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Preface

This book addresses a fundamental question about music cognition: how

do we extract basic kinds of musical informationÐmeter, phrase struc-

ture, counterpoint, pitch spelling, harmony, and keyÐfrom music as we

hear it? My approach to this question is computational: I develop com-

puter models for generating these aspects of structure, with the aim of

simply solving the computational problems involved as elegantly and

effectively as possible, and with the assumption that this approach may

shed light on how the problems are solved in cognition. The models I

propose are based on preference rules. Preference rules are criteria for

evaluating a possible analysis of a piece (in terms of some kind of musical

structure). In a preference rule system, many possible interpretations are

considered, and the one is chosen that best satis®es the rules.

I begin with an introductory chapter, describing the overall goals and

methodology of the project and overviewing the theoretical and imple-

mentational strategy. The remainder of the book is then divided into two

parts. In part I, I present preference rule systems for generating six basic

kinds of musical structure. Metrical structure is a framework of levels

of beats. Melodic phrase structure is a segmentation of the input into

phrases; the model I propose is applicable only to melodies, not poly-

phonic textures. Contrapuntal structure is a segmentation of a polyphonic

texture into melodic lines. Pitch spelling, which I also call the tonal-pitch-

class representation, involves a labeling of pitch events in a piece with

spellings (``tonal-pitch-class'' labels) such as A" or G#. Harmonic struc-

ture is a segmentation of a piece into harmonic segments labeled with

roots. The preference rule systems for pitch spelling and harmonic struc-



ture are closely integrated, and really represent a single preference rule

system. Finally, key structure is a segmentation of a piece into larger

sections labeled with keys.

A separate chapter is devoted to each preference rule system. In each

case, I begin by describing the basic character of the structure in ques-

tion; I also review any psychological evidence pertaining to it (both the

psychological reality of this kind of structure and the way it is inferred in

perception). I then discuss earlier computational proposals (if any) for

how this structure is inferred. My own preference-rule approach to this

problem is then presented in an informal, conceptual way, with discus-

sion of each preference rule and the motivation for it. Next, I discuss the

implementation of the model in more technical detail. Finally, I present

any formal tests that were done of the model; in each case, at least one

such test was performed. I examine ¯aws in the model revealed by the

tests, and consider possible improvements.

A central claim of the current study is that preference rule systems are

not merely valuable as proposals for how musical structures are inferred,

but also shed light on other aspects of music. The second half of the book

attempts to substantiate this claim. I begin in chapter 8 with a discussion

of three important aspects of musical experience: ambiguity, retrospec-

tive revision, and expectation. The following two chapters explore the

possible relevance of preference rule systems to kinds of music outside

the Western canon. Chapter 9 applies the metrical, harmonic and key

models to rock music; chapter 10 examines the validity of the metrical

and phrase structure models for traditional African music. Chapter 11

considers how preference rule systems might be applied to issues of com-

position and performance, and proposes a framework for the description

of musical styles. Finally, in chapter 12, I explore the relevance of pref-

erence rule systems to higher-level musical structure and meaning; here I

address issues such as motivic structure, musical schemata (gestures or

patterns with conventional associations), narrative and dramatic aspects

of music, and musical tension.

The content of this book is, in a sense, two-dimensional. With each

preference rule system, there are a number of issues to be addressed:

basic issues such as psychological evidence, the preference rule system

itself, and implementation and testing, as well as more speculative issues

such as those addressed in part II. It was dif®cult to know how to tra-

verse this two-dimensional space in the linear fashion required for a

book. I am well aware, however, that not all readers will be interested in

all the issues covered here. The sections in part I in which I overview each

x Preface



preference rule system (as well as those relating to psychological evidence

and earlier computational approaches) are intended to be interesting and

accessible to a broad audience: music theorists and musicians, music

psychologists and others in psychology, and workers in music technology

and arti®cial intelligence. In these sections, I try to avoid assuming great

knowledge of music theory, and provide at least some explanation of

any advanced musical terms that I use. (Even so, these sections will

undoubtedly prove more rewarding to those with some knowledge of

music; in particular, an ability to imagine simple musical excerpts or play

them on a keyboard will be useful, since it will enable readers to compare

my claims about musical perception with their own intuitions.) Sections

in part II may, obviously, be of special concern to certain audiences with

interests in African music, the psychology of performance and composi-

tion, and the like, though here again I aim to make the material broadly

accessible. The most narrowly aimed sections of the book are those

relating to the implementation and testing of each preference rule system

(roughly speaking, the ®nal part of each chapter in part I, as well as the

section on implementation in the introductory chapter). These are pri-

marily intended for those in the area of computational music analysis,

who may wish to learn from or evaluate my implementational approach

and compare the performance of my models to their own models or

others. Other readers may wish to skip over these sections; they are not

essential for understanding the rest of the book.

The computer implementations presented here are publicly available at

the website www.link.cs.cmu.edu/music-analysis. (The implementations

of the meter, pitch spelling and harmony programs were developed in

collaboration with Daniel Sleator.) The programs are written in C, and

run on a UNIX platform. The website also provides many of the input

®les for excerpts discussed in this book. I hope this will encourage others

to experiment with the programs, and subject them to further testing;

those with alternative models may wish to try their programs on the

same input ®les used in my tests.
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1
Introduction

1.1

An Unanswered

Question

The aspects of music explored in this bookÐmeter, phrase structure,

contrapuntal structure, pitch spelling, harmony, and keyÐare well

known and, in some ways, well understood. Every music student is

taught to label chords, to spell notes correctly, to identify modulations,

to identify a piece as being in 3/4 or 4/4, and to recognize the phrases of a

sonata and the voices of a fugue. At more advanced levels of musical

discourse, these structures are most often simply taken for granted as

musical facts. It is rarely considered a contribution to music theory to

identify the phrases or the sequence of harmonies in a piece, nor is there

often disagreement about such matters. In psychology, too, each of these

facets of music has been explored to some extent (some to a very con-

siderable extent), and there are grounds for believing that all of them are

important aspects of music cognition, not merely among trained musi-

cians but among listeners in general.

In short, there appears to be broad agreement as to the general char-

acter of these structures, the particular form they take in individual

pieces, and their reality and importance in music cognition. In another

respect, however, our knowledge of these aspects of music is much less

advanced. If we assume that harmony, metrical structure, and the like

are real and important factors in musical listening, then listening must

involve extracting this information from the incoming notes. How, then,

is this done; by what process are these structures inferred? At present,

this is very much an open question. It is fair to say that no fully satisfac-

tory answer has been offered for any of the kinds of structure listed

above; in some areas, answers have hardly even been proposed. I will



present a general approach to this problem, based on the concept of

preference rules, which leads to highly effective procedures for inferring

these kinds of information from musical inputs. Because my approach is

computational rather than experimental, I must be cautious in my claims

about the psychological validity of the models I propose. At the very

least, however, the current approach provides a promising hypothesis

about the cognition of basic musical structures which warrants further

consideration and study.

While exploring processes of information extraction is my main goal,

the framework I propose also sheds light on a number of other issues.

First of all, music unfolds in time; we do not wait until the end of a piece

to begin analyzing it, but rather, we interpret it as we go along, some-

times revising our interpretation of one part in light of what happens

afterwards. Preference rule systems provide a useful framework for

characterizing this real-time process. The preference rule approach also

provides insight into other important aspects of musical experience, such

as ambiguity, tension, and expectation. Finally, as well as providing a

powerful theory of music perception, the preference rule approach also

sheds valuable light on what are sometimes called the ``generative'' pro-

cesses of music: composition and performance. I will argue that pref-

erence rule systems play an important role in composition, acting as

fundamentalÐthough ¯exibleÐconstraints on the compositional pro-

cess. In this way, preference rules can contribute not only to the descrip-

tion of music perception, but of music itself, whether at the level of

musical styles, individual pieces, or structural details within pieces. The

preference rule approach also relates in interesting ways to issues of

musical performance, such as performance errors and expressive timing.

An important question to ask of any music theory is what corpus of

music it purports to describe. My main concern in this book is with

Western art music of the eighteenth and nineteenth centuries: what is

sometimes called ``common-practice'' music or simply ``tonal'' music.1 I

have several reasons for focusing on this corpus. First, this is the music

with which I have the greatest familiarity, and thus the music about

which I am most quali®ed to theorize. Second, common-practice music

brings with it a body of theoretical and experimental research which is

unparalleled in scope and sophistication; the current study builds on this

earlier work in many ways which I will do my best to acknowledge.

Third, a large amount of music from the common-practice corpus is

available in music notation. Music notation provides a representation

which is convenient for study and can also easily be converted into a

2 1. Introduction



format suitable for computer analysis. This contrasts with much popular

music and non-Western music, where music notation is generally not

available. (There are problems with relying on music notation as well, as

I will discuss below.) Despite this limited focus, I believe that many

aspects of the model I present are applicable to kinds of music outside

the Western canon, and at some points in the book I will explore this

possibility.

Another question arises concerning the subject matter of this study.

No one could deny that the kinds of musical structure listed above are

important, but music has many other important aspects too. For exam-

ple, one could also cite motivic structure (the network of melodic seg-

ments in a piece that are heard as similar or related); melodic schemata

such as the gap-®ll archetype (Meyer 1973) and the 1̂-7̂-4̂-3̂ schema

(Gjerdingen 1988); and the conventional ``topics''Ðmusical gestures

with extramusical meaningsÐdiscussed by Ratner (1980) and others.

In view of this, one might ask why I consider only the aspects of music

listed earlier. An analogy may be useful in explaining what these kinds

of musical structure have in common, and the role they play in music

cognition.

Any regular observer of the news media will be familiar with the term

``infrastructure.'' As the term is commonly used, ``infrastructure'' refers

to a network of basic structures and services in a societyÐlargely related

to transportation and communicationÐwhich are required for the soci-

ety to function. (The term is most often heard in the phrase ``repairing

our crumbling infrastructure''Ða frequent promise of politicians.) To my

mind, ``infrastructure'' implies two important things. Infrastructure is

supposed to be ubiquitous: wherever you go (ideally), you will ®nd the

roads, power lines, water mains, and so on that are needed for life and

business. Secondly, infrastructure is a means to an end: water mains and

power lines do not normally bring us joy in themselves, but they facilitate

other thingsÐhomes, schools, showers, VCRsÐwhose contribution to

life is more direct. In both of these respects, the aspects of music listed

earlier could well be regarded as an ``infrastructure'' for tonal music.

Metrical structure and harmony are ubiquitous: roughly speaking, every

piece, in fact every moment of every piece, has a metrical structure and

a harmonic structure. Melodic archetypes and topics, by contrast, are

occasional (though certainly common). Few would argue, I think, that

every bit of tonal music is a melodic archetype or a topic. Secondly, while

the structures I discuss here may sometimes possess a kind of direct

musical value in their own right, they function largely as means to other

3 1. Introduction



musical ends. In many cases, these musical ends are exactly the kinds

of occasional structures just mentioned. A topic or melodic archetype

requires a certain con®guration of contrapuntal, metrical, and harmonic

structures, and perhaps others as well; indeed, such higher-level patterns

are often characterized largely in infrastructural terms (I will return to

this point in chapter 12). My aim here is not, of course, to argue for

either ``ubiquitous'' or ``occasional'' structures as more important than

the otherÐeach is important in its own way; my point, rather, is that

ubiquitous structures form a ``natural kind'' and, hence, an appropriate

object of exclusive study.

1.2

Goals and

Methodology

Discourse about music adopts a variety of methods and pursues a variety

of goals. In this section I will explain the aims of the current study and

my method of achieving them. It is appropriate to begin with a discussion

of the larger ®eld in which this study can most comfortably be placed, a

relatively new ®eld known as music cognition.

Music cognition might best be regarded as the musical branch of cog-

nitive scienceÐan interdisciplinary ®eld which has developed over the

last thirty years or so, bringing together disciplines relating to cognition,

such as cognitive psychology, arti®cial intelligence, neuroscience, and

linguistics. Each of the disciplines contributing to cognitive science brings

its own methodological approach; and each of these methodologies has

been fruitfully applied to music. The methodology of cognitive psychol-

ogy itself is primarily experimental: human subjects are given stimuli and

asked to perform tasks or give verbal reports, and the psychological

processes involved are inferred from these. A large body of experimental

work has been done on music cognition; this work will frequently be

cited below. In theoretical linguistics, by contrast, the methodology has

been largely introspectionist. The reasoning in linguistics is that, while

we do not have direct intuitions about the syntactic structures of sen-

tences, we do have intuitions about whether sentences are syntactically

well-formed(andperhapsaboutother things, suchaswhether twosentences

are identical in meaning). These well-formedness judgments constitute a

kind of data about linguistic understanding. By simply seeking to con-

struct grammars that make the right judgments about well-formednessÐ

linguists reasonÐwe will uncover much else about the syntactic structure

of the language we are studying (and languages in general). The intro-

spectionist approach to music cognition is re¯ected in work by music

theorists such as Lerdahl and Jackendoff (1983) and Narmour (1990).

4 1. Introduction



(This is not to say, however, that music theory in general should be

regarded as introspectionist cognitive science; I will return to this point.)

The methods of arti®cial intelligence are also important in music cog-

nition. Here, attempts are made to gain insight into a cognitive process

by trying to model it computationally. Often, the aim is simply to devise

a computational system which can perform a particular process (for

example, yielding a certain desired output for a given input); while there

is no guarantee that such a program performs the process the same way

humans do it, such an approach may at least shed some light on the

psychological mechanisms involved.2 In some cases, this approach has

received empirical support as well, in that neurological mechanisms have

been found which actually perform the kind of functions suggested by

computational models (see Bruce & Green 1990, 87±104, for discussion

of examples in the area of vision). As we will see, this, too, is a widely

used approach in music cognition. Finally, cognition can be approached

from a neurological or anatomical perspective, through studies of electric

potentials, brain disorders, and the like. This approach has not been

pursued as much as others in music cognition, though some progress has

been made; for example, much has been learned regarding the localiza-

tion of musical functions in the brain.3

Despite their differing methodologies, the disciplines of cognitive

science share certain assumptions. All are concerned with the study of

intelligent systems, in particular, the human brain. It is widely assumed,

also, that cognitive processes involve representations, and that expla-

nations of cognitive functions should be presented in these terms. This

assumption is very widely held, though not universally.4 To appreciate its

centrality, one need only consider the kinds of concepts and entities that

have been proposed in cognitive science: for example, edge detectors and

primal sketches in vision, tree structures and constituents in linguistics,

prototypes and features in categorization, networks and schemata in

knowledge representation, loops and buffers in memory, problem spaces

and productions in problem-solving, and so on. All of these are kinds of

mental representations, proposed to explain observed facts of behavior

or introspection. A second important assumption is the idea of ``levels of

explanation.'' A cognitive process might be described at a neurological

level; but one might also describe it at a higher, computational level,

without worrying about how it might be instantiated neurologically. A

computational description is no less real than a neurological one; it is

simply more abstract. It is assumed, further, that a cognitive system,

described at a computational level, might be physically instantiated in
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quite different ways: for example, in a human brain or on a computer.

This assumption is crucial for arti®cial intelligence, for it implies that a

computer running a particular program might be put forth as a descrip-

tion or model of a cognitive system, albeit a description at a very abstract

level.5

This background may be helpful in understanding the goals and

methodology of the current study. My aim in this study is to gain insight

into the processes whereby listeners infer basic kinds of structure from

musical input. My concern is with what Lerdahl and Jackendoff (1983,

3) call ``experienced listeners'' of tonal music: people who are familiar

with the style, though not necessarily having extensive formal training in

it. My methodology in pursuing this goal was both introspectionist and

computational. For a given kind of structure, it was ®rst necessary to

determine the correct analysis (metrical, harmonic, etc.) of many musical

excerpts. Here my approach was mainly introspective; I relied largely on

my own intuitions as to the correct analyses of pieces. However, I some-

times relied on other sources as well. With some of the kinds of structure

explored here, the correct analysis is at least partly explicit in music

notation. For example, metrical structure is indicated by rhythmic nota-

tion, time signatures, and barlines. For the most part, the structures

implied by the notation of pieces concur with my own intuitions (and I

think those of most other listeners), so notation simply provided added

con®rmation.6 I then sought models to explain how certain musical

inputs might give rise to certain analyses; and I devised computational

implementations of these models, in order to test and re®ne them. With

each kind of structure, I performed a systematic test of the model (using

some source other than my own intuitions for the correct analysisÐ

either the score or analyses done by other theorists) to determine its level

of success.

The goals and methodology I have outlined could be questioned in

several ways. The ®rst concerns the computational nature of the study.

As mentioned earlier, the mere fact that a model performs a process

successfully certainly does not prove that the process is being performed

cognitively in the same way. However, if a model does not perform a

process successfully, then one knows that the process is not performed

cognitively in that way. If the model succeeds in its purpose, then one has

at least a hypothesis for how the process might be performed cognitively,

which can then be tested by other means. Computer implementations are

also valuable, simply because they allow one to test objectively whether a

model can actually produce the desired outputs. In the current case, the
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programs I devised often did not produce the results I expected, and led

me to modify my original models signi®cantly.

Another possible line of criticism concerns the idea of ``correct'' anal-

yses, and the way I arrived at them. It might seem questionable for me,

as a music theorist, to take my intuitions (or those of another music

theorist) about musical structure to represent those of a larger popula-

tion of ``experienced listeners.'' Surely the hearing of music theorists has

been in¯uenced (enhanced, contaminated, or just changed) by very special-

ized and unusual training. This is, indeed, a problematic issue. However,

two points should be borne in mind. First, it is certainly not out of the

question that untrained and highly trained listeners have much in com-

mon in at least some aspects of their music cognition. This is of course

the assumption in linguistics, where linguists take their own intuitions

about syntactic well-formedness (despite their highly specialized training

in this area) to be representative of those of the general population. Sec-

ondly, and more decisively, there is an impressive body of experimental

work suggesting that, broadly speaking, the kinds of musical representa-

tions explored here are psychologically real for a broad population of

listeners; I will refer to this work often in the chapters that follow. Still, I

do not wish to claim that music theorists hear things like harmony, key,

and so on exactly the same way as untrained listeners; surely they do not.

Much further experimental work will be needed to determine how much,

and in what ways, music cognition is affected by training.

Quite apart from effects of training, one might argue that judg-

ments about the kinds of structures described here vary greatly among

individualsÐeven among experts (or non-experts). Indeed, one might

claim that there is so much subjectivity in these matters that the idea of

pursuing a ``formal theory of listeners' intuitions'' is misguided.7 I do not

deny that there are sometimes subjective differences about all of the kinds

of structure at issue here; however, I believe there is much more agree-

ment than disagreement. The success of the computational tests I present

here, where I rely on sources other than myself for the ``correct'' analysis,

offers some testimony to the general agreement that is found in these

areas. (One might also object that, even for a single listener, it is over-

simpli®ed to assume that a single analysis is always preferred to the

exclusion of all others. This is certainly true; ambiguity is a very real and

important part of music cognition, and one which is considerably illu-

minated by a preference rule approach, as I discuss in chapter 8.)

An important caveat is needed about the preceding discussion. My

concern here is with aspects of music perception which I assume to be
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shared across a broad population of listeners familiar with tonal music. I

must emphasize, however, that I am not at all assuming that these prin-

ciples are innate or universal. Rather, it is quite possible that they are

learned largely from exposure to musicÐjust as language is, for example

(at least, some aspects of language). I will argue in later chapters that

some aspects of the models I propose have relevance to kinds of music

outside the Western canon. However, I will take no position on the

questions of universality and innateness; in my view, there is not yet

suf®cient basis for making claims about these matters.

1.3

Music Cognition

and Music Theory

I suggested above that some work in music theory might be regarded as

introspectionist cognitive scienceÐwork seeking to reveal cognitive pro-

cesses through introspection, much as linguists do with syntax. Indeed,

music theory has played an indispensable role in music cognition as a

source of models and hypotheses; much music-related work in cognitive

psychology has been concerned with testing these ideas. However, it

would be a mistake to regard music theory in general as pursuing the

same goals as music cognition. Cognitive science is concerned, ultimately,

with describing and explaining cognitive processes. In the case of music

cognition, this normally implies processes involved in listening, and

sometimes performance; it might also involve processes involved in

composition, although this area has hardly been explored. I have argued

elsewhere that, while some music theory is concerned with this goal,

much music theory is not; rather, it is concerned with enhancing our

listening, with ®nding new structures in pieces which might enrich our

experience of them (Temperley in press-b). Many music theorists state

this goal quite explicitly. I have called the latter enterprise ``suggestive

theory''; this is in contrast to the enterprise of ``descriptive theory,''

which aims to describe cognitive processes. Consider Z-related sets, a

widely used concept in pitch-class set theory: two pitch-class sets are Z-

related if they have the same intervallic content, but are not of the same

set-type (related by transposition or inversion). I believe few theorists

would claim that people hear Z-related sets (except as a result of study-

ing set theory); rather, Z-related sets serve to enhance or enrich our

hearing of certain kinds of music once we are aware of them.

The goal of studying pieces of music in order to understand them more

fully, and to enrich our experience of them as much as possible, is an

enormously worthwhile one. However, suggesting ways of enhancing

our hearing is a goal quite different from describing our hearing. There is
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a good deal of confusion about this point in music theory, and it is often

unclear how speci®c theories or analyses are to be construed. This is

particularly apparent with Schenkerian analysis, a highly in¯uential

approach to the study of tonal music. While some theorists have con-

strued Schenkerian theory in a psychological way, others have viewed it

as a suggestive theory: a means of enhancing and expanding our hearing

of tonal music. Of course, it is possible that a theory could be suggestive

in some respects and descriptive in others. My own view is that some

aspects of Schenkerian theory are highly relevant to cognition; in partic-

ular, Schenkerian analysis draws our attention to subtleties of contra-

puntal structure which are often not explicit in notation. (I discuss this

further in chapter 8.) With other aspects of Schenkerian theory the rela-

tionship to listening is less clear, especially the ``reductive'' or hierarchical

aspect. But to exclude aspects of Schenkerian theory (or any other music

theory) from a cognitive theory of tonal music is not at all to reject or

dismiss them. Rather, it is simply to maintain that their value is not, pri-

marily, as contributions to a theory of music cognitionÐa position that

many Schenkerian analysts have endorsed.

The psychological, rather than suggestive, perspective of the current

study cannot be emphasized too strongly, and should always be kept in

mind. For example, when I speak of the ``correct'' analysis of a pieceÐas

I often willÐI mean the analysis that I assume listeners hear, and thus

the one that my model will have to produce in order to be correct. I do

not mean that the analysis is necessarily the best (most musically satis-

fying, informed, or coherent) one that can be found. (A similar point

should be made about the term ``preference rule.'' Preference rules are

not claims about what is aesthetically preferable; they are simply state-

ments of fact about musical perception.) I have already acknowledged

that, in assuming a single analysis shared by all listeners, I am assuming a

degree of uniformity that is not really present. In making this assump-

tion, I do not in any way mean to deny the importance and interest of

subjective differences; such differences are simply not my concern for the

moment. I do maintain, however, that the differences between us, as lis-

teners, are not so great that any attempt to describe our commonalities is

misguided or hopeless.

1.4

The Input

Representation

An important issue to consider with any computer model is the input

representation that is used. The preference rule systems discussed here

all use essentially the same input representation. This is a list of notes,

9 1. Introduction



giving the on-time, off-time (both in milliseconds) and pitch of each

noteÐwhat I will refer to as a ``note-list.'' We can also think of this as a

two-dimensional representation, with pitch on one axis and time on the

other; each pitch-event is represented as a line segment on the plane, with

the length of the line corresponding to the duration of the event. Such a

representation is sometimes known as a ``piano-roll,'' since it resembles

the representations of pieces used with player pianos in the early twen-

tieth century. Figure 1.1 shows part of the piano-roll representation for

a performance of a Bach Gavotte (the score for the excerpt is shown

below). Pitches in the input representation are categorized into steps of

Figure 1.1
A ``piano-roll'' representation of the opening of the Gavotte from Bach's French
Suite No. 5 in G major (generated from a performance by the author on a MIDI
keyboard). The score for the excerpt is shown below.
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the chromatic scale; following convention, integers are used to represent

pitches, with middle C � 60. In an important sense, then, the pitch axis

of the ``piano-roll'' representation is discrete, not continous. The time

axis, however, is essentially continuous; pitch-events are not quantized

rhythmically in any signi®cant way (except at the very small level of

milliseconds). Other acoustic information such as timbre and amplitude

is excluded from the input. (Some of the models also require additional

information as input; for example, several of the models require metrical

structure. I will discuss this further below.)

In assuming a ``piano-roll'' representation as input, I am avoiding the

problem of deriving pitch information from actual sound. This problem

Ðsometimes known as ``music recognition'' or ``automatic transcrip-

tion''Ðhas been studied extensively, and proves to be highly complex

(Moorer 1977; Foster, Schloss, & Rockmore 1982; Tanguiane 1993).

The sounds of the music must be separated out from the other back-

ground sounds that are always present in any natural environment; the

individual frequencies that make up the sound must be grouped together

to form notes; and the notes must be correctly quantized to the right

pitch categories, factoring out vibrato, bad intonation, and so on. How-

ever, this process is not our concern here; in the following chapters, the

existence of an accurate piano-roll representation will simply be taken

for granted.

One might wonder what evidence there is that listeners actually form

piano-roll representations. Of course very few people could accurately

report such representations; but this may be because such information is

largely unconscious or not easily articulated. Most evidence for the real-

ity of piano-roll representations is indirect, and somewhat inconclusive.

For example, the fact that listeners are generally able to learn a melody

from hearing it (at least if they hear it enough times), and recognize it

later or reproduce it by singing, suggests that they must be extracting the

necessary pitch and duration information. Another possible argument for

the reality of piano-roll representations is that the kinds of higher-level

structures explored hereÐwhose general psychological reality has been

quite strongly established, as I will discussÐrequire a piano-roll input in

order to be derived themselves. For example, it is not obvious how one

could ®gure out what harmonies were present in a passage without

knowing what notes were present. I should point out, however, that

several proposals for deriving aspects of the infrastructureÐspeci®cally

harmony, contrapuntal structure, and keyÐassume exactly this: they

assume that these kinds of structure can be extracted without ®rst
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extracting pitch information. These proposals will be discussed below,

and I will suggest that all of them encounter serious problems. I think

a case could be made, then, that the reality of ``infrastructure'' levels

provides strong evidence for the reality of piano-roll representations,

since there is no other plausible way that infrastructure levels could be

derived.

It was noted above that the input representation does not contain any

quantization of events in the time dimension. This is, of course, true to

the situation in actual listening. In performed music, notes are not played

with perfect regularity; there is usually an implied regularity of durations

(this will be represented by the metrical structure), but within that there

are many small imperfections as well as deliberate ¯uctuations in timing.

In the tests presented below, I often use piano-roll representations that

were generated from performances on a MIDI keyboard, so that such

¯uctuations are preserved. (The piano-roll in ®gure 1.1 is an example.

The imperfections in timing here can easily be seenÐfor example, the

notes of each chord generally do not begin and end at exactly the same

time.) However, one can also generate piano-roll representations from a

score; if one knows the tempo of the piece, the onset and duration of

each note can be precisely determined. Since pieces are never played with

perfectly strict timing, using ``quantized'' piano-roll representations of

this kind is somwhat arti®cial, but I will sometimes do so in the interest

of simplicity and convenience.

Another aspect of the piano-roll representation which requires discus-

sion is the exclusion of timbre and dynamics.8 As well as being important

in their own right, these musical parameters may also affect the levels of

the infrastructure in certain ways. For example, dynamics affects metrical

structure, in that loud notes are more likely to be heard as metrically

strong; timbre affects contrapuntal structure, in that timbrally similar

notes tend to stream together. Dynamics could quite easily be encoded

computationally (the dynamic level of a note can be encoded as a single

numerical value or series of values), and incorporating dynamics into

the current models would be a logical further step. With timbre, the prob-

lem is much harder. As Bregman (1990, 92) has observed, we do not yet

have a satisfactory way of representing timbre. Several multidimensional

representations have been proposed, but none seem adequate to cap-

turing the great variety and richness of timbre. Studying the effect of tim-

bre on infrastructural levels will require a better understanding of timbre

itself.
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1.5

The Preference

Rule Approach

The approach of the current study is based on preference rules. Prefer-

ence rules are criteria for forming some kind of analysis of input. Many

possible interpretations are considered; each rule expresses an opinion as

to how well it is satis®ed by a given interpretation, and these opinions are

combined together to yield the preferred analysis. Perhaps the clearest

antecedent for preference rules is found in the Gestalt rules of percep-

tion, proposed in the 1920s; this connection will be discussed further in

chapter 3.

Preference rules per se were ®rst proposed by Lerdahl and Jackendoff

in their Generative Theory of Tonal Music (1983) (hereafter GTTM).

Lerdahl and Jackendoff present a framework consisting of four kinds of

hierarchical structure: grouping, meter, time-span reduction, and pro-

longational reduction. For each kind of structure, they propose a set of

``well-formedness rules'' which de®ne the structures that are considered

legal; they then propose preference rules for choosing the optimal analy-

sis out of the possible ones. The model of meter I present in chapter 2 is

closely related to Lerdahl and Jackendoff's model; my model of phrase

structure, presented in chapter 3, has some connection to Lerdahl and

Jackendoff's model of grouping. Lerdahl and Jackendoff did not propose

any way of quantifying their preference rule systems, nor did they develop

any implementation. The current study can be seen as an attempt to

quantify and implement Lerdahl and Jackendoff's initial conception, and

to expand it to other musical domains. (I will have little to say here

about the third and fourth components of GTTM, time-span reduction

and prolongational reduction. These kinds of structure are less psycho-

logically well-established and more controversial than meter and group-

ing; they also relate largely to large-scale structure and relationships,

which sets them apart from the aspects of music considered here.)

The preference rule approach has been subject to some criticism,

largely in the context of critiques of GTTM. The problem most often

cited is that preference rules are too vague: depending on how the rules

are quanti®ed, and the relative weights of one rule to another, a prefer-

ence rule system can produce a wide range of analyses (Peel & Slawson

1984, 282, 288; Clarke 1989, 11). It is true that the preference rules of

GTTM are somewhat vague. This does not mean that they are empty;

even an informal preference rule system makes empirical claims that

are subject to falsi®cation. If a preference rule system is proposed for an

aspect of structure, and one ®nds a situation in which the preferred

analysis cannot be explained in terms of the proposed rules, then the
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theory is falsi®ed, or at least incomplete. It must be said that very few

music theories offer even this degree of testability. The more important

point, however, is that preference rule systems also lend themselves well

to rigorous formalization. If the parameters of the rules can be speci®ed,

the output of the rule system for a given input can be determined in an

objective way, making the theory truly testable. This is what I attempt to

do here.9

Another criticism that has been made of preference rule systems con-

cerns the processing of music over time. Lerdahl and Jackendoff's stated

aim in GTTM (1983, 3±4) is to model what they call ``the ®nal state of [a

listener's] understanding'' of a piece. Under their conception, preference

rules serve to select the optimal analysis for a complete piece, once it has

been heard in its entirety. In my initial presentation of the current model

(in chapters 2 through 7), I will adopt this approach as well. This ``®nal

understanding'' approach may seem problematic from a cognitive view-

point; in reality, of course, the listening process does not work this way.

However, preference rule systems also provide a natural and powerful

way of modeling the moment-to-moment course of processing as it

unfolds during listening. I will return to this in the next section (and at

greater length in chapter 8).

One notable virtue of preference rule systems is their conceptual sim-

plicity. With a preference rule system, the rules themselves offer a high-

level description of what the system is doing: it is ®nding the analysis that

best satis®es the rules. This is an important advantage of preference rule

systems over some other models that are highly complex and do not

submit easily to a concise, high-level description. (Some examples of this

will be discussed in the chapters that follow.) Of course, preference rule

systems require some kind of implementation, and this implementation

may be highly complex. But the implementation need not be of great

concern, nor does it have to be psychologically plausible; it is simply a

means to the end of testing whether or not the preference rule system can

work. If a preference rule system can be made to produce good compu-

tational results, it provides an elegant, substantive, high-level hypothesis

about the workings of a cognitive system.

1.6

The

Implementation

Strategy

While I have said that details of implementation are not essential to an

understanding of preference rule systems, a considerable portion of this

book is in fact devoted to issues of implementation. (This includes the
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present section, as well as the sections of following chapters entitled

``Implementation.'') While these sections will, I hope, be of interest to

some readers, they may be skipped without detriment to one's under-

standing of the rest of the book. In this section I describe a general

implementation strategy which is used, in various ways, in all the pref-

erence rule models in this study.

At the broadest level, the implementation strategy used here is simple.

In a given preference rule system, all possible analyses of a piece are

considered. Following Lerdahl and Jackendoff, the set of ``possible''

analyses is de®ned by basic ``well-formedness rules.'' Each preference rule

then assigns a numerical score to each analysis. Normally, the analytical

process involves some kind of arbitrary segmentation of the piece. Many

analytical choices are possible for each segment; an analysis of the piece

consists of some combination of these segment analyses. For each possi-

ble analysis of a segment, each rule assigns a score; the total score for a

segment analysis sums these rule scores; the total score for the complete

analysis sums the segment scores. The preferred analysis is the one that

receives the highest total score.

As noted above, many of the preference rules used in these models

involve numerical parameters (and there are always numerical values

that must be set for determining the weight of each rule relative to the

others). These parameters were mostly set by trial and error, using values

that seemed to produce good results in a variety of cases. It might be

possible to derive optimal values for the rules in a more systematic way,

but this will not be attempted here.

One might ask why it is necessary to evaluate complete analyses of a

piece; would it not be simpler to evaluate short segments in isolation? As

we will see, this is not possible, because some of the preference rules

require consideration of how one part of an analysis relates to another.

Whether an analysis is the best one for a segment depends not just on the

notes in that segment, but also on the analysis of nearby segments, which

depends on the notes of those segments as well as the analysis of other

segments, and so on. However, the number of possible analyses of a

piece is generally huge, and grows exponentially with the length of the

piece. Thus it is not actually possible to generate all well-formed analyses;

a more intelligent search procedure has to be used for ®nding the highest-

scoring one without generating them all. Various procedures are used for

this purpose; these will be described in individual cases. However, one

technique is of central importance in all six preference rule systems, and

warrants some discussion here. This is a procedure from computer science
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known as ``dynamic programming.'' (The idea of using dynamic pro-

gramming to implement preference rule systems is due to Daniel Sleator.)

Imagine that you are driving through a large city (see ®gure 1.2). You

want to go from home (at the left end of the ®gure) to work (at the right

end). There are two routes for going where you want to go; you can

either drive on High Street or Main Street. The two routes are the same

in total distance. However, certain stretches of each street are bad

(because they have terrible potholes, or construction, or a lot of traf®c).

You could also switch back and forth between one street and the other at

different points, but this carries a cost in terms of time. Suppose that it is

worthwhile for you to really sit down and ®gure out the best route (per-

haps because you make this trip every day). You assign each stretch of

street a ``cost,'' which is simply the number of minutes it would take you

to traverse that stretch. These ``local'' costs are shown on each stretch of

street in ®gure 1.2. You also assign a cost to any switch between one

street and the other; say each such switch costs you 2 minutes. Now, how

do you determine the best overall route? It can be seen that there are a

large number of different possible routes you could takeÐ2n, where n is

the number of blocks in the east-west direction. You could calculate the

cost for every possible route; however, there is a better way. Supposing

you compute the cost of all possible routes for the ®rst two stretches that

end up on High Street in stretch 2. There are only two, H-H and M-H;

the best (i.e. lowest-cost) one is H-H, with a total time of 2 minutes. Then

you ®nd the best route ending up on Main Street in stretch 2; it is H-M,

with a total time of 5 minutes (local costs of 1 and 2, plus a cost of 2 for

switching between streets.) At this point, you do not know whether it is

Figure 1.2
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better to end up on High St. or Main St. in stretch 2; that depends on

what happens further on. But you do know that no matter what happens

later, there will never be any reason to use any route for the ®rst two

stretches other than one of the two ``best-so-far'' routes already identi-

®ed. Now suppose we want to compute the best way of getting to Main

Street in stretch 3. We can use our ``best-so-far'' routes to stretch 2,

continuing each one in stretch 3 and calculating the new total cost; the

best choice is H-H-M, with a cost of 6 minutes. Repeating the process

with High Street at stretch 3, we now have two new ``best-so-far'' routes

for stretch 3. We can continue this process all the way through to the end

of the trip. At each stretch, we only need to record the best-so-far route

to each ending point at that stretch, along with its score. In fact, it is not

even necessary to record the entire best-so-far route; we only need to

record the street that we should be on in the previous stretch. At Main

Street in stretch 3, we record that it is best to be on High Street in stretch

2. In this way, each street at each stretch points back to some street at the

previous stretch, allowing us to recreate the entire best-so-far route if we

want to. (In ®gure 1.2, the score for the best-so-far route at each segment

of street is shown along the top and bottom, along with the street that it

points back to at the previous stretchÐ``H'' or ``M''Ðin parentheses.)

When we get to the ®nal stretch, either High Street or Main Street has

the best (lowest) ``best-so-far'' score, and we can trace that back to get

the best possible route for the entire trip. In this case, Main Street has the

best score at the ®nal stretch; tracing this back produces an optimal route

of H-H-H-M-M-M-M-M-M.

What I have just described is a simple example of the search procedure

used for the preference rule models described below. Instead of searching

for the optimal path through a city, the goal is to ®nd the optimal anal-

ysis of a piece. We can imagine a two-dimensional table, analogous to the

street map in ®gure 1.2. Columns represent temporal segments; cells of

each column represent possible analytical choices for a given segment. An

analysis is a path through this table, with one step in each segment. Per-

haps the simplest example is the key-®nding system (described in chapter

7). Rows of the table correspond to keys, while columns correspond to

measures (or some other temporal segments). At each segment, each key

receives a local score indicating how compatible that key is with the

pitches of the segment; there is also a ``change'' penalty for switching

from one key to another. At each segment, for each key, we compute the

best-so-far analysis ending at that key; the best-scoring analysis at the ®nal

segment can be traced back to yield the preferred analysis for the entire
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piece. A similar procedure is used for the harmonic analysis system

(where the rows represent roots of chords, instead of keys), the pitch

spelling system (where cells of a column represent possible spellings of

the pitches in the segment), and the contrapuntal analysis system (where

cells represent possible analyses of a segmentÐcontrapuntal voices at dif-

ferent pitch levels), though there are complications in each of these cases

which will be explained in due course.

The meter and phrase programs use a technique which is fundamen-

tally similar, but also different. In the case of the phrase program, the

table is simply a one-dimensional table of segments representing notes;

an analysis is a subset of these notes which are chosen as phrase bound-

aries. (Choosing a note as a phrase boundary means that a boundary

occurs immediately before that note.) Again, each note has a local score,

indicating how good it is as a phrase boundary; this depends largely on

the size of the temporal gap between it and the previous note. At the

same time, however, it is advantageous to keep all the phrases close to a

certain optimal size; a penalty is imposed for deviations from this size. At

each note, we calculate the best-so-far analysis ending with a phrase

boundary at that note. We can do this by continuing all the previous

best-so-far analysesÐthe best-so-far analyses with phrase boundaries at

each previous noteÐadding on a phrase ending at the current note, cal-

culating the new score, and choosing the highest-scoring one to ®nd

the new best-so-far analysis. Again, we record the previous note that

the best-so-far analysis points back to as well as the total score. After the

®nal note, we compute a ®nal ``best-so-far'' analysis (since there has to be

a phrase boundary at the end of the piece) which yields the best analysis

overall. The meter program uses a somewhat more complex version of

this approach. The essential difference between this procedure and the

one described earlier is that, in this case, an analysis only steps in certain

segments, whereas in the previous case each analysis stepped in every

segment.

Return to the city example again. Supposing the map in ®gure 1.2,

with the costs for each stretch, was being revealed to us one stretch at a

time; at each stretch we had to calculate the costs and best-so-far routes.

Consider stretch 7; at this stretch, it seems advantageous to be on High

Street, since High Street has the lowest best-so-far score. However, once

the next stretch is revealed to us, and we calculate the new best-so-far

routes, we see that Main Street has the best score in stretch 8; moreover,

Main Street in stretch 8 points back to Main Street in stretch 7. Thus

what seems like the best choice for stretch 7 at the time turns out not to
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be the best choice for stretch 7, given what happens subsequently. In this

way the dynamic programming model gives a nice account of an impor-

tant phenomenon in music perception: the fact that we sometimes revise

our initial analysis of a segment based on what happens later. We will

return to this phenomenonÐwhich I call ``revision''Ðin chapter 8.

In a recent article, Desain, Honing, vanThienen, and Windsor (1998)

argue that, whenever a computational system is proposed in cognitive

science, it is important to be clear about which aspects of the system

purport to describe cognition, and which aspects are simply details of

implementation. As explained earlier, the ``model'' in the current case is

really the preference rule systems themselves. There are probably many

ways that a preference rule system could be implemented; the dynamic

programming approach proposed here is just one possibility. However,

the dynamic programming scheme is not without psychological interest.

It provides a computationally ef®cient way of implementing preference

rule systemsÐto my knowledge, the only one that has been proposed. If

humans really do use preference rule systems, any ef®cient computational

strategy for realizing them deserves serious consideration as a possible

hypothesis about cognition. The dynamic programming approach also

provides an ef®cient way of realizing a preference rule system in a ``left-

to-right'' fashion, so that at each point, the system has a preferred anal-

ysis of everything heard so farÐanalogous to the process of real-time

listening to music. And, ®nally, dynamic programming provides an ele-

gant way of describing the ``revision'' phenomenon, where an initial

analysis is revised based on what happens afterwards. I know of no

experimental evidence pertaining to the psychological reality of the

dynamic programming technique; but for all these reasons, the possibility

that it plays a role in cognition seems well worth exploring.10
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2
Metrical Structure

2.1

Meter

The psychological reality of meter, and several important things about

its fundamental character, can be demonstrated in a simple exercise.

(This can be done in a classroom, or anywhere else that a group of lis-

teners and a source of music are available.) Play a recording of a pieceÐ

preferably a piece that is fairly ``rhythmic'' in colloquial terms, such as an

allegro movement from a Classical symphonyÐand ask people to tap to

the music. From trying this in class, my experience is that students are

generally able to do this (both music majors and nonmajors) and that

there is usually a general consensus about how it should be done. The

question is, why do they choose to tap exactly as they do, at a certain

speed and at certain moments? One hypothesis might be that listeners

simply tap at musical moments that are accented in some obvious or

super®cial way: at moments of high volume, for example. But this seems

unlikely, because in order to keep up with the music, they must anticipate

the moment for the next tap before it happens. Listeners may also tap at

some moments that are not obviously accented in any way, or even at

moments of complete silence in the music. This illustrates an essential

point about meter: a metrical structure consists of a series of points in

time, or ``beats,'' which may or may not always coincide with events in

the music, although they are certainly related to events in the music.

Now ask them to tap in another way, more slowly (but still tapping

``along with the music''). Again, people can generally perform this task

and there is a fair amount of agreement in their responses (although there

certainly may be differences; moreover, some in the group may be less

certain, and will follow the more certain onesÐthis is hardly a controlled



experiment!). This illustrates a second point about metrical structures:

they normally consist of several levels of beats. By convention, beat levels

consisting of fewer and sparser beats are known as ``higher'' levels; beats

present only at relatively high levels are known as ``strong'' beats.

Such informal demonstrations indicate that, at the very least, listeners

infer some kind of structure of regular beats from music, which allows

them to synchronize their movements with it. This ability has been dem-

onstrated more rigorously in studies in which subjects are asked to tap to

repeated patterns (Handel & Lawson 1983; Parncutt 1994). However,

the importance of meter goes far beyond this; meter plays an essential

role in our perceptual organization of music. Important evidence for this

comes from the research of Povel and Essens (1985). Povel and Essens

developed a simple algorithm for calculating the implied meter or

``clock'' of a sequence of events; by this model, a meter is preferred in

which events and especially long events coincide with strong beats (this

model will be discussed further below). In one experiment, patterns

which strongly implied a particular meter (according to Povel and

Essens's algorithm) were found to be more accurately reproduced by

subjects than those that were metrically ambiguous. In another experi-

ment, subjects were played rhythmic patterns, accompanied by other

patterns which simply included the strong beats of various meters, and

asked to judge the complexity of pattern pairs. Pattern pairs in which the

®rst pattern implied the meter of the second, according to Povel and

Essens's algorithm, were judged to be simpler than others. Thus metrical

structure appears to in¯uence the perceived complexity of patterns.

Meter has also proven to be a factor in pattern similarity, in that patterns

sharing the same meter (duple or triple) are judged as similar (Gabrielsson

1973). In addition, some experimenters have noted in passing that

changing the metrical context of a melody, by presenting it with a differ-

ent accompaniment, can make it sound totally different (Povel & Essens

1985, 432). Even notating a piece in two different ways (i.e. with bar-

lines in different places) can cause performers to regard the two versions

as different pieces, not even recognizing the similarity between them

(Sloboda 1985, 84). This suggests that the metrical context of a musical

passage greatly in¯uences our mental representation of it. Metrical

structure also in¯uences other levels of representation such as phrase

structure and harmony, as we will explore in later chapters.

Another important function of meter relates to what is sometimes

known as quantization. Consider the ®rst phrase of the melody ``Oh
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Susannah,'' shown in ®gure 2.1. An idealized performance of this

melody, with perfectly precise durations, is represented as Performance

A.1 However, durational patterns are not usually performed with perfect

precision, nor do they need to be in order to be recognized and under-

stood. If we were to hear Performance B, for exampleÐwith the dotted

eighth-note G a bit too short and the following A a bit too longÐwe

would still understand it as the correct rhythm. However, if the durations

were greatly altered, as in Performance CÐso that the rhythm of the G-A

was more like two eighth notesÐthen the melody might well sound

wrong, as if it was being sung with a different rhythm rather than the

correct one.2 This shows that the perception of rhythm is, in an impor-

tant sense, categorical: we understand notes as being in one rhythmic

category or another, rather than merely perceiving them as continually

varying. This process of sorting or ``quantizing'' notes has been demon-

strated experimentally as well; when played patterns of alternating notes

whose durations are related by complex ratios (such as 1.5 :1 or 2.5 :1)

and asked to reproduce them, subjects tend to adjust the durations

toward simple ratios (such as 2 :1) (Povel 1981). Quantization is also

re¯ected in music notation, where notes are categorized as eighth notes,

quarter notes, and so on.3

Figure 2.1
The ®rst phrase of the melody ``Oh Susannah.'' Three hypothetical rhythmic
performances are shown. The length of each note is represented on a timeline;
this is also shown in seconds below. Dots above the timelines show the implied
quantized rhythm of each performance. Performance A is perfectly precise; per-
formance B is imprecise, but implies the same quantized rhythm; performance C
implies a different quantized rhythm.
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Metrical structureÐconceived as a framework of rows of beats, as

described aboveÐprovides a useful way of describing quantization.

Imposing a framework of beats on a series of durations can be seen as

representing each duration as an integer number of beats. For each

rhythmic performance in ®gure 2.1, the beats that (I suspect) would be

perceived are indicated above. In Performances A and B, the dotted-

eighth G is given a ``length'' of three beats and the following A a length

of one. In Performance C, however, the G and A are both two beats in

length. This allows us to capture the fact that Performance C is qual-

itatively different from the other two. This does not mean that we do not

hear the difference between Performances A and B; quite possibly we do,

and such nuances may well be musically important in some ways. But it

does mean that we understand the ®rst two performances as in some

sense the same, and different from the third. This is another way that

metrical structure plays an essential role in our perception of music.

There is a general consensus that meter is an important part of music

cognition. However, in modeling the perception of meter, how do we

determine what metrical structure is actually heard? In this chapter, as

elsewhere in the book, I will rely on my own intuitions about the metrical

structures for pieces, and assume that other listeners would generally

agree. There is an important source of corroborative evidence, however,

namely music notation. The notation for a piece usually indicates a great

deal about its metrical structure. For example, a piece in 3/4 meter has

one level of quarter-note beats, with every third beat at that level present

at the next level up; barlines indicate where these strong beats (or

``downbeats'') occur. In 3/4, the quarter-note level is generally taken to

be the ``tactus,'' or the most salient metrical level (corresponding with the

main ``beat'' of the music in colloquial terms). Lower levels, too, are

indicated by rhythmic notation: in 2/4 or 3/4 the tactus is divided duply,

with two beats at the next level down for each tactus beat, while in 6/8

or 9/8 the tactus is divided triply. There may also be levels above the

measureÐso-called hypermetrical levelsÐso that (for example) odd-

numbered downbeats are strong relative to even-numbered ones; and

these levels are not usually indicated in notation. There are rarely more

than two such levels, however.4 In most cases the metrical structure

indicated by the notation for a piece agrees with my own intuitions, and I

think with those of most other listeners as well. (Cases do sometimes

arise where the meter indicated by the notation is not the one that seems

to be most naturally perceived, but I will generally avoid such cases.)
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2.2

Previous Research

on Metrical

Analysis

It was asserted in the opening sentences of this book that the process of

deriving ``infrastructural'' levels of music has not been widely studied.

Meter is a notable exception to this claim. The process of inferring met-

rical structure from music has, in fact, been explored quite extensively,

both from a theoretical perspective and from a computational one. In

music theory, a large body of work has been devoted to the study of

meter. A number of theorists have explored the way metrical structure

interacts with tonal structure, grouping, and other aspects of music (see

Schachter 1976; Benjamin 1984; Lester 1986; Berry 1987; Kramer 1988;

Rothstein 1989). While this work is mostly informal and humanistic in

character, it contains many valuable insights about meter, some of which

will be cited below and in following chapters. The most highly developed

and formalized theory in this area is Lerdahl and Jackendoff's (1983);

their approach forms the starting point for the current study, and will be

discussed in greater length in the next section.

Meter has also been the subject of much computational research. Until

quite recently, the problem of metrical analysis was generally divided

into two smaller problems. One was quantization: taking the events of a

live performance and adjusting them so that the time-points (onsets and

offsets of notes) are all multiples or divisors of a single common pulseÐ

for example, taking something like Performance B in ®gure 2.1 and pro-

ducing something like Performance A. The other problem was higher-

level meter-®nding: starting with an input which had already been

quantized in the way just described, and deriving a metrical structure

from that. Recently, people have realized that these problems can really

be regarded as two aspects of the same larger problem; however, most

research on meter-®nding has addressed only one or the other.

The most important work in the area of quantization has been that of

Desain and Honing (1992). Desain and Honing propose a connectionist

model, consisting of basic units and interaction units. The basic units

start out with activation levels representing ``inter-onset intervals'' or

``IOI's'' (the time interval between the onset of one note and the onset of

the following note) in a live performance. The interaction units connect

adjacent basic units, and adjust their relative activation levels to be

related by simple ratios such as 1 :1, 2 :1 or 3 :1. In this way, the activa-

tion levels of basic units converge to multiples of a common value. The

system also has ``sum cells,'' which sum the activations of several basic

units, allowing a single unit to represent a time interval containing

several notes. Desain and Honing's approach seems elegant and sensible,
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though it has not been extensively tested. One criticism that might be

made of it is that it actually adjusts the durations of input events,

apparently abandoning the original duration values. As noted earlier,

the small rhythmic irregularities of a performance may convey impor-

tant expressive nuance, thus it seems that this information should be

retained. The model I propose below leaves the original durational values

unchanged (except for a very ®ne level of rounding) and accomplishes

quantization by imposing a metrical structure on those values.

A larger body of research has focused on the problem of deriving

metrical structures from quantized input. One interesting proposal is that

of Lee (1991) (see also Longuet-Higgins & Steedman 1971 and Longuet

Higgins & Lee 1982). Lee's model derives a metrical structure for a

melody, considering only its rhythmic pattern (pitch is disregarded). The

model begins by looking at the interval between the onsets of the ®rst

two events (t1 and t2); it then generates a second interval of this length

from t2 to a third time-point (t3). This provides a conjectural rhythmic

level, which the model then adjusts if necessary (for example, if the

interval t2±t3 contains an event longer than the one starting at t3).

Higher and lower levels of beats can then be established in a similar

fashion. Steedman's (1977) model adopts a similar approach to low-level

meter-®nding; it then attempts to ®nd higher levels by looking for

repeated pitch patterns. This is an interesting attempt to capture the effect

of parallelism on meter, something I will discuss further in section 2.7.

In Lee's model (and other similar ones), only a single analysis is main-

tained at any given time, and is adjusted (or replaced) as necessary. Other

systems for meter-®nding operate in a rather different manner, by con-

sidering a large number of analyses of an entire excerpt and evaluating

them by certain criteria. A simple model of this kind is that of Povel and

Essens (1985). Their model applies only to short quantized sequences,

and derives only a single level of beats. Within such sequences, some

events are labeled as accented: long notes (i.e. notes with long IOIs), or

notes at the beginning of sequences of short notes. The best metrical

structure is the one whose beats best match the accented notes. Parncutt

(1994) proposes a similar model; unlike Povel and Essens's system,

however, Parncutt's considers the time intervals between beats, prefer-

ring levels whose time intervals are close to a value that has been experi-

mentally established as optimal (roughly 600±700 ms).

Finally, we should consider several recent studies which attempt to

perform both quantization and meter-®nding. One is the system of
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Chafe, Mont-Reynaud and Rush (1982), proposed as part of a larger

system for digital editing. This system takes, as input, an unquantized

``piano-roll'' representation of a piece. It begins by comparing all the

sequential durations in the piece, and categorizing them as same or dif-

ferent; it then looks for duration pairs in which the second duration is

signi®cantly longer, marking these as ``rhythmic accents.'' Adjacent pairs

of accents with similar time intervals are located. These pairs, called

``local bridges,'' are taken to indicate probable beat levels in the piece;

these are extrapolated over passages where beats are missing. Another

system deserving mention is that of Allen and Dannenberg (1990). This

system takes as input a series of interonset intervals, and produces just a

single level of beats. For each IOI, several possible rhythmic values are

considered (quarter, eighth, dotted-eighth, etc.). The system uses a tech-

nique known as ``beam search''; at any point it is extending and main-

taining a number of possible analyses. This is somewhat similar to a

preference rule system; however, a number of heuristic pruning methods

are used to limit the set of analyses maintained.

An important proposal building on these earlier efforts is that of

Rosenthal (1992). Rosenthal's model is based on ``noticers.'' A noticer

®nds two (not necessarily adjacent) attack-points in a piece; it takes the

time-interval between them and uses this interval to generate a rhythmic

level in either direction. In choosing the time-point for the next beat, it

has a window of choice, and will prefer a point at which there is an

event-onset. Even if no event is found, a beat can be placed, creating a

``ghost event''; however, only two adjacent ghost events are permitted.

Many rhythmic levels are generated in this way. These rhythmic levels

are grouped into families of compatible (simple-ratio-related) levels,

which are then ranked by salience criteria. One criterion here is IOI

(longer events are preferred as metrically strong); another is motivic

structure (levels are preferred which support motivic patterns in the

musicÐit is not explained how this is enforced).

A very different approach is re¯ected in Large and Kolen's con-

nectionist model (1994). In this model, musical input is represented as a

continuous function; onsets of events are represented simply as ``spikes''

in the function. The model involves an oscillator which entrains to both

the phase and period of the input. If an event occurs slightly later than

the model ``expects,'' then both the phase and the period are adjusted

accordingly. Large and Kolen also present a system with several oscil-

lators which entrain to different levels of metrical structure. One inter-
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esting feature is that the greater metrical weight of longer notes emerges

naturally from the system; the oscillator entrains more strongly to input

events which are not closely followed by another event.

These proposals contain many interesting ideas about meter-®nding.

However, they are also open to several serious criticisms. As mentioned

earlier, many of these models assume quantized input, and thus are really

only solving part of the meter-®nding problem (this is true of the systems

of Parncutt, Povel & Essens, Longuet-Higgins & Steedman, Longuet-

Higgins & Lee, and Lee). Most of these systems only consider duration

information as input, paying no attention to pitch (Longuet-Higgins &

Steedman; Chafe, Mont-Reynaud, & Rush; Povel & Essens; Allen &

Dannenberg; Lee; Parncutt; Large & Kolen). (Rosenthal's model appears

to consider pitch in that it considers motivic patterns; however, it is not

explained how this is done.) It will be shown below that pitch is impor-

tant for meter-®nding in several ways; and it is crucial for any system

which attempts to handle polyphonic music, something that none of

these systems claim to do. It is also dif®cult to evaluate these systems, due

to the lack of systematic testing (at least few such tests are reported).5

The model proposed below attempts to address these problems.

2.3

A Preference Rule

System for Meter

The model of meter-®nding described here was developed by myself

and Daniel Sleator and was ®rst presented in Temperley & Sleator 1999.

It builds on Lerdahl and Jackendoff's theory of meter as presented in A

Generative Theory of Tonal Music (GTTM) (1983), although it also

departs from this theory in important ways, as I will explain.

Before we begin, it is necessary to consider the input to the model. As

discussed in chapter 1, the input required is a ``note list,'' giving the pitch

(in integer notation, middle C � 60) and on-time and off-time (in milli-

seconds) of a series of notes; we can also think of this as a ``piano-roll,'' a

two-dimensional representation with pitch on one axis and time on the

other. (Figure 1.1 shows an example of a ``piano-roll.'')

Lerdahl and Jackendoff's theory of meter begins with the idea that a

metrical structure consists of several levels of beats. They propose four

well-formedness rules which de®ne the set of permissible metrical struc-

tures. Metrical Well-Formedness Rule (MWFR) 1 states that every event

onset must be marked by a beat; this goes along with the idea that met-

rical structure indicates the quantization of events re¯ected in rhythmic

notation. MWFR 2 requires that each beat at one level must also be a beat

at all lower levels. This implies that the beats of each level (except the

30 I. Six Preference Rule Systems



lowest) are always a subset of the beats at some lower level. (One might

argue that cases such as hemiolas can feature both a dotted-quarter-note

level and a quarter-note level, such that neither level contains all the

beats of the other; we will return to such ambiguities in chapter 8.)

MWFR 3 states that every second or third beat at one level must be a

beat at the next level up. For example, in 4/4 time, it is assumed that

there is never just a quarter-note level and a whole-note level; there is

always a half-note level in between. Note that the theory is also limited

to duple and triple meters, excluding things like 5/4 and 7/8; this is

adequate given GTTM's focus on common-practice music, and is ade-

quate for our purposes as well. Finally, MWFR 4 stipulates that beats

must be evenly spaced at the tactus level and ``immediately higher''

levels: that is, levels up to the measure. (We will refer to the levels

from the tactus up to and including the measure level as ``intermediate

levels.'') Lerdahl and Jackendoff argue that lower levels may be some-

what irregularÐfor example, one tactus beat might be divided in two,

the next one in threeÐand higher levels may also sometimes be irregular;

but at intermediate levels, perfect regularity is the norm. For the moment,

let us accept all of GTTM's well-formedness rules, although we will revise

them somewhat later. Lerdahl and Jackendoff's rules say nothing about

how many levels a metrical structure should have; they normally assume

roughly ®ve levels, with two above the tactus and two below.

Even assuming that a metrical structure must involve several levels of

equally spaced beats, one must still determine the duple or triple rela-

tionships between levels, the tempo (the time intervals between beats),

and the placing of the beats relative to the music. For this purpose,

Lerdahl and Jackendoff posit a set of metrical preference rules, stating the

criteria whereby listeners infer the correct structure. Consider ®gure 2.2,

the melody ``Oh Susannah'' in its entirety. The correct metrical structure

is shown above the staff. The most important rule is that beats (especially

higher-level beats) should whenever possible coincide with the onsets of

events. Since MWFR 1 already mandates that every event-onset should

coincide with a beat, the thrust of this rule is that the beats coincid-

ing with events should be as strong as possible. For example, in ``Oh

Susannah,'' the structure shown in ®gure 2.2 is preferable to that shown

in ®gure 2.3, since in the latter case most of the beats coinciding with

onsets are only beats at the lowest level. Secondly, there is a preference

for strong beats to coincide with longer events. In ``Oh Susannah,'' for

example, this favors placing quarter-note beats on even-numbered

eighth-note beats (the second, fourth, and so on), since this aligns them
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with the dotted eighth-notes. Similarly, this rule favors placing half-note

beats on odd-numbered quarter-notes, since this aligns the long note in

m. 4 with a half-note beat. We state these rules as follows:

MPR 1 (Event Rule). Prefer a structure that aligns strong beats with

event-onsets.

MPR 2 (Length Rule). Prefer a structure that aligns strong beats with

onsets of longer events.

(Our wording of the MPR's [Metrical Preference Rules] rules differs

slightly from that in GTTM. Also, our numbering of the rules will differ

from GTTM's, as our model does not include all the same rules.) Note

that the preferred metrical structure is the one that is preferred on bal-

ance; it may not be preferred at every moment of the piece. For example,

the second A in m. 10 is a long note on a fairly weak beat, thus violating

the length rule, but on balance, this structure is still the preferred one.

Figure 2.2
The traditional melody ``Oh Susannah,'' showing the correct metrical structure.

Figure 2.3
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When we turn to polyphonic music, several complications arise. Con-

sider ®gure 2.4, the opening of Mozart's Sonata K. 332. The correct

metrical structure is indicated by the time signature; why is this the

structure that is perceived? The eighth-note level is obviously determined

by the event rule. The quarter-note level could also be explained by the

event rule; on certain eighth-note beats we have two event-onsets, not just

one. This brings up an important point about the event rule: the more

event-onsets at a time-point, the better a beat location it is. Regarding the

dotted-half-note levelÐwhich places a strong beat on every third quarter-

note beatÐone might suppose that it was due to the long notes in the

right hand. This raises the question of what is meant by the ``length'' of

an event. The actual length of events is available in the input, and this

could be used. However, this is problematic. In the Mozart, the long

notes in the right hand would probably still seem long (and hence good

candidates for strong beats) even if they were played staccato. Alter-

natively, one might assume that the length of a note corresponded to its

interonset interval (IOI): the time interval between the note's onset and

the onset of the following note. (This is the approach taken by most

previous meter-®nding programs.) While this approach works fairly well

in monophonic music, it is totally unworkable in polyphonic music. In

the Mozart, the IOI of the ®rst right-hand event is only one eighth-note:

it is followed immediately by a note in the left hand. Intuitively, what we

want is the IOI of a note within that line of the texture: we call this the

``registral IOI.'' But separating the events of a texture into lines is a

highly complex task which we will not address here (I return to this

problem in chapter 4). Our solution to this problem, which is crude but

fairly effective, is to de®ne the registral IOI of an event as the interonset

interval to the next event within a certain range of pitch: we adopt the

value of nine semitones. However, actual duration sometimes proves to

be important too. In ®gure 2.5a and b, the pattern of onsets is the same

in both cases, but the fact that the G's are longer in ®gure 2.5a makes

Figure 2.4
Mozart, Sonata K. 332, I, mm. 1±5.
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them seem metrically stronger, while in ®gure 2.5b the C's seem like

better strong beat locations. Taking all this into account, we propose a

measure of an event's length which is used for the purpose of the length

rule: the length of a note is the maximum of its duration and its registral

IOI.

So far, we have been assuming a ``quantized'' input, generated pre-

cisely from a score. Lerdahl and Jackendoff's model (like many other

models of meter) assumes that quantization has already taken place

before meter-®nding begins; this is re¯ected in their MWFR 4, stating

that beats at intermediate levels must be exactly evenly spaced. In actual

performance, however, beats are of course not exactly evenly spaced, at

any level. There may be deliberate ¯uctuations in timing, as well as errors

and imperfections. Even so, the performer's intended beats must have a

certain amount of regularity for the meter to be correctly perceived. This

is illustrated by ®gure 2.1. Assigning Performance C the same metrical

structure as Performance A (that is, making the G three beats long and

the A one beat long) would involve too much irregularity in the spacing

of beats; thus an alternative analysis is preferred. A more realistic exam-

ple is shown in ®gure 2.6. The numbers above the score represent time

Figure 2.5

Figure 2.6
Schumann, ``Von fremden Laendern und Menschen,'' from Kinderszenen, mm.
13±16. The numbers above the staff indicate time intervals (in milliseconds)
between tactus beats, in an actual performance of the piece by the author.
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intervals between tactus (quarter-note) beats, in a performance of this

piece by myself. The lengthening of the second beat of m. 14 is not so

extreme as to disrupt the intended meter. However, if it was made much

longer than this, the listener might be tempted to infer an extra tactus

beat. Clearly, we prefer beat levels with relatively evenly spaced beats,

though some variation in spacing is tolerated. This suggests that a

simple modi®cation of Lerdahl and Jackendoff's model can accommodate

unquantized input: make the demand for regularity a preference rule,

rather than a well-formedness rule. We express this as follows:

MPR 3 (Regularity Rule). Prefer beats at each level to be maximally

evenly spaced.

It is useful in this context to introduce another idea from GTTM, the

``phenomenal accent.'' A phenomenal accent is de®ned as ``any event

at the musical surface that gives emphasis or stress to a moment in the

musical ¯ow'' (Lerdahl & Jackendoff 1983, 17). This could include an

event-onset, the onset of a long event, or other things that will be dis-

cussed below. Rules that pertain to phenomenal accents of one kind or

another could be called ``accent rules.'' By the view presented above,

meter-®nding becomes a search for a metrical structure which aligns

beats with the phenomenal accents of the input, thus satisfying the accent

rules, while maintaining as much regularity as possible within each level.

While it is clearly necessary to allow ¯exibility in the spacing of beats,

this makes meter-®nding much more dif®cult. If we could assume perfect

regularity at intermediate levels, then once these levels were established at

the beginning of the piece, they could simply be extrapolated metro-

nomically throughout the piece; meter-®nding would then be a problem

that arose mainly at the beginning of pieces. Since beats are not exactly

regular, meter-®nding cannot work this way; rather, the metrical struc-

ture must continuously be adjusted to ®t the music that is heard. One

might suppose that we could at least assume regularity in the relationship

between levels; once a piece begins in triple meter (with every third tactus

beat strong), it will stay in triple meter. Further consideration shows that

we cannot assume this. Pieces do sometimes change time signatures; in

fact, they quite often change to a completely different metrical structure,

with a different tempo and different relationships between levels. Con-

sider a slow introduction going into an allegro, a symphony or sonata

with continuous movements, or a segue from one section to another in an

opera. Listeners are generally able to adjust to these changes, and do not

bullheadedly continue to maintain the previous meter when the evidence
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clearly suggests otherwise. This means that ¯exibility must be allowed at

all levels of metrical structure.

As well as the assumption of perfect regularity, Lerdahl and Jacken-

doff's model makes another assumption which tends to break down with

actual performed music. GTTM's MWFR 1 states that every event-onset

must be assigned a beat. For the most part, this rule is valid; as noted

earlier, music notation generally assigns each event a position in the

metrical structure. However, consider ®gure 2.7. Measures 5 and 6 each

feature ``grace notes'' before the downbeat of the measure; this is fol-

lowed by a ``rolled chord'' in m. 7 and a ``turn'' ®gure in m. 8. Each of

these ornaments can be represented perfectly well in piano-roll format;

®gure 2.8 shows my own performance of the passage. However, the

notes in these ornaments do not seem to belong to any beat in the met-

rical structure. Such notesÐwhich Lerdahl and Jackendoff describe

as ``extrametrical''Ðare commonplace in all kinds of common-practice

music: Baroque, Classical, and Romantic. Lerdahl and Jackendoff's

original theory does not really handle extrametrical notes, as they

acknowledge (p. 72). The correct way to incorporate them seems to be

simply to get rid of MWFR 1. The event rule already provides a prefer-

ence for aligning beats with events where possible; thus there is strong

pressure to avoid making notes extrametrical. The hope is that the model

will only label notes as extrametrical when it is appropriate to do so. A

trill or turn ®gure is likely to feature several notes very close together in

time, so that it is impossible for the model to assign beats to all of them

(without generating implausible extra levels).6

Once GTTM's MWFR 1 (requiring every event to coincide with a

beat) and MWFR 4 (requiring perfect regularity at intermediate levels)

are removed, it can be seen that only two MWFR's remain. We now state

these as the two well-formedness rules for the current model:

Figure 2.7
Beethoven, Sonata Op. 2 No. 1, I, mm. 3±8.
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MWFR 1. Every beat at a given level must be a beat at all lower levels.

MWFR 2. Exactly one or two beats at a given level must elapse

between each pair of beats at the next level up.

So far, then, our model has these two well-formedness rules, as well as

the three preference rules described above: the event rule, the length rule,

and the regularity rule.

In initial computational tests, the model as just described proved quite

effective in generating good metrical analyses. However, one problem

frequently arose; this concerns the highest level, that is, the level two

levels above the tactus. (We adopt the convention of calling the tactus

level 2; higher levels are then called 3 and 4, and lower levels are 1 and 0.

As we discuss below, our program generally only generates these ®ve

levels.) Given only the three preference rules listed above, the program

will generally identify level 4 as duple, which it usually is, but it often

chooses the incorrect phase (this occasionally happens with level 3 as

well). In ``Oh Susannah,'' for example (®gure 2.2), the program assigns

Figure 2.8
A piano-roll representation of the Beethoven excerpt shown in ®gure 2.7, taken
from a performance by the author.
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level 4 beats to even-numbered measures, rather than odd-numbered

ones (as seems correct). The reason for this is clear: there are often long

notes at the ends of phrases, which makes the program prefer them

as strong, although they are often weak at higher metrical levels. The

solution to this problem lies in phrase structure, or what Lerdahl and

Jackendoff call ``grouping structure.'' Grouping structure involves a

segmentation of events, with grouping boundaries occurring after long

notes and rests. (There are other factors in grouping as well; this is dis-

cussed further in the next chapter.) As Lerdahl and Jackendoff note,

grouping affects meter: there is a preference for locating strong beats

near the beginning of groups. In the ®rst phrase of ``Oh Susannah,'' the

beginning of the melody is clearly a group boundary; this exerts pressure

for the ®rst measure downbeat to be strong, since it is near the beginning

of the group. The long note on the downbeat of m. 4 suggests the end of

a group, exerting pressure for the downbeat of m. 5 to be strong as

well.7 Ideally, it would be desirable to incorporate grouping as a factor

in meter, as Lerdahl and Jackendoff suggest, at least for higher levels of

meter, exerting pressure for strong beats near the beginning of groups.

However, getting a computer to recognize grouping boundaries is a dif-

®cult problem, especially in polyphonic music (see chapter 3); and meter

is also a factor in grouping, creating a chicken-and-egg problem. Instead,

we have adopted a cruder solution. At level 4, the program ignores the

length rule, and simply prefers beat locations which hit the maximum

number of event-onsets. In addition, we give a slight bonus at level 4 for

placing a level 4 beat on the ®rst level 3 beat of the piece (rather than the

second or third), thus encouraging a level 4 beat near the beginning of

the piece. This ad hoc solution improves performance somewhat, but

incorporating grouping structure would clearly be more satisfactory. For

completeness, we state the grouping rule here:

MPR 4 (Grouping Rule). Prefer to locate strong beats near the begin-

ning of groups.

A second problem in our initial tests concerned the relationship

between levels. While both duple and triple relationships are common,

it appears that there is a slight preference for duple relationships. Con-

sider an undifferentiated sequence of chords, at a typical tactus rate of

quarter � 90. Obviously a beat will be heard on each chord. The ®rst

one will probably be heard as strong; this is predicted by the grouping

rule above. In addition, however, the level above the tactus will most

likely be heard as duple rather than triple, with a strong beat on every
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second chord. (If pressed to supply a lower level, also, we will most likely

assume a duple division of the beat rather than a triple one.) We state this

preference as follows:

MPR 5 (Duple Bias Rule). Prefer duple over triple relationships

between levels.

This is obviously a weak rule, frequently overruled by other factorsÐ

as proven by the wealth of music with some kind of triple relationship

between levels.

The ®ve rules discussed aboveÐthe event rule, the length rule, the

regularity rule, the grouping rule (or rather our very limited implemen-

tation of it), and the duple bias ruleÐconstitute the preference rules used

in our meter program. (Lerdahl and Jackendoff propose a number of

other preference rules, some of which will be discussed in a later section.)

It remains to be explained how the model is formalized and implemented.

2.4

Implementation

As explained in chapter 1, the basic idea for implementing preference rule

systems is straightforward. The system must consider all ``well-formed''

analyses of a piece. We regard a well-formed metrical structure as one

consisting of several levels of beats, such that each beat at one level is a

beat at all lower levels, and exactly one or two beats at one level elapse

between each pair of beats at the next level up. We assume metrical

structures of ®ve levels, with two below the tactus and two above. In

many cases, this seems quite suf®cient; in some pieces there may be more

than two levels above the tactus (perhaps three or four), but we will not

consider these higher levels here. (While Lerdahl and Jackendoff only

include levels below the tactus where they are neededÐthat is, where

there are event-onsetsÐour program generates beats even when they are

not needed.) According to the procedure outlined in chapter 1, the system

must then evaluate all possible well-formed analyses according to the

preference rules. The current system essentially works this way, with

one important quali®cation. Rather than considering complete metrical

analyses, the system generates one level at a time, starting with the tactus

level and proceeding to the upper and lower levels.

The ®rst step is that the input representation (the ``note list'' described

earlier) is quantized into very short segments of 35 ms, which we call pips

(the value of 35 ms was simply found to be optimal through trial and

error). Every note onset or offset is adjusted to the nearest pip. Beats may

also occur only at the start of a pip. There are several reasons for per-
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forming this step. One is purely a matter of implementation: in order

for the dynamic programming scheme outlined in chapter 1 to work, the

input must be quantized at some level; and since the speed of the pro-

gram depends on the number of segments, it is better to avoid a very

small level of quantization. A more substantive reason for quantization is

that, in live performance, notes that are intended as simultaneous are not

usually played simultaneously; it is very common for the notes of a chord

to be 10 or 20 ms apart. The event rule and length rule favor beats

at locations where there are event-onsets, but in fact, the notes of a

chord may not be at exactly the same location. By quantizing to pips, we

attempt to make the notes of each chord exactly simultaneous. (Note that

this quantization is quite different from the ``quantization-to-beats'' seen

earlier in the work of Desain and Honing; 35 ms is much smaller than

the smallest level of beats.)8

We now turn to the problem of deriving the tactus level. A well-formed

tactus level is simply a single row of beats. We arbitrarily limit the time

intervals between beats to a range of 400 to 1600 ms (this is the typical

range for the tactus level). However, there is no ``well-formedness'' con-

straint on the variation between beat intervals within this range; a tactus

level could in principle have one beat interval of 400 ms, followed by one

of 1600, followed by another of 400. An analysis can then be evaluated

in the following way. Each pip containing a beat is given a numerical

score called a ``note score.'' This is a complicated score which re¯ects

both the number of events that have onsets at that pip, as well as their

lengths; pips with more note onsets, and onsets of longer notes, receive

higher note scores.9 Pips with no event-onsets have a note score of zero.

In summing these note scores for all the pips that are beat locations, we

have a numerical representation of how well the analysis satis®es the

event rule (MPR 1) and the length rule (MPR 2). Each pip containing a

beat is also given a score indicating how evenly spaced it is in the context

of the previous beats in that analysis (MPR 3). There are various ways

that this could be quanti®ed, but we have found a very simple method

that works well: the regularity of a beat Bn is simply given by the abso-

lute difference between the interval from Bn to Bnÿ1 and that from Bnÿ1

to Bnÿ2. This beat-interval score therefore acts as a penalty: a represen-

tation is preferred in which the beat-interval scores are minimized. The

preferred tactus level is the one whose total note score and (negative)

beat-interval score is highest. One complication here is that simply

de®ning the note score for a beat level as the sum of the note scores for

all its beats gives an advantage to analyses with more beats. Thus we
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weight the note score of each beat by the square root of its beat interval

(the interval to the previous beat). The reason for using the square root

here will be explained further in section 2.8.

The beat-interval scores capture the role of context in metrical analy-

sis. The best location for a tactus beat within (for example) a one-second

segment depends in part on the beat-interval penalty for different pips,

but this in turn depends on the location of previous beats, which in turn

depends on the beat-interval scores for previous pips (and their note

scores), and so on. In theory, then, all possible analyses must be con-

sidered to be sure of ®nding the highest-scoring one overall. However,

the number of possible analyses increases exponentially with the number

of pips in the piece. There is therefore a search problem to be solved of

®nding the correct analysis without actually generating them all.

The search procedure uses a variant of the dynamic programming

technique discussed in chapter 1. Imagine moving through the piece from

left to right. At each pip, we consider each possible beat interval (the in-

terval from the current pip to a previous one), within the allowable in-

terval range for the tactus; we ®nd the best analysis of the piece so far

ending with that beat interval. To do this, we must consider each possible

beat interval at the previous pip and the associated best-so-far score

(which has already been calculated). This allows us to calculate beat-

interval scores for the current pip, since this depends only on the differ-

ence between the current beat interval and the previous one. (The note

scores for pips can of course be easily calculated; they do not depend on

what happens elsewhere in the analysis.) For each beat interval at the

current pip, we choose the previous beat interval leading to the optimal

score; this gives us a new set of ``best-so-far'' analyses for the current pip.

When we reach the end of the piece, the pip and beat-interval with the

highest total score yields the preferred analysis for the piece. (Since there

is no guarantee that the ®nal pip of the piece is a beat location, we must

consider all pips within a small range at the end of the piece.)

The preferred tactus level for a piece, then, is the one that emerges

from the procedure just described. It remains to be explained how the

other levels are derived. We derive the other levels ``outward'' from

the tactus (level 2); ®rst we derive the upper levels, 3 and then 4, then the

lower levels 1 and then 0. There are, ®rst of all, ``well-formedness'' con-

straints here that did not exist with the tactus level. Because of MWFR 1,

the possible locations for level 3 beats are limited to level 2 beat loca-

tions; and level 2 beat locations are obligatory locations for level 1 beats.

The same rule applies to the levels 0 and 4. MWFR 2 also comes into

play: exactly one or two level 2 beats must occur between each pair
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of level 3 beats, and the same rule applies between every other pair of

adjacent levels.

The application of the preference rules to the outer levels is similar to

that described for the tactus level, though there are some differences. The

event rule and the length rule apply, and are quanti®ed in the exactly the

same way.10 Here the duple bias rule (MPR 5) is also incorporated: we

simply provide a small bonus for duple rather than triple relationships

between the level being added (higher or lower) and the existing one. The

regularity rule (MPR 3) applies here as well, but in a rather different way

than at the tactus level. At the upper levels, rather than imposing a pen-

alty for differences between adjacent beat intervals (as it does with the

tactus level), the regularity rule imposes a penalty for changes in the

number of beats that elapse between upper level beats. If one level 2 beat

elapses between a pair of level 3 beats, and two level 2 beats elapse

between the next pair, a penalty is imposed. At level 4, the rule works

the same way with respect to level 3. At level 1, similarly, a penalty is

imposed depending on regularity in relation to level 2: if one level 2 beat

is divided duply, and the next triply (or vice versa), a penalty is imposed.

However, the beat-interval measure of regularity also imposes a penalty

here, to ensure that the division of each tactus beat is relatively even.

Again, the operation of level 0 is the same. In this way, other things being

equal, there is a preference for maintaining either a consistent duple or

triple relationship between each pair of levels, rather than frequently

switching back and forth. The logic of this is as follows. It is the job of

the regularity rule at the tactus level to penalize excessive changes in

tempo (that is, to favor some other interpretation rather than a radical

change in tempo). Using a ``beat-interval'' measure of regularity at upper

and lower levels would simply be adding another, redundant, penalty for

changes in tempo. Rather, it seemed to us that, at the higher and lower

levels, the regularity rule should function to penalize changes in relation-

ships between levelsÐroughly speaking, changes in time signatureÐnot

changes of tempo.

These quantitative expressions of the preference rules can be used to

evaluate possible analyses at each outer level. A dynamic programming

procedure similar to that described for the tactus is then used to ®nd the

best analysis for each level.

2.5

Tests

Two tests were done of the program described above. First, it was tested

on quantized input ®les generated from a corpus of excerpts from the

42 I. Six Preference Rule Systems



Kostka and Payne theory workbook (1995b). Second, it was tested on

MIDI ®les generated from performances by an expert pianist of certain

excerpts from the same corpus (the ones for solo piano).

The Kostka-Payne workbook was judged to be an appropriate source

of testing material, since it contains excerpts from a variety of different

composers and genres within the common-practice period. In addition,

the workbook provides harmonic and key analyses, making it a suitable

source for testing the harmonic and key programs as well (as discussed in

later chapters).11 The corpus of excerpts used consisted of all excerpts

from the workbook of eight measures in length or more for which har-

monic and key symbols were provided. (Shorter excerpts were not used,

since it seemed unfair to expect the program to infer the meter or key for

very short excerpts.) This produced a corpus of forty-six excerpts. Nine-

teen of these were for solo piano; the remainder were mostly chamber

pieces for small ensembles. The same corpus was also used for testing the

pitch-spelling, harmonic, and key programs.

For the quantized test, quantized input ®les were generated for the

forty-six excerpts in the corpus. The tempi of course had to be deter-

mined; I simply chose tempi that I thought were reasonable. Once this

was done, the duration of each note could be determined objectively.

One problem concerned extrametrical notes, such as trills and grace

notes. Due to the dif®culty of deciding objectively on the timing for these,

all such notes were excluded.

The unquantized ®les were generated from performances on a MIDI

keyboard by a doctoral student in piano at Ohio State University. The

student was given the excerpts beforehand, and asked to practice them.

She was then asked to play them on the keyboard as naturally as possi-

ble, as if she was performing them. She was allowed to play each excerpt

repeatedly until she was satis®ed with the performance. The student was

discouraged from using the sustain pedal (since the program does not

consider sustain pedal), although she was allowed to use the pedal and

sometimes did so. No other instructions or input were given; in particu-

lar, the student was not discouraged from using expressive timing or

extrametrical notes in her performance.

The input ®les for both the quantized and unquantized performances

were then analyzed by the program. As mentioned above, the metrical

structure for a piece is usually explicit in notation up to the level of the

measure. Given the program's output for a piece, then, it was possible to

determine objectively whether this analysis was correct.12 In the evalua-

tion of the program's output, each metrical level was examined individ-
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ually. For each measure of each excerpt, it was determined whether the

program's output was correct for each metrical level: that is, whether beats

were placed on exactly the right event-onsets, with the right number of

beats elapsing in between onsets. Recall that the program generates ®ve

levels, numbered 0 through 4, with level 2 being the tactus level. (The

program did not always choose the correct level as the tactus; we will

return to this problem below. In this test, however, we simply compared

each of the program's levels with whichever level of the correct metrical

structure it matched most closely.) Since the scores for the excerpts con-

tained no information about metrical levels above the measure, hyper-

metrical levelsÐlevels above the measureÐcould not be scored. In

twenty-one of the excerpts, level 4 was hypermetrical; these excerpts

were excluded in the evaluation of level 4. (Two excerpts were excluded

for level 3 for the same reason.) Also, for sixteen of the excerpts, the

lowest metrical level was not used at all (that is, there were no notes

on any level 0 beats, either in the correct analysis or in the program's

output); these excerpts were excluded from the evaluation of level 0.

(One excerpt was excluded for level 1 for the same reason.)

The results of the test are shown in table 2.1. It can be seen that the

program performed somewhat better on the quantized ®les than on the

unquantized ®les. On the quantized ®les, it achieved the best results

on the tactus level; on the unquantized ®les, its results were best on the

tactus level and level 4. However, its success rate did not vary greatly

between different levels.

2.6

Problems and

Possible

Improvements

While the performance of the program on the tests described above

seems promising, it is far from perfect. We have examined a number of

the errors that the program makes (in these tests and others), and con-

sidered possible solutions. We will begin by discussing the quantized ®les

®rst, and then consider the unquantized ®les. It should be noted, ®rst of

all, that some of the errors made by the program should probably not be

regarded as errors. For example, in the quantized ®le for the Chopin

passage in ®gure 2.9 (a segment of a larger excerpt), the sixteenth-note in

the right hand in m. 41 was treated as being simultaneous with the triplet

eighth-note just before (likewise the sixteenth-note in m. 42). Though

strictly incorrect, it is very likely that it would be heard this way, if

played with perfect precision (though of course it never would be). Thus

the program's performance is somewhat better than it appears.

44 I. Six Preference Rule Systems



Having said that, the program did make a considerable number of

real errors on the quantized ®les. Consider ®gure 2.10a, from a Chopin

Mazurka; the tactus here is the quarter note. Initially, the metrical pro-

gram produced a 3/4 metrical structure, but ``out of phase'' with the

correct analysis; that is, level 3 beats were placed on the second and ®fth

quarter-note beats rather than the ®rst and fourth. A similar error was

made in the Schubert song shown in ®gure 2.10b; here, level 3 (the

quarter-note level in this case) was identi®ed as duple, but again out of

phase, with beats on the second and fourth eighth-notes of each measure.

Perceptually, the important cue in these cases seems to be harmony. In

the Chopin there are changes of harmony on the ®rst quarter-note of

each notated measure (with the possible exception of the second); in the

Schubert, too, the downbeats of the ®rst and third measures feature clear

chord changes. (The factor of harmony is noted by Lerdahl and Jackendoff

in their MPR 5f.) However, this presents a serious chicken-and-egg

Figure 2.9
Chopin, Nocturne Op. 27 No. 1, mm. 41±2.

Table 2.1
Test results for metrical program on Kostka-Payne corpus

Metrical level 0 1 2 3 4

Quantized input ®les 88.7 89.6 94.4 86.2 93.5

Unquantized input ®les 71.5 77.0 85.5 83.0 85.6

Note: The numbers in each cell show the percentage of measures in the corpus
for which the program's analysis was correct at a given metrical level. For the
quantized corpus, there were 553 measures total; for the unquantized one there
were 235 measures.
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problem; as we will see in chapter 6, meter is an important input to

harmony as well. One solution would be to compute everything at once,

optimizing over both the metrical and harmonic rules, but we have

not attempted this; we have, however, experimented with an alternative

solution to the problem. First we run the basic metrical algorithm, but

generating only the tactus level and lower levels. Then we run the output

through the harmonic program (described in chapter 6), in what we call

``prechord'' mode. In this mode, the harmonic program processes the

piece in the usual way, but outputs only a list of ``prechord'' events,

which are simply chord changes. (All that matters here is the timepoints

of the chord changes, not the actual roots.) In other words, the harmonic

program determines what it thinks is the best location for chord

changes, based on very limited metrical information. These prechord

statements are added to the original note list. Now this is fed back into

the basic metrical program, which has been modi®ed so that it recog-

Figure 2.10
(A) Chopin, Mazurka Op. 63 No. 2, mm. 1±4. (B) Schubert, ``Auf dem Flusse,''
mm. 13±17.
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nizes prechord events and has a preference for strong beats at pre-

chord locations. In effect, the metrical algorithm is now taking harmony

into account in choosing the metrical structure. This allows us to

get better results in several cases, including the Chopin and Schubert

examples.13

In both the examples discussed above, one might point to another

factor as in¯uencing our perception of the meter. In both cases, the bass

notes are in positions that should be considered metrically strong. One

might get the right results in such cases, then, by exerting special pressure

for strong beats on bass notes. This principle is re¯ected in Lerdahl and

Jackendoff's MPR 6, which states ``prefer a metrically stable bass.'' We

experimented with an implementation of this rule. The program ®rst

identi®ed bass notes, where a bass note was de®ned as a note below G3

in pitch, and not followed within 500 ms by any other note below it or

less than six half-steps above it. The program then gave a bonus to the

note score for bass notes, so that there was a greater incentive to make

them metrically strong than for other notes. However, two problems

arose. In the ®rst place, de®ning bass notes proves to be a hard problem;

it is not dif®cult to ®nd notes that are incorrectly included or excluded by

the de®nition posed above. (Here again, it might be necessary to analyze

polyphonic lines in order to identify bass notes correctly.) Secondly, we

found that this modi®cation created new errors; quite often, bass notes

actually do occur on weak beats, and the program needs to be able to

allow this. Examples of this can easily be found; ®gure 2.11 shows one,

from a Beethoven sonata.14 Our tests suggest, then, that harmonic infor-

mation is more useful than bass-note information as a cue to metrical

structure.

We should also consider the program's performance on the unquan-

tized ®les. It can be seen that the program's success rate on the unquan-

Figure 2.11
Beethoven, Sonata Op. 2 No. 1, I, mm. 41±5.
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tized ®les is somewhat lower that on the quantized ones. Most of the

errors the program made on the quantized input ®les were made on the

corresponding unquantized ®les as well; the program also made a num-

ber of additional errors on the unquantized ®les. The most common kind

of error was what might be called ``smudged chord'' errors, where the

notes of a chord, intended to be simultaneous, were not analyzed that

way; either some of the notes of the chord were placed on a different beat

from the correct beat, or they were analyzed as ``extrametrical'' (not on

any beat at all). (Notes that were intended as extrametrical often caused

problems here; in some cases a beat was placed on an extrametrical note

instead of the intended metrical note.) Other errors were caused by ex-

pressive ¯uctuations in timing. Not suprisingly, fermatas and other major

¯uctuations in tempo usually confused the program, causing it to put in

extra beats. However, there were relatively few errors of this kind; the

slight ritards that typically occurred at phrase-endings did not usually

cause errors.

2.7

Other Factors in

Metrical Structure

Several other possible factors in metrical analysis should be mentioned

here. One is loudness, or what Lerdahl and Jackendoff call ``stress.''

We have not incorporated loudness as a factor, although it would be

quite easy to do so, allowing a loudness value for each note and factoring

this into the ``note scores.'' Loudness does not appear to be a centrally

important cue for meter; consider harpsichord and organ music, where

loudness can not be varied (see Rosenthal 1992 for discussion). Still, it

can be a signi®cant factor when other cues are absent.15 Anther kind

of stress that is important in vocal music is linguistic stress; there is a

tendency to align strong beats with stressed syllables of text (see Halle &

Lerdahl 1993). This rule will assume considerable importance in chapters

9 and 10.

Little has been said about the role of melodic accent in metrical anal-

ysis. It has sometimes been argued that a melody can convey points of

accent simply by virtue of its shape; one might wonder whether these

melodic accents could serve as metrical cues. A number of hypotheses

have been put forward regarding what exactly constitutes a melodic accent.

Various authors have suggested that melodic accent can be conveyed by

pitches of high register, pitches of low register, pitches following large

intervals (ascending, descending, or both), or pitches creating a change in

melodic direction (see Huron & Royal 1996 for a review). Inspection of

the program's errors on the Kostka-Payne corpus gives little indication
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that incorporating a factor of melodic accent would improve results.

There are other reasons, as well, to be skeptical about the idea of melodic

accent. Huron and Royal (1996) analyzed melodic databases (folk songs

and instrumental melodies) and examined the correlation between the

various kinds of melodic accent cited above and actual metrical strength

(as indicated by the notation). In all cases the correlation was very small.

(The best correlation found was with a model proposed by Thomassen

[1982], de®ning melodic accent in a rather complex contextual way, but

even here only a small correlation was found.) This is not to deny that

there might be some other useful and psychologically valid notion of

``melodic accent'' which is unrelated to meter. The evidence for melodic

accent as a cue to meter, however, is slim.

A ®nal factor that should be mentioned is parallelism. Parallelism

refers to repeated patterns of pitch and rhythm; as Lerdahl and Jackendoff

observed, there is a tendency to align metrical levels with such patterns,

so that repetitions of a pattern are assigned parallel metrical structures.

While parallelism is certainly a factor in meter, it is not so easy to tease

out the role of parallelism from other metrical cues. In a passage with a

simple repeating rhythmic pattern, such as the Mozart excerpt in ®gure

2.4, one might suppose it is parallelism that causes us to assign the same

metrical analysis to each instance of the pattern. However, this may

simply be due to the fact that each instance of the pattern, considered

independently, naturally yields the same metrical analysis. A clearer

demonstration of parallelism is found in a repeating pitch pattern such

as ®gure 2.12. In this case, there is no apparent factor favoring any

particular interpretation of the three-note pattern itself. (There is per-

haps a slight tendency to put a strong beat at the beginning of the entire

excerpt, due to the grouping rule, but this is clearly a weak factor; it is

perfectly possible to hear the third note of the excerpt as metrically

strong.) Even so, there is a de®nite tendency to hear some kind of triple

metrical structure here, with every third eighth-note strong. I say ``some

kind of'' triple structure, because importantly, the factor of parallelism

itself does not express a preference between different triple structures. As

stated earlier, parallelism relates to the alignment of the metrical struc-

Figure 2.12
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ture with instances of a repeated pattern; repetitions of the pattern

should be assigned parallel structures. This means, essentially, that the

period of the metrical structure should be the same as the period of the

pattern. (More speci®cally, one level of the metrical structure should

have the same period as the pattern, so that the interval between beats at

that level is the same as the length of the pattern.) Parallelism in itself

says nothing about phase, that is, where in the pattern the strong beats

should occur. This, of course, is governed by the event rule and other

rules.

As well as the tendency to assign parallel metrical structures to parallel

segments, there is another aspect to parallelism, which affects higher

levels of meter in particular. Consider ®gure 2.13, from the ®rst move-

ment of Beethoven's Piano Sonata Op. 2 No. 1. The meter is clear

enough up to the level of the measure, but which are stronger, odd-

Figure 2.13
Beethoven, Sonata Op. 2 No. 1, I, mm. 20±32.

50 I. Six Preference Rule Systems



numbered or even-numbered measures? The ®rst part of the passage

suggests odd-numbered measures as strong (the fact that m. 21 is the

beginning of a melodic group is a major factor here). However, m. 26

seems stronger than m. 27. The reason, I submit, is the parallelism

between m. 26 and m. 27: the repetition in rhythmic pattern, and partly

in pitch pattern as well. As already noted, we tend to choose a metrical

structure with the same period as the parallelism, but this rule expresses

no preference between the ``odd-measure-strong'' and the ``even-measure-

strong'' hearing. Another factor is involved here: in cases where a pat-

tern is immediately repeated, we prefer to place the stronger beat in the

®rst occurrence of a pattern rather than the second; this favors m. 26 as

strong over m. 27. This ``even-measure-strong'' hearing persists for sev-

eral measures, but in m. 31 we are again reoriented, as the parallelism

between mm. 31 and 32 forces us to switch back to an odd-measure-

strong hearing. This factor of ``®rst-occurrence-strong'' is an important

determinant of higher-level meter, and can frequently lead to metrical

shifts.16

Despite the clear role of parallelism in meter, it would be a very dif®-

cult to incorporate parallelism into a computational model. The program

would have to search the music for patterns of melodic and rhythmic

repetition. Since this seems to me to be a huge and complex problem, I

am not addressing it formally in this book. However, we will give some

attention to the issue of musical pattern recognition in chapter 12. (For

an interesting attempt to handle parallelism, see Steedman 1977.)

The previous sections have listed several factors which seem important

to metrical analysis, though we have not included them in our imple-

mented model. It will be useful to list them here, since I will refer to them

in later chapters.

MPR 6 (Harmony Rule). Prefer to align strong beats with changes in

harmony.

MPR 7 (Stress Rule). Prefer to align strong beats with onsets of louder

events.

MPR 8 (Linguistic Stress Rule). Prefer to align strong beats with

stressed syllables of text.

MPR 9 (Parallelism Rule). Prefer to assign parallel metrical structures

to parallel segments. In cases where a pattern is immediately repeated,

prefer to place the stronger beat on the ®rst instance of the pattern rather

than the second.
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2.8

Choosing the Right

Tactus

A metrical structure does not just consist of several levels of equal

strength and importance. As noted earlier, there is generally one level, the

tactus, which corresponds to the main ``beat'' of the music. There is

psychological evidence that the tactus level serves a special cognitive

function. In performance, there is less variance of beat intervals in the

tactus level than in other levels, suggesting that the tactus serves as the

internal ``timekeeper'' from which other levels are generated (Shaffer,

Clarke, & Todd 1985). For a metrical model, then, it is important not

only to identify all the levels of the metrical structure, but to identify the

correct level as the tactus.

In the current case, the program indicates its choice of tactus as level

2Ðthe ®rst level it generates. It was noted earlier that the program's

choice of tactus intervals is limited to a range of 400 to 1600 ms. Thus

the program is really being forced to choose a tactus in the appropriate

range. However, in a piece with a constant tempo and a regular structure

of duple and triple levels, there will always be at least two levels within

this range that the program can choose from. The program's choice here

is guided by the same preference rules noted earlier: most importantly, it

prefers the level that hits the most note-onsets (especially onsets of longer

notes). (Recall that ``note scores'' are added to the score of a tactus level

for every note that it hits.) Consider a simple sequence of quarter notes. If

this sequence is given to the program with a tempo of quarter � 120, it

will choose the quarter note as the tactus (with tactus intervals of 500

ms). If the same sequence is given with a tempo of quarter � 60, it will

still choose the quarter note level as the tactus, although this level is now

half as fast, with tactus intervals of 1000 ms. In both cases, the alterna-

tive beat level (500 or 1000 ms) is also found, but it is treated as a higher

or lower level than the tactus level. The program's behavior here is surely

correct; however, attaining this result is not trivial, and depends on a

subtle feature of the scoring. Suppose the note scores for a given tactus

analysis were simply summed. Then, given a sequence of quarter notes at

a tempo of quarter � 60, the program would have no incentive for

choosing the 1000 ms level; the score for the 500 ms level would be just

as high, since it hits just as many notes as the 1000 ms level. On the other

hand, suppose that note scores were weighted according to the beat

intervals. Then, given a quarter-note sequence at quarter � 120, the

program would have no incentive to choose the 500 ms level; the 1000

level would hit half as many notes, but would score twice as much for

each one. This is why note scores are weighted by the square root of the
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beat interval. This allows the program to choose intelligently between

possible tactus levels over a wide range of time intervals. It is an attrac-

tive feature of the current approach that the same criteria the model uses

in choosing a set of beat levels also lead it to choose the correct level as

the tactus.

Having said this, it should be noted that the program is only moderately

successful in choosing the right level as the tactus. In the Kostka-Payne

corpus, it almost always chooses the fastest level within the possible

range, though this is not always the most plausible tactus. In ®gure 2.14,

for instance, it chooses the sixteenth level (with intervals of 600 ms),

though the eighth or even the quarter note level would be a better

choice. It is interesting to ask, what is it that makes us favor these higher

levels as the tactus here? Simply from the point of view of the preference

rules, the sixteenth note level seems like a reasonable choice, since there

are notes on every sixteenth note beat. There are many unaccompanied

melodiesÐwith (at most) one note on each tactus beatÐin which the

perceived tactus is in the range of 600 ms or faster; for example,

``Oh Susannah'' (®gure 2.2) might easily be performed at this tempo

(quarter � 100). One might point to the relatively slow harmonic

rhythm in ®gure 2.14 as the reason for the slower tactus, or the fact that

the sixteenth-note line is clearly accompanimental. I believe there is

another factor, however, which is that there is no support in ®gure 2.14

for any metrical level lower than the sixteenth-note level. It may be that

we prefer to choose a tactus level which allows lower levels to score well

also (rather than just hitting all the same events as the tactus level). In

``Oh Susannah,'' a tactus of 600 ms is more reasonable than in ®gure

2.14, since there are many notes in between the tactus beats to support

the lower levels.

Figure 2.14
Beethoven, Sonata Op. 13, II, mm. 1±4.
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This brings up an important general point about the current program.

We have assumed that metrical structures can be generated by ®nding the

tactus level ®rst, and then the upper and lower levels. This seems to work

well in a large majority of cases. Occasionally, however, it seems that the

program needs to consider the lower levels that will be allowed by a

given tactus level. In such cases, having the program search for entire

metrical structuresÐgenerating all the levels at onceÐmight result in

better performance. While this approach could cause computational

problems, as it would greatly increase the number of analyses to be con-

sidered, it might in some cases produce improved results.
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3
Melodic Phrase Structure

3.1

Musical Grouping

and Phrase

Structure

The study of musical grouping in psychology can be traced back to the

Gestalt schoolÐa group of psychologists active in Germany in the 1920s.

These psychologists proposed a set of principles governing the grouping

of elements in perception. One principle is similarity: we tend to group

together things that are similar. Another is proximity: we tend to group

things that are close together (in space or in some other dimension). A

third rule, ``good continuation,'' states that elements which follow each

other in a linear pattern are grouped in this fashion; for example, two

lines crossing in an X will tend to be seen as two crossing lines, rather

than (for example) as a V over an upside-down V.1 These principles were

seen to interact and compete with one another. In ®gure 3.1a, similarity

seems to be the decisive factor, so that the squares form one group and

the circles form another; in ®gure 3.1b similarity is overruled by prox-

imity. Gestalt rules are similar to preference rules, in that each rule

expresses an opinion as to how well it is satis®ed by a given analysis of

the input, and these opinions are combined together in some way to yield

the preferred analysis.

Gestalt principles were held to apply to perception generally, both

visual and auditory; and the Gestalt psychologists were well aware of

their possible application to music.2 The rules may seem both somewhat

obvious and somewhat vague, and the Gestalt psychologists themselves

had little success in developing them into a more rigorous theory. But

they have provided a useful starting point for much of the recent work on

grouping, as we will see below.



Grouping in music is an extremely complex matter. Generally, a piece

of music can be divided into sections and segments at a number of

different levels. Lerdahl and Jackendoff proposed the term grouping to

describe the general process of segmentation at all levels (and the multi-

leveled structure that results). The term phrase generally refers to basic,

low-level groups, containing a few measures and a handful of notes. In

this chapter we will mostly restrict our attention to this lower level of

grouping, for reasons that I will explain. Most previous psychological

and computational work, too, has focused on lower-level grouping

structure.3

3.2

Studies of Musical

Grouping in

Psychology

It is worth considering the purpose of groupingÐin musical perception

and in perception generally. In some cases, grouping serves a clear func-

tion of parsimony. If elements can be grouped into larger familiar ele-

ments, then the grouping reduces the number of elements that must be

stored: for example, it is much easier to remember a list of 10 words than

a list of 70 letters. However, there seems to be a strong tendency to group

smaller elements into larger ones even in cases when the larger elements

formed are not familiarÐas in the Gestalt-type patterns of ®gure 3.1.

Undoubtedly this is because certain conditionsÐsuch as the proximity of

elements in space (or time)Ðsuggest that the elements are part of the

same larger entity, which should be encoded now to aid further process-

ing (for example, because it is likely to recur in the future). Indeed,

grouping structure plays an important role in the recognition of repeated

patterns or ``motives'' in music, as I will discuss in chapter 12.

Figure 3.1
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The grouping of events as a phrase may also affect our processing of

the events themselves. It may be, for example, that we are are more sen-

sitive to small units such as intervals or motives if they occur within

phrases rather than across them (and there is indeed evidence for this, as

I discuss below). To put it another way, it may be that a phrase serves

as a kind of ``psychological present,'' such that all the events within the

phrase are particularly salient and available for processing while the

phrase is in progress.4

If we assume that grouping events together involves storing them in

memory as a larger unit, this suggests a possible approach to the psy-

chological study of grouping. If a sequence of notes is being perceived as

a group, it should be more easily identi®ed and recognized than other

sequences. In one experiment, Dowling (1973b) presented subjects with a

series of notes interrupted by pauses; listeners were much more able to

learn and identify sequences of notes separated by pauses than sequences

that spanned pauses. Several other experiments have reached similar

conclusions, using melodies with repeated intervallic patterns. In such

cases, it is generally found that subjects can learn the melody more easily

when pauses occur between repetitions of the pattern, as in ®gure 3.2a,

rather than when the pauses break up instances of the pattern, as in

®gure 3.2b (Deutsch 1980; Boltz & Jones 1986). Apparently, the pres-

ence of pauses between repetitions of the pattern helps people to identify

instances of the pattern (or perhaps the presence of pauses within pattern

instances hinders this), and this allows people to encode the melody more

ef®ciently.5 Such experiments demonstrate both the reality of grouping

and the importance of pauses in the way groups are perceived.

While pauses are perhaps the most well-established cue in grouping,

Deliege (1987) has shown that a number of other factors play a role as

Figure 3.2
From Deutsch 1980.
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well. Deliege examined the role in grouping of a number of factors cited

by Lerdahl and Jackendoff (whose theory of grouping will be discussed at

greater length below). Lerdahl and Jackendoff's rules state that there is

a preference for grouping boundaries after rests (or at the end of a slur),

at long intervals between attack-points, and at changes of articulation,

dynamics, note length, and register (the possibility of a rule pertaining to

changes in timbre is mentioned but not pursued [1983, 46]). Deliege

categorized these factors into two classes: the rules pertaining to rests and

attack-points relate to the Gestalt principle of proximity (in time), whereas

the rules pertaining to changes in dynamics and other things relate to the

Gestalt principle of similarity. Deliege identi®ed a number of passages from

the common-practice literature which seem to feature grouping bounda-

ries according to one or more of these rules. Subjects were then played

recordings of these excerpts, and asked to indicate where they thought

the grouping boundaries were; there was a strong tendency to place them

at the locations predicted by the rules. This suggests that all of the factors

cited by Lerdahl and Jackendoff play a role in grouping in some circum-

stances. A second experiment involved arti®cially constructed nine-note

melodies, such as the one in ®gure 3.3a, in which two grouping cues were

placed at different locations. For example, a change in dynamics might

occur after note 3 and a rest after note 4. Again, subjects had to indicate

the grouping boundaries they perceived. Timbre proved to be the most

``preferred'' cue (the one that determined grouping in the highest pro-

portion of cases); the rest-slur, attack-point, register, and dynamics rules

were also important. As Deliege points out, we could not expect all the

rules to be consistently important, since some rules are in con¯ict with

others. In ®gure 3.3b, the change in length after the third note could be

Figure 3.3
(A) From Deliege 1987.
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regarded as a cue for a grouping boundary there, but one might also say

that the greater attack-point interval after the fourth note (relative to the

previous notes) demands a grouping boundary there.

The main conclusion that can be drawn from these experiments is that

all of the cues described by Deliege can sometimes be cues to grouping.

More speci®c conclusions are dif®cult to draw. In the ®rst experiment,

Deliege chose excerpts that contained cues for each rule, but it is not

clear what quali®ed as a cue; how large does a rest or a change in register

have to be to qualify as a grouping cue? (One also wonders if the cue

in question was always the only cue at that point in the excerpt.) The

second experiment is of greater interest, since it tells us something about

the relative importance of cues of particular magnitudes. It seems prob-

lematic, however, to claimÐas Deliege doesÐthat one kind of cue is

more important orÐin Deliege's termsÐmore ``preferred'' than another.

If we assume that all the factors cited above might sometimes be cues,

and that increasing the magnitude of the factor increases its strength as a

cue, then probably a very large presence of one factor could always

override a very small presence of another. What is needed is to establish

is the magnitude of one cue that is equal to the magnitude of another.

An experiment by Tan, Aiello and Bever (1981) suggests that tonal

factors may also play a role in grouping. Subjects (both musicians and

nonmusicians) were played short sequences of tones; they were then

played a two-tone probe and asked if the probe had occurred in the

sequence. The reasoning was that, if the two-tone probe spanned a per-

ceived phrase boundary, it should be more dif®cult to identify. (This

experiment employs the reasoningÐnoted earlierÐthat the identi®cation

of notes as a phrase should promote the identi®cation of smaller units

within the phrase, not just the phrase itself.) If a point of harmonic clo-

sure occurred between the two tones of the probe, the probe was less

easily recognized, suggesting that subjects were inferring a segment

boundary there. In ®gure 3.4, for example, subjects had dif®culty identi-

fying the probe when it spanned the tenth and eleventh notes; the

authors' explanation for this was that subjects interpreted notes 7

Figure 3.4
From Tan, Aiello & Bever 1981.
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through 10 (D-G-E-C) as implying a V-I cadence, and therefore inferred

a phrase boundary after the C. Another study, by Palmer and Krumhansl

(1987), explored the in¯uence of both tonal and metrical factors on seg-

mentation. An excerpt from a Mozart sonata was performed, stopping

at various points, and listeners were asked to indicate which stopping

points sounded more good or complete. Excerpts were generally judged

as more complete when the ®nal event was more tonally stable in terms

of Krumhansl's key-pro®les (discussed further in chapter 7) and more

metrically stable (i.e. aligned with a relatively strong beat).

3.3

Models of

Grouping Structure

As with meter, attempts to model the grouping process include both

speculative theoretical proposals and more rigorous computational

studies. However, there has been far less work of either kind on grouping

than on meter. One dif®culty with studying grouping lies in determining

the ``correct'' analysisÐthe one listeners would perceiveÐfor a given

input. With meter, the correct analysis for a piece is usually clear, at least

up to the level of the measure. (Not only is it indicated by music notation,

but there usually seems to be agreement that the structure indicated by

the notation is perceptually correct.) With grouping, the correct analysis

is often much less certain. In much notated music, there is no explicit

indication of grouping structure (at least none provided by the com-

poser); in other music, low-level structure is indicated by slurs, but only

in certain passages, where it also indicates ``legato'' articulation. (The

connection between legato articulation and phrase structure will be dis-

cussed further in section 11.6.) The problem is compounded by the fact

that our intuitions about grouping are often ambiguous and vague, much

more so than meterÐa point I will discuss below. Despite these problems

of ambiguity and indeterminacy, there seems to be enough agreement

about grouping to make the modeling of grouping analysis a worthwhile

endeavor.

In music theory, grouping has long been a central concern. As early as

1793, the German theorist Heinrich Koch proposed a complex hierar-

chical system of musical segmentation, assigning terms for each hierar-

chical level.6 However, progress in this area has often been hindered by

confusion between grouping structure and metrical structure. In their

groundbreaking book The Rhythmic Structure of Tonal Music (1960),

Cooper and Meyer proposed a single hierarchical structure which cap-

tured both meter and grouping. Groups of notes were classi®ed in terms

of rhythmic units borrowed from poetryÐiamb, trochee, and the likeÐ
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implying both a segmentation and an accentual structure. (For example,

an iamb consists of two elements in the relation weak-strong.) These

units then entered similar relations with other units in a recursive man-

ner. More recently, however, a consensus has emerged that meter and

grouping are best regarded as independent structures (Schachter 1976;

Lerdahl & Jackendoff 1983; Rothstein 1989). Meter involves a frame-

work of levels of beats, and in itself implies no segmentation; grouping is

merely a segmentation, with no accentual implications. However, this is

not to say that there is no interaction between meter and grouping; we

return to this issue below.7

The ®rst computational study of musical groupingÐand a seminal

study in the computational analysis of music generallyÐwas Tenney and

Polansky's model of grouping in monophonic music (1980). Like other

work on grouping, Tenney and Polansky cite two main kinds of group-

ing factors, arising out of the Gestalt rules: proximityÐthe preference for

grouping boundaries at long intervals between onsets, and similarityÐ

the preference for group boundaries at changes in pitch and dynamics.

Tenney and Polansky also point out, however, that the distinction be-

tween proximity and similarity factors is somewhat arbitrary. In some

cases one could regard something either as an ``interval'' in some kind of

space or as a ``difference'' in some parameter: this is the case with both

pitch and onset-time, for example. The important point is that intervals

and differences can each be quanti®ed with a single number, and these

values can then be added to produce an overall interval value between

each pair of adjacent events. Tenney and Polansky observe that whether

a certain value in some parameter (an interonset-interval, for example) is

suf®cient to be a grouping boundary depends on the context. For exam-

ple, an IOI is unlikely to be suf®cient for a grouping boundary if either

the preceding or the following IOI is longer. This leads to the following

proposal: an interval value in some parameter tends to be a grouping

boundary if it is a local maximum, that is, if it is larger than the values

of intervals on either side. The same applies when values for different

parameters are added together. One nice effect of this is that it prevents

having groups with only one note, something which clearly should gen-

erally be avoided. (Since two successive intervals cannot both be local

maximaÐone must have a higher value than the otherÐit is impossible

to have a single note with grouping boundaries on either side.) The

authors describe an implementation of this algorithm. The program

searches for smallest-level groups by identifying local maxima in interval

values in the way just described; it then ®nds larger-level groups by
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looking for local maxima among the intervals between smaller-level

groups. The program was tested on several monophonic twentieth-

century pieces, and its output was compared to segmentation analyses of

these pieces.

Tenney and Polansky's model is an interesting one in the current con-

text. It bears some resemblance to a preference rule system, in that it

takes several different factors into account and also considers context in

a limited way, but it does so in a very computationally ef®cient manner

that does not require a lot of searching. Clearly, the authors were more

concerned with twentieth-century music than with common-practice

music. As I will discuss, their algorithm sometimes does not produce such

good results on more traditional melodies, but this may be largely due to

differences in the corpora being studied.

An alternative computational approach is proposed by Baker (1989a,

1989b). Unlike Tenney and Polansky's model, Baker's model is intended

for tonal music; moreover, its analysis is based largely on tonal criteria.

The system begins by performing a harmonic analysis; from this, it con-

structs a hierarchical structure using phrase structure rules, such as

I! V-I. This produces a tree structure, similar to what Lerdahl and

Jackendoff call a ``time-span reduction''; the ®nal segmentation is then

generated by searching for high-level motivic parallelisms. Baker's system

is highly complex; he also presents no examples of the output of his sys-

tem, making it dif®cult to judge. Also worthy of mention is Todd's ``pri-

mal sketch'' model of grouping (1994). In this system, auditory input is

analyzed by units which integrate energy over different time scales; iden-

tifying peaks of energy in different units produces a hierarchical grouping

structure. The use of sound input means that the system can take account

of ¯uctuations in expressive timing and dynamics. Todd's model is in-

triguing and promising, though I will suggest that such a ``statistical''

approach to grouping may encounter problems, especially with poly-

phonic music.

In GTTM, Lerdahl and Jackendoff (1983) propose a model of group-

ing in tonal music. The model is designed to handle polyphonic music;

however, it imposes only a single hierarchical grouping structure on a

piece, and does not allow for different groupings in different contrapun-

tal lines. Lerdahl and Jackendoff's well-formedness rules state that each

group must consist of events contiguous in time; groups must be non-

overlapping (with exceptions which I will discuss); and any group con-

taining a smaller group must be exhaustively partitioned into smaller

groups. The authors then propose a series of preference rules. As men-
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tioned earlier, some of Lerdahl and Jackendoff's preference rules relate to

proximity in time: the ``slur-rest'' rule, preferring grouping boundaries at

rests or at the ends of slurs, and the ``attack-point'' rule, preferring

boundaries at relatively widely separated attack-points. Others relate to

similarity: grouping boundaries are preferred at changes of register,

dynamics, articulation, and length. Several other rules are proposed. One

states that very short groups should be avoided; another prefers grouping

structures in which larger groups are subdivided into two parts of equal

length; another states that two segments ``construed as parallel'' should

preferably form parallel parts of groups (no precise formulation of this

rule is providedÐan important gap in the theory, as the authors admit).

A ®nal rule prefers grouping structures that result in more stable reduc-

tional structures; for example, a tonally complete phrase should prefera-

bly be regarded as a group. In addition, Lerdahl and Jackendoff propose

mechanisms for handling ``grouping overlaps.'' In some cases, a single

event is heard as being both the last event of one group and the ®rst event

of the next; in such cases the two groups are allowed to overlap.

Lerdahl and Jackendoff's attempt to devise a theory of grouping ade-

quate to the complexity of common-practice music is laudable. How-

ever, there are several serious problems with it. One is the fact, readily

acknowledged by the authors, that the theory can only accommodate

``homophonic'' music in which a single grouping structure applies to the

entire texture. Thus it works fairly convincingly for things like Bach

Chorales. In much music, however, one feels that different parts of the

texture demand different grouping boundaries. Examples of this abound,

even in Lerdahl and Jackendoff's own examples; two of these are shown

in ®gure 3.5. In ®gure 3.5a, the grouping of the bass line seems to overlap

with that of the soprano; in ®gure 3.5b, the accompaniment and the

melody seem to have different groupings. These problems would multiply

even further in highly contrapuntal music such as fugues. One solution

here would be to allow groups to have boundaries that were not exactly

vertical; for example, one could well argue for the grouping boundaries

shown with dotted lines in ®gure 3.5b. At the very least, however,

examples such as these suggest that grouping analysis requires identi®-

cation of grouping boundaries within different parts of the texture; and

this requires identi®cation of the individual parts themselves, a complex

problem in itself which I will address in the next chapter.

Another problem, perhaps even more fundamental, lies with the nature

of grouping itself. Lerdahl and Jackendoff's analyses suggest a concep-
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tion of grouping in which a piece is divided exhaustively into small

units (often one or two measures), and these are grouped into larger

units in a hierarchical fashion. In many passages, the identity of these

small units is clear enough. In many other cases, however, it is extremely

ambiguous, even considering just the main melody. Consider a passage

like ®gure 3.6. The beginning of the run of sixteenth-notes at the down-

beat of m. 3 encourages us to begin a group there, and thenÐpreserving

the parallelismÐto begin groups on each downbeat, or perhaps each

half-note beat (grouping A). However, one could just as easily regard the

units as beginning on the following note (grouping B). Under grouping B

(unlike grouping A), the ending of each group is metrically strong and

tonally stable; more importantly (as I will argue), grouping B creates a

rhythmic parallelism with the opening, as it begins each group in the

same metrical position as the opening melodic phrase.8 I am quite unable

to decide which of these two groupings I hear more strongly. (Which of

these groupings we actually perceive could be studied in the manner of

the experiment by Dowling cited earlier. Is group ``a'' a more readily

identi®able unit than group ``b''Ðwould we more easily recognize it

as being from this piece?) Passages such as this are commonly found in

Figure 3.5
Two passages with con¯icting grouping in right and left hands. (A) Beethoven,
Sonata Op. 22, III, mm. 4±6. (B) Schubert, Waltz in A Major, Valses Senti-
mentales, Op. 50, mm. 1±6.

64 I. Six Preference Rule Systems



all kinds of common-practice music, intermixed with passages of very

clear and unambiguous phrase structure. Indeed, an important aspect of

common-practice composition is the contrast between sections of very

clear phrasing (this is often found in thematic passages), and passages of

ambiguous phrasing (found in transitions and development sections).9

Preference rule systems are certainly capable of handing ambiguity;

indeed, this is one of their important strengths, as I will discuss in a later

chapter. However, it seems reckless to attempt a computational model of

an aspect of perception in which it is so often unclear what the ``correct''

analysis would be. Rather than attempt this, I will address a smaller

problem.

3.4

A Preference Rule

System for Melodic

Phrase Structure

As discussed above, phrase structure in common-practice music presents

many complexities: ambiguities of grouping and con¯icting groupings in

different lines. In designing a computer model of grouping, it seemed wise

to begin with a repertoire where these problems do not arise. One such

repertoire is Western folk melodies. Folk melodies are of course mono-

phonic, and they tend to have a fairly transparent phrase structure.

Moreover, several anthologies of folk songs are available which have

Figure 3.6
Bach, Invention No. 1, mm. 1±4, showing two alternative grouping analyses of
mm. 3±4.
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phrases marked in the form of slurs. This serves as a convenient source of

``correct'' phrase structure against which the program can be tested.10 I

will return later to the question of how this smaller problem relates to the

larger goal of modeling grouping in polyphonic music.

I will simplify the problem, also, by only attempting to derive one level

of groupsÐthe level of the ``phrase.'' This seems to be the level that is

clearest and least ambiguous in perception (though it, too, is sometimes

susceptible to ambiguity). The derivation of lower-level and higher-level

groups will not be considered.

As with the metrical program, the main input required by the model is

a ``note-list'' (or ``piano-roll''), showing the on-time, off-time, and pitch

of a series of notes. (Metrical information is also required; this simply

consists of a framework of rows of beats aligned with the piano-roll

representation, exactly as proposed in the previous chapter.) It is not

implausible to suppose that listening to a performed folk melody involves

representing the pitch, on-time and off-time of each note. As described

earlier, we can imagine a piano-roll representation as being derived either

from a live performance or from a score. In this case I will mostly use

quantized piano-roll representations, generated from scores. One reason

for this is that it is dif®cult to generate the piano-roll representation that

would correspond to a vocal performance; it certainly cannot be easily

done from a MIDI keyboard. We should note, however, that a quantized

piano-roll representation may differ signi®cantly from one that would be

implied by a live performance. Consider the melody shown in ®gure 3.7a

(the numbers above the staff will be discussed further below). A quantized

representationÐin which each note is given its full notated durationÐ

would have no temporal break between the end of the ®rst G in m. 7 and

the beginning of the following note. However, a live performance might

well contain a short break here. As we will see, such ``offset-to-onset''

gaps can be important cues to phrase structure. Nuances of tempo might

also affect grouping, particularly the tendency to slow down at the end of

phrases. (The role of performance nuance in the perception of infra-

structural levels will be discussed further in section 11.6.) A live perfor-

mance of a melody might also contain other cues to phrase structure

which are not present in a piano-roll representation at all, even one cor-

responding to a live performance. In particular, folk melodies (and vocal

melodies generally) usually have text, and the syntactic structure of the

words might be a factor in the phrases that were perceived. In short,

there are a variety of possible cues to phrase structure which are absent

from a quantized piano-roll representation. One might wonder, indeed,
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whether it is even possible to infer the correct phrase structure from a

quantized piano-roll input alone. However, I will suggest that it is indeed

possible. Intuitively, it usually seems fairly clear where the phrase bound-

aries in a folk melody are, simply from the notes alone. The tests I will

report here, in which a computer model has considerable success in

identifying the correct phrase boundaries, provide further evidence that

phrase structure in folk melodies is largely inferable from quantized

piano-roll information, though not completely.

Figure 3.7a, a Hungarian melody from Ottman's Music for Sight

Singing (1986), illustrates several basic principles of phrase structure.

(Music for Sight Singing contains a large number of folk melodies, which

I used for informal testing and experimentation while developing the

phrase structure model. Generally the melodies are not identi®ed, except

by country of origin.) Ottman indicates the phrase structure with slurs, as

is customary. The reader is encouraged to sing the melody and examine

his or her intuitions about the phrase structure. To my mind, the phrase

structure shown by Ottman is the most intuitive and natural one. (One

might also end a phrase after the ®rst D in m. 5, but this seems more

dubious.) What are the reasons for these intuitions? The most obvious

factor is rhythm. Both the last note of the ®rst phrase and the last note of

the second are long notes (relative to their neighbors), not closely fol-

Figure 3.7
Two melodies from Ottman 1986. Numbers above the staff indicate gap scores
(assuming a measure length of 1.0). Local maxima in gap scores are circled. (A)
Melody No. 103 (Hungary). (B) Melody No. 265 (France), mm. 1±4.
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lowed by another note. All students of grouping agree that an important

factor in grouping is temporal proximity. However, it is not clear exactly

how the proximity between two notes should be measured. It could be

done by measuring the time interval between their onsets: the ``inter-

onset interval,'' or IOI. This accounts for both the ®rst phrase ending and

the second in ®gure 3.7a; in both cases, the IOI at the ®nal note of the

phrase is longer than that of any nearby notes. However, consider ®gure

3.7b. Here, the logical phrase boundary is after the second A" in m. 2,

though the IOI here is only two eighth-note beats, shorter than the pre-

vious IOI of three eighth-note beats. In this case, the important cue seems

to be the rest between two notes. As mentioned earlier, a very short break

between two notes (not re¯ected in notation) can also be a cue to phrase

structure in performance. What is important here, then, is the time interval

from the offset of one note to the onset of the next; we could call this the

``offset-to-onset interval,'' or OOI. Signi®cant (non-zero) OOI's tend to

be strong cues for phrase boundaries.

In short, both IOI and OOI are important cues to phrase structure.

(Both IOI and OOI are re¯ected in Lerdahl and Jackendoff's rules, and

in Deliege's experiments: the IOI in the ``attack-point'' rule, and the OOI

in the ``slur-rest'' rule.) This leads to the ®rst of our Phrase Structure

Preference Rules (PSPR's):

PSPR 1 (Gap Rule). Prefer to locate phrase boundaries at (a) large inter-

onset intervals and (b) large offset-to-onset intervals.

Of course, IOI and OOI are related: the IOI between two notes is always

at least as long as the OOI. One way to think about this is that each IOI

contains a ``note'' portion and a ``rest'' portion (the OOI), but the ``rest''

portion carries more weight as a grouping cue than the ``note'' portion.

Thus we could express the goodness of a grouping boundary between

two notes as a weighted sum of the note part and the rest part of an IOI.

A value that works well is simply to sum the note part of the IOI and two

times the rest part. This is equivalent to adding the entire IOI to the OOI.

We will call this value a ``gap score''; the gap score for a note refers to the

interval between it and the following note.

The next question is, how big does a ``gap'' have to be (both in terms

of IOI and OOI) in order to qualify as a phrase boundary? It will not

work to simply de®ne a certain magnitude of gap as suf®cient for a

phrase boundary. In ®gure 3.7a, a quarter-note IOI (with no OOI) is

suf®cient for a phrase boundary after the second phrase, but other gaps
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of similar magnitude are not phrase boundaries (e.g., the two quarter

notes in m. 2). Tenney and Polansky's model offers one solution: a gap

is a phrase boundary if it is larger than the gaps on either side. Consider

this solution as applied to ®gures 3.7a and b, using the formula for gap

scores proposed earlier. In ®gure 3.7a, this produces exactly the right

solution, except for the extra phrase boundary after the D in m. 5. In

®gure 3.7b, the results are much less good; there are far too many phrase

boundaries. It can be seen that any melody with a repeated long-short

rhythm will have this problem. In general, Tenney and Polansky's solu-

tion leads to an excess of phrase boundaries.11

An alternative solution takes advantage of a striking statistical fact:

phrases are rather consistent in terms of their number of notes. In the

Ottman collection, the mean number of notes per phrase is 7.5; over

75% of phrases have from 6 to 10 notes, and less than 1% have fewer

than 4 or more than 14. (The reasons for this are unclear. It may be due

in part to constraints on performance: phrases normally correspond to

vocal breaths, and it is dif®cult to sing more than a certain number of notes

in one breath. On the other hand, it may also be due to information-

processing constraints in perception: 8 is a convenient number of items to

group together into a ``chunk.'') We can incorporate this regularity by

assigning a penalty to each phrase depending on its deviation from the

``ideal'' length of 8 notes, and factoring this in with the gap scores. We

state this as follows:

PSPR 2 (Phrase Length Rule). Prefer phrases to have roughly 8 notes.

We can assume that phrases whose length is close to 8 (between 6 and

10) will be penalized only very slightly by this rule; more extreme devia-

tions will be more highly penalized.

Figure 3.8a illustrates the need for a further rule. What is the motiva-

tion for the phrase structure here? Only the phrase boundary after the F#
in m. 6 can be accounted for by the gap rule; the phrase-length rule pre-

fers some kind of segmentation of the ®rst 6 measures, but does not

express a strong opinion as to exactly where the boundaries occur. The

apparent reason for the ®rst and second phrase boundaries is parallelism:

the ®rst phrase begins with a descending three-eighth-note ®gure, and

when this ®gure repeats in a metrically parallel position there is pressure

to treat that as a phrase boundary as well. In the third phrase the eighth-

note ®gure is ascending, but it is rhythmically and metrically the same

as in the previous two instances. As observed in chapter 2, recognizing
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motivic parallelismsÐrepeated melodic patternsÐis a major and dif®cult

problem which is beyond our current scope. Another solution suggests

itself, however, which is to incorporate a preference for phrases that

begin in the same position relative to the metrical structure. Given that

the ®rst phrase clearly begins on the fourth eighth-note of a measure,

there is pressure for subsequent phrases to do so as well. It can be seen

that this rule, along with the phrase-length rule, can achieve the right

result in ®gure 3.8a. This rule proves to be extremely useful in a variety

of situations: consider ®gure 3.8b, where parallelism is the only apparent

factor favoring a boundary before the last note in m. 6. (It also provides

added support for the ®rst phrase boundary in ®gure 3.7b; note that the

gap rule is indecisive here.) We state this rule as follows:

PSPR 3 (Metrical Parallelism Rule). Prefer to begin successive groups at

parallel points in the metrical structure.

Assuming metrical structure as input to grouping is problematic. As

noted in chapter 2, grouping is a signi®cant factor in meter, in that there

is a preference for strong beats near the beginning of groups. It appears

that meter and grouping both affect one another. There is a preference

for strong beats to occur early in groups, and also for groups to begin at

Figure 3.8
(A) Melody No. 82 (Germany), from Ottman 1986. (B) Melody No. 115
(England), from Ottman 1986.
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parallel points in the metrical structure; and both meter and grouping

structures may be adjusted to achieve these goals.12

Once the effect of meter on grouping is allowed, it can be seen that the

in¯uence of motivic parallelism on grouping can be accounted for as well

(at least in principle). Parallelism affects meter, as discussed in chapter 2,

favoring a metrical structure with the same period as the parallelism;

PSPR 3 then favors a grouping structure with this period also. For exam-

ple, in ®gure 3.8a, it is possible that motivic parallelism is one factor

leading to the 3/4 metrical structure; once the meter is determined, a

grouping strucure aligned with this metrical structure is then preferred.

3.5

Implementation

and Tests

An implementation was devised of the grouping system described above.

The usual ``note-list'' representation of the input is required, though it

should be borne in mind that only monophonic input is allowed. (There

may be breaks between notesÐi.e., restsÐbut notes may not overlap in

time.) In addition, the system requires a speci®cation of the metrical

structure. This consists of a list of beats; each beat has a time-point and a

level number, indicating the highest metrical level at which that time-

point is a beat. (As in chapter 2, we label the tactus level as level 2.) The

system considers all ``well-formed'' grouping analyses of the input. A well-

formed grouping analysis is simply some segmentation of the melody into

phrases; every note must be contained in a phrase, and the phrases must

be non-overlapping. It seemed reasonable to exclude the possibility of a

phrase beginning in the middle of a note. Also, in cases where phrases are

separated by a rest, it seemed unnecessary to worry about which phrase

contained the rest. (If phrases are indicated by slurs, a rest at the bound-

ary between two phrases is usually not included under either slur.) Given

these assumptions, choosing a phrase analysis simply means choosing

certain note-onsets as phrase boundaries, meaning that these notes are

the ®rst note of a phrase. The ®rst note of the melody must of course be

the beginning of a phrase, and the last note must be the end of a phrase.

The system searches for the well-formed grouping analysis that best

satis®es the three rules presented above: the gap rule, the phrase length

rule, and the parallelism rule. The ®rst step in devising the implementa-

tion was to determine a way of evaluating analyses by these three rules.

As noted earlier, the gap rule looks at the size of the gaps between pairs

of notes at each phrase boundary in the analysis, considering both IOI

and OOI; a simple formula which worked well was simply to take the

sum of the IOI and OOI. The total gap score for the analysis sums these
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values for each pair of notes at a phrase boundary. One problem that

arises is how gaps should be measured; should they be calculated in

terms of absolute time, or in some other way? If they were calculated in

absolute time, this would mean that gap scores would be larger at slower

tempos; since the scores for the other two rules do not depend on the

tempo, the gap rule would carry more weight at slower tempos. This

seems counterintuitive; the perceived phrase structure of a melody does

not seem to depend much on the tempo. To avoid this problem, the gap

scores are adjusted according to the length of the notes in the melody so

far; a ``raw'' gap score for an interval produced by summing the IOI and

OOI is divided by the mean IOI of all the previous notes.

For the phrase length rule, we impose a penalty for each phrase,

depending on the number of notes it contains. The following formula is

used:

j�log2 N� ÿ 3j
where N is the number of notes in the phrase. This formula assigns a

penalty of 0 for a phrase length of 8. The penalty grows as the length

deviates in either direction from this ideal value; it grows according to

the ratio of the actual value to the ideal value. For example, a phrase

length of 16 and a phrase length of 4 both carry a penalty of 1.

Finally, the parallelism rule is quanti®ed by assigning a penalty

according to whether each pair of adjacent phrases begin at parallel

points in the metrical structure. We calculate this by assigning each note

a ``level 3 phase number.'' (Recall that level 3 is one level above the

tactus.) This is the number of lowest-level beats elapsing between the

beat of that note (i.e. the beat coinciding with the onset of the note) and

the previous level 3 beat. If the ®rst notes of two successive phrases do

not have the same level 3 phase number, a penalty is assigned. We also

calculate a level 4 phase number, and assign a smaller penalty if the two

notes do not have the same level 4 phase number. The intuition is that it

is best for successive phrases to be in phase at both level 3 and 4, but

some credit should be given if they are in phase at level 3 only. (We as-

sume a perfectly regular metrical structure, so that two beats which are

the same number of beats after a level 3 beat are guaranteed to be at

parallel positions in the metrical structure. If a melody switched back and

forth between duple and triple divisions of the beat, this strategy would

not work. We also assume that every note-onset coincides with a beat;

``extrametrical'' notes will not be handled, or at least cannot be consid-

ered as phrase boundaries.)
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In this way it is possible to evaluate any grouping analysis according to

the three preference rules. (Correct weights for the three rules relative to

one another were determined by a trial-and-error process. For a given

phrase, each kind of score was weighted by the length of the phrase, so as

to prevent analyses with many phrases from having higher penalties.)

Given this way of evaluating possible analyses, a search procedure was

devised for ®nding the best analysis, using the dynamic programming

approach outlined in chapter 1. The program proceeds in a left-to-right

manner; at each note, it ®nds the best possible analysis of the piece so far

ending with a phrase boundary immediately before that note. This entails

considering each prior note as the location of the previous phrase

boundary, adding the score for the current phrase on to the ``best-so-far''

score for the prior note, and choosing the prior note that leads to the best

new score. The program continues to build up these ``best-so-far'' anal-

yses through the piece; when the end of the piece is reached (where there

is assumed to be a phrase boundary), the best analysis can be traced back

through the piece.

A quantitative test of this program was performed. The test used the

Essen folksong database, compiled by Schaffrath (1995). This is a data-

base of European folksongs, transcribed in conventional notation, with

phrase markings added. The phrase structures in the transcriptions are

``well-formed'' by the current de®nition, in that they exhaustively parti-

tion each melody into phrases, with no overlapping phrases. The folk-

songs were gathered from a range of ethnic groups across Europe. For

this test, I used a random sample of eighty songs from the database. A

strati®ed sample was used, including four songs from each of the twenty

ethnic groups featured in the database.13 Note-list representations of

each melody were generated, showing the pitch, on-time, and off-time

of each note. (Since the program's output does not depend on tempo, the

exact length of notes was unimportant; only the relative length mattered,

and this could easily be determined from the notation.)

Since the program requires metrical information, the question arose of

how this information should be generated. I could have had the program

proposed in chapter 2 ®gure out the metrical structure. This would be

problematic, for two reasons. First, it would sometimes get the metrical

structure wrong, which would be an irrelevant distraction in terms of the

current goal (testing the grouping program). Secondly, the Essen folk

song collection provides no information about tempo, which the metrical

program needs in order to operate. Instead, metrical structures for the

pieces were determined from the musical notation in the Essen collec-
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tion.14 Following the usual convention, the tactus level was taken to be

the quarter note in 4/4, 2/4, and 3/4; in 3/8 and 6/8, the tactus level was

taken as the dotted quarter. Most often (in songs in 2/4, 3/4 or 6/8), level

3 was the measure level; this too was indicated by the notation. In most

cases, level 4 of the meter was a ``hypermetrical'' levelÐthe level just

above the measure levelÐand thus was not explicit in the notation. It

was assumed in such cases that level 4 was duple with beats on odd-

numbered level 3 beats. (In a few cases this seemed incorrect, but it

seemed problematic to adjust the hypermeter in individual cases, given

the possibility of experimenter bias.) Fifteen of the songs in the sample

had irregular metrical structures; these were excluded, given the dif®culty

of determining the phase numbers of notes in this situation. This left a

sample of 65 songs.

The test involved feeding the 65 songs to the program, and comparing

the program's output with the phrase boundaries as shown in the data-

base. First, a ``fair'' test was done, before any adjustment of the param-

eters to improve performance on the database. (The parameters had been

set through informal testing on songs from the Ottman collection.) On

this test, the program found 316 boundaries, compared to the 257 in the

database. (Since every song includes a phrase boundary at the beginning

and end of the melody, both in the transcriptions and in the program's

output, these were disregarded; only ``internal'' phrase boundaries were

counted.) The program made 115 ``false positive'' errors (®nding phrase

boundaries at locations not marked by boundaries in the transcriptions)

and 56 ``false negative'' errors (omitting phrase boundaries at locations

marked by boundaries in the transcriptions). Clearly, the program found

signi®cantly too many phrase boundaries overall. Recall that, according

to the phrase length rule, the program prefers phrases with 8 notes,

imposing a penalty for phrases either longer or shorter; this value was

deemed to be optimal for the Ottman collection. Analysis of the Essen

collection showed that the mean phrase length there is slightly larger: 9.2

notes. It was found that giving the program a preferred length of 10 notes

yielded the optimal level of performance. With this value, it produced 66

false positives and 63 false negatives. If we consider only the false neg-

atives (which seems reasonable, given that the number of false positives

and negatives were roughly the same), the program on this latter test

achieved a rate of 75.5%; that is, it correctly identi®ed 75.5% of the

phrase boundaries in the transcriptions.

The results were inspected to determine why errors were made. In a

number of cases, the program's errors seemed quite understandable, and
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well within the range of reasonable phrasings. Sometimes, phrases

marked in the transcription were divided into two by the program; other

times, pairs of phrases in the transcription were grouped into larger

phrases (®gure 3.9a). In such cases, one could argue that the program

was simply ®nding a different level of grouping from the transcriber

(though in ®gure 3.9a I would agree with the transcriber's intuitions as

to the ``primary'' level of phrasing). In a few melodies, the transcriber's

phrasing seemed bizarre; why put a phrase boundary after the A in m. 2

of ®gure 3.9b? We should bear in mind that phrase structure may some-

times depend on factors such as text syntax which are not apparent in

notation; this may be the case in ®gure 3.9b, though there seemed to be

relatively few cases of this. In several cases, the program's output de®-

nitely seemed wrong. A few of the program's errors were due to tonal

factors. In ®gure 3.9c, it clearly seems better to put a phrase boundary

Figure 3.9
Three excerpts from the Essen folksong collection. The phrasing given in the
collection is shown in slurs; the program's phrasing is shown in square brackets.
(A) ``Vater und Tochter Schoenes Maedchen, was machst du hier'' (Czech), mm.
1±8. (B) ``Die Schlangenkoechin Dove si sta jersira'' (Italian), mm. 1±4. (C) ``Die
Naehterin 's sass a Naehterin und sie naeht'' (Czech).
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after the third C in m. 5, rather than after the following F as the program

did. The main factor seems to be that C (the fourth degree of the scale) is

a more stable tonal destination than F (the seventh degree). (One might

argue that C is actually the tonal center here; in this case, too, C is clearly

more stable than F.)

Beyond the occasional role of tonality, it was dif®cult to identify any

other important factors in phrase structure in this corpus. This might

seem surprising, since Lerdahl and Jackendoff's model (and Deliege's

experiments) put forth a number of other factors as signi®cant cues to

grouping, among them changes in timbre, articulation, dynamics, note

length, and register. The current test has little to say about timbre, artic-

ulation, and dynamics, since this information is not represented in the

Essen database; in any case, it seems unlikely that these factors would

be major cues to grouping in folk melodies. Changes in note length or

register might have proven to be important factors in the current test, but

I could ®nd almost no cases in the current corpus where such informa-

tion seemed necessary or useful. However, all of these factors might

well prove important in other kinds of music, particularly in cases where

the factors discussed earlier (such as the gap rule) did not yield clear

preferences.

3.6

Grouping in

Polyphonic Music

Unlike the preference rule systems proposed in other chapters, the system

proposed here does not even aspire to suf®ce for common-practice in-

strumental music. I argued earlier that, given the complexity and ambi-

guity of grouping in much common-practice music, attempting a formal

model was premature. However, it is instructive to consider what would

be needed for such a model. The Mozart quartet excerpt in ®gure 3.10

illustrates a number of points about grouping in polyphonic music.

It seems clear that grouping in polyphonic music must involve some

kind of identi®cation of gaps, both in terms of IOI and OOI. Many of the

clear examples of grouping boundaries in polyphonic music are marked

with rests in all the voicesÐthe end of m. 2 of the Mozart, for example.

Such rests could be easily identi®ed. In other cases, however, a phrase end-

ing is marked only by a gap in one voice (normally the melody), while the

accompaniment continues. Almost any ``melody-and-accompaniment''

texture contains examples of this; for example, see ®gure 2.10b. One

might wonder whether gaps could be identi®ed in some statistical wayÐ

for example, by a decrease in the density of attack-points in the entire

polyphonic texture. However, extensive consideration of this idea (and
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Figure 3.10
Mozart, String Quartet K. 387, I, mm. 1±55. Vertical dotted lines show my own
analysis of the phrase structure.
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Figure 3.10 (continued)
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Figure 3.10 (continued)
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Figure 3.10 (continued)
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some computational playing around) convinces me that it will not

work.15 At a minimum, grouping requires the identi®cation of voices,

particularly the main melody.

Once the voices of a texture are identi®ed, the grouping problem

becomes somewhat more tractable. The grouping of the melody is often a

primary determinant of the phrase structure of the entire texture. Indeed,

one approach to grouping would simply be to identify the melody, sub-

ject it to the melodic grouping algorithm proposed earlier, and impose

that grouping on the entire piece. Consider how this approach would

fare with the Mozart quartet shown in ®gure 3.10. (I have identi®ed what

I consider to be the correct phrase boundaries; boundaries which seem

vague or debatable are indicated with question marks.) In a number of

cases, the groups of the melody are clearly identi®ed by the factors

described earlier. The gap rule is of frequent and obvious importance.

Consider also the factor of metrical parallelism; the clear melodic phrase

beginning on the fourth beat of m. 38 favors a boundary at the parallel

place in m. 40. In many cases the phrase boundaries in the melody seem

to indicate the primary phrase structure of the texture as a wholeÐ

although it is sometimes not clear how to continue these groups across

the other voices (mm. 13±15, 20±1). In some cases the phrasing of the

melody itself is unclear. The phrase boundaries in mm. 42 and 44 appear

to be good examples of overlaps; the D in the melody is both the end of

one phrase and the beginning of the next. Here, tonality is perhaps a

factor: the clear tonic (D) on the third beat of m. 42 makes it a good

candidate both as a phrase ending and a phrase beginning. Similarly,

Figure 3.10 (continued)
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tonal stability is the main thing qualifying the D in m. 49 as a phrase

ending. The role of tonal factors is also apparent in mm. 15±20. In terms

of purely rhythmic factors, the most plausible points for grouping bound-

aries here are after the ®rst eighth of m. 16 and after the ®rst eighth of

m. 19; metrical parallelism favors phrase boundaries before the second

eighth of the measure, as in mm. 14 and 15, while the gap rule favors a

boundary after the long note of mm. 17±18. However, both of these are

points of harmonic instability: V6 in the ®rst case, ii6 in the second case.

Because of this, one is disinclined to hear any clear phrase boundary in

this passageÐa common feature of transition sections, as I suggested

earlier.

The second theme (mm. 25±30) presents a typical case of phrasing

ambiguity. It could certainly be regarded as one long six-measure phrase.

However, it could also be split into three smaller phrases. The question

then is whether to include the last melody note of the second measure

(e.g. the F# at the end of m. 26) in the previous phrase or the following

one. The gap rule would favor including it in the following phrase (the

IOI before the F# is longer than the one after it), as would metrical par-

allelism, since the ®rst phrase of the second theme clearly begins on the

last eighth of a measure. On the other hand, the lower voices do not

favor a phrase boundary before the last eighth. The slur across the last

two eighths of m. 26 in the viola line exerts pressure against a boundary

between them; in the case of the cello line, such a boundary would entail

splitting a note between two phrasesÐsomething which we clearly prefer

to avoid. For both of these lines, then, placing the phrase boundary at the

bar line is strongly preferred. (If the cello and viola had eighth-note rests

on the last eighth of m. 26, a phrase boundary before the last eighth note

would be decidedly more plausible.) One other subtle factor is that there

is a slight preference to place a phrase boundary so that strong beats

occur as close as possible to the beginning of a phrase: this means, ide-

ally, placing the boundary right at the barline. While I stated earlier that

this factor primarily affects meter, rather than grouping, it can also affect

grouping in cases where other factors are indecisive.

One rule of the current model seems to be of little value in the case of

the Mozart quartet: the phrase length rule. Many phrases here have far

more than 8 notes, even considering just the melody (the phrase begin-

ning at the end of m. 38, for example). Is the idea of ``optimal phrase

length'' irrelevant for a piece such as this, or does it simply require

modi®cation? One possible solution would be to express the ``optimal

length'' of a phrase in terms of absolute time, rather than number of
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notes; in those phrases containing many notes, the notes are usually very

fast. This distinction was not of great importance in the Essen database,

since the density of notes per unit time was fairly consistent. However,

this idea requires further study.

This example suggests that identifying the grouping of the melody in a

polyphonic piece is an important step towards analyzing the grouping

of the entire texture. But melodic phrase structure in common-practice

instrumental music is much more complex than it is in folk songs, due

largely to the role of tonal factors. In some cases (as in the second theme

of the Mozart), accompanying voices can play a role in grouping as well.

And these problems are only magni®ed by the fact that our intuitions

about phrase structure are so often indecisive. Thus grouping in poly-

phonic music presents formidable problems. It is apparent, also, that

polyphonic grouping cannot be done without ®rst grouping the notes

into contrapuntal lines. This is the topic of the next chapter.
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4
Contrapuntal Structure

4.1

Counterpoint

An essential feature of common-practice music is counterpoint: the

simultaneous combination of multiple melodic lines. When we think of

counterpoint, we think ®rst, perhaps, of compositions such as fugues, in

which a small number of clearly identi®able voices are maintained

throughout the piece. However, a great deal of other Western music is

essentially contrapuntal also, in that it must be understood, at least in

part, as being constructed from simultaneous melodic lines. In many

cases, these lines are made explicit by being assigned to different instru-

ments; and they are often perceptually reinforced by the timbres of those

instruments. But even in music for a single instrumentÐmost notably

piano musicÐmultiple contrapuntal lines are often present and quite

easily heard. Consider ®gure 4.1, the opening of a Mozart piano sonata.

The ®rst four measures present one melodic line in the right hand and

another in the left. (The left-hand line is less melodic than the right-hand

one, and there are other possible ways of understanding it, as I will dis-

cuss below.) The right-hand melody continues in mm. 5±8, and is now

imitated by the left-hand line. In m. 8 the main melody is joined by

another melody in the right hand. Beginning in m. 12, the left hand fea-

tures two simultaneous lines (the top one simply doubles the right-hand

melody an octave lower); in m. 15, a second right-hand melody enters,

making four simultaneous lines in all. All this seems clear enough; in

some respects, however, the identity and extent of melodic lines in this

passageÐwhat we might call its ``contrapuntal structure''Ðis not so

clear. Does the left-hand line in mm. 1±5 continue to the left-hand line in



m. 7, or are these two separate lines? How do the three lines of the

downbeat chord of m. 12 connect with the three lines of the chord two

beats later? One might well connect the main melody across these

two chords; but to say that the middle line of the ®rst connects with the

middle line of the second seems rather arbitrary. This brings up an im-

portant fact about contrapuntal structure: in much contrapuntal music,

there is not necessarily a ®xed number of voices that endure throughout

the piece; voices may come and go as they are needed. A contrapuntal

voice, therefore, is best viewed as something bounded in time as well as

pitch.1

If the identi®cation of contrapuntal lines is assumed to be a real and

important part of musical listening, then music perception must involve

grouping notes into lines in the appropriate way. This process, which I

will call contrapuntal analysis, is the subject of the current chapter.

Figure 4.1
Mozart, Sonata K. 332, I, mm. 1±16.
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4.2

Sequential

Integration in

Auditory

Psychology

A great deal of experimental work in auditory psychology has focused on

contrapuntal analysis (though not usually under that name). The group-

ing of notes into lines is an important aspect of ``stream segregation,'' the

larger process of analyzing and segmenting sound input (see Bregman

1990 for a review). Bregman (1990, 30±1) suggests that stream segre-

gation can be divided into two processes, simultaneous integration and

sequential integration. In musical terms, simultaneous integration involves

the grouping of component frequencies or ``partials'' into notes; sequen-

tial integration involves the grouping of notes into lines.2 It is only the

latter process that concerns us here; we will assume, as we do elsewhere

in this book, that notes have been fully identi®ed before sequential inte-

gration begins. It should be emphasized at the outset, however, that the

interaction between sequential integration and simultaneous integration

is highly complex; to assume that the identi®cation of notes is completely

independent of, and prior to, their sorting into lines is undoubtedly an

oversimpli®cation.

Perhaps the most important factor in sequential grouping is pitch

proximity. When a sequence of two alternating pitches is played, the two

pitches will seem to fuse into a single stream if they are close together in

pitch; otherwise they will seem to form two independent streams (Miller

& Heise 1950). The importance of pitch proximity has been demon-

strated in more musical contexts as well. Dowling (1973a) played sub-

jects interleaved melodies (in which notes of one melody alternate with

those of another); he found that the melodies could be recognized much

more easily when the pitches were separated in register, as in ®gure 4.2a,

rather than overlapping in register, as in ®gure 4.2b. As well as showing

the role of pitch proximity, this experiment nicely demonstrates the

musical importance of sequential integration. Once notes are assigned to

the same stream, they form a coherent musical unit, which can then be

Figure 4.2
From Dowling 1973a.
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given further attention and analysis. (A similar point was made in the

previous chapter with regard to phrase structure.) A related ®nding is that

a rhythmic pattern is harder to identify if it involves crossing between two

registrally separated streams; this, too, suggests the grouping together of

registrally proximate events (Fitzgibbons, Pollatsek, & Thomas 1974).

An experiment by Deutsch (1975) sheds further light on the role of

pitch in sequential grouping. Subjects heard rising and falling scales

simultaneously, with the notes of each stream presented to alternating

ears, as shown in ®gure 4.3a. Rather than grouping events by spatial

location, or hearing crossing scales in opposite directions (analogous to

the ``good continuation'' principle found in visual perception), subjects

most often perceived the sequences indicated by beams in ®gure 4.3b;

Deutsch dubbed this the ``scale illusion.'' This suggests that there is a

particular perceptual tendency to avoid crossing lines, a ®nding that has

been con®rmed in other studies as well (Bregman 1990, 418±9).

Another important factor in sequential integration is tempo. If two

tones are played in alternation, they will tend to segregate into separate

streams if they are more than a certain interval apart in pitch; however,

the crucial interval depends on the speed of alternation. If the two tones

are alternating rapidly, they will segregate at quite a small interval; if

played more slowly, a larger interval is needed (van Noorden 1975).3

The large-scale temporal structure of patterns can affect sequential

grouping as well: given a pattern of two alternating tones, the tendency

to hear two separate streams increases with the number of repetitions of

the pattern (Bregman 1978).

Figure 4.3
From Deutsch 1975. Notes marked ``R'' were heard in the right ear, those
marked ``L'' in the left ear.
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Other factors in sequential integration have also been studied. One

might suppose that spatial location would be an important factor; how-

ever, it proves to play a limited role. In Deutsch's ``scale illusion'' exper-

iment, the notes of each scale were played to alternating ears (as shown

in ®gure 4.3a), yet subjects did not generally group the events according

to their spatial location. However, spatial location may affect sequential

integration in certain circumstances (Bregman 1990, 73±83). The role of

amplitude has also been studied, but with inconclusive results (Bregman

1990, 126±7). One factor which does seem important is timbre, though

here, too, the evidence is inconclusive. In one study, subjects were played

the pitch sequence shown in ®gure 4.4 (Wessel 1979). When all the pitches

were given the same timbre, a single line was heard; when the pitches

were assigned different timbres as indicated in the ®gure, they tended to

be grouped according to timbre. Other experiments have obtained simi-

lar ®ndings (Bregman 1990, 83±103); however, a study by Butler (1979)

produced the opposite result. Butler used stimuli such as that in ®gure

4.5a, with the top and bottom lines coming out of left and right speakers

respectively. Subjects generally heard two lines as shown in ®gure 4.5b,

with pitch proximity overriding spatial location; moreover, even when

the spatial location grouping was reinforced by differences in timbre,

pitch proximity still prevailed. Perhaps a fair conclusion would be that

timbre can sometimes affect sequential grouping, but is easily overridden

by pitch factors.4

We should note three basic assumptions that underlie much of the

experimental work discussed here. One is that there is a preference to

include each note in only one stream. Consider the simple case of a

pattern of alternating tones. When the two tones are far apart in pitch,

they tend to be heard as two static streams; bringing the tones close

together in pitch causes them to be heard as a single alternating stream,

but it also weakens the perception of the two static streams. The obvious

explanation is that the one-stream and two-stream interpretations are

competing with each other; once a group of notes are assigned to one

stream, we tend not to assign them to another stream as well. (Other

Figure 4.4
From Wessel 1979. Notes indicated with crosses and ovals were assigned con-
trasting timbres.
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studies have also demonstrated this kind of competition between streams;

see Bregman 1990, 166±9.) Secondly, there is a tendency to prefer an

interpretation with fewer streams. Return to the Deutsch scale pattern;

if we heard a separate stream for each pitch (one stream for the low C's,

another for the D's, and so on), then pitch proximity would be maximal

within each stream; but we do not hear the pattern this way. Apparently

we prefer to limit the number of streams, if a reasonable degree of pitch

proximity can still be maintained. Finally, there is a strong preference to

have only one note at a time in a stream. Consider Butler's stimuli, as

they are normally perceived (®gure 4.5b). By pitch proximity alone, it

would be preferable for the ®nal pair of simultaneous notes (F and A) to

be included in the lower stream, since both are closer in pitch to the

previous A than to the previous C. Presumably this interpretation was

not favored because it would result in the lower stream containing two

simultaneous notes.

A ®nal issue to be considered is temporal grouping. In most of the

experiments discussed above, the stimuli are short enough that it can

be assumed that any streams present will persist throughout the stimulus.

As noted earlier, however, in extended pieces it often seems arbitrary to

insist that streams must span the entire piece. Rather, one frequently has

the sense of streams beginning and ending within the piece; a stream is

thus a group of notes that is bounded both in pitch and time. This may

Figure 4.5
From Butler 1979.
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bring to mind the preference rule system for phrase structure discussed in

the previous chapter. As discussed there, an essential factor in temporal

grouping is temporal separation; a sequence of notes tends to form a

group when bounded by pauses. (See section 3.2 for a discussion of rel-

evant experimental work.) There are other factors involved in temporal

grouping besides pauses, but these will not concern us here. The con-

nection between contrapuntal structure and phrase structure will be dis-

cussed further below.

Let us summarize the important points about sequential integration

that emerge from this survey. (1) We prefer to group together events that

are close in pitch. (2) Grouping together events far apart in pitch is

harder at faster tempos. (3) The tendency to hear a pattern of alternating

pitches as two separate streams increases with the number of repetitions

of the pattern. (4) There is a preference to avoid crossing streams. (5) We

generally avoid including a single note in more than one stream. (6) We

generally avoid streams with multiple simultaneous notes. (7) We gener-

ally try to minimize the number of streams. (8) Pitch-events are also

grouped temporally; temporal separation (by pauses) is an important

factor here. (9) Although timbre, amplitude, and spatial location may

sometimes affect sequential integration, they are often outweighed by

pitch and temporal factors.

4.3

Computational

Models of

Contrapuntal

Analysis

Several computational models have been proposed which relate to con-

trapuntal analysis. One interesting proposal is Huron's algorithm (1989)

for measuring pseudo-polyphony. Pseudo-polyphony occurs when a

single line, through the use of large leaps, creates the impression of

multiple lines. Huron's model predicts the number of concurrent streams

that are perceived to be present in a passage. The model begins with a

piano-roll representation; every event is given a ``tail,'' a short time

interval following the event in which the event is still perceptually salient.

If another event closely follows the ®rst that is close to it in pitch, the

``tail'' of the ®rst event is assumed to be cut off; if the second event is

further away in pitch, however, the tail of the ®rst event is not cut off

(®gure 4.6). The number of streams is then indicated by the mean

number of simultaneous events (including their tails) present at each

point in time. Consider again a case of two alternating pitches. If the

pitches are close enough in register to cut off one another's tails, then

only one event is present at each moment, implying a single stream;

otherwise, the events will overlap in time, implying two streams. Calcu-
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lating the mean number of events present at each moment produces an

aggregate measure of the number of concurrent streams in the piece.

Huron tested his model by creating a set of 29 monophonic musical

passages and having music theorists rank them according to their degree

of pseudo-polyphony. The model's judgments of pseudo-polyphony

correlated well with the theorists'; indeed, it correlated better with the

theorists' judgments than the theorists' judgments did with each other.

As Huron notes, his model does not actually produce a contrapuntal

analysis; converting it into such a model would require some further

work. For example, if the tail of an event is cut off by two subsequent

events (perhaps one higher in pitch and one lower), the model makes no

decision about which note the ®rst note will connect to. One fundamen-

tal problem with the model is that it is entirely ``left-to-right''; it has no

capacity for revising its analysis of one segment based on what happens

afterwards. This point is worth elaborating, since it arises with other

models of contrapuntal analysis as well. Consider m. 5 of the Mozart

sonata (see ®gure 4.1); the initial F in the melody clearly connects to the

Figure 4.6
From Huron 1989.
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following A. However, if these two notes had been followed by the con-

text shown in ®gure 4.7, the F and A would be heard as being in separate

streams. Thus the correct contrapuntal interpretation of a segment can

only be determined by looking ahead.

A highly original approach to contrapuntal analysis is proposed by

Gjerdingen (1994), based on an analogy with vision. Imagine a ®eld of

units laid out in two dimensions, corresponding to pitch and time. A

single pitch event activates not only units at that pitch but also (to a

lesser degree) neighboring pitch units as well, and also neighboring units

in time; the result is a kind of ``hill'' of activation. Another event closely

following in time and nearby in pitch may generate an overlapping hill. If

one then traces the points of maximum activation for each point in time,

this produces a line connecting the two pitches; the melodic line is thus

made explicit. Tracing maxima of activation across the plane can pro-

duce something very like a contrapuntal analysis. The model can also

track multiple simultaneous lines; an example of its output is shown in

®gure 4.8. A number of phenomena in stream segregation are captured

by the model, including the failure of melodic lines to connect across

large intervals, the greater ease of hearing large intervals melodically

connected at slower tempi, and the greater salience of outer voices as

opposed to inner ones. The main problem with the model is that its out-

put is dif®cult to interpret. At the left of the diagram in ®gure 4.8, we can

discern an upper-voice line and a lower-voice line, but these are not

actually fully connected (our tendency to see lines there is an interesting

perceptual phenomenon in itself!); towards the end of the diagram, the

upper line appears to break up into several streams. It is also sometimes

not clear which pitches the lines correspond to; the lower line in the dia-

gram lies between the two actual lower lines of the texture. One might

argue that the highly ambiguous nature of the model's output is true to

human perception, but it does make the model dif®cult to test.

Figure 4.7
A recomposition of mm. 5±8 of the Mozart sonata shown in ®gure 4.1.
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Another approach somewhat similar to Gjerdingen's is that of McCabe

and Denham (1997). Like Gjerdingen's model, the McCabe-Denham

model consists of units arranged two-dimensionally in pitch and time;

however, two networks are used, corresponding to two streams, ``fore-

ground'' and ``background.'' Activated units in one stream activate

nearby units in the stream and inhibit corresponding units in the other

stream; thus acoustic input is segregated into the two streams. The model

is able to account for a number of the experimental ®ndings discussed

above. In a way, the McCabe-Denham model is more ambitious than the

model I will propose (or Gjerdingen's), since it begins with acoustic input

rather than notes; in a sense, it bypasses simultaneous integration and

Figure 4.8
From Gjerdingen 1994. Reprinted by permission of the Regents of the University
of California.
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goes straight from acoustic input to sequential integration. On the other

hand, the model does not appear to have been tested on any complex

musical inputs. Like Gjerdingen's model, the output of McCabe and

Denham's system is dif®cult to interpret; a given input may result in

certain units in a stream being activated to some degree, but it is not clear

whether this means that a certain note is being included in that stream.

The ®nal model to be considered, developed by Marsden (1992), is the

closest to the current model in its perspective and goals. This model

begins with a ``piano-roll'' representation, is designed to handle musical

inputs, and produces an explicit contrapuntal analysis with pitch events

connected into contrapuntal voices. Marsden begins by presenting a

simple model in which each note is connected to the note in the following

chord which is closest to it in pitch. As he observes, this model cannot

handle cases like ®gure 4.9. The model would connect the ®rst B to the

second B here; it would be preferable to connect the ®rst B to the G#3,

and the G#4 to the second B. (Another possibility would be to connect

each note to the closest note in the previous chord, but as Marsden

points out, that does not help in this case.) To address such problems,

Marsden proposes another version of the model in which connections

between notes (called ``links'') compete with one another. A weight is

assigned to each link, which re¯ects the size of the pitch interval it entails;

this value may also re¯ect other factors, such as whether the link crosses

other links. Links then activate other compatible links and inhibit incom-

patible ones, in a manner similar to a neural network. In ®gure 4.9, the

link from the ®rst B to the second would be inhibited by the links from

G#4 to the second B, and the ®rst B to G#3. This leads to a way of con-

necting adjacent chords so that small intervals within streams are favored.

Marsden discusses the possibility of incorporating motivic parallelism

into his model; he also shows how the ®ndings of Deutsch's ``scale illu-

sion'' experiment could be accommodated.

Marsden's study is an important contribution to the contrapuntal

analysis problem, and the current model builds on it in several ways. In

particular, the idea of giving each link a score (based on several criteria),

Figure 4.9
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with competition between them, is closely related to the preference rule

approach presented below. It is somewhat dif®cult to evaluate Marsden's

model, since several versions of it are presented, each with acknowledged

strengths and weaknesses. Early version of the model have limited power

Ðfor example, they do not allow rests within voices (they are only

able to connect notes that are perfectly adjacent). Later versions become

extremely complex, so much so that their behavior is dif®cult to predict

or even ``non-deterministic.'' (Another general problem with all versions

of the model is that they do not allow the subsequent context to in¯uence

the analysis; as noted earlier, this appears to be essential for contrapuntal

analysis.) As Marsden discusses, there is often a trade-off in computa-

tional models between clarity and predictability on the one hand, and

level of performance on the other. The following model attempts to

achieve a high level of performance within a reasonably simple and pre-

dictable design.

4.4

A Preference Rule

System for

Contrapuntal

Analysis

The input required for the current model is the usual piano-roll repre-

sentation, with pitch on one axis and time on the other. As usual, pitches

are quantized to steps of the chromatic scale; for the purposes of the

model, it is also necessary to quantize pitch-events in the temporal

dimension. It is convenient to use lowest-level beats of the metrical

structure for this. (Here I am assuming a metrical structure along the

lines of that proposed in chapter 2.) Since pitch-events are quantized in

both dimensions, we can think of the piano-roll representation as a grid

of squares; each square is either ``black'' (if there is a note there) or

``white'' (if there is not). In addition, the input representation must show

where events begin and end; given two black squares of the same pitch in

adjacent time segments, the input must show whether they are part of the

same event or not. (The reason for this will be made clear below.) This

can be done simply by indicating the onset of each note; the offset is then

indicated either by the following event-onset at that pitch, or by a white

square. (Overlapping notes of the same pitch are disallowed in the input

representation.) Figure 4.10 shows a graphic representation of the input

for the opening of Mozart's Sonata K. 332 (the ®rst few measures of the

excerpt shown in ®gure 4.1); here temporal units correspond to eighth-

notes. The onset of a note is indicated by a white bar.

As discussed in chapter 1, the use of a ``piano-roll'' representation as

input means that several important aspects of musical sound are dis-

regarded, including timbre, amplitude, and spatial location. As noted
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earlier in this chapter, the experimental evidence for these factors as

determinants of sequential integration is equivocal, but it seems likely

that they could play a role under some circumstances. However, some

genres of polyphonic musicÐsuch as solo piano and string quartet

musicÐallow little differentiation in timbre and spatial location (though

not in amplitude). The fact that sequential integration appears to be

possible with these genres suggests that a ``piano-roll'' representation

may be largely suf®cient. Whether a computer model can successfully

perform stream segregation using only pitch and time information may

shed further light on this question.

A contrapuntal analysis is simply a set of streams, subject to various

constraints. We begin, as usual, by setting forth some basic well-

formedness rules, stating criteria for a permissible analysis.

CWFR 1. A stream must consist of a set of temporally contiguous

squares on the plane.

Figure 4.10
The input representation for mm. 1±4 of the Mozart sonata shown in ®gure 4.1.
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That is to say, a stream may not contain squares that are unconnected in

the temporal dimension. A stream may contain two black squares that

are separated by white squares (i.e., two notes separated by a rest), but

then it must contain any white squares that are between them. The fact

that streams can contain white squares greatly increases the number of

possible well-formed streams. This is clearly necessary, however, since

streams often do contain rests. (Examples can readily be seen in the

experimental stimuli discussed above, as well as in the Mozart excerpt in

®gure 4.1.) Note that it is not required for streams to persist throughout

a piece; a stream may be of any temporal length.

CWFR 2. A stream may be only one square wide in the pitch

dimension.

In other words, a stream may not contain more than one simultaneous

note. This seems to be the usual assumption in musical discourse; it is

also assumed in most auditory perception work.5

CWFR 3. Streams may not cross in pitch.

As discussed earlier, this rule is well-supported by experimental ®ndings.

It is true that crossing-stream situations are not unheard of, either in

psychology or in music; thus including this as a well-formedness rule

rather than a preference rule may seem too strict. I will return to this

question.

CWFR 4 (®rst version). All black squares must be contained in a

stream.

Again, treating this as a well-formedness rule may seem overly strict,

in view of the fact that there are sometimes notesÐin big chords, for

exampleÐwhich do not seem to belong to any larger stream. But this is

not really a problem. In such cases, there may be a stream containing

only one note, which is no disaster.

As well as ensuring that all black squares are contained in streams, it is

also desirable to maintain the integrity of notes. It is dif®cult to imagine

hearing different parts of a note in two separate streams. We could enforce

this with a rule which required that each note must be entirely included

in a single stream. Notice, however, that this makes the ®rst version of

CWFR 4 unnecessary; if every note is entirely included in a single stream,

then every black square will be included in a stream as well (since every

black square is included in a note). Thus we can replace the old CWFR 4

with this:
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CWFR 4 (®nal version). Each note must be entirely included in a single

stream.

It is because of this rule that the input representation must contain

information about where notes begin and end, and not just about which

squares are black. Given two black squares of the same pitch in adjacent

time segments, if they are both part of the same note, they must be

included in the same stream. (Notice that it is permissible for a note to be

contained in more than one stream.)

Though this may seem like quite a limiting set of well-formedness

rules, it in fact permits an unimaginably huge number of possible con-

trapuntal analyses, most of them quite ridiculous, even for a short seg-

ment of music. Figure 4.11 shows the correct analysis for the opening of

the Mozart sonata; ®gure 4.12 shows a much less plausible analysis,

which reveals how licentious the above set of well-formedness rules really

Figure 4.11
The correct contrapuntal analysis of mm. 1±4 of the Mozart sonata shown in
®gure 4.1. Streams are indicated by thick black lines.
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is. There is nothing in them to prevent a situation where each note of a

piece occupies a separate stream (as in the opening notes of the right-

hand melody), or where a stream forms for each pitch, consisting mostly

of empty space (see the opening notes of the left hand). Indeed, there is

nothing to exclude streams, like the uppermost stream in ®gure 4.12,

which contain no notes at all. Streams may also leap wildly from one

note to another, as seen in one stream towards the end of the passage.

Three simple preference rules solve these problems.

CPR 1 (Pitch Proximity Rule). Prefer to avoid large leaps within

streams.

This ®rst CPR (contrapuntal preference rule) is simply the principle of

pitch proximity, well-known from auditory psychology. This would exert

strong pressure against the large leaps seen in the ``absurd'' analysis of

the Mozart.

Figure 4.12
An absurd (but well-formed) contrapuntal analysis of mm. 1±4 of the Mozart
analysis shown in ®gure 4.1. Streams are indicated by thick black lines.
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CPR 2 (New Stream Rule). Prefer to minimize the number of streams.

This principle is re¯ected in much auditory psychology, though it is

usually taken for granted. Without it, it would be preferable to form a

separate stream for each note.

CPR 3 (White Square Rule). Prefer to minimize the number of white

squares in streams.

As noted earlier, it is clear that streams must be allowed to contain

white squares. However, we do not continue to maintain streams per-

ceptually over long periods of silence. If the gap between one note and

another is long enough, we will hear one stream ending and another one

beginning.

In effect, the white square rule exerts pressure to separate a sequence of

notes into two temporal segments, when there is a large pause in between.

The reader may note a connection here with the model proposed in the

previous chapter. There, I proposed a preference rule system for identi®-

cation of melodic phrases; pauses (or ``offset-to-onset intervals'') were a

major factor in this model, though there were several others as well.

However, the temporal grouping proposed in chapter 3 is of a slightly

different kind from what is needed here. A stream is not the same thing as

a melodic phrase; one often has the sense of a single stream that is clearly

divided into multiple phrases. The kind of temporal group we are inter-

ested in here is somewhat larger than a phrase. It seems reasonable to

treat pauses as the main factor in such large-scale temporal units, as

opposed to the other factors (such as phrase length and metrical paral-

lelism) involved in low-level phrase structure.

A fourth preference rule is also needed:

CPR 4 (Collision Rule). Prefer to avoid cases where a single square is

included in more than one stream.

The tendency to avoid including a note in two streams is re¯ected in the

auditory perception research discussed above. However, the model does

not forbid two streams from including the same note; as we will see, such

``collisions'' actually arise quite often in actual music. If two streams do

occupy the same note, it is still understood that one is higher than the

other. Thus it is not permissible for two voices to cross by occupying the

same note; when they diverge from the note, they must have the same

height relationship that they had before.6
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4.5

Implementation

A computer implementation of this preference rule system was devised.

Like the grouping program described in chapter 3, the current program

requires a ``note-list'' input (indicating the onset, offset, and pitch of each

event), as well as a ``beat-list'' specifying the metrical structure. In this

case, the only reason metrical information is needed is that the lowest-

level beats of the meter are used to generate the indivisible segments the

program requires. Time-points of notes are adjusted by the contrapuntal

program so that every note both begins and ends on a beat. This then

produces the kind of grid described earlier, where each square is either

completely ``black'' or ``white.''

As with the metrical and grouping programs discussed earlier, the

implementation problem can be broken down into two sub-problems.

The ®rst problem is how the program is to evaluate individual analyses.

The program does this by assigning a numerical score to each analysis

which re¯ects how well it satis®es the four preference rules. Consider ®rst

the pitch proximity rule (CPR 1). For each stream in the analysis, the

program assigns a penalty to each pitch interval within the stream, which

is proportional to the size of the interval (it assigns a penalty of 1 point

for each chromatic step; so a leap of a perfect ®fth would receive a

penalty of 7). Turning to the new stream rule (CPR 2), the program

assigns a penalty of 20 points for each stream. For the white square rule

(CPR 3), the program assigns a penalty for each white square in any

stream. In this case, it seemed logical that the penalty should depend on

the actual duration of the segment (which may vary, since segments are

determined by the metrical structure); the penalty used is 20 points per

second. For segments of 0.2 second, then, the penalty will be 4 points for

each white square. Finally, for the collision rule (CPR 4), a penalty is

assigned for each square included in more than one stream. Here, too,

the penalty is proportional to the duration of the segment; again, a value

of 20 points per second is used. (The numerical parameters for these rules

were set simply by trial-and-error testing on a number of examples.)

Given this means of evaluating analyses, the program must then ®nd

the analysis with the highest score. (Since all the scores are penalties, they

are in effect negative scores; the highest-scoring analysis is then the one

with the smallest total penalty.) In theory, the program must consider

all possible well-formed analyses of the piece it is given. As usual, this

creates a search problem, since the number of possible analyses even for a

single temporal segment is extremely large, and grows exponentially with

the number of segments. It is worth considering why the program must

consider global analyses, rather than simply choosing the best analysis
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for each segment in isolation. The reason is that the best analysis for a

segment depends on both the previous and subsequent context. Figure

4.7 gave one example of this; another is seen in the third quarter-note

segment of m. 4 of the Mozart (®gure 4.1). The optimal analysis of this

segment has a stream at E5, even though there is no note there. If we

considered only this segment, it would be preferable to have no stream

there, since this would avoid penalties from both the new stream rule and

the white square rule. The reason that a stream is preferred is that there

are notes in both previous and subsequent segments, and it is preferable

to connect them with a stream, rather than starting a new stream at the

subsequent note. But we can only know this by seeing both the previous

and subsequent context. Cases like this show that it is necessary to search

for the analysis that is preferred overall, rather than analyzing segments

in isolation.

In essence, then, the program must consider all possible analyses of

each segment, and ®nd the best way of combining them. A possible

analysis of a segment is simply some subset of the squares labeled as

stream locations. Because of CWFR 4, we know that any ``black squares''

are stream locations, so the only question is which white squares (if any)

are to be considered as stream locations. However, it is not necessary to

consider all white squares as possible stream locations. Consider ®gure

4.13. Three possible ways are shown of connecting two events across a

rest: up-up-right, up-right-up, or right-up-up. Since the pitch proximity

penalty is linear, the total pitch proximity penalty for the three analyses

will be the same. This means that only one of them needs to be consid-

ered. In general, it can be seen that any gap between two notes can be

bridged in an optimal way by simply maintaining the stream at the pitch

of the ®rst note and then moving to the second note when it occurs. This

is important, because it means that there is never any reason for a stream

to move vertically to a white square; we only need to consider putting a

stream on a white square if it is already at that pitch level.7 There is also

a limit on the number of consecutive white squares that need to be con-

Figure 4.13
Three possible ways are shown of connecting two events across a rest.
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sidered as stream locations. If the new stream rule imposes a penalty of

20, and the white square rule imposes a penalty of 5 points per square (at

a given tempo), this means that after 4 consecutive white squares, it will

be advantageous to begin a new stream; it will never be advantageous to

have 5 consecutive white squares within a stream. Thus we proceed as

follows. For each black square in the piece, we label a small number of

subsequent white squares at that pitch level (depending on the tempo) as

``grey squares.'' Grey squares and black squares are then the only stream

locations that need to be considered. More precisely, the possible analy-

ses for a segment are the analyses which have streams on (1) all black

squares and (2) all possible subsets of any grey squares. (The fact that

an analysis may have multiple streams on one square complicates this

somewhat, but I will not discuss this here.)

Given that only certain squares need to be considered as grey squares,

the program is able to construct a relatively small set of possible segment

analyses. In deciding which of these segment analyses to use, the program

adopts the dynamic programming technique described in chapter 1. The

input is analyzed in a left-to-right manner; at each segment, for each

analysis of that segment, the program records the best global analysis

ending with that segment analysis (known as a ``best-so-far'' analysis).

At the next segment, the program only needs to consider adding each

possible analysis of the new segment on to each ``best-so-far'' analysis at

the previous segment, creating a new ``best-so-far'' analysis for each seg-

ment analysis at the new segment. In this way the program is guaranteed

to ®nd the best global analysis for the whole piece, while avoiding a

combinatorial explosion of possible analyses.

When considering going from one segment analysis to another, the

program must choose the ``transition'' between them: i.e., which streams

to connect to which other streams. It is here that the pitch proximity

rule and new stream rule are enforced (as well as CWFR 3, prohibiting

crossing streams). The best transition between two segment analyses can

be calculated in a purely local fashion; this is done whenever the program

is considering following one segment analysis with another.

An example of the program's output is shown in ®gure 4.14. This is

a portion of the program's analysis of a Bach fugue; the score for the

excerpt is shown in ®gure 4.15. The output represents the grid of squares

discussed earlier. Time is on the vertical axis and pitch on the horizontal

axis (unlike in the ®gures shown above). The time segments used are

eighth-notes, unless a change of note happens within an eighth-note beat,

104 I. Six Preference Rule Systems



Figure 4.14
An excerpt from the contrapuntal program's analysis of Fugue No. 2 in C Minor
from Bach's Well-Tempered Clavier Book I.
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in which case smaller units are used. Each square containing a note (or

``black square'') is given a number indicating which stream is present

there. (Recall that every black square must be contained in a stream.) The

streams are numbered in the order of their appearance in the piece;

streams beginning simultaneously are numbered from bottom to top in

pitch. (It may seem odd that the streams are numbered 1, 3, and 4; this

will be explained below.) If two streams are present in a square, this is

marked by an ``X''; ®gure 4.14 contains one example of this (this is in

fact an error on the program's part, as I will discuss). If a stream contains

a white square, this is shown with a vertical bar.

4.6

Tests

Two ways of evaluating the model will be discussed here. First, I will

examine how the model accommodates the experimental results dis-

cussed earlier. Secondly, I will consider the model's handling of actual

musical inputs.

The model is able to account for a number of the experimental ®ndings

on auditory stream segregation. Consider a pattern of two pitches in

alternation, as shown in ®gure 4.16; assume that the segments here are

Figure 4.15
The Bach fugue excerpt analyzed in ®gure 4.14.

Figure 4.16
A pattern of two alternating pitches. Assume that segments are 0.25 second in
length.
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0.25 second in length, so that the white square rule (CPR 3) imposes a

penalty of 5 points per segment. There are two possible analyses of this

pattern (at least, two that are plausible): it could be heard as a single

oscillating stream, or as two static streams. (Imagine that the pattern has

continued for some time; the new stream rule [CPR 2] imposes a slightly

larger penalty for the two-voice interpretation, but this penalty is only

imposed once and is therefore negligible.) In ®gure 4.16, the one-stream

analysis receives a penalty of 14 �2� 7� from the pitch proximity rule

(CPR 1) for each cycle of the pattern (a cycle being two notes); the white

square rule imposes no penalty. The two-stream analysis receives a

penalty of 10 from the white square rule �2� 5� for each cycle of the

pattern; the pitch proximity rule imposes no penalty. Thus on balance

the two-stream analysis is preferred. If the pitch distance between the two

streams were reduced to 3, then the penalty from the pitch proximity rule

for the one-stream analysis would only be 6 per cycle, while the score for

the two-stream analysis would be unchanged; the one-stream analysis

would then be preferred. Now suppose that the speed of the pattern in

®gure 4.16 was cut in half, so that the length of each note was doubled.

The one-stream analysis still receives a penalty of 14 per cycle; but now

the two-stream analysis receives a penalty of 20 per cycle, since there

are now 4 white squares per cycle. Thus slowing the tempo favors the

one-stream analysis; this accords well with the experimental ®ndings

discussed above.

It was noted above that the new stream rule imposes a higher penalty

for the two-stream interpretation in ®gure 4.16. Once the pattern has

repeated many times, this difference becomes negligible. When it has only

been heard a few times, however, the difference is not negligible. After

two occurrences of the pattern, the one-stream analysis receives a penalty

of 21 from the pitch proximity rule and a penalty of 20 from the new

stream rule, for a total of 41; the two-stream analysis is penalized 20

points by the white square rule and 40 points by the new stream rule

(20 points for each stream), for a total of 60. Thus, after only two

occurrences of the pattern, the one-stream analysis will be preferred;

as the pattern continues, though, the two-stream analysis will gain favor.

As noted earlier, this is exactly what happens perceptually; with such

stimuli, there is a greater tendency for stream segregation as the number

of repetitions of the pattern increases.

Other experimental ®ndings are accommodated by the model quite

straightforwardly. The perceptual abhorrences for crossing lines, for

including a single note in two streams, and for having multiple simulta-
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neous notes in a single stream are explicitly re¯ected in the model's rules.

The preference for minimizing the number of voices is captured in the

new stream rule. Finally, the factor of temporal separation in the group-

ing of notes is re¯ected in the white square rule; this penalizes white

spaces within a stream, thus favoring the beginning of a new stream

instead.

An effort was also made to test the model on real pieces of music. A

number of pieces were encoded in the appropriate format, and submitted

to the model for analysis. It would clearly be desirable to subject the

model to some kind of systematic, quantitative test. However, this is

problematic. As noted with respect to ®gure 4.1, the correct ``contra-

puntal analysis'' for a piece is often not entirely clear. (It is usually mostly

clear, but there tend to be many points of ambiguity and uncertainty.)

One case where the correct contrapuntal analysis is explicit is Bach

fugues (and similar pieces by other composers). In that case, the separate

voices of the piece are usually clearly indicated by being con®ned to

particular staffs and notated with either upward or downward stems.

The program was tested on four Bach fugues: fugues 1 through 4 from

Book I of the Well-Tempered Clavier. The output was examined, and the

program's errors were analyzed. The results are shown in table 4.1.

Four kinds of errors were recorded. One kind is a ``break,'' in which

the program breaks what should be a single voice into two or more

streams. It should be noted that such errors are not necessarily errors.

The voices of a Bach fugue are assumed to persist throughout the piece,

though they may contain long periods of silence; in such cases the pro-

gram tends to split them into a number of temporally separated streams.

For example, the three-part C Minor Fugue was analyzed as having 11

streams. (This explains why the streams in ®gure 4.14 are labeled as 1, 3,

and 4, rather than 1, 2, and 3, as one might expect.) By the understand-

Table 4.1
Test results of contrapuntal program on the ®rst four fugues of Book I of Bach's
Well-Tempered Clavier

Breaks
Missed
collisions

Incorrect
collisions Misleads

Total
errors

Fugue 1 (C major, 4 voices) 10 2 1 9 22

Fugue 2 (C minor, 3 voices) 7 2 2 5 16

Fugue 3 (C# major, 3 voices) 25 12 4 75 116

Fugue 4 (C# minor, 5 voices) 36 22 5 21 84
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ing of the term proposed here, one might argue that several streams are

indeed present in each voice. A second kind of error was a ``missed col-

lision,'' where the program failed to identify a collision between two

voices; in a third kind of error, an ``incorrect collision,'' the program

analyzed two voices as colliding when they really were not. (Figure 4.14

shows one such error: the G on the downbeat of m. 12 is incorrectly

assigned to two voices at once.) The fourth kind of error was a ``mis-

lead,'' where the program simply failed to connect the notes in the correct

way between one segment and the next.

A number of the errors were due to voice-crossings. In such cases,

however, it was often quite unclear that the voice-crossings would actu-

ally be perceived (an example of an imperceptible voice-crossing will be

given below). Other errors also seemed like ones that a listener might

easily make. One case is shown in ®gure 4.17; here, the program inter-

preted the D on the last eighth of m. 10 as a continuation of the tenor

line (second from the bottom) rather than the alto line (third from the

bottom), as shown by the dotted line. This connection was favored partly

because it resulted in a slightly smaller leap (7 steps instead of 8), and

also because it results in fewer white squares (i.e. a shorter rest) between

the two connected notes. This ``error'' seems quite understandable, if not

actually perceptually correct. However, there were also numerous cases

where the program's interpretation was really implausible; two of these

will be discussed below.

The program's performance on the four fugues varies considerably.

The larger number of errors on Fugue 4, compared to Fugues 1 and 2,

may be due to its greater length, and also to the fact that it has ®ve

voices, which leads to a greater density of voices and hence a greater

dif®culty of tracking the voices by pitch proximity (as well as a larger

number of collisions, which the program is only moderately successful in

Figure 4.17
Bach, Well-Tempered Clavier Book I, Fugue No. 1 in C Major, mm. 10±11.
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identifying). However, the very large number of errors on Fugue 3, a

three-voice fugue, is surprising. Inspection of the errors showed that this

was due to two factors. First, the fugue contains a large number of voice-

crossings, mostly quite imperceptible. Secondly, the fugue subject itself

was consistently misinterpreted by the program as containing two voices,

not one; for example, the opening of the fugue is analyzed as shown in

®gure 4.18. While this is strictly incorrect, such subordinate streams

within a melody might well be regarded as a real and important part of

perception; I will discuss this possibility in section 8.6.

The model was also tested on a number of other keyboard pieces from

the Baroque and Classical periods. In these cases, quantitative testing was

not possible, since no ``correct'' contrapuntal analysis was available.

However, the results could still be inspected in an informal way. A sig-

ni®cant problem emerged that had not arisen in the Bach fugues; the

Mozart sonata discussed earlier provides an example (®gure 4.1). It

seems clear that the right-hand line in mm. 12±14 continues as the top

line in m. 15; it is then joined by a second right-hand line underneath.

However, the program connected the right-hand line in mm. 12±14 with

the lower right-hand line in m. 15. The reason is clear: connecting with

the lower line involves only a one-step leap in pitch (F to E), whereas

connecting with the upper line requires a two-step leap (F to G). A

number of other cases occurred in this piece and others where the upper

voice incorrectly connected with an inner voice, or where the upper voice

ended, so that an inner voice became the upper voice. These problems

were largely solved by the addition of a ®fth preference rule:

CPR 5 (Top Voice Rule). Prefer to maintain a single voice as the top

voice: try to avoid cases where the top voice ends, or moves into an inner

voice.

Presumably there is a tendency to regard whichever voice is highest as

``the melody,'' and to accord it special status. Given that tendency, it is

Figure 4.18
Bach, Well-Tempered Clavier Book I, Fugue No. 3 in C# Major, mm. 1±3. The
program analyzed this passage (incorrectly) as two separate voices, as indicated
by the upward and downward stems.
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not surprising that we prefer to keep this attention focused on a single

voice rather than switching frequently from one voice to another. Inter-

estingly, while this rule generally improved the model's performance, it

did not improve performance on the fugues, and actually caused new

errors. This is in keeping with the conventional view that the voices in a

fugue are all of equal importance; the top voice does not require special

attention as it does in much other music.

Finally, the model was tested on several excerpts from Classical-period

string quartets. String quartets (or other ensemble pieces) might appear

to be good pieces for testing, since the ``correct'' contrapuntal analysis is

explicit in the instrumentation. However, it is often problematic to take

the score as the correct contrapuntal analysis. It is common in string

quartets for voices to cross in ways which are not perceptually apparent;

in ®gure 4.19, the viola and second violin parts cross as indicated by the

dotted lines, but these crossings would surely not be heard. Even in the

case of a string quartet, then, determining the correct analysis from a

perceptual point of viewÐthe one that would be heard by a competent

listenerÐis somewhat subjective. There are also occasional cases in

string quartets where the most plausible analysis does not appear to be in

any way inferable from a piano-roll representation. In ®gure 4.20, the

notes alone suggest that all three melodic phrases belong to a single

stream (certainly it would be heard this way if played on a piano). In a

live performance, however, other cuesÐin particular, visual information

about who is playing whatÐwould make it clear that the three phrases

belong to different voices. However, cases where such information is

needed appear to be fairly rare in string quartet music.

As noted above, many voice-crossings in string quartet music are not

actually perceived as such; this is of course in keeping with CWFR 3,

Figure 4.19
Haydn, String Quartet Op. 76 No. 1, I, mm. 29±31. The dotted lines indicate the
written instrumental lines.
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prohibiting crossing streams. Other cases can be found, however, where

voices are actually perceived to cross. Figure 4.21 shows an example; it is

not dif®cult to hear the second violin line crossing over the viola here.

Cases like these suggest that the prohibition against voice crossings

cannot really be treated as an inviolable rule. An important point should

be made about this example, which applies to most other cases I have

found of perceptible voice-crossing. In Deutsch's ``scale illusion'' stimuli

Ðwhere there is a strong tendency not to hear crossing voicesÐan

alternative ``bouncing'' percept is available (see ®gure 4.3): at the point of

crossing, it is possible for the lower voice to take over the descending

scale and the upper voice to take over the ascending one, so that both

voices are maintained and crossing is avoided. In ®gure 4.21, howeverÐ

where the second violin's A3±A4 crosses the viola's E4Ðthis interpreta-

tion is not possible. Maintaining both voices and avoiding a cross would

mean splitting the long viola note between two voices, which would vio-

late CWFR 4. Another alternative is maintaining one stream on the E4,

ending the lower stream on A3, and starting a third stream on A4; but

this incurs an extra penalty from the new stream rule. In this case, then,

Figure 4.20
Mozart, String Quartet K. 387, I, mm. 4±6.

Figure 4.21
Mozart, String Quartet K. 387, I, m. 34. The dotted lines indicate points where
one line crosses another.
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there is no palatable alternative to the crossing-stream interpretation.

In general, crossing-stream interpretations only seem to arise as a ``last

resort,'' when no reasonable alternative is available.

Two other factors should be mentioned which occasionally arose in

these tests. One is motivic parallelism. Consider ®gure 4.22 (m. 12 from

the Bach C Major Fugue). Here the model began the upper stream of the

left hand on the F#3 rather than the previous E3. Beginning it on the E

would be permissible, but is undesirable due to CPR 4. Perceptually,

however, one would probably hear the upper stream as beginning on the

E. One reason for the latter interpretation is that it would identify the

melody as an instance of the main fugue subject. Getting the model to

recognize motivic parallelisms of this kind would be quite dif®cult

(Marsden 1992 has an interesting discussion of this problem). Another

factor favoring the second interpretation of m. 12 is tonal: it might make

more tonal sense to begin a voice on E rather than F#, given that E major

is the underlying harmony at that moment. A clearer case of the in¯uence

of tonal factors on contrapuntal analysis is given in ®gure 4.23, from the

C Minor Fugue. Here, the model ends the middle voice on the G3 half-

way through the measure, and then begins a new stream on A"4 on

Figure 4.22
Bach, Well-Tempered Clavier Book I, Fugue No. 1 in C Major, m. 12.

Figure 4.23
Bach, Well-Tempered Clavier Book I, Fugue No. 2 in C Minor, m. 20.
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the sixth eighth of the measure. The model is reluctant to continue the

middle voice as it should, since this would involve a collision on F3 fol-

lowed by a ®fteen-step leap up to A"4. But ending a voice on a secondary

dominant harmony (V/iv) without continuing it through to its resolution

(iv) feels quite wrong. Meter may also be a factor here; the model's

interpretation involves ending a stream on a weak beat. Tonal, motivic,

and metrical factors appear to arise in contrapuntal analysis relatively

rarely; these are the only two cases in Fugues 1 and 2 where such infor-

mation seemed necessary.

The pieces used for testing in this study were deliberately con®ned to

genres with little timbral differentiation: solo piano and string quartet

music. It would be interesting to apply the model to other genres, such as

orchestral music, where a variety of timbres are used. In such genres,

timbre might prove to play an important role in contrapuntal analysis; or

perhaps it would not. Of course, addressing this issue would raise the very

dif®cult question of how to encode timbre in the input representation.

Although it requires re®nement and further testing, the model pro-

posed here offers a promising computational solution to the problem of

contrapuntal analysis. It performs creditably on actual musical inputs,

and accords well with the psychological evidence on sequential integra-

tion. Still, the reader may feel somewhat unsatis®ed after this discussion.

The current model has assumed that each piece has a single contrapuntal

analysis which every listener infers. But often, our intuitions about the

correct contrapuntal analysis are not so clear-cut. As noted in the open-

ing of this chapter, it is often unclear whether two melodic segments form

a single stream or not. Moreover, it is often the case that what appears in

the score as a single melodic line can be broken down into multiple con-

trapuntal strands. I believe that the current model can shed interesting

light on these matters of ambiguity and hierarchy in contrapuntal struc-

ture. However, it seems best to leave this topic for a general discussion of

ambiguity, which I present in chapter 8. For now, let us continue with the

presentation of the preference rule systems themselves.
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5
Pitch Spelling and the Tonal-Pitch-Class
Representation

5.1

Pitch-Class,

Harmony, and

Key

The aspects of music considered so farÐmeter, grouping, and contra-

puntal structureÐare crucial ones, and contribute much to the richness

and complexity of musical structure. However, an entire dimension of

music has so far been neglected. In listening to a piece, we sort the pitch-

events into categories called pitch-classes; based on their pitch-class

identities, notes then give rise to larger entities, harmonies and key sec-

tions. These three kinds of representationÐpitch-class, harmony, and

keyÐare the subject of the next three chapters.

In the present chapter, I discuss the categorization of notes into pitch-

classes. Pitch-classes are categories such that any two pitches one or more

octaves apart are members of the same category. These are the categories

indicated by letter names in common musical parlance: C, C#, and so on.

(They may also be indicated by integers: by convention, C is 0, C# is 1,

etc.) Rather than accepting the traditional twelve-category pitch-class

system, however, I will argue for a system of ``tonal pitch-classes,'' dis-

tinguishing between different spellings of the same pitch-class (for exam-

ple, A" versus G#). This means that a spelling label must be chosen for

each pitch event; a preference rule system is proposed for this purpose.

Tonal pitch-classes are represented on a spatial representation known as

the ``line of ®fths,'' similar to the circle of ®fths except stretching in®nitely

in either direction. The line of ®fths is of importance not only for the

representation of pitch-classes, but harmonies and keys as well (discussed

in chapters 6 and 7). I will begin with a general discussion of this model

and my reasons for adopting it.



5.2

Spatial

Representations in

Music Theory

The use of spatial models to represent tonal elementsÐpitches, chords,

and keysÐhas a long history in music theory. The early-nineteenth-

century theorist Gottfried Weber (1851) represented keys in a two-

dimensional array, with the ``circle of ®fths'' on one axis and alternating

major and minor keys on the other (®gure 5.1); several later theorists also

advocate this model, including Schoenberg (1954/1969) and Lerdahl

(1988). Lerdahl also proposes a similar space for chords within each key;

both Lerdahl's key and chord spaces are ``toroidal,'' in that they wrap

around in both dimensions. Other spatial models have represented

pitches. Riemann's in¯uential ``table of relations'' (1915/1992) is a two-

dimensional space with three axes representing perfect ®fths, major

thirds, and minor thirds (®gure 5.2); a major or minor triad emerges as a

triangle on this plane. Longuet-Higgins (1962) proposes a model of

pitches with perfect ®fths on one axis and major thirds on the other.

Other work on spatial representations comes from psychology. Shepard

(1982) proposes a complex ®ve-dimensional representation of pitches,

incorporating octave, ®fth, and semitone relations. Krumhansl (1990,

Figure 5.1
Weber's table of key relationships (1851). Uppercase letters represent major keys;
lowercase letters represent minor keys.

Figure 5.2
Riemann's ``Table of Relations'' (1915/1992).
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46) presents a spatial representation of similarity relations between keys,

based on data about the stability of pitches in the context of different keys

(discussed further in chapter 7); the model that emerges is quite similar to

Weber's two-dimensional model. She also proposes a two-dimensional

representation of chords (p. 190), again based on experimental data.

While these models come from a variety of perspectives, their main

motivation is the same: to capture intuitions about relations of closeness

or similarity between tonal elements. These relations are an important

part of our experience of tonal music. Consider the case of keys. C major

and G major are closely related, in that modulating between them seems

easy and natural; moving (directly) from C major to F# major, however,

seems much more radical and abrupt. Figure 5.3 gives another example

in the area of harmony. The ®rst ®ve chords all feel fairly close to one

another; the ®nal chord, F#7, is far from the others, creating a sense of

surprise and tension, and a sense of moving away to another region in

the space. This sense of space, and movement in space, is an indispens-

able part of musical experience; it contributes greatly to the expressive

and dramatic power of tonal music.

One feature common to all of the models proposed above is an axis

of ®fths, such that adjacent elements are a ®fth apart. This re¯ects the

traditional assumption that elements related by ®fths (pitches, chords, or

keys) are particularly closely related. Retaining this assumption, the

model I adopt here is simply a one-dimensional space of ®fths, as shown

in ®gure 5.4Ðthe ``line of ®fths.''1 Some discussion is needed as to why

this particular space was chosen (as opposed to one of the other spaces

discussed above, for example).

The ®rst issue that arises concerns the kind of ``®fths axis'' that is to be

used. One possible representation of ®fths is shown in ®gure 5.5, the

well-known ``circle of ®fths.'' Essentially, this is a one-dimensional space

which wraps around itself, with each pitch-class represented exactly

once. By contrast, the line of ®fths allows for the representation of dif-

Figure 5.3
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ferent ``spellings'' of the same pitch: A" and G# are at different positions

in the space. (We can assume, for the moment, that the line extends in®-

nitely in either direction.) We could call categories such as A" and G#
``tonal pitch-classes'' (or ``TPCs''), as opposed to the twelve ``neutral

pitch-classes'' (``NPCs'') represented on the circle of ®fths. The question

is, which of these models is preferable from a cognitive viewpoint, the

circular (NPC) model or the linear (TPC) model? This issue has received

surprisingly little attention. Music notation seems to assume a TPC model,

as does traditional tonal theory, where distinctions between, say, A" and

G# are usually recognized as real and important. Some of the spatial

representations discussed earlierÐsuch as Riemann's and Longuet-

Higgins'sÐalso recognize spelling distinctions. On the other hand, some

work in music cognition assumes an NPC model of pitch; one example is

Krumhansl's key-pro®le model, discussed at length in chapter 7. (Much

music theory also assumes an NPC model of pitch; however, this branch

of theoryÐsometimes known as pitch-class set theoryÐis mainly con-

cerned with nontonal music.) I will argue here for the tonal-pitch-class

view; for a variety of reasons, a linear space of ®fths is preferable to a

circular one for the modeling of tonal cognition.

The simplest argument for the line of ®fths is that it is needed to cap-

ture distinctions that are experientially real and important in themselves.

Figure 5.4
The ``line of ®fths.''

Figure 5.5
The ``circle of ®fths.''
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A circle is only capable of representing neutral-pitch-class distinctions;

but tonal-pitch-class distinctions are sometimes of great importance.

Figure 5.6 offers a nice example, suggested by Aldwell and Schachter.

The placid, stable minor third in ®gure 5.6a has quite a different effect

from the restless, yearning augmented second in ®gure 5.6b. One expla-

nation for this is that the lower note is heard as a G# in the ®rst case and

an A" in the second; A" and B are represented differently on the line of

®fths (speci®cally, they are much further apart) than G# and B. Tonal-

pitch-class distinctions are also experientially relevant in the case of

chords and keys. For example, the key of E" major seems much closer to

C major than the key of D# major. Imagine beginning in C major and

modulating to E" major; then imagine starting in C major, moving ®rst

to E major, and then to D# major. We feel that we have gone furtherÐ

and have arrived at a more remote destinationÐin the second case than

in the ®rst. These distinctions are represented quite naturally on the line

of ®fths, but not on the circle.

So far, the rationale for spatial representations has been that they

capture relationships that are of direct experiential importance. How-

ever, there is another important motivation for spatial representations:

they can play an important role in choosing the correct analysis. Con-

sider ®gure 5.7, the ®rst six notes of the ``Star-Spangled Banner.'' These

could be spelled G-E-C-E-G-C; alternatively, they could be spelled G-E-

B#-F"-Fx-C. Clearly, the ®rst spelling is preferable to the second, but

why? One explanation is that, in choosing spelling labels for pitches, we

prefer to locate nearby pitches close together on the line of ®fths (®gure

5.8). As we will see, a similar principle obtains in harmony, where there

is a preference to choose roots that are close together on the line of ®fths;

Figure 5.6
From Aldwell & Schachter 1989.

Figure 5.7
``The Star-Spangled Banner,'' mm. 1±2.
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and in the case of roots, this principle affects neutral-pitch-class decisions

(C versus A) as well as tonal pitch-class ones (C versus B#). In such cases,

the spatial model not only represents important intuitions about close-

ness between elements, but also helps us to label elements correctly.

A further point should be made about spelling distinctions. The spell-

ings of pitches are not just important in and of themselves; they also

in¯uence other levels of representation. Consider ®gure 5.9; how would

the melody note of the last chord be spelled? In the ®rst case, C# seems

most plausible; in the second case, D" is preferable. This could be

explained according to the principle presented above: we prefer to spell

notes so that they are close together on the line of ®fths. In the ®rst case,

C# is closer to the previous pitches; in the second case, D" is closer. (This

can be seen intuitively in ®gure 5.10, though the difference is small.)

Notice, however, that the spelling of the last chord in ®gure 5.9a and

Figure 5.8
Two possible spellings of the excerpt in ®gure 5.7, represented on the line of
®fths.
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Figure 5.9

Figure 5.10
Line-of-®fths representations of (a) ®gure 5.9a, (b) ®gure 5.9b. White rectangles
indicate possible spellings of the ®nal note (C# or Db).
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5.9b in¯uences the harmonic implications of the chord. A D" pitch

(combined with G) implies an E"7 chord, suggesting a move to A" major;

a C# suggests A7, moving to D major (or minor). Again, the point is that

spelling distinctions are not only important in themselves; they also help

us to attain desired analytical results, in this case in the labeling of har-

monies. Spelling distinctions can also have implications for key structure,

as I will show in chapter 7.

To summarize the argument so far, there are several motivations for

spatial representations, and for the particular representation proposed

here. In general, spatial representations capture intuitions about the

closeness of tonal elements that are experientially real in and of them-

selves. There are compelling reasons for adopting a representation that

recognizes distinctions of spelling. These distinctions are of direct expe-

riential importance, for pitches, chords, and keys alike. Using the line of

®fths also helps us to obtain the correct spelling labels for pitches, and is

useful in harmonic analysis as well; the idea here is that there is a pref-

erence to choose labels that are close together on the line of ®fths. Finally,

recognizing spelling distinctions at the level of pitches provides useful

input in harmonic and key analysis.

While it may be apparent that the line of ®fths has a number of desir-

able features, it is not clear that it is the only model with these features.

Since a number of other spatial representations have been proposed, it is

worth discussing why the line of ®fths was chosen over other alternatives.

One might wonder, ®rst of all, why a one-dimensional model was chosen

rather than a two-dimensional one. Two-dimensional models of chords

and keys have the virtue that they can capture the distinction between

major and minor chords and keys, something not possible on the line of

®fths. (The current model does capture these distinctions in other ways,

as I will explain in later chapters.) One problem with a two-dimensional

representation is that each element is represented at in®nitely many places.

In other words, with such a representation, we would have to choose not

only whether a chord was an A" or a G#, but which A" it was.2 To my

mind, such distinctions do not have a strong basis in musical intuition.

One might also question the decision to use a ¯at space as opposed to

a wraparound one. As mentioned above, one reason for this is that a ¯at

space allows TPC distinctions to be recognized, which are important for

a number of reasons. Another reason is that the closeness of elements

to previous elements needs to be calculated, and this can be done most

easily on a ¯at space. However, I do not claim to have an airtight argu-
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ment for why the line of ®fths is superior to all other spaces for the

problems I address here. This could only be determined by making a

serious effort to solve these problems using other spaces, something

which I have not attempted.

5.3

Tonal-Pitch-Class

Labeling

If we assume that the line of ®fths has psychological reality, this has

important implications for music cognition. It means that listening to a

piece involves choosing tonal-pitch-class labels for each pitch-event, and

in so doing, mapping each event on to a point on the line. (Roots and

keys must also be mapped on to the line, as I discuss in chapters 6 and 7.)

In the remainder of this chapter I propose a preference model for per-

forming this task.

Before continuing, several issues must be considered. One is the psy-

chological reality of TPC distinctions. With each of the other preference

rule systems proposed here, I have begun by presenting experimental evi-

dence for the general reality of the kind of structure at issue. In the case

of spelling distinctions, however, it must be admitted that such evidence

is scarce. The cognitive reality of spelling distinctions simply has not been

explored. I argued above that spelling distinctions are experientially

important, and that they also have consequences for other aspects of

musical structure. While I think there would be general agreement on this

among highly trained musicians, the importance of spelling distinctions

for listeners of tonal music in general is less clear. (It should be noted that

tonal-pitch-class labels inferred in listening are assumed to be relative,

rather than absolute; I will return to this point.)3

Another issue concerns the source of correct tonal-pitch-class analyses.

If we assume that listeners infer spelling labels for pitches, how do we

know what labels are inferred? One obvious source of evidence here is

composers' ``orthography,'' that is, the way they spell notes in scores; this

might be taken to indicate the TPC labels they assume. Another source

we can use is our own intuitions about how events in a piece should be

spelledÐfor example, in writing down a melody that is dictated to us.

We should note, however, that relying on such intuitionsÐour own or

the composers'Ðis sometimes problematic, since there are casesÐ

``enharmonic changes''Ðwhere spelling decisions are clearly based on

matters of convenience, rather than on substantive musical factors. In

particular, we prefer to avoid remote spellings such as triple ¯ats and

triple sharps. But it is usually fairly clear where such practical decisions

are being made, and what the ``musically correct'' spelling would be.
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In general, the issue of pitch spelling has been as neglected in arti®cial

intelligence as it has been in psychology. One exception is the algorithm

for pitch-spelling proposed by Longuet-Higgins and Steedman (1971).

Unlike the model I propose below, the Longuet-Higgins/Steedman model

operates only on monophonic music. Moreover, it is only applied after

the key of the piece in question has already been determined; the spelling

of notes within the scale is then determined by the key signature. (The

authors propose a key-®nding algorithm which I discuss in chapter 7.)

The problem then becomes how to determine the spelling of notes that

are ``chromatic,'' or outside the scale. Longuet-Higgins and Steedman

consider ®rst the case of chromatic notes that are part of what they call a

``chromatic scale,'' i.e. a sequence of notes forming an ascending or

descending stepwise chromatic line. The rule they propose is that the ®rst

and last pair of notes in the scale should be separated by a ``diatonic

semitone'': a semitone interval in which the two pitches are on different

staff lines (such as G# to A rather than A" to A).4 This rule captures an

important insight, but it is not suf®cient. Consider the sequence G-G#-A

(assuming that the ®rst and last notes are diatonic, thus must be spelled

as G and A). The rule here would state that both pairs of notes should be

separated by a diatonic semitone, but there is no spelling of the second

event that will allow this. As for notes whose spelling is not decided by

the ®rst rule, Longuet-Higgins and Steedman propose that they should be

spelled so as to be ``in the closest possible relation to the notes which

have already been heard,'' where closeness is measured in terms of

Longuet-Higgins's two-dimensional representation of pitches (mentioned

earlier). This, again, is a valuable idea, and is represented in a somewhat

different way in my own algorithm, as will be seen in the next section.

5.4

A Preference

Rule System for

Tonal-Pitch-Class

Labeling

The task of the current model, then, is to determine a tonal-pitch-class

label for each event in a piece. The input we assume is the usual one of a

note-list or ``piano-roll,'' giving the pitch, on-time, and off-time of each

event. Recall from chapter 1 that events are assumed to be categorized

into steps of the chromatic scale; pitches are represented as integers, with

middle C � 60. We can think of the output of the model as a set of labels

(C, F#, A", etc.) attached to each event in the input representation.

Another useful way of representing the output is seen in ®gures 5.8 and

5.10. This is similar to a piano-roll representation, except that the verti-

cal axis now represents the line of ®fths, rather than pitch height; we

could call this the ``tonal-pitch-class representation'' of a piece. TPC's,

124 I. Six Preference Rule Systems



like NPC's, can be labeled with integers, representing their line-of-®fths

position. We will adopt the convention that C � 2, with ascending ®fths

denoted by ascending numbers; thus the C major scale comprises the

positive integers 1 through 7.

It is important to note that the possible tonal-pitch-class labels for an

event are constrained by its neutral pitch-class. If an event has an NPC of

0 (to use, once again, the usual convention), it can have a TPC of C, B#,

or D"", but not C# or A. Thus the ®rst step to determining the TPC

labels of a set of events is to determine their NPC labels. From a com-

putational point of view, this is easy. Given that pitches are labeled with

integers, their neutral pitch-class follows automatically. Any pitch whose

pitch number is a multiple of 12 has NPC 0; any pitch whose pitch

number is a multiple of 12, plus 1, has NPC 1; and so on. To put it dif-

ferently, the NPC of an event is given by its pitch number modulo 12. (It

may be that this is not a very plausible model of how neutral pitch-class

is determined perceptually, but I will not explore that here.) The model

must then choose a TPC label for the pitch, given the possibilities

allowed by its NPC label.

The model consists of three ``TPRs'' (tonal-pitch-class preference

rules). The ®rst rule is a very simple one, but also the most important:

TPR 1 (Pitch Variance Rule). Prefer to label nearby events so that they

are close together on the line of ®fths.

In many cases, this rule is suf®cient to ensure the correct spelling of pas-

sages. Return to the case of ``The Star-Spangled Banner'' (®gure 5.8). As

noted earlier, the pitch variance rule offers an explanation for why the

®rst spelling is preferred; it locates the events more closely together on the

line of ®fths. Note that the rule applies to nearby events. If one measure

contains a B# followed by an E#, there is great pressure to spell the

second event as E# rather than F; if the two events are widely separated

in time, the pressure is much less.

Let us consider how the pitch variance rule might be quanti®ed. Any

TPC representation has a ``center-of-gravity'' (COG), a mean position of

all the events of the passage on the line of ®fths; a spelling of all the pitch-

events is preferred which minimizes the line-of-®fths distance between

each event and the center of gravity. In statistical terms, a representation

is sought which minimizes the variance among events on the line of ®fths.

The COG is constantly being updated; the COG at any moment is a

weighted average of all previous events, with more recent events affecting

it more. This ensures that the pressure for events to be located close
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together on the line of ®fths is greatest for events that are close together

in time. One important parameter to be set here is the ``decay'' value of

the COG, determining how quickly the pressure to locate two events

close together decays as the events get further apart in time. Roughly

speaking, it seems that the pressure is signi®cant for intervals of a few

seconds, but decays quickly for longer intervals.

The pitch variance rule is perhaps not what ®rst comes to mind as the

main principle behind spelling. Alternatively, one might explain spelling

choices in terms of diatonic collections. In ``The Star-Spangled Banner,''

perhaps, we decide from the ®rst few pitches that the key is C major; this

implies a certain diatonic collection; this then dictates the spellings of

subsequent pitches. This is somewhat more complex than my explana-

tion, since it assumes that key has already been determined and that this

``feeds back'' to in¯uence spelling. However, there are also cases where

the scale-collection explanation simply does not work. Consider ®gure

5.9; it was argued that C# is the preferred spelling of the ®nal melody

note in ®gure 5.9a, D" in ®gure 5.9b. These choices are captured well by

the pitch variance rule. In ®gure 5.9a, the COG of all the events (up to

the ®nal one) is 3.21, so that C# (9.0) is closer than D" (ÿ3:0); in ®gure

5.9b, the COG is 2.21, making D" closer. To explain this in terms of

scale collections, however, is problematic. The keys of the ®rst measure

in ®gure 5.9a and b are clearly C major and C minor, respectively; nei-

ther C# nor D" are in either of these scales (regardless of what ``minor

scale'' one chooses). One could also explain the spellings of these pitches

in terms of their harmonic and tonal implications. Clearly a C#-G tritone

implies an A7 chord, and anticipates a move to D minor; a D"-G tritone

implies E"7, moving to A" major. One might claim that C# is preferred

in the ®rst case because the implied key of D minor is somehow closer to

C majorÐor more expected in a C major contextÐthan A" major is;

these key expectations then govern our interpretation of the pitches.

Again, this is a rather complex explanation of something that can be

explained very easily using the one rule proposed above. One of the main

claims of the current model is that spelling can be accomplished without

relying on ``top-down'' key information.

While the pitch variance rule does not explicitly refer to diatonic col-

lections, such collections do emerge as privileged under this rule. As is

well known, a diatonic scale consists of seven adjacent positions on the

circle (or line) of ®fths; a passage using a diatonic scale collection will

therefore receive a relatively good score from the pitch variance rule (as

opposed to, for example, a harmonic minor, whole-tone, or octatonic
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collection), since its pitches permit a very compact spelling on the line of

®fths. Note also that the pitch variance rule will naturally ®nd the correct

spelling of a diatonic scale, since this is the most closely-packed one. For

example, imagine a passage whose pitches are all (potentially) within the

C major scale, with all seven steps of the scale equally represented. If the

C major spelling of the events is chosen, then the mean position of events

on the line of ®fths will be exactly at D, and all the events of the passage

will lie three steps or less from the center of gravity (see ®gure 5.11).

(This seems to be roughly correct in practice as well; for actual musical

passages in major, the COG is generally about two steps in the sharp

direction from the tonic.)5 Thus this spelling of the events will be strongly

preferred over other possible spellings. If the passage contains a few

``chromatic'' pitches (but not enough to greatly affect the center of

gravity), the pitch variance rule may not express a strong preference as to

their spelling, since two alternatives are about equally far from the center

of gravity; other rules may then be decisive.

One apparent problem with the pitch variance rule should be men-

tioned. In ``The Star-Spangled Banner,'' the spelling G-E-C-E-G-C is

clearly preferable to G-E-B#-F"-Fx-C; but what about Fx-Dx-B#-Dx-

Fx-B#? Here, the pitches are as ``closely-packed'' as in the original ver-

sion; they are simply shifted over by twelve steps. This raises a subtle, but

important, point. It is best to regard the TPC representation as relative

rather than absolute: what is important is the relative positions of events

on the line of ®fths, not their absolute positions. For one thing, treating

the line-of-®fths space as absolute would assume listeners with absolute

pitch. If we treat the space as relative, moreover, this means that a repre-

sentation of a piece in C major is really no different from the same repre-

sentation shifted over by twelve steps. This view of the TPC representation

is not only cognitively plausible, but musically satisfactory as well. There

is no musically important reason for notating a piece in C major rather

than B# major; it is simply a matter of notational convenience.

While the pitch variance rule alone goes a long way towards achieving

good TPC representations, it is not suf®cient. Another principle is voice-

Figure 5.11
The C diatonic scale represented on the line of ®fths.
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leading. Given a chromatic note followed by a diatonic one a half-step

away, we prefer to spell the ®rst note as being a diatonic semitone away

from the secondÐthat is, placing them on different diatonic stepsÐ

rather than a chromatic semitone. In ®gure 5.12a, we prefer to spell the

®rst two melody events as E"-D rather than D#-D. The line of ®fths pro-

vides a way of stating this principle. Note that a diatonic semitone (such

as E"-D) corresponds to a ®ve-step interval on the line of ®fths; a chro-

matic semitone (such as D#-D) corresponds to a seven-step interval. The

voice-leading rule can thus be stated as follows:

TPR 2 (Voice-Leading Rule, ®rst version). Given two events that are

adjacent in time and a half-step apart in pitch height, prefer to spell them

as being ®ve steps apart on the line of ®fths.

Given two events of NPC 3 and 2, then (adjacent in time and in the same

octave), it is preferable to spell them as E"-D rather than D#-D. This

bears a certain similarity to the pitch variance rule, in that it prefers to

spell events so that they are close together on the line of ®fths (®ve steps

being closer than seven). However, the pitch variance rule applies gener-

ally to all nearby pitches, not merely to those adjacent and a half-step

apart, and it is clear that a general rule of this kind is not suf®cient.

Consider ®gure 5.12a and b; apart from the E"/D#, these two passages

contain exactly the same TPCs (the correct spelling of these events will be

enforced by the pitch variance rule); and yet E" is preferred in one case,

D# in the other. Thus something like the voice-leading rule appears to be

necessary.

A problem arises with the voice-leading rule as stated above. Consider

®gure 5.13a and b. The TPC's (excluding the G#/A") are identical in both

cases, thus the pitch variance rule expresses no preference as to the

spelling of the G#/A". But the voice-leading rule expresses no preference

either. In the ®rst case, spelling the event as G# will result in one 7-step

Figure 5.12
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gap (G-G#) and one 5-step gap (G#-A); spelling it as A" will merely

reverse the gaps, creating a 5-step gap followed by a 7-step one. Either

way, we have one 7-step gap, and hence one violation of the rule. Intui-

tively, the rule is clear; the chromatic event should be spelled so that it is

7 steps from the previous event, 5 steps from the following event. Again,

rather than expressing this in terms of chromatic and diatonic pitches, we

will express it in another way. A chromatic pitch is generally one which

is remote from the current center of gravity: the mean line-of-®fths posi-

tion of all the pitches in a passage. We therefore revise the voice-leading

rule as follows:

TPR 2 (Voice-Leading Rule, ®nal version). Given two events that are

adjacent in time and a half-step apart in pitch height: if the ®rst event is

remote from the current center of gravity, it should be spelled so that it is

®ve steps away from the second on the line of ®fths.

Here again, it might seem that an appeal to scale collections would

be a simpler solution. Why not say, simply, ``prefer to spell chromatic

notes as ®ve steps away from following diatonic ones''? In fact, however,

this traditional rule does not correspond very well to musical practice.

Figure 5.13

Figure 5.14
Beethoven, Sonata op. 31 No. 1, II, mm. 1±4.
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Consider the passage in ®gure 5.14, from the second movement of

Beethoven's Sonata Op. 31 No. 1 (speci®cally the chromatic scales in

mm. 2 and 4). The traditional rule for spelling would have us spell each

of the chromatic notes as sharps, since this places them a diatonic semi-

tone away from the following pitch. But notice that Beethoven uses B"
rather than A#, violating this rule; the other four chromatic degrees are

spelled as the traditional rule would predict. This is in fact the general

practice in the spelling of chromatic ornamental tones: "7̂/#6̂ is generally

spelled as "7̂, regardless of voice-leading context. Similarly, #4̂/"5̂ is

generally spelled as #4̂ even in descending lines.6 The scale-collection

approach is of no help here; B" is clearly chromatic in the context of C

major, and it would seem arbitrary to posit a momentary move to F

major in such cases. The current approach offers a solution. An ascend-

ing chromatic scale in a C major context, such as that in ®gure 5.14,

presents a con¯ict for pitches such as D#/E" and A#/B". E" is closer to the

center of gravity than D#, and is therefore preferred by the pitch variance

rule; but D# is preferred by the voice-leading rule. (Recall that for a C

major piece, the COG is generally around D, so E" is generally slightly

closer than D#.) Similarly with A# and B". In the latter case, however,

perhaps pitch variance favors the ¯at spelling over the sharp one enough

(since it is much closer to the center of gravity) that it is preferred, over-

ruling the voice-leading rule. In this way, the current model offers an

explanation of why B" is preferred over A# in a C major context, even

in ascending chromatic lines. The same logic might explain why F# is

generally preferred over G" in a descending chromatic line in C major.

Getting these results would depend on exactly how the parameters of the

rules are set; it appears that, when a spelling of an event locates it within

four steps of the center of gravity, that spelling is generally preferred,

regardless of voice-leading.7

One ®nal rule is needed to achieve good spelling representations. An

example from earlier in the chapter, ®gure 5.3, provides an illustration.

A# is clearly preferred over B" in the ®nal chord, but why? B" is clearly

closer to the center of gravity of the passage than A#. The event in

question is neither preceded nor followed by half-step motion, so voice-

leading is not a factor. The explanation lies in harmony. With A#, the

pitches of the last chord form an F#7 chord. As B", however, the pitch

would be meaningless when combined with F# and E. (The pitches could

also be spelled G"-B"-F", to form a G"7 chord, but this is less preferred

by pitch variance.) In this case, then, the spelling of the event is deter-

mined by harmonic considerations: a spelling is preferred which permits
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an acceptable harmony to be formed. We capture this in the following

rule:

TPR 3 (Harmonic Feedback Rule). Prefer TPC representations which

result in good harmonic representations.

To specify this rule in a rigorous fashion, we would obviously need to

de®ne what is meant by a ``good'' harmonic representation. The follow-

ing chapter presents a preference rule system for harmonic analysis. For

now, the important point is that the TPC representation of a piece forms

part of the input to this process: whereas A# is considered compatible

with a root of F#, B" is not. The harmonic feedback rule then says that,

where other factors favor interpreting a group of events in a certain way

(for example, analyzing them as a triad or seventh), there will be a pref-

erence to spell the pitches accordingly; harmonic considerations thus

``feed back'' to the TPC representation.

It may be noted that the usual ``chordal'' spelling of a triad or domi-

nant seventh is the most closely packed one on the line of ®fths. Thus one

might argue that the effect of harmony on spelling is simply a conse-

quence of the pitch variance rule: since the pitch variance rule applies

most strongly to events close together in time, there is naturally very

strong pressure for simultaneous events to be compactly spelled. The

problem here is that the notes of a harmony are not necessarily simulta-

neous. Rather, harmonic analysis involves a complex process of grouping

notes together and inferring harmonies from them; and it is this grouping

that in¯uences how notes are spelled. Consider the variant of ®gure 5.3

shown in ®gure 5.15. The ®rst A#/B" and the second A#/B" in the melody

are equally close in time to the F#; but the ®rst one is clearly a B", the

second one an A#. The reason is that the meter suggests a change of

harmony on the beginning of the third measure (rather than on a weaker

beat, such as the last eighth of the second measure). This groups the ®rst

Figure 5.15
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A#/B" together with the C-E-G, the second with the F#-C#-E; the har-

monic feedback rule then prefers B" in the ®rst case, A# in the second.

5.5

Implementation

The implementations of the TPC-labeling model and harmonic model

(described in chapter 6) are closely integrated, and really constitute a

single program. Here we will consider the TPC-labeling component; in

section 6.4 we will consider the harmonic component and the way the two

components are combined. The implementation described in this chapter

and the next was largely developed and written by Daniel Sleator.

As usual, the ®rst problem in implementing the preference rule system

proposed above is to ®nd a way of evaluating possible TPC analyses. A

TPC analysis is simply a labeling of every pitch-event in the piece with a

TPC label. One added well-formedness rule is that each note must have

the same spelling all the way through; changes of spelling within a note

are not permitted. We ®rst divide the piece into very short segments. As

with the contrapuntal program (explained in chapter 4), this is done

using the metrical structure. We assume that every event begins and ends

on a beat; if necessary, we adjust their time-points to the nearest beat.

This creates a grid of squares, in which each square is either ``black''

or ``white'' (overlapping notes are not permitted).8 We arbitrarily limit

the possible spellings for pitches to a range of four cycles on the line of

®fths. As usual, there is a combinatorial explosion of possible analyses.

In this case, however, the explosion is worse than usual, because we must

consider all possible combinations of different spellings of simultaneous

pitches; thus there is a large number of analyses even for a single segment.

To solve this problem, we make a heuristic assumption that the spellings

of simultaneous pitches are always within a twelve-step ``window'' on

the line of ®fths. That is, we assume that A" and G# will never be present

simultaneouslyÐan assumption that seems to be virtually always correct

in practice.

To apply the pitch variance rule (TPR 1), we calculate the pitch COG

at each segment of the analysis. This involves taking the mean line-of-

®fths position of all previous events, given their spelling in the analysis.

Events are weighted for their length; they are also weighted for their

recency according to an exponential function, as discussed above. (For

this purpose, again, we use the short temporal segments described earlier;

each part of an event within a segment is treated as a separate event.)

Given the COG for a particular segment, we calculate the line-of-®fths

distance of each pitch from the COG. Summing these distances for all
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pitches within the segment provides a measure of their closeness to pre-

vious pitches; summing these scores for all segments gives a measure of

the closeness of all events in the piece to one another.

For the voice-leading rule (TPR 2), we calculate the distance of each

event from the current COG. (Recall that the voice-leading rule applies

only to events that are ``chromatic''; we de®ne this as four or more steps

away from the current COG.) We also consider the inter-onset-interval

between the event and the next event a half-step away. We then use some

rather tricky reasoning. Suppose that the current COG is right at D;

suppose further that we are considering an event of TPC A", and it is

followed by an event of NPC 9. The second event could be spelled as A

or B""; but given the current COG at D, we can assume that A will be the

preferable spelling. Thus we know that a spelling of A" will result in a

voice-leading penalty; a spelling of G# will not. In this way we can assign

penalties for the voice-leading rule, given only the spelling of the current

event, the current COG, and the time-point of the next event a half-step

away; we make an assumption about the spelling of the second event

without actually knowing it.

Given this way of evaluating analyses, we then search for the best

analysis using the usual left-to-right dynamic programming technique.

(We have not yet considered the harmonic feedback rule [TPR 3]; we

return to this below.) There is a complication here. Dynamic program-

ming assumes that each segment in an analysis only cares about some

numerical property of the analysis so far. We keep the ``best-so-far''

analysis ending with each possible value of that variable, knowing that

whatever happens in the next segment, one of these ``best-so-far'' analy-

ses will yield the best possible score. Here, however, the parameter that

matters is the COG (center of gravity) of the analysis so far. Ideally, for

each COG, we would want to keep the best analysis ending with that

COG. But a COG is a real number; the different analyses up to a certain

point might lead to an unbounded number of different COGs. We solve

this problem in a heuristic fashion by dividing the line of ®fths into small

ranges or ``buckets.'' For each bucket, we keep the highest-scoring anal-

ysis ending up with a COG within that bucket; we also keep the 12-step

window for the current segment entailed by that analysis.

The procedure, then, is as follows. We proceed through the piece left

to right. At each segment, we consider each possible 12-step window as

an analysis of the current segment. We consider adding this segment

analysis on to the best-so-far analysis ending with each COG at the pre-

vious segment; this makes a ``COG-window pair.''9 We calculate the
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pitch variance scores and voice-leading penalties for the current COG-

window pair. Then, for each COG bucket at the current segment, we

®nd all COG-window pairs ending up with a new COG in that bucket,

and choose the highest-scoring one. (Of course, there may not be any

window-COG pair leading to a new COG in a given bucket.) This gives

us a new set of best-so-far analyses, allowing us to proceed to the next

segment.

We have not yet considered how the harmonic feedback rule is imple-

mented (TPR 3). As noted earlier, we want the harmonic and TPC rep-

resentations to interact. The harmonic analysis should be affected by

TPC considerations, but pitch spelling should also be in¯uenced by

harmony. In essence, we want to choose the combined TPC-harmonic

representation that is preferred by both the TPC and harmonic rules

combined. The system must consider all possible combined TPC-harmonic

representations, evaluating them by both the TPC and harmonic rules,

and choosing the one that scores highest overall. How we do this will be

discussed in the next chapter.

5.6

Tests

The model was tested using the Kostka-Payne corpus discussed in section

2.5. The ``correct'' spellings were assumed to be the ones given in the

notation, as shown in Kostka and Payne's workbook (1995b). One

Figure 5.16
Schubert, Originaltaenze Op. 9 (D. 365) No. 14, mm. 9±16.
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problem was what to do about ``enharmonic changes.'' In three of the

excerpts, the notation features a sudden tonal shift that seems musically

illogical. In Schubert's OriginaltaÈnze Op. 9, No. 14, for example (®gure

5.16), the music shifts from D" major to A major, as opposed to the

more logical B"" major (the ¯at submediant key). No doubt this is

because B"" major is a dif®cult key to write and read. In these cases,

however, I assumed the musically logical spelling to be the correct one; in

the case of the Schubert, for example, I assumed that the entire A major

section was spelled in B"" major, with all pitches shifted twelve steps

in the ¯at direction. In a few cases, also, the program spelled the entire

excerpt in the wrong ``cycle'' of the line of ®fths; for example, in D"
minor rather than C# minor. In such cases, the program's output was

judged correct as long as the relative positions of events on the line of

®fths were the same as in the original.

Figure 5.17
Schumann, ``Sehnsucht,'' Op. 51 No. 1, mm. 1±5.
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The simplest way of evaluating the program's performance was simply

to calculate the proportion of notes in the corpus that the algorithm

judged correctly. (Recall that the program was not allowed to assign

different spellings to different parts of a note.) Out of 8747 notes in the

input corpus, the program made 103 spelling errors, a rate of 98.8%

correct. As usual, it is dif®cult to know what to compare this with. It

should be kept in mind, however, that a much simpler algorithm could

probably achieve quite a high success rate. One very simple algorithm

would be to always choose the same spelling for each NPC, using a range

of the line of the ®fths from (perhaps) C# to A"; it appears that such an

algorithm might achieve a success rate of about 84%.10

A single problem accounted for a large majority of the program's

errors. Recall that, in cases of half-step motion, the program is designed

to favor diatonic semitones, in cases where the ®rst event is chromatic

(TPR 2). The way we determine whether an event is chromatic is by see-

ing whether it is remote from the current COG. Frequently, however, an

event is close to the current COG, but a sudden tonal shift afterwards

causes a shift in the COG, making it chromatic in retrospect; and this is

what determines its spelling. An example is the ``German sixth,'' as used

in modulation. In ®gure 5.17, the G#'s in m. 4 ®rst sound like A"'s, part

of a B" dominant seventh. Retrospectively, however, they turn out to be

G#'s, part of a German sixth chord in D minor. Given everything up and

including the ®rst half of m. 4, the program interprets the G#/A"'s as

A"'s, just as it should. Given what follows, the program should reinter-

pret the G#/A"'s in the context of D minor; in this context both G# and

A" are chromatic, thus the voice-leading rule applies, favoring a G#
spelling (since this allows a diatonic-semitone resolution to the A's in

the second half of the measure).11 However, the program has no way of

doing this. One solution would be to label notes as chromatic based

on their closeness to the center of gravity of subsequent pitches rather

than previous ones, but this is not really possible given the current

implementation.
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6
Harmonic Structure

6.1

Harmony

The importance of harmony is indicated best, perhaps, by the amount of

time devoted to it in undergraduate music education. The typical music

student has at least two years of required music theory; and typically,

most of this time is spent on harmony. Students spend considerable time

and effort learning to analyze music harmonically, and also learning the

reverse processÐto generate appropriate notes from an explicit or

implicit harmonic structure, whether this involves realizing harmonic or

®gured bass symbols, writing an accompaniment for a melody, or adding

upper voices to a bass. In aural training classes, meanwhile, a large pro-

portion of classroom time is normally devoted to identi®cation of har-

monies and harmonic structure, either in isolation or in progressions.

Clearly, harmony holds a place of central importance in our theoretical

conception of common-practice music.

As with all the kinds of structure studied in this book, but particularly

in the case of harmony, a nagging question may arise. If we are assuming

that harmonic analysis is something done by all listeners familiar with

tonal music, why does it takes them so long to learn to do it explicitly?

One might argue, ®rst of all, that many undergraduate music students do

not really qualify as ``experienced listeners'' of common-practice music;

some, no doubt, have had very little exposure to common-practice music

when they enter college. But tonal harmony is ubiquitous in all kinds of

music besides common-practice music: children's songs, folk songs, and

Christmas carols; music for ®lm, TV, advertising, and computer games;

and so on. Moreover, as we will see, there is psychological evidence that

even musically untrained listeners possess a basic understanding of tonal



harmony. Rather, the important point is this: the fact that people cannot

readily perform harmonic analysis explicitly is no argument against the

claim that they are performing it unconsciously when they hear music. As

discussed in chapter 1, it is one of the basic premises of cognitive science

that there are many things going on in our minds of which we are not

readily aware. A useful analogy can be drawn with linguistics; it takes

students considerable time to learn to perform syntactic analyses of sen-

tences, though it is clear that they are doing this in some form every time

they perceive language.1 This is not to deny that theory and ear-training

also involves a component of real ``ear-training,'' teaching students to

hear things and make aural distinctions that they were not in any way

making before. But a good deal of undergraduate music theory, I would

argue, is simply teaching people to do explicitly what they are already

doing at an unconscious level.

In this chapter I present a preference rule system for performing har-

monic analysis. Before proceeding, I should explain more precisely what I

mean by ``harmonic analysis.'' As I conceive of it here, harmonic analysis

is the process of dividing a piece into segments and labeling each one

with a root. In this sense it is similar to traditional harmonic analysis, or

``Roman numeral analysis,'' as it is taught in basic music theory courses.

There is an essential difference here, however. In Roman numeral analy-

sis the segments of a piece are labeled not with roots, but rather with

symbols indicating the relationship of each root to the current key: a

chord marked ``I'' is the tonic chord of the current key, and so on. In

order to form a Roman numeral analysis, then, one needs not only root

information but key information as well. (Once the root and the key are

known, the Roman numeral of a chord is essentially determined: if one

knows that a chord is C major, and that the current key is C, the relative

root of the chord can only be I.) Thus Roman numeral analysis can be

broken down into two problems: root-®nding and key-®nding. My con-

cern here will be with the root-®nding problem; I will address the key-

®nding problem in the following chapter.

Another difference between root analysis and conventional Roman

numeral analysis is that the latter gives other information about chords

besides their (relative) roots, such as their mode (major or minor), inver-

sion (the relationship of the bass note to the root), and extension (triad,

seventh, etc.). While such information is not explicit in the harmonic

representation I propose here, it is easily accessible once the harmonic

representation is formed; I will return to this point in a later section.
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6.2

Experimental and

Computational

Work on

Harmonic Analysis

A good deal of experimental research has focused on harmony. Most of

this work is concerned with the effects of harmonic structure on other

kinds of intuitions and representations; in addition, however, it indirectly

provides an impressive body of evidence for the general psychological

reality of harmonic structure. For example, it has been found that chords

within a previously established key are judged to follow better than

others (Krumhansl 1990, 168±77). Chords are perceived with degrees of

relatedness (re¯ected in judgments of how well one chord follows an-

other) that accord well with tonal theory (Krumhansl, Bharucha &

Kessler 1982); the same pair of chords will also seem more closely related

to each other if they are within the key of the previous context (Bharucha

& Krumhansl 1983). While the focus of these studies was on the ways

that the perception of chords is affected by context, they also suggest that

chords are being correctly identi®ed. Other research has shown that

harmony affects the memory for melodies. Studies by Deutsch have

shown that melodies are more easily remembered when they can be

encoded using ``alphabets'' based on tonal chords; we will discuss this in

more depth in chapter 12.

Other work has focused on the role of harmony in segmentation. A

study by Tan, Aiello, and Bever (1981) shows that melodic fragments

implying V-I cadences tend to be heard as segment endings, an effect

found for both trained and untrained subjects (this experiment was dis-

cussed in section 3.2). This suggests that listeners are sensitive to the

closural effect of cadences, which in turn indicates an ability to identify

cadences and their component harmonies. This is especially notable since

the harmonies were presented in quite a subtle way, with the notes of

each harmony presented in succession and with some harmonies incom-

pletely stated. Further evidence for listeners' sensitivity to cadences comes

from a study by Rosner and Narmour (1992), in which untrained sub-

jects were asked to indicate the degree of closure implied by various

harmonic progressions. Listeners attributed the highest degree of closure

to V-I progressions; moreover, they recognized the closural effect of V-I

even when the ®rst chord was not in root position (i.e., when a note other

than the root was in the bassÐfor example, V6-I), indicating an under-

standing of chordal inversion.

Harmony can also affect the perception of key. In a study by Butler

(1989), it was found that the same group of pitches arranged in different

ways could have different tonal implications. As arranged in ®gure 6.1a,

the pitches F-E-B-C clearly imply C major; as arranged in ®gure 6.1b,

they are much more tonally ambiguous. Both musically trained and
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untrained listeners showed a strong awareness of these distinctions. An

obvious explanation for this result is that tonal judgments are affected by

harmony: ®gure 6.1a implies a clear G7-C progression, indicating C

major, while ®gure 6.1b suggests a tonally indecisive E-F progression.2

Several attempts have been made to devise computer algorithms which

perform harmonic analysis. Particularly notable are the models of

Winograd (1968) and Maxwell (1992). Both of these algorithms begin

with pitch information, and derive a complete Roman numeral analysis;

both root and key information must therefore be determined. I will con-

®ne my attention here to the root-®nding component of the programs.

Examples of the outputs of the two programs are shown in ®gures 6.2

and 6.3. Both systems essentially analyze the input as a series of ``verti-

cals'' (where any change in pitch constitutes a new vertical). In Winograd's

system (1968, 20), the root of each vertical is determined by looking it up

in a table; simple rules are given for labeling two-note verticals. (In

Maxwell's model it is not explained how verticals are initially labeled.)

There are then heuristics for deciding whether a vertical is a real chord or

merely an ornamental event, subordinate to another chord (I will return

to these below). Although this approach seems to operate quite well in

the examples given, there are many cases where it would not. Very often

the notes of a chord are stated in sequence rather than simultaneously, as

in an arpeggiation; neither algorithm appears capable of handling this

situation. In many other cases, the notes of the chord are not fully stated

at all (either simultaneously or in sequence). For example, the pitches D-F

may be part of a D minor triad, but might also be B" major or even G7;

as I shall show, context must be taken into account in interpreting these.

(This causes problems in Winograd's example in ®gure 6.2: the ®rst chord

in m. 14 is analyzed as III6, implying root D, where it should clearly be

part of an arpeggiated B" 6/4 chord.) Problems arise also with events that

are not part of any chord, so-called ``ornamental dissonances'' such as

passing tones and neighbor notes. Both Winograd's and Maxwell's algo-

rithms have rules for interpreting certain verticals as ornamental, but

Figure 6.1
The same set of pitches can have different tonal implications when arranged in
different ways (Butler 1989).
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these are not suf®cient. For example, Maxwell's algorithm (1992, 340)

considers any single note to be ornamental to the previous chord. Figure

6.4 gives a simple example where this will not work; the A is surely

not ornamental to the previous chord here. In short, Winograd's and

Maxwell's studies leave some important problems unsolved.

Others have attempted to model harmonic perception using a neural-

network or ``connectionist'' approach, notably Bharucha (1987, 1991).3

Bharucha proposes a three-level model with nodes representing pitches,

chords, and keys. Pitch nodes are activated by sounding pitches; pitch

nodes stimulate chord nodes, which in turn stimulate key nodes (®gure

6.5). For example, the C major chord node is stimulated by the pitch

nodes of the pitches it contains: C, E and G. Bharucha's model nicely

captures the intuition that chords are inferred from pitches, and keys

are in turn inferred from chords. The connectionist approach also offers

insight into how harmonic knowledge might be acquired, an important

Figure 6.2
Schubert, Deutsche Taenze Op. 33 No. 7. The analysis shown is the output of
Winograd's harmonic analysis program. From Winograd 1968. Reprinted by
permission of the Journal of Music Theory.
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Figure 6.3
Bach, French Suite No. 2 in C Minor, Minuet. The analysis shown is the output of Maxwell's harmonic analysis program. From
Maxwell 1992. Reprinted by permission of MIT Press.
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issue which my own model does not address (Bharucha 1987, 26±7;

1991, 94±5).

Bharucha does not present any examples of his model's output, so it is

dif®cult to evaluate it. However, there is reason to suspect that it might

encounter some serious problems. It was noted above that harmonic

analysis cannot simply be done by analyzing each vertical sonority one

by one; context must also be considered. Bharucha proposes an interest-

ing solution to this problem: a chord node is not merely activated while

its pitch nodes are activated; rather, its activation level decays gradually

after stimulation (Bharucha 1987, 17±18). This might seem to address

some of the failings of the models discussed above, such as the problem of

arpeggiations. However, this solution raises other dif®culties. In listening

to a piece, our experience is not of harmonies decaying gradually; rather,

one harmony ends and is immediately replaced by another. Another

problem relates to the model's handling of ``priming,'' or expectation.

Experiments have shown that, when listeners hear a chord, they are

primed to hear closely related chords (for example, they respond more

quickly to related chords than to unrelated ones in making judgments of

intonation). Bharucha's model attempts to handle this, by allowing the

key nodes stimulated by chord nodes to feed back and activate the nodes

of related chords (pp. 18±21). The problem here is this: what exactly

does the activation of a chord node represent? One would assume that it

represents the chord that is actually being perceived at a given moment.

But now Bharucha is suggesting that it represents something quite dif-

ferent, the amount that a chord is primed or expected. The phenomenon

of priming is indeed an important one; but the degree to which a chord is

heard is different from the degree to which it is expected. (I will offer an

alternative account of the harmonic priming phenomenon in section 8.8.)

The three models discussed so far all assume that harmonic perception

begins with pitch. The theory of Parncutt (1989) challenges this assump-

tion. Parncutt argues that many aspects of musical cognition depend not

on pitches as they occur in the score, but rather on ``virtual pitches.''4

A musical pitch is made up of a combination of sine tones or pure tones:

a fundamental plus many overtones. But the overtones of a pitch may

Figure 6.4

144 I. Six Preference Rule Systems



Figure 6.5
Bharucha's connectionist model (1987), showing relationships between pitches, chords, and keys. The ovals represent nodes; the lines
represent connections between them. Reprinted by permission of Lawrence Erlbaum Associates, Inc.
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also be understood as overtones of different fundamentals. For example,

if one plays C4-E4-G4 on the piano, some of the components of E4 and

G4 are also overtones of C4; others are overtones of pitches that were

not even played, such as C3 and C2. In this way, a set of played pitches

may give rise to a set of ``virtual pitches'' which are quite different in

frequency and strength. Parncutt uses virtual pitch theory to make pre-

dictions about a number of aspects of musical cognition, such as conso-

nance levels of chords and the number of perceived pitches in a chord; it

is also used to predict the roots of chords. The root of a chord, Parncutt

proposes, is the virtual pitch which is most strongly reinforced by the

pure tone components of the chord (Parncutt 1989, 70, 146±50). The

theory's predictions here are quite good for complete chords (such as

major and minor triads and sevenths). They are less good for incomplete

chords; for example, the root of the dyad C-E" is predicted to be E"
(p. 147), as opposed to C or A". In cases where consonance levels or

roots of chords are not well explained by his theory, Parncutt suggests

that they may have ``cultural rather than sensory origins'' (p. 141).

The psychoacoustical approach to harmony yields many interesting

insights. However, it is rather unsatisfactory that, in cases where the

theory does not make the right predictions, Parncutt points to the in¯u-

ence of cultural conditioning. This would appear to make the theory

unfalsi®able; moreover, it is certainly incomplete as a theory of root

judgments, since some other component will be needed to handle the

``cultural'' part. It also seems problematic that the model's judgments are

based on the actual acoustical composition of sounds; this suggests that

harmonic analysis might be affected by timbral factors, which seems

counterintuitive. But even if Parncutt's theory were completely correct as

far as it went, in a certain sense it goes no further than the other studies

discussed here in accounting for harmonic perception. It accounts for

the fact that certain pitch combinations are judged to have certain roots,

and it offers a more principled (though imperfect) explanation for these

judgments than other studies we have seen. But as we have noted, there

is much more to root analysis than simply going through a piece and

choosing roots for a series of isolated sonorities. One must also cope with

arpeggiations, implied harmonies, ornamental dissonances, and so on. A

psychoacoustical approach does not appear to offer any solution to these

problems. This is not to say that psychoacoustics is irrelevant to harmony;

clearly it is not (indeed, it might be incorporated into my own approach in

a limited way, as I will discuss). But there is much about harmony whichÐ

at present, at leastÐdoes not seem explicable in psychoacoustical terms.
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While there are many valuable ideas in these studies, none of them

offers a satisfactory solution to the problem of harmonic analysis. Some

of these models also suffer from being highly complex. Maxwell's pro-

gram (the chord-labeling component alone) has 36 rules; Winograd's

program, similarly, has a vast amount of information built into it (as can

be seen from his article). Bharucha's and Parncutt's models are more

elegant; however, they seem even less adequate than Maxwell's and

Winograd's systems in handling the subtleties of harmonic analysisÐ

ornamental dissonances, implied harmonies, and the like. I now propose

a rather different approach to these problems.

6.3

A Preference Rule

System for

Harmonic Analysis

The input required for the model is the usual ``piano-roll'' representation.

The model also requires metrical structure, for reasons which will be

made clear below. In addition, the model requires information about the

spellings of each note in the input. In the previous chapter I proposed a

model for assigning each pitch-event a spelling or ``tonal pitch-class''

(TPC), thus creating the TPC representation. It was argued there that the

TPC representation and the harmonic representation closely interact;

spelling can affect harmonic analysis, but harmonic analysis may also

affect spelling. For now, however, we will assume that the TPC repre-

sentation has been completed before harmonic analysis starts. The pro-

gram's output consists of a division of the piece into segments, called

``chord-spans,'' with each segment labeled with a root. As explained in

the previous chapter, under the current framework, rootsÐlike pitches

and keysÐare given tonal-pitch-class names; that is, we distinguish be-

tween different spellings of the same pitch-class (A" versus G#). We can

imagine each root as a point on the ``line of ®fths,'' shown in ®gure 6.6.

In the following discussion we will use as an example the Gavotte from

Bach's French Suite No. 5 in G Major, shown in ®gure 6.7.

The model has two basic tasks: it must divide the piece into chord-

spans, and it must choose a label for each chord-span. For the moment,

we will simply take the segmentation of the piece for granted; assume

that the Bach Gavotte in ®gure 6.7 is divided into quarter-note segments.

Figure 6.6
The ``line of ®fths.''
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Figure 6.7
Bach, French Suite No. 5, Gavotte.
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Let us simply consider how correct root labels can be chosen for each

segment. One important factor is clearly the pitches that the segment

contains. Consider the second chord of the Gavotte: G-B-G. Simply con-

sidering the segment out of context, we know its root is unlikely to be D

or F; the most likely root is G, since both G and B are chord-tones of G

major. E is also a possibility, but even considering this segment in isola-

tion G would seem more likely. The way we capture these intuitions is as

follows. Every TPC has a relationship to every root, depending on the

interval between them. The TPC G is 1̂ of G, 5̂ of C, 3̂ of E", "3̂ of E, and

"7̂ of A. Certain relationships are more preferred than others; we try to

choose roots for each segment so that the relationships created are as

preferred as possible. This ®rst HPR (harmonic preference rule) is called

the compatibility rule, and is stated as follows:

HPR 1 (Compatibility Rule). In choosing roots for chord-spans, prefer

certain TPC-root relationships over others, in the following order: 1̂, 5̂,

3̂, "3̂, "7̂, "5̂, "9̂, ornamental. (An ornamental relationship is any rela-

tionship besides those listed.)5

Consider the chord G-B-G. A root of G will result in TPC-root relation-

ships of 1̂, 1̂, and 3̂, while a root of E will result in "3̂, "3̂, and 5̂. The

former choice is clearly preferred by the compatibility rule, since on bal-

ance, the relationships involved are higher up on the list. Roots which

involve ``ornamental'' relationshipsÐthose other than the ones speci®ed

Ðare still less preferred.

Note that the compatibility rule considers TPCs, not neutral pitch-

classes. It is for this reason that the program requires spelling labels as

input. The importance of this has already been discussed; it allows the

model to make the correct root choices in cases like ®gure 5.4, and also

allows for choices of harmony to in¯uence spelling. We will consider

later exactly how this interaction is captured by the model.

It may be seen that the TPC-root relationships speci®ed above allow

most common tonal chords to be recognized. 1̂, 5̂ and 3̂ form a major

triad; 1̂, 5̂ and "3̂ form a minor triad. 1̂, 5̂, 3̂ and "7̂ form a dominant

seventh; substituting "3̂ for 3̂ produces a minor seventh. 1̂, "3̂, and "5̂

form a diminished triad; adding "7̂ produces a half-diminished seventh.

The fully diminished seventh is not allowed, but "9 allows for an alter-

native (and well-accepted) interpretation of the diminished seventh as

3̂-5̂-"7̂-"9̂: a dominant seventh with an added ninth and no root. The

model also allows certain combinations which are not common tonal
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chords, such as 1̂-3̂-"3̂ and other chords which combine the third and ¯at

third (or the ®fth and ¯at ®fth). This is a ¯aw in the model which perhaps

should be addressed, although in practice it rarely seems to cause the

model to produce the incorrect analysis.

Now consider the second quarter of m. 1 (the ®rst full measure). The E

is clearly ornamental (how this is determined will be explained below);

the chord-tones of the segment are then F#-A-F# (the A is held over from

the previous beat). The correct root here is D, but the compatibility rule

alone does not enforce this. A root of D will yield TPC-root relationships

of 3̂-5̂-3̂, whereas an F# root will yield 1̂-"3̂-1̂; the compatibility rule does

not express a clear preference. Consider also the last quarter of m. 1; here

the pitches are E-G-E, offering the same two interpretations as the previ-

ous case (3̂-5̂-3̂ versus 1̂-"3̂-1̂). But here, the root is E; in this case, then,

the 1̂-"3̂-1̂ choice is preferable. Clearly, another rule is needed here. The

rule I propose is a very simple one: we prefer to give each segment the

same root as previous or following segments. In this case, the ®rst beat of

m. 1 clearly has root D; there is then strong pressure to assign the second

beat the same root as well. Another way of saying this is that we prefer to

make chord-spans as long as possible (where a chord-span is any con-

tinuous span of music with a single root). This ruleÐwhich we could

tentatively call the ``long-span'' ruleÐalso addresses another question:

we have been assuming segments of a quarter-note, but why not consider

shorter segments such as eighth-note segments? For example, what is to

prevent the algorithm from treating the third eighth-note of m. 4 as its

own segment and assigning it root D? Here again, the ``long-span'' rule

applies; spans of only one eighth-note in length (that is, an eighth-note

root segment with different roots on either side) will generally be avoided,

although they may occasionally arise if there is no good alternative.

While it is true that long spans are usually preferred over shorter ones,

further consideration shows that this is not really the principle involved.

Consider ®gure 6.8. The ®rst note of the second measure could be part of

Figure 6.8
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the previous F segment (as a 1̂), or it could be part of the following G

segment (as a "7̂). The compatibility rule would prefer the ®rst choice,

and the long-span rule stated above expresses no clear preference; why,

then, is the second choice preferable? The reason is that we do not simply

prefer to make spans as long as possible; rather, we prefer to make spans

start on strong beats of the meter. This has the desired effect of favoring

longer spans over shorter ones (strong beats are never very close together;

thus any very short span will either start on a weak beat itself, or will

result in the following span starting on a weak beat). In m. 1 of the Bach,

for example, it will mitigate against starting spans on the second and

fourth quarter notes, since these are relatively weak beats. However, it

has the additional effect of aligning chord-span boundaries with the

meter, thus taking care of cases like ®gure 6.8. We express this as the

``strong beat rule'':

HPR 2 (Strong Beat Rule). Prefer chord-spans that start on strong beats

of the meter.

The strong beat rule raises a complication: it means that the algorithm

requires metrical structure as input. The kind of metrical structure I am

assuming is that proposed in chapter 2: a framework of levels of evenly

spaced beats, with every second or third beat at one level being a beat at

the next level up. I explain below how exactly the ``strength'' of a beat is

quanti®ed.

If harmonic changes are preferred at strong beats, one might wonder

about the possibility of having a change of harmony at a time-point

where there was no beat at all. The current model simply disallows har-

monic changes at time-points which are not beats. It seems intuitively

reasonable to exclude this possibility. This is also a logical extension of

the strong beat rule; if changes of harmony on very weak beats are

undesirable, it is naturally highly undesirable to have a harmonic change

where there is no beat at all. (Occasionally one might want a change of

harmony on an extrametrical note; the model does not allow this.) As we

will see, this simpli®es the implementation of the model, since it means

that only beats must be considered as points of harmonic change.

A further preference rule is nicely illustrated by m. 15 of the Bach

Gavotte. Considering just the ®rst half of the measure, let us assume for

the moment that the C and A in the right hand and the F# and A in the

left hand are ornamental dissonances; this leaves us with chord-tones of

G and B. The compatibility rule would prefer a root of G for this seg-

ment, but E seems a more natural choice; why? This brings us to a con-
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sideration discussed in chapter 5: we prefer to choose roots that are close

together on the line of ®fths. The previous span clearly has root B; we

therefore prefer E over G as the root for the following span. The same

applies to the ®rst half of m. 18; the chord-tones here, C and E, could

have a root of A or C, but because the previous span has root G, C is

preferable (in this case, the compatibility rule reinforces this choice). We

express this rule as follows:

HPR 3 (Harmonic Variance Rule). Prefer roots that are close to the

roots of nearby segments on the line of ®fths.

The ®nal rule of the algorithm concerns ornamental dissonances. We

have been assuming that certain events are ornamental. This means that,

in the process of applying the compatibility rule (that is, looking at the

pitches in a segment and their relationship to each root), certain pitches

can simply be ignored. But how does the algorithm know which pitches

can be ornamental? The key to our approach here is an idea proposed by

Bharucha (1984). Bharucha addressed the question of why the same

pitches arranged in different orders can have different tonal implications:

B-C-D#-E-F#-G has very different implications from G-F#-E-D#-C-B,

the same sequence in reverse. (Bharucha veri®ed this experimentally, by

playing subjects each sequence followed by either a C major or B major

chord. The ®rst sequence was judged to go better with C major, the

second with B major [pp. 497±501].) He hypothesized what he called the

``anchoring principle'': a pitch may be ornamental if it is closely followed

by another pitch a step or half-step away.6 In the ®rst case, all the pitches

may be ornamental except C and G; in the second case, D# and B may

not be ornamental. It is then the non-ornamental pitches that determine

the tonal implications of the passage. The current model applies this

same principle to harmonic analysis. The algorithm's ®rst step is to

identify what I call ``potential ornamental dissonances'' (``PODs''). A

POD is an event that is closely followed by another pitch a whole-step or

half-step away in pitch height. What is measured here is the time interval

between the onset of each note and the onset of the next stepwise noteÐ

what we could call its ``stepwise inter-onset interval.'' For example, the

®rst E in the melody in m. 1 of the Bach Gavotte is a good POD because

it is closely followed by F#; the A in the melody in m. 4 is closely fol-

lowed by G. However, the G in m. 4 is not closely followed by any pitch

in a stepwise fashion; it is not a good POD. (The ``goodness'' of a POD is

thus a matter of more-or-less rather than all-or-nothing.) The algorithm
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then applies the compatibility rule, considering the relationship between

each TPC and a given root. As mentioned earlier, if the relationship

between an event's TPC and the chosen root is not one of the ``chord-

tone'' relationships speci®ed in the compatibility ruleÐ1̂, 5̂, 3̂, "3̂, "7̂,

"5̂, or "9̂Ðthat event is then ornamental. Any pitch may be treated as

ornamental, but the algorithm prefers for ornamental events to be good

PODs. We express this rule as follows:

HPR 4 (Ornamental Dissonance Rule) (®rst version). An event is an

ornamental dissonance if it does not have a chord-tone relationship to

the chosen root. Prefer ornamental dissonances that are closely followed

by an event a step or half-step away in pitch height.

The model satis®es this rule in an indirect fashionÐnot by selecting

certain notes as ornamental once the root is chosen (this follows auto-

matically), but by choosing roots so that notes that emerge as ornamental

are closely followed in stepwise fashion. However, there is always a

preference for considering events as chord-tones rather than ornamental

dissonances, even if they are good PODs; this is speci®ed in the com-

patibility rule. (The least preferred chord-tone relationships listed in the

compatibility ruleÐ"5̂ and "9̂Ðare only slightly more preferred than

ornamental relationships, re¯ecting their rather marginal status as

chord-tones.)

The ``anchoring principle'' does a good job of identifying a variety of

kinds of ornamental dissonances. It handles ordinary passing tones (such

as the eighth-note E in m. 1 of the Bach Gavotte), and neighbor-notes

(the D in the left-hand in m. 5), as well as unprepared neighbors and

appoggiaturas, notes which are followed but not preceded by stepwise

motion (such as the C in m. 4). It also handles ``double neighbors,'' such

as the C-A in m. 15: a pair of ornamental tones on either side of a fol-

lowing chord-tone. The C is considered a (fairly) good ornamental dis-

sonance because it is followed (fairly) closely by the B; the fact that there

is an A in between is irrelevant. However, not all kinds of ornamental

dissonances are captured by this rule. One important exception is escape

tones, ornamental notes approached but not followed by stepwise motion

(an example is the F# at the end of m. 7); another is anticipations, notes

(often at the end of a measure) which are followed by another note of the

same pitch, such as the G at the end of m. 23. The current version of the

model cannot handle such notes, although in principle it should be pos-

sible to incorporate them.
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Another principle is involved in choosing good ornamental disso-

nances. Consider the second half of m. 18 of the Bach. Here, every note

in both the left and right hands is closely followed stepwise, so according

to the rule stated above any of them could be treated as ornamental. The

compatibility rule would still prefer an analysis which treated most of the

notes as chord-tones; however, several possibilities seem almost equally

good. Assigning a root of G to the segment would produce three chord-

tones (G-G-B); a root of E would produce four (E-G-G-B). Yet D seems

to be the most plausible choice of root. The main reason, I suggest, is that

under a D interpretation, the chord-tones (F#-A-F#-A) emerge as metri-

cally strong, and the ornamental tones as metrically weak. Of course,

ornamental tones are not always metrically weak; this very passage con-

tains several metrically strong dissonances, such as the C on the third

beat of m. 17 and the F on the downbeat of m. 18. Other things being

equal, however, metrically weak ornamental dissonances are preferred.

We add this to the ornamental dissonance rule as follows:

HPR 4 (Ornamental Dissonance Rule) (®nal version). An event is an

ornamental dissonance if it does not have a chord-tone relationship to the

chosen root. Prefer ornamental dissonances that are (a) closely followed

by an event a step or half-step away in pitch height, and (b) metrically

weak.

The four preference rules presented here appear to go a long way

towards producing reasonable harmonic analyses. Figure 6.9 shows the

analysis of the Bach Gavotte produced by an implementation of the

model. (The implementation is discussed further below.) Each chord

symbol indicates a chord-span beginning on the note directly beneath,

extending to the beginning of the next chord-span. While the program's

performance here is generally good, there are several questionable

choices. In cases where I consider the program's output to be de®nitely

incorrect, I have indicated my own analysis in brackets. Probably the

most egregious error is the omission of the important A harmony in m. 7;

this is due to the escape tone F# in the right hand (mentioned above), a

kind of ornamental tone which the program does not recognize.

6.4

Implementation

As noted earlier, the implementation of the harmonic model described

here is really combined with the TPC-labeling model described in the

previous chapter to form a single program; this program is largely the
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Figure 6.9
Bach, French Suite No. 5, Gavotte, showing the program's harmonic analysis.
(In cases where my own analysis differs, it is shown above in brackets.)
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work of Daniel Sleator. I will begin by describing the implementation of

the harmonic model in isolation.

The harmonic program requires the usual ``note-list'' input. Again, we

assume for now that the TPC representation is complete once the har-

monic analysis begins; thus each note also has a TPC label, which is an

integer indicating its position on the line of ®fths. The program also

requires a speci®cation of the metrical structure, consisting of a list of

beats, giving the time-point and highest beat level of each beat. Like the

contrapuntal and TPC programs already discussed, the harmonic repre-

sentation requires a division of the piece into short segments, which is

provided by the lowest level of the metrical structure. (Onsets and offsets

of events are quantized to the nearest beat, so that lowest-level beats

form segments in which each pitch is either present or absent.) In addi-

tion, however, the harmonic program also requires knowledge of the

strength of beat on which each segment begins.

As noted above, the model only allows beats of the metrical structure

to be chord-span boundaries. This means that lowest-level beats in the

metrical structure can be taken to indicate indivisible segments for the

harmonic program; the program only needs to choose a root for each

segment. A well-formed analysis, then, is simply a labeling of each seg-

ment with a root. What we were earlier calling a ``chord-span'' emerges

as a series of consecutive segments all having the same root. Roots, like

TPCs, are positions on the line of ®fths, and can therefore be represented

as integers.

A given analysis of a piece can be scored by evaluating each segment of

the analysis, and summing their scores. For the compatibility rule (HPR

1), each note (or part of a note) in each segment yields a score depending

on the relationship of the note to the root given in the analysis. Higher-

ranked relationships (such as 1̂ or 5̂) receive higher scores. Notes whose

relationship to the root are not listed in the compatibility rule at all

receive ornamental dissonance penalties (HPR 4); the penalty depends on

the inter-onset interval to the next note a whole-step or half-step away in

pitch, and the strength of the beat on which the note begins.

Some explanation is needed of how the ``strength'' of a beat is mea-

sured, since this is a bit complex. Recall that a metrical structure consists

of several levels of beats. Every level of beats has a certain time interval

associated with it, which is the time interval between beats at that level.

(Even if time intervals between beats at a given level vary, as they may,

we can measure the time interval of a particular beat in a more local way,

by calculating the mean of the intervals to the next beat on either side.)
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The metrical strength of a beat is then given by the time interval of the

highest level containing it. A beat whose highest level has a long time

interval is metrically strong; the longer the time interval, the stronger the

beat. This provides a way of quantifying beat strength, which can then be

used for the ornamental dissonance rule. The same approach is used for

the strong beat rule (HPR 2). For each segment whose root differs from

the root of the previous segment in the analysis, we assign a penalty

based on the strength of the beat at which the segment begins; stronger

beats result in lower penalties.

Finally, for the harmonic variance rule (HPR 3), we use an implemen-

tation similar to that for the pitch variance rule discussed in chapter 5.

For each segment, a center of gravity (COG) is calculated, re¯ecting the

average position of roots of all previous segments on the line of ®fths.

Segments are weighted by their length; they are also weighted for recency

under an exponential curve, so that more recent segments affect the COG

more.7 We then assign a penalty to the current root based on its distance

from that center of gravity.

The scores for segments on the compatibility rule and variance rule are

weighted according to the length of segments. This means that the length

of segments should not have a big effect on the program's analysis; for

example, the output for a piece should be the same if the eighth-note or

sixteenth-note level is chosen as the lowest level of meter. (Of course, if

the eighth-note level is the segment level, then changes of hamony at the

sixteenth-note level are not possible.) Note, however, that the program is

sensitive to absolute time values. The strong beat penalty is based on

absolute time between beats; a change of harmony might be tolerable

at one tempo, but at a faster tempo the penalty might be prohibitively

high. The musical signi®cance of this will be discussed further in the next

section.

We now consider how the usual dynamic programming approach could

be applied to search for the highest-scoring analysis. For the moment,

just consider the compatibility rule, the ornamental dissonance rule, and

the strong beat rule. The scores of the ®rst two rules can be calculated

in a purely local fashion, and do not depend on context in any way. (The

ornamental dissonance penalty depends on the stepwise inter-onset inter-

val, but this does not depend on the analysis of neighboring segments.)

For the strong beat rule, the score depends on whether the previous seg-

ment had the same root as the current one. To ®nd the optimal analysis

for this rule, for each segment, we must calculate the ``best-so-far'' anal-

ysis ending at each root. In evaluating the next segment, we can then
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consider adding each root on to each ``best-so-far'' analysis at the previ-

ous segment (factoring in the penalty from the strong beat rule, if any);

we can then choose a new ``best-so-far'' analysis for each root at the

current segment. What makes things complicated is the harmonic vari-

ance rule. To apply this rule, we must know how close the current root is

to the center of gravity of previous roots. We can implement this rule in

the same way that we implemented the pitch variance rule in the previous

chapter. We ``bucket'' the COG into small ranges on the line of ®fths,

and for each small range, we store the best analysis ending with a COG

in that range. To include the strong beat penalty as well, we must keep

the best-so-far analysis ending in each combination of a particular COG

and a particular root at the current segment.

It was argued in chapter 5 that, while spelling distinctions sometimes

affect harmony, harmonic structure may also ``feed back'' to in¯uence

spelling. This brings us to an important general issue. Having one pref-

erence rule system in¯uence another presents no problem; we simply

apply one system ®rst, and use the output as part of the input to the

other. But what if there are two preference rule systems that interact, so

that the structure generated by each one may in¯uence the other? How

can this be modeled at a conceptual level, and how can it be imple-

mented? Lerdahl and Jackendoff's preference-rule-based generative

theory has several cases of interactions between components, in that two

kinds of structure require input from each other. For example, within the

metrical component, GTTM's Metrical PR 9 states ``prefer a metrical

analysis that minimizes con¯ict in the time-span reduction''; Time-Span-

Reduction PR 1 states ``Of the possible choices for head of a time-span T,

prefer a choice that is in a relatively strong metrical position.'' Some have

criticized this aspect of GTTM as circular (Cohn 1985, 38). In fact,

however, there is a straightforward way of formalizing this situation with

preference rule systems, though it sometimes creates computational

problems.

The way to think about two interacting preference rule systems is as

follows. Each preference rule system has rules which are internal to the

system and which do not rely on input from the other system. However,

there also must be a rule (or more than one rule) which monitors the

interaction between the two systems. In the present case, that rule is the

compatibility rule (HPR 1), which yields a score based on how compati-

ble the TPCs of a segment are with the root chosen for that segment.

Now, suppose we treat the two systems as, essentially, a single system,

generating a combined TPC-harmonic representation: a segmentation of
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the piece labeled with roots, as well as a labeling of each note with a

TPC. As usual, we can break this problem down into an ``evaluation''

problem and a ``search'' problem. To evaluate a particular analysis, we

score the TPC component of the analysis by the TPC rules, score the

harmonic component by the harmonic rules, and evaluate the compati-

bility of the two with the compatibility rule; we then judge the analysis

overall by summing all of these rule scores. One point to note is that

it becomes arbitrary whether we think of the compatibility rule as a

harmonic rule or a TPC rule; it is really both. (Since we are assuming that

both the harmonic and TPC representations might be adjusted to satisfy

the compatibility rule, the harmonic feedback rule proposed in chapter 5

[TPR 3] becomes super¯uousÐthough it is useful to maintain it as a

reminder of the in¯uence of harmony on pitch-spelling.) Another point is

that the relative weights of the TPC and harmonic rules now become

important. For example, if the harmonic rule scores are large relative

to the TPC scores, the TPC scores will carry very little weight, and the

combined analysis will be chosen almost entirely on the basis of the

harmonic rules.

The search problem is harder. At each segment, we consider each

possible TPC analysis combined with each harmonic analysis; each pair

creates an overall segment analysis. (Recall that a TPC analysis of a seg-

ment is simply a 12-step window on the line of ®fths.) The best analysis

of the current segment now depends on the previous root, the previous

harmonic COG, and the previous TPC COG. Thus we must store the

best analysis ending in each combination of these three things, and con-

sider combining it with each possible analysis of the current segment.

Not surprisingly, this leads to a tremendous amount of computation.

We ``prune'' the search by throwing out all the ``best-so-far'' analyses

of a given segment whose score is more than a certain value below the

highest-scoring analysis. This is a heuristic solution, since it means that

the system is not guaranteed to ®nd the highest-scoring analysis overall,

but we have found a ``pruning value'' which maintains a reasonable

speed for the program while rarely affecting the outcome.

6.5

Some Subtle

Features of the

Model

Figure 6.10, the melody ``Yankee Doodle,'' illustrates an important

virtue which sets the current model apart from those discussed earlier: its

handling of unaccompanied melodies. As noted above, it is generally

assumed that unaccompanied melodies have an implied harmonic struc-

ture, though for the most part the harmonies implied are not fully stated.
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The current model is designed to handle unaccompanied melodies as

easily as fully harmonized textures. In most cases, the harmonies chosen

by the program in ®gure 6.10 are not uniquely identi®ed by the pitches

present. For example, the F# at the end of m. 2 might easily imply an F#
or B harmony in another context. The harmonic variance rule is crucial

here; given previous harmonies of G and D, D is much closer on the line

of ®fths than F# or B would be. Similarly, in m. 5, the variance rule

favors a choice of C over E (which might be favored if the measure were

considered in isolation). The strong beat rule also plays an important role

in selecting good places for harmonic change, and preserving a reason-

ably slow harmonic rhythm. Without it, for example, the compatibility

rule would favor treating the third note of the melody as a separate

chord-span with root D or A.

As well as its handling of implied harmony, the model captures some

other subtle features of tonal harmony which deserve mention. In the ®rst

place, the model is sensitive to the voicing of chords, in particular to the

doubling of pitch-classes in chords. As mentioned above, for each analy-

sis of a segment, the compatibility rule assigns a score which is the sum of

individual scores for each pitch in the segment. Speci®cally, the score for

a pitch is given by the length of the note multiplied by a ``compatibility

value,'' re¯ecting how compatible that pitch is with the given root; pitch-

root relationships ranked higher in the compatibility rule yield higher

compatibility values. In both of the chords of ®gure 6.11a, both F and A

are possible roots. In the ®rst chord, however, the presence of four A's

will yield an especially high score for an A analysis, since A is 1̂ of A;

analyzing A as 3̂ of F is less preferred. In the second chord, the prepon-

Figure 6.10
The unaccompanied melody ``Yankee Doodle,'' showing the program's analysis.
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derance of C's (which could be either 5̂ of F or "3̂ of A) will favor an F

analysis. This accurately re¯ects a subtle aspect of harmonic perception:

the doubling of pitches in a chord does affect its harmonic implications.

The following two excerpts show the importance of doubling in real

musical situations. While both of the harmonies marked with boxes

contain only A and C, the ®rst implies a root of A, while the second more

strongly suggests F. (The larger context reinforces these differing impli-

cations, but they seem clear even when the chords are heard in isolation.)

Another feature of the model worth mentioning is its handling of com-

bined ornamental dissonances. Note that in the Bach Gavotte (®gure 6.9),

the program is generally reluctant to posit harmonic changes on weak

eighth-note beats. One exception is the fourth eighth-note beat of m.

5. The three pitches in this chord segmentÐF#, D, F#Ðare all followed

stepwise, and could well be considered ornamental. However, since each

ornamental dissonance carries a small penalty and these are summed, the

penalty for three ornamental tones in combination can be quite high;

normally, in such cases, the program prefers to consider them as chord-

tones, despite the high penalty from the strong beat rule. Again, this

seems intuitively right; when three or more ornamental tones are com-

bined, there is a strong tendency to hear them as a harmony.

A ®nal emergent feature of the model is its sensitivity to tempo. Con-

sider the passage in ®gure 6.12a, from a Haydn quartet. At a tempo of

quarter � 120 (somewhat slow for this piece), the program assigns a

separate harmony to each of the dyads in the upper voices. However,

suppose the passage were performed four times as fast; it can then be

rewritten (approximately) as shown in ®gure 6.12b. Now, the program

®nds only a single D harmony and a single A harmony, treating many of

Figure 6.11
The doubling of pitches in a chord can affect its harmonic implications.

161 6. Harmonic Structure



the notes as ornamental. The program's behavior here is due to the fact,

mentioned above, that the rules are sensitive to absolute time values. In

®gure 6.12b, having a harmonic change on each dyad results in very high

penalties from the strong beat rule, since some of these dyads occur on

very weak beats; in ®gure 6.12a, the corresponding beats are stronger,

and are thus more acceptable as points of harmonic change. (See the

discussion in the previous section of how the strong beat rule is quanti-

®ed.) Similarly, the penalties for the ornamental dissonance ruleÐwhich

depend on the stepwise inter-onset-interval for ornamental notesÐare

calculated in terms of absolute time, and thus exert stronger pressure

against ornamental tones at slower tempos. While one might dispute the

program's exact analysis of ®gure 6.12a, the model's general sensitivity

to tempo seems justi®ed; positing a harmonic change on each dyad in

®gure 6.12a is surely more plausible than in ®gure 6.12b.

6.6

Tests

The program was tested on the corpus of excerpts from the Kostka-

Payne workbook (1995b), already described in section 2.5 with regard

to the meter program. (See the discussion there of how the corpus was

selected.) The workbook is accompanied by an instructors' manual

(Kostka 1995), containing Roman numeral analyses of the excerpts done

by the author, with key symbols and Roman numeral symbols. While

Roman numeral analysis does not give roots explicitly, a root analysis is

implied; for example, if a section is notated as being in C major, a I chord

implies a root of C, a V chord a root of G, and so on.

The excerpts were analyzed by the program, and the program's root

analyses were compared with Kostka's harmonic analyses.8 The pro-

Figure 6.12
Haydn, String Quartet Op. 64 No. 5, I, mm. 1±4. (A) The program's analysis of
the excerpt, at a tempo of quarter � 120; (B) The same excerpt four times as fast,
again with the program's analysis.
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gram's success was judged by the number of measures it analyzed cor-

rectly. In some cases, the program analyzed part of a measure correctly;

in this case a fractional score was awarded. In a small number of cases

(about 2%), a label was given in Kostka's analysis with no implicit root,

such as ``Ger� 6'' (for ``German sixth''); these were excluded from the

count. Out of 525.1 measures, the program analyzed 439.8 correctly, a

rate of 83.7% correct.

The program's errors fall in a variety of categories. One error, which

is hardly an error, is that the program's treatment of the diminished

seventhÐas a dominant seventh on the ®fth degree, with a ¯at ninth and

no rootÐdiffers from Kostka's, who treats it as a diminished seventh on

the seventh degree. (The program's interpretation is a well-established

one, re¯ected in some theory textbooks; see Piston 1987, 328.) Other

errors are due to the program's fairly limited vocabulary of chords. For

example, it cannot handle the major seventh, major ninth, and sixth

degrees when treated as chord tones. In such cases the program must ®nd

some other way of interpreting the problematic note. Sometimes it treats

the note as an ornamental dissonance; this is often a reasonable inter-

pretation, and often leads to the correct choice of root. In other cases,

however, errors arise. An example is seen in ®gure 6.13, from a Haydn

sonata; consider the A major seventh in m. 88. The seventh degree of

the chord, G#, cannot easily be treated as ornamental; thus the program

chooses to analyze it as a C# minor chord, with the A's being ornamen-

tal. (The D major seventh in the following measure causes a similar

problem.)

A few errors are due to the fact, discussed earlier, that the program is

unable to handle certain kinds of ornamental dissonances, such as escape

tones. The inability to handle pedal tones is also an occasional problem.

Figure 6.13
Haydn, Sonata Op. 30, I, mm. 85±9, showing the program's harmonic analysis.
Where Kostka's analysis differs, it is shown above in brackets.
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Finally, the program's harmonic rhythm is often somewhat too fast. Con-

sider its analysis of ®gure 6.14, from a Haydn string quartet. The pro-

gram's analysis is not ridiculous, but in several cases a note is analyzed

as a chord-tone when it might better be treated as ornamental, as in

Kostka's analysis. Slightly altering the program's parametersÐin partic-

ular, increasing the weight of the strong beat penaltyÐmight improve

its performance somewhat, at least with respect to the Kostka-Payne

corpus.9

6.7

Other Aspects

of Harmonic

Structure

The program described above is concerned solely with one aspect of

harmonic information, namely root analysis. This is certainly an essential

part of harmonic analysis, and we have seen that it is far from trivial.

However, there is much else to know about tonal harmony of which the

program is quite ignorant. In the ®rst place, the program has no knowl-

edge of the functions of harmonies relative to the current key; recovering

this information would depend on determining the key, a problem we

Figure 6.14
Haydn, String Quartet Op. 74 No. 3, II, mm. 30±7, showing Kostka's analysis
(above) and the program's (below).
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will address in the next chapter. Second, the program labels harmonies in

terms of roots only, and omits other important information about chords

such as their mode (major, minor or diminished), extension (triad or

seventh) and inversion (which note of the chord is in the bass). We

should note, however, that these labels depend mainly on which chord-

tones of the root are present, and this is determined by the program in

the course of applying the compatibility rule. For example, if a harmony

contains 1̂, "3̂, and 5̂, it is a minor triad; if it also contains "7̂, it is a

minor seventh; and so on. Thus while the program does not make infor-

mation about mode, inversion and extension absolutely explicit, it does

much of the work needed to ®nd this information.10

Finally, the program has no knowledge of the conventional pro-

gressions of tonal music. A tonal piece does not simply string together

harmonies at random; rather, much of tonal harmony can be explained

in terms of a few fundamental patterns, in particular motion on the line

(or, more conventionally, the circle) of ®fths. Also of vital importance are

cadences, the conventional harmonic gestures (in particular V-I) that

indicate closure in common-practice music. I would argue that the rec-

ognition of such patterns should not be regarded as part of harmonic

analysis itself. Rather, such higher-level ``schemata'' are presumably

identi®ed by some kind of pattern-recognition system which uses har-

monic structure as input. (See chapter 12 for further discussion.) There is

a real question, however, as to whether more speci®c knowledge of con-

ventional progressions would be useful to the program in a top-down

fashion in arriving at the correct root analysis. Perhaps there is a per-

ceptual preference for certain patterns such as cadences, so that we assign

a bonus to any analysis that features them. Such a preference might allow

the program to correctly identify the ii�-V (F#-B) half-cadence that is

missed in mm. 11±12 of the Bach Gavotte, as well as the V-I cadence in

mm. 7±8.11 Attempting to incorporate such patterns into the program

would be an interesting further step. The current model does suggest,

however, that there are limits on how much such information is needed;

one can go a long way toward correct harmonic analyses without

knowledge of conventional progressions.
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7
Key Structure

7.1

Key

In the previous two chapters, we considered the labeling of pitch-classes

and the identi®cation of chords. No one could deny that these are impor-

tant kinds of musical information. In themselves, however, they are of

limited use. Knowing that a pitch is a C, for example, tells us little. What

is important is knowing that it is (for example) the ®fth degree of the

current scale. Similarly, the fact that something is an F major chord says

little about its function or signi®cance in the current context; however, if

we know that it is a IV chordÐthat is, the chord based on the fourth

degree of the current keyÐthen we know much more. This brings us to

the fundamental signi®cance of key: key provides the framework where-

by pitches and chords are understood.1

Key is important in other ways as well. The key structure of a pieceÐ

the sequence of keys through which it passes, and the relationships

among themÐcan contribute greatly to its expressive effect. As Charles

Rosen (1971, 26) has shown, a modulation can act as a kind of ``large-

scale dissonance,'' a con¯ict demanding a resolution; it is largely this that

allows tonal music to convey a sense of long-range motion and drama.

In this chapter I propose a system for inferring the key of a piece and

sections within a piece. The model I present builds on an earlier proposal,

the key-pro®le algorithm of Krumhansl and Schmuckler (described most

extensively in Krumhansl 1990). I will point to some important weak-

nesses of the Krumhansl-Schmuckler (hereafter K-S) algorithm, and pro-

pose modi®cations. With these modi®cations, I will suggest that the

key-pro®le model can provide a highly effective approach to key-®nding.



First, however, let us review some other important research relating to

the perception of key.

7.2

Psychological and

Computational

Work on Key

The perception and mental representation of key has been the subject of

considerable study in music cognition. Some of this work has explored

the way the perception of other musical elements is affected by the key

context. It has been found, for example, that the perceived stability or

appropriateness of pitches and chords is greatly affected by context:

pitches and chords within a contextually established key are judged to

``follow'' better than others (Krumhansl 1990; Brown, Butler & Jones

1994). Other studies have shown that the perception of melody is affected

by tonal factors as well. Melodic patterns that project a strong sense of

key are more easily remembered than others (Cuddy, Cohen & Mewhort

1981); melodies are more easily recognized if they are presented in a

suitable tonal context (Cuddy, Cohen & Miller 1979). These studies,

along with others by Dowling (1978) and Deutsch (1980), suggest that

the scales associated with keys play an important role in musical encod-

ing, a subject we will discuss further in chapter 12.

Other studies have explored the perception of modulation: change

from one key to another. Thompson and Cuddy (1992) found that both

trained and untrained listeners were sensitive to changes in key, and that

the perceived distances of modulations corresponded well with music-

theoretical ideas about key distance. Another study by Cook (1987) ex-

plored listeners' ability to detect whether a piece began and ended in the

same key. While listeners were indeed sensitive to this for short pieces,

their sensitivity declined greatly for longer pieces. This is a notable ®nd-

ing, given the importance accorded to large-scale key relationships in

music theory. We should note, however, that this ®nding relates only to

listeners' perception of relationships between keys, not their judgments of

the current key. Still another important aspect of key is the distinction

between major and minor keys. A variety of studies have shown this to

be an important factor in the emotional connotations of musical excerpts

(Dowling & Harwood 1986, 207±10); indeed, even very young children

appear to be sensitive to these associations. In a study by Kastner and

Crowder (1990), subjects were played pairs of melodies that were iden-

tical except that one was major and the other minor, and were shown

cartoon faces re¯ecting various emotions; for each melody, subjects were

told to point to a face which went with the melody. Subjects as young as
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three years old showed a reliable ability to associate major melodies with

happy faces and minor melodies with sad ones.

A number of computational models of ``key-®nding'' have been pro-

posed. MoreoverÐuniquely, among the kinds of musical structure con-

sidered in this bookÐsome of these models have been systematically

tested, allowing comparison with the current model. These tests will be

discussed later.

Perhaps the earliest attempt at a computational key-®nding system was

the algorithm of Longuet-Higgins and Steedman (1971). Designed for

monophonic pieces only, the algorithm processes a piece left to right; at

each pitch that it encounters, it eliminates all keys whose scales do not

contain that pitch. When it is left with only one key, this is the preferred

key. If it makes a step which causes all keys to be eliminated, it undoes

that step; it then looks at the ®rst note of the piece, and if the ®rst note is

the tonic (or, failing that, the dominant) of one of the remaining eligible

keys, it chooses that key. If it reaches the end of the melody with more

than one eligible key remaining, it again performs the ``®rst-note'' test to

choose the correct key. Aside from the fact that this algorithm is limited

to monophonic music, there are some major limitations to it. For exam-

ple, it cannot handle chromatic notes; any note outside a scale will cause

the key of that scale to be eliminated from consideration. This surely

does not occur perceptually; the chromatic notes in ®gure 7.1a (F# and

D#) do not prevent a strong implication of C major. Consider also ®gure

7.1b; while the correct key here is clearly C major, the algorithm would

be undecided between C major and G major (since neither one is elimi-

nated), and would be forced to rely on the ``®rst-note'' rule, which yields

the incorrect result in this case. Despite these problems, the basic idea

behind the Longuet-Higgins/Steedman algorithm is an interesting and

valuable one; we will reconsider this model later in the chapter.

A similar algorithm was developed by Holtzmann (1977), building on

the work of Longuet-Higgins and Steedman. Like the earlier model,

Holtzmann's algorithm works only on melodies; however, rather than

treating pitches one at a time and eliminating keys, it searches for

certain featuresÐthe tonic triad, the tonic and dominant, or the tonic

and mediantÐat certain structural points, namely the ®rst and last few

pitches of the melody. The key whose features are most strongly present

at these points is the preferred one. The model's reliance on the last few

notes of the melody seems problematic. For one thing, it does not seem

true to perception; with an extended melody, we are surely capable of
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identifying the key well before the melody ends. One could, of course,

run the model only on the ®rst section of a melody; but in deciding where

the ®rst section ends, we are no doubt biased towards choosing a note

that we have already identi®ed as the tonic. (This problem arises in

Holtzmann's own tests, as we will see later on.)

Both the Longuet-Higgins/Steedman and Holtzmann algorithms fail

to address an important aspect of key structure, namely, modulation.

In listening to a piece of music, we not only infer a key at the beginning

of the piece, but can also detect changes of key within the piece. Vos

and Van Geenen (1996) present a proposal for monophonic key-®nding

which attempts to handle modulation. In this model, a melody is pro-

cessed from left to right; for each pitch, points are added to each key

whose scale contains the pitch or whose I, IV or V7 chords contain it.

(It is unclear why the algorithm considers chord membership. The same

effect could be obtained by simply adjusting the weights added to pitches

for different scale degrees; for example, the members of the I triad are

always the 1̂, 3̂ and 5̂ scale degrees.) There is a ``primacy'' period of the

®rst ®ve notes where special conditions obtain. The ®rst pitch gives an

extra weight to the key of which it is the tonic. (There are other rather

complex rules regarding the primacy period which I will not explain

here.) The algorithm's key judgments at any moment are based on

choosing the key with the highest score. However, only the last 40 notes

of the melody are considered in each key judgment; in this way, the

algorithm is capable of modulation.

The performance of these three monophonic key-®nding systems

ÐLonguet-Higgins and Steedman's, Holtzmann's, and Vos and Van

Geenen'sÐwill be discussed further below. Attempts have also been

Figure 7.1
(A) Greek folk melody. (B) George M. Cohan, ``You're a Grand Old Flag.''
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made to model key-®nding in polyphonic music. Two important efforts

here have been the harmonic analysis systems of Winograd (1968) and

Maxwell (1992), discussed in the previous chapter. As Winograd and

Maxwell conceive of it, harmonic analysis involves labeling chords with

Roman numerals, indicating the function of each chord relative to the

key; this involves both determining the root of the chord and the key.

The root-®nding aspect of these systems has already been discussed (see

section 6.2); here we consider the key-®nding aspect once root labels

have been determined. Winograd's program starts at the ending of

a piece, and works backwards, generating a series of key sections or

``tonalities.'' The possible analyses for a piece are somewhat constrained

by the rules of the ``grammar'' that Winograd is using: for each chord, a

tonality must be chosen (if possible) such that the chord has some func-

tion in the tonality. Moreover, according to the grammar, a well-formed

tonality must contain either a dominant! tonic progression or a domi-

nant-preparation! dominant. Given this rule, the program ®rst searches

through the piece to ®nd all possible tonalities in the piece; then only

these tonalities need be considered in the labeling of each chord. The set

of possible tonalities is then further reduced through the use of heuristics,

which Winograd calls ``semantic rules''; for example, tonalities are pre-

ferred which yield common progressions such as II-V-I. Maxwell's han-

dling of key is similar to Winograd's; it is based on a search for potential

cadences or ``p-cadences.'' Some p-cadences are better than others (i.e.

V7-I cadences are best; V6-I cadences are somewhat less good; and so

on). Based on a point system, the p-cadences are scored, and the best

ones are taken to be indicative of the key of the previous section.

Winograd and Maxwell each provide a few examples of their pro-

grams' output, which suggest that their key-®nding systems are quite

successful (see ®gures 6.2 and 6.3). Since their models are highly com-

plex, it is dif®cult to simulate them or to predict their results in other

cases. One oddity is that, in both Maxwell's and Winograd's systems, the

key signature is included in the input to the program. (Maxwell's system

actually uses this information directly in determining the main key of the

piece; Winograd's system does not.) This suggests that Maxwell and

Winograd were more interested in modeling the process of harmonic

analysis as it is done explicitly with a score, rather than as it occurs in

listening. The fact that Winograd's program begins at the end of the

piece, rather than the beginning, is another indication of this. This atti-

tude is also re¯ected in Maxwell's commentary; in discussing the prob-
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lem of judging the main key of a piece, Maxwell states: ``A human ana-

lyst glances at the key signature and the ®nal cadence (if necessary) and

makes a quick judgment. Our method will be the same'' (p. 342).

Finally, mention should be made of two very different approaches to

key-®nding. One is the connectionist model of Bharucha (1987, 1991).

As described in section 6.2, this model features three levels of nodes,

representing pitches, chords, and keys. Pitch nodes activate the chord

nodes of major and minor triads that contain them; chord nodes, in turn,

activate nodes for the keys in which they have primary functions (I, IV,

or V). As noted in our earlier discussion, Bharucha presents no examples

of the model's output on actual pieces, nor can its behavior be easily

predicted; thus it is dif®cult to evaluate it.

Bharucha's model and Winograd's and Maxwell's models, though

very different in perspective, have an important feature in common: they

all base their judgments of key primarily on harmonic information. As

noted in section 6.2, the experiments of Butler (1989)Ðshowing that the

same pitches arranged in different ways can have different tonal implica-

tionsÐsuggest that, indeed, harmony may play a role in key-®nding. I

will return to this issue in a later section.

The model of Leman (1995) stands apart from the others discussed

here in that it analyzes sound input directly, making judgments of key

without ®rst extracting pitch information. (In this respect it is somewhat

similar to Parncutt's system for analyzing harmony, discussed in section

6.2.) The model begins by performing subharmonic analysis of the sound

input; this indicates how strongly the harmonics of each pitch are present

in the sound. For any chord, a vector can be produced indicating how

strongly it supports each pitch-class as a virtual root (here again, Parn-

cutt's earlier model comes to mind). Similar vectors for keys are then

generated, by combining the vectors for primary chords in each key: I,

IV, and V. Keys whose vectors correlate well with that of a given chord

or sonority in a piece are assumed to be good candidates for the key at

that point. The integration of these judgments over time means that the

model's key choice for a given segment may be in¯uenced by both pre-

vious and subsequent segments. In tests on two pieces in which the

model's judgments were compared to those of experts, the model scored

in the neighborhood of 75±80%. Leman acknowledges some signi®cant

weaknesses with the model, such as the inadequate weight given to the

leading-tone, and problems in distinguishing between parallel major and

minor keys. In addition, an objection that was raised regarding Parn-

cutt's model of harmony (see section 6.2) is relevant again here. Since
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sound input is used directly as input to the model, a given piece might be

represented quite differently depending on the instrumentation and tim-

bral variation used in performance; this raises the possibility that timbral

factors might affect the model's judgment of key. Alternatively, if the

model's judgments are not affected by the timbre of notes, and depend

only on the fundamentalsÐi.e., the pitches themselvesÐone wonders

why this information is not used instead. (As argued in chapter 1, there is

considerable evidence that listeners do recover pitch information in lis-

tening.) Despite these problems, Leman's model appears to achieve quite

a high level of performance.

7.3

The Krumhansl-

Schmuckler Key-

Finding Algorithm

We now turn to a discussion of the Krumhansl-Schmuckler algorithm. I

will begin by presenting the model in its original form; I will then discuss

some problems that arise, and propose solutions, leading to a modi®ed

version of the model.

The Krumhansl-Schmuckler key-®nding algorithm is based on ``key-

pro®les.'' A key-pro®le is a vector of twelve values, representing the

stability of the twelve pitch-classes relative to a given key (Krumhansl

1990, 79±80). The key-pro®les were based on data from experiments by

Krumhansl and Kessler (1982) in which subjects were asked to rate how

well each pitch-class ``®t with'' a prior context establishing a key, such as

a cadence or scale. A high value in the key-pro®le means that the corre-

sponding pitch-class was judged to ®t well with that key. Each of the 24

major and minor keys has its own key-pro®le. The key-pro®les for C

major and C minor are shown in ®gure 7.2; other pro®les are generated

simply by shifting the values around by the appropriate number of steps.

For example, whereas the C major vector has a value of 6.35 for C and a

value of 2.23 for C#, C# major would have a value of 6.35 for C# and a

value of 2.23 for D.2 As Krumhansl notes (1990, 29), the key-pro®les

re¯ect well-established musical principles. In both major and minor, the

tonic position (C in the case of C major/minor) has the highest value,

followed by the other two degrees of the tonic triad (G and E in C major,

G and E" in C minor); the other four degrees of the diatonic scale are

next (D, F, A and B in C major; D, F, A" and B" in C minorÐassuming

the natural minor scale), followed by the ®ve chromatic scale steps.

The algorithm judges the key of a piece by correlating each key-pro®le

with the ``input vector'' of the piece. The input vector is, again, a twelve-

valued vector, with each value representing the total duration of a pitch-

class in the piece. Consider ®gure 7.3, the ®rst measure of ``Yankee
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Figure 7.2
The Krumhansl-Kessler key-pro®les (1982), for C major (above) and C minor
(below).

Figure 7.3
Measure 1 of ``Yankee Doodle,'' with input vector showing total duration of each
pitch class.
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Doodle''; assume a tempo of quarter note � 120. Pitch-class G has a

total duration of 0.75 (seconds); A has a duration of 0.5; B has a dura-

tion of 0.5; D has a duration of 0.25; the other eight pitch-classes have

durations of 0, since they do not occur at all in the excerpt. The input

vector for this excerpt is shown in ®gure 7.3. The correlation value, r,

between the input vector and a given key-pro®le vector is then given by

r �
P�xÿ x��yÿ y�

�P�xÿ x�2P�yÿ y�2�1=2

where x � input vector values; x � the average of the input vector

values; y � the key-pro®le values for a given key; and y � the average

key-pro®le value for that key.

To ®nd the key for a given piece, the correlations must be calculated

between each key-pro®le and the input vector; the key-pro®le yielding the

highest correlation gives the preferred key.

Table 7.1 shows the results of the algorithm for the ®rst measure of

``Yankee Doodle.'' G major is the preferred key, as it should be. It can be

seen that all the pitches in the excerpt are in the G major scale (as well as

several other scales); moreover, the ®rst and third degree of the G major

tonic triad are strongly represented, so it is not surprising that G major

receives the highest score.

Table 7.1
Key-pro®le scores for the ®rst measure of ``Yankee Doodle'' (®gure 7.3)

Key Score Key Score

C major 0.245

C# major ÿ0.497

D major 0.485

E" major ÿ0.114

E major 0.000

F major 0.003

F# major ÿ0.339

G major 0.693

A" major ÿ0.432

A major 0.159

B" major ÿ0.129

B major ÿ0.061

C minor ÿ0.012

C# minor ÿ0.296

D minor 0.133

E" minor ÿ0.354

E minor 0.398

F minor ÿ0.384

F# minor 0.010

G minor 0.394

A" minor ÿ0.094

A minor 0.223

B" minor ÿ0.457

B minor ÿ0.436
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The ®rst modi®cation I wish to propose is a simpli®cation in the way

the key-pro®le scores are calculated. The formula used in the K-S algo-

rithm is the standard one for ®nding the correlation between two vectors

(Howell 1997). In essence, this formula takes the product of the corre-

sponding values in the two vectors (the input vector and the key-pro®le

vector, in this case) and sums these products. To use Krumhansl's meta-

phor, this amounts to a kind of ``template-matching'': if the peaks in the

key-pro®le vector for a given key coincide with the peaks in the input

vector, this number will be large. The correlation formula also normal-

izes both vectors for their mean and variance. However, if our only goal

is to ®nd the algorithm's preferred key for a given passage of music, these

normalizations are not really necessary. We can obtain essentially the

same result by de®ning the key-pro®le score simply as the sum of the

products of the key-pro®le and input-vector values, or
P

xyÐsometimes

known as the ``scalar product.'' The algorithm then becomes to calculate

this score for all 24 keys, and choose the key with the highest score.3

7.4

Improving the

Algorithm's

Performance

Krumhansl (1990, 81±106) reports several tests that were done of the

K-S algorithm. First, the algorithm was tested on the ®rst four notes of

each of the 48 preludes of Bach's Well-Tempered Clavier. (In cases where

the fourth note was simultaneous with one or more other notes, all the

notes of the chord were included.) The algorithm chose the correct key

on 44 of the 48 preludes, a rate of 91.7%. Similar tests were done on the

®rst four notes of Shostakovich's and Chopin's preludes, yielding some-

what lower correct rates: 70.8% and 45.8%, respectively. In another

test, the algorithm was tested on the fugue subjects of the 48 fugues of

the Well-Tempered Clavier, as well as on the subjects of Shostakovich's

24 fugues. For each fugue, the algorithm was given a series of note

sequences starting from the beginning of the piece: ®rst the ®rst note,

then the ®rst two notes, then the ®rst three notes, and so on. At the point

where the algorithm ®rst chose the correct key, the test for that piece

was terminated. On 44 of the Bach fugue subjects and 22 of the Shosta-

kovich fugue subjects, the algorithm eventually found the correct key. As

Krumhansl acknowledges (p. 93), this test is somewhat problematic, since

it is unclear how stable the algorithm's choice was; it might choose the

correct key after four notes, but it might have shifted to a different key

if it was given another note. Finally, the algorithm was tested on each

measure of Bach's Prelude No. 2 from Book II of the Well-Tempered

Clavier, and its judgments were compared to the judgments of two
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experts as to the key of each measure. In this case, however, a different

version of the algorithm was applied, using Fourier analysis to map each

input vector onto a four-dimensional space of keys. Moreover, the algo-

rithm's judgment for each measure was based on a weighted sum of the

pitch durations in the current measure and also previous and subsequent

measures, in order to re¯ect the effect of context on key judgments.

While all of these tests are of interest, only the ®rst group of tests pro-

vide clear data as to the algorithm's judgments of the preferred key for an

isolated segment of music. The algorithm's performance here was mixed,

performing much better on the Bach preludes than on the Shostakovich

and Chopin preludes; however, one could argue that judging the key after

four notes is unrealistic in the latter two cases, given their more complex

tonal language. In any case, further tests seem warranted.

An easy and informal way of testing the algorithm is by giving it a

piece, having it judge the key for many small segments of the piece in

isolationÐmeasures, sayÐand comparing the results to our own judg-

ments. This was done using a computer implementation of the algorithm,

exactly as it is speci®ed in Krumhansl 1990. (For this test, then, the

original formula was used, rather than the modi®ed formula proposed

above.) In deciding what we think is the correct key for each measure, it

is important to stress that each measure is to be regarded in isolation,

without considering its context, since this is what the algorithm is doing.

This is not of course how we naturally listen to music, but considering

the tonal implications of a small segment of music taken out of context

is, I think, not dif®cult to do. (Note that the current test differs from

Krumhansl's test of the Bach Prelude No. 2, where both the experts and

the algorithm were taking the context of each measure into account in

judging its key.) Figure 7.4 shows the ®rst half of the Courante of Bach's

Suite for Violoncello No. 3. The algorithm's preferred key is shown above

each measure (the top row of symbols, labeled ``K-S''). In a number of

cases, the algorithm's choice is clearly correct: m. 1, for example. In some

cases, the key is somewhat unclear, and the algorithm chooses one of

several plausible choices (in measure 17 it chooses G major, although E

minor would certainly be possible). In a number of cases, however, the

algorithm's choice is clearly wrong; these cases are indicated with an

exclamation mark. In m. 4, the algorithm chooses G major, although the

measure contains an FÐthis pitch is not present in a G major scale and,

as a "7̂ scale degree, is indeed highly destabilizing to the key; however, all

the notes of the measure are present in the C major scale. Similar errors

occur in mm. 14 and 16. In a number of other cases (mm. 8, 22, 29, 30,
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Figure 7.4
Bach, Suite for Violoncello No. 3, Courante, mm. 1±40, showing judgments for
each measure from three different key-®nding algorithms. Minor keys are marked
with ``m''; all other keys are major.
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33, 34, and 35), the algorithm chooses a key despite the presence of a

pitch outside the scale of that key, and despite the existence of another

key that contains all the pitches of the segment. This suggests that the

algorithm does not distinguish strongly enough between diatonic and

chromatic scale degrees. The algorithm also sometimes chooses minor

keys when the lowered seventh or raised sixth degree of the key is present

(mm. 10 and 38, for example), though these are much less common than

the raised seventh and lowered sixth degree, that is to say the ``harmonic

minor'' scale. Altogether, the algorithm makes incorrect judgments on 13

of the 40 measures, a correct rate of 67.5%. The discrepancy between

this result and the algorithm's performance on the opening four-note

segments of the Bach preludes is worth noting. Inspection of the preludes

shows that a great number of them begin by outlining or elaborating

a tonic triad. The Courante would seem to provide a wider variety of

melodic and harmonic situations, although of course it, too, is a highly

limited sample.

Inspecting the key-pro®le values themselves (®gure 7.2), it becomes

clear why some of these errors occur. While diatonic degrees have higher

values than chromatic degrees, the difference is slight; in C major, com-

pare the values for B (2.88) and F# (2.52). In minor, we ®nd that the

¯attened seventh degree (B" in the case of C minor) has a higher value

than the leading-tone (B). This seems counterintuitive; as mentioned ear-

lier, the ¯at seventh is quite destabilizing to the tonic, while the leading-

tone is often a strong indicator of a new tonic (consider the way G# in

measure 10 of the Courante points towards A minor). In major, too, it

seems odd that the leading-tone has the lowest value of the seven diatonic

degrees. A related problem should be mentioned: the dominant seventh,

which is usually taken as strongly implicative of the corresponding tonic

key, is not so judged by the K-S algorithm. Rather, the G dominant

seventh (for example) most strongly favors G major, B minor, D minor,

D major, G minor, and F major, in descending order of preference, with

C major seventh on the list (C minor is even further down). Finally, it

seems likely that some of the minor values are too high; in general there

is a slight tendency for the model to choose minor keys more often than it

should. (The total score for the minor triad, 16.46, is slightly higher than

that for the major triad, 15.92, which seems odd.)

A revised version of the pro®les is shown in ®gure 7.5, which attempts

to solve these problems. These values were arrived at by a mixture of

theoretical reasoning and trial and error, using a variety of different
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pieces for testing. (An attempt was made to keep all the values in the

same range as those in the K-S algorithm, to permit easy comparison.)

The basic primacy of the diatonic scale is still re¯ected; all diatonic steps

have higher values than chromatic ones. In the case of minor, I assume

the harmonic minor scale, so that "6̂ and 7̂ are within the scale and 6̂ and

"7̂ are chromatic. All the chromatic degrees have a value of 2.0, with the

exception of "7̂, which has a value of 1.5. The unusually low value for "7̂

proved necessary, in part, to achieve the right judgment for the dominant

seventh, but it appears to lead to good results in general. All the diatonic

degrees have a value of at least 3.5; 2̂ and 6̂ in major, and 2̂ and "6̂ in

minor, have exactly this value. 4̂ and 7̂ are given slightly higher values

(4.0), re¯ecting their importance (more on this below). The triadic

degreesÐ1̂, 3̂, and 5̂ in major, 1̂, "3̂, and 5̂ in minorÐreceive the highest

values; the value for 1̂ is highest of all. The same values are used for both

the major and minor tonic triads.

These revised key-pro®les improve performance considerably on the

Bach Courante. (I now use my modi®ed version of the key-pro®le for-

mula, rather than the original version.) The results of the algorithm

Figure 7.5
A revised version of the key-pro®les, shown for C major (above) and C minor
(below).
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are shown as ``Temperley I'' in ®gure 7.4; questionable choices are

again marked with exclamation marks. In a few cases, two keys receive

exactly equal scores; in such cases both keys are shown, for example

``C / G.'' The algorithm now makes only 6.5 errors instead of 13. (If the

algorithm chooses two keys and one of them seems incorrect, this is

counted as half an error). There is another problem with the key-pro®le

approach, however, which cannot be solved merely by tweaking the key-

pro®le values. Consider m. 29; the pitches here, D-C-A-C-F#-C, outline a

D dominant seventh. Given a simple D dominant seventh, with four

notes of equal length played once, my algorithm (unlike the K-S algo-

rithm) chooses G major and G minor equally as the preferred key. In m.

29, however, my algorithm chooses A minor. The reason is clear: there

are three C's and one A, all members of the A minor triad, giving a large

score to this key which swamps the effects of the other two pitches. Yet

perceptually, the repetitions of the C do not appear to strongly tilt the

key implications of the measure towards A minor, or indeed to affect

them very much at all.

This raises a fundamental question about the key-pro®le approach.

Even if we accept the basic premise of ``template-matching,'' there are

several ways this could be done. A different approach to template-

matching is found in Longuet-Higgins and Steedman's earlier key-®nding

algorithm (1971). As discussed above, this algorithm processes a (mono-

phonic) piece from left to right; at each pitch that it encounters, it elimi-

nates all keys whose scales do not contain that pitch. When it is left

with only one key, this is the preferred key. (Here we will consider

just this simpli®ed version of the algorithm, ignoring the ``®rst-note''

rule discussed earlier.) We could think of the Longuet-Higgins/Steedman

model as implying a very simple key-pro®le model. In this model, each

key has a ``¯at'' key-pro®le, where all the pitch-classes in the corre-

sponding diatonic scale have a value of one, and all chromatic pitch-

classes have a value of zero. The input vector is also ¯at: a pitch-class has

a value of one if it is present anywhere in the passage, zero if it is not.

Choosing the correct key is then a matter of correlating the input vector

with the key-pro®le vectorsÐwhich in this case simply amounts to

counting the number of pitch-classes scoring one in the input vector that

also score one in each key-pro®le vector. We might call this a ``¯at-input/

¯at-key'' pro®le model, as opposed to the ``weighted-input/weighted-

key'' pro®le model proposed by Krumhansl and Schmuckler. Note that

the Longuet-Higgins/Steedman model handles a case such as m. 29 of

the Bach better than the K-S model. All four pitch-classesÐD-F#-A-CÐ
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are present in the G major and G (harmonic) minor scales, and no others,

thus these keys (and these keys alone) receive a winning score of 4. How-

ever, the Longuet-Higgins/Steedman approach also encounters problems.

In particular, the algorithm has no way of judging passages in which all

the pitches present are in more than one scale. Consider measure 1 of the

Bach; this C major arpeggio clearly implies C major, yet all of these

pitches are also present in G major and F major (and several minor scales

as well), thus the Longuet-Higgins/Steedman algorithm (or rather the

simpli®ed version of it presented here) would have no basis for choosing

between them. In this case, the K-S algorithm is clearly superior, since it

makes important distinctions between diatonic scale degrees.

This suggests that the best approach to key-®nding may be a combi-

nation of the Krumhansl-Schmuckler and Longuet-Higgins/Steedman

approaches: a ``¯at-input/weighted-key'' approach. That is, the input

vector simply consists of ``1'' values for present pitch-classes and ``0''

values for absent ones; the key-pro®le values, on the other hand, are

individually weighted, in the manner of Krumhansl's pro®les (and my

revised version). (Judging pitch-classes simply as ``present'' or ``not pres-

ent,'' without considering their frequency of occurrence at all, might not

work so well for longer passages; but my model does not do this for

longer passages, as we will see below.) The output of this version for the

Bach Courante is shown in ®gure 7.4 as ``Temperley II.'' The algorithm's

choice is at least reasonable on all 40 measures. In its judgments for small

pitch-sets, then, the current algorithm seems to represent an improve-

ment over the original K-S model.

Some connections should be noted between the values I propose and

other theoretical work. Lerdahl's theory of tonal pitch space (1988) is

based on a ``basic space'' consisting of several levels, corresponding to

the chromatic scale, diatonic scale, tonic triad, tonic and ®fth, and tonic,

as shown in ®gure 7.6. Lerdahl notes the similarity between his space and

 

Figure 7.6
Lerdahl's ``basic space'' (1988), con®gured for C major.
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the Krumhansl key-pro®les (p. 338); both re¯ect peaks for diatonic pitch-

classes and higher peaks for triadic ones. My own key-pro®le values

correspond more closely to Lerdahl's space than Krumhansl's do, in that

pitch-classes at each level generally have the same valueÐthe exceptions

being the higher values for 4̂ and 7̂ and the lower value for "7̂. (My

pro®les also assign equal values to the third and ®fth diatonic degrees,

thus omitting the ``®fths'' level.)

The higher values for 4̂ and 7̂ bring to mind another theoretical pro-

posal, the ``rare-interval'' approach to key-®nding. Browne (1981) and

Butler (1989) have noted that certain small pitch-class sets may have

particular relevance for key-®nding, due to their ``rarity'': the fact that

they are only present in a small number of scales. A major second such as

C-D is present in ®ve different major scales; a tritone such as F-B is

present in only two. Similarly, F-G-C is present in ®ve major and two

harmonic minor scales; F-G-B is only present only in C major and minor.

While this is clearly true, it is not obvious that such considerations

should be explicitly re¯ected in key-pro®les. This point requires some

discussion. Let us assume a ``¯at-key/¯at-input'' pro®le model, in which

the key of a passage is simply given by the scale which contains the

largest number of the pitch-classes present. In such a case, both F-G-B and

F-G-C receive a score of 3 for C major (let us consider only major keys

for the moment). In the case of F-G-B, however, C major is the only key

receiving this score, and will thus be the clear favorite, whereas F-G-C

will also receive scores of 3 from four other keys, and therefore should be

ambiguous. In this sense the importance of certain ``rare'' pitch-sets

would be an emergent feature of the system, even though 4̂ and 7̂ are

treated no differently from other scale degrees in the key-pro®le itself.

Nonetheless, my trial-and-error tests suggest that it is necessary to give

special weight to 4̂ and 7̂ in the key-pro®le (relative to the other scale

degrees outside the tonic triad, 2̂ and 6̂). In particular, it is very dif®cult

to achieve correct results on the dominant seventh (and related pitch-sets)

unless this is done. Perhaps the extra weight required by 4̂ and 7̂ in the

key-pro®le somehow relates to their ``rarity''Ðtheir special capacity for

distinguishing each scale from the others. This is a question deserving

further study.

One ®nal modi®cation is needed to the key-pro®les themselves. Both

the original K-S algorithm and the modi®cations I have proposed up to

now assume a ``neutral'' model of pitch-class, in which pitch-events are

simply sorted into twelve categories. In music notation and tonal theory,
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however, further distinctions are normally made between different spell-

ings of the same pitch, for example A" and G#Ðwhat I call ``tonal pitch-

classes'' (see section 5.2). These distinctions are often applied to chords

and keys as well. I argued in chapter 5 that the spelling labels of pitch-

events are an important part of tonal perception, and can be inferred

from context without relying on top-down key information, using pref-

erence rules.

If it is possible to infer spelling labels without using key information,

this raises the possibility that spelling might be used as input to key

determination. Tests of the original K-S algorithm showed a number of

cases where this might be useful. Consider ®gure 7.7Ðm. 65 from the

Bach Courante discussed earlier, containing the pitches G#-F-E-D-C-B.

The K-S algorithm chooses F minor for this measure. If the ®rst pitch

event were spelled as A", this would at least be a possibility. If the ®rst

pitch is G#, however, F minor is quite out of the question; A minor is

much more likely. It seems plausible that the spelling of the ®rst event as

G# could be determined from contextÐfor example, by its voice-leading

connection to the A in the next measure; the key-pro®le model could then

distinguish between the different tonal implications of G# and A". A

further example of the role of TPC distinctions in key-®nding is shown in

®gure 7.8. Excerpts A and B show two passages discussed in chapter 5; it

was argued there that, though the NPC content of the two passages is the

same, voice-leading makes us hear E" in the ®rst case, D# in the second.

Now consider following each of these excerpts with the two possible

continuations in excerpts C and D. Excerpt C follows excerpt A rela-

tively smoothly, but excerpt D following excerpt A produces a real jolt.

Similarly, excerpt D follows excerpt B much more naturally than excerpt

C does. The reason, I submit, is that the differing TPC content of excerpts

A and B affects their tonal implications. The fact that excerpt A contains

an E" makes it somewhat compatible with a move to E" major (though

we would not say that excerpt A implies E" major as the preferred key),

but much less compatible with a move to E major. In excerpt B, con-

versely, the presence of D# supports a move to E major much more than

Figure 7.7
Bach, Suite for Violoncello No. 3, Courante, mm. 65±6.
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E" major. It can be seen how a key-pro®le model which distinguished

between E" and D# could capture these distinctions.

What would such a TPC key-pro®le look like? A straightforward pro-

posal is shown in ®gure 7.9. The ``line of ®fths'' is represented on the

horizontal axis. TPCs that are diatonic relative to the given key have the

same values as in the NPC pro®le proposed earlier (®gure 7.5). All other

TPCs close to the tonic (within ®ve steps to the left or six steps to the

right) are given a value of 2.0, except for "7̂ (this is the same as for

chromatic NPC's in my original pro®le); all other TPCs are given a value

of 1.5. For example, E is 3̂ of C major, and thus is given a value of 4.5 (as

in my NPC pro®le); F" is chromatic relative to C major, thus its value is

1.5. Pro®les were constructed for minor keys on the same principles:

chromatic pitches within the range of "2̂ to #4̂ were given a value of 2.0,

while all others were given a value of 1.5.

As well as providing a possible improvement in performance in cases

like ®gure 7.7, taking spelling information as input has another bene®t: it

Figure 7.8
This example demonstrates the in¯uence of TPC labels on tonal implication.
Excerpts A and B are identical in terms of NPC content, and are very similar
harmonically (except that the G and C harmonies are reversed in the two cases).
Because of voice-leading, we tend to hear the E"/D# as E" in excerpt A, D# in
excerpt B; this in turn affects the tonal implications of the passages. Excerpt A is
much more compatible with a continuation in E" major (excerpt C) than in E
major (excerpt D); with excerpt B, the reverse is true.
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Figure 7.9
Key-pro®les recognizing TPC distinctions, for C major (above) and C minor (below).
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allows the model to distinguish between keys which have the same NPC

label but differ in TPC label, so-called ``enharmonically related'' keys.

The original Krumhansl-Schmuckler model would obviously have no

way of choosing between, for example, A" major and G# major as the

key for a passage. With the TPC model proposed above, however, dif-

ferent enharmonically related keys have different key-pro®les; thus the

model should be able to choose intelligently between G# and A" major,

depending on the TPC content of the input.

7.5

Modulation

In one important sense, the K-S algorithm is not so much ¯awed as in-

complete. The algorithm produces a single key judgment for a passage of

music it is given. However, a vital part of tonal music is the shifts in key

from one section to another. This is a complex matter, because there are

different levels of key. Each piece generally has one main key, which

begins and ends the piece, and in relation to which (in music theory

anyway) intermediate keys are understood. An extended piece will gen-

erally contain modulations to several secondary keysÐfor example, the

Bach Courante moves to G major around m. 9, then (in the second half,

not shown in ®gure 7.4) to A minor, and then back to C major; and

there may be even briefer tonal motions as well, so-called tonicizations

(for example, the momentary move to A minor in mm. 10±11 of the

Courante). One might propose the key-pro®le system as a way of deter-

mining the global level of key. I believe, however, that this is not the most

sensible use of the key-pro®le model. What the key-pro®le system does

well is determine the keys of sections of pieces. It is probably true that

most pieces spend more time in their main tonic keys than in other keys,

in which case a key-pro®le model might often work. It seems to me,

however, that the global key of a piece really depends on other fac-

tors: in particular, the key of the beginning and ending sections. (One

global key algorithm which would succeed in the vast majority of cases

would simply be to choose the key of the ®rstÐor lastÐsection of the

piece.)4

The key-pro®le algorithm could easily be run on individual sections of

a piece, once these sections were determined. Ideally, however, the divi-

sion of the piece into key sections would be determined by the algorithm

also; presumably, the same information that allows us to infer the correct

key also allows us to infer when the key is changing. One possibility is

that the algorithm could simply examine many small segments of a piece
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in isolation; changes of key would then emerge at places where one seg-

ment's key differed from that of the previous one. However, this is not

very satisfactory. Consider the Bach Courante. The preferred key of m. 3,

considered in isolation, is probably G major; heard in context, however,

it is clearly outlining a V chord, part of a C major section. Once we begin

to get a series of segments that clearly imply G major, though, we sense

a de®nite shift in key. Intuitively, key has inertia: we prefer to remain in

the key we are in, unless there is strong and persistent evidence to the

contrary. A simple way of modeling this suggests itself: we apply the key-

pro®le algorithm to each segment in isolation, but also impose a penalty

for choosing a key for one segment which differs from that of the previ-

ous one. Generating a key analysis for a piece thus involves optimizing

the key-pro®le match for each segment while minimizing the number of

key changes. In some cases, this might lead the model to choose a key for

a segment that is not the best choice for that segment in isolation (in m. 3

of the Bach, for example). However, if the scores for a segment or a series

of segments favor another key strongly enough, then it will be worth

switching.

The reader may have noted that this now begins to look a lot like a

preference rule systemÐa very simple system, involving just two ``KPRs''

(key preference rules):

KPR 1 (Key-Pro®le Rule). For each segment, prefer a key which is

compatible with the pitches in the segment, according to the (modi®ed)

key-pro®le formula.

KPR 2 (Modulation Rule). Prefer to minimize the number of key

changes from one segment to the next.

7.6

Implementation

The algorithm described above was computationally implemented. As

usual, the input required for the program is a ``note list,'' with a pitch,

on-time, and off-time for each note. The program also requires informa-

tion about the spelling of each note: thus each note statement is supple-

mented with another number giving the TPC, or line-of-®fths position, of

the note. (We adopt the convention that C � 2 on the line of ®fths, as

discussed in chapter 5.) In addition, the input to the program must con-

tain a segmentation of the piece into low-level segments. The program

searches for the highest-scoring key analysis of the piece it is given. A key

analysis is simply a labeling of each segment of the piece with a key. A

key is a TPCÐthat is, a point on the line of ®fthsÐalong with a speci®-
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cation of mode, major or minor. Each segment in an analysis yields a

numerical score based on (1) how well its pitches ®t the key chosen for

that segment (according to the modi®ed key-pro®le formula), and (2)

whether the current segment has the same key as the previous one (if not,

a ``change penalty'' is applied). The score for an analysis is simply the

sum of the key-pro®le scores and change penalties for each segment.

The program's search for the highest-scoring analysis involves the

usual dynamic programming approach, which in this case is applied in a

very simple way. At each segment, we store the best analysis of the piece

so far ending in that key.5 Moving on to the next segment, we then con-

sider each possible key added on to each ``best-so-far'' analysis at the

previous segment (factoring in the change penalty, if necessary); this

allows us to generate a new set of ``best-so-far'' analyses. At the end of

the piece, the highest-scoring analysis at the ®nal segment can be traced

back to yield the best analysis for the entire piece.

Aside from the key-pro®les themselves, there are two main numerical

parameters in the program. One is the change penalty, the penalty for

choosing a key for one segment different from that of the previous seg-

ment. By choosing a higher value, one can push the program towards less

frequent changes and longer key sections; choosing a lower value has the

opposite effect. Another, related, parameter is the length of segments.

The length of segments matters for two reasons. First, with shorter seg-

ments, the total key-pro®le scores will be higher, and thus will carry

more weight relative to the change penalty. Since it seemed desirable for

the relative weight of these scores to be unaffected by the length of seg-

ments, the program cancels this effect by multiplying the key-pro®le

scores by the length of segments. The length of segments also matters in

a more subtle way. Recall that the input vector within each segment is

always ¯at; this means that if a pitch-class occurs and is then repeated

within the same segment, the repetitions will have no effect on the key

analysis, but if it repeats in a different segment, this will have an effect.

With longer segments, then, the algorithm is less affected by the frequency

of occurrence of pitch-classes, and more by which pitch-classes are pres-

ent or absent. Segments of about one measureÐtypically between one

and two secondsÐproved to yield the best results in this regard.

We should note, in passing, that the key program described here in

combination with the harmony program described in the previous chap-

ter allows for the possibility of performing ``harmonic analysis'' in the

conventional sense (or ``Roman numeral analysis''), showing the har-

monic function of each chord relative to the key. As noted in chapter 6,
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once the root of a chord and the current key are known, its Roman nu-

meral label follows automatically: a C major chord in a G major section

must be IV. Other information, such as inversion and mode, can be de-

termined in a simple ``lookup'' fashion by examining which pitches are in

the chord. The key program just described was modi®ed to take as input

the output of the harmonic program, giving pitch and meter information

(recall that metrical information is needed as input to the harmonic pro-

gram) as well as a list of chord-spans (with their time-points and roots)

and the chosen spelling of each note (recall that this is needed by the key

program in any case). The key program generates a key analysis in the

way described above; it then uses this analysis to assign each chord a

Roman numeral symbol. Figure 7.10 shows the output of the program

for an entire short pieceÐthe Gavotte from Bach's French Suite No. 5 in

G Major. (The score for this piece can be seen in ®gure 6.7.) The key

Figure 7.10
The output of a Roman-numeral-analysis program, incorporating the harmonic
and key programs described in chapters 6 and 7. The analysis shown is of the
Gavotte from Bach's French Suite No. 5 (the score is shown in ®gure 6.7). Roman
numeral symbols indicate harmonies; letters indicate keys (keys are major unless
indicated with an ``m'' for minor); vertical lines indicate barlines. Measure numbers
have been added above for convenience.
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analysis seems to be exactly correct; there are a few errors in the chord

labels, due to errors in the root analysis (see section 6.3 for discussion).

7.7

Tests

The model described above was subjected to two formal tests. First, it

was tested on the 48 fugue subjects from Bach's Well-Tempered Clavier;

then, on a series of excerpts from the Kostka-Payne theory textbook.

Some general comments are needed on how the tests were done.6

The program requires a list of segments, with each segment having a

start-time and end-time. (The piece must be exhaustively partitioned into

non-overlapping segments.) It seemed logical to have segments corre-

spond to measures, or some other level of metrical unit (such as half-

measure or two-measure units). It also seemed important to have strict

criteria for the length of segments, since this may in¯uence the analysis.

The following rule was used: given the tempo chosen, the segments used

corresponded to the fastest level of metrical unit above one second. (How

the tempi were chosen will be explained below.) In nearly all cases, this

resulted in a segment length of between 1.0 and 2.0 seconds.7

As required by the program, the input ®les also contained information

about the spelling of each note. The spellings used were exactly those

given by the composers' scores, with one quali®cation. Occasionally, the

spelling of notes in a passage seems determined more by notational con-

venience than by musical logic: for example, in one excerpt from the

Kostka-Payne corpus, Schubert modulates from D" major to A major,

instead of the more logical B"" major (see ®gure 5.16). There were three

such cases in the Kostka-Payne corpus. In such cases, the musically logi-

cal spelling was used rather than the notated one, and the implied mod-

ulation resulting from this musically logical spelling (e.g. a modulation to

B"" major rather than A major) was taken to be the correct one.8 In both

tests, all extrametrical notesÐtrills, grace notes, and the likeÐwere

excluded, due to the dif®culty of deciding objectively on the realization of

these.

The key-pro®les themselves were not in any way modi®ed to improve

the program's score on these tests. (As noted earlier, the key-pro®le

values were set based on theoretical considerations and tests on other

pieces.) However, the change penalty value was modi®ed; different values

were tried, and the value was used on each test which seemed to yield the

best performance. (Both the Bach and Kostka-Payne corpora involve

modulations, as I will explain.) For the Bach fugues, a penalty of 6.0 was
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used; for the Kostka-Payne corpus, the penalty was 12.0. As discussed

earlier, key structure is generally thought to be hierarchical; a piece may

have one level of large-scale key changes and another level of toniciza-

tions. It seemed fair to adjust the program's change penalty to allow it to

maximally match the level of key change in each test corpus.

The set of fugue subjects from the Well-Tempered Clavier was an

obvious choice as a test corpus, since it has been used in several other

key-®nding studies, and therefore provided a basis for comparison.

Longuet-Higgins and Steedman, Holtzmann, and Vos and Van Geenen

all tested their systems on the corpus (Holtzmann uses only Book I, the

®rst 24 fugues). Krumhansl also tested the K-S algorithm on the fugue

subjects; however, as noted earlier, her test was problematic, in that

she stopped the algorithm when it had reached the correct key, without

giving any measure of how stable that decision was. The other algo-

rithms either self-terminated at some point, or ran to the end of the

subject and then made a decision.

Since it is not always clear where the fugue subjects end, decisions have

to be made about this. Vos and Van Geenen rely on the analyses of Keller

(1976) to determine where the subjects end; I used this source as well. (It

is not clear how Longuet-Higgins and Steedman and Holtzmann made

these decisions.) Another problem concerns modulation; many of the

fugue subjects do not modulate, but several clearly do. Here again, Vos and

Van Geenen rely on Keller, who identi®es modulations in six of the fugue

subjects.9 Longuet-Higgins and Steedman's and Holtzmann's systems are

not capable of modulation; they simply sought to identify the correct

main key.

Longuet-Higgins and Steedman's algorithm found the correct main

key in all 48 cases. Holtzmann's found the correct key in 23 out of the 24

cases in Book I. Vos and Van Geenen's program detected the correct key

as one of its chosen keys on 47 out of 48 cases; it also detected modu-

lations on two of the six cases noted by Keller. However, it also found

modulations (and hence multiple keys) in 10 other cases in which there

was no modulation.

The current program was run on all 48 fugue subjects. For the tempi,

I used those suggested in Keller (1976). Segments were determined in the

manner described earlier; the program chose one key for each segment.

The current system, of course, has the option of modulating, and was

allowed to modulate wherever it chose. Its performance on the corpus is

shown in table 7.2. On 42 out of the 48 fugues, the system chose a single
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opening key (without a tie) that was the correct one. In two cases there

were ties; in both cases, the correct key was among the two chosen. If we

award the program half a point for the two ties, this yields a score of 43

out of 48. Out of the six modulating fugues, it modulated on two of them

(moving to the dominant in both cases, as is correct). In one modulating

theme (Book I No. 10), the program chose the second key as the main

key. There were thus three nonmodulating themes where the program

chose a single, incorrect, key.

It is rather dif®cult to compare the performance of the various pro-

grams on this test. Longuet-Higgins and Steedman's system, and then

Holtzmann's, perform best in terms of ®nding the main key of subjects

(although their inability to handle modulation is of course a limitation).

(Compared to Vos and Van Geenen's system, the current program seems

slightly better, produing a perfectly correct analysis in 39 out of 48 cases,

versus 34 out of 48 cases for the Vos and Van Geenen program.) While

the success of the Longuet-Higgins/Steedman and Holtzmann programs

is impressive, we should note that they are rather limited, in that they can

only handle monophonic passages at the beginning of pieces. When the

Longuet-Higgins/Steedman algorithm is unable to choose a key by elim-

inating those whose scales do not contain all pitches present, it chooses

the key whose tonic or dominant pitch is the ®rst note of the theme (this

rule is needed on 22 out of the 48 Bach fugue subjects). Holtzmann's

approach also relies heavily on the ®rst and last notes of the theme.

Clearly, this approach is only useful at the beginnings of pieces; it is of no

help in determining the keys of internal sections, since there is no obvious

``®rst note.'' (Relying on the last notes of the themeÐas Holtzmann

doesÐis even more problematic, as it requires knowing where the theme

ends.) Still, it is of course possible that special factors operate in key-

®nding at the beginning of pieces; and it does seem plausible, in some of

these cases, that some kind of ``primacy factor'' is involved. (A ``®rst-

note'' rule of this kind could possibly be incorporated into the current

algorithm as a preference rule, but I will not address this here.)

Next, an attempt was made to give the program a more general test.

Since part of the purpose was to test the algorithm's success in judging

modulations, it was necessary to have pieces where such key changes

were explicitly marked. (Musical scores usually indicate the main key of

the piece in the key signature, or in other ways, but they do not generally

indicate changes of key.) A suitable corpus of data was found in the

workbook and instructor's manual accompanying Stefan Kostka and
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Table 7.2
The key-®nding program's performance on the 48 fugue subjects of Bach's Well-
Tempered Clavier

Fugue
number

Opening
key

Modulating?
(No unless
marked yes)

Program's
opening key
(if incorrect
or tie)

Modulation
found? (No
unless marked
yes)

Book I

1 C major

2 C minor

3 C# major

4 C# minor

5 D major G major

6 D minor

7 E" major yes

8 D# minor

9 E major

10 E minor yes B minor

11 F major

12 F minor

13 F# major

14 F# minor

15 G major

16 G minor

17 A" major

18 G# minor yes yes (correct)

19 A major yes

20 A minor

21 B" major

22 B" minor

23 B major

24 B minor yes yes (correct)

Book II

1 C major

2 C minor

3 C# major

4 C# minor

5 D major G major

6 D minor

7 E" major E" major/
A" major

8 D# minor

9 E major
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Dorothy Payne's textbook Tonal Harmony (Kostka & Payne 1995a,

1995b; Kostka 1995); this is the same corpus that was used in testing of

the meter, pitch-spelling, and harmony programs (see section 2.5).

The program's analyses of the 46 excerpts from the corpus were com-

pared to the analyses of the excerpts in Kostka's instructor's manual.

For each segment in which the program's key choice was the same as

Kostka's, one point was given. One problem was what to do if a segment

was notated (by Kostka) as being partly in one key and partly in another.

A related problem concerned ``pivot chords.'' The Kostka analyses con-

tained many such chords, which were notated as being in two keys

simultaneously. (As noted earlier, the program itself does not allow

changes of key within a segment; nor does it allow multiple keys for a

segment, except in rare cases of exact ties.) The solution adopted was

this. When a segment contained either a pivot chord or a change of

keyÐwe could call such segments ``bi-tonal''Ðthen 1/2 point was given

if the key chosen by the program was one of the keys given by Kostka;

otherwise, zero points were given. In cases where the program produced

Table 7.2 (continued)

Fugue
number

Opening
key

Modulating?
(No unless
marked yes)

Program's
opening key
(if incorrect
or tie)

Modulation
found? (No
unless marked
yes)

10 E minor

11 F major

12 F minor

13 F# major B major

14 F# minor

15 G major

16 G minor G minor/
B" major

17 A" major

18 G# minor

19 A major

20 A minor yes

21 B" major

22 B" minor

23 B major

24 B minor

195 7. Key Structure



an exact tie, in which one of the keys chosen was the correct one, half a

point was given for the segment.

Out of 896 segments, the program attained a score of 783.5 correct: a

rate of 87.4%. The program found 40 modulations, exactly the same

number as occurred in Kostka's analyses. It is useful to divide the sample

according to where the excerpts occur in the workbook. Like most

theory texts, Kostka and Payne's begins with basic chords such as major

and minor triads and dominant sevenths, and then moves on to chro-

matic chordsÐaugmented sixths, Neapolitans, and the like. Thus we can

divide the examples into two groups: those in the chapters relating to

diatonic chords (chapters 1±20), and those in the later chromatic chap-

ters (chapters 21±26). Viewed in this way, the program scored a rate of

94.7% on the earlier chapters, 79.8% on the later ones, demonstrating a

better ability for more diatonic passages. (A possible reason for this will

be discussed below.)

To my knowledge, no earlier key-®nding system has been subjected

to a general test of this kind, so it is dif®cult to draw comparisons.10

While the program's performance on the Well-Tempered Clavier and

Kostka-Payne tests certainly seems promising, it is not perfect, and it is

instructive to consider the errors it made. In a number of cases in the

Kostka-Payne corpus, the program's rate of modulation was wrong:

it either modulated too rarely, missing a move to a secondary key, or it

modulated too often, changing key where Kostka does not. An obvious

ad hoc solution is to modify the change penalty. In almost all such cases,

a virtually perfect analysis was obtained simply by making the change

penalty higher or lower. Still, it is clearly a ¯aw in the program that this

parameter has to be adjusted for different pieces. Possibly the program

could be made to adjust the change penalty on its own, but it is not clear

how this might be done.

In some cases, harmony proved to be a factor. Consider ®gure 7.11,

part of an excerpt from a Schumann song. Kostka analyzes this passage

as being in B" major, but the program ®nds it to be in F major. The

problem is the French sixth chords, G"-B"-C-E. (A French sixth, or

``Fr6,'' can be thought of as an inverted dominant seventhÐC7, in this

caseÐwith a ¯attened ®fth.) The French sixths are followed by F major

chords, as is customary; by convention, this progression would normally

be interpreted as Fr6-V in B" major (or minor). However, the progres-

sion involves two pitches outside of B" major (G" and E), so it is not

surprising that B" major is not chosen by the current model. The Fr6-V

progression is then repeated in other keys, causing further problems for
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the model. In order to get such a passage right, the model would pre-

sumably have to know something about harmony: speci®cally, the con-

ventional tonal implications of Fr6-V progressions. Similar problems

arise in excerpts involving other chromatic chords, such as Neapolitan

chords and other augmented sixth chords.

The current tests suggest, then, that harmonic information is a factor

in key-®nding. This is not surprising, in light of the ®ndings of Butler

(1989), discussed earlier. In practice, however, it does not appear that

such situations arise with great frequency; it is relatively rare that har-

monic information is necessary. Most of the cases where it is needed

involve chromatic chords whose tonal implications contradict the normal

tonal implications of their pitch-classes.

Another area where the program might be improved is the key-pro®le

values themselves. These could undoubtedly be re®ned, although it is not

clear how much gain in performance would result. This could be done

computationally, using a ``hill-climbing'' technique to arrive at optimal

values. It could also be done by taking actual tallies of pitch-classes in

pieces (relative to the key), and using these as the basis for the key-pro®le

values.11

Finally, we must return once more to the issue of spelling distinctions.

As noted earlier, the correct spelling of each note was given to the pro-

gram as input. I argued in chapter 5 that the spellings of notes could be

determined in a way that did not depend on key information. As reported

in chapter 5, a program for choosing TPC labels had a high degree of

success on the Kostka-Payne corpus (correctly identifying the spelling of

98.8% of the notes). Nevertheless, one might question the decision to

Figure 7.11
Schumann, ``Die beide Grenadiere,'' mm. 25±8.

197 7. Key Structure



provide the correct spelling of notes as input in the current tests. Perhaps,

one might argue, we really use key information in some cases to deter-

mine the spellings of notes; by using the correct spelling as input, then,

we may be partly begging the question of how key-®nding is accom-

plished. To address this concern, the same tests done above were also

performed with an ``NPC'' version of the model. This model uses only

NPC information as input; it applies an NPC version of the key-pro®les

(exactly as shown in ®gure 7.5), and outputs NPC judgments of key.

(Thus this model is not expected to make TPC distinctions in its key

judgments; as long as the NPC is correct, the answer is judged to be

correct.) On the Well-Tempered-Clavier fugue subjects, this model's per-

formance was exactly the same as the TPC version, with one difference:

on Book I, Fugue 14, the NPC program found a tie between two keys

(one of which was correct), instead of ®nding a single (correct) key. On

the Kostka-Payne test, the NPC program received a score of 83.8% of

segments correct, as opposed to the 87.4% score achieved by the TPC

program. In some cases, the reasons for the superior performance of the

TPC model are quite subtle. Consider ®gure 7.12 (Chopin's Mazurka

Op. 67 No. 2); while the TPC version of the program correctly analyzed

this excerpt as being in G minor, the NPC version mistakenly identi®ed

the key as B" major. This excerpt contains many F#'s; the TPC version

considers F# to be less compatible with B" major than G" would be. That

G" ("6̂) is more compatible with B" major than F# (#5̂) may seem, at

best, a subtle distinction, but taking these distinctions into account

allowed the program to modestly improve its performance.

In short, the advantage of the TPC model over the NPC one is notice-

able, but not large. Whether the use of correct TPC information as input

is ``cheating'' is perhaps debatable, but in any case it does not appear to

make a tremendous difference to the performance of the model.12

7.8

An Alternative

Approach to

Modulation

The above algorithm adopts a simple approach to modulation which

proves to be highly effective: impose a penalty for changing keys, which

is balanced with the key-pro®le scores. Another possible way of incor-

porating modulation into the key-pro®le approach has been proposed by

Huron and Parncutt (1993). Huron and Parncutt suggest that the key at

each moment in a piece is determined by an input vector of all the pitch-

events so far in the piece, weighted according to their recency. An expo-

nential curve is used for this purpose. If the half-life of the curve is one

second, then events two seconds ago will weigh half as much in the input
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vector as events one second ago.13 (Huron and Parncutt's algorithm also

involves weighting each pitch-event according to its psychoacoustical

salience; I will not consider this aspect of their model here.) Huron and

Parncutt compared the results of this model with experimental data from

studies by Krumhansl and Kessler (1982) and Brown (1988) in which

subjects judged the key of musical sequences. In Krumhansl and Kessler's

study, subjects heard chord progressions, and judged the stability of dif-

ferent pitches at different points in the progression; these judgments were

compared with key-pro®les to determine the perceived key. In Brown's

study, subjects heard monophonic pitch sequences, and indicated the key

directly at the end; the same pitches were presented in different orderings,

to determine the effect of order on key judgments. The Huron-Parncutt

model performed well at predicting the data from Krumhansl and Kessler's

study; it fared less well with Brown's data.

Figure 7.12
Chopin, Mazurka Op. 67 No. 2, mm. 1±16.
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An implementation of the Huron-Parncutt algorithm was devised, in

order to test it on the Kostka-Payne corpus. A number of decisions had

to be made. It seemed sensible to use the modi®ed version of the key-

pro®le values, since these clearly perform better than Krumhansl's origi-

nal ones. Exactly the same input format was used as in my test; the same

segments were used in this test as well. For each segment, a local input

vector was calculated. These input vectors were ¯at, as in my algorithm;

each value was either one if the corresponding pitch-class was present

in the segment or zero if it was not. For each segment, a ``global input

vector'' was then generated; this consisted of the sum of all the local

input vectors for all the segments up to and including that segment, with

each local vector weighted according to the exponential decay function.

The key chosen for each segment depended on the best key-pro®le match

for that segment's global input vector. The use of segments here requires

some explanation. Unlike my algorithm, the Huron-Parncutt does not

actually require any segmentation of the input; it could conceivably make

very ®ne-grained key judgments. For example, the piece could be divided

into very narrow time-slices, say a tenth of a second, and a new key

judgment could be made after each time-slice, with each prior segment

weighted under the exponential curve. (In this way, the duration of

events would also be taken into account.) In the case of my algorithm,

however, using segments and calculating ¯at input vectors for each seg-

ment was found to work better than counting each note and duration

individually; as noted earlier, when notes are counted individually, a

repeated note can have too strong an effect. It seemed likely that the same

would be true for the Huron-Parncutt algorithm.

The algorithm was tested with various different half-life values, to ®nd

the one yielding the best performance. This proved to be a value of 4

seconds. With this value, the algorithm scored correctly on 629 out of

896 segments, a rate of 70.2%.14 Inspection of the results suggests that

there are two reasons why this system performs less well than the pref-

erence rule system proposed earlier. One reason is its inability to back-

track. Very often, the segment where a key change occurs is not

obviously in the new key; it is only, perhaps, a few seconds later that one

realizes that a modulation has occurred, and what the new key is.

Another problem with the algorithm is that it has no real defense against

rapid modulation; with a half-life of 4 seconds, the algorithm produced

165 modulations (Kostka's analyses contained 40 modulations). Raising

the half-life value reduced the number of modulations, but also reduced

the level of performance.
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It might be possible to improve the decay model. For example, the

input vectors could be weighted with subsequent pitches as well as pre-

vious ones, perhaps allowing the system to handle modulations more

effectively. However, I will not pursue this further here.

I have argued here that the key-pro®le model can provide a successful

solution to the key-®nding problem. While I have proposed some modi-

®cations to Krumhansl and Schmuckler's original model, the basic idea

behind it proves to be a very useful and powerful one. However, it is

important to bear in mind a point made in chapter 1: the fact that a

model performs well at a task performed by humans does not prove that

humans do it the same way. This is particularly worth emphasizing with

regard to the role of harmony in key-®nding. As noted earlier, several

proposals for key-®ndingÐWinograd's, Maxwell's, and Bharucha'sÐ

have relied mainly on harmonic information. While it appears that a key-

pro®le model can perform key-®nding pretty well without harmony, it

might also prove to be the case that a harmony-based model can perform

the task well without key-pro®le information. To put it another way, it

may be that key information is often contained in musical stimuli in

more than one way. If this proves to be the case, then other evidence will

have to be consideredÐexperimental psychological data, for exampleÐ

in deciding which factors truly are ``key'' in how key-®nding is actually

done.
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8
Revision, Ambiguity, and Expectation

8.1

Diachronic

Processing and

Ambiguity

In previous chapters, I presented a series of preference rule systems for

deriving basic kinds of musical structure in common-practice music.

While each of the systems requires re®nement and improvement, they

achieve considerable success in generating the desired analyses, and many

of the problems that do arise seem susceptible to solution within the

preference rule framework. This in turn suggestsÐreturning to the main

point of this whole enterpriseÐthat the preference rule approach is

worth taking seriously as a hypothesis about music cognition.

At this point, however, the reader may be wondering how much the

analyses presented in previous chapters really correspond to the analyses

formed in listeners' minds. The general reality of harmony, meter, and

the like has been amply demonstrated by experimental research. Even so,

the kinds of representations discussed so far fail to do justice to those

we experience in listening, in at least two important ways. First of all,

we have said very little about the diachronic (or ``across-time'') aspect of

musical listening. Preference rule systems consider all possible analyses of

a piece, and then output a complete analysis as the preferred one; but this

is clearly not how music is actually perceived. Secondly, it seems too rigid

to assume, as I have in previous chapters, that we entertain only a single

preferred analysis, even at a given moment. Some moments in music are

clearly ambiguous, offering two or perhaps several analyses that all seem

plausible and perceptually valid. These two aspects of musicÐdiachronic

processing and ambiguityÐare essential to musical experience, and

accommodating them is an important challenge for any model of music



cognition. In this chapter I will try to show that preference rule systems

can meet this challenge.

8.2

Modeling the

Diachronic

Processing of

Music

So far, we have viewed the listening process mainly in terms of its end

product: a ®nal ``preferred'' analysis of a piece. Our concern has simply

been with devising models that predict this ®nal analysis as accurately

as possible.1 But a fundamental aspect of musical listening is the way it

occurs across time. As we listen to a piece, it is unfolded to us gradually.

We begin analyzing it as soon as we hear it (inferring structures such as

meter, harmony, and so on), and build our analysis up gradually as we

go along, perhaps revising our initial analysis of one part on the basis of

what happens afterwards. Does the current theory shed any interesting

light on this complex diachronic process?

At this point we must think back to the ``dynamic programming''

approach to implementation presented in chapter 1. It was argued there

that this approach allows the huge number of possible analyses of a piece

to be searched in an ef®cient manner. The program processes a piece

from left to right; at each segment, for each possible analysis of that

segment, it computes the best analysis of the piece so far ending with that

segment analysis. (I will speak of ``the program'' here, although what

follows applies equally well to each of the ®ve programs proposed in

earlier chapters.) In this way, the program is guaranteed to ®nd the

optimal analysis of the entire piece, without having to actually consider

an exponentially huge number of analyses. Up to now, we have regarded

the dynamic programming approach as an aspect of implementation, a

way of allowing the program to ®nd the optimal ®nal analysis. It may

be seen, however, that this strategy accomplishes something else as well:

It allows the program to build up its analysis of the piece in a ``left-to-

right'' manner. At each moment, the program is keeping a set of ``best-

so-far'' analyses of the portion of the piece that has been processed so far;

one of these analyses will be the highest-scoring one, and this is the pro-

gram's preferred analysis at that moment. This procedure has another

feature as well, which is of particular importance. Assume that the

system has just processed a certain segment Sn; it has chosen a certain

best-so-far analysis as the best one, and this entails a certain analysis for

segment Sn. Now the system moves on to segment Sn�1, and computes a

new set of best-so-far analyses. It may be, however, that the best-so-far

analysis chosen at Sn�1 entails a different analysis for segment Sn than the
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one initially chosen. In this way, the program in effect goes back to an

earlier segment and revises its initial analysis. I will argue that this feature

of the model is of considerable musical interest.

Essentially, then, what the program is doing is analyzing a series of

ever-growing portions of the piece: segment 1, then segments 1±2, then

segments 1±3, and so on. At each step, it ®nds the highest-scoring anal-

ysis of everything heard so far. The dynamic programming approach is

simply a very ef®cient way of accomplishing this, which does not require

consideration of a huge number of analyses. In the following discussions,

however, it is perhaps simplest to imagine that the system is building up a

larger and larger portion of the piece, always considering all possible

analyses of whatever portion has been heard.

The problem of applying preference rule models to the process of real-

time listening was ®rst explored by Jackendoff (1991), with regard to the

rule systems of GTTM. Jackendoff discusses three possible models of

analyzing music in a left-to-right mannerÐwhat he calls ``musical pars-

ing.'' In one, a ``serial single-choice'' model, the system always maintains

only one analysis. If this analysis proves to be untenable, the parser

backtracks to some previous point and tries another analysis. As Jack-

endoff notes, such a parser may end up generating a number of different

analyses for the same passage, one after another, until it ®nds an accept-

able one. Another model is the ``serial indeterministic'' model, which

does not generate any analysis of a passage until it is over. Jackendoff

points out that this approach is simply unworkable; there is no way of

choosing an analysis unless possible analyses have been generated for

consideration. (It is also counterintuitive, he suggests, in that it predicts

that we would not be aware of any interpretation until the passage is

over, which is clearly incorrect.) In other words, while each of these

models might seem at ®rst to avoid the generation of a number of alter-

native analyses, in fact they do not. This leads to the ®nal possibilityÐa

``parallel multiple-analysis'' model; this model generates many analyses

simultaneously, as long as there is reasonable evidence for them (totally

implausible analyses may be discontinued). There is a ``selection func-

tion'' which chooses whichever analysis is most satisfactory at any given

moment; this is the analysis that is actually present in our musical expe-

rience. Jackendoff suggests that since many analyses must be generated in

any case, it seems most plausible to assume that they are generated

simultaneously (avoiding the constant backtracking of the serial single-

choice model).
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Jackendoff's ``parallel multiple-analysis'' model is essentially similar to

the processing model advocated here. Like Jackendoff's, the model I

propose maintains a number of analyses, always choosing one analysis as

the most preferred at any given moment. The two models are also similar

in that they abandon analyses which are implausible, though they do

this in rather different ways. Under Jackendoff's scheme, analyses would

be abandoned when they fell below some ``threshold of plausibility''Ð

presumably a numerical score. Under the dynamic programming scheme,

the model in effect abandons analyses which it knows could never be the

preferred ones, no matter what happens in the future. But both the cur-

rent approach and Jackendoff's ful®ll the same purpose, namely keeping

the number of analyses manageably small.

Jackendoff also offers an interesting analysis of the opening phrase of a

Bach chorale (®gure 8.1). He shows how the ®rst few beats of the piece

(up to the third beat of m. 1) are metrically ambiguous, and could plau-

sibly be interpreted in different ways. Jackendoff provides ®ve hypothet-

ical continuations of the passage, each of which reinforces one of the

possible hearings of the opening (®gure 8.2). It is not until m. 2 that the

notated meter is clearly establishedÐthe main factors being the suspen-

sion and long melody note on the downbeat of m. 2, along with the long

A" in the left hand on the third beat of m. 1, which makes both of these

events seem like strong beats. This thought experiment is compelling, for

two reasons. First, it demonstrates the reality of revision. It is not obvious

that our interpretation of the ®rst few beats would be affected by what

happens afterwards; yet apparently it is. I ®nd that the different continu-

ations in ®gure 8.2 do make me interpret the opening chords in different

ways; in ®gure 8.2c, the ®rst chord seems strong, while in ®gure 8.2b, the

®rst chord seems weak and the second chord strong. Secondly, the fact

Figure 8.1
Bach, ``Ich bin's, ich sollte buessen,'' mm. 1±4.
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that the process of inferring the meter in these various passages is rela-

tively effortlessÐlacking any sense of backtrackingÐsuggests that the

different interpretations are, indeed, present all along; a particular con-

tinuation does not cause us to generate a particular analysis of the

opening chords, but merely causes us to choose among analyses that are

already generated. (We should not give too much weight to such intro-

spective evidence, however; it is possible, for example, that the system is

backtracking, but is just doing it so quickly and effortlessly that we do

not notice.)

Figure 8.2
From Jackendoff 1991. Hypothetical continuations of the opening of the Bach
excerpt in ®gure 8.1, with Jackendoff's metrical analyses shown below the score.
Reprinted by permission of the Regents of the University of California.
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8.3

Examples of

Revision

While capturing the left-to-right nature of listening is important for its

own sake, a particularly interesting implication of this phenomenon is

what I will call revision: the modi®cation of an initial analysis in light of

subsequent events. We might also think of revision as a kind of musical

``garden-path'' effect. The term ``garden-path'' is used in linguistics to

refer to sentences like ``the old man the boats.'' When you hear the ®rst

three words, you assume that ``man'' is a noun; but given the rest of the

sentence, you must revise your initial interpretationÐtreating ``man'' as

a verb insteadÐin order to make any sense out of it. In this section I will

explore some examples of revision in meter and harmony; in the follow-

ing section I will focus on revision in key structure, where it plays a par-

ticularly important role. In some cases I will discuss the output of the

implementations used in previous chapters. The programs are not nor-

mally set up to display their ``provisional'' analyses of pieces (analyses

only up to a certain point in the piece); however, it can easily be deter-

mined what their provisional analysis at a certain point would be, simply

by submitting an input representation of the piece only up to that point.

Jackendoff offers an example of metrical revision in his analysis of the

Bach chorale. Though he argues that the opening chords of the chorale

are metrically somewhat ambiguous, he also suggests that a certain

analysis is most salient at each moment. (What is at issue here is the level

above the quarter note, what we would call level 3; the tactus and lower

levels are taken for granted.) Up to the fourth chord, a duple meter

interpretation with the ®rst chord strong is most preferable (the structure

shown in ®gure 8.2a); this is due to the preference for strong beats near

the beginning of groups (favoring the ®rst chord as metrically strong),

and the preference for duple over triple meter. Once the long A" in the

left hand is heard (on the fourth beat), this chord is favored as metrically

strong; maintaining the strong beat on the ®rst chord requires a triple

meter interpretation, as shown in ®gure 8.2c. However, given the long

event on the sixth quarter-note beat, there is great pressure to locate a

strong beat there; maintaining the strength of the fourth quarter-note

beat leads to the correct metrical structure, corresponding to the notation

in ®gure 8.1.

While Jackendoff's real-time analysis of this piece is not implausible, it

is dif®cult to examine our own intuitions when the interpretations change

so rapidly (at least according to his analysis) and the preferred analysis at

any moment is not strongly favored over others. Another case where the

experience of revision is clearer is shown in ®gure 8.3: the famously

deceptive opening of the ®nal movement of Beethoven's Sonata Op. 14
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No. 2. Given only the ®rst ten notes, there is no reason why we would

entertain the triple meter indicated by the notation; rather, we would

more likely assume a duple interpretation, with the eighth-notes metrically

strong (structure A). It is only the following two measuresÐparticularly

the long chords on the downbeats of the third and fourth measuresÐthat

establish the correct meter (structure B). (Remember that the length of

an event is de®ned by its ``registral inter-onset-interval''; see section

2.3.) The main factor favoring a duple interpretation of the opening is

parallelismÐa factor discussed in chapter 2 (MPR 9), but not incorpo-

rated into the computer model proposed there. Another deceptive open-

ing is shown in ®gure 8.4, from Mozart's violin sonata K. 526. The two

Figure 8.3
Beethoven, Sonata Op. 14 No. 2, III, mm. 1±8.

Figure 8.4
Mozart, Sonata for Violin and Piano K. 526, I, mm. 1±6.
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long bass notes make it fairly clear that the eighth-note beats are grouped

triply rather than duply. However, the much greater length of the second

left-hand note favors this as metrically strong (MPR 2), leading to struc-

ture A. It is only the long notes in m. 5 that prove this to be erroneous.

The metrical program captures this well, producing structure A if given

only the ®rst three measures, but producing structure B if given the ®rst

six measures. We should note that there are other factors in this passage

of which the program is ignorant, but which might well in¯uence human

listeners. For example, the repeated two-eighth-note motive in mm. 1±2

gives a hint of a quarter-note level of meter (again due to parallelism),

which adds to the charming complexity of the passage. (To my ears, the

particular V-I cadence in m. 4 also suggests a strong-weak metrical pat-

tern, reinforcing the notated meter even before the long notes in m. 5;

this is a kind of stylistic cue to which the program is oblivious.)

Revision is of particular importance at higher levels of meter, due to

the frequent irregularities at these levels. Figure 8.5, from Beethoven's

Sonata Op. 10 No. 1, offers an example. The metrical level at issue is the

two-measure level: are odd-numbered measures strong, or even-numbered

measures? (We could describe these as the ``odd-strong'' and ``even-

strong'' interpretations, respectively.) The opening clearly demands an

odd-strong hearing; the big chords in mm. 1 and 5 favor strong beats at

these measures, due to the event rule (MPR 1). The odd-strong hearing

persists right up to m. 22, where the return of the theme at an even-

numbered measure causes a shift to an even-strong hearing. (The big

chord at m. 22 is probably enough to force this interpretation, although

the factor of parallelism also exerts pressure for analyzing mm. 22±3 in

the same way as mm. 1±2.) Once m. 22 is heard, however, the chords in

mm. 18 and 20 also seem strong in retrospect, relative to the ``empty''

downbeats on mm. 17 and 19. Once again, parallelism is a factor, given

the strong motivic parallel between mm. 21±2 and the previous two

two-measure groupsÐthough even considered in isolation, mm. 17±20

clearly favor an even-strong hearing, which allows them to be easily

tipped in that direction once m. 22 is heard.2

Harmony is also an area where revision can occur. It is important to

bear in mind here that what we mean by harmony is root structure, not

Roman numeral analysis. An example of harmonic revision would be

interpreting a chord ®rst as an A minor chord, and then later as a C

major chord; not, for example, interpreting a C major chord ®rst as I of

C and then as IV of G. (The latter would be a case of tonal revision; what
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is being revised there is the key interpretation, not the harmonies them-

selves.) Figure 8.6 gives an illustration of harmonic revisionÐthe open-

ing of ``Aus meinen Thraenen spriessen,'' the second song in Schumann's

song cycle Dichterliebe. Hearing just the ®rst chord, the natural choice of

root is A major. This is accounted for by the compatibility rule (HPR 1),

which favors interpreting A and C# as 1̂ and 3̂ of A rather than "3̂ and 5̂

of F# (or any other interpretation). When the bass descends through G#
to an F# minor triad, this gives the entire ®rst three chords the sense of a

single F# minor harmony; the third chord clearly has a root of F# minor,

and the strong beat rule (HPR 2) prefers to avoid a harmonic change by

including the previous chords in the same harmony. The unambiguous

harmonic moves to D major and A major in the following measure,

however, favor an A major interpretation of the ®rst chord; this is due to

the harmonic variance rule (HPR 3), which prefers an analysis whereby

roots of nearby segments are close together on the line of ®fths. Another

Figure 8.5
Beethoven, Sonata Op. 10 No. 1, I, mm. 1±23.
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complicating factor is the ending of the previous song in the cycle, ``Am

wunderschoenen Monat Mai.'' Since this song ends (remarkably) on a

dominant seventh, it seems clear that it should follow smoothly into the

second song with little pause. Given the C#7 chord at the end of the ®rst

song, the harmonic variance rule exerts pressure on the ®rst chord of

``Thraenen'' to be interpreted as F# minor rather than A major. To sum-

marize the changing interpretations of the ®rst chord: heard completely

in isolation, it implies A major; in the context of the ®rst three chords, it

is heard as F# minor; in the context of the entire ®rst phrase of the second

song, it is heard as A major; but when preceded by the end of the previ-

ous song, it once again implies F# minor.3

The harmonic program proposed in chapter 6 has partial success in

capturing these changing interpretations. When given just the single

chord, the ®rst three chords, or the entire ®rst phrase of the second song,

the program analyzes the ®rst chord as A major. (Thus it fails to capture

the F# minor analysis of the ®rst chord in context 2.) However, when it is

given the ending of the ®rst song plus the ®rst phrase of the second, it

analyzes the ®rst chord as F# minor.

Figure 8.6
Schumann, Dichterliebe: the ®nal two measures of ``Am wunderschoenen Monat
Mai'' and the ®rst two measures of ``Aus meinen Thraenen spriessen.'' The ®gure
shows how the harmonic interpretation of the ®rst chord of the second song
(marked by a box) depends on the context. Each bracket indicates a context in
which the chord can be heard; the symbol beneath indicates how the chord is
interpreted under that context.
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8.4

Revision in Tonal

Analysis

While revision manifests itself in all aspects of musical structure, it plays

a particularly important role in key structure. A number of authors have

observed cases where a segment of music ®rst appears to be in one key,

but then demands reinterpretation in another key in light of what fol-

lows.4 For testing of the key program's handling of revision, a special

version of the program was designed; this program produces what I call a

``running'' analysis, showing its provisional analysis for each segment of

the piece. (Recall that the key program requires the input to be divided

into segments; high-level beats of the metrical structure are used for this

purpose.) A sample of the program's output is shown in ®gure 8.7. The

segments of the piece are listed vertically; for each segment, the pro-

gram's provisional analysis of the piece up to and including that segment

is shown horizontally. The diagonal edge of the chart indicates the pro-

gram's initial analysis for each segment at the moment it is heard. When

the choice of key for a segment in a particular provisional analysis is

identical to the choice for that segment in the previous analysis, only a

hyphen is shown. If a key name is shown rather than a hyphen, this

means that the program revised its initial key choice for a segment and

chose something else instead. The program's ®nal analysis is indicated by

the ®nal (lowest) key choice for each segment; it is also listed along the

bottom for convenience.

The running analysis in ®gure 8.7 is for the Gavotte from Bach's

French Suite No. 5; this score for this piece is shown in ®gure 6.7. While

we would not think of this as a particularly ambiguous piece in tonal

terms, the program does ®nd several ``garden-path'' effects, where a seg-

ment ®rst analyzed one way is later reinterpreted. For example, consider

mm. 5 and 6. At m. 5, the program was still considering the ®rst ®ve

measures to be in G major. Given m. 6, however, the program decided

that m. 5 would be better interpreted as being in D. Other garden-path

effects are found at m. 9, mm. 12±13, and mm. 17±20. While I am not

certain that these revisions exactly capture my moment-to-moment

hearing of the piece, they seem generally plausible. Notice that two of

the provisional key sections in the running analysisÐthe move to B

major in mm. 12±13 and the move to C in mm. 17±20Ðare completely

obliterated in the ®nal analysis.

The current approach also sheds light on another phenomenon. It is

widely agreed that modulations typically involve ``pivot chords,'' chords

that are compatible with both the previous key and the following one.

In the Bach Gavotte, for example, the D major chord in m. 9 (the ®rst

half of the measure, anyway) could either be considered as I of D or V of
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Figure 8.7
A ``running analysis'' of the Gavotte from Bach's French Suite No. 5 in G major. (The score in shown in ®gure 6.7.) Segments, cor-
responding to measures, are listed vertically; the program's provisional analysis at each segment is listed horizontally. (The ®rst seg-
ment contains just the ®rst half measure of the piece.) In cases where the program's choice for a segment is the same as the choice for
that segment in the previous analysis, only a hyphen is shown. The ®nal choice for each segment is shown at the bottom of the ®gure.
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G. This would imply that key sections generally overlap by at least one

chord. The current approach holds out another possibility, however,

which is that pivot chords are essentially a diachronic (across-time) phe-

nomenon. It is not that a chord is understood as being in two keys at one

time, but rather it is ®rst interpreted in one way, based on the previous

context, and then in another way, in light of the following context. There

is nothing in the program that actively searches for, or prefers, such dia-

chronic pivot effects, but they often do seem to emerge at points of

modulation.

Chopin's Mazurka Op. 67 No. 2 yields an interesting and highly

unusual running analysis. (The score for mm. 1±16 is shown in ®gure

7.12, the analysis in ®gure 8.8.) Essentially, the program changes its

mind several times as to the main key of the piece. The ®rst three mea-

sures are analyzed as being in G minor; in m. 4, however, the program

decides, not implausibly, that the ®rst four measures have been in B"
major. At m. 8, it decides that G minor is a preferable choice for the

Figure 8.8
A ``running analysis'' of Chopin's Mazurka Op. 67 No. 2, mm. 1±16. (The score
is shown in ®gure 7.12.)
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entire ®rst 8 measures. At m. 12Ðparallel to the point in the ®rst half

where it switched to B" majorÐit again switches to this key. And ®nally,

at m. 15, it reverts to G minor once again. The model's uncertainty as to

the main key of the piece seems true to our experience of it. Clearly, if the

last two measures had cadenced in B" major rather than G minor (as in

the recomposition shown in ®gure 8.9), the model would have chosen B"
major for the entire section; I suspect a human listener might easily have

done so as well.5

Many cases of tonal revision involve ``enharmonic modulation.'' This

is a modulation involving some kind of reinterpretation of spelling. A

typical case involves a diminished seventh which is ®rst interpreted as a

dominant of some previous chord, but then reinterpreted as the domi-

nant of a following tonic. For example, in ®gure 8.10, the diminished

seventh on the third beat of m. 135 is interpreted ®rst as vii�4/3/G (with

E" in the melody)Ðparallel to m. 134Ðand then as vii�4/2/Em (with D#
in the melody). In such cases, then, we have both a revision of spelling and

a revision of tonal structure. (A similar example, involving a German sixth

chord, was discussed in section 5.6.) Such cases are not easily handled

under the current system. The reason is that the key program requires a

Figure 8.9
A recomposition of mm. 14±16 of the Chopin Mazurka excerpt in ®gure 7.12.

Figure 8.10
Beethoven, Sonata Op. 13, I, mm. 134±6
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complete TPC representation in order for it to operate. However, it is not

dif®cult to see how such phenomena could be handled in principle. Sup-

pose the TPC representation was being generated in a left-to-right man-

ner, and at every moment, whatever portion of the representation was

complete was fed to the key system for analysis. Immediately after the

®fth eighth-note of m. 135 (before the bass descends to B), the TPC rep-

resentation would presumably spell this chord with an E", and the key

system would interpret the key as G minor. Once the remainder of m.

135 was heard, the TPC representation would realize that the chord on

the third beat was really to be spelled with D# (this would be enforced

mainly by the harmonic feedback ruleÐa D# spelling allows a B7 chord

to be formed); the key system, in turn, would then see that E minor was a

more plausible key choice. At present, however, such interactions are

beyond the reach of the implemented model.

8.5

Synchronic

Ambiguity

Revision could be regarded as a kind of ambiguity. An event, or group of

events, is interpreted ®rst one way, then another. There are also cases,

however, where a segment of music seems to offer two equally plausible

interpretations, even from a particular vantage point in time. We might

think of revision as diachronic (across-time) ambiguity, while the latter

phenomenon is synchronic (at-one-moment-in-time) ambiguity. (The

term ``ambiguity'' alone usually refers to synchronic ambiguity, and I will

sometimes use it that way here.)

Lerdahl and Jackendoff (1983, 9, 42) recognized in GTTM that the

preference rule approach was well-suited to the description of ambiguity.

Informally speaking, an ambiguous situation is one in which, on balance,

the preference rules do not express a strong preference for one analysis

over another. This can also be nicely handled by the quantitative

approach to preference rules assumed here. Recall that the system eval-

uates analyses by assigning them numerical scores, according to how well

they satisfy the preference rules (again, this applies to any of the models

presented earlier). At any moment, the system has a set of ``best-so-far''

analyses, the analysis with the highest score being the preferred one. In

some cases, there may be a single analysis whose score is far above all

others; in other cases, one or more analyses may be roughly equal in

score. The latter situation represents synchronic ambiguity. To actually

test the current models in this regard would be quite complex. One would

®rst have to produce a set of excerpts that are agreed to be ambiguous in

some respect. It would then have to be decided how exactly the pro-
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gram's scores are to be interpreted; how close do the scores of the most

favored analyses have to be in order for us to consider that the program

judged the passage as ambiguous? I will not attempt such a rigorous test

here, but will informally explore some important kinds of ambiguity and

the current model's potential for handling them.

The preference rule approach accounts for a number of kinds of situ-

ations where ambiguity has long been recognized. An example in the case

of metrical structure is the hemiola, a switching back and forth between

duple and triple grouping at a high metrical level. Figure 8.11 shows a

typical case, from the ®rst movement of Brahms's Sonata for Violin and

Piano Op. 100. The ®rst two measures (along with the previous context,

not shown here), strongly establish the metrical structure indicated by the

notation, with every third quarter-note beat strong. Measures 33 and 34,

however, suggest an alternative structure, with every second quarter-note

strong. (The main factors here are the onsets of long events in the violin

on every second quarter-note beat, as well as the repeated two-quarter-

note motive in the piano part.) An alternation between the 3/4 and 3/2

structures follows, leading back to a strongly established 3/4 in m. 43.6

The effect of mm. 33±34 is one of real ambiguity; we hear the 3/2 meter

suggested by the hemiola, but also retain the 3/4 meter persisting

throughout, with the implied metrical accent on the downbeat of m. 34.

Whether the meter program's output here constitutes recognition of the

ambiguity is, again, dif®cult to say, but at least it recognizes the main

factors in favor of both interpretations.

Another important area of ambiguity is harmony. In doing harmonic

analysis, one frequently encounters passages which could just as well be

Figure 8.11
Brahms, Sonata for Violin and Piano Op. 100, I, mm. 31±4.
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analyzed in more than one way. Perhaps the most common source of

uncertainty is whether something constitutes a chord, or is just an orna-

mental event. This is re¯ected in conventional harmonic terminology in

the concept of a ``passing chord''Ðan entity somewhere between an

ornamental event and a true harmony. Consider the opening of Bach's C

Major Two-Part Invention, shown in ®gure 8.12a. Does the F-D in the

®rst half of the measure represent a double-neighbor ornamental ®gure,

part of the opening I chord, or is it an implied V7 harmony (orÐless

plausiblyÐii)? By the current model, the reason for treating the D-F as a

harmony is that the compatibility rule favors treating notes as chord-

tones rather than ornamental tones. (The two notes are reasonably

acceptable ornamental dissonancesÐthe D more so than the FÐsince

they are closely followed stepwise, but a chord-tone interpretation is still

preferable.) The pressure for treating them as ornamental comes from the

fact that the strong beat rule resists changes of harmony on weak beats,

particularly the change back to I that would follow the V chord-span.

Thus the model ®nds factors in favor of both interpretations. (A similar

situation arises in the second half of the measure; here, the presence of

yet a third tone in the segmentÐthe eighth-note BÐadds further pres-

sure for a chordal interpretation over an ornamental one, since three

ornamental tones carry a higher cost than two.) A similar case concerns

6/4 chords. In ®gure 8.12b, the second and fourth beats of the ®rst mea-

sure could be regarded as i6/4 chords (in E minor); alternatively, the

notes of the 6/4'sÐthe E's and G's in the right and left handsÐcould be

treated as ornamental to the notes of the following V chords. The same

issue arises with the cadential 6/4Ðsometimes called either a I 6/4 or a V

6/4, to re¯ect these two interpretations. Again, pressure for the chordal

interpretation comes from the compatibility rule and the ornamental

Figure 8.12
Two examples of harmonic ambiguity. (a) Bach, Two-Part Invention No. 1, m. 1;
(b) Beethoven, Sonata Op. 53, I, mm. 28±9.
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dissonance rule; pressure for the ornamental interpretation comes from

the strong beat rule. Rather than insisting on one interpretation or

another of ®gure 8.12b, it might be most satisfactory to say that we hear

it both ways at once: there is the sense of root motion to i, but also the

sense of an underlying V harmony. The current model offers an account

of how and why this ambiguous perception might come about.

Synchronic ambiguities of a similar kind often arise in key analysis. In

many cases, a brief move occurs to the pitch collection of another key,

and it is unclear whether to consider it a modulation or not. The term

``tonicization'' is sometimes used for this phenomenon; frequently it

simply involves a V-I harmonic progression (or ``secondary dominant'')

in the foreign key. In such cases, the key-pro®le rule favors a change of

key, while the modulation rule discourages it. Examples of this are

ubiquitous in common-practice music; see, for example, the brief move to

C major in mm. 17±18 of the Bach Gavotte in ®gure 6.7.

With regard to both key and harmony, one might offer a different

account of the phenomena I have described here. Rather than re¯ecting

ambiguity, they might be seen to re¯ect the hierarchical nature of these

representations. In terms of harmonic structure, there can be more than

one level of harmony present in a piece, with surface harmonies elabo-

rating more prolonged structural ones. With key, also, it is generally

accepted that each piece has a main key; within this main key, there may

be moves to secondary keys, and perhaps even briefer tonicizations

within and between those. The hierarchical nature of key and harmony is

an important issue that I have hardly considered here.7 However, the

above examples suggest that, to some extent, the perception of multi-

level tonal structures might be accounted for by the general principles of

harmonic and key perception presented earlier.

An area where the importance of ambiguity has been less widely

acknowledged is in spelling. I noted earlier that diachronic ambiguities of

spelling arise quite frequently, and are often accompanied by tonal revi-

sions as well. For example, a diminished seventh may be interpreted ®rst

one way, then another, or what ®rst seems to be a dominant seventh may

be reinterpreted as a German sixth. In general, the spelling of a chord is

determined by the subsequent context; by convention (and also I think in

perception), our ultimate interpretation of a diminished seventh chord,

for example, depends on what chord it resolves to. There are also cases,

however, where even once the following context is known, the correct

spelling of an event is unclear. These ambiguities cannot easily be repre-

sented in music notation, of course, since a single spelling has to be
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chosen for each event; but they are important nonetheless. Several

examples are found in Brahms's Intermezzo Op. 116 No. 6 (®gure 8.13).

Consider the D/Cx in the alto line in m. 1. This note is "7̂ of the current

key, and would normally be spelled as "7̂ (D) rather than #6̂ (see section

5.4); D also forms a Bm7 chord, which makes it preferred by the har-

monic feedback rule (TPR 3). Yet Brahms notates the pitch as Cx, which

does indeed seem like a plausible choice; perhaps this is due to the par-

allelism between Cx-D# and the previous B#-C#. The E/Dx in the corre-

sponding position in m. 5 seems less ambiguous; E seems to be strongly

favored here, maybe because the pitch variance rule (TPR 1) gives an

even stronger preference for E versus Dx (in an E major context) than for

D versus Cx. The G"/F#'s in mm. 19±20 present another striking ambi-

guity (®gure 8.14). Here, the voice-leading rule (TPR 2) exerts pressure

for a G" spelling, since the G"/F#'s resolve to F's; the harmonic feedback

rule would argue for F#, allowing a D7 chord to be formed. In m. 21 the

con¯ict is settled; in this case even voice-leading favors the F# intepreta-

tion. (Other examples of spelling ambiguity are discussed in Temperley

2000.)

Perhaps the aspect of structure where ambiguity is most common and

pervasive is grouping. As noted in chapter 3, it is frequently dif®cult to

Figure 8.13
Brahms, Intermezzo Op. 116 No. 6, mm. 1±8.
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decide between several possible grouping interpretations of a passage.

Figure 3.6 gave one case of ambiguous grouping: do the group bound-

aries in mm. 3±4 occur before the ®rst sixteenth-note of the measure, or

afterwards? Or do they occur both before and after the note, resulting in

a series of grouping overlaps? Or does the vagueness of our intuitions

here suggest that there are really no grouping boundaries at all, and the

entire passage is a single group? Figure 7.4 shows an even more prob-

lematic example, though the piece is monophonic. With the exception of

the three clear breaksÐm. 8, m. 36, and at the double barÐthere is no

clear phrase boundary anywhere. As discussed in section 3.6, these

problems become even more acute in complex polyphonic textures,

where it is often impossible to ®nd a single satisfactory segmentation.

Indeed, London (1997) has argued that ambiguity in grouping is so per-

vasive as to undermine any effort to produce a single preferred grouping

analysis for a piece. While I would not go quite that far, I would certainly

concede that ambiguity poses a serious complication in the modeling of

grouping structure.

8.6

Ambiguity in

Contrapuntal

Structure

A particularly interesting kind of ambiguity is found in contrapuntal

structure. As noted in section 4.1, there are frequent moments of uncer-

tainty in contrapuntal analysisÐfor example, where it is not clear

whether two inner-voice lines should be joined into a single line. More-

over, even when it is clear that a certain set of notes constitutes a line,

one often feels that that is not the whole story. Consider ®gure 8.15, the

opening of a Bach fugue. There is no question that all the notes of the

®rst two measures constitute a single contrapuntal voice, which then

continues beneath the second voice entering in m. 3. At the same time,

Figure 8.14
Brahms, Intermezzo Op. 116 No. 6, mm. 18±22.

224 II. Extensions and Implications



one could also break this voice down into two contrapuntal linesÐa

lower-register, gently descending line G-A"-G-F-G-A"-G-F-E", and an

upper-register line consisting of repetitions of the C-B-C-(D) motive.

The view of counterpoint I am proposing here is due primarily to the

music theorist Heinrich Schenker (1935/1979). Schenkerian analysis is

concerned, in part, with teasing apart the contrapuntal threads which

form the fabric of most tonal pieces. Schenker is not concerned with

super®cial lines such as the parts of a string quartet or the melody and

accompaniment lines in a sonata; these of course are obvious, and no

analytical work is needed to reveal them. Rather, the focus of Schenkerian

analysis is on the more subtle contrapuntal lines that may partition and

overlap the contrapuntal voices of the surface. For example, the analysis

of the Bach fugue subject discussed above, segmenting the notes of the

fugue subject into two contrapuntal lines, is essentially that proposed by

Schenker; Schenker's actual analysis is shown in ®gure 8.16. (Schenkerian

analysis is also hierarchical, in that it analyzes certain events as being

ornamental to others in a recursive fashion; this accounts for the omis-

sion of several notes in his analysis and the unusual rhythmic notation

and other symbols. This aspect of Schenker's thought is beyond our

scope here.)

Schenker's analyses of contrapuntal strands within melodies can be

quite perceptually compelling. The streams within the melody in ®gure

8.15 do not weaken the sense of the entire fugue subject as a coherent

melodic line; they might best be regarded as ``sub-streams'' within the

primary stream of the fugue subject itself. It is for this reason that I

consider such structures to represent a kind of ambiguity. Does the cur-

rent model shed any light on these sub-streams? In its normal state,

the counterpoint program does not identify the streams proposed by

Schenker; rather, it identi®es the entire fugue subject as a single stream.

However, it can be seen that Schenker's contrapuntal analysis is quite a

plausible one according to the rules proposed earlier. The pitches within

each stream are quite proximate to each other (indeed, more so than in

Figure 8.15
Bach, Well-Tempered Clavier Book I, Fugue No. 2 in C Minor, mm. 1±3.
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the ``one-stream'' analysis), thus favoring this analysis by CPR 1; how-

ever, penalties are incurred due to the addition of a second stream (CPR

2) and the numerous rests within streams (CPR 3). By raising the pitch

proximity rule penalty (CPR 1) from 1 point to 4 (per chromatic step),

and lowering the white square rule penalty (CPR 3) from 20 points to 10

(per second), the model can be made to produce the analysis in ®gure

8.17: essentially the same as Schenker's. By adjusting the parameters,

then, we can make Schenker's analysis the preferred one. With the nor-

mal parameters, it is not preferred, but it is perhaps one analysis among

several reasonably high-scoring ones. As suggested above, we can imagine

that our cognitive preference rule system for contrapuntal analysis con-

siders a number of different analyses in its search for the best one;

perhaps our ephemeral experience of an analysis such as ®gure 8.17

indicates that such an analysis is being considered as part of this search

process.

The possibility of sub-streams arises in many situations. Consider the

opening of the Mozart sonata discussed in chapter 4 (®gure 4.1). It was

suggested there that the left-hand part constitutes a single melodic line.

However, it might better be treated as three melodic lines, as shown in

®gure 8.18. Among other things, this allows us to make better sense of

the F-A chord in the left hand on the downbeat of m. 5 (conveniently

Figure 8.16
Schenker, analysis of Bach, Well-Tempered Clavier Book I, Fugue No. 2 in C
Minor, mm. 1±3, from Das Meisterwerk in der Musik (1926/1974). Reprinted by
permission of Cambridge University Press.

Figure 8.17
Bach, Well-Tempered Clavier Book I, Fugue No. 2 in C Minor, mm. 1±3, show-
ing the program's contrapuntal analysis (with modi®ed parameters).
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ignored in my initial discussion of this passage): this chord does not rep-

resent the sudden addition of a second line, but rather, the continuation

of two (or perhaps three) lines already present. Again, by adjusting the

program's parameters, it was possible to produce something quite similar

to this (although I was not able to produce exactly this analysis). In this

case, however, positing sub-streams is more problematic. As noted in

section 4.2, one of the main sources of psychological evidence for

streams is that the notes of the stream emerge as a clearly identi®able

unit. In Dowling's experiments with interleaved melodies, for example,

the fact that a certain group of notes could be easily recognized under

certain conditions indicated that it was being perceived as a stream. But

can we really say that the individual lines of the analysis in ®gure 8.18

constitute easily recognizable units? The middle line, taken in isolation,

would not easily be recognized as part of the Mozart sonata; indeed, it

hardly seems like a coherent melodic line at all, partly due to its synco-

pated rhythm. One might argue that the sub-streams that are inferred

here are rhythmically transformed versions of the actual ``surface'' sub-

streams, perhaps with each line reduced to a single sustained note in each

measure. (Indeed, this is roughly how they would probably be repre-

sented in a Schenkerian analysis.) All of this requires further study; the

point for now is that we should be cautious about positing sub-streams

such as those in ®gure 8.18 as psychologically real entitites.

Contrapuntal structure may also involve diachronic ambiguities. Con-

sider ®gure 8.19, the opening of a Bach fugue (discussed earlier in section

Figure 8.18
Mozart, Sonata K. 332, I, mm. 1±5: A ``sub-stream'' analysis of the left hand.

Figure 8.19
Bach, Well-Tempered Clavier Book I, Fugue No. 3 in C# Major, mm. 1±3. The
dotted lines show the analysis produced by the contrapuntal program.
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4.6). If given only the subject itself (up to the low C# on the third beat of

m. 2), the program will assign all the notes to a single melodic line.

However, if the following measures are added, the program will reinter-

pret the opening two measures as constituting two voices, as indicated by

the dotted lines in ®gure 8.19. Since two melodic lines have to be created

anyway, it is preferable by the pitch proximity rule to assign the lower

notes of the ®rst two measures to one line and the upper notes to another

line, thereby avoiding the leaps required by the single-line analysis. While

we would probably not consider the two-voice analysis of the subject to

be ``the'' correct analysis (if only one analysis is allowed), it surely cap-

tures an important aspect of the passage, and one whichÐas the pro-

gram indicatesÐemerges more strongly in retrospect: When the second

line enters at the end of m. 2, it can quite easily be heard to connect with

the low C# of the ®rst line. The effect is that the two lines of m. 3 grow

organically out of the subject.

8.7

Ambiguity in

Meter

While synchronic ambiguity certainly occurs with some aspects of musi-

cal structure, there are other aspects in which the potential for ambiguity

appears to be much more limited. The prime case in point is metrical

structure. Consider a simple pattern such as ®gure 8.20; this pattern

could be heard with the strong beats on either the G's or the E's (or per-

haps other ways as well). Prior contexts could easily be constructed to

reinforce one structure or the other; and even hearing the pattern in

isolation (repeated inde®nitely), it is not dif®cult to impose either struc-

ture at will, or to switch back and forth between them. What is almost

impossible, however, is to hear both structures simultaneously. In gen-

eral, it is dif®cult to entertain two metrical structures at once, even in

cases where either one can readily be entertained on its own. This does

not mean that synchronic ambiguity is never present in meter; I pointed

to the hemiola as a case where it occurs. One difference between these

two cases (®gure 8.11 and ®gure 8.20) is that in the hemiola case, only

one level of meterÐthe measure levelÐis different between the two inter-

pretations, whereas in a case such as ®gure 8.20, the tactus as well as all

higher levels are different.

Figure 8.20
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In fact, it appears to be generally true that the cases where synchronic

ambiguity arises in meter involve higher-level metrical ambiguity, where

the two competing structures share all but the highest levels in common.

Indeed, ambiguity in hypermeter is a widely occurring phenomenon that

has been the subject of considerable study in music theory (Lester 1986;

Schachter 1987; Kramer 1988; Rothstein 1989; Kamien 1993; Temperley

in press-a). Often, this involves two hearings of a passage in which either

even-numbered or odd-numbered measures can be heard as metrically

strong. An important special case of this is ``melody-accompaniment

con¯ict,'' where the accompaniment conveys one meter and the melody

another; this occurs with some frequency in the music of the Classical

masters (Kamien 1993) and Mendelssohn (Rothstein 1989). I have

argued elsewhere that hypermetrical ambiguity is particularly common in

closing themes of sonata form movementsÐthe theme just before the end

of the exposition. Figure 8.21 gives one example, and also illustrates the

phenomenon of ``melody-accompaniment con¯ict.'' The prior context

clearly establishes a pattern of even-numbered measures strong; the

change in the accompaniment at m. 72 also reinforces this (this is due to

the ``®rst-instance-strong'' clause of the parallelism ruleÐthe fact that a

new accompaniment pattern begins in m. 72, and is repeated in a varied

form in m. 73, favors m. 72 as strong). On the other hand, a melodic

phrase clearly begins at m. 73, favoring a strong beat there by the

grouping rule and hence an ``odd-strong'' interpretation. I feel that both

of these hearings are present in my experience of the passage.8

Despite the potential for ambiguity at higher levels of meter, the resis-

tance of lower-level meter to ambiguity remains an important and puz-

zling fact. In principle, the absence of synchronic ambiguity in a certain

kind of structure could be modeled fairly easily. We could simply say that

the analysis present to awareness was the highest-scoring one, and (bar-

ring an exact tie) there can only be one highest-scoring analysis at any

moment. Jackendoff (1991) proposes a similar solution, suggesting that

there is a ``selection function'' which is continually monitoring all the

available analyses and choosing one or another analysis as the preferred

one. However, as we have seen, most kinds of musical structure do

appear to allow synchronic ambiguity, in that multiple analyses may be

simultaneously present to awareness. Lower-level meter is, in this respect,

the exception to the rule. Why some aspects of perception should be

more susceptible to ambiguity than others is an interesting question,

deserving further study.
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Figure 8.21
Haydn, String Quartet Op. 76 No. 1, I, mm. 68±80.
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8.8

Expectation

In listening to a piece, we are not only building up our analysis of what

we have heard so far (which may or may not be revised at a later time);

we are also forming expectations about what will occur in the future. It is

these expectations that allow the experience of surprise, which is such a

vital part of musicÐan unexpected rhythmic jolt in a Beethoven sonata,

or an unforeseen harmonic turn in a Chopin mazurka. Some theorists

have argued that expectation, and the way expectations are denied or

ful®lled, is an essential part of musical experience and enjoyment (Meyer

1956, 1973; Narmour 1990). While I will not explore this issue in depth

here, preference rule systems do offer a interesting and promising way of

accounting for expectation. This relates to the fact, already mentioned,

that preference rule systems produce a score for any analysis that they

generate; some analyses satisfy the rules well and are therefore high-

scoring, while other analyses violate one or more of the rules and are

low-scoring. Since most music within the style allows at least one analysis

that is relatively high-scoring (a point I will develop further in chapter

11), we expect that future events in a piece will allow a high-scoring

analysis as well. In the case of meter, for example, we would expect

events that are reasonably well-aligned with whatever metrical structure

has previously been established. In the case of key we would expect

events that are reasonably compatible with the key-pro®le of whatever

key is currently in force, thus permitting a high key-pro®le score without

the penalty of a modulation. In the case of contrapuntal structure we

would expect events relatively close in register to current events, allowing

the pitch proximity rule to be satis®ed without the initiation of new

voices. Perhaps musical expectation is governed, in part, by the search

for a continuation that satis®es these various constraints. By this view (or

perhaps by any view), musical expectation is a kind of composition, since

it involves the actual generation of music. In chapter 11 we will explore

further how preference rules might be viewed as constraints on the pro-

duction of music, rather than merely on its perception. (Actually, even

the analysis of already-heard music can be seen to involve a kind of

expectation. When we impose an analysis on a passage, this means in

effect that we expect that analysis to be the one ultimately chosen. It is

for this reason that having to revise that analysis later can involve a kind

of surpriseÐas it surely does; surprise occurs because our expectations

have been denied.)

Among the most important work in the area of expectation has been

that of Schmuckler (1989). Schmuckler performed experiments in which

subjects were played part of a composition (a Schumann song), followed
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by a series of possible continuations; they were asked to rate how well

the continuations matched their expectations, and their responses were

analyzed. The melody and the piano accompaniment were used sepa-

rately in the ®rst two experiments, to test expectations of melody and

harmony independently; these were then combined in the third experi-

ment. In terms of the melody, it was found that the expectedness of

continuations tended to conform with Krumhansl's key-pro®les (dis-

cussed earlier in chapter 7), in that pitch-classes with high values in the

key-pro®le for the current key of the piece were highly expected. This,

then, is an example of the general reasoning advocated above: in terms

of the current approach, the more expected events were those permitting

a more ``high-scoring'' analysis. In the second experiment, the piano

accompaniment was used, with different continuations based on different

harmonic progressions. Schmuckler compared subjects' expectations

with the table of common harmonic progressions found in Piston's har-

mony textbook (1987). (Piston's tableÐas represented by SchmucklerÐ

is shown in table 8.1.) A strong correlation was found between the

expectedness of a harmony and its appropriateness according to Piston's

table (given the preceding context). While the model of harmony pre-

sented in chapter 6 has little to say about progression, one point is worth

noting here. It can be seen from Piston's table that root motions by

®fthsÐthat is, motions of one step on the line of ®fths, such as I-V or I-

IVÐtend to be judged as common. Out of the twelve possible ``®fth''

Table 8.1
Piston's table of usual root progressions

Context
chord

Often
follows

Sometimes
follows

Seldom
follows

Chords not
considered

I IV, V VI II, III VII

II V VI I, III, IV VII

III VI IV II, V VII, I

IV V I, II III, VI VII

V I IV, VI II, III VII

VI II, V III, IV I VII

VII III Ð Ð I, II, IV, V, VI

Source: Piston 1987, as encapsulated in Schmuckler 1989.
Note: For each diatonic chord, the other chords are listed which often follow it,
sometimes follow it, or seldom follow it. Chords which represent motion by ®fths
are shown in bold.
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motions between two diatonic roots, seven are in the ``often'' category

and three in the ``sometimes'' category.9 Recall that motion by ®fths is

preferred by the harmonic model due to the harmonic variance rule

(HPR 3), since this maximizes the proximity of roots on the line of ®fths.

In this way, Schmuckler's data suggest that listeners' expected con-

tinuations tend to be ``high-scoring'' under the current model of har-

mony. Both in terms of key and harmony, then, Schmuckler's experiments

offer tentative support for the idea that listeners expect continuations

which are high-scoring in preference rule terms.

Another approach to harmonic expectation has been pursued by

Bharucha and Stoeckig (1987), using a well-established psychological

paradigm known as ``priming.'' This paradigm is based on the idea that

if something is heard under conditions where it is highly expected, it

should be more quickly and accurately processed. In Bharucha and

Stoeckig's study, subjects were played a C major triad (the ``prime''),

followed by another triad (the ``target'') which might or might not be

mistuned (by a fraction of a semitone); subjects had to discriminate the

tuned targets from the mistuned ones. Subjects' speed and accuracy on

this task depended strongly on the relationship of the target to the prime;

in particular, the targets were more quickly and accurately judged if they

were close to the prime on the circle of ®fths. For present purposes, the

circle of ®fths can be reinterpreted as a range of points on the line of ®fths

centering around the prime, as shown in ®gure 8.22.10 Again, these

®ndings accord well with the current model: by the harmonic variance

rule, chords which are closer to previous chords on the line of ®fths will

be more ``high-scoring,'' and thus more strongly expected.

Other work on expectation has focused on the factors governing

melodic expectation apart from harmony and tonality. As noted above,

the current model of counterpoint predicts that, at a given point in a

melody, a note will be expected which is close to the current note in

pitch. This has in fact been shown experimentally: in judgments of the

expectedness of melodic continuations, pitch proximity proves to be a

signi®cant factor. However, other factors may also play a role. Narmour

(1990) has proposed a complex theory of melodic expectation, which has

been quanti®ed and greatly simpli®ed by Schellenberg (1997). Schellen-

berg proposes that experimental data about melodic expectation can be

modeled well by two factors: pitch proximity and ``reversal,'' which is a

change of direction after a large interval. However, von Hippel and

Huron (2000) have argued persuasively that ``reversal'' is simply a con-

sequence of the fact that melodies tend to be con®ned to a certain range;
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a large leap is likely to land near the extreme of the range, and thus will

most likely be followed by a return to the middle. Possibly this idea could

be incorporated into the contrapuntal analysis model proposed in chap-

ter 4: in grouping notes together into lines, we may be seeking not only to

minimize note-to-note intervals, but also to keep each line within its

established range.

One serious problem should be addressed regarding expectation and

revision. It is, again, a widely held view that the way music plays with

expectationsÐsometimes ful®lling them, sometimes denying themÐis an

important part of its impact and appeal. The problem is that the denial of

expectations would only seem to be possible with an unfamiliar piece.

With a piece we know well, we know what analysis will ultimately prove

correct (even if it is not the most preferable one at the moment it is

heard), and we know what notes are going to follow, so no surprise is

possible. And yet it certainly seems to be possible to go on enjoying

pieces after we know them well. Jackendoff (1991) has proposed a way

out of this dilemma, building on the modularity theory of Fodor (1983).

Jackendoff suggests that music perception may occur within what Fodor

calls a ``module,'' an encapsulated cognitive system that does not have

access to knowledge stored elsewhereÐfor example, any representation

Figure 8.22
Data from Bharucha 1987. Subjects were asked to identify a ``target'' chord as
tuned or mistuned, following a ``prime'' chord. The horizontal axis indicates the
circle-of-®fths position of the target, with the prime at zero; thus both position 1
and position 11 are one step away from the prime. I have added TPC labels to
represent the corresponding line-of-®fths position for each circle-of-®fths position
(assuming a prime of C). (For each circle-of-®fths position, the line-of-®fths posi-
tion was chosen that was closest to the prime.) Reprinted by permission of the
Regents of the University of California.
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of a piece we might possess in long-term memory. Thus the module is

always processing the piece as if it was being heard for the ®rst timeÐ

generating expectations that we know will be denied, wandering naively

down garden paths, and so on.11 This is an intriguing proposal, for it

suggests a way of reconciling the idea that expectation is central to mu-

sical ful®llment with the fact that that ful®llment can endure over many

hearings of a piece. On the other hand, it is surely true that our experi-

ence and enjoyment of a piece is affected by familiarity to some extent:

with enough hearings, the appeal of a piece will begin to fade. This sug-

gests that our processing of a piece may be affected by our long-term

knowledge of it to some degree. In any case, the modularity hypothesis

deserves further consideration and study.
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9
Meter, Harmony, and Tonality in Rock

9.1

Beyond

Common-Practice

Music

Once a theory has been tested with reasonable success in the domain for

which it was originally intended, it is natural to wonder whether it is

applicable elsewhere. In the following two chapters, I move beyond

``common-practice music''ÐEuropean art music of the eighteenth and

nineteenth centuriesÐto investigate the applicability of the preference

rule approach to other musical idioms. In this chapter I consider rock,

focusing in particular on three aspects of the infrastructure: meter, har-

mony, and key. In the following chapter I examine the validity of the

metrical and grouping models with respect to traditional African music.

Rather than using computer implementations and quantitative tests (as in

previous chapters), I will proceed in an informal fashion, consulting my

own intuitions as to the analyses of rock songs and considering infor-

mally what principles might give rise to them. (My approach to African

music will be similar, though there I will be relying mainly on the intu-

itions of ethnomusicologists rather than my own.)

To anticipate my conclusions, I will argue that the aspects of rock

and African music in question can largely be accommodated within the

models I have proposed, though some important modi®cations are

needed. I should emphasize, however, that where cognitive principles are

found to operate across styles, no claim whatever is implied that these

principles are universal or innate. To draw any conclusions about this

would require study of many more than three musical idioms. This is

especially true in the case of rock, since part of its roots are in common-

practice music (or at least are shared with common-practice music),

so whatever similarities may exist between these styles may be due to



historical rather than innate factors. Rather, to the extent that common-

alities across styles are found, I will remain neutral as to their origins. It is

interesting to examine how widely a musical theory can be applied, quite

apart from issues of innateness or universality.

The study of styles outside the Western art music tradition presents

challenges that do not arise with common-practice music. In common-

practice music, a piece is written by a composer in the form of a nota-

tional score, and is then played by a performer; the score is generally

taken to represent the piece, and is thus the main object of attention and

analysis. In rock, by contrast, there generally is no score; rather, we are

more likely to identify the piece (or rather the ``song'') as a particular

performance, captured in a recording. Because scores are visual, and

because they consist of discrete symbols, they submit easily to analysis

and discussion. Moreover, as noted earlier, scores often provide explicit

information about infrastructural representations (meter, spelling, and to

some extent key, contrapuntal structure and phrase structure). However,

what ®rst appears to be a problem may well be a blessing in disguise.

Though the structures conveyed by a score may often coincide with our

hearing, in some cases they may not, and indeed may sometimes exert

an unwanted in¯uence on our hearing. To take one example, with a

common-practice piece we need never ask what the metrical structure is;

we simply look at the notation. With rock, there is no notation, so we

must ask ourselves what metrical structure we actually hear; we must let

our ears decide. Of course, such judgments may be somewhat subjective,

so that we should be cautious about treating them as hard facts (though

this problem arises with common-practice music as well). I will hope that

my intuitions about the meter of rock songs (and other things) are shared

by most other readers, although it would not surprise me if there were

occasional disagreements.

The input representation assumed in this chapter and the following

one is the same as in previous chapters: a ``piano-roll,'' showing pitches

represented in time. Such a representation may seem problematic for

musics outside of the Western art music tradition. In the ®rst place, a

piano-roll input assumes quantization of pitch in terms of the chromatic

scale. For some kinds of music, the chromatic scale may not be the

appropriate scale to use for quantization; in other cases, such as rock,

though the fundamental scalar basis is the same as in common-practice

music, there are in¯ections of pitch (e.g. ``blue notes'') which cannot be

represented in a quantized chromatic framework. This is, indeed, a limi-

tation of the current approach which I will not attempt to address here.
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Another problem with the piano-roll representation, as was discussed

in chapter 1, is that it ignores timbre. While timbre is surely an important

aspect of all kinds of music, some authors have argued that it is of par-

ticularly central importance for rock (Tagg 1982, 41±2; Middleton

1990, 104±5; Moore 1993, 32±3). While this may be true, I will main-

tain that the kinds of structure at issue hereÐmeter, harmony, and keyÐ

depend mainly on pitch and rhythm, and thus can largely be inferred

without timbral information.

9.2

Syncopation in

Rock

With regard to meter, I will argue that the metrical principles of rock are,

for the most part, highly similar to those of common-practice music.

However, there is one important difference, concerning syncopation.

Syncopation refers to some kind of con¯ict between accents and meter.

(I use the word ``accent'' here in the sense of phenomenal accent, as

described in chapter 2: a phenomenal accent is any event that favors a

strong beat at that location, such as a note, long note, loud note, or

stressed syllable.) Syncopation occurs frequently in common-practice

music; ®gure 9.1 shows two examples. In each case, several weak beats

Figure 9.1
(A) Beethoven, Sonata Op. 28, I, mm. 135±43. (B) Beethoven, Sonata Op. 31
No. 1, I, mm. 66±69.
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are accented by long notes in the right hand, creating con¯icts with the

prevailing meter. However, syncopation in rock is of a rather different

nature, and requires special treatment under the current model.

Consider the melodies in ®gure 9.2. The ®rst is from Handel's Messiah;

the second and third are from Beatles songs, ``Here Comes the Sun'' and

``Let It Be.'' In all three cases, the metrical structure corresponding to the

notated meter is clearly implied by the accompaniment (which is not

shown here). This seems to be accounted for well under the metrical

preference rule system proposed in chapter 2: the notated meter is the

preferred one because it aligns strong beats with events rather than rests

(MPR 1), particularly long events (MPR 2) (e.g., the bass notes in ``Let

It Be''), as well as with changes in harmony (MPR 6). The problem is

with the melodies themselves. (The melodies are shown in ®gure 9.3 with

their associated metrical structures; the stress pattern of the lyrics is also

shown in an informal way.) An important preference rule in vocal music,

mentioned brie¯y in chapter 2, is that there is a preference to align strong

beats with stressed syllables of text (MPR 8). We could express this a

little more precisely by saying that, in general, the metrical strength of a

syllable should correspond with its degree of stress; for example, a stressed

syllable should be metrically stronger than an adjacent unstressed one. In

the Handel, the melody appears to adhere well to this principle; given the

Figure 9.2
(A) Handel, ``For Unto Us a Child is Born,'' from The Messiah. (B) The Beatles,
``Here Comes the Sun.'' (C) The Beatles, ``Let It Be.''
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Figure 9.3
The three melodies shown in ®gure 9.2, along with their metrical structures. The
stress pattern of the text is also shown; stressed syllables are in bold, and highly
stressed syllables are in bold and underlined. (A) ``For Unto Us a Child is Born.''
(B) ``Here Comes the Sun.'' (C) ``Let it Be.''

C
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notated meter, stressed syllables and strong beats coincide almost per-

fectly. In the Beatles examples, however, the melody and the metrical

structure appear to be in severe con¯ict. In some cases both stressed and

unstressed syllables fall on very weak beats (as in ``Here Comes the

Sun''); in other cases, unstressed syllables are actually metrically stronger

than adjacent stressed ones (for example, the word ``myself'' in ``Let It

Be''). (Since other syllables in each melody reinforce the notated meterÐ

such as the words ``When I ®nd'' in ®gure 9.3cÐthere is con¯ict not only

between the melody and the accompaniment, but also between different

sections of the melody.) There are con¯icts with regard to other prefer-

ence rules as well. For example, the event rule (MPR 1) would prefer a

structure where every event-onset falls on a strong beat; yet in the second

phrase of ®gure 9.3b, ``It's been a long cold lonely winter,'' exactly the

opposite is the case. The length rule (MPR 2) prefers structures where

longer syllables fall on strong beats; in ®gure 9.3c, however, ``times'' and

``Mar-'' are relatively long but fall on weak beats. In the Handel melody,

by contrast, both of these rules are followed fairly strictly, as they are in

most common-practice music.

The phenomenon of rock syncopation would seem to present a prob-

lem, or at the very least a challenge, for the current metrical theory as it

stands. In rock, it appears, the perceived metrical structures often involve

severe violations of the preference rules. Of course, the mere fact that our

perception of a piece involves some violation of the preference rules is

not necessarily a reason to question the model. Preference rule viola-

tions occur often in common-practice music as well, and are an impor-

tant source of musical interest and tension, as I will discuss further in

chapter 11; indeed, syncopation itself is a common phenomenon in

common-practice music, as shown in ®gure 9.1. In the case of rock,

however, this view of syncopation seems untenable. It would suggest that

rock syncopationsÐapart from adding a small degree of tension or

instabilityÐdo not really affect our judgments of a song's meter; they are

heard as con¯icting with the meter, but are disregarded or overruled. But

the syncopations in ®gure 9.2b and c do not seem incompatible with the

notated meter; there is very little sense of ambiguity or instability in these

melodies. Indeed, it seems quite likely that even if one of these melodies

was heard unaccompanied, the meter that was inferred would be the

correct one. Moreover, other possible settings of these melodies clearly

do seem incompatible with the notated meter. Consider the alternative

setting of the ``Here Comes the Sun'' lyric in ®gure 9.4 (assume, as

before, that the notated meter is clearly implied by the accompaniment).
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This setting clearly seems incompatible with the notated meter; in the

context of an accompaniment implying the notated meter, it would, I

think, sound quite wrong. This suggests that we do not simply disregard,

or override, melodic syncopations in our judgments of meter; indeed,

syncopated rhythms often seem to reinforce the meter of a song rather

than con¯icting with it.

An alternative approach would be to view syncopation as some sort of

deviation from an underlying representation. Inspection of the melodies

in ®gure 9.3b and c reveals a consistent pattern: each of the syncopated

events occurs on a weak beat just before a strong beat, and generally the

more stressed events occur before the stronger beats. For example, in

®gure 9.3b, the unstressed syllable ``it's'' occurs just before a quarter-

note beat, while the stressed syllable ``been'' occurs just before a stronger

half-note beat. If the syncopated events are shifted forward (to the right),

the stress patterns and metrical structures can be made to align almost

perfectly. Perhaps, then, a shifting process of this kind is what allows us

to hear the melodies as supporting the meter, despite their apparent

con¯ict with it.

One way of modeling this more formally is by positing a underlying

``deep'' representation of events which may differ from the ``surface''

representation. Both the deep and surface representations are pitch-time

representations of the kind assumed in earlier chapters. The surface rep-

resentation represents durations exactly as they are heard; in the deep

representation, however, syncopated events are ``de-syncopated''Ðthat

is, shifted over to the strong beats on which they belong. It is then this

deep representation which serves as the input to further processing. We

therefore posit the following rule:

Syncopation Shift Rule. In inferring the deep representation of a melody

from the surface representation, any event may be shifted forward by one

beat at a low metrical level.

How do we determined whether a particular event is to be shifted for-

ward, and which level it is to be shifted at? The answer is simple: the

Figure 9.4
An ungrammatical setting of the ``Here Comes the Sun'' lyric.
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solution is chosen which most satis®es the metrical preference rules. (All

the rules are to be taken into account here, not just the one pertaining to

text.) We therefore either leave an event where it is, or shift it forward by

a beat at some level, depending on which resulting deep representation

better satis®es the preference rules.

Two points of clari®cation are needed here. By an ``event,'' I mean

a single note; thus it is possible for one note to be shifted, while other

simultaneous notes (such as accompaniment chords) are not. Secondly,

when we shift an event forward, do we shift the attack-point forward

(thereby making the event shorter), or do we shift the entire event for-

ward? This is a rather dif®cult question. Shifting only the attack-point

forward might reduce the duration of the event to zero (or it might even

make the attack-point occur later than the end of the event); on the other

hand, shifting the entire event forward might cause it to overlap with the

following event in the melody. This problem might be addressed in a

``preference rule'' fashion: we prefer to shift the end of the event forward

unless it causes an overlap with the following note. However, I will not

address this problem further for now; we will simply adjust the durations

of events in an ad hoc manner.1

Let us apply this model to the phrase from ``Here Comes The Sun,'' as

shown in ®gure 9.5. The placement of the syllables in the metrical dia-

gram represents their position in the surface representation; the lines

show how they are shifted (in some cases) to different positions in the

deep representation. In the ®rst half of the phrase (``Little darling''), the

surface representation of the melody satis®es the linguistic stress rule

wellÐthe stress level of events corresponds nicely to their metrical

strengthÐso no shifting of events is necessary. Now consider the sylla-

bles ``It's-been.'' According to the linguistic stress rule, stressed syllables

should fall on stronger beats than unstressed syllables; thus ``been''

should fall on a stronger beat than ``it's.'' If we leave the syllables exactly

as they are, they have the same metrical strength: both are on beats at

level 1 (i.e., the lowest level). But if we shift ``been'' forward by one beat,

it now falls on a beat at level 3; thus ``been'' is stronger than ``it's.'' In

this case it makes no difference whether we shift ``it's'' forward to the

following beat (level 2) or leave it where it is; either way, ``been'' is still

stronger. By this technique, the syllables can be shifted forward such a

way that every pair of adjacent syllables satis®es the linguistic stress rule,

as shown in ®gure 9.5. As mentioned, if we consider only the linguistic

stress rule here, it is not necessary to shift unstressed syllables forward.

However, the event rule (preferring events to coincide with strong beats)
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favors not only associating ``been'' with the following beat (reinforcing

the linguistic stress rule), but also ``it's,'' and every other syllable in the

phrase. This leads to the deep representation shown in ®gure 9.5.

``Let It Be'' presents a slightly more complicated example (®gure 9.6).

Here, several events are shifted forward by a beat at the sixteenth-note

level, such as ``self'' and ``comes''; however, two events, ``Mar-'' and

``me,'' are syncopated at the eighth-note level. This presents no dif®culty

for the current model. The syncopation shift rule says only that an event

may be shifted forward by one beat at a low metrical level; there is

nothing to prevent shifts at different metrical levels within the same piece

or even the same phrase. As in ``Here Comes the Sun,'' there are several

events whose placement in the surface representation fully satis®es the

linguistic stress rule, but which are shifted forward so as to satisfy the

length rule and event rule. It may be noted, however, that this was not

done in every possible case. The second syllables of ``trouble'' and of

``mother'' would satisfy the rules more if they were shifted forward

(placing the syllables on stronger beats), but I have left them unchanged;

why? My intuition here is that these cases do not represent syncopations,

perhaps because the second syllables of ``trouble'' and ``mother'' are

naturally short and therefore ®t well with the original rhythm. There is

                    
        

Figure 9.5
``Here Comes the Sun,'' showing syncopation shifts.
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clearly some indeterminacy here; it is not always obvious what the deep

representation for a melody should be. While I will not attempt to solve

this problem here, I do not believe it is intractable. Essentially, we nor-

malize the surface (where possible, given the rule stated above) so as to

resolve the most severe violations of the preference rules; other minor

con¯icts are perhaps left as they are.

Now let us examine how the syncopation rule might work with the

ungrammatical setting of the ``Here Comes the Sun'' lyric, from ®gure 9.4

(assuming, again, that the notated meter is communicated by the accom-

paniment). Consider just the second half of the line, shown in ®gure 9.7.

Again, we will examine the syllable pair ``It's-been.'' The stress pattern

dictates that ``been'' should be stronger. But notice that there is no legal

way of shifting these syllables forward such that the preference rules are

satis®ed. As they stand, both syllables fall on weak beats; the event rule

would prefer shifting both of them forward to stronger beats. But if they

are shifted forward, the metrical strength of ``it's'' will exceed that of

``been,'' thus violating the linguistic stress rule. If ``been'' is shifted for-

ward but not ``it's,'' the linguistic stress rule will be satis®ed but not the

event rule. In other words, by the current model, there is no way of

 

Figure 9.6
``Let it Be,'' showing syncopation shifts.
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shifting events in this example so that both of these rules will be satis®ed.

Thus the model predicts that this setting of the text would be heard as

con¯icting with the notated meter, as I believe it is. In this case, then, the

model is able to distinguish a good setting of the line from an bad one.

9.3

Applications and

Extensions of the

Syncopation

Model

This simple model proves to be quite useful in exploring the uses of syn-

copation in rock. In this section I will examine some general consequences

of the model and some constraints on the way syncopations are used. I

will then brie¯y consider the aesthetic functions of syncopation.

Syncopation could be viewed as a con¯ict between stress and meter.

We ``resolve'' the syncopation, where possible, by shifting an event for-

ward to the following beat. The cases we have considered so far all

involve shifting an event forward to a beat which is stronger than the

beat it falls on in the surface representation. Could a syncopation also be

resolved by shifting an unstressed syllable to a weaker beat? Such situa-

tions do arise, but under somewhat limited circumstances. The only time

they occur is in cases where an unstressed syllable is immediately fol-

lowed or preceded by a syncopated stressed one, as in the phrase from

``Hey Jude'' shown in ®gure 9.8. In the last word of this phrase, the ®rst

syllable ``bet-'' is clearly stressed relative to the second syllable ``-ter,'' yet

the beat of the second syllable is stronger than the beat of the ®rst. In

order to resolve this, we might shift ``bet-'' forward to the strong beat

that follows it. But this does not solve the problem; ``bet-'' and ``-ter'' are

  

Figure 9.7
Ungrammatical setting of the ``Here Comes the Sun'' lyric, showing possible
syncopation shifts.
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now equally stressed. Moreover, both syllables now occur on the same

beat: a conceptually troubling situation (we return to this point below).

Clearly the way to resolve this is by associating ``-ter'' with the following

weak beat. This kind of shifting is fairly common in rock, but it rarely

occurs a number of times in succession; that is, we rarely encounter a

series of syllables in which each syllable is shifted forward to the beat of

the following one. The phrase from Marvin Gaye's ``I Heard It through

The Grapevine'' shown in ®gure 9.9 is an extreme example.

A phrase from ``Imagine,'' by John Lennon, presents another interest-

ing case (®gure 9.10a). Here, ``heav-'' is stressed relative to ``no,'' but

falls on a weaker beat; we can resolve this con¯ict by shifting ``heav-''

forward to the following beat at the eighth-note level. As the rules stand,

there is no reason to shift the second syllable of ``heaven.'' However,

shifting the ®rst syllable but not the second would cause the ®rst syllable

of ``heaven'' to fall on a beat after the second syllable! The more natural

Figure 9.8
The Beatles, ``Hey Jude.''

Figure 9.9
Marvin Gaye, ``I Heard It through the Grapevine.''

Figure 9.10
John Lennon, ``Imagine,'' showing metrical shifts.
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solution would be to shift the second syllable of ``heaven'' forward by an

eighth-note as well, as shown in ®gure 9.10b. In general, it seems coun-

terintuitive to have situations where two events in a melody fall on the

same beat in the deep structure, or where the order of events in deep

structure differs from their order in surface structure. We can enforce this

with a simple added rule:

Deep Representation Ordering Rule. The order of events in a line in the

deep representation must be the same as their order in the surface

representation.

The shifting of events from strong beats to weak beats (or from one

beat to another of equal strength, as in ``Imagine''), while not infrequent,

is not nearly as common as shifting from weak beats to strong beats. In

general, it only seems to occur in situations where the ordering rule

would otherwise be violated (as is the case in ®gures 9.8, 9.9, and 9.10).

The relative rarity of ``strong-to-weak'' shifting is not dictated by any

rule, but is simply an emergent feature of the model; from the point of

view of the preference rules, there is rarely any motivation for shifting

events from strong beats to weak ones.

I mentioned that it is quite possible for events within a piece or phrase

to be syncopated at different levels. This raises a further question: do we

ever ®nd a single event that is syncopated at more than one level; for

example, at both the eighth- and sixteenth-note level? This would mean

that the event was shifted forward to a beat three sixteenths after the beat

it occurred on. This phenomenon does in fact occur, but only very occa-

sionally. One example is found in the Fleetwood Mac song, ``Go Your

Own Way,'' shown in ®gure 9.11. In our understanding of this passage,

I would suggest, each note is ®rst shifted to the following eighth-note

beat; then the ®nal note of each phrase is further shifted to the following

Figure 9.11
Fleetwood Mac, ``Go Your Own Way.''
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quarter-note beat. (This two-stage shifting process is shown in ®gure

9.12.) (Another example is the Nirvana song ``Come as you Are,'' on the

phrase ``And I DON'T have a GUN''; here again, ``gun'' seems to be syn-

copated at both the eighth- and quarter-note levels.) Such cases are rare,

however, and one feels that they are ``stretching the rules'' of the style.

While all the examples discussed so far have used vocal music, synco-

pations may also occur in instrumental lines. Two examples of synco-

pated instrumental lines are shown in ®gure 9.13, from the Beatles songs

``Day Tripper'' and ``Hey Bulldog.'' The motivation for considering these

lines as syncopated is essentially the same as in the case of vocal melo-

dies. As they stand, the lines appear to create metrical con¯icts between

certain events of the melody and the notated meter (implied, as usual, by

the accompaniment and by other parts of the melodies themselves). In

``Day Tripper,'' for example, the D at the end of the ®rst measure and the

following F# are both long notes on relatively weak beats; the event rule

Figure 9.12
``Go Your Own Way,'' showing two-stage metrical shifts.

Figure 9.13
(A) The Beatles, ``Day Tripper.'' (B) The Beatles, ``Hey Bulldog.''
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would thus favor treating these events as metrically strong. But again,

these melodies do not seem incompatible with the notated meter; the

logical explanation is that the syncopated events are understood as

occurring on the following beat.

Earlier I argued against the view that the function of syncopations in

rock is to add metrical tension or con¯ict. One might ask, then, what

functions do they serve? This is a very dif®cult question, but I wish to

offer a few thoughts. One basic attraction of syncopation is that it allows

for a great variety of surface rhythms. I mentioned earlier that in

common-practice music, certain metrical preference rules tend to be fol-

lowed to a high degree, particularly the event rule, which prefers events

(rather than rests or continuations of events) to occur on strong beats.

(When I say that a rule is followed in a style, I mean that the music is

usually written so that an analysis can be formed for it which satis®es the

rule to a high degree. This idea will be ¯eshed out more fully in chapter

11.) Of course, the rule is not followed absolutely (so that events are

always on strong beats and rests never are), but it is followed to a much

greater degree than in rock. As a result of this, many rhythmic patterns

found in rock simply never occur in common-practice music. For exam-

ple, I would challenge anyone to ®nd a melody with anything like the

rhythm of the ®rst line of ``Let It Be'' in common-practice music. In rock,

the preference rules may well apply as strongly as they do in common-

practice music, but they apply only to deep representations; the surface

rhythm is allowed considerable freedom, due to the syncopation shift

rule. The variety of rock rhythm is apparent also in cases where a single

melodic line is repeated with different lyrics. In such cases, the syncopa-

tions of the melody often vary slightly from one repetition of the line

to another (although the deep representation normally stays the same).

``Let It Be'' is an example of this; compare the line shown in ®gure 9.2cÐ

the ®rst occurrence of this melodic phraseÐwith the second occurrence,

shown in ®gure 9.14. In such cases, however, I would argue that the goal

is not so much variety, but rather, ®tting the melody to the rhythm of the

lyrics in the optimal way. Even if two lines have the same stress pattern,

Figure 9.14
The Beatles, ``Let it Be,'' ®rst verse, third line.
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the most natural rhythms for them may not be the same. In the case of

``Let It Be,'' the word ``mother'' is naturally sung with the ®rst syllable

very short; however, the word ``standing''Ðat the analogous place in the

second lineÐis naturally sung with the ®rst syllable longer. Through

syncopation, such variations can be accommodatedÐin this case, by

shifting the syllable ``stand'' one sixteenth-beat earlierÐwhile preserving

the same underlying rhythm for each line.

The basic model of syncopation proposed above is quite a simple one,

and many of its uses are quite straightforward. However, syncopation

also has the potential for more ambitious and complex uses, and these

are sometimes found in rock as well. One such use occurs in cases of

metrical shift from one structure to another. If we consider the surface

rhythm of a melody such as ``Let It Be,'' we ®nd that in a number of cases

stressed events occur three beats apart: for example, ``FIND my-SELF.''

We might think of this as implying a latent triple meter in the song,

which may or may not be exploited. In some cases, this latent triple meter

is exploited and there is an actual move to triple meter; and in cases

where this happens, the fact that the triple meter has been anticipated by

the syncopated rhythms of the duple meter section makes the transition

smoother than it might otherwise be. The Beatles' song ``Mean Mr.

Mustard'' provides an example (®gure 9.15). The ®rst verse (the last line

of which is shown in ®gure 9.15) is in duple meter; as usual, the synco-

pations feature stressed syllables three eighth-notes apart (``MEAN old

MAN''). In the second verse, however, the latent triple meter of the vocal

line ``takes over,'' as it were, and becomes the underlying meter of the

song. The transition to triple meter here seems rather natural and seam-

less; in part, I think, this is because it has been subtly anticipated by the

Figure 9.15
The Beatles, ``Mean Mr. Mustard.'' (a) Last line of ®rst verse; (b) last line of
second verse.
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syncopated rhythms of the melody. (Other elegant examples of duple-

triple shift are found in the Beatles' ``Two of Us,'' Led Zeppelin's ``The

Ocean'' and ``Over the Hills and Far Away,'' Pink Floyd's ``Have a

Cigar,'' Rush's ``Entre Nous,'' and Soundgarden's ``Spoon Man.'')

To account for syncopation in rock, I have argued, it is not necessary

to posit a much greater degree of metrical con¯ict in rock, nor is it nec-

essary to introduce fundamentally different preference rules. Rather, rock

syncopations can be explained through the introduction of one simple

(though rather fundamental) extension of the model proposed earlier:

a ``deep representation'' in which syncopations have been resolved. (The

model I propose might also be applicable to jazz and other popular

idioms, but I will not explore that here.)

It might seem extravagant to posit two complete input representations

of a piece, just for the sake of handling syncopation. Alternatively, one

might assume only a single representation, which initially re¯ects the

rhythms of the surface, but is modi®ed in accordance with the syncopa-

tion shift rule. However, there is reason to think that the surface repre-

sentation is more than an ephemeral stage of processing which is lost once

syncopation-shifting has taken place. As noted earlier, surface rhythms

perform important aesthetic functions, providing rhythmic variety and

also playing a role in cases of metrical shift. On the other hand, the ``deep

representation'' is important too; it not only serves to resolve metrical

con¯icts, but also appears to provide the input to harmonic analysis, as I

discuss below. Thus there is reason to suppose that both surface and deep

representations are ``kept around'' and are able to play a role in higher

levels of musical processing.2

9.4

Harmony in Rock

How well does the harmonic model proposed in chapter 6 apply to rock?

It is important to note, ®rst of all, that rock is clearly a harmonic style,

one in which harmonic structure is present. A rock piece is composed of

a series of harmoniesÐentities implied by groups of pitches; harmonies

in rock are characterized ®rst and foremost by roots, although other

information is also important, such as major/minor and triad/seventh.

Many rock songs are handled quite effectively by the rules proposed

earlier for common-practice harmony. Consider ®gure 9.16, the Who's

``The Kids are Alright'' (®rst verse), and ®gure 9.17, Pink Floyd's

``Breathe'' (®rst verse). The harmonic structure in both cases seems clear,

and is as indicated by the chord symbols shown above the staff. (Rather

than just including rootsÐas the program discussed in chapter 6 would
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Figure 9.16
The Who, ``The Kids are Alright,'' ®rst verse.

Figure 9.17
Pink Floyd, ``Breathe,'' ®rst verse.
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doÐI also include other harmonic information such as mode and exten-

sion. Major chords are indicated with capital letters, minor chords with

capital letters plus ``m.'') The harmony in both cases is conveyed most

clearly by the bass and rhythm guitar (not shown), which present each

chord in a straightforward fashion. If we consider the melodies of these

songs, it can be seen that they are compatible with the harmonic struc-

ture under the current model, in that all tones are either chord-tones of

the current root, or are closely followed stepwise (see HPR 1 and HPR 4).

For example, in ``The Kids are Alright,'' the A's and D's in mm. 1±2 are

chord-tones of the root D (5̂ and 1̂, respectively); the B is not a chord-

tone, but is followed stepwise. In mm. 3±4, the D on ``guys,'' the C# on

``my'' and the A in m. 4 are chord-tones; the other notes are ornamental,

and are followed stepwise, as they should be. In ``Breathe,'' too, it can be

seen that all notes not followed stepwise are chord-tones of the current

harmony.

The harmonic structure of both of these songs clearly adheres to the

strong beat rule (HPR 2), since harmonic segments are generally heard to

begin on strong beats. A problem arises, however. Consider the A at the

end of m. 10 in ``The Kids are Alright,'' part of an E chord-span. This

note is not a normal chord tone of E. Since it is eventually followed

stepwise, it could be considered ornamental; however, it seems more

intuitively right to regard it as part of the A harmony in m. 11. Beginning

the A chord-span on the last eighth-note of m. 10 would be undesirable

due to the strong beat rule. The solution to this problem, as discussed in

the previous section, is to regard the A of m. 10 as a syncopated note,

which is understood as really ``belonging'' on the following strong beat,

following the syncopation shift rule. Then it is possible to begin the A

major segment on the downbeat of m. 11, while still including the A. The

same applies to the D in m. 11 and the A in m. 12 (as well as several

other events in this example); each of these notes is understood as falling

on the following strong beat. This suggests, then, that harmonic structure

as well as metrical structure takes as input a ``deep representation'' in

which syncopations have been removed (see section 9.2). The role of the

deep representation in harmonic analysis is, of course, a further reason

for proposing it. Without it, we would have to conclude that the har-

monic rules for rock were fundamentally different from those of com-

mon-practice music; with it, the same rules appear to accommodate to

both styles. Adjusting the syncopations in ``The Kids are Alright'' has

another bene®t as well: it can be seen that, after syncopation-shifting, the

melodic events on strong beats are mostly chordal rather than ornamen-
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tal tones, just as is the case in common-practice music. (Of course, met-

rically strong ornamental tones do sometimes occur in rock, as they do in

the common-practice idiom; an example is the B at the end of m. 3,

which is metrically strong after shifting.)

An important question to ask about any harmonic style is what scale

degrees (relative to the root) are permitted as chord-tones. As noted in

chapter 6, the primary chord-tones in common-practice music are 1̂, 5̂, 3̂,

"3̂, and "7̂ (HPR 1). However, this is not true of all harmonic styles. In

jazz, there is a wider variety of possible chord-tones; 2̂ (usually known as

9̂) and 6̂ (or 1̂3) are widely used, and others as well. In rock, the common

chord-tone degrees appear to be more or less the same as in common-

practice music. That is, most notes have a relationship of 1̂, 5̂, 3̂, "3̂ or "7̂

with the current root, unless they are ornamental (closely followed step-

wise). It can be seen that all of the ``must-be-chordal'' notes (notes not

followed stepwise) in ``The Kids are Alright'' and ``Breathe'' are of these

types. There are cases of added sixths, ninths, and other tones used as

chord-tones in rock, but such cases occur occasionally in common-

practice music as well.3

While a problematic note can always be labeled as an added sixth,

fourth, or whatever, there are some cases in rock where this solution is

not very satisfactory.4 Consider the opening of ``A Hard Day's Night,''

shown in ®gure 9.18a. According to common-practice rules, this melody

is somewhat in con¯ict with the underlying harmony (presented, as

usual, by the bass and rhythm guitars). The second D of the melody (on

``day's'') con¯icts with the C major harmony; the D on ``work'' clashes

with F major. Rather than trying to explain these events as chord-tones

Figure 9.18
(A) The Beatles, ``A Hard Day's Night.'' (B) U2, ``Sunday Bloody Sunday.''
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of the current harmony, it might make more sense to characterize the

melody as an elaboration of a G7 chord, which proceeds somewhat

independently of the changing harmonies in the accompaniment. Another

example is seen in ®gure 9.18b, from U2's ``Sunday Bloody Sunday.''

Here too, rather than explaining the F# at the end of the second phrase

as a major seventh of the underlying G chord, it is perhaps better to

regard the melody as elaborating a B minor harmony over a changing

accompaniment.

Other problematic cases arise from rock's use of pentatonicism. Many

rock melodies are fundamentally pentatonic, using either the major pen-

tatonic scale shown in ®gure 9.19a, or the minor one shown in ®gure

9.19b. Two examples are shown in ®gure 9.20. These melodies pose

dif®culties for the current model; while the implied harmony in both

cases seems clear, the melodies contain events that con¯ict with these

roots, since they are not chord-tones of the root and are also not fol-

lowed stepwise. For example, the B's in ®gure 9.20a are incompatible

with a root of D, as are the G's in ®gure 9.20b. There are two possible

ways this situation could be handled. One would be to regard the pen-

Figure 9.19
(a) The major pentatonic scale; (b) The minor pentatonic scale.

Figure 9.20
(A) Creedence Clearwater Revival, ``Proud Mary.'' (B) The Police, ``Walking on
the Moon.''
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tatonic scale as analogous to the diatonic scale in common-practice

music, so that stepwise motion on the pentatonic scale is suf®cient to

qualify an event as a potential ornamental tone; for example, the motion

from B to D in ®gure 9.20a is stepwise on the pentatonic scale, so the B

can be regarded as ornamental. However, this does not solve the problem

of the second G in ®gure 9.20b, which is not closely followed stepwise

even in pentatonic terms. A more radical solution would be to treat the

pentatonic scale as a kind of chord, in which all scale degrees are stable

chord tones not requiring resolution; thus the G in ®gure 9.20b could be

treated as a chord-tone of D.

The phenomena of melody-harmony con¯ict and pentatonic harmony

represent problems for the current model, but they arise relatively rarely.

On the whole, the basic principles of harmonic structureÐthat is, the

principles governing the harmonic implications of pitch-eventsÐappear

largely the same in rock and common-practice music. We have said

nothing about the whole issue of progression in rock: the logic whereby

one harmony succeeds another. As Moore (1992, 1995) has shown, the

rules for progression in rock are clearly quite different from those of

common-practice music: in particular, the V-I cadence which serves such

a central role in common-practice music is virtually absent in rock.

However, the issue of progression is really beyond our purview, just as it

was in the case of common-practice music (see section 6.7).

9.5

Modality and

Tonicization in

Rock

A number of authors have commented on the modal character of much

rock music. By saying that rock is modal, we mean that it uses the dia-

tonic scale, but with the tonal center at different positions in the scale

than in the customary ``major mode'' of common-practice music. For

example, given the C major scale as the pitch collection, a common-

practice piece would typically adopt C as the tonal center.5 A rock song

using the C diatonic scale might adopt C as the tonic as well (thus using

the Ionian mode), but it might also adopt G (the Mixolydian mode), D

(the Dorian mode), or A (the Aeolian mode). Moore (1993, 49) has

noted that the most commonly used modes in rock are precisely these

four: the Ionian, Dorian, Mixolydian, and Aeolian. Table 9.1 shows a

number of well-known songs which are mainly or entirely in each of

these modes. It will be useful to think of modes as represented on the

``line of ®fths,'' as shown in ®gure 9.21.

While many songs remain within a single mode, it is also commonÐ

perhaps even normativeÐfor songs to shift freely between the four
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Table 9.1
Some well-known rock songs entirely (or almost entirely) in a single mode

Ionian

``I Wanna Hold Your Hand,'' Beatles

``The Kids Are Alright,'' The Who

``Turn, Turn, Turn,'' Byrds

``Bad Moon on the Rise,'' Creedence Clearwater Revival

``Go Your Own Way,'' Fleetwood Mac

``My Best Friend's Girl,'' The Cars

``Start Me Up,'' Rolling Stones

``Jump,'' Van Halen

``Hero of the Day,'' Metallica

``Time of Your Life,'' Green Day

Mixolydian

``The Last Time,'' Rolling Stones

``Paperback Writer,'' Beatles

``So You Wanna Be A Rock 'n' Roll Star,'' Byrds

``Rebel Rebel,'' David Bowie

``Lights,'' Journey

``Hollywood Nights,'' Bob Seger

``That's Entertainment,'' The Jam

``Pride (In the Name of Love),'' U2

``Elderly Woman Behind the Counter in a Small Town,'' Pearl Jam

``No Rain,'' Blind Melon

Dorian

``Somebody to Love,'' Jefferson Airplane

``Born to be Wild,'' Steppenwolf

``Battle of Evermore,'' Led Zeppelin

``Another Brick in the Wall Part II,'' Pink Floyd

``Girls on Film,'' Duran Duran

``White Wedding,'' Billy Idol

``Big Time,'' Peter Gabriel

``Spoon Man,'' Soundgarden

``Walking on the Sun,'' Smash Mouth

``Blue on Black,'' Kenny Wayne Shepherd

Aeolian

``Welcome to the Machine,'' Pink Floyd

``One of These Nights,'' Eagles

``Rhiannon,'' Fleetwood Mac

``Don't Fear the Reaper,'' Blue Oyster Cult

``Rain on the Scarecrow,'' John Mellencamp

``Walking on the Moon,'' Police

``Sunday Bloody Sunday,'' U2

``People Are People,'' Depeche Mode

``Losing My Religion,'' R.E.M.

``Smells Like Teen Spirit,'' Nirvana



common modes. In some cases, a shift in mode will occur between sec-

tions: the verse might be in one mode, the chorus in another. For example,

in the Beatles' ``A Hard Day's Night,'' the verse is primarily Mixolydian

(though with touches of "3̂ and 7̂); the bridge (``Everything seems to be

right'') is entirely Ionian. In Supertramp's ``Take the Long Way Home,''

a Dorian verse is followed by a Ionian bridge. Other songs feature even

more ¯uid motion between harmonies of different modes, so that the

presence of any single modeÐas a governing pitch collectionÐbecomes

questionable. The Rolling Stones' ``Jumpin' Jack Flash'' features the pro-

gression D-A-E-B; Heart's ``Barracuda'' features an alternation between

E and C. It can be seen that no single mode contains all the pitches of

these progressions. However, rock songs rather rarely venture beyond

the pitches provided by the four common rock modes. That is, the "6̂

scale degree is common (provided by the Aeolian mode), but the "2̂ and

#4̂ are not.6 We could imagine a kind of ``supermode,'' as shown in

®gure 9.22, comprising the union of the four common rock modes; such

a collection provides the pitch materials for most rock songs.

Figure 9.21
The common modes of rock music (assuming C as a tonal center in all cases).

Figure 9.22
A ``supermode,'' formed from the union of the four common rock modes.
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The approach to key-®nding proposed in chapter 7 was based on the

key-pro®le model of Krumhansl and Schmuckler. Under that model, the

distribution of pitches in a piece or passage is tallied and compared to an

ideal distribution for each key. Let us examine this idea with respect to

rock. The aim is simply to develop a satisfactory method for determining

the tonal center of a piece.7 We might ®rst consider a ``¯at'' key-pro®le,

along the lines of that proposed by Longuet-Higgins and Steedman, in

which each of the members of the diatonic scale has an equal value (and

chromatic pitches have lower values). This clearly will not work for rock,

where the pitches compatible with (for example) a tonic of C include not

only the C major scale (the Ionian mode), but also those of the F, B", and

E" major scales (the Mixolydian, Dorian, and Aeolian modes centered

on C).8 Another possibility would be to assign high values to all scale

degrees in any of the four common rock modesÐin effect, treating the

``supermode'' shown in ®gure 9.22 as the scale collection. Then, pitches

in any of the common rock modes would be recognized as compatible

with the corresponding tonic. (Note that each tonal center has a unique

supermode: the supermode for C contains the line-of-®fths positions A"
through B, the supermode for G contains the positions E" through F#,

and so on.) This would work for songs which use all the pitches of the

supermode. However, many do not; many only use a single diatonic

mode, and would therefore be compatible with several different super-

modes. Clearly, there is more to tonic-®nding in rock than simply mon-

itoring the scale collection in use.

A more promising approach would be to use something like the

Krumhansl-Schmuckler pro®les (or my modi®ed version, presented in

chapter 7), in which the values for degrees of the tonic triad are higher

than those of the other diatonic degrees. This captures the intuition that

we expect tones of the tonic triad to occur more prominently than other

diatonic degrees. This could then be combined with the ``supermode'' for

each tonal center, yielding the ``tonic-pro®le'' shown in ®gure 9.23. The

pro®le has moderately high values for all the pitches within the super-

mode, re¯ecting the fact that all of these pitches are compatible with the

corresponding tonic. However, the pro®le has especially high values for

members of the major and minor tonic triads (1̂, 5̂, 3̂, and "3̂Ðor, in the

current case, C, E, E" and G). Consider a song in D Dorian; the pitches

of this mode (i.e., the C major diatonic scale) would be compatible with

several tonic-pro®les (C, G, D, and A), but the members of the D minor

triad would hopefully occur more often than others in the scale, and this

would favor D over the other tonics.
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Preliminary consideration suggests that this approach to tonic-®nding

in rock might work well. In many of the modal songs listed in table 9.1,

the tonic triad is very prominent both in the harmony and the melody.

Indeed, it is presumably this that allows us to identify the tonic out of the

several possibilities allowed by the scale collection. Jefferson Airplane's

``Somebody to Love'' is an example; as indicated in table 9.1, this song is

in Dorian mode, using an E diatonic scale but with a tonal center of F#.

While the harmony of the verse involves F#m-B-E chords, it spends much

more time on F# minor than on the other two harmonies; the melody,

meanwhile, is centered on the ®rst and third degrees of the F# minor

triad (®gure 9.24). (The melody also uses occasional C's, thus moving

outside the E diatonic scale.) As another example, the Beatles' ``Paper-

back Writer'' remains almost exclusively within the C diatonic scale, but

its heavy emphasis of the G major triad in the harmony and melody

establishes G as the tonal center (implying Mixolydian mode).

While the tonic-pro®le approach appears to work in many situations,

there are also cases where it does not. Consider the two progressions in

®gure 9.25. Both are common progressions in rock (allowing for trans-

Figure 9.24
Jefferson Airplane, ``Somebody to Love.''

Figure 9.23
A possible tonic-pro®le for rock (assuming C as a tonal center). The tonic has the
highest value; then other degrees of the major and minor triads; then other
members of the ``supermode''; then all other TPCs.
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position, of course). (An example of the ®rst is The Romantics' ``That's

What I Like About You''; an example of the second is Bruce Springsteen's

``Rosalita.'') Both involve the same chords, and each chord is present for

the same amount of time in both cases. Even the order of the chords is

essentially the same, if we imagine the progressions repeating many

times. Yet the ®rst progression seems to imply E as the tonic more

strongly, the second one A. (Of course the melody often affects the tonal

implications as well, but the point here is that even the progressions

taken by themselves carry different implications.) The important differ-

ence seems to be that, in the ®rst case, E is in the position of greatest

metrical strength (assuming a two-measure level of hypermeter, with

odd-numbered measures strong), whereas in the second case A carries

greater metrical emphasis. In cases such as this, then, metrical strength

appears to be an important criterion in tonicization. We could perhaps

accommodate this into the tonic-pro®le model by weighting each pitch

event in the input pro®le according to its metrical strength.

While the importance of the tonic triad in tonicization seems clear, the

role of the supermode might seem more questionable. Since each super-

mode contains 10 pitch-classes, the only effect of the supermode in the

tonic-pro®le is to treat the "2̂ (or #1̂) and #4̂ (or "5̂) scale-degrees, relative

to a particular tonic, as incompatible with that tonicÐthat is, as favoring

Figure 9.25
Two common rock progressions.

Figure 9.26
R.E.O. Speedwagon, ``Keep on Loving You.''
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other tonics instead.9 For example, the presence of D" or F# is treated as

incompatible with a tonal center of C. This does not mean that a tonal

center of C is impossible in a song containing F#'s, but it does imply that

F#'s are heard as destabilizing to a tonic of C. Is this really true? I believe

it is, at least in many cases. Consider ®gure 9.26, R.E.O. Speedwagon's

``Keep on Lovin' You.'' In some respects, the tonal center most favored

here would appear to be F. An F pedal is maintained in the bass; an F

harmony occurs on the downbeat of each measure; and the melody is

largely centered on F major, beginning and ending on degrees of this

triad. Yet to my mind, the sense of F as tonal center is quite tenuous. The

reason, I submit, is the strong presence of B, both in the harmony and the

melody.10 As B is #4̂ relative to F, hence outside the F supermode, it

undercuts F as a tonal center. Given the harmonic strength of F major,

however, it is dif®cult to entertain any other tonal center. The result is

that the passage is quite tonally ambiguous.

The progression F-G is not uncommon in rock; other examples include

Fleetwood Mac's ``Dreams,'' Walter Egan's ``Magnet and Steel,'' Tom

Petty's ``Here Comes My Girl,'' and the Human League's ``Don't You

Want Me,'' all of which repeat this pattern extensively. (Again I am

allowing for transposition here: in essence, the progression consists of

two alternating major triads a whole step apart. For the current discus-

sion I will assume that all of these songs are transposed so that the pro-

gression is in fact F-G.) In all of these cases, the presence of B weakens F

as a tonal center, despite the harmonic emphasis on F major. It is inter-

esting to note that, in all but one of the songs just mentioned, the F-G

progression of the verse is followed in the chorus by the strong estab-

lishment of another tonal center rather than F (this tonal center is C in

``Keep on Lovin' You,'' ``Here Comes my Girl,'' and ``Magnet and

Steel''; it is A in ``Don't You Want Me''). This suggests that perhaps the

writer of the song did not regard F as the tonal center in the verse. The

exception is ``Dreams,'' which maintains its F-G progressionÐand hence

its ambiguous tonalityÐthroughout the song.
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10
Meter and Grouping in African Music

10.1

African Rhythm

It is a common belief that there is something special about African

rhythm: that it is unusually complex and sophisticated, and plays an

unusually central and important role in African music. This view is

re¯ected, also, in scholarly work on African music. In the large body of

research in this area, considerable attention has been given to rhythm,

including a number of studies which are devoted exclusively to the sub-

ject. In this chapter, I will examine African rhythm from the preference

rule perspective, with the following questions in mind: How well can

African rhythm be reconciled with the model of rhythm proposed earlier

(by which I mean, primarily, the models of meter and grouping proposed

in chapters 2 and 3)? What similarities and differences emerge between

African rhythm (as it is viewed by ethnomusicologists) and Western

rhythm? I will argue that the preference rule approach applies with con-

siderable success to African music, bringing out important commonalities

between African and Western rhythm and providing a valuable new

perspective on African rhythm itself. There are also important differences

between African and Western rhythm, but I will argue that these differ-

ences, too, are greatly illuminated by the preference rule approach.

As in the previous chapter, my use of preference rule models in what

follows will be informal, rather than quantitative. It should be borne

in mind, also, that the metrical preference rule system assumed hereÐ

at least in its qualitative outlinesÐis largely drawn from Lerdahl and

Jackendoff's Generative Theory of Tonal Music (1983) (the grouping

theory is also somewhat indebted to GTTM, though less so). In light of

this, the current chapter can largely be seen as an attempt to apply the



rhythmic theory of GTTM (with the modi®cations suggested in previous

chapters) to traditional African music. Since I myself am not an expert in

African music (though I have considerable familiarity with it), the evi-

dence I will consider is drawn almost entirely from the work of ethno-

musicologists: observation, transcription, and analysis of African music

and music-making, based in many cases on years of ®rst-hand involve-

ment and participation.

A word is needed about the musical domain under consideration in

this chapter. Among the ethnomusicological studies discussed below, very

few can truly be considered general studies of African music (Nketia's

The Music of Africa is a notable exception). Most concern themselves

primarily with the music of a single cultural group; the Ewe of Ghana

have received particular attention. However, a number of authors extend

their conclusions, to some degree, to traditional sub-Saharan African

music in general (Jones, Koetting, Pantaleoni, Chernoff, Kauffman,

Arom, Agawu); Jones (1959 I, 203±29), in particular, argues at length

for the ``homogeneity of African music.'' Other authors limit their claims

to a single group (Blacking, Locke, Pressing); but none deny that there

are signi®cant musical commonalities across cultural groups in sub-

Saharan Africa. This chapter will concern itself with the general features

of African rhythm, and will necessarily neglect the many interesting dif-

ferences between groups and regions in Africa brought out by these

studies. The research discussed here also explores a number of different

genres. But for the most part, it is concerned with two: songsÐoften

children's songs or work songsÐgenerally sung without accompaniment,

or only with clapping; and drum ensemble pieces, performed with an

orchestra of percussion instruments as well as singers and dancers.

The models put forth in previous chapters have assumed that music

perception begins with a ``piano-roll representation,'' showing the time-

points and pitches of events. In much African music, however, percussion

plays a central role. Percussion sounds generally do not have a determi-

nate pitch (though sometimes they do), and are distinguished mainly by

timbreÐan aspect of sound which is ignored by the pitch-time represen-

tation. Given the informal approach of this chapter, it is not necessary

for us to develop a rigorous solution to this problem, but it is worth

considering how the problem might be solved. One possibility is simply

to imagine that the pitch dimension of the input representationÐor at

least one region of itÐis not quantitative (representing pitches), but

rather qualitative, representing distinct timbral sounds, as shown in ®g-

ure 10.1. We could imagine the axis divided into timbral ``parts,'' repre-

266 II. Extensions and Implications



senting different instruments, with some parts perhaps including several

different sounds (again, distinguished timbrally). With this modi®cation,

the metrical and grouping preference rules (which are our primary con-

cern here) can mostly apply in a straightforward fashion. Strong beats

are preferred where there are event-onsets, just as before (MPR 1)Ðthe

more event-onsets there are at a point, the better a beat location it is;

onsets of louder events are preferred as beat locations over quieter ones

(MPR 7). The length rule (MPR 2) can also be applied in a modi®ed

form, stating that strong beats are preferred on onsets of events that are

not closely followed by another event within the same partÐfor example,

events A and C in ®gure 10.1. (The idea of ``registral inter-onset-interval''

does not apply, since it assumes the existence of pitch.) The parallelism

rule (MPR 9) applies straightforwardly in terms of rhythmic parallelism

Ðthat is, there is a preference for the metrical structure to be aligned

with repeated rhythmic patterns; pitch parallelism does not apply, but

one could imagine a kind of timbral parallelism, involving a repeated

pattern of sounds within the same instrument (or among different

instruments), such as segment B in ®gure 10.1. In terms of grouping, the

phrase structure preference rulesÐrelating to IOIs and OOIs (PSPR 1),

the number of events within groups (PSPR 2), and metrical parallelism

(PSPR 3)Ðcan be transferred just as they are, applying to events within a

timbral ``part.''

Figure 10.1
A hypothetical example of a ``timbral input representation''Ða format suitable
for representing music in which sounds are distinguished mainly by timbre rather
than pitch.
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10.2

Meter in African

Music

Perhaps the most basic question to ask about African rhythm is this: does

African music have meter, as we have understood the term? There is

almost unanimous agreement among scholars that it does.1 An important

®gure in this regard is Waterman (1952), who suggested that African

music involves a ``metronome sense,'' an underlying pulse which is felt

but not constantly expressed; this idea has been af®rmed by a number of

other scholars. Chernoff (1979, 49±50, 96±8) and Locke (1982, 245)

cite Waterman's view with approval. Jones (1959 I, 19, 32, 38, 40)

speaks on a number of occasions of an underlying regular beat, which

is often not explicit but is present in the mind of the performer and

can easily be supplied if requested. Agawu (1995, 110) remarks on the

``secure metronomic framework'' underlying the complex rhythms of the

surface (see also pp. 189, 193); Nketia (1963, 65, 86±7) expresses a

similar view, using the term ``regulative beat.'' Pantaleoni and Koetting

also seem to assume some kind of structure of beats in African music;

however, they differ with the other authors cited above as to the nature

of this structure, as we will see.

According to the current model, Western music has several levels of

beats, each one selecting every second or third beat from the level below;

to what extent are these multiple levels of meter present in African

music? The comments of these authors about meter, metronome sense,

and the like usually relate only to a single level of beats. Locke (1982,

221±2) claims that it is the dotted-quarter beats in Ewe drum music that

form the ``primary metric accents.'' Jones (1959 I, 19, 32, 38, 40),

Blacking (1967, 157±8), Chernoff (1979, 48), and Pressing (1983b, 5)

also seem to have mainly the quarter or dotted-quarter beat in mind.

Tempo indications in these authors' transcriptions suggest that the

quarter or dotted quarter corresponds to a pulse of 80±170 beats per

minute (Jones 1959 II, passim; Blacking 1967, passim; Locke 1982, 221).

(Although decisions about how to express durations in terms of note

values are, of course, somewhat arbitrary, there seems to be general

agreement as to the appropriate durational range for each note value.)

Not all authors accept the dotted-quarter pulse. The ``regulative beat''

proposed by Nketia (1963, 78±8, 85±7, 91) appears to be the half-note

or dotted-half-note level; the Ewe bell pattern (®gure 10.2), for example,

has two regulative beats per cycle. Koetting (1970, 122±3) and Pantaleoni

(1972a) maintain, particularly with respect to Ewe dance music, that the

eighth-note level constitutes the only regular pulse.2 In Koetting's words

(1970, 120): ``The fastest pulse is structurally fundamental, there being

no standard substructure internal to it or between it and any pattern as a
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whole . . . The fact that the repetitions of the fastest pulse often group

themselves into `gross' pulses or beats is . . . incidental.'' However, this is

clearly a minority view: the strongest support is given to the dotted-

quarter level. The range of 80±170 beats per minute commonly cited for

this level is close (though somewhat faster) to the range for the tactus

proposed in chapter 2 for common-practice music: roughly 40 to 150

beats per minute.3

There is some consensus, then, that the most salient level of meter in

African music is in the same range as the most salient level in Western

music. What about levels of meter below the tactus; what evidence is

there for these? As noted, Koetting and Pantaleoni argue for the eighth-

note level as the only level of meter in drum ensemble music. Other

authors acknowledge the eighth-note level as forming a level of basic

time-unitÐsometimes called a ``density referent''Ðfrom which rhythmic

patterns are composed (Jones 1959 I, 24; Nketia 1974, 127, 168±9;

Kauffman 1980, 396±7). The reality of lower metrical levels is often

re¯ected in more subtle ways as well. For example, the standard bell

pattern of Ewe dance music (sometimes simply called the ``standard

pattern''), shown in ®gure 10.2, is often expressed as a series of integer

values: 2-2-1-2-2-2-1 (Pressing 1983a, Rahn 1987). As noted in section

2.1, this kind of ``quantization'' appears to imply the existence of a

lower-level pulse.

Regarding higher levels of meter, the picture is less clear, but some

evidence can be found. Nketia's comments about the importance of the

half-note pulse have already been noted. One clue to ethnomusicologists'

views on higher metrical levelsÐalthough it should be used with caution

Ðlies in the way their transcriptions are notated. Among the scholars

who notate Ewe drum ensemble musicÐmuch of which is built on the

bell pattern shown in ®gure 10.2Ða 12/8 time signature is generally

used; in Western terms, this implies a four-level metrical structure, with

beats at the eighth-note, dotted-quarter, dotted-half, and dotted-whole-

note levels (®gure 10.3). Moreover, there is universal agreement in these

transcriptions that the position marked X in ®gure 10.2 represents the

Figure 10.2
The ``standard pattern'' of Ewe drum ensemble music.
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``downbeat''; it is also usually described as the ``beginning'' of the pat-

tern.4 The assumption of a ``measure level'' of meter is also re¯ected in

other references to the ``downbeat'' or the ``main beat'' (Chernoff 1979,

56; Agawu 1995, 64). Song transcriptions are usually notated in 6/8, 2/4,

or 4/4, again implying at least one level above the tactus. However, the

evidence for higher levels is somewhat less conclusive. (We should note

that, in general, the evidence for meter in African music points entirely to

duple or triple relationships between levels, with every second or third

beat being a beat at the next level up; other metric relationshipsÐsuch as

quintupleÐseem virtually nonexistent.)

To summarize, there seems to be broad support for a tactus-like level

of meter in much African music; there is strong evidence for lower levels,

and some evidence for higher levels as well.5 Despite general support for

the idea of meter in African music, some authors show ambivalence on

this issue, notably Jones. In his extensive transcriptions of African songs

and drum ensemble pieces, Jones often uses different barlines in different

lines. In the transcription excerpt shown in ®gure 10.4, for example, the

Gankogui (bell) and Axatse (rattle) pattern are notated with one barring

pattern (which is completely regular throughout the piece); this appar-

ently indicates the ``underlying beat'' Jones describes. However, the parts

for the supporting drums (Sogo, Kidi, and Kagan) have a different bar-

ring, out of phase with the bell-rattle barring; the clapping pattern has

another; and the Atsimevu (solo drum) and vocal line are given their own

highly irregular barring. These barrings are mysterious. One might sup-

pose they represent the meter that would be perceived if the individual

lines were heard in isolation. This is of interest, since the metrical impli-

cations of individual lines presumably contribute to the metrical impli-

cations of the texture as a wholeÐalthough if Jones and others are

correct, the secondary meters of these lines are not usually strong enough

to override the underlying meter. But if this is what the barrings repre-

sent, it is odd that they are often highly irregularÐfor example, the bar-

Figure 10.3
The ``standard pattern,'' showing the metrical structure implied by a 12/8 time
signature.
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Figure 10.4
Excerpt from the Nyayito dance, transcribed by Jones (1959). The staff lines of the drum parts, as well as showing approximate pitches,
indicate different kinds of strokes (see Jones 1959 I, 67). Notes indicating ``free'' (louder) strokes are marked F; notes indicating ``mute''
(quieter) strokes are marked M. The underlying 12/8 metrical structure is shown above the staff (added by me). Jones indicates a tempo
here of quarter � 113.
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ring of the vocal line here, and in many other cases. Another possibility is

that what the barlines represent is not meter, but grouping; but this is

problematic too, as I will discuss.6

10.3

How Is Meter

Inferred?

How is meter inferred in African music? While I can ®nd no extended

discussion of this issue, a number of comments are made about the way

meter is affected by musical cues. Most often, these comments relate to

ways in which surface events con¯ict with or undermine the underlying

meter. Agawu on numerous occasions notes things in the music that give

rise to ``contradictions'' or ``tension'' with the prevailing meter (see

Agawu 1995, 64, 68, 110, 192; 1986, 71, 79). Chernoff (1979) notes

that a player can vary his part to a certain extent, but not so much that it

destroys the beat (see pp. 53±60, especially 58; 98; 121); similarly, Locke

and Pressing discuss at length how instruments of the drum ensemble can

create con¯icts with the main beat. Regarding the speci®c factors in¯u-

encing the perception of meter, however, only a few passing remarks are

found. Agawu (1995, 64, 68) notes the effect of durationÐa long note

on a weak beat creates tension. Parallelism is also mentioned: when a

repeated pattern occurs, there is a tendency to hear a metrical structure

that is aligned with it (Locke 1982, 233). (Locke here is referring to

repeated timbral patterns in a percussion ensembleÐsomething which

might well be considered a kind of parallelism, as discussed earlier.)

Several authors also discuss the relationship between word stress and

meter. The consensus here seems to be that, while there is usually some

correspondence between stressed syllables and strong beats, there are

frequent con¯icts between the two as well (Blacking 1967, 165; Nketia

1974, 182±3; Agawu 1995, 192).

While these authors give little discussion to the factors involved in

African meter, we can examine this ourselves, using the transcriptions

provided (which, we must assume, accurately show the pitches and

durations of the music), along with their time signatures and barlines

(indicating the perceived meter).7 Figure 10.5 shows a children's song

transcribed by Jones. (As discussed earlier, Jones sometimes uses different

barrings in different lines, as is the case here. Let us assume that the time

signature and barring of the clapping line represents the underlying meter

of the melody. The clapping line here is not used in performance, but was

provided on request by an informant.) Four possible metrical structures

are shown above the melody. Assuming structure A is the correct one,

and is preferred over the others, can this be explained using the prefer-
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Figure 10.5
Children's Song No. 2 from Jones 1959, showing four alternative metrical structures.
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ence rules proposed in chapter 2? Consider just mm. 1±5. By the event

ruleÐpreferring structures where strong beats coincide with eventsÐ

structures A, B, and D are favored over structure C (which would imply a

6/8 hearing), since in structure C, two level 2 beats do not coincide with

events (level 1 being the lowest level). The event rule eliminates many

other possible structures not shown here. The length rule (preferring

structures where longer notes start on strong beats) favors structure A

over structure B, since by structure A all the level 3 beats coincide with

quarter notes, whereas in structure B some do not. However, structure D

is equal to structure A by the length rule; in structure D, too, all the level

3 beats coincide with quarter-notes. The preference for structure A over

structure D seems to be due to parallelism; by structure A, the two

occurrences of the two-measure pattern at the beginning of the melody

are aligned with the meter in the same way. If we proceed to the second

half of the melody, we ®nd that the situation is less clear-cut. Measures

7±8 are somewhat in con¯ict with structure A, since two level 2 beats do

not coincide with events (and two quarter-note events fall on very weak

beats). But we can assume that the previously established metrical struc-

ture is strong enough to persist here, with the con¯icting events of mm.

7±8 simply adding a degree of tension and interest. In this case, then, the

event rule, the length rule, and parallelism appear to be suf®cient to infer

the correct metrical structure. (Linguistic stress may also be a factor, but I

will not consider this here.)

In drum ensemble textures, the situation is of course more complex.

Consider ®gure 10.4Ða fairly typical excerpt from the Ewe Nyayito

dance, as transcribed by Jones. (The notation of the percussion parts

generally indicates an approximate pitch; in some cases, as indicated, it

also carries information about the type of stroke.) The time signature at

the beginning, as well as numerous comments by Jones and others, indi-

cates that 12/8 is the underlying meter here; this is shown above the staff.

How well does the passage accord with this metrical structure? The

clapping pattern clearly implies the dotted-quarter pulse; moreover, the

longest clap occurs on the strongest beat of the measure. (As discussed

earlier, the ``length'' of an event is assumed to be the time interval be-

tween the event's onset and the onset of the following event in the same

part.) The Gankogui (bell) pattern here establishes the 12/8 meter quite

strongly (compared with the more common pattern of ®gure 10.2), since

all the dotted-quarter beats are marked by bell notes (and two of them

by long bell notes); the Gankogui and Axatse (rattle) both favor a 12/8

periodicity by parallelism. The Sogo and Kidi (supporting drum) patterns
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clearly favor a 6/8 periodicity, but they accent the third eighth-note of

each dotted-quarter rather than the ®rst; the louder ``free beats'' carry

phenomenal accents relative to the ``muted beats.'' (Recall from chapter 2

that a ``phenomenal accent'' is anything which gives emphasisÐand

therefore metrical strengthÐto a point in the music: this could include an

event-onset or the onset of a loud or long event.) The Kagan (another

supporting drum), similarly, favors a 3/8 periodicity, but avoids the ®rst

eighth of each dotted-quarter. The Atsimevu (master drum) does not

particularly favor the notated meter; while the repeated ``high-low'' pat-

tern supports it somewhat by parallelism and by the length rule, the

(unusual) 5/8 parallelism towards the end strongly undercuts it. The

vocal line seems rather ambiguous metrically; again, linguistic stress may

be a factor here (Jones's barlines suggest that it is implying quite a dif-

ferent metrical structure from the notated one). The overall effect will of

course depend on the relative prominence of the different instruments,

the vocal line and master drum being the most prominent elements here.

On the basis of the current model, the passage seems to support the 12/8

meter shown more than anything else, but there are de®nite elements of

con¯ict.8 Of course, there might be sections in a piece where the ensem-

ble, on balance, was in con¯ict with the underlying meter (due perhaps

to cross-rhythms in the master drum); but one assumes the underlying

meter is supported most of the time, in order for it to be conveyed and

maintained.

Parallelism is a factor of particular importance in this passage. Note

that each of the levels of the underlying meter is reinforced by parallel-

isms in one line or another: the dotted-quarter level by the Kagan, the

dotted-half-note level by the Sogo and Kidi, and the dotted-whole level

by the Gankogui, Axatse, and clapping. (This relates to the earlier dis-

cussion of higher levels of meter. If we assume that parallelism is gener-

ally a factor in African meter, the pervasive use of parallelisms at the 6/8

and 12/8 level is further evidence that these higher metrical levels are

present.) The role of parallelism is complex, however. It was argued in

chapter 2 that parallelism relates primarily to period, rather than phase;

that is, it favors a particular time interval between beats, rather than a

particular placing of those beats relative to the music.9 In terms of phe-

nomenal accents, the supporting drum parts in the Nyayito passage are

sharply in con¯ict with the notated meter, in that they align few accented

events with strong beats; but because (through parallelism) they suggest

the same period as the notated meter, they give that meter at least partial

support.
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All in all, the view of African meter in these studies accords well with

the current model. There is almost unanimous agreement that something

like Western meter is present in African music; and African metrical

structures appear to involve several levels in duple or triple relationships.

Regarding the criteria for choosing metrical structures, support can be

found, in these authors' comments as well as in my own analyses, for

several of the factors discussed in chapter 2Ðin particular, the event rule

(MPR 1), the length rule (MPR 2), the stress rule (MPR 7), the linguistic

stress rule (MPR 8), and parallelism (MPR 9); and there is no evidence

for important determinants of meter which are not covered by these

rules. We should remember that the current model is primarily a model

of mental representations in the mind of the listener; one might wonder

how much basis we have for conclusions about this in the case of African

listeners. To a large extent, my conclusions here are based simply on

ethnomusicologists' intuitions about how African music should be heard.

But it seems fair to assume that these authorsÐmany of whom (unlike

myself) have had years of immersion in African musicÐdeveloped a

hearing of the music which was similar to that of Africans themselves. In

some cases, other kinds of evidence were sought as well; most notably,

both Jones and Blacking asked native informants to indicate the meter of

a number of pieces by clapping, sometimes establishing more than one

metrical level by this means. (Some of Blacking's results are of particular

interest, and will be discussed below.)

10.4

Western and

African Meter: A

Comparison

The reader may at this point be becoming uneasy. Much has been said

about the commonalities between African and Western rhythm, but little

has been said about the differences. This is intentional; for one problem

with the research discussed above is its exaggeration of the differences

between Western and African rhythm. Consider Waterman's comment

(1952, 211±12), regarding the ``metronome sense'':

The assumption by an African musician that his audience is supplying these

fundamental beats permits him to elaborate his rhythms with these as a base,

whereas the European tradition requires such close attention to their concrete

expressions that rhythmic elaboration is limited for the most part to mere orna-

ment. From the point of view of European music, African music introduces a new

rhythmic dimension.

Chernoff goes even further, drawing a series of stark, qualitative con-

trasts between African and Western listeners (1979):
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We begin to ``understand'' African music by being able to maintain, in our minds

or our bodies, an additional rhythm to the ones we hear . . . In African music, it is

the listener or the dancer who has to supply the beat: the listener must be actively

engaged in making sense of the music (pp. 49±50).

``[T]he Western and African orientations to rhythm,'' Chernoff con-

cludes, ``are almost opposite'' (p. 54; see also pp. 40±2, 47±54, 94±7).

Even where no explicit comparison is drawn with the West, discussions

of ``metronome sense,'' ``regulative beat'' and the like tend to carry the

implication that this is something distinctively African. But as we have

seen, the basic framework which these scholars propose for African

musicÐa framework of regular beats, which the events of the music

establish but may then con¯ict with and deviate from in pursuit of

musical interest and tensionÐis, at least in its basic outlines, very similar

to that proposed in chapter 2 for Western music. If ``metronome sense''

merely means the ability to infer and maintain a pulse that is not always

directly reinforced by the musicÐor perhaps sometimes is even in con-

¯ict with the musicÐthis is surely a commonplace ability among Western

listeners.10

This point is worth emphasizing. Waterman's claim that the rhythms

of Western music require ``concrete expression''Ðbecause, he argues, the

fundamental beats are not supplied by the listenerÐsuggests that, in

general, the metrical strength of each event has to be explicit in the event

itself.11 Yet examples can be found everywhere in common-practice

music where the meter of a segment cannot be determined from the seg-

ment alone, but must be inferred from the larger context. Consider ®gure

4.1: there is nothing about mm. 5±6 that inherently suggests triple meter;

one might just as easily hear these measures as being in duple meter, with

every second quarter-note strong (perhaps preferably, due to the repeat-

ing two-quarter-note motive). In ®gure 8.5, likewise, there is surely no

way of knowing from mm. 17±20 that the odd-numbered downbeats are

strong relative to even-numbered ones (since there are only rests there); it

is only the prior context that establishes this. As an even clearer example,

the entire passage in ®gure 9.1a would surely not be interpreted accord-

ing to the notated meter if heard in isolation (omitting the ®rst chord);

rather, the melody notes on the third beat of mm. 135 and 136 would no

doubt be heard as strong. Again, the prior context is crucial in estab-

lishing the correct hearing. Each of these passages requires, for its correct

interpretation, a structures of beats inferred from the larger context and
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imposed by the listenerÐessentially similar to what has been proposed

for African music.

If the differences between Western and African rhythmic perception

have been exaggerated, it is nevertheless true that there are differences.

The studies discussed here give some examples of this. In some cases, the

authors note examples where they suggest African and Western judg-

ments of meter would be different; I also ®nd that my own judgments

sometimes differ from those of Africans (as indicated by the authors' time

signatures and barlines). It is interesting to consider some situations

where this occurs. A simple case is found in ®gure 10.5. According to

Jones, this melody is heard with an unvarying quarter-note pulse; for me,

however, there is an inclination to hear the ®nal phrase as metrically

irregular.12 Similarly, there are a number of cases in drum ensemble

music where I ®nd myself being seduced by the cross-rhythms of the

solo drum, losing the dotted-quarter pulse which is supposed to remain

primary (this tendency among Western listeners to African music is noted

by Locke [1982, 230] and Chernoff [1979, 46±7]). Another difference of

a more general nature, although it is harder for us to appreciate experi-

entially, concerns the setting of text. In common-practice Western music

(not popular music!), the tendency for stressed syllables to be aligned

with strong beats is quite strong; deviations from this rule would proba-

bly cause considerable metrical confusion. As mentioned earlier, several

authors note that this rule is violated quite frequently in African music,

so that stressed syllables are set on weak beats; although all seem to agree

that there is some correspondence between linguistic stress and meter.

How can these differences in perception be explained? All of them

have something in common: the Western perception involves shifting the

metrical structure in order to better match the phenomenal accents, while

the African perception favors maintaining a regular structure even if it

means a high degree of syncopation. In preference rule terms, the African

mode of perception gives relatively more weight to the regularity rule

(MPR 3), and relatively less to the accent rules (those pertaining to

some kind of phenomenal accentÐspeci®cally MPRs 1, 2, 7, and 8). One

might argue that this is nothing more than a different way of expressing

Waterman's ``metronome sense'' idea; and in a way, this is true. But the

current formulationÐas well as being more preciseÐviews the differ-

ence as much less fundamental than it has generally been portrayed by

Waterman and others. The principles involved in the two modes of per-

ception are the sameÐAfricans have no kind of ``sense'' that Western
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listeners do not have; all that differs is the relative weightings of the

different rules.

Another possible difference between African and Western rhythm

might be observed, though it is more conjectural; this relates to the

strictness of tempo. Recall from chapter 2 that tempo can be viewed in

terms of the intervals between beats at the tactus level. In some kinds

of common-practice music (Romantic-period music in particular), con-

siderable variation in tempo is employed for expressive purposesÐ

sometimes called ``rubato.'' My impression is that there is very little

rubato in African music: in general, an extremely strict tempo is main-

tained.13 This is con®rmed by Jones, who states that African musicians

perform with a much greater precision in timing than Western musicians

(even Western musicians attempting to play quite strictly) (1959 I:38).

It can be seen that the two differences mentioned hereÐthe higher toler-

ance for syncopation in African music, and the lower tolerance for

rubatoÐhave a kind of complementary relationship; we will return to

this in the next chapter.

10.5

Hemiolas and the

``Standard Pattern''

A centrally important aspect of African rhythm, noted by a number of

authors, is ``hemiola'': an implied shifting between two different meters,

most often 3/4 and 6/8 (Jones 1959 I, 23; Nketia 1974, 127±8, 170;

Agawu 1995, 80, 189±93). This is often re¯ected in a simple alternation

between quarters and dotted-quarters, as in ®gure 10.6; this pattern is a

common accompaniment pattern for songs (often expressed in clapping

or work-related actions). In many other cases hemiola patterns are pres-

ent in more elaborated forms. The preference rule view provides an inter-

esting perspective on the rhythm in ®gure 10.6. Consider just the event

rule (which seems to be the only rule expressing a strong preference in

this case): what metrical structure does the preference rule model predict?

At the tactus level, the pattern is ambiguous between a quarter-note or

dotted-quarter-note pulse. At the next level up, however, the pattern

clearly implies the dotted-half-note pulse shown as structure C in ®gure

10.6, since every beat in this pulse coincides with an event. It can be seen

that a half-note pulse is not supported in this way (structure A), nor is

any other phase of the dotted-half-note pulse (such as structure B). (By

contrast, an undifferentiated string of quarters or dotted-quarters would

be quite ambiguous in terms of the higher-level pulse it implied.) Similarly,

at the lower level, the eighth-note pulse shown as structure F in ®gure 10.6

is clearly the favored pulse; other alternatives such as a dotted-eighth pulse
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(structure D) or a triplet-eighth pulse (structure E) coincide with fewer

notes. These favored levels, structure C and structure F, correspond to

the measure level and the eighth-note level in the way the pulse is nor-

mally notated. In short, this pattern conveys a three-level metrical struc-

ture, which is ambiguous in terms of its middle level but quite clear in

terms of its upper and lower levels.14

Another pattern which deserves special attention is the ``standard pat-

tern'' of Ewe drum ensemble music, shown in ®gure 10.2. The pattern is

hardly a metrically stable oneÐrelative to the 12/8 meter normally

associated with it, or indeed relative to any other regular meter. In fact,

as Pressing (1983a, 46±7) has shown, the standard pattern is almost

maximally ambiguous, as it samples several different meters (12/8, 6/4,

and 3/2)Ðand different phases of those metersÐalmost equally. One

could argue, of course, that the standard pattern is satisfying precisely

because of its metrical ambiguity and instability, but this is hardly an

explanation for it. We might also consider whether the preference rule

approach provides any insight into the fact that the position marked with

an X is usually the downbeat. Of the twelve positions in the standard

pattern, the X position is a relatively good candidate for a strong beat,

since there is an event there, and a relatively long event (that is, a quarter-

note rather than an eighth-note). But this still leaves ®ve possibilities, and

the preference rules seem to offer little basis for choosing between them.

Figure 10.6
The ``hemiola'' pattern, showing possible beat levels.
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It has been noted that the standard pattern is exactly analogous to the

diatonic scale (Pressing 1983a; Rahn 1987, 1996). If we consider the

pattern as a series of durational values, and we consider the diatonic

scale as a series of intervals on the chromatic scale, we arrive at the same

pattern in both cases: 2-2-1-2-2-2-1. Moreover, the centricity of the

pattern is the same in both cases: the ``strong beat'' position in the Ewe

rhythm corresponds to the ``tonic'' position in the diatonic scale. (I am

assuming the ``Ionian'' mode of the scale hereÐthe major mode in

Western tonal musicÐalthough of course other modes of the scale are

used as well; similarly, other ``modes'' of the Ewe bell pattern occur

in some kinds of African music [Pressing 1983a, 57].) Recent work in

pitch-class set theory has shown that the diatonic set has a number of

interesting and highly unusual properties (Browne 1981; Clough and

Douthett 1991; Cohn 1996). A detailed discussion of this work seems

unwarranted here, since it has little connection to the current approach.

The importance of this patternÐwe might call it the ``diatonic pattern''

Ðin both pitch and rhythm suggests that the reasons for its success

might, indeed, lie in quite abstract properties. However, it is one thing to

show that a pattern has unusual properties, and another thing to show

how these properties might explain the pattern's success; so far, the set-

theoretical approach has had little to offer towards the latter question.

One property of the diatonic pattern should be mentioned, however,

which is of some relevance to the current study: this is its asymmetry. In

the diatonic scale, each position in the scale is unique with respect to its

intervals with other positions; for example, the tonic is the only diatonic

scale degree that lies a half-step above one scale degree and a perfect

fourth below another (Browne 1981). Thus it is possible for one to orient

oneself to the pattern simply from the intervals between the notes pre-

sented. In a whole-tone scale, by contrast, every step of the pattern is

intervallically identical. This has possible relevance to rhythm, and par-

ticularly to meter-®nding. Once it is conventionally established that a

certain position in the standard pattern is the ``downbeat,'' then one

could orient oneself metrically to whatever is going on simply by locating

that position in the rhythm and considering it the downbeat.15 Whether

the standard pattern serves this function for African listeners is unclear.

If so, it suggests a factor in African meter perception which is quite unlike

the other factors we have been considering here: a conventional cue to

meter, which relies simply on the listener's knowledge that a certain

position in the pattern is conventionally metrically strong. Again, how-

ever, there are many asymmetrical twelve-beat patterns, and it remains to
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be explained why the diatonic one achieved such unusual prominence.

For now, the prevalence of the diatonic pattern remains something of a

mystery.

10.6

``Syncopation

Shift'' in African

Music

A comparison of Western and African rhythm brings us to the issue of

syncopation. If syncopation simply means con¯icts between the notes of

a piece and the prevailing meter, then it is presentÐto some degreeÐin

many kinds of music, including much Western music. However, a certain

kind of syncopation is found in jazz, rock, and other kinds of recent

popular music, in which highly accented events (e.g., long notes, stressed

syllables) tend to occur on weak beats immediately before a much stron-

ger beat. I argued in the previous chapter that, rather than being heard as

metrical con¯icts, these syncopated events are understood as ``belonging''

on the beat following their actual beat, and therefore can be seen as

reinforcing the prevailing meter rather than con¯icting with it.

Does this kind of syncopation occur in traditional African music?

Waterman (1948) has suggested that it does; beyond this, the studies

reviewed here do not address this question. However, some evidence can

be found in their transcriptions. If ``syncopation shift'' were an important

aspect of African music, we would expect to ®nd many accented events

on weak beats just before strong beats, but not so much just after strong

beats. This does, indeed, appear to be a characteristic of some kinds of

African music. Consider the melody in ®gure 10.7. Notice that several

long (and therefore phenomenally-accented) events occur on the fourth

sixteenth-note of a quarter-note: one sixteenth before the following

quarter-note beat (these are marked with arrows). (Notice also the syl-

lable ``nee,'' which occurs on the fourth eighth-note of a half-note.)

According to my syncopation shift model, which allows events to be

shifted forward by one beat, these events would be understood as

belonging on the following beat. Accented events occurring on the fourth

sixteenth of a quarter-note are indeed quite common, suggesting that

``syncopation shift'' may be present in African music. One also occa-

sionally ®nds accented events on the second sixteenth of a quarterÐ

indeed, there are two examples in this melody (marked with X's), which

we would not expect to ®nd under the syncopation shift model; but these

are much less common. Figure 10.8, from Jones, shows another kind of

evidence for syncopation shift (again, we will assume the upper line rep-

resents the underlying meter). Consider the word ``A-ba-ye''; according

to Jones, the second syllable ``ba'' is stressed (Jones [1959 I, 32] notes
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Figure 10.7
A Kasem melody, from Nketia 1974. Arrows indicate long notes on the fourth
sixteenth of a quarter (or the fourth eighth of a half), supporting the syncopation
shift rule. X's indicate long notes on the second sixteenth of a quarter. Reprinted
by permission of W. W. Norton, Inc.

Figure 10.8
Children's song No. 6 (excerpt), from Jones 1959.
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also that ``ba-yee'' is the same word with the ®rst syllable elided). Thus

the stressed syllable ``ba'' is metrically strong in its ®rst two occurrences,

metrically weak in the third. But in the third case, the strong syllable

occurs just before a strong beat, making the following unstressed syllable

metrically strong. (This is a common phenomenon in rock as well; con-

sider ®gure 9.8 and the accompanying discussion.) Again, by the synco-

pation shift rule, this word is understood as being shifted over by one

beat, and therefore aligned with the meter. Cases like this seem to suggest

that some kind of ``syncopation shift'' is present in African music. If it is,

then some of the events in African pieces which initially appear to con-

¯ict with the prevailing metrical structure may in fact be reinforcing it.

This issue deserves further study. The crucial test might be in the setting

of text. In rock, stressed syllables occur commonly on the fourth six-

teenth of a quarter, but rarely on the second; one wonders if this is true in

African music as well.

A ®nal example presents something of a dilemma. In his studies of

Venda children's songs, Blacking (1967, 157±60) notes that, in a number

of cases where informants were asked to clap along with melodies (for

which there was normally no clapping accompaniment), unexpected

results were obtained. Figure 10.9 gives one case. The meter heard by

Blacking was that indicated by his barlines; however, when asked to clap,

subjects did so at the points marked by crosses, putting the strong beats

one eighth-note earlier than expected. My own interpretation agrees with

Blacking's; how can we account for the difference? Blacking's explana-

tion is that the Venda's criteria for strong beats differ from ours: they

place a higher priority than us on having each beat aligned with an event.

(By Blacking's hearing, not all strong beats coincide with events; the fourth

downbeatÐnot marked with a barline for some reasonÐis ``empty.'') In

fact, the Venda interpretation is not implausible by the current model,

since it locates the ®nal long note of each phrase on a strong beat. But the

idea that African listeners require events on strong beats more than

Western listeners is exactly opposite to our earlier conclusions, and is

manifestly untrue. Possibly the Venda simply differ from other Africans.16

However, there is another possible explanation that we should consider.

Perhaps the claps in this case do not coincide with strong beats, but

rather occur on the weak beats just before the strong ones. This might

be accounted for by the syncopation shift rule, since then each clap is

understood as belonging on the following strong beat. In this case the

claps reinforce the strong beats felt by Blacking rather than con¯icting

with them. OrÐeven if this is not a case of syncopation shiftÐit might
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simply be that the claps do not coincide with strong beats. We should be

cautious about admitting this possibility, since a major source of our

evidence for meter rests on the assumption that informants' clappingÐ

especially elicited clapping that is not usually doneÐis an indication of

(some level of) the meter they perceive. Still, it is quite clear that clapping

patterns do not always indicate strong beats. In some songs, clapping

patterns are irregular (see Jones 1959 II, 2); in others, a single clapping pat-

tern may be aligned with the song in different ways (Jones 1959 I, 17;

Agawu 1995, 67±8); in some drum ensemble pieces, several simultane-

ous and con¯icting clapping patterns may be used, despite the general

assumption that only one primary meter is present (Jones 1959 I, 116).

Allowing the possibility that elicited clapping patterns do not always

indicate listeners' perceptions of meter adds a major complication to the

empirical study of meter; but it is probably something we should

consider.

Figure 10.9
``Nandi Munzhedzi Haee'' (excerpt), from Blacking 1967. Reprinted by permis-
sion of the University of Witwatersrand Press.
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10.7

Grouping Structure

in African Music

It was argued in chapter 3 that grouping structure is best regarded as a

segmentational structure, independent of meter. A model of melodic

grouping was proposed, which derives a single level of groups for a

monophonic input. This model involves three simple rules. First, there is

a preference for grouping boundaries after long notes and rests (PSPR 1).

Secondly, there is a preference for groups of a certain length, roughly

eight notes (PSPR 2). Finally, there is a preference for beginning succes-

sive groups at parallel points in the metrical structure (PSPR 3). We

should also recall a further rule relating to the interaction of meter and

grouping; there is a preference to locate the strongest beat in a group

near the beginning of the group (MPR 4).

To what extent does this model of grouping apply to African music?

Here, we encounter some serious problems of terminology and notation.

Several ethnomusicologists confuse grouping and meter, saying that bar-

lines represent the grouping of notes. Blacking (1967, 35) says that

``[b]arlines generally mark off the main phrases, and half-bars give some

indication of the stresses and the grouping of the notes.'' Since Blacking

clearly indicates elsewhere that his barlines represent meter (p. 162), he

would seem to be equating grouping with meter. Agawu (1995), too,

claims that his barlines represent grouping (pp. 71, 188, 200; see my

note 6). The confusion between meter and grouping is also apparent in

Jones, not so much in his comments but in the transcriptions themselves.

As noted above, the fact that Jones uses differing barlines in different

lines of the ensemble can sometimes be explained by taking the barlines

as indicators of grouping, not meter. Note the barring of the clapping

line in ®gure 10.4, for instance. In many cases, however, Jones's barlines

do not appear to be aligned with plausible groups; for example, a barline

is often placed after the ®rst note of an apparent phrase. (It seems more

likely that Jones's slurs indicate grouping, as they often do in Western

music; and these are often not aligned with the barring.) I suspect that

Jones's barlines indicate sometimes grouping and sometimes metrical

implications of individual lines; this is unfortunate, since it is often not

obvious how to interpret them.

These confusions between grouping and meter are especially strange,

since a number of authorsÐincluding some of those just citedÐobserve

that grouping is often not aligned with meter in African music. Agawu

(1995, 64) comments that ``in songs, as in drum ensemble music, phrases

rarely begin on downbeats'' (see also pp. 66, 110). Nketia (1963, 88),

describing the phrasing of the vocal line in Ghanaian music, says: ``It

does not appear to follow any de®nite rule, though there is a marked
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preference for phrases which begin before and after the main beats of a

gong phraseÐthat is off the regulative beat.'' Other remarks about the

non-alignment of meter and grouping are cited below. In part, the prob-

lem may simply be one of terminology: what I have been calling meter,

ethnomusicologists (sometimes) call grouping; what I have called groups,

ethnomusicologists call phrases. There is somewhat more to it than that,

however; the ethnomusicologists' terminology implies that meter involves

a ``grouping'' of events, which I would argue is mistaken.

Aside from these general observations, what speci®c evidence do these

authors provide of grouping structures in African music? The best source

here is the phrasing slurs used in transcriptions, notably those of Jones,

Nketia, and Pressing. It seems reasonable to take these as indications of

grouping, as they generally are in Western music. Consider ®gure 10.10,

an unidenti®ed Ghanaian song from Nketia (1963, 90). The grouping

here corresponds well with my own intuition about the grouping of this

melody, and appears to be accounted for well by the current model. The

main criterion involved appears to be a preference for long notes or rests

at the ends of groups (PSPR 1). Inspection of the phrasing in Nketia and

Figure 10.10
Unidenti®ed Ghanaian song, from Nketia 1963. Reprinted by permission of
Northwestern University Press.
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Jones's examples suggests that this is the predominant factor in African

melody and ensemble music, as it is in Western music as well (at least at

low levels). As for the phrase length rule, the average length of phrases in

this melody is 5.9 notes, not far from the norm of 8 notes assumed in

chapter 3 (PSPR 2). There is some evidence for parallelism as well.

Pressing (1983b, 9) argues that the phrasing in drum ensemble music

tends to be in¯uenced by repeating patterns; in ®gure 10.11, for instance,

the repeated ®ve-note pattern encourages a grouping structure which is

aligned with it. As noted in chapter 3, the current model can account for

such effects indirectly: the parallelism encourages a metrical structure of

the same period (MPR 9); this then encourages a grouping structure of

the same period as well (PSPR 3).17 Occasional evidence can be seen for

other principles in grouping, such as similarity. In cases where a drum

pattern involves alternating runs of two strokes (A-A-A-B-B-B-B-B, for

example), there is a tendency to group them accordingly, placing a group

boundary at the change of stroke (Jones 1959 II, 52, 73±4; Pressing

1983b, 9). (Timbral similarity as a factor in grouping is discussed in

GTTM; in principle, it could be incorporated into the current model

along with the ``timbral'' input representation proposed at the beginning

of this chapter.)

Perhaps it should not surprise us that the grouping criteria for African

and Western music are similar; as discussed in chapter 3, they re¯ect

``Gestalt'' principles of similarity and proximity which are known to

apply to perception in general. However, there is evidence for one

important difference between Western and African grouping. As noted,

there is a tendency in Western music to prefer strong beats near the

beginning of groups (MPR 4). In African music, however, several authors

claim that the reverse is true: the norm is for strong beats to occur at

the ends of groups. Chernoff (1979, 56) observes that, in African music,

``the main beat comes at the end of a dynamic phrase and not at the

beginning''; Jones (1959 I, 41, 84, 86, 124) notes this tendency as well.

(Nketia's and Agawu's comments about the tendency of phrases not to

Figure 10.11
From Pressing 1983b. A pattern used by the Kidi drum in the Ewe Agbadza
dance. Slurs indicate the phrasing given by Pressing.
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begin on strong beats have already been cited.)18 Inspection of the

phrasing in Jones's and Nketia's transcriptions gives further support to

these observations; although there are many exceptions, there is a com-

mon tendency for both vocal and instrumental phrases to end on strong

beats. Figure 10.10 is representative: if we assume a two-measure level of

meter with odd-numbered measures strong (this is supported by the

clapping pattern), we ®nd that many phrases end just after two-measure

beats, although not all do. This suggests a further modi®cation to the

preference rules for African music: there is a preference for strong beats

near the end of groups rather than near the beginning.19

10.8

Conclusions

I have argued here thatÐbased on ethnomusicologists' analyses of

African rhythmÐAfrican and Western rhythm are profoundly similar.

The fundamental cognitive structures involved are the same, and the cri-

teria involved in forming them are largely the same as well. I have also

pointed to some differences: the differing weight given to the regularity

rule versus the accent rules, and the difference in the preferred alignment

between meter and grouping. These differences are certainly important,

and they may often lead to quite different musical perceptions and expe-

riences between African and Western listeners. But to my mind they are

less striking than the underlying similarities between African and Western

rhythm. Admittedly, there are other aspects to rhythm that we have not

considered here, most notably motivic structure: the network of rhythmic

patterns in a piece that are heard as similar or related. A comparison of

Western and African music in this regard is beyond our scope (though I

will treat motivic structure brie¯y in chapter 12).20

In closing, I wish to address a few criticisms that might be made of the

preceding discussion. One might object, ®rst of all, to my reliance on the

conclusions of ethnomusicologists, rather than on my own experience

of African music. This should not be seen as a denial of the importance

of ®rst-hand ethnomusicological research. On the contrary, it is an

acknowledgment that such research provides a kind of musical insight

and understanding that cannot be attained in any other wayÐfrom

transcriptions or recordings, for example. I do assume that, by careful

and informed reading of these experts' writings, one can to some extent

share in the knowledge and understanding that they have gained; surely

this is whole point of ethnomusicological writing. It is true that adding

another stage in the interpretive processÐfrom informant to ethno-

musicologist to music theorist to readerÐincreases the probability of
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misunderstanding or distortion somewhere along the way. But if we are

to have any real collaboration between the disciplines, we must allow

this kind of division of labor to some extent.

A second possible criticism is that the current approach imposes a

framework on African rhythm which has no direct support in what

African listeners and performers say they are doing; Jones's and Chern-

off's informants, for example, make no mention of anything like prefer-

ence rules. That is to say, the framework proposed here is much more

``-etic'' than ``-emic.'' While this criticism deserves consideration, there is

an important point to be made in response. The current theory of meter

purports to describe the hearing of the ``experienced listener'' to Western

art music; this includes many people (both of the past and present) with

no formal musical training or knowledge of music theory. Certainly few

people of this kind would spontanenously describe their hearing of meter

in terms of preference rules (without having studied the theory), any

more than an African listener would. In this sense, the current theory is

as ``-etic'' for Western listeners as it is for African listeners. Indeed, the

whole premise of music cognitionÐand for that matter cognitive science

in generalÐis that there are processes and structures involved in cogni-

tion to which we do not have direct introspective access, but whose

reality can be established by other means. To what extent this assump-

tion is valid is an open question; but I see nothing ethnocentric about

taking this attitude with African listeners, since we take the same attitude

with Western listeners as well.

A ®nal criticism one might make of the current discussion is that it is

extremely myopic. I have said a great deal about meter and grouping,

but very little about their role in music, or the role of music in African

society. It is certainly true that to obtain a full understanding of African

musicÐor indeed any other musicÐone must consider its larger cultural

context. In particular, an analysis of meter and groupingÐin African

music, Western music, or any other kindÐtells us nothing, in itself,

about why these things are important and how they contribute to the

value of music. This is a perfectly valid criticism, one that applies as

much to the rest of this book as to the current chapter. I strongly believe

it is worthwhile to focus on the ``purely musical'' aspects of music (and

the content of this book should give some idea of what I mean by this).

However, the preference rule approach does in fact shed some interesting

light on the higher-level ``meanings'' of music, in common-practice music

and perhaps in African music as well. I will return to this issue in chapter

12.
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11
Style, Composition, and Performance

11.1

The Study of

Generative

Processes in Music

A frequent complaint about research in music cognition is that it tends to

be excessively focused on perception and listening, at the exclusion of

other musical activities, notably performance, improvisation, and com-

position. Sloboda (1988, v) notes that, while a journal called Music Per-

ception has been in existence for some time, a journal called Music

Performance would hardly have enough material to sustain it. Sloboda

cites several reasons for this bias, including the much greater number of

music consumers as opposed to producers in Western society, and the

problems of measurement and control that arise in experiments on gen-

erative musical processes. This imbalance has been recti®ed to some

extent in the ten years since Sloboda's comments, particularly in the area

of performance.1 Still, it remains true that the bulk of work in music

cognition is focused on listening. This study, so far, has only added to the

preponderance of research concerned with perception at the expense of

other activities. However, the preference rule approach can also be

fruitfully applied to generative aspects of music; in this chapter I will

explore how this might be done.

While music-psychological work may focus on the perception, perfor-

mance, or creation of music, it is important to note that many aspects of

music cognition may be common to all of these activities. An analogy

with language is appropriate. Linguists assume that the basic structures

of languageÐphonemes, syntactic constituents and trees, and semantic

structures of whatever kindÐare important to both producing and per-

ceiving language. The point of linguistic communication, after all, is to

convey some kind of information from the mind of the producer to the



mind of the perceiver. Broadly speaking, this assumption seems war-

ranted in the case of music as well. If we assume that certain mental

representationsÐpreference rule systems, in this caseÐare present in

the minds of listeners to a certain style of music, it seems reasonable to

suppose that they are also present in the minds of composers and per-

formers. However, this reasoning leads us to a number of questions. If

preference rule systems are indeed involved in generative processes, what

insight do they provide into how these processes work? How do prefer-

ence rule systems affect performance and composition, and how are they

re¯ected in the products of these activities? Related to that, how might

claims about the role of preference rule systems in generative processes be

tested in a rigorous way? These are the questions to be addressed in this

chapter, with regard to composition ®rst and then performance.

11.2

Describing Musical

Styles and

Compositional

Practice

The reader may have noted a certain sleight-of-hand in the argument of

the book so far. I have generally characterized preference rule systems as

models of people's mental representations of music as they listen to itÐ

models, that is, of the perception of music. At the same time, however, I

have freely characterized preference rule systems as applyingÐor some-

times as not applyingÐto actual bodies of music and musical styles.

It was stated in the opening pages of the book, for example, that the

preference rule systems proposed in part I are designed to ``apply'' to

common-practice music, Western art music of the eighteenth and nine-

teenth centuries. In chapters 9 and 10, I investigated the applicability of

some of these preference rule systems to rock and traditional African

music, and proposed modi®ed rule systems to accommodate these kinds

of music. But again, preference rule systems are models of the perception

of music, not of music itself. To use preference rule systems to describe

actual music is to make a leap of reasoning which, at the very least,

requires examination.

What does it mean, exactly, to say that a preference rule system applies

to a piece or style of music? There is a certain intuitive rightness to saying

that a preference rule system applies to some styles more than others.

It seems reasonable to say, for example, that the harmonic preference

rule system proposed in chapter 6 is not applicable to atonal music, or

that the metrical rule system presented in chapter 2 does not apply to

Gregorian chant and other music without meter. Perhaps the ®rst im-

pulse is to say, ``A preference rule system applies to a style of music if

music in the style can be analyzed with the preference rule system.'' But
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in principle, any piece of music can be analyzed with any preference rule

system. We need some other way of de®ning what it means for a prefer-

ence rule system to apply to a style.

One solution to this problem lies in the numerical scores outputted by

preference rule systems. As noted in chapter 8, in analyzing a piece, a

preference rule system not only produces a preferred analysis; it also

produces a numerical score (and also numerical scores for individual

segments of the analysis), indicating how well that preferred analysis

satis®es the rules. I suggested earlier that these scores could be used to

indicate the ambiguity of a passage. In cases where one analysis scores

much higher than any other, the passage is fairly unambiguous; in cases

where two or more analyses are roughly equally preferred, we can take

this to represent an ambiguous judgment. We can also consider the

actual magnitude of the score for the preferred analysis (or analyses). In

some cases, one or more analyses may be found that satisfy all the rules

relatively well; in other cases, none of the possible analyses may be very

high-scoring. We can take the score of the preferred analysis as a mea-

sure of how well the piece itself scores on the preference rule systemÐor,

in other words, as a measure of how well the preference rule system

applies to the piece.

Consider a simple example. It was suggested in chapter 9 that the

syncopations of rock music cause frequent violations of the metrical

preference rules proposed for common-practice music. This is the kind of

``sleight-of-hand'' I was talking about earlier; if we take a preference rule

system only as a model of perception, it is not obvious what it means to

say that a piece violates the preference rules. Now, however, we are in a

position to ¯esh out this statement. Consider ®gure 11.1 (a Beatles melody

discussed in chapter 9), and suppose the common-practice metrical system

of chapter 2 were applied to it (let us consider just the melody for now).

The system searches for an analysis in which beats are roughly equally

spaced (MPR 3), and strong beats are aligned with accented eventsÐthe

primary sources of accent in this case being longer notes (MPR 2) and

stressed syllables of text (MPR 8). In most common-practice melodies,

Figure 11.1
The Beatles, ``Let it Be.''
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such an analysis is available. In ®gure 11.1, however, there simply is no

analysis which satis®es these criteria. The analysis implied by the nota-

tion preserves regularity, but aligns several accented events with weak

beats (see ®gure 9.3c). Alternatively, we could align every accented event

with a strong beat, but this would sacri®ce regularity. Thus the best

analysis of the passage will receive a poor score from either the regularity

rule or the accent rules, and thus a poor score overall (since the total

score for the analysis sums the scores from all the rules). Now, however,

suppose we apply the modi®ed ``rock'' version of the preference rules,

including the syncopation shift rule, which allows us to shift events to the

right by one beat (as shown in ®gure 9.6). Now, a metrical structure is

available which satis®es both the regularity rule and the accent rules,

thus achieving a high score. In this way, the fact that the ``rock'' version

of the rule system is more applicable to the melody than the ``common-

practice'' version is re¯ected in the melody itself.

A similar line of reasoning applies to the case of meter in traditional

African music. As I argued in chapter 10, one main difference between

the metrical rules for common-practice Western and traditional African

music seems to be that, in traditional African music, greater weight is

attached to the regularity rule and less to the accent rules. Is this re¯ected

in the two kinds of music in any way? If we consider an excerpt from an

African pieceÐ®gure 10.5, for exampleÐwe ®nd, again, a high degree

of syncopation (though it it is rather different from the kind of syncopa-

tion found in rock). For an African listener, the preferred analysis main-

tains a high degree of regularity; there is considerable violation of the

accent rules (since not all accented events fall on strong beats), but since

these rules carry less weight, the violations do not greatly reduce the total

score. For a Western listener, however, the greater weight of the accent

rules would cause large penalties for this analysis, leading to a low over-

all score. (A Western listener might prefer an analysis that satis®ed the

accent rules better, perhaps inferring a highly irregular tactus level. Such

an analysis would of course receive penalties under the regularity rule;

moreover, such an incorrect analysis would no doubt be severely penal-

ized in other waysÐfor example, it would not permit ``good'' analyses to

be found for other levels which maintained a regular relationship with

the tactus.)2

By this approach, it could be shown quantitatively (though I will not

attempt this here) that a rock or African piece violates the metrical

rules of common-practice Western musicÐby analogy with language,

we might say that it is ``ungrammatical'' according to those rules. One
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might wonder, is a common-practice piece ``ungrammatical'' by the

rules of rock or African music? It is not obviously true that this would

be the case. It might be, rather, that both African music and common-

practice music were considered rhythmically grammatical to the African

listener. However, consider the observationÐnoted in chapter 10Ðthat

common-practice music involves considerably more variation in tempo

than African music.3 The kind of rubato routinely used in performances

of Classical and Romantic music is rarely found in African music. Jones

notes that even Western musicians attempting to play in strict tempo

seem inconsistent and wavering to African listeners. Rock, too, is usually

performed with an extremely strict tempo. It seems, then, that common-

practice music allows a greater degree of violation of the regularity rule

than rock or African music does. Given the greater weight assigned by

African listeners to the regularity rule, music with substantial rubato

would presumably give rise to low-scoring analyses for such listeners; it

might also lead to mishearings, in which tempo ¯uctuations were heard

as syncopations.

One more example should be mentioned, which has so far been dis-

cussed only brie¯y. In chapter 9 I suggested that jazz harmony has rather

different rules from rock and common-practice harmony. In particular,

jazz allows a greater variety of chord-tones than either rock or common-

practice music does. On the other hand, there is much less use of chordal

inversion in jazz than in common-practice music; jazz chords are over-

whelmingly in root position.4 Presumably, these stylistic differences are

re¯ected in the harmonic preference rules used by jazz and common-

practice listeners: the compatibility rule for jazz allows more chord tones

as compatible with a given root, but jazz also has a rule preferring the

bass note as root, whereas common-practice music does not. Consider

the chord shown in ®gure 11.2a. A common-practice listener would most

Figure 11.2
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likely interpret this as an Fm 6/5 chord (probably leading to a V-I

cadence in E" major); to a jazz listener, however, it would more likely be

heard as A" with an added sixth, since added sixths are commonplace

and ®rst-inversion chords are rare. As with rhythm, this difference be-

tween jazz and common-practice harmony is re¯ected not only in per-

ception, but also in jazz and common-practice music. A common-practice

piece analyzed by jazz rules would score poorly, due to the frequent use

of chordal inversion, while a jazz piece would score poorly by common-

practice rules due to the use of ``illegal'' chord-tones.

In this case too, then, it can be seen that the harmonic differences be-

tween the jazz and common-practice rule systems are complementary.

The wider palate of possible chord-tones in jazz is counterbalanced by a

greater tolerance for inversion in common-practice music. One wonders

why these complementary effects occur in different styles. It seems as if,

for a given aspect of structure, there is some range of ``total rule viola-

tion'' which is considered acceptable in a given style (a dif®cult concept

to quantify, and I will not attempt to do so here), and that this range

tends to be rather consistent across styles. Relative freedom in one rule

(for example, the allowance of syncopation in African music) tends to be

balanced by relative strictness in another (the low tolerance for rubato).

One possible reason for this is that if rule violation is too great, the cor-

rect analysis cannot be reliably inferred. For example, consider the chord

C-E-B"-D-A" (®gure 11.2b). Under a jazz interpretation, root position is

assumed and the root of the chord is C; D and A" are acceptable chord-

tones (9̂ and "1̂3, respectively) under the expanded vocabulary of jazz.

However, if inversion were tolerated in addition, so that the lowest note

could not be assumed to be the root, this chord could be mistaken for

an inverted B"9#11 (see ®gure 11.2c). That is to say, there would be a

danger of rampant harmonic ambiguity. A similar point could be made

about rhythm; intuitively, it can be seen that if one allows great synco-

pation as well as great ¯uctuation in tempo (imagine ®gure 11.1 per-

formed as if it were a Schumann lied), it could become quite impossible

to ®nd the beat.5

While we have focused so far on differences between styles, we should

note that in each of the cases we have consideredÐharmony in common-

practice music and jazz, meter in common-practice music, rock, and

African musicÐthere are profound commonalities as well. These com-

monalities across styles are re¯ected in their preference rule systems, just

as the differences are. For example, the fact that non-chord-tones in both

rock and common-practice music are usually followed stepwise is an
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important fact about the styles themselves, not just about their percep-

tion. On the other hand, there are also cases where a certain kind of rule

system seems to be totally inapplicable to a certain kind of music. The

key-®nding system proposed earlier, for example, is clearly inapplicable

to serial music (meaning that a serial piece would not generally yield a

key analysis with relatively few modulations in which the key of each

section was compatible with the pitches); moreover, it does not appear

that any kind of key system is really relevant to such music (at least, none

along the lines of the one proposed earlier).6 Similarly, a non-metrical

kind of music such as recitative would score poorly on the common-

practice metrical system, because no analysis could be found in which

regularly spaced beats were well aligned with accented events; nor does

this genre seem to submit to any other kind of metrical system. The same

might be said of other nonmetrical idioms such as Gregorian chant and

the alap (slow introduction) of an Indian raga. In such cases the kind of

musical structure at issue is simply not relevant to the style.

In this way, then, we can view preference rule systems as being

re¯ected in actual musical styles and pieces. This suggests a possible way

of quantifying and testing claims about musical styles. For example, it

was suggested that the differences between jazz and common-practice

harmony are re¯ected in their harmonic preference rule systems. If the

current argument is correct, we should ®nd that music from each style

would generally score well under its own system but poorly under the

other system. This is an empirical claim, which in principle could be

tested. However, to test such a claim would be no easy matter. We would

have to have some objective way of de®ning the style being described; for

example, a style could be de®ned in historical terms, as music written in a

certain geographical region during a certain period. And of course, the

pieces to be analyzed would have to be represented in the appropriate

input formatÐa formidable problem with many styles of music. I will

not undertake any tests of this kind here, but leave them as interesting

possibilities for the future.7

It is probably unrealistic to hope that a preference rule system could

de®ne the suf®cient conditions for inclusion within a style. For example,

there is much more to the harmonic language of common-practice music

than what is captured by the harmonic preference rule system described

in chapter 6. What a preference rule system gives us is some rather

weak necessary conditions for acceptability within a certain styleÐhere

again, a rough analogy could be drawn with syntactic grammaticality in

language.
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The claims made here about styles of music could also be extended to

composition. That is, beyond simply saying that a certain preference rule

system characterizes Mozart's music, we could claim that these prefer-

ence rules were actually acting as constraints on Mozart's compositional

process. For example, it seems reasonable to suggest that metrical pref-

erence rules acted as fundamental, though ¯exible, constraints on

Mozart's choice of rhythmic patterns, leading him to write the patterns

he did and to avoid patterns such as that in ®gure 11.1; whatever other

considerations went into his construction of rhythms (and undoubtedly

there were many), the metrical preference rules had to be obeyed to a

certain extent. To go from a claim about the objective properties of a

piece to claims about the process of composing it is, of course, a signi®-

cant and problematic step that should be taken cautiously.8 HoweverÐ

as noted earlierÐif we accept that the perception of meter is and was in

Mozart's time guided by certain principles, it seems natural to suppose

that Mozart's compositional process was informed and shaped by these

principles and re¯ects them in certain ways. What I propose here is a

suggestion of exactly how it was informed by these principles.

This way of using preference rule systems to characterize music is not

without problems. If a grammatical piece (according to a particular rule

system) is a high-scoring one, one might assume that an extremely high-

scoring piece would be highly grammatical. However, consider what this

implies. A maximally high-scoring piece according to the harmonic rule

system proposed earlier would consist of a single prolonged harmony,

with no harmonic change whatever (since this would be optimal under

both the strong beat rule and the variance rule). It would also consist

entirely of chord-tones, without any ornamental tones. Thus it might

consist of a single repeated triad. Far from being ``optimally grammati-

cal,'' it would hardly be an acceptable piece of tonal music at all; it

would also, of course, be extremely tedious and without any interest.

(The reader might consider what kind of piece would be judged as max-

imally satisfactory by the other preference rule systems, and will ®nd

them to be similarly trivial and uninteresting.) One might argue that the

unacceptability of such trivial pieces is accounted for by harmonic rules

not covered by the current preference rule system. However, I believe a

general case could be made that music which scores extremely high on a

given rule system tends to be considered unacceptable (within the corre-

sponding style). Consider a related example. The ethnomusicologist John

Chernoff (1979) notes that, among musicians in traditional African drum

ensembles, there is felt to be an optimal degree of rhythmic complexity,
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which it is the particular responsibility of the lead drummer to maintain;

his drumming must not be so repetitive or stable as to be boring, but also

must not be so wild and destabilizing as to overthrow the prevailing beat

(pp. 53±60, especially 58; 98; 121). In terms of the current model, we

could say that an acceptable African piece must avoid scoring either too

low or too high from the metrical rule system.

This suggests that it may be oversimpli®ed, in general, to judge gram-

maticality (even the fairly limited aspect of grammaticality that prefer-

ence rule systems can capture) in terms of whether a piece exceeds a

certain minimum score. Rather, it might be more accurate to say that

pieces are judged as grammatical and acceptable when they fall within

a certain range of scores. A score too low indicates excessive simplicity

and lack of interest; a score too high indicates incomprehensibility and

ungrammaticality.

As well as providing a basis for quanti®able claims about musical

styles, then, preference rule scores may also account for judgments of

acceptability within a style. It should be emphasized here that no claim is

being made about any kind of absolute musical value. What is at issue

here is the comprehensibility of a piece under a certain set of rules. It is

probably uncontroversial to say that a listener who attempts to analyze

serial music using tonal harmony will ®nd it incomprehensible. But surely

Schoenberg did not intend for his music to be heard this way, and it is

hardly fair to judge it in these terms. Moreover, it is unclear how the kind

of structural comprehensibility discussed here relates to aesthetic satis-

faction. For some purposesÐif the aim is to convey a sense of confusion,

anxiety, chaos, or instabilityÐit may be desirable to compose in such a

way that, at least to some degree, deliberately resists easy comprehension

within the perceptual framework the listener is assumed to have; and to

perceive the music in this way may ultimately contribute to a rewarding

experience for the listener. In short, the preference rule approach has, at

best, only the most indirect bearing on the very complex issues of musical

value and aesthetic reward.

11.3

Further

Implications: Is

Some Music

``Nonmetrical''?

The argument so far is that different styles of music may re¯ect different

preference rule systems and also that listeners to these styles may employ

different rule systems in their perception of music. For example, the

metrical perception of listeners of African traditional music may feature a

different balance between the regularity and accent rules than that of

Western listeners. This raises the question of where these rule systems are
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learned. The obvious answer is, they are learned from the music itself;

and the current view offers a plausible explanation for how that might

come about. Rock music itself encourages the listener to adopt the synco-

pation shift rule, because without it, no satisfactory analysis of rock pieces

can be found. Jazz encourages listeners to entertain a broader range of

chord-tones than common-practice music, because without doing so, the

music cannot be analyzed in a way that satis®es the preference rules to a

reasonable degree. African music requires a lower weighting of the accent

rules relative to common-practice music, because if too much weight is

given to these rules, no satisfactory analysis is possible.

If different rule systems can be learned from exposure to different

styles, it is also possible that a listener familiar with more than one style

might learn multiple rule systemsÐor ``parameter settings''Ðand be able

to apply them to different styles of music. How does such a listener know

which rule system to apply? There might, of course, be external cues. In a

jazz club, we might prefer the A" major (jazz) interpretation of ®gure

11.2a; in Carnegie Hall, the Fm 6/5 (common-practice) interpretation

would seem more plausible. But it also seems likely that we determine the

applicability of the rule system, in part, by actually trying to apply the

rules. We might ®rst apply the rules of common-practice harmony, butÐ

if those did not lead to a satisfactory analysisÐshift to the jazz rules

instead. Again, the idea of numerical scores is important here: to say that

a piece cannot be satisfactorily analyzed using a certain rule system

means that it does not yield a high-scoring analysis according to that

system.

The possibility that different groups of listeners hold different rule

systems leads to still further questions. How much variation in rule sys-

tems can there be? What kinds of rules are we capable of learning? Are

all the rules learned from exposure to music, or are some of them innate?

As yet, there is little basis for drawing any conclusions about these very

profound and controversial issues.

Suppose a piece does not yield a satisfactory analysis under any rule

system available to us? This is a particularly interesting issue to consider

in the case of meter. As noted earlier, it is easy to ®nd pieces that do not

yield a satisfactory metrical analysis, in that no analysis can be found

in which accented events are consistently aligned with regularly spaced

strong beats. Figures 11.3 and 11.4 provide two illustrations from

twentieth-century music. While the eighth-note pulse in ®gure 11.3 is

clear enough, any higher levels are, at best, highly irregular. In perceiving

such music, do we simply suspend our metrical processing altogether,
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or do we do our best and infer some kind of very irregular or poorly

supported (and thus very low-scoring) metrical analysisÐsomething like

the structure shown as ``my analysis'' in ®gure 11.3? The issue of

whether all music has meter, and whether it is useful or cognitively valid

to speak of highly irregular metrical structures, is a controversial one.

Some authors have suggested that metrical structures must, by de®nition,

have a high degree of regularity.9 However, there are some reasons to

suppose that, in cases like ®gure 11.3, we continue to infer some kind of

irregular metrical structure, rather than none at all. First of all, it seems

clear that we do not simply ``turn off'' our metrical processing in hearing

such music; some kind of metrical analysis is always in operation. The

evidence for this is that, even when a piece has established a norm of

being completely nonmetrical, we will immediately notice any sugges-

tion of a beat or regular pulse. This would be dif®cult to explain if

we assumed that no metrical analysis was taking place. Other evidence

comes from the consequences of meter for other aspects of structure. As I

will suggest in chapter 12, metrical structure greatly affects motivic

Figure 11.3
Bartok, Mikrokosmos, Vol. 5, No. 133 (``Syncopation''), mm. 1±4.

Figure 11.4
VareÁse, Density 21.5, mm. 1±5.
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structure; in general, parallel segments must be parallel with respect to

the metrical structure in order to be perceived. There is indeed a strong

sense of motivic parallelisms in ®gure 11.3Ðone hears a repeated motive

(though instances of the motive differ in length), suggesting a metrical

structure with strong beats on each left-hand chord. (As another source

of evidence, one might also consider the tendency for strong beats to

serve as points of harmonic change, though that is less revealing in

nontonal pieces such as these.) In ®gure 11.3, I would suggest that at

least one level above the eighth-note level is present, as shown in ``my

analysis''; higher levels, are, I admit, doubtful.

As an experiment, the piece in ®gure 11.3 was given to the metrical

program. The hope was that the program would produce something like

my preferred analysis in ®gure 11.3, though assigning it a very low score.

Disappointingly, the program did something quite different: it produced

an entirely regular 4/4 structure, putting a downbeat on the third event

and continuing in 4/4 from there. What accounts for the differences

between the program's analysis and mine? The reason is parallelism:

the tendency to assign similar metrical analyses to motivically similar

segments. This is an important factor in metrical perception which (as

discussed in chapter 2) the program does not recognize. As noted above,

this passage contains a de®nite motivic parallelism, one whichÐdespite

the rhythmic irregularityÐis in some ways extremely clear and strong.

The motive in mm. 1±2 is not shifted in pitch-level as it repeats (as is

more typical in common-practice music), but rather is reiterated at the

same pitch level. Each instance of the motive begins with exactly the

same left-hand chord; the right hand reinforces the pattern as well

(despite the variation between one- and two-eighth-note groups), since

each right-hand gesture ends with an F#. The motivic pattern in mm. 3±4

is similarly obvious. Indeed, passages of this kind, with a fast pulse being

grouped in irregular ways, very often feature strong motivic parallelisms

(Stravinsky is very fond of this technique; many instances are found, for

example, in the Rite of Spring and Symphonies of Wind Instruments).10

If the intent is to convey an irregular meter, such parallelisms may be

necessary, in order to counteract our strong preference for regularity.

Without the motivic pattern, we might well favor a regular structure, just

as the program does.

While one might argue that we always come up with some kind of

metrical analysis of a piece that we hearÐeven an ostensibly nonmetrical

piece such as ®gure 11.3Ðit is surely true that the phenomenological

strength of this analysis can vary depending on its degree of acceptability.
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Even if one accepts something like my preferred analysis of ®gure 11.3,

it is not present to awareness as strongly as the preferred analysis of

a straightforwardly metrical Mozart sonata. In the case of the VareÁse

excerpt (®gure 11.4), perhaps, the acceptability of the preferred analysis

is so low that it almost vanishes from awareness altogether. In such cases

we might argue that the music really isÐfor all practical purposesÐ

``non-metrical.''

The issue of how ``ungrammatical'' music is perceived arises also in the

case of harmony. As listeners, what do we do when confronted with a

piece which simply does not submit to conventional harmonic analysis?

Again, twentieth-century art music provides a wealth of examples for

consideration. Some music from this periodÐsuch as much serial music

Ðattempts to thwart any sense of harmonic or tonal structure, and often

succeeds. However, much twentieth-century music employs the tradi-

tional structures of harmony and tonality to some extent, while also

taking considerable liberties with them. In hearing such musicÐas with

analogous cases of ``quasi-metrical'' musicÐI suggest that we generally

do the best we can, applying the conventional rules and seeking the best

analysis that can be found. Consider the chord progression in ®gure

11.5a, from Stravinsky's Symphonies of Wind Instruments. One is hard-

pressed to ®nd any analysis which accounts for all the notes of this

passage as chord tones or conventional ornamental tones. The current

model would predict that we seek an analysis which accounts for as

many of the notes as possible; and I believe that is essentially what we do.

My own preferred analysis is shown above the staff in ®gure 11.5a.

Under this analysis, many of the events are chord tones; a few others are

ornamental tones which resolve in a conventional stepwise manner (the

lower F in chord 4 and the C in chord 6). However, a number of notes

are not accounted for by this hearing, and simply remain as violations

of the rules. It is interesting to consider what effect they have on our

harmonic hearing of the passage, for they clearly do have some effect.

The passage is reprinted in ®gure 11.5b, with all chord-tones (under my

analysis) shown in small noteheads to draw attention to the non-chord-

tones. The G's and E"'s of chords 2 and 3 project an E" major triadÐ

a kind of secondary harmony, in competition with the underlying F7

(though I think there are limits to how much such ``bitonal'' harmonic

textures can be heard). The B in chord 1 is perhaps weakly heard as "9̂ of

B", spelled as C" (though the voicing is unusual in common-practice

terms); likewise, the B in chord 3 (again as C") could be "5̂ of F. Color is

added to the harmonies by the mixture of major and minor thirds: the A
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and A" in chords 2 and 3 and the B" and A in chords 4 and 5. (I would

argue that the spelling of the A in chord 4 is ambiguous; B"" is favored

since it allows a chord-tone relationship with the G", while A is favored

by pitch variance, given the prevailing B" major context.) Another

important feature of the passage is its tonal implications. Both chords 2

and 7 are contained within the B" major scale, giving the phrase a sense

of tonal departure and return (despite the harmonic instability of the ®nal

E" in the melody). That the melody also remains within B" major helps

to establish this as the prevailing tonality of the progression. The tonality

of the inner chords is less clear, though the prominent use of G", B" and

D" in chords 4 and 5 weakly projects G" as a tonic. Overall, the phrase

re¯ects a trajectory of tonal stability, moving from clarity to ambiguity to

clarity again. However, the B's (C"'s) in chords 1 and 3 and the A"'s in

chords 1, 3 and 6 undercut the sense of B" major, giving the passage a

subtle leaning towards the ¯at direction (perhaps to E" minor).

Figure 11.5
Stravinsky, Symphonies of Wind Instruments, Rehearsal 4�2 ff. (a) A reduction
of the score, with chord symbols indicating my own harmonic analysis. (b) The
same passage reprinted, with standard chord-tones (1̂, 3̂, b3̂, 5̂, b7̂) shown in
small note-heads.
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11.4

Preference Rules as

Compositional

Constraints: Some

Relevant Research

The idea of viewing preference rules as compositional constraints has

interesting implications in the case of contrapuntal structure. Consider

what it would mean for a piece to be grammaticalÐthat is, to permit a

high-scoring analysisÐby the contrapuntal rules presented in chapter 4.

It would have to yield an analysis in which all the notes were sorted into

a small number of lines (CPR 2), with few white spaces (CPR 3) and few

large leaps within lines (CPR 1). By this approach most common-practice

music would be judged grammatical, as would most rock and jazz and

much non-Western music. Some twentieth-century art music, by con-

trast, would be ungrammatical by this measure; consider, for example,

the passage from Boulez's Structures 1a, shown in ®gure 11.6. It is hardly

news that some music is inherently more contrapuntal than other music

in this way; however, it is a nice feature of the current model that it

naturally yields a measure of the ``contrapuntality'' of a piece. It should

be emphasized again that whether a piece scores high or low says nothing

about the value or success of a piece; for some composers' purposesÐ

for example, if the intention is to create a pointillistic effectÐit may be

desirable to prevent a contrapuntal hearing.

This line of reasoning brings to mind the work of Huron (under

review). Bringing together a large body of research by himself and others,

Figure 11.6
Boulez, Structures 1a, mm. 1±4.
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Huron shows that many rules of counterpoint in common-practice music

relate closely to principles of auditory perception; other perceptual prin-

ciples are re¯ected in aspects of compositional practice which are not

dictated by explicit rules but have been veri®ed statistically. These ®nd-

ings can be explained, Huron argues, by assuming that composers often

seek to facilitate the process of auditory streaming. An example is pitch

proximity. Huron cites a wealth of statistical evidence showing that

composers tend to avoid large intervals within melodic lines; recent work

has shown, furthermore, that this cannot be attributed solely to global

constraints on the range of melodies (von Hippel 2000).11 The perceptual

avoidance of crossing streams is also re¯ected in composition: in Bach

fugues, crossings among the voices are signi®cantly less common than

they would be if the same voices were aligned in a random fashion (again

proving that avoidance of part-crossing does not merely result from the

con®nement of each voice to a distinct range). Thus both the preference

for small intervals and the avoidance of crossing streams appear to be

re¯ected in compositional practice.

While some of the contrapuntal principles Huron discusses relate

directly to what I have called ``contrapuntal analysis''Ðthe grouping of

notes into linesÐin other cases the connection is less direct. An example

is Huron's elegant explanation of the prohibition of parallel ®fths and

octaves. Simultaneous notes a ®fth or an octave apart tend to fuse into a

single note; moreover, two simultaneous voices tend to fuse into a single

voice when they ``co-modulate,'' that is, when they move by the same

interval. The tendency for two voices to fuse should be particularly

strong when these conditions are combined; and this is exactly the situa-

tion of parallel ®fths and octaves. In other words, Huron suggests, the

prohibition of parallel perfect intervals is designed to prevent two voices

from fusing into one.12 In this case, however, the perceptual principles

involved relate to ``simultaneous integration'' rather than ``sequential

integration'' (see section 4.2). Parallel perfect intervals are avoided not

because they hinder the process of grouping notes into streams, but

because they hinder (or confuse) the grouping of partials into notes: they

create the risk of an inaccurate representation of pitch-events themselves

(what I am calling the ``input representation'').13 In any case, the general

lesson is the same: that viewing perceptual principles as constraints on

composition can provide valuable insight into compositional practice.

Another interesting application of preference rule models to the

description of music is found in the work of Krumhansl. As noted in

chapter 7, the Krumhansl-Schmuckler key-pro®le algorithm could be
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regarded as a simple preference rule system, since it involves considering

different analyses of a piece (one for each key) and evaluating them

numerically. The score for the most preferred key can then be regarded as

a measure of the degree to which the piece ®ts any keyÐand, hence, the

degree to which is the piece is ``tonal.''14 In statistical analyses of a wide

variety of tonal pieces, Krumhansl (1990, 66±74) found strong correla-

tions between the input pro®le and the key pro®le for the ``correct'' key.

That does not necessarily mean that the correct key would be the pre-

ferred one, but that is not our concern here; the point is that the pieces

are judged to be tonal with respect to some key. Krumhansl also tested

the model on one piece conventionally regarded as atonal: Schoenberg's

``Farben.'' In this case, no key pro®le was found to have a statistically

signi®cant correlation with the input pro®le of the piece. Here, then, is

tentative evidence that the Krumhansl-Schmuckler model accords well

with conventional judgments as to what music is tonal and not tonal.

Mention should also be made here of studies by Krumhansl and her

colleagues on Indian music. Castellano, Bharucha and Krumhansl (1984)

performed ``probe-tone'' experiments using excerpts of North Indian

classical music (for both Indian and Western listeners), similar to those

described in section 7.3, and generated pro®les for these. North Indian

classical music involves a variety of different scales, or thats. The ``that-

pro®les'' generated from these experiments were found to correlate well

with the pitch distributions of the context materials. One might suppose

that these that-pro®les are used as a means of tonal orientation in Indian

music: in hearing a piece, Indian listeners apply each that-pro®le, ori-

ented to each possible tonic, and choose the highest-scoring analysis as a

way of determining the that and tonal center. It would be interesting to

pursue a ``that-®nding'' algorithm for Indian music along these lines; this

might lead, in turn, to quantitative predictions about pitch organization

in Indian music.15

11.5

Preference Rule

Scores and Musical

Tension

I have suggested that the score yielded by the preferred analysis of a

piece under a particular preference rule system might tell us something

about the grammaticality of the piece within a style. A piece yielding only

a very low-scoring analysis may be incomprehensible; a piece yielding

an extremely high-scoring analysis may be dull. This leaves a range of

acceptable scores. One might wonder if differences in score within this

range of acceptability tell us anything of musical interest. I believe they

do, though here again my ideas are conjectural. I would suggest that
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relatively low scores can be a source of tension and instability, whereas

high scores represent calmness and normality. A entire piece may be

characterized by high or low scores in a particular aspect of structure;

perhaps more interestingly, a piece may vary between high and low

scores from one passage or segment to another, as a way of achieving a

¯uctuating trajectory of tension.

Consider the harmonic and TPC rules. (Recall that these are integrated

into a single preference rule system.) What kind of musical devices would

result in a low-scoring analysis? A passage featuring very rapid harmonic

rhythmÐthat is, a passage in which the highest-scoring analysis that

could be found featured a very rapid harmonic rhythmÐwould score

poorly on the strong beat rule (HPR 2), since many changes of harmony

would not coincide with strong beats. A passage with very syncopated

harmonyÐwith slower harmonic rhythm, but with changes of harmony

generally on weak beatsÐwould also receive a low score under this rule.

A passage featuring very long ornamental dissonancesÐi.e. dissonances

not quickly resolved by stepÐwould score poorly on the ornamental

dissonance rule (HPR 4); a piece featuring wide leaps on the line of ®fths,

that is moves to very remote harmonies, would score poorly on the har-

monic variance rule (HPR 3). As for the pitch variance rule (TPR 1), a

passage would incur high penalties by introducing new pitches which

are remote from previous pitches on the line of ®fthsÐfor example, by

moving to the scale of a remote key. All of these are well-known devices

for creating musical tension and instability.

The ®rst section of Schubert's Moment Musical No. 6 provides an

illustration. Figure 11.7 shows the analysis of the TPC-harmonic pro-

gram for this passage. The analysis seems largely correct. The program

makes two errors in spelling (not shown in ®gure 11.7): it chooses F"
(instead of E) on the third beat of m. 12 and E"" (rather than D) in the

German sixth chord of mm. 16±17. Questionable harmonic choices

include the D" (rather than B") in m. 1, the F (rather than A") in m. 3,

and the F" root for the German sixth chord in mm. 16±17. Table 11.1

presents the scores for the program's preferred analysis of this passage,

showing scores for each rule on each measure. Consider the harmonic

variance scores for the ®rst 16 measures. (Recall that harmonic variance

represents the distance of a segment's root from the ``center of gravity'' of

previous roots on the line of ®fths, weighted for recency.) It can be seen

that harmonies whose roots are further from previous harmonies on the

line of ®fths receive larger harmonic variance scores (lower scores, in

effect, since these scores act as penalties). The G-C segments in mm. 10±
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12 incur a large penalty, re¯ecting the remoteness of these roots from

previous roots; the F" chord in mm. 16±17 is also heavily penalized

(although the choice of root here is dubious). In terms of pitch variance,

the largest score occurs in the German sixth chord in mm. 16±17; this

re¯ects the fact that the C" and F" introduced here are remote from the

previous pitches, which mostly remain within the A" major collection.

(M. 12 gets a high score as well; this is due to the E as well as to the

erroneous F".) Thus both the harmonic and pitch variance scores re¯ect

the very palpable sense of tension and surprise created by mm. 10±12

and mm. 16±17. Notice also the large ornamental dissonance penalty for

mm. 7 and 15: this re¯ects another kind of tension, created by having

several long ornamental dissonances on a strong beat.16

The possibilities for harmonic tension are exploited in a variety of

ways in common-practice music. The opening of Beethoven's Quartet

Op. 59 No. 1 is notable for the large number of metrically strong (and

sometimes long) ornamental dissonances in the melody; these are indi-

Figure 11.7
Schubert, Moment Musical No. 6, mm. 1±20.
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Table 11.1
Scores of the harmonic-TPC program for preferred analysis of Schubert excerpt
shown in ®gure 11.7

M.

No. Root(s)

Compati-

bility rule

score

Ornamental

dissonance

penalty

(ÿ)

Harmonic

variance

penalty

(ÿ)

Pitch

variance

penalty

(ÿ)

Strong

beat

penalty

(ÿ) Total

0 A" 5.775 0.000 0.000 1.502 3.695 0.578

1 D" 11.200 6.614 3.360 5.715 0.000 ÿ4.489

2 B" 6.720 2.869 7.052 3.981 0.286 ÿ7.468

3 F 19.040 0.000 7.411 5.657 0.000 5.972

4 A" 10.675 0.000 4.741 3.302 0.286 2.918

5 E", A" 17.220 0.000 1.053 11.459 3.950 ÿ0.758

6 E", B" 21.945 0.000 1.593 8.937 3.954 7.461

7 E" 17.920 19.843 0.180 12.148 0.000 ÿ14.251

8 E", A" 15.575 0.000 1.262 3.362 3.695 7.256

9 D" 11.200 6.614 6.342 6.401 0.000 ÿ8.157

10 B", G ÿ0.210 0.000 8.454 10.488 3.981 ÿ23.133

11 C 20.160 6.614 9.120 6.794 0.000 ÿ2.368

12 C 13.650 5.381 5.530 15.414 0.000 ÿ12.675

13 E", A" 16.170 0.000 6.789 8.191 3.695 ÿ2.505

14 B", E" 9.520 2.220 1.247 7.243 3.954 ÿ5.144

15 A" 8.960 19.843 4.243 7.634 0.000 ÿ22.760

16 A", F" 9.870 0.000 5.673 17.657 3.695 ÿ17.155

17 F" 10.745 6.614 9.746 27.396 0.000 ÿ33.011

18 A", D" 9.030 0.000 0.967 6.576 3.981 ÿ2.494

19 D" 6.720 0.000 0.274 10.366 0.000 ÿ3.920

20 A" 12.320 0.000 1.844 4.334 0.259 5.883

Note: For each measure, the roots of chord-spans within that measure are shown at left; to

the right are shown the scores for the measure for each rule, followed by the total score for

all the rules combined. Rules marked with ``(ÿ)'' are penalties; thus scores for these rules are

negative.
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cated in ®gure 11.8. (Here the chord symbols above the staff show my

own analysis, not the program's.) Non-chord tones such as the E in m. 1

and the B" in m. 3 are hardly unusual, but much more striking dis-

sonances follow. The D in m. 5Ðwhich I hear as ornamentalÐresolves

to an E which is itself ornamental; though one ornamental tone resolving

to another is permitted by the ornamental dissonance rule, it incurs a

large penalty since both notes are penalized. (The D-E-F-G-F ®gure of the

cello is repeated in the violin in mm. 9±10, creating another dissonant

clash, though this time it is the D and the F's that con¯ict with the C7

harmony below.) The cello in m. 7 outlines a C major triad, placing C, E

and G on strong beats, while the A and C in the upper voices continue to

imply F major. One could hear the cello's E and G as ornamental here,

although the sense of a C major harmony is so strong that I am almost

inclined to hear the A's in the viola as ornamental, resolving up to the

following B"'s, so that the C7 harmony in m. 8 really begins one measure

earlier. In either case, the ornamental dissonance rule imposes high pen-

alties here.17 A similar con¯ict arises in m. 15, where the three degrees of

the F major triadÐthe harmony to which the entire passage from m. 8

onwards seems to be leadingÐland on metrically strong beats (the tonic,

F, being metrically strongest), though both F and A are ornamental over

the C7 harmony. This playfully anticipates the joyful arrival on F major

in m. 19. The longest dissonance of all, the D in m. 17Ðmetrically strong

at all levels, even the 2-measure hypermetrical levelÐprovides a suitable

climax to the passage. It is largely these accented dissonances that give

the passage its color and character.

Figure 11.9 shows another kind of harmonic tensionÐthe tension of

harmonic rhythm. The move to A on a weak sixteenth-note beat in m. 79

is a startling gesture; Brahms heightens the tension further in the follow-

ing two measures with several other harmonic changes on weak sixteenth

notes. In several cases, it would be possible to analyze the harmonies here

as ornamentalÐfor example, the second chord in m. 80 could be treated

as two lower neighbors, C# and E, instead of an A harmonyÐbut in

cases where two or three tones combine, a harmonic interpretation (if

available) usually seems preferable over an ornamental one, as the cur-

rent model predicts (see section 6.5). As a ®nal example, ®gure 11.10

shows an extreme example of tension due to harmonic variance: the

move from A minor on the downbeat of m. 181 to G" major on the

(metrically weak) third eighth of the measure creates a leap of nine steps

on the line of ®fths. This is, again, accompanied by TPC tension due to

the wide dispersion of events in line-of-®fths terms, from G# in m. 179 to
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Figure 11.8
Beethoven, String Quartet Op. 59 No. 1, I, mm. 1±19. The asterisks mark nota-
ble ornamental dissonances. All dissonances are marked which are (a) quarter-
notes (or longer notes) on strong quarter-note beats, or (b) eighth-notes on any
quarter-note beats. The chord symbols indicate my own harmonic analysis.
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Figure 11.9
Brahms, Violin Concerto, I, mm. 78±81.

Figure 11.10
Beethoven, String Quartet Op. 59 No. 3, II, mm. 178±85.
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G" in m. 181. (The beginning of m. 184 is a clear case of revision: ®rst

heard as a C7"9 with D", it is then reinterpreted as A7"9 with C#.)

I suggest, then, that the scores produced by preference rule systems for

segments of a piece may be a good indicator of musical tension. Within

the range of acceptability, higher scores are associated with an effect of

lower tension; lower scores mean higher tension. If we also include the

range of unacceptably high or low scores, this produces a continuum

from boredom to normality to tension to incomprehensibility (®gure

11.11). Ways that other preference rule systems relate to musical tension

can readily be imagined. A heavily syncopated passage creates metrical

tension, since either the regularity rule or the accent rules will be violated;

Figure 11.11
The numerical score of a piece yielded by the preference rule system for a certain
style (for any aspect of structure) can tell us something about the status of the
piece within the style. If the piece scores very high, it is likely to be judged as
unacceptably boring within the style. If it scores somewhat less high it will be
considered acceptable within the style; within this range, higher scores are con-
sidered calm and normal, while lower scores are tense or daring. Pieces with very
low scores are likely to be considered ungrammatical or incomprehensible within
the style.
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a line with many leaps creates contrapuntal tension. A passage with a

great deal of chromaticism stretches the key rules, since it probably will

not permit a good ®t with any single key-pro®le (at least not without

frequent modulation). (As noted earlier, it is also likely to stretch the TPC

rules, by preventing an analysis in which events are compactly repre-

sented on the line of ®fths.)18 A passage without clear phrase boundaries

will convey tension by not permitting any satisfactory grouping analysis;

this is a common feature of transitions and development sections, as

noted in chapter 3.

When several of these kinds of tension are combined within a single

passage, the effect can be dramatic. In ®gure 11.12, the move to the

Neapolitan at mm. 55 combines harmonic tension (a leap of ®ve steps in

root motion, A to B"), TPC tension (due to the close juxtaposition of B"
and G#) and extreme metrical tension (a long, dense sforzando chord on

a weak beat, with nothing on the following strong beat). In ®gure 11.13,

the tension is, ®rst and foremost, contrapuntal, due to the frequent wide

leaps in the melody. Hypermetrical disorder also contributes: the begin-

ning of a group at m. 125 suggests a strong beat there at the two-measure

level; the parallelism between mm. 127 and 129, however, suggests that

m. 127 is strong at this level; the repeat of the descending two-note

motive at mm. 130±1 (extended over two measures instead of one) then

establishes m. 130 strong at the one-measure level, upsetting the previous

``odd-strong'' hearing; the ``odd-strong'' hearing is then restored at

m. 135, forcing yet another reorientation.19 One might also cite tension

due to TPC variance here; however, this is more doubtful. The question

is, do we really hear the leaps in mm. 127±32 as they are spelledÐthat

is, as diminished sevenths? I would submit that, instead, we simply hear

Figure 11.12
Beethoven, Sonata Op. 31 No. 2, I, mm. 52±7.
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them as major sixths (A"-C", E"-G", B"-D", F-A"Ðthough in the last

case the following context might encourage G#); this is a preferable

hearing by harmonic compatibility (allowing the sevenths to be inter-

preted as 1 and "3 of minor triads) and by TPC variance as well.

It is useful to consider the relationship between ambiguity and tension.

In principle, they are quite distinct: ambiguity occurs when the two (or

more) most preferred analyses are roughly equal in score (see section

8.5); tension occurs when the most preferred analysis (or analyses) is

low-scoring. However, it can be seen that the two phenomena are often

associated. In terms of key structure, for example, a chromatic passage is

likely to be both ambiguous (since the pitch collection matches multiple

keys to a roughly equal degree) and tense (since none of those keys pro-

vide the perfect match that would be yielded for a simple diatonic

scale).20 In ®gure 8.12b, the G's and E's not only serve to promote the

sense of an E minor harmony; they also weaken the sense of B major at

that point (since they are ornamental to that harmony). On the other

hand, it is not clear that ambiguity and tension need always go together.

The move to B" major in ®gure 11.12 causes harmonic tension, yet there

is no ambiguity; no alternative analysis could reasonably be entertained.

Conversely, a passage using a tonally ambiguous but non-chromatic

pitch collectionÐsuch as C-D-E-F-G-AÐmight be ambiguous between

Figure 11.13
Mozart, Symphony No. 40, IV, mm. 124±35.

316 II. Extensions and Implications



two keys (C major and F major, in this case), yet fully compatible with

both, and thus not particularly tense.

I certainly would not claim that the preference rule approach captures

every aspect of musical tension. In particular, the current model hardly

does justice to the complexities of harmonic and tonal tension. For

example, the model says nothing about the greater tension of a second

inversion triad compared to a root position one, or the unique ability of a

perfect cadence to provide relaxation and closure. The model also tells

us little about large-scale tonal tension. In an extended piece, a cadence

in a nontonic key creates a high-level tension which can only be resolved

by a return to the main key; the current model has no knowledge of this

kind of large-scale departure and return. A more comprehensive model of

tonal tension has been proposed by Lerdahl (1996). In Lerdahl's theory,

events are assigned locations in a multi-level space, representing both

chords and keys. Events are then assigned to a reductional tree structure,

in such a way that the most stable events are superordinate in the tree,

and events most proximate in the tonal space are directly connected. The

tension of an event then corresponds roughly to its level of embedding in

the tree.21 It naturally emerges from this system that more harmonically

remote events are more embedded, and thus more tense. Such a system is

more adequate for the subtleties of tonal tension than the current

approach. On the other handÐas Lerdahl's theory acknowledgesÐto

generate such pitch-space and reductional representations in a rigorous

way requires exactly the kind of infrastructural levels studied here: met-

rical structure, phrase structure, harmonic structure, and key structure.

Achieving a model which could capture the full complexity and subtlety

of tonal tension would no doubt require both lower-level infrastruc-

tural representations and hierarchical structures of the kind proposed by

Lerdahl.

11.6

Performance

A certain view of musical communication has been assumed in the pre-

ceding discussion. It begins with a composer, who generates music under

the constraints of various kinds of preference rules, and represents it in

musical notation; this notation is then converted in performance into an

aural ``input representation'' of the kind discussed earlier, consisting of

pitches represented in time; this is then decoded by the listener, again

with the aid of preference rule systems, who extracts the infrastructural

representations (meter, harmony, and so on) imagined by the composer.

However, there is something missing here. The conversion of musical
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notation into an aural input representation is not, of course, a determin-

istic, mechanical process, but is mediated by another human being, the

performer (or performers). In this section I will consider what relevance

preference rule systems have to the role of the performer in the commu-

nicative process.

First of all, we can assume that, in learning and perfoming a piece of

music, a performer's own mental representation of the piece involves the

same kinds of infrastructural levels that we have been assuming for lis-

teners. If the performer ®rst learned the piece (at least in part) by hearing

it, then of course her understanding of it would entail structures of meter,

harmony, and the like, as they would for any other listener. Even if her

learning was reliant mainly on contact with the score, she would hear the

music as she herself played the piece, and would thus be approaching it,

to some extent, as a listener would. However, the score plays a role here

that should not be overlooked. It was pointed out earlier that musical

notation contains at least partial speci®cation of several of the kinds of

musical information discussed here. The metrical structure is almost

completely speci®ed (except for hypermetrical levels); the main key is

speci®ed, as is the spelling of the notes; the contrapuntal and grouping

structures are often at least partly speci®ed through notation as well.

(Only harmony is normally completely absent in notation.) While these

notated structures very often correspond to what listeners would hear,

sometimes they do not. Moreover, as noted in chapter 8, there are many

cases of ambiguity in all of these kinds of structure, and in such cases

we can imagine that the composer's notation might tip the perfomer's

understanding in one direction or another.

The importance of infrastructural levels in performers' mental repre-

sentations of music has been con®rmed in studies of music learning.

Phrase structure plays a particularly central role in the learning process.

In studies of sight-reading, Sloboda (1974) found that performers tend

only to look ahead to the next phrase boundary. It has also been found

that performers' errors re¯ect phrase structure; for example, when a note

is played in the incorrect position, the correct location is more likely to be

within the same phrase as the played location than outside it (even when

controlling for the fact that within-phrase locations are closer) (Palmer

and van de Sande 1995). This suggests that phrases serve as cognitive

units for both learning and performance. Studies of errors in music

learning also show the importance of harmonic structure. Sloboda

(1976) presented pianists with unknown tonal pieces (by minor Classical

composers) which contained a number of ``misprints''Ðnotes which
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were altered to be a step away from the original, usually in such a way as

to violate the rules of harmony by producing an unresolved dissonant

sonority. For example, in ®gure 11.14, the score shown to the pianists

contained an F# in the right hand on the downbeat of the second measure,

as opposed to the correct note (presumably G). In many cases, performers

unconsciously ``corrected'' the errorsÐthough they were unfamiliar with

the pieceÐshowing that rules of harmony create powerful expectations

for performers as they read music. The idea of ``high-scoring'' and ``low-

scoring'' music could be brought to bear here; in ®gure 11.14, G is

strongly preferable to F# for the downbeat of the second measure, since

G permits a high-scoring harmonic analysis while F# does not.

Infrastructural levels, and the preference rule systems that give rise

to them, also play an important role in performance expression. We

should remember here that performance expression involves important

parametersÐparticularly dynamics and (with some instruments at least)

timbreÐwhich are beyond the scope of the current model, so I will have

little to say about them here. We will focus on an aspect of expression

that the model does represent, namely timing. I suggested in chapter 1

that for any notated piece, once a tempo is chosen, the score can be taken

to imply a quantized input representation; given the tempo, the onset-

time and duration of every note follows automatically. As is well known,

however, performers (in most cases anyway) do not even attempt to

produce such a quantized representation. Indeed, the deviations from

exact rhythmic regularityÐlarge and small, conscious and unconscious

Ðare a vital source of expressive nuance in performance.

A good deal of research has been done investigating the phenomena

involved in expressive timing. It has been found, ®rst of all, that metrical

Figure 11.14
Part of an excerpt used in a study by Sloboda (1974). The excerpt (shown in
Sloboda 1985) was a passage from a Sonata by Dussek, with certain notes altered
by Sloboda. In this segment, for example, the F# marked with an asterisk was not
in the original but represents one of Sloboda's alterations.
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structure is an important factor in timing. Metrically strong events (as

implied by notation) tend to be played longer than other events; they are

also played slightly louder (Sloboda 1983; Palmer & Kelly 1992; Drake

& Palmer 1993). Phrase structure is also re¯ected in expressive timing;

tempo tends to decrease at the beginnings and endings of phrases, with

more pronounced decreases at the boundaries of larger sections (Todd

1985, 1989). Again, a possible explanation for these phenomena lies

in the numerical scores produced by the model for alternative analyses.

It seems likely that the performance strategies discussed above serve to

heighten the score of the correct analysis relative to others, thereby

decreasing the ambiguityÐincreasing the clarityÐof the piece. Metri-

cally accented notes are played slightly longer than others, because this

makes them more attractive as strong beat locations, according to the

length rule (MPR 2). (For the same reason, making metrically accented

notes slightly louder favors them as metrically strong by the stress rule

[MPR 7].) The ``phrase-®nal lengthening'' phenomenon can also be

explained in preference rule terms. Recall that a grouping boundary is

favored at points of large inter-onset intervals (or offset-to-onset inter-

vals). Slowing down at a phrase boundary increases the inter-onset-

interval between the last note of one phrase and the ®rst note of the next.

Of course, it also increases the intervals between other nearby note pairs;

why not increase just the single time interval right at the boundary? One

possible reason is that tempo changes cannot be made too suddenly,

otherwise the metrical structure will be disrupted. For example, given a

sequence of eighth notes, making one of them (intended as a phrase

boundary) longer than neighboring ones may cause its rhythmic value to

be misunderstood. (This point is illustrated in ®gure 11.15.) Deforming

the tempo gradually allows the crucial between-phrase IOI to be length-

ened while maintaining a clear metrical structure.

Another interesting factor in performance is ``melodic lead.'' In poly-

phonic textures, the notes of the melody tend to slightly anticipate nom-

inally simultaneous notes in other voices. This phenomenon, which has

been demonstrated both in solo (piano) and ensemble performance

(Palmer 1996b), is not so easy to explain in preference rule terms. As

Palmer has suggested, it probably relates more to the recovery of correct

pitch informationÐthat is, the formation of the input representation

itself. Events which are performed perfectly synchronously can tend to

fuse together; making them slightly asynchronous allows the individual

pitches to be more easily identi®ed.
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Figure 11.15
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The preference rule approach also makes predictions about expressive

timing that have not, to my knowledge, been experimentally veri®ed. It

was argued in chapter 3 that an offset-to-onset interval (OOI) tends to

imply a phrase boundary; that is, a given inter-onset interval (IOI) will

be a better phrase boundary if it is ®lled mostly with ``rest'' rather than

with ``note.'' Consider, again, a sequence of eighth notes, and suppose

the performer wished to convey one particular note as a phrase bound-

ary; one way to do itÐwithout disturbing the regularity of the IOI'sÐ

would be to increase the OOI at the phrase boundary, that is, by play-

ing the last note of the ®rst phrase more like a sixteenth-note followed

by a sixteenth-rest (see ®gure 11.15). My own intuition is that performers

do in fact do this quite routinely, but to my knowledge it has not been

shown statistically (perhaps it is too obvious to require proof). The situ-

ation is complicated somewhat by the fact that slurs of the kind shown

in ®gure 11.15 are ambiguous; they may also be taken as indications of

articulation rather than phrase structure. A slur can mean that a group of

notes should be played ``legato''; and playing a phrase legato means, at

least in part, playing with very short (perhaps even zero-length) OOIs

within the phrase. One might argue that, if people do play legato pas-

sages with longer OOIs between slurs than within them, they are merely

following the articulation directions rather than trying to convey the

phrase structure. In any case, it seems clear that there is a fundamental

connection between articulation and phrase structure, just as the gap rule

predicts: playing notes with short or zero-length OOIs indicates that they

are within a phrase, while longer OOIs suggest a phrase boundary. This

fundamental convergence between articulation and phrase structure may

explain why the slur developed its ambiguous meaning: playing a group

of notes as a phrase, and playing them legato, often amount to the same

thing.

A ®nal issue to consider is the role of harmony and tonality in expres-

sive timing. There is converging evidence that harmonically remote events

tend to be played with decreasing tempo. By harmonically ``remote,'' I

mean far from the current region or center of harmonic activity. (This of

course assumes some kind of spatial representation of harmonies; while

theorists disagree on exactly what space is most appropriateÐas dis-

cussed in section 5.2Ðthere is considerable agreement on many points,

for example, that harmonies a ®fth apart are close together.) Palmer

(1996a) found that in general, events with higher tension were played

longer than other eventsÐand the model of tension used by Palmer (that

of Lerdahl) generally assigns higher tension to harmonically remote
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events. Indirect con®rmation for this is found, also, in Sundberg's

experiments (1988) with arti®cially synthesized expressive performances.

In these experiments, the expressive timing of the performances was

determined by rules; various rules were tried, and the musicality of the

results was judged by expert listeners. One rule which generally produced

satisfactory results was to decelerate on harmonies far from the tonic on

the circle of ®fths, and accelerate when closer to the tonic. Anecdotal

evidence for this principle can also be found in composers' scores. Con-

sider ®gure 8.13, from Brahms's Intermezzo Op. 116 No. 6; why does

the composer indicate a sostenuto in mm. 7±8Ðespecially since this

passage, clearly located at the end of an eight-measure phrase, would be

played with a slight ritard in any case? One possibility is that mm. 7±8

feature rather rapid harmonic rhythm (with chord changes on each

quarter note), as well as signi®cant motion on the line of ®fths (both in

terms of root and pitch collection), from D7 on the last beat of m. 6 to

G# major on the downbeat of m. 8; the passage ends up a long way from

where it was just a few moments earlier.

Why would performers tend to decelerate on remote harmonies?

Consider the Brahms example. The harmonic variance rule (HPR 3)

assigns penalties to each chord-span, based on its closeness to previous

roots; this is based on the harmonic center of gravity, which calculates

the mean position of roots on the line of ®fths weighted for their recency

in absolute time. At a faster tempo, the center of gravity at the G# seg-

ment at the beginning of m. 8 will be more affected by the previous D and

B chords (in mm. 6±7) than it will be at a slower tempo (since they will

be more recent); at a faster tempo, then, the penalty for this G# segment

will be higher. The same logic applies to the pitch variance rule (TPR 1);

at a moment of dramatic shift in pitch collection, pitch variance penalties

will be higher if the tempo is faster. The strong beat rule, too, assigns

penalties based on the absolute time interval between beats and the

absolute length of chord segments. By all three of these rules, a passage

such as mm. 7±8 of the Brahms would normally be quite heavily penalized

(relative to the previous measures), giving a sense of heightened tension.

Reducing the tempo alleviates this tension somewhatÐintuitively speak-

ing, it increases the time between m. 6 and m. 8, so that the harmonic

changes do not seem so rapid and the motion on the line of ®fths is not so

abrupt. The same logic would apply to any case of motion to a remote

chord or pitch collection. Here again, then, the idea is that performance

nuance (whether initiated by the performer or indicated by the composer)

serves to heighten the acceptability of the intended interpretation.
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12
Functions of the Infrastructure

12.1

Beyond the

Infrastructure

In chapter 1, I introduced the idea of a musical ``infrastructure'': a

framework of structures underlying music cognition, analogous to the

framework of water mains, power lines, and the like underlying the

activities of a society. I justi®ed the analogy, in part, by observing that

the components of what I call the musical infrastructure, much like those

of a societal infrastructure, generally do not provide direct satisfaction or

enhance the quality of life in themselves, but are a means to some further

end. Throughout this book, I have focused on the problem of generating

infrastructural representations, saying very little about their role in the

larger picture of musical experience. At this point, however, it seems

appropriate to return to this issue. What is the point of meter, harmony,

and the like? How do they contribute to what makes music valuable,

enjoyable, and important to people? It is natural to ask, also, whether the

particular hypothesis about the formation of infrastructural representa-

tions put forth in this bookÐthe preference rule hypothesisÐhas any

bearing on this issue. Do preference rule systems merely serve the task of

generating infrastructural representationsÐa task which, for all that it

matters, might just as well be performed some other wayÐor do they

relate in some more direct way to the higher levels of musical experience

and meaning?

These questions open the door to a subject of almost boundless

scope and complexity. The meanings of music are many and diverse, and

would take us into complex issues of cultural context. Nevertheless, I will

venture some tentative answers as to how infrastructural levels, and in



particular the preference rule approach to them taken here, relate to the

``higher-level'' aspects of music.

In speaking of ``musical meaning,'' I am entering well-trodden and,

perhaps, treacherous territory. Much has been written about the issue of

meaning in musicÐwhether music has meaning, and if so how it can be

characterized.1 For present purposes I will propose a de®nition of musi-

cal meaning which is straightforward and, I think, reasonably close to

the way the term is generally understood. The meaning of something in a

piece of music is simply its function, its role in the effect and impact of

the entire piece. No further parallel with linguistic meaning is intendedÐ

though a comparison of meaning (as de®ned here) in language and music

brings out some interesting similarities and differences, as I will explore

in a later section.

12.2

Motivic Structure

and Encoding

An important aspect of music not so far addressed is motivic structure:

the network of segments in a piece heard as similar or related. Motivic

analysis is essentially a process of coindexingÐ``labeling as the same''Ð

various segments within the piece. Figures 12.1 and 12.2 give two

examples. The ®rst is straightforward, featuring a series of motives each

heard twice. The second is more complex; the repetition of motive A forms

a larger unit B which is itself repeated; the tail end of B then becomes a

smaller motive, C, whose second half then becomes a still smaller motive.

(In both cases, alternative analyses are possible, but the details do not

concern us.) Motivic structure has been explored from a variety of per-

spectives, but the factors in¯uencing motivic structure have not been

widely studied.2 In this section we will consider how motivic structure

relates to the infrastructural levels discussed in previous chapters.

Figure 12.1
Beethoven, Sonata Op. 13 (``Pathetique''), III, mm. 1±8.
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The most basic, and psychologically well-established, kind of motivic

pattern is one of simple transposition, where an intervallic pattern is

repeated at different pitch levels. The psychological reality of such rela-

tionships has been demonstrated in experiments by Deutsch (1980), in

which trained listeners were played sequences of pitches, and asked to

write them down. Some were structured sequences, such as ®gures 12.3a

and c, based on a repeating intervallic pattern; other sequences featured

the same notes as the structured sequences, but without any repeating

pattern, as in ®gures 12.3b and d. Listeners reproduced the structured

sequences much more accurately than the unstructured ones, indicating

that the repeated patterns within ®gures 12.3a and c were being recog-

nized. This points up an important fact about motivic structure: it is

an aid to memory, allowing melodies to be encoded in a parsimonious

way.

Figure 12.2
Beethoven, String Quartet Op. 59 No. 3, I, mm. 43±51.

Figure 12.3
From Deutsch 1980. Sequences (A) and (B) have the same pitches, arranged in a
different order; likewise sequences (C) and (D).
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Deutsch and Feroe (1981) have proposed a system whereby motivic

relationships might be represented in a hierarchical fashion. Motivic

segments are encoded as patterns on various ``alphabets,'' such as the

chromatic scale, the diatonic scale, and major and minor chords; such

patterns can then be nested hiererchically. For example, the melody in

®gure 12.3a can be encoded as follows (here I present a less formal

version of Deutsch and Feroe's symbolic language):

X � ��;�1;�1�G major (a pitch, followed by another pitch a step

up, followed by another pitch a step up,

all on the G major scale)

Y � ��;�1;�1;�1�G major (a pitch followed by three ascending steps

on the G major scale)

Z (the complete pattern) � Y, with each step of Y starting an instance

of X, starting on the pitch B4.

In short, a three-note pattern on the G diatonic scale is repeated in a

larger pattern also on the G diatonic scale. Figure 12.3c could be encoded

in a similar way; here, a pattern on the chromatic scale is repeated in a

larger pattern on a G major arpeggio.

Deutsch and Feroe's system recognizes the fact that tonal and har-

monic structure play an important role in motivic analysis. More specif-

ically, we could view tonal and harmonic analysis, in part, as a search for

a parsimonious encoding of musical input. Each key or chord implies

a certain alphabet (here we must assume that the root labels of chords

are supplemented with major or minor as well). Applying a chord or key

label to a segment means, in effect, choosing a certain alphabet as most

appropriate for encoding the pitches of the segment. Even in melodies

without internal repetition, there is evidence that harmonic and tonal

alphabets, particularly diatonic scales, are used for melodic encoding.

Studies by Cuddy and her colleagues show that diatonic melodies are

more easily encoded than chromatic melodies (Cuddy, Cohen & Mewhort

1981); moreover, a melodic pattern is more easily recognized if it is pre-

sented in a compatible diatonic context rather than an incompatible one

(Cuddy, Cohen & Miller 1979). Thus, while Deutsch's experiments sug-

gest that a chromatic alphabet may sometimes be used in encoding as

well, it appears that a diatonic alphabet can be used more readily than

the chromatic one. Further evidence for the role of diatonic scales in

encoding is that when a melody is heard in tonal transpositionÐthat is,
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shifted along the diatonic scaleÐit is often judged to be identical with the

original (Dowling 1978).

It is interesting to consider why encoding melodies using scalar or

harmonic alphabets might be easier than encoding them chromatically.

For one thing, we may simply be more ¯uent with scalar and harmonic

alphabets than with the chromatic one, for whatever reasons of training

and exposure. However, there are other reasons as well why scalar and

harmonic alphabets might be preferred. In many cases, a scalar encoding

is simply more ef®cient than a chromatic encoding. Consider ®gure

12.3a; in terms of the diatonic alphabet, the melody features a repeated

pattern (* �1�1), but in terms of the chromatic scale, each repetition of

the pattern is different: the ®rst is * �1�2, the second is * �2�2, and

so on. (This, in fact, is the primary reason for thinking that listeners are

using the diatonic alphabet to encode ®gure 12.3a; if the chromatic

alphabet were being used, it is not clear why ®gure 12.3a would be any

easier to learn than ®gure 12.3b.) There is a more subtle factor involved

as well. Within a given pitch range, a harmonic or diatonic alphabet

involves fewer steps than a chromatic one. Within the range of an octave,

for example, a given harmonic alphabet offers only three possible pitches,

whereas the chromatic alphabet offers twelve. In information-theoretic

terms, a harmonic encoding of a melody contains less information than a

chromatic encoding, and can thus be more ef®ciently stored. (Informally

speaking, it is easier to remember a string of numbers when you know

the only options are 0, 1 and 2, than when all ten digits are available.)

One could imagine the ``alphabet'' system used in much more com-

plex ways than in Deutsch's original experiments. For example, a simple

low-level pattern could be repeated in an arbitrary, unpatterned way.

Consider motive A in ®gure 12.2, C-D-E-C: this motive ®rst occurs in a

descending quasi-arpeggio pattern, with instances starting on C, A, and

D (mm. 43±4); this larger pattern is then repeated (mm. 45±6); then the

motive is shifted up a step, to start on E (m. 47). Though the pattern of

occurrence of the motive is somewhat complex, the motive itself still

contributes to an ef®cient encoding. One could also imagine cases in which

different alphabets (different arpeggios or scales) were used in different

instances of the same pattern. Motive D in ®gure 12.2 provides an ex-

ample: a three-note arpeggio pattern is imposed ®rst on a D minor chord,

then on G7 (or B diminished), C major, and F major. We should note

also that Deutsch and Feroe's alphabet system is not the only aspect of

pitch structure that contributes to motivic similarity. For example, sim-

ilarities can be recognized between pitch sequences which are similar in
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contour, but not identical in any kind of intervallic pattern, or in cases

where one sequence is an elaborated version of anotherÐalthough it

is less clear how these kinds of relationships might facilitate ef®cient

encoding.

Deutsch and Feroe's model provides an elegant and powerful account

of the role of pitch, harmony, and tonality in motivic structure. However,

there is a rhythmic aspect to motivic structure as well, although this has

been less widely studied. Motives generally have a rhythmic pattern as

well as a pitch pattern. Indeed, some have just a rhythmic pattern; ®gure

12.4 shows two examples. In both of these cases, the similarity between

the ®rst and second phrases is primarily rhythmic (notwithstanding the

repeated two-eighth-note pitch motive in ®gure 12.4a). It seems probable

that, just as with pitch patterns, rhythmic patterns that involve repetition

could be more easily learned than those that do not. It would be inter-

esting to test this using purely rhythmic patterns (patterns using only a

single pitch or non-pitched sound); this has not yet been done, to my

knowledge.3

Since motivic patterns are clearly recognizable in both the pitch and

rhythmic domains, it is natural to suppose that a repeating unit with

congruent patterns of pitch and rhythm would be particularly salient.

There is strong evidence that this is the case. When a pitch sequence with

a repeating pattern such as ®gure 12.3c is played with pauses inserted,

the repeating segment will be more easily recognized (that is, the melody

will be more easily learned) when the pauses occur between occurrences

of the pattern, as in ®gure 12.5a, rather than within occurrences, as in

®gure 12.5b; this has been demonstrated repeatedly (Handel 1973;

Deutsch 1980; Boltz & Jones 1986). According to both Handel and Boltz

Figure 12.4
(A) Mozart, Symphony No, 40, I, mm. 1±5. (B) Mozart, Quintet in G Minor
(K. 516), I, mm. 1±2.
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and Jones, this ®nding suggests that the compatibility of pitch and

rhythmic pattern is important: a melody will more easily be learned if the

pitch pattern is repeated in synchrony with the rhythmic pattern. (Others

would interpret these experiments differently, as I will explain.)

The role of rhythm in pattern recognition is generally acknowledged;

what has not been so widely recognized is the crucial role that meter

plays in motivic structure. In the ®rst place, we should note that quanti-

zation is essential for rhythmic pattern recognition. We are perfectly

capable of recognizing a repeated rhythmic pattern, even when the

rhythms are performed somewhat imprecisely, as they almost always are.

This is because we ``quantize'' the rhythms, representing them as integer

multiples of a low-level beat. For example, motive C in ®gure 12.1 (dis-

regarding the grace notes) consists of the durational pattern 1-1-4-2 (in

terms of eighth notes). It was argued in section 2.1 that quantization is

really an aspect of meter: we can think of quantization as imposing a low

level of beats on a series of durations. What is important in motivic

structure, then, is the repetition of quantized rhythmic patterns, rather

than exact ones. (Another point worth noting is that what de®nes a

rhythmic pattern is a sequence of inter-onset intervals, rather than a

sequence of durations. Our recognition of the motives in ®gure 12.1 is

not much affected by whether the notes are played staccato or legatoÐ

though perhaps it is affected slightly by this.)

Meter is also a factor in encoding at higher levels. As with Deutsch and

Feroe's tonal alphabets, a metrical structure can be seen as a means of

encoding a pattern hierarchically. A metrical structure can be thought of

as a tree, as shown in ®gure 12.6, with terminals (endpoints of the

branches) representing beats at the lowest level.4 Each branch of the tree

can be given a unique ``address.'' A series of pitch-events can then be

Figure 12.5
From Deutsch 1980.
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encoded by assigning them to branches of the tree, corresponding to their

metrical locations (i.e., the locations of their onsets). I have argued else-

where that a hierarchical representation of this kind, based on the met-

rical structure, plays an important role in the encoding of motivic

patterns (Temperley 1995). At issue here is the kind of direct and obvious

motivic relations that we seem to perceive almost automatically, such as

those in ®gure 12.1. The model I propose is based on the concept of

``metrical parallelism.'' We can de®ne two segments as metrically parallel

if they are similarly placed with respect to the metrical structure, so that

strong beats fall in the same place in both segments. (In terms of the tree

representation, two segments are parallel if the addresses they contain are

the same below a certain metrical level. This is explained further in ®gure

12.6.) I then propose that, for two segments to be recognized as motivi-

Figure 12.6
A metrical structure can be viewed as a binary (or ternary) tree. Every rhythmic
location in the piece has a unique address, which can be read by listing the
numbers of all the branches leading to that location. (Beats at the highest level
Ðthe two-measure level in this caseÐare simply numbered with integers.) For
example, the address of the branch marked X is 21010. Segments are metrically
parallel if the addresses they contain are the same, below a certain level (speci®-
cally, the level at which each segment contains only one or zero beats). For exam-
ple, segments A1 and A2 are metrically parallel, since they both contain addresses
ending in 00-01-10-11. (At the half-note level, they only contain one beat.) Seg-
ments B1 and B2 are not parallel; one contains 10-11-00, the other contains
01-10-11.
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cally related, they must be (1) related in pitch pattern (in the way speci-

®ed by Deutsch), (2) identical in rhythm (that is, they must have the same

series of quantized inter-onset intervals), and (3) metrically parallel.5 For

example, consider the Beethoven Pathetique melody (reprinted in ®gure

12.7a). By the criteria just stated, segments A1 and A2 are recognized as

motivically related, while segments B1 and B2 are not; while the latter

pair of segments are identical in rhythm and related by transposition,

they are not metrically parallel. Intuitively, this seems correct; the con-

nection between A1 and A2 seems far more salient than that between B1

and B2. If one imagines the eighth-note sequence in ®gure 12.7a in a

different metrical context, as shown in ®gure 12.7b, its effect is changed

completely; now the connection between B1 and B2 is obvious, that

between A1 and A2 virtually unnoticed.

We should recall that motivic parallelism is in itself a factor in metrical

analysis; there is a preference for metrical structures in which parallel

segments are similarly placed with respect to the meter (see section 2.7).

Thus metrical analysis can be seen, in part, as a process of bringing

out parallel segments which can be ef®ciently encoded. The role of meter

in motivic structure deserves further study; so far it has received little

attention, although it has been noted by several experimenters that

changing the metrical context of a melody can greatly alter the way it is

perceived (Sloboda 1985, 84; Povel and Essens 1985, 432).

By this view, harmonic and key analysis as well as metrical analysis

emergeÐin partÐas a search for a parsimonious encoding of a piece. In

a complex, well-written common-practice piece, the search for the opti-

mal encoding is a dynamic process, requiring constant attention and

providing a signi®cant (though not insurmountable) perceptual challenge

for the listener. The appropriate harmonic alphabet is constantly chang-

Figure 12.7

333 12. Functions of the Infrastructure



ing; less often, the diatonic alphabet and metrical framework may shift as

well. The listener must also be constantly alert for patterns of repetition

which may allow a more ef®cient encoding. Taken as a whole, this pro-

cessÐwhich of course may not always be completed after only a single

hearingÐcan be seen as a search for order and pattern. This aspect of

musical listening perhaps has something in common with processes such

as reading a detective or mystery story, doing a jigsaw or crossword

puzzle, or playing games such as charades or twenty questions; in each

case, part of the appeal is ®nding the order or pattern in a highly com-

plex body of information.

The temporal aspects of music perception discussed in chapter 8Ð

revision and expectationÐare relevant here as well. Our expectations

involve, among other things, expectations of pattern: we might expect a

particular motive to be repeated, for example. What actually happens

may ful®ll these expectations, or notÐor it may represent some kind of

continuation of a previous pattern, but not in the way we anticipated. A

simple example is cases where the intervallic shape of a melody is what

we expect, but the harmonic or scalar alphabet required to encode it

is not. Consider ®gure 11.7: the melody in mm. 9±12 (C-C-B"-F-F-E)

repeats the scalar pattern of the melody in mm. 1±4; but due to the E

(rather than E") in m. 12, the A" major scalar alphabet can no longer be

used in encoding itÐthe F minor alphabet is called for instead.6

We should brie¯y consider the role of other aspects of the infra-

structure in motivic analysis. Return to ®gure 12.5; it was mentioned that

the greater ease of encoding the ®rst example over the second was dueÐ

at least by one viewÐto the alignment of pitch and rhythm. In Deutsch's

view (1980), however, this ®nding re¯ects the importance of grouping:

segments will be more easily recognized as related if they are in clearly

separated groups. In fact, Deutsch's study (as well as similar ones by

Handel and Boltz & Jones) appear to confound rhythm and grouping; it

cannot be determined whether the ease of learning ®gure 12.5a com-

pared to ®gure 12.5b is due to the compatibility with the rhythm or to

the grouping. It is undoubtedly true that rhythmic repetition aids encod-

ing independently of grouping. Figure 12.8a is surely easier to learn than

®gure 12.8b; in both cases the grouping is clearly aligned with the pitch

pattern, but ®gure 12.8a features exact rhythmic repetition while ®gure

12.8b does not. However, there is also evidence that grouping can affect

pattern recognition independently of rhythm. In an experiment by Tan,

Aiello and Bever (1981), already discussed several times, subjects asked
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to identify a two-note probe in a melody did so more easily when the two

notes occurred within a group, rather than across a group boundary.

Since the notes of the pattern were all equal in duration, the fact that one

two-note segment was more easily recognized than another cannot be

attributed to rhythm. It appears, then, thatÐindependently of rhythmÐ

the interruption of a sequence of notes by a group boundary can prevent

it from being identi®ed as a motive.

A ®nal factor in motivic structure is contrapuntal structure. It is readily

apparent that a group of notes is much more likely to be heard as a

motive if the events are within the same contrapuntal line. In a piece such

as the Beethoven Pathetique third movement (whose melody is shown in

®gure 12.1), we do not perceive notes from the left-hand accompaniment

as being part of the motives in the melody. This has also been demon-

strated by studies, cited in chapter 4, showing that two interleaved mel-

odies can be identi®ed much more easily if they are widely separated in

register (Dowling 1973a).

In short, several different levels of structure appear to act as direct and

important inputs to motivic analysis: the pitch-time representation itself,

as well as meter, grouping structure, contrapuntal structure, harmony,

and key. Because motivic analysis is in¯uenced by a variety of factors,

it seems likely that it, too, would be amenable to a preference rule

approach, though this will not be attempted here. It is natural to wonder

whether motivic structure could ``feed back'' to in¯uence the representa-

tions that contribute to it. It may be that an analysis that permits a ``rich''

motivic structure (one that contains many coindexed segments, and can

thus be very ef®ciently encoded) is preferred over one that does not. The

in¯uence of parallelism on meter is one clear example of this; in other

areas the in¯uence of motivic structure is less obvious, though this would

be an interesting area for study.7

Figure 12.8
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12.3

Musical Schemata

A motive is generally con®ned to a single piece. Other kinds of musical

patterns occur in many pieces, and are thus the property of the common-

practice style as a whole. Such a pattern is frequently called a ``schema.''

As the term is generally used in psychology, a schema is an entity de®ned

as a cluster of features; not all features may be necessary to the schema

(in some cases, no single feature is necessary), but a certain combination

of features is generally typical. Perhaps the most important schema in

common-practice music is the ``perfect'' cadence: a V-I progression, both

chords in root position, with the tonic in the melody of the I chord. (A

simple example is shown in ®gure 12.9a.) The perfect cadence serves an

essential function in common-practice music; it is virtually required for a

sense of closure at the end of a piece, and generally establishes sectional

points of closure as well. The main point to be made about the perfect

cadence is that it relies heavily on infrastructural levels for its de®nition,

particularly harmony. Figure 12.9b shows the perfect cadences at the end

of each movement of Bach's French Suite No. 6 in E major. As we would

expect, each movement ends with a clear V-I progression in E major.

However, each of these cadences is different, and none of them exactly

matches the ``textbook'' cadence in ®gure 12.9a. The notes of the two

harmonies are generally arpeggiated (presented successively rather than

simultaneously); one or more notes of the chords may be omitted (for

example, the third is omitted from both the B and E harmonies in the

BoureÂe); and non-chord tones may be added. Identifying cadences by

searching for an exact con®guration of pitches, then, simply would not

work. What all the cadences have in common with the stereotyped

cadence (and with each other) is their harmonic structure: each of them

consists of a B harmony followed by a E harmony. Of course, identifying

these progressions as perfect cadences also requires knowledge that they

represent V followed by I in the current key, E major, which in turn

requires knowledge of key structure as well. Notice also that, in each of

the Bach movements, the V is metrically weaker (in terms of its beginning

point) than the I; this is a typical feature of the perfect cadence, though

not a necessary one.

Infrastructural features are also necessary to the de®nition of other

schemata. An example is the 1̂-7̂-4̂-3̂ schema explored by Gjerdingen

(1988): a common clicheÂ of the Classical period. Gjerdingen de®nes the

essential features of the schema as shown in ®gure 12.10. It features a I-V

harmonic progression followed closely by a V-I; the ®rst half must fea-

ture 1̂-7̂ prominently in the melody (though other notes may also be

used), and the second half 4̂-3̂. Again, these features require knowledge
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Figure 12.9
(A) A simple ``perfect cadence.'' (B) Final cadences from the movements of Bach's
French Suite No. 6 in E Major.
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of both harmonic and key structure. The ®rst and second chord of each

half of the schema must be separated by a metric boundary. (In our

terms, this appears to mean that a relatively strong beat must either sep-

arate the two chords or must coincide with the second chordÐusually

the latter.) Gjerdingen actually neglects some other features which it

seems might also be important for the schema (perhaps because he con-

sidered them obvious). Surely the ®rst and second chord of each half

must be part of the same phrase; an instance of the schema with a clear

phrase boundary after the ®rst I chord would hardly seem characteristic.

In the vast majority of cases Gjerdingen considers, the 1̂-7̂ and 4̂-3̂ ges-

tures appear to be metrically parallel, although perhaps this is not abso-

lutely necessary. (Also, the 1̂-7̂-4̂-3̂ scale degrees must presumably belong

to the same contrapuntal line, though that is implicit in the fact that they

are in the melody.) In all these ways, then, infrastructural representations

are necessary for perception of the 1̂-7̂-4̂-3̂ schema.

Other examples could be cited of schemata which depend on infra-

structural levelsÐfor example, the ``topics'' of Classical-period music

Figure 12.10
The 1̂-7̂-4̂-3̂ schema. From Gjerdingen 1988. Reprinted by permission of the
Society for Music Theory.
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(Ratner 1980; Agawu 1991). Topics are idiomatic gestures or clicheÂs,

which carry extramusical or expressive connotations; typically a topic

will be presented in a single phrase or section of a piece, though in some

cases it might pervade an entire movement. These include the ``hunt''

style, the ``singing'' style, the ``march'' style, and dance-related topics

such as the minuet and polonaise. As Ratner (1980, 9±29) makes clear,

topics frequently have essential metrical and harmonic characteristics.8

The point to be emphasized, then, is that all of these schemata rely on

infrastructural levels. Incidentally, such schemata also provide another

important kind of evidence for infrastructural representations. For exam-

ple, if we assume that listeners can recognize perfect cadencesÐand there

is good evidence that they can (Rosner & Narmour 1992)Ðthen it is

reasonable to assume that they must be performing harmonic analysis as

well.

12.4

Tension and

Energy

Another higher-level function of the infrastructure has already been

described, and requires only passing mention here. This is its role in

musical tension. I argued in section 11.5 that a piece can convey varying

levels of tension, depending on the degree to which its most preferred

analysis satis®es the preference rules. A piece for which a high-scoring

analysis (at some level of structure) can be found will seem calm and stable;

a piece for which the best analysis found is fairly low-scoring will seem

tense and daring. The clearest example is in harmony and key. The pref-

erence rule perspective accounts for the tension associated with a number

of harmonic and tonal phenomena, including chromaticism, rapid or syn-

copated harmonic rhythm, long or accented ornamental dissonances, and

sudden shifts in key or pitch collection. Low-scoring phenomena in

meter, phrase structure, and contrapuntal structure can also create tension.

A further kind of meaning in music is perhaps obvious, but deserves

mention. It is well-known that music has the power to convey varying

levels of energy and arousal. Loud music conveys more energy than quiet

music. Register is important too: a melody can convey energy by rising,

and a large-scale melodic peak often conveys a climax of intensity and

excitement. (I am not aware of experimental evidence for this, but it is

surely true; consider the ascent to the high C in ®gure 2.7, or the rise to

the high D in m. 47 of ®gure 3.10.)9 These aspects are not strictly

speaking infrastructural; the ®rst relates to dynamics, which is not cov-

ered by the current model, and the second relates simply to the pitch-time

representation (though it might be argued that what conveys energy is a
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rising melodic line, and this relies partly on contrapuntal structure). One

aspect of musical energy which is captured by the infrastructure is what

we might call musical speed. Faster music conveys more energy; but what

exactly makes a piece seem fast? Clearly, the essential variable here is not

simply notes per second. A piece with many notes can seem slow; think

of a ¯orid Chopin Nocturne or Beethoven slow movement, such as that

shown in ®gure 5.14. Rather, the primary indicator of speed in music, I

would argue, is tempoÐthat is, the speed of the tactus, the most salient

level of meter. For this aspect of musical energy, then, metrical analysis is

crucial.

12.5

The Functions of

Harmony and

Tonality

We have said that harmony and tonality are essential to the communi-

cation of conventional progressions such as cadences and topics; and

they play an important role in musical tension. However, this hardly

does justice to the expressive power of harmony and tonality in common-

practice music. What else can we say about the function and meaning of

these representations?

In the ®rst place, tonal pieces have the power to convey a sense of a

complex, multi-leveled journey through space. A sequence of harmonies

can stay more or less in one area, or it can move far a®eld, either gradu-

ally or suddenly; at a larger level, a progression of keys can be formed in

an analogous way. This in itself can convey a create a kind of drama or

narrative; moving from one key to anotherÐparticularly to a remote

keyÐconveys a sense of a con¯ict demanding resolution. In section 5.2

I discussed the variety of spaces that have been proposed to model the

experience of harmonic and tonal motion. I will not revisit this issue here;

but the idea that there is a spatial aspect to the experience of tonal music

seems to be a matter of general agreement.

Another important aspect of tonality is the distinction between major

and minor. The expressive associations of major with happiness and

minor with sadness are well-known. It was noted in chapter 7 that chil-

dren display knowledge of these associations from a very early age. It is

important to observe that the distinction between major and minor is

really a continuum. While many passages are clearly in major or minor,

many others involve some kind of ``mixture'' of the two modes. Consider

the ®rst movement of Beethoven's Sonata Op. 2 No. 1, discussed several

times in earlier chapters. While the second key of the exposition is clearly

A" major, there are prominent elements of A" minor as well: the "6̂'s

(F"'s) in mm. 20±30 (®gure 2.13) and the "3̂'s (C"'s) in the closing
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theme, mm. 41±8 (®gure 2.11). These elements add a tinge of sadness to

the otherwise hopeful mood of the section. Schubert's Moment Musical

No. 6 provides another example (®gure 11.7). The piece begins in A"
major, but moves to the parallel minor in m. 17; after a move to F"
major, the main theme returns in A" major, but elements of A" minor

gradually creep in and eventually take over completely, leading to a tragic

minor conclusion. This continuum between major and minor allows for

an expression of many shades of feeling between pure sadness and pure

happiness, a possibility exploited by many common-practice composers

and Schubert in particular.

The current approach suggests a general framework for capturing this

gradual variation in expressive feeling between pure major and pure

minor. Imagine a section of a piece that uses an evenly distributed C

major scale (that is, with equal numbers of C's, D's, E's, and so on).

Another passage uses an evenly distributed C harmonic minor scale. For

each passage, we can ®nd a ``center of gravity'' (COG), representing the

mean line-of-®fths position of all events (®gure 12.11). (Something very

similar to this was proposed in chapter 5, as a means of deciding on the

optimal spelling of each event; however, that COG was more affected by

more recent events and was constantly being updated, whereas this one is

calculated just once and treats all events equally.) It can be seen in ®gure

12.11 that the COG for the minor mode is somewhat to the right of

that for the major mode. More important, it is further to the right with

respect to the tonic, C, which of course is at the same location in both

cases. It can be seen that a pitch collection which mixes major and minor,

such as C major with a ¯attened sixth degree, will receive a COG in

between those for pure major and minor (this is shown in ®gure 12.11

as well). Possibly our sense of where a passage falls in the continuum

between major and minorÐand its associated expressive messageÐ

arises from a calculation of this kind. By hypothesis, a passage in which

the pitch COG is further to the right, relative to the tonic, will seem

``sadder,'' while one in which the pitch COG is further to the left will

seem ``happier.'' (Notice that the use of the line of ®fths, as opposed to

the circle, is crucial here. It is not clear how the center of gravity of points

can be calculated on a circle; and in any case, it makes no sense to say

that one point on a circle is further to the left than another.)

This model also sheds light on styles where the opposition between

major and minor is not found, notably rock music. As discussed in

chapter 9, rock music is largely modal, in that it uses the diatonic scale

but often assumes a different tonic from that of the conventional ``major
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scale.'' Figure 12.11 shows the four modes commonly used in rockÐ

Ionian (the major scale), Mixolydian, Dorian, and AeolianÐalong with

their COGs (assuming, again, an even distribution of all the pitches of

the mode). If we applied the rule just proposed for major and minor to

the common modes of rock, considering the position of the COG relative

to the tonic in each case, we would expect a continuum of expression,

from happy to sad, of Ionian-Mixolydian-Dorian-Aeolian. (As with

common-practice music, the term ``continuum'' is truly appropriate here,

as many rock songs employ some kind of mixture of modes.) Though

I will not attempt to demonstrate this statistically, I believe that this

corresponds well with the emotional associations of modes in rock, as

re¯ected in their lyrics. Particularly clear cases of this can be found in

songs with modal shifts. When a song shifts from one mode to another,

this is often accompanied by a change in the mood of the lyrics, and this

Figure 12.11
Common pitch collections represented on the line of ®fths (assuming a tonal
center of C). The arrows show where the ``center of gravity'' would beÐthe
mean position of all pitch-eventsÐin a piece using an even distribution of all
pitch-classes in the collection.
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change often corresponds well with the ``line-of-®fths'' rule I have pro-

posed. Consider the Who's ``I Can't Explain'' (®gure 12.12). In the

largely Mixolydian verse, the singer is confused and tormented. In the

chorus, however (m. 9 in ®gure 12.12)Ðas the harmony shifts to Ionian

Ðwe ®nd that the source of the singer's anguish is something funda-

mentally positive: he is in love. Similarly, in the Beatles' ``A Hard Day's

Night,'' the Dorian/Mixolydian mixture of the verseÐdescribing the

hard dayÐcontrasts with the more sentimental Ionian harmony of the

bridge, where the singer is home and ``everything seems to be right.'' It is

also interesting to observe that a number of bands of the 1980s and

1990s whose lyrics are consistently negative and depressingÐsuch as the

Police, U2, and NirvanaÐdisplay a strong fondness for the Aeolian

mode, the most emotionally negative mode according to the current

model. (See, for example, ®gure 9.18b.)

A ®nal case should be discussed where the line of ®fths appears to be

used expressively in a rather different way: this is Monteverdi's opera

L'Orfeo. Composed in 1607, the musical language of L'Orfeo is ``proto-

Figure 12.12
The Who, ``I Can't Explain.''
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tonal'': it employs a triadic harmonic language, and often implies clear

tonal centers, but without adhering to the diatonic system of later com-

mon-practice music. Several authors, notably Dahlhaus (1990) and

Chafe (1992), have argued that harmonies and tonal centers in L'Orfeo

have strong emotional connotations. Perhaps the most convincing

example is the connection between A minor (and to a lesser extent E

major) and Orfeo's past or present sorrows, traced in detail by Chafe.

The ®rst act is generally joyful, as Orfeo and Euridice celebrate their love,

the main keys being G major and D minor; but there are several moments

in which Orfeo's earlier sorrows are recalled, most of which coincide

with moves to A minor. These include the middle section of the shep-

herd's ®rst speech, the shepherd's introduction of Orfeo (``Ma tu, gentil

cantor''), andÐmost notablyÐthe ®nal strophic chorus in G major, in

which the third line, modulating to A minor, almost always coincides

with a reference to grief or suffering. This tonal contrast is made even

more starkly in the second act, when the rejoicing of Orfeo and the

shepherds is interrupted by the messenger who has come to inform Orfeo

of Euridice's death; musically, the F major/C major of the shepherds is

interrupted by the messenger's A minor. A rapid interchange occursÐthe

messenger singing in A minor or E major, the shepherds in F or CÐas

the messenger tries to break the awful news.

Chafe (1992) sees the signi®cance of these tonal centers in L'Orfeo

in terms of the hexachords they represent. In his view, L'Orfeo is

built around contrasting hexachords of keysÐin particular the two

hexachords A, D, G, C, F, B" and E, A, D, G, C, F. However, this

hexachordal explanation seems problematic, since it is often ambiguous

which hexachord a particular chord or tonal center is implying. Rather,

it seems more plausible to attach expressive meanings to tonal centers

themselves; E and A are often sad, while D, G and C are generally either

neutral or positive. F and B" are often joyful, particularly in Act III.

(Orfeo's plea to Charon to allow him into hell, ``Possente spirito,'' is

mostly concerned with his suffering and travails, and is centered around

G; but as he refers to EuridiceÐ``O serene light of my eyes''Ðthe music

shifts to B" major.) This further suggests that the ``happiness'' of a har-

mony or tonal center is simply a function of its position on the line of

®fths, with tonics in the ¯at direction being happy, those in the middle

being neutral, and those in the sharp direction being sorrowful. (Again,

this relies crucially on a linear space of tonics rather than a circular one; a

given point on the circleÐF#/G", for exampleÐmight be regarded as a
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very ``¯at'' or a very ``sharp'' key, depending on the direction from which

it is approached.) The line of ®fths thus emerges as a ``happiness axis,''

but in a rather different way than in rock and common practice music; in

L'Orfeo, it is the actual shifts in tonal center, rather than shifts in pitch

collection relative to the tonal center, which govern the expressive tone.

Of course, shifts in tonal center are possible in rock and common-

practice music as well, and often carry expressive meaning. Thus the

tonal journey of a piece can be represented in terms of two cursors

moving along the line of ®fths, one representing the COG and the other

representing the tonal center. My own feeling is that, in general, a shift in

pitch collection relative to a tonal center conveys a change in perspective

on an unchanging situation, whereas a shift in tonal center conveys an

actual change in situationÐor perhaps a shift in perspective from one

character to anotherÐwith shifts in the ¯at direction generally being

positive. In Schubert's Moment Musical No. 6 (®gure 11.7), the major-

minor shifts within the tonal center of A" suggest changing thoughts

about the ``status quo''; the shift to F" major in the middle section sug-

gests a change or improvement in circumstances. In any case, the possi-

bility afforded by the common-practice tonal system for creating complex

trajectories of both tonal center and pitch collection is surely one of its

great features.

12.6

Arbitrariness

At this point it is useful to introduce an idea from linguistics: the idea of

arbitrariness (Lyons 1981, 19±21). Arbitrariness relates to the connec-

tion between the meaning of something and its internal structure. The

relationship between meaning and form in words is generally held to be

arbitrary. Every word is made up of a certain sequence of phonemes (or,

in written language, letters): but you cannot predict the meaning of a

word from the phonemes that constitute it. (Strictly speaking we should

speak of morphemes here, not words, a morpheme being an indivisible

unit of meaning. The meaning of ``walking'' could be ®gured out from

knowledge of its component morphemes, ``walk'' and ``ing''; but the

meaning of these morphemes could not be ®gured out from any simpler

principles. However, words often correspond to morphemes, so I will

continue to speak of words in the interest of simplicity.) While the rela-

tionship between form and meaning in words is arbitrary, the relation-

ship between form and meaning in sentences is not. The meaning of a

sentence follows in a rule-governed way from the words that comprise it
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(the rules being both syntactic and semantic). It is for this reason that we

can understand sentences we have not heard before; we cannot generally

understand new words we have not heard before, at least not without

bene®t of context. This has important computational implications for

language perception. The meaning of words cannot be ®gured out; they

must simply be stored, in some kind of giant lexicon which matches the

form of each word with its meaning. For sentences, however, no lexicon

is necessary (or possible); the meaning of a sentence is ®gured out as it is

heard.

It is instructive to compare this with the situation in music. Can we

speak of arbitrariness at any level of musical structure? Does music

comprise elements whose meaning is arbitrarily related to their form?

(At this point it will be clear why I adopted a very broad de®nition of

meaning, simply to mean the function of an element in the larger system.)

We will examine several possibilities.

Hypothesis 1. The function of a chord is arbitrarily related to the

pitches that comprise it.

It can be seen fairly easily that this hypothesis is false. Consider the

functions of a chord. A chord implies a certain position in space (what-

ever kind of space is being assumed). As mentioned above, this allows

tonal pieces to imply complex harmonic journeys, which in turn convey

effects such as departure-return and con¯ict-resolution. Chords also have

functions relative to keys, which in turn allow them to form schemata

and other conventional progressions. A C major chord, by being I of C of

major, has a unique capacity to establish closure in that key. Clearly, the

relation between the functions of harmonies and the pitches they contain

is not arbitrary, but highly rule-governed. The relation between pitches

and roots is captured in the compatibility rule: the pitches C-E-G imply a

root of C, because this is the preferred interpretation (1̂-3̂-5̂) under the

rule. (There are other factors in identifying chordsÐas discussed in

chapter 6Ðbut I have argued that these, too, can be captured in a few

simple rules.) Once the root of a chord (and hence its line-of-®fths posi-

tion) is known, its further propertiesÐits role in harmonic journeys, its

functions relative to keys and in harmonic schemataÐcan, likewise, be

®gured out from general principles. We could imagine a case where the

relationship between the pitches and the functions of a chord was not

rule-governed, so that it was necessary for us to store a large lexicon

of harmonies, mapping their forms (i.e. their component pitches) on to

arbitrary meanings. But this is not the case.
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Hypothesis 2. The functions of a motive are arbitrarily related to the

pitches that comprise it.

This brings us to the interesting question of what the function or

meaning of a motive is. Consider the opening gesture of the Pathetique

melody, shown in ®gure 12.13. This motive clearly implies a minor

tonality, carrying a melancholy connotation; it opens with a rising stac-

cato ®gure, which implies energy, followed by a legato descent back to

the tonic, conveying tentative repose; the escape tones (the eighth notes in

m. 1) provide a hint of tension and anxiety. Here again, it is quite clear

that these functions of the motive are not arbitrarily related to the notes

comprising it, but can be speci®ed from a small number of simple rules.

The proof of this, again, is that we are capable of understanding such

meanings in motives that we have never heard before. (The rules gov-

erning the interpretation of motives may themselves be somewhat arbi-

traryÐperhaps it is merely convention that rising contours imply rising

energy, with no more general principle to support it; but there are general

rules nonetheless.)

Hypothesis 3. The meaning of a musical schema is arbitrarily related to

its form: the notes and infrastructural elements that comprise it.

I have de®ned the form of a schema in terms of both its notes and its

infrastructural representations, since I argued above that infrastructural

levels such as harmony are often important to a schema. This hypothe-

sis is more problematic than the ®rst two. Consider the fact that a V-I

cadence implies closure in a key. Is this purely conventionalÐdoes its

effect depend on our knowing (perhaps from hearing many pieces which

end in cadences) that cadences imply closure? Or does it arise from more

general principles about tension and stability? Under the current frame-

work, V-I (or rather V7-I) is arguably the most stable possible chord

progression within a key; it presents six of the seven diatonic pitches of a

key, unambiguously establishing it and allowing it to receive a maximal

score. I is more stable within the key than V is, given the higher values

for members of the tonic triad in the key-pro®le, so it is natural that

greater closure would be achieved by ending with I. Still, there may be

Figure 12.13
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something arbitrary in the convention that pieces have to end in exactly

this way. What about other musical schemata? In the case of Classical

topics, the relations between form and function are again clearly non-

arbitrary at least in some cases: march music symbolizes the military

because it is actually somewhat similar to military music. There may also

be a degree of arbitrariness, however; to answer this question would

require a greater historical knowledge than I possess. As for the 1̂-7̂-4̂-3̂

schema discussed by Gjerdingen, the relation between form and function

depends on knowing the functions of the schemaÐexpressive, structural,

and so on. Gjerdingen says little about this, and it may simply be a very

dif®cult question to answer.10

Hypothesis 4. The association of major and minor with happy and sad

is arbitrary.

One might argue that this association must be conventional, since some

genres which employ something like major and minor modes (e.g., Indian

classical music, which uses these scales among many others) do not assign

them these expressive associations. One thing seems clear, however. If we

accept that composers create intermediate expressive effects between

major and minor in the manner described above, this is clearly not arbi-

trary. That is, it is not necessary for us to learn the connotations of many

different ``mixtures'' of major and minor; there is a simple rule that pre-

dicts them. The same applies with the modes of rock music, and the

many possible mixtures of these. The most that might be arbitraryÐnot

explicable by any simpler principleÐis the association of one direction

on the line of ®fths (in terms of the position of the pitch collection relative

to the tonic) with happy and another with sad.

In short, there appears to be very little that is arbitrary about the rela-

tion between form and function in common-practice music. There is

clearly no need for a lexicon of chords or motives, storing many arbitrary

structural or expressive functions. In terms of schemata, the picture is less

clear; in some cases, the relationship between the form of a schema (in

terms of its con®guration of pitches and infrastructural elements) and its

function may be partly arbitrary and partly rule-governed. Even here,

however, the difference between music and language in this respect is

much more striking than the similarity. The fact that there is nothing in

music comparable to the arbitrary relation found between form and

meaning in words is an important difference between music and language

which has not been fully appreciated.
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12.7

Explaining Musical

Details: An

Experiment in

Recomposition

It is something of a clicheÂ to say that, with a piece of music (particularly

with a great piece of music), every detail matters and to alter or remove a

single note would be to signi®cantly change (usually to harm) the overall

effect. The preference rule approach allows us to bring some empirical

rigor to this matter, by showing us the way that the details of a piece

affect the infrastructural representations that are formed, and hence the

higher-level representations as well. One way to examine this is through

``recomposition''Ðselectively altering certain details of a piece, to see

what kind of changes result in structure and effect. Figure 12.14 shows

the ®rst 16 measures of the minuet from Beethoven's Sonata Op. 10

No. 3; ®gure 12.15 shows a series of ``recompositions'' of part of the

passage. In all cases, the aim was to make just a single change of one kind

or another, so that the effect of this change could be examined.

In ®gure 12.15a, the third, fourth and ®fth notes of the melody have

been rearranged. The effect is subtle, but important: the dissonant D on

the downbeat of m. 2 has now been replaced with a chord-tone C#,

robbing the passage of a small but important hint of harmonic tension. A

slight effect on motivic structure occurs as well: the subtle connection

between the ®rst two notes of m. 2 and m. 5 is now broken. In the next

two recompositions the consequences are mainly motivic. In ®gure

12.15b, the A in m. 4 has been shifted to the left by one beat, placing it

on the downbeat of m. 4; now the ®rst four measure-phrase is almost

rhythmically identical to the second one, creating a strong link between

Figure 12.14
Beethoven, Sonata Op. 10 No. 3, III, mm. 1±16.

349 12. Functions of the Infrastructure



Figure 12.15
A series of partial recompositions of the Beethoven passage in ®gure 12.14. (A)
mm. 1±3. (B) mm. 1±4. (C) mm. 1±4. (D) mm. 1±8. (E) mm. 1±4. (F) mm. 1±4.
(G) mm. 9±13. (H) mm. 9±12. (I) mm. 1±4. (J) mm. 1±4.
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Figure 12.15 (continued)
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them. Since the third phrase (if altered in a similar way) and fourth feature

the same rhythmic pattern, this would perhaps be a bit too much of one

rhythmic idea. In ®gure 12.15c, this same A is shifted further to the left;

now the strong-weak motive in m. 3 (D-A) is heard to relate to the simi-

lar descending strong-weak note pairs in mm. 2, 5 and 6.

In ®gure 12.15d, a single, radical change is introduced: the entire ®rst

eight measures are rewritten in 2/4. (Imagine that the tempo at the mea-

sure level is the same.) This brings up a general, important point: why

does meter matter? Exactly what difference does it make (because we

know that somehow it does make a difference) if a piece is in one meter

or another? This example gives some possible answers. The dissonant D

on the downbeat of m. 2 is now longer than before, as is the dissonant E-

G dyad on the downbeat of m. 6, making them perhaps a little too

destabilizing. The ii6 chord on the third beat of m. 6Ðalready briefÐis

now briefer still, creating tension due to penalization by the strong beat

rule (HPR 2). The grouping structure is also subtly affected; because the

quarter-notes are longer than the corresponding notes in the original,

there is more of a tendency to hear them as low-level group boundaries

(PSPR 1), creating groups of eighth-eighth-quarter. This, in turn, tends to

promote ``eighth-eighth-quarter'' as a rhythmic motive, one that occurs

repeatedly in the passage.

Figure 12.15e has consequences mainly for contrapuntal structure. In

the original version, the melody of the ®rst eight measures has a slight

tendency to break into two substreams, due to the shift in register from D

to A in m. 4. (One can hear the upper stream continuing from the ®rst

phrase to the third; in the fourth phrase, the two sub-streams are perhaps

brought together.) This is a case of the kind of ambiguity discussed in

section 8.6; although the four phrases clearly constitute a single line, one

is also aware of two separate contrapuntal strands. In ®gure 12.15e, the

shift downwards on the downbeat of m. 3 tends to put this note in the

lower stream rather than the upper one. The ®rst phrase of the upper

stream then ends on a metrically weak (and tonally inconclusive) note,

creating some instability.

In ®gure 12.15f, the main consequence is for phrase structure. Since

the long gap after the D of m. 3 has been ®lled in, there is no longer a

strong tendency to hear a phrase boundary there (or anywhere else in the

vicinity); thus the ®rst eight measures tend to come across as a single

phrase. However, the length of this phraseÐ20 notesÐcauses some

tension due to violation of the phrase length rule (PSPR 2). This case

brings to mind a point made earlier about the possible psychological
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origin of the phrase length rule. As discussed in section 3.4, a phrase

seems to serve as a kind of perceptual present, a ``chunk'' of information

that is available to awareness all at once; a long phrase such as the one

in ®gure 12.15f (continuing with mm. 5±8 of the original) presents a lot

of information in a single chunk, and is thus somewhat taxing for the

listener.

Figure 12.15g, a recomposition of the third phrase (mm. 9±13), relates

to harmonic and tonal structure. By replacing the A and C# in m. 12

with a B, we alter the A7 harmony to E minor; this is heard is as a con-

tinuation of the E minor harmony in the previous measure, making it

quite emphatic. (The parallel between mm. 9±12 and mm. 1±4 is also

increased.) In tonal terms, m. 12 is now slightly more compatible with E

minor than in the original (since B is in the E minor tonic triad, while C#
is not even in the E minor scale collection); the tonicization of E minor in

mm. 9±11 is now felt to extend through m. 12 (at least until the last beat

of m. 12). ThisÐand the removal of the A7 chord in m. 12Ðslightly

undermines the return to D major in the following measures, leaving the

con¯ict with E minor not entirely resolved. Figure 12.15h shows another

possible change to mm. 9±12, with the opposite effect: the D#'s in m. 10

are changed to D's, and the B removed, creating a D6 chord instead of

B4/3. This essentially neutralizes E as a tonal center (with the D#'s gone,

the entire passage remains comfortably within D major); it also sig-

ni®cantly alters the harmonic journey of the passage, removing the B

harmony which was the one move beyond the narrow line-of-®fths range

of E to D.

Not all details are important. The effect of the change in ®gure 12.15i

(the alteration of the tenor voice in m. 3) is negligible; the infrastructural

representations (metrical, grouping, contrapuntal, TPC, harmonic and

key) are almost completely unaffected, as is the motivic structure. Per-

haps all it does is draw a slight degree of attention to the tenor voice,

since there is now a slightly higher degree of activity in that voice. At the

other extreme, many possible changes we might makeÐindeed, the vast

majority of themÐseem wholly unacceptable and well outside the bounds

of the style. Here, too, the preference rule approach is of explanatory

value (as discussed in section 11.2). The recomposition in ®gure 12.15jÐ

that is to say, the wildly inappropriate high G# in m. 2Ðcan be seen to

be ``low-scoring''Ðand hence ``ungrammatical''Ðin several respects:

in terms of harmony (because there is no high-scoring harmonic inter-

pretation that accomodates the G# as well as the other nearby events),

meter (because the G# is a long event on a weak beat), and counterpoint
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(because the G# does not ®t well into the streams required by the sur-

rounding events, and thus requires either a huge leap within an existing

voice or the momentary addition of an extra voice). The note is also

somewhat destabilizing in TPC and tonal terms, though not unusually so.

In this experiment, I have tried to show that the preference rule

approach can be informative as to the consequences of microscopic com-

positional decisions and changes. It shows us how a piece of music is

fragile: its effect can be profoundly changed by what seems super®cially

to be a small alteration.11 Does the preference rule approach show us

why Beethoven made the speci®c choices he did? Not really. It suggests

that, perhaps, Beethoven chose ®gure 12.14 over ®gure 12.15a because

he wanted the added degree of ornamental-dissonance tension that ®gure

12.14 provides, along with the subtle motivic connection to m. 5. How-

ever, it tells us nothing about why Beethoven's choice was better (as it

surely was). In some cases, a melody can seem perfect with no ornamen-

tal-dissonance tension at all (see the minuet of Beethoven's Op. 7); and

more motivic connections are not always better, as ®gure 12.15b sug-

gests. In short, if our aim is to explain the quality of a pieceÐand I

deliberately chose this piece, a particular favorite of mine, because I feel

that there is a great deal of quality to be explainedÐa preference rule

approach can only take us so far. It explains why the particular notes

chosen lead to the infrastructural representations they do, but it says little

about the much harder question of why a certain complex of infra-

structural features is satisfying or enjoyable.

12.9

The Power of

Common-Practice

Music

Let us summarize the various functions of infrastructural levels that have

been presented here. Through harmonic and tonal structure, the com-

mon-practice system has the ability to create complex, multi-leveled

journeys. These journeys also carry complex emotional associations,

related both to the tonal center and pitch collection used, which can in

part be accounted for by the positions of these elements on the line of

®fths. MotivesÐrepeated patterns of rhythm (reinforced by meter) and

pitchÐare also an important aspect of common-practice music, and rely

crucially on several aspects of the infrastructure. As other authors have

noted, motives often serve as ``agents,'' entities with feelings, desires, and

the capacity for action. Combined with the expressive powers of the

tonal system, this allows composers to create complex dramatic narra-

tives. (On the other hand, other things besides motives can also serve as

agentsÐchords, keys, instruments; as Maus [1988] has shown, the
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shifting sense of agency that one often ®nds in music is one of its unique

and fascinating features.)

Metrical and harmonic analysis, along with motivic analysis, are also

part of a complex process of searching for order and pattern in a pieceÐ

that is, of ``making sense of it''Ðwhich has inherent appeal, analogous to

many other intellectual activities. Music can convey ¯uctuating levels of

energy, through the use of tempo, as well as through other means such

as dynamics and register. Infrastructural representationsÐharmony and

tonality in particular, but others as wellÐalso have the power to convey

varying levels of tension, by being more-or-less ``high-scoring'' by the

preference rules used to generate them. Finally, con®gurations of infra-

structural elements (as well as the input representation) can form higher-

level patterns or ``schemata,'' either those whose function is primarily

structural (e.g., cadences), or those with extramusical or expressive asso-

ciations (e.g., Classical ``topics'').

It is useful to consider the role of preference rule systems in these

various aspects of music. In some cases, the kinds of higher-level entities

and meanings I have described arise simply from the output of preference

rule systemsÐthat is, infrastructural representationsÐwithout directly

involving preference rule systems themselves. For example, a Classical

topic depends on a certain con®guration of infrastructural representa-

tions, but how those infrastructural levels were in themselves derived is,

perhaps, of little consequence for the perception of topics. In other

respects, however, preference rule analysis is directly engaged with the

higher-level effects of music. For example, the line of ®fthsÐwhich I

argued was important for the spatial and dramatic aspects of musicÐ

also plays a central role in the choice of harmonic and TPC labels

(through the harmonic and pitch variance rules). Similarly, the kind of

musical tension described earlier in this chapter results directly from the

process of forming infrastructural representations, rather than from the

output of that process; the idea of musical listening as a ``search for

order'' is, likewise, heavily dependent on the analytical process itself.

None of these higher-level aspects of music are fully understood; to

understand them better would require consideration of how they operate

in many speci®c pieces. Moreover, this is only a partial survey of the

functions and meanings arising from common-practice music. I have

focused on meanings that in some way are connected with the infra-

structural representations that have been our primary concern here.

Nothing said here in any way denies that further meanings exist, and that
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they may be extremely important. Nevertheless, the functions discussed

above begin to show us the tremendous range of resources available

within the common-practice musical system; and in so doing, they begin

to explain how music within this system is able to affect us and appeal

to us as it does. Given this range of resources, I would argue, there is

nothing fundamentally mysterious or inexplicable about the power of

common-practice music.
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Appendix: List of Rules

This appendix lists all the rules proposed for the six preference rule

systems presented in Part I. Both well-formedness rules and preference

rules are listed. The well-formedness rules are incorporated into a well-

formedness de®nition (WFD), stating the constraints on what constitutes

a well-formed structure.

I. Metrical Structure

WFD. A well-formed metrical structure consists of several levels of

beats, such that

MWFR 1. Every beat at a given level must be a beat at all lower

levels.

MWFR 2. Exactly one or two beats at a given level must elapse

between each pair of beats at the next level up.

MPR 1 (Event Rule). Prefer a structure that aligns strong beats with

event-onsets.

MPR 2 (Length Rule). Prefer a structure that aligns strong beats with

onsets of longer events.

MPR 3 (Regularity Rule). Prefer beats at each level to be maximally

evenly spaced.

MPR 4 (Grouping Rule). Prefer to locate strong beats near the begin-

ning of groups.

MPR 5 (Duple Bias Rule). Prefer duple over triple relationships between

levels.



The following rules are not included in the implemented model, but are

considered important:

MPR 6 (Harmony Rule). Prefer to align strong beats with changes in

harmony.

MPR 7 (Stress Rule). Prefer to align strong beats with onsets of louder

events.

MPR 8 (Linguistic Stress Rule). Prefer to align strong beats with

stressed syllables of text.

MPR 9 (Parallelism Rule). Prefer to assign parallel metrical structures

to parallel segments. In cases where a pattern is immediately

repeated, prefer to place the stronger beat on the ®rst instance of

the pattern rather than the second.

II. Phrase Structure

WFD. A well-formed phrase structure for a melody consists of a

segmentation of the melody into non-overlapping phrases, such

that every note is entirely contained in a phrase.

PSPR 1 (Gap Rule). Prefer to locate phrase boundaries at a) large inter-

onset-intervals and b) large offset-to-onset intervals.

PSPR 2 (Phrase Length Rule). Prefer phrases to have roughly eight

notes.

PSPR 3 (Metrical Parallelism Rule). Prefer to begin successive groups at

parallel points in the metrical structure.

III. Contrapuntal Structure

WFD. A well-formed contrapuntal structure is a set of streams, subject

to the following constraints:

CWFR 1. A stream must consist of a set of temporally con-

tiguous squares on the plane.

CWFR 2. A stream may be only one square wide in the pitch

dimension.

CWFR 3. Streams may not cross in pitch.

CWFR 4. Each note must be entirely included in a single stream.

CPR 1 (Pitch Proximity Rule). Prefer to avoid large leaps within streams.

CPR 2 (New Stream Rule). Prefer to minimize the number of streams.

CPR 3 (White Square Rule). Prefer to minimize the number of white

squares in streams.
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CPR 4 (Collision Rule). Prefer to avoid cases where a single square is

included in more than one stream.

CPR 5 (Top Voice Rule). Prefer to maintain a single voice as the top

voice: try to avoid cases where the top voice ends, or moves into

an inner voice.

IV. Tonal-Pitch-Class Representation

WFD. A well-formed tonal-pitch-class representation is a labeling of

each pitch-event with a single tonal-pitch-class label.

TPR 1 (Pitch Variance Rule). Prefer to label nearby events so that they

are close together on the line of ®fths.

TPR 2 (Voice-Leading Rule). Given two events that are adjacent in time

and a half-step apart in pitch height: if the ®rst event is remote

from the current center of gravity, it should be spelled so that it is

®ve steps away from the second on the line of ®fths.

TPR 3 (Harmonic Feedback Rule). Prefer TPC representations which

result in good harmonic representations.

V. Harmonic Structure

WFD. A well-formed harmonic structure is a complete segmentation of

the piece into non-overlapping chord-spans.

HPR 1 (Compatibility Rule). In choosing roots for chord-spans, prefer

certain TPC-root relationships over others, in the following

order: 1̂, 5̂, 3̂, "3̂, "7̂, "5̂, "9̂, ornamental. (An ornamental rela-

tionship is any relationship besides those listed.)

HPR 2 (Strong Beat Rule). Prefer chord-spans that start on strong beats

of the meter.

HPR 3 (Harmonic Variance Rule). Prefer roots that are close to the

roots of nearby segments on the line of ®fths.

HPR 4 (Ornamental Dissonance Rule). An event is an ornamental

dissonance if it does not have a chord-tone relationship to the

chosen root. Prefer ornamental dissonances that are a) closely

followed by an event a step or half-step away in pitch height, and

b) metrically weak.

VI. Key Structure

WFD. A well-formed key structure is a labeling of each segment of the

piece with a key.
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KPR 1 (Key-Pro®le Rule). For each segment, prefer a key which is

compatible with the pitches in the segment, according to the

(modi®ed) key-pro®le formula.

KPR 2 (Modulation Rule). Prefer to minimize the number of key

changes from one segment to the next.
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Notes

Chapter 1 1. The term ``tonal music'' is motivated by the fact that this corpus of music
shares a certain system of pitch organization. The term is problematic, since
much other musicÐmuch popular music, for exampleÐshares essentially the
same system; moreover, there is another broader sense of ``tonal,'' meaning music
which has a focal pitch or tonal center. Nevertheless, ``tonal music'' is a useful
and familiar term for the corpus I wish to study, and I will sometimes use it here.

2. While understanding human cognition is one goal of arti®cial intelligence,
some work in the ®eld has more practical applications. Given a process that
humans performÐpicking up an object, perceiving spoken language, or making
medical diagnosesÐone could study the process either with the aim of ®nding out
how humans do it, or with the aim of devising a system to perform the process as
well as possible in a practical situation. These are distinct goals, though they are
certainly related. In the present case, computational analysis of music could be
useful for a number of purposes. For example, in order to produce a sensible
notation for something played on an electronic keyboard, one must determine the
meter and barlines, the spelling of the notes, the correct division of the notes into
different voices, the key signature, and so on. However, it is best to keep the
psychological and the practical goals distinct; here my focus will be entirely on
the former.

3. For reviews of this work, see Kauffman & Frisina 1992 and Marin & Perry
1999.

4. For discussions of this issue, see Chomsky 1980, 11±24, 189±97; Fodor &
Pylyshyn 1988. Fodor and Pylyshyn observe that even in the debate between
connectionist and symbolic approaches to cognitionÐa debate that is in some
ways very fundamentalÐboth sides agree on the necessity of mental representa-
tions. There have been, and continue to be, alternatives to the representational
approach. One is behaviorism; another is the ``direct perception'' theory of J. J.
Gibson (see Bruce and Green 1990, 381±9, for discussion).



5. For discussion of these points, see Putnam 1975; Fodor 1975, 27±53;
Haugeland, 1981.

6. Not all the kinds of structure studied in this book are normally represented in
music notation; for example, harmonic and key structure usually are not (except
that the key signature shows the main key of a piece), and phrase structure often
is not. And even when structures are shown in notation, they may not necessarily
coincide with the structures that are heard; this sometimes happens in the case of
contrapuntal structure, for example, as I will discuss later.

7. Lerdahl and Jackendoff's theory (discussed further below) has been criticized
on exactly these grounds (Cohn 1985, 36±8). Perhaps the criticism has been due,
in part, to the fact that the theory is largely concerned with pitch reductionÐan
area that seems particularly subjective and open to differences of opinion.

8. One could also mention articulationÐthat is, variations in the sounds of notes
within an instrument, such as staccato versus legato and accent. However, these
qualities are to some extent expressed in duration, and thus will be re¯ected in
the input representation; for example, the fact that the ®rst two chords in ®gure
1.1 are played staccato is clearly seen in the ``piano roll.'' Other aspects of artic-
ulation are expressed in timbre and dynamics.

A further kind of information which might be considered is spatial location.
We will discuss this further in chapter 4.

9. See Ashley 1989 for an insightful discussion of these issues. Ashley notes both
the possibility of implementing preference rule systems and the importance of
doing so.

10. All of the implementations discussed in this bookÐfor the metrical, phrase
structure, contrapuntal, harmonic-TPC, and key modelsÐare publicly available
at the website <www.link.cs.cmu.edu/music-analysis>. The programs are written
in C and run on a UNIX platform. The website also contains information about
the use of the programs, as well as input ®les for many of the musical excerpts
discussed in this book.

Chapter 2 1. As I will explain below, it is often better to think of rhythms in terms of inter-
onset intervals, rather than durations; but we will overlook this distinction for
now.

2. I am not certain that exactly these results would be obtained; but it is only the
general point that matters here, not the details.

3. We should be cautious in describing the perception of rhythms as ``categori-
cal.'' Categorical perception has a speci®c meaning in psychology; it refers to the
fact that two stimuli in the same category are less easily discriminated than two
stimuli, differing by an equal amount in physical terms, in different categories.
The classic case is phonemes: two acoustically different ``b's'' are less easily dis-
tinguished than a ``b'' and ``p'' differing acoustically by the same amount (Garman
1990, 195±201). In the case of rhythms, however, discrimination is not the issue.
It is certainly possible to discriminate two durational patterns that are understood
as implying the same rhythm; for example, we can distinguish two performances
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of the same passage played with different expressive timing. The point is that,
even when we can discriminate them, we understand that their rhythms are in
some sense the same.

4. The view I am embracing here is the prevailing one in music theory: most
theorists hold that meter is primarily a local phenomenon, not usually extending
more than two levels above the measure level. (See Lerdahl & Jackendoff 1983,
21±5; Benjamin 1984, 403±13; Schachter 1987, 16±17; and Lester 1986, 160±1.
For an opposing view, see Kramer 1988, 98±102.)

5. Two partial exceptions are the systems of Longuet-Higgins and Steedman
(1971) and Rosenthal (1992). Longuet-Higgins & Steedman tested their metrical
algorithm on the 48 fugue subjects from Bach's Well-Tempered Clavier; Rosen-
thal tested his on a set of Mozart and Bach melodies.

6. In some cases, it is not obvious which notes should be considered extra-
metrical. Generally, extrametrical notes are notated in small noteheads (or with
other special symbols); however, the triplet sixteenth notes in ®gure 2.7 might
well be considered extrametrical. With some ornaments, such as some trills and
mordents, the note falling on the beat is clearly part of the ornament; in such
cases it could be argued that the note following the ornament is extrametrical.

7. Povel & Essens's (1985) model also incorporates this factor, as it prefers to
locate beats on the ®rst of a series of short notes.

8. There is a problem with the method just described for quantizing to pips: what
if two notes are just 1 ms apart, but happen to be shifted over to different pips?
To solve this, after quantization to pips, the program goes through all the pips,
from left to right; each time it encounters two subsequent pips that both contain
event-onsets, it shifts the onsets of the events in the second pip back to the ®rst.

9. The note score for a pip is calculated as follows. Each note contributes a value
which is either the maximum of its duration and its registral IOI, or 1.0, which-
ever is smaller (this value is known as the ``effective length'' of the note); this was
to prevent notes of very long duration or registral IOI from adding too much
weight to the score. The total note score for a pip is then the square root of
its number of notes times their average effective length; this is similar to simply
adding the effective lengths of the notes, but it prevents chords with many notes
from having undue weight. Finally, a value of 0.2 is also added to the note score
for each pip with any event-onsets at all, so that there is an extra bonus for put-
ting beats on such pips.

10. As mentioned earlier, a bonus is added at level 4 for putting a beat at the ®rst
level 3 beat.

11. The workbook accompanies Kostka and Payne's textbook Tonal Harmony
(1995a). The harmonic and key analyses are provided in an instructors' manual
accompanying the workbook (Kostka 1995).

12. There are occasional cases where the metrical structure implied by notation is
not totally clear. For example, in a passage featuring a triplet eighth notes in one
hand and duple eighths in the other, it may be hard to decide which division is the
primary one. Fortunately there were no such passages in the corpus. (In cases

363 Notes to pp. 25±43



where an occasional duple rhythm occurred against a steady triplet accompani-
ment, the triplet was treated as primary.) As for extrametrical notes (which only
occurred in the unquantized input ®les), any analysis of such notes by the pro-
gram was treated as correct. Even so, allowing extrametrical notes in the input
still posed a challenge to the program, as I will discuss, since it sometimes caused
errors in the analysis of metrical notes.

13. See Lester 1986 for discussion of the interaction between meter and harmony
(pp. 66±7) and many interesting examples.

14. Looking at harmonic change, rather than bass notes, would give better
results in the case of ®gure 2.11, since harmonic changes generally occur on
strong beats. (At least, there are generally clear harmonic changes on the third
quarter-note beat of each measure.)

15. Statistically, it has been found that performers (speci®cally pianists) tend to
play metrically strong notes slightly louder than others; however, the difference is
small. In a study by Drake and Palmer (1993), pianists were instructed to play
simple rhythmic patterns; the notation of the patterns indicated the time signature
and hence the metrical structure. In one typical pattern, the average intensity
(loudness) of the metrically strongest events was about 58 units, while that of the
weakest events was about 51 units (p. 356). While the units are arbitrary, the
authors state that there is a typical performance range of 30 to 90 units; within
this range, then, the variation due to metrical strength seems fairly small.

16. The importance of the ``®rst-occurrence-strong'' rule can be seen in cases
where the second and third measures of piece present two occurrences of a pat-
tern; this tends to make us hear the even-numbered measures as strong, contrary
to the usual tendency. Instances include the following (in some of these cases the
metrical unit in question is half a measure or two measures): Beethoven's String
Quartet Op. 18 No. 3, ®rst movement; Mozart, Serenade K. 388, second move-
ment; Bach, Well-Tempered Clavier Book I, E Major Prelude; Haydn, String
Quartet Op. 64 No. 2, ®rst movement; Beethoven Symphony No. 7, III; Haydn
Symphony No. 101, ®rst movement (presto).

Chapter 3 1. This rule appears not to apply to auditory perception, as we will see in
chapter 4.

2. See, for example, Koffka 1935, 431±48. See also the discussion of Gestalt
theory in Lerdahl and Jackendoff 1983, 40±1.

3. Another quite different kind of musical grouping involves the grouping of
events into a line, separate from other simultaneous lines in a polyphonic texture.
This is the subject of chapter 4.

4. See Dowling & Harwood, 1986, 179±81. Evidence for this has also been
found in studies of musical performance, as I will discuss in chapter 11.

5. These studies are somewhat problematic. The greater ease of learning Figure
3.2a may be due to the fact that the repeated pitch pattern in ®gure 3.2a (but not
in ®gure 3.2b) is reinforced by a repeated rhythmic pattern, rather than to the
effect of pauses as grouping cues. We return to this issue in section 12.2.
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6. See Baker 1976 for an overview of Koch's theory.

7. It is worth noting that some theorists advocate an idea of the term ``phrase''
rather different from what I will assume here. In particular, Rothstein argues that
a phrase should be de®ned primarily by tonal motion (1989, 5). This often leads
to somewhat larger phrases than what is implied by the common use of the term;
for example, in the ``Blue Danube'' Waltz, Rothstein's phrases are 16 measures in
length. Rothstein acknowledges that his idea of phrase is somewhat prescriptive;
he laments, for example, that four-measure segments in the ``Blue Danube'' are so
often called phrases (1989, 5). As I will discuss later, though, it appears that tonal
factors do play some role in phrase structure, even by the common understanding
of the term.

8. The groups in hearing B are in fact an exact inversion of the opening motive,
although I feel this is a weak factor perceptually.

9. See London (1997) for an insightful discussion of ambiguity in grouping. We
will return to this issue in chapter 8.

10. These slurs are of course added by the transcriber of the song rather than the
composer (in most cases the composer is unknown), but this is of little impor-
tance. Even structural information (phrasing slurs, bar lines, etc.) added by the
composer is really only one ``expert opinion,'' which one assumes generally cor-
responds to the way the piece is heard, but may not always do so.

11. As discussed earlier, Tenney and Polansky factor pitch and dynamic inter-
vals into their scores as well as temporal intervalsÐand their temporal inter-
val score includes only IOI, not OOI. However, it does not appear that
Tenney and Polansky's complete model would produce good results here. Even if
pitch were considered as well as IOI, for example, the fourth interval in ®gure
3.7b would still be a local maximumÐsince the third, fourth, and ®fth intervals
are all equal in pitchÐand thus would still be (incorrectly) considered a phrase
boundary.

12. The idea of two preference rule systems interacting in this way is not circular
or incoherent, and in fact it is quite susceptible to computer implementation; for
an example, see section 6.4. However, implementation will not be attempted in
this case.

13. The strati®ed sample was prepared by Paul von Hippel.

14. One might question the decision to give the grouping program the ``correct''
metrical structures, as indicated in the transcriptions. It is possible that these
metrical judgments were in¯uenced by intuitions about grouping; in that case,
there is a danger of circularity in giving the program this information. It seemed
likely, however, that judgments of meter in the songs in this corpus were not very
much affected by grouping, and depended mainly on other factors discussed in
chapter 2Ðthe event rule, the length rule, parallelism, and harmony. We should
note, also, that the phase of the metrical structure (the exact placement of strong
beats) does not in¯uence the grouping program; only the period does. Still, this
remains a possible problem with the test.
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15. A clear break in the melody and a slight decrease in density in all voicesÐ
such as a shift from eighth notes to quarter notesÐmay have the same effect on
the overall density of attack-points, but the former strongly suggests a phrase
boundary while the latter does not.

Chapter 4 1. The renewed awareness of the contrapuntal basis of much Western music
is partly due to the in¯uence of the theorist Heinrich Schenker. I will return
in section 8.6 to the connection between the current study and Schenkerian
analysis.

2. Sequential integration is in fact somewhat broader than contrapuntal analysis;
the former term includes sequential grouping of speech and other non-musical
sounds. However, most of the research that Bregman reviews under the name of
``sequential integration'' uses stimuli which could well be considered musical:
e.g., sequences of steady-state tones.

3. Van Noorden also found that, under some circumstances, listeners could
choose to hear the two streams either segregating or fusing.

4. See Bregman 1990 for further discussion of the role of these factors and other
experimental work on sequential integration.

5. We should note here that one could make a case for hierarchical grouping of
streams. In the Mozart excerpt, for example (®gure 4.1), one might suggest that
the two left-hand streams from m. 12 onwards form a single larger stream. Such
higher-level streams would, of course, contain multiple simultaneous notes.
However, our only concern here is with the lowest level of streams.

6. The interaction of this rule with CWFR 4 also deserves comment: as long as a
given note is entirely contained in a single stream, it is permissible for another
stream to contain only part of the note.

7. It might occasionally be advantageous for a stream to move to a white square
in order to avoid crossing or colliding with another stream. (I am indebted to
Daniel Sleator for pointing this out.) In practice, however, this situation seems to
arise very rarely.

Chapter 5 1. The line of ®fths is not new. It is represented as one axis in several of the multi-
dimensional spaces discussed earlier. It is also discussed more directly by Regener
(1974) and Pople (1996); however, these authors make no argument for the line
of ®fths as a cognitive model for tonal music.

2. The problem is not choosing a location for a single element in isolation (pre-
sumably all A" points are equal, since the space is symmetrical), but rather
choosing a location relative to the other elements already located in the space.

3. On instruments with variable tuning, such as stringed instruments, it is possi-
ble that different spellings of the same pitch are acoustically distinguished; and
this in turn might affect our perceptual judgments. I am not aware of any acous-
tical or psychological evidence on this matter.

4. Longuet-Higgins and Steedman de®ne ``diatonic semitone'' in terms of motion
on their two-dimensional space. We could also de®ne a ``diatonic semitone'' as an
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interval of ®ve steps on the line of ®fths; this relates to TPR 2 in the model pro-
posed below.

5. Krumhansl (1990, 67) provides data from various studies as to the frequency
of scale degrees (i.e., pitches relative to the tonic) in tonal music. Considering
only the diatonic scale degrees (which account for over 90% of the pitches), and
assuming a tonic of C (2.0), the mean line-of-®fths position of all pitches in
Krumhansl's corpus is 3.82: close to D.

6. This ruleÐthat "7̂ is generally preferred over #6̂, and #4̂ over "5̂, regardless of
voice-leadingÐis noted by Aldwell and Schachter (1989, 472±3).

The symbol ``^'' above a number, which will be used frequently, indicates a
scale or chord degree. For example, 3̂ represents either the third degree of a scale
or the third of a chord; E is 3̂ of C. The major scale is assumed here; other scale
steps can be indicated with # or " signsÐfor example, E" is "3̂ of C, G# is #5̂ of C.

7. We should also consider how the current algorithm handles the spelling of
events in minor passages. It is somewhat unclear what the conventional wisdom
is on this matter. In major, the spelling of events within the scale of the cur-
rent key is of course given by the usual spelling of that scale. In minor, however,
there is not one scale collection, but three (the natural, harmonic, and ascending
melodic). Aldwell and Schachter offer a rule for spelling chromatic scales in
minor which seems to describe compositional practice fairly well (1989, 473).
Any pitch that is in any of the three minor scales is spelled accordingly, regardless
of voice-leading; that is, the spellings "6̂-6̂-"7̂-7̂ are always used. In addition, 3̂ is
preferred over "4̂, and #4̂ over "5̂; thus only the spelling of "2̂/#1̂ depends on voice-
leading. The current model points to a possible, though imperfect, explanation
for this. The scale degrees 1̂-2̂-"3̂-3̂-4̂-#4̂-5̂-"6̂-6̂-"7̂-7̂ form a compact region of
11 steps on the line of ®fths; as with major, it may be that the spelling of events
within this range is enforced by the pitch variance rule, overruling voice-leading.
I am unable to explain, however, why the range in minor should be slightly
wider than in major (where the range of TPC's whose spelling is invariant is only
9 steps).

8. As with the contrapuntal program, this means that extrametrical notes cannot
be handled.

9. At this point, we ensure that no change of spelling takes place within a single
note. If two adjacent segments contain parts of the same note, the 12-step
windows chosen for the two segments in an analysis must both imply the same
spelling for that note.

10. When the program's output was adjusted to be completely correct (corre-
sponding exactly with the Kostka-Payne corpus in relative terms, except in cases
of enharmonic modulation), 84% of the TPC events were within the range of A"
to C#. However, this was not done in such a way as to maximize the number of
TPC events within a certain range. By shifting the analyses of certain excerpts in
their entirety by 12 steps, a completely correct (by the current criterion) TPC
analysis of the corpus might be found which had an even higher proportion of
events between the range of (say) A" to C#.
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11. In the context of B" majorÐthe tonality of previous contextÐA" and G# are
both chromatic also, strictly speaking. However, A" is a "7̂ scale degree, and as
such is not subject to the voice-leading rule.

While A" would not be considered ``the'' correct spelling for the note in ques-
tion here, one might argueÐas noted aboveÐthat it is the spelling that we ®rst
entertain upon hearing the note. The program's handling of such diachronic
shifts in perception will be discussed further in chapter 8.

Chapter 6 1. We should note also that performing harmonic analysis in listening involves
hearing the music. In a theory class, by contrast, students are often expected to do
harmonic analysis from a visual representation of a pieceÐa scoreÐwhich is
quite different. One can learn to aurally imagine music from a score, of course,
but this takes considerable practice.

2. In the discussion of grouping in chapter 3, I suggested that, in fact, harmony
does not appear to be a central factor in melodic segmentation; and I will suggest
in chapter 7 that harmonic information is generally not necessary in judgments of
tonality either. Still, these experiments are valuable in providing further evidence
for the psychological reality of harmony.

3. Two other less ambitious attempts to model tonal harmony using neural net-
works are Scarborough, Miller, & Jones 1991 and Laden & Keefe 1991.

4. The idea of virtual pitches was ®rst formulated by Terhardt (1974).

5. The question of why these relationships are the most preferred ones (and why
some are more preferred than others) is a complex one; psychoacoustic factors
are undoubtedly relevant. According to Terhardt's ``virtual pitch'' theory (1974),
the explanation has to do with the relative strength of partials of a complex tone.
For example, the third partial of a sound (corresponding to 5̂ of a chord) tends to
be stronger than the ®fth partial (corresponding to 3̂); this is why a pitch is more
readily heard as 5̂ than as 3̂. (This is the basis for Parncutt's theory of harmony
[1989], discussed in section 6.2 above.)

6. Bharucha (1984, 494±5) actually expresses this in terms of scales: an an-
chored pitch is one that is followed by another pitch a step away in the current
diatonic scale. The current formulation is somewhat different, but seems to work
well in practice.

7. Recall that segments are determined by the lowest level of the metrical struc-
ture. In a quantized piece with perfectly regular meter, segments would all be the
same length; but in a ®le generated from a live performance, or with irregular
meter, they might vary in length.

8. The necessary metrical information was added to the input ®les. I simply
added the metrical information that seemed correct; to a great extent, of course,
the metrical structure is implied by the notation of the excerpts.

9. The German sixth chord in m. 36 is mishandled here; the A# is spelled as a B"
(see section 5.6).

10. The harmonic and key programs can in fact be run in combination to pro-
duce a complete Roman numeral analysis, with mode, extension, and inversion
information added; this is explained in section 7.6.
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11. We should note that the harmonic variance ruleÐpreferring successive har-
monies to be located close together on the line of ®fthsÐserves this function in a
small way. It indirectly favors both circle-of-®fths progressions and cadences,
since both involve movement to adjacent harmonies on the line of ®fths. (See
section 8.8 for further discussion.)

Chapter 7 1. Here, of course, I am referring to tonal music: music which conveys a sense of
key or tonal center.

2. The original data was gathered for a variety of keys, but there was little vari-
ation between major keys (after adjusting for transposition), so the data were
averaged over all major keys to produce a major key-pro®le which was then used
for all major keys; the same was done for minor keys (Krumhansl 1990, 25, 27).

3. Normalizing the input vector values for their mean and variance has no effect
on the algorithm's judgments, since the input vector is the same for all 24 keys.
Normalizing the key-pro®le vectors does have a slight effect, however. Since the
mean value for the minor key-pro®les is a bit higher than for major key-pro®les,
removing this normalization tends to bias the algorithm towards minor keys,
relative to the original K-S algorithm. However, this effect could be counteracted
simply by adjusting the key-pro®le values. As we will see, the key-pro®le values
seem to require signi®cant adjustment in any case.

4. Actual statistical analyses of entire pieces show mixed results. Krumhansl
(1990, 66±71) reports that some note counts in pieces show a high key-pro®le
correlation with the appropriate keys, although she does not show that these note
counts correlate more highly with the ``correct'' key than with any other. In other
studies the results have been unpromising. Krumhansl (1990, 71±3) found the
key-pro®le model predicted G major as the key of Schubert's Moment Musical
No. 1, whereas the correct key is C major; Butler (1989, 226±8) found that the
pitch-class distribution of Schubert's Moment Musical No. 2 in A" major yielded
a poor match to the key-pro®le for that key. Of course, one might attribute these
failures to the details of the algorithm, such as the fact that the key-pro®le values
are not ideal. As I have said, however, I believe that using the key-pro®le model
to predict global key is misguided.

5. The possible choice of keys was limited to a range of 28 steps (C"" to Fx) on
the line of ®fths.

6. A similar set of tests was reported in Temperley 1999b. There, however, an
NPC version of the model was used rather than a TPC version. Thus the results
of the tests are slightly different. The results of the TPC and NPC versions will be
compared below.

7. In 45 of the 48 Well-Tempered-Clavier cases, and 43 of the 46 Kostka-Payne
cases, the procedure described here resulted in a segment level between 1.0 and
2.0 seconds; in the remaining cases, the segment length was slightly more than 2.0
seconds (these were slow triple meter pieces, where there was no level between
1.0 and 2.0 seconds). In cases where the excerpt began with an incomplete seg-
ment, this portion was treated as a separate segment if it was at least half the
length of a regular segment; otherwise it was absorbed into the following seg-
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ment. Partial segments at the end of the excerpt were always treated as complete
segments.

8. In a few cases, an entire excerpt was spelled in a different cycle of the line of
®fths than in the notation. This occurred because the spellings of the excerpts
were generated by running them through the pitch spelling program and cor-
recting them as necessary, and in some cases the pitch spelling program notated
something in the wrong cycle of the line of ®fths. In such cases, the ``correct'' key
analysis was adjusted accordingly. Since both pitch spellings and key analyses are
essentially relative rather than absolute, this did not appear to be problematic (see
section 5.4 for discussion).

9. Vos & Van Geenen's assumption that only six of the fugue subjects modulate
is not necessarily correct. Keller only mentions modulations in six cases, but it is
not clear that he would have mentioned all cases. It appears that several others
may modulate: Book II, No. 10, for example.

10. Krumhansl's tests of the K-S algorithm have already been described, as well
as tests by various authors on the Well-Tempered-Clavier fugue subjects. Vos and
Van Geenen also tested their model on fugue subjects by other composers.
Holtzmann tested his model on a corpus of 22 other melodies, but it is not clear
how these melodies were chosen. Longuet-Higgins and Steedman's, Holtzmann's,
and Vos and Van Geenen's tests were all limited to monophonic excerpts.
Winograd presents tests of three short pieces; Maxwell gives results for two
pieces; Leman gives results for two pieces.

11. If the key-pro®le values were to be based on pitch-class distribution in pieces,
this information would have to be gathered relative to the local key rather than
the main keyÐunlike the pitch-class tallies by Krumhansl and Butler mentioned
earlier (see note 4).

12. As a further comparison, the Kostka-Payne test was also run using the key-
pro®le values from the original Krumhansl-Schmuckler algorithm. Various values
of the change penalty were used; the best performance occurred with a change
penalty of 12 (as in the tests of my own version). With the original key-pro®le
values, 622 of 896 segments were judged correctlyÐa rate of 69.4%, compared
to 83.8% in the test just described. (Since the original K-S pro®les use NPCs, not
TPCs, the appropriate comparison is with the NPC version of my algorithm.)

13. The time-point of each event was determined by its onset; duration was not
considered.

14. The model was also tested using weighted, rather than ¯at, input vectors
(so that the value for a pitch-class in a segment's local input vector was given
by the total duration of events of that pitch-class in the segment). The level of
performance was almost identical to the ¯at-input version; with a half-life of 4.0
seconds, it yielded a score of 69.9% correct.

Chapter 8 1. This is in keeping with the spirit of GTTM, which addressed itself to ``the ®nal
state of [the listener's] understanding'' of a piece, rather than the intermediate
stages and provisional analyses leading to that understanding (Lerdahl & Jack-
endoff 1983, 3±4).
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2. A widely discussed example of hypermetrical revision is the opening of
Mozart's Symphony No. 40; see Lerdahl & Jackendoff 1983, 22±5, and Kramer
1988, 114±7.

3. A more extended investigation along these lines is offered by David Lewin
(1986). Building on the ideas of phenomenology, Lewin explores the ways that
the interpretation of an event can shift depending on the contextual perspective.

4. See, for example, Aldwell and Schachter's discussion of enharmonic modula-
tion (1989, 560±4); as the authors note, this often involves the ``reinterpretation''
of the tonal implications of an event. (I discuss enharmonic modulation later in
this section.) For a fascinating early discussion of tonal reinterpretation, see
Weber 1832/1994.

5. This excerpt was analyzed by the program as part of the Kostka-Payne test
reported in chapter 7. As noted there, all extrametrical notes were excluded from
the Kostka-Payne excerpts. In cases such as the Chopin, this is unfortunate. One
might argue that the grace notes in the excerpt have important tonal implications;
in particular, the F's in m. 1 and elsewhere exert signi®cant pressure towards B"
major.

6. A subtle reinforcement of the 3/2 meter continues even past this point, but to
my mind it is no longer strong enough to constitute a real ambiguity.

7. The idea of a hierarchical representation of tonal structure is fundamental to
the work of Schenker (1935/1979) and others in the Schenkerian tradition. It is
also re¯ected in Lerdahl and Jackendoff's Prolongational Reduction and Time-
Span Reduction in GTTM (1983). However, neither Schenker's nor GTTM's
reductional structures are really hierarchical representations of harmony and key;
they are something rather different.

8. The phenomena of diachronic and synchronic ambiguity might of course arise
in combination. For example, assume that both hearings A and B of a passage
were simultaneously present. It might still be that hearing A was slightly favored
from one contextual perspective (say, when the passage was ®rst heard), while
hearing B was favored from another (in light of the following context). Describ-
ing such situations with any precisionÐlet alone quantifying themÐwould be
extremely complex, and I will not attempt it here.

9. Five of the seven roots can move by ®fths to two other roots; two (VII and IV)
can move to only one other root. This yields twelve possible ``®fth'' motions in all.

10. Of course, a certain NPC triad could be located at different points on the line
of ®fths, but we can assumeÐagain due to the harmonic variance ruleÐthat a
triad will be located at the closest possible point to the previous triad. So if the
®rst triad is C major, the second will preferably be interpreted as F major rather
than E# major.

11. There is experimental evidence, as well, that musical expectations may not be
much affected by actual knowledge of what is coming next. Schmuckler (1989,
144) found that subjects' judgments of the expectedness of different continuations
were not greatly in¯uenced by prior familiarity with the piece.
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Chapter 9 1. The idea of regarding musical surfaces as transformations of underlying
structures brings to mind Schenkerian approaches to rhythmic structure, such as
those of Komar (1971) and Schachter (1980). These approaches involve adding
rhythmic values to higher-level events in Schenkerian reductions, and sometimes
entail the rhythmic alteration of events; for example, syncopated events may be
shifted to metrically stronger positions, irregular phrases may be made regular
(for example, a 5-measure phrase might be ``normalized'' to 4 measures), and so
on. Some authors have argued that the idea of positing transformations as a
general aspect of rhythmic structure is problematic (Lester 1986, 187±9; Lerdahl
& Jackendoff 1983, 288). However, the kind of normalization that I propose
here is extremely local and quite constrained in the way it may be applied.

2. For further discussion of some of the issues explored in this section, see
Temperley 1999a.

3. For example, the melody of the Beatles' ``Drive My Car'' emphasizes the
fourth degree of the tonic harmony; the opening melodic phrase of Pink Floyd's
``Welcome to the Machine'' ends on a striking 2̂ of the tonic chord.

4. Moore (1995, 189) has suggested that much rock re¯ects ``the `divorce'
between melodic and surface harmonic schemes,'' in that a single melodic phrase
can be repeated over different harmonies, with apparent disregard for the com-
patibility between the two. I ®nd this claim somewhat overstated; a large majority
of songs re¯ect a fairly close coordination between melody and harmony. How-
ever, one does sometimes ®nd cases, such as those in ®gure 9.18, where melody
and harmony appear to be truly independent.

5. Some might argue that a piece in A minor would use the C diatonic scale with
A as the tonic; however, as suggested in section 7.4, the primary pitch collec-
tion of most minor common-practice music is actually the harmonic minor
pitch collection. 6̂ and "7̂ are sometimes used, but are much less common than "6̂
and 7̂.

6. One does sometimes ®nd #4̂/"5̂ used as a melodic in¯ection in rock, moving
either upwards to 5̂ or downwards to 4̂; examples of this usage are seen in ®gures
9.13b and 9.24. I would suggest that these are best regarded as chromatic passing
tones; such tones are often found in common-practice music as well. I will give
evidence below that #4̂/"5̂ is generally not understood as a ``legal'' scale-degree.

7. While it is not uncommon for rock songs to modulate from one tonal center to
another, we will mainly be concerned with songs that maintain a single tonal
center throughout. However, modulation creates no fundamental problem for the
current model. When a piece shifts tonal center, I would argue, the pitch collec-
tion for each section of the song is de®ned by the ``supermode'' for the tonal
center of that section.

8. This point has been made by Moore (1992, 77). Moore suggests that tonic-
ization in rock is often achieved through emphasis of a particular triad: through
repetition, accentuation, or use at structurally important points. This relates quite
closely to what I propose below.

9. For the moment, I am assuming a ``neutral'' model of pitch-class. If tonal-
pitch-class distinctions are made, the situation becomes somewhat more compli-
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cated. For example, A" is compatible with a tonic of C (as part of the Aeolian
mode), but G# is not. The question of whether TPC distinctions are important in
rock is a dif®cult one which I will not pursue here.

10. B is featured in some occurrences of the verse melody (such as the one in
Figure 9.26, from the second verse), but not in others (e.g., the ®rst verse).

Chapter 10 1. A distinction should be made between music in ``strict rhythm'' and music in
``free rhythm''; this distinction is discussed by Nketia (1974, 168) and Agawu
(1995, 73±4). It appears that, roughly speaking, ``strict rhythm'' refers to music
with meter; ``free rhythm,'' to music without meter. Much African music is in free
rhythm; however, the work discussed here is almost entirely concerned with strict
rhythm music.

2. At one point, Pantaleoni (1972a, 56±8) seems to question even the eighth-note
pulse, arguing that Ewe dance music is understood directly in terms of the bell
pattern, without involving any regular pulse at all. But he seems ambivalent
about this (see Pantaleoni 1972b, 8), and clearly assumes an eighth-note pulse in
his transcriptions.

3. Lerdahl and Jackendoff (1983, 70±4) propose that the tactus is invariably
between 40 and 160 beats per minute, and often close to 70. Parncutt (1994)
found experimentally that the preferred range for the tactus was around 80±90
beats per minute.

4. See Jones 1959 I, 41, 54, 84, 86, 124; Koetting 1970, 130±1. Other ethnic
groups that use the standard pattern assume different beginning points, as some
have pointed out (Pressing 1983a; Rahn 1996); but apparently the pattern always
has a de®nite ``beginning'' point. (While there seems to be no doubt that the X
position is metrically strong in Ewe music, there is some question as to whether it
is truly the beginning of the pattern; see note 18.)

5. Two dissenting views should be mentioned. Arom (1991, 206±7, 229) accepts
the tactus level in African music, but argues strongly against any higher levels.
Kauffman (1980, 407±12) proposes that common rhythmic patterns in African
music, such as 3-3-2 and the standard bell pattern, may actually be metrical pat-
terns. The idea of irregular metrical structuresÐirregular (but regularly repeat-
ing) patterns of accents which are inferred by the listener and then imposed on
subsequent eventsÐis not out of the question; but since Kauffman is the only one
to suggest it, and gives little evidence for it, I will not pursue it further here.

6. Jones's comments about the con¯icting barlines are of little help. He empha-
sizes that rhythms which con¯ict with the underlying beat are not ``syncopated''
Ðrather, he claims that they are completely independent of this beat; it seems
that the independent barlines are designed to convey this (Jones 1959 I, 20±1, 23,
32). Generally, syncopation simply refers to musical events which con¯ict (at
least on the surface) with the prevailing beat; is there anything to be gained by
saying that a line goes against the main beat, but is not syncopated? Chernoff
(1979, 45) expresses a similar view to Jones, asserting that different lines of a
drum ensemble piece must be given different meters. Agawu (1995, 71, 187±8,
200) is also somewhat inconsistent on the issue of meter. Despite his frequent
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discussions of con¯icts between accent and meter, he denies that the time sig-
natures and barlines of his transcriptions represent an ``accentual hierarchy'';
rather they simply represent ``grouping.'' By ``accentual hierarchy,'' I assume he
means a metrical framework with beats of varying strength. Surely Agawu is not
claiming that such a framework is absent in African music; if so, what does he
mean by ``con¯icts'' between meter and surface events? (Agawu's claim that his
barlines represent grouping will be discussed below.)

7. We should be cautious in how we interpret these authors' transcriptions.
However, as we have seen, there is plenty of support in their writingsÐJones
includedÐfor the existence of meter in African music. In general, then, it seems
fair to take time signatures and barlines as indicators of the meter that is
perceived.

8. It might be argued that the instruments here are heard, to some extent, as
forming ``resultant'' lines rather than individual ones (Kubik 1962; Nketia 1974,
133±8); in this case, since a given resultant line may have notes on all or nearly
all of the eighth-note beats, it may be loudnessÐresulting from several instru-
ments playing togetherÐmore than the event rule that causes certain beats to be
heard as strong.

9. Locke (1982) draws a useful distinction between ``offbeat rhythms,'' which
imply a metrical structure of the same period as the underlying meter but different
in phase, and ``cross rhythms,'' which imply a metrical structure of a different
period.

10. Here I am echoing Agawu (1995, 4±5, 187±90), who argues eloquently
against exaggerating the differences between Western and African music.

11. Some students of African music seem to fall victim to the common miscon-
ception that, in Western music, metrically accented notes are always (or at least
normally) indicated as such by being played louder. In Western music, Chernoff
remarks (1979, 42), ``the rhythm is counted evenly and stressed on the main
beat.'' Arom (1991, 202±4), similarly, seems to assume that meter requires
dynamic accents. This misconception may account for the misgivings of some
authors, notably Jones, about using barlines and time signatures in the traditional
way. In an early article, Jones (1954, 27) explains his reluctance to use a 2/4 time
signature in a piece; this would ``imply the presence of alternate strong and weak
accents. But in our example, and indeed in all cases where clapping is used, the
claps are all of equal intensity'' (see also Jones 1959 I, 17, 23). (This fear of
implying dynamic accents might also explain Agawu's comments, noted earlier,
that his barlines do not represent an ``accentual hierarchy.'') But Western metrical
notation does not imply that notes on strong beats are dynamically accented. As
noted in chapter 2, loudness appears to be a fairly minor factor in Western meter,
and it is certainly not crucial; meter can readily be inferred in music for instru-
ments permitting no dynamic variation.

12. Jones (1959 I, 19) discusses this as well, although his ``Western'' hearing is
rather different.

13. Here again, I am speaking of ``strict rhythm'' rather than ``free rhythm''
music (see note 1).
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14. Patterns such as ®gure 10.6 raise the issue of metrical ambiguity. We are
assuming that an African listener infers a particular metrical structure for a piece.
There may be cases of con¯ict, for example, between the underlying meter and
the cross-rhythms of the master drummer; but either these cross-rhythms override
the underlying meter, or they do not. But is it not possible that the listener
maintains two, or even several, metrical interpretations at once? As noted in
chapter 8, the potential for synchronic ambiguity in Western meter appears to be
related to the degree of difference between the two structures in question. In a
case of hemiola, all the levels are the same except for one intermediate level; thus
entertaining two structures really means, simply, entertaining two candidates for
this one level. In such cases metrical ambiguity does seem possible for Western
listeners, and we might expect that the same would hold true of African listeners.
Indeed, the cases where metrical ambiguity has been claimed in African rhythm
are precisely cases of hemiola. Jones (1959 I, 102) suggests that, in pieces with
pervasive hemiolas, African listeners are able to perceive both duple and triple
meters simultaneouslyÐfor example, hearing the rhythm of ®gure 10.6 as being
in 3/4 and 6/8 at once. See also Locke 1982, 223. Agawu (1995, 189±91, 193)
takes issue with Jones, arguing that the 6/8 meter is primary in such cases.

15. ``Position-®nding'' has not received much discussion with regard to rhythm.
It is brie¯y mentioned by Rahn (1996, 79), who uses the term ``individuation.''

16. We should note that Blacking's claims apply only to the Venda; in fact he
mentions that some other Africans (speci®cally Zulus) agreed with his own
interpretations rather than the Venda ones (p. 158).

17. A similar case is seen in the ®ve-eighth-note pattern in the master drum in
®gure 10.4. This is a more problematic case, since ``quintuple'' metrical structures
are not accommodated by the current theory. We should note also that the met-
rical structures at issue in these examples are notÐaccording to the consensus
viewÐthe primary metrical structures present, though they might be secondary
structures heard momentarily, adding elements of tension or con¯ict with the
primary meter.

18. Jones (1959 I, 54) asserts that, in some contexts, even the standard bell pat-
tern itself is regarded as end-accented, that is, ending on the X position shown in
®gure 10.2. Similarly, Locke (1982, 224±5) notes that, in performance, the stan-
dard pattern is most commonly begun on the position just after the X position
(see also Locke's transcription on p. 220); this, again, suggests an end-accented
grouping. In most cases, howeverÐas noted earlierÐthe X position is described
as the beginning of the pattern.

19. An interesting case here is Pressing's study (1983b) of the Kidi patterns in
Agbadza, an Ewe drumming piece. To his credit, Pressing distinguishes clearly
between ``phrasing'' (grouping) and ``polyrhythmic sampling'' (metrical implica-
tions) (pp. 9±11). He shows the grouping structures for a number of Kidi pat-
terns; he indicates the periods (or ``cycles'') of the meters implied by those
patterns, but unfortunately not the placing of the strong beats (p. 6). Regarding
grouping, Pressing notes that parallelism is an important factor (p. 9); he also
notes that groups always begin with a bounce beat rather than a mute beat (the
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bounce beats being much more prominent) (p. 9). Bounce beats are presumably
strong phenomenal accents and would tend to be metrically strong (this is the
main factor in the metrical implications of patterns, as Pressing implies [pp. 10±
11]); it is interesting, then, that they tend to mark the beginnings of phrases,
rather than the ends, as other authors argue is normative for African music. In
cases of several bounce strokes in quick succession, however, the phrase always
begins on the ®rst of the series, rather than on the last (p. 6). This is predicted by
GTTM's similarity rule for groupingÐa grouping boundary occurs at a change
from one stroke type to another, grouping the similar ones together. (In metrical
terms, we would probably expect the last bounce stroke of a series to be metri-
cally strongest, since it is in a way the ``longest.'')

20. Several other concepts used in discussions of African rhythm should be
brie¯y mentioned. Nketia and others have suggested that some rhythmic patterns
are divisive, formed by divisions of a unit, whereas others are additive, formed by
combining units together (Nketia 1974, 128±31; Pressing 1983b, 10±11). (See
also Jones 1959 I, 20±1, on the additive nature of African rhythm.) It is unclear
what these terms imply from a cognitive viewpoint. One could describe certain
metrical structuresÐand rhythmic patterns that imply themÐas additive or divi-
sive: given a regular tactus level, an irregular higher level might be seen as form-
ing an additive structure, while an irregular lower level (with successive tactus
beats being divided differently) would be divisive. While there are some patterns
in African music that imply such irregular structures, most African rhythmic
patterns and polyphonic textures imply regular structures of several levels; in this
case it is unclear why they should be regarded divisively or additively (for example,
consider the ``divisive'' patterns shown in Nketia 1974, 130). Rhythmic patterns
might be considered additive in other ways. Nketia points to the Ewe bell pattern
as additive, arguing that it is based on a 5� 7 structure (1974, 129±31). This
pattern might be regarded as an additive ``5� 7'' pattern in terms of its grouping
structure, or in terms of its motivic structure (in that it involves a ®ve-beat pattern
followed by a seven-beat variant). However, its metrical structure is clearly not
additive (at least in the contexts where it is normally used); strong beats do not
occur at intervals of 5 and 7 beats, but rather, occur regularly every third beat.

The terms ``polyrhythm'' and ``polymeter'' are also sometimes used. The mean-
ing of these terms is, again, unclear. If polyrhythm simply means the use of mul-
tiple rhythmic patterns simultaneously in a piece, then of course it characterizes
much Western music as well as African. Arom (1991, 216, 272) uses it to mean
the combination of rhythms ``so as to create an interwoven effect.'' Most often, I
think, it means using patterns which imply different meters taken individually (see
Nketia 1974, 135±8; Pressing 1983b, 10±11). This is indeed an important fea-
ture of much African music, and is surely much less common in Western music,
although not nonexistent. The same concept is also sometimes denoted by
``polymeter.'' Waterman (1952, 212) de®nes polymeter as ``the interplay of two
or more metrical frameworks''; Chernoff (1979, 45) de®nes it as ``the simultane-
ous use of different meters.'' What exactly is meant by this? Perhaps these authors
are simply referring to simultaneous lines which (taken individually) imply dif-
ferent meters. Or are they implying that, when such lines are combined, several
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different meters are perceived simultaneously? This cannot be ruled out, although
I have argued that this rarely occurs in Western music.

Chapter 11 1. For a useful review of recent work in the area of music performance, see
Palmer 1997.

2. The same reasoning applies to the observation that the normative alignment of
grouping and meter differs between African and Western music (see section 10.7).
The fact that African perception prefers strong beats at the end of groups is
re¯ected, presumably, in the fact that most African songs align metrically strong
beats with group endings rather than group beginnings; this means that the met-
rical grouping rule can be satis®ed along with the other rules. Western music, by
contrast, is generally constructed so that strong beats naturally fall near the
beginning of groups, allowing an analysis which yields ``beginning-accented''
groups while also satisfying other grouping and metrical rules.

3. Here again, I am speaking of African music in ``strict rhythm'' (see chapter 10,
note 1). That some African music is in ``free rhythm'' is rather problematic for the
current argument; we might have to argue that such music was perceived under a
different rule system.

4. In the harmonic notations of jazz piecesÐseen in ``lead sheets'' and also in the
parts for accompanying instruments (piano, bass, guitar) in jazz ensemblesÐone
®nds a overwhelming majority of root position chords. (Inversions can be repre-
sented in jazz notation, using a chord symbol over a bass note, such as ``C7/E,''
but this is relatively rare.) A ``walking bass line'' may use more than one note
under a chord, but the root of the chord is usually emphasized.

5. An interesting analogy can be drawn here, as noted by Swain (1997, 141±67),
with a phenomenon in language: what is called a ``trading relationship.'' When
change occurs in some aspect of a language, this may result in a loss of informa-
tion which must be counteracted by change in some other aspect. For example,
case information in English (for example, whether a noun is subject or object)
used to be communicated through in¯ectional endings. As the in¯ections began to
drop out, case information had to be conveyed in some other way; this resulted in
the development of ®xed rules of word order (subject-verb-object), which pre-
viously had varied rather freely. Swain ®nds interesting parallels to this phenom-
enon in music, although his examples relate more to what I would call schemata
(see section 12.3) rather than infrastructural levels. For example, Swain notes that
the stylized cadences of Renaissance music required both voice-leading and
rhythmic features. With the development of tonal harmony, the harmonic iden-
ti®cation of a cadence was clear enough that the strict rhythmic conventions of
the Renaissance cadence were no longer necessary.

6. For an interesting quantitative approach to this question, see the discussion of
Krumhansl's work in section 11.4 below.

7. Other practical problems arise with this scheme as well. In the way the scores
are currently calculated, the score for a piece may be affected by things such as
the number of notes in the piece: for example, under the metrical system, a piece
with more notes will have a higher score. Scores for pieces would have to be
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normalized for this in some way. With regard to the key model, the score for a
segment is determined by the sum of the key-pro®le values for all the pitch-classes
present in the segment; thus adding more pitch-classes to a segment will always
increase the score. This seems counterintuitive; rather, for present purposes, it
seems that the score should be given by the mean key-pro®le value for all the
pitch-classes in a segment. In this way, a segment in which all the pitches present
are diatonic (under some analysis) will score higher than one in which no purely
diatonic analysis can be found. (See Temperley 1999b for development of this idea.)

8. In particular, one runs the risk of committing the ``intentional fallacy''Ð
attributing intentions to composers where one is not warranted to do so. For an
interesting discussion of the intentional fallacy in musical discourse, see Haimo
1996.

9. See Benjamin 1984, 390±403. Lerdahl and Jackendoff's Metrical Well-
Formedness Rules 3 and 4 (1983) stipulate that meter must be regular; however,
the authors suggest that metrical structures may exist in some idioms which are
not bound by these rules (pp. 96±9). Kramer (1988, 102) argues that metrical
structures must re¯ect some degree of regularity, but also points out that irregu-
larity at one level may not preclude regularity (in terms of relationships between
levels) at both higher and lower levels.

10. This technique is sometimes called ``cellular'' organization. For discussion,
see Kramer 1988, 221±85.

11. Von Hippel shows that, when the notes of a melody are randomly scrambled,
the intervals between adjacent notes tend to be larger than in the original version,
proving that there is a preference for small intervals. However, range constraints
are also important: the probability of a certain interval following a note depends
on where the note is in the range of the melody. Von Hippel proposes a model
based on regression to the mean which accounts for both range constraints and
the preference for small intervals. It is possible that taking range constraints into
account would improve the performance of the model proposed in chapter 4.

12. In fact, Huron's statistical analyses of Bach's polyphonic works show that
even single perfect intervalsÐ®fths and octavesÐare avoided to a surprising
degree; this too, Huron argues, may arise from a desire to avoid tonal fusion.

13. On the other hand, parallel perfect intervals might indirectly hinder stream
segregation, since the fusion of two voices into one would create discontinuities in
the ``piano-roll'' representation. We should remember that the strict separation
between spectral integration and sequential integration assumed here is certainly
an oversimpli®cation; in reality the two processes interact in complex ways.

14. Here the original Krumhansl-Schmuckler algorithm has an advantage over
my modi®ed version, in that it normalizes the scores for the size of the input
vector values, thus solving the problem that passages with more notes receive
higher scores (see note 7). On the other hand, it also normalizes for the variance
in the input vector values. This is not desirable for current purposes; we want an
input vector with low varianceÐi.e., with all pitch-classes used about equally
oftenÐto be judged as less tonal than one with high variance.
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15. Also of interest is a study by Kessler, Hansen, and Shepard (1984), using
Balinese subjects and materials.

16. Table 11.1 also shows the total scores for each segment in the right-hand
column, though I am not sure how revealing these are. Adding together the ten-
sion of harmonic variance with the tension of ornamental dissonances is, per-
haps, a case of ``apples and oranges''Ðexperientially, the two are very different
(though I have suggested that considering total rule scores can be useful in other
ways).

Table 11.1 omits the scores for one rule: the voice-leading rule (TPR 2). The
preferred analysis incurred only one penalty from this rule: A penalty of 3.0 for
the ®rst E in the melody m. 12, which resolves incorrectly to the E" of the next
measure.

17. One could also hear the A and C in the upper voices, along with the C-E-G
in the cello, as part of an A minor seventh, but this would be penalized by the
harmonic variance rule, as A is not close to the harmonies of nearby measures.

18. I have argued elsewhere that the sense of disorientation conveyed by much
highly chromatic music may be due, in part, to the ambiguous and low-scoring
TPC representations that are formed (Temperley 2000). For example, with a whole-
tone or octatonic scale, several spelling interpretations are about equally favored;
and all are low-scoring in TPC terms (relative to the diatonic scale, for example),
since they all involve a wide dispersion of events on the line of ®fths. Indeed, the
degree of tension in such music might be considered to exceed the bounds of
``grammaticality'' within the common-practice idiom.

19. Measures 130±1 illustrate a phenomenon that has not yet been discussed:
metrical parallelism between levels. The descending diminished-seventh motive
has previously been presented as ``strong-weak'' at the half-note level; in light of
this, when the motive occurs at the whole-note level, there is a tendency to hear it
as ``strong-weak'' at that level as well, thus favoring m. 130 as strong.

20. Here again, getting these results would require some kind of normalization
of the key scores, to adjust for the number of pitch-classes in each segment (see
note 7 above).

21. More precisely, the hierarchical tension of an event is given by tracing its
connections through superordinate events until the most superordinate event is
reached, and adding all the resulting pitch-space distances.

Chapter 12 1. See Budd 1985 and Swain 1997 for useful surveys of this subject.

2. For a brief review of work on motivic structure, and numerous citations, see
Temperley 1995, 143.

3. Povel and Essens (1985) devised a metric of the rhythmic ``complexity'' of a
pattern, which proved a good predictor of subjects' ability to reproduce rhythmic
patterns. However, this metric did not incorporate the factor of repetition
(although Povel and Essens do discuss this factor).

4. Longuet-Higgins and Lee (1982) also propose viewing metrical structure in
terms of a tree.
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5. Again, this model pertains to motivic relations that are recognized in a direct,
automatic way. Admittedly, many other relationships can be perceived with effort
and attention. As I discuss elsewhere (Temperley 1995, 159±60), there are also
other kinds of relationships that seem to be perceived fairly directlyÐsuch as
similarities of contourÐwhich are not covered by this model.

6. The idea of musical affect arising from denial of pattern completionÐor com-
pletion of a pattern in an unexpected wayÐis central to the writings of Leonard
Meyer (1956, 1973).

7. We should recall, also, that parallelism may affect grouping structure. Under
the current framework, this occurs indirectly due to the in¯uence of parallelism
on meter, which then in¯uences grouping (see section 3.4); the result is that
grouping structure tends to be parallel with metrical structure, and hence with
motivic patterns as well. As noted earlier, there is evidence that perceived motivic
patterns must be supported by the grouping structure (so that motives correspond
with groups, or at least are not interrupted by grouping boundaries). If so, the
in¯uence of parallelism on grouping can be seen as favoring a grouping structure
which is likely to yield motivic connections.

8. It is important to consider which listeners are being described here. Ratner is
concerned, presumably, with describing the perception of listeners in the Classical
period. No doubt many of the topics he discusses are unlikely to be perceived by
listeners today.

9. For a review of research on emotion and energy in music, see Dowling &
Harwood 1986, 207±13. These authors cite evidence that loud music conveys
more energy (210). Interestingly, the studies they review did not ®nd that the
ascending or descending contour of a melody greatly affected the expressive
content. One might argue that the expressive impact of register relates to the
relative effect of sections within a melody: the higher portion of a melody conveys
more energy than the lower portion. On the other hand, it surely true that an
ascending melody, taken as a whole, is different in expressive effect from a
descending one; this deserves further study.

10. One might argue that positing schemata implies some kind of arbitrary or
conventional meaning. If the function of the 1̂-7̂-4̂-3̂ schema followed in a rule-
governed way from its musical structure, why would we need to posit a schema?
On the other hand, it might be argued that a schema is simply a common con-
®guration of infrastructural elements which deserves recognition, even if it pos-
sesses no meaning beyond what is implied by its structure.

11. Not all music is fragile; nor is fragility a necessary or suf®cient condition for
good music (by my standards, and, I believe, most other people's). Consider
Boulez's Structures 1a, a small but representative fragment of which is shown in
®gure 11.6. This is, to my mind, a highly effective and memorable piece. Yet I do
not believe its effect, or the effect of a passage within it, would greatly be altered
by altering a few notes. On the other hand, much mediocre common-practice
music is as fragile as the Beethoven minuet, yet mediocre nonetheless.
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