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and figures, this book is essential reading for all scholars of ancient Egypt and the

architecture of ancient cultures.
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Preface

Mathematics has always played an important role in architecture, in the past just as

in the present. Despite this continuity, however, reconstructing exactly how the re-

lationship between architecture and mathematics worked in an ancient culture may

prove rather complicated. An investigation into the way architecture and mathe-

matics interacted in the past, in ancient Egypt as well as in other cultures, may

be misled by three main sets of tangled problems. The first is generated by our

expectations of the results of such a research; the second depends on the reliability

of the drawings used to test or ‘discover’ a theory; and the third stems from the way

mathematics is employed during the research.

Regarding the first point, it is evident that in ancient monuments people have

found all they wanted to find in terms of mathematical concepts and geometrical

figures. A small-scale plan, a ruler, a compass and a bit of imagination are enough

to ‘discover’ several mathematical relationships in the design of any building. This

does not imply, however, that the ancient architects based their reasoning on the

same points, nor that they were aware of all of the possible interpretations of their

plans.

A second point concerns the drawings employed in this type of study. The habit of

using mainly plans to analyse the proportions of buildings may produce a dangerous

distance between the actual monument and its schematic representation. A plan is a

useful and simple way to represent a building, but it includes just a few clues about

the elevation, and even less about the masses and materials involved. Defining a

building just by means of its plan may be reductive, and discussing its proportions

on this basis may be misleading. Another problem related to the use of drawings

is their reliability. Precision in architectural surveys has not always been a priority,

and graphic reconstructions sometimes have been based on the imagination more

than is appropriate.

A third, important point is the way scholars use mathematics. In their search

for a ‘rule’ that would explain the proportions of ancient Egyptian architecture,

xiv
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Preface xv

modern scholars have generally ignored ancient Egyptian mathematics and have

based their theories on our modern mathematical system. In some extreme cases,

this line of research has led to complicated interpretations based on symbolic and

esoteric concepts. These theories do not necessarily provide any useful information

about the ancient culture to which they are supposed to refer, but on the other hand

they may play an important role in a study of the culture and the historical period

that produced them – that is, Europe in the last two centuries. The modern diffusion

of a scientific and logical way of thinking seems to have corresponded to a growing

need for an imaginary escape into mysterious worlds, where there are still secrets to

discover. Egypt, with its impressively oversized architectural remains, its legendary

wealth, its obscure and fascinating writing, seems to be the ideal candidate to hide

the key of a lost wisdom. Even if the ancient Egyptians would have been flattered

by this attitude, the results of this kind of speculation have, unfortunately, little to

do with the actual historical and archaeological remains.

This does not mean that there is nothing left to discover; it simply means that we

must look in other directions. The structure of this book reflects the existence of

two separate channels of research that have taken shape in the last two centuries.

Broadly speaking, they can be attributed to the two main groups of scholars who have

dealt with ancient Egyptian architecture: architectural historians and Egyptologists.

Finding a mathematical rule that would explain the proportions of ancient Egyptian

architecture has generally been an idea entertained by architects and architectural

historians, who rarely took into account any archaeological or textual evidence. On

the other hand, the archaeological and textual evidence usually has been studied in

detail by Egyptologists who had no interest in or did not believe in the existence

of a more general rule, and so rarely tried to set any piece of architectual evidence

into a broader picture.

The search for a rule has the merit of encouraging a perception of the subject from

a more general and less particular point of view, but it also is true that the desire to

find links, interconnections and similarities has often overstepped the boundaries

of rigorous historical interpretation. A combination between these two viewpoints,

however, may yield interesting results. Part I of this book is dedicated to the theories

suggested in the past to explain the proportions of ancient Egyptian architecture.

The discrepancy between the methods used by modern scholars and the ancient

mathematical sources proves the inconsistency of many modern interpretations.

Part II is dedicated to a detailed analysis of the surviving archaeological evidence

on the planning and building process, such as architectural drawings, models and

texts. Although this material has already been studied in detail by several scholars,

comparisons between documents from different periods, and between the architec-

tural and the mathematical sources, provide new clues about the way mathematics

was used by ancient Egyptian architects, scribes and workmen.
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xvi Preface

Therefore, Part I may be defined as the ‘architectural’ approach corrected by the

Egyptological studies, whereas Part II is based on the inverse combination. Finally,

Part III is an attempt to reconcile these two views and prove that the association

between them may be extremely productive. A group of monuments, the Old and

Middle Kingdom pyramids, have been analysed on the basis of the conclusions

drawn at the ends of Parts I and II. The result is a coherent picture which incorporates

symbolic needs, theoretical reasoning and practical considerations, while setting

aside the complicated implications of some past theories and pointings to new,

interesting directions of research.

In conclusion, this study does not aim to discover any secret, nor to find out any

formula which might explain the proportions in ancient Egyptian architecture. It is

simply an attempt to outline the relationship between architecture and mathematics

in ancient Egypt; that is, the way the ancient Egyptians used numbers and geomet-

rical figures when planning and building. My wish is that it will act as a bridge

between architects and Egyptologists and will help to set the path for a consistent

analysis, in mathematical terms, of future archaeological evidence.
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BdE Bibliothèque d’Etude
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ZÄS Zeitschrift für Ägyptische Sprache und Altertumskunde

Pure Mathematical Physics



xxi

Table 1. Schematic chronology of Ancient Egypt

Kings and Queens
Historical Period Dynasty Approximate dates mentioned in the text

Early Dynastic Period Dynasty 0 3100–3000 BC
First Dynasty 3000–2750 BC
Second Dynasty 2750–2686 BC Hetepsekhemwy,

Ninetjer
Old Kingdom Third Dynasty 2686–2600 BC Djoser, Sekhemkhet,

Khaba
Fourth Dynasty 2600–2450 BC Snefru, Khufu (Cheops),

Djedefra, Khafra
(Chefren), Menkaura
(Mykerinos),
Shepseskaf, Nebka (?)

Fifth Dynasty 2450–2300 BC Userkaf, Sahura,
Neferirkara,
Shepseskara,
Raneferef, Neuserra,
Menkauhor,
Djedkara-Isesi, Unas

Sixth Dynasty 2300–2181 BC Teti, Pepi I, Merenra,
Pepi II

First Intermediate
Period

Seventh Dynasty no historical
evidence

Eighth Dynasty 2180–2160 (?) BC Iby
Ninth/Tenth Dynasty

(Herakleopolis)
2160–2025 (?) BC

Eleventh Dynasty
(Thebes)

2160–2025 BC Nebhetepra Mentuhotep

Middle Kingdom Eleventh Dynasty (all
Egypt)

2025–1976 BC

Twelfth Dynasty 1976–1794 BC Amenemhat I, Senusret I,
Amenemhat II,
Senusret II, Senusret
III, Amenemhat III,
Amenemhat IV

Thirteenth Dynasty 1794–1700 BC Ameny-Qemau,
Khendjer,
Merneferra-Ay

Second Intermediate
Period

Fourteenth Dynasty chronology
uncertain, some
dynasties were
contemporary

Fifteenth Dynasty
(Hyksos rulers in
Lower Egypt)

Sixteenth Dynasty
Seventeenth Dynasty

(Thebes)
1650–1550 (?) BC Kamose

New Kingdom Eigtheenth Dynasty 1550–1292 BC Ahmose, Tuthmosis I,
Hatshepsut, Tuthmosis
III, Amenhotep III,
Amarna Period,
Tutankhamun

Amarna Period 1351–1334 BC Akhenaton (Amenhotep
IV)

Nineteenth Dynasty 1292–1185 BC Seti I, Ramses II,
Merenptah, Seti II,
Siptah, Tawosret

Twentieth Dynasty 1186–1069 BC Sethnakht, Ramses III,
Ramses IV, Ramses V,
Ramses VI, Ramses
IX

Third Intermediate
Period

Twenty-first Dynasty 1069–945 BC

Twenty-second
Dynasty

945–735 BC

Twenty-third Dynasty 818–715 BC
Twenty-fourth Dynasty

(‘Saite’)
727–715 BC

Twenty-fifth Dynasty
(from Napata)

747–664 (?) BC

Late Period Twenty-sixth Dynasty 664–525 BC
First Persian Period Twenty-seventh

Dynasty
525–404 BC

Late Dynastic Period Twenty-eighth Dynasty 404–399 BC
Twenty-ninth Dynasty 399–380 BC
Thirtieth Dynasty 380–343 BC Nectanebo I, Nectanebo

II
Second Persian Period Persian kings 343–332 BC
Macedonian Period Macedonian Dynasty 332–304 BC Alexander the Great
Ptolemaic Period Ptolemaic Dynasty 304–30 BC Ptolemy, Ptolemy II,

Ptolemy III, Ptolemy
VI, Ptolemy VIII,
Ptolemy X, Ptolemy
XI, Ptolemy XII,
Cleopatra VII

Roman Period Roman Emperors 30 BC – 395 AD Augustus
Byzantine Period 395–640 AD
Islamic Period 640–1517 AD
Ottoman Period 1517–1805 AD
Khedival Period 1805–1919 AD
Monarchy 1919–1953 AD
Republic 1953-today
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Part I

Proportions in ancient Egyptian architecture
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Harmony and proportions in architecture

Throughout the whole history of architecture, the concept of harmony has been the

subject of numerous studies and long-lasting discussions.1 Harmony may be defined

as a correspondence between parts, the result of the composition (or the division)

of a whole into consonant parts. Its ancient link with music, where ‘agreeable’

combinations of sounds can be read as mathematical relationships, seems to seal

the connection between harmony and mathematics. In art and architecture, however,

this correspondence is not easily described. Although it is undeniable that a link

between architecture and geometry (and therefore mathematics in general) exists,

in different periods the nature of this connection has been identified and judged in

different ways.

To Pythagoras and the Pythagoreans is attributed the discovery that tones can be

measured in space – that is, that musical consonances correspond to ratios of small

whole numbers. If two strings vibrate in the same conditions, the resulting sounds

depend on the ratios between their length. The ratio 1:2, for instance, generates a

difference of one octave (diapason), the ratio 2:3 produces an interval of one fifth

(diapente), and the ratio 3:4 corresponds to a difference of one fourth (diatessaron).

The addition of two intervals results in the multiplication of the two numerical

ratios, the subtraction corresponds to a division and, therefore, halving an interval

equals extracting a square root.

The Pythagorean interest in numbers, as filtered by Plato, generated a tradition

that linked philosophy and mathematics in the interpretation of the cosmos. Thus,

as Walter Burkert wrote

1 For convenient summaries, see Miloutine Borissavliévitch, Essai critique sur le principales doctrines relatives
à l’esthétique de l’architecture, Paris: Payot, 1925; Rudolf Wittkower, Architectural Principles in the Age of
Humanism, London: Academy Editors, 1998, and P. H. Scholfield, The Theory of Proportion in Architecture,
Cambridge: Cambridge University Press, 1958.

2
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one is nous and ousia; two is doxa; three is the number of the whole – beginning, middle
and end; four is justice – equal times equal – but it is also the form of the tetraktys, the
‘whole nature of numbers’ [a ‘perfect triangle’ made up of the numbers 1, 2, 3 and 4]; five
is marriage, as the first combination of odd and even, male and female; seven is opportunity
(kairos) and also Athena, as the ‘virginal’ prime number; ten is the perfect number, which
comprehends the whole nature of number and determines the structure of the cosmos.2

During the European Renaissance interest in the theory of proportion in architecture

increased considerably. One of the reasons for this was the rediscovery, in 1414 in

the Montecassino Abbey, of the treatise De Architectura libri decem, written by the

Roman architect Vitruvius in the first century BC, and eventually translated from

the Latin into the major European languages during the sixteenth and seventeenth

centuries. According to some authors, Vitruvius failed to provide a coherent theory

of proportions. P. H. Scholfield, however, has explained that the difficulties in

the translation of Latin words which appear to have similar meanings, such as

‘symmetria’, ‘eurythmia’, ‘proportio’ and ‘commensus’, generated confusion and

misunderstanding among scholars and commentators.3 One of the most important

elements in Vitruvius’ theory is commensurability: the dimensions of the parts are

submultiples of the dimensions of the whole. This seemed to apply especially to

the human body, and he suggested that the proportions of a temple ought to be like

those of a well-formed human being.4

Vitruvius and the Pythagorean-Platonic philosophy of harmonic numbers were

the main source of reference for Renaissance architects. In 1534, the painter Titian,

the architect Serlio and the humanist Fortunio Spira all approved the project sug-

gested by the Franciscan monk Francesco Giorgi for the proportions of the church

of San Francesco della Vigna in Venice, which had been laid out according to

Pythagorean and Platonic theories.5 The Italian architects Palladio and Leon Battista

Alberti, although with some differences, followed the same principles and based

their architectures on simple ratios of small numbers.

The idea of a universal harmony which ruled microcosm and macrocosm began to

decline in the seventeenth century, and was completely overthrown in eighteenth-

century England. According to David Hume, beauty was not a quality in things

themselves, but existed only in the mind of the person who contemplated them,6

2 Walter Burkert, Lore and Science in Ancient Pythagoreanism, Cambridge, Mass.: Harvard University Press,
1972, pp. 467–8. In the original text the Greek words are quoted in Greek.

3 Scholfield, Theory of Proportion, pp. 19–20.
4 Vitruvius, Ten Books on Architecture, iii.1.1, translated by Ingrid D. Rowland, commentary and illustrations by

Thomas Noble Howe, Cambridge: Cambridge University Press, 1999, p. 47; see also figs. 37 and 38.
5 ‘Francesco Giorgi’s Memorandum for S. Francesco della Vigna’, in Wittkower, Architectural Principles,

Appendix i, pp. 136–8.
6 David Hume, ‘Of the Standard of Taste’ (1777) in Eugene F. Miller (ed.), Essays: Moral, Political, and Literary,

Indianapolis, Ind.: Liberty Fund, 1987, pp. 226-49.
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and Edmund Burke concluded that beauty had nothing to do with calculation

and geometry.7 Even the connection between architecture and music was heavily

criticised and dismissed in favour of a more individual point of view influenced by

the limitations of human perception.8 At the same time, the sensation that some-

thing belonging to the past had been lost started to appear. William Gilpin sadly

wrote that ‘the secret is lost. The ancients had it. They well knew the principles of

beauty; and had that unerring rule, which in all things adjusted their taste. (. . .)

And if we could only discover their principles of proportions, we should have the

arcanum of the science, and might settle all our disputes about taste with good

ease’.9

The idea of a universal harmony was revived in the second half of the nineteenth

century, together with research, in art and architecture, into a common rule which

could link the past to the present.10 The study of Emeric Henszlmann published in

1860, for example, bears a significant title: Théorie des proportions appliquées dans
l’architecture depuis la XIIe dynastie des rois égyptiens jusq’au XVIe siècle. The

author constructed a series of increasing and decreasing ratios between catheti of

right-angled triangles and suggested that these values had been used by the architects

of different cultures for millennia.11 However, in 1863 the French architect and

architectural historian Eugène Viollet-le-Duc expressed a different opinion about

the nature of harmony. Being a theorist but at the same time a great expert in

construction and restoration, he had a more balanced view of the link between

abstract mathematics and practical operations. According to him,

going further back and examining the monuments of Ancient Egypt, we also recognize
the influence of a harmonic method, but we do not observe the artists of Thebes subjected
to a formula; and I confess I should be sorry if the existence of such formulas among
artistic peoples could be demonstrated; it would greatly lower them in my estimation;
for what becomes of art and the merit of the artist when proportions are reduced to a
formulary?12

7 Edmund Burke, Enquiry into the Origin of our Ideas of the Sublime and Beautiful (1757), ed. James T. Bolton,
Oxford: Blackwell, 1987.

8 Henry H. Kames, Elements of Criticism, Edinburgh: Kincaid & Bell, 1765.
9 William Gilpin, Three Essays: On Picturesque Beauty; On Picturesque Travel; And On Sketching Landscape,

London: Blamire, 1792, pp. 32–3.
10 A useful summary of the theories of this period, together with bibliographical references, can be found in

Wittkower, Architectural Principles, Appendix ii, pp. 139–40.
11 Emeric Henszlmann, Théorie des proportions appliquées dans l’architecture depuis la xiie dynastie des rois

égyptiens jusq’au xvie siècle, Paris: Bertrand, 1860, p. 1 and fig. 3. The starting point is the right-angle triangle
taken from a cube with side-length equal to 1. The sides of the triangle are: the side of the square face (equal
to 1), the diagonal of the face, (equal to

√
2) and the diagonal of the cube (equal to

√
3). From these values,

Henszlmann created a sequence of increasing and decreasing irrational numbers which were supposedly used
by the ancient architects of all periods. As Egyptian monuments, he included pyramids, pylons, some layouts
of temples, the tomb of Khnum Hotep at Beni Hasan, the portico of the ambulatory of Thutmosis III and the
temple of Khons at Karnak.

12 Eugène Viollet-le-Duc, Lectures on Architecture (Entretiens sur l’architecture, Paris 1863), English translation
by Benjamin Bucknall, New York: Dover Publications, 1987, pp. 390–1.

Pure Mathematical Physics



Harmony and proportions 5

The results of the search for a unique rule, especially in the cases when they were

summarised in a mathematical formula or a geometrical construction, are quite

heterogeneous and often contradictory. Some scholars thought that they had found

the solution in a geometrical figure: Viollet-le-Duc himself believed that triangles

were the basis of every good architecture,13 Odilio Wolff favoured the hexagon,14

Ernst Mössel the circle,15 and Jay Hambidge the so-called ‘root rectangles’, that

is, rectangles in which the short side was equal to the unity, and the long side re-

spectively to
√

2,
√

3,
√

4 and
√

5.16 His system, which he referred to as ‘Dynamic

Symmetry’, is also related to the most successful among the geometrical construc-

tions evoked by the scholars of the nineteenth and twentienth centuries: the Golden

Section.17

This proportion appeared to satisfy all the requests for a proper ‘universal rule’.

From a mathematical point of view, it could have a relatively simple geometrical

construction, but at the same time an extremely complicated theoretical background,

which lent itself very well to a symbolic interpretation. Moreover, at the beginning

of the twentieth century several scholars suggested that the structure of many nat-

ural forms was based on this proportion.18 In 1854 Adolf Zeising claimed that he

had discovered that the Golden Section ruled the proportions of the whole human

body (height and breadth, front and back), and that the same occurred in music,

poetry, religion and, of course, architecture.19 In the first half of the twentieth

century, Matila Ghyka followed his example and applied the Golden Section to

nature and art, explicitly referring to a ‘revival of Pythagorean doctrine in science

and art’.20

Ancient Egyptian architecture, in particular the Giza pyramids, quickly became

one of the favourite subjects to which such an approach was applied. Unfortunately,

the majority of these theories, on Egypt or other ancient cultures, are based on our

modern mathematical system, which is not necessarily similar to the ancient ones.

13 Viollet-le-Duc, Lectures on Architecture, ix Entretien.
14 Odilio Wolff, Tempelmasse, Vienna: Schroll and Co., 1912.
15 Eric Mössel, Die Proportion in Antike und Mittelalter, Munich: Beck, 1928.
16 Jay Hambidge, The Parthenon and Other Greek Temples: Their Dynamic Symmetry, New Haven: Yale University

Press, 1924. See also The Elements of Dynamic Symmetry, New Haven: Yale University Press, 1948 for ‘root
rectangles’.

17 This proportion has been known under several names (see note 15 of the next chapter): even if ‘extreme and
mean ratio’ is probably more correct from a mathematical and historical point of view, in this case I prefer to
adopt the most famous definition among non-specialistic scholars: the ‘Golden Section’.

18 Theodore Cook, Spirals in Nature and Art, London: Murray, 1903; The Curves of Life, New York: Holt
& Co., 1914; D’Arcy W. Thompson, On Growth and Form, Cambridge: Cambridge University Press, 1961
(1917).

19 Adolf Zeising, Neue Lehre von den Proportionen des menschlichen Körpers, Leipzig: Weigel, 1854.
20 Matila C. Ghyka, Le Nombre d’Or – Rites et rythmes Pythagoriciens dans le développement de la civilisation

occidentale, Paris: Gallimard, 1931 and The Geometry of Art and Life, New York: Dover, 1946, from which this
quotation is taken (pp. 168–72). Especially significant are volume i, chapter 1 in volume ii, and plates 17–24
in Le Nombre d’Or.
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Part I is entirely dedicated to this discrepancy, and reflects this in its structure. The

first section will focus on the theories suggested to explain the proportions in ancient

Egyptian architecture and their mathematical background. In the second section,

I will adopt the historically correct mathematical point of view and demonstrate

that many of those theories are based upon faulty assumptions.
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In search of ‘the rule’ for ancient
Egyptian architecture

Triangles and other figures

Three triangles for ancient Egypt

Before the diffusion of the Napoleonic Description de l’Egypte, the available in-

formation on Egyptian architecture was fragmentary and imprecise, and did not

necessarily create a good impression on architectural historians, especially those

accustomed to the reproductions of Greek art and architecture. The French archi-

tectural historian Quatremère de Quincy, for instance, was not exactly a supporter

of ancient Egypt. He believed that ancient Egyptian architecture lacked ‘order’,

meaning a ‘system of proportions of forms and ornaments’, and that beauty and

taste were foreign to it.1 In his Dictionnaire Historique d’Architecture, he wrote

that in Egyptian architecture the large size of the construction, the vastness of the

composition and the profuseness of signs and objects were due to a lack of science,

a lack of creativity, and a lack of taste, respectively.2 He concluded that the best

way to mould someone’s taste, to develop a feeling for truth and beauty, was to

familiarise them with Greek statuary. But if one wished to prevent this feeling

from developing, it would be enough to condemn the person to looking at Egyptian

statues.3 If one looks at the appalling reproductions of Egyptian monuments that

accompanied his texts (for example fig. 1), the temptation to agree with him is very

strong.

Ancient Egyptian architecture began to be included in the studies on architectural

proportions when more reliable reproductions of the monuments became available.

In the nineteenth century, drawings from the Description and from the publications

of early travellers were the sole sources that the architectural historians could

use in their studies. Ancient Egyptian texts were being slowly deciphered and by the

1 Antoine C. Quatremère de Quincy, De l’architecture Egyptienne, Paris: Barrois, 1803, pp. 214–8 and 222–4.
2 Antoine C. Quatremère de Quincy, Dictionnaire Historique d’Architecture, Paris: Le Clére, 1832, vol. i, p. 572.
3 Quatremère de Quincy, Architecture Egyptienne, p. 224.

7
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Fig. 1: Early nineteenth-century reproductions of Egyptian monuments (from
Quatremère de Quincy, De l’architecture Egyptienne, pls. 3 and 10).
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Fig. 1: (cont.)

Pure Mathematical Physics



10 Architecture and Mathematics in Ancient Egypt

end of the century, among the mass of material accumulated by archaeologists and

travellers, ancient architectural drawings started to appear. For a long time, however,

the only available material for architectural historians was represented by more or

less precise surveys of the archaeological remains.

In general, not many Egyptian monuments were actually taken into account in

nineteenth-century studies on architectural proportions. The aim of the nineteenth-

century scholars generally was just to connect Egypt to the following history of

architecture and to make sure that its monuments harmonised with the rest, rather

than study them as a separate subject. In 1854 Zeising dedicated just a paragraph to

the Egyptian canon of proportion for the human body. In 1860 Henszlmann started

his study with a few observations on the Egyptian Twelfth Dynasty, but his main

concern was certainly Greek architecture. In 1924, Hambidge wrote that

Saracenic, Mahomedan, Chinese, Japanese, Persian, Hindu, Assyrian, Coptic, Byzantine,
and Gothic art analyses show unmistakably the conscious use of plan schemes and all belong
to the same type. Greek and Egyptian art analyses show an unmistakable conscious use of
plan schemes of another type. There is no question as to the relative merit of the two types.
The latter is immeasurably superior to the former. This is made manifest as soon as the two
types are tested by nature.4

No practical examples of the application of this theory on actual Egyptian buildings,

however, are included in this publication. The first publication to take into account

ancient Egyptian textual sources and various archaeological material, and to suggest

an interpretation of over fifty Egyptian monuments, was the monograph published

in 1965 by Alexander Badawy.

The most successful among the geometrical figures applied to ancient Egyptian

architecture (with or without a precise connection with the Golden Section), was

the triangle. In particular, three triangles: the 3-4-5, the equilateral and the triangle

called ‘Egyptian’ by Viollet-le-Duc and 8:5 by Choisy and Badawy. The first is a

right-angled triangle which belongs to a peculiar group of right-angled triangles in

which all the three sides correspond to whole numbers. The second is a triangle with

three equal sides, while the third is an isosceles triangle (two sides equal and one

different) in which the ratio between the base and the height is about 8:5. Originally,

as we shall see in the next paragraph, in Viollet-le-Duc’s suggested theory the

equilateral and the ‘Egyptian’ or 8:5 triangle were geometrically connected, the

latter depending on the former. But this link was soon forgotten, and the supposed

use of the second triangle was later interpreted as an approximation of the Golden

Section. The story of the evolution of the theories discussed in the following section

is a tale of confusion and misunderstanding among scholars and among geometrical

figures, which I will attempt to clarify.

4 Hambidge, Dynamic Symmetry, p. xii.
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Viollet-le-Duc, Babin and the primeval pyramid

In 1863, Viollet-le-Duc suggested that three triangles were the basis of the design

of every good style of architecture: the 3-4-5 triangle, the equilateral triangle and

what he called the ‘Egyptian’ triangle. According to him

[the equilateral triangle] completely satisfies the eye. It presents three equal angles, three
equal sides, a division of the circle into three parts, a perpendicular let fall from the vertex
dividing the base into two equal parts, and the formation of the hexagon inscribed in a
circle and dividing it into six equal parts. No geometrical figure affords more satisfaction
to the mind, and none fulfils better those conditions that please the eye, viz., regularity and
stability.5

The third triangle is strictly connected to the equilateral and, in fact, derives from

it. In a pyramid in which the vertical section parallel to the side-length of the base

corresponds to an equilateral triangle, the section along the diagonal of the base is

the triangle which Viollet-le-Duc called ‘Egyptian’6 (fig. 2). This triangle was also

erroneously identified as the vertical section of the pyramid of Khufu, that in turn

was believed by Viollet-le-Duc and other scholars to have been derived from the

3-4-5 triangle (fig. 3).

In Viollet-le-Duc’s ‘Egyptian’ triangle the ratio between base and height (which

would be an irrational number) can be approximated by means of the ratio 4:2.5 or

8:5. As for the equilateral triangle, Viollet-le-Duc observed that

the relation to 5 in height and 8 in breadth satisfies the eye. Now, while it is difficult to prove
why a visual sensation is pleasing or displeasing, it is at least possible to define this sensation.
As I said above, dimensions become proportions sensible to the eye, – that is, comparative
relations of lengths, breadths, and surfaces, – only as far as there are dissimilarities between
these dimensions. The relations of 1 to 2 or of 2 to 4 are not dissimilarities, but equal divisions
of similars, reproducing similars. When a method of proportions obliges the designer, so to
speak, to give divisions which are as 8 to 5, e.g. 5 being neither the half nor the third, nor
the fourth of 8, sustaining a relation to 8 which the eye cannot define, you have already, at
the very outset, a means of obtaining the contrasts which are necessary for satisfying the
first law of proportions.7

Viollet-le-Duc detected the use of the equilateral and the ‘Egyptian’ triangles in

the design of monuments of various periods. Egypt is represented by a portion

of a colonnade from the Temple of Khons at Karnak (fig. 4, marked as G), two

schemes of distribution of masses in unidentified (ideal?) Egyptian porticos and the

5 Viollet-le-Duc, Lectures on Architecture, ix Entretien and figs. 1 to 10 (quotation from Lectures on Architecture,
pp. 392–3); for a discussion on this theory, see Borissavliévitch, Essai critique, pp. 97–120.

6 Jomard, however, had called ‘Egyptian’ the 3-4-5 triangle (Edmé F. Jomard, ‘Memoire sur le système métrique
des anciens Egyptiens’, in Description de l’Egypte, Antiquités, Memoires, vol. i, Paris: Imprimerie Impèriale,
1809).

7 Viollet-le-Duc, Lectures on Architecture, pp. 405–6.
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Fig. 2: Equilateral and ‘Egyptian’ triangles according to Viollet-le-Duc.
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Fig. 3: Construction of the vertical section of the pyramid of Khufu by means of
the 3-4-5 triangle according to Viollet-le-Duc (from Entretiens, fig. 7).

Pyramid of Khufu. Monuments from other periods include the colonnades of the

Greek temples at Corinth, of Concord at Agrigentum, of Egina (fig. 4, A, B and

D), and the Parthenon (fig. 5); the Arch of Titus in Rome; a little Roman arch at

St. Chamas, in Provence, especially appreciated because apparently entirely de-

signed after an equilateral triangle; the Basilica of Constantine (fig. 6); and the

cathedrals of Notre-Dame de Paris and Amiens8 (fig. 7).

Twenty-seven years later, Babin, an Ingénieur des Ponts-et-Chaussées, published

an article in which he followed Viollet-le-Duc’s theory about the use of the two

8 For a criticism of Viollet-le-Duc’s approach, see for instance August Thiersch, Die Proportionen in der
Architektur, Handbuch der Architektur 4, Darmstadt: Bergsträsser, 1883.
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14 Architecture and Mathematics in Ancient Egypt

Fig. 4: Proportions obtained by means of equilateral and ‘Egyptian’ triangles in
the temples of Corinth (A), of the Concord at Agrigentum (B), of Egina (D) and
of Khons at Karnak (G) according to Viollet-le-Duc (from Entretiens, fig. 3).
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Fig. 5: ‘Egyptian’ triangle in the design of the façade of the Parthenon according
to Viollet-le-Duc (from Entretiens, fig. 4).

triangles and applied it to several Greek monuments.9 Instead of using convenient

approximations, he retained the true irrational values of the sides of the ‘primeval

pyramid’ (fig. 8). He observed that in many Greek temples the ratio between the

height of the columns and the length of the sanctuary corresponds to one of the

following values: 1√
3
,

√
2√
3

and
√

2. These ratios can be found in the two triangles men-

tioned by Viollet-le-Duc, where the first corresponds to the ratio between half the

base and height, the second to the ratio between half the diagonal and the height, and

the third to half the diagonal (in the case of a pyramid with side-length equal to 2).

The text which explains the relationship between the two triangles and between the

‘Egyptian’ and the 8:5 (or 4:2.5) triangle is rather obscure and unless the reader

had a previous acquaintance with the subject, it is not certain that the connection

would appear clear. This is probably what happened to Choisy, whose theory will

be explained in the next section.

Babin only investigated Greek temples. He suggested that the Greeks used these

triangles both as geometrical figures (as in figure 9) and as sources of numerical

ratios between columns and naos (fig. 10). Neither on this occasion, nor in the article

9 C. Babin, ‘Note sur l’emploi des triangles dans la mise en proportion des monuments grecs’, Revue Archéologique
15 (1890), 82–106.
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Fig. 6: Equilateral and ‘Egyptian’ triangles in the design of the Basilica of
Constantine according to Viollet-le-Duc (from Entretiens, fig. 8).

which he published a year later on the metrology of Achaemenid architecture,10

did Babin seek to analyse Egyptian monuments. Nevertheless, by acting as a bridge

between Viollet-le-Duc and Choisy, his first article seems to have had a significant

influence on the development of research on Egyptian architecture.

Choisy and the introduction of the Golden Section

In 1899, the French architectural historian Auguste Choisy published his Histoire
de l’Architecture, in which a chapter was devoted to ancient Egyptian architecture

and a whole paragraph to its proportions.11 According to him, Egyptian tem-

ples appear to have been built using ‘rapports d’une remarquable simplicité’, such as

10 C. Babin, ‘Note sur la métrologie et les proportions dans les monuments achéménides de la Perse’, Revue
Archéologique 17 (1891), 347–79.

11 Auguste Choisy, Histoire de l’architecture, Paris: Gauthier-Villars, 1899, pp. 51–8.

Pure Mathematical Physics



In search of ‘the rule’ 17

Fig. 7: Proportions of the section of the Cathedral of Amiens according to Viollet-
le-Duc (from Entretiens, fig. 10).
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Fig. 8: Dimensions of various elements of a pyramid with side-length of the square
base equal to 2 and vertical section (parallel to the side-length) equal to an equi-
lateral triangle.

1:2 or 3:5. He followed the idea that the Egyptians used a number of triangles in the

design of their buildings, but included only one drawing, representing the façade of

the Eighteenth Dynasty southern peripteral temple at Elephantine, which had been

designed, in his opinion, by means of two triangles and a series of ‘simple’ ratios

between the elements (fig. 11). This temple, however, was not a good choice, since

both peripteral temples at Elephantine – the northern (which was already in poor

condition) and the southern – were completely destroyed in 1822,12 and it is not

clear whether the surviving drawings are correct.13

Choisy suggested that the Egyptians used the triangles reproduced in figure 12.

The first two triangles are generated by the association of two 3-4-5 triangles (the

first by connecting them by means of the cathetus equal to 3, the second by means

of the cathetus equal to 4). The importance of the 3-4-5 triangle was due to the

fact that, unlike the majority of right-angled triangles, all its sides correspond to

12 Gardner Wilkinson, The Architecture of Ancient Egypt, London: Murray, 1850, p. 80.
13 In 1933 Borchardt was unable to match the sole surviving inscribed block with the drawings of the Description.

Nestor l’Hôte, who visited the site with Champollion in 1822, left a perspective of this temple which differs
from the Description in several details. By the comparison between the two sources, Borchardt concluded that
Nestor l’Hôte’s drawing was more reliable. Since, however, when Nestor l’Hôte visited the site both peripteral
temples had already been destroyed, Borchardt suggested that he might have referred to drawings, now lost, of
an earlier traveller (Ludwig Borchardt, Ägyptische Tempel mit Umgang, Beiträge Bf 2, Cairo 1938, pp. 95–8,
especially note 1, p. 96, and plate 21).
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Fig. 9: Proportions of the section of the Great Temple of Paestum according to Babin (from Revue Archéologique 15,
fig. 12).
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Fig. 10: Relationship between the dimensions of some Greek temples and the proportions of some triangles according
to Babin (from Revue Archéologique 15, pp. 91–2).
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Fig. 10: (cont.)
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Fig. 11: Design of the façade of the southern peripteral chapel at Elephantine
according to Choisy (from Histoire de l’architecture, fig. 1).

Fig. 12: Triangles used by the Egyptians according to Choisy (from Histoire de
l’architecture, fig. 3).

whole numbers. Therefore, joining three sides respectively 3, 4 and 5 units long

provided a simple method to construct a right angle. Choisy considered also the

third and fourth triangles (labelled R and S) as derivative of the 3-4-5, but with no

clear geometrical reason. They do contain the numbers 4 and 5, but are constructed

by associating two right-angled triangles in which the catheti are equal to 4 and 5

and the hypotenuse is equal to the irrational number 6.403 . . ., that has nothing to

do with the 3-4-5 triangle and all its implications.

According to Choisy, the Egyptians used also three other triangles: the equilat-

eral triangle, the triangle corresponding to the vertical section along the diagonal

of a pyramid such as Khufu’s, ‘where the outline is an equilateral triangle’; and

the triangle ‘in which the height is given by the division of the base into mean

and extreme ratio’. The second triangle (corresponding to S) is Viollet-le-Duc’s

‘Egyptian’ triangle (the hint about the pyramid of Khufu is wrong, since the pro-

portions of this pyramid are completely different, but the relationship between the

two sections of the same pyramidal solid is correct). The third triangle is generated

by the ‘mean and extreme ratio’ – that is, another name for the Golden Section.
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Fig. 13: Constructions of equilateral and ‘Egyptian’ triangles according to Choisy
(from Histoire de l’architecture, fig. 4).

Choisy observed that the use of triangles might appear contradictory to the use

of modules and simple ratio, but that in fact these two methods were related to

each another (fig. 13). To construct an equilateral triangle, for example, they drew

a triangle in which the base was equal to 7 and the height to 6 units (even better

if the ratio was 8:7). In order to approximate the mean and extreme ratio, Choisy

vaguely suggested the adoption of the ratios 5:3 and 8:5 (the former is mentioned

in the text and the latter is actually used in the drawing).

In conclusion, as early as the end of the nineteenth century, from all these theories

three triangles emerge as potentially significant for the study of proportions in

ancient Egyptian architecture: the 3-4-5, the equilateral and the ‘Egyptian’ triangle.

To be precise, it is not the ‘Egyptian’ triangle, but its approximation, the 8:5 triangle,

that will be widely used by the late scholars, as we shall see in the next chapter.

The Golden Section

The origin and definitions of the Golden Section

Before we move to a detailed analysis of the theories based on the Golden Section,

it is necessary to introduce a few basic mathematical concepts which will act as

a guide to the following sections.14 The Golden Section has been known under

different names,15 and can be visualised in various ways. Figure 14 shows two

14 For extensive explanations on symbolic aspects, see Ghyka, Nombre d’Or, vol. i, chapters 1–2; Ghyka, Geometry
of Art and Life, chapters 1–2; André VandenBroeck, Philosophical Geometry, Rochester, NY: Inner Traditions
International, 1972, especially pp. 62–4; Robert Lawlor, Sacred Geometry, Philosophy and Practice, London:
Thames and Hudson, 1982, especially pp. 44–64.

15 The name ‘Golden Section’ was coined by Ohm in 1834 or 35. This proportion has been known under a variety
of names: divina proportione for Luca Pacioli (1509), proportio divina for Kepler (1608 and 1611), the golden
medial, the medial section and the golden mean (David H. Fowler, ‘A generalisation of the Golden Section’,
Fibonacci Quarterly 20/2 (1982), 146–58, especially 146–7).
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Fig. 14: Subdivision of a segment according to the Golden Section and two
geometrical constructions of the same proportion (the latter drawn after Fowler,
Plato’s Academy, p. 105, note 3.5b).

possible geometrical constructions of this proportion, probably the simplest and

the most striking.

In general, a proportion may be defined as a relation among four magnitudes, or

as an equality of two ratios:

a:b = c:d (1)

A proportion is called ‘continuous’ if there is a common term between the ratios:

a:b = b:c (2)

If c = a + b, it is possible to establish a proportion which involves two terms only,

instead of the four of the first example and the three of the second:

a:b = b:(a+b) (3)

that is, the ratio between two terms is equal to the ratio between the larger term

and the sum of the two.

In a:b = b:c, then b2 = ac, whereas in a:b = b:(a + b) then b2 = ab + a2.

These conditions are visualised in figure 15, where the lower scheme represents

the geometrical properties of the Golden Section: if we assume that b = 1, the

semidiagonal of the square can be easily calculated as
√

5
2

. Therefore, the smaller

term is equal to
√

5
2

− 1
2
, while the sum is equal to

√
5

2
+ 1

2
= 1.618033989 . . .:

this irrational number, usually defined by the Greek letter �, is the numerical value

of the Golden Section.
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Fig. 15: Visualisation of the relationship among elements of a continuous
proportion, above, and of the Golden Section, below (drawn after Vandenbroeck,
Philosophical Geometry, figs. 25g and h).
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Another important point is the connection with the numerical series named after

the Italian scholar Leonardo from Pisa, also called Fibonacci (1175–1240). It is a

series of numbers in which each term is the sum of the two previous:

1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, . . .

If a different start is chosen, we may obtain other series,16 such as, for example:

1, 3, 4, 7, 11, 18, 29, 47, . . .
1, 4, 5, 9, 14, 23, 37, 60, . . .

and so on. These series share an important characteristic; the sequence of consecu-

tive ratios between each term and its antecedent tends in the limit to the number �,

equal to 1.618033989 . . . , which expresses the Golden Section. The approxima-

tion is very rough for low numbers, but converges very quickly, especially in the

Fibonacci Series:

2

1
= 2

3

2
= 1.5

5

3
= 1.667 . . .

8

5
= 1.6

13

8
= 1.625 . . .

21

13
= 1.615 . . .

34

21
= 1.619 . . .

and so on

The Fibonacci Series is also related to the so-called gnomonic expansion, which

takes place when a figure, added to an original figure, generates a resultant figure

which is similar to the original; that is, the size changes, but the proportions

remain the same (which is more or less what happens in the Fibonacci Series). The

gnomonic growth can be visualised by means of spirals: figure 16 shows a spiral

based on the
√

5 generated by the ratio between the series 1, 3, 4, 7, 11, 18, 29,

47 . . . and 1, 2, 3, 5, 8, 13, 21, 34, . . . .

16 These are also called Lucas numbers (for a detailed explanation, see Steven Vajda, Fibonacci and Lucas
Numbers, and the Golden Section, Chichester: Ellis Horwood, 1989, chapters 4, 13 and 14).

Pure Mathematical Physics



In search of ‘the rule’ 27

Fig. 16: Gnomonic growth visualised as a
√

5 spiral (from Lawlor, Sacred
Geometry, fig. 6.1).
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The Golden Section and ancient Egyptian art and architecture

Concerning ancient Egypt, in many cases, the Golden Section-based geometrical

constructions appear to be based on very unlikely starting points. Sometimes, how-

ever, they seem to rely upon more convincing details. Before turning to Badawy’s

theory, the most convincing and substantial of all, here is a brief review of some

interpretations suggested by other scholars. It is worth starting with an example to

which we shall return later, the representation from the Ptolemaic tomb of Petosiris

(about 300 BC) which is shown in figure 17.17 Robert Lawlor noticed that the right-

angled triangle, which represents the sloping side of mountainous desert and which

occupies the right lower portion of the scene, seems to be designed after the Golden

Section: that is, if the base of the triangle is 1, the other cathetus is equivalent to �

(fig. 18, left). Another, more complex interpretation by the same author is shown

in figure 18, right.18

Among other scholars, it is worth mentioning Matila Ghyka, who included in

his publications a few rather vague examples of Egyptian monuments, including

a scheme of an unidentified Egyptian temple (after Mössel), four schemes simply

called ‘tracés harmoniques égyptiens’ (fig. 19) and a rough sketch of the pyramid

of Khufu (fig. 20).19 Over a century later, Else C. Kielland analysed a number of

statues and reliefs and claimed to have found that they were all designed accord-

ing to the Golden Section. Quoting Ghyka, she optimistically concludes that ‘the

�-proportion was highly esteemed by the Pythagoreans, whose dependence on the

Egyptians is well known. But no Egyptologist has ever found it mentioned in any

hieroglyphic text, which does not exclude the possibility of its being found in the

future’.20

One of the most famous theories on the proportions of ancient Egyptain

architecture and art is that suggested by Schwaller de Lubicz. He believed that the

Egyptian canon for the representations of the human body depended on a system

based on musical harmony, � and �, in which horizontal guide-lines marked the

position of specific anatomical points of the body. He suggested that there was

a strict correspondence between vital centres of the human body and significant

points in the layout of the temple of Luxor (fig. 21).21 It is interesting to note that

this theory represents yet another version of the recurrent idea of the existence of

parallels between sacred buildings and human body, an idea that links Vitruvius,

Francesco di Giorgio Martini, Viollet-le-Duc, and the nineteenth-century division

17 Gustave Lefebvre, Le tombeau de Petosiris, Cairo: SAE, 1923, plates 28, 31 and 32.
18 Lawlor, Sacred Geometry, pp. 54–5. 19 Ghyka, Nombre d’Or, plates 30a, 27 and 44.
20 Else C. Kielland, Geometry in Egyptian Art, London: Tiranti, 1955 (quotation from p. 13). She later extended

her conclusions to Greek art (Geometry in Greek Art, Oslo: Dreyer, 1983).
21 René A. Schwaller de Lubicz, Le Temple de l’Homme, Paris: Caractères, 1957, pp. 490–505.
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Fig. 17: Scene from the east wall of the chapel of the Ptolemaic tomb of Petosiris
(drawn after Lefebvre, Petosiris, pl. 32).

of a building-organism into structure-skeleton and a façade-skin.22 Robert Lawlor

continued and extended Schwaller de Lubicz’s theories, putting forward as

examples some two-dimensional representations of the throne of Osiris (‘clearly

depicted as the square of 4, as it transforms into the square of 5 through the principle

of
√

5 on which all the � proportion rests’23), the gnomonic expansion of the

22 See, for example, Philip Steadman, The Evolution of Designs, Cambridge Urban and Architectural Studies 5,
Cambridge: Cambridge University Press, 1979, chapters 2, 3 and 4 and figs. 4 and 8.

23 Lawlor, Sacred Geometry, p. 72; see also Schwaller de Lubicz, Temple de l’Homme, pp. 157–8.
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Fig. 18: Two interpretations of the geometrical figures in a scene from the tomb
of Petosiris by Lawlor and Lamy (from Lawlor, Sacred Geometry, pp. 54–5).

temple of Luxor (fig. 22) and four different geometrical schemes based on � for

the Osireion, the peculiar temple built by Seti I at Abydos (fig. 23).24

The apotheosis of the Golden Section-based theories is represented by the results

of the research of Fournier de Corats. Starting from the pyramid of Khufu (fig. 24),

he calculated eight values, which he called ‘Rapports de Divine Harmonie’, and

24 Lawlor, Sacred Geometry, pp. 61–2 and 73.
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Fig. 18: (cont.)

applied these ratios, labelled by letters, to examples of art and architecture of any

size and period, ranging from (obviously) the pyramid of Khufu to a New Kingdom

brooch, from some columns from the temple of Karnak to the Ptolemaic zodiac

from the temple of Dendera (figs. 25 and 26).25

25 A. Fournier des Corats, La proportion égyptienne et les rapports de divine harmonie, Paris: Trédaniel,
1957.
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Fig. 19: ‘Tracés harmoniques égyptiens’ according to Ghyka (from Le Nombre
d’Or, pl. 27).

The theory of Alexander Badawy

In 1965 Alexander Badawy, the Egyptian architect and Egyptologist, suggested

the most convincing theory based on the Golden Section. Following Mössel, he as-

sumed that this proportion had been one of the main devices used by the Egyptians in

the layout of their buildings. However, he abandoned Mössel’s circles and based his
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Fig. 20: Sketch of the proportions of the pyramid of Khufu, according to Ghyka (from Le Nombre d’Or, pl. 54).
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Fig. 21: Parallel between the proportions of the human body and of the temple
of Luxor at the time of the Nineteenth Dynasty according to Schwaller de Lubicz
(from Temple de l’Homme, fig. 138).
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Fig. 22: Gnomonic expansion of the temple of Luxor (from Lawlor, Sacred
Geometry, p. 73).

theory on other geometrical figures. According to Badawy, the Egyptians used a

number of right-angled triangles, plus the square and the rectangle, to design plans

and elevations of their monuments.26 These triangles included the right-angled

triangle in which the sides are 3, 4 and 5 unit; long; the isosceles triangle in which

the basis is equal to 8 and the height to 5 units; and the isosceles triangles in which

the height is 1, 2 or 4 times the base, that he called 1:2, 1:4 and 1:8 triangles. In

addition, the square was used to construct a telescopic sequence of spaces, called

the ‘prismatic pillar’, or was used in connection with the 8:5 triangle (fig. 27).

Badawy suggested that the Egyptians achieved the Golden Section by means

of the Fibonacci Series 1, 2, 3, 5, 8, 13, 21, 34, 55. . . . According to his theory,

they adopted the ratio 8:5 (in which 8 and 5 are numbers of the Fibonacci Series),

which gives 1.6 as a result, as a good approximation for � (that is, 1.618033989 . . .).

26 Alexander Badawy, Ancient Egyptian Architectural Design. A Study of the Harmonic System, Near Eastern
Studies 4, Berkeley: University of California Press, 1965, pp. 19–40.
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Fig. 23: An interpretation based on � of the plan of the Osireion (Nineteenth Dynasty) by Lawlor and Lamy
(from Lawlor, Sacred Geometry, p. 61).
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Fig. 24: Vertical section of the pyramid of Khufu showing the use of the eight
‘Ratios of Divine Harmony’ according to Fournier des Corats (from Proportion
égyptienne, fig. 24).
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Fig. 25: Application of the eight Ratios of Divine Harmony to a New Kingdom brooch (above) and to the body of the
goddess Nut from the Ptolemaic Dendera Zodiac (below) according to Fournier des Corats (from Proportion égyptienne,
figs. 37 and 48).
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Fig. 26: Application of the eight Ratios of Divine Harmony to some columns of the temple of Amon at Karnak
according to Fournier des Corats (from Proportion égyptienne, fig. 41).
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Fig. 27: Pillars 1:2, 1:4, 1:8 and prismatic pillar according to Badawy (from
Architectural Design, figs. 6, 7 and 8).
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Fig. 27: (cont.)

In the layout of their buildings the architects used either the Fibonacci Series or,

more often, a network of isosceles triangles in which the basis was equal to 8 units

and the height to 5, thus approximating the Golden Section by means of a practical

and not very complicated device.27

The process of planning would have been as follows. The architects would have

traced the central axis of symmetry, then used the 1:2, 1:4 and 1:8 triangles to

fix some special points of the plan (fig. 28). The next step would have been the

‘constructional diagram’, usually a combination of squares and triangles which

were supposed to define the general outline of the building. Finally

27 Badawy also suggested that the Egyptians used the 8:5 triangle to construct the heptagon, which he connected
to the emblem of the goddess Seshat, who is often represented performing foundation ceremonies with the
king. Her head is surmounted by seven radiating lancets, from which a vertical piece of cord descends, which
Badawy assimilated to the heptagon. It may be noted, however, that although there are seven lancets, they are
disposed, together with the cord, in eight symmetrical directions – not seven. The figure described by them
would therefore be an octagon, rather than a heptagon.
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Fig. 27: (cont.)

a network of scissor-like shapes based on the sides of 8:5 triangles set along the longitudinal
axis provided, at their intersections with the transverse or longitudinal sides of rooms, re-
lated points of reference indicating the location of some features. Thus the angles, doorways,
columns, or piers are found to be interrelated in plan, while similar details, such as archi-
traves, tori, capitals, and the axes of columns, doorways, or even panels are delimited in
elevation.28

With this system, Badawy successfully analysed more than fifty-five plans and

a few elevations of Egyptian monuments from the Predynastic to the Ptolemaic

28 Badawy, Ancient Egyptian Architectural Design, pp. 34–5.
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Fig. 28: Method to design triangles by means of cords according to Badawy
(Architectural Design, fig. 2).
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Fig. 29: Analysis of the plan of the mortuary temple of Khafra (Fourth Dynasty),
according to Badawy (from Architectural Design, pl. 2).
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Fig. 30: Analysis of the reconstructed plan of the temple of Senusret I at Tôd
(Twelfth Dynasty), according to Badawy (from Architectural Design, pl. 9).

Period, including civil, funerary and religious architecture (figs. 29, 30, 32 and

34–7). His theory seems able to explain many factors. It suggests that a single set of

rules was used throughout the entire history of Egyptian architecture (and beyond),

that all of these rules were related to one another, that the Golden Section was

among them, and that the Egyptians could have achieved these results using their

own mathematical system and practical tools. All of these points, however, are open

to criticism.

First of all, Badawy’s theory is hampered by the usual problems relating to the use

of drawings, such as their small scale and their inaccuracy. In many plans of large

buildings it is impossible to check the precision of the geometrical constructions,

because the thickness of the lines employed in the drawing can make a significant
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Fig. 31: Actual archaeological remains of the temple of Senusret I at Tôd (Twelfth
Dynasty) and reconstruction of the original plan by Arnold (from Arnold, MDAIK
31, fig. 4).

difference. In the cases of intersection of two lines (for example, two sides of an

8:5 triangle, or a triangle and a particular element of the building), a small-scale

drawing may hide very well a discrepancy of a couple of metres (see, for example,

fig. 34). Moreover, Badawy readily employed more or less heavily reconstructed

plans, such as Bisson de la Roque’s plan of the Middle Kingdom temple at Tôd29

(later re-interpreted by Arnold,30 compare figs. 30 and 31), Lavers’ plan of the

Sanctuary of the Great Aten Temple at Amarna31 reconstructed by comparing the

representations found in the Amarna tombs with the very denuded archaeological

remains32 (compare figs. 32 and 33), and the already mentioned peripteral temple

at Elephantine – probably not the most reliable bases for a study on proportions.

From a geometrical point of view, the methods suggested by Badawy for the

use of each figure are often independent from one another. The constructions of

8:5, 1:2, 1:4, 3-4-5 triangles, prismatic pillar and square module have nothing in

common with one another from a geometrical point of view. Furthermore, many

lines which cross the plans published by Badawy correspond to the plans because

29 Fernand Bisson de la Roque, Tôd (1934 à 1936), FIFAO 17, Cairo: IFAO, 1937, pp. 6–7 and fig. 6.
30 Dieter Arnold, ‘Bemerkungen zu den frühen Tempeln von El-Tôd’, MDAIK 31 (1975), 175–86, especially

184–6.
31 J. D. S. Pendlebury, The City of Akhenaten III, London: EES, 1951, pp. 5–10 and pls. 7–9, 25 and 26.
32 Barry J. Kemp, ‘The Sanctuary of the Great Aten Temple’, Amarna Reports IV, London: EES, 1987, chapter 8.

Pure Mathematical Physics



48 Architecture and Mathematics in Ancient Egypt

Fig. 32: Analysis of the plan of the Sanctuary of the Great Aten Temple at Amarna
(Eighteenth Dynasty), by means of a network of 8:5 triangles according to Badawy
(from Architectural Design, pl. 21).
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Fig. 33: Plan of the actual archaeological remains of the Sanctuary of the Great
Aten Temple at Amarna (Eighteenth Dynasty) according to the 1986 survey
(courtesy of the Egypt Exploration Society).

they were drawn after them, but they would not be of great use if they had to be

the starting point of the design. There is not a fixed correspondence between the

network of lines and the various elements of the buildings, as Badawy himself

admitted, and the resulting plan is often quite different from the combination of

lines describing triangles and squares. In fact in many cases, after using all of the

different geometrical constructions, the ancient architects still would have been

left with many basic details of the whole building to be established. Finally, it

may be observed that the easiest way to outline a rectangular hall would be by means
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Fig. 34: Analysis of the plan of the temple of Luxor (Eighteenth Dynasty),
according to Badawy (from Architectural Design, pl. 29).
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Fig. 35: Analysis of the plan of the temple of Karnak, New Kingdom, according
to Badawy (from Architectural Design, pl. 26).

Pure Mathematical Physics



Fig. 36: Analysis of the plan of the Ptolemaic temple at Dendera according to
Badawy (from Architectural Design, pl. 43).
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Fig. 37: Analysis of the plan of the Ptolemaic temple at Kom Ombo according to
Badawy (from Architectural Design, pl. 42).
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of a rectangle, rather than by four independent networks of different triangles

overlapping one another.

The fact that the ancient Egyptian architects did not use scale drawings while

planning their buildings rules out the possibility that the triangles which Badawy

‘read’ on the plans were a trace of the planning process on papyrus. At the same time,

the use of triangles in the practice of construction would be far more complicated

than it seems at first glance. All of the geometrical figures mentioned by Badawy

seem simple when they are called 1:2, 1:4, 1:8 or 8:5. However, especially in the

case of the 8:5 triangle, whenever the basis or the height do not correspond to a

number of cubits easy to handle, a significant amount of calculation would have been

required in order to construct the rest of the triangle. If we consider that, moreover,

the 8:5 triangle seldom corresponds to a single space, the complications increase

even more. Finally, it would not help to consider Badawy’s triangles simply as ratios

between longitudinal and transversal dimensions, thus ignoring the triangular shape

of his diagrams. In this way, without the sloping sides of a triangle connecting them,

it would become really difficult to justify why a certain length along the axis should

be related to a certain breadth.

Another point of Badawy’s theory that fails to convince from a geometrical

point of view is the relationship between the constructions of the 3-4-5 and the

8:5 triangles. In the case of the 3-4-5 triangle, it has been suggested that a cord,

whatever its length, could have been divided into 12 regular intervals (3 + 4 +
5 = 12) and then tied around three pegs in order to obtain a 3-4-5 triangle on

the ground. Badawy extended this idea to the 8:5 triangle (fig. 28), but, in this

case, this process would be difficult to use. The dimensions of the three sides of

an 8:5 triangle, in fact, do not amount to easy numbers, since the sloping sides

correspond to irrational numbers. This misunderstanding may have derived from

Choisy’s confused presentation of these triangles discussed above, where he created

a connection that had no sound geometrical reasons to exist. Even if Badawy did

not comment upon this point, his theory might be still rescued by suggesting that

the Egyptians adopted an approximated value for the sum of the three sides, thus

approximating � twice, once with the adoption of the 8:5 triangle, and once with the

adoption of an approximated version of the 8:5 triangle. It remains to be established,

however, how these figures were drawn on the ground. The hypotheses about the

use of cords in architecture will be examined in Part II, and will prove extremely

difficult to support for large-scale plans.

Despite these criticisms, Badawy’s schemes seem to work. No one else has ever

been able to apply a theory to over fifty plans of Egyptian buildings, and his method

has been followed by other scholars. Jean Lauffray, for instance, analysed the plan

of the chapel of Hakoris at Karnak (Twenty-ninth Dynasty, early fourth century

BC) using a geometrical construction based on � and a network of 8:5 triangles, and
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Fig. 38: Analysis of the plan and reconstruction of the western façade of the chapel
of Hakoris at Karnak (Twenty-ninth Dynasty) based on a network of 8:5 triangles,
according to Lauffray (from Chapelle d’Achôris, figs. 9 and 34).
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then even reconstructed the monument according to these ideas (fig. 38)33; Friedrich

Hinkel detected the use of the ratio 8:5 in several later Meroitic monuments.34 It is

important to note, however, that the buildings studied by Lauffray and Hinkel belong

to a period when the cultural interconnections across the Mediterranean were much

stronger than they had been in the past, and therefore the cultural background of

these monuments may have been different (I will go back to this point later).

In conclusion, the most interesting point of Badawy’s theory is the use of the

8:5 triangle, which corresponds to the most successful among the geometrical con-

structions listed above, whereas all the others may be dismissed without losing any

significant detail. The 8:5 triangle raises many questions. Its geometrical construc-

tion and practical use are difficult (although not impossible) to explain, but the main

objection lies at a deeper level of the discussion, at a basic point which Badawy

did not take into account. He thought that the 8:5 triangle could have been a simple

and practical device to approximate the convergence of the Fibonacci Series to �,

thus implying that the Egyptian knew � and performed this calculation. However,

he did not go far enough as to prove it.

33 Jean Lauffray, Karnak d’Egypte, domaine du divin, Paris: Centre National de la Recherche Scientifique, 1979,
pp. 221–6 and La chapelle d’Achôris à Karnak, vol. i, Paris: Recherche sur les Civilisations, 1995, pp. 24–6
and 61–3.

34 Friederich W. Hinkel, ‘The Process of Planning in Meroitic Architecture’, in Davies W. V. (ed.), Egypt and
Africa, London: British Museum and Egypt Exploration Society, 1993, pp. 220–5; see also Hinkel, ‘The Royal
Pyramids of Meroe. Architecture, Construction and Reconstruction of a Sacred Landscape’, Sudan and Nubia
4 (2000), 11–26.
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Mathematics and architecture in ancient Egypt

Ancient Egyptian mathematics

The mathematical sources and their language

One of the most common faults of the modern approach to the problem of pro-

portions in ancient architecture is the adoption of a mathematical system which

is chronologically inappropriate. As we have seen, many of the modern theories

involving the Golden Section in the interpretation of ancient Egyptian art and ar-

chitecture are based on the calculation of � according to our mathematical system.

The ancient Egyptians, however, used a different mathematical language, adopted

different methods and expressed the results in a different way. If a calculation works

or a pattern appears in our own mathematical system, this does not imply that ex-

actly the same would happen in theirs. Moreover, in some cases the question to ask

is not only if a method would have worked in a certain mathematical system, but

also if that method would have been produced and adopted by that mathematical

mentality.

Our main sources for defining the ancient Egyptian mathematical system are a

number of mathematical texts written on papyri, ostraca and leather dating from

the second half of the Middle Kingdom to the Second Intermediate Period (c. 1800

to 1600 BC), the most important of which are the Rhind Mathematical Papyrus1

(usually abbreviated as RMP), the Moscow Mathematical Papyrus,2 the Kahun

Papyri3 and the Egyptian Mathematical Leather Roll.4 The computational procedure

1 Eric T. Peet, The Rhind Mathematical Papyrus, Liverpool: University Press; London: Hodder and Stoughton,
1923; Arnold B. Chace, Ludlow Bull, Henry P. Manning, The Rhind Mathematical Papyrus, Oberlin: Mathemat-
ical Association of America, 1929; Gay Robins and Charles Shute, The Rhind Mathematical Papyrus, London:
British Museum, 1987.

2 W. W. Struve, ‘Mathematischer Papyrus des Staatlichen Museums der Schönen Künste in Moskau’, Studien und
Quellen zur Geschichte der Mathematik, Astronomie und Physik, part A, vol. i (1930).

3 Francis L. Griffith, The Petrie Papyri: Hieratic Papyri from Kahun and Gurob, London: University College,
1897.

4 S. R. K. Glanville, ‘The Mathematical Leather Roll in the British Museum’, JEA 13 (1927), 232–8.
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adopted by the Middle Kingdom scribes survived well into the Graeco-Roman

period and beyond, as is attested by a set of Demotic papyri dating from the third

century BC to the second century AD,5 and a number of Coptic and Byzantine

texts.6

These documents do not correspond to our idea of a mathematical textbook or

treatise. Apart from a few cases, they do not contain formulae or general rules that

may be applied to solve problems. They contain, instead, table texts, such as the

doubling of unit fractions, and problem texts, the majority of which (but not all

of them) have a practical character, such as the division of loaves among men, the

calculation of the area of a field or the volume of a granary, and so on. Annette

Imhausen has recently studied the mechanisms underlying the scribes’ calculations

and has been able to identify and compare the algorithms used in various Middle

Kingdom texts containing different types of mathematical problems.7

As for numerical system, the Egyptians used integers (that is, whole numbers)

and fractions, but only the so-called unit fractions, with 1 as a numerator and

any number as a denominator, such as 1
2
, 1

15
, 1

42
or 1

140
, with the exception of the

fraction 2
3
. Ratios such as 3

5
, for instance, were expressed by means of a sum of

unit fractions. At least from the Middle Kingdom onwards,8 this representation

was never 1
5

+ 1
5

+ 1
5

but could be, for example, 1
2

+ 1
10

. In many cases it happens

that more than one representation exists, that is, more than one combination of unit

fractions can be used to express the same quantity. The ratio 3
5
, for instance, apart

from the 2-term combination 1
2

+ 1
10

, can be also expressed by means of seven

3-term combinations or one hundred and five 4-term combinations,9 and so on. The

Egyptians were aware of this possibility and, even if the mechanism that regulated

their decisions is not entirely clear, they appear to have preferred short combinations

of fractions with even and small denominators.10

In ancient Egypt multiplications were performed by doubling the initial number,

and divisions by halving it. In other words, the progression 1, 2, 4, 8, 16, 32, 64, . . .

in which each term is twice the previous one, was used to perform multiplications

5 Richard A. Parker, Demotic Mathematical Papyri, Providence, R.I.: Brown University Press; London:
Humphries, 1972; Wilbur K. Knorr, ‘Techniques of Fractions in Ancient Egypt and Greece’, HM 9 (1982),
133–71.

6 For the use of unit fractions in Coptic and Byzantine texts, see for example Monika R. M. Hasitzka, Neue Texte
und Dokumentation zum Koptisch-Unterricht, Mitteilungen aus der Papyrussammlung der Nationalbibliothek
(later Österreichischen Nationalbibliothek) in Wien XVIII, Vienna: Hollinek, 1990, pp. 265–84 and 302–12;
and Herbert Thompson, ‘A Byzantine Table of Fractions’, Ancient Egypt 2 (1914), 52–4.

7 Annette Imhausen, Ägyptische Algorithmen. Ein Untersuch zu den mittelägyptischen mathematischen
Aufgabentexten, Ägyptologische Abhandlungen, Wiesbaden: Harrassowitz, 2003.

8 For the Old Kingdom see David P. Silverman, ‘Fractions in the Abusir Papyri’, JEA 61 (1975), 248–9.
9 For denominators lower than 1,000.

10 Richard J. Gillings, Mathematics at the Time of the Pharaohs, Cambridge, Mass.: MIT Press, 1972, pp. 45–70,
criticised by M. Bruckheimer and Y. Salomon, ‘Some Comments on R. J. Gillings’ Analysis of the 2/n Table
in the Rhind Papyrus’, HM 4 (1977), 445–52. See also Kurt Vogel, Vorgriechische Mathematik I, Hannover:
Schroedel; Paderborn: Schöningh, 1959, p. 42 and Knorr, HM 9, pp. 136–7.
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and its reciprocal 1, 1
2
, 1

4
, 1

8
, 1

16
. . . to perform divisions. In some cases, the short

succession 2
3
, 1

3
, 1

6
, in which each term is half the previous one, too, was also used.11

A property of the progression 1, 2, 4, 8, 16, 32, 64, . . . is that any integer can be ex-

pressed by means of the sum of some of its terms, and this is how ancient Egyptian

multiplication worked. For instance, in order to calculate 17×13, the scribe would

have doubled 17 until the next multiplier (1, 2, 4, etc.) would have exceeded the mul-

tiplicand (13). Then he would find that 1 + 4 + 8 = 13, would tick these numbers,

add the corresponding results (17 + 68 + 136 = 221) and write the result below:

/ 1 × 17 = 17
2 × 17 = 34

/ 4 × 17 = 68
/ 8 × 17 = 136

Total 13 × 17 = 221

The knowledge of other numerical series has been suggested on the basis of other

mathematical problems,12 but it is important to mention the fact that no mathemat-

ical source contains any trace of the Fibonacci Series 1, 2, 3, 5, 8, 13, . . . (or of

any similar series based on the same method of accretion, such as 1, 3, 4, 7, 11,

18, . . . or 1, 4, 5, 9, 14, 23, . . . and so on). Architectural remains, unfortunately,

do not help, since Badawy’s few drawings showing the use of the Fibonacci Series

in architecture are not particularly convincing. In general, as in the cases of other

geometrical figures, the Fibonacci numbers often mark points which do not corre-

spond to any particular element of the building and do not seem to have been used

according to a consistent rule.

Another important corollary of the adoption of the ‘correct’ mathematical point

of view is the use of the original units of measurements in the interpretation of

the ancient monuments. The ancient Egyptian unit of measurement was the cubit,

divided into palms, which in turn were divided into 4 fingers. The ‘small cubit’

corresponded to the forearm and was divided into 6 palms (or 24 fingers), but

in architecture the unit of measurement generally adopted was the ‘royal cubit’,

corresponding to 7 palms (or 28 fingers).13 Unless otherwise stated, in this text

11 Gillings, Mathematics, pp. 16–20 and 166–7; Robins and Shute, Rhind Mathematical Papyrus, pp. 22–4. See
also Knorr, HM 9, pp. 136–40.

12 RMP 40, 64 and 79, and Kahun Papyrus iv.3. Gillings suggested that the Egyptians, after the progression 1, 2,
4, 8, 16, 32, 64 . . . , might have used other similar series, such as 3, 9, 27, 81, 243, 729 . . . , in which each term
is multiplied by 3, or 4, 16, 64, 256, 1024, 4096 . . . , in which each term is multiplied by 4, and so on (Gillings,
Mathematics, pp. 166–80).

13 In addition to Reiner Hannig, Grosses Handworterbuch Agyptisch-Deutsch, Mainz: von Zabern, 1995, from
which the information given by table 2 is taken, see also Karl Richard Lepsius, Die Alt-Aegyptische Elle (aus
den Abhandlungen der Königlichen Akademie der Wissenschaften 1865), Berlin 1865 and Adelheid Schlott-
Schwab, Die Ausmasse Ägyptens nach altägyptischen Texte, Ägypten und Altes Testament 3, Wiesbaden:
Harrassowitz, 1981. See also Preliminary Report on Czechoslovak Excavation in the Mastaba of Ptahshepses
at Abusir, Prague: Charles University, 1976.
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‘cubit’ will always refer to the royal cubit. A schematic summary of the ancient

Egyptian units of measurement is shown in table 2.

In fact, the best results to date in terms of ‘reading’ the plans of ancient Egyptian

buildings have been achieved by Dieter Arnold, who adopted the ancient cubit to

explain the design of ancient Egyptian monuments on several occasions.14 From

his studies it appears that the ancient Egyptians generally laid out their plans on

the basis of simple numbers of cubits, palms and fingers (fig. 39). As we shall see

in Part II, this agrees entirely with the nature of the ancient Egyptian architectural

drawings that have survived until today.

On �, � and other anachronisms

The extant mathematical documents provide enough material to reconstruct various

aspects of ancient Egyptian mathematics. Nevertheless, the way we interpret these

sources is not neutral. For instance, modern scholars often speak of the ancient

Egyptians as being able to use an approximation of � or �. Such an evolutionary

vision of mathematics, however, may be misleading. It is true that some of our

modern mathematical methods come from an ancient practice, but it is also true

that reading history backwards may produce strange distortions. Let us analyse

three examples: the Pythagorean triplets; the calculation of the area of the circle;

and the Golden Section.

The so-called ‘Pythagorean triplets’ are triplets of integers which correspond

to the three sides of right-angled triangles. The most famous case is the already

mentioned right-angled triangle in which the sides are 3, 4 and 5 units long, but there

are many more. These triplets also represent a straightforward case of the so-called

theorem of Pythagoras, since it is easy to calculate, for instance, that 32 + 42 = 52

(9 + 16 = 25).

Pythagoras and the Pythagoreans are surrounded by an aura of myth that makes

it difficult to distinguish between their actual achievements and those discoveries

attributed to them by later legend.15 At any rate, it is an established fact that they had

a special interest in numbers, and they appear to have developed a mathematical

system in which numbers are represented by figures made with pebbles, called

psephoi. It has been suggested that it was on the basis of this method that Pythagoras

14 See for example Dieter Arnold, Der Tempel des Königs Mentuhotep von Deir el-Bahari, vol. i: Architektur
und Deutung, AV 8, Mainz: Von Zabern, 1974; The Temple of Mentuhotep at Deir el-Bahari from the Notes
of Herbert Winlock, Metropolitan Museum of Art Egyptian Expedition 21, New York: Metropolitan Museum
of Art, 1979, pp. 29–31; Der Pyramidenbezirk des Königs Amenemhet III. in Dahschur, AV 53, Mainz: Von
Zabern, 1987, p. 63; and Dieter Arnold and Dorothea Arnold, Der Tempel Qasr el-Sagha, AV 27, Mainz: Von
Zabern, 1979.

15 Burket, Lore and Science, chapter 2.
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Table 2. List of ancient Egyptian units of measurements

Units of Egyptian Egyptian Value expressed in Comments and further
measurement name Measure mutual value modern units bibliographical details

cubit (royal) m.h length 7 palms c. 52.5 cm Principal unit of measurement in
architecture (see also Arnold,
Mentuhotep, pp. 29–31)

cubit (small) m.h length 6 palms c. 45 cm Length of the forearm
remen rmn length 5 cubits c. 37.5 cm Secondary subdivision found on

New Kingdom votive cubit rods
djeser dsr length 4 palms c. 30 cm

large hands-
breadth

pd-
��� length 3 1

2
palms c. 25 cm

small hands-
breadth

pd-šsr length 3 palms c. 22.5 cm

palm šsp length 1
7

royal cubit,
1
6

small cubit

c. 7.5 cm Breadth of the palm

finger db
�

length 1
28

royal cubit,
1
4

palm

c. 1.875 cm Breadth of a finger

khet (rod)
˘
ht length 100 cubits c. 52.5 m Also called ‘rod of cord’, might refer

to actual cords 100 cubits long
river-measure ’ıtrw length 20,000 cubits c. 10.5 km See also Schott-Schwab, Ausmasse

Ägyptens, pp. 101–45
foot(?) tbt length c. 9 cm (?) Dubious, attested only twice in the

Fifth Dyn. mastaba of
Ptahshepses at Abusir
(Preliminary Report on
Czechoslovak Excavation, p. 83)

kha-ta
˘
h
��-t�� area 100,000 square

cubits
c. 27,565 m2

setat st
��t area 1 square khet

(10,000
square
cubits)

c. 2,756.5 m2

kha h
�� area 1,000 square

cubits
c. 275.65 m2

ta t
�� area 100 square

cubits
c. 27.565 m2

remen rmn area 1
2

ta, 50 square
cubits

c. 13.7 m2

heseb .hsb area 1
2

remen, 25
square cubits

c. 6.8 m2

sa s
�� area 1

2
heseb, 12.5
square cubits

c. 3.4 m2

deny dny volume 1 cubic cubit
neby nby volume(?)
khar (sack) h

��r capacity 10 hekat c. 48 litres 2
3

of a cubic cubit
’ıpt-n-pr capacity 50 hinu c. 24 litres

quadruple-hekat .hk
��t-fdw, ’ıpt capacity 40 hinu c. 19.2 litres

double-hekat .hk
��ty capacity c. 9.6 litres

hekat .h.k
��t capacity c. 4.8 litres Also divided into 1

2
, 1

4
, 1

8
, 1

16
, 1

32
and 1

64
(so-called Horus-Eye

Fractions)
dja d

�� capacity 2
3

hinu c. 0.33 litres

hinu hnw capacity 1
10

hekat, 32 ro 0.48 litre

ro r volume 1
320

hekat 0.015 litre
deben dbn weight c. 13.6 grammes in

OK and MK; c.
91 grammes in
NK

kite .kdt weight 1
10

deben

shenaty šn
�
ty value 1

12
deben Measured the value of silver

Unless otherwise stated, data taken from Hannig, Handwörterbuch Ägyptisch-Deutsch and LÄ, ‘Maße un Gewichte (Pharaonische
Zeit)’.
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Fig. 39: Examples of Dieter Arnold’s studies: the dimensions of some architec-
tural elements in the temple of Mentuhotep at Deir el-Bahari (left, from Der Tempel
des Königs Mentuhotep, figs. 6, 7 and 20) and the dimensions of one of the chapels
in the Middle Kingdom temple of Qasr el-Sagha in cubits (E), palms (H) and
fingers (F) (right, from Arnold and Arnold, Qasr el-Sagha, pl. 27b).
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Fig. 39: (cont.)

might have derived the formula, attributed to him by a later tradition, to calculate

a triplet starting from any odd number.16

In Euclid’s Elements (written around 300 BC) we find the formulation of the

so-called theorem of Pythagoras to which we are accustomed: ‘in right-angled

triangles the square on the side subtending the right angle is equal to the squares on

the sides containing the right angle’,17 that is, a theorem valid for any right-angled

triangle. The triplets certainly correspond to special cases of the general theorem,

16 Thomas L. Heath, The Thirteen Books of Euclid’s Elements, Cambridge: Cambridge University Press, 1926,
vol. i, pp. 349–60; Wilbur R. Knorr, The Evolution of the Euclidean Elements, Dordrecht/Boston: Reidel, 1975,
pp. 154–61.

17 Euclid, Elements, Book I, Proposition 47, English translation by Thomas L. Heath, Great Books of the Western
World 10, Chicago: Encyclopaedia Britannica, Inc., 1990, p. 28.
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but their knowledge and use may have developed independently and proceeded

side by side with the more general cases. The Babylonians apparently used the

equivalent of the theorem of Pythagoras as early as 1800 BC,18 and a number of

triplets are listed on the Old Babylonian tablet called Plimpton 322.19

In Egypt the first unambiguous evidence of the use of the theorem of Pythagoras is

a Demotic papyrus dating to the third century BC, where, apart from one exception,

the numbers involved correspond to three triplets.20 An earlier use of some triplets

independently from the more general Greek formulation of the theorem is not

clearly attested by any mathematical source, but may be inferred by other clues.

As we shall see in Part III, some triplets might have been used as early as the

Old Kingdom as a practical device in the construction of some pyramids, with or

without any symbolic meaning attached to them.

The insistence of the late Greek sources to link the 3-4-5 triangle to ancient

Egypt may well reflect part of the truth. The most quoted passage to prove the link

between the 3-4-5 triangle and the ancient Egyptians is from Plutarch’s Isis and
Osiris:

the better and more divine nature consists of three elements – what is spiritually intelligible,
the material and the element derived from these, which the Greeks call the cosmos. Plato
is wont to call what is spiritually intelligible the form and the pattern of the father; and the
material he calls the mother, the nurse, and the seat and place of creation, while the fruit
of both he calls the offspring and creation. One might suppose that the Egyptians liken the
nature of the universe especially to this supremely beautiful of the triangles which Plato
also in the Republic seems to have used in devising his wedding figure. That triangle has a
vertical of three units of length, a base of four, and an hypotenuse of five, which is equal,
when squared, to the squares of the other two sides. The vertical should thus be likened
to the male, the base to the female, and the hypotenuse to their offspring; and one should
similarly view Osiris as the origin, Isis as the receptive element, and Horus as the perfect
achievement. The number three is the first and perfect odd number; four is the square of
the even number two; five is analogous partly to the father and partly to the mother, being
made up of a triad and a dyad.21

Plutarch lived in the late first–early second century AD, and the cultural back-

ground to which he referred was a mixture of Egyptian and Greek sources with a

strong Platonic influence. There is no reason to distrust what Plutarch wrote, but

18 Helmuth Gericke, Mathematik in Antike und Orient, Wiesbaden: Fourier, 1992, p. 33.
19 Otto E. Neugebauer and A. Sachs, Mathematical Cuneiform Texts, New Haven: American Oriental Society

and the American Schools of Oriental Research, 1945, pp. 38–41; Jöran Friberg, ‘Methods and Tradition of
Babylonian Mathematics’, HM 8 (1981), 277–318; Derek J. de Solla Price, ‘The Babylonian “Pythagorean
Triangle” Tablet’, Centaurus 10 (1964), 1–13; Eleanor Robson, ‘Neither Sherlock Holmes nor Babylon: A
Reassessment of Plimpton 322’, HM 28 (2001), 167–206.

20 Parker, Demotic Mathematical Papyri, pp. 3–4 and 35–40. See also Richard J. Gillings, ‘The Mathematics
of Ancient Egypt’, in Dictionary of Scientific Biography, vol. xv, Supplement 1, New York: Scribner, 1978,
p. 690.

21 Plutarch, De Iside et Osiride, English translation by J. Gwyn Griffiths, Cardiff: University of Wales Press, 1970,
chapter 56, 373E–F, 374A, pp. 205–8 and 509.
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3 3 3

3

3

3

Fig. 40: The calculation of the area of the circle, based on RMP problem 48,
according to Robins and Shute (left, drawn after Rhind Mathematical Papyrus,
fig. 10) and Gillings (right, from Mathematics, fig. 13.6).

what the Egyptians (and Greeks) thought about the 3-4-5 triangle at that time is not

necessarily what they had thought twenty centuries earlier. In conclusion, the Old

Kingdom architects may have used some Pythagorean triplets, but this does not

imply that the Old Kingdom architects were the creators of the Pythagorean sym-

bolism of numbers or were aware of all the mathematical implications of Euclid’s

formulation of the theorem of Pythagoras.

Another interesting example of development of a mathematical concept is the

calculation of the area of the circle. According to the Rhind Mathematical Papyrus

(RMP), the method to find the area of a circle is to subtract one-ninth of the diameter

and square the rest. This rather synthetic statement has been explained in different

ways. Hermann Engels,22 followed by Gay Robins and Charles Shute,23 suggested

that the Egyptians drew a square which intersected the circle at a quarter and three

quarters of its side (fig. 40, left). This solution, however simple it may appear, is not

easy to explain in practice, and in fact Robins and Shute’s proof is entirely based on

the knowledge of � and on a confident familiarity with the theorem of Pythagoras

(for which, as we have seen, we have no evidence earlier than the third century BC –

that is, at least thirteen centuries after the RMP).

Instead, according to Kurt Vogel,24 followed by Richard Gillings,25 what the

scribe did was to calculate the area of an octagon that intersected the circumference.

This polygon was not a regular octagon; that is, it did not have eight equal sides, but

22 Hermann Engels, ‘Quadrature of the Circle in Ancient Egypt’, HM 4 (1977), 137–40.
23 Robins and Shute, Rhind Mathematical Papyrus, pp. 44–6.
24 Vogel, Vorgriechische Mathematik, vol. i, p. 66. 25 Gillings, Mathematics, pp. 142–4.
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was generated by ‘cutting off’ at 45◦ the edges of a square whose sides had been

divided into three equal parts (fig. 40, right). This also explains the careful choice

by the scribe of a diameter of 9 units of measurements in four out of five RMP

problems, easily divisible into three parts. The area of the circle is well approxi-

mated by the area of such an octagon, that corresponds to an 8×8 square.

Now if we look at one of the methods adopted by the Greek mathematicians

to square the circle, we find the same idea, that is, that the area of a polygon

could approximate the area of the circle.26 For instance, Bryson’s argument (fourth

century BC), as reported by Themistius, may have been that ‘a circle is greater

than all inscribed polygons and less than circumscribed ones; the polygon drawn

between those inscribed in and circumscribed about the circle is greater than all

inscribed ones and less than all circumscribed ones; therefore, this polygon and

the circle are equal to one another’.27 As it happened, we do not know if and how

Bryson planned to measure this polygon.

The approximation of the circle by means of a polygon provides also the founda-

tion for Archimedes’ famous Propositions 1 and 3, written in the mid-third century

BC. The first says that ‘the area of any circle is equal to a right-angled triangle in

which one of the sides about the right angle is equal to the radius, and the other to the

circumference of the circle’, and is demonstrated by inscribing and circumscribing

the circumference by means of polygons.28 The second proposition is simply a

consequence of the third and it is not accompanied by any demonstration, while the

third says that ‘the perimeter of every circle is three-times the diameter and further

it exceeds by [a line] less than a seventh part of the diameter but greater than ten

seventy-first [parts of the diameter]’.29 Translated into our modern mathematical

language, this means that in any circle the ratio between the circumference and the

diameter (which we now call �) is less than 3 + 1
7

but greater than 3 + 10
71

.

However, as David Fowler observed,

Archimedes clearly does not here consider the ratio of circumference to diameter as a
numerical quantity. Also the phrase ‘ten seventy-first parts’ seems to refer to the line obtained
by concatenating ten copies of the seventy-first parts of the diameter, rather than the common
fraction 10

71
; it is a line, not a number.30

Greek mathematics up to the second century BC was, as Fowled pointed out,

non-arithmetised; that is, it used words to describe lines, figures and various

manipulations. In modern mathematics, lines are identified by means of their length,

26 See, for instance, Wilbur K. Knorr, ‘Archimede’s Dimensions of the Circle: A View of the Genesis of the Extant
Text’, Archive for History of Exact Sciences 35/4 (1986), 281–324.

27 Ian Mueller, ‘Aristotle and the Quadrature of the Circle’, in Norman Kretzmann (ed.), Infinity and Continuity
in Ancient and Medieval Thought, Ithaca and London: Cornell University Press, 1982, p. 161.

28 Archimedes, Measurement of a Circle, English translation by Thomas L. Heath, Great Books of the Western
World 10, Chicago: Encyclopaedia Britannica, Inc., 1990, pp. 447–51.

29 David H. Fowler, The Mathematics of Plato’s Academy, Oxford: Oxford University Press, 1987, p. 241.
30 Fowler, Plato’s Academy, p. 241; see also pp. 8–13.
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figures by means of their area, and ratios between quantities by means of quotients

of the two numbers that represent them. The theorem attributed to Pythagoras,

where the sum of the squares of the catheti of a triangle are equal to the square

of the hypotenuse, becomes a2 + b2 = c2, and the ratio between circumference and

diameter becomes �. It may be worth remembering that � was proved to be irra-

tional only in 1768, and to be transcendental in 1882, and that therefore Archimedes

himself did not think in terms of � as we do today.

Going back to the area of the circle in ancient Egypt, virtually none of the authors

mentioned above escaped the temptation to conclude that, whatever the precise

method employed by the Egyptians, they had found a ‘good’ approximation for �.

However, does it really make sense to talk about the approximation of a concept or a

number that did not exist in the Egyptian mind? The method used by the Egyptians

(take 1
9

from the diameter and square the rest) had nothing to do with the ratio

between circumference and diameter, now expressed by �.

Finally, let us go back to the problem of � and the Golden Section. First of all, it

is essential to mention that there is no direct evidence in any ancient Egyptian writ-

ten mathematical source of any arithmetic calculation or geometrical construction

which could be classified as the Golden Section. The ‘only direct, explicit and un-

ambiguous surviving references’31 to this proportion in early Greek mathematics,

philosophy and literature are contained in Euclid’s Elements (third century BC).

The definition is to be found at the beginning of Book VI: ‘a straight line is said to

have been cut in extreme and mean ratio when, as the whole line is to the greater

segment, so is the greater to the less’.32 That is, a segment is divided into two parts

according to this proportion if the ratio between the shorter and the longer part is

the same as existing between the longer part and the whole (see fig. 14).

As we have seen, in the ancient Egyptian mathematical sources there is no trace

of the Fibonacci Series either. It is true that the way the Egyptians dealt with

other geometrical progressions is not incompatible with the basic concept of the

Fibonacci Series, where each term is given by the sum of the two previous terms.

The link with the calculation of �, however, is not straightforward. While in our

system each ratio between consecutive Fibonacci numbers is expressed by means

of a single number, in the ancient Egyptian system each ratio can be expressed by

means of several combinations of unit fractions.

Elsewhere33 Christopher Tout and I have argued that, in theory, an ancient scribe

might have calculated probably not more than the first ten ratios of consecutive

terms (the denominators grow very quickly and generate very small fractions).

Again in theory, he might have found a way to express the results in such a way that

31 Fowler, Fibonacci Quarterly 20/2, p. 148.
32 Euclid, Elements, Book vi, Definition 2, quoted from the English translation, p. 99.
33 Corinna Rossi and Christopher A. Tout, ‘Were the Fibonacci Series and the Golden Section known in ancient

Egypt?’, Historia Mathematica 29 (2002), 101–13.
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the convergence was visible. Even if he did that, however, we must ask whether he

would have taken any interest in it. We say that the sequence converges to a limit

because we have the concept of the irrational number �, but there is no evidence

that the ancient Egyptians had a similar idea. It might even be suggested that they

would not have liked the concept of the convergence to a number they could not

reach, since the mathematical sources seem to indicate that the Egyptians were

particularly fond of the completion to the unity.34

In conclusion, the convergence to �, and � itself as a number, do not fit with the ex-

tant Middle Kingdom mathematical sources. It cannot be excluded that the Golden

Section was, at some point, brought to Egypt by the Greeks. From Alexandria,

Euclid’s Elements or a similar treatise seems to have travelled as far as Elephan-

tine, where a group of ostraca dating to the late third century BC have been found.

Their contents have been identified as the rather complex construction of a regu-

lar icosahedron inscribed within a sphere, possibly taken from Euclid’s Elements
13.16.35

At any rate, as we have seen, the definitions of this proportion which can be found

in Greek texts have nothing to do with the calculation of � and the Fibonacci Series

(which, in fact, derives its name from a Medieval scholar). In Euclid’s Elements,

the definition of extreme and mean ratio quoted earlier is followed by examples of

manipulations of geometrical figures based on this proportion, such as ‘if a straight

line be cut in extreme and mean ratio, the square on the greater segment added to

half of the whole is five times the square of the half’.36 If, as seems likely, the Golden

Section was known in Egypt in the Graeco-Roman period, it must be borne in mind

that the types of definitions, the language and the approach to this proportion must

have been similar to what we find in Euclid, rather than to what modern scholars

have suggested.

Intention, coincidence or tendency?

Triangles and architecture

A careful study of the ancient Egyptian and Greek sources then delivers a fatal

blow to the vast majority of the Golden Section-based theories. However, some

aspects highlighted by the discussion on this and other proportions need further

clarification. Why, for example, do some theories appear to work even if they are

34 For the problems on the completion to 1 see Peet, Rhind Mathematical Papyrus, pp. 53–60; Gillings,
Mathematics, chapter 8; Robins and Shute, Rhind Mathematical Papyrus, pp. 19–21. For the series of
Horus-Eye fractions converging to 1 see Peet, Rhind Mathematical Papyrus, pp. 25–6; Gillings, Mathematics,
pp. 210–1; Robins and Shute, Rhind Mathematical Papyrus, pp. 14–5.

35 Jürgen Mau and Wolfgang Müller, ‘Mathematische Ostraka aus der Berliner Sammlung’, Archiv für Papyrus-
forschung 17 (1962), 1–10.

36 Euclid, Elements, Book xiii, Proposition 1, quoted from the English translation, p. 369.
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clearly based on anachronistic concepts? The discussion in this chapter will rotate

around the thin line dividing intention, coincidence and tendency in the choice of

a geometrical figure or pattern. As we shall see, in some cases it is not easy for us

to make a distinction.

Let us start with the triangle, which has been the most successful of the geomet-

rical figures employed in the attempts to explain the proportions of ancient archi-

tecture. Ancient Egyptian architecture, in particular (at least according to Badawy’s

theory) appears to have been entirely dependent on this geometrical figure. Apart

from the contemporary interpretations of the modern surveys, what evidence really

exists on the use of this geometrical figure in ancient Egyptian architecture?

The ancient Egyptian word for ‘triangle’ was sepedet (śpdt), ‘the pointed’

figure37 (from śpd that also means ‘sharp’ and ‘effective’). A four-sided figure

such as rectangle or a square, instead, was called ifed (ı�fd),38 clearly coming from

ifedw (ı�fdw), the number four, referring to the number of its sides or corners. It is

interesting to note that, differently from the square, the triangle was named after its

pointed appearance, rather than after the number of its components.39

Although sloping lines have often inspired more or less convincing geometrical

analyses,40 the sole, ‘real’, unmistakable triangles in ancient Egyptian architecture

are embodied in the pyramids. The first attempt to build a true pyramid was carried

out around 2400 BC by Snefru, whose first project was a pyramid with its vertical

section (parallel to the side of the base) probably corresponding to an equilateral

triangle. As we shall see in detail in Part III, structural problems forced the architects

to reduce the slope twice, and the result is the so-called Bent Pyramid. Apart from

later developments in the choice of the slope of pyramids, which depended on many

factors, the equilateral triangle seems to have occupied an important place in the

mind of the ancient architects, since they chose it as the shape for their first project

of a new type of monument.

37 See for instance RMP problem 51.
38 See for instance RMP problem 44 for ı� fd referring to a square, and RMP problem 49 for ı� fd referring to a

rectangle.
39 Peet, Rhind Mathematical Papyrus, especially p. 91.
40 Perrot and Chipiez interpreted the sloping lines which so often recur in the Egyptian monuments as strictly

related to pyramidal forms. They published two drawings in which two rectangular buildings with sloping
walls are seen as truncated pyramids (Georges Perrot and Charles Chipiez, A History of Art in Ancient Egypt,
vol. i, London: Chapman and Hall, 1833, figs. 58 and 59). An interpretation of the triangular shape of the apron
often worn by ancient Egyptians in two-dimensional representations was attempted by Schwaller de Lubicz
(Temple de l’Homme, vol. i, chapter 6, figs. 145B and D). Robins, however, noted that the measurements of
the aprons used by Schwaller de Lubicz for his calculations were wrong (Gay Robins and Charles Shute,
‘Mathematical Bases of Ancient Egyptian Architecture and Graphic Art’, HM 12 (1985), 107–22, especially
118–9) and proved, in general, that the aprons were not necessarily perceived as triangles. The two oblique lines
were generally treated separately by the artists, and their slope (like the slope of other oblique elements of the
composition, such as crowns or staffs) corresponded to lines drawn between specific points of the square grid
which acted as a guide for the artists (Gay Robins, ‘The Slope of the Front of the Royal Apron’, DE 3 (1985),
49–56; also Proportion and Style in Ancient Egyptian Art, London: Thames and Hudson, 1994, pp. 219–227,
especially p. 222).
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A tantalising coincidence is that the first model of the Bent Pyramid corresponds

to what I have called Viollet-le-Duc’s ‘primeval pyramid’. Its section along the di-

agonal, therefore, can be approximated by an 8:5 triangle. Viollet-le-Duc, however,

could not have been aware of this link, because the first suggestion of the existence

of this early stage of the Bent Pyramid dates to 1964, and the remains of three

unfinished pyramids with the same slope were studied later. Moreover, it is not

clear to me whether his primeval pyramid is just a theoretical geometrical figure or

whether its proportions were inspired by the classic sources on ancient Egyptian

pyramids.41

Going back to ancient Egypt, the slope of a pyramid was calculated along the face,

but the corner must have been the object of careful observations, if not calculations,

since it was the only visible straight line which could be followed to check that

the monument was not rotating during construction. This means that the Egyptians

must have been acquainted with what we call the section of the pyramid along the

diagonal of its base, which, in the case of the first project of the Bent Pyramid,

would correspond to an ‘Egyptian’ triangle, well approximated by an 8:5 triangle.

The idea that they acknowledged the special properties of this particular triangle,

however, would be difficult to support. In pyramid building, the evidence of an

independent use of the 8:5 triangle as vertical section parallel to the base is non-

existent. This triangle, therefore, seems only able to bask in the reflected glory of

the equilateral triangle, which in turn, however, does not amount to much. As we

shall see in Part III, after Snefru’s first attempt (which must have been remembered

by several generations of architects, to judge from the ensuing careful search for

a ‘safe’ slope), the slope corresponding to an equilateral triangle appears to have

been used in possibly four Middle Kingdom minor pyramids only. Other triangles,

including the 3-4-5, proved definitely more successful.

Badawy claimed to have found another trace of the importance of the equilat-

eral and the 8:5 triangle in a number of amulets in the shape of a mason’s level.

41 Viollet-le-Duc did not include any bibliography on the subject. Among the classical writers, he might have
referred to Diodorus Siculus, who wrote that ‘the largest [pyramid] is in the form of a square and has a base
length on each side of seven plethra and a height of over six plethra’ (Diodorus, Historical Library, I.63.4,
English translation by C. H. Oldfather, London: Heinemann; Cambridge, Mass.: Harvard University Press, 1946,
vol. i, pp. 214–17). This is, more or less, the approximation suggested by Choisy for an equilateral triangle.
Neither in Diodorus, nor in any other classical writer, however, does the section along the diagonal appear
to have attracted a particular interest: Herodotus wrote that the pyramid of Khufu had a base equal to height
(Herodotus, Histories, ii.126, English translation by A. D. Godley, London: Heinemann; Cambridge, Mass.:
Harvard University Press, 1946 (1922), vol. i, p. 427); Strabo wrote that the height of pyramids exceeded their
bases (Strabo, Geography, xvii.1.33; English translation by Horace L. Jones, London: Heinemann; Cambridge,
Mass.: Harvard University Press, 1959, vol. viii, p. 91); Abd el-Latyf mentioned two possible measurements,
one of them corresponding to a triangle in which base and height are equal (quoted by Edmé F. Jomard,
‘Remarques at recherches sur les pyramides d’Egypte’, in Description de l’Egypte, Antiquités, Memoires,
vol. ii, Paris: Imprimerie Impèriale, 1818, p. 188). The equilateral triangle was mentioned by Vitruvius (Ten
Books on Architecture, v.6.1 and ix.1.13) and Plutarch (De Iside at Osiride, 75, 381D and 75, 381E), but never
in connection with pyramidal forms.

Pure Mathematical Physics



Mathematics and architecture in ancient Egypt 71

Some of them appear to correspond to right-angled triangles, some to equilateral

triangles, and some (the majority according to Badawy) to 8:5 triangles.42 It is true

that some amulets represent isosceles triangles flatter than equilateral and right-

angled triangles,43 but their identification as 8:5 triangles is arbitrary.44 At any rate,

they all date to the Late Period, at least nineteen centuries after Snefru’s first pyra-

midal misadventures, with very little in between which could document any out-

standing interest in the equilateral triangle or its ‘derivative’, the ‘Egyptian’ or 8:5

triangle.

The case of the 3-4-5 triangle is different, as seen later in this book in connection

with the use of cords in architecture (Part II) and with the construction of pyramids

(Part III). We do not possess any explicit early mathematical source recording

its knowledge, but its use as a simple geometrical device is not incompatible with

ancient Egyptian mathematics. In practice, it may have been used in the construction

of at least eight Old Kingdom pyramids and possibly for small-scale layouts on the

ground, as we shall see below.

The only case in which the use of a triangle was postulated on the basis of actual

archaeological remains is Karl Georg Siegler’s study of the plan and the elevation

of the Ptolemaic temple at Kalabsha. During the dismantling of the building, which

was moved to another location at the time of the construction of the Aswan Dam,

a number of short lines drawn on the foundations came to light. One of them,

numbered 29, accompanied by two other marks 29a and 29b, appeared to generate

an angle of 60◦ and was interpreted as the trace of an equilateral triangle used to

design the plan. Siegler suggested the use of five different modules in the layout of

plan and elevations, and concluded that the position of the triangle was related to

one of those square grids (fig. 41).45

It may be observed, however, that the 60◦ lines were marked on the already laid

foundations, thus implying that at that point the plan of the building had already

been established. Moreover, the plan of the sanctuary of the temple of Kalabsha

is extremely simple (three rectangular rooms behind one another entered along a

central axis), and it would not be easy to explain in a convincing way the function

(practical or aesthetic) of an equilateral triangle laid out across the plan in that posi-

tion. We may conclude that the presence of these lines is an intriguing coincidence

42 Badawy, Ancient Egyptian Architectural Design, p. 42.
43 See also George A. Reisner, Amulets, CG, Cairo: SAE, 1907, pp. 59–60 and plate 4; U. Hölscher, The Excavation

of Medinet Habu II: The Temples of the Eighteenth Dynasty, Chicago: University of Chicago, Oriental Institute,
1939; Carol A. R. Andrews, Amulets of Ancient Egypt, London: British Museum, 1994, pp. 85–6.

44 Among the fourteen examples published by Badawy (two are equilateral triangles), only three seem to have the
same slope (about 52◦) of an 8:5 triangle, and two seem to be very close to it, whereas the other slopes range
from 44◦ to 55◦.

45 Karl Georg Siegler, Kalabsha, Architektur und Baugeschichte des Tempels, AV 1, Berlin: Mann, 1970, pp. 43–9
and pl. 9.
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Fig. 41: Interpretation of some marks as traces of an equilateral triangle in the plan
of the Roman temple at Kalabsha according to Siegler (from Siegler, Kalabsha,
pl. 9 and fig. 24).

and has nothing to do with an equilateral triangle. Or we might go further and add

another observation: with the adoption of the module x, the sanctuary happens to

be 8 units long and 5 units wide, thus incorporating, beside the equilateral triangle,

also its derivative, the 8:5 triangle.

But where do we go from here? Apart from the fact that there must be a certain

number of cases that can be explained as coincidences, it is also true that with-

out a constant rule, without a reliable mathematical background, and without any

certain archaeological evidence, Badawy’s 8:5 triangle seems to be able, some-

how, to match some plans, and the same happens, in fact, for many theories on

proportions, even for those which seem to be mutually exclusive. In general, by

looking at Siegler’s geometrical analyses (but also at Viollet-le-Duc’s, Badawy’s,

Lauffray’s, Hinkel’s, Carlotti’s46 and some of Lauer’s drawings), the doubt remains

46 Jean-François Carlotti, ‘Contribution à l’étude métrologique de quelque monuments du temple d’Amon-Rê à
Karnak’, Cahiers de Karnak X, Paris: Recherche sur les Civilisations, 1995, pp. 65–94.
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Fig. 41: (cont.)

whether what many of these schemes do is, in fact, nothing more than highlighting

internal geometrical properties that each layout or elevation, being a geometri-

cal figure itself, possesses. In some cases it is difficult to establish whether they

are reconstructions of the process adopted by the ancient architect, or whether

they simply underline geometrical connections resulting from the use of certain

figures (see, for instance, fig. 42). The possibility of superimposing several geo-

metrical schemes to a plan, as in the case of Mallinson’s and Spence’s attempts

on the Small Aten Temple at Amarna (fig. 43 and fig. 63, the latter included in

Part II),47 implies that each possible scheme represents a possible geometrical analy-

sis a posteriori of the plan. Not all of them, however, must necessarily correspond to

methods of design adopted by the ancient architects. It is possible, of course, to make

a distinction between more or less likely solutions, but in some cases it is impossible

to provide a final answer. When dealing with geometrical schemes, in fact, it is not

always easy to draw a clear distinction between intention and coincidence, because

there is a third possibility: a general human tendency towards certain geometric

patterns.

47 Barry J. Kemp and Pamela Rose, ‘Proportionality in Mind and Space in Ancient Egypt’, CAJ, 1:1 (1991),
figs. 4, 5 and 6.
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Fig. 42: Interpretation of the design of a façade and a section of the Roman temple at Kalabsha according to Siegler (from Siegler, Kalabsha,
pls. 21 and 26).
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Fig. 43: Interpretation of the plan of the Small Aten Temple at Amarna (Eighteenth
Dynasty), according to Badawy left, and Mallinson, right (from Kemp and Rose,
CAJ 1, figs. 3 and 5).
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Fig. 43: (cont.)
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Psychological experiments and involuntary trends

Since the study of Fechner,48 a number of psychological experiments have been

carried out in order to prove our innate preference for some geometrical figures.

Even if the results are not conclusive, it appears that the most successful proportion

is, in fact, the Golden Section. Apparently, among Western populations there is a

tendency, when asked to provide a series of positive or negative value-judgements

on a discrete set of entities, to give a percentage of positive answers corresponding

to a value very close to � in comparison with the total number of answers. That

is, ‘whenever people differentiate one thing into two, they tend to do so in a way

that approximates the golden section’.49 The distinction is made between positive

and non-positive judgements, the latter including negative and neutral answers.50

The experiments carried out by John Benjafield seem to prove this tendency,51 but

the discussion is still open. It is not clear, for example, whether the precise value

of the Golden Section (1.618 . . .) is significant itself, or whether it simply falls

into a range of values (e.g. 1.5, 1.6 or even 1.75) which are indistinctly preferred.52

In fact, Rudolf Arnheim attributed the preference for the Golden Section to the

characteristics of a certain type of rectangle, rather than to a mathematical ratio.

According to him, this preference existed

because a ratio approaching the centric symmetry of the square does not bestow ascendancy
on any one direction and therefore looks like a static mass; whereas too great a difference
in the two dimensions undermines the equilibrium: the longer dimension is deprived of
the counterweight provided by the shorter. A ratio approaching the golden section lets the
shape stay in place while giving it a lively inherent tension53.

As we have seen, over a century earlier Viollet-le-Duc had given more or less the

same explanation of the aesthetic value of the 8:5 triangle.

48 Gustav T. Fechner, Vorschule der Aesthetik, Leipzig: Breitkopf and Härtel, 1876.
49 John Benjafield and J. Adams-Webber, ‘The Golden Section Hypothesis’, British Journal of Psychology 67

(1976), 11–5.
50 Benjamin Shalit, ‘The Golden Section Relation in the Evaluation of Environmental Factors’, British Journal

of Psychology 71 (1980), 39–42.
51 John Benjafield and Edward Pomeroy, ‘A Possible Idea Underlying Interpersonal Descriptions’, British Journal

of Social and Clinical Psychology 17 (1978), 23–35; Edward Pomeroy, John Benjafield, Chris Rowntree and
Joanna Kuiack, ‘The Golden Section: A Convenient Ideal?’, Social Behaviour and Personality 9 (1981), 231–
4. John Benjafield, ‘A Review of Recent Research on the Golden Section’, Empirical Studies of the Arts 3
(1985), 117–34 and Cognition, London: Prentice-Hall International, 1992, pp. 245–7. See also J. M. Hinz
and T. M. Nelson, ‘Haptic Aesthetic Value of the Golden Section’, Journal of British Psychology 62 (1971),
217–23: congenitally blind subjects did not show a marked preference for the Golden Section. See also Hans
J. Eysenck and Maureen Castle, ‘Training in Art as a Factor in the Determination of Preference Judgements
for Polygons’, British Journal of Psychology 61 (1970), 65–81 and Hans J. Eysenck, ‘Aesthetic Preferences
and Individual Differences’, in David O’Hare (ed.), Psychology of the Arts, Brighton: Harvester, 1981 for
experiments involving polygons and colours.

52 I. C. McManus, ‘The Aesthetics of Simple Figures’, British Journal of Psychology 71 (1980), 505–24.
53 Rudolf Arnheim, The Dynamics of Architectural Forms, Berkeley/London: University of California Press, 1977,

p. 221.
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Another important point is the diffusion of this supposed tendency. According to

Berlyne, who showed a number of rectangles with different proportions to a group

of Canadian and Japanese girls,

neither groups showed a special preference for the golden section rectangle, but the Japanese
subjects judged rectangles more favourably, the nearer they approached the square, whereas
the Canadian subjects were more partial than them to more elongated rectangles. (. . .)
Subjects of both populations, while differing in their evaluations of other rectangles are,
in the light of our data, more likely to make a square their first choice than any other
rectangle.54

He concluded that the Western preference for the Golden Section might be ex-

plained, at least in part, by the repeated exposure of the population to its diffused

use in Western art since Egyptian and classical antiquity. Since ancient arithmetic

and techniques of calculations did not allow complicated calculations, the Golden

Section was essentially achieved by means of geometrical constructions.

Benjafield noted that, during his experiments on interpersonal judgement, when

people were asked to assign a number of positive and negative labels, the total

number of positive labels and the total number of labels of either sort were always, at

any stage of the process, three successive terms of the Fibonacci Series.55 Fibonacci-

like series recur in other interesting contexts. In his study of Minoan architecture,

Donald Preziosi claimed that the Fibonacci Series 1, 2, 3, 5, 8, 13, . . . was widely

used in the design of façades and plans.56 Roland Fletcher, on the other hand,

in his study on space and settlements, detected the use of a similar sequence of

numbers in the dimensions of a modern Konkomba settlement in Ghana: the space

was arranged according to a series of growing dimensions each equal to the sum

of the two previous ones. He found a similar pattern in the archaeological remains

of the ancient Egyptian settlement at Deir el-Medina, although in this case the

Fibonacci-like sequences appeared to be very short.57

Traces of the Golden Section have been found almost everywhere: other ex-

amples, not specifically related to architecture, include Virgil’s Aeneid, Bartok’s

music and Grimm’s fairy tales.58 Can this instinctive tendency towards the creation

of patterns linked to the proportion which we call the Golden Section be assumed

54 D. E. Berlyne, ‘The Golden Section and Hedonic Judgement of Rectangles: A Cross-Cultural Study’, Sciences
de l’Art – Scientific Aesthetics 7 (1970), 1–6.

55 John Benjafield and T. R. G. Green, ‘Golden Section Relations in Interpersonal Judgement’, British Journal of
Psychology 69 (1978), pp. 23–35, especially 28–9.

56 Donald Preziosi, ‘Harmonic Design in Minoan Architecture’, Fibonacci Quarterly 6/6 (1868), 370–84, where
he suggested that Minoan workmen employed in the construction of the pyramid of Senusret I might have
imported the use of the Fibonacci Series to Crete; see also Minoan Architectural Design, Berlin: Mouton, 1983,
especially 458–64 and figs. ii.44 and iv.30.E.

57 Roland J. Fletcher, ‘Space in Settlements: A Mechanism of Adaptation’, Ph.D. thesis, University of Cambridge
(1976), pp. 76, 82 and 266.

58 John Benjafield and Christine Davis, ‘The Golden Section and the Structure of Connotation’, Journal of
Aesthetics and Art Criticism 36 (1978), 423–7.
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for ancient Egypt, too? Extremely complicated geometrical analyses of artistic and

architectural material do not necessarily provide a reliable basis to support this

idea: when playing with geometrical figures and numbers without any restraint, it

is relatively easy to find what one is expecting to find. Simpler cases, however, may

provide interesting material for a discussion.

Cases from ancient Egypt

An involuntary tendency towards patterns related to the Golden Section in ancient

Egypt has been studied by Barry Kemp and Pamela Rose,59 who analysed a num-

ber of situations in the light of modern psychological experiments. The so-called

‘Calendars of Lucky and Unlucky Days’, for example, provide interesting material

for a discussion on bipolar judgement: they are calendars for the full year or for

a single month only, in which the days are classified either as ‘good’, or ‘bad’, or

‘good’ and ‘bad’ together, in this case producing a mixed, neutral result.

In the earliest example, a Middle Kingdom calendar for one unspecified month,

there seem to be 18 ‘good’, 9 ‘bad’ and 3 neutral days60: the ratio between the ‘good’

days and the total of ‘good’ and ‘not good’ (‘bad’ + neutral) is 0.60, very close to

the Golden Section value of 0.618. . . . The papyrus, however, is damaged in respect

to the end of three lines which appear to contain a ‘good’ sign: if in only one case

the ‘good’ was followed by a ‘bad’ sign,61 thus giving a mixed (neutral) entry,

the total percentage would drop to 0.57.62 In the three Ramesside calendars includ-

ing a whole year,63 each day is divided into three parts, which may be labelled as

‘good’ or ‘bad’. The result is a series of combinations which may be divided into four

groups: ‘good’ days (three ‘good’ signs), more ‘good’ than ‘bad’ days (two ‘good’

and one ‘bad’ sign, in different combinations), more bad than good days (two ‘bad’

and one ‘good’ sign, in different combinations) and bad days (three ‘bad’ signs). In

the Budge Papyrus (including 357 days), the ratio between the positive signs and

the total is 209/357 = 0.585 . . . , in the Papyrus Sallier IV (including 209 days)

is 130/209 = 0.622 . . . , while in Cairo Papyrus 86637 (including 344 days) is

195/344 = 0.567 . . . .64 In these cases, the percentage of ‘positive’ judgements

seems to be very similar to the results of modern psychological experiments: the

59 Kemp and Rose, CAJ 1:1, 103–29.
60 Francis L. Griffith, Hieratic Papyri from Kahun and Gurob, London: Quaritch, 1898, p. 62 and pl. 25.
61 As it was suggested by Warren R. Dawson, ‘Some Observations on the Egyptian Calendars of Lucky and

Unlucky Days’, JEA 12 (1926), 260–4.
62 Kemp and Rose, CAJ 1:1, p. 106.
63 See Dawson, JEA 12, 260–4 for data from Budge and Sallier IV Papyri; Abd el-Mohsen Bakir, The Cairo

Calendar n◦ 86637, Cairo: Government Press, 1966 for the Cairo Calendar; see Tamás A. Bács, ‘Two Calendars
of Lucky and Unlucky Days’, SAK 17 (1990), 41–64 for O. Gardiner 109 and Cairo Calendar, and LÄ, vol. iv,
pp. 153–6 for general references.

64 Kemp and Rose, CAJ 1:1, 106.
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classification of days according to two opposite polarities shows the same

‘optimistic’ tendency in favour of positive judgements, which, in terms of numerical

value, is very close to the data produced by modern experiments.

Artistic and architectural material, however, provides less clear evidence when

vigorously examined. Modern psychological experiments on the supposed pref-

erence for certain geometrical figures have been carried out on extremely simple

examples, such as a group of plain rectangles drawn on paper which are isolated

from any context. The attempts at explaining art and architectural design by means

of the Golden Section, on the other hand, are usually based on more or less com-

plicated geometrical constructions. In general, art produces relatively small-scale

objects in which it should be easier to detect patterns similar to those investigated

by modern psychological experiments. It has been suggested, for example, that the

length, breadth and depth of a series of boxes or caskets were designed on the basis

of the Golden Section.65 No constant simple formula can be identified, however, and

the ratios among the dimensions are uneven, thus excluding a conscious, calculated

use of this proportion.

Traces of a voluntary or involuntary use of the Golden Section have been per-

ceived in the canon for the representation of the human body. Square grids were

used by the Egyptian artists as a guide for their drawings, and the human body for a

long time was drawn as 18 squares high, measured from the ground to the forehead

(thus excluding crowns or wigs). At some point, probably during the Twenty-fifth

Dynasty, artists turned to another grid system, in which the square was smaller and

the height of the human figure measured 21 squares to the upper eyelid (fig. 44).

Concerning the first system, it has been noted that the navel was placed along line

11 from the bottom, and that the ratio between 18 (upper point) and 11 produces

the value 1.636 . . . , 18 and 11 being, in fact, two terms of a Fibonacci-like series.

The same ratio can be found between the height of the junction of the legs and the

height of the junction of the armpits. Davis noted that the change to a 21-square

grid ‘improved’ these ratios, the new value being 1.615 . . .66

The 18-square grid originated in a number of horizontal lines which Old Kingdom

artists used in order to align some points of the bodies. They were used as a guide,

rather than as a strict rule, and it may be noted that, in the surviving cases, the navel

does not seems to have been regarded as a special point, while the lines marking

the junction of the legs and the level of the armpits are usually included.67 Whether

this is enough to suggest that the presence of ratios which happen to be close to the

Golden Section was felt to hold a special significance, is difficult to tell. In fact,

65 Kielland, Egyptian Art, pp. 108–11 and Kemp and Rose, CAJ 1:1, 109–111.
66 Whitney Davis, The Canonical Tradition in Ancient Egyptian Art, Cambridge: Cambridge University Press,

1989, p. 48.
67 Robins, Proportion and Style, figs. 4.1–5.
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Fig. 44: The development of the square grid system according to Legon (from DE 35, fig. 1).
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Robins has suggested a reason for the change of the grid which has nothing to do

with the Golden Section.68

In comparison with art, architecture is related to a completely different kind

of perception, and it is worth asking whether the human eye appreciates a golden

rectangle in the same way when it is perceived from the outside (that is, either drawn

on a two-dimensional surface or shaping a small three-dimensional object) and when

it is embodied in a three-dimensional space in which the eye itself is moving.

Matila Ghyka mentioned five cases in which length and breadth of monuments

of different periods show a striking correspondence to golden rectangles or seem to

have been designed according to geometrical constructions related to the Golden

Section.69 The problem is that, as we shall see in Part II, ancient Egyptian working

drawings were not to scale. Therefore, if the preference for a particular geometrical

figure is assumed, it is necessary to imply that this was not visualised in advance

in a drawing. On the other hand, it is equally difficult to establish whether the

proportions of the full-size outline of a building on the ground would stimulate

any particular aesthetic consideration. An extreme case is represented by a number

of chambers in royal tombs, the outline of which approximates to the Golden

Section.70 In this case, their shape could not be established on the ground and the

surviving working drawings of rock-cut tombs seem to suggest that, in general, the

final dimensions of the subterranean rooms could be influenced by several factors.

Again, it is difficult to say whether their proportions have a specific meaning.

Moreover, the third dimension has a significant influence on the creation of an

‘agreeable’ space. Even if the plan corresponded to a perfectly balanced golden

rectangle, an extremely low or high ceiling would certainly make a difference in

the perception of that space.

The suspicion remains, therefore, that our detection of some geometrical charac-

teristics in the ancient plans relies too heavily upon our experience of our modern

system of representation. It is true that with the aid of a plan we may be able to

find clues in royal tombs related to some involuntary tendency towards the use

of certain geometrical patterns. But it is also true that we rely too much on plans

alone to describe a whole monument. Mark Lehner, for example, suggested that

the Amarna Royal Tomb was supposed to be 100 cubits long and that the entrance

to the rooms �, � and � , lies at the point corresponding to the subdivision of the

length according to the Golden Section (fig. 45).71 This is true in plan, but not in

68 Robins, Proportion and Style, pp. 166–9. John Legon, even if starting from different assumptions, arrived at
the same conclusions as for the reasons of the change (John Legon, ‘Review article – Measurement in Ancient
Egypt’, DE 30 (1994), especially 95–100 and ‘The Cubit and the Egyptian Canon of Art’, DE 35 (1996),
61–76).

69 Ghyka, Nombre d’Or, pp. 73–4, note 1. 70 Kemp and Rose, CAJ 1:1, 119–23 and figs. 7 and 8.
71 Mark Lehner, ‘The Tomb Survey’, in Geoffrey T. Martin, The Royal Tomb at el-’Amarna II, London: EES,

1989, pp. 5–9.
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Fig. 45: Plan and section of the Amarna Royal Tomb, showing Lehner’s sugges-
tion that the plan was designed after the Golden Section, and the difference between
sloping surfaces and horizontal projection (from Rossi, JEA 87, fig. 3).

section. From the comparison between written sources and actual monuments, it

seems that the Egyptians measured the length of sloping corridors along the sloping

surface, rather than as its projection on a theoretical horizontal plane (as we do in

our modern plans). In this case, the length of the tomb would be much more than

100 cubits, and the correspondence to the Golden Section of the entrance to the

secondary funerary apartment would disappear.72 In order to have a length in plan of

100 cubits, in fact, the ancient architects should have planned the tomb both in plan

and in section. However, no evidence of such a process, either drawn or written, has

survived.

72 Corinna Rossi, ‘Dimensions and Slope of the Royal Tombs’, JEA 87 (2001), 73–80.
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In conclusion, the presence of simple Golden Section-related patterns in ancient

Egyptian art and architecture is not as straightforward as it may seem. Where art

is concerned, only the scene from the Ptolemaic tomb of Petosiris (fig. 17) is safe

to mention as a case where the Golden Section might have been consciously used

or at least where this possibility cannot be excluded. The monument belongs to a

period when Greek influence is not only possible, but actually tangible in that very

tomb; half of the decoration (including the incriminated triangle) was carried out

in Egyptian style, and the other half in Greek style. In that particular section of the

decoration, only the height and the base of the triangle are important, and it is not

necessary to assume that the artists were aware of all the geometrical properties

shown in figure 18. I am sure that, if one tries hard, it is possible to imagine at least

half a dozen reasons why the Golden Section should have been used to represent

the mountain. At the same time, it may be best to bear in mind that there is always

the possibility that the proportions of that triangle are just a coincidence.

In general, all the other cases mentioned above do not seem to provide enough

evidence to suggest that the Egyptian artists showed a marked preference for simple

Golden Section-based geometrical figures. The same applies to architecture. There

are cases in which this proportion seems to rule the design in a rather simple

way, but it is difficult to establish whether their number is really significant in

comparison with all the cases in which this does not actually happen. Concerning

the existence of a tendency towards certain geometrical patterns, the nature of

the perception of architectural space cannot be easily compared with the results

of modern psychological experiments, and the lack of scale drawings among the

archaeological evidence makes any attempt to prove this connection difficult. Again,

among all the rectangles outlining Egyptian buildings, or described in texts of

various periods (see, for example, the Building Texts described in Part II), there

are only a few simple golden rectangles. An interesting case is represented by the

outline of the central nucleus of the Ptolemaic temples of Edfu and Dendera, which

will be discussed in detail in Part II, but in general, for their rectangular outlines

the Egyptians seem to have used the entire spectrum of possible proportions, from

the square to very elongated shapes. It may be interesting to note that the rectangle

very close to a square is not rare, and that the double square, a figure supposedly

not very ‘pleasing’, was also widely adopted. The taste of the Thirtieth Dynasty

king Nectanebo I would have probably deeply disappointed Viollet-le-Duc and

Arnheim: in both temples founded by this king at Ashmunein the length was twice

the breadth.73

73 The outlines of these two temples were 60×30 cubits and 220×110 cubits (Günther Roeder, ‘Zwei hiero-
glyphische Inschriften aus Hermopolis (Ober-Ägypten)’, ASAE 52 (1954), 403–4 and 410–1).
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In conclusion, even discarding the most complicated theories, Golden Section-

related geometrical figures and mathematical relationships can be found both in the

art and architecture of ancient Egypt. The number of clear cases, however, does not

appear to be significant and does not seem to be able to provide a reliable basis for

claiming the existence of a marked preference of the ancient Egyptian artists and

architects for this proportion. What appears clear, on the contrary, is the modern

psychological tendency to find the Golden Section everywhere.
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Ancient mathematics and practical operations

As I have shown in Part I, concepts like � or � did not belong to ancient Egyptian

mathematics and therefore could not be used by the ancient Egyptian architects.

Their presence in the plans of ancient buildings is mainly due to our modern inter-

pretation of the geometrical figures that compose the plan on paper. However, I am

not arguing that mathematics was not involved in ancient Egyptian architecture, but

rather that so far we have analysed cases in which the wrong mathematical system

was adopted. Before we move on to an analysis of the ancient Egyptian architectural

documents on planning and building, we must consider a final point: the supposed

existence of a secret knowledge, restricted to a few initiated, concerning rules and

symbolic meanings that would have been hidden in some buildings.

In theory, a project might be laid out on the basis of extremely complicated

concepts and then the actual construction carried out with a certain degree of ap-

proximation. It is also true, however, that ancient Egypt does not reveal evidence for

this discrepancy (in fact, I wonder how many other cultures actually do?). At any

rate, the total lack of evidence has never prevented people from suggesting more

or less complicated theories. Architecture may have a strong symbolic function,

and in theory it is possible to suggest that, in their buildings, ancient Egyptian

architects hid meaningful mathematical relationships, not immediately perceptible

and related to an esoteric knowledge. Such a hypothesis is extremely difficult to test.

If it were to be accepted, the idea that only an initiated few had access to a secret

knowledge (which was kept well hidden and did not manifest itself anywhere else)

undermines any research based on the actual archaeological evidence. It initiates a

vicious circle: there is no evidence because there is not supposed to be any.

The problem of the existence of restricted knowledge has been discussed by John

Baines, who has analysed sources from the Old Kingdom to the Late Period contain-

ing allusions to various degrees of involvement in religious and secular knowledge.

The ancient Egyptian title of ‘Keeper of the Secrets’ is certainly suggestive, but

the nature and contents of these ‘secrets’ is unclear. As Baines pointed out, they

87
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‘could be either confidential, or secret in a religious sense; royalty might have some

interest in blurring this distinction, because it would place extra sanctions on the

confidentiality of the less religious information’.1 Being the materialisation of reli-

gious and royal power, architecture is likely to have been included, at least to some

extent, among the restricted subjects. However, in comparison with religion, for

example architecture also has an extremely practical aspect which cannot be ne-

glected. The common mathematical problems of builders of all times have always

been the same: construction of right angles, alignment of straight lines, calculation

of areas to cover, volumes to remove or build, and so on.

On this subject, it is worth reading what the Roman architect Vitruvius wrote in

the first century BC, in his treatise De architectura (cf. fig. 46):

if there is a square plot or field with sides of equal length and it needs to be doubled in size,
the need will arise for the type of number that cannot be found by means of calculation,
but it can be found by drawing a succession of precise lines. Here is a demonstration of the
problem: A square plot that is ten feet long and ten feet wide gives an area of 100 square
feet. If it is necessary to double this, and make one of 200 square feet, likewise with equal
sides, then the question will arise as to how long the side of this square would be, so that
from it two hundred feet should correspond to the doubling of the area. It is not possible
to find such a number by counting. For if fourteen is established as the measure of each
side, then when multiplied the sides will give 196 square feet, if fifteen, 225 square feet.
Therefore, it is not discovered by means of numbers. However, if in that original square
that was ten feet on a side, a line should be drawn diagonally from corner to corner, so as
to divide off two triangles of equal size, each of fifty feet in area, then a square with equal
sides should be drawn on the basis of this diagonal line. Thus, whatever the size of the two
triangles defined by the diagonal line in the smaller square, each with an area of fifty feet,
just so, four such triangles, of the same size and the same number of square feet, will be
created in the larger square.2

This argument is taken from Plato’s Meno (written around 390 BC) where Socrates

discusses mathematics with a slave-boy,3 but its origin might be earlier than Greek.4

It is a convenient method that does not involve any arithmetical calculation (such as

the square root of 200, which is not a whole number, being about 14.142136 . . .) but

1 John Baines, ‘Restricted Knowledge, Hierarchy and Decorum: Modern Perceptions and Ancient Institutions’,
JARCE 27 (1990), 1–23 (quotation from p. 9).

2 Vitruvius, Ten Books on Architecture, ix.praef.4–5, quoted from the English translation, p. 107.
3 Plato, Meno, English translation by G. M. A. Grube, Indianapolis, Ind.: Hackett, 1976, 82–5.
4 Richard Gillings suggested that the ancient Egypyians used the same system to double areas and based his

conclusions on the double use of the remen as a unit of measurement for length and area (cf. table 2). In New
Kingdom votive cubit rods, the subdivision of the cubit corresponding to 5 palms is called remen, the same
name of the unit of measurement that in the Old Kingdom corresponds to half ta, that is, 50 square cubits.
Gillings suggested that the remen corresponded to half the diagonal of a 1-cubit square (that would be a trifle
less than 10 palms) and that might have been used to double square areas (Gillings, Mathematics, pp. 208–9).
Less demanding and more consistent with the other subdivisions of the unit of measurement of areas is Griffith’s
interpretation of the remen as half a setat cut into two rectangles (each 100 × 50 cubits), rather than diagonally
into two triangles as in Plato’s and Vitruvius’ example (Francis L. Griffith, ‘Notes on Egyptian Weights and
Measures’, PSBA 14 (1891–2), especially 417).
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Fig. 46: Geometrical method to double a 100-square unit area.

just an easy geometrical construction. I find the statement that the square root of 200

‘cannot be found by counting’ quite revealing. It suggests that five centuries after

the legendary Pythagoras, and in any case two centuries after Euclid, a practical

geometrical approach was still the most likely method to be adopted by an architect.5

5 About the concept of mathematics in Vitruvius, see Serafina Cuomo, Ancient Mathematics, London/New York:
Routledge, 2001, pp. 202–3.
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Vitruvius is one of our best sources about ancient Greek and Roman architecture,

and it is interesting to note that the mathematics involved in his treatise is very

simple. He generally suggested the use of simple numerical ratios in the design

of buildings, such as 3:5 and 2:3. The diagonal of a square used as a dimension

is mentioned only a couple of times, and even in these cases as the result of a

geometrical construction (‘make a square whose sides are equal to the width, draw

a diagonal line, and whatever the distance of the diagonal, this is the length of the

atrium’6) rather than the numerical value
√

2, for which he does not seem to display

any interest. The equilateral triangle also appears briefly in the chapter dedicated

to the Roman theatre, where it is used to establish the design of the plan:

whatever the size of the lower perimeter, locate a centre point and draw a circle around it,
and in this circle draw four triangles with equal sides and at equal intervals. These should
just touch the circumference of the circle. (By these same triangles, astrologers calculate
the harmonies of the stars of the twelve heavenly sings in musical terms.) Of these triangles,
take the one whose side will be closest to the performing platform. There, in that area that
cuts the curvature of the circle, lay out the scaenae frons . . . .7

In the Greek theatre the process is the same, but the correct proportions are obtained

by means of three squares, instead of four triangles.8

In conclusion, because of the adoption of modern mathematical concepts and the

expectations that people have of ancient Egypt, complicated solutions seem to gather

more credit than simple explanations. From a logical point of view, however, the

subject should be approached in the reverse order. I am not saying that there cannot

be complicated solutions, but rather that they ought to be considered only after the

simple ones have been analysed and discarded, and that (most of all) they ought to

be consistent with the cultural and archaeological background. Many of the modern

mathematical analyses of ancient Egyptian monuments do not fulfil these condi-

tions. Ancient Egyptian mathematics, its language and its numerical notation points

in a different direction from what many modern theories have suggested, and it is

this direction that we must follow. Part II is entirely dedicated to the study of ancient

Egyptian working drawings and models and to the textual evidence related to the

construction of tombs and temples. We shall see that projects and actual buildings

(as one would expect) are the product of exactly the same culture which generated

the surviving mathematical sources. Moreover, not only are there no traces of the

most complicated mathematical methods so far suggested, but a study of the original

sources from the ‘correct’ mathematical point of view highlights connections and

methods so far unnoticed.

6 Vitruvius, Ten Books on Architecture, vi.3.3, quoted from the English translation, p. 79. See also iv.1.11.
7 Vitruvius, Ten Books on Architecture, vi.6.1, quoted from the English translation, pp. 68–9; see also fig. 83.
8 Vitruvius, Ten Books on Architecture, vi.7.1–2; see also, in the English translation, fig. 84.
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Tradition and variations in ancient Egyptian
art and architecture

Ancient Egyptian architects certainly followed a number of rules in the construction

of their buildings, but both the nature and the function of these rules must be

clarified. Identifying them just as mathematical formulae might be reductive and

inappropriate. In general, continuity (real or pretended) is a striking element of

ancient Egypt, where revivals of ancient features took place from time to time in

both language and the arts. Although forms and tastes did not remain unchanged

during the more than thirty centuries of ancient Egyptian history, the link with the

past, with what had been done by the ancestors, continued to play a significant role.

A good example is the religious text engraved by Shabaka, king of the Twenty-

fifth Dynasty, on a stele now at the British Museum, which is said to have been

copied from an ancient, worm-eaten document. The style of the text is archaic and

resembles the Old Kingdom Pyramid Texts, but it is now generally assumed that it

is a much later composition, perhaps even dating to Shabaka’s time.1

Concerning the arts, it seems that there were archives of traditional sources and

models which could be consulted and used. The drawing of a shrine on papyrus,

in black ink over a red square grid (fig. 47), might be the only surviving original

example of this type of document.2 The existence of models may also be deduced

by several observations. Jean Capart, for example, isolated nine possible models

which might have been used by the artists to design the twenty-four birds which

are to be found in a scene of hunting in the Old Kingdom chapel of Ti.3 Textual

sources also provide similar evidence. According to the text on a now lost stele

1 Miriam Lichtheim, Ancient Egyptian Literature, Berkeley: University of California Press, 1973–80, vol. i,
pp. 51–2; vol. iii, p. 5; Friedrich Junge, ‘Zur Fehldatierung des sog. “Denkmals memphitischer Theologie”, oder
Der Beitrag der ägyptischen Theologie zur Geistesgeschichte der Spätzeit’, MDAIK 29 (1973), 195–204.

2 Legon, DE 35, especially 72–3. See also W. M. Flinders Petrie, ‘Egyptian Working Drawings’, Ancient Egypt 1
(1926), 24–7; H. S. Smith and H. M. Stewart, ‘The Gurob Shrine Papyrus’, JEA 70 (1984), 54–64.

3 Jean Capart, ‘Cahiers de modèles’, CdE 16 (1941), 43–4; in general, see also ‘Sur le cahiers de modèles en
usage sous l’Ancient Empire’, CdE 20 (1945), 33–5.
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Fig. 47: Eighteenth Dynasty (?) drawing of a portable shrine on papyrus, (from
Clarke and Engelbach, Ancient Egyptian Masonry, fig. 48).

from Abydos, Neferhotep I (a king of the Thirteenth Dynasty) consulted ancient

papyri held in a library in order to ‘know the god in his form’ and prepare a new

statue4. In a text from Edfu, the scheme of the Ptolemaic temple is said to have

been established by Imhotep, the architect who over twenty-four centuries earlier

built the complex of the step pyramid at Saqqara for Djoser, second king of the

Third Dynasty.5 References to earlier sources are quite common in the so-called

Building Texts, which describe the origin and foundation of Ptolemaic temples. As

we shall see in subsequent chapters, in this case it is possible to suggest that some

of the passages in these texts referred to mathematical rules.

In architecture, symbolic forms and elements were certainly handed down, and

their proportions must have been influenced by some basic rules dictated by struc-

tural reasons. Besides this, however, the existence of fixed, specific mathematical

rules is not easy to demonstrate. As we have seen, it is relatively easy to ‘find’ more

4 Hieroglyphic text in Wolfgang Helck, Historisch-Biographische Texte der 2. Zwischenzeit und neue Texte der 18.
Dynastie, Kleine Ägyptische Texte, Wiesbaden: Harrassowitz, 1983, pp. 21–9; translation in Max Pieper, Die
grosse Inschrift des Königs Neferhotep in Abydos, Mitteilungen der Vorderasiatisch-aegyptischen Gesellschaft
32, 2, Leipzig: Hinrich, 1929.

5 Kurt Sethe, Imhotep, der Asklepios der Aegypter, Leipzig: Hinrichs, 1902, pp. 15–8.

Pure Mathematical Physics



94 Architecture and Mathematics in Ancient Egypt

Fig. 48: Proportions of Egyptian columns (from Perrot and Chipiez, History of
Art, vol. i, figs. 62–4 and 66).

or less complicated mathematical relationships in a plan, if this is what one is look-

ing for. At the same time, in ancient Egyptian architecture it is probably easier to

note the absence of a rule in cases where it would be expected. Perrot and Chipiez,

for example, noted that columns of the same type and of the same diameter might

have different heights, that columns of different types but with the same diameter

had no fixed proportions in comparison with one another, and that the spacing of
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Fig. 48: (cont.)

identical columns was not always the same (fig. 48). They concluded that ‘in this

sense, the art of Egypt was not mathematical’.6

In her study on the proportions of human figures, Gay Robins proved that ancient

Egyptian artists used square grids to draw human figures, but just as a guide, not as

a rigid and fixed device. In fact, they were perfectly able to draw without them, as

a number of surviving examples show.7 The variety in proportions of architectural

elements seems to suggest that architects might have had a similar approach to

the design of their buildings. They might have had a few basic rules based on a

long-established practice of construction that were adopted, changed or combined

during the actual building process. The following chapters contain a study of the

surviving architectural working drawings and models, and of the texts describing

the construction of some monuments, that will help us outline the planning and

building process followed by the ancient architects.

6 Perrot and Chipiez, History of Art, pp. 99–102; see also Wilkinson, Architecture of Ancient Egypt, especially
Part ii.

7 Robins, Proportion and Style, p. 259.
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Documents on the planning and building process

Architectural drawings

Representations of buildings and working drawings

Representations of buildings are frequently found in Egyptian art, and in many

cases they provide a large amount of information about lost evidence, such as

constructional details, overall appearance, function and internal arrangement of

space. They sometimes may be the sole clue to the existence of totally destroyed

buildings, but often they are not definitive. In many cases the doubts and questions

generated by alternative interpretations must remain unanswered.

At first sight, Egyptian representations may seem rather complicated, but they

were just based on different graphic rules in comparison with our modern conven-

tions. We use partial representations, as in perspective, where a single point of view

is privileged, while the Egyptians preferred to adopt for each object its best point of

view, so that nothing could be lost, covered or misunderstood because of an incom-

plete visual. This is the reason why, for example, they represented the human body

in positions which would be difficult to assume, but in which every single part could

be perceived from its clearest point of view. The front view of the torso combined

with the lateral view of head, arms and legs sometimes produced two-dimensional

representations not easy to decipher. In the pose of worship, for example, the two

arms were generally represented as if they were raised at different levels, even if in

three-dimensional statues they appear to be held at the same height.1

The same convention was generally employed to represent groups of objects

which overlap one another from a perspective point of view: parallel rows of offer-

ings on tables, or of jars in a room, or of columns of a building, which lay close to

1 Richard H. Wilkinson, Reading Egyptian Art, London: Thames and Hudson, 1992, pp. 28–9. Wilkinson even
suggested that the hieroglyph for the word ‘man’, a man sitting on one leg with the other knee raised, represented
in fact a man in the typical scribal position with both legs folded beneath him, which was difficult to represent
from a lateral point of view (pp. 14–5).

96
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Fig. 49: Representation of the royal granaries and storehouses of Amarna
(Eighteenth Dynasty) from the tomb of Meryra (from Davies, Amarna I, pl. 31).

one another (i.e. one behind the other from the viewer’s perspective), were repre-

sented in lines lying one above the other (fig. 49). In this way, not only every single

object, but also every single group could be clearly seen and identified. Architectural

representations also followed this pattern, combining the plan and elevation of the

building. A room was usually represented by means of its more distinctive feature,

i.e. its being an ‘enclosure’, and therefore the best way to convey this impression

was the closed outline of the plan. The contents of the room (objects, people, activi-

ties, but also architectural elements like doors and columns) were better represented

from a frontal point of view, in superimposed registers if necessary (fig. 50).

Another important feature of ancient Egyptian representations, which is common

to all subjects, is the expression of importance by means of size: the more important
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Fig. 50: Representation of an Amarna royal palace from the tomb of Meryra, Eighteenth Dynasty (from Davies, Amarna I, pl. 18).
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a person or an object is, the bigger it is in the scene. In the case of people, social

hierarchy could be expressed by means of dimensional hierarchy,2 but in the case of

buildings or architectural details the interpretation is not that simple. Human beings

are, more or less, similar in terms of dimensions, which means that their size in

the representations depended simply on their social status (the difference in size

visualised very well the power of the ‘bigger’, i.e. the ‘stronger’ over the ‘smaller’,

i.e. the ‘weaker’). On the other hand, drawings depicting buildings or parts of them

show a double degree of complexity. As usual, the feature which is considered

prominent in a specific scene is shown on a larger scale, but important parts of

buildings could actually have been larger than other, less significant, parts. The main

gateway of a temple or a palace might be larger than any other entrance, because

of its important symbolic function; moreover, it could be represented even bigger

than it was in proportion with the rest of the building, because of the importance it

had in a particular scene.

The representations of Akhenaten rewarding his people from the Window of

Appearance at Amarna is a good example of the use of this device (fig. 51). The

entire scene is arranged to highlight the extreme importance of the king in com-

parison with the commoners, and the extreme importance of the Window itself

in that particular situation. Of course, the king was not five times bigger than his

officials, but the Window might have been built to be ‘impressive’. Moreover, in

this particular occasion it was represented on an even larger scale in relation to the

rest of the building.

The representations of the buildings of Amarna, unlike many other cases, can

be compared with the actual archaeological remains of the city. Even in this case,

however, the task is not particularly easy, since they were decorative descriptions

and were not intended to be exact surveys. As Barry Kemp concluded, the rep-

resentations of the Aten temple, for example, seem to include features from both

the Great and the Small Aten Temple; in the case of royal estates, it is difficult

to establish to what extent the artist actually knew those buildings and how many

fantastic elements he added to them.3

In general, all of these representations say very little about the dimensions of

these buildings, but they may provide important information about the outline,

distribution and function of the constructions involved. The representation of the

2 See for example Richard H. Wilkinson, Symbol and Magic in Egyptian Art, London: Thames and Hudson, 1999
(1994), chapter 2.

3 On the correspondence between representations and findings see Norman de Garis Davies, The Rock Tombs of
El Amarna i–vi, ASE 13–18, vol. vi, London, 1903–8, pp. 36–7 and pl. 34; Alexander Badawy, Le dessin
architectural chez les anciens Egyptiens, Cairo: Imprimerie Nationale, 1948, pp. 110 and 166–81; Barry
J. Kemp, ‘The Window of Appearance at El-Amarna and the Basic Structure of this City’, JEA 62 (1976),
81–99; Kemp, Ancient Egypt. Anatomy of a Civilisation, London: Routledge, 1989, fig. 90; Kemp, ‘The Sanc-
tuary of the Great Aten Temple’, Amarna Reports iv, London: EES, 1987, chapter 8; Kemp, ‘Outlying temples
at Amarna’, Amarna Reports vi, London: EES, 1995, chapter 15.
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Fig. 51: Akhenaten rewarding Meryra from the Window of Appearance,
Eighteenth Dynasty (from Davies, Amarna II, pl. 33).

house of Djehuti-nefer Huia, for instance, shows the full vertical section of a three-

storey house with granaries on the top, with a clear section of the floor indicating

the way it was built.4 Another good example is the fragments of a slate tablet,

probably belonging to an archive, on which the plan of an Eighteenth Dynasty

temple at Heliopolis was represented. Even though the building has completely

4 Ernest Mackay, ‘The Origin of Polychrome Borders: A Suggestion’, Ancient Egypt iv (1916), 169–73.
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disappeared, Herbert Ricke was able to suggest two possible reconstructions of its

layout by comparing the drawing on the tablet with the plans of other New Kingdom

temples5 (fig. 52). In other cases, however, such as the faded plan of an estate on

papyrus from the Ramesseum,6 not even a tentative reconstruction is possible.

In his Dessin architectural chez les anciens Egyptiens, Badawy attempted the

reconstruction of the plans of a large number of buildings depicted by Egyptian

artists, from predynastic enclosures to New Kingdom temples, from private houses

to funerary monuments, also including gardens and military architecture. None of

the representations so far mentioned, however, provide precise evidence about the

dimensions of the buildings, not even of their proportions,7 and therefore cannot

be considered a primary source for this research. Especially important are, instead,

the architectural working drawings which have survived to the present day.8 Some

of them provide dimensional information while others lack precise indications, but

together they represent one of our most important sources for understanding the

ancient way of laying down a project. They are the trace of the hand of the ancient

architect, and represent the intermediate step between the idea and its execution,

that is, the moment when geometric rules are expected to meet aesthetic ideals.

Drawings with written dimensions: the problem of the scale

Modern architectural drawings are to a precise, calculated scale. In a plan at 1:100,

for example, 1 cm of the drawing corresponds to 100 cm (1 m) in reality. Therefore,

by measuring a drawing, one can calculate the dimensions of each element of the

actual object or building. Concerning ancient Egypt, the majority of the surviving

working drawings (listed in table 3) consist of more or less elaborated plans in

which the dimensions were written out beside the parts to which they referred.

5 Herbert Ricke, ‘Ein Inventartafel aus Heliopolis im Turiner Museum’, ZÄS 71 (1935), especially 130–1.
6 Alan H. Gardiner, The Ramesseum Papyri, Oxford: Oxford University Press, 1955, pp. 17–8.
7 See, for example, the five different representations of the pylon of the Great Aten Temple at Amarna (Badawy,

Dessin architectural, pp. 164–6).
8 Lists of architectural drawings have been published, among others, by Badawy (‘Ancient Constructional

Diagrams in Egyptian Architecture’, Gazette des Beaux-Arts 107 (1986), 51–56), Arnold (Building in Egypt,
New York/Oxford: Oxford University Press, 1991, p. 8) and Heisel (Antike Bauzeichnungen, Darmstadt:
Wissenschaftliche Buchgesellschaft, 1993, chapter 2). Other sketches are listed by Brunner-Traut, including
seven in Die Altägyptischen Scherbenbilder, Wiesbaden: Steiner, 1956, pp. 120–3 and the representation of
a decorated doorway in Brunner-Traut, Egyptian Artists’ Sketches, Istanbul: Istanbul, Nederlands Historisch
Archaeologisch Institut, 1979, pp. 22–5. The latter, and three among those listed by Heisel – the sketch of an
unidentified plan (p. 96) and the sketch of a column (p. 137), both from Deir el-Medina, and the sketch of a
column from Kalabsha (Siegler, Kalabsha, p. 39, fig. 17) – have not been considered here, because of their
rough descriptive character. The Eighteenth Dynasty sketch on an ostracon representing a funeral (Gardiner
Alan H., ‘An Unusual Sketch of a Theban Funeral’, PSBA 35 (1913), 229) and the Nineteenth Dynasty map of
the gold mines (latest publications: James A. Harrell and V. Max Brown, ‘The Oldest Surviving Topographical
Map from Ancient Egypt (Turin Papyri 1879, 1899 and 1969)’, JARCE 29 (1992), 81–105 and Jac. J. Janssen,
‘An Exceptional Event at Deir el-Medina’, JARCE 31 (1994), 91–7), although both undoubtedly very interesting
from many points of view, do not add any useful dimensional information.
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Fig. 52: Slate tablet from Heliopolis representing a temple and two reconstructions
by Ricke (from ZÄS 71, figs. 3, 6 and 7).
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Fig. 52: (cont.)
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Table 3. Architectural sketches and drawings

Object represented Material Date Provenance Location Bibliography

Diagram with coordinates ostracon Third Dynasty Saqqara Cairo Museum 50036 Gunn, ASAE 26, pp. 197–202; Daressy, ASAE
27, pp. 157–60.

Layout of a garden or temple sandstone slab Mentuhotep (Eleventh Dynasty) Deir el-Bahari Metropolitan Museum of Art

22.3.30

Winlock, Deir el-Bahri, p. 50; Arnold,

Mentuhotep, p. 23, fig. 9.

Plan of a building paving slab Senwosret I (Twelfth Dynasty) Lisht Metropolitan Museum of Art

14.3.15

Arnold, Senusret I, p. 98, fig. 4.7.

Plan of a building papyrus Amenemhat III (Twelfth

Dynasty)

Middle Kingdom tomb in the area

of the Ramesseum

Berlin, P. Ram. B Gardiner, Ramesseum, p. 18, fig. 2.

Plan of a temple at Heliopolis slate tablet Middle Kingdom Heliopolis Turin Museum 2682 Ricke, ZÄS 71, pp. 111–33.

Plan of a tomb ostracon Eighteenth Dynasty Thebes, tomb of Senenmut (n. 71) Cairo Museum 66262 Hayes, Sen-mut, p. 15, pl. 7; Dorman,

Senenmut, p. 26, note 52.

Plan of a peripteral chapel (?) on

a canal

wooden board Eighteenth Dynasty Dra Abu el-Naga (?) Metropolitan Museum 14.108 Davies, JEA 4, pp. 194–9.

Sketch plan of a house ostracon Eighteenth Dynasty? Cairo Museum

Sketch plans of houses Amarna Period (Eighteenth

Dynasty)

Floor of the Broad Hall, Great

Palace, Amarna

Pendelbury, City of Akhenaten iii,

pl. 36.4–5.

Sketch of a peripteral chapel ostracon Eighteenth–Nineteenth Dynasty Deir el-Bahari British Museum 41228 Glanville, JEA 16, pp. 237–9; Van Siclen,

GM 90, pp. 71–7.

Plan of a temple papyrus Early Nineteenth Dynasty Thebes? Berlin, Ägyptisches Museum und

Papyrussamlung SMB P 15781

Müller, Festschrift Eggebrecht, pp. 67–9.

Four-pillared chamber ostracon Nineteenth Dynasty Valley of the Kings Cairo Museum 51936 Englebach, ASAE 27, pp. 72–5; Reeves,

CdE 61, pp. 42–9.

Plan of the tomb of Ramses IV papyrus Twentieth Dynasty Turin Museum, Papyrus 1885

(verso)

Carter and Gardiner, JEA 4, pp. 130–58.

Plan of the tomb of Ramses IX ostracon Twentieth Dynasty Valley of the Kings Cairo Museum 25184 Daressy, Revue Archéologique 32,

pp. 235–40.

Sketch of stairs and door of a

tomb

ostracon Twentieth Dynasty Valley of the Kings Cairo Museum? Clarke and Engelbach, Ancient Egyptian
Masonry, p. 52; Reeves, CdE 61, pp. 43–9.

Plan of a colonnaded court ostracon Twentieth Dynasty Dra Abu el-Naga, tomb of

Ramsesnakht (n. K93.11)

Polz, MDAIK 53, pp. 233–40.

Sketch plans of the pyramids on

top of tombs 14 and 15

ostracon Eighteenth–Twentieth Dynasty Soleb, tomb 14 Leclant, Orientalia 31, p. 134.

Sketch of a large building New Kingdom? Limestone quarry at Sheikh Said Davies, Ancient Egypt 1917, pp. 21–5.

Sketch plan of a pyramid terracotta jar Late Period Meroe Bonnet, Genava 28, p. 59.

Sketch of half the vertical section

of a pyramid

Late Period Meroe, chapel of pyramid Beg. 8 Hinkel, ZÄS 108, pp. 107–12.
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Only in a few cases do some elements of the plans seem to correspond to the written

measures; that is, they seem to be to scale, but in the same representation other parts

do not follow the same rule.

Although written dimensions provide useful information, in virtually all cases in

which we cannot match a drawing with a particular building, a precise reconstruction

of the object represented is very difficult.9 Some drawings are very rudimentary, as

if they were abbreviated sketches providing only the most useful information about

the plan, the rest being taken somehow for granted. A good example of this kind

of representation is a sketch of a shrine on an ostracon (Eighteenth Dynasty), of

which two tentative reconstructions have been made (fig. 53). Glanville suggested

that the plan might refer to a shrine surrounded by a square court, with two rows of

three pillars on the right and left, although he admitted that the distance between the

pillars and what he had interpreted as a wall was entirely conjectural.10 Charles Van

Siclen, however, suggested that the outer line represented the external alignment

of a row of pillars running all around the inner shrine, and that the sketch would

therefore represent a peripteral bark shrine.11 In any case, it appears clear that the

plan on the ostracon was a very abbreviated representation, meant to provide a

few useful hints for the construction of a building, the nature of which must have

been already clear to the person who sketched the plan. Whether he was referring

to another, more complete and detailed plan, or whether he simply had in mind a

conventional type of building, for which no further explanation was necessary, is

difficult to establish.

The sketch of a four-pillared chamber (Twentieth Dynasty) from the Valley of

the Kings12 (discussed again in the next chapter, see fig. 70) and the plan of a

subterranean tomb (Eighteenth Dynasty), found among the debris of Senenmut

9 See, for instance, Davies’ reconstruction of the sketch of building from the Sheikh Said Quarry at Amarna, in
Norman de Garis Davies, ‘An Architectural Sketch at Sheikh Said’, Ancient Egypt 1 (1917), 21–5.

10 S. R. K. Glanville, ‘Working Plan for a Shrine’, JEA 16 (1930), 237–9.
11 Charles C. Van Siclen III, ‘Ostracon BM41228: A Sketch Plan of a Shrine Reconsidered’, GM 90 (1986), 71–7.

The rectangular outline of peripteral chapels was sometimes very elongated, as in the chapel in the courtyard of
the VII Pylon at Karnak, two chapels at el-Kab and two at Elephantine, now completely destroyed (Borchardt,
Tempel mit Umgang, pls. 19, 20, 21 and 23). At other times it approached a square, as in the chapel of Senusret
I at Karnak and the chapel at Kuban. The badly destroyed chapel at Amada may have been square (Borchardt,
Tempel mit Umgang, p. 56, fig. 19 and pl. 22.). On the ostracon, it is written that the length and breadth of
the chamber are equal, thus suggesting a square space. Van Siclen, however, preferred to follow the example
of the chapels at Karnak and Kuban, and suggested that for each pair of dimensions written on the ostracon,
one should be considered internal and the other external. The outer enclosure would therefore be rectangular,
rather than square, with a small difference between the two sides. In his reconstruction, he derived the missing
architectural and numerical data (e.g. number and dimensions of pillars and distance between them) from the
average dimensions of other similar contemporary constructions. The exact design and distribution of the pillars
may be open to conjecture (see also Polz D., ‘An Architect’s Sketch from the Theban Necropolis’, MDAIK 53
(1997), pp. 233–40), but a definitive result is unlikely to be found, since the pillars and the space between them
were usually not the same along longer and shorter sides.

12 Reginald Engelbach, ‘An Architect’s Project from Thebes’, ASAE 27 (1927), 72–6; Nicholas C. Reeves, ‘Two
Architectural Drawings from the Valley of the Kings’, CdE 61 (1986), 43–9.
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Fig. 53: Ostracon BM 41228 (Eighteenth Dynasty), reconstruction of the plan by
Glanville (both from JEA 16, fig. 1) and by Van Siclen (from GM 90, fig. 3).
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Fig. 53: (cont.)

but referring to another tomb13 (fig. 54), are both on ostraca and are very similar

in concept to the sketch of the shrine which we have just considered. They are

rough representations, not to scale, providing dimensional information by means

of written indications. In both cases, the dimensions are given by means of strokes,

13 William C. Hayes, Ostraka and Name Stones from the Tomb of Sen-mut (No. 71) at Thebes, Metropolitan
Museum of Art Egyptian Expedition 15, New York: Metropolitan Museum of Art, 1942, p. 15, pl. 7; Peter
Dorman, The Tombs of Senenmut: The Architecture and Decoration of Tombs 71 and 353, New York:
Metropolitan Museum of Art, 1991, p. 26, note 52.
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Fig. 54: Sketches of a subterranean tomb, from the tomb of Senenmut (Eighteenth
Dynasty), (drawn after Hayes, Sen-mut, pl. 7).
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each representing one cubit (thus in the plan of a subterranean tomb the three rooms,

from left to right, appear to be 7×7, 5×4 and 9×9 cubits, whereas the corridor was

15 cubits long and 3 cubits wide). The fact that they are drawn on ostraca points

to their being working drawings meant to be used in rough conditions, but at least

in the case of royal tombs, it is possible that a more precise plan had been drawn

beforehand, as we shall see later in this chapter.

The Eighteenth Dynasty plan on a wooden board of an enclosure on a canal

(fig. 55) is accompanied by some written dimensions: the internal enclosure appears

to be 29 cubits long and probably 23 cubits, 2 palms and 2 fingers wide; the two

flights of stairs were 10 cubits long; the external enclosure was 32 cubits long; and

the rectangular enclosure close to the water was 21 cubits and 4 palms long. This

drawing was identified by Norman de Garis Davies as an architect’s survey, since

the measures were expressed in cubits, palms and fingers, with a precision which,

in his opinion, would have not been required in a project.14 His suggestion, as

we shall see in the next chapter, agrees with the results of a careful examination of

documents related to works in royal tombs, where dimensions given in whole cubits

seem to correspond to projects, while those given in cubits, palms and fingers seem

to be the result of surveys. It is worth observing that the majority of documents

on wooden boards appear to have been exercises of onomastica and mathematics,

model letters and copies of literary texts.15 This plan, too, might have been an

exercise.

The interpretation of the drawing is not easy, especially because the direction of

the two flights of stairs is not clear. Three different interpretations of the central

space have so far been suggested, according to three different interpretations of

the direction of the stairs: a pool, a room and a platform.16 The position of the

building in connection with the water must have been very important, since the

canal was probably drawn first (as the compression of the rear part of the enclosure

seems to suggest) and great care was taken to represent the mass of water by

means of the usual pattern of broken lines. It is very difficult to establish beyond

any doubt the function of the complex, but its position in relation to the thick wall,

indicating a large enclosure, and to the water might suggest a parallel with the small

peripteral chapel of Thutmosis III at Karnak, the entrance of which pierces the

wall of the court of the VIII Pylon and points towards the Sacred Lake17 (fig. 56).

The central enclosure might be a simple outline of the area covered by the peripteral

14 Norman de Garis Davies, ‘An Architect’s Plan from Thebes’, JEA 4 (1917), 194–9. The board, purchased by
Davies from a dealer, apparently comes from the area of Thebes.

15 In general, see LÄ, vol. v, pp. 703–9.
16 The first and the second from Davies, JEA 4, 198, and the third from Badawy, Dessin architecturale, p. 202,

fig. 239.
17 Borchardt, Tempel mit Umgang, pp. 90–3; Jean Lauffray, ‘Les travaux du Centre Franco-Egyptien d’études des

temples des Karnak de 1972 à 1977’, Cahiers de Karnak VI, Cairo: IFAO, 1980, fig. 1.
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Fig. 55: Plan on a wooden board (Eighteenth Dynasty), (after Davies, JEA 4,
pl. 38); reconstructions of the plan by Badawy (upper drawing, from Dessin
architecturale, fig. 239) and by Davies (second and third drawings, from JEA
4, 198).
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Fig. 56: Plan of the peripteral temple of Thutmosis III (Eighteenth Dynasty) facing
the Sacred Lake in the temple of Karnak (drawn after Borchardt, Tempel mit
Umgang, pl. 19 and Lauffray, Karnak VI, fig. 1).

shrine, approached by two flights of stairs running along the axis. In this case,

the written dimensions would correspond to the outline of the shrine: length and

breadth of the basement and length of the two stairs. The smaller enclosure, the

rectangular feature that Davies interpreted as an altar and Badawy as a ramp, may

have been a door. The plan could therefore be a survey of the surroundings of a

peripteral shrine; once its outline was established, the plan of the building itself

might have appeared as the sketch on the ostracon mentioned above.

Although they are not absolutely precise, some dimensions of the drawing appear

to correspond to the written values, to a scale of one to twenty-eight – that is,

one finger to the cubit (each finger on the board represented one cubit in reality).

Davies interpreted the plan as ‘a scale reduction badly plotted out’18 but, since

no ‘precise’ scale drawings have survived, I wonder whether we do justice to the

ancient architect when we accuse him of having been careless. If we expect from the

ancient drawings the same concept of precision as in our modern scale drawings,

we shall be disappointed. As we have seen, it was not unusual for the ancient

architects to indicate in their sketches only the most important data, ignoring what

was probably classified as obvious. In this case, even if some elements were drawn

18 Davies, JEA 4, 196.
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to scale, other elements, such as the secondary doors piercing the outer enclosure,

the trees, and probably the steps, were not.

While drawing, the architect probably counted the cubits using the fingers marked

on his cubit rod. The fact that he actually used a rod can be easily inferred from

the neatness of the lines. Nevertheless, he probably did not mean to draw a scale

drawing in our modern sense, that is, a drawing which others could measure in

order to gain information on the object represented. In fact, since he ran out of

space, he ‘compressed’ the upper part of the plan, but took care to write that the

breadth of the garden (or possibly the length of the stairs) had to be 10 cubits, the

same as below. He aimed to draw a plan in which the parts were represented in

fairly realistic proportions and counted the fingers as cubits, but beyond that one

was expected to read the labels, not to measure the lines.

Two of the most spectacular architectural drawings from ancient Egypt are the

plan on an ostracon of KV 6, tomb of Ramses IX,19 and the plan on papyrus

of KV 2, tomb of Ramses IV20 (see chapter 4). They are not to scale, as a

comparison between original plan, scale representation of the written dimensions

and modern plan clearly proves (figs. 69 and 70). In both cases, Davies noted that

the proportions of the plan were not correct, but nevertheless suggested a scale of

about 1:28 (the same as the plan on wooden board) for the tomb of Ramses IV,

and of about 1:220 (very close to a supposed scale 1:224, in which 1
8

of a finger,

about 0.23 cm, would be equal to 1 cubit) for the tomb of Ramses IX.21 Drawings

meant to be to scale but hampered by such an approximation, however, would be

quite useless. If there is a similarity between written and drawn dimensions, it

may simply depend on the attempt to keep a visual proportion between the parts,

without involving geometrical proportions while drawing the lines. This is certainly

the case of the sketch of a shrine box on an ostracon22 (Nineteenth–Twentieth

Dynasty). It is a message to a craftsman asking him to make four boxes, an example

of which was rapidly sketched and completed by two written measures referring

to its height, 5 palms, and breadth, 4 palms. Reymond Weill noted that height and

breadth of the sketch were in a ratio very close to 5:4 but, once more, there is no

need to suppose an approximate scale. If the shape of the object to be represented

was clear, an eyeball sketch could reproduce its proportions with a remarkable

19 Georges Daressy, Ostraca, CG, Cairo: SAE, 1901, p. 35 and pl. 32, and ‘Un plan égyptien d’une tombe royale’,
Revue Archéologique 32 (1898), 235–40.

20 Karl Richard Lepsius, ‘Grundplan des Grabes König Ramses IV. in einem Turiner Papyrus’, Abhandlungen
der Königlichen Akademie der Wissenschaften zu Berlin 1867, Philosophische und historische Abhandlungen,
1–22; Howard Carter and Alan H. Gardiner, ‘The Tomb of Ramses IV and the Turin Plan of a Royal Tomb’, JEA
4 (1917), 130–58. For a photograph, see Ernesto Scamuzzi, Museo Egizio di Torino, Torino: Edizioni d’Arte
Fratelli Pozzo, 1964, pl. 87.

21 Davies, JEA 4, pp. 196–7.
22 Raymond Weill, ‘Un épure de stéréotomie dans une pièce de correspondance du Nouvel Empire’, Recueil de

Travaux 36, Paris 1916, pp. 89–90; Alan H. Gardiner, ‘Some Coptic Etymologies’, PSBA 38 (1916), 181–5.
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Table 4. Full-size geometrical sketches

Object represented Date Location Bibliography

Guidelines for the
sloping sides of
Mastaba 17

Third–Fourth
Dynasty

Meidum, corners of
Mastaba 17

Petrie, Medum,
pp. 11–13, pl. 8.

Sketch of an
elliptical vault

Twentieth Dynasty Valley of the Kings,
tomb of Ramses
VI

Daressy, ASAE 8,
pp. 237–40.

Sketch of an ellipse Twentieth Dynasty? Temple of Luxor Borchardt, ZÄS 34,
pp. 75–6.

Sketch of a column Ptolemaic Period Temple of Philae Borchardt, ZÄS 34,
pp. 70–4.

Sketch of cavetto
cornice

Ptolemaic Period Temple of Edfu Borchardt, ZÄS 34,
pp. 74–5.

Sketch of a capital Roman Period Quarry at Gebel Abu
Foda

Petrie, Season in
Egypt, p. 33.

Sketch of a
Hathor-headed
capital

Roman Period Quarry at Gebel Abu
Foda

Petrie, Season in
Egypt, p. 33.

Sketch of a capital Roman Period Temple of Kalabsha Siegler, Kalabsha,
p. 37.

degree of accuracy, without necessarily being a conscious, calculated scale

drawing.

In conclusion, the surviving evidence suggests that architectural working draw-

ings were meant to convey a general idea of the arrangement and proportions of

the space. The transmission of precise numerical data was delegated to written

instructions instead. All the information we do not find in the drawings, includ-

ing many basic details of the elevation, probably belonged to a long consolidated

building practice. Small-scale architectural drawings, therefore, seem to have been

just quick reminders of a few details of buildings which were created directly as

volumes in the three-dimensional space.

Full-size geometrical sketches of architectural details

Besides lines and marks, which generally helped the workmen keep alignment and

position during the construction,23 full-size sketches were sometimes used to design

relatively small-scale architectural details (table 4). Although from a chronological

23 Traces of guidelines and control marks can often be found in ancient monuments. Arnold provided an useful
summary of this kind of evidence (Building in Egypt, pp. 16–22). Zero-level lines can be seen at the pyramid
of Menkaura (George A. Reisner, Mycerinus, the Temple of the Third Pyramid at Giza, Cambridge, Mass.:
Harvard University Press, 1931, pp. 76–7) and Neuserra (Ludwig Borchardt, Das Grabdenkmal des Königs
Ne-user-re �, Leipzig: Hinrichs, 1907, p. 154, fig. 129) and in the Mastabat el-Fara �un (Arnold, Building in
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Fig. 57: Sketch of a Twentieth Dynasty elliptical vault (drawn after Daressy,
ASAE 8, fig. 1).

point of view the evidence on the subject is, as often happens, very uneven, it is

nevertheless possible to establish interesting connections which seem to suggest

continuity in the methods employed by the ancient workmen.

There is the case of the Twentieth Dynasty sketch of an elliptical vault discovered

by Georges Daressy in the Valley of the Kings (fig. 57). Just outside the tomb of

Ramses VI, he noted a sketch, carved in the rock, which represented the outline of

the vault covering the burial chamber.24 Daressy demonstrated that the curve was

part of an ellipse, which had been probably drawn first on the ground by means

of ropes and pegs, then measured and transferred to the wall, where it could be

checked by the workmen engaged in the quarrying. A certain degree of elasticity in

the ropes and the subsequent process of transfer to the wall can be used to account

for the slight irregularities of the sketch. The horizontal line appears to have been

divided into regular intervals by means of little strokes, which correspond to a

Egypt, p. 17, fig. 1.14.), while whitewashed bands on three sides of the shaft of the pyramid at Zawyet el-Aryan
provided a surface for red vertical control lines (Alexandre Barsanti, ‘Fouilles de Zaouiét el-Aryân (1904–5)’,
ASAE 7 (1906), 262–5, figs. 2 and 4). Marks and written instructions on stone blocks and setting marks for
columns and pillars are also frequent. One of the most interesting sets of guidelines, those used for the sloping
sides of Mastaba 17 at Meidum (W. M. Flinders Petrie, Medum, London: Nutt, 1892, pp. 11–3 and plate 8),
may be even considered a full-size sketch. They will be discussed in Part III, which is entirely devoted to
pyramids.

24 Georges Daressy, ‘Un tracé egyptienne d’une voûte elliptique’, ASAE 8 (1908), 234–41.
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series of marks cutting the curve. Its rise, therefore, could be easily measured at set

intervals, and the measures then transferred down into the tomb.

This must have been the same principle which had led an unknown hand, fifteen

centuries earlier, to draw the diagram on an ostracon found at Saqqara in the area

of the Step Pyramid (fig. 58).25 On the rough surface of the limestone flake, red

lines describe a curve divided into intervals by vertical lines, the height of which

is written in cubits, palms and fingers. The horizontal distance between the lines is

not given, both their equidistance and its value, one cubit, undoubtedly being taken

for granted. Daressy discovered that the curve was part of a circumference, cut at

a certain distance from its diameter,26 as in the case of the later elliptical vault.

This implies that the first horizontal distance on the right did not correspond to one

whole cubit, as Battiscombe Gunn had suggested.27 Also, in this case the curve

probably had been drawn somewhere and then measured at regular intervals. Half

of it, with its basic dimensions, was rapidly sketched and then used to carry out the

work. In this case, little mistakes in reporting the measures from the ground to the

ostracon can be noted.28

Even if many centuries divide the Third Dynasty diagram and the Twentieth

Dynasty elliptical vault, the method used in the construction seems to have been

the same. In the earlier example, the vault corresponded to part of a circumference,

while in the later case it referred to an ellipse, which prompts further interesting

remarks. Both geometrical figures could be easily traced with the aid of ropes and

pegs. In the case of the circumference, a fixed peg acted as centre, while another

one, connected to the first by a length of cord (the radius), traced the circle while

being dragged all the way round. The method to construct an ellipse is basically the

same, with the difference that the ellipse has two centres, which we call foci, around

which the moving peg must rotate. In the case of the elliptical vault of Ramses VI,

the position of the two foci and the proportions of the ellipse were determined by

means of the 3-4-5 triangle.29 Daressy30 noted that the sides of the triangles which

he called COD and COE (cf. fig. 57) were equal to 4 cubits, 5 + 1
3

cubits and 6 + 2
3

cubits, which correspond to the numbers 3, 4 and 5 multiplied by 1 + 1
3
. This seems

to imply that the Egyptians not only used the 3-4-5 triangle to trace right angles,

but that they were also aware that similar triangles could be obtained by vary-

ing the dimensions, but keeping unaltered the proportions between the sides. This is

25 Battiscombe Gunn, ‘An Architect’s Diagram of the Third Dynasty’, ASAE 26 (1926), 197–202. See also Max
Hoberman, ‘Two Architect’s Sketches’, JSAH 44 (1985), 380–3.

26 Georges Daressy, ‘Tracé d’une voûte datant de la IIIe dynastie’, ASAE 27 (1927), 157–60.
27 Compare Gunn, ASAE 26, fig. 3 and Daressy, ASAE 27, 159. 28 Daressy, ASAE 27, 158–9.
29 Choisy suggested that the Egyptians used the 3-4-5 triangle to design parabolic vaults, but did not include any

details about location or date of specific examples (Auguste Choisy, L’art de batı̂r chez les Egyptiens, Paris:
Gauthier-Villars, 1904, p. 46). For the use of right-angled triangles to draw the profile of vaulted chambers in
the pyramid of Amenemhat III see Arnold, Amenemhet III., pp. 78–9.

30 Daressy, ASAE 8, 238.
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Fig. 58: Diagram of a curve (Third Dynasty), with hieroglyphic transcription
(drawn after Gunn, ASAE 26, figs. 1 and 2).
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an important point, which might have had a significant function in the project and

construction of pyramids, as we shall see in Part III.

The construction of an ellipse based on the 3-4-5 triangle could have proceeded

in the following way. After the horizontal line had been traced, the vertical line at a

right angle was traced by means of a 3-4-5 triangle (or one of its multiples). In the

case of the elliptical vault, the side corresponding to 3 was placed on the horizontal

line (fig. 59a). Two of the three pegs used to set the triangle also determined the

basic proportions of the ellipse: one corresponded to one of the foci, the other to

the maximum height of the curve. The second focus could be easily placed in a

symmetric position along the horizontal line. A rope, its extremes tied together,

stretched around the foci and the moving peg (fig. 59b), would then determine the

trajectory of the latter, that is, the ellipse (fig. 59c). Even if this is not related to

ancient Egypt, it may be interesting to add that the 3-4-5 triangle and other triplets

are supposed to have been used to trace the layout of elliptical and egg-shaped

megalithic monuments in Western Europe as early as 3000 BC.31

The full-size sketch of a column in the section of the Temple of Philae built under

Ptolemy VI Philometor in the second century BC32 and the sketch of a capital in

the Roman quarry at Gebel Abu Foda33 (fig. 60) provide further evidence about the

use of mathematics in the design of architectural details. Ludwig Borchardt noted

that they were both designed using special subdivisions of the cubit which did not

necessarily correspond to precise values in terms of palms and fingers, but which

could be more easily expressed as 1
2
, 1

4
, 1

8
and 1

16
of a cubit.

In general, this was not an uncommon method. Not only the cubit, but also

the setat (unit of measurement for areas) and the hekat (unit of measurement of

volumes) were sometimes divided into successive halves.34 There is ample evidence

that the division of the cubit into fractions, not necessarily corresponding to palms

and fingers, was widely used for practical purposes, at least in architecture, along

with the usual division into palms and fingers. John Legon, for example, noted that

in the Old Kingdom Palermo Stone the height of the Nile was expressed using both

systems.35 Another example is the Middle Kingdom Reisner Papyri, which also

contain palms and fingers and fractions of cubit,36 while the Building Texts of the

Ptolemaic period, as we shall see, only contain fractions of cubits.

31 See, for instance, the summary published by B. L. Van der Waerden, Geometry and Algebra in Ancient
Civilizations, Berlin/Heidelberg/New York/Tokio: Springer-Verlag, 1983, pp. 16–22.

32 Ludwig Borchardt, ‘Altägyptische Werkzeichnungen’, ZÄS 34 (1896), 70–4.
33 W. M. Flinders Petrie, A Season in Egypt, London: Field, 1887, p. 33, pl. 25; Borchardt, ZÄS 34, 74.
34 One setat was equal to one square khet, which corresponded to a linear measure of 100 cubits. It could be divided

into narrow strips 1 khet long and 1 cubit wide, and portions of it could be expressed as 1
2

, 1
4

and 1
8

of a setat,
corresponding to a certain number of 1-cubit strips. The hekat, a common unit of volume, was also subdivided
into 1

2 , 1
4 , 1

8 , 1
16 , 1

32 and 1
64 (Peet, Rhind Mathematical Papyrus, p. 25 and 122; Gillings, Mathematics, pp. 173

and 210–11; Robins and Shute, Rhind Mathematical Papyrus, pp. 13–5).
35 Legon, DE 35, 65.
36 William K. Simpson, Papyrus Reisner I, Boston: Museum of Fine Arts, 1963, pp. 124–6.
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Fig. 59: Construction of an ellipse by means of a 3-4-5 triangle.
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Fig. 60: Sketch of a Ptolemaic column at Philae and of a Roman capital, and
reconstruction of their proportions according to Borchardt (from ZÄS 34, pls. 3
and 4).
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The peculiarity of the design of this Ptolemaic column is that not only do the

fractions belong to this alternative way of dividing up the cubit, but also they appear

to express the use of a module corresponding to 1
16

of a cubit. This characteristic can

be visualised with the aid of a document that has nothing to do with our Ptolemaic

column, but is nevertheless the product of exactly the same mathematical process: a

late Byzantine division table. This contains the division of 15 by the numbers from

1 to 15 and of 16 by the numbers from 1 to 16, calculated in the typical Egyptian

way. Probably this tablet belonged to a series giving the division of several numbers,

but only 15 and 16 have survived.37 Here is the translation of the part concerning

the number 16:

Number 16.
The 16th part of 1 = 1

16

of 2 = 1
8

of 3 = 1
8

+ 1
16

of 4 = 1
4

of 5 = 1
4

+ 1
16

of 6 = 1
4

+ 1
8

of 7 = 1
4

+ 1
8

+ 1
16

of 8 = 1
2

of 9 = 1
2

+ 1
16

of 10 = 1
2

+ 1
8

of 11 = 1
2

+ 1
8

+ 1
16

of 12 = 1
2

+ 1
4

of 13 = 1
2

+ 1
4

+ 1
16

of 14 = 1
2

+ 1
4

+ 1
8

of 15 = 1
2

+ 1
4

+ 1
8

+ 1
16

of 16 = 1

The dimensions of column and capital correspond to some of the results. For

instance, the value 1
4

+ 1
16

, expressing the distance between the parallel lines divid-

ing the capital, corresponds to 5
16

, that is, 5 times 1
16

of a cubit. Taking 1
16

as the

module, this means that these lines are five modules apart. Seemingly, the radius

just below the capital corresponded to ten modules (1
2

+ 1
8
), the lower radius of the

capital to twelve modules ( 1
2

+ 1
4
), and so on. As in other similar cases, the final

result might be rather complicated if expressed in palms and fingers, but was nev-

ertheless relatively simple in terms of geometrical subdivisions of the cubit. This

37 Thompson, Ancient Egypt 2, pp. 52–4; Kurt Sethe, Von Zahlen und Zahlworten bei den alten Ägyptern,
Strasburg: Trübner, 1916, p. 70. See, for example, the similar tablet on an ostracon with the division of 31
for the first 31 integers in Sethe, Zahlen und Zahlworten, pp. 71–2.
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introduces another important subject, the adoption of a module in architecture in

the design not only of architectural details, but also of entire buildings.

The use of square grids and the idea of a module

From the Middle Kingdom onwards, ancient Egyptian artists used square grids to

design human figures and to establish the general layout of two-dimensional scenes.

They do not appear to have been tied by any strict rule, and were perfectly able to

reproduce the same proportions without the help of grids.38 Guidelines and grids

were also used in sculpture, as a number of surviving unfinished pieces show,39 and

architectural details might be also designed in this way, as the Roman sketch of a

Hathor-headed capital in a quarry at Gebel Abu Foda40 shows (fig. 61).

Turning to buildings, there is no evidence that the ancient architects used square

grids to design their projects on papyrus, but square grids might have been used

to lay down the plans on the ground. After having fixed the central axis and its

orthogonal, tracing parallel lines to these two initial directions would have helped

to measure distances, to check right angles and in general to fix on the ground the

position of the various elements. If this method was employed, it may have left a

trace in the repetition of one or more basic dimensions, and this is what scholars

have been looking for.

Alexander Badawy included square grids in his list of ‘elements of harmonic

design’,41 and suggested the use of square modules of different sizes, the side-

length of which could vary from round measures such as 5, 10 or 12 cubits, to

odd dimensions such as 11 + 2
3

or 13 + 1
3

cubits, and from small lengths such

as 1.75 or 2.6 cubits up to incredible modules of 94 + 1
2

or 104 cubits. Zygmunt

Wysocki claimed to have discovered the use of a module equal to 1 + 1
2

royal

cubit in a portico and in the sun court of the upper terrace in the Eighteenth

Dynasty temple of Hatshepsut at Deir el-Bahari,42 Karl Georg Siegler suggested the

38 Robins, Proportion and Style, pp. 45 and 165; see also Eric Iversen, Canon and Proportions in Egyptian Art,
Warminster: Aris and Phillips, 1975 and Gay Robins, ‘Canonical Proportions and Metrology’, DE 32 (1995),
91–2.

39 To the Late Period belong a number of the so-called ‘trial pieces’, blocks laid out for sculpture with the aid of
guidelines (Robins, Proportion and Style, pp. 177–81), an unfinished sphinx (Badawy, Gazette des Beaux-Arts
107, pp. 55–6) and a papyrus with the drawing on a grid of plan and front view of another sphinx (Heinrich
Schäfer, Von Ägyptischer Kunst, Wiesbaden: Harrassowitz, 1963, p. 339, fig. 325).

40 Petrie, Season in Egypt, p. 33, pl. 25; Arnold, Building in Egypt, p. 47 and fig. 2.26.
41 Badawy, Ancient Egyptian Architectural Design, p. 21. In a short article, Badawy also suggested that the

decoration in some Old Kingdom tombs was arranged in registers corresponding to the same module used by
the architect to design the plan (‘Composition murales à système modulaire dans les tombes égyptiennes de
l’Ancien Empire’, Gazette des Beaux-Arts 97 (1981), 49–52).

42 Zygmunt Wysocki, ‘The Result of Research, Architectonic Studies and of Protective Work over the Northern
Portico of the Middle Courtyard in the Hatshepsut Temple at Deir el-Bahari’, MDAIK 40 (1984), 329–49, and
also ‘The Temple of Queen Hatshepsut at Deir el-Bahari – The Results of Architectural Research over the North
Part of the Upper Terrace’, MDAIK 43 (1986), 274, figs. 5 and 8.
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Fig. 61: Sketch of a capital at Gebel Abu Foda, Roman (from Petrie, Season in
Egypt, pl. 25).

use of five different modules in the construction of the Roman temple of Kalabsha,43

and Jean-François Carlotti detected the use of several different ratios and modules

in the temple of Karnak.44

43 Siegler, Kalabsha, p. 22 and pls. 9–12, 16, 21 and 22. 44 Carlotti, Cahiers de Karnak x, pp. 65–94.
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Fig. 62: Plan of the temple of Qasr el-Sagha with a superimposed 1-cubit grid
(from Arnold and Arnold, Qasr el-Sagha, pl. 27a).

It is important, however, to note that a square grid superimposed on a plan

may be useful to highlight some geometrical aspects of a building, as in Dieter

Arnold’s study of the Middle Kingdom temple of Qasr el-Sagha45 (fig. 62), but

that in many cases the same result might have been achieved even without the aid

of such a device.46 For instance, a theoretical 40×60 cubit courtyard could have

been planned with the aid of a 1, 2, 4, 5, 10 or 20-cubit grid (see, for example,

fig. 63 and compare again with fig. 43), but also without any of them, by simply

establishing two orthogonal dimensions, as many of the surviving drawings do. We

may conclude that it is possible that orthogonal lines on the ground were used to

lay down the plan, even if they were not organised into strictly regular square grids.

In general, a modular pattern may also be the result of the use of a modular

element. In 1899, for instance, Auguste Choisy suggested that in ancient Egypt the

use of standardised mud-bricks produced a modular pattern,47 but his conclusions

were not based on a large variety of archaeological remains. Modern studies have

proved that the dimensions of mud-brick in ancient Egypt varied from a smaller size

used in the Early Dynastic Period to larger versions adopted from the Old Kingdom

onwards, but their proportions remained more or less the same, with a ratio of

about 2:1 between length and width.48 The argument sounds more convincing if

45 Arnold and Arnold, Qasr el-Sagha, p. 18, pl. 22.
46 Lauffray suggested that the chapel of Hakoris at Karnak could have been laid out according to a module of

54 cm, a value which seems too close to the usual cubit to be a completely different unit of measurement
(Lauffray, Chapelle d’Achôris, pp. 23–4). Four rods 53.8 cm long were found in the Eighteenth Dynasty tomb
of Sennefer, together with a standard cubit rod of 52.7 cm (Bernard Bruyère, Rapport sur les fouilles de Deir
el Médineh (1927), Cairo: IFAO, 1928, pp. 55–6 and pl. 8). A list of useful references on the subject can be
found in Lauffray, Chapelle d’Achôris, p. 24, note 32.

47 Choisy, Histoire de l’architecture, p. 52.
48 Alan J. Spencer, Brick Architecture in Ancient Egypt, Warminster: Aris and Phillips, 1979; Barry J. Kemp, ‘Soil

(Including Mud-brick Architecture)’, in Paul T. Nicholson and Ian Shaw (eds.), Ancient Egyptian Materials
and Technology, Cambridge: Cambridge University Press, 2000, especially p. 87.
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Fig. 63: Plan of the Small Aten Temple at Amarna (Eighteenth Dynasty), with
20-cubit grid according to Spence, left, and with 18-cubit grid according to
Mallinson, right (from Kemp and Rose, CAJ 1, figs. 4 and 6.
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Fig. 63: (cont.)
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applied to the Eighteenth Dynasty stone architecture at Amarna. Here the majority

of the blocks appear to have had fixed dimensions, about 1 cubit for the length and

about half a cubit for the breadth.49 Provided that the stones were laid out without

significant gaps between them and according to the solution adopted at the corners

(different junctions between 1-cubit blocks or blocks of a special shape), the final

length of a wall might correspond to a whole number of cubits. Achieving round

dimensions in their buildings, however, might not have been the reason why the

builders of Amarna used 1-cubit blocks. One of their main concerns was to build

a lot and quickly, and it is possible that it was decided to establish a fixed, easy

dimension for the blocks to be quarried for all the monuments, so that they could

be easily moved around and used anywhere they were required.50

Square grids and modules in architecture appear to have been used in Greece

during the Hellenistic Period, when cultural influences across the Mediterranean

were stronger. From the fourth century BC onwards, the once irregular column

spacing and the position of columns and walls of Greek temples started being laid

out on the basis of a uniform square grid, and there is evidence that some plans might

have been designed with the aid of drawings. In the late Hellenistic period, Greek

architects adopted a modular system in their temples, that is, a basic dimension

whose multiples and submultiples regulated the layout of the whole building.51 It is

possible that at some point these methods were imported into Egypt, as the second

century BC sketch of a column from the Ptolemaic temple of Phylae seems to

suggest, and that they even influenced the construction of several Meroitic temples

in the modern Sudan. According to Friedrich Hinkel, in some of these buildings the

façade happens to be 16 times a module corresponding to the diameter of a column

or, when there are no columns, the thickness of a wall.52

Concerning the earlier Egyptian architecture, from the general appearance of

their working drawings, the lack of scale, and the abbreviated way used to con-

vey information, it is clear that drawings were not the only method employed by

the ancient architects to plan and visualise their buildings. The surviving draw-

ings barely provide enough information about the two-dimensional layout of the

plans, and do not seem to have been the principal instrument to take decisions

about the three-dimensional aspects. This gap between the schematic drawings and

the actual buildings may have been filled by architectural models, which might

have been used to visualise in advance the real appearance of the construction

49 Günther Roeder, Amarna-Reliefs aus Hermopolis, Wissenschaftliche Veröffentlichungen Pelizeus-Museum zu
Hildesheim 6, Hildesheim: Gesterberg, 1969, p. 9.

50 On the subject, see Barry J. Kemp, ‘Tell el-Amarna 2000–01’, JEA 87 (2001), 17.
51 James J. Coulton, Greek Architects at Work, London: Paul Elek, 1977, pp. 66 and 71.
52 Friederich W. Hinkel, ‘Säule und Interkolumnium in der meroitischen Architektur. Metrologische Vorstudien

zu einer Klassification der Bauwerke’, Studia Meroitica 10 (1984), 231–67; ‘Ägyptische Elle or griechischer
Modul?’, Das Altertum 33/3 (1987), 150–62; also ‘The Process of Planning in Meroitic Architecture’ in Davies
(ed.), Egypt and Africa, pp. 220–5.
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Table 5. Architectural models of funerary and religious monuments

Building

represented Material Date Provenance Location Bibliography

Model of a step

pyramid

limestone ? Memphis University

College London

UC 16519

Petrie, Labyrinth,

p. 35.

Model of the

pyramid of

Hawara?

limestone Twelfth Dynasty Hawara University

College London

UC 14793

Petrie, Labyrinth,

p. 35.

Model of the

funerary

apartment of a

pyramid

limestone Twelfth Dynasty Dahshur Cairo Museum Arnold,

Amenemhet III.,
pp. 86–8.

Model of a temple

of Seti I

Basement:

quartzite

(missing parts:

limestone and

other stones,

bronze)

Nineteenth

Dynasty

Tell el-Yahudiya Brooklyn

Museum 49183

Badawy,

Wilbouriana 1,

pp. 1–23.

Model of (part of)

the temple of

Tôd

limestone Late Period Tôd Louvre E 14762 Bisson de la

Roque, Tôd,

p. 154.

without the distortions and illusions produced by the adoption of the graphic con-

ventions necessary to reproduce a three-dimensional reality on a two-dimensional

surface.

Architectural models

Votive objects

Models representing buildings are not rare from ancient Egypt, but we shall focus

on a small number only (table 5). The majority were votive or decorative objects

and can provide useful information about interesting architectural details, such as

materials, type of construction and decorations.53 The most famous group of models

comes from the Twelfth Dynasty tomb of Meketra and includes representations of

his house, of cattle-rearing, bread- and beer-making, a spinning- and weaving-

shop, a carpenter shop, some offering-bearers and a number of boats.54 A peculiar

example of architectural model that is worth mentioning is the T-shaped basin

with miniature quay and steps found in front of the main entrance to a chapel of

53 See, for example, Aylward M. Blackman, ‘A Painted Pottery Model of a Granary’, JEA 6 (1920), 206–8 for
the painted pottery model of a granary; Rainer Stadelmann, ‘Ein bemaltes Hausmodell in der ägyptischer
Sammlung der Universität Heidelberg’, MDAIK 18 (1962), 54–8 for a painted pottery model of a house. For the
pottery soul-houses, see the photographs in W. M. Flinders Petrie, Gizeh and Rifeh, BSAE ERA 13, London,
1907, chapter 6 and corresponding plates; see LÄ, vol. V, pp. 806–13 for a general bibliography.

54 Herbert E. Winlock, Models of Daily Life in Ancient Egypt from the Tomb of Meketre at Thebes, Metropolitan
Museum of Art, Egyptian Expedition 18, Cambridge, Mass.: Harvard University Press, 1955.
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the Workmen’s Village at Amarna.55 In general, these models are quite realistic in

terms of proportions, since men and cattle, women and looms, bearers and offerings

are represented in a coherent size in comparison to one another. There is no need,

however, to assume that they were realised to a consciously calculated scale.

In a model (just as in a drawing) the similarity in terms of shape, arrangement and

even relative size of the spaces may be respected, but at the same time the dimensions

of the model may not correspond to a precise reduction of the dimensions of the

actual building. Nevertheless, attempts to find a calculated scale have been carried

out on a couple of models, one representing a temple of Seti I and the other the

Ptolemaic temple at Tôd, with uncertain results. They are likely to have been votive

objects, rather than working models, and a precise reduction to scale does not seem

to have been the main concern of the sculptors who carved them.

The remains of the first consist of a large rectangular quartzite block, found at

Tell el-Yahudiya and now in the Brooklyn Museum in New York, which appears to

have been the base of a precious and elaborate model of a temple erected or planned

by Seti I. The inscriptions running all round the front and two sides describe the

various elements of the missing superstructure, which consisted of separately made

elements to be inserted into the sockets cut in the base (fig. 64). Alexander Badawy

reconstructed the missing parts by combining their description with similar elements

that have survived in other New Kingdom temples.56 For the sphinxes, he used the

proportions of those of Hatshepsut and Thutmosis III, for the two colossi he referred

to statues of Akhenaten and Ramses II, while the obelisks were reconstructed after

the obelisk now in Piazza del Popolo in Rome, originally erected by Seti I himself.

The breadth of the doorway in comparison with the size of the sockets for the pylon

led Badawy to the conclusion that the portal was a monumental gateway with an

Amarna-style broken lintel, rather than a typical pylon, which would have had more

elongated towers and a narrower doorway.

After ‘having reconstructed the elements of the model into a harmonious

whole’,57 Badawy attempted an evaluation of its scale. The restored elements,

however, having been given internal coherent proportions, cannot be considered of

any help, and in fact Badawy himself concentrated his calculations on the sole origi-

nal element of the base which could provide any information: the flight of stairs. He

suggested that 1 palm in the model corresponded to 3 cubits in the actual temple, that

is, a ratio of 1:18 if the small cubit (6 palms) was used (1 palm in the model = 3×6

palms in the temple), or 1:21 if the royal cubit (7 palms) was chosen as the unit

of measurement (1 palm in the model = 3×7 palms in the temple). Using these

55 Barry J. Kemp, ‘Preliminary Report on the el-Amarna Expedition, 1979’, JEA 66 (1980), 14 and ‘Patterns of
Activity at the Workmen’s Village’, Amarna Reports I, London: EES, 1984, chapter 1, p. 11.

56 Badawy, Dessin architecturale, figs. 236a and 236b and ‘A Monumental Gateway for a Temple of King Seti I
– An Ancient Model Restored’, Miscellanea Wilbouriana 1 (1972), 1–23.

57 Badawy, Miscellanea Wilbouriana 1, p. 4.

Pure Mathematical Physics



Fig. 64: Plan of the basement of the model of a temple of Seti I (Nineteenth
Dynasty), showing the sockets carved to accommodate architectural elements and
sculptures, and frontal view of Badawy’s reconstruction of the entire model (drawn
after Badawy, Miscellanea Wilbouriana 1, figs. 2 and 6).
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two scales, Badawy calculated two possible real values for the restored elements.

The obelisks, for example, would have been 1.250 m wide at the base and 11.433 m

high if the scale was 1:18, and 1.575 m wide and 14.406 m high if the scale was

1:21. Since, however, the model cannot be compared with any existing temple,

and since we cannot be sure that the missing elements of the model followed the

proportions of the actual monument, these calculations do not lead to any definite

conclusion.

Badawy suggested that this model could be a surviving example of a particular

feature of New Kingdom and Late Period scenes depicting foundation ceremonies.

When the king is shown performing the purification of the completed temple and

its presentation to the god, the temple is represented as a miniature shrine. Badawy

suggested that little models of the construction existed and that the basement found

at Tell el-Yahudiya belonged to one of them. In a literal interpretation of the founda-

tion scenes, the Brooklyn model would have just about the right size in comparison

with the figures of the king and the gods. It is possible, however, that the little shrine

which appears in scenes depicting foundation ceremonies was just a symbolic rep-

resentation of the whole temple, reduced in size and appearance to a ‘hieroglyph’

to be inserted in the scene.

Even if the connection with the foundation ceremonies cannot be proved, several

clues suggest that this model was indeed a votive object. The first clue lies in

the materials: the inscriptions on the basement list the missing parts together with

the materials of which they were made, that is, bronze for the doors and white

crystalline, mesdet and bekhen stone for the rest, including even the flagstaffs.

Apart from the first, they differ from the materials usually employed in similar

elements of real temples. The second clue is in its design: the model represents

the entrance of a sacred enclosure and the artist has focused on the composition

of the external elements, such as pylon, door, obelisks, statues and sphinxes, that

is, the elements which would be the distinctive features of that building from an

external, public point of view. The internal space is just outlined by the two parallel

walls, while the back is ignored.

It might be suggested that this was a study for the design of the façade of a temple,

but then the variety and preciousness of the materials employed in the model (and

carefully described in the inscriptions) would be difficult to explain. The presence

all round the base of the figure of Seti I kneeling and presenting offerings also seems

to confirm the votive character of the object. Whether the artist maintained in the

model the proportions of the façade of the actual temple or simply represented its

more distinctive features without respecting their numerical ratios, it is impossible

to ascertain. The second hypothesis, however, seems more likely.

A fragment of a peculiar architectural model, dating to the Late Period, was found

at Tôd. It is the plan of the northern corner of the first hall of the temple, in which
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Fig. 65: Fragment of a model of the northern corner of the first hall of the Ptolemaic
temple at Tôd (drawn after the photograph published by Bisson de la Roque, Tôd,
p. 154).

the base of the walls, and free-standing and engaged columns, are cut at 6 mm from

the level of the floor (fig. 65). Bisson de la Roque published a photograph and a

short description of the object, in which he identified the architectural elements. In

both the model and the actual temple, the distance between the two free-standing

columns is shorter than the distance between the latter and the two engaged columns.

In the model, the first distance is 7.5 cm, which is exactly 1 palm, while the second

is 8 cm. In the text, Bisson de la Roque wrote that these dimensions corresponded

to 4.50 m and 4.80 m in the actual temple, thus attributing a scale of 6:100 to

the model.58 However, according to the published plan of the temple, the distance

between free-standing columns is significantly less than the 4.50 m given by the

text; even assuming that the drawing is not absolutely precise, the aerial photograph

included at the beginning of the volume seems to confirm that the proportions of

the plan are more reliable than the dimensions given in the text.

Without a new survey to establish the precise dimensions of that part of the

temple, it is safer for the moment to abandon the attempt to calculate a scale and

conclude that the model is a miniature plan outlined by means of simple units of

measurement, not necessarily corresponding to the actual construction. In the model

the diameter of the bases of the columns corresponds to 2 fingers (about 3.7 cm); the

58 Bisson de la Roque, Tôd, p. 154. This scale, even if wrong, can be better expressed as 1:60 palms.
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distance between the axes of free-standing columns, as we have seen, corresponds

to 1 palm (7.5 cm); and the distance between free-standing and engaged columns

(8 cm) can be expressed as 1 palm + 1
4

finger. The artist might have chosen to

represent the plan of the temple (or a part of it) in an approximate but realistic way,

choosing ‘simple’ dimensions such as 1 palm and 2 fingers for the main elements.

In this case, it is likely that this model was part of a votive object, rather than an

architectural plan.

Finally, it is worth mentioning the model of a step pyramid found at Memphis by

Petrie, which he thought might be the a model of the ‘step pyramid of Saqqareh’59

(fig. 66). This model cannot be identified with a precise monument for several

reasons. First of all, nothing is known about the circumstances of its discovery,

apart from the fact that it was found at Memphis,60 and its date is impossible to

establish. The model consists of a large limestone block cut in at least seven steps,

of which six still remain, while only a fragment of the seventh survives. It is the

representation of a step pyramid, but it does not seem to have been a working model,

since it lacks the precision that this would have required. The overall appearance

of a step pyramid is well rendered, but the steps are very roughly outlined, their

corners are blunted and irregular, and there is a consistent discrepancy in the depth

of the steps of two adjacent sides.61

If it represented the pyramid of Djoser, as Petrie suggested, it must be noted that

the model does not show the specific feature of that pyramid, that is, its rectangular

plan. The model cannot be identified with certainty as any existing step pyramid.

Its outline, that is, the imaginary line connecting the steps from the ground to the

top, is about 63◦, much steeper than the funerary monuments of Djoser (about

52◦), Sekhemkhet (about 50◦), the so-called Layer Pyramid at Zawiyet el-Aryan

59 W. M. Flinders Petrie, The Labyrinth, Gerzeh and Mazghuneh, BSAE ERA 21, London, 1912, p. 35. Photographs
of both models were published by Iorweth E. S. Edwards, The Pyramids of Egypt, London: Penguin Books,
1993 (revised edition), pl. 61.

60 Petrie, Labyrinth, 35. According to Edwards (Pyramids, p. 260) the model was purchased and not directly
found by Petrie.

61 This model, therefore, does not provide any answer to the discussion about the exact shape of the steps, that is,
whether they had all the same ‘riser’ (as they are generally represented) or whether it diminished towards the
top (as suggested by Vyse and Perring in Operations Carried On at the Pyramids of Gizeh, London: Fraser,
1840–2, pl. A, according to whom the steps were 22, 21, 20 19, 18 and 17 cubits high, and Legon in ‘The 14:11
Proportion at Meydum’, DE 17 (1990), 15–22), and whether the ‘tread’ was flat or sloping. The major step
pyramids are generally reconstructed with sloping steps (as in Rainer Stadelmann, Die Ägyptischen Pyramiden,
Mainz: Von Zabern, 1985, figs. 18 and 19 and Edwards, Pyramids, figs. 6 and 13). The pyramid of Meidum is
usually represented with flat steps (Vito Maragioglio and Celeste Rinaldi, L’architettura delle Piramidi Memfite,
Torino: Artale, 1963–77, vol. iii, pl. 2, fig. 2; Stadelmann, Pyramiden, fig. 21, although in LÄ, vol. IV, p. 1220
he adopted sloping steps; see also Jean-Philippe Lauer, Le mystère des pyramides, Paris: Presses de la Cité,
1988, p. 235 and Gay Robins and Charles Shute, ‘The 14 to 11 Proportion in Egyptian Architecture’, DE 16,
1990, 75–80 for calculations of their proportions) and its satellite might have had the same shape (Maragioglio
and Rinaldi, Piramidi MDAIK 38 (1980), 83–95, fig. 3) suggested flat steps for their reconstructions of the step
pyramid at Sinki. Jánosi suggested two possible reconstructions of the casing of GIIIb and c, of two queens
of Menkaura: one with flat and one with sloping steps (Peter Jánosi, Die Pyramidenanlagen der Königinnen,
Vienna: Österreichischen Akademie der Wissenschaften, 1996, pp. 86–7 and fig. 33).
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Fig. 66: Plan and elevation of the model of a step pyramid (date unknown), Petrie
Museum of Egyptian Archaeology, University College London, UC 16519.
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(about 47◦) and the original pyramid at Meidum (about 52◦). Nothing precise is

known about the slope of the unfinished northern pyramid at Zawiyet el-Aryan and

of the ‘destroyed’ pyramid 29 at Saqqara, and very little can be said of the various

small step pyramids scattered all over Egypt, dating to the reign of Huni, which

were possibly cenotaphs or landmarks of the royal power, rather than tombs.62

However, it is unlikely that the outline of any of these monuments reached the 63◦

of the model, a slope which would only be achieved very late in the history of true

pyramids. Therefore, this model does not seem to have been specifically connected

with the project or the construction of a step pyramid. It may have been a votive

or decorative object, such as the basis for a divine image, but the absolute lack of

information about its finding-spot and its date prevents any precise conclusion.

Working models

Among the mass of votive objects, there are a few architectural models that can

be related to the planning and building process. The most important one is the

model of a funerary apartment in a pyramid, probably dating to the late Twelfth

Dynasty, which was found carefully buried in the Valley Temple of Amenemhat

III at Dahshur63 (fig. 67). The model is not to a calculated scale, the rooms being

grouped and represented in a clear, but schematic and abbreviated way. Dieter

Arnold suggested that this may have been an early project for the interior of the

Hawara pyramid, used by the architects to study a first distribution of the rooms.

The project was later modified, and possibly a more precise and detailed model was

then realised to assist the builders during the construction of the monument.

Curiously enough, at Hawara Petrie found a limestone fragment which he iden-

tified as a model of the ruined pyramid of Amenemhat III.64 This fragment (fig. 68)

consists of a small limestone pyramid with four smooth faces and a very irregular

and rough base. Narrow tool marks are visible all around the uppermost part, and

the slope of its faces is about 47◦–48◦. The casing of the pyramid of Hawara has

completely disappeared, apart from a few loose blocks, from which Petrie obtained

three different values: 48◦45′, 49◦51′ and 52◦45′, the lowest being very close to the

slope of the model.65 It would be tempting to see this small pyramidal fragment as

another piece of a large model of the Hawara complex prepared by the architects

of Amenemhat III, but unfortunately there is no evidence that this was the case. It

62 Günter Dreyer and Werner Kaiser, ‘Zu den kleinen Stufenpyramiden Ober- und Mittelägyptens’, MDAIK 36,
1980, 43–59. According to the reconstruction of the step pyramid at Sinki by Dreyer and Swelim, its outline
may have been around 50◦ (Dreyer and Swelim, MDAIK 38, fig. 3).

63 Arnold, Amenemhet III., pp. 86–8. 64 Petrie, Labyrinth, p. 35 and pl. 27.
65 W. M. Flinders Petrie, Kahun, Gurob and Hawara, London: Kegan Paul, Trench and Trübner, 1890, p. 13.
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Fig. 67: Model of the funerary apartment in a late Twelfth Dynasty pyramid (from
Arnold, Amenemhet III., pl. 66).
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Fig. 68: Plan and elevation of the model of the pyramid of Amenemhat III at
Hawara (?) (Twelfth Dynasty), Petrie Museum of Egyptian Archaeology, Univer-
sity College London, UC 14793.
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might have been an independent model or even the upper part of a pyramidion, the

capstone of a pyramid.66

To the Ptolemaic period belong a number of architectural models representing

capitals or portions of columns, which do not show any indication of having been

parts of larger models.67 Their dimensions range from a few centimetres to al-

most one metre. Some of the small models are just approximations of architectural

details, while others, especially the largest, were carved with a certain precision.

Some of them might have been votive objects without any direct link with the

building process, but in the case of the most accurate examples I would suggest

that their function corresponded to that of the Greek paradeigmata, the models

of architectural elements such as triglyphs and capitals that were provided by the

architects at the beginning of the works to illustrate the details of their projects. In

the Hellenistic period, while Egypt was ruled by the Ptolemies, these models might

have been to a precise scale.68 Since all the small models of columns and capitals

found in Egypt seem to belong to the Ptolemaic period, it is not illogical to suppose

that their function was the same of the paradeigmata.

The doubt remains whether this system was imported from Greece to Egypt or

the other way around, but what it is really important is that during the Hellenistic

Period these methods were spread and transmitted across the Mediterranean. This

suggests that a comparison with the more abundant Greek sources on architects and

architectural projects might cast new light on some still obscure aspects of ancient

Egyptian architecture, at least concerning the planning and building process adopted

from the seventh century BC onwards, when monumental architecture started to

appear in Greece. For the previous periods, we can rely only upon the available

archaeological material found in Egypt. Among all the uneven and discontinuous

evidence, a unique chance to follow the methods used by architects and workmen

from the beginning to the end of the planning and building process is provided

66 The little pyramid does not rest on a proper base, since the lower edge seems broken, rather than unfinished,
and it is not even horizontal. It might even be suggested that this was not a model of the pyramid, but the
uppermost part of its capstone, the pyramidion, if only Middle Kingdom kings did not appear to have preferred
dark stones for their pyramidia. On the other hand, it must be borne in mind that nothing is known about
the pyramidia of Middle Kingdom secondary pyramids. In the area of the pyramid of Hawara, there are the
remains of the tomb of Neferuptah, daughter or queen of Amenemhat III, reconstructed by Farag and Iskander
as a mud-brick pyramid cased with limestone (Nagib Farag and Zaky Iskander, The Discovery of Neferwptah,
Cairo: Government Press, 1971). Absolutely nothing, however, remains of the superstructure. Maragioglio and
Rinaldi assumed the existence of a pyramid only because its plan was almost square (Vito Maragioglio and
Celeste Rinaldi, ‘Note complementari sulla tomba di Neferu-Ptah’, Orientalia 42 (1973), 357–69) and recently
Jánosi concluded that there is no evidence at all that the tomb had the form of a pyramid (Pyramidenanlagen,
p. 70).

67 See, for example, the five fine models held in Berlin (nos. 991–995 in Staatliche Museen Preussischer
Kulturbesitz, Ägyptisches Museum Berlin, Berlin: Östlicher Stülerbau, 1967, p. 101 and corresponding plate,
also published by Badawy, Gazette des Beaux-Arts 107, p. 55), the three models held in Cairo (nos. 33395-7,
in Campbell C. Edgar, Sculptor’s Studies and Unfinished Works, CG, Cairo: SAE, 1906, pp. 49–50 and pl. 20).
Models of various size are held in several major museums.

68 Coulton, Greek Architects, pp. 55–7.
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by the material accumulated in years of studies on Deir el-Medina and the royal

necropoleis, to which the next chapter is entirely dedicated.

Projects and works in the Nineteenth and Twentieth Dynasty royal tombs

Documents on the works

The Valley of the Kings, the Valley of the Queens and Deir el-Medina, the village

that housed the workmen in charge of the royal necropoleis, provided a large number

of documents directly or indirectly relating to the quarrying of the royal tombs. The

surviving fragments of texts on various subjects allow us to catch a glimpse of

what life in the village and in the valleys must have been like about thirty-three

centuries ago. Life at Deir el-Medina rotated around the construction of tombs.

A precise hierarchy regulated the activity of workmen divided into gangs, chief

workmen, guardians, doorkeepers, scribes, administrators and policemen. Their

families formed a lively community in the village, and the boys that were expected

to remain there and join the group of workmen were called ‘children of the Tomb’.69

Among the mass of material including personal letters, administrative records,

requests of supplies and private quarrels, there are a number of documents (texts

and drawings on ostraca and papyri) that more strictly deal with the architectural

aspect of the work. The majority are short texts recording the progress of the work

to a certain date, but there are also more or less detailed drawings of elements

or whole tombs. Some of these documents were listed and studied by Jaroslav

Černy, who also suggested a first identification of the descriptions with existing

tombs.70 Demarée then published a list including a number of other documents, and

classified the material into three groups: plans, lists of measurements and journals.71

More recently, after the work of the Theban Mapping Project in the Valley of the

Kings, it finally has been possible to compare the ancient documents with reliable

surveys of the tombs as they were completed.72 This comparison yielded interesting

information on many aspects of the work and allowed the correct identification of

the tombs described on some of the documents.73 Table 6 lists all of these documents

accompanied by an updated select bibliography.74

69 Jaroslav Černy, A Community of Workmen at Thebes in the Ramesside Period, BdE 50, Cairo: IFAO, 1973.
70 Jaroslav Černy, The Valley of the Kings, BdE 61, Cairo: IFAO, 1973, pp. 23–34.
71 R. J. Demarée, ‘ “Royal Riddles” ’, in R. J. Demarée and A. Egberts (eds.), Village Voices, Leiden: Centre of

Non-Western Studies, Leiden University, 1992, pp. 9–18.
72 Theban Mapping Project, Atlas of the Valley of the Kings, Cairo: American University in Cairo Press, 2000.
73 Corinna Rossi, ‘The Plan of a Royal Tomb on O. Cairo 25184’, GM 184 (2001), 45–53; ‘The Identification of

the Tomb Described on O. BM 8505’, GM 187 (2002), 97–9; also JEA 87, 73–80.
74 In comparison with Černy’s and Demarée’s lists, this one includes also Ostracon Strasburg H.122 (K. A.

Kitchen, Ramesside Inscriptions, VII, Oxford: Blackwell, 1989, pp. 288–9; see also Koenig Yvan, Les ostraca
hiératiques inédits de la Bibliothèque nationale et universitaire de Strasbourg, DFIFAO 33, Cairo: IFAO, 1997,
pls. 44–7, and Cathleen A. Keller, ‘The Draughtsmen of Deir el-Medina: A Preliminary Report’, NARCE 115
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All of the texts and drawings concern works done in the Valley of the Kings and

the Valley of the Queens in about two hundred years, between the reigns of Ramses

II and Ramses IX. They provide a large amount of information on several aspects of

the planning and building process, from the symbolic function of each architectural

element to some of the technical solutions adopted during construction, from the

theory of the project to the practice of the quarrying process.

The function of each part of a tomb was mirrored by its specific title75 (see

figs. 69 and 71). The internal corridors, generally up to four in total, were called

‘god’s passages’, while the external approach bore the name of ‘god’s passage

which is upon the sun’s path’. Niches called ‘the sanctuaries in which the gods of

the west/east repose’ could be found on both sides of the third corridor, while the

small recesses placed at the end of the fourth corridor were called ‘doorkeeper’s

rooms’. The last corridor led to a ‘hall of hindering’, or ‘hall of denial of access’,

where, in the earliest tombs, a deep vertical shaft was quarried. This may be followed

by a ‘chariot hall’, also called ‘another hall of repelling rebels’, sometimes followed

by a ‘hall of truth’. The burial chamber was called ‘house of gold’ or ‘the hall in

which one rests’. In some cases there were further corridors, and secondary rooms

and recesses, called ‘resting place of the gods’ and ‘treasuries’.76 Not all of these

chambers appear in every tomb, and some of these terms are to be found also in the

descriptions of tombs of queens and princes.

It is sometimes difficult to draw a line between practical and symbolic functions.

The ‘hall of hindering’ or ‘hall of denial of access’, the room occupied by the

vertical shaft, may have had a function of protection not only from ill-intentioned

intruders, as its title seems to suggest, but also from sudden floods, that must have

proved particularly disruptive for very steep tombs like the earliest examples in the

Valley of the Kings.77 A practical reason may well have had a symbolic counterpart;

in fact, it has been suggested that, at least for the Eighteenth Dynasty tombs, the

(1981), 14). This list does not include, however, Ostracon Michaelides 71 (verso 2–3), which mentions the
opening of a chamber in a late Nineteenth Dynasty tomb (Hans Goedicke and F. Edward Wente, Ostraka
Michaelides, Wiesbaden: Harrassowitz, 1962, p. 20 and pl. 69), and Ostracon Cairo 72452, which refers to
the beginning of the work in the tomb of Tawosret (K. A. Kitchen, Ramesside Inscriptions, vol. iv, Oxford:
Blackwell, 1982, p. 404. See also Hartwig Altenmüller, ‘Bemerkungen zu den Königsgrabern des Neuen
Reiches’, SAK 10 (1983), 25–61, especially 45, note 52, and ‘Der Begräbnistag Sethos’ II.’, SAK 11 (1984),
37–47, corrected by Wolfgang Helck, ‘Drei Ramessidische Daten’, SAK 17 (1990), pp. 205–14, especially
208–10), since neither of them contain information on the dimensions of these tombs. For Ostracon BM8505,
Ostraca Cairo 25581 (recto), 25538, 25536 (recto) and 25537, Ostraca Turin 57036 and 57037, see respectively:
S. Birch, Inscriptions in Hieratic and Demotic Character in the Collections of the British Museum, London:
British Museum, 1868; Jaroslav Černy, Ostraca Hiératiques, CG, Cairo: SAE, 1935; Jesús López, Catalogo del
Museo Egizio di Torino, Serie Seconda – Collezioni, vol. III, Fascicolo I: Ostraca ieratici, Milano: Cisalpino-La
Goliardica, 1978.

75 Carter and Gardiner, JEA 4, 130–58; Černy, Valley of the Kings, pp. 23–34; Demarée, Village Voices, pp. 9–18.
See also Erik Hornung, ‘Struktur und Entwicklung der Gräber im Tal der Könige’, ZÄS 105 (1978), 59–66.

76 See the scheme of an ideal tomb by Demareé, Village Voices, figs. 1 and 2.
77 Elizabeth Thomas, Royal Necropoleis of Thebes, Princeton, 1966, p. 278 and ‘The “Well” in Kings’ Tombs of

Bibân el-Molûk’, JEA 64 (1978), 80–3; Raphael Ventura, ‘The Largest Project for a Royal Tomb in the Valley
of the Kings’, JEA 74 (1988), 139.
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well might be symbolically connected to the subterranean ‘aquatic region’ of the

Amduat.78 Either because the importance of this symbolic link faded, or because

the practical considerations of construction were stronger than anything else, when

the slope of the later tombs decreased considerably (together with the potential

damage due to a sudden flood), the floor of the ‘hall of hindering’ ceased to be cut

away and the well disappeared.

Texts and drawings providing the dimensions of various elements of a tomb use

as a unit of measurement the royal cubit, divided into seven palms, each divided

into four fingers.79 From the comparison between the descriptions contained in

these documents and the actual tombs as they were completed, it is possible to

reconstruct some interesting aspects of the way the space was perceived, measured

and represented. For example, there is a striking lack of any record of the slope of

the corridors, which may be one of the reasons why in a few cases newly quarried

tombs ran into older burials. It might even be suggested that the risk of colliding

with older tombs, of which only the position of the entrance was known, was one

of the reasons for the progressive reduction of the slope of the later tombs. Another

important point is that the Egyptians apparently measured the length of a sloping

corridor along the actual surface of the floor, unlike our modern plans, where we

represent and measure its projection on a horizontal plane.80 This assumption is in

line with the fact that ancient Egyptian architectural drawings were not drawn to

a calculated scale, and lacked any type of foreshortening or ‘flattening’ due to a

projection on an ideal plane.

Another interesting aspect is the passage from the theory of the project to the

practice of the construction. In the case of royal tombs, as probably in the more

general cases of rock-cut tombs or temples, the characteristics of the rock and

the techniques of excavation must have had a constant and significant influence

on the development of the work.81 A number of more or less important details

must have depended on a certain degree of improvisation. For example, one of

the four niches in KV 6, tomb of Ramses IX, the one above KV 55, was left

unfinished in order to avoid a collision with another subterranean tomb.82 In the

Amarna Royal Tomb, Lehner suggested that the axis of the corridor labelled as 1

was not at a right angle with the corridor B in order to avoid interference with the

78 Friedrich Abitz, Die religiöse Bedeutung der sogenannten Grabräuberschächte in den ägyptischen
Königsgräbern der 18. bis 20. Dynastie, Wiesbaden: Harrassowitz, 1974, and Claude Vandersleyen, ‘Le sens
symbolique des puits funéraires dans l’Egypte ancienne’, CdE 50 (1975), 151–7.

79 About the use of other units of measurements see the discussion about the neby in Hayes, Sen-mut, pp. 21–2;
Claire Simon, ‘Le nbi at le canon de proportions’, JEA 79 (1993), 157–77, challenged by Gay Robins, ‘On
Supposed Connections Between the “Canon of Proportions” and Metrology’, JEA 80 (1994) 191–4; Elke Roik,
‘Auf der Suche nach dem “true nbj measure” ’, DE 34 (1996), 91–115, challenged by John A. R. Legon, ‘The
quest for the true nbj measure’, DE 36 (1996), 69–78.

80 Rossi, JEA 87, 73–80. 81 Černy, Valley of the Kings, p. 9.
82 Nicholas C. Reeves and Richard H. Wilkinson, The Complete Valley of the Kings, London: Thames and Hudson,

1996, p.169.
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room � (fig. 45).83 Significant changes in the plan were adopted in emergencies,

such as a collision with another tomb. In the worst accident, Sethnakht abandoned

the tomb he had started (KV 11) when its straight axis collided with KV 10, the

tomb of Amenmesse. Later Ramses III took over and completed the tomb along a

shifted axis, adopting a rising corridor as a solution to avoid the underlying chamber

of KV 10.84

Recording the progress: from the project to the survey

From the study of these documents as a group, it is possible to suggest a reconstruc-

tion of the whole building process from the project to the actual monument. The

general dimensions of tombs must have been decided in advance, as it is proved by

Papyrus Turin 1923 and related fragments, and by Ostracon Cairo 25184, contain-

ing the plan of a tomb identified as KV 6, the tomb of Ramses IX (fig. 69). Papyrus

Turin 1923 is a peculiar and complicated text that records the calculations carried

out by the scribe to establish how many cubic cubits had to be removed in one

year in order to complete in three years the project of enlargement of KV 9, started

for Ramses V and then taken over by Ramses VI.85 The dimensions of rooms and

corridors are expressed in whole cubits, just as in Ostracon Cairo 25184, the plan

identified as the project for KV 6 (Ramses IX). This tomb, apart from minor vari-

ations, seems to have been completed according to the general design envisaged

by the plan on ostracon, but not necessarily to the dimensions anticipated by the

project.86

In general, it seems that the projects were laid out according to a set of simple,

linear dimensions expressed by whole numbers of cubits, which were meant to

act as a guide but not as a strict rule. The three surviving corridors mentioned in

Ostracon Cairo 25184 and the first two of Papyrus Turin 1923, for example, are all

supposed to be 30 cubits long (c. 15.70 m), and the other dimensions are always

rather ‘simple’ numbers of whole cubits, but in fact only a few corridors in the whole

Valley of the Kings, including those of KV 6 (Ramses IX), ever reached that length.

We may conclude that at the very beginning of the work an official plan was drawn,

probably on papyrus, containing the design of the internal arrangement of the tomb

and a general idea of its size based on simple sets of dimensions. Apparently, the

slope was not one of the aspects taken into account in advance. If such a general

plan on a papyrus ever existed, no example has survived, but Ostracon Cairo 25184,

83 Lehner, Martin, Royal Tomb at el-Amarna, p. 7.
84 Reeves and Wilkinson, Complete Valley of the Kings, pp. 159–61.
85 Ventura, JEA 74, 145. Another case where the volume of rock to be removed for each room was recorded is

Ostracon Strasburg H.122.
86 Rossi, GM 184, 45–53.
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Fig. 69: Ostracon Cairo 25184 (drawn after the photograph published by Daressy,
Ostraca, pl. 32; the hieratic text accompanying the drawing has been omitted) and
plan of KV 6, the tomb of Ramses IX, Twentieth Dynasty (drawn after Weeks,
NARCE 105, sheet 7; names of chambers taken from Černy, Valley of the Kings,
chapter III and Demarée, Village Voices, figs. 1 and 2).
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Table 6. Documents on the architectural work in some Nineteenth and Twentieth Dynasty tombs

Document Contents Tomb Attribution Bibliography

Papyrus Cairo 86637 (verso XX) List of parts of a tomb with dimensions Unknown (time of Ramses II) Černy (Valley of the Kings, p. 25) by

palaeography

Bakir, Cairo Calendar, p. 56, pls. 50

and 50a.

Ostracon Michaelides 53 List of parts of a tomb with dimensions Unknown (first half of the Nineteenth

Dynasty)

Demarée (Village Voices, p. 14), by

palaeography

Goedicke and Wente, Ostraka
Michaelides, p. 22, pl. 81.

Ostracon Cairo 25581 (recto) List of parts of a tomb with dimensions Unknown (time of Merenptah) Černy (Valley of the Kings, p. 25) by

palaeography

Černy, Ostraca, pp. 29 and 52*, pl. 52.

Ostracon Michaelides 92 List of parts of a tomb with dimensions Unknown (time of Merenptah) Demarée (Village Voices, p. 14), by

palaeography

Goedicke and Wente, Ostraka
Michaelides, p. 22, pl. 81.

Ostracon Berlin B + British Museum

65944 (Nash 10)

List of parts of a tomb with dimensions Uncertain (possibly Amenmesse or

Seti II)

Unpublished.

Ostracon Cairo 25538 List of parts of a tomb with dimensions KV 15-Seti II Černy (Valley of the Kings, p. 26) by

the name of the vizier

Černy, Ostraca, pp. 16 and 34*, pl. 23.

Ostracon Cairo 51936 Sketch of a four-pillared hall Uncertain (possibly Seti II or Siptah) Reeves, Rossi, by comparison with the

plan

Engelbach, ASAE 27, pp. 72–5;

Reeves, CdE61, pp. 43–9.

Ostracon Cairo 25536 (recto) List of work done in a tomb with

dimensions

KV 47-Siptah Černy (Valley of the Kings, p. 26) by

the name of the vizier

Černy, Ostraca, pp. 16 and 33*, pl. 23.

Ostracon Cairo 25537 List of work done in a tomb with

dimensions

Černy (Valley of the Kings, p. 26) by

the name of the vizier

Černy, Ostraca, pp. 16 and 34*, pl. 22.

Ostracon DeM (private collection) List of doors of a tomb with

dimensions

Unknown (late Nineteenth or early

Twentieth Dynasty)

Demarée, by palaeography Demarée, Village Voices, pp. 9–18.

Ostracon Strasburg H.112 (recto and

verso)

List of work done in a tomb with

dimensions

QV 44-Khaemwaset (son of Ramses

III)

By comparison with the plan Kitchen, Ramesside Inscriptions VII,

pp. 288–9; Koenig, Ostraca
hiératiques, p. 9, pls. 44–7; Keller,

NARCE 115, p. 14.

Ostracon Turin 57036 List of parts of a tomb with dimensions Sons of Ramses III López, by the name of the king López, Ostraca, p. 28.

Ostracon Turin 57037 List of parts of a tomb with dimensions López, by palaeography López, Ostraca, p. 28.

Papyrus Turin 1885 (recto) Plan of a tomb with dimensions KV 2-Ramses IV Lepsius, by comparison with the plan Lepsius, Abhandlungen 1867, pp.

1–22; Carter and Gardiner, JEA 4,

pp. 130–58.

Ostracon Cairo (number not known) Sketch of flight of stairs and door Reeves, by comparison with the plan Clarke and Engelbach, Ancient
Egyptian Masonry, p. 52, fig. 52;

Reeves, CdE 61, pp. 43–9.

Papyrus Turin 1885 (verso) List of parts of a tomb with dimensions KV 9-Ramses V–VI Gardiner, by chronology Carter and Gardiner, JEA 4, pp. 144–9.

Papyrus Turin 1923 (verso) +
fragments

List of parts of a tomb with dimensions Černy (Valley, p. 25) by the regnal year Ventura, JEA 74, pp. 137–56.

Ostracon British Museum 8505

(recto and verso)

List of parts of a tomb with dimensions QV 51-Queen Isis (Ramses VI) Rossi, by comparison with the plan Birch, Inscriptions, pl. 6; Černy and

Gardiner, Ostraca I, pl. 82, 3; Rossi,

GM 187, pp. 97–9.

Ostracon Cairo 25184 Plan of a tomb with dimensions KV 6-Ramses IX Daressy, by comparison with the plan Daressy, Revue Archéologique 32,

pp. 235–40; Rossi, GM 184,

pp. 45–53.
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Fig. 70: Ostracon Cairo 51936, Nineteenth Dynasty (drawn after comparison
between the original and the photograph published by Engelbach, ASAE 27,
unnumbered plate).
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Fig. 71: Papyrus Turin 1885 (drawn after Scamuzzi, Museo Egizio di Torino,
pl. 87; the hieratic text accompanying the drawing has been omitted) and plan
of KV 2, the tomb of Ramses IV, Twentieth Dynasty (drawn after Weeks,
NARCE 109, p. 10; names of chambers taken from Carter and Gardiner, JEA 4).

the plan of KV 6 (Ramses IX), could be a working copy of this initial plan, meant

to be used on the spot by the architect to direct the excavation.

After the beginning of the digging, progress was then recorded from time to time

on ostraca and papyri. These documents (the majority of those listed in table 6)

enumerate elements of the tomb, completed at a certain date, with their exact

dimensions expressed in cubits, palms and fingers. Since, evidently, the dimensions

of the actual tomb were not expected to correspond exactly to the general, initial
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plan, the measurements of the completed elements were probably recorded to prove

not only that the work was being carried out, but also that it was being carried

out with accuracy. It was at this stage that many details were decided, probably

including the final dimensions of the chambers. Ostracon Cairo 51936, for instance,

contains the sketch of a four-pillared room (of Seti II or Siptah) and bears traces

of the train of thought of the ancient draughtsman, who seems to have drawn lines

and numbers, changed his mind a couple of times and scratched the surface of

the ostracon to cancel what he had discarded87 (fig. 70). This ostracon, therefore,

probably represents a working plan made on the spot to decide the final dimensions

of that pillared hall, presumably until that moment only vaguely established.

Finally, from the existence of Papyrus Turin 1885 recto, it may be inferred

that at the very end of the work a final survey took place in order to record every

important detail. This papyrus contains one of the most fascinating ancient Egyptian

architectural drawings, the plan of KV 2, tomb of Ramses IV (fig. 71). That this

was a survey and not a project may be inferred by the fact that the sarcophagus

is represented in its place surrounded by a nest of wooden shrines. This drawing

was not just a technical reminder, but a careful and decorative representation of the

completed work, embellished by details such as the miniature sarcophagus and the

hatched surface representing the mountain into which the tomb had been quarried.

Again, as in the case of other surveys, the written dimensions are expressed in

cubits, palms and fingers.

In general, if we consider the whole process from the initial project to the de-

velopment of the work down to the actual tomb, the final result appears to be

a compromise between ritual ideas and practical considerations, which does not

seem to leave room for the idea that dimensions could have been of specific, nu-

merical interest. In the case of rock-cut tombs, the nature of the work and of the

rock might have a strong influence on the final result, whereas in the case of a

building started and built on a flat surface the dimensions could be established in

advance on the ground. This is probably what the Egyptians did in their foundation

ceremonies, which will be the subject of the next chapter.

87 Engelbach, ASAE 27, 72–6; Reeves, CdE 61, 43–9.
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Foundation ceremonies

The ritual sequence

From the First Dynasty down to the Ptolemaic Period the Egyptians performed
a ritual ceremony for the foundation of sacred buildings in which practical and
symbolic actions were closely interlaced. In the elaborated version of the Ptolemaic
Period,1 this ceremony consisted of ten different steps:

– the king departs from his palace;

– the king arrives on the site of the new temple;

– the king and the goddess Seshat2 drive into the ground two poles around which a rope is

extended. This operation is called pd-šsr, ‘stretching the cord’. Some of the spells which

are associated with this scene explicitly state that in this way the orientation of the temple

and its four corners were fixed;3

– the king digs the foundation trench down to the water-table, ‘as far as the limit of Nun’,

the primeval ocean;4

– the king moulds four bricks for the four corners of the temple;5

1 For a translation of the texts of the foundation ceremonies, see Pierre Montet, ‘Le rituel de fondation des temples
égyptiennes’, Kêmi 17 (1964), 74–100. For a detailed description of the sequence, see also James Morris
Weinstein, ‘Foundation Deposits in Ancient Egypt’, Ph.D. thesis, University of Pennsylvania, 1973, chapter 1.
For the foundation rituals in general see also E. Lefébure, Rites égyptiennes, construction et protection des
édifices, BCA 4, Paris: Leroux, 1890 (chapters 3–6 are dedicated to temples) and Alexandre Moret, Du caractère
religieux de la royauté pharaonique, Paris: Leroux, 1902, chapter 4.

2 For the history and function of the goddess Seshat see Gerald A. Wainwright, ‘Seshat and the Pharaoh’, JEA 26
(1940), 30–40.

3 Edfu ii, 31; iii 105; iii 167; vii 44–5. Johannes Dümichen, Baugeschichte des Denderatempels, Strasburg:
Trübner, 1877, pls. 60 and 66.

4 Edfu ii, 60.
5 According to Montet, the four bricks represented the thousands of bricks which were employed for the foundation

of the four corners, which were the weakest points of the structure (Kêmi 17, p. 89). Weinstein suggested instead
that, even if stone was the building material for New Kingdom and Ptolemaic temples, bricks were inserted in
order to recall the ancient practice of using light materials (‘Foundation Deposits’, pp. 12–3).
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– the king pours sand in the foundation trench, thus providing a compact surface on which

to build;6

– the king places a number of stone or metal plaques at the four corners of the temple.

In the representations in the Temple of Edfu, the plaques are seventeen,7 while at Dendera

they are twenty-four;8

– the king moves into place the first stone block;

– the king purifies the completed temple by throwing natron all around the building,9

represented as a small shrine;

– the king presents the temple to the god. Once more, the temple is represented as a

miniature.

The action corresponding to the third step in the Ptolemaic ritual, the ‘stretching

of the cord’, appears to have been the name of the foundation ceremony already

at the time of the Palermo Stone, which records two similar events.10 A worn out

door-jamb of King Khasekhemwy, rediscovered by chance in the Cairo Museum

by Reginald Engelbach, seems to have been covered with a representation of a

foundation ceremony11 (fig. 72), although the surface is too erased to allow a

precise interpretation of the details. The best Old Kingdom representations of this

ceremony are a fragmentary relief showing Snefru and Seshat hammering poles12

(fig. 73) and a large fragment from the sun temple of Neuserra, which shows the king

kneeling in front of a foundation deposit and then performing twice the ‘stretching

of the cord’ together with a goddess13 (fig. 74).

References to the foundation ceremonies became quite common in the Middle

Kingdom.14 In this period the ritual placing of votive offerings in foundation

deposits at special points of important buildings15 also assumed a more precise

6 It is not unlikely that the sand had also a symbolic meaning, recalling the primeval mound which emerged from
the Nun.

7 Montet, Kêmi 17, p. 91. 8 Dümichen, Baugeschichte, pl. 52.
9 According to Blackman and Fairman, ‘the Rite of Consecration of a temple employed at Edfu consisted partly, if

not entirely, in a version of the Opening of the Mouth, the sequence and character of the ceremonies composing
the rite suggesting that first of all it was performed on behalf of the cult-statues (. . .) and that then the “Mouth
of the Temple” itself was opened’ (Aylward M. Blackman and Herbert W. Fairman, ‘The Consecration of an
Egyptian Temple According to the Use of Edfu’, JEA 32 (1946), 85).

10 Edouard Naville, ‘La Pierre de Palerme’, Recueil des Travaux 25 (1903), especially 70 and 73 and pl. 1 A;
Heinrich Schäfer, Ein Bruchstück Altägyptischer Annalen, Berlin: Königliche Akademie der Wissenschaften,
1902, pp. 22 and 29; Toby A. H. Wilkinson, Royal Annals of Ancient Egypt: The Palermo Stone and Its
Associated Fragments, London/New York: Kegan Paul International, 2000, pp. 111–2 and 139.

11 Reginald Engelbach, ‘A Foundation Scene of the Second Dynasty’, JEA 20 (1934), 183–4.
12 Ahmed Fakhry, The Monuments of Sneferu at Dahshur, Cairo: Government Press, 1961, vol. ii, part i, p. 94

and figs. 84–95.
13 Ludwig Borchardt and Heinrich Schäfer, ‘Vorläufiger Bericht über die Ausgrabungen bei Abusir im Winter

1899/1900’, ZÄS 38 (1900), 97 and pl. 5. For further bibliographical references see Weinstein, ‘Foundation
Deposits’, p. 42, note 19.

14 For the foundation ceremony for the Eleventh Dynasty temple at Tôd see Bisson de la Roque, Tôd, pp. 100–1,
1521 and pl. 25, no. 2; for the temple at Heliopolis of Senusret I, see Adriaan de Buck, ‘The Building Inscription
of the Berlin Leather Roll’, Analecta Orientalia 17 (1938), 48–57, especially 53.

15 Not only religious buildings: foundation deposits were found at the four corners of the interior fortification walls
in the fortress at Semna South (Weinstein, ‘Foundation Deposits’, pp. 84–5). During the Eighteenth Dynasty,
foundation deposits were also adopted for obelisks (p. 102) and royal palaces (p. 103).
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Fig. 72: Scene from a foundation ceremony from the reign of Khasekhemwy,
Second Dynasty (drawn after the photograph published by Engelbach, JEA 20,
pl. 24).

character (if compared with the scanty Old Kingdom remains and the absolute

lack of First Intermediate Period material) and shows a strong continuity in terms

of position and objects with the New Kingdom, when the tradition appears to be

consolidated.16 The ritual was developed and enriched through the New Kingdom

down to the Ptolemaic Period (fig. 75). The scenes related to the foundation cere-

mony of Thutmosis III at Karnak17 and Medinet Habu18 and of Amenhotep III and

16 Weinstein, ‘Foundation Deposits’, p. 3 and chapter 3.
17 Paul Barguet, Le Temple d’Amon-Rê à Karnak, RAPH 21, Cairo: IFAO, 1962, pl. 31.
18 Paul Barguet, ‘Le rituel archaı̈que de la fondation des temples de Medinet-Habou et de Louxor’, RdE 9 (1952),

1–22 for a translation of the texts.
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Fig. 73: Fragmentary foundation scene from the valley temple of Snefru at
Dahshur, Fourth Dynasty (drawn after Fakhry, Monuments of Sneferu, fig. 89).

Ramses II19 at Luxor seem to be a shorter version of the more elaborated represen-

tations in the Ptolemaic temples of Edfu, Dendera and Philae.

The ceremony of ‘stretching the cord’ corresponds to the first practical act in

the foundation of a temple: the sacred area was outlined and at the same time the

19 Donald B. Redford, ‘The Earliest Years of Ramses II and the Building of the Ramesside Court at Luxor’, JEA
57 (1971), 110–9, especially 114–5.
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Fig. 74: Scene from a foundation ceremony from the sun temple of Neuserra, Fifth
Dynasty (from Borchardt and Schäfer, ZÄS 38, pl. 5).

Fig. 75: Scene from the foundation ceremony of the Ptolemaic temple of Dendera
(from Dümichen, Baugeschichte, pl. 64).

orientation and dimensions of the building were laid down. Apart from the late

development of the whole ritual, the essence of this initial act must have remained

the same from Early Dynastic times. This is also mirrored by the Egyptian word for

‘to found’ and for ‘plan’ (or ‘foundation’), (snt), written with a looped cord as

a determinative.20 This word, clearly referring to the ancient connection between

20 Alexander Badawy, ‘Philological Evidence about Methods of Construction in Ancient Egypt’, ASAE 54 (1957),
57.
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cord and plan, was nevertheless commonly used also for New Kingdom rock-cut

tombs,21 where the sacred area could not be delimited in advance as for a temple

built on flat ground.22 The ceremony of ‘stretching the cord’ is actually mentioned

only in connection with temples, and the only indirect reference to this ceremony

for a tomb is an ink drawing on an ostracon of the Goddess Seshat hammering a

pole from the Valley of the Kings.23

There is no reference in any inscription or relief to foundation ceremonies for

royal or private tombs, but the presence of foundation deposits does seem to sug-

gest that some kind of ritual was performed, possibly derived from the standard

foundation ceremonies for temples. In the temples, foundation deposits were usu-

ally placed at the corners and at special points of the building, while in the case of

tombs they were dug in the area in front of the entrance.24 It is uncertain whether the

deposits in this case were meant to symbolically encircle the whole tomb, or simply

to ‘protect’ the entrance. James Weinstein has suggested that there always should

have been five pits, corresponding thus to the usual arrangement for temples: four

at the corners and one along the main axis.25

The ceremony of ‘stretching the cord’ is described as consisting of two actions:

pd-šs(r) and . The first can be translated as the ‘stretching

of the cord’ itself,26 while the second can be translated as ‘loosening’ or ‘unravelling

the cord’. It may be intended as ‘unravelling the (ball of) cord’,27 an obvious initial

action for the ceremony of ‘stretching the cord’. Since, however, the ‘unravelling

of the cord’ always follows the ‘stretching of the cord’, the second action might

actually refer to the moment when, having fixed the outline of the building, the

cord was unravelled across it in order to mark significant points or subdivisions

of the area.28 Badawy even suggested that might be translated as the

‘spreading of the plan-net’.29 He tailored this translation onto his theory of the use

of a Harmonic System in which cords played an important part, but nevertheless

the overall meaning of this sentence may be correct.

21 Černy, Valley of the Kings, p. 22.
22 Badawy (ASAE 54, pp. 51–74.) mentioned three cases in which the connection between cords and outline is

quite clear: ‘I levelled this site which is inside the cord-(boundary) to build this monument upon it’ (Kurt
Sethe, Urkunden der 18. Dynastie, Leipzig: Hinrichs, 1905–6, p. 835); ‘To fill in the contour-plan with sand as
required, to stabilise the work of the sanctuary’ (Edfou ii, 31; see also Moret, Caractère religieux, p. 134); ‘To
fill in the contour of the Hathor-temple’, which he derived from photos of Dendera.

23 Cairo Museum, CG 24917; Georges Daressy, Fouilles de la Vallée des Rois (1898–1899), CG, Cairo: SAE,
1902, pl. 52.

24 Weinstein, ‘Foundation Deposits’, figs. 15 and 21. See for example the foundation deposits corresponding to
the various stages of enlargement of the temple of Hatshepsut at Deir el-Bahari in Zygmunt Wysocki, ‘The
Temple of Queen Hatshepsut at Deir el-Bahari: The Raising of the Structure in View of Architectural Studies’,
MDAIK 48 (1992), 233–50. For the deposits at Deir el-Bahari, see also Herbert E. Winlock, ‘The Egyptian
Expedition 1924–5’, BMMA 21, 3 (1926), especially 16–8.

25 Weinstein, ‘Foundation Deposits’, pp. 105–8 and figs. 2, 3, 7, 19.
26 Badawy, ASAE 54, 54–5. 27 Montet, Kêmi 17, 78–81.
28 Weinstein, ‘Foundation Deposits’, p. 12. See also the foundations of Amarna buildings in the following section.
29 Badawy, Ancient Egyptian Architectural Design, pp. 9–10.

Pure Mathematical Physics



154 Architecture and Mathematics in Ancient Egypt

Fig. 76: Land-surveyors from the Eighteenth Dynasty tomb of Amenhotepsesi
(from Davies, Two Officials, pl. 10).

Cords and geometry

The use of cords for land measuring and surveying is comparatively well attested

in Eighteenth Dynasty art. Representations from the Theban tombs of Menna,

Amenhotepsesi, Khaemhat and Djeserkaraseneb show a group of men in the act of

measuring the standing crop by means of a rope30 (fig. 76). Three statues which

represent Senenmut, Amenemhat-Serer and Penanhor as ‘overseers of the fields’,

kneeling and holding a large ball of rope, the tool of their task, also date to the

Eighteenth Dynasty.31 As already mentioned, the unit of measurement for long

distances was the khet, corresponding to 100 cubits, and the common unit of area was

the setat, corresponding to one square khet. Since the number 100 was represented

by means of a coil of rope ( ), it might be concluded that cords 100 cubits long

were actually employed for land-surveying.32 In the scene from the tomb of Menna,

the cord carried by the men is clearly divided by means of knots, which Arnold

suggested were placed at 1-cubit intervals.33

30 On the subject see Suzanne Berger, ‘A Note on Some Scenes of Land-Measurement’, JEA 20 (1934), 54–6 and
Ludwig Borchardt, ‘Statuen von Feldmessern’, ZÄS 42 (1967), 70–72. For the tomb of Menna see also Colin
Campbell, Two Theban Princes, Kha-em-uast and Amen-khepeshf, Menna, a Land-Steward, and Their Tombs,
Edinburgh: Oliver and Boyd, 1910, p. 87 and the unnumbered plate on the page before; for Amenhotepsesi see
also Norman de Garis Davies, The Tombs of Two Officials of Thutmosis the Fourth, TTS 3, London: EES, 1923,
p. 11, plate 10.

31 Jacques Vandier, Manuel d’archéologie égyptienne, Paris: Picard, 1952–78, vol. iii: Text, pp. 476–7 and Manuel
iii: Plates, p. 164 (1, 3, 6). For Senenmut see also Paul Barguet, ‘Une statuette de Senenmout au Musée du
Louvre’, CdE 28 (1953), 23–7; for Penanhor see also Borchardt, ZÄS 42, 72.

32 Arnold, Building in Egypt, p. 252. Reisner suggested that the sign (s ) represented a measuring rope, ‘taking
the end loops as handles and the side loops as tags marking the ells’ (Mycerinus, p. 78, note 1). It may be
worth adding that fields, presumably measured by means of cords, were sometimes triangular in shape. MMP
problem 4, RMP problems 51 and 53 deal with the calculation of the area of triangular fields, whereas RMP
problem 52 concerns a trapezoidal field. In none of these cases do these triangles bear any similarity to the
3-4-5, the 8:5 or the equilateral triangle (Respectively Struve, Studien und Quellen Part A, vol. 1, pp.145–69;
Peet, Rhind Mathematical Papyrus, pp. 91–7).

33 Arnold, Building in Egypt, p. 252.
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There is, of course, a temptation to extend this discussion to architecture. There is

ample evidence that cords were used in architecture at various stages of construction,

but none to suggest that they had a specific length or were divided into units of

measurement. The statue, mentioned above, representing Senenmut holding a ball

of rope, might be of a certain interest because Senenmut was also the architect of

Hatshepsut. In the inscriptions carved on the base of that statue, however, he is

mentioned with titles which only connect him to agricultural activities.34

Amarna provides evidence suggesting the use of cords possibly at two different

stages in the foundation of buildings: for the ceremony of ‘stretching the cord’

(attested, however, only by a talatat found at Karnak35), and during the layout of

the plan. Pendlebury reconstructs the method employed at least in the Great Aten

Temple, the Hat-Aten and the Palace as follows:

first of all shallow trenches were dug in the virgin soil along the lines the walls were intended
to take. These were flooded with white lime plaster on which the exact line of the walls was
marked with a taut string dipped in blacking. (. . .) Meanwhile, should any partition walls
or light structures such as offering-tables be required inside the building the whole of the
interior was flooded with plaster and the exact position of each light party-wall, altar, or
offering-table marked out, first with a taut string dipped in black, then by chipping along
the lines so drawn.36

No traces of knots are recorded. If, at this stage, the cords were employed not only to

fix the alignment of the walls, but also to establish the dimensions of the chambers,

this absence might be explained by the adoption of other devices to divide the cord,

such as painted marks.

Cords wound around stakes, along with other votive objects and offerings, were

sometimes found in tombs and foundation deposits.37 These objects were sometimes

classified as ‘surveyor’s stakes’, but their small dimensions seem to suggest that

they were used for levelling surfaces or drawing lines.38 To my knowledge, none

of them is recorded as having been subdivided by means of knots or other devices.

From New Kingdom literary sources, we know of high-quality ropes up to 1,000,

1,200 and, probably, 1,400 cubits long (about 520, 624 and 728 m) used for the

34 Barguet, CdE 28, 24.
35 Weinstein, ‘Foundation Deposits’, p. 142, note 141, probably referring to the scene later published by Donald

B. Redford, The Akhenaten Temple Project, vol. i, Warminster: Aris and Phillips, 1976, pl. 18 no. 6.
36 Pendlebury, City of Akhenaten III, p. 6.
37 Somers Clarke and Reginald Engelbach, Ancient Egyptian Masonry, Oxford: Oxford University Press, 1930,

fig. 256; Arnold, Building in Egypt, p. 256 and fig. 6.3; Weinstein, ‘Foundation Deposits’, for Hatshepsut at
Deir el-Bahari, deposit B (p. 157), Thutmosis III at Gurna (p. 112) and Deir el-Bahari (pp. 185–6), kiosk at
Deir el-Bahari (p. 189) and possibly in the temple of Horus at Aniba (pp. 223–4). For foundation deposits of
Thutmosis III, see also Alexander Badawy, ‘A Collection of Foundation-Deposits of Thutmosis III’, ASAE 47
(1947), 145–56, especially 154.

38 See, for example, the traces of red paint on the cord found at Deir el-Bahari, mentioned in Herbert E. Winlock,
‘The Egyptian Expedition 1921–2’, BMMA 17, 2 (1922), 30–1.
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royal bark.39 Even if not necessarily to this extent, long and strong ropes were

used during construction to move blocks, statues, obelisks and other heavy items.

According to fragments of ropes which have been recovered, they appear to have

been made of relatively coarse plant fibres (palm or papyrus), with a diameter of

up to 7–8 cm.40

Josef Dorner notes that if these were the cords used for surveying, they would have

been suitable only for rough measurements, because, even if painted marks were

used instead of bulky knots, the total length of the cord would have been influenced

by elasticity and variations in atmospheric humidity.41 This is not incompatible,

however, with the more general and practical purpose of the ceremony of ‘stretching

the cord’, that is, establishing the outline of the sacred area. Ropes made of linen

would have been more stable and therefore less problematic, but their use is not

well documented.42 The surviving examples range from the Predynastic Period43 to

the Old44 and Middle Kingdoms.45 They are mainly fragments with a diameter of

about half a centimeter, apart from the large coil of rope found in the First Dynasty

tomb of Hemaka, which is about 1 cm thick.46

In general, it seems that cords were used to fix the alignment (astronomical

and internal), to establish the overall dimensions of the plan, and to mark the

position of walls and other elements. However, as already mentioned in Part I,

some scholars believe that cords were also used to design on the ground specific

geometrical figures, not necessarily related to the shape of the actual building,

in order to establish the proportions of the plan. As a witness, the supporters of

this theory have called upon the Greek philosopher Democritus, who lived be-

tween the fifth and fourth century BC and, as with many other Greek philosophers

and mathematicians, is said to have travelled to Egypt. Clemens of Alexandria

reported that Democritus, talking about his travels in foreign lands, declared:

‘nobody surpassed me in the composition of lines by means of a drawing, not even

39 Jac. J. Janssen, Commodity Prices from the Ramesside Period, Leiden: Brill, 1975, p. 439.
40 Donald P. Ryan and David H. Hansen, A Study of Ancient Egyptian Cordage in the British Museum, London:

British Museum, 1987; see also Jac. J. Janssen, Two Ancient Egyptian Ship’s Logs, Leiden: Brill, 1961, p. 87 and
Commodity Prices, p. 438. About the diameter of the ropes, see Reginald Engelbach, The Aswân Obelisk, Cairo:
SAE, 1922, p. 25 and Boris Catoire, ‘Evaluation par le calcul des efforts de traction transmis dans les cordages
au cours de l’operation d’abattage de l’obelisque ouest du VIIe pylône’, Karnak VII, Paris: Recherche sur les
Civilisations, 1982, pp. 181–202. In general, see Alfred Lucas and J. R. Harris, Ancient Egyptian Materials
and Industries, London 1962, pp. 134–6 and Gillian Vogelsang-Eastwood, ‘Textiles’, in Nicholson and Shaw
(ed.), Ancient Egyptian Materials and Technology, pp. 268–98.

41 Josef Dorner, ‘Die Absteckung und astronomische Orientierung ägyptischer Pyramiden’, Ph.D. dissertation,
Innsbruck, 1981, p. 9.

42 Ropes made of flax were used for net-making (Vogelsang-Eastwood, in Nicholson and Shaw (eds.), Ancient
Egyptian Materials and Technology, pp. 270 and 272).

43 Guy Brunton and Gertrude Caton-Thompson, The Badarian Civilisation, BSAE ERA 46, London, 1928,
p. 67.

44 Walter B. Emery, The Tomb of Hemaka, Cairo: Government Press, 1938, pp. 43–44.
45 Petrie, Kahun, pp. 28 and 35. 46 Emery, Tomb of Hemaka, pp. 43 and pls. 9b and 23b.
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those among the Egyptians called Harpedonaptai, with whom I spent five years

abroad’.47

The word Harpedonaptai does not occur in any other text. It seems to have been

composed by the word harpedone (�������	) and the verb apto (
���), which

means (among other similar meanings) ‘I tie’, ‘I stretch’. The Harpedonaptai
appear thus to have been ‘cord-stretchers’.48 In the mathematical texts, the word

apodeixis (��������) is used in the meaning ‘proof’, and this led some scholars to

believe that Democritus actually referred to the demonstration of some mathemati-

cal theorem. However, the context of this sentence does not necessarily confirm this

interpretation. Here Clemens of Alexandria, a Christian author who lived between

the second and the third century AD, is telling stories about various Greek philoso-

phers, paying special attention to their relations with the Egyptians. Giving too

much importance to the terms he used may be misleading, and the interpretation of

apodeixis simply as a ‘drawing’ (another attested meaning of this word) seems to me

acceptable.

At any rate, some scholars, including Badawy, have suggested that the Harpe-
donaptai used cords divided by knots to trace right angles by means of the 3-4-5

triangle.49 The cord would have been divided into twelve intervals (3 + 4 + 5 = 12)

and then stretched around pegs (fig. 28). There is ample evidence of the use of the 3-

4-5 triangle and other Pythagorean triplets in several ancient mathematical systems,

often in clear connection with the use of cords. For instance, first millennium BC

Indian texts describing ritual rules achieved by means of cords, in some cases based

on Pythagorean triplets, were actually called Sulbasutra, that is, ‘texts regulated by

the cords’.50

The trace of elliptical vault in the tomb of Ramses VI, which has been examined

in the previous chapter, seems to suggest that this method was also employed in

Egypt. The vault is, however, a relatively small architectural element (and even in

this case its irregularities are quite evident), and it is likely that, in order to trace

right angles, other more accurate methods were adopted whenever a certain degree

of precision was required and when long distances were involved.51 The texts of

the foundation ceremonies mention the ‘stretching of the cord’ in connection with

the fixing of the corners, but this does not imply that the cords were the only

47 Clemens of Alexandria, Stromata I, Fr. 68B 299 DK: �������� ��������� ���� �������� ������ �� �� �����!
���� , ��� " �# $%&������ ���������� '$������(���� �*� ��+�� " ,�- �.�� ,�" /��� ����� ,�- ����	� ,&����	�.

48 Solomon Gandz, ‘Die Harpedonapten oder Seilspanner und Seilknüpfer’, Quellen und Studien zur Geschichte
der Mathematik, Astronomie und Physik, Part B, vol. i (1931), especially pp. 256–7.

49 See Peet, Rhind Mathematical Papyrus, p. 32 and Gandz, Quellen und Studien 1, p. 257 for bibliographical
references.

50 Van der Waerden, Geometry and Algebra, pp. 15–25; Gericke, Mathematik, pp. 4–5, 33–4 and 67–8. See Gandz,
Quellen und Studien 1, pp. 262–4 and 267–72 for references to the use of cords in the Bible.

51 For suggestions on other methods, see Clarke and Engelbach, Ancient Egyptian Masonry, pp. 66–8; Mark
Lehner, ‘Some Observations on the Layout of the Khufu and Khafre Pyramids’, JARCE 20 (1983), 7–25 and
Arnold, Building in Egypt, pp. 14–5 and 252.
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Fig. 77: Figures based on the 3-4-5 triangle according to Lauer (from BIFAO 77,
fig. 1).

tool employed on this occasion. In fact, the texts describe a succession of ritual

actions which are an abbreviated version of all the practical operations which were

actually carried out by the architects. The king is represented as easily performing

one action after the other, but very likely the inevitable time intervals between

stages of construction and many other practical details were omitted from the

narrative.52

Because of the possibility of constructing right angles, Jean-Philippe Lauer

suggested that the Egyptians used the 3-4-5 triangle (to be precise, multiples of this

triangle) to design the plans of a number of Old Kingdom buildings.53 The Twen-

tieth Dynasty elliptical vault seems to suggest that, at least in the New Kingdom,

the Egyptians were aware of the possibility of constructing similar triangles (that

is, larger or smaller but with the same proportions). However, in the cases when

a multiple of the 3-4-5 triangle is supposed to be as large as 100 by 75 cubits,

the Egyptians would have had to use long ropes (100 + 75 + 125 = 300 cubits,

over 156 m), which, if they were made, as it seems, of vegetal fibres, would have

provided a meagre result in terms of precision.

As a starting point, Lauer suggested two possible ways of constructing a double

square by means of 3-4-5 triangles (fig. 77), but, as we have already seen in the case

52 Weinstein, ‘Foundation Deposits’, p. 7.
53 Jean-Philippe Lauer, ‘Le Triangle Sacré dans les plans des monuments de l’Ancient Empire’, BIFAO 77 (1977),

55–78; see also Audran Labrousse, Jean-Philippe Lauer, Jean Leclant, Le Temple Haut du complexe funéraire
du roi Ounas, BdE 53, Cairo: IFAO, 1977.
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of other geometrical constructions, there is no reason to assume that double squares

were necessarily designed by means of this system. Some of Lauer’s drawings are as

complicated as Badawy’s and share the same faults. Arnold, for example, noted that

the temple of Qasr el-Sagha is half a cubit too deep to fit the 3-4-5 triangle.54 Those

reproduced in figure 78 are certainly simpler but, for example, the subdivision of

100 cubits into 75 and 25 (respectively 3
4

and 1
4

of 100) is not necessarily related to

the use of 3-4-5 triangles.

The three Sixth Dynasty funerary temples of Teti, Pepi I and Pepi II are the most

impressive examples discussed by Lauer. According to Lauer, small dimensional

variations (such as the thickness of the walls of the rear magazines in the temple

of Pepi I) were introduced in the construction of the three otherwise identical

temples in order to adjust the plan to the 3-4-5 triangle (fig. 79). The fact that

this triangle appears to have been employed in the design of the three pyramids

corresponding to these temples (see Part III) seems to add weight to Lauer’s theory.

On the other hand, the temples also appear to have been largely reconstructed, and

from the drawings it is unclear whether some key points were part of the original

construction or were reconstructed using the proportions of the 3-4-5 triangle.

Moreover, Lauer’s drawings produce a certain impression because they are removed

from their context: the plans apparently designed in accordance with the 3-4-5

triangle are, in fact, just a section of the whole temples. In general, the idea that parts

of the funerary complexes were designed according to the proportions of the triangle

used for the pyramid is not illogical, but more evidence is necessary to support this

suggestion.

In conclusion, cords were certainly used to lay down the plan of a building on

the ground, but not necessarily to establish its proportions. For the moment, the

connection between 3-4-5 triangles and cords in ancient Egypt seems to remain

restricted to the small-scale example of the Twentieth Dynasty elliptical vault.

If the 3-4-5 triangle was really used to a larger scale, it is more likely to have

been employed as a symbolic figure, rather then as an imprecise large-scale device

to fix right-angled triangles. Throughout history, from the Old Kingdom to the

Late Period, precision and accuracy have always been important characteristics

of the ancient Egyptian architects, who planned and built perfect joints between

stone blocks. The final achievement of this ancient tradition is represented by the

Ptolemaic temples, where symbolism, aesthetics and technical ability combined in

a stunning result. On their walls were carved the so-called Building Texts, which

describe the mythical origin and the construction of these temples. These texts will

be the last source we will examine.

54 Arnold and Arnold, Qasr el-Sagha, p. 17.
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Fig. 78: 3-4-5 triangle in the plans of the valley temple of Snefru at Dashur and of
the funerary temple of Khufu (Fourth Dynasty), according to Lauer (from BIFAO
77, figs. 4 and 5).
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Fig. 79: 3-4-5 triangle in the plan of the funerary temples of Teti, Pepi I and
Pepi II (Sixth Dynasty), at Saqqara according to Lauer (from BIFAO 77, fig. 13).

Building Texts

The dimensions of the primeval temples

We possess a unique source to study the way the temples built by the Ptolemies in

the last three centuries BC were planned: the so-called Building Texts. Engraved on

the walls of some temples, they contain numerous references to mythical primeval
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Fig. 79: (cont.)

temples and to the construction of the actual sanctuaries. The longest version of

these texts survives in the temple of Edfu.55

The Ptolemaic temple and the supposed original sanctuaries dedicated to the

Falcon and the Sun are described together with their detailed dimensions. Eve

Reymond summarised the information we possess about the primeval temples into

eight schemes,56 one of which is reproduced in figure 80. These drawings are not

proper plans, but they are nevertheless useful in giving an idea of numbers and

forms which were supposedly involved in the design of these temples. The texts

seem to describe stages of the progressive enlargement of a Temple of the Falcon

and a Solar Temple. They never mention bricks or stone, but often refer to the use of

reeds,57 one of the main building materials of early architecture. In fact, Reymond

has pointed out that the outline of the primeval Temple of the Falcon, as described

by the texts, shows a certain similarity to the representations of sacred enclosures

from the Predynastic to the Early Dynastic Periods.58

In the Ptolemaic Period many temples were re-built above pre-existing temples,

but it is not easy to reconstruct the appearance of these earlier sanctuaries. At

55 In general, see Eve A. E. Reymond, The Mythical Origin of the Egyptian Temple, Manchester: Manchester
University Press, 1969, p. 1, note 1 and chapter 4. For Edfu, see Heinrich Brugsch, ‘Bau und Maßse des
Tempels von Edfu’, ZÄS 8 (1870), 153–61; 9 (1871), 32–45 and 137–44; 10 (1872), 1–16 and ‘Eine neue
Bauurkunde des Tempels von Edfu’, ZÄS 13 (1875), 113–23; de Wit Constantin, ‘Inscriptions dédicatoires du
Temple d’Edfou’, CdE 36 (1961), 56–97 and 277–320. For Dendera, see Johannes Dümichen, ‘Bauurkunde der
Tempelanlagen von Edfu’, ZÄS 8 (1870), 1–13; 9 (1871), 25–32, 88–98, 105–12; 10 (1872), 33–42; 11 (1873),
109–19. For Philae, see Heinrich Brugsch, ‘Bautexte und Inschriften’, Thesaurus Inscriptionum Aegypticarum,
vol. vi, Leipzig: Hinrichs, 1891, pp. 1235–406.

56 Reymond, Mythical Origin, figs. 4–11. 57 Reymond, Mythical Origin, pp. 225 and 230.
58 Reymond, Mythical Origin, pp. 217–8 and fig. 3. See also W. M. Flinders Petrie, The Royal Tombs of the Earliest

Dynasties, Part II, London: EEF, 1901, plates 3A (no. 5) and 10 (no. 2) and Badawy, Dessin architecturale,
pp. 10–16.
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Fig. 80: Final stage of the Primeval Temple of the Falcon according to the Edfu
texts (drawn after Reymond, Mythical origin, fig. 6).

Edfu, for instance, in order to make room for the large Ptolemaic temple, the New

Kingdom stone temple was completely demolished, apart from one of its pylons,

which was retained and used as a secondary entrance to the first courtyard.59 All

we know is that the New Kingdom temple was laid at 90◦ with respect to the

Ptolemaic temple, that it must have been much smaller, and that it was probably

surrounded by an enclosure wall.60 In the temple of Satet at Elephantine, where it

59 Alexandre Barsanti, ‘Rapport sur la découverte à Edfou des rouines d’un temple Ramesside’, ASAE 8 (1908),
233–6; Louis A. Christophe, ‘Le pylone “Ramesside” d‘Edfou’, ASAE 55 (1958), 1–23.

60 The surviving pylon, slightly asymmetrical, does not show any trace of orthogonal walls joining its internal
side, thus suggesting that it was part of an enclosure wall that surrounded an inner sanctuary.

Pure Mathematical Physics



164 Architecture and Mathematics in Ancient Egypt

Fig. 81: Predynastic temple of Satet at Elephantine (drawn after Dreyer, Elephan-
tine VIII, fig. 1).

was possible to study the stratification from the Ptolemaic Period down to the level

of the Predynastic Period, the remains of the early mudbrick temple are smaller

and less regular than the early enclosures described by the Edfu texts (fig. 81).

In this case the link with the past was not just theoretical, because a deep shaft

connected the Eighteenth Dynasty temple with the Old Kingdom level.61 Another

example is provided by the unique remains of the predynastic ceremonial centre at

Hierakonpolis, which consist of an earlier complex of wood and mat structures to

which mudbrick walls and other elements were gradually added62 (fig. 82). Even if

61 Cf. Günter Dreyer, Elephantine VIII, Der Temple der Satet. Die Funde der Frühzeit und des Alten Reiches,
AV 39, Mainz: Von Zabern, 1986, figs. 1–5 and plates 1–4.

62 Renée Friedman, ‘The Ceremonial Centre at Hierakonpolis Locality HK29A’, in Jeffrey Spencer (ed.), Aspects
of Early Egypt, London: British Museum Press, 1996, pp. 16–35; for a colour photograph and a computer
reconstruction, see Vivian Davies and Renée Friedman, Egypt, London: British Museum, 1998, pp. 26–7.
Hoffmann suggested a possible reconstruction of the temple in 1987, but since then excavations brought to
light other features (cf. figs. 11a and 11b in Friedman, in Spencer (ed.), Aspects of Early Egypt). The plan of
the site reprinted in figure 82 is based on the data collected before 1996. In 2002 the Hierakonpolis Expedition,
under the direction of Dr Renée Friedman, resumed the excavation of the temple site and further changes and
additions to both the plan and the reconstruction are likely to be suggested by the excavators in the near future.
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Fig. 82: Plan of the Predynastic ceremonial centre at Hierakonpolis, named
HK29A, according to the data collected before 1996 (from Friedman, in Spencer
(ed.), Aspects of Early Egypt, fig. 2).
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this complex appears to be larger than the Elephantine sanctuary, it has very little

in common with the data provided by the Edfu texts.

In general, the enclosures described by the Building Texts appear to be more

‘Ptolemaic’, in terms of size and regular shape, than ‘Predynastic’. Although the

Edfu texts repeated refer to the Ptolemaic temple as having being laid out following

what was written in the ancient texts, this might be simply explained by the desire to

highlight their continuity with the past.63 In general, the fact that some dimensions of

the final stage of the Solar Temple can be also found at Edfu64 may be interpreted

in two ways. Either this temple was built using ‘numbers’ taken from a textual

tradition (the origin of which is, however, difficult to establish), or the theoretical

dimensions of the primeval temple were purposely taken from the already planned

dimensions of the Ptolemaic temple, in order to create a suitable ancestor for the

latter.

The measures given by the texts for all the stages of the two primeval temples

are very simple: always whole numbers of cubits, mainly multiples of 10, with the

exception of a few measures containing its half, the number 5. When the enclosures

are not square, no recurrent ratio can be detected between long and short sides. The

dimensions of these schematic plans show the same characteristics of those encoun-

tered in the study of architectural drawings containing projects: simple dimensions,

which seem to be composed by accretion, following no other overall geometrical

rule than the alignment along the central axis. If these dimensions really come from

an ancient tradition, it does not seem that they had been based on a complicated

geometrical design. If, instead, they were attributed to the ancient temples by the

Egyptian priests, it does not seem that there was any attempt to associate the an-

cient architects with pyrotechnic geometrical patterns. This is an important point,

because it suggests that the tradition (real or made up) only provided examples of a

very linear and simple design. This is especially interesting because the dimensions

of the actual Ptolemaic temples, on the other hand, appear to be the result of rather

complicated calculations.

The dimensions of the temples at Edfu and Dendera

Parts of the texts engraved on the walls of the temple of Edfu (started by Ptolemy III

in 237 BC and completed by Ptolemy VIII Euergetes II in 142 BC65) and Dendera

(started under Ptolemy XII Auletes in 54 BC and completed in 20 BC66) contain a

63 References to the conformity of the temple to the ancient tradition are contained in Edfu iv 4.8, vii 3.4, 6.2,
12.2, 18.9–10 (de Wit, CdE 36, pp. 92, 282, 287, 301–2, 316).

64 Reymond, Mythical Origin, pp. 318–9.
65 For the history of the Edfu temple, see Dieter Arnold, Temples of the Last Pharaohs, New York/Oxford: Oxford

University Press, 1999, pp. 169–71, 198–202 and 209, and fig. 170.
66 For the history of the Dendera temple, see Arnold, Temples of the Last Pharaohs, pp. 212–6 and plan vi.
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description of their various chambers together with their dimensions. In both cases,

the rooms are described starting from the central chapel at the back of the sanctuary

and then following the order indicated by the progressive numbers in figure 83. For

each room, the texts give length and breadth in cubits and fractions of cubit (table 7;

the horizontal subdivisions correspond to groups of chambers).67 In the texts the

chambers are not numbered, but are described using their names.

As in the sketch of a column in the Ptolemaic temple of Philae and the sketch

of a Hathor-headed capital at Gebel Abu Foda, the fractions of the cubit are not

expressed in palms and fingers. At Edfu all of the fractions belong to the series 2
3
,

1
3
, 1

6
, where each term is half the preceding one. At Dendera, the fractions involved

are more complicated and do not appear to belong to a single series. Curiously

enough, these rather complicated numbers have failed to appeal to the imagination

of the numerologists, who, to my knowledge, have never attempted an explanation.

The recurrent mentions of ‘perfect’ and ‘exactly calculated’ dimensions in the

Building Texts convinced Daumas and Badawy that these temples were laid out by

means of a set of precise mathematical rules.68 Descriptions of the temples or of

some of their parts, vaguely stating that they are ‘perfect’, ‘exact’, ‘beautiful’ or

‘excellent’, can be found scattered throughout the Building Texts.69 Bearing in mind

that it is unlikely that a temple would ever be described as ‘imperfect’ or ‘inexact’

or by means of any other reductive expression, at the same time it appears clear that

complicated calculations must have been performed to establish the dimensions of

the various architectural elements of these temples.

About the temple of Edfu, we are told that ‘its length is perfect, its height is exact,

its perimeter is exactly calculated, all its cubits are close to excellence. Exact-of-

cubits is said to be its name. Its foundations, moreover, are where they should be,

as the ancestors did for the first time’.70 This passage and other similar texts do

not say much about the nature of the mathematical rules adopted to establish the

plan. However, there are two texts from the Mammisi at Dendera (built, over an

original core by Nectanebo I, under Ptolemy VI, X and XI and then Augustus),

which seems to suggest the existence of a special relationship between the length

67 The data for Edfu are taken from Sylvie Cauville and Didier Devauchelle, ‘Les mesures réelles du temple
d’Edfou’, BIFAO 84 (1984), 23–34, those for Dendera from Sylvie Cauville, ‘Les inscriptions dédicatoires du
temple d’Hathor à Dendera’, BIFAO 90 (1990), 83–114.

68 François Daumas, Les mammisis des temples égyptiens, Annales de l’Université de Lyon 3/32, Paris, 1958,
p. 366; Badawy, Ancient Egyptian Architectural Design, pp. 6–13.

69 See, for example, Edfu iv 4.7–8; vii 2.6, 2.9, 6.5, 8.7–8, 10.12, 11.8–9, 12.1–2, 13.1, 17.9 and 19.6 (de
Wit, CdE 36, pp. 64–5, 280, 288, 298, 300–2, 313, 315 and 317); Daumas, Mammisis des temples égyptiens,
pp. 342–3 and Emile Chassinat, Le Mammisi d’Edfou, MIFAO 16, Cairo: IFAO, 1939, p. 6, translated by
Daumas, Mammisis des temples égyptiens, p. 292.

70 Edfu IV 4.7–8, translated into French by De Wit, CdE 36, pp. 64–5. Revised English translation on the basis of
Penelope Wilson, A Ptolemaic Lexikon, OLA 78, Leuven: Uitgeverij Peeters en Department Oosterse Studies,
1997.
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Fig. 83: Plans of the Ptolemaic temples of Edfu (left) and Dendera (right) with
numbering of the rooms (respectively from Cauville and Devauchelle, BIFAO 84,
fig. 4, and from from Cauville, BIFAO 90, fig. 1).
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Table 7. The dimensions of some chambers of the Ptolemaic temples of Edfu and
Dendera according to the Building Texts

Edfu Dendera

Dimensions (in cubits) Dimensions (in cubits)

N◦ chamber east/west north/south N◦ chamber east/west north/south

1 8 + 1/3 6 + 2/3 1 8 8

2 7 + 1/6 + 2/3 6 + 2/3 2 6 8

7 7 + 1/6 + 2/3 6 + 2/3 3 6 8

3 6 + 2/3 6 + 2/3 4 8 + 1/2 + 1/10 8

8 6 + 2/3 6 + 2/3 5 8 + 1/2 + 1/10 8

4 8 8 6 8 + 1/2 + 1/10 5 + 1/4 + 1/24

5 8 8 7 8 + 1/2 + 1/10 5 + 1/4 + 1/24

6 8 8 8 8 + 1/2 + 1/10 5 + 1/4 + 1/24

14 8 8 9 8 + 1/2 + 1/10 5 + 1/4 + 1/24

15 8 + 1/2 + 1/10 10

9 8 8 10 8 + 1/2 + 1/10 5

10 8 8 11 8 + 1/2 + 1/10 5

15 8 8 16 8 + 1/2 + 1/10 5

16 8 8 17 8 + 1/2 + 1/10 10

18 8 + 1/2 + 1/10 8 + 1/6

11 3 + 1/3 + 2/3 12 4 + 1/6 28 + 1/2

12 10 + 1/3 19 + 1/6 + 2/3 13 10 + 1/2 21 + 1/2

13 23 + 2/3 9 14 26 10

17 25 + 1/6 + 2/3 8 19 26 10

18 10 9 20 8 + 1/2 + 1/10 6

19 (lacuna) 21 12 + 1/2 + 1/10 3 + 1/3

20 10 8 + 1/2

21 37 + 1/6 + 2/3 25 + 1/6 + 2/3 22 26 26

22 4 10 23 11 + 1/3 6 + 1/2

23 4 13 24 11 + 1/3 6 + 1/2

24 4 7 25 11 + 1/3 6 + 1/2

25 4 11 26 11 + 1/3 6 + 1/2

27 11 + 1/3 6 + 1/2

28 11 + 1/3 6 + 1/2

26 63 105 29 67 + 1/5 112

27 75 36 31 81 + 2/3 48 + 1/2

28 90 113

29 80 90

30 90 240

31 120 21

32 26 + 2/3 32 15

Pure Mathematical Physics



Foundation rituals 171

and the breadth of the temple. One states that ‘the length is perfect, the breadth is

according to the need, the depth and the thickness are exactly calculated’,71 and

the second says that ‘its length is exact, its breadth is according to the spell’.72 The

second is especially interesting because of the presence of the word here rendered

as ‘spell’ (d %s), translated as ‘sentence’ by Daumas, and as ‘formula’ by a confident

Badawy.73 The latter thought he had found a justification for the use of triangles,

which may, in fact, describe the length and breadth of spaces by means of their bases

and heights. In his reconstructions, however, a triangle never describe the outline

of a whole temple, and Badawy does not seem to have taken into account the most

obvious possibility: that the actual length and breadth of the whole rectangular

outline of the temples may be related to one another.

At Edfu and Dendera, a significant correspondence can be found in the propor-

tions of the central blocks, those started respectively by Ptolemy III and Ptolemy

XII. The majority of the dimensions given by the texts refer to the internal outline of

the various chambers, measured at ground level.74 For the rectangular outlines of

the sanctuaries (indicated by the numbers 26 for Edfu and 29 for Dendera), instead,

the external dimensions are given: 105 × 63 cubits for Edfu and 112 × 67 + 1
5

cubits for Dendera. By means of a simple calculation, it can be ascertained

that, although the dimensions are different, in both cases the ratio between the

short and the long side is the same. The short side appears to have been derived by

calculating 1
2
+ 1

10
of the long side: at Edfu 105 × ( 1

2
+ 1

10
) = 63, and at Dendera

112 × ( 1
2

+ 1
10

) = 67 + 1
5
. If, instead, the short side was established first, the long

side would have been derived by multiplying the short side by 1 + 2
3
, reciprocal of

1
2
+ 1

10
. Therefore, either the numbers 105 and 112, or the pair 63 and 67 + 1

5
, seem

to have been the initial values chosen for these two temples. Their origin, how-

ever, is obscure: whether these numbers had a symbolic meaning, or whether they

were derived from the pre-existing temples, remains, for the moment, uncertain.

At any rate, it is tempting to imagine that these were the dimensions fixed on the

ground in the foundation ceremonies.

It is difficult to find other mathematical connections, because the Building Texts

do not provide, for instance, the thickness of the walls, which must have played an

important role in the calculation of all the other dimensions.75 Luckily the Dendera

temple has been carefully surveyed by the architect Pierre Zignani, whose excellent

work has highlighted the extreme precision of the ancient builders in many aspects

71 Frieze, southern side, in François Daumas, Le mammisis de Dendara, Cairo: IFAO, 1959, p. 100, translated into
French by Daumas, Mammisis des temples égyptiens, p. 360. Translation into English on the basis of Wilson,
Ptolemaic Lexikon.

72 Frieze, northern side, in Daumas, Mammisis de Dendara, p. 100, translated into French by Daumas, Mammisis
des temples égyptiens, p. 362. Translation into English on the basis of Wilson, Ptolemaic Lexikon.

73 Badawy, Ancient Egyptian Architectural Design, p. 9. 74 Cauville and Devauchelle, BIFAO 84, 34.
75 Cauville and Devauchelle reconstructed the two different thicknesses of the walls around the central sanctuary

in BIFAO 84, 27–8 and fig. 3.
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of the construction.76 On the basis of this survey it will be possible to compare

the ancient texts and the actual monument, and to try to reconstruct the planning

process that generated those complicated dimensions, at least in the case of the

Dendera temple.

Without a similarly detailed survey, it will be difficult to proceed with such

research for the other temples. At Kom Ombo, the equivalent of the central nuclei

of Edfu and Dendera (the portion of the temple built under Ptolemy VI–VIII77)

might have been planned on the basis of the same ratio between length and breadth

that is found at Edfu and Dendera (breadth equal to 1
2

+ 1
10

of the length or, vice

versa, length equal to 1 + 2
3

of the breadth). Instead, the main sanctuaries at Philae

(the part built by Nectanebo II and Ptolemy II) and at Kalabsha (built under the

Roman emperor Augustus) were built according to different proportions. Only

Dendera and Kalabsha have been so far surveyed in a detailed way, and more work

is necessary before any conclusions can be drawn.

Even if, for the moment, the planning process cannot be reconstructed, it is clear

that at least the Edfu and Dendera temples (but there is no reason not to extend

the discussion to other Ptolemaic temples) were built on the basis of extremely

detailed projects, supported by complicated calculations, traces of which remain

in the dimensions included in the Building Texts. During the Ptolemaic rule, even

if the function of the king was always officially acknowledged, the foundation,

construction, decoration and maintenance of the temples was largely left in the

hands of the local priests.78 Therefore, in this period it is particularly difficult to

draw a line between Egyptian tradition and foreign influences.

The Greek-speaking Ptolemies were the successors of Ptolemy, general of

Alexander the Great, who managed to keep Egypt for himself after the collapse

of the large empire conquered by the Alexander in his thirteen years of reign. The

cultural scene in the Mediterranean had changed considerably since the pyramid

age. After the collapse of the New Kingdom (eleventh century BC) and the confused

Third Intermediate Period, Egypt had been invaded twice by the Persians, had been

annexed to the empire of Alexander in 332 and then ruled by the Ptolemaic Dynasty

of Macedonian origins. By the first century BC, however, the balance of the mil-

itary power in the Mediterranean was rapidly shifting north-west in the direction

of Rome. Eventually Egypt became part of the Roman empire in the year 30 BC,

after the deaths of Antony and Cleopatra VII.

76 Pierre Zignani, ‘Espaces, lumières at composition architecturale au temple d’Hathor à Dendara. Résultats
préliminaires’, BIFAO 100 (2000), 47–77.

77 For the history of the Kom Ombo temple, see Arnold, Temples of the Last Pharaohs, pp. 187–9, 220, 232–5,
fig. 188 and plan xiii.

78 Günther Hölbl, A History of the Ptolemaic Empire, London/New York: Routledge, 2001, chapter 3 and 9.
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The changes that took place are significant, and even if the architecture built in

Egypt in the last three centuries BC and then under the Romans is strictly related

to the ancient tradition of the country, it cannot be excluded that foreign influences

combined with the old traditions. For instance, as already mentioned, Friedrich

Hinkel suggested that some of the contemporary Meroitic monuments, erected in

the modern Sudan, were built using a module inspired by the Greek architecture.

As for the Ptolemaic temples, an interesting detail is that the group of fractions
1
2

+ 1
10

(which can also be expressed as 3
5
) corresponds to a value of 0.6 which

might be interpreted once more as an approximation of the Golden Section. The

Edfu and Dendera temples were built when this proportion had already been codified

in Greece and probably imported into Egypt (see Part I). Doubt remains, however,

as to what degree this knowledge would have penetrated Egyptian culture and how

receptive the Upper Egyptian priests, who were in charge of planning and building

large the Egyptian-style temples commissioned by their Greek rulers, would have

been.
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From the plan to the building

The picture that appears at the end of this study of ancient Egyptian documents on the

planning and building process shows that the ancient architects used a combination

of drawings, models and written specifications to describe and create their buildings.

None of these methods, alone, pretended to be exhaustive in the description of the

actual building,1 but each could provide partial information on the final result.

Where entire buildings were concerned, drawings had the function of describing

the general arrangement and the overall proportions, whilst the precise dimensions

were indicated by written specifications. The limited available surface on which

architects could draw, moreover, prevented the drawings from being able to describe

large buildings with a great degree of detail. Ostraca larger and heavier than a certain

limit would have been uncomfortable to handle and, apart from a few exceptions,

the average papyri were less than 50 cm high.2

The absence of scale drawings sweeps away any attempt to prove that compli-

cated mathematical patterns were used in the project. That they were absent in

the practice of construction, too, is suggested by the fact that the most successful

and convincing analyses of the dimensions of ancient Egyptian monuments are

those based on simple measurements. Some excellent examples of this are Dieter

Arnold’s studies on the temple of Mentuhotep at Deir el-Bahari3 and of the pyramid

complex of Amenemhat III at Dahshur.4 Seemingly, the surviving projects of royal

tombs suggest that the ancient architects started, if possible, from round measures.5

1 Clarke and Engelbach, Ancient Egyptian Masonry, p. 48; Arnold, Building in Egypt, p. 7.
2 Smith and Stewart, JEA 70, 55; Bridget Leach and John Tait, ‘Papyrus’, in Nicholson and Shaw (eds.), Ancient

Egyptian Materials and Technology, p. 237; see also Coulton, Greek Architects, p. 53. In the case of the Gurob
papyrus, the representation of a shrine on a square grid, there is clear evidence that the basic dimensions of the
shrine were chosen in advance to fit the available papyrus surface and corresponded to simple values on the
cubit rod (4 palms for the width, 6 for the depth and 8 for the height, that is, depth and height were respectively
one and a half and twice the width). Only after this, the surface of the papyrus was then divided by means of a

square grid, possibly based on a side-length of 1
18 of the height from basement and frieze.

3 Arnold, Temple of Mentuhotep, pp. 29–31. 4 Arnold, Amenemhet III., p. 63.
5 See also Ludwig Borchardt, ‘Das Grab des Menes’, ZÄS 36, 87–105, especially 104–5.
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In the case of free-standing buildings, the small discrepancies between theoretical

numbers and actual dimensions can be ascribed to the intrinsic approximation in a

stone construction. In other cases, such as in the rock-cut tombs, a significant differ-

ence between the planned measures and the final result might have been considered

absolutely irrelevant. In general, for the presence in the dimensions of fractions of

a cubit, it does not seem necessary to take into account complicated values such as√
2, � or �.

In relation to drawings, architectural models might have represented a later or

contemporary step. The model of the funerary apartment of a pyramid found at

Dahshur seems to pick up the trail where architectural drawings left off. After the

general arrangement of the spaces was established by means of a few lines on

ostracon or papyrus, one or more three-dimensional visualisations may have been

prepared before the final calculations gave way to the beginning of the works. It

may be concluded that it is likely that ancient Egyptian architects adopted a method

similar to that of the Greek architects of the seventh and sixth century BC; that is,

they built their buildings directly in three dimensions, with the support of written

specifications, sketches and three-dimensional specimens.6

In other words, Ancient Egyptian architects probably shared with the Greek

architects what Jim Coulton referred to as the incomplete preliminary planning:

whilst the overall dimensions and general disposition of fourth-century Greek tem-

ples were established before the work was started, a number of details were left to

be decided at a later stage at full scale. This also explains the various attempts to

solve the problem of the angle contraction in the Doric order – that is, how to com-

bine the length of the alternating metopes and triglyphs with the intercolumniation

in order to have a triglyph, and not a metope, next to the angle. The various solutions

adopted by the architects suggest that in many cases they were worked out when

the building had reached that stage, and not earlier.7

Greek architects probably did not adopt a modular system before the late

Hellenistic period, whereas earlier architects might have used a method similar

to that described by Vitruvius for the Ionic order. In his De Architectura, the Doric

order appears to be based on a fixed common module, while in the Ionic order the

various elements are derived from one another and form a sort of chain, where the

ratios between widely separated parts may be difficult to calculate.8 As Coulton

6 See, for instance, the famous Arsenal inscription, dating around 330 BC, which acted as a written project for the
arsenal to be built in the Pireus (Jens A. Bundgaard, Mnesicles, a Greek Architect at Work, Oslo: Scandinavian
University Books, 1957, pp. 117–32, especially p. 123).

7 Coulton, Greek Architects, pp. 60–64; by the same author, ‘Incomplete Preliminary Planning in Greek Archi-
tecture: Some New Evidence’, in Jean-François Bommelaer (ed.), Le dessin d’architecture dans le sociétés
antiques, Strasburg: Université des Sciences Humaines de Strasbourg, 1985, pp. 103–21; see also Vitruvius, Ten
Books on Architecture, fig. 62.

8 Vitruvius, Ten Books on Architecture, iii.5 and iv.3.
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concluded, ‘Vitruvius’ rules for the Ionic order are arranged so that the colonnade

could be designed as the building went up’.9

The temples built in Egypt under the Ptolemies might have been affected by

the significant cultural changes that were taking place in the Mediterranean basin

during the Hellenistic period.10 A closer comparison between Greek and Egyptian

architecture is likely to yield more interesting results, but it is essential, first of

all, to carry out detailed surveys of other Ptolemaic temples. The lack of reliable

surveys is, in general, the greatest obstacle for a research on proportions in archi-

tecture, especially when the complexity of a monument such as a temple (not only

Ptolemaic) cannot be satisfactorily represented by a two-dimensional plan. There

is, however, one group of monuments, relatively well-surveyed in their apparent

simplicity, which allow a study of their geometry from the beginning to the end of

their history. They are the pyramids.

9 Coulton, Greek Architects, p. 66.
10 For the Roman architecture and architectural design see Mark Wilson Jones, Principles of Roman Architecture,

New Haven and London: Yale University Press, 2000.
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The geometry of pyramids
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Combining the knowledge

Compared to a temple, a pyramid is certainly simpler from a geometrical point of

view. It consists of a square base and four triangular faces, and can be measured by

means of a few parameters, such as side-length of the base, height of the face, height

of the pyramid, slope of the face and slope of the corner. However, this geometrical

simplicity does not necessarily imply that in practice measuring a pyramid is always

easy, nor does it prevent theoretical reasoning from being marred by confusion and

mistakes.

Besides their simple geometry, another important element is the fact that, unlike

other monuments, some of the ancient mathematical sources provide first-hand

evidence about the calculations involved in the planning process. Many obscure

points still remain to be clarified, but at least we possess some basic informa-

tion such as, for instance, the way the ancient architects measured the slope of a

pyramid.

Another important point is that pyramids have been relatively well-studied, at

least those built during the Old and the Middle Kingdoms. Even if materials and

building techniques changed over the years, these monuments form a homogeneous

group which can be studied as a whole. At the end of the Middle Kingdom there was a

significant break in the history of pyramids, and their construction was resumed after

two centuries on a completely different basis. Not many New Kingdom pyramids

have survived, and in general our knowledge of these monuments is scant and

fragmentary. The later Meroitic pyramids belong to yet another group, clearly

inspired by the small New Kingdom pyramids rather than by the large Old Kingdom

funerary monuments. But the Old and Middle Kingdom pyramids together form

a large and consistent group of buildings which allow the reconstruction of the

evolution of their constructional problems and building techniques.

For all these reasons, Old and Middle Kingdom pyramids provide a good chance

to try to reconstruct the mathematical background of a group of monuments.

By combining all the information we possess on their history and on the ancient
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mathematics involved in their planning process with the picture that emerges from

the more general study of the relationship between architecture and mathematics

outlined in Part I and II, it is possible not only to clarify some important aspects

of pyramid construction, but also to fill the gaps of our knowledge by means of

suggestions that, even if difficult to prove with certainty, are at least compatible

with ancient mathematics.
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Symbolic shape and constructional problems

The form

Pyramidal form and solar cult

Although built in different dimensions, forms, and materials, and performing differ-

ent functions, pyramids were constructed throughout the history of ancient Egyptian

architecture. The monuments themselves, their chronological succession, and the

symbolism and the constructional problems associated with them have been thor-

oughly studied by Reiner Stadelmann, Jean-Philippe Lauer, Dieter Arnold, Mark

Lehner and Martin Isler, among others. It is also worth mentioning here the im-

pressive amount of material collected on many Old Kingdom pyramids by Vito

Maragioglio and Celeste Rinaldi, and the comprehensive report on the Old and

Middle Kingdom secondary pyramids published by Peter Jánosi. Here, as an intro-

duction to the subject, I will summarise the most important steps in the evolution

of these monuments.

From the Old Kingdom until the beginning of the New Kingdom, pyramids

were essentially royal symbols. Rectangular mud-brick mastabas were used as

funerary monuments by kings and nobles of the early period at Saqqara and at

Abydos. At least two kings of the Second Dynasty, Hetepsekhemwy and Ninetjer,

build large underground complexes at Saqqara, where, at the beginning of the

Third Dynasty, Djoser erected his innovative funerary complex. The large mastaba,

originally intended to cover the pit of the burial chamber surrounded by an intricate

set of underground galleries, was enlarged twice before a new expansion of the

volume took place. The basically flat, almost two-dimensional rectangular tumulus

was turned into a massive, three-dimensional stepped monument pointing to the

sky. The first step pyramid was born.

180
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Step pyramids were started by Sekhemkhet and Khaba(?), successors of Djoser,

but both monuments remained unfinished.1 The second-ever completed step pyra-

mid was built at Meidum between the end of the Third and the beginning of the

Fourth Dynasty, by Huni or his son Snefru. It had been originally conceived as a

seven-step pyramid but was rapidly enlarged with the addition of an eighth step.

Snefru then built two pyramids with smooth faces (the Bent Pyramid and the Red

Pyramid at Dahshur), and by the end of his reign he also cased the Meidum

Pyramid and turned it into another true pyramid.2 From this point onwards, large

true pyramids were built for almost every Old and Middle Kingdom king and for

many of their queens, although other forms were probably adopted in some cases.3

Pyramids were essentially funerary monuments, but there is also evidence of a

number of small step pyramids, probably belonging to the Third Dynasty, scattered

along the Nile. Their exact function is unclear, although it is generally assumed that

they served as symbols of royal power.4

The Seventeenth Dynasty Theban kings were buried under small mud-brick pyra-

mids at Dra Abu el-Naga. Buried among them was probably Ahmose, founder of

the Eighteenth Dynasty, who also built another, larger pyramid acting as cenotaph

at Abydos. After that, tombs were no longer marked by any pyramidal superstruc-

ture: the Theban mountain itself acted as a huge pyramid, and instead of building

the superstructure, the Eighteenth, Nineteenth and Twentieth Dynasty kings just

quarried their subterranean funerary apartments into it. Among the most famous

of these are the beautifully decorated tomb of Seti I, the huge KV5, built for the

sons of Ramses II, and, obviously, the tomb of Tutankhamun. After a break of

about two centuries, pyramids re-appeared in funerary architecture. They lost their

exclusive royal character and became the main feature of New Kingdom private

tombs scattered all over Egypt, from Saqqara to Deir el-Medina, Soleb and Aniba

in Lower Nubia, and, during the Twenty-sixth Dynasty, to Abydos. Pyramids were

again adopted as royal burials by the Late Period Nubian kings, who built over

180 of these small monuments at el-Kurru, Nuri, Gebel Barkal and Meroe. When

the Nubian kingdom collapsed, around AD 350, the history of Egyptian pyramids

came to an end.

1 Sekhemkhet chose Saqqara for his so-called ‘Buried Pyramid’, while Khaba(?) started the monument nicknamed
‘Layer Pyramid’ at Zawiyet el-Aryan. For the evolution of Djoser’s complex, see Jean-Philippe Lauer, La
Pyramide à Degrés. L’Architecture, Cairo: SAE, 1936.

2 Rainer Stadelmann, ‘Snofru und die Pyramiden von Meidum und Dahschur’, MDAIK 36 (1980), 437–49.
3 For their burials at Giza and South Saqqara, Khentkawes (one of the most important queens of the Fourth Dynasty)

and later Shepseskaf (successor of Menkaura) chose a mastaba-like superstructure and there is no evidence that
Giiib and Giiic (queens of Menkaura) at Giza, the pyramid of Neferirkara and the satellite of Neuserra, at Abusir,
were ever cased. Jánosi suggested three possible reconstructions for Giiib and Giiic: four-step, two-step and
bent pyramid (Jánosi, Pyramidenanlagen, pp. 86–7).

4 Dreyer and Kaiser, MDAIK 36, 43–59.
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Benben and benbenet

The sun was one of the principal elements of the ancient Egyptian religion, and

was worshipped under various forms. In the ancient town of Heliopolis, the solar

cult revolved around the sacred benben stone, whose form seems to represent the

common origin of pyramids, obelisks and stelae. The stone itself has not survived,

but it probably was an elongated, roughly pointed stone of an irregular shape. The

stone was stylised in two ways: a pointed, pyramidal form, and a round-topped form.

The first was the model for pyramids and obelisks, including the large obelisks of

the Fifth Dynasty sun temples; the second can be found in stelae and replicas of the

benben stone itself.5

The pyramidion of pyramids and obelisks bore the same name: benbenet, a

feminine form of benben.6 The origins and connections of the Egyptian word benben
are not easy to trace. It has been suggested that there might be a common origin

between the word benben and the verb weben, ‘to shine’,7 and in fact Alan Gardiner

translated benben as ‘the radiant one’.8 John Baines has analysed the connection

between the two words and concluded that benben is more likely associated with

the root bn(n), sometimes also written bl.9 The latter has a sexual meaning and is

strictly connected with the theme of the creation of the primeval hill, which was

in fact called benenet. The connection with the primeval hill also can be found in

the tradition which considers the temple as the mound on which the sun rises or

descends by itself or by means of a perch, a pole or an obelisk.10 The benben stone

was also associated with the heron, the Greek phoenix, called benw. A passage

from the Pyramid Text shows these linguistic interconnections: ‘O Atum-Kheprer,

you became elevated on the height, you rose up (weben) as the benben-stone in the

Mansion of the “Phoenix” (benw) in Heliopolis’.11 In general, however, as Baines

has pointed out, word-games are double-edged references, since they may link

similar but originally unrelated words or things.

Even if the weben etymology is doubtful, the benbenet (the pyramidion of pyra-

mids and obelisks) is connected, as a matter of fact, with the sun. There is ample

5 Kemp, Ancient Egypt, fig. 30.
6 Although the vast majority of pyramidia were capstones of pyramidal structures, some might have had simply

a votive function (Agnes Rammant-Peeters, Les pyramidions égyptiens du Nouvel Empire, OLA 11, Leuven:
Departement Oriëntalistiek, 1983, p. x). For the different capstones of Late Period Nubian pyramids, see
Friederich W. Hinkel, ‘Pyramide oder Pyramidenstumpf? (Teil C und D)’, ZÄS 109 (1982), 127–47.

7 Lacau suggested that the meaning of the verb wbn was the shining of the rising sun, in opposition to h. tp, the
setting sun, and psd, the sun at the zenith (Pierre Lacau, ‘Les verbes wbn, “poindre” et psd, “culminer” ’, BIFAO
69 (1971), 1–9).

8 Alan Gardiner, Egypt of the Pharaohs, Oxford: Clarendon Press, 1961, p. 85.
9 John Baines, ‘Benben: Mythological and Linguistic Notes’, Orientalia 39 (1970), 390.

10 Baines, Orientalia 39, 394. See also Alexandre Moret, Le rituel du culte divin journalier, Paris: Leroux, 1902,
pp. 242–3.

11 James B. Pritchard, Ancient Near Eastern Texts, Princeton: Princeton University Press, 1969, p. 3; Kemp,
Ancient Egypt, p. 88.
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evidence that the pyramidia of Middle and New Kingdom obelisks were often cov-

ered with gold, electrum or copper. The oldest of the large standing obelisks is

one of a pair which was erected by Senusret I at Heliopolis. Several writers who

visited Egypt in different periods described its pyramidion as covered with a cap of

copper.12 Likewise, the pyramidia of the pair of obelisks of Thutmosis I at Karnak

were covered with electrum,13 while in one of the two pairs of obelisks erected

by Hatshepsut at Karnak, not only the pyramidion, but also the image of the sky

above the head and the ground line under the feet of the eight couples of figures

of Hatshepsut and Thutmosis III, carved in sunk relief, were probably inlaid with

gold.14

As for the pyramidia of pyramids, a block from the causeway of Sahura bears a

representation of a group of men dragging a pyramidion: the pyramidion itself is

not visible in the scene, but the surviving inscription mentions a benbenet covered

with gold.15 A fragmentary text from the pyramid temple of Udjebten, queen of

Pepi II, mentions a pyramidion covered with gold, but it is not clear whether it refers

to the capstone of that pyramid or to another monument.16 The pyramidion found

at Abusir in the area of pyramids numbered by Lepsius as 24 and 25, possibly built

for queens of Neuserra, seems to have been prepared to host a metal cap.17 The

surviving finished pyramidia of Middle Kingdom pyramids are made of dark stone,

are inscribed and, in two cases, decorated with a solar motif. Of the pyramidion of

Senusret II, the few surviving fragments bear traces of a text.18 The pyramidia of

Amenemhat III19 and Khendjer20 were covered by texts and decorated with scenes

centred on the solar cult; the motif of the winged sun-disk was repeated on the top

of their triangular faces. The decoration of the three surviving sides of the small

pyramidion of Merneferra Ay is contained in small squares and shows the king

presenting offerings to probably four different gods.21 As for the later private small

pyramids, decorations related to the solar cult can be found on the majority of New

Kingdom pyramidia,22 as well as on the Late Period pyramidia from Abydos.23

12 Labib Habachi, The Obelisks of Egypt, London: Scribner’s Son, 1977, pp. 47–8.
13 Habachi, Obelisks, pp. 58–9.
14 Pierre Lacau, ‘L’or dans l’architecture égyptienne’, ASAE 53 (1956), 221–50, especially 243–6.
15 Zahi Hawass and Miroslav Verner, ‘Newly Discovered Blocks from the Causeway of Sahure’, MDAIK 52

(1996), 181 and fig. 1a.
16 Gustave Jéquier, La Pyramide d’Oudjebten, Cairo: SAE, 1928, p. 18.
17 Miroslav Verner, ‘Excavations at Abusir. Season 1982 – Preliminary Report’, ZÄS 111 (1984), 73 and ‘Abusir

Pyramids “Lepsius no. XXIV and no. XXV” ’, in Hommages à Jean Leclant, vol. i, Cairo 1994, pp. 373–4 and
figs. 3 and 4.

18 W. M. Flinders Petrie, Lahun II, BSAE ERA 33, London: Quaritch, 1923, p. 4 and plate 24.
19 Gaston Maspero, ‘Sur le pyramidion d’Amenemhait III à Dachour’, ASAE 3 (1902), 206–8; Heinrich Schäfer,

‘Die Spitze der Pyramide Königs Amenemhat III’, ZÄS 41 (1904), 84–5; Arnold, Amenemhat III, p. 14.
20 Gustave Jéquier, Deux Pyramides du Moyen Empire, Cairo: SAE, 1933, pp. 19–26.
21 Labib Habachi, ‘Two Pyramidions of the XIIIth Dynasty from Ezbet Rushdi el-Kebira (Khata�na)’, ASAE 52

(1954), 473–4.
22 Rammant-Peeters, Pyramidions égyptiens, especially chapter 7.
23 Herman J. de Meulenaere, ‘Pyramidions d’Abydos’, JEOL 20 (1967–68), especially 19–20.
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Finally, nothing certain can be said about the pyramidia of the Fifth Dynasty sun

temples, since the two complexes excavated so far were too damaged to provide

any evidence. The ancient names of these temples are completed by a determinative

sign in the shape of an obelisk resting on a pedestal, with a solar disk on the top

of its pyramidion. This elegant hieroglyph suggests that the top of the obelisk was

equipped to catch the sunlight.24 Ludwig Borchardt, however, pointed out that there

is no direct evidence that the pyramidion of the obelisk of Neuserra was covered

with gold or another metal.25

As high as possible

Obelisks were usually erected in pairs at the entrance of temples and were dedicated

to the rising and setting sun.26 The shining of their golden points in the sunlight must

have been spectacular and particularly evocative, because the sun was ‘captured’

on the top of the obelisks and so kept shining on the temple all day long. The

benbenet of obelisks had therefore the precise function of acting as an intermediary

link for the sun to descend from the sky to the earth. The benbenet of pyramids

also seems to have been perceived as a point of contact between earth and sky, in

both directions, since capstones of pyramids were the first and last points of the

landscape to be illuminated by the sun and, at the same time, Pyramid Texts often

refer to the pyramids as ‘stairs’ or ‘ramps’ for the dead king to reach the sky.27

Although there are many analogies between obelisks and pyramids, solar sym-

bolism alone cannot explain the form of the pyramids. Other factors must be consid-

ered. The Step Pyramid of Saqqara and the creation of the true pyramid by Snefru

represent two turning points, where new ideas were added to the existing forms.

But even if the evolution of the pyramid form is visible (the various phases from

mastaba to step pyramid can be seen in the north side of the Saqqara pyramid, and

the Meidum pyramid displays the entire sequence of actions that turned it from a

step into a true pyramid), its reasons cannot be fully explained.

In ancient Egypt it is especially difficult to make a distinction between the original

idea and the symbolism which became attached to it and was consequently adopted.

The first step pyramid, for instance, might be explained as a pile of superimposed

mastabas28 and/or a huge stair for the king to reach the sky. Seemingly, the first

true pyramid might be interpreted as the form to which a step pyramid naturally

24 Werner Kaiser, ‘Zu den Sonnenheiligtümer der 5. Dynastie’, MDAIK 14 (1956), 103–16.
25 Friedrich W. von Bissing (ed.), Das Re-Heiligtum des Königs Ne-woser-re; Band I: Der Bau, Berlin: Duncker,

1905, p. 12.
26 Habachi, Obelisks, p. 11; Lacau, ASAE 53, 242 and 246.
27 Spells 365, 971, 975, 978, 980, 995, 1089, 1090.
28 Ahmed Fakhry, The Pyramids, Chicago: University Press, 1961, p. 5.
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Fig. 84: RMP problem 57: the height of a pyramid is calculated from the base-
length and the seked (slope), (from Chace, Bull and Manning, Rhind Mathematical
Papyrus, pl. 79).

turned when covered by sand, and/or a huge ramp to reach the sky,29 and/or a giant

representation of the benben stone. Whatever explanation is chosen, the common

point seems to be the aim to reach the sky.

True pyramids tried to reach the highest possible point. ‘As high as possible’

naturally implied ‘as steep as possible’, for at least two reasons. First of all, a steep

slope allowed the architects to reach a high point with a relatively small amount

of material. Second, a steeper pyramid seems higher that a flatter one. Reconciling

stone and maximum height, however, was not an easy matter, as we shall see in the

next chapters.

The technique

Seked, side-length, diagonals and corners

Concerning pyramids, our Middle Kingdom sources tell us how the Egyptians

calculated the slope of an oblique face, which they called seked, from the base-

length and the height (and vice-versa, see fig. 84), and the volume of a truncated

pyramid (from which it may be inferred that they also calculated the volume of a

complete pyramid).

The seked was the horizontal displacement of the sloping face for a vertical drop

of one cubit, that is, the number of cubits, palms and fingers by which the sloping

side had ‘moved’ from the vertical at the height of one cubit (fig. 85). This method,

in fact, defines a right-angled triangle, where one of the two catheti is equal to one

cubit and the other corresponds to the seked itself. This triangle is proportional to

half the vertical section of the pyramid; that is, it is a small version (only one cubit

high) of half the vertical section (see also fig. 89). Problems 56, 57, 58, 59 and 60 of

the Rhind Mathematical Papyrus (RMP) contain calculations involving the seked
of pyramids obtained by dividing half of the base by the height, that is, by finding

the ratio between the two catheti of the triangle corresponding to half the vertical

section of the pyramid. Four RMP problems refer to pyramids, the fifth possibly to a

29 Fakhry, Pyramids, p. 8; Kurt Mendelsohn, The Riddle of Pyramids, London: Thames and Hudson, 1974,
plate 24.
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Fig. 85: Seked of a sloping face according to the Rhind Mathematical Papyrus.

pillar.30 They are accompanied by rough sketches of small and steep pyramids, the

first four resting on bases and topped by a dark pyramidion and showing a steeper

slope than the seked provided by the corresponding problems.

It is interesting to note that all of the problems deal with the calculation of the

seked of faces of pyramids and other sloping constructions, never of their corners.

From a practical point of view, however, the corner must have played an important

role, since its alignment was the only visible line which could be checked in order

to avoid the pyramid rotating around its vertical axis during construction. At the

centre of the top step of the Meidum pyramid, for example, there is a hole in the

masonry which may be interpreted as a socket for a rod which would act as a visual

reference during the construction of the uppermost section of the casing, when the

four corners must meet the base of the pyramidion.31

Only two ancient ‘plans’ of pyramids survive: two sketches on ostraca, one dating

to the New Kingdom and the other to the Late Period. The first, found at Soleb,

represents the plan of two pyramids identified as the superstructures of the tombs

numbered 14 and 15.32 The second, sketched on a Meroitic jar, has been interpreted

as the representation of a small pyramid resting over an underground oval burial,

30 Since the seked given by this problem is 1/4, Badawy thought that this could refer to the slope of his harmonic
triangle 1:4 (Badawy, Ancient Egyptian Architectural Design, pp. 57–8.

31 Mark Lehner, The Complete Pyramids, London: Thames and Hudson, 1997, p. 100; Isler Martin, Sticks, Stone
and Shadows. Building the Egyptian Pyramid, Norman: University of Oklahoma Press, 2001, pp. 210–1.

32 Jean Leclant, ‘Fouilles et travaux au Soudan, 1955–1960’, Orientalia 31 (1962), 134, note 8 and fig. 3.
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Fig. 86: New Kingdom ostracon from Soleb representing two pyramids and plan
of pyramids 14 and 15 at Soleb (left, drawn after Leclant, Orientalia 31, fig. 3)
and sketch of a pyramid on top of a tomb on a Meroitic jar (drawn after Bonnet,
Genava 28, fig. 29).

in front of which an offering-table was placed (both in fig. 86).33 In both cases, the

two lines drawn across the plan may be interpreted as the two diagonals of the base

or as the projection of the corners. In addition, the Soleb sketch also indicates the

main axis of the monuments.

The diagonals of the base played an important role during the construction, but it

was the side-length of the pyramid that was established first, as can be deduced by

several observations. First of all, the side-length usually consists of a whole number

33 Charles Bonnet, ‘Les fouilles archéologiques de Kerma (Soudan)’, Genava 28 (1980), 59.
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Fig. 86: (cont.)

of cubits: if the first choice were the diagonal, the side-length would have seldom

corresponded to a simple number. Second, whenever pyramids were built around

and on an already existing rock core, this would have prevented the measurement

of the diagonal in the initial phase of the construction (although, at a later stage,

the diagonals themselves might have been used to check the regularity of the plan).

Finally, the orientation of the faces of the pyramids towards the four cardinal points

indicates that establishing the sides, and not the diagonals, was the initial act of the

construction.

Methods for obtaining the slope

Around the corners of Mastaba 17 at Meidum, Petrie found a series of diagrams

that seem to imply that the slope of the corner was a consequence of the slope of the

faces.34 Petrie found four L-shaped mud-brick walls which had been built beneath

the ground level around the four corners of the mastaba and which acted as a

guide to check its slope (fig. 87). The construction of the sloping walls of the mastaba

34 Petrie, Medum, pp. 11–3 and pl. 8.
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Fig. 87: Petrie’s drawings of the diagrams at the four corners of Mastaba 17 (Third
to Fourth Dynasty) at Meidum (from Medum, pl. 8).
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Fig. 88: Diagram of half the vertical section of the pyramid Beg. 8 at Meroe drawn
on the wall of its chapel, left, and its reconstruction, right (from Hinkel, ZÄS 108,
figs. 4 and 5).

Pure Mathematical Physics



Symbolic shape and constructional problems 191

Fig. 88: (cont.)

began from the rock bed, which was not perfectly flat. For this reason, the architects

fixed a zero-line, built the L-shaped walls and marked on them the projection of

the dimension which the mastaba was intended to have at the ground level. From

these points downwards, horizontal lines were drawn on the walls at the distance

of one cubit to mark the depth of the rock bed. Two oblique black lines were traced

to represent the projection on the walls of the underground sloping faces. At some
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point, two other lines were drawn parallel to the first pair, and the mastaba was

enlarged by the short distance between them. In this way, regardless of the depth

of the rock bed, the masons could start the construction of a sloping side which

would reach the surface at the ‘right’ point; that is, the emerging construction would

have had the established dimensions.35 The slope of the sides was constructed by

keeping the visual alignment with the line drawn on the wall. The slope of the

corner, therefore, was merely the meeting point of the two sloping faces.

Mastaba 17 was built in one single stage and is contemporary with the large

Third–Fourth Dynasty pyramid attributed, at least in its final phase, to Snefru.36

The diagram found by Petrie is an exceptional document, since it is our only Old

Kingdom source concerning the construction of sloping walls. There is only one

other original source of this kind and it dates to twenty-one centuries after Mastaba

17: the diagram found on the north wall of the chapel of Pyramid 8 at Meroe.37

It represents half of the vertical section of a pyramid, consisting of a vertical line,

corresponding to the axis of the pyramid, a horizontal ground line and forty-eight

horizontal lines drawn across the sketch at regular intervals, probably representing

the horizontal masonry courses (fig. 88). The slope, about 72◦, is very close to the

slope of the face of other Meroitic pyramids. More than two thousand years divide

Mastaba 17 of Meidum and Pyramid 8 of Meroe, but in both cases the slope of the

face, not of the corner, is the starting point.

If, for some reason, it was necessary to express the seked of the corner in cubits

and palms, this could have been easily calculated from the seked of the face. As

we have seen before, the seked corresponds to one of the catheti of a right-angled

triangle (which represents half the vertical section of the pyramid), the other cathetus

being equal to one cubit. In a theoretical small-scale model of a pyramid which

is one cubit high, half of its base would be equal to the seked of the face. As

a consequence, half of its diagonal would be equal to the seked of the corner38

(fig. 89).

Martin Isler suggested that pyramids were built in three stages: a stepped nucleus

was erected first, then its steps were filled to achieve a smoother outline, and finally

the casing was added and then smoothed moving from the top downwards.39 The

slope must have been decided in advance, but it was in the final stages of construction

that precision really mattered. Helped probably by sighting stations, the workmen

positioned the casing blocks row after row.

35 It may be noted that, probably for symbolic reasons, the architects chose to start the sloping sides from the
hidden rock bed, rather than build a vertical platform up to the ground level and then the mastaba on top of it.

36 For the attribution of the pyramids of Meidum and Dahshur, see Stadelmann, MDAIK 36, 437–49.
37 Friederich W. Hinkel, ‘Pyramide oder Pyramidenstumpf? (Teil A)’, ZÄS 108 (1981), 107–12.
38 See Gillings’ interpretation of the remen mentioned in Part i, p. 88, note 4 (Gillings, Mathematics, pp. 208–9);

also Gay Robins and Charles Shute, ‘Irrational Numbers and Pyramids’, DE 18 (1990), 47.
39 Isler, Sticks, Stone and Shadows, chapters 9–13.
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Fig. 89: Geometrical relationships in a pyramid one cubit high.

As Mark Lehner described the process, the casing blocks arrived at their final

destination roughly prepared but with the lower surface already dressed. After they

had been smoothed on both sides and laid out, the upper surface of the whole row

was dressed as far as the line marking the external edge of the following row. This

operation was repeated row after row by calculating the slope of the face on the

spot, and the final smoothing removed all the external extra stone as far as that

line. Traces of the process are visible in the unfinished casing of the pyramid of

Menkaura. The vertical section of the casing blocks, therefore, were trapezoidal

and the slope of each block may have been marked on both sides with the aid of a

right-angled triangle in the shape of the seked chosen for that pyramid (fig. 90).40

40 Lehner, Complete Pyramids, p. 220 and figures p. 221. It is generally accepted that from the Fourth Dynasty
onwards the masonry of pyramids was laid out on horizontal beds, leaving to the Third Dynasty step pyramids
the sloping accretion layers. Horizontal beds would reduce the stress toward the centre and the chambers built
in the body of the pyramid: this was probably the reason, for example, why the architects of the Bent Pyramid
turned to horizontal beds half way up during the second stage of construction (Lehner, Complete Pyramids,
p. 102). The recent excavation of Djedefra’s pyramid at Abu Rawash (Michel Valloggia, ‘Fouilles archéologiques
à Abu Rawash (Egypte), rapport préliminaire de la campagne 1995’, Genava 43 (1995), 65–72), however,
provided contrasting evidence. Only two small areas were cleared on the north side, the north-east corner and
a section beside the descending corridor. The masonry has long disappeared, but the rock retained the shape
of flat beds in the first case, and sloping in the second. Valloggia assumed that the final slope of the pyramid,
about 52◦, was obtained by placing casing blocks with a slope of 64◦ on a bed with a slope of 12◦: the composition
of the two slopes would produce a final result of 52◦ (64◦–12◦ = 52◦). The subject will be discussed again
later.
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Fig. 90: Method for obtaining the slope in a pyramid according to Lehner
(Complete Pyramids, p. 220).

Seemingly, for the later small Meroitic pyramids, Friedrich Hinkel suggested that

the architects adopted a right-angled triangle designed according to the proportions

of half the vertical section of the pyramid to check the slope during construction.

One or more wooden triangles with these proportions might have been fixed on top

of the platform corresponding to any intermediate stage of the building process and

acted as a guide, as represented in figure 91.41

It is unclear whether three-dimensional models of pyramids were prepared in

advance and exactly what their practical use could have been. Of the two surviving

models of pyramids already mentioned, the step pyramid does not seem to have

been a working model, and nothing certain can be concluded about the function

of the fragment identified by Petrie as a model of the pyramid of Amenemhat

III at Hawara. It is certainly more refined than the step pyramid, but, provided it

was really a model, it is impossible to establish whether it was prepared before

41 Friederich W. Hinkel, ‘Pyramide oder Pyramidenstumpf? (Teil B)’, ZÄS 109 (1982), 27–61.
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Fig. 91: Method for obtaining the slope in a Meroitic pyramid according to Hinkel
(ZÄS 109, figs. 19 and 20).

or after completion of the pyramid which it is supposed to represent. Finally, it

is worth mentioning that there is evidence, in at least three cases, that pyramidia

were prepared while the corresponding pyramids were still under construction (see

next chapter), but whether or not they were used as models on the spot remains

unclear.

In conclusion, establishing the seked means establishing a right-angled trian-

gle corresponding to the proportions of half the vertical section of the pyramid.

Although no archaeological evidence has survived, it is possible that wooden tools
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Fig. 91: (cont.)

with this shape existed and were used during the construction, as suggested by

Lehner and Hinkel. The choice of the triangle – that is, of the slope – might depend

on a number of reasons, but certainly a decisive factor was the final size of the

monument, or rather the volume of stone involved.

Dimensions and proportions

Nabil Swelim has suggested that the pyramids were built according to the ‘angle of

repose’ of the material, that is, the natural angle in which any heaped matter remains
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without changing its form.42 Well-laid courses of stone, however, would allow the

adoption of a wider range of possible slopes, especially as the working technique

(junctions between stones, arrangement and dimensions of the rows) improved. It is

true, however, that larger pyramids had to deal with significant structural problems,

while the relatively small amount of stone involved in the construction of smaller

pyramids was likely to cause less trouble to the architects.

Throughout the whole history of Egyptian pyramids, smaller pyramids were

generally steeper than larger ones (with the exception of some satellite pyramids

which were built using the same slope as the main pyramid). Among the largest

and medium-size pyramids, only two reached 56◦, while the smaller ones reached

over 63◦ already in the Old Kingdom. The surviving Eighteenth and Nineteenth

Dynasty pyramidia reveal that the small mud-brick pyramids which were built on

the top of the underground burials were even steeper, the average slope being about

70◦. Similar slopes can be found in the Late Period pyramidia of Abydos and in the

later Meroitic pyramids.

The struggle between ideal aims and practical problems is clearly visible in the

early history of the Bent Pyramid, the first pyramid intentionally started from

the beginning as true, built by Snefru at the beginning of the Fourth Dynasty.

The final form of this monument is the result of three changes of slope, due to

repeated structural problems43 (fig. 92). The first project consisted of a pyramid

with a side-length of 300 cubits and a slope of about 60◦. Evidence of this first

construction can be found in the western and northern descending corridors at the

points where the new portion of corridor joins the original. This first project reached,

therefore, at least the height of the west corridor, before being abandoned. Serious

structural problems must have appeared at this stage, and the architects decided

to incorporate this original pyramidal stump into a larger and less steep pyramid.

Therefore, they enlarged the base to 362 cubits and adopted a slope of about 54◦30′,
but this change of plan did not stop the problems. There is ample evidence that the

pyramid was subjected to enormous forces caused by a settling in the masonry,

probably accompanied (or caused) by a sinking of the foundation rock. The blocks

of the casing of the east face appear to have been crushed, and there are numerous

cracks both in the descending corridor at the junction between the first, internal

and second, external pyramid and in the lower part of the corridor.44 The situation

deteriorated to the point that, when the pyramid reached the height of 90 cubits, a

42 Dreyer and Swelim, MDAIK 38, 95.
43 Varille suggested that the pyramid was intentionally designed in this shape. According to him, everything in

the complex was double: two entrances, two descending corridors, two porticullises, two apartments, etc. and,
therefore, two slopes (A propos des pyramides des Snefru, Cairo 1947. For a review, see Arpag Mekhitarian,
CdE 47 (1949), 63–5). On the subject, see also John A. R. Legon, ‘The Geometry of the Bent Pyramid’, GM
116 (1990), 65–72 and ‘The Problem of the Bent Pyramid’, GM 130 (1992), 49–56.

44 Maragioglio and Rinaldi, Piramidi III, pp. 58–62.
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Fig. 92: Plan and section of the Bent Pyramid, Fourth Dynasty (drawn after
Maragioglio and Rinaldi, Piramidi III, and Stadelmann, Pyramiden, p. 90).

radical decision was taken. In order drastically to reduce the weight on the already

damaged core, a change in the slope was decided and the pyramid was completed

using a slope of about 43◦30′.
The care which the architects showed in completing the Bent Pyramid (all the

casing was smoothed) proves that this pyramid was far from being perceived as

a failure. If the idea was to build a giant representation of the benben stone, the

Bent Pyramid might be considered quite a good result. In any case, warned by

the previous experience, the architects probably chose the safe slope of the upper
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part of the Bent Pyramid to build the second pyramid attributed to Snefru, the Red

Pyramid. Although similar structural problems were less likely to occur in a small

pyramid, the satellite of the Bent Pyramid was built using the same ‘flat’ slope of

the upper part of the main pyramid. This pattern, main and satellite pyramids with

the same slope, was rapidly substituted by two independent slopes already at the

beginning of the Fifth Dynasty: the smaller pyramids were left free to reach the sky

according to their own possibilities.
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The proportions of pyramids

Analysing true pyramids

Numerological theories

It is virtually impossible to mention all of the theories that have been suggested

to explain the geometry of Egyptian pyramids. Many of them are based on more

or less imaginative interpretations. At best, they are incorrect simply because they

are based on our modern mathematics, with little respect for the ancient Egyptian

system, but in the worst cases no field of human knowledge has been left untouched

by those who aim to find hidden meanings in these ancient monuments.

The pyramid of Khufu, being the largest and the most famous (and, in fact, often

simply called the ‘Great Pyramid’), has especially inspired complicated mathemat-

ical interpretations. They are usually based on the assumption that the pyramid

was planned and built using mathematical principles such as � (the ratio between

diameter and circumference in a circle) and � (the number of the Golden Section).

Useful summaries of the history of the most famous mathematical theories have

been published by Jean-Philippe Lauer1 and Franco Cimmino, among others.2 In

particular, Roger Herz-Fischler has listed all of the theories suggested so far on the

pyramid of Khufu alone.3 Over time, the proportions of this pyramid have been

explained, in turn, on the basis of the equality between corner and base-length, or

between base-length and apothem (height of the face); by assuming that the ratio

between side-length and apothem was 5:4, or that the ratio between the side-length

and the height was 8:5 or �; by suggesting that the circumference of a circle with

radius equal to the height of the pyramid was equal to the perimeter of the base of

the pyramid, or that the area of the square constructed on the height was equal to

1 Lauer, Les mystère des pyramides, Paris: Presses de la Cité, 1988, part iii.
2 Franco Cimmino, Storia delle piramidi, Milano: Rusconi, 1990, chapter 2.
3 Roger Herz-Fischler, The Shape of the Great Pyramid, Waterloo: Wilfrid Laurier University Press, 2000.
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the area of a face of the pyramid; and by deriving the vertical section of the pyramid

from the heptagon or from a golden triangle.

Many scholars have attempted to ‘read’ the geometry of pyramids in terms of

mythological or esoteric significance. These theories are mainly based on incor-

rect starting points, inappropriate connections and unjustified interpretations, but

evidently appeal to the imagination in such a powerful way that their multiplica-

tion and diffusion shows no downward trend. Their importance may be evaluated

in sociological and psychological terms, and their contents compared with their

own contemporary cultural background. They are representative of the modern cul-

ture which generated them, rather than of the ancient culture to which they refer.

Herz-Fischler, for instance, briefly analysed the social and intellectual background

of many of these theories and pointed out that some of them are true products of

Victorian Britain.4

One of the most famous works on the subject was The Great Pyramid: Why Was
It Built? & Who Built It?, published in 1859 by John Taylor, who concluded that the

Great Pyramid must have been built by the race of the ‘Children of Israel’ rather than

by the idolatrous Egyptians. The dimensions of the pyramid reflected the dimensions

of the earth (diameter and circumference) after the Deluge, but also incorporated,

in its interior, ‘antediluvian measures’.5 The pyramid was meant to ‘serve as record

and memorial, to the end of time, of the Measure of the Earth, and secondly, to

form a Standard of measures of length, capacity, and weight, to which all nations

might appeal, as to a common authority’.6 According to Taylor, the English inch

was also invented at that time. Charles Piazzi-Smyth, Professor of Astronomy and

Astronomer Royal of Scotland, adopted these ideas and produced a number of pub-

lications on the subject.7 He agreed that the Great Pyramid could not have been built

by the Egyptians (‘we find in all its finished parts not a vestige of heathenism, nor the

smallest indulgence in anything approaching to idolatry, no Egyptology of the kind

denounced by Moses and the prophets of Israel, nor even the most distant allusion

to Sabaism’8) and concluded that the pyramid of Khufu had been built using the

so-called ‘pyramidal inch’, an imaginary unit of measurement corresponding to an

equally imaginary ‘sacred cubit’. The well-known Egyptian royal cubit was hastily

discarded as an idolatrous and profane unit of measurement invented by Cain.9

Biblical fanaticism, merged with numerological interpretation, generated a num-

ber of imaginative theories. Moreux, for example, calculated that, by multiplying the

4 Herz-Fischler, Great Pyramid, chapter 18.
5 John Taylor, The Great Pyramid: Why Was It Built? & Who Built It?, London: Longman, Green and Roberts,

1859, pp. 297–9.
6 Taylor, Great Pyramid, p. 224.
7 The two most important are Charles Piazzi-Smyth, Life and Work at the Great Pyramid, Edinburgh: Edmonston

and Douglas, 1867 and Our Inheritance in the Great Pyramid (4th edn), London: Straham and Co., 1880 (1864).
8 Piazzi-Smyth, Our Inheritance, p. 5. 9 Piazzi-Smyth, Our Inheritance, pp. 343–7.
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perimeter of the Great Pyramid by the square of its height, the result was very close to

� (incidentally, at that time the base of Khufu’s pyramid was unmeasurable because

it was covered by sand). He also asserted that the architects of the Great Pyramid

were able to calculate the length of the polar radius of the earth, the distance be-

tween earth and the sun, the length of the earth’s orbit during twenty-four hours, the

length of the cycle of the precession of the equinoxes, the exact length of the solar,

astronomical and leap year, the exact distribution of the emerged lands, and so on.10

The cogitations of entire generations of pyramidologists (wittily called ‘pyra-

midiots’ by Leonard Cottrell11) may be summarised in the following passage by

Barbarin:

the key-dates of the history of mankind are shown in the Pyramid by the intersection of
the lines of ceilings and floors of corridors and chambers, by the junction of axes, by the
intersection of circumferences, thresholds, beginning and end of passages, by the details of
the construction.

Among these ‘key-dates of the history of mankind’ were the signing of the report

of the royal commission for the English oil industry, the fall of the Briand govern-

ment, the beginning of the Anglo-Egyptian crisis and the abolition of Islam as the

established religion in Turkey.12

Not all of the theories suggested to explain the geometry of pyramids have a

biblical and numerological background. The most common fault in many theories,

however, is the liberal use of modern mathematical concepts in the attempt to

explain the design of ancient monuments. Yet scholars such as Ludwig Borchardt,

Jean-Philippe Lauer and Gay Robins have proved that it is possible to explain the

geometry of pyramids (and not only of the Great Pyramid) by using the proper

mathematical instruments; there is no need to invoke concepts for which we have

no evidence that they were known to the ancient architects.13

Lauer’s simple ratios

One of the most interesting aspects of pyramid construction is the choice of

the slope. Jean-Philippe Lauer suggested that the architects adopted ‘easy’ ratios

10 Quoted by Lauer, Mystère des pyramides, pp. 178–83 and Cimmino, Piramidi, p. 30.
11 Leonard Cottrell, The Mountains of Pharaoh, London: Pan Books, 1963, especially chapter 11.
12 Quoted by Lauer, Mystère des pyramides, pp. 160–1 and Cimmino, Piramidi, p. 31.
13 See for example Ludwig Borchardt, Gegen die Zahlenmystik an der Grossen Pyramide bei Gise, Berlin: Behrend

and Co., 1922; Robins and Shute (DE 16, 75–80 and DE 18, 43–53) challenged the conclusions of Legon (DE
10, 33–40) about the supposed use of irrational numbers. Butler, for his analysis of the Giza complex, did
use the ancient Egyptian mathematics as a starting point and measured everything in cubits, but some of his
conclusions (such as the importance of the height of the base-lines of the Giza pyramids in relation to one another
and to the sea-level) remain difficult to explain (Hadyn R. Butler, Egyptian Pyramid Geometry, Architectural
and Mathematical Patterning in Dynasty IV Egyptian Pyramid Complexes, Mississauga: Benben Publications,
1998).

Pure Mathematical Physics



The proportions of pyramids 203

Table 8. Proportions of some pyramids according to Jean-Philippe Lauer

Name of the king and/or
location (and dynasty)

Theoretical angle
of the pyramid

‘Simple ratio’
describing the slope
of the apothem

‘Simple ratio’
describing the
slope of the corner

Casing of Meidum,
Khufu (Fourth),
Neuserra (Fifth)

for 51◦50′35′′
for 51◦50′39′′

14/11 (5 palms 1/2)
9/10

Snefru: lower part of the
Bent Pyramid
(Fourth), Amenemhat
I (Twelfth)

for 54◦27′44′′
for 54◦44′06′′

7/5
1/1

Snefru: upper part of the
Bent Pyramid and
Red Pyramid (Fourth)

for 43◦22′
for 43◦19′

17/18
2/3

Khafra (Fourth), Userkaf
and Neferirkara
(Fifth), Teti, Pepi I,
Merenra and Pepi II
(Sixth)

53◦7′48′′ 4/3 (3-4-5 triangle)

Sahura (Fifth) for 50◦11′40′′
for 50◦28′45′′

6/5
6/7

Satellites at Saqqara
starting from
Djedkara-Isesi
(Fifth-Sixth)

63◦26′06′′ 2/1

Senusret I (Twelfth) for 49◦23′55′′
for 49◦21′

7/6
14/17

Data from Observations sur les pyramides, pp. 258–9.

between half the base and height, and produced a list of over twenty-five pyramids

that corroborated his theory14 (some are shown in table 8). The two terms of these

ratios correspond to the two catheti of a right-angled triangle. The ratio 7
5
, for ex-

ample, means that for every 7 palms measured along the vertical there was a lateral

displacement of 5 palms, a perfect example of seked as found in the mathematical

papyri. Ratios such as 6
5

or 17
18

, on the other hand, do not correspond to the usual

expression of the seked, but Lauer noted that the geometrical method could be

used independently from the arithmetical calculation. The architects would choose

a simple ratio and use small wooden right-angled triangles shaped accordingly to

check the slope during construction. In these cases, the expression of the slope in

14 Jean-Philippe Lauer, Observations sur les pyramides, BdE 30, Cairo: IFAO, 1960, pp. 87–8 and 258–9; see
also pp. 91–7.
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terms of seked did not have any practical advantage, but, if necessary, it could have

been established at any time by means of a simple calculation.15

Lauer’s theory, although substantially correct, may be extended in several di-

rections. For example, it is possible to take into account more pyramids, and to

investigate more thoroughly the nature of the right-angled triangles chosen to rep-

resent the slope. In order to achieve this result, the first step has been the compilation

of a longer and more detailed list of pyramids which provides essential information

about their dimensions, included in the Appendix. On this basis, it has been pos-

sible to draw conclusions based on a large number of monuments and not only on

a few examples, and to fit other pieces of evidence into the broader picture. Nabil

Swelim, for example, has noted and studied the relationship between dimensions

and proportions, and suggests that the architects adopted three successive ratios

in the design of pyramids. In the earliest pyramids, the height is equal to half the

base (that is, the slope of the face is equal to 45◦); in a second phase, the height

is equal to half the diagonal (that is, the slope of the corner is equal to 45◦); in a

third phase, the height is equal to the base (with a slope of about 63◦30′).16 These

three ‘models’, however, correspond exactly to only eighteen pyramids out of over

eighty listed in the Appendix. What happened in the other cases?

A list of true pyramids

Available data

The Appendix contains select information about over eighty Old and Middle King-

dom pyramids. The name of the owner, the dynasty under which he/she lived, the

location, function, material and form of his/her monument are followed by the

available information about the dimensions and proportions of the pyramid. Base

and slope are listed before the height, because the latter is almost always calculated

from the two former factors. The last two columns of the Appendix contain short

remarks and list the bibliographical sources for these numerical data. The column

labelled ‘ratio/triangle’ lists the geometrical models adopted for the construction

of the various monuments, and will be explained in the next chapter.

Since the aim of the list included in the Appendix is to allow a study of propor-

tions, the pyramids of which nothing is known in terms of dimensions have not been

taken into account. They can be found, however, in the complete list of pyramids

published by Nabil Swelim, who divided pyramids and pyramid-like monuments

into five categories according to their function (funerary pyramids and pyramid-like

15 Lauer, Mystère des Pyramides, note p. 229.
16 Nabil Swelim, The Brick Pyramid at Abu Rawash, Number ‘I’ by Lepsius. A Preliminary Study, Alexandria:

Archaeological Society of Alexandria, 1987, p. 68.
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monuments; religious pyramids and pyramid-like monuments; and civil pyramid-

like monuments).17 In comparison, the list which will be used here does not contain

Third Dynasty step pyramids (both large funerary and small ritual pyramids) and

pyramid-like monuments (which have sloping sides, but are not pyramids). Finally,

it is important to bear in mind that there may be still several secondary pyramids

(either satellites of the king’s pyramid or pyramids built for queens) waiting to be

discovered in the vicinity of larger pyramids.

Archaeological evidence concerning pyramids is rather uneven, since famous

monuments have been studied and measured several times, while other, less at-

tractive remains have been superficially examined and generally neglected, as, for

example, Thirteenth Dynasty pyramids. A list like this does not help to fill the

already existing gap, since it includes well-studied monuments and necessarily ex-

cludes minor remains of which little or nothing is known. The result of the analysis

carried out on the whole of the pyramids included in the list, however, is com-

fortably uniform. Apparently, similar patterns have been used in the designs and

constructions of the Old and Middle Kingdoms, and the scanty evidence provided

by the less well documented Thirteenth Dynasty pyramids seems to agree with the

general tendency.

Pyramidia as alternative sources

The dimensions and proportions of the pyramids can be established with a certain

degree of precision only when a portion of the casing is preserved. In many cases,

however, the remains give ambiguous results and different authors provide different

measures. In a few cases, the casing is completely missing, making any measure-

ment impossible. Paradoxically, even if a pyramid has completely disappeared, its

proportions (and a vague idea about its size) can still be reconstructed provided

that its pyramidion has survived. In terms of proportions, in fact, the pyramidia of

pyramids are exact replicas of the large monuments on the top of which they once

lay.

In general, pyramidia can be useful for fixing the exact slope. In the cases of

the pyramids of Amenemhat III at Dahshur and Khendjer, for example, the casing

blocks provided values between 54◦ and 56◦, while their pyramidia provide the

precise value of 54◦30′.18 A number of Old and Middle Kingdom pyramidia have

survived, some in relatively good condition, some in fragments. They are listed

17 Nabil Swelim, ‘Pyramid Research. From the Archaic to the Second Intermediate Period, Lists, Catalogues and
Objectives’, in Hommages à Jean Leclant, BdE 106/1–4, Cairo: IFAO, 1994, pp. 337–49.

18 For the pyramidion of Amenemhat III, see Maspero, ASAE 3, 206–8; Schäfer, ZÄS 41, 84–5; Habachi, ASAE
52, 471–9; Arnold, Amenemhet III., p. 14. For the pyramidion of Khendjer, see Jéquier, Deux Pyramides,
p. 19–26.
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Table 9. List of surviving pyramidia of pyramids

Owner Dynasty Provenance Present location Stone Select Bibliography Remarks

Snefru Fourth Dahshur, Bent
Pyramid (?)

Dahshur, east of the
Red Pyramid

Limestone Stadelmann, MDAIK 39,
pp. 235–6; Rossi, JEA 85,
pp. 219–22.

Formerly attributed to the Red
Pyramid, its slope
corresponds to the lower
part (second project) of the
Bent Pyramid.

Khufu Fourth Giza, satellite
pyramid

Giza, south-east of
the main pyramid

Limestone Lehner, Complete Pyramids,
pp. 222–3.

Queen GIIIa of
Menkaura

Fourth Giza Giza, south of GIIIa Limestone Jánosi, Studia Aegyptiaca14,
pp. 306–14.

Khentkawes,
Queen of
Neferirkara

Fifth Abusir ? Black granite Verner, ZÄS 107, p. 158. Corner fragment survives.

Queen of
Neuserra?
(Lepsius 24
or 25)

Fifth? Abusir ? Basalt (with metal cap?) Verner, Hommages à Leclant,
vol. i, pp. 371–8; Rossi, JEA
85, pp. 219–22.

Very similar to the pyramidion
found at Ezbet Rushdi and
attributed to the Thirteenth
Dynasty.

Iput II, Queen
of Pepi II

Sixth South Saqqara ? Limestone Jéquier, Neith et Apouit, p. 46 May belong to the main
pyramid or to the satellite.

Senusret II Twelfth Lahun ? Black granite (inscribed) Petrie, Lahun ii, p. 4
and pl. 24.

A number of fragments
survive.

Amenemhat III Twelfth Dahshur Cairo Museum
35133, 35745

Dark grey granite
(inscribed)

Maspero, ASAE 3, pp. 206–8;
Schäfer, ZÄS 41, pp. 84–5;
Arnold, Amenemhet III.,
p. 14.

Khendjer Thirteenth South Saqqara Cairo Museum 53045 Black granite (inscribed) Jéquier, Deux Pyramides,
pp. 19–26.

Merneferra Ay Thirteenth Ezbet Rushdi Cairo Museum 43267 Dark grey granite
(inscribed)

Habachi, ASAE 52, p. 472.

Unknown king Thirteenth South Saqqara Cairo Museum 54855 Black granite
(unfinished)

Jéquier, Deux Pyramides,
pp. 58–60.

Cairo Museum 54856 Black granite
(unfinished, truncated
pyramid)

Jéquier, Deux Pyramides,
pp. 58–60.

The outline of a flatter
pyramidion was drawn
on one of the sides.

Unknown king Thirteenth Ezbet Rushdi ? Basalt (with metal cap?) Habachi, ASAE 52, pp. 475–6.
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in table 9.19 Of the pyramids of Khafra, Udjebten and Senusret III, the actual

capstones are lost, but their bases survive.20 The oldest pyramidion is the one found

in fragments in the area of the Red Pyramid at Dahshur. It has been assembled,

reconstructed and placed in front of that pyramid, but it probably belongs to another

pyramid, perhaps to one of the stages of construction of the Bent Pyramid. Its slope

(about 54◦30′) corresponds to the slope of the lower part of this monument, and it

is possible that this pyramidion was prepared after the first variation of the project

(when the slope was reduced from about 60◦ to 54◦30′) and then discarded when

the second variation (from 54◦30′ to about 43◦30′) made it useless.21

It is necessary, at this point, to explain a few geometrical details which may prove

rather confusing. We may describe a pyramid by means of three triangles. The first

is the vertical section parallel to a side of the base, which stands at right-angles

to the base. The second is the vertical section along the diagonal of the base, also

at right-angles to the base, which, however, need not be taken into account in this

discussion. The third corresponds exactly to each face of the pyramid, and since the

faces converge to the vertical axis, these triangles lie on oblique planes. The height

of the face is usually called apothem, and must not be confused with the height of

the vertical section (shorter), which is the actual height of the pyramid (fig. 93).

In a frontal representation of a pyramid (elevation), the oblique face undergoes a

shortening and ends up corresponding to the outline of the vertical section. One must

pay attention to interpret the available drawings of pyramidia in the correct way,

that is, to avoid confusing faces and vertical sections (and their respective slopes).

This is relatively easy in the case, for instance, of Gustave Jéquier’s drawings of

the decoration on the four faces of the pyramdion of Khendjer22 (one is reproduced

in fig. 94). One just has to remember that these are, obviously, full views of the

faces, and therefore steeper than the pyramidion. Other drawings, however, are

very ambiguous, and so potentially misleading for the reader. One case is certainly

represented by the drawing of four pyramidia published by Labib Habachi23 (but

see also note 26 below). There each pyramidion is represented by means of its

plan (a square crossed by two diagonals) and a triangle corresponding to a full view

19 A list of pyramidia was published by Arnold (Amenemhet III., p. 15). Since then, four other Old Kingdom
pyramidia have been discovered: the capstone of the satellite of Khufu (Lehner, Complete Pyramids, p. 222–3),
the pyramdion of GIIIa for a queen of Menkaura (Peter Jánosi, ‘Das Pyramidion der Pyramide GIII-a’, Studia
Aegyptiaca 14 (1992), pp. 306–14), a fragment of the pyramidion of Khentkawes (Miroslav Verner, ‘Excavations
at Abusir. Season 1978/1979 – Preliminary Report’, ZÄS 107 (1980), 158–69), and a pyramidion in the area of
the pyramids Lepsius 24 and 25 at Abusir, probably for queens of Neuserra (Verner, ZÄS 111, 73 and Hommages
Leclant, vol. i, pp. 373–4 and figs. 3 and 4). In Arnold’s list, the Thirteenth Dynasty basalt pyramidion found
at Ezbet Rushdi (Habachi, ASAE 52, 475–6) was not included.

20 They are included in Arnold’s list. For Khafra, see Lepsius, Denkmäler, p. 27; for Udjebten, see Gustave
Jéquier,‘Rapport préliminare sur les fouilles exécutées en 1925–1926 dans la partie méridionale de la nécropole
Memphite – La Pyramide de la Reine Oudjebten’, ASAE 26 (1926), 48–9 and Oudjebten, pp. 3–5; for Senusret
III, see Vyse and Perring, Operations, p. 61.

21 Corinna Rossi, ‘Note on the Pyramidion Found at Dahshur’, JEA 85 (1999), 219–22.
22 Jéquier, Deux Pyramides, figs. 17–20. 23 Habachi, ASAE 52, pl. 19.
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Fig. 93: Relationship between face and vertical section in a pyramid.

of one of its faces (not its shorter elevation). In this case, the reader may be led to

conclude that the pyramidia were steeper than in reality (see the difference between

the shorter and flatter vertical section, the oblique face and the steeper and higher

vertical projection of the latter marked with a broken line in fig. 93).

There are further complications to bear in mind. In a pyramid in which the

vertical section is an equilateral triangle, the slope of the face (that is, the slope of

the apothem) corresponds to 60◦ (a seked of 4 palms). In this case, the apothem

happens to be equal to the side-length of the base; that is, the face of the pyramid

is a triangle in which base and height are equal (fig. 95, upper register). When,

instead, the seked of a pyramid is 5 palms, corresponding to about 54◦30′, it is the

corner of the pyramid that is equal to the side-length of the base (fig. 95, lower

register). This means that, in this case, the oblique face of the pyramid is equal to

an equilateral triangle. That a seked of 5 palms generates four faces corresponding

to four equilateral triangles could not have escaped the attention of the Egyptian

architects. This characteristic becomes especially visible in the pyramidia. The

Middle Kingdom capstones of Amenemhat III and Khendjer, for example, are

large blocks in which all the edges (base and corners) have the same length, about

187 cm for the former (probably 3 cubits 4 palms) and about 141 cm for the latter

(probably 2 cubits 5 palms).
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Fig. 94: West face of the pyramidion of Khendjer, Thirteenth Dynasty (drawn
after Jéquier, Deux pyramides, fig. 18).

In the case of the pyramid at South Saqqara built by an unknown king of the

Thirteenth Dynasty, the pyramid itself is badly destroyed and does not provide

any information about its slope.24 Two unfinished pyramidia, however, were found

abandoned at the entrance of the subterranean apartment. One had almost been

completed, while the other, in the shape of a truncated pyramid, was left in a less

advanced state after probably undergoing several changes. The first pyramidion

has a base of about 157–8 cm and irregular corners ranging from 141 to 147 cm.

Therefore its height can be established as about 92–3 cm and its slope as about

50◦–51◦.25 The second pyramidion is truncated, and according to its dimensions

(168 cm for the lower base, 60–2 cm for the upper base and 117 cm for the corner),

it is possible to establish that its slope is about 60◦. On one of its faces, red lines

24 Jéquier, Deux Pyramides, p. 60.
25 Height and slope mentioned by Arnold, 121 cm and 57◦ (with a question mark, Amenemhet III., p. 15), refer to

the face of the pyramidion: 121–3 cm is, in fact, the apothem.
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Fig. 95: Equilateral triangle as vertical section and face of a pyramid.
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had been traced, probably in order to carve from that block a flatter pyramidion that

might have had a final slope of c. 43◦30′.26

One of the two pyramidia might have been planned for a secondary pyramid,

of which, however, no trace has been recorded. If they both belonged to the same

pyramid, then the final slope of the monument seems to have been either 50◦–51◦

or about 43◦30′. As for the initial slope of 60◦ of the truncated pyramidion, it is

impossible to establish whether it represented traces of an initial plan for that or

for another pyramid.

In the case of the Thirteenth Dynasty king Merneferra Ay, all we know about

his pyramid depends on his pyramidion, found in the area of Ezbet Rushdi. No

traces of the pyramid have been found so far and the capstone is the only clue

about its proportions, and very likely about its dimensions as well. It is logical to

assume that large pyramids were topped by relatively large pyramidia; therefore,

since Merneferra Ay’s pyramidon is much smaller than the other surviving Middle

Kingdom capstones (Amenemhat III and Khendjer’s, but also the two unfinished

from South Saqqara), it is likely that his pyramid was not very large in total. The

fragments of this pyramidion have been incorporated in a plaster reconstruction on

display in the Cairo Museum and its dimensions appear to be about 85–6 cm for

the base, 92–3 cm for the corner and about 82 cm for the apothem, giving a height

of about 70 cm and a slope of about 58◦–59◦. Although the plaster reconstruction is

not very regular and makes it difficult to establish the original side-length precisely,

it is very unlikely that the slope of this pyramidion exceeded 60◦.

Thus the additional information derived from the pyramidia may integrate the

measurements taken directly on the surviving pyramids. By listing in chronological

order all the available data, similarities and trends appear more clearly and make

it possible to reconstruct the development of the choice of the geometrical models

adopted by the ancient architects.

26 Gustave Jéquier published a sketch of this face, which shows the axis, a first pair of lines slightly flatter than
the slope of the pyramidion, and a second pair of lines connecting on the central axis and probably giving the
final intended form (Deux pyramides, fig. 42). The pyramidion is on display in the Egyptian Museum in Cairo,
but unfortunately the lines have completely disappeared. Jéquier’s drawing is rather ambiguous, since he drew
the outline of the face, rather than the outline of the pyramidion. In this way, the slope of the block seems to be
about 63◦, instead of the actual 60◦. On the face, the two lines indicating the outline of the new pyramidion are
inclined at 48◦ and, on the basis of this drawing, it might be concluded that a modification from about 62◦–63◦
to about 48◦ had been planned (Arnold, Amenemhet III., p. 15.) The actual slope of the face, however, is 60◦,
and the new pyramidion was drawn along this oblique plane. Provided that the proportions in Jéquier’s drawing
are precise, by projecting its height twice, the final slope of the new pyramidion can be established as about
43◦30′.
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Geometrical models

Approximation and seked

In order to give a quick and clear impression, the slopes of the pyramids in the

list have been expressed in degrees. Some measurements are more precise than

others, and can be expressed in degrees, minutes and sometimes also seconds.

However, the extreme precision of such data may be misleading, since virtually all

the measurements have been taken from small surviving parts of the casing and

sometimes even from loose blocks.

Of course every slope, even those differing from one another by a fraction of

a degree, can be expressed in an equally detailed way by means of cubits, palms,

fingers and smaller fractions. It is worth asking, though, if extreme precision is

really important. Was it really possible to control fractions of degrees in the largest

pyramids? The final smoothing of the faces removed quite a lot of extra stone, and

slight mistakes and imperfections of the surface must have been corrected by this

last operation. The precision of the construction is certainly documented, whenever

they have survived, by last courses of casing blocks and pyramidia, but, for the whole

surface of entire pyramids, a certain approximation should be allowed. It is probably

useless to make a distinction, for example, between the 51◦40′ of Queen GIc, the

51◦50′ of Queen GIa and GIb, the 51◦52′ of Meidum and the 51◦53′ of Khufu,

or between 56◦ of the satellite of Sahura and Senusret III and 56◦18′ of Unas, or

between 54◦30′ of Amenemhat III at Dahshur and Khendjer and 54◦21′ of Queen

Atmu-Neferu, and probably even between all the values ranging from 54◦ and

55◦23′ measured by Petrie along the very irregular lower part of the Bent Pyramid.

I will assume that pyramids with a very similar slope were designed according to

the same proportion, allowing an approximation of about a half degree. This limit

is absolutely arbitrary, but the approximation itself has to be limited in such a way

that both similarities and differences between the proportions of pyramids can be

212
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preserved, and a half degree seems a good starting point. All the slopes mentioned

below in degrees, therefore, are meant as approximate values.
Establishing the seked of a pyramid means, as we have seen, choosing a right-

angled triangle. This is true from a purely geometrical point of view, but may also be
true from a practical, constructional point of view. As it has already been suggested,
wooden triangles, probably in the shape of right-angled triangles, might have been
used to check the slope during construction. The various values of the seked (that
is, the various right-angled triangles) adopted in the course of history must not be
considered as a homogeneous group. They were probably not all invented at the
same time, but were introduced from time to time by the ancient architects who
were experimenting with new solutions. For simplicity, these geometrical models
are listed below in order of descending slope, but it is important to stress that this
succession does not reflect a chronological order. They are:

– seked of 2 palms, corresponding to a slope of about 74◦;

– seked of 3 palms, corresponding to a slope of about 67◦;

– seked 3 palms + 1 finger, corresponding to a slope of about 65◦;

– seked of 1
2

cubit (equal to 3 palms + 2 fingers), corresponding to a slope of about 63◦30′;
– seked of 3 palms + 3 fingers, corresponding to a slope of about 62◦;

– seked of 4 palms, corresponding to a slope of 60◦;

– seked of 2
3

cubit (equal to about 4 + 2
3

palms), corresponding to a slope of about 56◦;

– seked of 5 palms, corresponding to a slope of about 54◦30′;
– seked of 5 palms + 1 finger, corresponding to a slope of about 53◦;

– seked of 5 + 1
2

palms (equal to 5 palms + 2 fingers), also called 14
11

triangle after the

pyramid of Khufu (see below), corresponding to a slope of almost 52◦;

– seked of 5 palms + 3 fingers, corresponding to a slope of almost 51◦;

– seked of 6 palms, corresponding to a slope of about 49◦30′;
– a seked of probably 7 palms + 1 finger (equal to 1 cubit + 1 finger), corresponding to a

slope of about 43◦30′; and

– seked of possibly 7 + 2
3

palms (equal to 1 cubit + 2
3

palm), corresponding to a slope of

about 42◦30′.

These are the sekeds of all the true pyramids listed in the Appendix to this book,

plus two slopes (first and second) only found in New Kingdom and Late Period

pyramids. This list does not pretend to be exhaustive and is based on a certain degree

of approximation. For instance, I have interpreted a slope of 56◦ as the result of the

adoption of a seked of 2
3

of a cubit, that is, 4 + 2
3

palms, but a slightly different seked
of 4 palms + 3 fingers would give a very similar result. The same doubts arise for

the odd 7 + 2
3

palms, by means of which I have tried to respect Petrie’s measurement

of the slope of the pyramid of Senusret II at Lahun (about 42◦30′), assuming that

this value is absolutely precise. It must be borne in mind, however, that sekeds of

7 palms + 2 fingers or 7 palms + 3 fingers would produce very similar results. All
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Fig. 96: Sekeds corresponding to an equilateral triangle, and to a triangle in which
base = height.

these values, therefore, must not be treated as absolute definitions, but as convenient

descriptions. One finger corresponds to a value between 1◦30′ and 2◦, and some

values of the seked have been approximated on this basis. The approximation of

half a degree suggested above would therefore correspond to a third or a quarter of

a finger, between 0.4 and 0.6 cm.

All of these sekeds correspond to right-angled triangles, that is, to half the vertical

section of the pyramid. However, the triangle corresponding to the whole vertical

section of the pyramid may have had an independent identity in the cases of the

equilateral triangle and the triangle in which base and height are equal, to which

the next section is dedicated.

Equilateral and b = h triangles

In a pyramid with a seked of 4 palms, the entire vertical section is an equilateral

triangle.1 A seked of 1
2

cubit, instead, generates a pyramid in which the base (b)

is equal to the height (h). Therefore, a triangle with this proportion will be called

from now onwards a ‘b = h triangle’ (fig. 96).

The importance of the equilateral triangle is difficult to establish. According to

Maragioglio and Rinaldi2 (but not Dorner3), the first version of the Bent Pyramid

was meant to have a slope of 60◦; that is, its section was supposed to correspond to

1 Incidentally, this is one of the two ratios suggested by Choisy for constructing an equilateral triangle.
2 Maragioglio and Rinaldi, Piramidi III, p. 58.
3 Josef Dorner, ‘Form und Ausmaße der Knickpyramide’, MDAIK 42 (1986), 54 and ‘Die Form der Knickpyra-

mide’, GM 126 (1992), 41.
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an equilateral triangle. The fact that this seems to have been the outline chosen for

the first true pyramid ever built might suggest that this triangle was regarded with

a certain attention. As we have seen before, in a pyramid with a vertical section

equal to an equilateral triangle (seked of 4 palms), its faces correspond to b = h

triangles. When, instead, the seked is 5 palms, the faces of the pyramid correspond

to equilateral triangles. These two sekeds, 4 and 5 palms, were used in the first two

projects of the Bent Pyramid. It would be difficult, however, to establish whether

the architects (who therefore seem to have begun using the equilateral triangle as

vertical section and then attempted to use it as face of their pyramid) used these

variations based on this geometrical figure voluntarily, or whether the ‘presence’

of the equilateral triangle in one or both projects is just a coincidence.

Leaving aside pyramids for a moment, from a drawing by Herbert Ricke, it

seems that the pyramidion of the obelisk in the sun temple of Userkaf might have

corresponded to an equilateral triangle.4 According to Ludwig Borchardt’s recon-

struction, the pyramidion of the obelisk of Neuserra seems to have had a slope

of about 63◦, which means a b = h triangle. He pointed out, however, that these

proportions were arbitrary5 and did not publish any details of the casing blocks.

In conclusion, the equilateral triangle does not seem to have been very successful

in providing the vertical section of pyramids (although it can be found, voluntarily

or not, as the face of many pyramids), while the b = h triangle, instead, was widely

used from probably the Fifth Dynasty onward for small and secondary pyramids.

In both cases it is likely that the starting point was the triangle corresponding to the

entire vertical section of the pyramid, and that the seked-like right-angled triangle

was consequently derived from it.

Seked 5 1
2 palms, generally called 14

11 triangle

Different from the cases mentioned above, the so-called 14
11

triangle has been mis-

taken for an independent triangle, while, in fact, its origin is a pure seked-like

ratio.

The 14
11

triangle corresponds to half the vertical section of the pyramid of Khufu,

and several authors have noted that this ratio had been already employed in the

casing of the Meidum Pyramid. Probably a number of theories on the proportions

of the pyramid of Khufu have been fuelled by the problematic Proposition 2 by

Archimedes on the calculation of the area of a circle, which says that ‘the area of

the circle is to the square on its diameter as 11 to 14’.6

4 Herbert Ricke, Der Sonnenheiligtum des Königs Userkaf, vol. i, Cairo: Schweizerisches Institut fur agyptische
Bauforschung und Altertumskunde in Kairo, 1965, fig. 8.

5 Von Bissing, Ne-woser-re, p. 12.
6 Archimedes, Measurement of a Circle, p. 448. This text is likely to have been largely reworked (Knorr, Archive

for History of Exact Sciences 35/4, pp. 281–324).
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Jean-Philippe Lauer suggested that this slope depended on the standard propor-

tions of the Third Dynasty step pyramids. According to him, the most obvious

slope for the casing to turn a step pyramid into a true pyramid was the angle of the

line connecting the edges of the steps, and that therefore the angle of the smooth

face was implicit in the proportions of the steps.7 John Legon, however, has argued

that it is not certain whether the step pyramid at Meidum was built using the same

proportions as the step pyramid at Saqqara, and it is not even clear whether or not

the steps were equal to one another.8 If not, the line connecting the corners of the

steps was not unique, and the slope could be chosen among a range of values.

A slope which was too flat or too steep would have implied the use of a large

amount of stone to fill in the missing volume around, respectively, the lower or the

upper part of the stepped core. It might be suggested, therefore, that the architects

chose an average slope from the results of their calculations, but I prefer to consider

the problem from another point of view.

The correspondence of the ratio 14
11

and the dimensions of the pyramid of Khufu

is more evident than the connection with the same ratio and the dimensions of

the Meidum Pyramid. The numbers 14 and 11 are equivalent to 280 and 220, the

height and half the base of the pyramid of Khufu (14 × 20 = 280; 11 × 20 = 220).

The ratio between 175 and 137 1
2

(respectively the height and the half-base of the

Meidum Pyramid) is the same, but it is certainly less evident (175 and 1371
2

would

correspond to 12.5 times 14 and 11).

The ratio 14
11

corresponds to a seked of 5 1
2
. In the right-angled triangle of the

seked, the height is 7 palms (1 cubit), half of 14, and the base is 5 1
2

palms, half of 11

(fig. 97). The use of the numbers 14 and 11, therefore, is misleading. The numbers

280 and 220 of the pyramid of Khufu (multiples of 7 and 5 1
2
, and therefore of

14 and 11) are the result of the first voluntary use of the seked of 5 1
2

palms, but it

was this seked, and not the numbers 14 and 11, that was employed in the casing

of the Meidum Pyramid. The numbers 14 and 11 are not causes, but consequences

of the choice of that seked. The reasons for this choice will appear clearer in the

outline of the evolution of the early pyramids presented in the next section.

Pythagorean triplets

It is possible that some of the slopes listed above might have been obtained by

means of some of the so-called Pythagorean triplets, triplets of whole numbers

corresponding to the sides of right-angled triangles, which have been already dis-

cussed in Part I and II in connection with the Theorem of Pythagoras (Part I) and

the use of cords to lay down plans of buildings (Part II).

7 Lauer, Mystère des pyramides, p. 234, Robins and Shute, DE 16, 75–80. 8 Legon, DE 17, 15–20.
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Fig. 97: Seked of 5 1
2

palms, also called 14
11

triangle.

As we have seen, there seems to be only one written mathematical source con-

taining certain information on the use of three triplets in Egypt, and it is a Demotic

papyrus dating possibly to the third century BC, which contains nine problems

dealing with the Theorem of Pythagoras and mentions the triplets 3-4-5, 5-12-13

and 20-21-29.9 It is worth noting that these are just three of the triplets which might

have been used in the construction of pyramids, but it must not be forgotten that

over two thousand years divide the supposed first use of a triplet in a pyramid and

this mathematical papyrus. Various textual sources and archaeological sites have

been searched for evidence of the knowledge of Pytahgorean triplets in ancient

Egypt, but with unconvincing results.

According to Beatrice Lumpkin, two problems from the Middle Kingdom

papyrus Berlin 6619 deal with squares of numbers in a way that strongly sug-

gests knowledge of the properties of the Pythagorean triplets, although they are

never specifically mentioned.10 Her interpretation, however, did not seem conclu-

sive to Robert Palter.11 Rory Fonseca saw traces of the use of the 3-4-5 triangle in

9 Parker, Demotic Mathematical Papyri, pp. 3–4 and 35–40.
10 Beatrice Lumpkin, ‘The Egyptians and Pythagorean Triples’, HM 7 (1980), 186–7.
11 Robert Palter, ‘Black Athena, Afrocentrism, and the History of Science’, in Mary R. Lefkowitz and Guy

MacLean Rogers (eds.), Black Athena Revisited, Chapel Hill: University of North Carolina Press, 1996, p. 237.
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problems 57, 58 and 59 of the RMP, problem 6 of the Moskow Mathematical

Papyrus (MMP) and problem LV-4 of the Kahun Papyrus, and examples of the

triplet 5-12-13 in lines H-30 and I-2 of the Reisner Papyrus, all dating to the Middle

Kingdom.12 None of these cases, however, seems particularly convincing. The RMP

problems, for instance, deal with sekeds of pyramids corresponding to the propor-

tions of a 3-4-5 triangle, but the actual 3-4-5 triangle is never mentioned. Concerning

the other problems, MMP problem 6 and Kahun LV-4 simply contain two areas of

12 square cubits of which the reader is asked to find the sides, which are equal to

3 and 4. Again, the 3-4-5 triangle is not necessarily involved. The same happens with

lines H-30 and I-2 of the Reisner Papurys I, which refer to two chambers 12 cubits

long and 5 cubits wide.13 Although it is true that these dimensions correspond to

numbers belonging to Pythagorean triplets (and therefore it may be suggested that

these rooms were designed after them), the Reisner Papyrus lists so many spaces

with different proportions that the presence of the numbers 5 and 12 in only two

cases does not seem to be significant at all.

Another interpretation for which there may be an alternative explanation is

Meyer-Christian’s suggestion that Djoser used Pythagorean triplets in his Saqqara

complex to design the subterranean apartments of the south tomb and of the step

pyramid. In this case, the triplets would have been used to establish the slope of

the descending passages and to fix specific points.14 The same geometrical result,

however, could also have been obtained without the use of triplets. The slope of the

passage of the south tomb is rather irregular, but averages 26◦30′, the same slope as

that of the descending passage of the step pyramid, which can be easily explained

by the adoption of a seked of 1
2

cubit, which was widely used in the descending

corridors of later pyramids as well.15

Even if all of these suggestions are questionable, generally speaking the knowl-

edge of some triplets in ancient Egypt is not incompatible with the surviving math-

ematical sources. It is not necessary to suggest that the Egyptians were acquainted

with more or less complicated versions of the Theorem of Pythagoras as early as

the Old Kingdom. The peculiarity of the Pythagorean triplets – that is, the fact that

they correspond to right-angled triangles in which the three sides are equal to whole

numbers – is not necessarily related to the relationship between their squares. If

they were used in ancient Egypt, it was probably in their simplest version of right-

angled triangles easy to construct, as the Twentieth Dynasty trace of an elliptical

vault, for instance, suggests. Pyramids might be the best clue we possess about the

use of some triplets as a simple practical device to construct right angles.

12 Rory Fonseca, ‘The Geometry of Zoser’s Step Pyramid at Saqqara’, JSAH 45 (1986), 333–4.
13 Simpson, Papyrus Reisner I, pp. 124–6.
14 W. Meyer-Christian, ‘Der “Pythagoras” in Ägypten am Beginn des Alten Reiches’, MDAIK 43 (1987), 195–203.
15 Rossi, JEA 87, 73–80.

Pure Mathematical Physics



Pyramids and triangles 219

The first pyramid which corresponds to the proportions of the 3-4-5 triangle is the

pyramid of Khafra, but the voluntary use of this triangle might have been introduced

later. The seked corresponding to this triangle is 5 palms 1 finger,16 and may have

been adopted by Khafra after Khufu had used the slightly flatter seked of 5 palms

2 fingers, as will be explained in the next section. It is not until the Sixth Dynasty

that the dimensions of the pyramid clearly reflect this proportion in their standard

side-length of 150 cubits and height of 100 cubits. Half their vertical section is a

right-angled triangle 75 cubits long and 100 cubits high, clearly multiples of 3 and

4 (3 × 25 = 75 and 4 × 25 = 100). It is unlikely that the Egyptians would not have

noticed this proportion. As we have seen, Jean-Philippe Lauer even suggested that

the same proportion was used in the funerary temples attached to these pyramids,17

although their use, in this case, remains somewhat doubtful (see Part II).

The 3-4-5 triangle is certainly the most famous among the triplets, but certainly

not the only one.18 Since they corresponded to right-angled triangles easy to con-

struct, if some of them were known by the Egyptians, it is possible that they were, at

some point, adopted as models. If the workmen used wooden triangles to check the

slope of the pyramid, a 3-4-5 triangle, for example, would have been the ideal tool

for easily and quickly obtaining a seked of 5 palms 1 finger. If this is the case, it is

not impossible that other Pythagorean triplets might have been adopted beside the

3-4-5. Alexandre Varille, for example, noted the correspondence between the Red

Pyramid and the triplet 20-21-29.19 Unfortunately, there is no agreement among

scholars about the actual dimensions of this pyramid (see Appendix). The measure-

ments taken by John Perring, 420 cubits for the base and 200 for the height, would

correspond to a triplet 20-21-29 (half the vertical section of this pyramid would

be a right-angled triangle 210 cubits long and 200 cubits high, clearly multiples

of 21 and 20). It may be observed that, if we accept these dimensions, in this case

the corresponding Pythagorean triplet would certainly have been an easier way to

express the slope not only in comparison with the odd seked 7 palms + 1 finger,

but also with the not-that-simple ratio 17
18

that Lauer suggested to explain the slope

of this pyramid.

The seked of possibly 3 palms 3 fingers of Iput I (Queen of Teti) and Nofru (Queen

of Senusret I), corresponding to about 62◦, might have been obtained by means of the

16 Robins and Shute, DE 18, 43–53.
17 Lauer, BIFAO 77, 55–78. Neumann and Ogdon claimed to have identified three geometrical models, corre-

sponding to the ‘3-4-5 proportion’, the ‘14-to-11’ and the ‘3-to-7 relationship’, which were allegedly used not
only in the construction of pyramids, but also in the design of small-scale objects (Claudio Neumann and Jorge
R. Ogdon, ‘A New Approach to Ancient Egyptian Objects. A Preliminary Report on Statue Louvre E.12627’,
DE 10 (1988), 55–68).

18 For a list, see Artemas Martin, ‘On Rational Right-angled Triangles’, Proceedings of the Fifth International
Congress of Mathematicians, Cambridge 1912, Cambridge: Cambridge University Press, 1912, pp. 40–58,
table pp. 57–8.

19 Quoted in Maragioglio and Rinaldi, Piramidi III, p. 128.
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Fig. 98: Pythagorean triplets possibly employed as models in the construction of
pyramids (to different scales).
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triplet 8-15-17. Seemingly, a seked of 3 palms (corresponding to about 67◦) might

have been achieved by means of the triplet 5-12-13 and a seked of 2 palms (about

74◦) by means of the triplet 7-24-25. The last two sekeds were only employed in

New Kingdom and Late Period pyramids and appear to have been the most common

slopes of those periods, as we shall see in the last chapter.

In conclusion, the various sekeds of pyramids work perfectly well even without

the introduction of the Pythagorean triplets. However, it is not impossible that

at least some of these triplets might have been used by the workmen to construct

right-angled triangles which would help them to check the slope during construction

(fig. 98). If this was the case, there is no need to assume that these triplets had any

symbolic meaning. They might have simply represented a convenient choice for the

architects, because the proportions of the triangles corresponding to triplets could

be easily transmitted to the workmen and the corresponding right-angled triangles

could be easily reproduced by anyone without constant supervision.

The geometrical models that might have been adopted by the ancient architects

have been listed together in a certain order for simplicity, but considering them

as a well-defined and uniform group would be a mistake. In antiquity, some of

them might have been better expressed as typical sekeds, some as triangles, and

some possibly as Pythagorean triplets. Other models, not mentioned here, might

have been used. The important fact is that this type of geometrical model allows

a consistent analysis of the Old and Middle Kingdom pyramids, and might prove

significant for a future, more detailed study of New Kingdom pyramids as well.

The evolution of the form

Old Kingdom pyramids

The evolution of pyramid slopes may be explained using the right-angled trian-

gles described in the previous section. Their development is visualised in fig. 99.

Apart from a few additional notes, this discussion is based on the bibliographical

references included in the Appendix, which, therefore, will not be repeated here.

The starting point is the work of Snefru at Meidum and Dahshur. At the end

of his reign, Snefru left three completed true pyramids, the relative chronology

of which has been the subject of several studies20 (fig. 100). The Bent Pyramid

underwent two changes of plan. According to the first project, the vertical section

of the pyramid might have been an equilateral triangle, with a seked of 4 palms,

20 See expecially Mendelsohn, Riddle, pp. 88 and 114 and Stadelmann, MDAIK 36, 437–49. Mendelsohn suggested
that the variation in the slope of the Bent Pyramid was decided after the collapse of the casing of the pyramid of
Meidum. Stadelmann, however, disagrees and convincingly reconstructed the chronology of Snefru’s reign and
of his pyramids in a different way, a reconstruction which I will also follow. See also Rainer Stadelmann, ‘Die
Pyramide des Snofru in Dahschur. Zweiter Bericht über die Ausgrabungen an der nördlichen Steinpyramide’,
MDAIK 39 (1983), 225–41.
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Fig. 99: Diagram of the evolution of the slope of Old and Middle Kingdom true pyramids. Four New Kingdom pyramids of kings and private
individuals have been added at the end for comparison.
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Fig. 100: Pyramids of Snefru (Fourth Dynasty).

corresponding to a slope of 60◦. Josef Dorner, however, suggested that the original

pyramid might have had a slope of about 58◦30′, that means a seked of 4 palms

2 fingers. However, the Bent Pyramid is not very regular altogether (Petrie measured

values from 54◦ to 55◦23′ for the lower part), and the internal pyramid can only be

measured at the junctions in the corridors. It is not unlikely that the original seked
may have been indeed 4 palms, corresponding to 60◦, and that Dorner measured

an irregularity of the construction. A seked of 4 palms 2 fingers (about 58◦30′), in

fact, does not appear to have been used in any other pyramid, while 4 palms (60◦),

although probably not as often as other ratios, was adopted in a number of cases

from the Old, Middle and New Kingdoms down to the Late Period. At any rate,

when the architects were forced to turn to a second project, the base of the pyramid

was enlarged and the seked was increased from 4 (or 4 1
2
) to 5 palms; that is, the

slope was reduced from about 60◦ (or 58◦30′) to about 54◦30′. Eventually, they

were forced to make a second variation in the plan, and a very flat slope (about

43◦30′) was chosen to complete the pyramid.

The slope of the upper part, 43◦30′, corresponds to a seked of probably 7 palms

1 finger (1 cubit 1 finger). It is possible that, in this case, there might be a connec-

tion with the Pythagorean triplet 20-21-29. In the Red Pyramid, which was built

immediately afterwards, the dimensions 200 for the height and 210 for half the
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base show a striking correspondence with the 20 and 21 of the triplet. This triplet

gives a slope of about 43◦30′, very close to the slope of the upper part of the Bent

Pyramid. Even if, as we have seen, there is no agreement among scholars about

the precise proportions of both the Bent and the Red Pyramid, it may be assumed

that the architects, after the problems encountered during the construction of the

Bent Pyramid, adopted, for the Red Pyramid, the ‘safe’ slope of the upper part of

the other. If, on the contrary, the upper part of the Bent Pyramid was started after

the beginning of the construction of the Red Pyramid, the ‘safe’ slope of the latter

(based on the Pythagorean triplet 20-21-29?) might have been adopted to complete

the former. The exact slope of the satellite of the Bent Pyramid is uncertain, but it

might have been the same as the Red Pyramid, and therefore as the upper part of

the Bent Pyramid itself.

The Meidum Pyramid was cased by Snefru in the last years of his reign, while

he was also building the Red Pyramid. The geometry of the original step pyramid

suggested to the architects a certain range of possibilities for the slope of the

casing, and previous experiences narrowed the choice. Leaving aside the ‘flat’ triplet

20-21-22, after the 4 palms (or 4 1
2
) of the first project and the 5 palms of the second

project of the Bent Pyramid (which had both ‘failed’), the architects who cased

Meidum attempted a further step: a half palm more, to 5 1
2

palms, that is, 5 palms +
2 fingers.

The Bent Pyramid, the Red Pyramid and Meidum were the pyramids which

stood in the Egyptian desert when Khufu started the construction of his funerary

monument (fig. 100). If the aim of the architects was to build a pyramid as steep

as possible, the obvious model to refer to was the pyramid of Meidum. The Bent

Pyramid had been started with the best of intentions, but experience had also taught

that a flatter slope was more secure, and between the flatter Red Pyramid and the

steeper pyramid of Meidum, the latter was the obvious choice.

The exact slope of the pyramid of Khufu’s successor Djedefra at Abu Rawash

is not clear. According to Maragioglio and Rinaldi, it was 60◦, corresponding to a

seked of 4 palms. This would mean that the king might have attempted to succeed

where Snefru had failed – that is, in the construction of a pyramid corresponding

to an equilateral triangle – and it would also explain why he cautiously reduced

the side-length by one-third. However, recently Michel Valloggia suggested that

Djedefra might have chosen a slope of 5 1
2

palms, the same slope as Meidum and

Khufu. If this is the case, it is possible that the small size of the pyramid simply

reflected the advanced age of the king.

Anyway, the choice of Abu Rawash, the highest point of the plateau, a few

kilometres north of Giza, suggests a clever and ambitious nature. His pyramid

might have been smaller than the others, but it was visually and physically closer

to the sky; an important achievement for the king who appears to have been the
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first to adopt the title of Son of Ra. Unfortunately, the king died a few years after

the pyramid was started, and his monument was never completed.

When Khafra started his pyramid at Giza, his aim must have been to maintain the

level of Khufu’s pyramid and, at the same time, to spare material and to improve

the impulse toward the sky. He chose, therefore, a shorter side-length, 410 instead

of 440 cubits, and increased the steepness of the slope by 1 finger, from 5 palms +
2 fingers to 5 palms + 1 finger. This actually produced a significant difference in

the final volume, 2,100,000 m2 against the 2,590,000 m2 of Khufu.21

Amongst the five large true pyramids which had been completed so far (three

by Snefru, one by Khufu, one by Khafra), the pyramid of Khufu was the largest

and the one of Khafra was the steepest (see fig. 101). In terms of the ratio between

volume and steepness, this record was preserved throughout the entire history of

Egyptian architecture. To reach a steeper slope, the dimensions had to be drastically

reduced. From this point onwards, many pyramids were built using the slopes of

Meidum/Khufu and Khafra as models. For his pyramid, Menkaura appears to have

chosen the Meidum/Khufu model, even if on a much smaller scale. According to

Valloggia’s calculations, it seems that the pyramids of Djedefra and Menkaura might

have been absolutely identical in terms of the dimensions of their superstructures

(fig. 101).

In the Old Kingdom, at least eleven pyramids followed the model of Meidum/

Khufu and seven the model of Khafra. New attempts to increase the slope were

carried out in the construction of smaller pyramids, with the adoption of the seked 2
3
,

corresponding to a slope of about 56◦, and the use of the triangle in which the base

is equal to the height, corresponding to a slope of about 63◦30′. For their pyramids,

Fifth Dynasty kings seem to have preferred the seked 5 palms 2 fingers of Meidum

and Khufu, with the exceptions of Userkaf, who used the seked 5 palms 1 finger

of Khafra,22 and Sahura, who turned to a flatter 5 palms 3 fingers.23 It is unclear

whether the pyramid of Neferirkara was meant to be cased or to be left as a step

pyramid. In 1909 Ludwig Borchardt suggested that its final slope might have been

about 53◦, the same as Khafra’s 5 palms 1 finger.

In the satellite of Djedkara, the seked 3 palms 1 finger, corresponding to a steep

65◦ (actually the steepest slope of Old and Middle Kingdom pyramids) appears for

the first time. The pyramid at Saqqara, formerly identified as a queen of Djedkara,

was the first case in which a triangle with a base equal to the height (b = h triangle)

was employed. With Teti, the first king of the Sixth Dynasty, the seked 5 palms 1

21 Stadelmann, MDAIK 36, 438.
22 Jean-Philippe Lauer,‘Le temple haut de la pyramide du roi Ouserkaf’, ASAE 53 (1954), 121; Maragioglio and

Rinaldi, Piramidi vii, p. 12.
23 The slope of the pyramid of Sahura, about 50◦54′ according to Maragioglio and Rinaldi, can be easily explained

by means of a seked of 5 palms + 3 fingers. Lauer’s simple ratio 6
5 is interesting because might be associated with

a measurement based on the small cubit (6 palms instead of 7). See also Ludwig Borchardt, Das Grabdenkmal
des Königs Sahu-re �, Leipzig: Hinrichs, 1910.
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Fig. 101: Pyramids of Khufu, Djedkara, Khafra and Menkaura (Fourth Dynasty).

finger of Khafra became the favourite model for the main pyramid. As explained

above, the dimensions of the four Sixth Dynasty royal pyramids (Teti24, Pepi I,

Merenra and Pepi II25), 150 cubits for the side-length and 100 for the height, might

even reflect a conscious use of the 3-4-5 triangle. During the same period, the b = h

triangle was used for satellites and queens by Teti26 and Pepi I. The pyramid of

Iput I (queen of Teti), instead, had a seked of 3 palms 3 fingers (about 62◦), which

might have been obtained by means of the triplet 8-15-17, while the satellite pyra-

mid of Teti had a vertical section corresponding to a b = h triangle (seked of

3 palms 2 fingers, about 63◦30′). The pyramid of the other queen of Teti, Khuit,

was too damaged to provide any detail about the layout, but a few loose blocks gave

a slope of about 63◦. Its slope might have been equal to that of the other queen, or

to the slope of Teti’s satellite.

24 Vito Maragioglio and Celeste Rinaldi, Notizie sulle piramidi di Zedefrâ, Zedkarâ Isesi e Teti, Torino: Artale,
1962, p. 45.

25 Gustave Jéquier, Le Monument Funéraire de Pepi II, Cairo: SAE, 1938, p. 6.
26 For Teti’s satellite, see Jean-Philippe Lauer and Jean Leclant, Le Temple Haut du complexe funéraire du roi

Téti, BdE 51, Cairo, 1972, p. 37, and Maragioglio and Rinaldi, Notizie, p. 53.
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Beside his own pyramid, Pepi I built a satellite for himself, 30 cubits long, and

four pyramids for his queens, each 40 cubits long. The seked adopted for each of

the five minor pyramids may have been half a cubit, that is, the b = h triangle.

Only the slope of Meritites’ monument is unknown, but it is likely to have been

equal to the others. The case of Pepi II is different. For his queens Neith and Iput II,

he probably adopted sekeds of 4 and 5 palms. Gustave Jéquier excavated both

pyramids and measured from blocks in situ 61◦ for the slope of the pyramid of Neith

and its satellite,27 and 55◦ for the monument of Iput II, which must be considered

only as an approximation, since it was taken from a few irregular blocks.28

The pyramid of Iput II might have had a seked of 5 palms (c. 54◦30′), while the

61◦ of the Pyramid of Neith is obviously very close to 60◦, that is, to a seked of

4 palms. If the pyramid of Iput was built with a seked of 5 palms, a seked of 4 palms

for the pyramid of Neith has a certain degree of analogy. If this is correct, then this

small pyramid (only 46 cubits long, about 24 m) represented another attempt to

achieve the elusive 4 palm seked, and perhaps the first to succeed.29 A value of 61◦

is also close to the slope given by the triplet 8-15-17, corresponding to about 62◦,

which had been probably employed in the pyramid of Iput I. For Udjebten, queen

of Pepi II, the steep 3 palms 1 finger (about 65◦) was again adopted, apparently for

the second and last time. The slope of this pyramid was measured by Jéquier from

the base of the pyramidion, the only surviving piece of casing, which provided a

value of 65◦. Peter Jánosi, however, suggested that the rest of the monument had

the standard slope of about 63◦ (probably corresponding to the b = h triangle) and

that only the upper part was steeper. By analogy with the two other queens, the

small satellite of Udjebten might have had the same slope of the main pyramid.

In the First Intermediate Period, Iby possibly tried to revive once more Snefru’s

idea, and started a relatively small pyramid (60 cubits of side-length, c. 31.5 m)

using the seked of 4 palms of an equilateral triangle.30 Once more, this triangle did

not bring any luck: the pyramid was left unfinished.

Middle Kingdom pyramids

With a few exceptions, the Middle Kingdom kings seem to have used sekeds of

4, 5 and 6 palms for their pyramids and the b = h triangles for their satellites and

queens.

27 Gustave Jéquier, Les Pyramides des Reines Neit et Apouit, Cairo: SAE, 1933, p. 12.
28 Jéquier, Neit et Apouit, p. 45.
29 The slope of the pyramids Lepsius 24 and 25, perhaps built for the queens of Neuserra, is uncertain

(see Appendix).
30 Gustave Jéquier, La Pyramide d’Aba, Cairo: SAE, 1935, p. 3. Of another monument of this period, built by

Khui, very little is known: it is unclear whether it was a mastaba or a pyramid (Raymond Weill, Dara; campagne
de 1946–1948, Cairo: Government Press, 1958, Lehner, Complete Pyramids, pp. 164–5).
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The first two pyramids were built at Lisht by Amenemhat I, who used a seked of 5

palms,31 and by his successor Senusret I, who chose 6 palms.32 Senusret I built ten

secondary pyramids around his own, one satellite and nine for his queens. In nine

pyramids out of ten, including the satellite, base and height are equal to 30 cubits,

corresponding to a slope of 63◦30′. The pyramid of the most important queen,

Nofru, had a base of 40 cubits and a slightly flatter slope. Its seked was 3 palms

3 fingers (about 62◦), possibly obtained by means of the triplet 8-15-17, exactly

the same dimensions and proportions of Iput I, queen of Teti. In the construction

of his pyramid, Senusret I was the first to adopt an internal skeleton of walls at

right-angles to one another. In this case, the compartments between these walls

were filled by stone slabs.

Amenemhat II used the same system, but filled the compartments with sand.

According to De Morgan, who worked in 1894–5, the superstructure of his pyra-

mid was too damaged to provide any information about its proportions,33 but it is

possible that future research may be able to cast some light on these ruined remains.

Senusret II also adopted the same constructional technique, but filled the spaces

with mud-bricks. His pyramid seems to have been very flat, with a slope, according

to Petrie,34 averaging 42◦37′ (possibly corresponding to a seked of 7 palms 2
3
, even

flatter than the 7 palms 1 finger of the Red Pyramid). This would be the only case

in which this slope was ever used throughout the entire history of the Egyptian

pyramids. The choice of such a flat slope might be connected with the change of

material. At any rate, the architects soon seem to have recovered their courage.

The complex of Senusret III at Dahshur has been recently excavated by Dieter

Arnold.35 The slopes of the main pyramid and of the nine secondary pyramids are

not easy to measure, but it is possible to attempt an interpretation of the remains.

Senusret III may have looked back at the funerary complex of Senusret I as a

model for his own complex. He appears to have chosen a slope of more or less 50◦,

perhaps corresponding to the 6 palms (49◦30′) that Senusret I had used for his own

pyramid. Like his name-sake predecessor, Senusret III also built a large number

of secondary pyramids, some now in a very bad state of preservation. Nothing

is known of pyramids 5 and 6, but the side-length of the other pyramids ranged

from 32 cubits (pyramids 1, 2, 3 and 4), to 42 cubits (8 and 9) and up to 50 cubits

(pyramid 7). Apart from pyramid 4, which seems to have been flatter (56◦–58◦,

perhaps a seked of 2
3
), the slope of the others appears to have been steeper than 60◦.

31 Gustave Jéquier and J.-E. Gautier, Fouilles de Licht, MIFAO 4, Cairo, 1902, p. 89.
32 Dieter Arnold, The Pyramid of Senwosret I, Metropolitan Museum of Art Egyptian Expedition 22, New York:

Metropolitan Museum of Art, 1988, p. 64.
33 Jaques De Morgan, Fouilles à Dahchour en 1894–1895, Vienna: Holzhausen, 1903, p. 30.
34 Petrie, Lahun II, pp. 3–4.
35 All data kindly provided by Dieter Arnold. More details are forthcoming in his The Pyramid Complex of

Senwosret III at Dahshur. Architectural Studies, New Haven and London: Yale University Press, 2002.
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Pyramids 2 and 3 may have measured 61◦–63◦, pyramid 7 may have ranged between

61◦ and 66◦, and pyramids 8 and 9 may have ranged between 60◦ and 64◦.

Although it is entirely possible that each pyramid was constructed according to

a different slope, the comparison with the complex of Senusret I may suggest a

different interpretation. As in the Lisht complex, several secondary pyramids of

Senusret III (at least 2, 3, 7, 8 and 9) might have been built according to the same

slope, either 62◦30′ or 63◦30′. The first of these slopes corresponds to a seked of 3

palms 3 fingers (8-15-17 triplet?) that had been used for Queen Nofru of Senusret

I and, several generations earlier, for Iput I, queen of the Fifth Dynasty king Teti.

The second slope corresponds to a b = h triangle, used for all the other secondary

pyramids of Senusret I.

The successor of Senusret III, Amenemhat III, used a seked of 5 palms (about

54◦30′) for his pyramid at Dahshur. He also built a pyramid at Hawara, which might

have had a slope ranging between 48◦45′, 49◦51′ and 52◦25′ (measurements taken

by Petrie). It is therefore possible that the king chose a seked of 5 palms for Dahshur

(as Amenemhat I), and then one of 6 palms (c. 49◦30′, as Senusret I and possibly

Senusret III) for Hawara.

The Thirteenth Dynasty king Khendjer built for himself a pyramid with the same

slope as the one of Amenemhat III at Dahshur, topped by the beautifully decorated

pyramidion mentioned earlier. As we have seen, two unfinished pyramidia were

found in the area of the unidentified pyramid south of Khendjer, which is now

completely destroyed. If the pyramidia which had been almost completed was

intended for that pyramid, then this monument might have had a seked of 5 palms 3

fingers (about 51◦, as Sahura). The final stage of the other pyramidion, the truncated

one, apparently about 43◦30′, might have corresponded to a seked of 7 palms 1
3
,

which may also be obtained by means of the triplet 20-21-29.

The pyramid of Merneferra Ay has not been located, but according to the frag-

ments of his pyramidion it appears to have had a slope of about 60◦, which means

that the original seked might have been 4 palms. The pyramid of Ameny Qemau has

been found, but its slope is unknown.36 It is possible to say only that its side-length

was probably 100 cubits, like the pyramid of Khendjer.

The Thirteenth Dynasty basalt pyramdion found at Ezbet Rushdi shows a slope of

60◦ (4 palms), but nothing is known about the monument to which it belonged. An

extremely similar pyramidion (same material, same slope, one palm of difference

between their bases, same preparation for a metal cap) has been found at Abusir.

It has been tentatively attributed to a queen of Neuserra (Fifth Dynasty), but it

may be worth bearing in mind that in that area there might be the remains of

36 Vito Maragioglio and Celeste Rinaldi, ‘Note sulla piramide di Ameny ‘Aamu’, Orientalia 37 (1968), 325–39
and Nabil Swelim and Aidan Dodson, ‘On the Pyramid of Ameny-Qemau and its Canopic Equipment’, MDAIK
54 (1998), 319–34.
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unexcavated Thirteenth Dynasty pyramids.37 If the Abusir pyramidion dates indeed

to the Thirteenth Dynasty, it may be concluded that, after all, the seked 4 palms

(60◦) met with a certain success at the end of the Middle Kingdom.

New Kingdom and Late Period pyramids

As soon as the era of the great pyramids ends, finding a pattern in the proportions of

the later, smaller pyramids becomes extremely difficult. The primary reason is that

the precise slope of New Kingdom and Late Period pyramids is often unknown,

either because the monuments were too damaged for any measurement, or simply

because it was not recorded. Sometimes clues about the slope can only be derived

from photographs and drawings, and in these cases the data must be handled with

care. Although a good frontal photograph of a small object, such as a pyramidion,

may be considered a reliable source, in the case of drawings, even if there is no reason

to distrust them a priori, the possibility of inaccurate or misleading reproductions

(as in the case of some of the surviving pyramidia) must be taken into account.

The observations contained in this section cannot be considered final conclusions,

since they are based on too small a percentage of the once existing monuments

to provide reliable evidence in the search for geometrical patterns. It is interesting

to note, however, that, although the available data are largely incomplete, it seems

possible to detect a certain degree of continuity with the past.

In general, New Kingdom and Late Period pyramids were much smaller and

steeper than their Old and Middle Kingdom counterparts. The reduced dimensions

of the structures certainly allowed the architects to adopt a series of ratios which

were difficult or impossible to use in the earlier, larger monuments. For example,

the surviving New Kingdom pyramidia show slopes covering almost every possible

value from 60◦ to 80◦.38

After the decline of the strong Twelfth Dynasty, the still poorly documented

Thirteenth Dynasty pyramids seem to have tried to keep up with the dimensions

of the earlier monuments. In contrast, the Theban Seventeenth Dynasty opted for

smaller and steeper plastered mud-brick pyramids, clustered in their necropolis at

37 The surviving casing blocks of Lepsius 24, possibly built for a queen of Neuserra (Fifth Dynasty), provide
slopes ranging from 57◦30′ to 62◦42′, thus matching the 60◦ of the pyramidion (Miroslav Verner, ‘Excavations
at Abusir. Season 1987 – Preliminary Report’, ZÄS 115 (1988), 170 and Hommages Leclant I, p. 373). For
other Fifth Dynasty pyramids in the area of Abusir, see Miroslav Verner, ‘Eine zweite unvollendete Pyramide
in Abusir’, ZÄS 109 (1982), 75–8, ‘Excavations at Abusir. Season 1980/1981 – Preliminary Report’, ZÄS
109 (1982), 157–66 and ‘Excavations at Abusir. Season 1985/1986 – Preliminary Report’, ZÄS 115 (1988),
77–83. For the possible Thirteenth Dynasty pyramids in the area of Abusir, see Richard Lepsius, Denkmäler
aus Aegypten und Aethiopien, Leipzig: Hinrichs, 1897, pl. 32 and Aidan Dodson, ‘Two Thirteenth Dynasty
Pyramids at Abusir?’, VA 3 (1987), 231–2; for other Thirteenth Dynasty pyramids, see also Aidan Dodson,
‘The Tombs of the Kings of the Thirteenth Dynasty in the Memphite Necropolis’, ZÄS 114 (1987), 36–45.

38 Rammant-Peeters, Pyramidions égyptiens, pp. 108–10.
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Dra Abu el-Naga.39 The pyramid attributed to Kamose, for example, was just eight

metres square but had a slope of about 67◦,40 probably corresponding to a seked of

3 palms. All of the other pyramids seem to have almost completely disappeared,

apart from a few traces. A fragment of the pyramidion of Sekhemra-Wepmaat

Intef V provides the slope of his lost pyramid, 60◦ (that is, a seked of 4 palms,

corresponding to an equilateral triangle),41while not more that a mud mass remains

of the superstructure of tomb K94.1.42

Ahmose, successor of Kamose and founder of the Eighteenth Dynasty, was prob-

ably buried at Dra Abu el-Naga under a relatively small pyramid, but also built for

himself a larger pyramid-cenotaph at Abydos, with a side-length of probably 100

cubits and a slope of 60◦ (4 palms).43 His tomb has not yet been located, but when

this happens, it will be interesting to compare the proportions of his two pyramids.

After Ahmose, Eighteenth Dynasty kings turned to entirely subterranean tombs,

and for a couple of centuries pyramids were abandoned. Towards the end of the

Dynasty, however, the pyramidal shape was resumed again, this time by the artists

and workmen of Deir el-Medina, who built for themselves small tombs in the cliff

adjoining their village.

Although the proportions of only a few monuments are known, some of them

seem to correspond to familiar patterns. There is, for instance, a significant presence

of slopes of about 67◦ and 74◦. The former is attested by the tombs of Senned-

jem,44 Aamaket45 and Iry46 (data provided by their pyramidia, in the last two

cases taken from photographs) and possibly Nakht Min47 (from a photograph of

the reconstructed tomb), while the latter may have been used for the tombs of

Khonsu,48 Qaha49 and possibly Turbay50 (from photographs and drawings of their

pyramidia). These two values correspond to sekeds of 3 and 2 palms, and might

have been obtained by means of the Pythagorean triplets 5-12-13 and 7-24-25. As

for the other surviving pyramidia from Deir el-Medina, their slopes seem to range

39 Herbert E. Winlock, ‘The Tombs of the Kings of the Seventeenth Dynasty at Thebes’, JEA 10 (1924),
217–77; Daniel Polz, ‘Bericht über die erste Grabungskampagne in der Nekropole von Dra’ Abu el-Naga/Theben
West’, MDAIK 48 (1992), 109–30; ‘Bericht über die 2. und 3. Grabungskampagne in der Nekropole von Dra’
Abu el-Naga/Theben West’, MDAIK 49 (1993), 227–38; ‘Bericht über die 4. und 5. Grabungskampagne in der
Nekropole von Dra’ Abu el-Naga/Theben West’, MDAIK 51 (1995), 109–30.

40 Winlock, JEA 10, 273. 41 Winlock, JEA 10, 234.
42 Polz, MDAIK 51, 224; see also Howard Carter, ‘Report on the Tomb of Zeser-ka-ra Amenhetep I, Discovered

by the Earl of Carnarvon in 1914’, JEA 3 (1916), pl. 19.
43 David Randall-MacIver and Arthur C. Mace, El Amrah and Abydos, London: EEF, 1902, pp. 75–6; Edward

R. Ayrton, Charles T. Currelly and Arthur E. P. Weigall, Abydos III, London: EEF, 1904, p. 37; see also Stephen
Harvey, ‘Monuments of Ahmose at Abydos’, EA 4 (1994), 3–5.

44 Bernard Bruyère, La tombe n◦ 1 de Sennedjem à Deir el Médineh, MIFAO 8, Cairo: IFAO, 1959, pp. 16–8, pls.
10–11 (about these plates, see also Rammant-Peeters, Pyramidions égyptiens, p. 202, note 2).

45 Bernard Bruyère, Rapport sur les fouilles de Deir el Médineh (1928), Cairo: IFAO, 1929, p. 95, fig. 53.
46 Bernard Bruyère, Rapport sur les fouilles de Deir el Médineh (1930), Cairo: IFAO, 1933, pp. 92–3, figs. 26–7.
47 Bruyère, Deir el Médineh (1927), pp. 117–20, figs. 80–1. 48 Bruyère, Sennedjem, pp. 14–6, pl. 9.
49 Bruyère, Deir el Médineh (1930), pp. 92–3, figs. 26–7.
50 Bernard Bruyère, Rapport sur les fouilles de Deir el Médineh (1933–1934), Cairo: IFAO, 1937, p. 27 and pl. 8.
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from about 63◦ (one case, measured on a drawing, from tomb 1150,51 was probably

generated by the adoption of a b = h triangle) to 68◦ (one case, from tombs 1301 and

130252), 69◦ (one case, measured on a drawing, from tomb 113853) and 70◦–71◦

(two cases, one measured on a drawing,54 the other from the tomb of Nebnefer55).

Fragments of a number of other pyramdia survive, but they are too damaged to

provide any useful information.56

In the Ramesside period, small pyramids were also built at Saqqara: the tomb

of Tia and Tia (a sister of Ramses II and her namesake husband), for example,

was completed by a small pyramid, about 10 × 10 cubits, made of rubble encased

with limestone and built at the back of the offering-room.57 Its slope, measured

on the drawings of its lost pyramidion,58 seems to have been about 63◦, possibly

corresponding to a seked of 3 palms 2 fingers or a triangle b = h. Another Nineteenth

Dynasty pyramidion, found at Gurob by Petrie,59provides a slope of about 67◦, given

by a seked of 3 palms, possibly by means of the triplet 5-12-13.

Although two-dimensional, decorative representations are not necessarily reli-

able in terms of proportions, it is interesting to note that, among the representations

of Eighteenth and Nineteenth Dynasty Theban tombs containing pyramids pub-

lished by Nina Davies,60 eight have a slope of about 74◦ (seked of 2 palms, perhaps

the triplet 7-24-25), five a slope of about 67◦ (3 palms, perhaps the triplet 5-12-13),

two (irregular) a slope of about 60◦ (4 palms), one a slope of 48◦, one 79◦ and one

(irregular) 83◦. Again, there is a predominance of the two values of about 74◦ and

67◦, possibly corresponding to the triplets 7-24-25 and 5-12-13.

Among the surviving New Kingdom pyramidia, the base is often rectangular,

rather than square,61 and there are, in fact, cases of pyramids resting on rectangular

bases, such as tomb 1225 at Deir el-Medina62 and a number of small pyramids at

Aniba, in Lower Nubia.63 In these cases, the pyramids had therefore two different

slopes, one for each pair of opposite faces. If Bernard Bruyère’s measurements are

correct, the pyramid of tomb 1225 might have had a slope of about 63◦30′ (b = h

triangle) for the pair of short sides and a slope of about 66◦ (possibly a seked of 3

palms, corresponding to the triplet 5-12-13) for the pair of long sides. As for the

Aniba pyramids, in two cases the difference between the sides is very small, and in a

51 Bruyère, Deir el Médineh (1928), p. 29, fig. 19. 52 Bruyère, Deir el Médineh (1933–1934), p. 11, fig. 2.
53 Bruyère, Deir el Médineh (1928), pp. 14–6. 54 Bruyère, Deir el Médineh (1928), p. 29, fig. 19.
55 Rammant-Peeters, Pyramidions égyptiens, n. 74, p. 110.
56 They are listed by Rammant-Peeters, Pyramidions égyptiens, pp. 108–10.
57 Geoffrey T. Martin, The Hidden Tombs of Memphis, London: Thames and Hudson, 1991, pp. 112–4 and

fig. 64, p. 102.
58 Martin, Hidden Tombs, pp. 114–5. 59 Petrie, Kahun, pl. 12.
60 Nina M. Davies, ‘Some Representations of Tombs from the Theban Necropolis’, JEA 24 (1938), 25–40.
61 Rammant-Peeters, Pyramidions égyptiens, especially 108–10; see also Karol Mysliwiec, ‘Zwei Pyramidia der

xix. Dynastie aus Memphis’, SAK 5 (1977), 139–55.
62 Bruyère, Deir el Médineh (1930), pp. 22–3.
63 Georg Steindorff, Aniba, Glückstadt: Augustin, 1937, pp. 50–1.
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third case the height or the slope are not given, preventing therefore any calculation.

The bases of the small pyramids built at another Nubian site, Soleb, also seem to have

been rectangular although it has been suggested that their final shape was that of step

pyramids.64 To conclude the subject of private pyramids, a number of pyramidia

dating to the Late Period (Twenty-fifth to Thirtieth Dynasty) were discovered at

Abydos. Fourteen of them were published by Herman de Meulenaere,65 and from

the seven published photographs it seems that six had a slope of about 74◦ and one

of about 66◦, again sekeds of 2 and 3 palms, possibly corresponding to the triplets

7-24-25 and 5-12-13.

From the Twenty-fifth Dynasty onward, the Nubian kings built over 180 small

pyramids for themselves and their relatives at el-Kurru, Nuri, Gebel Barkal and

Meroe. The largest monuments were over 26 m long, whereas the side-length of

the rest varied from 12 to 8, 6 and even 4 m. The slope of these monuments,

whenever it has been recorded, seems to range between 60◦ and 69◦ at Nuri and

between 67◦ and 74◦ at Barkal and Meroe.66 Traces of the use of the Egyptian cubit

as a unit of measurement have been found in several Meroitic monuments,67 but it

is unclear whether the system used to measure the slope was the same.68 Hopefully

future research on these monuments will clarify this point.

In conclusion, New Kingdom and Late Period small pyramids may have been

built according to geometrical models consistent with the large Old and Middle

Kingdom monuments. Although the archaeological evidence is far from even, it

seems that the sekeds 4, 3 and 2 palms (corresponding to 60◦, 67◦ and 74◦) were

often used. The first generates an equilateral triangle, while the second and the third

might have been obtained by means of the Pythagorean triplets 5-12-13 and 7-24-

25. Further excavation is needed to clarify the geometry of these little monuments

and to verify whether these suggestions are correct.

Finally, it may be interesting to note that pyramids were adopted as tombs by

rich people in Rome during the I century BC, when contacts with Egypt became

64 Jean S. F. Garnot, ‘Les fouilles de la nécropole de Soleb’, BIFAO 58 (1959), 165–73.
65 de Meulenaere, JEOL 20, 1–20.
66 All data taken from Dows Dunham, The Royal Cemeteries of Kush, vol. i: El Kurru, Cambridge Mass.: Harvard

University Press, 1950; vol. ii: Nuri, Boston: Museum of Fine Arts, 1955; vol. iii: Decorated Chapels of the
Meroitic Pyramids at Meroë and Barkal, Boston: Museum of Fine Arts, 1952; vol. iv: Royal Tombs at Meroë
and Barkal, Boston: Museum of Fine Arts, 1957; vol. v: The West and South Cemeteries at Meroë, Boston:
Museum of Fine Arts, 1963.

67 See Hinkel in Davies (ed.), Egypt and Africa, pp. 220–5 and Sudan and Nubia 4, pp. 18–9.
68 Friedrich Hinkel (Sudan and Nubia 4, pp. 18–9 and especially fig. 6) suggested that some Meroitic pyramids

were designed after the 8:5 ratio. Differently from Badawy’s 8:5 triangle, this time 5 corresponded to the base
and 8 to the height. Hinkel based his conclusions on the sketch of half the vertical section of pyramid Beg 8. In
this drawing, the height of the pyramid is crossed by 48 horizontal lines that probably represent the masonry
courses. If the height is divided into 8 parts (each corresponding to 6 courses), then half of the base (platform
on top excluded) of the pyramid appears to be equal to 2.5 parts. It may be observed, however, that the ratio
8:5 does not really appear in this monument. With the addition of the breadth of the upper platform, the base
of the pyramid will eventually correspond to more than 5 units, and the slope may be derived from the ratio
between 8 and 2.5, but not between 8 and 5.
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more intense. They were remarkable monuments, about 30 m long and up to 50

m high, with slopes averaging 68◦, clearly inspired by New Kingdom rather than

Old Kingdom pyramids.69 Their connection with the Nubian pyramids is uncertain,

since the first imperial ambassadors appear to have been sent to that region only a

century after the construction of the most important Roman pyramids.70 A detailed

study of their proportions might yield interesting results about the use of geometrical

models based on a different metrological system. Unfortunately, however, many of

them have completely disappeared.

69 Carla Alfano, ‘Pyramids in Rome’, GM 121 (1991), 7–17.
70 Norman Neuerburg, ‘Greek and Roman Pyramids’, Archaeology 22 (1969), 115.
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Interpreting the slope of pyramids

In general, Old and Middle Kingdom pyramids appear to have been built on the

basis of a number of geometrical models represented by right-angled triangles,

which might have acted as guides during construction. A brief examination of the

later pyramids seems to point in the same direction. Old Kingdom main pyramids

follow a slow but constant tendency to increase their steepness. This evolution

was interrupted in the Middle Kingdom, probably because of a change in building

technique and the introduction of mud-brick instead of stone for the inner core, but it

was resumed again after the first experiments. Secondary pyramids, however, follow

two different patterns: until Userkaf, satellites and pyramids of queens had the same

slope as the main pyramid but then, starting from Sahura, they became steeper. After

two attempts with a seked of 2
3

cubit, the seked 1
2

cubit became the model for the

majority of the secondary pyramids down to the end of the Middle Kingdom.

Once the pyramids have been classified according to their proportions, it is

possible to ask further questions. Khufu, for example, used the slope which Snefru

had adopted to finish Meidum. It is difficult to establish, however, to whom the

kings who later adopted this slope meant to refer. Unlike any other king, the figure

of Snefru, the ‘Beneficent King’,1 was worshipped down to the Ptolemaic Period,

while Khufu’s pyramid remained the largest ever built in ancient Egyptian history.

If the size of the pyramid was perceived as an important achievement, then Khufu

and Khafra, who built the first and second largest monuments, must have occupied

an important place. If, instead, it was the figure of the king that mattered, then the

Meidum pyramid might have been the model for subsequent kings who wished to

associate themselves with Snefru.

Another interesting question concerns the cases where the adoption of a specific

model cannot be explained by structural reasons. As we have seen, smaller pyra-

mids were steeper than the larger ones, and in general dimensions could make the

1 Battiscombe Gunn, ‘Notes on Two Egyptian Kings’, JEA 12 (1926), 251.
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Fig. 102: Pyramids of Pepi I, Pepi II, their satellites and their queens (Sixth Dynasty).
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difference in terms of steepness. But why, for example, did the Fifth Dynasty kings

prefer Meidum/Khufu as the model for their pyramids, while the Sixth Dynasty

kings chose Khafra? The two slopes are very similar, and the medium size of these

pyramids did not impose on the architects any specific restriction. Within the choice

of slope, was there a direct reference to one of the three kings? It may be noted

that these two slopes, the most common in the Old Kingdom, were completely

abandoned in the Middle Kingdom.

Similar observations can be made about secondary pyramids as well. For instance,

Pepi II built for himself a main pyramid and a satellite which were equal to those

of Pepi I. However, Pepi I had built three equal pyramids for his queens, whereas

Pepi II chose three different models for the pyramids of his queens (used also for

their tiny satellites), even if their bases are very similar to one another (fig. 102).

Likewise, the pyramid of Nofru, the most important queen of Senusret I, was larger

and flatter than the other nine secondary pyramids of the same king. Yet the largest

among the secondary pyramids of Senusret III was also the steepest. Is there any

connection between proportions of the pyramid and rank, importance or any other

characteristic of the owner of the tomb? Therefore, the final question is: in addition

to the practical reasons for the choice of one or another of these forms, was there a

symbolic reason as well?
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An overview

Paradoxically, the faults and merits of many theories on the proportions in ancient

Egyptian architecture share a common origin: the continuity between ancient Egypt

and the Western culture. Listing the faults of some nineteenth- and twentieth-

century interpretations of the proportions in the ancient Egyptian architecture is

very easy. The desire to find links with the past led at times to the attribution

of later meanings to earlier documents and also to the misuse of mathematical

concepts, while legitimate sources such as ancient texts or drawings were set aside

or ignored. Finding geometrical connections in (a drawing on a sheet of paper that

represents the plan of) an Egyptian monument proved to be relatively easy, after all.

However, this kind of study also has some merits. The focus on continuity with

the past, while sometimes admittedly exaggerated, encouraged research on trans-

mission of knowledge from culture to culture. Egypt certainly had an influence

on Greece (and obviously vice-versa), and even if by means of re-interpreted or

re-invented forms, it continued to influence the development of Western culture

for centuries. It is important to make a distinction between what ancient Egypt

was (that is, what we reconstruct today on the basis of the available archaeological

and textual sources) and what ‘ancient Egypt’ meant to Francesco Colonna, author

of the fantastic novel Hypnerotomachia Poliphili (late fifteenth century); to the

Rosacrucians and their ideals; to Athanasius Kircher, author of the Oedipus Aegyp-
tiacus and other studies (seventeenth century); to Cagliostro, the Freemasons, and

their symbolism; to Giovan Battista Piranesi and his engravings; to Johann Wolf-

gang von Goethe, collector of aegyptiaca (second half of the eighteenth century); to

Friedrick Schinkel, author of the scenography for Mozart’s The Magic Flute (1815);

and to the spectators of Giovanni Belzoni’s exhibition of Egyptian mummies

(1842).1 Once we make this distinction, we may even say that probably the ancient

1 Erik Hornung, The Secret Lore of Egypt, translated by David Lorton, Ithaca and London: Cornell University
Press, 2001. See also Jurgis Baltrusaitis, La quête d’Isis. Essai sur la légende d’un mythe, Paris: Flammarion,
1985.
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Egyptians would have been happy to see how many secret meanings, symbols and

geometrical constructions have been found ‘hidden’ in their monuments.

In general, concerning the interpretation of the archaeological and textual re-

mains, the adoption of the correct mathematical point of view is essential to obtain

results which are consistent with the other aspects of the Egyptian culture. One

should never forget that Middle Kingdom pyramids were contemporary with the

Rhind Mathematical Papyrus, not with Euclid’s Elements, Archimedes’ Measure-
ments of a Circle, or Plutarch’s De Iside et Osiride.

The question of a psychological tendency towards the choice of some geometri-

cal figures remains open. The human mind has not changed much, and there may

be archetypal patterns related to the organisation of space that have been adopted

throughout history by various cultures, and that can be detected by means of sim-

ple psychological experiments. However, architecture is more than a rectangle on

paper. We must sometimes ask ourselves whether we seek to see too much in two-

dimensional plans of ancient architecture, considering that ancient architects do not

seem to have relied much on drawings, after all.

The majority of the architectural drawings and written sources on the architec-

tural planning and building process in ancient Egypt belong to the New Kingdom,

for which we can reconstruct a coherent picture. New Kingdom architecture was

imagined, planned and built in three dimensions. It is possible that, the more con-

ventional the building, the less explanations were required. In general, however,

drawings, written specifications and models were all used to describe different

aspects of construction, but none of them was generally expected to provide an

exhaustive description of the final result. There is no evidence to assume that the

Old and Middle Kingdom architects followed a different method, and it may be

concluded that a significant change in the planning process took place in Egypt,

just as in the Greek world, only in the Hellenistic period.

For the Old and Middle Kingdom, pyramids provide a good chance to study

the development of a type of monument over several centuries and to combine the

information we possess about history, symbolism and construction techniques with

the ancient mathematical sources. The results of this study agree entirely with the

information we possess on New Kingdom architecture, thus confirming once more

a certain degree of continuity between these periods. From a geometrical point

of view, temples and other buildings are not as simple as pyramids, but hopefully

future studies will find a key to read the ancient mathematical background of some

of their architectural elements or even of entire buildings.

The search for the rules used by the ancient Egyptian architects is far from

exhausted, but must be conducted with respect for the ancient sources and always

keeping in mind the practical aspects of construction. The moral of the story may be

that looking for interconnections can be extremely productive, but one must never
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forget the weight of stone, and one must always avoid getting trapped in a vague

search for a secret for the sake of it. Because, as Umberto Eco concludes,

a plot, if there is to be one, must be a secret. A secret that, if we only knew it, would dispel
our frustration, lead us to salvation; or else the knowing of it in itself would be salvation.
Does such a luminous secret exist? Yes, provided that it is never known. Known, it will
only disappoint us. ( . . .) There are not ‘bigger secrets’, because the moment a secret is
revealed, it seems little. There is only an empty secret. A secret that keeps slipping through
your fingers.2

2 Umberto Eco, Il Pendolo di Foucault, Milano: Fabbri-Bompiani, 1988, English edition: Foucault’s Pendulum,
translated by W. Weaver, London: Vintage, 2001, pp. 620–1.
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List of Old and Middle Kingdom true pyramids
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Base Slope Height
King/owner Dynasty Location Function Material Form (cubits) (degrees) (cubits) Ratio/Triangle Remarks Source

Snefru Fourth ‘Bent Pyramid’
Dahshur South

cenotaph? stone true, bent Total height: 200 Perring, in Vyse,
Operations iii, p. 67;
Petrie, Season in Egypt,
p. 30; Maragioglio and
Rinaldi, Piramidi iii,
p. 58; Dorner, MDAIK
42, p. 54 and GM 126,
p. 41; Legon, GM 130,
pp. 49–56.

Project 1
(hidden)

300 60◦? (260◦?) 4 palms?
(equilateral?)

Dorner suggested a slope
of about 58◦30′, possibly
a seked of 4 1

2
palms.

Project 2
(lower
part)

362 54◦30′
(average)

up to 90 5 palms Perring measured
54◦14′26′′, Petrie values
between 55◦23′ and 54◦,
Dorner 55◦00′30′.
Pyramidion of this stage
survives (?).

Rossi, JEA 85,
pp. 219–22.

Project 2
(upper
part)

236 43◦01′30′′ 110, up
to 200

20–21–22? Perring and Petrie
measured 42◦59′26′′ and
43◦05′.

satellite stone true 100 44◦34′? 20–21–22? Petrie’s measures are
uncertain. Slope as the
upper part of the Bent
Pyramid?

Petrie, Season in Egypt,
p. 31.

Snefru Fourth ‘Red Pyramid’
Dahshur North

tomb? stone true 420 43◦36′ 200 20–21–22 Slope as the upper part
of the Bent Pyramid?
Perring cleared the
corners and measured
43◦36′11′′, Petrie
measured 44◦36′
without clearing the
base; Polz measured 45◦.

Perring, Pyramids,
pp. 63–5; Petrie, Season
in Egypt, p. 27;
Stadelmann, MDAIK 39,
p. 253.

(cont.)
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Base Slope Height
King/owner Dynasty Location Function Material Form (cubits) (degrees) (cubits) Ratio/Triangle Remarks Source

Snefru Fourth Meidum cenotaph? stone stepped,
later
cased

275 51◦52′ 175 5 1
2 palms Petrie, Medum, p. 6.

satellite stone stepped 50 Maragioglio and
Rinaldi, Piramidi iii,
p. 26.

Khufu Fourth Giza tomb stone true 440 51◦53′ 280 5 1
2

palms Slope as Meidum. Maragioglio and
Rinaldi, Piramidi iv,
p. 18.

satellite stone true 40 51◦50′ 5 1
2 palms Pyramidion survives. Jánosi,

Pyramidenanlagen,
p. 182; Lehner, Complete
Pyramids, pp. 222–3.

Queen GIa
(Khufu)

tomb stone true 90 1
3

(average)
51◦50′ 5 1

2 palms Jánosi,
Pyramidenanlagen,
p. 184.

Queen GIb
(Khufu)

tomb stone true 91 1
2

(average)
51◦50′ 5 1

2
palms Jánosi,

Pyramidenanlagen,
p. 184.

Queen GIc
(Khufu)

tomb stone true 87 1
2

(average)
51◦40′ 5 1

2
palms? Jánosi,

Pyramidenanlagen,
p. 184.

Pure Mathematical Physics



Djedefra Fourth Abu Rawash tomb stone true 202? 60? 52◦? 4 palms?
(equilateral?)

5 1
2 palms?

Unfinished. Maragioglio
and Rinaldi suggested a
side-length of 200 c
(104.6 m) and from
loose blocks a slope of
60◦ (seked of 4 palms).
According to Valloggia,
the side 202 c and the
casing was placed on a
horizontal bed at one
corner and on a 12◦
sloping bed along the
face. He found casing
blocks with a slope of c.
64◦ that combined with
the counter-slope of the
bed would produce a
final slope of 52◦,
similar to
Meidum/Khufu.

Maragioglio and
Rinaldi, Piramidi v,
p. 12 and pl. 2;
Valloggia, Geneva 43,
pp. 68–9 and 72.

satellite stone true? 50 ? 4 palms?
(equilateral?)

5 1
2 palms?

It probably had the same
slope of the main
pyramid. Maragioglio
and Rinaldi thought this
could be the pyramid for
a queen of Djedefra.

Jánosi,
Pyramidenanlagen,
p. 182.

Khafra Fourth Giza tomb stone true 410 53◦10′ 273 5 palms 1
finger (3-4-5)

Maragioglio and
Rinaldi, Piramidi v,
p. 50.

satellite stone true 40 53◦10′ 5 palms 1
finger (3-4-5)

Maragioglio and
Rinaldi, Piramidi v,
p. 88.

(cont.)
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Base Slope Height
King/owner Dynasty Location Function Material Form (cubits) (degrees) (cubits) Ratio/Triangle Remarks Source

Menkaura Fourth Giza tomb stone true 202? c. 52◦? 125? 5 1/2 palms? Vyse and Petrie
suggested a slope of 51◦,
but disagreed on the
side-length (respectively
207 c and 202 c). Goyon
measured 196 c,
Maragioglio and Rinaldi
202. According to
Robins the slope is that
of Meidum/Khufu.

Maragioglio and
Rinaldi, Piramidi vi,
p. 38; Robins, DE 18,
p. 46.

Queen GIIIa
(Menkaura)

tomb stone true 84 52◦15′ 5 1/2 palms? Originally satellite of
Menkaura. Pyramidion
survives.

Jánosi,
Pyramidenanlagen,
p. 184.

Queen GIIIb
(Menkaura)

tomb stone ? 60 ? No evidence that this
pyramid was ever cased

Jánosi,
Pyramidenanlagen,
p. 184.

Queen GIIIc
(Menkaura)

tomb stone ? 60 ? No evidence that this
pyramid was ever cased

Jánosi,
Pyramidenanlagen,
p. 184.

Nebka? Fourth? Zawiyet
el-Aryan

tomb stone true? 400–410 ? ? ? Maragioglio and
Rinaldi, Piramidi vi,
p. 22.

Userkaf Fifth Saqqara tomb stone true 134 c. 53◦ 5 palms 1
finger (3-4-5)

Labrousse and Lauer,
Ouserkaf, chapter 22.

satellite stone true 40 c. 53◦? 28? 5 palms 1
finger?
(3-4-5?)

According to
Maragioglio and Rinaldi
(Piramidi VII, p. 22), the
slope might have been
that of Userkaf.

Jánosi,
Pyramidenanlagen,
p. 182.

Queen
Neferhetepes
(Userkaf)

tomb stone true 50 5 palms 1
finger (3-4-5)

Jánosi (Pyramidenan
lagen, p. 184) reports a
slope of 52◦,
corresponding to 5 1/2
palms.

Labrousse and Lauer,
Ouserkaf, chapter 22.
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Sahura Fifth Abusir tomb stone true 150 50◦54′ 93 5 palms 3
fingers

Borchardt, Sahu-re �,
p. 27: the slope, difficult
to establish, may be
about 50◦ 30′.

Maragioglio and
Rinaldi, Piramidi vii,
p. 46.

satellite stone true 30 56◦ 22? 2
3

Jánosi,
Pyramidenanlagen,
p. 182.

Neferirkara Fifth Abusir tomb stone stepped? 200? ? ? Borchardt and Lauer
considered this a true
pyramid, with a slope of
53◦ (3-4-5 triangle?).
Maragioglio and Rinaldi
established a finished
base of 185 c;
Stadelmann suggested
that the pyramid was not
stepped.

Borchardt,
Nefer-ir-ke-re �, p. 12;
Maragioglio and
Rinaldi, Piramidi vii,
p. 116; Stadelmann,
Pyramiden, p. 171.

Queen
Khentkawes
(Neferirkara)

tomb stone true 50 52◦ 5 1
2 palms Fragments of

pyramidion survive.
Verner, ZÄS 107, p. 158.

satellite stone true 10 52◦ 5 1
2

palms Verner, ZÄS 109, p. 157.

Shepseskara? Fifth Abusir tomb stone ? 220? ? Verner, ZÄS 109, p. 76.

Raneferef
(Lepsius 26)

Fifth Abusir tomb stone true? 125? ? Unfinished. Maragioglio and
Rinaldi, Piramidi VII,
p. 178.

Neuserra Fifth Abusir tomb stone true 150 52◦ 95.5 5 1
2 palms Borchardt, Ne-user-re �,

p. 99.

satellite stone ? 30? 56◦? 2
3 ? No trace of casing:

dimensions by analogy
with the complex of
Sahura.

Maragioglio and
Rinaldi, Piramidi viii,
p. 32.

(cont.)
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Base Slope Height
King/owner Dynasty Location Function Material Form (cubits) (degrees) (cubits) Ratio/Triangle Remarks Source

Unknown
Queen of
Neuserra?
(Lepsius 24)

tomb stone true 60? 60◦? 4 palms?
(equilateral?)

Slope of loose blocks
range from 57◦31′ to
62◦42′; a pyramidion
with a slope of 60◦ was
found in the area.

Verner, ZÄS 115, 115;
Hommages Leclant,
p. 373.

Unknown
Queen of
Neuserra?
(Lepsius 25)

tomb stone true ? ? ? The attribution of the
pyramidion found in the
area (see above) is
uncertain. See also
table 9.

Verner, Hommages
Leclant, p. 373.

Djedkara
Isesi

Fifth Saqqara tomb stone true 150 c. 52◦ 5 1
2 palms Lauer, Mystère des

pyramides, pp. 258–9:
base 150, height 100
(3-4-5 triangle).

Maragioglio and
Rinaldi, Piramidi viii,
p. 66.

satellite stone true 30 65◦ 30 3 palms
1 finger

Slope measured from
blocks in situ

Maragioglio and
Rinaldi, Piramidi viii,
p. 84.

Unknown
(Queen of
Djedkara?)

Fifth? Saqqara tomb stone true 80 63◦30′? b=h Generally identified as a
queen. According to
Jánosi, its unusually
large dimensions and its
position suggest an
independent origin.

Maragioglio and
Rinaldi, Piramidi viii,
p. 98; Jánosi,
Königinnen, pp. 36–7.

satellite stone true 8 63◦30? b=h? The side is 1
10 of the

main pyramid. The slope
might have been the
same.

Maragioglio and
Rinaldi, Piramidi viii,
p. 104.

Lepsius 29
(Menkauhor?)

Fifth? Saqqara tomb stone ? 120–
130?

? ? Attribution uncertain;
Maragioglio and
Rinaldi, Piramidi
thought that the visible
side-length of 100 cubits
corresponded to the core
only and therefore
suggested 120–130
cubits as final
dimension.

Maragioglio and
Rinaldi, Piramidi vii,
p. 62.
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Unas Fifth Saqqara tomb stone true 110 56◦18′ 85.5 2
3 Lauer, Observations,

p. 95.

satellite stone true 22 63◦ b=h Jánosi,
Pyramidenanlagen,
p. 182.

Teti Sixth Saqqara tomb stone true? 150 ? 5 palms 1
finger?
(3-4-5?)

Lauer, Mystère des
pyramides, pp. 258–9:
base 150, height 100
(3-4-5 triangle)

Maragioglio and
Rinaldi, Notizie, p. 45.

satellite stone true 30 c. 63◦ 30? b=h Maragioglio and
Rinaldi, Notizie, p. 53.

Queen Iput I
(Teti)

tomb stone true 40 62◦ 3 palms 3
fingers
(8-15-17?)

Originally a mastaba Jánosi,
Pyramidenanlagen,
p. 184.

satellite stone true? ? ? ? Jánosi,
Pyramidenanlagen,
p. 188.

Queen Khuit
(Teti)

tomb stone true 40? ? ? Maragioglio and
Rinaldi, Notizie, p. 58,
Labrousse, Hommages
Leclant, p. 243.

Pepi I Sixth Saqqara tomb stone true 150 c. 53◦? 100? 5 palms 1
finger (3-4-5)

Lauer, Mystère des
pyramides, pp. 258–9.

satellite stone true 30 63◦30′ b=h Superstructure almost
completely destroyed

Jánosi,
Pyramidenanlagen,
p. 182.

Queen
Nubwenet
(Pepi I)

tomb stone true 40 c. 63◦ b=h Jánosi,
Pyramidenanlagen,
p. 184.

Queen
Inenek-Inti
(Pepi I)

tomb stone true 40 c. 63◦ b=h Jánosi,
Pyramidenanlagen,
p. 184.

(cont.)
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Base Slope Height
King/owner Dynasty Location Function Material Form (cubits) (degrees) (cubits) Ratio/Triangle Remarks Source

Unknown
Queen
(Pepi I)

tomb stone true 40 c. 63◦ b=h Jánosi,
Pyramidenanlagen,
p. 184.

Queen
Meritites
(Pepi I)

tomb stone true 40 ? ? Jánosi,
Pyramidenanlagen,
p. 184.

Merenra Sixth Saqqara tomb stone true 150 c. 53◦? 100? 5 palms
1 finger?
(3-4-5?)

Unfinished Lauer, Mystère des
pyramides, pp. 258–9.

satellite stone true 30? 63◦30′? b=h Jánosi,
Pyramidenanlagen,
p. 188.

Pepi II Sixth South Saqqara tomb stone true 150 c. 53◦ 100 5 palm 1 finger
(3-4-5)

Jéquier, Pepi II, p. 6.

satellite stone true 30 63◦ 29.5 b=h Jéquier, Pepi II, p. 8.

Queen
Udjebten
(Pepi II)

tomb stone true 45.5 65◦ 48.5 3 palms
1 finger

Base of the pyramidion
survives. Jéquier
measued a slope of 65◦.
Jánosi suggested a slope
of 63◦.

Jéquier, Udjebten,
pp. 4–5.

satellite stone true? ? Jánosi,
Pyramidenanlagen,
p. 188.

Queen Neith
(Pepi II)

tomb stone true 46 61◦ 41 4 palms?
(equilateral?)

Slope of 61◦ taken from
blocks in situ

Jéquier, Neith et Apouit,
p. 12.

satellite stone true 10 61◦ 4 palms?
(equilateral?)

Jánosi,
Pyramidenanlagen,
p. 188.
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Queen Iput II
(Pepi II)

tomb stone true 42 55◦c. 30–2 5 palms? The value of the slope is
uncertain.

Jéquier, Neith et Apouit,
pp. 45–6.

satellite stone true 7–8 55◦c. 5 palms? The pyramidion found in
the area may belong to
the main pyramid or to
the satellite.

Jánosi,
Pyramidenanlagen,
p. 188.

Iby Eighth South Saqqara tomb stone true L. 60 60◦? 4 palms? Unfinished, according to
Jequier similar to Neith.

Jéquier, Aba, p. 3.

Amenemhat I Twelfth Lisht tomb stone true 160 54◦? 5 palms? According to Jéquier
and Gautier the total
absence of casing
prevented any
measurement. Slope as
the lower part of the
Bent Pyramid.

Jéquier and Gauthier,
Licht, p. 89; Stadelmann,
Pyramiden, pp. 233–4.

Senusret I Twelfth Lisht tomb stone true 200 49◦24′ 116 6 palms Arnold, Senwosret I,
p. 64.

satellite stone true 35 63◦30′ 35 b=h Arnold, Senwosret I,
p. 73.

Queen 1
Nofru
(Senusret I)

tomb stone true 40 62◦30′ 3 palms 3
fingers
(8-15-17?)

Jánosi,
Pyramidenanlagen,
p. 184.

Queen 2
Itakajet
(Senusret I)

tomb stone true 32 63◦30′ b=h Jánosi,
Pyramidenanlagen,
p. 184.

Queen 3
(Senusret I)

tomb stone true 32 63◦30′ b=h Jánosi,
Pyramidenanlagen,
p. 184.

Queen 4
(Senusret I)

tomb stone true 32 ? ? Jánosi,
Pyramidenanlagen,
p. 184.

Queen 5
(Senusret I)

tomb stone true 31 63◦30′ b=h Jánosi,
Pyramidenanlagen,
p. 184.

(cont.)
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Base Slope Height
King/owner Dynasty Location Function Material Form (cubits) (degrees) (cubits) Ratio/Triangle Remarks Source

Queen 6
(Senusret I)

tomb stone true 30 63◦30′? b=h? Jánosi,
Pyramidenanlagen,
p. 184.

Queen 7
(Senusret I)

tomb stone true 30 63◦30′? b=h? Jánosi,
Pyramidenanlagen,
p. 184.

Queen 8
(Senusret I)

tomb stone true 30 63◦30′? b=h? Jánosi,
Pyramidenanlagen,
p. 184.

Queen 9
(Senusret I)

tomb stone true 30 63◦30′? b=h? Jánosi,
Pyramidenanlagen,
p. 184.

Amenemhat
II

Twelfth Dahshur tomb stone true? 100? ? ? According to De
Morgan, it was
impossible to establish
the dimensions.

De Morgan, Dahchour
1894–95, p. 30.; Fakhry,
Pyramids, p. 216.

Senusret II Twelfth Lahun mud-brick,
stone casing

true 200 42◦37′ 93 7 palms 2
3 ? The flattest pyramid. Petrie, Lahun II, pp. 3–4.

Queen
Atmu-neferu
(Senusret II)

tomb mud-brick,
stone casing

true 51? 54◦21′ 5 palms Petrie, Lahun II, p. 8.

Senusret III Twelfth Dahshur tomb mud-brick,
stone casing

true 202 or
204

c. 50◦ 6 palms? May have used the same
slope of Senusret I.

Arnold, personal
communication
(forthcoming in
Senwosret III).

Queen 1
(Senusret III)

Twelfth Dahshur tomb true 32 ? ? Slopes difficult to
measure. By analogy
with the complex of
Senusret I, pyramids 2,
3, 7, 8 and 9 might have
had the same slope.
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Queen 2
(Senusret III)

Twelfth Dahshur tomb true 32 61◦–63◦ 3 palms 3
fingers
(8-15-17?) or
b=h

Queen 3
(Senusret III)

Twelfth Dahshur tomb true 32 61◦–63◦ 3 palms 3
fingers
(8-15-17?) or
b=h

Queen 4
(Senusret III)

Twelfth Dahshur tomb true 32 56◦–58◦ 2/3?

Queens 5 and
6 (Senusret
III)

Twelfth Dahshur tombs? ? ? ? ?

Queen 7
(Senusret III)

Twelfth Dahshur tomb true 50 61◦–66◦ 3 palms 3
fingers
(8-15-17?), or
b=h or 3 palms
1 finger

Queens 8
(Senusret III)

Twelfth Dahshur tomb true 42 60◦–64◦ 4 palms
(equilateral), or
3 palms 3
fingers
(8-15-17?) or
b=h

Queens 9
(Senusret III)

Twelfth Dahshur tomb true 42 60◦–64◦ 4 palms
(equilateral), or
3 palms 3
fingers
(8-15-17?) or
b=h

Amenemhat
III

Twelfth Dahshur tomb? mud-brick,
stone casing

true 200 54◦30′ 143 5 palms Exact slope provided by
the pyramidion (slope
from loose blocks gave
values between 54◦ and
56◦).

Arnold, Amenemhet III.,
p. 9.

(cont.)
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Base Slope Height
King/owner Dynasty Location Function Material Form (cubits) (degrees) (cubits) Ratio/Triangle Remarks Source

Twelfth Hawara tomb? mud-brick,
stone casing

true 200? 48◦–52◦ ? Values of the slope
according to Petrie’s
measurements: 48◦45′,
49◦51′, 52◦25′.

Petrie, Kahun, p. 13.

Queen
Neferuptah
(Amenemhat
III)

tomb mud-brick,
stone casing

true 100? ? ? Jánosi concluded that
there is no evidence that
this was a pyramid.

Jánosi,
Pyramidenanlagen,
p. 184.

Ameny
Qemau

Thirteenth South Dahshur tomb mud-brick,
stone casing

true? 100? ? ? ? Unfinished, side-length
as Khendjer.

Maragioglio and
Rinaldi, Orientalia 37,
328.

Khendjer Thirteenth South Saqqara tomb mud-brick,
stone casing

true 100 54◦30′ 5 palms Exact slope provided by
the pyramidion; slope as
Amenemhat III.

Jéquier, Deux
pyramides, p. 30.

Unknown
Queen
(Khendjer)

tomb mud-brick,
stone casing

true 50 ? ? Jánosi,
Pyramidenanlagen,
p. 184.

Merneferra
Ay

Thirteenth Area of Ezbet
Rushdi
el-Khebı̂ra?

tomb? mud-brick,
cased with
stone?

true ? 60◦ 4 palms Slope derived from the
surviving fragment of
the pyramidion: the
location of the pyramid
is unknown.

Habachi, ASAE 52,
p. 30.

Unknown Thirteenth South Saqqara tomb mud-brick,
stone casing

true 80 ? ? Two unfinished
pyramidia were found at
the entrance: was there a
secondary pyramid?

Jéquier, Deux
pyramides, p. 60.

Unknown Thirteenth? South
Mazghuna

tomb mud-brick,
stone casing

? 100? ? ? No casing left Petrie, Labyrinth, p. 41.

Unknown Thirteenth? North
Mazghuna

tomb stone ? ? ? ? Petrie, Labyrinth, p. 50.
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Blackman, Aylward M., ‘A Painted Pottery Model of a Granary’, JEA 6 (1920), 206–8.
Blackman, Aylward M. and Fairman, Herbert W., ‘The Consecration of an Egyptian

Temple According to the Use of Edfu’, JEA 32 (1946), 75–91.
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Karnak VII, Paris: Recherche sur les Civilisations, 1982, 181–202.
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(1898), 235–40.
Ostraca, CG, Cairo: SAE, 1901.
Fouilles de la Vallée des Rois (1898–1899), CG, Cairo: SAE, 1902.
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CdE 50 (1975), 151–7.
Vandier, Jacques, Manuel d’archéologie égyptienne, Paris: Picard, 1952–78.
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215, 240

geometrical models 70, 204, 213, 219, 221,
226–227, 234, 236–238, 240

geometrical progression (see also numerical series)
58–59, 67

Giorgi, Francesco 3
Giza 2, 5, 181, 202, 206, 225, 226, 244, 245, 246
gnomonic expansion 26, 29
‘god’s passage’ (element of a tomb) 140

‘ . . . which is upon the sun’s path’ 140
Goethe, Johann Wolfgang 239
Golden Section 5, 10, 16, 22, 23, 28–31, 32, 35, 42,

46, 57, 60, 67–68, 78, 79, 80–85, 86, 173, 200
names of 23
psychological experiments 78–79, 80, 81, 85, 240
tendency towards 69, 73, 78–80, 83, 85, 86, 240
golden rectangle 83, 85
golden triangle 201

Graeco-Roman Period 58
granite 206
Great Aten Temple 47, 99, 101, 155
‘Great Pyramid’ (see also pyramid of Khufu) 200–202
Greece 127, 138, 239
grids: see square grids
guide-lines 28, 81, 113–114, 122
Gurna 155
Gurob 174, 233

hall 49
element of a tomb:
‘another hall of repelling rebels’ 140
‘chariot hall’ 140
‘hall of denial of access’ 140
‘hall of hindering’ 140, 141
‘hall of truth’ 140
‘hall in which one rests’ 140

handsbreath (unit of measurement) 61
harmony 2, 3, 4, 28
Harpedonaptai 157
Hawara 128, 138, 194
Hatshepsut (Eighteenth Dynasty) xxi, 122, 129, 153,

155, 183
hekat (unit of measurement) 61, 117
Heliopolis 100–101, 104, 182, 183
Hellenistic Period 127, 138, 175, 176, 240
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Hemaka, tomb of 156
heptagon 42, 201
Heracleopolis xxi
Herodotus 70
heseb (unit of measurement) 61
Hetepsekhemwy (Second Dynasty) xxi, 180
hexagon 5, 11
Hierakonpolis 164–166
hinu (unit of measurement) 61
Horus-Eye fractions: see fractions
house 101, 128

drawing of 104
model of 128
‘house of gold’ 140
of Djehuti-nefer Huia 100
soul-houses 128

human body
representation of 28–29, 81–83, 96, 97–99, 122
proportions of 3, 5, 10, 28–29

Huni (Third Dynasty) 135, 181
Hyksos xxi
hypotenuse 22, 64, 67

Iby (Eighth Dynasty) xxi, 228, 251
icosahedron 68
Imhotep 10
Inenek-Inti, Queen of Pepi I (Sixth Dynasty) 249
Iput I, Queen of Teti (Sixth Dynasty) 219, 227, 228,

229, 230, 249
Iput II, Queen of Pepi II (Sixth Dynasty) 206, 228, 251
Iry, tomb of 232
Isis, Queen of time of Ramses VI (Twentieth Dynasty)

144
Islamic Period xxi
Itakajet, Queen no. 2 of Senusret I (Twelfth Dynasty)

251

el-Kab 105
Kalabsha, temple of 71–72, 101, 113, 123
Kamose (Seventeenth Dynasty) xxi, 232
Karnak 11, 31, 54, 105, 109, 123, 150, 155, 183
kha (unit of measurement) 61
Khaba (Third Dynasty) xxi, 181
khar (unit of measurement) 61
kha-ta (unit of measurement) 61
Khaemhat, tomb of 154
Khaemwaset, son of Ramses III (Twentieth Dynasty)

144
Khafra (Chefren, Fourth Dynasty) xxi, 203, 207, 219,

226–227, 236–238, 245
Khasekhemwy (Second Dynasty) 149
Khedival Period xxi
Khendjer (Thirteenth Dynasty) xxi, 183, 205, 206,

207, 208, 211, 212, 230, 254
Khentkawes, Queen of Menkaura (Fourth Dynasty)

181
Khentkawes, Queen of Neferirkara (Fifth Dynasty)

206, 207, 247
khet (rod, unit of measurement) 61, 117, 154
Khnum Hotep, tomb of 4
Khonsu, tomb of 232

Khui 228
Khuit, Queen of Teti (Sixth Dynasty) 227, 249
Khufu (Cheops, Fourth Dynasty) xxi, 13, 22, 28, 30,

31, 70, 200–201, 202, 203, 206, 207, 212,
213, 215–216, 219, 225, 226, 236–238, 244,
245, 246

Kircher, Athanasius 239
kite (unit of measurement) 61
Kom Ombo, temple of 172
Kuban 105
el-Kurru 181, 234

Lahun 206, 213, 252
land measuring 154
Late Dynastic Period xxi
Late Period xxi, 87, 104, 122, 128, 131, 159, 181, 182,

186, 213, 221, 224, 231, 234
Leonardo from Pisa, also called Fibonacci 26
limestone 128, 135, 138, 206
Lisht 104, 229, 230, 251
Lucas numbers 26
Luxor, temple at 28, 30, 113, 151

Macedonian Dynasty xxi
Macedonian Period xxi
Mammisi at Dendera 167
Martini, Francesco di Giorgio 28
mastaba 180, 181, 184, 192, 228, 249

17 at Meidum 113, 114, 188–192
of Ptahshepses 61
Mastabat el-Fara � un 113

mathematics 2, 4, 87, 89, 90, 117, 179, 200, 226
Babylonian 64
Egyptian 71, 87, 90, 202
Greek 66, 67
relationship with architecture xiv–xv, 179
mathematical sources 57, 67, 68, 71, 90, 178, 203,

217, 218, 240
Berlin Papyrus 217
Egyptian Mathematical Leather Roll 57
Kahun Papyri 57, 218
Moscow Mathematical Papyrus 57, 154, 218
Rhind Mathematical Papyrus (RMP) 57, 65, 154,

185, 218, 240
Mazghuna 254
mean and extreme ratio (see also Golden Section) 5,

22, 23, 67, 68
Medinet Habu 150
Meidum 113, 114, 184, 188, 192, 203, 212, 215–216,

221, 225, 226, 236–238, 244, 246
Meketra, models from the tomb of 128
Memphis 128, 133
Menkauhor (Fifth Dynasty) xxi, 248
Menkaura (Mycerinus, Fourth Dynasty) xxi, 113, 133,

181, 193, 206, 207, 226, 246
Menna, tomb of 154
Mentuhotep II Nebhepetra (Eleventh Dynasty) xxi,

104
Merenptah (Nineteenth Dynasty) xxi, 144
Merenra I (Sixth Dynasty) xxi, 203, 227, 250
Meritites, Queen of Pepi I (Sixth Dynasty) 250
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Merneferra Ay (Thirteenth Dynasty) xxi, 183, 206,
211, 230, 254

Meroe 104, 181, 234
monuments 56, 173, 234
pyramids 178, 182, 192, 194, 197, 234
temples 127

Middle Kingdom xxi, 47, 57, 58, 68, 70, 80, 104, 117,
122, 124, 138, 149, 156, 205, 208, 211, 217,
218, 221, 224, 228, 231, 234, 236, 238, 240

model (see also architectural and geometrical models)
226, 229, 240

module 23, 47, 71, 121–127
Mycerinus: see Menkaura

Nakht Min, tomb of 232
Napata xxi
Nebka (Fourth Dynasty?) xxi, 246
Nebnefer, tomb of 233
neby (unit of measurement) 61, 141
Nectanebo I (Thirtieth Dynasty) xxi, 85, 167
Nectanebo II (Thirtieth Dynasty) xxi, 172
Neferhetepes, Queen of Userkaf (Fifth Dynasty) 246
Neferirkara (Fifth Dynasty) xxi, 181, 203, 226, 247
Neferuptah, Queen or daughter of Amenemhat III

(Twelfth Dynasty) 138, 254
Neith, Queen of Pepi II (Sixth Dynasty) 228, 250
Neuserra (Sixth Dynasty) xxi, 113, 149, 181, 184,

203, 206, 215, 247
New Kingdom xxi, 61, 88, 101, 104, 129, 131, 150,

153, 155, 158, 163, 172, 178, 180, 186, 213,
221, 224, 231, 234, 235, 240

Ninetjer (Second Dynasty) xxi, 180
Ninth Dynasty xxi
Nineteenth Dynasty xxi, 104, 112, 128, 144, 181, 197,

202, 233
Nofru, Queen no. 1 of Senusret I (Twelfth Dynasty)

219, 229, 230, 238, 251
Nubwenet, Queen of Pepi I (Sixth Dynasty) 249
number 2, 3, 60–63, 65, 68, 88, 166, 171, 187–188,

200
integers (whole) 58, 60, 216, 218
irrational 4, 24, 54, 68, 202
numerical series (see also geometrical progression)

59, 167
numerologists 167, 201–202
Nubia 181, 233
Nuri 181, 234

obelisks 129, 131, 149, 156, 182–183, 184, 215
octagon 65, 66
Old Kingdom xvi, xxi, 2, 5, 64, 65, 71, 81, 87, 117,

122, 124, 149, 150, 156, 158, 159, 164,
178–179, 180, 192, 197, 204, 205, 207, 218,
221, 224, 226, 231, 234, 235, 236, 238, 240

orders
Doric 175–176
Ionic 175–176

Osireion 30
ostraca

Cairo 25184 104, 142–146
Cairo 25536 recto 140, 144

Cairo 25537 140, 144
Cairo 25538 140, 144
Cairo 25581 recto 140, 144
Cairo 50036 104
Cairo 51936 104, 144, 147
Cairo 66262 104
Cairo 72452 140
Cairo (number not known) 144
Berlin B 144
BM 8505 140, 144
BM 41228 104
BM 65944 (Nash 10) 144
DeM (number not known) 144
Gardiner 109 80
mathematical from Elephantine 68
Michaelides 53 144
Michaelides 71 140
Michaelides 92 144
Strasburg H.112 139, 142, 144
Turin 57036 140, 144
Turin 57037 140, 144

Ottoman Period xxi

Palermo Stone 117, 149
Palladio 3
palm (unit of measurement) 59–60, 61, 88, 109, 112,

115, 117–121, 129, 132–133, 141, 146, 147,
167, 174, 185, 192, 203, 208, 212, 213–215,
219–234, 242–254

paradeigmata 138
Parthenon 13
papyri 101, 226

Berlin 6619 217
Budge 80
Cairo 86637 verso 80, 144
Demotic mathematical 58, 64, 217
Kahun 57, 218
Moscow Mathematical 57, 154, 218
Ram. B 104
Reisner 117, 218
Rhind Mathematical 57, 65, 154, 185, 218,

240
Sallier IV 80
Turin 1885 recto 144, 147
Turin 1885 verso 104, 144
Turin 1923 142, 144

Penanhor, statue of 154
Pepi I (Sixth Dynasty) xxi, 159, 203, 227, 238,

249–250
Pepi II (Sixth Dynasty) xxi, 159, 183, 203, 206, 227,

228, 238, 250–251
perimeter 66, 90, 167, 200–203, 204, 228
peripteral

chapels 105
chapel(?) on a canal, drawing of 104, 109–112
chapel from Deir el-Bahari, drawing of 104, 105,

107, 111
temple at Elephantine 47
temple of Thutmosis III at Karnak 109–111

Persian Period, first and second xxi, 172
Petosiris, tomb of 28, 85
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Philae 113, 117, 127
phoenix 182
π 28, 60, 65, 67, 87, 175, 200, 202
Piranesi, Giovan Battista 239
plan (architectural) xiv, 10, 42, 43, 47, 54, 60, 71, 73,

83–84, 87, 90, 97, 100–101, 105–112, 122,
124, 127–128, 131–133, 138, 139, 141,
142–146, 147, 153, 155, 156, 158, 159, 167,
176, 186, 207, 216, 226, 240

Plato 2–3, 64, 88
Platonic philosophy 3
Platonic influence 64

Plimpton 322 64
Plutarch 64, 240
polygon 65, 66
Predynastic Period 43, 156, 162, 164
project 69, 70, 87, 90, 101, 109, 122, 135, 138, 140,

141, 142, 147, 166, 174, 175, 197, 206, 207,
221, 224

proportions xiv, 4, 11, 22, 70, 72, 112, 113, 117, 122,
129, 132, 159

in architecture xiv, xv, xvi, 3, 6, 7, 16, 42, 47, 57, 69,
83, 85, 90, 101, 129, 131, 156, 171, 176, 194,
195, 203, 204, 205, 211, 212–213, 216, 219,
221, 226–227, 229, 232, 233, 236, 238, 239

mathematical 5, 23, 24, 28, 29, 67, 68, 78, 79, 81,
85, 86, 219

canon of 10
of the human body 3, 5, 10, 28–29

Ptahshepses, mastaba of 61
Ptolemaic Dynasty xxi, 172
Ptolemaic Period xxi, 43, 113, 117, 138, 148, 150,

162–173, 236
Ptolemaic temples: see temples
Ptolemy xxi, 172
Ptolemy II xxi, 172
Ptolemy III xxi, 166, 171
Ptolemy VI Philometor xxi, 117, 167, 172
Ptolemy VIII Euergetes II xxi, 166, 172
Ptolemy X xxi, 167
Ptolemy XI xxi, 167
Ptolemy XII Auletes xxi, 166, 171
pylon 4, 101, 129, 131, 163
pyramidia (see also capstones) 138, 182–184, 186,

195, 205–211, 212, 231
of Aamaket 232
of Amenemhet III 183, 205, 206, 208, 211, 253
from Dahshur 206, 207, 243
from Ezbet Rushdi 206, 207, 230
from Gurob 233
of Iput II 206
of Iry 232
of Khendjer 183, 205, 206, 207, 208, 211, 230,

254
of Khentkawes II, Queen of Neferirkara 206, 207,

247
of Khonsu 232
Late Period from Abydos 183, 197, 234
of Merneferra Ay 183, 206, 211, 230, 254
New Kingdom 183, 197, 233
of Qaha 232

of Queen GIIIa of Menkaura 206, 207, 246
of a Queen of Neuserra (Lepsius 24 and 25) 206,

207, 230, 231, 248
of the satellite of Khufu 206, 244
of Sahura 183
of Sekhemra-Wepmaat Intef V 232
of Sennedjem 232
of Senusret II 183, 206
of the sun temples 184, 215
of Tia and Tia 233
truncated, from South Saqqara 206, 209–211, 230,

254
of Turbay 232
of Udjebten(?) 228, 250
unfinished, from South Saqqara 206, 209–211, 230,

254
Pyramid Texts 4, 182, 184
pyramidologists 202
pyramids 4, 22, 64, 69, 70, 71, 83–138, 176, 180, 182,

184–185, 228, 231, 240
‘primeval’ 11–13, 15, 70
queens’ 205, 236, 238
satellite 133, 181, 197, 199, 203, 205, 206, 207,

212, 225, 227, 228, 229, 236, 238, 243, 244,
245, 246, 247, 248, 249, 250, 251

step 133, 135, 180–181, 193, 216, 226, 234, 244,
247

model of 128, 131–133, 135, 194
shape of steps 133
‘Buried Pyramid’ 181
of Djoser at Saqqara 115, 133, 180, 184, 216,

218
of Khaba 181
‘Layer Pyramid’ 133, 181
at Meidum 133, 135, 181, 184, 186, 192,

197–199, 216, 225
no. 29 at Saqqara 135
of Sekhemkhet 133
satellite of Meidum 133
at Sinki 133–135
small, dating to the reign of Huni 135, 181
unfinished at Zawiyet el-Aryan 135

true 69, 135, 181, 184, 213, 221, 226, 242–254
base of 70, 178, 185, 192, 200–201, 203, 204,

207–211, 216, 219, 224, 225, 242–254
drawings of: see architectural drawings
casing of 133–135, 192–193, 197, 198, 203, 205,

212, 215, 216, 221, 225, 245, 247, 251,
252–254

corner of 70, 186, 200, 203, 204, 208
diagonal of 70, 187–188, 192, 204, 207
face of 70, 178, 186, 188, 207–211, 215
height of 70, 178, 185, 200–201, 202, 203, 204,

216, 219, 224, 242–254
models of: see architectural models
slope of (see also seked) 23, 69, 70, 90, 135, 178,

185, 188–193, 196, 197–199, 202–204,
205–211, 212, 221, 226, 228, 236, 238,
242–254

vertical section of 69, 70, 185, 192, 194, 195, 201,
207–208, 214, 215, 219, 221, 234

Pure Mathematical Physics



Index 277

of Ahmose
at Dra Abu el-Naga 181, 232
at Abydos 181, 232

of Amenemhat I 203, 229, 230, 251
of Amenemhat II 229, 252
of Amenemhat III

at Dahshur 115, 174, 205, 212, 230, 253–254
at Hawara 135–138, 230, 254

of Ameny Qemau 230, 254
at Aniba 233
of Atmu-neferu, Queen of Senusret II 212, 252
Beg. 8 at Meroe 192, 234
Bent Pyramid 69, 70, 181, 192, 193, 203, 206, 207,

212, 215, 221–225, 243, 251
of Djedefra 193, 225–226, 245
of Djedkara-Isesi 248
at Gebel Barkal 181, 234
GIa, of a Queen of Khufu 212, 244
GIb, of a Queen of Khufu 212, 244
GIc, of a Queen of Khufu 212, 244
GIIIa, of a Queen of Menkaura 246
GIIIb, of a Queen of Menkaura 133, 181, 246
GIIIc, of a Queen of Menkaura 133, 181, 246
of Iby 228, 251
of Inenek-Inti, Queen of Pepi I 249
of Iput I, Queen of Teti 227, 228, 229, 230,

249
of Iput II, Queen of Pepi II 228, 251
of Itakajet, Queen n. 2 of Senusret I 251
of Kamose 232
of Khafra 203, 207, 219, 226–227, 245
of Khendjer 205, 212, 230, 254
of Khentkawes II, Queen of Neferirkara 247
of Khufu 13, 22, 28, 30, 31, 70, 200–201, 202, 203,

212, 213, 215–216, 225, 226, 244, 245, 246
of Khuit, Queen of Teti 71–72, 249
at el-Kurru 181, 234
Late Period 213, 221, 231, 234
Lepsius 24 and 25 (of the Queens of Neuserra?)

183, 206, 207, 228, 231, 248
Lepsius 29 (of Menkauhor?) 248
at Meidum 203, 212, 215–216, 221, 225, 226,

236–238, 244, 245, 246
of Menkaura 113, 193, 226, 246
of Merenra 203, 227, 250
of Meritites, Queen of Pepi I 250
of Merneferra Ay 211, 230, 254
Meroitic 178, 182, 192, 194, 197, 234
Middle Kingdom xvi, 70, 178–179, 180, 204, 205,

221, 226, 231, 234, 236, 240
of Nebka 246
of Neferhetepes, Queen of Userkaf 246
of Neferirkara 181, 203, 226, 247
of Neferuptah, Queen of Amenemhat III 138, 254
of Neith, Queen of Pepi II 228, 250
of Neuserra 113, 203, 247
New Kingdom 178, 213, 221, 231, 234, 235
of Nofru, Queen no. 1 of Senusret I 219, 229, 230,

238, 251
of Nubwenet, Queen of Pepi I 249
at Nuri 181, 234

Old Kingdom xvi, 71, 178–179, 180, 204, 205, 221,
226, 231, 234, 235, 236

of Pepi I 159, 203, 227, 238, 249–250
of Pepi II 159, 203, 227, 238, 250–251
of the Queen of Djedkara 226, 248
of the Queen of Khendjer 254
of a Queen of Pepi I 250
of the Queens nos. 3, 4, 5, 6, 7, 8 and 9 of

Senusret I 229, 238, 251–252
of the Queens nos. 1, 2, 3, 4, 5, 6, 7, 8 and 9 of

Senusret III 229–230, 238, 252–253
of Raneferef (Lepsius 26) 247
Red Pyramid 181, 192, 199, 203, 206, 207, 219,

224–225, 229, 243
Roman 234–235
of Sahura 203, 226, 230, 247
of Sekhemra-Wepmaat Intef V 232
of Senusret I 79, 229–230, 251–252
of Senusret II 213, 252
of Senusret III 207, 212, 229, 252–253
of Shepseskara 247
of Snefru: see Meidum, Bent Pyramid and Red

Pyramid
at Soleb 234
of Teti 154, 159, 203, 227, 249
of Udjebten, Queen of Pepi II 207, 228, 250
of Unas 212, 249
of unknown owner at North Mazghuna 254
of unknown owner at South Mazghuna 254
of unknown owner at South Saqqara 209, 230,

254
of Userkaf 203, 226, 246
14 and 15 at Soleb 104, 186

Pythagoras 2, 60, 89
Theorem of 60, 63–64, 65, 67, 216–217, 218
Pythagoreans 2, 28, 60
Pythagorean philosophy 3
Pythagorean Triplets 60–65, 117, 157, 216–221

3-4-5: see 3-4-5 triangle
5-12-13 221, 232, 233, 234
7-24-25 221, 232, 233, 234
8-15-17 221, 229, 230, 249, 251, 253
20-21-29 219, 224–225, 230

Qaha, tomb of 232
Qasr el-Sagha 124, 159, 226
quarry

at Gebel Abu Foda 113, 117, 122, 167
at Sheikh Said 105

quartzite 128, 129
Queen of Djedefra (Fourth Dynasty) 245
Queen of Djedkara (Fifth Dynasty) 226, 248
Queen of Khendjer (Thirteenth Dynasty) 254
Queens of Khufu (Fourth Dynasty)

buried in GIa 212, 244
buried in GIb 212, 244
buried in GIc 212, 244

Queens of Menkaura (Fourth Dynasty)
buried in GIIIa 206, 246
buried in GIIIb 133, 181, 246
buried in GIIIc 133, 181, 246
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Queens of Neuserra (Fifth Dynasty) 183, 206, 207,
228, 230, 231, 248

Queen of Pepi I (Sixth Dynasty) 250
Queens nos. 3, 4, 5, 6, 7, 8 and 9 of Senusret I

(Twelfth Dynasty) 229, 238, 251–252
Queens nos. 1, 2, 3, 4, 5, 6, 7, 8 and 9 of Senusret III

(Twelfth Dynasty) 229–230, 238, 252–253

radius 66, 115, 121, 200, 202
Ramesseum 101, 104
Ramses II (Nineteenth Dynasty) xxi, 129, 140, 144,

151, 181, 233
Ramses III (Twentieth Dynasty) xxi, 142, 144
Ramses IV (Twentieth Dynasty) xxi, 112, 144, 147
Ramses V (Twentieth Dynasty) xxi, 142, 144
Ramses VI (Twentieth Dynasty) xxi, 113, 114, 115,

142, 144, 157
Ramses IX (Twentieth Dynasty) xxi, 112, 140, 141,

142–146
Ramsesnakht, tomb of 104
Raneferef (Fifth Dynasty) xxi, 247
ratio

1:2 124
2:3 90
3:5 90
5:4 112, 200–201
8:5 200, 234

rectangle 5, 35, 54, 69, 78, 79, 81, 85, 88,
240

Red Pyramid: see pyramids
remen (unit of measurement) 61, 88, 192
Renaissance 2–3
‘resting place of the gods’ (element of a tomb) 140
Rhind Mathematical Papyrus (RMP) 57, 65
river-measure (unit of measurement) 61
ro (unit of measurement) 61
Roman Period xxi, 113
Rome 129, 172, 234
rope (see also cord) 115, 117, 154, 155–156, 158
Rosacrucians 239

sa (unit of measurement) 61
‘sanctuaries in which the gods of the west/east repose’

(elements of a tomb) 140
sandstone 104
Sahura (Fifth Dynasty) xxi, 183, 203, 212, 226, 230,

236, 247
Saqqara 104, 115, 133, 180, 181, 184, 203, 206, 209,

218, 226, 233, 246, 248–251, 254
scale 83, 127, 129–131, 132, 135, 138, 141

drawings 54, 85, 101–112, 113, 174
Schinkel, Friedrick 239
Second Dynasty xxi, 180
Second Intermediate Period xxi, 57
secret xv, xvi, 4, 241

knowledge 87–88
seked (slope) 185–186, 192–196, 203–204, 208, 213,

236
Sekhemkhet (Third Dynasty) xxi, 181
Sekhemra-Wepmaat Intef V 232
Semna South, fortress at 149

Senenmut
statue of 154–155
tomb of 104, 105

Sennedjem, tomb of 232
Sennefer, tomb of 124
Senusret I (Twelfth Dynasty) xxi, 79, 104, 105, 149,

183, 203, 219, 229–230, 238, 251–252
Senusret II (Twelfth Dynasty) xxi, 183, 206, 213, 229,

252
Senusret III (Twelfth Dynasty) xxi, 207, 212,

229–230, 238, 252–253
Serlio 3
Seshat 42, 57, 148, 149, 153
setat (unit of measurement) 61, 88, 117, 154
Sethnakht (Twentieth Dynasty) xxi, 142
Seti I (Nineteenth Dynasty) xxi, 30, 129–131, 181
Seti II (Nineteenth Dynasty) xxi, 144, 147
Seventh Dynasty xxi, 181
Seventeenth Dynasty xxi, 231
Shabaka (Twenty-fifth Dynasty) 2, 4
shaft (element of a tomb, see also well) 140, 141
shenaty (unit of measurement) 61
Shepseskaf (Fourth Dynasty) xxi, 181
Shepseskara (Fifth Dynasty) xxi, 247
shrine 131

box, sketch on ostracon 112–113
drawing on papyrus from Gurob 2, 174
drawing on an ostracon from Deir el-Bahari 104,

105, 107, 111
Siptah xxi, 144, 147
Sixth Dynasty xxi, 159, 203, 219, 226, 238,

249–250
Sixteenth Dynasty xxi
sketch: see architectural drawings
slate 100, 104
slope

of corridors of tombs 141
of corridors of pyramids 218
of tombs 141, 142

Small Aten Temple 73, 99
Snefru (Fourth Dynasty) xxi, 69, 149, 181, 184, 192,

197, 199, 203, 206, 221, 225, 226, 228, 236,
243–244

Socrates 88
solar cult 182–184
Soleb 104, 181, 186–187, 234
Spira, Fortunio 3
spiral 26
square 35, 42, 47, 49, 65, 66, 69, 70, 78, 79, 81, 85,

88–89, 90, 158, 200, 215
square grids 5, 69, 71, 81–83, 122–127, 140, 174
square root 88, 89
statuary

Greek 7
Egyptian 7

stelae 2, 5, 182
step pyramids: see pyramids
Strabo 70
Sudan 127, 173
sun temples: see temples
survey xiv, 10, 109, 132, 139, 147, 176
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symbolism 65, 180, 184, 239, 240
symmetry 5, 78

axis of 42
ta (unit of measurement) 61
Tawosret xxi, 140
Tell el-Yahudiya 128, 129
temples 4, 90

at Corinth 13
of the Concord at Agrigentum 13
at Dendera 31, 85, 149, 151, 153, 166,

170
at Edfu 85, 113, 149, 151, 162, 163,

166–173
at Egina 13
Egyptian 16, 28
funerary temples of Teti, Pepi I and Pepi II 159, 219
Great Aten Temple 47, 99, 101, 155
Greek 13, 15, 127, 175
of Hatshepsut at Deir el-Bahari 122, 153
at Heliopolis 100–101
at Hierakonpolis 164, 166
of Horus at Aniba 155
at Kalabsha 71–72, 113, 123, 172
at Karnak 11, 31, 54, 105, 109, 123, 150, 155, 183
of Khons at Karnak 4, 11
at Kom Ombo 172
at Luxor 28, 30, 113, 151
Mammisi at Dendera 167
at Medinet Habu 150
of Mentuhotep at Deir el-Bahari 174
Meroitic 127
of Nectanebo I at Ashmunein 85
New Kingdom 101, 129
Osireion 30
Parthenon 13
peripteral at Elephantine 18, 47
peripteral of Thutmosis III at Karnak 109–111
at Philae 117, 127, 151, 167, 172
primeval 161–162, 166
Ptolemaic 7, 71–72, 85, 127, 129, 151, 159,

162–173, 176, 226–227
at Qasr el-Sagha 124, 159, 226
Ramesseum 101
rock-cut 141
of Satet at Elephantine 163–164, 166
of Seti I at Heliopolis 149
Small Aten Temple 73, 99
sun temples 182, 184

of Neuserra 149
of Userkaf 215

at Tôd 47, 129, 131–133, 135, 149
valley temple of Amenemhat III at Dahshur

135
Tenth Dynasty xxi
Teti (Sixth Dynasty) xxi, 154, 159, 203, 219,

226–227, 229, 230, 249
theatre

Greek 90
Roman 90

Thebes xxi, 4, 104, 109
Themistius 66

Theorem of Pythagoras: see Pythagoras
Third Dynasty xxi, 104, 113, 115, 180, 181, 192, 193,

205, 216
Third Intermediate Period xxi, 172
Thirteenth Dynasty xxi, 205, 206, 207, 209, 211,

230–231, 254
Thirtieth Dynasty xxi, 85, 234
Ti, chapel of 5
Tia and Tia, tomb of 233
Titian 3
Tôd

model of the temple of 128, 129, 131–133
temple at 47, 129, 131–133, 135

tombs 90, 135, 155
rock-cut 69, 83–175
royal 83, 109, 139–147, 153, 174
of Aamaket at Deir el-Medina 232
of Amenhotepsesi 154
of Amenmesse (KV 10) 142
of Djeserkaraseneb 154
of Hemaka 156
of Iry at Deir el-Medina 232
K94.1 at Dra Abu el-Naga 232–233
of Khaemhat 154
of Khaemwaset, son of Ramses III (QV 44) 144
of Khnum Hotep at Beni Hasan 4
of Khonsu at Deir el-Medina 232
KV 55 141
of Meketra 128
of Menna 154
of Nakht Min at Deir el-Medina 232
of Nebnefer at Deir el-Medina 233
New Kingdom 181
Old Kingdom 122
of Petosiris 28, 85
of Qaha at Deir el-Medina 232
of Queen Isis, time of Ramses VI (QV 51) 144
of Ramses III (KV 11) 142
of Ramses IV (KV 2) 112, 144, 147
of Ramses V–VI (KV 9) 113, 114, 115, 142, 144,

157
of Ramses IX (KV 6) 112, 141, 142–146
of Ramsesnakht at Dra Abu el-Naga 104
Royal Tomb of Amarna 83–84, 141
of Senenmut, no. 71 at Thebes 104
of Sennedjem at Deir el-Medina 232
of Sennefer 124
of Sethnakht (KV 11) 142
of Seti I (KV 17) 181
of Seti II (KV 15) 147
of Siptah (KV 47) 147
of the sons of Ramses II (KV 5) 181
of the sons of Ramses III 144
of Tia and Tia at Saqqara 233
of Tawosret 140
of Turbay at Deir el-Medina 232
of Tutankhamun (KV 62) 181
no. 1138 at Deir el-Medina 233
no. 1225 at Deir el-Medina 233
no. 1301 and 1302 at Deir el-Medina 233

‘treasuries’ (elements of a tomb) 140
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triangles 5, 10, 11–15, 16, 18, 23, 35, 42, 47, 49, 54,
67, 69–72, 85, 88, 171, 207, 242–254

with base equal to height (b=h) 208, 214–215,
226–227, 228, 230, 233, 248, 249–250,
251–252, 253

‘Egyptian’ 10, 11, 22, 23, 70
equilateral 10, 11, 13, 22, 23, 69, 70–72, 90, 154,

208, 214–215, 221, 225, 228, 234, 243, 245,
253

isosceles 10, 35, 42, 71, 245, 248, 250
right-angled 4, 10, 28, 35, 60–63, 66, 71, 115, 117,

159, 185, 192, 193–194, 195–196, 203–204,
213, 214, 215, 216, 218, 219, 221, 236

similar 158
1:2 35, 42, 47, 54
1:4 35, 42, 47, 54, 186
1:8 35, 42, 54
3-4-5 10–22, 23, 35, 47, 54, 60, 64–65, 70, 71,

115–117, 154, 157, 158–159, 217–218, 219,
245, 246, 247, 249, 250

8:5 10, 11, 23, 35, 42, 43, 47, 54, 56, 70–71, 72, 78,
154, 225, 234

14:11 215
Turbay, tomb of 232
Tutankhamun xxi, 181
Thutmosis I (Eighteenth Dynasty) xxi, 183
Thutmosis III (Eighteenth Dynasty) xxi, 4, 109, 129,

150, 155
Twelfth Dynasty xxi, 104, 128, 135, 203, 206, 231,

251–254
Twentieth Dynasty xxi, 104, 105, 112, 113, 114, 115,

144, 158, 159, 181, 218

Twenty-eight Dynasty xxi, 144
Twenty-fifth Dynasty xxi, 2, 81, 234
Twenty-first Dynasty xxi
Twenty-fourth Dynasty (Saite) xxi
Twenty-ninth Dynasty xxi, 54
Twenty-second Dynasty xxi
Twenty-seventh Dynasty xxi
Twenty-sixth Dynasty xxi, 181
Twenty-third Dynasty xxi

Udjebten, Queen of Pepi II (Sixth Dynasty) 183, 207,
228, 250

Unas (Fifth Dynasty) xxi, 212, 249
unit fractions: see fractions
units of measurement 59–60, 61, 66, 88, 124, 129,

132, 141, 154, 155, 201, 234
Userkaf (Fifth Dynasty) xxi, 203, 215, 226, 236,

246

Valley of the Kings 104, 105, 113, 114, 139, 140, 142,
153

Valley of the Queens 139, 140
vertical section of pyramids: see architectural

drawings and pyramids
Vitruvius 28, 70, 88, 89, 90, 175–176

well (element of a tomb, see also shaft) 141
Window of Appearance 99
wooden boards, documents on 104, 109
Workmen’s Village at Deir el-Medina 129

Zawiyet el-Aryan 133, 135, 181, 246
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