property, 770
screenX property, 759

Continued

1196 Index ✦ O

objects, IE4+ event object (continued)
screenY property, 759
shiftKey property, 755–756
shiftLeft property, 756
srcElement property, 770–772
srcFilter property, 772
srcUrn property, 772
toElement property, 765–767, 772
type property, 772–773
wheelData property, 773
x property, 759
y property, 759–763

IE4 extensions, 174–176
IE5 extensions, 177
Image

align property, 604–605
alt property, 606
border property, 606
complete property, 606–607
dynsrc property, 608–609
fileCreatedDate property, 609
fileModifiedDate property, 609
fileSize property, 609–610
fileUpdatedDate property, 609
height property, 610
href property, 610
hspace property, 610
isMap property, 611
longDesc property, 611
loop property, 611
lowsrc property, 612
mimeType property, 612
name property, 612–613
nameProp property, 613
naturalHeight property, 613
naturalWidth property, 613–614
onabort event, 619
onerror property, 619
onload event, 619–620
overview, 602–603
protocol property, 614
src property, 614
start property, 618
useMap property, 618
vspace property, 610–611, 618

width property, 610, 618
x property, 618
y property, 618–619

images as, 153
input

checkboxes, 657–661
images, 669–671
radio objects, 663–667

isindex, BC7–BC8
label, 1033–1034
label element, 646–649
layer

above property, BC113
background property, BC116–BC117
below property, BC113
bgColor property, BC117–BC118
clip property, BC118–BC122
document property, BC122
left property, BC122
load() method, BC136–BC137
moveAbove() method, BC137
moveBelow() method, BC137–BC138
moveBy() method, BC138
moveTo() method, BC138
moveToAbsolute() method,

BC138–BC140
name property, BC124
onblur event, BC143
onfocus event, BC143
onload event, BC143
onmouseout event, BC143
onmouseover event, BC143
pageX property, BC124
pageY property, BC124–BC128
parentLayer property, BC128
resizeBy() method, BC140
resizeTo() method, BC140–BC143
siblingAbove property, BC113, BC128
siblingBelow property, BC113–BC116,

BC128
src property, BC128–BC131
top property, BC122–BC124
visibility property, BC131–BC132
zIndex property, BC133–BC136

1197Index ✦ O

li, BC63–BC64
link, BC8–BC12
location

assign() method, 499
document object versus, 89
hash property, 488–489
host property, 489–492
hostname property, 492
href property, 89, 493–494
newWindow variable, 90
overview, 36, 486
pathname property, 494
port property, 494–495
protocol property, 495
reload() method, 499–500
replace() method, 500–501
roles of, 36
search property, 495
security checks, BC302
userAgent property, 90

map element, 624–627
marquee, 1034–1038
Math

methods, list of, 882, 884
properties, list of, 883–884
random() method, 115–116
trigonometric functions, 115

menu, BC65–BC66
meta, BC12–BC14
methods, adding, 159
methods and, 167
mimeType, BC87–BC90
naming, 39–40
navigator

appCodeName property, BC69
appMinorVersion property, BC76
appName property, 44, 90, BC69
appVersion property, 44, 90, BC69
browserLanguage property, BC77
cookieEnabled property, BC78
cpuClass property, BC78–BC79
javaEnabled() method, BC84
language property, BC79
mimeTypes property, BC79–BC80
onLine property, BC80

oscpu property, BC80
overview, 36, BC68–BC69
platform property, BC81
plugins property, BC81–BC82
preference() method, BC84–BC87
product property, BC82
productSub property, BC82
roles of, 36
securityPolicy property, BC83
systemLanguage property, BC83
taintEnabled() method, BC87
userAgent property, BC69, BC83
userLanguage property, BC83
userProfile property, BC83
vendor property, BC82
vendorSub property, BC82, BC84

NN4 event object
data property, 748–749
layerX property, 749
layerY property, 749
modifiers property, 752
pageX property, 749
pageY property, 749
screenX property, 749
screenY property, 749–751
target property, 752
type property, 753
which property, 753

NN6+ event object
altKey property, 775
bubbles property, 776
button property, 776
cancelable property, 776–777
cancelBubble property, 77
charCode property, 77
clientX property, 780
clientY property, 780
ctrlKey property, 775
currentTarget property, 783–785
detail property, 785
eventPhase property, 785
isChar property, 785
keyCode property, 777–779
layerX property, 780

Continued

1198 Index ✦ O

objects, NN6+ event object (continued)
layerY property, 780
metaKey property, 775
originalTarget property, 785–786
pageX property, 780
pageY property, 780
relatedTarget property, 786–787
screenX property, 780
screenY property, 780
shiftKey property, 775–776
target property, 787–789
timeStamp property, 789–790

node object properties, list of, 183
non-repeating, 250
Number

methods, list of, 888–890
overview, 886
properties, list of, 887–888

object
align property, BC173
alt property, BC173
altHTML property, BC173
BaseHref property, BC173
baseURI property, BC173
border property, BC174
classid property, BC174
code property, BC174
codeBase property, BC174
codeType property, BC175
contentDocument property, BC175
data property, BC175
discussed, 1006–1008
form property, BC175
height property, BC175
hspace property, BC175
name property, BC176
object property, BC176
overview, BC171–BC172
type property, BC176
useMap property, BC176
vspace property, BC175–BC176
width property, BC175–BC176

object detection, 153–155
object model families, 170

object model hierarchy, 163
ol, BC60–BC62
optgroup, 714–716
option, 713
param, BC179
plugin, BC90–BC92
properties, 166
prototypes of, 159
radio, 103–104
Range

cloneContents() method, 1046
cloneRange() method, 1046
collapse() method, 1047
collapsed property, 1043
commonAncestorContainer property,

1043–1044
compareBoundaryPoints() method,

1047–1048
comparePoint() method, 1051
createContextualFragment()

method, 1051–1052
deleteContents() method, 1052–1053
detach() method, 1053–1054
endContainer property, 1044
endOffset property, 1044
extractContents() method, 1054
insertNode() method, 1054–1055
intersectsNode() method, 1056
isPointInRange() method, 1056
overview, 1039–1040
selectNode() method, 1056
selectNodeContents() method,

1056–1057
setEnd() method, 1057
setEndAfter() method, 1059
setEndBefore() method, 1059
setStart() method, 1057–1058
setStartAfter() method, 1059
setStartBefore() method, 1059
startContainer property, 1044
startOffset property, 1044–1045
surroundContents() method,

1059–1060
toString() method, 1061

1199Index ✦ O

referencing, 40
RegExp

compile() method, BC207
constructor property, BC206
exec() method, BC208
global property, BC206
ignoreCase property, BC206
input property, BC210
lastIndex property, BC207
lastMatch property, BC210
leftContext property, BC211
multiline property, BC207, BC210
prototype property, BC211
rightContext property, BC211
source property, BC207
test() method, BC208–BC209

roles of, 42–45
rule, 807–810
screen

availHeight property, BC100
availLeft property, BC101
availTop property, BC101–BC102
availWidth property, BC100
bufferDepth property, BC102
colorDepth property, BC102
discussed, 397
fontSmoothingEnabled property,

BC103
height property, BC100
overview, 36, BC99–BC100
pixelDepth property, BC102–BC103
roles of, 36
updateInterval property, BC103
width property, BC100–BC101

script, BC14–BC16
select

add() method, 710
item() method, 711
length property, 704
multiple property, 704
namedItem() method, 711
navigating with, 105–106
onchange event, 711–712
options() method, 711

options property, 705–708
overview, 695–696
pop-up lists, 104–105
remove() method, 710–711
selectedIndex property, 105, 709
size property, 710
text property, 105
type property, 710
value property, 710

selection
addRange() method, 1065
anchorNode property, 1063
anchorOffset property, 1063
clear() method, 1065
collapse() method, 1066
collapseToEnd() method, 1066
collapseToStart() method, 1066
containsNode() method, 1066
createRange() method, 1066
deleteFromDocument() method, 1066
empty() method, 1067
extend() method, 1067
focusNode property, 1063
focusOffset property, 1063
getRangeAt() method, 1067
isCollapsed property, 1063
overview, 1061–1062
rangeCount property, 1063
removeAllRanges() method, 1067
removeRange() method, 1067
selectAllChildren() method, 1068
toString() method, 1068
type property, 1064–1065

static, 189–190
string

constructor property, 853–854
length property, 854
prototype property, 854–855
string.charAt() method, 855–856
string.charCodeAt() method,

856–857
string.concat() method, 859
string.indexOf() method, 859

Continued

1200 Index ✦ O

objects, string (continued)
string.lastIndexOf() method, 860
string.localeCompare() method, 860
string.match() method, 861–862
string.replace() method, 862–865
string.search() method, 865
string.slice() method, 865–867
string.split() method, 868
string.substr() method, 868–870
string.substring() method, 870–871
string.toLocaleLowerCase()

method, 871
string.toLocaleUpperCase()

method, 871
string.toLowerCase() method, 872
string.toString() method, 872
string.toUpperCase() method, 872
string.valueOf() method, 872

style
aural properties, 836–837
background properties, 828–829
border and edge properties, 829–833
font properties, 815–816
inline display and layout properties,

821–825
list properties, 833
page and printing properties, 835–836
positioning properties, 826–828
scroll bar properties, 834
table properties, 834–835
text properties, 817–820

style element, 796–797
styleSheet

addImport() method, 804–805
addRule() method, 805
cssRules property, 799
cssText property, 799–800
deleteRule() method, 806
disabled property, 800
href property, 800
id property, 800
imports property, 801
insertRule() method, 806–807
media property, 801

ownerNode property, 801
ownerRule property, 802
owningElement property, 802
pages property, 802–803
readOnly property, 803
removeRule() method, 805–806
rules property, 803–804
title property, 804
type property, 804

table
align property, BC35
background property, BC35
bgColor property, BC36
border property, BC36
borderColor property, BC36
borderColorDark property, BC36
borderColorLight property,

BC36–BC37
caption property, BC37
cellPadding property, BC37
cells property, BC38
cellSpacing property, BC37–BC38
cols property, BC38
createCaption() method, BC45
createTFoot() method, BC46
createTHead() method, BC46
dataPageSize property, BC39
deleteCaption() method, BC45–BC46
deleteRow() method, BC46
deleteTFoot() method, BC46
deleteTHead() method, BC46
firstPage() method, BC47
frame property, BC39–BC41
height property, BC41
insertRow() method, BC46–BC47
lastPage() method, BC47
moveRow() method, BC47
nextPage() method, BC47
previousPage() method, BC47–BC48
refresh() method, BC48
rows property, BC42
rules property, BC42–BC44
summary property, BC44
tBodies property, BC44–BC45

1201Index ✦ O

tFoot property, BC45
tHead property, BC45
width property, BC41, BC45

tbody, BC48–BC50
td, BC56–BC60
text

blur() method, 683
defaultValue property, 677–678
focus() method, 683–684
form property, 678
maxLength property, 679
name property, 679–680
onafterupdate event, 685
onbeforeupdate event, 685
onblur event, 686
onchange event, 688
onerrorupdate() method, 685–686
onfocus event, 686
onselect event, 686–687
overview, 674
readOnly property, 680
select() method, 684–685
size property, 680
type property, 681
value property, 681–683

text fields as, 28
TextNode, 1069–1073
TextRange

boundingHeight property, 1077
boundingLeft property, 1077
boundingTop property, 1077
boundingWidth property, 1077–1079
collapse() method, 1080–1081
compareEndPoints() method,

1081–1084
duplicate() method, 1084–1085
execCommand() method, 1085–1087
expand() method, 1087–1088
findText() method, 1088–1092
getBookmark() method, 1092
htmlText property, 1079–1080
inRange() method, 1093
isEqual() method, 1093–1094
move() method, 1094–1095

moveEnd() method, 1095
moveStart() method, 1095
moveToBookmark() method, 1095
moveToElementText() method, 1095
moveToPoint() method, 1096–1097
overview, 1074–1075
parentElement() method, 1097–1098
pasteHTML() method, 1098–1099
queryCommandEnabled() method, 1099
queryCommandIndeterm()

method, 1099
queryCommandState() method, 1099
queryCommandSupported()

method, 1099
queryCommandText() method, 1099
queryCommandValue() method, 1099
select() method, 1099
setEndPoint() method, 1100
text property, 1080

TextRectangle, 1101–1103
tfoot, BC48–BC50
th, BC56–BC60
thead, BC48–BC50
title, BC16–BC17
top-level, 37
tr

cells property, BC54
deleteCell() method, BC55
height property, BC54–BC55
insertCell() method, BC55–BC56
overview, BC52–BC53
rowIndex property, BC55
sectionRowIndex property, BC55

TreeWalker
methods, 588–589
overview, 586
properties, 587

ul, BC62–BC63
userProfile

addReadRequetst() method,
BC105–BC106

clearRequest() method, BC106
data, accessing, BC104–BC105

Continued

1202 Index ✦ O

objects, userProfile (continued)
doReadRequest() method,

BC107–BC108
getAttribute() method, BC108
overview, BC103–BC104

value property and, 166
VBArray, 1021–1022
window

alert() method, 45, 87–88, 404–405
appCore property, 369
back() method, 406
blur() method, 272
captureEvents() method, 406–408
clearInterval() method, 408–409
clearTimeout() method, 409–411
clientInformation property, 370
clipboardData, 370–371
close() method, 85–86, 411–412
closed property, 371–372
closeNewWindow() function, 86
Components property, 369, 372
confirm() method, 412–413
controllers property, 369, 372
createPopup() method, 413
crypto property, 373
defaultStatus property, 373–374
dialogArguments property, 374
dialogHeight property, 374
dialogLeft property, 375
dialogTop property, 375
dialogWidth property, 374–375
directories property, 375
document property, 377–378
DOM (document object model), 35
event property, 378
events and, 176
execScript() method, 414
external property, 378–379
find() method, 414–415
forward() method, 406, 415
frameElement property, 379
frames property, 379–381
fullScreen() function, 167
handleEvent() method, 415–416

history property, 382
home() method, 416
innerHeight property, 382
innerWidth property, 382
loading property, 384
location property, 385
locationbar property, 375, 385
makeNewWindow() function, 86
maximize() method, 167
menubar property, 375
moveBy() method, 416
moveTo() method, 416–419
name property, 385
navigate() method, 419–420
navigator property, 385
newWindow() function, 128
newWindow variable, 86
offscreenBuffering property, 386
onafterprint event, 456
onbeforeprint event, 456
onbeforeunload event, 456–457
ondragdrop event, 457–458
onerror event, 458
onerror property, 386–388
onhelp event, 458–459
onload event, 52, 89, 459–460
onmove event, 460
onresize event, 460–461
onunload event, 461
open() method, 420
opener property, 128, 389–391
openWindow() method, 164
outerHeight property, 382, 392
outerWidth property, 382–384, 392
overview, 36, 84, 368–369
pageXOffset property, 392
pageYOffset property, 392–394
parent property, 394–397
personalbar property, 375, 397
pkcs11 property, 373
print() method, 426–428
prompt() method, 428–429
prompter property, 369
releaseEvents() method, 429–430

1203Index ✦ O

resizeBy() method, 430
resizeTo() method, 430–432
returnValue property, 397
roles of, 36
routeEvent() method, 432–433
screen property, 397
screenLeft property, 398
screenTop property, 398
screenX property, 398
screenY property, 398–399
scroll() method, 433–435
scrollbars property, 375, 399
scrollBy() method, 435
scrollMaxX property, 399
scrollMaxY property, 399
scrollTo() method, 435–437
scrollX property, 399
scrollY property, 399
self property, 400–401
self value, 85
setInterval() method, 437–440
setTimeout() method, 441–444
showHelp() method, 444
showModalDialog() method, 444
showModelessDialog() method,

444–445
sidebar property, 369–370, 401
sizeToContent() method, 455
status property, 401–404
statusbar property, 375, 404
stop() method, 455–456
subWindow variable, 85
toolbar property, 375–377, 404
top property, 404
window property, 404
window.confirm() method, 88
window.open() method, 85, 128
window.prompt() method, 88–89
window.status property, 87

xml, BC181–BC184
XMLHttpRequest, BC185–BC189

offscreenBuffering property, 386
offset parameter, 1057
offset properties, 174

offsetHeight property, 229, 240
offsetLeft property, 241
offsetParent property, 242–243
offsetTop property, 241
offsetWidth property, 229, 240–241
offsetX property, 759
offsetY property, 759
OKToTest flag, BC266
ol object, BC60–BC62
onabort event, 619
onactivate event, 323
onafterprint event, 456, 584
onafterupdate event, 685
onbeforecopy event, 324
onbeforecut event, 324–325
onbeforedeactivate event, 323, 325
onbeforeeditfocus event, 325
onbeforepaste event, 325–326
onbeforeprint event, 456, 584
onbeforeunload event, 456–457
onbeforeupdate event, 685
onblur event

discussed, 326–327
layer object, BC143
text object, 686

onbounce event, 1039
onchange event

select object, 711–712
text object, 688
this keyword, 106

onclick event
button object, 655–656
checkbox input object, 661–663
discussed, 168, 329
generic objects, 327–329
radio input object, 668

oncontextmenu event, 330
oncontrolselect event, 330
oncopy event, 330
oncut event, 330–331
ondblclick event, 329, 332–333
ondeactivate event, 323
ondrag event, 333–337
ondragdrop event, 457–458

1204 Index ✦ O

ondragend event, 333–337
ondragenter event, 338
ondragleave event, 338
ondragover event, 338–339
ondragstart event, 333–337, 339
ondrop event, 339–340
onerror property, 386–388, 619
onerrorupdate() method, 685–686
onfilterchange event, 340–341
onfinish event, 1039
onfocus event

discussed, 341–342
layer object, BC143
text object, 686

onhelp event, 342–343, 458–459
onkeydown event, 343
onkeypress event, 343
onkeyup event, 343–344
online documentation, as resource, 1140–1141
onLine property, BC80
onload event

<body> tag, 168
frames, 125
Image object, 619–620
layer object, BC143
link object, BC12
running scripts from, 53
window object, 52, 89

onlosecapture event, 348–349
onmousedown event, 349–350, 656
onmouseenter event, 351
onmouseleave event, 351
onmousemove event, 351
onmouseout event, 153, 352, BC143
onmouseover event, 153, 351, BC143
onmouseup event, 349–351, 656
onmove event, 460
onpaste event, 353–355
onpropertychange event, 355–356
onreadystatechange event, 356–357
onreset event, 645–646
onresize event, 357, 460–461
onresizeend event, 357
onresizestart event, 357

onscroll event, 584
onselect event, 686–687
onselectionchange event, 575
onselectstart event, 357–358
onstart event, 1039
onstop event, 575
onsubmit event

form object, 646
<form> tag, 102

onTarget() function, BC453
onunload event, 376, 461
OO (object-oriented) programming, 185
open() method

discussed, 420, 567–568
xml object, BC189

opener property, window object, 128,
389–391

openWindow() method, 164
Opera browsers, 7, 10
operators

arithmetic, 66
assignment, 61, 967–968
bitwise, 972–973
Boolean, 968–972
calculations, 66
categories, 961–962
comparison, 66–67, 962–963
connubial, 965–967
delete, 973–974
equality comparisons, 963–964
in, 974
instanceof, 974–975
operations, 66
operator precedence, 978–980
short-circuit evaluation, 980
subtract-by-value, 128
this, 975–976
typeof, 977–978
unary, 966

OPML (Outline Processor Markup Language),
BC394–BC395

optgroup object, 714–716
option object, 713
options() method, 711

1205Index ✦ O–P

options property, 705–708
ordered lists, BC60
O’Reilly & Associates, Inc. (Java in a

Nutshell), BC275
origin checks, security, BC302
originalTarget property, 785–786
orphans property, 835
oscpu property, BC80
Outdent command, documents, 563
outerHeight property, 382, 392
outerHTML property

as generic object, 244–245
read/write access, 174

outerText property
as generic object, 244–245
read/write access, 174

outerWidth property, 382–384, 392
Outline Processor Markup Language (OPML),

BC394–BC395
outline property, 832
outlineColor property, 832
outlineStyle property, 832
outlineWidth property, 832
output stream, browsers, 92
output variable, 75
overflow property, 824
overflowX property, 825
overflowY property, 825
overlapped elements, 196
ownerDocument property, 183, 245–246
ownerNode property, 801
ownerRule property, 802
owningElement property, 802

P
<p> tag, 34, 38
packages, classes and, BC275
padding property, 832
paddingBottom property, 833
paddingLeft property, 833
paddingRight property, 833
paddingTop property, 833
page and printing properties, style

object, 835–836

page property, 835
pageBreakAfter property, 835
pageBreakBefore property, 835
pageBreakInside property, 835
pages. See Web pages
pages property, 802–803
pageX property

layer object, BC124
NN4 event object, 749
NN6+ event object, 780

pageXOffset property, 392–394
pageY property

layer object, BC124–BC128
NN4 event object, 749
NN6+ event object, 780

pageYOffset property, 392–394
paragraphs

content, adding, 187
text, 38

parallel arrays, 78–80, 912–913
param object, BC179
parameters. See also arguments

afterBegin, 285
afterEnd, 285
beforeBegin, 285
beforeEnd, 285
CharSet, 220
DataURL, 220
defined, 24, 44, 74
EscapeChar, 220
FieldDelim, 220
function parameters

overview, 984, 992
passing, 438–439

functions and, 73–74
Language, 220
maxValue, 72
minYear, BC237
naming, 106
offset, 1057
passing, 442
relativeNumber, 506
RowDelim, 220

Continued

1206 Index ✦ P

parameters (continued)
startValue, 72
strings as, 74
TextQualifier, 220
this.form, 633
UseHeader, 220
windowFeatures, 420–421

parent nodes
defined, 42
siblings, 181

parent property, 394–397
parent window, frames, 122–123
parentElement() method, 1097–1098
parentElement property, 246
parentFrame property, 379
parentheses (()), 24
parentLayer property, BC128
parentNode() method, 588
parentNode property

discussed, 183–184
as generic object, 247

parentStyleSheet property, 808
parentTextEdit property, 247–249
parent-to-child references, frames,

123–124, 362
parentWindow property, 546
parseFloat() function

converting strings to number, 65
discussed, 428
global functions, 1013

parseInt() function
converting strings to numbers, 65
discussed, 375, 428
global functions, 1013–1014

passing
events, 725
forms to functions, 631–634
function parameters, 438–439
text to functions, 682

passwords, throwaway, 521
paste command, 331–332, BC325
pasteHTML() method, 1098–1099
path settings, cookies, 523

pathname property
a element object, 595
area element object, 624
discussed, 494

patterns, regular expressions and,
BC191–BC192

pause property, 837
pauseAfter property, 837
pauseBefore property, 837
PDAs (personal digital assistants), 151–153
percentages

calculations, 240
% (percent character), 1033

personal digital assistants (PDAs), 151–153
personalbar property, 375, 397
phantom page syndrome, cascading style

sheets, 175
pipe character (|), 407
pitch property, 837
pitchRange property, 837
pixelBottom property, 827
pixelDepth property, BC102–BC103
pixelHeight property, 827
pixelLeft property, 827
pixelRight property, 827
pixels, coordinate points, 45
pixelTop property, 827
pixelWidth property, 827
pkcs11 property, 373
placeholders

creating, 236
data types, 60
discussed, 545

platform equivalency, DHTML, BC321–BC322
platform property, BC81
playDuring property, 837
plugin object, BC90–BC92
plug-ins

ActiveX controls, 6
audio and video, 6
controlling, BC263–BC267
detection, BC96–BC99
embedded media example, BC271–BC275

1207Index ✦ P

Flash, 6
helpers and, 5–6
installation, BC96
jukebox example, BC268–BC271
verifying, BC94

plugins property
discussed, 546–547
navigator object, BC81–BC82

pluginspace property, BC178
plus sign (+), 24, 66
pointer control, 1021
populating

arrays, 911
table cells, BC21–BC23
windows, 424–425

pop-up lists
color changes, 712
creating, 413
hiding and showing, 483–484
methods, list of, 482–484
properties, list of, 481–482
select object, 104–105

port property
a element object, 595
area element object, 624
overview, 494–495

posBottom property, 827
posHeight property, 827
position property, 827
positioning properties, style object, 826–828
POSITIVE_INFINITY property, 887
posLeft property, 827
posTop property, 827
posWidth property, 827
precaching images, 132–133
preference() method, BC84–BC87
preferences, browsers, reading and writing,

BC85–BC86, BC887
prefix property, 183, 236
prefsDlog variable, 451
preventDefault() method, 191, 280
prevention, frames, 362–363
prevField() function, 221
previous property, 502–503

previousNode() method, 588–589
previousPage() method, BC47–BC48
previousSibling() method, 588
previousSibling property

discussed, 183–184
as generic object, 249

primitive targets, privileges, BC311
print() method, 426–428
printEvaluator() function, BC291–BC292
printFrames() function, 426
printing and page properties, style object,

835–836
privileges

gaining, BC310
manager errors, BC314–BC315
target specification, BC310–BC312

problem prevention, BC296–BC297
processData() function, 107
processing data, 107
product property, BC82
productSub property, BC82
profile property, BC5
programming

object-oriented, 185
scripting versus, 55–56

programs
back-end, 5
repetition in, 70

prompt dialog boxes, 88
prompt() method, 428–429
prompt property, BC8
prompter property, 369
propagation models, events, 190
properties. See also attributes

abbr, BC57
above, BC113
AbsolutePosition, 250
acceptCharset, 638
access to, 43
accessKey

discussed, 205–206
as generic object, 204–206
label object, 1033–1034

Continued

1208 Index ✦ P

properties (continued)
activeElement, 513
adding to objects, 159
align

applet object, BC169
discussed, 476–477
embed object, BC178
hr object, 1030
Image object, 604–605
object object, BC173
table object, BC35

aLink, 578
alinkColor, 179, 514
all, 206–207
allowTransparency, 463, 477
alt

applet object, BC170
area element object, 623
Image object, 60
<meta> tag, 153
object object, BC173

altHTML
applet object, BC169
object object, BC173

altKey
IE4+ event object, 755
NN6+ event object, 775

altLeft, 756
anchorNode, 1063
anchorOffset, 1063
anchors, 516–517
appCodeName, BC69
appCore, 369
applets, 517–518
appMinorVersion, BC76
appName, 44, 90, BC69
appVersion, 44, 90, BC69
archive

applet object, BC170
security, BC307–BC308

areas, 625
arguments, 984–985
arity, 985

as arrays, 166
in arrays, 80
attribute, 207–209
attributes, 183
aural, style object, 836–837
autocomplete, 639
availHeight, BC100
availLeft, BC101
availTop, BC101–BC102
availWidth, BC100
axis, BC57
BackCompat, 519
background

layer object, BC116–BC117
overview, 579
table object, BC35

BaseHref, BC173
baseURI, BC173
behavior, 1035
behaviorCookie, 756
behaviorPart, 756
below, BC113
bgColor

body element object, 578–579
discussed, 179, 514, 518
document object, 179
layer object, BC117–BC118
marquee object, 1037
table object, BC36

bgcolor, 166
bgProperties, 579
body, 518
bookmarks, 756
border

discussed, 470
Image object, 606
object object, BC174
table object, BC36

border and edge, style object, 829–833
borderColor, 463, 471, BC36
borderColorDark, BC36
borderColorLight, BC36–BC37
bottom, 1102

1209Index ✦ P

bottomMargin, 580
boundElements, 756
boundingHeight, 1077
boundingLeft, 1077
boundingTop, 1077
boundingWidth, 1077–1079
box, BC39
browserLanguage, BC77
bubbles, 776
bufferDepth, BC102
button

IE4+ event object, 757–758
NN6+ event object, 776

caller, 985–986
cancelable, 776–777
cancelableFlag, 791
cancelBubble

IE4+ event object, 758
NN6+ event object, 77

canHaveChildren, 209–211
canHaveHTML, 211
caption, BC37
case-sensitivity, 166
cellIndex, BC58
cellPadding, BC37
cells

table object, BC38
tr object, BC54

cellSpacing, BC37–BC38
ch, BC49
characterSet, 519
charCode, 77, 778–779
charset

a element object, 595
discussed, 518–519
link object, BC10
meta object, BC13

checked
checkbox input object, 658–659
discussed, 102
radio input object, 665–666

childNodeDetail, 190
childNodes, 183–184, 211–213

children, 213–214
chOff, BC49
cite, 1024
classid, BC174
className

cascading style sheets, 138
as generic object, 215–216

clear, 1025
clientHeight, 216–217
clientInformation, 370
clientLeft, 217–218
clientTop, 217–218
clientWidth, 216–217
clientX

IE4+ event object, 759
NN6+ event object, 780

clientY
IE4+ event object, 759
NN6+ event object, 780

clip, BC118–BC122
clipboardData, 370–371
closed, 370–371
code

applet object, BC170
object object, BC174

codeBase
applet object, BC170
object object, BC174

codeType, BC175
collapsed, 1043
color

basefont object, BC7
cascading style sheets, 138
font object, 1026
hr object, 1032

colorDepth, BC102
cols

discussed, 471
frames, 364
table object, BC38
textarea object, 692

colSpan, BC58
Continued

1210 Index ✦ P

properties (continued)
commonAncestorContainer, 1043–1044
compact, BC61
compatMode, 519–520
complete

image input object, 670
Image object, 606–607

Components, 369, 372
constructor

Array object, 916
Boolean object, 890
Error object, 958
function object, 986
RegExp object, BC206
string object, 853–854

content, BC13
contentDocument, 463–464, 477, BC175
contentDocument, frames, 125
contentEditable, 218–219, 233
contentWindow, 464, 477
controllers, 369, 372
cookie, 520–521
cookieEnabled, BC78
coords, 595, 623
cpuClass, BC78–BC79
crypto, 373
cssRules, 799
cssText

cssRule object, 808
styleSheet object, 799–800

ctrlKey
IE4+ event object, 755
NN6+ event object, 775

ctrlLeft, 756
current, 502
currentNode, 587
currentStyle, 219
currentTarget, 783–785
cursor, 446
data

NN4 event object, 748–749
object object, BC175
Text object, 1069

dataFld, 219, 756

dataFormatAs, 219
dataPageSize, BC39
dataSrc, 219–223
dataTransfer, 763–765
defaultCharset, 529
defaultChecked

checkbox input object, 659
radio input object, 666

defaultStatus, 373–374
defaultValue, 677–678
defaultView, 529
defer, BC15
defined, 43
deprecated, BC4
description

discussed, 958
mimeType object, BC88
plugin object, BC92

designMode, 530
detail, 785
dialogArguments, 374
dialogHeight, 374
dialogLeft, 374
dialogTop, 374
dialogWidth, 374–375
dir, 225
direction, 1037
directories, 374
disabled

as generic object, 225–226, 234
link object, BC10
styleSheet object, 800

doctype, 530
document, 377–378, BC122
document object, accessing, 90
documentElement, 530–531
document.forms, 91
document.images, 91
domain, 531
dot notation, 43
dynamic, 320–321
dynsrc, 608–609
elements, 639–640
embeds, 531

1211Index ✦ P

enabledPlugin, BC88–BC89
encoding, 641
enctype, 99, 641
endContainer, 1044
endOffset, 1044
errors in, BC282
event, 378, BC15
event handlers as, 168–169
eventPhase, 785
events as, 168–169
expandEntityReference, 587
expando, 532
external, 378–379
face

basefont object, BC7
font object, 1027–1028

fgColor, 514, 532
fileCreatedDate, 532, 609
fileModifiedDate, 532, 609
fileName, 958
filename, BC92
fileSize, 532–534, 609–610
fileUpdatedDate, 609
filter, 587
filters, 226
firstChild, 183–184, 226–228
focusNode, 1063
focusOffset, 1063
font, style object, 815–816
fontSmoothingEnabled, BC103
fontStyle, 219
form

button object, 653–654
label object, 1034
object object, BC175
text object, 678

form.elements, 99
forms, 534–536
frame, BC39–BC41
frameBorder, 464–465, 474
frameElement, 379
frames, 379–381, 536–537
frameSpacing, 474
fromElement, 765

hash
a element object, 595
area element object, 624
discussed, 488–489

headers, BC57
height

applet object, BC170
discussed, 465, 478, 537
embed object, BC178
as generic object, 228
Image object, 610
marquee object, 1037
object object, BC175
screen object, BC100
table object, BC41
tr object, BC54–BC55

hidden, BC178
hideFocus, 229
history, 382
host

a element object, 595
area element object, 624
discussed, 489–492

hostname
a element object, 595
area element object, 624
discussed, 492

href
a element object, 595–596
area element object, 624
base object, BC6
discussed, 89, 493–494
Image object, 610
link object, BC10
location object, 89
styleSheet object, 800

hreflang, 596, BC10
hsides, BC39
hspace

applet object, BC170
Image object, 610
marquee object, 1037
object object, BC175
overview, 478

Continued

1212 Index ✦ P

properties (continued)
htmlFor

label element object, 649
label object, 1034
script object, BC15

htmlText, 1079–1080
httpEquiv, BC14
id

as generic object, 230
styleSheet object, 800

ids, 537
ignoreCase, BC206
images, 537–538
implementation, 538–539
imports, 801
inline display and layout, 821–825
innerHeight, 382
innerHTML

Dynamic HTML, 139
as generic object, 230–232
read/write access, 174, 189

innerText
as generic object, 230–232
read/write access, 174

innerWidth, 382
input, BC210
isChar, 785
isCollapsed, 1063
isContentEditable, 219, 232–233
isDisabled, 233–234
isMap, 611
isMultiLine, 234
isOpen, 481–482
isTextEdit, 234
keyCode

IE4+ event object, 767–769
NN6+ event object, 777–779

label
optgroup object, 715–716
option object, 714

lang, 235
language

as generic object, 235
navigator object, BC79

lastChild
discussed, 183–184, 235
as generic object, 226–228

lastIndex, BC207
lastMatch, BC210
lastModified, 539
layers, 540–542
layerX

NN4 event object, 749
NN6+ event object, 780

layerY
NN4 event object, 749
NN6+ event object, 780

left
layer object, BC122
TextRectangle object, 1102

leftContext, BC211
leftMargin, 580
length

Array object, 917
arrays, 77, 143
form object, 641
function object, 986–987
as generic object, 235–236
history object, 503–504
plugin object, BC92
radio input object, 667
select object, 704
string object, 854

lhs, BC39
lineNumber, 958
link, 578, 580
linkColor, 179, 514, 542
links, 542
lists, style object, 833
loading, 384
localName, 183, 236
location, 385, 543
location object versus, 89
locationbar, 374, 385
location.hash, frames, 128
location.href, frames, 128
location.ref, BC344
longDesc, 465, 478, 611

1213Index ✦ P

loop
Image object, 611
marquee object, 1038

lowsrc, 612
marginHeight, 466, 478
marginWidth, 466, 478
Math object, 883–884
maxLength, 679
MAX_VALUE, 887
media

link object, BC10–BC11
overview, 545
style element object, 797
styleSheet object, 801

menubar, 374
message, 958
metaKey, 775
method, 642
Methods, 596
mimeType

a element object, 596
Image object, 612
overview, 546

mimeTypes, BC79–BC80
MIN_VALUE, 887
modifiers, 752
multiline, BC207, BC210
multiple, 704
name

a element object, 596–597
applet object, BC171
button object, 654
discussed, 385, 466, 479
embed object, BC178
Error object, 959
form object, 642
Image object, 612–613
layer object, BC124
meta object, BC14
object object, BC176
plugin object, BC92
radio input object, 666
text object, 679–680
window object, 385

nameProp
a element object, 597
Image object, 613
overview, 546

namespaces, 546
namespaceURI, 183, 236
NaN, 887–888
naturalHeight, 613
naturalWidth, 613–614
navigator, 385
NEGATIVE_INFINITY, 887
newWindow variable, 90
next, 502
nextPage, 769
nextSibling, 183–184, 237
node objects, list of, 183
nodeName, 183–184, 237–238
nodeType, 184, 238–239
nodeValue, 183–184, 239–240
noResize, 466
noShade, 1032
noWrap, 580–581, BC59–BC60
number, 959
object

applet object, BC171
object object, BC176

object properties, 166
offscreenBuffering, 386
offset, 174
offsetHeight, 229, 240
offsetLeft, 241
offsetParent, 42–243
offsetTop, 241
offsetWidth, 229, 240–241
offsetX, 759
offsetY, 759
onerror, 386–388, 619
onLine, BC80
opener, window object, 128, 389–391
options, 705–708
originalTarget, 785–786
oscpu, BC80
outerHeight, 382, 392

Continued

1214 Index ✦ P

properties (continued)
outerHTML

as generic object, 244
read/write access, 174

outerText
as generic object, 244–245
read/write access, 174

outerWidth, 382–384, 392
ownerDocument, 183, 245–246
ownerNode, 801
ownerRule, 802
owningElement, 802
page and printing, style object, 835–836
pages, 802–803
pageX

layer object, BC124
NN4 event object, 749
NN6+ event object, 780

pageXOffset, 392–394
pageY

layer object, BC124–BC128
NN4 event object, 749
NN6+ event object, 780

pageYOffset, 392–394
parent, 394–397
parentElement, 246
parentFrame, 379
parentLayer, BC128
parentNode, 183–184, 247
parentStyleSheet, 808
parentTextEdit, 247–249
parentWindow, 546
pathname

a element object, 595
area element object, 624
discussed, 494

personalbar, 374, 397
pixelDepth, BC102–BC103
pkcs11, 373
platform, BC81
plugins, 546–547, BC81–BC82
pluginspace, BC178
pop-up lists, 481–482

port
a element object, 595
area element object, 624
discussed, 494–495

positioning, style object, 826–828
POSITIVE_INFINITY, 887
prefix, 183, 236
previous, 502–503
previousSibling, 183–184, 249
product, BC82
productSub, BC82
profile, BC5
prompter, 369
propertyName, 769
protocol

a element object, 595
area element object, 624
discussed, 495, 547
Image object, 614

protocolLang, 597
prototype

Array object, 917–918
Boolean object, 890
function object, 987
Math object, 888
RegExp object, BC211
string object, 854–855

prototypes, 855
qualifier, 756
rangeCount, 1063
read-only, 190
readOnly

cssRule object, 808–809
styleSheet object, 803
text object, 680

read/write status, 166
readyState

as generic object, 249–250
xml object, BC186–BC187

reason, 756
recordNumber, 250–251
recordset, 756
referrer, 547–548

1215Index ✦ P

rel, 597, BC11
relatedTarget, 786–787
repeat, 769
replace, 499–500
responseText, BC187
responseXML, BC187
returnValue, 397, 770
rev, 597, BC11
rhs, BC39
right, 1102
rightMargin, 580–581
root, 587
rowIndex, BC55
rows

discussed, 471–473
frames, 364
table object, BC42
textarea object, 692–693

rowSpan, BC58–BC60
rules

styleSheet object, 803–804
table object, BC42–BC44

runtimeStyle, 251–252
saveType, 770
scopeName, 236, 252
screen, 397
screenLeft, 398
screenTop, 398
screenX

discussed, 398
IE4+ event object, 759
NN4 event object, 749
NN6+ event object, 780

screenY
discussed, 398–399
IE4+ event object, 759
NN4 event object, 749–751
NN6+ event object, 780

script-detectable, 171
scripts, 548–549
scroll, 581
scrollAmount, 1038
scrollbar, style object, 833
scrollbars, 374, 399

scrollDelay, 1038
scrollHeight, 252
scrolling, 467, 479
scrollLeft

body element object, 581
as generic object, 252–253

scrollMaxX, 399
scrollMaxY, 399
scrollTop

body element object, 581–582
as generic object, 253–254

scrollWidth, 252–253
scrollX, 399
scrollY, 399
search

a element object, 595
area element object, 624
discussed, 495

sectionRowIndex, BC55
security, 549
securityPolicy, BC83
selectedIndex, 105, 709
selection, 549–550
selectorText, 808–809
self, 400–401
shape, 595, 623–624
sheet, BC11
shiftKey

IE4+ event object, 755–756
NN6+ event object, 775–776

shiftLeft, 756
siblingAbove, BC113, BC128
siblingBelow object, BC113–BC116,

BC128
sidebar, 369–370, 401
size

basefont object, BC7
hr object, 1032
select object, 710
text object, 680

source, BC207
sourceIndex, 254–255
span, BC52

Continued

1216 Index ✦ P

properties (continued)
src

discussed, 468, 479–480
embed object, BC179
image input object, 670
Image object, 614
 tag, 132
layer object, BC128–BC131
script object, BC16
xml object, BC184

srcElement, 770–772
srcFilter, 772
srcUrn, 772
start

Image object, 618
ol object, BC61

startContainer, 1044
startOffset, 1044–1045
status, 401–404, BC187
statusbar, 374, 404
statusText, BC188
style

cssRule object, 809
as generic object, 255

styleSheet, BC11
styleSheets, 550
subproperties, reading and writing, 838
suffixes, BC90
summary, BC44
systemLanguage, BC83
tabIndex, 255–257
table, style object, 834–835
tagName, 257–258
tags, 550
tagUrn, 236, 258
target

area element object, 624
base object, BC6
discussed, 598
form object property, 642–643
link object, BC11–BC12
NN4 event object, 752
NN6+ event object, 787–789

tBodies, BC44–BC45
text

a element object, 598
body element object, 578, 583
script object, BC16
select object, 105
TextRange object, 1080
title object, BC17

text, style object, 817–818, 820
textAlign, 175
tFoot, BC45
tHead, BC45
timeStamp, 789–790
title

discussed, 550
as generic property, 258–259
styleSheet object, 804

toElement, 765–767, 772
toolbar, 375–377, 404
top

layer object, BC122–BC124
overview, 404
TextRectangle object, 1102

topMargin, 580, 583
trueSpeed, 1038
type

a element object, 598
button object, 654
checkbox input object, 659
cssRule object, 809
defined, 43
IE4+ event object, 772–773
image input object, 670
li object, BC64
link object, BC12
mimeType object, BC89–BC90
NN4 event object, 753
object object, BC176
ol object, BC61–BC62
radio input object, 667
script object, BC16
select object, 710
selection object, 1064–1065

1217Index ✦ P

style element object, 797
styleSheet object, 804
text object, 681
ul object, BC63

undoBuffer, 1055
uniqueID, 259–260
units, BC179
updateInterval, BC103
URL, 543–545, 551
URLUnencoded, 551
urn, 599
useMap

Image object, 618
object object, BC176

userAgent
location object, 90
navigator object, BC69, BC83

userLanguage, BC83
userProfile, BC83
vAlign, BC49
value

button object, 654
checkbox input object, 659–660
checkboxes, 102
defined, 43
forms, 100
li object, BC64
objects and, 166
radio input object, 667
select object, 710
text object, 681–683

vendor, BC84
vendorSub, BC82, BC84
version, BC4
visibility, BC131–BC132
visible, 376
vLink, 583
vlinkColor, 179, 514–516, 551
vsides, BC39
vspace

applet object, BC170–BC171
discussed, 478
Image object, 610–611, 618

marquee object, 1037
object object, BC175–BC176

whatToShow, 587
wheelData, 773
which, 753
width

applet object, BC170–BC171
colgroup object, BC52
discussed, 465, 478, 537, 551
embed object, BC178
as generic object, 228
hr object, 1032
Image object, 610, 618
marquee object, 1037
object object, BC175–BC176
screen object, BC100–BC101
table object, BC41, BC45
td object, BC60

window, 404
windows, accessing, 84–85
window.status, 87
wrap, 693
x

discussed, 599
IE4+ event object, 759
Image object, 618

XMLDocument, BC184
y

discussed, 599
IE4+ event object, 759–763
Image object, 618–619

zIndex
discussed, 175
layer object, BC133–BC136

propertyIsEnumerable() method, 1008
propertyName property, 769
protected property security example,

BC313–BC314
protocol property

a element object, 595
area element object, 624
discussed, 495, 547
Image object, 614

1218 Index ✦ P–R

protocolLang property, 597
prototypes

CGI, 33
objects, 159
properties, 855
prototype inheritance, 1003–1004
prototype property

Array object, 917–918
Boolean object, 890
function object, 987
Math object, 888
RegExp object, BC211
string object, 854–855

pseudo-URLs, 137
public keyword, BC248

Q
qualifier property, 756
query commands, 569
queryCommandCommandState() method, 569
queryCommandEnabled() method, 569, 1099
queryCommandIndterm() method, 569
queryCommandState() method, 1099
queryCommandSupported() method,

569, 1099
queryCommandText() method, 569, 1099
queryCommandValue() method,

569–570, 1099
quoted pairs, strings, 111–112
quotes property, 817

R
radio objects

discussed, 103–104
input objects

checked property, 665–666
click() method, 668
defaultChecked property, 666
length property, 667
name property, 667
onclick event, 668–669
overview, 663–664
type property, 667
value property, 667

random access memory (RAM), 36, 60
random() method, 115–116
random number generation, 115–116
RandomDissolve() method, 845
Range object

cloneContents() method, 1046
cloneRange() method, 1046
collapse() method, 1047
collapsed property, 1043
commonAncestorContainer property,

1043–1044
compareBoundaryPoints() method,

1047–1048
comparePoint() method, 1051
createContextualFragment() method,

1051–1052
deleteContents() method, 1052–1053
detach() method, 1053–1054
endContainer property, 1044
endOffset property, 1044
extractContents() method, 1054
insertNode() method, 1054–1055
intersectsNode() method, 1056
isPointInRange() method, 1056
overview, 1039–1040
selectNode() method, 1056
selectNodeContents() method,

1056–1057
setEnd() method, 1057
setEndAfter() method, 1059
setEndBefore() method, 1059
setStart() method, 1057–1058
setStartAfter() method, 1059
setStartBefore() method, 1059
startContainer property, 1044
startOffset property, 1044–1045
surroundContents() method, 1059–1060
toString() method, 1061

rangeCount property, 1063
reading

browser preference, BC85–BC86, BC887
elements, 216
strings, 869–870

read-only properties, 190

1219Index ✦ R

readOnly property
cssRule object, 808
isindex object, BC8
styleSheet object, 803
text object, 680

read/write status, properties
discussed, 166
innerHTML property, 174, 189
innerText property, 174
outerHTML property, 174
outerText property, 174

readyState property
as generic object, 249–250
xml object, BC186–BC187

real-time validation triggers, BC213–BC215
reason property, 756
recalc() method, 319, 570
recordNumber property, 250–251
recordset property, 756
rectangles

bounding, 289–291
styles, 814

recursion, in functions, 992
redirecting events, 728–730
references

FAQs (Frequently Asked Questions), 1140
layers, 172, BC111–BC112

referencing
events, 720
frames, 362
objects, 40

referrer pages, 548
referrer property, 547–548
Refresh command, documents, 563
refresh() method

plugin object, BC92
table object, BC48

RegExp object
compile() method, BC207
constructor property, BC206
exec() method, BC208
global property, BC206
ignoreCase property, BC206
input property, BC210

lastIndex property, BC207
lastMatch property, BC210
leftContext property, BC211
multiline property, BC207, BC210
prototype property, BC211
rightContext property, BC211
source property, BC207
test() method, BC208–BC209

regular expressions
backreferencing, BC196
discussed, 861–862
grouping, BC196
matching techniques, BC200–BC203
object relationships, BC196–BC200
patterns and, BC191–BC192
search-and-replace operations,

BC203–BC205
special characters, BC193–BC196
string replacement, BC203–BC205

rel property, 597, BC11
relatedTarget property, 786–787
relative units, defined, 812
relativeNumber parameter, 506
release() function, BC452
releaseCapture() method, 302–303,

305–306
releaseEvents() method, 429–430, 570
reload, soft, 499
reload() method, 499–500
reloading, hard versus soft, 500
reloading issues, authoring environment

setup, 20
remove() method, 710–711
removeAllRanges() method, 1067
removeAttribute() method, 209, 306–307
removeAttributeNode() method, 307
removeAttributeNS() method, 308
removeBehavior() method, 262–263,

308–309, BC332
removeChild() method, 186, 267, 309
removeEventListener() method, 191,

264–267, 309
removeExpression() method, 293, 309–310
RemoveFormat command, documents, 563

1220 Index ✦ R–S

removeMember() function, BC258
removeNode() method, 310–312
removeRange() method, 1067
removeRule() method, 805–806
repeat loops, 71–72, 534
repeat property, 769
repetition, in programs, 70
replace property, 499
replaceAdjactentText() method, 298,

311–312
replaceChild() method, 186–188, 267, 312
replaceData() method, 1070
replaceNode() method, 312–315
replacing text, 311
reset event, 264
reset() method, 643–644
resetField() function, 677
resetTab() function, 257
resistors, defined, 30
resizable value, 446
resize event, 264
resizeBy() method, 430, BC140
resizeTo() method

discussed, 430–432
layer object, BC140–BC143

resizing layers, BC141–BC142, BC164–BC166
resizing windows, 383, 431–432
resources

behaviors, BC340
newsgroups, 1139–1140
online documentation, 1140–1141
Web sites, 1141

responses, events, 45
responseText property, BC187
responseXML property, BC187
restore() function, 310, 376
return (\r) character, 692
return values, arrays, 926
returning values, 85
returnValue property, 397, 770
rev property, 597, BC11
revealClip() function, BC147
revealTrans() method, 840
revertPrivilege() method, BC310

rhs property, BC39
richness property, 837
right property, 826, 1102
rightContext property, BC211
rightMargin property, 580–581
risks, privilege targets, BC311–BC312
rng variable, 1042
rollovers, mouse, 13
root nodes, 1043
root property, 587
rotating images, 616–617
routeEvent() method, 432–433, 571
RowDelim parameter, 220
rows property

discussed, 471–473
frames, 364
table object, BC42
textarea object, 692–693

rowSpan property, BC58–BC60
rows, tables

deleting, BC46
editing, BC25–BC29
inserting, BC46–BC47

moving, BC47
rubyAlign property, 817
rubyOverhand property, 817
rubyPosition property, 817
rule object, 807–810
rules property

styleSheet object, 803–804
table object, BC42–BC44

running scripts, 51
runtime errors

exception handling, 948–949
syntax errors versus, BC277

runtimeStyle property, 251–252

S
Safari browser

Debug menu, 55
overview, 7–8

same origin security policy, BC301–BC303
same word entries, 43

1221Index ✦ S

sans serif fonts, 1028
saveCurrentVisit() function, BC418
saveType property, 770
saving cookies, 522
scopeName property, 236, 252
scr property, BC16
screen object

availHeight property, BC100
availLeft property, BC101
availTop property, BC101–BC102
availWidth property, BC100
bufferDepth property, BC102
colorDepth property, BC102
discussed, 397
fontSmoothingEnabled property, BC103
height property, BC100
overview, 36, BC99–BC100
pixelDepth property, BC102–BC103
roles of, 36
updateInterval property, BC103
width property, BC100–BC101

screenLeft property, 398
screenSize variable, BC101
screenTop property, 398
screenX property

IE4+ event object, 759
NN4 event object, 749
NN6+ event object, 780
overview, 398

screenY property
IE4+ event object, 759
NN4 event object, 749–751
NN6+ event object, 780
overview, 398–399

Script Debugger tool (Microsoft), BC290
script object, BC14–BC16
script-detectable properties, 171
scripters, BBEdit, 18
scripting techniques, frames, 125
scripts

in body, 49–50
browser sniffer, 152
client-side scripting, 8
compatibility issues, 145

copyright notifications, 147
deferred, 52–54, BC345
errors

controlling, 387–388
viewing, 54–55

functions and, 52
in headings, 48
hiding, 50–51, 146–147
in HTML documents, 144–146
immediate, BC345
in-document, 147
libraries, 147–148, 197
<noscript> tag, 148–149
programming versus, 55–56
running, 51
<script> tag

event attribute, 145, 176
for attribute, 145, 176
.htc document, 177
language attribute, 48, 145
overview, 22
src attribute, 47–48
type attribute, 47, 145

scripts property, 548–549
signed, 421–422
simple example of

errors, 24
overview, 20
source code, 21–22
text, displaying, 23–24

sniffer script, browers, 151–153
script-to-applet communication,

BC257–BC258
scroll bar properties, style object, 834
scroll event, 264
scroll() method, 433–435
scroll property, 581
scroll values, 582
scrollAmount property, 1038
scrollbar3dLightColor property, 834
scrollbarArrowColor property, 834
scrollbarBaseColor property, 834
scrollbarDarkShadowColor property, 834
scrollbarFaceColor property, 834

1222 Index ✦ S

scrollbarHighlightColor property, 834
scrollbars

chrome elements, 368
scrollbars property, 375, 399
vertical, 253

scrollbarTrackColor property, 834
scrollBy() method, 435
scrollDelay property, 1038
scrollHeight property, 252
scrolling images, 434
scrolling property, 467, 479
scrollIntoView() method, 204, 206, 315
scrollJump variable, 441
scrollLeft property

body element object, 581
as generic object, 252–253

scrollMaxX property, 399
scrollMaxY property, 399
scrollMsg() function, 403
scrollShadowColor property, 834
scrollSpeed variable, 441
scrollTo() method, 435–437
scrollTop property

body element object, 581–582
as generic object, 253–254

scrollWidth property, 252–253
scrollX property, 399
scrollY property, 399
search property

a element object, 595
area element object, 624
overview, 495

search-and-replace operations, regular
expressions and, BC203–BC205

searches
strings, 113–114
Web traffic, 4

searchOnReturn() function, BC362
seconds, date functions, 117
security

applets, BC300–BC301
archive property, BC307–BC308
codebase principal, BC306

cookies, 523
digital certificates, BC305–BC306
id attribute, B308, BC309
international characters, BC316
JAR Packager, BC307
origin checks, BC302
privileges, gaining, BC310
protected property example,

BC313–BC314
reasons for, BC299–BC300
same origin policy, BC301–BC303
security property, 549
securityPolicy property, BC83
signed script policy, BC304–BC305
SignTool program, BC307

select event, 264
select() method

text object, 684–685
TextRange object, 1099

select object
add() method, 710
item() method, 711
length property, 704
multiple property, 704
namedItem() method, 711
navigating with, 105–106
onchange event, 711–712
options() method, 711
options property, 705–708
overview, 695–696
pop-up lists, 104–105
remove() method, 710–711
selectedIndex property, 105, 709
size property, 710
text property, 105
type property, 710
value property, 710

SelectAll command, documents, 563
selectAllChildren() method, 1068
selectChunk() function, 247
selectedIndex property, 105, 709
selecting

browsers, 18
text editors, 17–18

1223Index ✦ S

selection lists, 706
selection object

addRange() method, 1065
anchorNode property, 1063
anchorOffset property, 1063
clear() method, 1065
collapse() method, 1066
collapseToEnd() method, 1066
collapseToStart() method, 1066
containsNode() method, 1066
createRange() method, 1066
deleteFromDocument() method, 1066
empty() method, 1067
extend() method, 1067
focusNode property, 1063
focusOffset property, 1063
getRangeAt() method, 1067
isCollapsed property, 1063
overview, 1061–1062
rangeCount property, 1063
removeAllRanges() method, 1067
removeRange() method, 1067
selectAllChildren() method, 1068
toString() method, 1068
type property, 1064–1065

selection property, 549–550
selectNode() method, 1056
selectNodeContents() method, 1056–1057
selectorText property, 808–809
selectSort() function, BC467
self property, 400–401
self value, 85
send() method, BC189
serif fonts, 1028
server scripting, 5
serverless CGIs, 33
serverless databases, BC355
servers

access, reducing, BC386
busy servers, offloading, 33–34

setActive() method, 315–316
setAttribute() method

discussed, 187, 207, 209
generic objects, 316–317

setAttributeNode() method, 317
setAttributeNS() method, 318
setBGColor() function, BC328
setCapture() method

discussed, 264
generic objects, 302–306, 318

setClip() function, BC147
setColor() method, BC145
setCookie() function, BC427
setCookieData() function, BC417
setCount() function, 700
setdata() method, 330
setDate() method, 117
setDay() method, 117
setDocCapture() function, 724
setEnd() method, 1057
setEndAfter() method, 1059
setEndBefore() method, 1059
setEndPoint() method, 1100
setExpression() method

discussed, 293
generic objects, 318–321

setFontAttr() function, 1026
setHours() method, 117
setImagePosition() function, 242
setInitialColor() function, 262
setInnerPage() function, BC152
setInterval() method, 437–441
setLang() function, 700
setMember() method, BC258
setMinutes() method, 117
setMonth() method, 117
setMsg() function, 136
setOuterPage() function, BC152
setSeconds() method, 117
setSelected() function, 448
setSlot() method, BC258
setStart() method, 1057–1058
setStartAfter() method, 1059
setStartBefore() method, 1059
setTime() method, 117
setTimeout() method, 273, 371, 441–444
setupDrag() function, 335–336
setWinWidth() function, BC456

1224 Index ✦ S

setYear() method, 117
setZIndex() function, BC328
SGML (Standard Generalized Markup

Language), 4
shading effects, 1032
shadow() method, 839
shape property

area element object, 623–624
discussed, 595

shareware editors, TextPad, 18
shareware programs, JavaScript Scrambler, 147
sheet property, BC11
shiftBy() function, BC328
shiftKey property

IE4+ event object, 755–756
NN6+ event object, 775–776

shiftLeft property, 756
shiftTo() function, BC327
short-circuit evaluation, operators, 980
show() method, 482–484
showCountDown() function, 410
showHelp() method, 444
showModalDialog() method, 397, 444
showModelessDialog() method, 444–447
showOffsets() function, 393
showValues() function, BC119
siblingAbove property, BC113
siblingBelow property, BC113–BC116
siblings, parent nodes, 181
sidebar property, 369–370, 401
signed scripts

exporting and importing, BC315
overview, 421–422
singed script security policy,

BC304–BC305
SignTool security program, BC307
single quotes (‘), 87
sites. See Web sites
size property

basefont object, BC7
hr object, 1032
select object, 710
style object, 836
text object, 680

sizeToContent() method, 455
slicing strings, 866–867
small data lookups, 29
smart Web pages, 34
snapshots

Date object, 116
debugging techniques, BC292

sniffer script, browsers, 151–153
soft cookies, BC414
soft reload, defined, 499
sorting data, 223–224
source code

debugging, BC287
frames, 365
simple script example, 21–22

source property, BC207
sourceIndex property, 254–255
space in Web pages, saving, 23
spacer images, 5
span element

cascading style sheets, 172
overview, 138

span property, BC52
speak property, 837
speakHeader property, 837
speakNumeral property, 837
speakPunctuation property, 837
special characters, BC193–BC196
specification levels, DOM, 178
speechRate property, 837
splitText() method, 1073
spreadsheets, arrays and, 76
square value, BC63
src attribute, <script> tag, 47–48
src property

embed object, BC179
image input object, 670–671
Image object, 614
overview, 468, 479–480
xml object, BC184

src property, tag, 132
srcElement property, 770–772
srcFilter property, 772
srcUrn property, 772

1225Index ✦ S

stacking order, layers, 172, BC160–BC162
Standard Generalized Markup Language

(SGML), 4
standards

browsers, 10
EMCA, 59
EMCAScript, 144

start() method, 1038
start property

Image object, 618
ol object, BC61

startContainer property, 1044
starting applets, BC246–BC247
startOffset property, 1044–1045
startTimer() function, 410
startValue parameter, 72
statements

assignment, 112
behaviors and, BC333
break, 79, 939–940
comments, 51
const keyword, 1017–1018
debugging, BC289
defined, 51
executing, 51
hiding, 146
immediate, 52
labeled, 944–946
roles of, 51
switch, 946–948
uses for, 51
variables as, 62
with, 943

static events, 721
static filter types, 838–839
static objects, 189–190
static tables, calendars and, BC342–BC344
static text, 24
status bar messages, 258
status property

discussed, 401–404
xml object, BC187

statusbar property, 375, 404
statusText property, BC188

still images, switching to motion images,
608–609

stop() method
marquee object, 1038
overview, 455–456

stopping applets, BC246–BC247
stopPropagation() method, 736
stopTimer() function, 410
storage, cookies, BC379
stress property, 837
string object

constructor property, 853–854
length property, 854
prototype property, 854–855
string.charAt() method, 855–856
string.charCodeAt() method, 856–857
string.concat() method, 859
string.indexOf() method, 859
string.lastIndexOf() method, 860
string.localeCompare() method, 860
string.match() method, 861–862
string.replace() method, 862–865
string.search() method, 865
string.slice() method, 865–867
string.split() method, 868
string.substr() method, 868–870
string.substring() method, 870–871
string.toLocaleLowerCase()

method, 871
string.toLocaleUpperCase()

method, 871
string.toLowerCase() method, 872
string.toString() method, 872
string.toUpperCase() method, 872
string.valueOf() method, 872

string.charAt() method, 855–856
string.charCodeAt() method, 856–857
string.concat() method, 859
string.indexOf() method, 113–114
string.lastIndexOf() method, 860
string.localeCompare() method, 860
string.match() method, 861–862
string.replace() method, 862–865

1226 Index ✦ S

strings. See also text
alert() method, 112
case, changing, 113
case-sensitivity, 292
character and substring copies,

extracting, 114–115
character limitations, 112
comma-delimited, BC13
concatenation, 66, 112
converting

to numbers, 65, 881–882
numbers to, 65–66, 882

dates as, 898
defined, 111, 849
encoding/decoding, 876
formatting methods, 874–876
hexadecimal values and, 876
index values, 115
inline characters, 850–851
joining, 112–113, 850
length property, 115
literals, 112, 850
long variables, 850
manipulation, 873–874
naming, 134
nested, 73, 875–876
as parameters, 74
quoted pairs, 111–112
reading, 869–870
replacement, regular expressions and,

BC203–BC205
searches, 113–114
slicing, 866–867
utility functions, 873–874
values to variables, accessing, 112

string.search() method, 865
string.slice() method, 865–867
string.split() method, 868
string.substr() method, 868–870
string.substring() method, 114–115,

870–871
string.toLocaleLowerCase() method, 871
string.toLocaleUpperCase() method, 871

string.toLowerCase() method, 872
string.toString() method, 872
string.toUpperCase() method, 872
string.valueOf() method, 872
stripZeros() function, BC360
style element object, 796–797
style property

cssRule object, 809
as generic object, 255

styleFloat property, 825
style-oriented tags, 113
styles, dynamic, 194
styleSheet object

addImport() method, 804–805
addRule() method, 805
cssRules property, 799
cssText property, 799–800
deleteRule() method, 806
disabled property, 800
href property, 800
id property, 800
imports property, 801
insertRule() method, 806–807
media property, 801
ownerNode property, 801
ownerRule property, 802
owningElement property, 802
pages property, 802–803
readOnly property, 803
removeRule() method, 805–806
rules property, 803–804
title property, 804
type property, 804

styleSheet property, BC11
styleSheets property, 550
stylesheets, system-specific, BC9
submission validations, 192
submit event, 264
submit() method, 108–109, 643–644
submitting forms, 636–637
subproperties, reading and writing, 838
substring() method, 524
substringData() method, 1070

1227Index ✦ S–T

subtract-by-value operator, 128
subtraction (-) operator, 66
subWindow variable, 85
subWrite() method, 93
suffixes property, BC90
summary property, BC44
Supported query command, 569
surroundContents() method, 1059–1060
swapNode() method, 312, 321
swapping images, 134
switch statement, 946–948
synchronization, frames, 364–365
syntax changes, 842–843
syntax versus runtime errors, BC277
system requirements, 1143
system-specific stylesheets, BC9
systemLanguage property, BC83

T
tabbing sequences, 256
tab-delimited data, 221
tabIndex property, 255–257
tabIndex value, 230
table object

align property, BC35
background property, BC35
bgColor property, BC36
border property, BC36
borderColor property, BC36
borderColorDark property, BC36
borderColorLight property, BC36–BC37
caption property, BC37
cellPadding property, BC37
cells property, BC38
cellSpacing property, BC37–BC38
cols property, BC38
createCaption() method, BC45
createTFoot() method, BC46
createTHead() method, BC46
dataPageSize property, BC39
deleteCaption() method, BC45–BC46
deleteRow() method, BC46

deleteTFoot() method, BC46
deleteTHead() method, BC46
firstPage() method, BC47
frame property, BC39–BC41
height property, BC41
insertRow() method, BC46–BC47
lastPage() method, BC47
moveRow() method, BC47
nextPage() method, BC47
previousPage() method, BC47–BC48
refresh() method, BC48
rows property, BC42
rules property, BC42–BC44
summary property, BC44
tBodies property, BC44–BC45
tFoot property, BC45
tHead property, BC45
width property, BC41, BC45

table of contents, 28–29
tableLayout property, 835
table-oriented containers, BC21
tables

cells
blank space between, BC38
content, replacing, BC23–BC25
data in, editing, BC22–BC25
deleting, BC55
inserting, BC55–BC56
populating, BC21–BC23

classes, BC33
columns, editing, BC30–BC32
dispatch lookup, BC228–BC229
DHTML, BC348–BC352
dynamic tables, calendars and,

BC345–BC347
footers, BC20
hash tables, arrays and, 916
headers, BC20
hierarchy, BC19–BC21
layers and, BC113
modification methods, BC26
properties, style object, 834–835

Continued

1228 Index ✦ T

tables (continued)
rows

deleting, BC46
editing, BC25–BC29
inserting, BC46–BC47
moving, BC47

static tables, calendars and, BC342–BC344
truth, 969

Tabular Data Control (TDC), 220
tagName property, 257–258
tags

<a>, 137
<area>, 137
<body>, 168

, 24
closing, 47
comment, 23
debugging, BC286–BC287
defined, 4
, 38
<form>

name attribute, 91, 97
onsubmit event, 102

height attribute, 132
src property, 132
width attribute, 132

<input>
forms, 637–638
type attribute, 100

<meta>
alt attribute, 153
content attribute, 151–153

<noscript>, 148–149
<p>, 34, 38
positions, 48–50
<script>

for attribute, 145, 176
event attribute, 145, 176
.htc document, 177
language, 48
overview, 22
src attribute, 47–48
type attribute, 47, 145

style-oriented, 113
tags() method, 321–322
tags property, 550
tagURN property, 236
tagUrn property, 258
taintEnabled() method, BC87
target attribute

form object, 99
window.open() method, 85

target property
area element object, 624
base object, BC6
form object, 642–643
link object, BC11–BC12
NN4 event object, 752
NN6+ event object, 787–789
overview, 598

target specification, privileges, BC310–BC312
tBodies property, BC44–BC45
tbody object, BC48–BC50
td object, BC56–BC60
TDC (Tabular Data Control), 220
temporary cookies, BC414
test() method, BC208–BC209
testing

expression evaluation, 63
OKToTest flag, BC266
reasons for, BC297–BC298

testValues() function, 990–991
text. See also strings

bidirectional, 820
blinking, 34
boldface, 1045
capitalization, 138
color of, changing, 248
concatenation, 24
displaying, 23–24
fields, selecting, 684–685
height of, determining, 240
hidden, 150
highlighting, 1040
insertion pointers, 272
italics, 219
joining, 24

1229Index ✦ T

objects as, 28
paragraph, 38
passing to functions, 682
replacing, 311
retrieving selected, 566–567
static, 24
uppercase, 101
values, getting and setting, 681–682
width of, determining, 240
wrapping, BC59

text boxes
discussed, 219
Enter/Return key and, 676–677

text editors
selection considerations, 17–18
switching between, 19

text information, data as, 59
text nodes, 38–39
text object

blur() method, 683
defaultValue property, 677–678
focus() method, 683–684
form property, 678
maxLength property, 679
name property, 679–680
onafterupdate event, 685
onbeforeupdate event, 685
onblur event, 686
onchange event, 688
onerrorupdate() method, 685–686
onfocus event, 686
onselect event, 686–687
overview, 674
readOnly property, 680
select() method, 684–685
size property, 680
type property, 681
value property, 681–683

text property
a element object, 598
body element object, 578, 583
script object, BC16
select object, 105
style object, 817–820

TextRange object, 1080
title object, BC17

Text query command, 569
textAlign property, 175, 818
textAlignLast property, 818
textarea element, 100
textarea object, 690–693
textareas, carriage returns in, 692
textAutospace property, 818
textDecoration property, 818
textDecorationBlink property, 818
textDecorationLineThrough property, 818
textDecorationNone property, 818
textDecorationOverline property, 818
textDecorationUnderline property, 818
textIndent property, 818
textJustify property, 819
textJustifyTrim property, 819
TextNode object, 1069–1073
textOverflow property, 819
TextPad shareware editor, 18
TextQualifier parameter, 220
TextRange object

boundingHeight property, 1077
boundingLeft property, 1077
boundingTop property, 1077
boundingWidth property, 1077–1079
collapse() method, 1080–1081
compareEndPoints() method, 1081–1084
duplicate() method, 1084–1085
execCommand() method, 1085–1087
expand() method, 1087–1088
findText() method, 1088–1092
getBookmark() method, 1092
htmlText property, 1079–1080
inRange() method, 1093
isEqual() method, 1093–1094
move() method, 1094–1095
moveEnd() method, 1095
moveStart() method, 1095
moveToBookmark() method, 1095
moveToElementText() method, 1095
moveToPoint() method, 1096–1097

Continued

1230 Index ✦ T

TextRange object (continued)
overview, 1074–1075
parentElement() method, 1097–1098
pasteHTML() method, 1098–1099
queryCommandEnabled() method, 1099
queryCommandIndeterm() method, 1099
queryCommandState() method, 1099
queryCommandSupported() method, 1099
queryCommandText() method, 1099
queryCommandValue() method, 1099
select() method, 1099
setEndPoint() method, 1100
text property, 1080

TextRectangle object, 1101–1103
text-related objects, 100–102
textShadow property, 819
textToWrite variable, 64
textTransform property, 819
textUnderlinePosition property, 819
tfoot object, BC48–BC50
tFoot property, BC45
th object, BC56–BC60
Thawte Digital Certificate Services Web site,

BC305
thead object, BC48–BC50
tHead property, BC45
this keyword, 106
this operator, 975–976
this.form parameter, 633
throwaway passwords, 521
throwing exceptions, 953–957
time, date functions, 117
time intervals, Date object, 118
time stamps, 540
time zones, Date object, 891–892
timeIt() function, 336
timers, countdown, 409–410
timeStamp property, 789–790
timing problems, debugging, BC287–BC288
title object, BC16–BC17
title property

discussed, 550
as generic object, 258–259
styleSheet object, 804

toArray() method, 1022
today variable, Date object, 116
toElement property, 765–767, 772
toggle() function, BC380
toggleBar() function, 376
toggleColor() function, BC261
toggleComplete() function, 223
toggleDetails() function, 374
toolbar property, 375–377, 404
toolbars, chrome elements, 368
tooltips, 258
top object, 123
top property

layer object, BC122–BC124
overview, 404
style object, 826
TextRectangle object, 1102

top windows, 124
top-level objects, 37
topMargin property, 580, 583
toString() function, 1014–1016
toString() method

discussed, 959
function object, 988
Range object, 1061
selection object, 1068

toUpperCase() function, 101
tr object

cells property, BC54
deleteCell() method, BC55
height property, BC54–BC55
insertCell() method, BC55–BC56
overview, BC52–BC53
rowIndex property, BC55
sectionRowIndex property, BC55

trace() function, BC293–BC295
traffic

busy servers, offloading, 33–34
hit counts, 4
searches, 4

transition filters, 840
tree views, interfaces, 28

1231Index ✦ T–U

TreeWalker object
methods, 588–589
overview, 586
properties, 587

trigonometric functions, 115
troubleshooting. See debugging
true value

checked property, 102
comparison operators, 66
conditions, 70
discussed, 56
if constructions, 70

trueSpeed property, 1038
truth tables, 969
try construction, 950–952
turnOn() function, 262
two-dimensional arrays, BC356
type attribute

<input> tag, 100
<script> tag, 47, 145

type property
a element object, 598
button object, 654
checkbox input object, 659
cssRule object, 809
defined, 43
IE4+ event object, 772–773
image input object, 671
li object, BC64
link object, BC12
mimeType object, BC89–BC90
NN4 event object, 753
object object, BC176
ol object, BC61–BC62
radio input object, 667
script object, BC16
select object, 710
selection object, 1064–1065
style element object, 797
styleSheet object, 804
text object, 681
ul object, BC63

typeof operator, 977–978

U
ubound() method, 1022
UIEvents event, 556
ul object, BC62–BC63
unary operators, 966
UnBookmark command, documents, 563
undefined data type, 155
undefined errors, BC281–BC282
underline command, 1086
underscore (_), 991
undoBuffer property, 1055
unescape() function, 493, 1011–1012
unhighlight() function, 304
unicodeBidi property, 820
Uniform Resource Names (URNs), 209
uninitialized value, 249
uniqueID property, 259–260
units property, BC179
Unlink command, documents, 563
unload event, 264
unordered lists, 289, BC2
Unselect command, documents, 563
unwatch() function, 1016
update expressions, 72
updateInterval property, BC103
updateTime() function, 443
upgrades, browsers, 14–15
uppercase text, 101, 113
URL property, 543–545, 551
URLUnencoded property, 551
urn property, 599
urns() method, 322
URNs (Uniform Resource Names), 209
UseHeader parameter, 220
useMap property

Image object, 618
object object, BC176

user interfaces, interactive, 28
userAgent property, 90

location object, 90
navigator object, BC69

userLanguage property, BC83

1232 Index ✦ U–V

userProfile object
addReadRequetst() method,

BC105–BC106
clearRequest() method, BC106
data, accessing, BC104–BC105
doReadRequest() method, BC107–BC108
getAttribute() method, BC108
overview, BC103–BC104

userProfile property, BC83
utility functions, strings, 873–874

V
validations

batch mode, BC215
cross-confirmation fields, BC239–BC240
custom functions, BC221–BC222
data, 688
data entry, 33
date, BC224–BC227
dispatch lookup tables, BC228–BC229
forms, 30, 108–109
forms, Date object, 904–907
real-time triggers, BC213–BC215
simple example of, BC230–BC234
submission, 192
validation functions, combining, BC222

validDate() function, BC224
vAlign property, BC49–BC50
value property

button object, 654
checkbox input object, 659–660
checkboxes, 102
defined, 43
forms, 100
li object, BC64
objects and, 166
radio input object, 667
select object, 710
text object, 681–683

Value query command, 569
valueOf() method, 988
values

assigning to variables, 61
Boolean, 56

center, 446
circle, BC63
complete, 249
data types, 60
defined, 59
disc, BC63
edge, 446
false

checked property, 102
comparison operators, 66
conditions, 70
discussed, 56
else keyword, 71
if constructions, 70

interactive, 249
loaded, 249
loading, 249
null, 86
resizable, 446
returning, 85
self, 85
square, BC63
tabIndex, 230
true

checked property, 102
comparison operators, 66
conditions, 70
discussed, 56
if constructions, 70

uninitialized, 249
var keyword

discussed, 1018–1019
functions and, 74
local variables, 74
variables, creating, 61

variable scope
behaviors, BC333
functions, 989–992

variables
assigning, 64
branching, 194
creating, 61
currTitle, frames, 128
declaring, 61

1233Index ✦ V–W

defined, 60
expressions and, 64
foundArray, BC198
foundMatch, BC362
global, 74–75, 989
i, parallel arrays, 79
initializing, 61
local, 74–75
local scope, 75
long string, 850
naming, 61–62
newWind, 371
newWindow

location object, 90
window object, 86

output, 75
prefsDlog, 451
rng, 1042
screenSize, BC101
scrollJump, 441
scrollSpeed, 441
as statements, 62
subWindow, 85
textToWrite, 64
today, Date object, 116
values, assigning, 61
xDoc, BC397

VBArray object, 1021–1022
VBScript (Visual Basic Script) language, 7
vendor property, BC84
vendorSub property, BC82, BC84
Venkman debugger tool, BC290
verification

mime types, BC94
plug-ins, BC94–BC95

verifyData() function, BC296
Verisign Web site, BC305
version detection, browsers, 148–150
version implementation, JavaScript, 143–144
version numbering, browser compatibility

issues, 11–12
version property, BC4
vertical scrollbars, 253

verticalAlign property, 825
video and audio plug-ins, 6
viewing errors, 54–55
visibility behaviors, layers, BC159–BC160
visibility property

discussed, 825
layer object, BC131–BC132

visible property, 376
Visual Basic Script (VBScript) language, 7
vLink property, 583
vlinkColor property, 179, 514–516, 551
voiceFamily property, 837
void keyword, BC245
volume property, 837
vsides property, BC39
vspace property

applet object, BC170–BC171
Image object, 610–611, 618
marquee object, 1037
object object, BC175
overview, 478

W
walkChildNodes() function, 212
warnings

access denied, 487
errors and, BC286

watch() function, 1016
wave() method, 839
Web pages

branching index pages, 151–153
compatibility issues, 155
file information, displaying, 533–534
navigating, using anchors, 517
referrer pages, 548
smart, 34
space in, saving, 23

Web sites
competitors, 4
resources, 1141
Thawte Digital Certificate Services, BC305
Venkman debugger tool, BC290
Verisign, BC305

1234 Index ✦ W

Web traffic
busy servers, offloading, 33–34
hit counts, 4
searches, 4

weeks, date functions, 118
What You See Is What You Get (WYSIWYG)

authoring tool, 17
whatToShow property, 587
wheelData property, 773
which property, 753
while loop, 940–942
white space, 160
whiteSpace property, 820
widgets, BC373
widows property, 835
width

of text, determining, 240
of windows, setting, 383–384

width attribute, tag, 132
width property

applet object, BC170–BC171
colgroup object, BC52
discussed, 465, 478, 537, 551
embed object, BC178
as generic object, 228
hr object, 1032–1033
Image object, 610, 618
marquee object, 1037
object object, BC175–BC176
screen object, BC100–BC101
style object, 826
table object, BC41, BC45
td object, BC59–BC60

window object
alert() method, 45, 87–88, 404–405
appCore property, 369
back() method, 406
blur() method, 272
captureEvents() method, 406–408
clearInterval() method, 408–409
clearTimeout() method, 409–411
clientInformation property, 370
clipboardData, 370–371
close() method, 85–86, 411–412

closed property, 371–372
closeNewWindow() function, 86
Components property, 369, 372
confirm() method, 412–413
controllers property, 369, 372
createPopup() method, 413
crypto property, 373
defaultStatus property, 373–374
dialogArguments property, 374
dialogHeight property, 374
dialogLeft property, 375
dialogTop property, 375
dialogWidth property, 374–375
directories property, 375
document property, 377–378
DOM (document object model), 35
event property, 378
events and, 176
execScript() method, 414
external property, 378–379
find() method, 414–415
forward() method, 406, 415
frameElement property, 379
frames property, 379–381
fullScreen() function, 167
handleEvent() method, 415–416
history property, 382
home() method, 416
innerHeight property, 382
innerWidth property, 382
loading property, 384
location property, 385
locationbar property, 375, 385
makeNewWindow() function, 86
maximize() method, 167
menubar property, 375
moveBy() method, 416
moveTo() method, 416–419
name property, 385
navigate() method, 419–420
navigator property, 385
newWindow() function, 128
newWindow variable, 86
offscreenBuffering property, 386

1235Index ✦ W

onafterprint event, 456
onbeforeprint event, 456
onbeforeunload event, 456–457
ondragdrop event, 457–458
onerror event, 458
onerror property, 386–388
onhelp event, 458–459
onload event, 52, 89, 459–460
onmove event, 460
onresize event, 460–461
onunload event, 461
open() method, 420
opener property, 128, 389–391
openWindow() method, 164
outerHeight property, 382, 392
outerWidth property, 382–384, 392
overview, 36, 84, 368–369
pageXOffset property, 392
pageYOffset property, 392–394
parent property, 394–397
personalbar property, 375, 397
pkcs11 property, 373
print() method, 426–428
prompt() method, 428–429
prompter property, 369
releaseEvents() method, 429–430
resizeBy() method, 430
resizeTo() method, 430–432
returnValue property, 397
roles of, 36
routeEvent() method, 432–433
screen property, 397
screenLeft property, 398
screenTop property, 398
screenX property, 398
screenY property, 398–399
scroll() method, 433–435
scrollbars property, 375, 399
scrollBy() method, 435
scrollMaxX property, 399
scrollMaxY property, 399
scrollTo() method, 435–437
scrollX property, 399

scrollY property, 399
self property, 400–401
self value, 85
setInterval() method, 437–440
setTimeout() method, 441–444
showHelp() method, 444
showModalDialog() method, 444
showModelessDialog() method, 444–445
sidebar property, 369–370, 401
sizeToContent() method, 455
status property, 401–404
statusbar property, 375, 404
stop() method, 455–456
subWindow variable, 85
toolbar property, 375–377, 404
top property, 404
window property, 404
window.confirm() method, 88
window.open() method, 85, 128
window.prompt() method, 88–89
window.status property, 87

window.confirm() method, 88
windowFeatures parameter, 420–421
window.open() method, 85, 128
window.prompt() method, 88–89
windows

chrome, controlling, 376–377
click events, 408
closing, checking before, 372, 411–412
creating, 85–86, 425–426
height and width, setting, 383–384
loading, 384
main window document example, 129
moving, 417–419
naming, 385, 424
navigating, 385
pop-up, 413
populating, 424–425
properties and methods, accessing, 84–85
resizing, 383, 431–432
status bars, 404
subwindow document example, 129
top, 124

1236 Index ✦ W–Z

window.status property, 87
Winhelp file, 444
with statement, 943
wordBreak property, 820
wordSpacing property, 820
wordWrap property, 820
World Wide Web Consortium (W3C)

browser compatibility issues, 13
W3C DOM

discussed, 177
DOM content, adding/placing, 188
DOM levels, 178
element referencing, 180
object-oriented, 185
static objects, 189–190

wrap property, 693
wrapping text, BC59
write() method, 44, 571
writeln() method, 571–575
writing browser preferences, BC85–BC86,

BC887
writingMode property, 820
W3C. See World Wide Web Consortium
WYSIWYG (What You See Is What You Get)

authoring tool, 17

X
x property

discussed, 599
IE4+ event object, 759
Image object, 618

xDoc variable, BC397
XML (eXtensible Markup Language), 5
xml object, BC181–BC184
XMLDocument property, BC184
XMLHttpRequest object, BC185–BC189
xRay() method, 839

Y
y property

IE4+ event object, 759–763
Image object, 618–619
overview, 599

years, date functions, 117, 897

Z
zero-based index values, BC55
zIndex property

layer object, BC133–BC136
overview, 175
style object, 828

zoom property, 826

Wiley Publishing, Inc.
End-User License Agreement

READ THIS. You should carefully read these terms and conditions before opening the soft-
ware packet(s) included with this book “Book”. This is a license agreement “Agreement”
between you and Wiley Publishing, Inc. “WPI”. By opening the accompanying software
packet(s), you acknowledge that you have read and accept the following terms and condi-
tions. If you do not agree and do not want to be bound by such terms and conditions,
promptly return the Book and the unopened software packet(s) to the place you obtained
them for a full refund.

1. License Grant. WPI grants to you (either an individual or entity) a nonexclusive license
to use one copy of the enclosed software program(s) (collectively, the “Software”)
solely for your own personal or business purposes on a single computer (whether a
standard computer or a workstation component of a multi-user network). The Software
is in use on a computer when it is loaded into temporary memory (RAM) or installed
into permanent memory (hard disk, CD-ROM, or other storage device). WPI reserves all
rights not expressly granted herein.

2. Ownership. WPI is the owner of all right, title, and interest, including copyright, in and
to the compilation of the Software recorded on the disk(s) or CD-ROM “Software
Media”. Copyright to the individual programs recorded on the Software Media is owned
by the author or other authorized copyright owner of each program. Ownership of the
Software and all proprietary rights relating thereto remain with WPI and its licensers.

3. Restrictions on Use and Transfer.

(a) You may only (i) make one copy of the Software for backup or archival purposes,
or (ii) transfer the Software to a single hard disk, provided that you keep the orig-
inal for backup or archival purposes. You may not (i) rent or lease the Software,
(ii) copy or reproduce the Software through a LAN or other network system or
through any computer subscriber system or bulletin-board system, or (iii) mod-
ify, adapt, or create derivative works based on the Software.

(b) You may not reverse engineer, decompile, or disassemble the Software. You may
transfer the Software and user documentation on a permanent basis, provided
that the transferee agrees to accept the terms and conditions of this Agreement
and you retain no copies. If the Software is an update or has been updated, any
transfer must include the most recent update and all prior versions.

4. Restrictions on Use of Individual Programs. You must follow the individual require-
ments and restrictions detailed for each individual program in the About the CD-ROM
appendix of this Book. These limitations are also contained in the individual license
agreements recorded on the Software Media. These limitations may include a require-
ment that after using the program for a specified period of time, the user must pay a
registration fee or discontinue use. By opening the Software packet(s), you will be
agreeing to abide by the licenses and restrictions for these individual programs that
are detailed in the About the CD-ROM appendix and on the Software Media. None of the
material on this Software Media or listed in this Book may ever be redistributed, in
original or modified form, for commercial purposes.

5. Limited Warranty.

(a) WPI warrants that the Software and Software Media are free from defects in mate-
rials and workmanship under normal use for a period of sixty (60) days from the
date of purchase of this Book. If WPI receives notification within the warranty
period of defects in materials or workmanship, WPI will replace the defective
Software Media.

(b) WPI AND THE AUTHOR(S) OF THE BOOK DISCLAIM ALL OTHER WARRANTIES,
EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, WITH
RESPECT TO THE SOFTWARE, THE PROGRAMS, THE SOURCE CODE CONTAINED
THEREIN, AND/OR THE TECHNIQUES DESCRIBED IN THIS BOOK. WPI DOES NOT
WARRANT THAT THE FUNCTIONS CONTAINED IN THE SOFTWARE WILL MEET
YOUR REQUIREMENTS OR THAT THE OPERATION OF THE SOFTWARE WILL BE
ERROR FREE.

(c) This limited warranty gives you specific legal rights, and you may have other
rights that vary from jurisdiction to jurisdiction.

6. Remedies.

(a) WPI’s entire liability and your exclusive remedy for defects in materials and work-
manship shall be limited to replacement of the Software Media, which may be
returned to WPI with a copy of your receipt at the following address: Software
Media Fulfillment Department, Attn.: JavaScript Bible, 5th Ed., Wiley Publishing,
Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, or call 1-800-762-2974. Please
allow four to six weeks for delivery. This Limited Warranty is void if failure of the
Software Media has resulted from accident, abuse, or misapplication. Any
replacement Software Media will be warranted for the remainder of the original
warranty period or thirty (30) days, whichever is longer.

(b) In no event shall WPI or the author be liable for any damages whatsoever (includ-
ing without limitation damages for loss of business profits, business interruption,
loss of business information, or any other pecuniary loss) arising from the use of
or inability to use the Book or the Software, even if WPI has been advised of the
possibility of such damages.

(c) Because some jurisdictions do not allow the exclusion or limitation of liability for
consequential or incidental damages, the above limitation or exclusion may not
apply to you.

7. U.S. Government Restricted Rights. Use, duplication, or disclosure of the Software for
or on behalf of the United States of America, its agencies and/or instrumentalities “U.S.
Government” is subject to restrictions as stated in paragraph (c)(1)(ii) of the Rights in
Technical Data and Computer Software clause of DFARS 252.227-7013, or subparagraphs
(c) (1) and (2) of the Commercial Computer Software - Restricted Rights clause at FAR
52.227-19, and in similar clauses in the NASA FAR supplement, as applicable.

8. General. This Agreement constitutes the entire understanding of the parties and
revokes and supersedes all prior agreements, oral or written, between them and may
not be modified or amended except in a writing signed by both parties hereto that
specifically refers to this Agreement. This Agreement shall take precedence over any
other documents that may be in conflict herewith. If any one or more provisions con-
tained in this Agreement are held by any court or tribunal to be invalid, illegal, or other-
wise unenforceable, each and every other provision shall remain in full force and effect.

	Cover
	Foreword
	Preface
	Contents at a Glance
	Contents
	Part I: Getting Started with JavaScript
	1: JavaScript's Role in the World Wide Web and Beyond
	Competing for Web Traffic
	Other Web Technologies
	JavaScript: A Language for All
	JavaScript: The Right Tool for the Right Job

	2: Authoring Challenges Amid the Browser Wars
	Leapfrog
	Duck and Cover
	Compatibility Issues Today
	Developing a Scripting Strategy

	3: Your First JavaScript Script
	The Software Tools
	Setting Up Your Authoring Environment
	What Your First Script Will Do
	Entering Your First Script
	Examining the Script
	Have Some Fun

	Part II: JavaScript Tutorial
	4: Browser and Document Objects
	Scripts Run the Show
	JavaScript in Action
	The Document Object Model
	When a Document Loads
	Object References
	Node Terminology
	What Defines an Object?
	Exercises

	5: Scripts and HTML Documents
	Where Scripts Go in Documents
	JavaScript Statements
	When Script Statements Execute
	Viewing Script Errors
	Scripting versus Programming
	Exercises

	6: Programming Fundamentals, Part I
	What Language Is This?
	Working with Information
	Variables
	Expressions and Evaluation
	Data Type Conversions
	Operators
	Exercises

	7: Programming Fundamentals, Part II
	Decisions and Loops
	Control Structures
	About Repeat Loops
	Functions
	About Curly Braces
	Arrays
	Exercises

	8: Window and Document Objects
	Top-Level Objects
	The window Object
	Window Properties and Methods
	The location Object
	The navigator Object
	The document Object
	Exercises

	9: Forms and Form Elements
	The form Object
	Form Controls as Objects
	The Button Object
	The Checkbox Object
	The Radio Object
	The select Object
	Passing Form Data and Elements to Functions
	Submitting and Prevalidating Forms
	Exercises

	10: Strings, Math, and Dates
	Core Language Objects
	String Objects
	The Math Object
	The Date Object
	Date Calculations
	Exercises

	11: Scripting Frames and Multiple Windows
	Frames: Parents and Children
	References among Family Members
	Frame Scripting Tips
	About iframe Elements
	Controlling Multiple Frames-Navigation Bars
	References for Multiple Windows
	Exercises

	12: Images and Dynamic HTML
	The Image Object
	The javascript: Pseudo-URL
	Popular Dynamic HTML Techniques
	Exercises

	Part III: Document Objects Reference
	13: JavaScript Essentials
	JavaScript Versions
	Core Language Standard-ECMAScript
	Embedding Scripts in HTML Documents
	Browser Version Detection
	Designing for Compatibility
	Language Essentials for Experienced Programmers
	Onward to Object Models

	14: Document Object Model Essentials
	The Object Model Hierarchy
	How Document Objects Are Born
	Object Properties
	Object Methods
	Object Event Handlers
	Object Model Smorgasbord
	Basic Object Model
	Basic Object Model Plus Images
	Navigator 4–Only Extensions
	Internet Explorer 4+ Extensions
	Internet Explorer 5+ Extensions
	The W3C DOM
	Mixing Object Models
	Standards Compatibility Modes (DOCTYPE Switching)
	Where to Go from Here

	15: Generic HTML Element Objects
	Generic Objects

	16: Window and Frame Objects
	Window Terminology
	Frames
	window Object
	frame Element Object
	frameset Element Object
	iframe Element Object
	popup Object

	17: Location and History Objects
	location Object
	history Object

	18: The Document and Body Objects
	document Object
	body Element Object
	TreeWalker Object

	19: Link and Anchor Objects
	Anchor, Link, and a Element Objects

	20: Image, Area, and Map Objects
	Image and img Element Objects
	area Element Object
	map Element Object

	21: The Form and Related Objects
	The Form in the Object Hierarchy
	form Object
	fieldset and legend Element Objects
	label Element Object

	22: Button Objects
	The button Element Object, and the Button, Submit, and Reset Input Objects
	checkbox Input Object
	radio Input Object
	image Input Object

	23: Text-Related Form Objects
	Text Input Object
	password Input Object
	hidden Input Object
	textarea Element Object

	24: Select, Option, and FileUpload Objects
	select Element Object
	option Element Object
	optgroup Element Object
	file Input Element Object

	25: Event Objects
	Why "Events"?
	Event Propagation
	Referencing the event object
	event Object Compatibility
	Dueling Event Models
	Event Types
	NN4 event Object
	IE4+ event Object
	NN6+/Moz/Safari event Object

	26: Style Sheet and Style Objects
	Making Sense of the Object Names
	Imported Stylesheets
	Reading Style Properties
	style Element Object
	styleSheet Object
	cssRule and rule Objects
	currentStyle , runtimeStyle , and style Objects
	filter Object

	Part IV: JavaScript Core Language Reference
	27: The String Object
	String and Number Data Types
	String Object
	String Utility Functions
	URL String Encoding and Decoding

	28: The Math, Number, and Boolean Objects
	Numbers in JavaScript
	Math Object
	Number Object
	Boolean Object

	29: The Date Object
	Time Zones and GMT
	The Date Object
	Validating Date Entries in Forms

	30: The Array Object
	Structured Data
	Creating an Empty Array
	Populating an Array
	JavaScript Array Creation Enhancements
	Deleting Array Entries
	Parallel Arrays
	Multidimensional Arrays
	Simulating a Hash Table
	Array Object Properties
	Array Object Methods

	31: Control Structures and Exception Handling
	If and If .Else Decisions
	Conditional Expressions
	Repeat (for) Loops
	The while Loop
	The do-while Loop
	Looping through Properties (for-in)
	The with Statement
	Labeled Statements
	The switch Statement
	Exception Handling
	Using try-catch-finally Constructions
	Throwing Exceptions
	Error Object

	32: JavaScript Operators
	Operator Categories
	Comparison Operators
	Equality of Disparate Data Types
	Connubial Operators
	Assignment Operators
	Boolean Operators
	Bitwise Operators
	Object Operators
	Miscellaneous Operators
	Operator Precedence

	33: Functions and Custom Objects
	Function Object
	Function Application Notes
	Custom Objects
	Object-Oriented Concepts
	Object Object

	34: Global Functions and Statements
	Functions
	Statements

	35: Body Text Objects
	blockquote and q Element Objects
	br Element Object
	font Element Object
	h1...h6 Element Objects
	hr Element Object
	label Element Object
	marquee Element Object
	Methods
	Event Handlers
	Range Object
	selection Object
	Text and TextNode Objects
	TextRange Object
	TextRectangle Object

	Part V: Appendixes
	Appendix A: JavaScript and Browser Object Quick Reference
	Appendix B: JavaScript Reserved Words
	Appendix C: Answers to Tutorial Exercises
	Appendix D: JavaScript and DOM Internet Resources
	Appendix E: What's on the CD-ROM

	Index
	End-User License Agreement
	Web Hosting 2.pdf
	Local Disk
	file:///C|/Documents and Settings/me/デスクトップ/pictures/getpedia.html

	1.pdf
	getpedia.com
	How everything works - GetPedia

	NBFCEJDAGCKBHGFPOCOOGODMOJDNCKBE:
	form2:
	x:
	f1: http://www.getpedia.com
	f2:

	f3: Google Search
	f4:

	form1:
	x:
	f1:

	f2:

