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Preface to the English Edition

Much water has flowed over the dam since this book went to press in
Moscow. One might expect that PIONEER would have made substantial
advances—unfortunately it has not. There are reasons: the difficulty of the
problem, the disenchantment of the mathematicians (because of the delays
and drawing out of the work), and principally the insufficiency and sorne-
times complete lack of machine time.

The general method used by PIONEER to solve complex multidirnen-
sional search problems had already been formulated at that time. It was
supposed that the successful completion of the chess program PIONEER-1
would provide a sufficient validation for the method. We did not succeed in
completing it. But, unexpectedly, PIONEER’s method obtained a different
kind of validation.

Since our group of mathematicians works at the Institute for Electroen-
ergy, we were invited to solve some energy-related problems and were
assigned the task of constructing a program that would plan the recondf-
tioning of the equipment in power stations—initially for one month. F.Jntﬂ
then, the technicians had been preparing such plans without the aid of
computers.

Although the chess program was not complete even after ten years, the
program PIONEER-2 for computing the monthly repair schedulef for the
Interconnected Power System of Russian Central was completed n a fe_w
months. In mid-October of 1980 a medium-speed computer construf:t-ed the
plan in 40 seconds. When, at the end of the month, the mathematician At:
Reznitsky turned over the results to the Central Dispatch Control (CDC);
the power system, he was treated with disbelief, since the. plan already
prepared by the technicians differed from the computed plan. In a day or

\Y



vi Preface to the English Edition

so, however, things were cleared up. PIONEER-2 turned cut to be more
competent than the humans. Using the methods of the chess master, the
computer very quickly found a high prionity variation tn the plan, tested the
possibility of improving it, and produced the results. PIONEER-2 was at
once adopted by the CDC for implementation.

In the following year, PIONEER-3 was developed to produce the annual
plan for all power stations in the USSR. The plan for 1982 was produced in
3 minutes 19 seconds. If one notes that the monthly plan dealt with 200
units for 30 days. and the annual plan with 600 units for 365 days, one must
be amazed; the dimension of the full-width search tree for the annual plan is
essentially infinite. The truth of the matter is that by using the chess
master's method. the search problem is reduced to one of analysis, and
therefore the solution depends only weakly on the dimensions of the search.

In 1982 the program was updated. It not only produces the plan, but if
necessary minimizes the increase in the reserve power that must be dedi-
cated to offset the output of the units in repair. The technicians like this
very much, since now they can only approximate the amount of reserve
power needed for maintenance; the computer itself made the value of the
reserve more precise. However, the program was more complex and the
1983 plan consumed 12 minutes 6 seconds.

Why should the maintenance planning present a simpler problem than
chess? The answer is not hard to find. Let us look at two schemes for solving
an enumerative problem.

Scheme (a) corresponds to a solution of the problem by a full-width
search. It 1s a simple scheme, but suitable only for the case in which the
branching factor during the search is small; only then can we obtain a deep
solution. For a branching factor appreciably greater than unity we can in
general obtain only a weak and superficial solution because of the
catastrophic growth of the search tree. Moreover, and this is the essential
point, since the full-width search is not connected with the essence of the
problem we are trying to solve, a good positional estimate is excluded;
without it we cannot find a good solution.

The chess master uses Scheme (b). He processes his initial information,
establishes a goal for the inexact game, establishes a multi-level systein, sets
priorities for the inclusion of moves for consideration. and constructs a
positional estimate. After this, the game of chess—a search task of very high
dimension—reduces to a problem in analysis; the branching factor remains
close to unity, and nothing prevents reaching a deep solution.

We can now see why maintenance planning is easier than chess. In the
planning problem, the initial information fed to the computer scarcely needs
processing; it is already in a form suitable for analysis. In chess, on the
other hand, the data destined for analysis is deeply hidden in the initial
data. The principal task consists in transforming the initial data to a form
suitable for analysis. Herein lies one of the reasons for our delay in finishing
PIONEER-1.
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NEVel'lheless:' the chess program has made some progress. Where before
we looked on t.._hess as a three-level system (attack trajectories with attacking
and attacked pieces, fields of play, the ensemble of fields) we now model the
game of chess as a four-level system. A field of play has a somewhat abstract
nature: on the basis of the field we have now formed a real chain of
trajectories (this is the third level) and an ensemble of such chains (the
fourth level) which is a genuine mathematical model of a position.

We had alread)‘r developed the concept of the compound field, composed
of a number of simple fields, but we did not know how to analyze it. The
priority for inclusion of moves in the search was based on the “practicabil-
ity of the several trajectories, and such a priority did not yield good results.
We now base the priority on the practicability of a chain of trajectories,
which we call a compound field. To a first approximation we may say that
the trajectories in a chain belong to two fields. A chain must have its own
basic attack trajectory and, of course, the target of attack. As we noted
above, an ensemble of chains constitutes the mathematical model.

The positional estimate is now based not only on material values but also
on the situational value of the pieces. The concept of the situational value
had already been introduced in the author’s earlier book Computers, Chess,
and Long-range Planning, but it was not formalized. We have now suc-
ceeded in doing that. The greater the value of a chain (of trajectories) with
which a piece is connected, the higher the situational value of that piece.

This was tested on a position in a game by Botvinnik—Capablanca. We
succeeded for the first time in increasing the positional estimate in the
course of a sacrificial combination. We are currently sharpening some new
developments, after which PIONEER will be suggested for the analysis of
quiescent positions.

Few people believe in the success of our work. Nevertheless, I had not
expected Ken Thompson to be skeptical; so far as T know, Claude Shannon
is also skeptical. This is most curious, since in the historical development of
an arGficial chess master there have been only two major events: the
fundamental work by Shannon (1949), and the construction of BELL_E. a
high-speed specialized computer by Thompson (1980). BELLE has attained
national master rating and is World Champion among chess—pl_ay_mg com-
puters. However, BELLE uses the brute force method, and this is hardly
capable of further progress. It is the computer’s tum_to adopt a more
fruitful method— perhaps PIONEER. And if PIONEER is unsuccessful. we
must believe that some other method will be found. The problem must and
will be solved. -

Note: Recently the solution to the maintenance plfmmﬂs problem has
again been advanced. The program PIONEER-5 will be completed in
December. It will deal with a whole set of resources expended in the
maintenance process, instead of with one resource only. Slpce th_ese re};
sources are in part local and in part centralized, PIONEER will bcg;?d wud
local preliminary plans, for onentation, and then proceed to the second an
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This book gives an account of the theory needed for the solution of inexact
enumeration problems; the theory as expounded here is to some extent
based on hypothesis, since our experience does not yet fully support our
theoretical position. When our chess program PIONEER begins to play at
master strength, we may say that the theory has a solid basis.

The (unfinished) history of the development of strong chess programs is
connected with a struggle between two different trends. The prevailing
opinion, for a long time, was that the computer should not imitate a chess
master’s thought processes, and that the method for play by a machine
should be based on an exhaustive search for possible moves. Since the first
successes of PIONEER, the position has changed to some extent; from now
on, computer programs will increasingly tend to imitate humans.

The first part of the book contains a general statement of the mempd
that, in our opinion, should be used for the solution of inexact enumerative
control problems; we use the game of chess as an example to sho_w how the
general theory can be successfully applied. A detailed exposition of the
algorithmic basis is given in the appendices, which were written by mathe-
maticians who took part in the development of PIONEER. ':[‘hey sho_uld‘be
of interest to program designers and should aid in the practical application
of the principles set forth in this book.
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CHAPTER 1
The General Statement

Definition of an Inexact Task

The notion of an inexact problem was introduced by the author several
years ago [1}], but no precise definition was then given. We now say that an
enumerative task is inexact if it solves a problem by minimax methods on a
truncated search tree (see the Glossary of Terms). The concepts of minimax
procedure and search tree are well known: the concept of the truncated
search tree may need explanation. Problems soluble by the formation of a
tree of all possibilities (elementary actions) may differ in difficulty and may
give rise to search trees of different sizes—small, large, or even infinitely
large. If the resources of our information-processing device (speed and
memory) are so limited that we cannot form the tree and search 1t exhaus-
tively, we must either abandon the task or be content with an inexact (1.e.,
approximate) solution. If an inexact solution 1s acceptable, we limit the
depth of the variations; the use of a depth-truncaied tree and the acceptance
of an approximate solution make the enumerative problem inexact. The
definition of an inexact problem is therefore inextricably bound up with the
general method of solution and with the resources of the mf __
processing system being used. If we can apply the minimax pmced
complete tree, the problem is exact. (Problems may of -ccursﬁ be s
exactly by other methods, e.g, by the use of equations orexact
and they may be inexact under other definitions, as ‘when
solutions to equations are used. However, we shall use th ATTC
of an inexact task, as given above, and will not consid
conforming to it.
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Inexact Tasks and Control Systems

A control system has three functions: (1) the receipt of data, (2) the
processing of data, and (3) the execution of the resultant solution. The
data-processing component may have tasks of varying complexity and
difficulty, depending on the assignment given the control system. When the
system solves its task by forming a search tree, the theory of inexact
problems and the theory of control are inseparable.

Although at first glance the theory of inexact problems seems abstract, it
has, in fact, great practical significance, since most control tasks are inexact
We investigate the theory by applying it to the game of chess, which
represents a typical inexact task.

Two Methods for Solving Inexact Problems

Two essentially different methods for solving inexact problems were de-
scribed by Shannon [2] in 1949, when he posed the problem of designing a
chess-playing program. In the first method, all possibilities (moves) are
included in the truncated search tree; there are no exclusions. In the second,
moves that are known to be senseless (cf. Glossary of Terms) are excluded.
so that the tree consists of potentially sensible moves only. The first method
and its implementation are in principle simple; Shannon recommended its
use, and it has been applied by mathematicians. He noted that the second
method offers better prospects, but outlined no approach to its implemen-
tation.

The first method, however, is hopeless as a means of finding a good
solution to an inexact task, as we shall show by applying it to the game of
chess. On the average, each side in a chess game has 20 available moves.
Suppose we start in a position where White is to move; all 20 moves of
White’s pieces must be included in the search tree. Then it 1s Black’s turn;
for each of White’s 20 moves, Black has 20 answers, so that the tree contains
400 Black moves. If we extend the variation to include another move by
White, the tree will contain a total of 8420 nodes. If the varniation 15 to
contain three complete moves—six half-moves [“plies”]—it will contain
some 67000000 nodes!

The size of the tree is an exponential function of the depth. Thus the tree
grows catastrophically (see Fig. 1, where, as is customary, the tree is shown
growing downward from its root). We are to find the optimal variation in
this tree; it may easily consist of six moves. Then we have more than enough
moves in the tree; we are looking for a single needle in a haystack. Worse
yet, in the search for a needle we at least know what we are looking for,
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Figure 1 Growth of the search tree in a chess game with an exhaustive search.

whereas in the search for the optimal variation this is often far from being
the case.

If we develop a suitable algorithm for a chess program. the resources of
the computer (memory and speed) are less significant than might be
supposed at first glance. Whenever we extend the depth of the variation by a
move, the resources of the machine must increase by several factors of 10;
this is impossible in practice. Thus the main element is not the power of the
computer, but the skill of the programmer, i.e., the extent to which he has
contrived to depart from the fundamental principle (a full-width search) in
order to economize on machine resources. This fact explains how the Soviet
program KAISSA won in the First World Computer Chess Championship
at Stockholm in 1974, even though the computer used has comparatively
modest capabilities. There were competitors with several times as much
power, but they were defeated by KAISSA. An increase in computer power
1s of little help in solving inexact enumerative problems. In a quarter
century the computer has been raised to second class rating as a chess
player; in the last five years no progress has been made.

Two tasks confront the programmer in his attempts to perfect his
Program: improve the optimal variation (find a stronger one), and accelerate
the solution of the search problem. The acceleration is necessary if the
optimal variation so far found is not good enough, since then the depth of
vaniations must be increased, with a consequent increase in the volume of
the tree. Again using chess as an example, let us note that this line offers
very limited possibilities for success if the program 1s based on an exhaus-
tive enumeration of the possibilities (full-width search).

Suppose that on the average, In any position, m moves are available. Then
for a given depth consisting of n plies and for a full-width search, the
number of nodes in the tree will be 4, = m + m? +m> + - - - + m". By the
well-known branch-and-bound method (in the West this is also known as
the a-B-cutoff method), this can be reduced to the value 47, = 42 If we set
m=20and n==6 (these are reasonable values), we have

A; =20+ 400+ 8000 + 160000+ 3 200 000+ 64000000 = 8000.
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In practice, the branch-and-bound method leads to no such.reduc.tlo'n_ in
the number of nodes. For instance, the program CHESS 46 with a limiting
depth of variations set at 6 plies, has a search tree contamning some 400000
nodes; this differs significantly from the estimate A4} . (In fact, the search tree
contains some forced variations, relating to captures and mates, but their
influence on the number of nodes is small.) Let us therefore take A = 42/3
rather than A!/2. Then we find 160000 nodes in the search tree instead of
8000; this is considerably closer to the truth.

We now display the number of nodes 1n the tree as a function of the
limiting depth of a variation, assuming that the branch-and-bound algo-
rithm is not used. We take two cases, m = 20 and m = 7. Inspection of the
curves In Fig. 2 will show that the limiting depth of a vanation cannot be
increased beyond n =5 or n =28, and that the dependence on the average
number of moves available i1s weak. Since the number of moves that can be
searched may be taken as proportional to the speed of the machine, 1t is
clear that an increase in speed, beginning at some given depth of vanations,
cannot strengthen the play. If the number of moves available at each node is
decreased to m = 7, the situation is somewhat better: an increase in speed,
yielding an increase in A4;,, has a greater influence on the limiting depth »n of
the variations. The authors of CHESS 4.6 took advantage of this fact in
programming the endgame, when the number of pieces is decreased and
therefore m is decreased. Using a Cyber-176 computer, with a speed of
twelve million operations per second, they succeeded in deepening the
variations from a length of 6 to a length of 12 and obtained stronger
optimal variations.

If, on the other hand, a strong game has already been obtained, and the
object is merely to increase the speed with which the solution is reached,
then increasing the speed of the computer does solve the problem com-
pletely. This completes our summary remarks concerning the first method,
the full-width search.

The prospects for the second method are founded first of all on the fact
that it is the one used by humans, in particular by strong chess players. By
excluding obviously senseless moves from the tree being formed, a human
seeking an optimal variation searches a deep and narrow tree. In this case,
the number of moves in an optimal variation is comparable to the number
of moves in the tree.

Some mathematicians, while admitting that this is the pattern of human
thought, nevertheless contend that a computer should act differently. They
. pay hl:-lman thought is not an optimal model for computers and there is no
 point in transferring such modes of thought to a computer program. If there
. 35'ment in this argument, we may ask: Why then over a quarter of a century
 Bave the efforts to teach a computer to play chess by non-human methods
 yielded such weak results? If in fact chess programs based om a full-width

m and. truncation of the search tree were to beat chess masters, we
oight well say\that a computer should act along lines differing from husan



Two Methods for Solving Inexact Problems -

thought processes—but up to now computer programs have not beaten
chess masters.

In support of the view that computers should behave like computers
some specialists put forward the example of heavier-than-air machines— they:'
note that airplanes and birds fly in different ways. From the mechanical
point of view, it is true: airplanes use engines for motive power and birds
use wings. But from a deeper point of view, their tasks are the same: both
airplanes and birds overcome gravity and air resistance. One might say by
analogy that both men and computers, in solving an inexact task, must
overcome the combinatorial explosion of the task by forming a deep and
narrow tree. Men have long known how to do this; it is time to transfer to
computers the results of thousands of years of experience. If this is done
and chess programs succeed in forming deep and narrow trees, theri
probably the power of the machine will play a role, and the most powerful
machine will defeat its opponents.

In conclusions we may ask: Which method, and under what circum-
stances, should we prefer? Speaking generally, we may make the following
observations:

Inspection of Fig. 2 shows that when the number of moves at a given
node (in a given position) is decreased, the curve y = f(x) shifts to the right,
where y denotes the number of nodes in the truncated tree and x denotes
the limiting depth of a variation; then the full-width search method yields a
deeper solution. When the number of moves at a node increases, the curve
shifts to the left; the depth of a variation decreases, and the solution
becomes weaker.

Thus, in complex control problems, where the number of possibilities
under consideration is large, the full-width search is of doubtful value, but it
can be recommended in simple cases, since the second method is more
complex. The second (human) method is especially valuable in complex

6.107 |
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4107} r
3.107}
2.107 B
107
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106_ 1 1

0.1 2534, Sta T BES
Limiting depth of the variation (n)

Figure 2 Dependence of the number of nodes in the search tree on the lim
depth of a variation. < o
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cases, but can hardly stand up to competition from the full-width search
method in simple cases.

The Goal of the Game and the Scoring Function

The goal is the basis for the fundamental algorithm of a game (for the
solution of an inexact problem); for mstance, the goal of the exact game of
chess is to checkmate. However. in a truncated tree the exact goal plays
almost no role, since no variation leads to 1t. We must introduce a new
(intermediate) goal, an inexact goal for the mexact task corresponding to the
truncated tree (Fig. 3). (We recall that with a truncated search tree, an
arbitrary problem—even if finite—becomes inexact.)

How is the goal used 1o find the solution of a task? How does 1t influence
the formation of a search tree? An inexact goal yields a logical basis for
breaking off variations in the tree; a variation 1s pursued to 1ts limiting
depth only when pursuit of the goal dictates that it should be carried so far
or further.

If the goal is reached. or if we find that it cannot be reached, the variation
is broken off; this may happen before the limiting depth set by the
truncation 1s reached.

In all existing chess programs, however, the variations are pursued to
some limiting depth established so as to correspond to the truncation of the

O White node
& Black node

Boundary of the
truncated tree

! i \
,’ | \
7 i \
AN

Ultimate boundary of
the non-truncated tree

Figure 3 The exact and inexact goals of the game in chess.
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tree (and if some are pursued further they are so only up to some other
pre-established limit). The PUISUII of_all variations to t.heir Iimiting depth 1s
a sure sIgn (without exception!) that in the corresponding algorithm there 1s
no inexact goal for the inexact game. This 1s a striking fact that should be
especially noted: in these programs the goal of the game (mate) does exist In
implicit form (only when mate 1s reached is a vanation broken off short of
the limiting depth). but mate, as an explicit goal, belongs to the exact game
only.

Shannon was inconsistent when in 1949 he proposed to teach a computer
to play chess with the aid of a truncated tree. This was a great step forward.
but— because of his authority—in establishing the goal as that of the exact
game and not completing the second necessary step, he doomed a number
of mathematicians to a truly “aimless™ labor. There was., of course, some
usefulness in these mathematical researches, but only this— they succeeded
in convincing the mathematicians that without an inexact goal it is LM POSSI-
ble to solve an inexact problem.

Next. what is the role of the scoring function? If there 1s no inexact goal,
there is only one use for the scoring function: it evaluates a variation when
it is broken off. If there is an inexact goal, the scoring function is used in
deciding when to break off' a variation and, as we shall see later, 1t 1s used to
develop a deep and narrow tree. It preserves its ordinary basic purpose: to
assess the variation obtained by a minimax procedure. We repeat: 1n the
absence of an intermediate goal. the scoring function serves only to evaluate
a stopped variation.

The goal of the game provides an answer to the question. What are we
aiming for? The scoring function marks the extent of our success 1n reaching
the goal. Shannon’s algorithm contains a scoring funcuion. but no goal.
Therefore, in Shannon’s method we can assess a variation and compare 1t
with other variations: but since we have no goal we cannot rationally break
it off short of its limiting depth.

The goal and the scoring function represent different concepts. For a fully
valuable solution of an inexact task, both should be formalized and used.

Goal and Prognosis (The Optimal Variation)

We obtain an optimal variation as a result of a minimax procedure over a
truncated search tree. We should consider an optimal variation and its value
as a prognosis of the extent to which an inexact goal can be realized.
Neither the optimal variation nor its assessed value are (nor can be) the goal
of a game. The optimal variation is only a momentary forecast of the
attainment of the goal. This forecast is provisional, in that fresh information
may bring changes. Everything depends on the situauon.
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Changes in the optimal variation are primarily connected with the trunca-
tion of the tree. Some of the variations may have reached the limiting depth,
and so were broken off not for logical reasons but under compulsion. The
values of these variations are known, but are they reliable? In the course of
time, we move along the optimal variation and must continue to reassess it
if the limiting depth remains unchanged. It may cease to be optimal. Here 1s
one of the sources of inexactness In the task —the 1nexactness of the
forecasts. The type of the goal remains fixed, but its value and the forecast
are variable.

The value of the optimal variation may be regarded as a forecast for
inverse-feedback purposes. Let us assume that a control system 1s acting
along an optimal variation, to the extent that this variation has been
computed. Then the assessed value of the vanation as realized 1s a real
inverse-feedback signal. When we are in the initial position, however, 1.e..
when the optimal variation has just been established and the control system
has not begun to act, the value of the variation is a forecasted inverse-feed-
back signal.

We repeat: the value of the optimal variation (the forecast) can 1n no way
be equivalent to a goal of the game. The value may be either good or bad.
and an undesirable value cannot be a goal for a control system.

Multi-level Control Systems

A control system may consist of a set of subordinate control systems; this
set may form part of a new set. Fig. 4 displays a three-level control system.

Each level must have its own individual goal, but the goals at the several
levels must be all of the same type; otherwise a multi-level system cannot
function successfully. If at some level the goal differs in kind from the goals
of other levels, the given level will form an alien element in the multi-level
system.

In this context, the notion of “level” can be formalized, and must be. We
define a level in a control system as a subsystem that has its own goal

(though typical of all goals in the system) and in which the search is stopped
when the goal is attained or is known to be unattainable.

COICED

Figure 4 Three-level control system. 1, 2, and 3 are the first, second, and third
control levels, respectively.
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This definition has a decisive influence on the formation of levels, and
points up the highly important role of the goal in the formation of a
multi-level system. |

For the formation of deep and narrow trees, multi-level systems offer

great advantages as compared to one-level control systems. The essential
advantage 1s that when we are forming a search tree and the situation at
some level has been clarified (the local goal has been reached or has been
found unreachable), the local search is stopped, though 1t continues at other
levels. Later we shall note other merits.

Multi-level systems are widely encountered. A factory, for example, may
be considered as a four-level control system: the worker, the section, the
department, the factory. If a section has done all of its assigned work in half
a working day, and there is nothing left to do (the goal 1s attained or is
unattainable), the department head responsible for production will look for
an optimal vanation, excluding the section level from his search tree.

Types of Multi-level Systems

Multi-level systems may differ in the distribution of information-processing
resources among the several levels, that 1s, in the location of the decision-
making elements. The varnious types are as follows (the labelling 1s non-
alphabetic in the order of its presentation, but ultimately makes sense):

(A) Control 1s vested in a single center, with a single information processor.
The game of chess provides a typical example: although we shall see
later that chess may be regarded as a three-level system. we note that
the control of all three levels sull lies in a single center—the mind of
the player.

(B) Each level has its own information processor and its own control
center. The factory example described above will illustrate this type.

(F) Only the lower levels have control centers. and the ensemble of these
centers 1s uncontrolled. This type is the opposite of type (A). It 1s
characteristic of inanimate nature and the vegetable kingdom. We may
say that in this type the lower levels do not form an assembly, but
rather a collection. At the constituent levels, only egoistic interests
exist; there is no overall goal at the level of the collection.

The difference between types (A) and (B) is not only one of principle;
there is also a difference in the required apparatus. The presence of a set of
control centers [type (B)] is typical of a computational complex or an
elec'-ro_ﬂic multi-processor. Thus, when a task can be executed in parallel,
the existence of a set of control centers leads to an increase in speed and
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memory of the information processor. The increase can be very great, and
therein lies the advantage of the type (B) multi-level systems.

If several information processors (human or electronic) solve the same
problem, the task will be accomplished only at the speed and depth
belonging to the most powerful among them. Of course, the remaining
processors do not necessarily waste their labor, since they may contribute to
the elimination of errors, but that is all! If the same processors solve
different component problems making up a whole, then the total problem
will be solved as though by a processor having the sum of the capabilities of
the individual components.

Thus the advantage of the multi-level control system lies not only in the
fact that the search may be cut off at various levels, as soon as the question
of reaching their goals has been settled, but also in the fact that a multi-level
system can serve as a set of processors and thus increase the speed and
depth of the solution.

When a multi-level system has a single control center, as in chess, only the
power of a single information processor is used. It would be difficult to
convert chess into a system with a set of centers, since, as we shall see later,
the levels in chess are not fixed but are in continual change. In other
multi-level systems, however, as in the factory, the control system may use
the power of many processors, since the levels in such a system are fixed and
separate processors can be used for control.

As we have already remarked, the several levels must have homogeneous,
though individual, goals. The use of processors at different levels requires
essentially that the control centers be autonomous. It is necessary to
prescribe the service to be performed by each of the goals, to program it,
and to make it profitable for the corresponding level; the rest can be left to
local autonomy. Only if this is done can the use of a set of information
processors be advantageous), and only then can we obtain the correspond-
ing increase in speed and memory. If a solution achieved at one level is not
used by the immediately superior level, resources will have been expended
wastefully.

We have considered three types of multi-level systems [(A), (B), and (F)]
which are distinguished by the distribution of the control centers among the
several levels. We now classify the type (B) systems with respect to the
priorities (for decision making) of the goals in the various levels.

Each level has its local egoistic goal; but the local goal of the supreme
level, that of the ensemble, appears as a common goal for its subordinates.
Only the local goal of the highest level appears as the common goal of the
whole multi-level system, the goal for the control systems at all levels. If a
decision is made in accordance with local goals, the result will be an optimal
variation from the viewpoint of the local interests.

Making a decision based on local interests does not mean that the overall
goal is necessarily ignored completely, since the total interest may coincide
with the local interests. If the decision is made on the basis of the overall
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interest, the local interests are not necessarily denied.
coincide with the common goal. The main question is: Do
common interests prevail in the decision-making process?

In the programs at each level there is a duality of goals—those of the
local level versus those of the next higher level. There are two types of

priorities, and we may further distinguish systems of type (B) in accordance
with them:

since they may
local interests or

(C) Systems in which the control programs at the various levels give priority
to local interests. The interests of the higher levels are taken into
account only when they are not in conflict with local interests.

(E) Systems in which the control programs give priority to the higher goals.

Local goals are taken into account only when they do not conflict with
higher-level interests.

Advantages of the General Goal

If in a multi-level system the common goal has priority [type (E)], the value
of the optimal variation will be higher than if the programs of the various
levels give priority to local goals [type (C)]. In chess, this assertion can be
supported by practical experience. In general, the position stated is well
known. Krylov’s fable of the Swan, the Crayfish, and the Pike will illustrate
it: Each of the three proposed to pull a boat, but the Swan chose to pull it
into the air, the Crayfish onto the beach, and the Pike under the water! (An
academic cyberneticist recently stated that chess is much more complex than
politics or economics. This is not so. Chess represents a multilevel system
with a single control center and so is less complex than a system with many
control centers; the systems characteristic of politics and economics are of
the latter kind.)

Suppose for simplicity that our system has two levels and is of type C. Let
us denote the components of the first level (of which there are k in number)
by the indices 1,...,i,...,k, and denote the total system by the index S. We
shall show that if we go from a control system of type C to a system of YRS
E, we may guarantee not only to reach at least the value of the optimal
variation under the C regime, but also to increase it. g

We denote the values of the optimal variation or S under the C reglll}eb}f
D’, and under the E regime by D”. Our assertion states that D” >D ; we
write the difference as AD = D” — D’. Under the C regime, the Valm of thﬁ_‘—l
optimal variations of the individual first-level componcn::s will 1:&. say,
di,....d.,....d.,,...,d} and the sum of theseisdi+ - -~ + d)> ek diariee
d,=D’. . -

J"Lc:t us now control the system S by method E. Then we: S8
optimal variation for the whole system with value D” equal to th
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e vilues d;’,._.,d:,f,,.--,d,','»---adf of the individual optimal \:"ariatio’l:ls in
the lower-level components. Let us assume that the values 4] ,;;.,dm are
larger than the corresponding values d1,...,d,,, that the Xalues d,; :,,...,d;’;
are equal to the values d’ s yseresd e and that the values d;, , ,--.- ,’c,ik are ’l'css
than the corresponding d,, , ,---,d;- Then we reduce the values d{’,...,d]/ to
the corresponding values 4y, ..., d’, leave the values d}/, |,..., d]’ unchanged,
and increase the values d’., ,,...,d; to the values d;, ., ,...,d;. Thus we

obtain the forecast for the control system ignoring the local interests as
D =ID’+ AD=d}+ ---+d;+ AD.

Let us consider the case in which the optimal variation has been precisely
defined. We have the value D” for the regime E. Expending the amount
=, — - td; Tor distribution to the components 1,...,4k, we still have
the amount A D as a supplementary amount for distribution.

Thus, it is possible for a system of type E to yield a higher value for the
variations of the components. Nothing needs to be changed in the system
except the control system, as we shall immediately show.

The Method for Connecting the Optimal Variations
of the Components for Types C and E Regimes

We continue to consider a two-level control system S. Let us single out one
of the lower-level components i. Under the regime C, it will assign a value
d] to its optimal variation, and under E, it will assign the value d/’. We shall
suppose that d{=d/’, and first consider the case in which d/> d/’. Natu-
rally, because of the predominance of local egoistic interests, the regime C
disregards the control system E and the values 4/’ connected with it, since
the system i/ would gain less value under E. How do we change the control
programs of the system / and the system S so that we obtain the desired
result?

Since nothing prevents the system / from seeking maximum profit, we
must impose a supplementary limit d/ on the profit it can obtain. In order to
prevent it from securing the surplus benefit d/ — d/’, we must revalue the
costs of the material resources for this component only (and in the present
case, increase them). In chess this amounts to increasing the value attached
to the pieces taking part in the action under the local control system (for
example, in a field). The increase in this price list should be such that in the
new calculation the value 4]’ will be equal to the value 4/ in the old
calculation. With these two changes (limitation of the profit to the value d;
and the change in the price list), the goal of the local egoistic program is no
longer in conflict with the overall goal of the system S. The first change,
limitation of the profit, refers to the system i; the second, the change in the
price list for i, refers to the system S.
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When d] <d!’, the changes in the price list should be in the opposite
direction; if d;" < 0, they must involve a change of sign. With these chankgeq
in the local and overall programs the system S will be able to realize thc;
profit AD under the regime £ without breaking its principle, i.e., without

changing the character of the goals of the egoistic programs at the compo-
nent level.

Computer Programs and Humans

Up to now we have been supposing that the control centers use computers.
But today we know that the human mind is the foundation of the control
center. What are the characteristic differences between humans and com-
puters in control systems?

From the cybernetic viewpoint, the difference is easily formalized. A
computer program, generated by a programmer, is arbitrary (within the
limits set by the resources of the computer). The human cannot be pro-
grammed in such an elementary fashion; his program is formed slowly, by
interaction with the outside world, using a process of self-teaching.

Changing the program of a human is a complex act. All the same, it is
possible to influence it, by changing the reaction of the outside world, by
using inverse feedback, and by setting up a program of self-teaching.

There are many examples: For instance, a lazy recruit is taken into the
army; he remains lazy, but his laziness does not manifest itself, since he is
fully aware of the consequences if he neglects his military duties... A driver
may not object to drinking, but while on the transport base he is a
teetotaler, since the punishment for drinking would be heavy...A young
mother abstains from her passion for theater-going, since her baby is ill and
she has no one with whom it can be left... An engineer believes that his
superior has made a wrong decision, but he avoids a dispute, fearing that he
will lose an attractive job...etc.

A computer program cannot be egoistic, from the viewpoint of the
computer, or at least only to the extent that it takes care of the local
interests of the system that it controls. The program of the human may
include self-interests in conflict with the interests of the total system he
controls, and this fact may have a negative influence on the control system.

In a computer the selection of a decision and its adoption amount to the
same thing. These two actions may be different in the human, who may
select a decision corresponding to the interests of the total system, yet adﬂi?i»
one corresponding to his egoistic interests. Thus, from the cybernelic
viewpoint, an artificial intelligence is preferable to 2 natural one.
problem lies only in the fact that up to now we have no sufficiently powe
artificial intelligence.
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The Expansion of Artificial Intelligence

If the executive organ of a control system is t00 powerful, we may not want
to expand the system (we are thinking of nuclear weapons and nuclear
energy in general) since the greater the number of cquntnes that possess it
the higher the probability of misuse. With respect to mformgtlon processing
organs, however (€.g., artificial intelligence), the problem 1s to accelerate
their expansion. We must keep in mind that the problem of non-prolifera-
tion of nuclear weapons lies solely in the possibility of wrong decisions
(misuse of nuclear weapons) on the part of information processors less
capable and less powerful than the corresponding executors.

If we could establish an artificial intellect with powers equal to those of
today’s powerful executive organs, the danger of thermonuclear wars would
be substantially decreased. (See also [1], where the author has written earlier
on this topic.) In this case a new prospect arises—the expansion of artificial
intelligence as one means of guaranteeing world security. Today measures
are taken to hinder the expansion of powerful computers (embargoes on
their export). Tomorrow, as soon as powerful programs are developed in
important areas of control theory, it will be necessary not only to remove all
restrictions but also to stimulate the expansion of powerful computing
technology throughout the world.

A partial removal of the ban on the export of powerful computers 18
necessary even today, since they are needed for scientific research in the
field of artificial intelligence.

These observations are based on the difference in principle between the
spread of nuclear energy and the spread of artificial intelligence. Both can
serve either peaceful or warlike goals. But however successful the expansion
of nuclear energy for peaceful purposes, it does not decrease the danger that
it wa be qsed for military ends. Contrarily, the more widely artificial
intelligence is applied in peaceful life, the more secure will people feel, since
they will be wiser in the sense that they find better optimal variations.
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Methods of Limiting the Search Tree

Truncation

When the search tree is large it must be truncated. We may truncate near
the root or further away. We can do the latter if the tree is narrow (Fig. 5).
In a wide tree we must truncate near the initial position. i.e.. the limiting
depth of the variations 1s small.

The lmiting depth has a strong influence on the precision of the solution.
What depth do we want? This i1s a difficult question. We can more precisely
forecast our prospects when we can more precisely assess the value of the
variations in a search: the deeper the variation, the more precise the
forecast.

The longer the optimal variation, the more time is needed to reach its end
and the easier it is for us to correct our forecast if we must. For instance,
suppose a chess master has evaluated a variation to a depth of 10 plies.
After the first move in the variation, another ply can be added to the depth
of the variation without changing the limiting depth. The variation ha_s l:.oeen
extended by 10%:; we are still relatively far from the region where vanations
do not exist (have not been computed) and where anything unexpected may
occur. i

If the computer evaluates variations generally to a depth of three plies, a
single ply shortens its length by 33%, and we are m‘{Ch c-loser e e
unknown future; the probability of error in our calculations is far higher
than in the former case.

18
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Depth of the search

Figure 5 A deep and narrow pruned search tree.

The Goal of an Inexact Game

As soon as the search tree is truncated. the exact goal of the game loses all
meaning. It is necessary to introduce an inexact goal 1in the truncated tree;
else the game becomes aimless and cannot be strong. The goal of an inexact
game permits the formation of a deep and narrow tree.

In chess the goal of the inexact game is to win material. A similar goal
may be found in an arbitrary game that models a control system, and in an
arbitrary inexact task. To attempt to solve an inexact problem without
having formulated the goal of the corresponding inexact game is to waste
time. This goal is the basis of a strong algorithm for the solution of an
inexact problem, and the basis for development of a deep and narrow tree.
We shall see later why this is so.

The goal of a game says what our aim 1s; only when we know this can we
identify courses of action that cannot lead to our target, and exclude them

from the tree. Knowing the goal lets us define the lines along which the
search is to occur.

The Scoring Function

The goal lets us direct the search; the scoring function lets us evaluate and

stop a variation. The goal lets us form a search tree; the scering function

lets us gtrike a balance,

<+ The scoring funetion acts wogsther with the goal of an inexact game and is
therefore itself imgmact. As distinct from the goal, which must be unique; the

scoring functien consists of two components: the first component allews us
T T | R
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1o evaluate the resulis obtained within the limits of the truncated tree: the
second forecasts the possibilitv of reaching the goal beyond those limifs.

The first component yields an exact answer (with the Iimited precision
alreadv determined) to the questions concerning the goals that have been
reached; the second (the positional estimate) gives a preliminary answer to
the question of what will happen later, when the boundary of the truncation
has moved further away. Taken together, these two components determine
the value of a concluded vanation.

Breaking Off a Vanation

The relationship between the value of the goal and the value of a vanation
allows us to decide whether to break off the variation before it reaches the
limiting depth. We repeat that this is possible only when the algorithm
contains both the goal of the play and the scoring function. When a part of
the variation 1s cut off before the limit is reached, the tree shrinks (Fg. 5).
As we have noted, all existing chess programs lack the goal of the inexact
game, and therefore there are no variations shorter than the limiting depth.

The Pruning of Branches

We make no use of the well-known branch-and-bound method (the a-£-
cutoff) 1n 1ts customary form. Instead, we apply a simple method intimately
bound up with the presence of an inexact goal for the game. If, during an
ascent along a vanation, the value of the current optimal variation (COV) at
a higher node is not less than the sum of the current value (which was
obtained at the given node during the descent) and the value of the goal (the
target) of the same color as the node, there is no point in continuing along
this branch, since such a branch can never generate a COV with a higher
value.

The Horizon

The horizon method for bounding the search tree was iln;rodu.ch_ by the
author in 1968 [1]. It is applied by humans in their everyday activities.
Suppose a pedestrian is crossing a road—he looks both ngl::f and left f:l'
Automobiles. If an automobile is far away, i.e. beyond his * horizen™ ke
May cross the highway: if it is within 50 meters he waits until it has passed.



18 2 Methods of Limiting the Search Tree

Suppose an economust is taking part in planning a new factory. To
guarantee the labor force, he must determine the numbers and composition
of the population within some given radius from the factory. This is the
economist’s horizon

Suppose an expedition 1s moving on sledges toward the North Pole and
has to reconnoiter the ice conditions. Say the reconnaissance 1s made to a
distance of one kilometer, but not all the way to the ultimate destina-
tion—the North Pole. This one-kilometer limit marks the horizon.

Use of the horizon i1s a rough but indispensable method for limiting the
task.

We must not in any way confuse the horizon with the limiting depth of a
variation (the distance to the cutoff point of the tree). The two concepts are
quite different. Thus. the scouts exploring the ice may decide to go further
after having surveyed the first kilometer, but each successive survey is
Iimited to one kilometer.

The hmiting depth of a variation always exceeds the horizon. Therefore
the truncation of a search tree is always a milder process for limiting the
task than the imposition of a horizon. (This refers only to the case when we
are forming a deep and narrow tree.)

The formal definition of the horizon is as follows: The horizon is a limit
to the amount of time that may be expended in reaching the goal. Therefore
all potential goals which would consume more time in the reaching than is
allowed by the horizon are to be considered as out of sight. The program
solving the problem ignores them.

Two Trees: The Mathematical Model (MM)

The canonical solution of an inexact problem begins with the construction
of a search tree. But if the problem is to be solved with a deep and narrow
tree, the work must begin differently.

First we must find a goal within the limits of the accepted horizon, and
only after the goal is known, and so are both the target we are aiming for
and the direction in which to start the search, can we begin to build the tree.
While constructing the tree within the limits of the horizon, we may find
new goals, and then new directions become known for further formation of
the tree.

Thus, in addition to the search tree, we form a tree of purposeful actions.
The two trees are interrelated and closely interwoven. But we must remem-
ber that everything begins with the formation of the trec of purposeful
actions—this lies at the base of all bases. The search tree can be grews in
directiens indicated by the action tree, although the latter continues te grew
as the search tree grows. This makes for great economy in the use eof
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resources. since the search tree is goal-directed and the action tree is formed
within the limits that are necessary for the growth of the search tree— neither
greater nor less

The acuon tree may be called the mathematical model (MM) of the
problem (task or game). An inexact problem can be solved only within the
limits of a developed mathematical model.

The concept of the search tree 1s common to all types of i1nexact
problems. The action tree 1s specific to each concrete inexact problem. In
chess. the MM is a tree of trajectones consisting of purposeful moves of the
pleces.

The search tree grows as it 1s formed; the MM should be kept bounded
and as small as possible. (1t 1s needed only for directing the growth of the
search tree at any given node.) The smaller the MM, the more quickly we
can inspect 1t and adopt the corresponding decision for controlling the
search. Therefore the portion of the MM that has already played its role and
is no longer needed should be erased from the computer’s memory. A
portion that i1s not needed at a given node of the search tree, but may be
needed later, should also be cut out of the action at the current node but
stored in memory. The hmited active MM aids the formation of the search
tree just as the patch of light thrown by the headlights of an automobile
helps the driver to choose his path.

The Stratification of the System

We have already seen that the stratification of a control system contributes
to the formation of a deep and narrow tree, because the search at any level
is broken off as soon as the local goal is either attained in some way or
found to be unattainable. We have also seen, and must not forget, that
stratification leads to an increase in the resources that can be devoted to the
solution of the problem, whenever there are control centers at the several
levels that can solve the problem in parallel. This in turn contributes to the
deepening of the search tree. _

Another advantage of the multi-level system over the one-level system is
worth noting. The plurality of goals allows us to aveid the inclusion of one
or another level if the corresponding targets (goals) are such that thelr
inclusion in the search would obviously lead to no change in the eptimal
variation (forecast). Moreover, using the value of the goal and the probabil-
ity of attaining it, we can establish a priority list for the inclusion Pf the
given level in the search; this alse contributes te the rational formation of
the search tsee.

Thus the cutting off of various levels, or their ejeé’tior_l t:rom the searc
and the possible increase in resourees that is characternstic ef multi-level .
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svstems contribute to a deeper solution. because of the greater search limit
and the more distant truncation of the tree

Three General Limitation Principles

We have estabhished the methods for limiting the search tree and for
forming a deep and narrow tree (truncating, the goal of the game, scoring of
a vanation, the horizon, the mathematical model. and stratification). But
without general principles governing the application of these methods, g
successful deep and narrow tree cannot be obtained. What are these

principles?

1 The Principle of Expectation. (Better called the principle of non-expecta-
tion., but we will leave the nomenclature unchanged, since the term “expec-
tation” was established in 1968.) As long as there exists a possibility for
improvement, that possibility is included in the MM or in the search tree.

The essence of the theory here is not only that these possible improve-
ments take part in the solution of the problem, but also that possibilities
glving no expectation of improvement are excluded from the MM and from
the search tree. This is an extremely important step for the limitation of the
problem.

This is how humans act. For example, a graduate of a music school who
has become deaf does not persist in taking the entrance examinations for a
music conservatory, even though he had been successful until he lost his
hearing. A chess player does not persist in contemplating the capture of a
Pawn (for lack, say, of any other goal) i1f his Rook perishes in the attempt to
reach the Pawn.

2 The Principle of Maximum Gain. 4 new possibility (in the MM or in the
search tree) is to be considered only if it offers an expecration of gaining more
than the possibilities already considered.

For instance, a chess master may be able to win a Knight for a Pawn;
now he contemplates another possibility, which will result in winning a
Pawn. The new opportunity is disregarded, but another is found— an attack
en his opponent’s King. The principle of maximum gain says that this latter
potential must certainly be kept under consideration.

Again, our graduate must decide where he should apply for entrance
~—University A or University B. He prefers A, but the competition for
©ntranec 1o B is substantially less. He must ask himself whether he should
‘scnd.his eredentials to A. But if the competition at both were the sage, the.
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This principle. too. leads to a reduction in the number of possibilities
under consideration

2 The Principle of Timeliness. Only those possibilities should be considered in
which the actors have rime to take part in the game.

There 1s no point 1n involving a pirece in the control of some field on the
chess board if that piece has time only to begin to control the field before an
enemy piece shps in.

The commander of an anti-aircraft defense zone will not dispatch a plane
on an interceptor mission if it would 1in any case be too late. Instead he
sends an interceptor from an airfield that allows the pilot time to attack the
target.

The principle of timeliness (or should it be untimeliness?) is also a
powerful method for eliminating possibilities that are senseless or deficient
in sense.

These three principles are interrelated; that is, in each a possibility is
excluded if there is no hope of its timely participation in the game or 1if it
obviously offers no hope of greater success in reaching the goal.

Improving the Results of a Search

During the development of a MM, a question inevitably arises: Is a given
concrete extension worthwhile? Is there hope of greater gain? Of a better
result of the search? In other words, will the extension of the MM yield a
new optimal variation with a higher value? The decision is to be made by
the use of our three principles of expectation, maximum gain. and timeli-
ness. The questions cannot be answered in general, but only in concrete
situations for specific problems; nevertheless some general recommenda-
tions may be made.

Mathematicians investigate the search tree variation by varniation. using a
minimax procedure. Then, having found a variation and stowed 1t in the
computer memory, they find another. The variations are compared via the
scoring function; the one with the highest value is retained in memeory, and
the rest are discarded. The process is then repeated. It is not difficult to see
that only two variations are present simultaneously in the computer mem-
ory, and one of these is chosen as the current optismal variation (COV).

Since the conventional search for the optimal variation carries through to
the solution of the problem by including all variations in the truncated tree,
this method cannot be used for a solution based on a decp and narrow tree.
Such a tree can be formed only by restricting the MM, not allowing it te
grow, which we do by applying our three principles. We cannot apply them
if we keep only two variations in view at the same time.
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The essence of the matter is that when we are forming d subtrze belowla
given node and must decide whether {0 extend the MM, we can 00 50 Only

after investigating the variations . the subtree. Only by collecting concrete
information about these varations (including the COV) can we answer the

o COV with higher value?

question: Can we expect {0 find a ne . |
We must remember the subtree, qince we must collect information about

the variations in it. Here is one of the distinctions between the method of
solution by forming a deep and narfow search tree and the method that
includes all possibilities in the search tree.

It is well known that a chess master does not remember fwo variations
only but, rather, remembers the search tree. He keeps in mind the whole tree
as finally formed, which is the basis for his decision.

In summary, we have considered methods for restricting the search tree.
These may be divided into two types: those with respect to time and those
with respect to material (the goal of the game). The truncation of the tree
occurs with respect to time, the horizon sets a time limit for reaching the
goal, the principle of timeliness invokes time s its essence. The principle of
m;mmum gain, the improvement of the results of the search, the breaking
off of a variation, and the scoring function are related to gain of material

(the goal of the game). We may add that a positional estimate, although

perhaps not immediately connected with material, nevertheless

it, as we shall see later. depends on



CHAPTER 3

The Search for a Solution and
Historical Experience

When we meet an onginal situation and wish to use a decision-making
program, we apply some of our historical experience indirectly, in the
developrment of our algorithm and in the structure of the program. We form
a deep and narrow tree of suitable size, expending substantial resources in
time and memory. Usually, however, we also have direct historical experi-
ence, accurnulated over the centuries and specifically related to the concrete
problem that is to be solved. If we apply this experience, we can save our
resources and obtain a faster and deeper solution. A specialist solving a
problem always uses his knowledge and experience if the situation permits.

The Search for a Solution by Association

A human, who while solving an inexact problem finds that the situation
reminds him of one that people have met before, applies historical experi-
€nce to the solution.

What does “reminding” him of a situation mean? His current situation is
obviously not exactly the same as the one that he or others have met before
—the resemblance is only partial. But it provides a key to a simpler m(-zt!lod
for finding the solution than the one he would have used in the or_lgma]
Situation, namely, he has a ready-made method for developing a portion of
the MM and, correspondingly, a portion of the search tree. In chess, we see
that we must form just that portion of the MM in which the same pieces
that we are now concerned with take part. In the past, these pieces have

—
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we must now test whether the vanations
been successful. If they have been. the
is ended: if they have not. the
biree that was to be formed are

n certain ways. and
before have
in the given subtree
M and of the su

been moved 1
that have been tried
search for a decision
remaining portions of the M

not needed. the line it should follow
- suggests to the program
The associative method sugg ds. this method defines the priorities for

o o -
variations; 1tn other wo : :
¢ control. Since this amounts to the formation of

tial formation of the search tree, 1t economizes

me and memory can be applied to the
he solution in the original situation: the

in searchin
the game at a given level of
a part of the MM and a par _
on resources. The savings in U
continuation of the search for t
solutions that are found will be deeper.

The Handbook Method of Searching

Here everything is simple: If a situation arises that is identical to one known
in history, the solution has been found, and no further search 1s needed.
Since the situation has already been met, its value i1s known; consequently
the value of the variation is also known, and the variation may be broken
off. In this case, we obtain the value of the vanation, from the moment
when the situations coincide, without further development of the MM and
the search tree. This 1s a highly economical method.

The trick here is to try to find an advantageous coincidence of situations.
This leads to a directed development of the MM and the search tree, but
once the coincidence is reached and the value is known, the variation is
ended.

S0, we have considered three types of search.

In the first type, in an original situation, when history is of no help, we
must construct the MM and the corresponding subtree by the standard
methods.

In the second type, when the situation has been partially encountered in
:1}111?:1 I;i?:;r:f: II(fn:)h‘r the direction of further developmel}t of part of the MM
il i 1;01; mef- e115 succes:ful alnd leads to an essential coincidence of the
MM is urinecessar_y ?’I‘hazr :)_c ernal resemblance, further. development c.>f the
partial formation ot: the Ml\li 3 S;“ng . iy a5, et rchyines|a

Finally, in the thir onel the corresponding subtrec.

Y, 11 the third type, the given situation coincides completely with
one found in history (for this method we ma d i
scarch). The value of the variation is th Yy need to ma_ke a directed
expenditure of resources. This is thcllsl : glt: 2ready knews witheut further

A, Nuiant: saecialist in. bl andbook _method.

1 given area applies all three methods to the
#earch for a solution when he is dealing with an ine Py
-- xact problem in his own
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CHAPTER 4

An Example
Inexact Proble

of an

We have set forth the general postulates on which the solution of an inexact
problem should be based. We shall illustrate their application by a concrete
example—the development of a chess-playing program for an electronic
computer. Chess, as we have already noted, is a typical inexact game—a
model of a multi-level control system with a single information processor.

When the algorithm for the chess program was developed, the task of
modelling the thought processes of the chess master was posed. We assumed
that mankind, in the many centuries of chess history, had adapted rationally
to this inexact task, and therefore decided. without worrying the question, to
translate human experience for the machine.

A master uses two methods of play: (1) an algorithm for finding a
solutlor} in an f)riginal situation (position) and (2) an algorithm for finding
Mmoves 1n positions that have been met, in part or in whole, earlier in the
::(XPerlence of chess masters (and here he himself uses his own specialized
bg‘talrr lzigtzotgs ﬂ;‘; i‘}:;e zigh;fs)- Tll'lle computer should be provided with
algorithm but also a k’nowled uStf t crefore- oy Sty ¥nly a, scarch
games. ge of the openings, middle games, and end-

Al .

Simp?elor:aﬁif_h%sﬁ-pl?]YIng Programs have a library of the openings; this is a
endg €y have been given no such libraries of the middle and

ames. We shall see later why pro e
grams based on the inclusion of all

possible moves in the truncat
i ed tree are organicall . e
to make use of middle and endgame librariEs. i geerivoll of the ajility
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A. The Search for a Move in an Original Situation

The Truncated Search Tree

Chess is a complex game, though soluble by enumeration of its moves. In
theory this enumeration is finite. and therefore chess is a finite game. In
practice. however, the search tree for the moves is so immeasurably large
that no chess player can manage 1t without truncation: when the tree is
truncated, chess becomes. as we have seen, an inexact game.

We have already noted that the tree widens extremely rapidly if we solve
the problem by including all moves in it (see Fig. 1) and our task becomes
hopeless. If. on the other hand. we solve the problem by using a deep and
narrow tree. as a chess player does, there is hope for a successful solution of
the problem of searching for a move.

The depth of the truncation (the limiting depth of a variation) is the first
constraint on the problem. By changing the limiting depth, the chess player
controls the number of moves included in the search tree. With a deep
search tree, a change in the limiting depth is a delicate method for
restricting the search.

We took the formation of a deep and narrow tree as a basic requirement
in the development of our program. Our algorithm as proposed was to be
like that of a chess master; the tree as formed must therefore be deep and
narrow, and contain only a small number of moves.

Are we ready, with this, to begin work?

The Goal of the Inexact Game in Chess

According to the general theory developed above, the work must begin with
the establishment of the goal of the inexact game, and we shall act
accordingly.

Every chess master knows his aim when he sits down at the board—to
win material. The amateur is horrified by this assertion—and his actions are
in vain! All other factors, including the positional, which the master takes
into account in his reasonings (or, more exactly, in applying a mimmax
procedure to the truncated search tree of moves), serve only this prosaic
aim.

This goal is a model which appears in quite distinct specific forms, but as
a type it is invariant. .

In establishing the goal of the inexact game, we simultaneously obtain our
first criterion, allowing us, at the beginning of the development of the sear o
_tree, to define senseless moves. When we know nething abeut the position

o
e -



28 4 An Example of the Solution of an Inexact Problem (Chess,

and are only begmning to study 1l. we exclude from the search all moves
which do not lead to a possible gain 1n material. to an attack by thej pieces
of one color on the pieces of the opposite color. Instead of l.l.-SlI'lg the
primitive procedure of including all moves in the search, evervthing here
begins by defining moves that make no sense. This must be done, there
being no reasonable goal for the game as yet. .

We have said earlier that chess. as played by a master. 1s a model for a
three-level control system. For example, the first level consisys of an
attacking piece with its attack trajectory against a piece of opposu_e color;
this level has its own specific goal —the annihilation of the target piece. the
winning of material at a price no higher than the value of the target. The
second level refers to the field of action. for instance the ensemble of pieces
taking part by hindering or supporting the action of the attacking piece; this
level also has, in a very different form, the goal of winning matenial. And
finally the third level, the mathematical model of the position, represents an
ensemble of fields. For the third level there are characteristically many
elementary goals, since in the MM various pieces of different colors are on
the attack. but the attainment of all these goals should lead to a gain 1n
material.

We note that in chess the goal of the inexact game 1s of the same type as
the goal of the exact game. We must not forget that in chess the King has an
infinitely large value (of course a chess program cannot conveniently attach
an infinite value, and so customarily attaches the value 200 to the King). But
whether the value is taken to be infinite or 200, the value of the King is a

material value, so that the goals of the exact and inexact games are of the
same type.

The Scoring Function: Two Components

We have already noted that the goal of a game tells us what we are aiming
at, and the scoring function is used to evaluate both the results already
obtained and those that may be obtained.
. What sort of scoring function is required in chess? We already know that
1t must have two components: The first allows us to judge how successfully
we may attain the goal of the inexact game (a gain in material) within the
limits of the minimax procedure on the truncated search tree. In simple
terr.ns,. we add up the values of the pieces won by the two sides, in each
vanation within these limits; this component is clear and simple. The second
component 1s more complex; it has to forecast the gain of material in the
as-yet-unknown portion of the trec that lies beyond the cut-line. This
amounts {0 a positional estimate. |

The scoring functien, according to Shannon, appears to consist of many
parts, but in reality it consists of only two. The first deals with material; the .

P o
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sfftQﬂd deals with position and is pieced together from very distinct posi-
rional factors. the value of each being derived by some kind of averaging
pI'OCﬁSS.

Such a method of deriving a positional estimate in chess is wrong. A
posiliona] factor that yields a positive result in one situation may yield a
negative result in another. For instance, are doubled pawns good or bad?
The answer depends on the situation. Sometimes doubled pawns are a
suitable target for an attack, since one of them cannot support the other.
But sometimes doubled pawns contribute to the control of squares through
which important communication lines (trajectories of pieces) pass, and then
the doubling is extremely useful. The same thing may be said of other
factors entering into the positional component of Shannon’s prototypical
scoring function.

In the chess program under consideration, a quite different decision was
made about the positional component of the scoring function, basing it on
the control of those squares making up the trajectories that enter the MM.
The side controlhing the larger number of squares has a positional pre-
ponderance. Later we shall examine the question of the positional estimate
in more detaill. We note here, however, that the control of a square 1s
determined by the result of exchanges that take place on it, 1.e., by material
relationships, and the positional estimate is needed only to forecast the
winning of that materal.

Breaking Off a Variation and Suspension of Play

The goal of the inexact game (material) lets a variation be terminated before
it has reached the limiting length. Let us denote the value of the goal by m,,
and of the current estimate as we pass along the variation by m_. If we
consider a single field, we continue the variation 1if |m | > | .|; otherwise
we break 1t off. .

This inequality expresses the principles of expectation and maximum
gain: as long as there is hope of reaching the goal, as long as less than the
value of the goal is lost or won, the variation continues. When. however, the
numerical value of the lost or gained material equals or exceeds the value of
the goal, play is ended and the variation is broken off. .

The essence of the principle is this, that in chess, as in other.tas.ks,
material may be sacrificed only if there is an expectation of winning

material of greater value or of avoiding the loss of matenial having a value

greater than the material sacrificed. When material is sacrificed, both the
expressed.

principle of maximum gain and the principle of expectation are Soases
A variation may be broken off for other reasons, also cor_mected “;1“ the

possibility of reaching the goal or of being unable to reach it, €.g., Wi eln tot';

target or the attacking piece vanishes—and here we invoke the principies

expectation and timehiness.
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In general. however. a variation 1s ended when play is suspended at the
highest level —the ensemble of all Otht-ar lev_els. In the lower Ieve;ls plav may
be broken off while the variation is stilf being continued. Play is suspended
at these levels when the corresponding goal 1s reached or i1s found to be
unreachable. or when there 1s not enough time to reach the scene of battle.
We shall return to this topic after formalizing the multi-level system for
chess. In the suspension of play and stopping of variations. we see the
difference between the algorithm under discussion and other chess-playing
algorithms. These two factors contribute to a decrease 1in the number of
moves in the search tree.

The pruning of branches is also founded on the principles of expectation
and maximum gain. If the sum of the goals at a node is less than the
difference between the current value and that of the current optimal
variation, there is no hope of increasing the latter by continuing from the
given node, and a further search below the node must be stopped. We must
remember that the sum of the goals at a node may change its value when an
attack field is brought into the play; we must take this into account when
pruning a branch.

It follows from what we have said above that in our algorithm the
pruning of branches has nothing whatever to do with the branch-and-bound
procedure; it is connected only with the goal of the play—when 1t 1s
impossible to improve the results of pursuing the goal, nothing is to be
gained by constructing the branch.

The Horizon

There may exist an uncalculable set of attacks by a piece of one color on
opposing pieces. The goal of an inexact game gives a meaning to the action
of pieces but cannot by itself limit their action. We must introduce a
limiting method based on the already mentioned horizon principle. In our
Cl.-less program we introduce a limit on the amount of time available for
pieces 1o move along their attack trajectories. The horizon method expresses
the principle of timeliness: an attack that cannot be completed within the
horizon is excluded from consideration.

We know that in chess time is measured in half-moves, or plies. If we
adopt a horizon H, equal t0 an even number of plies, the limiting number
of moves by the attacking piece along its attack trajectory will be H, /2
(this do?s not apply to a denial trajectory).
leale;et(I:I:‘:ng ho‘il;ZOIl H . 1s a harsh bound, since a change in the horizon
there are mal';arp Change in the number of moves in the search tree. When
the horizon ng Ple;:fs on the board, the play takes on an open character and
few pieces anz‘lma y (.:OnSIS,tS of four phes._ In the endgame, when there are
from the L especially if long-range pieces are even partially n?m9ved

o3rd, the number of attacks that can be mounted within a
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horizon H; = 4 1s sharpl_*-y red_uced and the horizon must be extended in
order to find good solutions in the search for moves. In particular, the
horizon In pawn endings 1s large. extending perhaps to 10 plies.

Chess as a Three-Level System

There can be no doubt that a strong chess player begins all of his
calculations with the attack, within the horizon. There can also be no doubt
that a strong plaver sees, not the whole board and all the pieces, but only
those which appear 1n his calculations and move through certain squares on
the board. The ensemble of these pieces and their trajectories make up the
mathematical model (MM), the tree of trajectories that underlies the search
tree of moves. So there must exist two levels: pieces with their trajectories,
and the MM.

But there 1s an intermediate level which makes chess a three-level system.
Everything begins at the first level—pieces and their trajectories, lying
within the limits of the horizon H, . If a piece has its individual goal, it is an
attacking piece. If a piece in its trajectory, within the horizon, takes part in
play connected only with the struggle of another piece to attain its individ-
ual goal, then 1t 1s not an attacking piece. Pieces whose rrajectories are
determined by the horizon are called stem pieces.

An attacking piece that i1s also a stem piece attempts to attain a well-
defined goal. A stem piece that is not an attacking piece tries only to change
the result of the assault on an attacking piece’s goal.

Stem pieces do not act alone. Each has a crew of pieces of its own color
who support it; there is also a hostile crew of pieces of the opposite color
who hinder it. The ensemble of stem pieces and the two sets of commands
of pieces of both colors form a field of play—and this 1s the second
(intermediate) level of the control system. Since the stem pieces are of two
types (attacking and attack-dependent), the fields must also be of the same
two types.

Thus, the second level may consist of an attack field or dependent fields.
The latter have been called control, blockade, deblockade. retreat (when the
target disappears), and positional (when the sign of the exchange 1s alte;:ed
in a controlled field). The second level (field) is always formed by one side
to improve the results of a search (improve the value of the COV). If it is an
attack field, new targets may appear (in this way, a second level of attack
type may influence the value of the COV).

The First Level — A Piece with a Trajectory

The first level may be of one of two types. A piece and its trajectory may
belong to a stem lying at the base of a (second level) field of play; the
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limiting length of the trajectory is constrained by the hornizon H,. A first
level of this type is formed only when the second level (field) being formed
can change the value of the COV 1n a favorable direction.

The situation is more complex for first level entitiecs of the second
type— pieces with non-stem trajectories, lL.e., those 1n th_e supporting or
opposing crews, the so-called denial pieces acting in a demal trajectory. In
keeping with the principle of timeliness. the horizon H, for such pieces is
not fixed. but variable. The denial piece is in the final analysis connected
with the battle for an a- or b-square of the stem trajectories of the field {on
an g-square, a piece halts 1n 1ts trajectory; 1t moves over a b~square without
stopping). The larger the number of this a-square, 1.e., the further it lies
from the initial a,-square of the stem trajectory, the more ume a denial
picce has for its arrival and participation in the battle, and the larger the
value of the variable horizon H_. Interestingly enough. H_ for a control
denial trajectory may exceed /,; by a half-move: this may happen in
connection with the control of the a,-square ( the last) of a stem trajectory,
where the controlling side has the move and the stem trajectory is of
limiting length. The complexity in the formauon of demal trajectories arises
from the fact that the time limit H_ is concerned not only with the
formation of the first denial trajectory, which 1s immediately connected with
an a-square of a stem trajectory, but also with all subsequent demal
trajectories, from the first to the higher ones. A high-order denial is
connected with an a-square of a denial trajectory of order less by one. and
in the final analysis, with a given g-square in a stem trajectory.

The principal peculiarity in the formation of a denial trajectory. as
opposed to a stem trajectory, is that if such trajectories can exist within the
limits H,, they are formed unreservedly. The only principle to be observed
1S that of tumeliness.

We shall show later that the inclusion and exclusion of already formed
denial trajectories in the MM occur in accordance with the principle of
timeliness.

In forming stem trajectories, both the principle of timeliness (#/, ) and the
principle of maximum gain (improvement of the value of the COV) apply:
in the formation of denial trajectories, on the other hand. only the principle
of timeliness applies. This is understandable: the construction of a field can
proceed as long as we have no information as to its unconditional useless-
ness; thus the denial trajectories must be formed. |

'_The principle of expectation applies to both stem and denial trajectores
—1t is always applied.

We must remember that not all pieces with their trajectories form
first-level control systems, but stem pieces with their attack trajectores
certainly do, since they have their individual goals, as control systems at all
levels must.

When a controlling piece acts in a denial trajectory. the situation is more
complex. A denial trajectory can exist only in a field of play—this means it
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already belongs to a second-level control system. But at the same time, the
controlling piece has its own target: it lies in ambush. to strike its ‘own
victim. Once such a goal exisis, of course. a piece acting in a control
trajectory may be moved to the first control System level.

A piece acting_ in a retreat wrajectory should be taken as belonging wo the
first level. since 1t has 1ts individual goal-—to rescue itself.

A blockading or deblockading piece. on the other hand, cannot belong to
the first level. since it has no individual goal. In a blockade (if we are not
considering the blockade of a Pawn), the piece is pPrepared to sacrifice itself,
i.e.. it acts as one with 1ts colleagues (of the same color). Such a piece enters
only into the second-level control systems. A deblockading piece acts out of
the same general interests and belongs to a second-level system.

The Second Level —A Field of Play

An ensemble of stem and denial pieces forms a second-level system, a field of
play. There may exist attack fields. which include concrete goals (targets) in
the play, and dependent fields that do not have their own targets. Both types
are formed only when 1t 1s expected that their inclusion in the play will lead
to an increase in the value of the COV.

Fields are formed, in keeping with the three fundamental principles, when
there 1s hope that a stem piece will succeed in making a gain. 1.e.. when the
possibility of increasing the value of the COV is not excluded.

The variable horizon H_ defines a strongly determined structure of the
field: the field includes those denial pieces that can take part in the play
within the time Iimit H_. All denial trajectories satisfying this limit must
unconditionally be included in the field. (The possibility of obtaining all
denial trajectories has been verified by experimental studies of chess prob-
lems.) Figure 6 displays three fields of play: an attack field Z, and two
connected fields, Z, (control) and Z, (retreat).

The Third Level — The Ensemble of All Fields (MM)

We have already discussed the conditions for forming an ensemble of fields.
The mathematical model includes only the fields in which there is hope for
increasing the value of the COV. Thus the volume of the MM depends in
Particular on the first move in the initial position; given a successful choice
of this move, further inclusion of fields may be minimized or eliminated
entirely, leading to a significant saving of resources. For this purpose we
need a system of priorities.

With this preliminary introduction to the third-level control system-— the
game of chess itself—we now proceed to a careful analysis.
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Figure 6 Fields of play. 0, 1, and 2 are, respectively the stem trajectory, first denial
trajectory, and second denial trajectory. The symbol “+” denotes color of the stem
piece of the field: the symbol “—"" denotes the color opposing the stem piece: and
0.1 denote the pieces of first denial in the zero field belonging to the attack.

The Search Tree and the Minimax Procedure

The method for constructing a search tree is well known. A variation n the
search is continued from its initial position to its end (the rule for ending it
is irrelevant here—whether i1t be logical or by limiting length). Then the
ascent of the variation begins. At the first node up from the bottom. we
must test the possibility of forming new branches of the tree. If none exists
we continue to chimb: 1f there 1s a possibility. we formm a new branch and go
down the tree to the end of the new variation., and so on.

Constructing the tree 1s not enough; we must also score it. i.e.. find the
optimal variation. This 1s done by applying a minimax procedure. The
scoring function is applied at the end of every branch, and in the ascent up
the vanation, the resulting value is attached to the nearest higher node.
When at a given node the values of all variations joining the tree below it
have been collected. the player having the move at the next lower node (be
has lh-e right to choose the variation according to its value) chooses the one
tha? gives him maximum value, which is minimal for his opponent. The
vartation with this value 1s the COV at the given node.

lp the initial position, the highest node on the tree, the COV becomes the
optimal vanation, which determines the choice of the first move. (1f the
values of several different moves are equal. the program, like a human
player. throws a die.) The process we have described constitutes the mini-
max procedure on a search tree. When the tree is very large and when the
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memory available for storing it is too small, the minimax procedure holds in
memory only two variations attached to the given node. The values of these
two are: compared; the one with least value is erased, and the descent along
a new variation is begun. After the end has been reached and the return
climb has reached the given node, the value of the new variation is attached
and compared with the one residing in memory. one or the other is selected,
and soO on.

The comparison of two values appears to be the method used by all
programs actually playing. We note that comparison is necessary when the
search tree is very large, but leads to feeble results in the search for a move.
A human uses a different method: he forms a small tree and keeps all of 1t
in mind. This allows him to find a good move 1n the initial position.

When we can keep in memory the subordinate search tree lying below the
node at which we are constructing the COV, we can form vanations
attached to the given node and having favorable values. When the player
trying to improve his COV expects to find one or more variations having a
higher value than that of the COV, he forms a supplementary branch of the
subtree. The final determination of the COV and the lifting of its value to
the successor node is completed only when there 1s no further expectation of
changing its value by the minimax procedure.

Next we consider the technical construction of the mathematical model.

The Technique for Defining Trajectories

The shortest path for the movement of a piece from one square to another 1s
determined with the aid of a conceptual board of 15X 15 squares. It 1s
assumed that any other path i1s no more than the concatenation of two
shorlest paths. For long-range pieces (Queen, Roock, Bishop) it is also
assumed that the shortest path (trajectory) consists of two moves (three
a-squares). These assumptions greatly simplify the task of determining
trajectories and probably do not significantly worsen the choice of a move.

Chess is noted for the wide variety of ways in which the several pieces
move. With the help of the 15 x 15 board, however. all the various trajecto-
res can be obtained: one might suggest that chess masters use such a
conceptual board 1in finding trajectories.

The ability 1o construct a trajectory allows us to construct the first-level
control system— pieces moving in their trajectories—with relative ease.

We must also note that when the displacement of a piece from one square
Lo another 1s defined. a unique trajectory exists only when the interval
beiW_eCH the squares can be covered in a single move. For displacements
requinng more than one move, there exists a sheaf of trajectories, since as a
rule a piece may move from one square to another in a vanety of ways.

Thus. essenually, when we speak of determining a trajectory, we mean
determining a corresponding sheaf.
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The Technique for Forming Fields

The construction of the second level of play in ches_s 1s a subtle and d-elicatte
affair. There are two types of fields: (1) when. for instance, afstc;m piece 1n
an ag-square tries (o0 move to a final af_—Squal'z a;Onghone of the I:?SSlble
trajectories in the sheaf of stem trajectones, an (2) when a P;ece attempts
to abandon an gg-square on which it stands and move 1n a single step o one
of the nearest a,-squares. In the first case the final square is unique; in the
second. there is a set of final squares. Fields of attack, control, and blockade
belong to the first type, fields of retreat and deblockade belong to the
second.

Retreat and deblockade fields have an elementary structure. In the
general case. attack, control, and blockade fields have a rather complex
structure. i

As we noted earlier, the principle of umeliness underlies the construction
of fields of type (1). We shall provisionally assume that among the pieces of
type (+) [these are pieces of the same color as the stem piece; those of
opposite color are designated by (—)]. only the stem piece itself can move.
Other ( +) picces may move only to capture ( — ) pieces in a single move; in
other words, they take part in the play only if they are already in ambush.
Pieces of type ( —) are included in the field and are active only if they have
time to take part in the play; the determination i1s formalized with the aid of
the variable honzon /1.

The more a-squares there are 1n a stem trajectory, 1.€., the more half-moves
a stem piece must make to reach a given a-square in a stem trajectory, the
larger the horizon H,_ for that square and the greater the number of
half-moves available to (—) pieces connected to the fight for it. The
machinery for determining H, and apportioning the corresponding number
of half-moves among the denial trajectories of (—) picces was developed by
B. M. Sulman.

Stilman also suggested a connection between the construction of fields
and the construction of the search tree. This is extremely useful, since under
thes‘_f circurmnstances a field 1s gencrally constructed not completely but only
partially. only as far as necessary. If the search of a partially formed field
must be cut off. so must the further construction of the field.

The Pfot?lem of defining denial trajectories for the (— ) pieces 1s compleX.
Those within the horizon . must be defined completely., without excepuon,

smc-e untl? the results of the search are known, we cannot say which of the
denial trajectories are useless. -

They are determined b

Y a wo-part method. For instance. if during the
pPlay in a field some pie - o : -

some oth . € mOYeS lo a new a-square, we test to see whether
€r piece (or preces) can attack the moving pilece, within the time
honzon H,. If the answer is yes, we determine the denial trajectory. Thas
method does not generate all denial trajectones, since in counting the pieces

that - ; -
- har‘e tc? act in demal trajectories as yel undefined. a possible trajectory
ght leave from the g -square and be overlooked.
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To define all the omitted denial trajectories, a second method was
introduced. Its essence is a new procedure for ascending the variauon (as
along a track already traversed) in order to find missing denial trajectories
that may have some a-square of the search at the given node as their final
square. Then the pieces leaving the initial squares of the possible denial
trajectorics will return to these squares and, since the horizon H,_ has
already been determined. the problem of determining all denial trajectories
can be solved. As soOn as a new denial trajectory is included in the play, the
machinery for the pseudo-search is invoked; we return along the variauon
to the node at which the new denial trajectory appeared, and the search
continues.

In the return along the variation (in the pseudo-search procedure), we
must not erase the subtree rooted at the given node where the demal
trajectory was included; only some branches are deleted. (See Fig. 7).

There is a possibility of deliverance from this expensive operation of
erasing a subtree, if contrary to the usual procedure for forming a tree, we
admit repeated moves at a node. We shall discuss this later. Thus, when a
new denial trajectory appears, we start the pseudo-search, backtrack along
the variation, erase a branch of the subtree (for which the value of the
variation has not been determined), and consequently use up a certain
amount of our resources.

As can be seen from Fig. 7, we erase only one unevaluated branch (»k 1n
the figure); all the remaining varnatons have been given their final values
and are to be conserved. The denial trajectories are unconditionally in-
cluded in the play, but, as we shall see later, with assigned priorities. We
may add that in the earlier stages of our program development. the problem
of erasing branches in the pseudo-search was incorrectly solved—the entire

Figure 7 The essence of the pseudo-search procedure: D - -the subtree already
fOrfned; k —the node at which a denial trajeclory has been found: n — the node at
which the branch from 2 1o A must be erased (the dashed line); #»12- the node at
which the search 1s supporied, ie, the node for inclusion of the derual trajectory.
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d: this was necessary because the repetition of
en introduced into the program.

In 1960, in a lecture at Humboldt University in Berhél, fthe aUth.Or
remarked intuitively that a chess mz_lster proc_eeds by a rr;etho of sequential
approximation. The pseudo-sear.ch is an obvious examp e;\. - echn )

Having become acquainted with the general features of the techmque for

forming fields. we may now go further.

subtree below m was €rasc
moves at a node had not be

The Positional Component of the Scoring Funcuon

The positional estimate should not be a general-purpose aﬁ‘air; it sh0uld be
specific to each given situation. A general-purpose estimate might, f(.)r
instance, be applicable to 67% of the positions encountered, and wrong in
33%: the current position might fall in the latter group. We must give
Capablanca due recognition in this respect: in a polemic with Znosko-
Borovsky. author of The Theory of the Middle Game in Chess, Capablanca
pointed out that the basis for a positional estimate is the control of fields.
He also condemned such abstract concepts as ““space”™ and “time”.

Today. when the machinery for formalizing the methods of play used by
masters has been basically created. we can formalize the notion of “control
of fields™.

Control of fields does not mean control of the whole board. but control of
only those fields that may be used in the impending play. Therefore one
must strive for control of the field consisting of those trajectories in which
the pieces can move. but have not moved vet.

At the node in the search tree where we find ourselves at a given moment.
we must unravel all those sheaves of trajectories which have not yet been
developed and determine which player has control of the majority of the
fields consisting of the trajectories not yet used in the play. This allows us to
forecast the result of the play—the result of a search which, 1in particular,
had to be renounced at the terminal nodes of the vamnations for lack of
resources.
un?:;e glfay ma;f:rlii;tlf t(l':?]lisa a}fagzd poilitional sacriﬁc:f: shpuld not exceﬁed two
Therefore. if one player at a nodeméhe n?ore pr(?ClSC- In an experiment).
more than tWo units, it awiabn W er‘;d yarlallor? s brokep off has lost
change anything (the‘variatiin mgpeafr that the posmona]_ estimate cannot
wrong, since the influence of the > 9_ e negative -va]ue). Thl.s 5

Posiuional value on the 4 ;

We shall show later thar the ositional : , PRMEga X remapnsg
question of priorities for mcludinp lielond esu‘male_allows Ps o Solveaths
node in the tree. Thus the posiliifalceei an‘d. ndd.'\_- tn the search at a given
sheaf of trajectories, should be produc Sdlr.ndle' Sitha d?velopment of the
We may assert that the squares under ‘e at every node in the scarch tree.
mancuverability of the picces Bellt:rLOl:lerl dcnm-? .[he usable mobility and

) hancuverability of pieces often also

determines the Postuonal superiority.
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It was assumed that the control of squares involves only those pieces that
lie at a distance of one move from the controlled square (and a blockading
piece must lie on the square itself). The sign of the exchange of the pieces (at
a square) that take part in the positional estimate also defines the control of
the square as belonging to the side for whom the exchange 1s favorable.

To sum up: The positional estimate 1s computed at every node of the
search tree. The procedure is substantially more complex than the procedure
for computing a material score. All sheaves of trajectories included in the
play but not yet used (in whole or in part) are taken into account in
computing the positional value. We must emphasize a difference between
material and positional estimates. A material estimate at a given node is
invariant: it does not depend on how we arrived at this node, whether from
above or from below. A positional estimate at a given node may vary, since
additional fields may be included in either descent or ascent. When a new
field, a new sheaf of trajectornies, 1s added, the positional estimate may
change. Thus it varies much i1n the same way as the sum of the values of the
goals (targets).

Nevertheless, we note that the construction of the positional estimate 1s
much simpler than that of fields, since here the horizon H_ is either 1 or O
for both Black and White. The positional estimate at a given square 1n a
trajectory 1s computed only up to, but excluding, the first square at which 1t

ceases to be positive, and this determines the movement of a piece along 1ts
trajectory.

This all happens very logically: since the variation is carried no further,
we see that we may get a first approximation on those trajectories on which
the pieces have not vet had time to move.

Thus the basic factor in the positional estimate is proportional to the ratio
K. /K. where K and K, are the numbers of squares controlled by White
and Black. respectively.

Priorities for Including in the Search Those Pieces and Fields that
Take Part in the Play

First of all. we must decide whether or not to include a given field 1n the
play. If we do decide to include it (we shall see later how this 1s done) we
must further decide the order in which the fields and pieces should be
included 1n the search. This is a most important decision. The size of the
search tree depends on the priorities we assign. If we choose an unfortunate
priority order, the tree will be larger. A shortage of resources leads to a
shortening of the limiting length of variations, that 1s, to a more shallow
solution of the task.

The priority for inclusion must depend on the positional estimate, that 1s.

on the control of squares. We need two more concepts., which we now
introduce.
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Vuinerable target. If all the squares in an attack trajectory anq all 'the
squares in the target’s retreat trajectory are controlled by the attacking side,
we shall say that the target is vulnerable. We set the value (?f the target equal
to the smallest result of the exchanges on the squares m the trajectory,
provided this result does not exceed the value of the target itself.

If instead of an attack trajectory, we consider any other one, the same
concepts apply with one change: the value of the target will be set ec_;ual to
the value of the target in the attack field with which our arbitrary trajectory
1s connected.

Strikable rarger. This 1s a vulnerable target on a stem trajectory of attack
for which the trajectory is one move long, so that the target can be
annihilated and the attacking side 1s to move. Under these conditions the
target may be struck; that is, without making the capture, the result may be
predicted exactly.

We estabhish the following priorities for including trajectories in the
search (in fields): if the value of a vulnerable target 1s such that it makes
sense to carry out play in the given field, then, first of all, the field should be
played. If there exists another vulnerable target having the same value, play
should be executed in the field where the goal is most quickly reached.
Given different values of vulnerable targets. play should occur in the field
containing the target of highest value.

The experience of the chess master shows that this is the best way to find
a good solution with minimal size of the search tree.

The notion of the strikable target also contributes to the discovery of
small trees. For instance, if White can strike a target of value such that the
variation will be immediately broken off (or if this value is equal to the
difference between White’s and Black’s strikable targets), the vanation
striking the target need not and should not be continued— and this clarifies
everything.

A second example: If there are both strikable and vulnerable targets of
the same color, we should play against the strikable: the vulnerable one will
wait,

We may shrink the search tree by using the notions of strikable and
vulnerable targets for non-stem trajectories as well. For instance. after we
have unravelled a sheaf of trajectories, the following question arises: Which
of the trajectories comes first? The answer 158 clear— the one in which all the
squ-ares are under control, and of these, the shortest. If we must decide
which sheaf to play in first, we use the same method for decision.

The forking of trajectories also determines their priority for inclusion in
the s_earch. When they coincide over some portion of their length, a piece
moving over the common (fork-handle) portion will move with greater

§peed-when the common portion is longer. This also vields a priority for
Inclusion, but of less value than in the previous cases.
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the first uncontrolled square)—tells us about the relative mobility and
freedom of maneuver of the pieces, as we have seen earlier.

The positional estimate should depend on other factors as well. There is
no doubt that it should depend on the ratio of the sums of the values of the
vulnerable targets, which can forecast the degree of success to be obtained
below the summit of the truncated tree. Time must also be taken into
account, namely, the time that must be spent 1n moving the attacking pieces
along the trajectories of vulnerability. The smaller the total time, the better.
Therefore the ratio of these total times must also be taken into account.
Probably it should enter the calculations only when White and Black have
equal sums of the values of vulnerable targets, but this question can be
decided only by experiment.

In summary, the three classical factors do enter the positional estimate:
material, space, and time are all included, but they are not at all the same
factors written about in chess manuals.

The Inclusion of a Field in the Play

As a rule, the question of including a field in the play should be decided by
the use of the lowest possible node in the subtree. This means that a
variation in the searching process 1s carried through to its end, and then, in
the backtracking climb, the decision i1s made at the first node up from the
end where the question arose.

Thus, as a rule, 1n the tree under the node where the question of including
a field anses, all earlier questions about the inclusion of fields should have
already been settled, so that below the node in question everything is clean.

In the process of searching moves within the horizon H,, a set of new
perceptions may arise, when a piece of one color sees a piece of the opposite
color (that is. when the existence of a trajectory is established). This leads to
the formation of a sheaf of stem trajectories, after which we must decide
whether or not to include the field.

It should be excluded unless it offers hope of improving the value of the
COV. We may formulate the following rule: Exclude a field if it satisfies one
of the two following conditions: (1) the piece obviously cannot reach the
a,-square of its stem trajectory or (2) inclusion of the field obviously cannot
change the value of the COV.

We test these conditions in the following way: We assume that the
subtree under the node where the decision is to be made has already been
formed. We must first convince ourselves that the field in question is not
already included in our variation, which must therefore be investigated. To
do this we introduce the “ trafic signal” principle: a move relating to one
field orly is marked to indicate the fact and the field; if the held under
Investigation encounters such a sign, a metaphorical red light 1s turned on,
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but if there is no encounter. or il the move relates to several fields, the light
1S green.

Since we are discussing the improvement of the COV, let us be more
precise about the fact that in determining whether or not a piece can arrive
in time to act, we need not investigate all the variations in the subtree. If,
for instance. we are studying the subtree under a White node and we solve
the problem of including a White field, we must investigate only those
variations that coincide with the COV at Black nodes and take into account
only those trajectories that have appeared in these variations. (See Fig. 8.) It
makes no sense to investigate other variations, since a favorable change of
value I them cannot favorably change the minimax result. Let us assume
that the investigation of this portion of the subtree has been carried out with
a positive result—the piece can indeed arrive in sufficient time at the
a,~-square. Then we must answer the second question: Can the inclusion of
the field change the outcome of the minimax procedure, i.e., the value of the
COVv?

We consider the general case, depicted in Fig. 9. Piece 1 traverses
a-squares 1n its trajectory; Piece 2, of the same or opposite color, sees Piece
1 within the honzon H,. An investigation of the variation must show
whether Piece 2 can arrive in sufficient time at its own trajectory’s terminal
square (a,-square), which 1S an a-square of Piece I’s trajectory. This
question arises if the two pieces are of opposite color: if they are of the same
color, we should assume that Piece 2 can unconditionally arrive in time at

3 I'nd of 4 variahion at a4 White node

e I nd of 4 vaniauon at a Biack node

Figure & Which vanauons are 1o be improved? — marked by the thick line
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the e-square. Should we include in the play the field with the stem piece 2?

The field may be one of control, blockade, or attack.

Clearly, the field should be included if the maximum profit from its
inclusion can change the value of the COV. How is the answer to this
question to be found?

We consider a control field with Piece 2 Black. Two cases arise: (1) there
is an exchange on an a-square where Piece | stops; (2) Piece 1 goes through
the square and participates in an exchange later on. In the first case, the
Black Piece 2 is included in the exchange on the a-square, which may
improve the value of the exchange for Black. If the profit from this
improvement, added to the final value of the variation containing the
exchange, exceeds the value of the COV, the field should be included in the
mathematical model, since it may improve the value of the COV.

In the second case, the maximum expectation 1s that the White Piece 1
may be excluded from the exchange occurring further down the variation,
after it has passed the a-square. This may lead to an improvement in the
result of the exchange for Black. If this profit from the change in the result
of the exchange, added to the final value of the variation, exceeds the value
of the COV, it makes sense to include the Black piece in the MM. We may
use the same method to decide the question of including a field of another
type—a control field. We must remember that after the investigation of the
subtree there may be such candidates for inclusion in the search. and in
order to limit the size of the tree, we must establish priorities.

The determination of such fields, and the establishment of priorities for
them, is one of the most delicate tasks to be accomplished by the algorithm.

Thus, given the conspectus resulting from the descent along a variation,
we must, as a rule, build a subtree below the node where the question of
inclusion of a field arises; otherwise the question cannot be resolved. In
those cases, however, where there is no doubt that Piece 2 has time to arrive
at the a-square and that the value of the COV can be improved (this can be
determined by comparison of the value of the new target with the sum of
the earlier derived values), the field must be included at once.

a-squar {—“'-"—_O

O White

@ Bk Pl

Figurc 9  Whether to include a ficld of play
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The Repetition of Moves at a Node

We have already remarked that according to the canonical method for
forming a tree, there is no sense in repeating a move at a node: What sense
could there be in re-inspecting a node that has already been looked at? In
fact, however, repetition is senseless only when H; < 3; then the trajectories
consist of a single displacement. Up to now, all known chess programs
embody such a horizon. If, however, H, = 3 and trajeciories may therefore
consist of more than one displacement, the repetition of moves at a node is
necessary.

Repetition takes on meaning since we attach significance to motion in a
trajectory rather than to a move. If the MM at a node is changed and a new
trajectory appears for which the first move coincides with a move already
contained in the MM and in which the piece has already moved, a repetition
of the move is not only sensible but unavoidable. The MM at the node
where the repetition occurs will be changed, but the current material value is

conserved.

The Depth of a Search and the Inclusion of Fields in It

Let us agree, to begin with, on a method for determining the limiting depth
D, of a variation. As opposed to the honzon H;, the depth may vary from
move to move. This is connected with the fact that a change in the horizon
has a very strong effect on the conservation of resources. whereas a change
in the depth has a delicate effect, since we have at all umes the 1nequality
D, > H,.

We shall determine the depth by reference to the time that has been
expended in the prior portion of the game, i.e., by reference to the elapsed
time, and principally by reference to the time spent in contemplating the
preceding move. To a first approximation, we shall depend only on the
latter ime. If more than three minutes were spent on the preceding move,
we decrease the value of D, , and if less. we increase it. The extent of the
change will be determined by experiment.

The depth D, of the search for the current move is therefore established.
We next decide how to use this value in selecting fields that are in the MM
for inclusion in the search. The unselected fields are to be frozen.

Let us assume that the search at the given node includes only those attack
fields whose targets can be annihilated (on stem trajectories) in the time
remaining before the limiting length is reached. If, for instance, this time
eguals x plies and some two targets can be annihilated in a minimum total
time 7 < x, both the fields with these two targets may be included in the

Sea_rch. If 1 > x we can include only one of these two, or some other field for
which ¢ < x.
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This is logical enough; we afre trying to win material within the truncated
tree. Beyond the boundary, only positional estinates influence us. Therefore
we include in the search only those fields in which we expect the target to
be struck within the limits of the truncated tree.

Thus when the search reaches the limiting depth D, , x naturally reduces
to zero and the condition 7 < x mmeans that no further fields are to be
analyzed in the search (strictly speaking, this condition may be encountered
earlier; we shall return to this point later). If we are at the limit D, the
search should continue further if there are fields of vulnerability, and in
some circumstances (e.g., an attack on the King) also fields of partial
vulnerability (when a retreat field is invulnerable or only partly vulnerable).

Let us now consider the case in which the condition ¢ < x is not fulfilled
and the conditional depth limit has not yet been reached. Then, within the

Iimits of the truncated tree, we cannot expect to win maternial via stem
trajectories (if the field is not vulnerable, as we have just mentioned), and
play on stem trajectories is therefore useless.

Then we should play on denial trajectories or on stem trajectories of a
dependent field such that 7 < x is satisfied. Although 1t would appear that
this does not win material within the himits of the truncated tree, the
appearance may be wrong if the play just described leads to making some
stem trajectory vulnerable (with the reservation stated above). Then indeed
the search may be continued beyond the depth limit.

If there are no vulnerable trajectories, and the condition r < x 1S not
satisfied for the remainder, the variation should be stopped at the depth
limit.

In itself, D, is not a depth limit for variations; it influences the depth only
indirectly. It would appear that a chess master plays in this way—he has no
explicit fixed length for a variation.

We are now in a position to answer some natural questions: What shall
we do about breaking off a variation by reason of material? What targets
should have their values included in the sum (X#2) of targets that enters the
formula for breaking off? There should be no doubt about the answer:
Include the values of only those targets that satisfy the condition 1 < x (for
stem trajectories and others in the field of play). These represent the greatest
amount of material that can be won. We must unconditionally take into
account the fact that the values of vulnerable and partially vulnerable
targets are included in the sum Ym as a supplement. It follows that a
variation is broken off on the basis of three factors: material. time. and the
control of squares (vulnerability of the target). The formula for truncating
branches (variations) is to be made precise in the same way.

We must now consider the difference between problems and practical
games. In the search for a« move from a position in a practical game, no limit
15 placed on the value of the optimal variation. Therefore the maternal
relationship in the initial position does not influence the secarch. The
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constructed problem is another matter; here we have a previously estab-
lished task—win or lose. Therefore the initial material relationship must be
taken into account: it influences the values of the targets that must be
attacked and allows us to exclude certain goals from consideration, and
shortens the search.

The Pruning of Branches

In backtracking up a variation we are not absolutely required to develop a
search at a given node—to create a new branch at this node. We must
always answer the question: Is it possible to detach the as yet unconstructed
branch from those already formed here? The pruning of branches is in no
way to be confused with the stopping of variations. The stopping of a
variation (see Fig. 10) proceeds, in general, according to the formula
—cmp=Ym,, +2m,, where 1m, , and YXm, are the sums of values of
White’s and Black’s targets respectively; ¢ = + 1 at White’s nodes; c= — 1 at
Black’'s nodes; m 4 1s the current estimate made during the descent along the
variation; m,= M, — M,. where M, and M, are the sums of values of
White and Black pieces, respectively, on the board in the current position.

A variation is broken off independently of the final value of other
variations, independently of the value of the COV (i.e., independently of the
results of the minimax procedure). The breakofl is organically related to the
goal of the play. to the value of the targets— and to nothing else.

The pruning of branches has a different meaning, although one case of
pruning has the same outward appearance as the breaking off of a vanation.

’
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Branches are pruned only to avoid useless work in the minimax procedure,
i:e., branch-pruning is organically connected with the mimmax procedure.
The formula, at a White node, has the form

Moy = My +2Xmy,

and at a Black node, ]

where Mmooy is the minimax value of the currently optimal variation. This
formula applies the principle of expectation to the comparison between the
value of the COV and the maximum value that may yet be obtained. If the
new COV cannot surpass the old one, the branch must be pruned.

A branch at a node may be pruned at any point 1n its development.
Therefore we may cut off the first branch at the node, thus cutting off the
node itself (all its branches are gone), and outwardly this appears to be no
different from stopping the variation. Pruning may be mitiated at any
branch.

On the left-hand side of our formula for pruning stands the value of the
COV. This is the largest value obtainable 1n the variation and. in particular,
may be obtained at the node where the pruning is under way or at a node
higher up in the vanation.

Let us illustrate this by an example displayed in Fig. 10. We descend
along the vanation from the node »n to the node I, where the vanation is
broken off, for the same reason as at node p. In backtracking to the node k.
it becomes clear from the mathematical model that a second branch can be
constructed there. We make use of the pruning formula; the sign of the
inequality is reversed, and the branch must be constructed. We descend to
the node p. where the variation is ended; we backtrack to the node g, where
the pruning formula gives a negative result. Then we descend to the node r.
where the pruning formula tells us to stop constructing the branch.

There remains only to define the quantities X on the right-hand side of
the pruning formula. This is not a simple matter. It would appear that they
must contain the values of the targets (both included and not included. since
the latter may appear further down the branch) and the strikable fields. The
ﬁn_al answer. however, can be obtained only by experiment. Among other
things. the same could be said of the formula for stopping a variation. On
the _righl—hand side, the sum Yrmw + Emb should not contain all Black and
White target values. but which ones it should contain must depend on

experiment.
Three States of a Field (The Active Mathematical Model)

The MM changes during the search. New ticlds of play arise, the MM
expands, the amount of mformation to be processed 1ncreases, and thus
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brings about a substantial slowdown in the operation of the program.
Therefore a field should be included in the MM only when necessary, and
should be excluded when no longer needed. From this point of view, a field
may encounter in the course of its Iife the following states:

1. It is included in the MM. It takes part in all the affairs of the MM: the
positional estimate, the determination of priorities, forking. etc. Informa-
tion on the fields included in the MM 1s gathered and saved.

2. The field 1s excluded from the MM during the descent along the
variation. This may occur as a result of the following causes: an g -piece
is annihilated or leaves the a,-square without occupying the a,-square; or
the same thing happens at the a,-square when we are not dealing with a
stem attack trajectory. Under these circumstances we have said that the
field should be frozen and all information about it removed from the
data immediately connected with the MM.

We must remember that the frozen data, which are not needed for the
current processing operations, should be unfrozen again during the
backtracking (at the node immediately above the one at which they were
first frozen) and included 1in the MM at the necessary moment.

3. During a further backtracking, when we have passed the node at which
the field was first found during the descent, the field should be erased
from the memory of the computer; in the general case i1t will not be used
again.

Thus the MM contains only those fields described in case | (see Fig. 11).
This leads to a sharp cutback in the MM; it can vary from node to node.
during both descent and backtrack. Such an MM we shall call “active’. We
should note that everything we have said about frozen fields also applies to
frozen demal trajectories—they are to be stored in the same place as the
similar fields. With respect to trajectories. however. the matter is somewhat
more complicated: already frozen denial trajectories of fields that are still
included in the MM must be inspected whenever we solve the problem of

————————— fErase the ficld

———————— * Inciude the ficld

} Field included in MM

I " Unfreeze
—_— *l‘rcczc
Figure 11  Fkield states Backtracking: up the vanauon; Descending: down the

variation
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forming a new denial trajectory, so that we may avoid the construction of
an existing frozen trajectory. Thus the fields of both types 1 and 2 are
subject to recall: but information processing pertains only to fields of
type 1.

The active MM changes from node to node during the search. The MM is
used to determine the positional estimate and the priorities for inclusion of
trajectories in the search. It plays an exceptionally important role at the
nodes where the variation suffers a compulsory cutoff; we shall return to

this point.

Keeping the MM in Mind at a Terminal Node

When a move from the initial position is made in accordance with the
optimal variation established by the minimax procedure, we should not
recommence the search from the new initial position if the opponent’s
answer was in accord with his move in the optimal variation. If we were to
renew the search at the vertex saved in the subtree, we would be wasting
effort. (Note that the unselected portion of the subtree, which was unneces-
sary, has already been erased from memory.)

Let us first of all convince ourselves that the preceding optimal variation
(or variations) will remain optimal in the new position. We expect it to do
so, since the opponent is playing according to this variation. We go down to
the terminal node of the variation and recommence the search in the subtree
at that point. which has been saved in memory. To launch ourselves into the
search, we need the mathematical model which was developed there. and
therefore it should be available in memory. So, while forming the search
tree, we must save those MM’s that correspond to terminal nodes of the
optimal variation or variations.

A Technical Question

Let us consider one of the technical questions that may also influence the
construction of a small tree: if in a variation there arises a position that has
already been assessed in another variation, it may be that further work on
the new variation is senseless. since we already know the value of the
postiion itself. We must. however. verify that not only the positions but also
th(_z mathematcal models coincide. We can do this indirectly by testing the
coincidence of the priorities for including moves in the search.

When a position is repeated in the same variation in which it arose. the
rules ©of chess imply that the varation should not be continued—it is
meaningless. We may define the repetition of positions by means of a

ltlbra_ry Of current positions; this library will be small, since the search
rec is.
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B. The Use of Historical Experience

plays a game he uses historical experience (his own

i 1 different ways:
the experience of others) in four fer .
ane! ul is characteristic of the opening. The theory of

¢t fashion. This
1. In parrot fe judgment in any of its parts, and the master

the opening is not subject to J : _ . : _
makels) his moves in the opening without inserting himself into the process,

i.e., he moves as a parrot talks. o
2. By the handbook method. In playing a game. the master seeks out, n his

store of accumulated knowledge, the exact position OCCu_rril_lg in the search.
This library position has a score: since the positions coincide, t}}e score of
the variation is known. and the variation itself may be cut off. This usage of
historical experience is characteristic of the endgame, but may be successful
in the opening as well, when moves are transposed.

3. By the outreach method. This is based on an attempt to reach positions
that the handbook method can use. The master looks up library positions
having a favorable outcome and lying near the search position. (See the
Glossary of Terms for a definition of nearness.) Having found such posi-
tions, the master constructs his search so as to get them into the search tree
if possible. Then he relies on method 2. Therefore this method i1s also
characteristic of the endgame and. perhaps, of the opening.

4. By the associative method. This 1s based on a partial congruence of the
position in the search with positions in the library. The master secks out a
fragment of a library position. i.e.. a small group of pieces whose action has
led to success. If the search position contains the same group of pieces in the
same constellation. he includes the group in his search, in oider to see
whether it will lead to success in the current case. If the fragment has often
been successful in the past. it is apt to succeed again. This method
determines a direction for the search and on the average it saves resources
while the search is under construction. It would appear that the associauve

method presents the only way to apply historical experience to the middle
game and to complex endgames.

When a chess master

The Library of Openings

In PIONEER (our chess-playing computer program based on the algorithm
we have presented) the library of openings 1s small and the program uses the
parrot method. which is cmployed 1n all chess programs that have a hibrary
of openings, and bears only weakly on the essence of the problem

'The variations in the opening are limited to 12 plhies. It 1s assumed that
the sv{earch tree 1s constructed from that depth onward. The list of 1dentitied
openings 1s also kept to a minimum
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An expansion of the library of openings is being contemplated; in
principle, PIONEER could learn to fill out its library on the basis of
experience gained in the games it plays, and possibly from the games of

others.

The Library of Middle Games

There is no doubt that the associative method is the most complicated way
of using knowledge accumulated from history. We have to enter fragments
in the library that will direct our search. To this end we divide the pieces in
a fragment into two groups: a group of fixed pieces, standing on prede-
termined squares, and a group of pieces attached to predetermined squares
but standing at some distance away. The fixed pieces are not intended for
inclusion in the search; the side using the fragment 1s not interested in them.
The attached (the so-called bound) pieces should be trying to reach the
squares they are attached to.

One fragment may define a set of fragments, if it may within reasonable
limits be moved around on the board. This should be kept in mind when
forming the library. If a group of pieces in a position occurring in the search
tree is congruent to the position of the same pieces in a fragment. that
fragment determines the priority for the inclusion of the attached pieces in
the search—that 1s, it directs the search.

For the employment of the associative method, a complex endgame 1s not
in any way different from the middle game. Consequently, the endgame
library should be constructed in fragment form. Up to now, this has not
been done.

The middle-game library is not large; it contains about 70 fragments.
which by displacement around the board generate some 630 positions. In
principle. it can be self-expanding. using the principle of self-learning.

The Endgame Library

From the chessplayer’s viewpoint, filling the endgame library is a simple
matter, since endgame theory, as opposed to middle-game theory. deals with
a large set of positions. From the programmer’s viewpoint. the task 1s
complicated.

To simplify the task. we assumed that the use ol the endgame libr_al'_\
would involve only the handbook and outreach methods. Strictly speaking,
the handbook method may be regarded as a particular and very simple case
stemming from the method of directed search.

Endgame theory, as usually presented by those who write about chess. 15
connected with the choice of vanations. This view can hardly be used for
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programming, since chess masters do not use it. We assumed that the libra-ry
contains positions marked with the side that has the move, the value (win,
lose, or draw), and when necessary. the recommended move.

For compactness of the entries in the library, the positions were described
by templates in which the White King was set on some certain square of the
board. The program includes formulae for computing the value and the
recommended move when the coordinates of the White King are changed
within admissible limits. In this process the relative coordinates of the
remaining pieces are not changed. We could have stored all the necessary
positions simultaneously in the computer memory; then the displacement
formulae would not have been needed, but a large amount of memory
would have been occupied.

Some 700 templates were stored in memory; these generated about 7000
positions. Taking account of the assignment of the move to one side or the
other, the total is 14000;: the author knows no more than half of these
positions. Moreover. taking account of vertical and horizontal symmetry,
and (in the absence of Pawns) diagonal symmetry, we obtain some 35000
positions.

These belong to the so-called technical endgame, a knowledge of which
constitutes an integral part of the master’s chess technique. The number of
pieces (8) was provisionally limited. and the positions were divided mto
classes by reference to their material (in all, 31 classes). After the library was
established it was tested, by parts, by ten expert players. A defect was
observed in about 10% of the positions. After our corrections, we may
assume that the number of defective positions scarcely exceeds 1%. which is
acceptable.

Some restrictions were also imposed on the search for a posttion: (1)
pieces m the search positton must agree identically with the pieces in the
Itbrary position; (2) the coordinates may disagree for at most two pieces:
and (3) the total number of moves required for these two pieces to coincide
in postuon must be less than a specified himit.

The side that is trying to find a position forms a sheaf of stem trajectories
(germs of fields) and if necessary a field. The trajectories of other pieces are
not formed; they may exist only if they are already formed for other
reasons. If thev are so formed, then in principle the attempt to reach the
Iibrary position 1s admissible. For the enemy pieces, these trajectories will be
anti-forked n the sense that the enemy must act along them only in extreme
circumstances.

The endgame library should contain not only positions, but also rules,
e.g.. the rule of the square. However, only by experiment can we determune
what rules should be included.

Stocking the endgame Itbrary by a self-learning process is an increasmgly
urgent long-term task. 1f results are achieved in this direction. they may well
apply 10 other and more dehicate aspecis of self-learning. Work has already
begun on self-stocking of the library.
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In a chess game, a master continually refers to historical experience in th
opening, the middle game, and the endgame. Although he does ;
parently do this at all nodes of the tree, it nevertheless follows that It]t?t lap-
cannot cpntajn many nodes, and the program for using the libraries m§str§e
so organized that it requires only a small expenditure of computer resource:

Let us consider the problems of priority connected with the middle—gam(—;
and endgame libraries. If we neglect the case in which the search and library
positions coincide completely, so that the variation is broken off, we see that
the presence of the library clearly may lead to a change in the adopted
priority order and to the appearance of new trajectories in the MM.

In fact, our priorities were adopted on the basis of the average experience
of the past; when they are applied, the search tree will, on the average, be at
ts smallest. There are, however, exceptions to the rule: if in the past we
have encountered positions where the search tree could be sharply reduced
by using the rule of priorities, such a position (fragment) should be included
in the library, and this notion should be the foundation of the self-stocking
and direct-stocking processes. The use of these library positions implies a
reordering of the priorities like that which took place in the past; all the
priorities unaffected by this rearrangement are conserved. Each position i
to be assessed by reference to the value of the targets, so that we may use

this information in determining the priorities.

In comparing target values (including the values assigned in the library)
we must keep in mind another provisional value, which we shall talfg as
decisive. For instance, we may Suppose that in an equilibrium position,
differences in material amounting to two or three units will decide the

outcome of the game. Therefore it we can play on a vuln.erable .attack
trajectory against a target of less value than the one contained in the pbrary,
but such that we can gain a decisive value, the priority for including the

library position in the search is postponed.



CHAPTER 5

Three Endgame Studies
(An Experiment)

Even before the work on the program began, it was decided that the first
trials would be made on chess problems. The solution of a problem by the
program would be a very profitable experiment, and at the same time not
too complex. One of the bases for a chess master’s strength is the calculation
of variations; after this master capability had been formalized in the form of
a program, it was subjected to an experimental trial by endgame studies.
Some eleven compositions were prepared, but it turned out that we secured
the information needed after only three experiments.
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Figure 13 Problem due to Botvinnik and Kaminer. White to win.

It was assumed that the studies would represent an easy output for
PIONEER, since they contained no positional niceties and all the variations
could be pursued to the end. It was also assumed that no library of
openings, middle games, nor endgames would be needed. In reality, things
turned out to be much more complex.

On the first problem, a study by R. Reti (Fig. 12), PIONEER stumbled.
The search tree grew, the variations did not reach an end, and PIONEER
did not know which moves had priority. A chess master, however, knows
when to break off a variation and which move to prefer for inclusion in the
search— then his search tree is small indeed.

It was necessary to put rules into the program; these were founded on the
well-known rule of the square. Then the search tree reduced to 54 nodes. If
we had possessed a library of current positions, we could have avoided the
repetition of variations, and the number of nodes could have been reduced
to 45 (Fig. 14).

Some variations appear to be unfinished, but in fact they were carried to
their logical ending—they were scored by modifications of the rule of the
square that were put into the program.

PIONEER found difficulty in a problem by Botvinnik and Kaminer*
(Fig. 13), despite the fact that it is very simple (I was 13 at the time we
composed it and Kaminer was 14). It again turned out that if moves 1n the
trajectories of the mathematical model are included in the search mthout
analysis, PIONEER’s search tree differs markedly from the one a master

*This problem has an amusing history. In 1925, when Sereza Kaminer and ._I' dmmp veloped it, 1.
proposed that there should be a Pawn on square g6, but Sereza insi-s'tedl-;nthat it
‘ 5. He persuaded me, and the study was published with his text. In &
Iling this composition, I wrongly placed a Pawn on g6, and PIONEER solved

"
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would produce. It was necessary Lo prohibit play in fields where the value of
the targets was less than the loss of material and to introduce rules for
terminating a variation. Apparently these difficulties arose from the lack of
a positional estimate. The search tree, in the end, consisted of 145 nodes
(Fig. 15). _

It appeared that we should postpone further attempts at a solution until a
faculty for positional estimates was introduced. This we did not do, how-
ever. The fact is that the Reti problem contains so few pieces, and these are
so nearly immobile, that it is completely soluble by programs using a
full-width search. Although the Botvinnik—Kaminer problem contains more
pieces, including some long-range ones, there are so many captures and
checks that it too is soluble by programs using full-width searches, since
these carry a variation beyond its standard length when there 1s a capture or
check. We therefore attempted to solve a problem due to G. Nadareidvili,
since there was no doubt about its complexity, nor about the inability of
other programs to overcome it (Fig. 16).

The basic variation discovered by PIONEER is:

1. g6 Kf6; 2. g7 Bh7; 3. e4!! Nf3; 4. e5 + N:e5; 5. K:h7 Nf7; 6. g8Q Ng5+;
7. Q:g5+ K:g5; 8. h6 c4; 9. Kg7 ¢3; 10. h7 c2; 11. h8Q c1Q; 12. Qh6 +
Kf5:. 13.9:cl.

At the outset the program took so much machine time that it practically
precluded an arrival at a solution. Then B. Stilman was compelled to act like
an aeronaut whose balloon is losing height at a menacing rate—he must
throw out not only ballast but alas! even useful cargo. Thus, Stilman threw
out the procedures for the deblockade of trajectories (leaving only the
deblockade of pawns), and for this reason the reader will not find one of the
author’s variations. But we did succeed in speeding up the solution to such

¢

Figure 16 Problem due to G. Nadareidvili. White to win.
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an extent that less than four hours were required. To play at
; ) at m

strength, PIONEER needed a faster machine. 4NES
The program was not completely clean; there were more than a fe
technical errors that could have been found and eliminated b “fd f}::w
experimentation, but that too would have needed a faster machinéy Fsrr tthf".l:
reason, a very strange move (Nd7-g7) wormed its way into the search trelt:
and there were other mistakes. But even this draft version of the search tree:

(Fig. 17: pp. 60-61) means a great deal, since there are, after all, 200 nodes
in the tree. .

IF .is true that during the tests we patched in some palliative rules for
p'osmonal estimates, but we did draw some extremely important conclu-
sions. It was only after this work that we succeeded in properly creating the
priorities for the inclusion of fields in the search.

The logic of Nadareisvili’s problem consists basically in the fact that
Black’s King, on square f6, controls the retreat square of White's King; this
and only this gives Black a counterplay. It is hardly possible to construct a
humanoid tree without understanding this. The niceties of White’s play are
developed in part to drive Black’s King off square f6. Our earlier analysis of
part of the subtree, with the corresponding variations, may be useful here.
Comparing the results of an analysis of two portions of the subtree, we
perceive the role played in the COV by Black’s King on f6. Formally, we
would call this “understanding”.

We should look at the craftiness of Nadarei$vili’s problem from the
viewpoint of a chess practitioner. A master always looks for vulnerable and
strikable targets; on the third move of the COV the Bishop at h7 is such a
target. After he has been annihilated on h7 a vulnerable target is the
Queening of the Pawn at g7. The attack by the Pawn at €3 on the King at f6
s controlled by Black on €5, and Black’s King can retreat. All this 1s a
psychological barrier that must be broken in order to arrive at a correct
solution. Play in fields other than those with vulnerable and strikable targets
is required! :

Now that the program is basically completed, further experiments are
required for its perfection.
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Figure 17 Search tree in the Nadarei$vili problem.




5. Three Endgame Studies (An Experiment)
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Figure 17 Continued.



CHAPTER 6
The Second World Championship

The First World Championship contest among chess playing programs took
place in Stockholm in 1974. under the aegis of IFIP (the International
Federation for Information Processing). The winner was the Soviet program
KAISSA.

The history of chess tournaments among computers begins in 1970. when
the first U.S. Championship was held in New York. timed to coincide with
the annual meeting of the ACM (Association for Computing Machinery).
Since then. these championships have been conducted annually.

World championships for computers are held triennially. as they are for
humans. The second was held in August 1977 in Toronto. Canada.

These contests demand a substantial financial outlay. in machine time
and communication channels. Therefore they are usually conducted on the
Swiss system, in four rounds. The time limit is set at 20 moves per hour.

KAISSA (whose authors are G. M. Adelson-Velsky. V. L. Arlazarov. and
M. V. Donskoi) used a full-width search in both tournaments. Its chief
opponent— the program CHESS 4.6 of the USA —tried in 1974 10 avold a
full-width search and was unsuccessful. In 1977, the Americans (David Slate
a}fll_d Larry Atkin) returned to the full-width search and won the champion-
ship.

Both these programs stand out among others: in all there were 16
contestants. They differ in detail. but are basically similar. Both take
account of all variations up to the limiting length., using the so-called
branch-and-bound, or a-B-cutoff, method; the variations are carried further
if there are captures or checks.

A demonstration game. played after the championship. gives a clear
picture of the games charactenzing the strongest programs.
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KAISSA-CHESS 4.6

1. e2-e4 Nb8-c6
This little-known opening, due to Aron Nimzovitch, was doubtless planned
by Black in order to avoid troubles that might come from KAISSA’s library
of openings.

2. Ngl-f3...

White was obviously not prepared for this opening; the theoretical move
is 2. d4.

2. ...e7-e6

Black continues to avoid known continuations which would arise after 2.
- €5,

3. d2-d4 d7-ds
4. Bfl-d3...

A move that would hardly be made by a qualified chess player. With
...INb4, Black could exchange the Bishop at d3, after which his opening
difficulties are behind him. After 4. €5, Black has difficulty.

4. _..d5:¢e4
5. Bd3:e4 Bc8-d7
6. 0—0---

A stereotyped development: 6. Ne5 N:e5; 7. de suggests itself, and
White’s positional superiority is evident.

6. ...Ng8-f6
7. Rfl-el ...

White conserves a freer game, but in parting with the King’s Bishop. he
reduces his active opportunities. 7. Bd3 suggests itself.

7. ...Nf6:eq
8. Rel:e4 Bf8-e7
9. ¢c2-c4 f7-f5

A scantily motivated weakening of the squares in the e-file and in the
diagonal a2-g8.

10. Red-el 0-0
11. Nbl-c3 f5-f4

This move has an extremely unfavorable effect. Even the simple moves 1211;
Ne2 g5; 13. dS leave Black in a critical condition becaus-e of the wea
position of his castling; 12. Ned4 would also have been sufficient.
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12. Qdl-d3 Qdg-e8
13. g2-g3---

Although KAISSA. aside from a few sma!l adventures in the opening, had
stood up with dignity. this move dispels all illusions. Black’s initiative in the
f-file assumes & menacing character; the weakness of the square f3 1s

especially painful. After 13. d5, Black would have a difficult problem
because of the pooT placement of his Queen on e8.

13. ...f4:g3
14. h2:g3 Qe8-f7
15. Bcl-f4 g7-g5

This looks very dangerous, since after 16. N:g5 B:g5: 17. B:g5 Q:f2+;
18. Khl N:d4: 19. ___Bcé6 is inevitable.

16. d4-d5... (see Fig. 18).
16. ...e6:d5

After 16. ...Nb4; 17. Qe4 gf; 18. de B:e6; 19. Q:e6 fg (or 19. .. . Nc2: 20.
Q:e7 Q:e7; 21. R:e7 N:al), Black would have a material advantage.

17. Nc3:d5 g5:f4

18. Nd5:e7+ Nc6:e7
19. Qd3:d7 Ne7-gb
20. Qd7:f7+ RIB:f7

The complications have disappeared and a tranquil endgame has arrived.
Up to this point the combat was equal, which should be especially noted:
KAISSA used a computer with a speed of 3X 10¢ operations per second,
CHESS 4.6 had a speed of 12 10° operations per second. KAISSA could
calculate variations to a depth of five plies; CHESS 4.6 could go to six. This
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igure 18 Position from the demonstration game KAISSA -CHESS 4.6



1¢ @ small difference, which turned out to be msignificant. But. as pieces are
i'ﬁéﬁ?ha'nged. the number of possible moves and positions decreases and
therefore so does the number of nodes in the search tree: the length of a
variation can be increased. KAISSA could handle 90000 nodes in the tree:
CHESS 4.6. 400000. In the end. KAISSA extended the length of a vanation
10 nine plies and CHESS 4.6 went to twelve. In the endgame. CHESS 4.6
was the stronger. KAISSA's tactical errors consisted in not avoiding ex-

changes.
21. g3-g4...

A good move. As the authors of KAISSA remarked. the program was
trying to maintam Black's isolated pawns in the f- and h-files.

21. ...Rf7-d7
22 Ral-dl Ra8-d8&
23. Rd1:d7...

Useless. After 23. Re@+ R:e8: 24. R:d7 Re7: 25. R:e7 N:e7: 26. Kfl
with the sequel Kfl-e2-d3-e4. White would have a clear advantage 1n a
Knight ending because of the weakness of the Pawn at f4.

23. ...Rd&:d7
24. Kgl-g2 Kg8-g7
25, Nf3-g5...

Beneath criticism. One must not let Black’s Rook 1nto the second row.

25. ...Rd7-d2
26. Rcl-bl ..

Possibly bad also would have been 26. Ne6+ Kf6: 27. N:c7 R:b2. and
the White pieces are isolated.

26. ...Rd2-c2
27. b2-b3

Doubtful also are 27. Ne6+ Kf6: 28. N:c7 R:c4.
27. ...Ngb6-e5

28. Rbl-hl Rc2:a2
29. Rhil-h4.

The endgame is hopeless. and after 29. R:h7 + Kgé: 30. Re7 Ncé. White
loses a piece

29, ...Ne5-d3
30. Ng5-h3 Ra2-b2
31. gd-gS Kp7-g8
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A simpler move would have been ;) (SO & %
32 Nh3:f4.. _
s estimate of the Pawn ending. The last chance was in the

An erroncod K§3 R:b3: 33. N:f4 Ne5+: 34. Ked N:c4; 35. Nd5. The

continuauon 32
rest is obvious:
—o -f4; 34. Rh4:f4 Nd3:f4; 35 Kg3:f4 K. !
b2:£2+: 33. Kg2-g3 Rf2:14; , 35. Kg3:f4 Kg8-f7-
gg b3_I;4 Kf7-e6; 37. Kf4-¢4 a7-a6; 38. Ked4-f4 Ke6-d6: 39. Kf4-e4 c7-c5:
20, bd:c5+ Kdé:cS: 4l Ked-d3 a6-a5; 42. Kd3-c3 a5-a4; 43. Kc3-d3
K(;S-bﬂfl:' 44. Kd3-c2 Kd4:c4; and White resigned.

Among the other competitors, Monroe Newborn’s OS_TRICH deserves
special attention. It was the only entfant to act on its own, without
communication lines; it operates on a microcomputer. which sat on a table
beside OSTRICH's author during the games. By an irony of Fate, the
computer went out of order during the third round; with a winning position.
OSTRICH was counted as defeated. (In the fourth round, a replacement for
the computer was found 1n Montreal.) Although OSTRICH uses a small
machine. it plays on a level with other programs. Newborn plans to use it as
a basis for defining concepts that will lie at the foundation of a spectrum of
programs for micro- and mini-computers.

A championship contest among computers is an engrossing spectacle. The
authors of the program sit at chess boards. Using video terminals, they
inform their own distant computers of the moves made by the opponents.
The computer’s answer is displayed on the terminal and echoed on the chess
board. While waiting for the answer the scientists visit amicably among
themselves, analyze positions, argue, joke, and often criticize the perfor-
mance of their own programs. This is all quite understandable: a computer
lournament 1s only formally a sporting event—in essence, it pursues sctentific
alms.

After the tournament had ended, and with it the decisive match
KAISSA‘—CHESS 4.6, David Cahlander (a consultant to the Control Data
Corporation, whose CDC computer was used throughout by the American
;(D:rolf,ram) telephoned Minneapolis and fed Nadareisvili’s problem to the
m);der 1;176. (_3HESS 4.6 found the first two moves correctly. but as soon as it

¢ the third move, Cahlander glanced at the display, burst out laughing.

and 1
ey threw up his hands: the program had examined about a million moves
not found the right course.

A
fter the match. Slate and Atkin, the authors of CHESS 4.6, remarked

that they i
USA fof ;n[t:iﬁdefi 1o abandon the brute force method (the term used in the
-width search) as having no future. and turn to an evolution-

ary metho
d of pProgram development. How much time will it take to

re—lt;a\:irse bthe path followed by PIONEER?
) € Dbrute f 2 ) i
Insignificant increzme method a higher computer speed yields only an

s€ 1n the depth of the calculations, and only a modest
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increase in chess-playing strength; 1n PIONEERt a higher speed yielc_ls a
?ﬁfﬁportionately greater depth of the calculzfuo_nf. In the meantime,
PIONEER plays slowly. The solution of Nadareidvili’s problem would take
less than ten minutes on a machine of the Cyber-176 class. By no means
could all chess players, even of the highest qualifications, manage it in that

time. _ '
The third World Computer Championship will be held in 1980. A

qualifying tournament will take place in Japan, after whi_ch the two winning
programs will compete with CHESS 4.6 and KAISSA in Australia, where
the third World Champion will be selected. We may expect that this
champion will even now play like a chess master.

At the end of the Toronto championship, the competitors—the authors of
the programs—took part in a conference at which the Dutch programmer
B. Swets called for the formation of an ICCA (International Computer

Chess Association). This was approved n principle. A sign of the times!

Conclusions

Since 1964, when the author began to seek support for his algorithm, there
have been many critical remarks; these are worth reviewing. It has been said
that this is all fantasy: it conflicts with the accepted canons; it demands
more resources than does a full-width search; it would require decades for
development; a collective employing no less than 20 mathematicians would
be required for the programming; the capabilities of current computers are
clearly inadequate for the implementation of such an algorithm; and so on.

However, 14 years have passed (and work on the program began only in
1972), and we are on the threshold of solving a great scientific problem. An
algorithm that models the behavior of a chess master has been implemented
(and the generally accepted methods are looking more and more doubtful);
the work has gone forward with a minimal number of programmers; the
capabilities of today’s powerful computers have turned out to be wholly
adequate.

Archimedes, who founded the theory of the lever, said, “Give me a place
to stand and I will move the Earth.” Perhaps the reader will agree that it 1s
now appropriate to paraphrase his dictum as, “Give PIONEER a fast

computer and the theory for solving inexact problems will assist in better
management.’’



APPENDIX 1
Fields of Play

B. M. STILMAN

The highest level of the control system in Botvinnik’s algorithmic model of
the game of chess is the mathematical model (MM), which is an ensemble of
fields. In the process of searching for a move, the MM continually changes
itself by including and excluding fields, and thus directing the search. In this
appendix we consider the problems of (a) forming the included fields and
(b) searching for moves in the ensemble of fields that are included. The MM
1s kept invarant with respect to the composition of the fields it includes: its
formation and constant reconstruction are not considered here.

All the applicable algorithms are described concisely. Special attention 18
given to their implementation in PIONEER. It is worth noting that many of
the procedures described below were worked out in detail and refined

during the development of PIONEER and in the experiments conducted
with it

1. Th.e Formation of Fields and the Search
Within Them

(P:Iec_:secslu;e)mguon along a trajectory try to occupy its terminal square
thgt Square‘mﬁgpbose th?‘t. in order to do this, an enemy piece standmg: o1
so that enemy _leeanmhﬂazed_ A second_-level subsystem must bc‘:* orga-ngd
trajectory and frEanS]TS ‘bpose. the m?thI? of the attacking piece 1n 1its
trajectories. an Y p1eces support it. Since all these move 1n their own

; agreement can be reached that will put the play along the

68



1 The Formation of Fields and the Search Within Them

several trajectories under the control of the overall goal of the ensemble of
trajectories. The ensemble of trajectories and pieces entering the local
combat. divided into two hostile camps, makes up a field of play.

1 1. The Concept of a Field

Suppose that the ag- and a,-squares contain pieces of opposite color (+)
and (—). called an a-piece and a-piece, respectively. The assertion that the
a,-piece attacks the a,-piece means that there exists a trajectory leading
from the a,square to the a,square and that the time (in half-moves)
required for the a,-piece to complete its trajectory does not exceed some
number H,. which is called the limiting attack horizon. The contemplated
trajectory of the (+) piece is called a stem trajectory of the field, and the
a,-plece a stem piece.

I et us consider the set of squares 1n the stem trajectory: they consist of
a-squares. where the piece comes to rest, and b-squares traversed without a
halt. The set of trajectories of the (—) and (4 ) pieces terminating in these
squares will be called first-order denial trajectories. The set of trajectories
ending on squares in first-order demal trajectories will be called second-order
denial trajectories. and so on.

Such a set of Black and White pieces. and the set of trajectories defined 1n
the manner just described, will be called a field. Its color is the color of 1ts
stem piece. The precise meaning of this notion will emerge when we describe
the process for calculating the trajectories to be included 1n the field.

We shall show how the fields of play are formed, using a specially
developed artificial position (Fig. 19).

First. however, we must see how PIONEER searches for a move.

7 7 77 Z
{// .

s, 2
vz %
% 7

Ly

Figure 19 An artificial position
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1.2. The Search Procedure in the Init:al Position

with its root at its top. 1.€.. the vanations in the
tial position grow their branches downward. We
from the initial position by a sequence of moves.
e variation. and the final position is scored by
some chosen scoring function. Then we backtrack by one move, ascending
the tree and. remembering the position below. we score the position just
reached. From here we descend again by moving along another branch. The
variation is again ended. and again we backtrack. lifting the score with us,
make another move down the tree in the variation. and so on. After we have
explored all possible ultimate moves in the branches of the model, we repeat
the process with the penultimate move, and so on. The scores derived from
below are compared: for Black’s moves the minimum score 18 selected. and

for White’s moves the maximum.
A flowchart of the search for a move in the initial position is depicted in

Fig. 20.

Downward motion in the search tree i1s controlled by the procedures
shown on the nght hand side of Figure 20. The upward motion. necessary
for the mimimax procedure and for continuation of the branches, is con-
trolled by the procedures shown on the left hand side of the flowchart. The
symbol D denotes the current depth of the search tree, in plies.

In the example considered below, for demonstration purposes, only the
shaded blocks of the flowchart are activated. They control the formation of
a field during the search process, and are described in detail later. The
remaining procedures construct the mathematical model.

The search tree 1s depicted_
search leading from the inl
search down along the tree
Bv some criterion we end th

1.3. The Formation of Fields During the Search— An Example

Sﬁﬁs;d:lroiehex?mple shown in Fig. 19. In this position we set up a program
White attack Oﬁfggﬂ-tEQual to two moves; therefore it can construct only one
other possible ﬁel‘d l_at of th? Bishop at f2 against the Pawn at e5. Any
construct it. Thus. ; 1';5 Outside the horizon, and the program does not
ries f2-g3—ei'; and szl_z,qt_ eslnm-al position. we compute the Bishop's trajecto-
program begins the Seaf lel ":hJCh make Hp the so-called stem sheaf. Then the
the procedures il L tor a move (Fig. 21). A precise description of all
L Blacis Ulustrated in this example will be found below.

for him, we all:wtﬁi:::ove and we have no Black trajectories, i.e.. no moves
pProgram makes the mc:\? n;ake 2 null move. Then it is White's turn. and the
. € 2. Bf2-g3 in the stem trajectory. Then it begins a
trajectories for White o o b tralectories on Black's part and support
Black trajectories that: wt;—’“ Cﬁntrol trajectories focussed on g3. It looks for
on g3; in this case, the len ihm—'v g iece o _afrive i fime to join the battle

glh can be two displacements. In the White field
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. : _ 7-h5-g3 for Black’s Knight_. and
finds the s;hea f of t:ajicgol;;(is ng,z;f(‘fvg:’hg?;;-gﬂavﬁg,g found the n'.ewhtral]t=:(<).:,lt5){~1
o sup_p(;r -along which motion would be _sensele§s since ‘; wm g
B e on suit of the current variation 1s ternunated_' led :lh
g o T, pl}]:e variation by one half-move in order_ to 1nc 1:1 € the
hacml:?‘:kt 2;2:tgorties in the play. In our case this means going back up the
Knight's trajec

1ation without
1o the initial position. Therefore the program ends the van
tree 10

i s in reverse order. -
ng t d undoes all its move _ _ -
o ltthzlt] in the printout of the search tree (Fig. 21), the 1ndf:ntflhe "
o E Ve 1n e,
Noove in the listing 18 proportnonal to thl? d_epth of t-he rr;o SRS
- mh mber of half-moves in the varation leading from
i.e., the nu

HHITE iKB1.BF2.PGA,PH2,
BLACK *EAB.,NG7.PES,
8L ACK TO PLAY

PR
BF2-G3
BF2-G3 500
ahkswas SO0
HG7-F5
PG4 *F5
PG4LxFS 3
NGT7-F3Y 3
HG7-RS
LSy®HD
Py aHS 3
NG7-HS 5
C R
Br2-63
P R Y
BG3*ES
BG3I«E5S 500
k& F AN 500
EC2-G3 500

aeaxrwt 500

NG7-H>
PE4axn®
FGu<=H5 3
N67-H5 3
NGT-FS
PBou=<FS
PGusF5 3
NE7-F5 3
NG7-E6
BF2-63
NREG-F L
RG3IXF Y
PES~F&
PESaF&4 o
BG3wF4 o
NEG6—F & 0
BE2-G3 o
BF2-byg
PES2DL
PES=DAL ~3
BF2-14 2
NG7-Eb o

S1ZE OF THE TREE 13
SIZE OF THE MaP 26
JOTAL NUMBER OF MOVES CONSIDERED IS 18
CPU TIME IS 25 SECONDS

Figure 21 Pnintout of PIONEER’s search for moves in forming fields. (Standard

algebraic notation; * * = + = + means the move is skipped.)
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position to the move itself. The number 500 to the right of a move signifies
that the variation has ended without a score.

The program has returned to the initial position. In the return along the
unscored variation. the whole tree as constructed was erased from memory.
The program begins to descend a new tree, but now has Black moves in
trajectories. It registers the move Ng7-f5 in a control trajectory. Here,
however, the program finds the Pawn trajectory g4-f5. Since at this point in
the play this is a sensible move, the program does not back up along the
variation. First of all, in this vanation it makes an extremely profitable
capture, and therefore makes the move 2. g4:f5. Here the variation ends,
since Black has lost three units Of material (the value of the Knight), which
is more than he expected to save (one unit, the value of the Pawn at €5). The
difference between the White and Black matenal removed from the board in
this variation is equal to three, which is the score for the variation. The
program now backtracks up the varianion with the score 3 (written to the
right of the description of the move in Fig. 21).

In the position arising after the backward move corresponding to the
capture 2. g4:f5, White has an as yet unstudied move (the Bishop’s move).
The program ascertains that the lifted score 3 is as bad for Black as the
preceding move (1. ...Ng7-f5); they are equivalent in value as seen by the
minimax procedure. Therefore, in the given position, White sees no point in
pursuing other moves and the program backiracks up the variation. As a
result, we arrive at the initial position. We begin a new variation with the
first move 1. ...Ng7-h5 on the trajectory g7-h5-g3, and are again returned
to the initial position. Thus in the initial position all Black moves opposing
the attack of the Bishop on the Pawn result in a score favoring White, i.e..
for the present no satisfactory defence can be expected. The search con-
tinues: Black omits a move, White answers with 2. Bf2-g3. No new trajecto-
ries have been found, but the old Knight trajectory from g7 to g3 remains.
The program finds that the time available for the Knight’s movement in its
trajectory is exhausted, so that the trajectory makes no sense. The Knight
cannot take part m the control of the square g3.

Thus Black has no admissible moves; he omits a move, and White makes
the move 3. Bg3:e5. In this position the program finds a blockade trajectory
for the Knight from g7 to f4 (g7-h5-f4 and g7-e6-f4). The square f4 i1s a
so-called b-square of the Bishop’s trajectory f2-g3-e5, i.e., a square traversed
by the Bishop without halting. The search for a Black control frajectory
focussed on €5 was unsuccessful; the program found no such trajectory of
length not exceeding three half-moves. (We note that in a position differing
from that shown in Fig. 19 by the position of the Black King, which stood
on b7, the program found trajectories for it from b7 to e5 and subsequently
included them in the play.)

Since a new trajectory, for blockade of a b-square, has been found, we
must backtrack along the trajectory by as many half-moves as make sense in
the motion along it. The program ascertains that in the present case we must
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return to the initial position. The return is made without a score: all
scoreless backward moves are marked with the score 500 (see Fig 21). In
the return climb the previously constructed tree is erased from memory.

Although in returning to the initial position the program found no
satisfactory defense. its knowledge of the position has been considerably
broadened: trajectories have been formed in the field connected with the
Bishop’s trajectory f2-g3-e5. The search for a move essentially begins anew.
but now in the context of all the trajectories so far discovered. As before,
the moves 1. ...(Ng7-hS and 1. ...Ng7-f5 are studied, but in a diflerent
order, since the former has a higher priority as a move in a forking
trajectory (the two trajectories g7-h5-g3 and g7-h5-f4 go through h5).

In the end. finding nothing new, the program returns to the move 1.
_..Ng7-¢6 in the blockade trajectory g7-e6-f4. White produces 2. Bf2-g3;
Black blocks with 2. Ne6-f4. Here the program finds the trajectories g3-f4
for the Bishop and e5-f4 for the Pawn. To include these in the play. no
backtracking is required. The exchange 3. Bg3:f4 e5:f4 i1s regarded as
profitable in the first instance. The variauon ends here, since the Bishop,
which is the basis (the stem piece) of the field, has been lost and the
exchange is complete. The score is zero, since the material lost on both sides
is equal in value. We again backtrack up the variauon with the assigned
score.

Since the zero score for the move 2. Bf2-g3 does not suit White, the
program substitutes 2. Bf2-d4 on the trajectory f2-d4-e5. We note, to the
point, that now the Black Knight is on e6. After the move of the Bishop to
d4 the program finds the trajectories €5-d4 for the Pawn and e6-d4 for the
Knight, and these are at once included in the play. Priority is given to
the Pawn capture, as being more profitable. The variation is ended. since the
stemn piece (the Bishop) is gone; the score is —3. We backirack with this
value, and i1n scoring the move 1. _._.Ng7-e6 the program produces a
minimax score and chooses the larger (more profitable for White) of the
scores 0 and — 3.

As a result of the search, the program has formed in memory a field of
play. The search it has conducted cannot be considered a complete analysis
of the initial position. The fact is that both the scores of the variations and
the mathematical models formed by the program are provisional. since only
one field has been formed and included in the play. Therefore the example
presented here illustrates only the algorithm for forming a field.

1.4. Formation of a Field

By forming (in the initial position only) a stem trajectory, we form a field in
;he process of searching for a move and subsequently carry out the search
itself by moving pieces along the trajectories of the field that have been
constructed_l at the given moment. It is postulated that a trajectory for an
arbitrary piece, from an dg-square to an a,-square will be constructed only 1f
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Figure 22 Siages in the formation of a field

an enemy piece appears on the a,-square during the search. Therefore, if a
piece does not appear on soine segment of a trajectory during the search,
that segment will not be attacked and no higher-order denial trajectories
will appear on 1it.

The proposal to connect the basic operations of Botvinnik’s algorithm
with the search for moves, and, in particular, the method for forming a field
during the search process, was made by the author of this Appendix. It led
to a decrease in the amount of information characterizing the model and
also to a significant reduction of the search tree.

Some stages in the formation of a field are illustrated in Fig. 22 in which
the dashes indicate the segments of the trajectories on which the search
produced no attached trajectories of pieces. The procedure in Fig. 20 for
searching out denial trajectories (considered below) will construct a field.

We should note that in using the term “trajectory” we have in mind a
sheaf of trajectories, since the operation of defining a trajectory for a piece
from some square to some other square, with a limited number of displace-
ments (i.e., a trajectory of limited length). yields in the general case not a
single trajectory but several [3], containing more information, especially if
the length of the trajectory exceeds two displacements on an empty board.

1.5. Storage of Information about Sheaves of Trajectories in
Computer Memory. Linked Lists

Before we can use the information we must solve the problem of storing 1t
Information on sheaves of trajectories 1s needed for the entire functioning of
the program. since the formation of ficlds depends on 1t What pieces of
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data must be saved? We decided to save In memory., not the sheaf itse}f ( h.sts.
of squares in all its trajectories), but rather information that Fhe shea‘ Eaxls:fi
and is of a given type, namely: the num!:)er of any_plcc-e (a_umquely asmgnh
integer characterizing the piece) having a trajectory 1n lt}e ;heaf, t (;:
a,-square of the sheaf. the length of the shortest trajectory in 1t, t e_type ©
the trajectory (blockade or control), and the parameters connecting this
sheaf with others and with the higher lcvel_s of the c:.o_ntrol syst_crn. A
complete list of the parameters is given In F_lg- 23. In _thls subsection we
describe the first four parameters; the others will be described later.

A sheaf is characterized by a list of parameters. The information in it
must be bound to that square on the board where the piece was placed when
the trajectory was first found. 1.€., on an ag-squarc. The sheaf is uniquely
established by the first four parameters in the list, by means of the
subroutine that obtains the sheaves of trajectories [3].

The data on the sheaves could be stored as a multi-dimensional array. We
must remember, however, that each of the parameters is a two-digit decimal
number (in the general case), and the linear dimension of the array is of the

Identification number of the piece

The a,-square of the sheaf

Length of the shortest trajectory in the sheaf

Blockade or control

1D number of the piece being attacked

Depth of the freezing

v

dg-square of the sheaf

NN NN S

O denial trajectory

11
/ Address of the field germ

Depth ot inclusion of Lhe field (in the germ)

I . 5 field designation (stem)

Paramerter for cutling off branching in the sheaf

13
/ Time allowed for play 1n the field (7,)

Figure 23 Structure of the standard cell of the linked chain (the trace of a sheaf)
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order of 1026 (10'3), and this is obviously Unac.c.epr:able. Therefore PIONEER
saves the information in the form of a linked_llst (Fig. 24). The memory
devoted to storage of a set of sheaves is divided into cells. Figure 20 displays
10 such cells. Each stores a parameter list and the address of the c<_:ll linked
to it (shown in the upper right-hand corner of the cell). In addition, we
reserve memory for two 8 x 8 arrays, in which the numbering of the
elements corresponds to the numbering of the squares on a chessboard.

The information for all sheaves passing through an a-square is attached to
the a-squares of these 8 X8 arrays. This is done in the following way: in an
a-square of the array I we write the address of the cell containing informa-
tion on the first sheaf passing through the a-square, and then all cells with
information on the sheaves related to that square are linked in a chain
whose first element is the initial square. The address of the succeeding
element in the chain is written in the corresponding a-square in array 1. All
cells in which. at a given moment, there is no information on these sheaves
are also linked in a chain.

A system of this kind allows us to erase from some cells a certain amount
of information that is not needed, either in the search process or after the
piece has made a move in the play, and to use the freed space for new
information. This is accomplished by linking the free cells in a list.

If. during a search, a piece visits an a-square, the information about all
the sheaves of this piece that pass through the square is attached to the
square. If the piece again appears on the square during the search, in an
alternate variation, our information storage system allows us to restore all
the sheaves of trajectories of the piece that relate to the given square and
were constructed in the earlier search. This is done by sequential inspection
of the linked list of cells associated with the square and by a search for the
cells we need as computed from the parameters of the sheaves, and finally
by execution of a subroutine for obtaining the sheaves of trajectories with

Amayl Array 11
L~ 1 I P
f ],
7] b 7 B
?/'1 E =
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Figure 24 Storage of a set of sheaves 1in the computer memory
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these parameters. This operation is called unravelling thf? sheaves_. A cell in a
hnl;edphst éttached to a given square and contaming information about a

sheaf is called the trace of the sheaf at the square.

1.6. Information on the Trajectories of a Field

Information on a trajectory of a piece in a field is connected with the
a-squares of the trajectory, ie., the squares on the ches§ board (an 8 X8
array) which the piece has visited during a s:c':arch (ct. Section A 1 .-1.5). Thus,
for every square in the 8 X8 array, there exists a related lm_ked h_st of ce_lls.
each containing information about one of the sheaves of trajectories passing
through the square in question. Often the lists attached to Yanous squares
turn out to be empty. The standard structure of a cell in the linked list (trace
of a sheaf) is shown in Fig. 23. The cell contains in particular the depth of
the search tree at the node where, during the backtracking ascent, the sheaf
must be unfrozen if it was frozen during the descent (see below). Moreover,
if the given sheaf is a sheaf of blockade trajectories focussed on an a-square
belonging to an attack trajectory and lying in an interval b C (i.i + 1), the
ends of the interval are written in the cell.

One of the entries in the cell is the address of the germ of the field, which
contains mformation on the field to which the given sheaf pertains. The
germ of a field is the trace of the stem sheaf of the field on the ag-square of
the sheaf. The address of this trace in the linked list is a parameter that
uniquely characterizes the field. If the trace of a sheaf is itself a germ of a
field. the place reserved for it under the address of the trace 1s used for
another parameter—the depth of the tree at the point where the field was
included. (Questions concerning the inclusion of fields in search trees are
not considered in this Appendix.)

1.7. The Parameter 7

A field is formed according to the following principle. The side marked (+)
may move only an a,-piece in a stem trajectory, and other (+) pieces are
included in the field if they are on squares where they are ready to capture.
The (_—) side includes in the field only those pieces that have time to take
part in the play. The limiting time is defined by the variable horizon
H . —the time measured in half-moves allowed to the ( —) pieces for arrival
in the bat-tle on a- and b-squares of the stem trajectory [3].

_ lmmecbate use of the quantity H_ in the search for denial trajectories is
lnc:OnVenlerlt.. We introduce instead an auxiliary parameter 7. which has the
same dimensions as the length of a trajectory, i.e., a numbler of displace-
ments. Changing with each move of a Piece on the trajectories of the field
(see below), T, permits or prohibits the displacement of a given piece. It is
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also necessary for computing the maximum length of a trajectory of a (—)
piece that may be included in a field.

1.8. Computing the Length of a Denial Trajectory

Suppose that during the search some piece makes the move X-Y. We
determine the trajectories of all the pieces that are on the board after the
move X-Y and lead to the square Y. If a piece on square Z has a trajectory
leading to Y, we say that there is a sighting of Y from Z, or that Y can be
seen from Z. To register a sighting we need to know the maximum length
(A_.,) of the trajectories we are seeking.

Also. in order to preserve the information on a new trajectory of a piece
from Z to Y. we need to fill in the trace cell, which is then linked to the list
attached to the square Z in the 8 X 8 array. The parameter 7, 1s the most
complex of those in the parameter list of a trace.

We must determine two quantities: A, and T,. These depend on the
nature of the trajectories we are looking for.

If we are computing the stem trajectory of a field, A_..=Enti(H, +1)/2],
where H, is the horizon, in half-moves: 7., =1.

If we are seeking a denial trajectory, both 4 ., and the initial value of 7,
depend on which trajectory the desired one is attached to, ie., in which
trajectory of the field the move X-Y was made. To determine this. we study
the traces of trajectories at X and Y. From these traces we can exiract the
value of T, say 7. for the trajectory of the piece that made the move mm
question, and also 4, the length of the remaining portion of the trajectory.

Let us look at all possible cases.

(1) The piece moved on a stem trajectory. Then the length 4., of the
desired denial trajectory does not exceed T (see below, on the change in
T. for motion on a stem trajectory): 4., < 7. We assign the value 1 t0
the parameter 7.

(2) The piece moved on a denial trajectory:
(a) to the terminal square of the trajectory; then 4, =T — | S it o
(b) not to the terminal square, and on the remaining portion of the
trajectory the shortest path in the trajectories of the sheaf is of length 4.
thenA4 . =T—-A, T =A4,_, +1.

If in the cases (1) and (2) it is a b-square that is under attack, the values of
A and T, are computed in the same way, and then decreased by 1. For
the cases considered here, in computing the maximum length of denial
trajectories (A4, ). we have in mind the trajectories of the (—) side. It is
taken for granted that for trajectories of the (+) side in the field, with the
exception of the stem trajectory, the length is 4, = 1.

Thus, in a field of play, among the (+ ) pieces only the stem piece may
move (if there is no capture); controlling ( + ) pieces must be In ambush. Le..
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of length 1. The limiting length of the denial trajtf:cto—
the parameter 7., and therefore (— ) pieces
they have time to take part in the play.

their trajectories are
ries of (— ) pieces is defined b_y
are included in the field only if

1.9. Correction of the Sighting Method

The search for denial trajectories by _the_ direct sighting _method. as com-
pared to other methods, results i_n a significant decrease in the amount of
information that must be stored in memory. We are speaking, for instance,
of an a priori construction of a complete field. Howe\./er, the ﬂghtm_g
method often leaves both trajectories and whole fields incomplete. This
happened in our earlier example of the formation of fields of play. A field is
formed only in those places where pieces really have visited during the
search. where a battle has occurred. The areas not so visited do not become
covered with trajectories and therefore the computer memory is not burdened
with useless information. This may broaden the search for moves.

However, the sighting method presupposes that at the moment of sight-
ing, after the move X-Y, the square Z from which we seek a trajectory
leading to Y should be occupied by a piece; but this is not at all prerequisite
for the existence of a trajectory. Let us suppose that in the course of the
play in the field some piece visited the square Z, and, having a trajectory
from Z to Y, could arrive in time to take part in the battle at Y. But at the
moment of sighting it has already left Z, and the corresponding trajectory is
not found. Thus in the sighting method we lose some trajectories.

This shortcoming of the sighting method was discovered only in the
course of experiments with PIONEER. We can offset it by correcting the
method. Suppose that a piece has made the move X-Y along some trajectory
in a field. Th_en we can determine the depth of inclusion of this field in the
sear(‘:h.tree. Since it is written in the germ of the field (cf. Section A1.1.6). On
Zbizir:rf;ilc?ztr:)hl, the search pr.OC(f:dure for new denial trajectories generates
ertioied (o aed :::utr;ent vlanatlon, wheren_'l the_ ascent up the tree 1s
e vine of b asce[:n ::qua to th!: depth of 1nclu51on_ of the given ﬁelc?. At
Backoward move: the o WO operations are executed snmultar}eously with a
e position of the piece is changed and T, 1s recalculated

jectories passing through the field X-y (see below). In the position

o end of the backirack, the sighting method will produce Il denial
trajectories leading to the square Y (and all the bl e ° >

a € blockade trajectories for the

Segment X-Y'); the quantitj
! : ies A and 7. for th : -
determined as described above. . g € New lrajeciones o

15, from the square ¥, to the

square Y
quare ¥ [on the segment ( X-Y)]. The ascent along the branch of the search
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tree and subsequent reversal corrects the shortcoming of the sighting
method.

1.10. The Pseudosearch

2 new denial trajectory of length greater than one displace-
ece along it makes no sense in the given variauon.
(The length of a blockade trajectory is arbitra-ry-)_Thjs happens because
what we have is either a blockade trajectory ending in some b-square of the
attacked piece, and that piece has already bypassed the square, or it is a
trajectory for the control of some a-square and the attacked piece i1s already
on that square, so that the control is too late. Because the play cannot
include trajectories that have been found too late, further pursuit of the
variation is senseless. Therefore we must stop the descent and back up until
we reach a point at which the new trajectories can be included in the play.
The subtree consisting of the branches issuing from those nodes of the
current variation that we encounter during the backtracking must be erased
from memory. and the corresponding subtree of the search for a move must
be tagged as provisional.

We therefore call the ascent up a branch of the tree (corresponding to the
current variation in the search) a pseudosearch. which 1s undertaken only to
include new trajectories in the play.

When we find :
ment, the motion of a p1

1.11. The Extent of the Climb Up a Branch in the Pseudosearch

Let us suppose that at some point in the search we have found new
trajectories for various pieces. Let us determine which of these pieces has
stayed longest on its g square in the current variation. One would think
that the highest node in the tree at which this piece is still on its ag-square 1s
the extent of the climb, but we must verify the existence at this point. of the
field to which the trajectory belongs, since we may have climbed beyond
the depth of inclusion of the field. Thus, we must compare the two numbers:
the extent of the climb to the highest node at which the oldest piece still
stands on its ag-square, and the depth of inclusion of the given field; then
we take the larger as the extent of the climb to the node at which the new
trajectories of the field are to be included in the play.

- We note that all the depths in the initial position are equal to zero and
Increase in the course of the variation. Further, we take into account the fact
thgt in tlfle general case the search proceeds in more than one field. and the
Irajectories or segments of them belong simultaneously to several fields. We
have shown how to determine the extent of the backtracking for each of
these fields. Afier calculating these extents, we have several numbers; the
smallest is the final extent of the climb in the pseudosearch. The pseudo-
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Search tree after climbing the branch

MM after cimbing to Node 1

Figure 25 The pseudosearch procedure.

search procedure is illustrated in Fig. 25. The field designated as II has a
very short life, and perishes during the climb: all its trajectories, including
the newly found, are erased from the computer memory.

1.12. Freezing Trajectories Because 7, Is Too Small

the stem piece MOVes on its stem trajectory, its own parameter 7, 1s
stem trajectory T serve hie dlenlal trajectories, 7, is decreased by 1. For the
computed ﬁrsl-orzler d S- ?n J ‘to de_lermme the maximum length of newly
along a denial i t enia Lrajectories. If during the search a move is made
trajectories of hj jectory belonglng 10 a field, 7 is increased by 1 on the

s Of higher-order denials connected with the trajectory on which
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Suppose that a (—) piece is on the squa.re_ i of a den_jal trajectory
belonging to a field, that the shortest path from i to the ter_rmnal square of
its trajectory has length A (displa.cements), and that the time allowed for
play in the field on this trajectory 1s deﬁr_led by.the parameter 7T,. The rules
o play in the field are such that the _glven piece is allowed to make the
move i —i + 1 if (1) the move results in a F:aplure or (2) A<T, and the
trajectory has not been frozen by other criteria (see below). Thus. ff 7T, < 4,
the trajectory is frozen by an insufficient valfle of t_he- parameter T_.

In backtracking up the tree, 7, changes In a similar fashion, except that
the changes made on the way down are reversed: if a given move durnng the
descent increased the value of T by 1, the same move when made during
the backtracking decreases it by 1: if in the downward path the move
decreased T, then on the backward path it increases it by the same amount.
If the move left T unchanged on the way down, it leaves it unchanged on
the way up. Thus. in the process of search and minimax, having descended
from a node of the search tree, In returning to it we provide for the
restoration of the value of T, for all trajectories of the field.

Figure 26 presents an example of the calculation of T, for various denial
trajectories. The value of 7, in the initial posi tion of the pieces is obtained in
the following way (for simplicity, consider only piece 4): In accordance with
the rules for completing the trace of a stem sheaf in the imital position, we
have T, = 1 for the stem piece. Let us suppose that the denial trajectory has
not yet been constructed. When (in the search process) we move the stem
piece, the value of its 7, is increased by 1 at each move. After the move 3-4,
when it is on the a-square 4, its T, value 1s 4. Let us find a trajectory for
piece 4 with a length not exceeding four displacements. For this piece,
7.=1 (see Section Al.1.8). When control passes to the pseudosearch
procedure, the climb back to the initial position of the stem piece begins.
With each backward move of the stem piece, the value of T, for piece 4

Meive Value of 7
Piece
1|2 3[4 |5
Initial position
of the piece % 4 3 4
1 11-10] 3 | 4 3 4 > The instants at which
the corresponding pieces
1-2] 2 3 2 = @—; Z can no longer move in the
ficld: A=2.7T_=1 2
1 109 | 2 -
312|347
231 | 2 |2 {0/
2 128121 212 | 2 // I
L 34{1 |1 {1 (Mo

Figure 26 Simultaneous search and computation of 7,
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increases by 1. and therefore, in the initial position 7, = 4. Let us note here
that if a trajectory exists at some node _of the tree, but remains undefined for
lack of a sighting from that node, and is first dgﬁned at a n_ode further down
ihe tree. then its initial value of 7 (from Section Al.l_.8) is suc_:h tt_lat when
the return journey up the tree is made, the ch.j:mges 1n .Tx bnn_g its va_lue
at the first node up to what it would have been if the trajectory in question

had been discovered there on the way down.

1.13. Recalculation of 7, on Denial Trajectories

Here we describe in detail the algorithm for recalculaung 7, when a piece
moves on a denial trajectory. In accordance with our rule, we must find the
highest-order denial trajectory that belongs to the field and connects with
the trajectory of the given piece. Then we increase the value of its 7, by 1.

To this end we choose an arbitrary trajectory in the field. then transfer to
the trajectory it connects with, transfer again to the one the latter connects
with, and so on. Then, in going from one trajectory to another (meanwhile
decreasing the order of denial at each step) we may come at last to the stem
trajectory of the field. If so. we do not change the T, of the initual trajectory.
Then we go from trajectory to trajectory in another variation., and if we
come to the trajectory in which the given move was made, we change T, for
the imtial trajectory. We repeat this procedure for every trajectory in a
denial field.

1.14. Freezing a Trajectory for Lack of a Connection to an
Active One

There is an unfreezing procedure, executed during the backtracking process
(cf. Fig. 20), which corresponds to the freezing of a trajectory during the
descent of the tree. It is implemented as follows:

When i piece moves along the trajectories of a sheaf. there appear at each
step portions of trajectories, or even whole trajectories, on which it has not
yet set foot during the variations developed in the search. Trajectories
c¢:‘)nnected with these portions must be excluded from the play, together with
higher-order denial trajectories associated wi th them. We call this operation
free:::mg for lack of a connection with an active rajectory.

Figure 27 illustrates the freezing procedure for the move 1-2 of piece 1.
The following segments and trajectories are frozen: 1-2, 1-3-5-6, 14-9-5.
13-3. !n backtracking up the variation. the corresponding trajectories must
be re—mcll.?ded in the play and used in other variations of the search. This
operauon is called unfreezing. The exclusion of irajectories at a node of the
search tree during a descent. and the Subsequent re-inclusion at the given
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node during the backtracking, are called freezing Jor lack of a connection with
an active irajectory and unfreezing by resurrection of the connection, respec-

tively. The procedure works as follows:

1.15. Crnteria for Freezing

We consider an a-square common to several sheaves of trajectories of a
given piece. We say it is totally frozen if all the trajectories of these sheaves
that pass through the square in question are frozen. For example, in Fig. 27
the squares 1, 3, and 5 are totally frozen for piece 1, and square 5 is totally
frozen for piece 4. The control trajectories for an a-square freeze only if the
square itself is totally frozen. For instance, the trajectories 13-3 of piece 2
and 14-9-5 of piece 5 are frozen. A blockade trajectory focussed on a
b-square is frozen on the segment b C (a,, a,,,) only if one of the endpoints
a, or a,,, is totally frozen. The trajectory 12-11-10 of piece 3 in Fig. 27 1s
not frozen, since the endpoints of the interval (9-14) are not totally frozen.
As we have noted, the endpoints of the interval (a,, a,,,) for a trajectory
blockading a b-square are entered in the memory-stored list of data concern-
ing the trajectory. (See Fig. 23))

These are the criteria for freezing high-order denial trajectories connected
with a given trajectory.

When an a-square belonging to a sheaf is frozen, the current depth in the
search tree is written into the trace. When the backtracking along the
branch reaches the same node, all sheaves with the given depth are unfrozen

and the depth of freezing is set equal to zero. (With a zero depth no sheaf is
frozen.)

Figure 27 Freezing for lack of a connection with an operational 1rajeciory.
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1.16. The Algorithm for Freezing

Suppose the move X-Y has been made in the search process; let us analyze
the freezing procedure (Fig. 28). First we determine which sheaves contain
the trajectories on which the move was made. In a special 8 X8 array we
mark the squares belonging to these trajectories and pay attention to those
and only those a- and b-squares which the piece has not yet reached. The
information about all the chosen trajectories is contained in the correspond-
ing cells in the hnked list attached to the square Y. Control is then passed to
the freezing procedure. We search all squares of the board except those
marked in the special 8 X 8 array, seeking information on any not yet frozen
trajectories of the given piece that pass through the square X. If at some
square Z we find information on such a trajectory, i.e., a trace with zero in
slot 6, the a-squares X and Z of this trajectory are frozen. This procedure
freezes the trajectories of the given piece [Fig. 28(b)}. (In Figs. 28(a)—28(d).
the frozen sheaves are shown as shaded areas.)

Now we must freeze the higher-order denial sheaves. We again inspect all
squares of the 8 <8 array for information on non-frozen sheaves for every
piece except the one that made the move that started the procedure. If at
some square V we find information on such a sheaf, we extract from the
corresponding cell the information it contains on lower-order denial sheaves
with which the newly discovered sheaf is connected. Then we apply the
criteria given above for freezing the higher-order denial sheaves. If one of
them 1s satisfied, the a-square V of the given sheaf i1s frozen and the
mspection of the 88 array continues. After the first inspection we have

Figure 28 Sequence of operalions in freezing sheaves of trajectones.
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frozen the sheaves connected with the frozen trajectories of the piece that
made the initial move. [Fig. 28(b)].

We denote the set of these sheaves by (F),. We again inspect the 8 < 8
array and execute all the operations performed in the first inspection. The
result is the set { F'}, of frozen sheaves connected with the sheaves in i % L
We continue this process until after some nth inspection we find that no
sheaf was frozen. 1.e, (F}, is empty. (For the case depicted in Fig. 28,
n = 3.) At this point the freezing procedure ends.

1.17. The Freezing Procedure on Leaving an a,-square
While Backtracking

Freezing on exit from an ag-square 1n a backtrack corresponds, on return to
the a,-square, to the unfreezing which was executed on the way down (Fg.
20).

During a backtrack a piece may leave the g, ,-square of its trajectory,
because many trajectories do not start from the initial position but rather at
some depth in the search when the pieces have already left their initial
squares. Therefore in a backtrack we may find a non-frozen trajectory of a
piece that is not even standing on any square of its own trajectory. If the
stem piece of the field leaves its ag-square, all the trajectories of the field are
scrubbed; for a non-stem piece it is more advantageous to freeze the
trajectory. This freezing, however, is different in nature from those we have
considered so far. First, it occurs in a backtrack, and the unfreezing occurs
in the descent (if the piece appears on its ay,-square). Second, entire sheaves
are frozen. not merely separate portions of trajectories.

The procedure is shown in Fig. 29. In a backtrack, after the inverse move
Y-X. we inspect the whole 8 x8 array for sheaves having Y as their
ag-square. We can do this because information about the a, of a sheaf is
given in the corresponding cell of the linked list (Fig. 23). We write the
provisional number 99 into the “depth of freezing” slot in the traces of the
sheaves that we have discovered. We use a shightly different procedure for
freezing higher-order denial sheaves; it is like the one we used for the loss of
connection with an active trajectory (cf. Section Al.1.16).

If during the descent a piece arrives on the a,-square of a sheaf that is
frozen with the 99 mark, that sheaf and all sheaves connected with it are
unfrozen. The corresponding procedure, which is like that for freezing on
leaving an ag,-square, generates a search for all sheaves frozen with a 99 tag
and having the given square as their a,-square. Those found are unfrozen

together with their associated higher-order denial sheaves.

The unfreezing of trajectories because a piece arrives on an agsquare
dunng the descent does not imply their inclusion in the search. Rather. the
inclusion is determined by all three types of freezing and. in particular. by
the variable horizon /H, (in the program, however, this is controlled by the
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Figure 29 Freezing sheaves when a piece leaves its a,-square while climbing a
branch of the search tree (the frozen sheaves are shown as shaded areas).

parameter 7, ). Even when some trajectories are frozen. T, is continuously
recalculated for all occupied squares in these 1rajectones. Therefore when a
piece returns to the g -square of s trajectory during the descent, we can at
once decide whether to include its trajectories by refernng to the T, value
assigned to that square.

1.18. Trajectory and Field

In this subsection we consider the interaction of the two lowest-level conirol
systems: trajectories and fields. These are hierarchically ordered: under
system control. ie.. during the search for moves, pieces considered as
elements may move only along the trajectories constructed for them at the
tume. Other moves permitted by the rules of chess do not exist for them in
the current model of the game. Thus the moves of the pieces are subordinate
10 the rule of the trajectory. which represents the first level of the control
System.

A field of play consists of a collection of trajectories and pieces assembled

in two camps. labeled ( +) and ( —) as representatives of color, in a battle
for:

(1) some prece which 1s the goal of the play in the given field. or
(2) some square indirectly connected with an attack on a piece.

The field, as the second level in the control system. constantly influences
the moves of pieces in their trajeciories. This influence i1s exerted by three
different procedures that either prohibit or permit such movement. These
procedures are the three different types of freezing:

(a) for shortage of tume aliowed the piece for play in the field, as de-
termined by the parameter 7 _;

(b) for lack of connection to an active trajectory;
{c) when a piece leaves the a,-square of its Irajectory in the backtrack.
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The field intervenes in the operations of i1ts subordinate level, the trajec-
tory, by organizing and influencing the movement of pieces. This interven-
tion is justified by the fact that the goal of play in the field at any given
moment may differ from the goal of the piece 1n a trajectory of the field: for
instance in a demal trajectory the goal may be the control of the a,-square
of the trajectory. with the tmmediate goal of capture by ambushing the piece
that is to be controlled.

The type of a trajectory 1s assigned to it by the higher-level control
svstem, and the type determines its goal. For the stem trajectory of an
attack field the goal is to capture the a,-piece. For a control trajectory (a
denial of the stem trajectory of a denial field) the goal is to annihilate the
piece to be controlled by waiting in ambush on the a, -square. A blockade
trajectory has no goal of its own: it is wholly subordinate to the goal of the
field in which the piece to be blockaded plays.

Thus. the hierarchy of control levels i1s accompanied by a hierarchy of the
corresponding goals of play. The field itself is controiled by the third level of
the system— the mathematical model. This control 1s again justified by the
differences in the goals of the game at the second and third levels.

The field reacts to this control during the search for a move by influencing
its subordinate levels. In directing the search. the field 1s formed by the
search itself, i.e., the denial trajectories are constructed. Thus there is a
feedback process connecting the first and second levels. which changes the
structure of the control system itself. This change directs the formation of
fields and results in an optimal vanation of the system control.

2. The Choice of Moves in an Ensemble of Fields
(The Mathematical Model)

Now let us see how the search for moves proceeds under the control of an
ensemble of fields. In chess the goal of each side 1s the mate of the
oppeonent’s King. In our model. it is replaced by an intermediate goal—win-
ning material Each side. pursuing this goal. chooses its own optimal
strategy. i.e., its best variation. The set of all strategies forms the search tree.
The minimax choice of the optimal variation in the search trce amounis to
the choice of the optimal strategy in the control system. We now examine
PIONEER's formation of the search tree

2.1. The Goal of the Game and the Ending of a Variatton

One of the most important tasks i1n the development of a cl-_less-playmg
computer program is the establishment of its criterion for scoring a varia-
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uon and ending it. Let us define a quiescent position as one in which neither
captures nor checks/ re_Sponses are 1n view. As a rule. the existing programs
for playing chess continue a variation to a predetermined depth or to a
guiescent position, whichever comes later. The end positions in a variation
are scored by a hnear function that computes the matenal balance over the
whole board and takes account of many positional factors. Such an ap-
proach to the development of the search tree does not find good moves in
the initial position, nor is its method for ending a vanation supported by the
way a chess master plays.

In the algorithm we are now discussing, and therefore in PIONEER, the
ending of a variation i1s controlled by the goal of the play. A variation is
ended if its goal is either reached or found to be unreachable. Since we are
contemplating a multi-level control system. and the several levels have
different goals, the criterion for breaking off a variation, i.e.. stopping the
play. is differently formulated for each of the levels.

2.2. The Criteria for Breaking Off a Variation in the Search

The goal of play in a field is the capture of the a,-piece, 1e., the piece
attacked by the stem piece in the stem trajectory. The value of the a,-piece
is the gain striven for by the ( +) side over the course of play in the field.
The (—) side opposes this gain. His goal of play is to lose nothing, if
possible, or at least lose less than the value of the a,-piece. Thus the critena
for terminating a variation are in essence the expectations by either side of
reaching their goals by continuing the variation. A vanaton of play mn a
field is broken off if one of the following conditions is satisfied:

(1) the ag-piece 1s captured or is frustrated by an irremovable blockade;

(2) the a,-piece is captured or leaves the g ,square;

(3) the loss of material (m,) is greater than the value that can be gained,
from the viewpoint of the (+) side, or preserved. from the viewpoint of
the {( —) side. That is, — em, = m,, where m,1s the value of the a ~Ppiece.

If in the given position the move belongs to White, ¢ = 1; if the move 18
Black’s, c= — 1.

We now consider the mathematical model (MM), consisting of several
attack fields inciuded in the play. There will be a number of ag- and
a-pieces, possibly of different colors. To formulate the criterion for break-
ing off a variation in the MM, we must calculate the sums Lm, and Zm;,@f
the values of the White and Black a,-pieces in the several fields. Then the
criterion of expectation becomes:

(4) —cmy>Ym, +Ym,, where c is the same as in condition (3) above.

Thus, in the search of a vanation in the MM, play is cut off in those fields
where either condition (1) or (2) is fulfilled, and is continued in the other
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fields. If condition (4) is sausfied, the variation is terminated in all the fields
When the highest level in a control system abandons hope of reaching 1té

goal, play 1n all lower levels must stop. even though the local goals may still

be attainable. Condition (3) is not tested for the individual fields .
Thus the criteria for ending a variation must be tested (and co;lsequentl

the guantities in condition (4) must be computed) after eve .

: : ry move dur
the search through variations in the MM. =

2.3. Testing the Cniteria for Ending a Vanation

The satisfaction of critenia (1) and (2) is guaranteed by the freezing and
unfreezing procedures (cf. Section Al1.1.14). If either of these two criteria is
satisfied in some field belonging to the ensemble. the trajectories of the stem
sheaf are frozen. and therefore so are the denial trajectories; this means that
the search in the given field is suspended and goes on in non-frozen fields.

Let us now see how we compute the sums >, and X, for criterion (4).
Consider a stem piece appearing in the ensemble of fields. for instance piece
1 in Fig. 30. Suppose that in scrutinizing our tnformation on the stem
sheaves of trajectories connected with the square on which piece 1 stands,
we find that 1ts artacks on pieces 3, 4, and 5 have not been frozen. Using a
procedure for constructing trajectories [3). we find those belonging to these
sheaves. Consider one such trajectory, e.g., 1-2-4-5-7. Inspecting its a- and
b-squares in sequence, we note that piece 3 of the (—) side 1s standing on
the a-square 4, and that there exists a non-frozen attack trajectory belonging
to piece 1, namely, 1-2-4. Accordingly. in the movement of piece 1 along the
stem trajectory 1-2-4-5-7 the maximum gain is m; + ms, where m3 and m;
are the respective values of pieces 3 and 5. Turning our attention to the
other trajectories in the stem sheaves of piece 1, we find that the maximur_n
gain for 1-2-3-5-7 is m,, for 1-2-4-5-6 it is m4 + m,. and for 1-2-3-5-6 it 1S

Figure 30 Stem trajectories in an ensemble of fields.
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m 4. Thus the maximum posstble gain for fields with the stem piece 1 is
equal to max(miz + nis, Mg, My + M, N1,). Suppose it 1s realized on the
trajectory 1-2-4-5-7, and ts therefore equal to m; + ms. In our special 8 X8
array we mark the squares containing pteces 3 and 3.

Now we pass to the next stem piece tn the ensemble of fields, piece 2 1n
Fig. 30. Proceeding as before, we find that the maximum gain in fields with
the stem piece 2 is equal to max(nis, m,). We note. however, that the square
containing piece 5 is already entered in our special 8 X 8 array; piece 5 1s
therefore excluded from consideration; our maximum is then simply m¢. In
the ensemble of fields in our example (Fig. 30), we have m(—)= (m; + mg)
+ mg. m(+)=0.

The running value m is also computed after each move tn the search
process. as my = (M, — M, )+ g, where M, (M,) is the sum of the values
of all White (Black) pteces removed from the board in the course of the
current variation. calculated from the initial position to the current move;
ng is the material relationship in the initial position.

When a variation is broken off, the value of m in the final position is its
final score m . Thus the model under discussion here is characterized by the
absence of a static scoring function. The function m, is evaluated only at
selected nodes. namely at the terminal node of a variation broken off by the
criteria listed above. Thus one of the fundamental tasks in this model 1s to
form the domain of definition of the scoring function ni,. We must again
emphasize the fact that the scoring function here is not merely an assess-
ment of the final position of a variation: it 1s also an assessment of the
variation itself in the search. as a strategy in the control system, 1.e., the
extent to which the goal of the play is being reached by the current strategy.
If it were isolated from the variation, i.e., treated as merely the material
balance in the given position, it would have no sense.

We note that PIONEER’s scoring function contains a positional compo-

nent closely connected with the MM; however. a discussion of it is beyond
the scope of this exposition.

2.4. Pruning Branches by the Minimax Principle. On the
Branch-and-Bound Method

We construct a deep and narrow tree by an a priori rejection of certain
moves at each position, i.e., moves not on a trajectory. In the established
terminology, this is known as pruning in the forward direction. In backtrack-
ing up the tree in connection with the minimax principle, however, it may
happen at some node that a further descent from it will not change the
outcome of the minimax procedure. Then we may prune the branches at this
node and resume the backtracking. This means excluding certain moves in

the corresponding position; this pruning of branches while minimaxing is
called pruning in the backward direction.
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Let us see how minimax pruning takes place in our current model of th
game. We suppose that a search is under way in an ensemble o ﬁe]de
Suppose that during the minimax procedure we find at some White node S-
final score for our variation which ts so high that the opposing side will havi
cut off the path to the node somewhere up the tree. Then the node is in

practice unreachable and no branches emanating from it need to be consid-
ered.

Let us loo‘k at two methods for pruning used in our model.

The first 18 baseq on the following argument: Suppose that the White
node N envisioned in the preceding paragraph is a branch point of the tree
and i1s a minimax point. Therefore current scores will exist at certain nodes.
Then after backtracking to N and determining its current score »71,, we must
examine each of the Black nodes higher up in the current branch to see
whether at any of them the current score exists and satisfies n1, < n1,. If we
find any, no branches are constructed from the node M.

This argument 1s the basis for the branch-and-bound method. sometimes
called the a-f-cutoff method, used in almost all chess-playing programs and
in some other search problems. Clearly, the sequence in which moves are
considered is of great importance. It has been shown [8] that given the
theoretically best search sequence, in a tree of dimension a” (a is the fixed
number of moves in each position and # is the depth of search in half-moves).
the branch-and-bound method reduces the search to a magnitude of the
order of a{"*1/2_ In practice, in the existing chess-playing programs. the
magnitude of the search to a fixed depth in the search tree greatly exceeds
the theoretical minimum, reaching 10° half-moves for a depth of 5 half-
moves. The tree grows in size by a factor of 7 with each additional
half-move in the depth of search, at least in the middle game.

Programs with such a search tree place heavy demands on the speed of a
computer. Even if this high price is paid. in the form of a very _powe.rfl-ﬂ
computer. we do not get an essential improvement in the play, since it 1S
impossible to reach master-level chess by adding one or two plle_,s to the
depth of all variations. Moreover, in search problems where tn every
situation the number of possibilities is much larger than the pumber .of
moves in a chess position ( 4 > a). the practical value of a full-width searc_h
to a fixed depth is extremely small (even if the branch-and-bound method 18
used) because of the astronomical size of the search tree.

Let us now return to the definition of the model of the game. We shail not
use the branch-and-bound method as such, since an _estabhshment of tllls
limits of change in the scoring function before beginning the search -
distort the mathematical model. However, we do usec the arguments gIven
above which underlie the method.

During the search, the computer remembers the current deplr!é ;);pﬂ'lz
highest node on the tree that has a current score. With every ‘Lilp\:l’:l tr-e.c and
current score is determined at some node; the progfait ascemtls LR
compares scores only to the remembered current depth.
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Let us now look at the second method for pruning branches. which is
pecuhar to our algorithm.

2.5. Pruning Branches by the Worst Case Method

We define two numbers at every node— the value of the goal and the value
of the vanauon. Comparing these values, we know whether we must
construct or prune any other branches issuing from the given node.

Since we are considering an ensemble of fields, the value of the goal may
differ between Black and White. and so may the decision as to whether or
not to continue; this depends on which side has the move at a given node.
Suppose White has it. We introduce the notion of the worst case: this is the
outcome, the score m,, when one side proceeding from the given node in his
current opuimal variation in the ensemble of fields would gain nothing and
lose as much as possible. For Black this is the loss of the values of all the
a -pieces, t.e., Ynt,. Thus, when a final score m, appears at a White node,
and

other branches from the White node need not be formed, since the minimax
procedure will in any case exclude this node from the optimal vanation.
Similarly. at a Black node the criterion for pruning 1s

—ni, = nip+ Y m, .

it 1s not difficult to test the criteria for pruning. After each move during
the backtrack along a variation we calculate Ym, and Ym, over the
ensemble of fields, by using the procedure already applied for testing the
cutoff critena.

It is worth noting that the need for pruning branches by a minimax
process, and the necessity for including the corresponding procedure in our
model, were both brought to light only during our experiments (with the
search for moves in a field) under a working program— the first versiott of
PIONEER. .

The model contains another procedure for cutting off branches at a given
node during a backtrack, which offers a significant saving in the number of
moves to be inspected. This process (to be discussed in Section A1.2.10)
deals with the elimination of fields and the pruning of branches in a sheaf.

2.6. Priority of Moves 1n a Search

The gain from using the minimax-pruning procedure, 1e., a S@nlﬁcant
shrinkage of the search tree, can be obtained only if during the descent
along the tree we know which branches to form first at a given node in order
to solve the pruning problem for the remaining branches. We set up the
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following system for assigning priorities to moves bei :
i : ein
inclusion in the play in fields: g considered for

1. The fundamenta-ll goal in our model is to gain material, and therefore
captures get first priority. The more gainful the capture, the higher the
probability of cutoff; therefore the first priority goes to captures with the
highest value of the captured piece, and to exchanges giving the highest
material value gained on balance.

To implement this principle we need a quick recognition of the captures
among the moves in the trajectories of the MM. (Note that a field always
contains at least one capture trajectory.) The recognition can be achieved by
a procedure called “moves not in the MM™ or *“total move generator”
which constructs all legal moves of a piece, not only those in the trajectories
of the MM. The basis of this procedure is an embedding of an 8 X8 array in
a corresponding 15X 15 array [3] and the marking of squares in the 8 <8
array that can be reached by a legal move from the starting square.

The procedure for finding the most profitable captures i1s as follows:
Select a piece that (1) belongs to the side that is seeking a move at some
node of the search tree, and (2) is in the field where the search is under way.
Use the total move generator to determine all its captures. Select one of
them. This yields a pair of pieces: the victim, with value m,, and the
attacker, with value m,, together with the coordinates of the two pieces.
Then, by a procedure described below. see whether this capture has already
been found in the earlier portion of the search. If it has, go to the next
capture; else assign the coordinates of the attacker and the victim to the
variables X, and Y,, respectively. Assign the value 300m,-m, to the varniable
D Go to the next capture; redetermine 1, and m,; if 300m,-m, > D,,..

max”~
store in memory the new values of X,, Y,, and D, ; else go to the next

max?
capture and repeat the process. In the end, the tnplet X,. Y, D, will
represent the most profitable capture for the selected piece, and the trajec-
tory will be that corresponding to the endpoints X, Y-

2. In forming a field, i.e., constructing new denial trajectories. it 1Is
advantageous to include entire regions (collections of mutually related
denial trajectories) since if the result of the combat in the field is decided
too narrowly, other regions of the field will not be formed because the
variation will be pruned or cut off by the minimax procedure. This means
that the search and the MM will be narrower. Therefore the second priority
goes to moves in trajectories recently included in the MM.

This principle may be implemented by attaching a distinguls_hu_lg m‘ark to
newly constructed sheaves and, on returning along the vanation in the
pseudosearch, using these marks to decide which sheaves to select with first
priority. As new trajectories are found, the marks on the old ones are to be
erased.

3. We assume that the pseudosearch (cf. Section A1.1.10) has led to _the
construction of new denial trajectories. We backtrack to some node, f‘:raSl:l:g
branches as we go. Then the search resumes from the given node with the

inclusion of new trajectories in the play.
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We note that the movement of a_piECe attacked during a pseudosearch
must be identical to its movement in the preceding variation. which was

preliminary and erased from memory. Therefore the inverse motion of an
attacked piece is remembered in the traces attached to the a-squares
occupied by the piece in IIS INVErse trajectory. Then during the forward
search the former motion Imay be repeated. since the moves of the given
piece have priorily In the marked squares.

4. Chess time. measured in plies (half-moves), plays an important role in
our model, since a goal is attained most quickly by moving pieces over the
shortest paths. Moves in such paths get fourth priority. Given two paths of
equal length, preference goes to _the forked paths, i.e., those for which a part
is common to several trajectories; an example 1s provided by the paths
1-2-3-5-7 and 1-2-4-5-6 in Fig. 30.

We have not yet completely implemented this principle 1n our program,
but we have programmed some particular cases. If the program adopts a
decision on the movement of a piece tn some sheaf of trajectories. priority
goes to the shortest (forked) paths in the sheaf (see below). We expect to
compare the forking of trajectories of various pieces in the next version of
PIONEER.

Our experiments with PIONEER showed that the current system of
priorities needs to be made more precise. It does not take into account the
degree of importance of a field: this concerns the value of the goals. the
distance between the attacking piece and the victim, and the practicability
of the trajectory. With respect to practicability, we have in mind the
following: Consider all the a-squares of the path of a piece: select all pieces
one move away from a selected one of these squares. Determine the
outcome of the optimal exchange on it for these pieces. Do this for each
a-square, taking account of the fact that the original piece is moving In its
trajectory and arrives on the selected square.

An a-square for which the exchange is favorable to the side owning the
trajectory will be called a practicable square. A field with a stem trajectory
on which all the a-squares are practicable will be called a field of vulnera-
bility. Naturally, such fields should receive high priority: the highest priority
goes to attack fields.

These principles will be taken into account in the next version (see also
Appendix 2).

2.7. Analysis of the Trajectories of a Sheaf for Inclusion
in the Search

We have noted that if the program selects a sheaf of trajectories for a piece.
during the search for variations, first priority goes to the paths having the
smallest number of moves, and if there are more than one, to the forked
paths. The necessary information is in the trace attached to the square
containing the given piece. We determine whether or not the sheaf is frozen.
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If 1t 18 _nol. we use the procedure de_scribed mn Section Al.1.5 1o develop the
sheaf. i.e.. we construct att lhe trajeclorle§ exphatly on an empty board.
Next we transfer the trajectones, one at a nme. to the real board, find their
a- and b—squar‘es, 'and calculale' their lengths. On this basis we determine
whether there 1s time for the piece to move in these trajectories; we need
only f:ompare the current valu_e of the parameter T, for a given trajectory
with its actual length (see Section A1.1.12).

If the lrja_]eclory is blocked by pieces of the same side., we determine
whether it 1s possible and necessary to deblockade it. If the portion lag—a,]
is blocked. that portion, as a trajectory, does not appear in the search. bl.lll
there is information on the necessity for a deblockade. contained in the
information about the square containing the blocking piece.

Figure 31 displays as STEPI1 the array of squares on the board that can
be reached in one move from the initial position of the piece. STEPI is
shown symbolically as a broken ring, to represent the fact that certain
moves of the given piece at the current node have already been made dunng
the search of the varnation. (The determination of these moves will be
discussed later.) Now suppose that we have analyzed a trajectory in the
sheaf and have found that with respect to all its parameters 1t may be
included in the search. Then we mark its a,-square in STEPIl. which
obviously contains 1. We store the length (A4) of this trajectory. Assume
that some trajectories found later in the search may also be included and
have the same length. We mark their a-squares mm the array STEPI. This 1S
shown in Figs. 31(a) and 31(b).

In going from one trajectory to another we may arrive at one whose
length on the real board is less than (A). Then in STEP] we erase all the
earlier tagged a,-squares and mark the a,-square of the new trajectory [Fg.
31(c)]. We assign the length of the new shortest trajectory to the vanable A.
We iterate the process. not writing into STEPI the a,-square of any newly
found trajectory having length greater than the current value of A4, and
replacing the current shortest trajectory by any new one of lesser length. 1.€.,
writing in STEP! the new a,-square and purging the old values. As a result.
a single inspection of the sheaf produces imn STEPI the a,-squares of all

Figure 31 The analysis of trajeciories in a sheaf by reference to their length.



a8 Appendix 1 Fields of Play

shortest trajectories. which will all have the same length [Fig. 31(d)]. Among
these we must find those that are forked.

2.8. Analysis of Trajectories for Forking

We now turn to the remaining sheaves of the given piece that are in the
field. Of these we consider only those having an a,-square that is already
marked in the array STEP1 following the analysis of the basic sheaf chosen
for inclusion in the search. Suppose that after that analysis we have written
the marker 1 in the tagged squares of STEPI. If a trajectory in another sheaf
has an a;-square in a marked square, we increment the marker by unity.
After we have inspected all the sheaves of the field belonging 10 the given
piece, we find that STEPI contamns an array of integers, each denoting the
number of sheaves having a trajectory that passes through the correspond-
g marked square, i.e., denoting the multiplicity of forking at the a,-square
of the basic sheaf. We now select the largest element or elements in STEPI.
This integer is the coordinate of the most highly forked a,-square of the
shortest trajectories in the basic sheaf. Accordingly. the search will produce
the move ay-a,. The procedure is shown in Fig. 32.

2.9. Retreat and Deblockade

Throughout this appendix we have used the term sheaf to mean an ensemble
of those trajectories for a piece that have at least two squares in
common—the mmtial and the terminal. In our model there exists yet another
type of sheaf. We shall use the term sheaf of retreat trajectories (debloc-
kade) to refer 1o the ensemble of all trajectories consisting of one displace-
ment, having a common initial square ay. and having as a final square any
square on the board reachable by the given piece in one legal move. The
criteria for inclusion of such sheaves in the search have not been considered

Figure 32 Analysis of trajectories in a sheaf by reference to forking.
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in our current apphlications. nor has the formation of the corres
fields.

The hsl.of parameters of ~a retreat sheaf differs to some extent from the
standard list. Figure 33 depicts the trace of a retreat sheaf: it is attached to
the a-square of the sheaf. In the second slot we write the number 0 in place
of the ag-square, and in the third we write a 1. In the fourth we note the
type of the sheaf, whether retreat or deblockade. The fifth slot is used
primanly for the freezing—unfreezing procedures and for the calculati oot
7.: in this slot we write the idenufication number (ID number) of the piece
with whose trajectories the given sheaf was connected at the moment of its
appearance. 1.€., the ID number of the attacking piece or the piece 1o be
deblockaded. We write a2 zero in the seventh and eighth slots of a retreat
sheaf trace. In the seventh slot of a deblockade sheaf we wrnite the coordi-
nates of the a-square closest (in the trajectory) to the blockaded square of
the a-square of the blocked trajectory—that is, the g-square on which the
piece stood in the blockade.

For example, in Fig. 34 the trajectory Qcl-h6-h8 is blocked by the King
at ¢5. The coordinates of the square cl are written in the seventh slot of the
deblockade sheaf for the square Z (g5). For a deblockade, the blockading
piece must leave the trajectory, so that it is not newly blocked after the
move. Therefore, in a deblockade sheaf, contrary to a retreat sheaf, some
moves are eliminated from the consideration; e.g., in Fig. 34 we must
suppress the trajectories Kg5-f4 and Kg4-h6 in the deblockade sheaf. To
accomphish this, we write in the eighth slot the coordinates of the squares f4
and h6, the squares adjacent to the blocked a- ( b-)square of the trajectory.
The remaining slots are the same as in the general case.

Retreat and deblockade sheaves may also be stem sheaves of a field, and
therefore all the field procedures considered in the first part of this Appen-
dix are carned through in complete analogy for fields with stem trajectories

ponding

V 1D number of piece
2 o
= i

V Retreat or deblockade

y D number of the attacking piece Or
the piece to be unblocked

2 Depth of freezing

V 0 Square
nearest the blocked square

prohibited for deblockade

Figure 33 The trace of a retreat (deblockade) sheaf.
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Figure 34 An example of a blocked trajectory.

belonging to retreat of deblockade sheaves. In executing a move on such a
trajectory during the search we do not need to calculate the sheaf of the
trajectory [3]; it suffices to use the total move generator (TMG) which we
discussed in connection with the rapid determination of profitable captures
{Section A1.2.6).

If we accomplish a deblockade before applying the TMG, the program
often deposits pieces of the same color on the square written in the eighth
slot of the trace and then removes them after applying the TMG. Thus the
TMG treats the corresponding rays as established by its own pieces and
the moves 1n these directions. as well as those forbidden by the rules of the
game (in Fig. 34 these are the rays g5-h6 and g5-cl). Such a use of the TMG
1s due 1o A. L. Reznitsky. For retreat and deblockade sheaves, the degree of
forking. and consequently the priority of inclusion of their trajectories. is
calculated as described above.

As noted earlier, the necessity and feasibility of a deblockade 1s de-
termuned by analysis of its sheaves of trajectories for inclusion in the search.
Every current shortest blocked trajectory is analyzed to determine the
possibility of a deblockade. The total move generator is used in this analysis
as well. If the deblockade is not possible, the blocked trajectory is no longer
the current shortest one, and the procedure moves to the next trajectory
of the sheaf. Otherwise we record the information needed for the debloc-
kade (the parameters of the trace of the deblockade sheaf). Concatenating
these traces in a chained list of cells, connected with the blocked square, we
end the analysis of the trajectories in the sheaf if we find that the given
trajectory 1s actually the shortest and is chosen as the move to be made (in
the search).

The set of sheaves of trajectories, together with the retreat and debloc-

kade sheaves, completely covers the sct of lowest-level subsystems— the first
level of the control system.
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2.10. Pruning in the Presence of Branching in a Sheaf of Trajectories

The pfuning which we consi_dered earher 1in this section 1s based on an
analysis of the extent to which the goals of the second- and third-level
systems are attained (1.e, N a field and in the MM). Here we consider a
pruning based on an ana]ysns of the extent to which the goal of the first-level
system, the sheaf. is attained. Corres_;pondingly. the result of this pruning
influences on_ly the ;earch for.a move in the given sheaf of trajectories. What
we are dealing 1_wnlh here is stopping the inspection of moves in the
trajectories of a given sheaf (at a given node in the search tree), and not the
complete cessation of branching at the node followed by a backtracking
ascent.

Suppose that we have arrived at some position during the search. The
model selects a trajectory from some sheaf in order to make the succeeding
move on it. Suppose further that we have already considered a variation.
originating in the given position, in which a piece has moved along some
trajectory in the selected sheaf. If the piece reached the terminal square
(a,-square) of the sheaf. it either left the trajectory (went into another field)
or remained on the trajectory until it reached the end of the vanation (ie..
was not blocked). Then movement along some other trajectory in the sheaf
1s senseless and the model prevents 1t. If, however, the piece was lost on this
trajectory or was blocked. the model decides to move along another trajec-
tory. Thus the suppression of branching in a sheaf depends on whether or
not its a,square is attained, and if not, whether there remains hope of
reaching it.

The criterion is simpler for deblockade sheaves. If in the given position
there exists at least one deblockade trajectory and the blockading piece 1s
not lost on the blockading square in the course of the variauon, we inspect
no other deblockades 1n the given position.

For retreat sheaves we always branch. since we must reach a safe square,
and must test the possibility of continuing the attack.

PIONEER’s pruning criterion is tested by analysis of the most recent of
the tree branches constructed below the given node. and by study Of_ the
traces of the pieces involved, at the squares on which they stand in the given
variation. The difficulty here 1s the following: at the moment of the analysis.
the sheaf is among those included in the play in the field (here we are not
considering the question of inclusion or exclusion), but 1t may turn ‘?“t_ that
it has only just now been included, and in the course of the given vanauon a
piece may have moved along some trajectories, excluded from the ﬁﬂld,. that
are forked with some that are included. In this case it is assumed that !h‘erﬁ‘.
has been no movement along the trajectories of the sheaf. and the df:msml_l
1s made to branch. To distinguish such situations, we inspect the [we_lﬂf_l slot
of the parameter list of the sheaf. If during the search the sheal Iy i
included field and the piece has made the move X-Y along some traject%ﬂi

tn the sheaf, the trace of the sheaf is associated with the square ¥, and in 1ts
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twelfth slot we write the address of the node in the tree corresponding to the
position in which the move X- Y was made (see Section Al.2.11). If.
however. the move was made via forking. and the trajectory itself belongs to
an excluded field, we write a zero n slot 12.

The necessity of pruning branches in a sheaf became apparent in our
experiments with PEONEER while it was solving chess problems.

3 11. The Structure of the Search Tree

Information on the search tree is used throughout the whole search and in
the minimax process. As opposed to the majority of today’s chess programs,
PIONEER saves the entire tree in the computer memory. including branches
corresponding to the current optimal variations. This turned out not to be
difficult. since in none of our experiments did the tree contain more than
200 half-moves. The structure of the tree must meet the requirements of
both descent and backtracking, i.e., estabhish in the backtracking the posi-
tion at each node, the computer current material balance m,, the minimax
score of the variations, the erasure of certain branches during the backtrack-
ing in the pseudosearch. the liquidation of portions of the tree when a move
has been made on the board. and “going along the trail™.

All these requirements are met by a linked list. The nodes of the tree are
numbered sequentially in the order of their formation during the search of
variations. The serial number of the node yields the address of the corre-
sponding information concerning the search tree [Fig. 35(a)]- It coincides
with the column number in a two-dimensional array where the information
about the node is stored. The structure of the standard column is shown 1n
Fig. 35. In particular, the column contains the address of the immediate
ancestor of the node and of the associated sibling node. The given node 1s
obtained from the ancestor node after the move X-Y. If the move 1S
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Figure 35 Structure of the search tree.
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produced by a capture or by promotion of a Pawn, the i
the event 1s written in the corresponding column.
This tree structure allows us to determine, for an
during the search. what branches leaving the n
constructed, 1.e., w.ha_t moves ha\{e been made in the given position durine
the search. For this it suffices. given the number of a node, say 3 in Fi <
35(a). tohincrement it by 1 to obtain the address of its child. Here we ﬁngd;
information about the move that led to this node ( X-Y ). We write the move
in a special array. In the same column we find the address of the sibhing [in
Fig. 35(a_) this i1s the node 5]. From the corresponding column we transfer
information about the move to the special array, and so on. Thus we arrive
at node 7, which has no siblings. In our special array we find a list of the
moves that have already been made durnng the search at the given position.
In forming the tree we do not save positions corresponding to nodes that
have been constructed. We save only the current position corresponding to
the node being studied at the moment. Therefore we must record the
position at each node. for use in backtracking during the search and in
mimimaxing. This i1s done by a procedure which changes the current position
whenever a move 1s made. either forward or backward. in the search of a
variation. The same procedure recalculates the current matenal balance m .
While running, it uses information attached to the nodes of the search tree.
We have already noted that in the course of its work the program requires
frequent reconstructions of the search tree. These consist of the removal of
already constructed branches or whole subtrees. The tree structure we have
adopted allows us to reconstruct the tree by renumbering the nodes. An
example is shown in Fig. 36. Here we wish to remove the subtree consisting
of the nodes 4, 5. 6. and 7. In essence, the program takes a census of certain
columns contained in the two-dimensional array in another column.

nformation about

¥y node and at any ume
ode have already been

2.12. A New Content of Known Procedures

The procedures described in the first part of this Appendix are new in
comparison with the other known models of the game of chess. In the

(1) @
@& @& @ > © W
—
D DG @ 5 @
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Figure 36 Restructuring the search tree
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second part we have collected descriptions of more o les§ standard opera-
tions, used in most chess programs, or even more widely in the solution of
many enumerative search problems. By this we mean the search for moves,
breaking off and scoring vanations, minimaxing with pruning, and assigning
the priority of moves in the search. But in our model, which considers a
search as the hunt for the optimal strategy of a th.ree-level. cox?trol system,
these operations acquire a wholly new content. This assertion is supporte.d
in particular by the dimensions of the search trees obtzs.uned In our experi-
ments (of the order of 100 half-moves) and by the fact itself that we found
solutions to problems in which the solution was 25 plies deep.

The application of the same formulae in the known chess programs leads
to no such results. This 1s connected with the fact that none of these
programs, as far as we know, model the game as a multi-level control system
with an inexact goal, but rather as a one-level system provided with the rules
of the game and with mate as its goal. Such a system is difficult to control
because of the astronomical dimensions of the tree of variations in the
search for an optimal strategy. The effect of applying the entire collection of
the above-Listed procedures within the limits of a one-level control system in
the absence of an inexact goal scarcely justifies the effort invested in
developing optimal search algorithms.

In the model we have been discussing, the role of the procedures
described in Section Al.2 is not limited to shrinking the search tree. By
influencing the search, they exhibit an influence on the interaction of the
several levels of the control system: the formation of fields (level 1), the
inclusion of fields in the search, and hence the provision of inverse feedback
to the subsystems. In particular, the breaking off of variations (by the
breakoff criteria) and their assessment by the scoring function are two of the
most important aspects of the inverse feedback in a control system char-
acterized by a search. The goal of the game answers the question— What is

our aim?—and the scoring function tells us how successfully the goal has
been realized.



APPENDIX 2

The Positional Estimate and
Assignment of Priorities

M. A. TSFASMAN AND B. M. STILMAN

The concept of the positional estimate plays an important role in chess
programs. In algorithms involving an exhaustive search to a fixed depth,
with the branch-and-bound method for pruning, the positional component
of the sconng function is the most complicated of all components. The
scoring function in such programs is a first-degree polynomial in several
variables; its first term 1s proportional to the material balance in the current
position, and the remaining terms depend on such factors as control of the
center. pawn structure, etc.; taken together, they form the positional compo-
nent. Perfection of the known programs amounts to perfection of the
positional component of the scoring function by the inclusion of the new
chess factors.

Such an approach to the positional estimate is static: factors that may be
positive in most positions turn out to be negative in some cases, and the
positional estimate is false in these cases. The positional estimate [?roposed
by Botvinnik is based on the control of squares in trajectories. It 1s on th_e
one hand common to all positions and on the other specific to each. since it
is computed only for squares contamned in the mathematical model (MML
which is in turn uniquely determined for each node in the tree. Thus. in the
present model, the positional estimate 1s proportional to the ratio .K,.‘ / K b
where K_ and K, are the number of a-squares in the nonfrozen trajectories
included in the play in the fields controlled by White and Black. respec:
tively. We will show later how these a-squares aré to be chosen. s

The computation of the positional estimate 1S bas_lcall}f_com;e‘;:e 2%
two problems. We must first define the nonfrozen tragjectories of t e._p'é- on
and mark their a-squares. Then for each trajectory and for each “__"Sql_li:z the
it, we develop a list of the pieces lying one move away anc_}lfompuére--is
outcome of the optimal exchange on the given Squsre. e SHUSER
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traversable if the result of the exchange is advantageous to the side
possessing the trajectory. If the given square is traversable and belongs, say,
to White, K, 1s incremented by 1. The treatment of Black 1s similar. The
analysis of the a-squares of trajectories 1s carried on until the first non-
traversable square is encountered.

Since PIONEER saves information about trajectories in packed form, or
more precisely in the form of lists of sheaves of trajectones (see Appendix
1). we must unpack it in order to locate the g-squares; that 1s, we must
extract the information about the sheaves from their traces and then apply a
procedure for constructing trajectories, using this information as input
parameters. This unravelling of all non-frozen trajectornies in the included
fields is a time-consuming process. One mught hope to avoid it at some
nodes of the search tree by noting that the position in the variation being
searched i1s changing only sluggishly and that therefore the positional
estimate need not be recomputed at every node. but only corrected from
move to Mmove.

But in fact the positional estimate exhibits great vanability, since the MM
does; the latter can change essentially, not only from one node to another,
but even at a single node from moment to moment (for example, by the
inclusion of new fields). This, in particular, emphasizes the uniquéeness of
our positional estimate for each position.

Accordingly. we cannot avoid unravelling the sheaves at every node of the
search tree. It would be desirable to combine the calculation of the posi-
tional estimate with other operations that must be executed by the program
at every node. We shall use the procedure for selecting a move in accor-
dance with the assigned priorities. The procedure is as follows:

In the first version of PIONEER. the procedure consisted of repeated
unravellings (according to the number of priorities) of sheaves while looking
for a trajectory with given properties (see Appendix 1). The current version
specifies a single unravelling of all sheaves, calculating the priority of each
trajectory and then choosing the one with the highest priority. For a given
piece. we define all sheaves in the fields that are included in the play. We
unravel each sheaf in turn and determine the priority of each trajectory that
has not yet been traversed (see below). An integer characterizing the priority
is written into the special 8 X8 array, in the a,-square of the given trajec-
tory. If we find that the a,-square of a trajectory reached in the unravelling
of a later sheaf coincides with a square already marked in the 8 X8 array. we
will have found a trajectory forked with one of a preceding sheaf. Therefore
the priority is incremented, that i1s, we add 1 to the integer in the marked
square. After we have unravelied all the sheaves for the given piece, the 8 <8
array will contain positive integers for certain squares. We choose the square
marked with the largest integer and store three quantities: X, the coordinate
of the given piece; Y, the coordinate of the given square; and V, the integer
written in that square.

We purge the 8 x 8 array by writing zeroes in all squares and repeat the
operation for the next piece. If the number written in the selected square 1S
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larger than V, we store the new values of X, ¥,V if not

piece. As a result, after we have pProcessed all the pieces for a given side
we

have the three numbers X, ¥, and ¥ s 1 fyi - i

s ) By pecifying the oni In. desti )
priority, respectively, of the move having highest prg‘iol-it ;Si;ne:zgn,giand
verl

position. This system allows us to compare Priorities, not only for moves of
a given piece, but also for moves of several pieces. We could not do thi e
the earlier versions of PIONEER. Moreover, while computin 9 MG

’ : . g the Priorities
o_f t_he various trajectories, we can take account of diverse factors: the
51_gp1ﬁcance of tl_'le field _(vulnerabllity and value of the target), the vulnera-
p:llty of the trajectory itself. the length of the trajectory, and its forking
index.

Now let us return to the co-m;_)utation of the positional estimate and show
how the necessary procedure is included in the above pProcess for selecting a
move. After we have calculated the current trajectory with all its a- and
b-squares on the real board, we must inspect its a-squares, beginning with
the a,-square, and apply at each of them the optimal exchange algorithm up
to the first non-traversable a-square. It is easy to see that the optimum
exchange procedure is the innermost cycle in the whole algorithm. This
places heavy demands on it with respect to speed.

It is organized as follows for application to a given square in the
trajectory of a given piece (pieces of the same color as the given piece will be
called friendly, those of opposite color, enemy):

First we identify all pieces that can take part in the exchange on the given
square, namely those that lie one move away. The trajectory of such a piece
must be either free or blocked only by pieces that will take part in the
exchange. Such blockades may be of the following types: Bishops and
Queens may block one another, Rooks and Queens may block one another,
and Pawns may block Bishops and Queens.

Therefore, by inspecting diagonals, verticals, horizontals, and possible
posts for Knights, we can immediately identify all possible pieces that can
take part. At the same time, we identify all blockading pieces. We of course
break off the inspection of a diagonal, vertical. or horizontal whenever we
find a piece that cannot take part. ;

Nowhere in this procedure do we need to compute a trajectory: this
means a great saving in processing time.

We have now identified all pieces active in the exchange. We now use
only the corresponding lists, and we may forget the real position on the
board.

We are interested in the order in which the pieces will enter the excl_lange-
From the viewpoint of the result of the exchange. the optimal order is that
of increasing value. taking into account the fact that a piece can take part
only after pieces blocking it have been removed.

Ii:t us Ehow that nr.:g other ordering will imPf oveE _the res:;‘]tﬁg.f r::_l::
exchange. Choose another ordering, and suppose it 1S optimal an. e 2 So’lbr
from the ordering by increasing value. Choose two p1eces of thai Sar:;lan ihe
that are neighbors in the list. and suppose the first has higher value th
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second. We compare this variation with the one we obtain by inverting the
order of usage of the two.

Let the first piece be captured. The enemy may break off the exchange;
the result 1s the same as though we had taken a piece with lesser value. If the
enemy continues the exchange. we may break it off; then we have lost the
difference between the values of the interchanged pieces as compared to that
obtained in the original order. If we continue the exchange we obtain the
same result as we get in the original ordering, provided the enemy also
continues. and we lose the difference in values if he breaks off.

This proves that the contemplated ordering does not improve the result of
the original optimal variation.

Generally speaking, the blockade considered above may alter this princi-
ple. However, the customary scale of values of the pieces is such that the
blockade of a trajectory belonging to a piece with lesser value than the
blocking piece is possible only if the latter is a Queen; among the pieces
active in the exchange, the value of a Queen plus the value of any other
piece is not less than the sum of the values of two arbitrary pieces. This
circumstance lets us extend our principle to the case of blocking pieces (the
King cannot take part as an active blockader in an exchange).

We order the friendly pieces by increasing value, and do the same for the
enemy pieces; then we compute the proper result of the exchange by a
minimax procedure applied to the time when either side may break it off.
We assume that the enemy is obliged to make at least one capture if he can
do so. If he has no piece that can make the capture, the square is marked as
traversable.

We take account of the following rules of chess in the minimax calcula-
tions: (1) the King cannot take part in an exchange unless he is the last to
make a capture; (2) the square on which the exchange takes place may be
one on which a Pawn would be promoted. in which case the value of the
Pawn increases; (3) the first move in an exchange may be a capture en
passant, which must also be taken into account.

Note that the result of an exchange is defined for a square in a trajectory
rather than for the square on the board where 1t occurs.

This procedure for computing the result of an exchange on an a-square of
a trajectory is used not only for the positional estimate, but also In
determining the priority among trajectories. The priority is a linear function
of a number of variables. One of them corresponds to the vulnerability of
the trajectory; this means that all the squares in it are traversable, i.e.. are
controlled by the side to which the trajectory belongs. Clearly, with such an
exchange procedure in the program, we can compute the positional estimate
and at the same time determine the vulnerability of the trajectory for which
we are analyzing the a-squares. This refers to attack trajectories; we are not
concerned with the vulnerability of the victim’s retreat squares.

In computing the priority of a given trajectory, it makes sense to calculate
the wvulnerability of the corresponding stem trajectory, aside from the
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vulnerability of the trajectory itself, which ma

: : ‘ y, for exampl :

trajectory in the field of the stem trajectory. Doing this at IE:’S;;eaﬁc:::ml
as

the priority of the given trajectory is being calculated is 3 complex and
ineffective task, since 1t would be necessary to unravel the sheaves of

another piece. It is. much more convenient to determine the vulnerable fields
by a separate special procedure. Therefore we first determine the priority of
a field, and then the priority of the trajectories in it.

Before we detern?ine the priority-driven choice of a move, we apply the
procedure for defining the vulnerable fields. This unravels only the sheaves
of the stem trajectones of the attack fields and computes their vulnerability,
using the principle of optimal exchange on a square. The information on the
priority of the stem trajectory of an attack field is written in the germ of the
field, i.e., in the trace of its stem trajectory at the a -square (see Appendix
1). The same procedure determines the number of vulnerable fields and the
total length of their stem trajectories; these quantities are necessary for the
computation of the positional estumate. Once this is done, the procedure for
choosing a move according to a priority determined for some trajectory
finds no complexity in the resolution of the priority of the corresponding
field. It is only necessary to refer to the germ of the field in question and
extract from it the information on its priority.

The procedures described in this Appendix are implemented in PIONEER
via two functions: computation of the positional estimate and determination
of the priority of a move for inclusion in the search. Both are founded on
the determination of the tesult of an exchange on a square. It 1s worth
noting that both positional estimate and priority are computed without
using precise numercal characteristics. The relationship between the posi-
tional estimate and material, and the interaction among the components of
the positional estimate—vulnerability, length of trajectory, forking, etc.—are
adopted temporarily as approximations, which will be refined in further
experiments with PIONEER.



APPENDIX 3

The Endgame Library in PIONEER
(Using Historical Experience by the
Handbook Method and the Outreach
Method)

A_D. YUDIN

3.1. Introduction

As we have said earlier. the development of PIONEER posed the problem
of making its content as close as possibie to the content of the “program™ of
a chess master. The solution of this problem involved the development of an
informauon system called ** Historical Experience™.

Any mformation system is worth developing only if it can be effectively
used, and the solution of the problem presented by this fact is the most
mmportant factor i the development process. On)y if there is reason to
believe, and only if experiment bears out the expectation, that the problem
can be solved 1s there a basis for going ahead with the development.

In our case we are concerned with the usefulness of developing the
handbook-information system that we called “ Expenence of the Past™ (EP)
for a computerized chess program by modeliing the thought process of a
chess player. In the course of a game. a master constantly refers to his own
expenence and that of others. He does this at any node of the search tree
where he considers it worthwhile. It follows that to increase the effectiveness
with which experience can be used, it s necessary to have at most a small
number of nodes 1in the search tree, and necessary for the program to use
only smali amounts of the computer’s resources. Satisfaction of the second
requirement 1s wholly in the hands of the developers of the EP system, the
first requirement, however, 1s inseparabiy connected with the chess algo-

rithm adopted. By using Botvinnik’s algorithm, we obtain a humanly small
search tree.

The chess player's program may be prowvisionally split into two parts (1)
the search for a move in the onginal situation and (2) hbraries of openings.

110
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middle games. and endgames. plus a program for using them. The division
is provisional because at times these two components work in parallel. in
mutual cooperation. Handbook mformation 1s often used in the search for a
move. In this Appendix we shall consider the development of the library of
endgames used in PLONEER and the algorithms for the use of this library
by the handbook and target-seeking methods We also deal with the
implementation of these algorithms in the program.

Since the pieces in FIONEER move in trajectories 1in accordance with an
adopted goal. the problem of using an endgame library can be solved by
modelling the behawvior of a chess master. [n the course of a game. a master
not only looks for a coincidence between a position on the board (or in a
search iree) and a library position. but alsc tries to make use of the latter if
he finds it. (The search for Lbrary positions will be dealt with in Sections
3.10 3.17)) PIONEER does this also. After finding an advantageous and
similar library position it looks [or trajectories in which ‘ts pieces can move,
and moves them so as to reach the target position. Once reached, this
advantageous position coincides with the position in the search tree, the
positional estimate 1s known, and the variation is broken off.

3.2. Formulauon of the Problem

An endgame manual usually presents positions and corresponding varia-
tions. A strong master, however. does not remember these variations. He
remembers the base positions. the nodal posihons, the scores. and. if
necessary, any difficult initial moves. He leaves the rest to his algorithm for
selecting a move.

it 1s therefore useful to omit the variations from the endgame library,
keeping only the nodal posiions. their scores, and initial moves if these are
difficult. This makes for an essential simplification in the methods for
developing a library and decreases the volume of stored information [4].

Thus the master (or programj) has the following task: He has a concrete
endgame position. arising either in the play or 1n some vanation during the
scarch. With the help of the library he must score it (win. draw. lose) as

the move shifts from one side to the other and then. if necessary. choose the
best first move.

3.3. Configurations

By the configurauon of a prsiton involving N pieces we shall mean a set
D\ D,.....Dy | of vwordinate differences L — [, for ¢ =12, ., N1,
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where L, is the hnear coordinate of the /th piece in the position (it may
range from 1 to 64).

Let us imagine a position in a technical endgame. Further. having fixed
the relative locations of the pieces in the position (the configuration), let us
move the position vertically and hornizontally to all possible positions
consistent with staying on the board and not putung pawns in illegal places
We now have a set of posittions belonging to the given configuration. [n our
program developmeni the task 1s to see how to describe this set of positions
(there may be as many as 40) in the endgame library (together with their
soluuions: scores, first moves) in a form suitable for programming,

3.4. The Boundary Effect. Decomposition Formulae

The needed information an be wntten in compact form because of a
phenomenon called the boundary effect. It was found that the set of

positions is easily subdivided into four subsets that. from the viewpoint of
their scores and decisive first moves, do not intersect:

(1) positions influenced by one of the vertical sides of the board:

(2) positions influenced by one of the horizontal sides:

(3) positions influenced jointly by a horizontal and a vertical side (the
so-called corner positions):

(4) all other positions in the set not subject to the boundary effect

The scores and first moves for a given configuration are constant within
any one of the above subsets. Moreover. since the whole set is characterized
by a single configuration. and the positional estimate has only three values
(win, draw. lose), it [ollows that in the majority ol configurations some of
the subsets may be merged because of the identity of scores and first moves.
Also, we often encounter empty subsets, containing no position whatever.

Thus. lor the recognition of an arbitrary position in the set it suffices to
store in the library a single exemplar. for instance from the corner subset
(often, but by no means always, this subset degenerates into a single
position). together with the set-decomposition formulae which characterize

the linuts of vanation in the score. We shall give a detailed solution of the
problem for one set by means of an example.

3.5. Symmetries

The use of symmetries is extremely important for the program:

(1) Flank symmetry—the reflection of a position in a vertical axis of the
board:
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(2) Color symmetry—reflection of the
corresponding interchange of colors:

(3) Diagonal symmetry— reflection of the
h1-a8, for Pawnless positions.

position in a horizontal axis. with

position in the diagonals al-h8 or

Every square on the board is characterized by its two-dimensional coord;
nates x, y or by the linear coordinate L: the two Ssystems are connected b]—
symmetrization. Let x, y, L. be the coordinates of a Square containin z
piece before symmetrization. Then for flank symmetry .

for color symmetry

L.=L+38(9—2y);
and for diagonal symmetry
L. ,ww=8L —63y+56 and Lii.s=63y+9—8L.
Note that for an arbitrary square
L. ing + Lpias =65.

These relationships and a few others are used to form symmetrized
configurations.

These symmetries are used either separately or together, according to the
circumstances in which they are applied. Thus, the position White: Ke3,
Rh1; Black: Kg5, Bh4, entered in the book in either direct or indirect form
(by the use of formulae employing the boundary effect), characterizes 15
positions connected with the joint use of the symmetries.

3.6. The Structure of the Library. Classes. Coding of
the Information

-

The structure of the library is as follows: All positions i a technical

i

endgame are broken down into 31 classes with respect to matenal.—-.i

instance, “King and Pawns vs. King”; “King, Knight, and Pm‘\"&_ |
and Bishop", etc. : _ BRI -
Thus, within each class the material balance is constant Waﬁ s
A class as stored in the library is represented by a rectanguiar THa=
dimension m X n, where m is the number of positions n t
n= Ent[(N + 1)/2]; N is the number of pieces in cn@:
class. g 4
‘Each row corresponds to a Wﬂbm@g S
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The solution of this position is as follows: White wins with 1. Kf2-g1; if
Black is to move, it is a draw: 1. ...h4-h3. Let this position have index
number i in the class “King with Pawns against King with Pawns™.

The score r may take on the following values:

0—won,
R = {( 1—drawn,
2—10st.

The first » — 2 positions (in the row of the matrix, not on the board) form
pairwise united coordinates of pieces. The next two columns contain five-digit
numbers (in the general case) representing moves preceded by the corre-
sponding scores. Thus, the elements of the jth row in our illustrative matrix
are, respectively: M,, =1415; M,, = 4332; M, =1407; M, = 13224,

In classes with NV aodd, the column n» — 2 contains the two-digit coordinates
of the Nth piece in the position.

To each position in a class there correspond formulae for decomposing
the set of which the given position is the configuration symbol, the first
moves. and formulae for correcting the score (see the example below).

With this structure, the insertion (deletion) of positions in the library
amounts to the inclusion (removal) of a row or rows with respect to the class
matrix.

Let us consider a search by the handbook method, and the operation of
the boundary effect, as exemplified by a simple configuration (see the
position depicted in Fig. 37 and the search method shown in Fig. 38). The
positions in the table (except for the last column, which is introduced for
perspicuity) are written in the library and correspond to positions in the
diagram of the class “King and two Pawns vs. King and Pawn™.

A

Figure 37 A sample position.
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_ Using symmetry by flank and color, each position in the set is converted
into four positions.

3.7. Organization of the Information in the Form of
Two-Dimensional Tables with Subordination of
Entries

The presence of the boundary effect allows us to put all the endgame
handbook information into a number of two-dimensional tables with sub-
ordinated entries.

A two-dimensional table with subordinated entries is one containing two
entries, one independent and the other dependent on the first. (See Table 1.)

In our case a single two-dimensional table corresponds to every class with
the characteristic material balance. Figure 38 depicts the structural scheme
of the program for searching such a table. The first required entry into the
table is by configuration, that is, a search for coincidence between the
coordinates of the position on the board (or in the search tree) and
the relative coordinates of one of the library position-configuration symbols.
If and only if a coincidence is found, control passes to the procedure for
making the second entry into the table, i.e., finding a coincidence In
absolute coordinates. Note that this part of the table (the greater part) does
not exist in absolute form. but rather as a set of decomposition formulae,
which are applied only after the coincidence of relative coordinates has been
established [6].

Class Conditions
l_L 7
- -- .
— r-‘ - 5 =
- S
= .E': Decisions
Ll L r= =
W ﬂ IE & &
e =
2 e -
E =
&= S
=
L5

Absolute
e

- 1

Figure 38 Structure of the search for data in a twn-d:mcnmmﬂ table with
subordinated entnes. _

-
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3.8. The Algorithm for Using the Endgame Library
(The Search for Exact Coincidence)

The complex of p!'ﬁCEdt:Il'cS that implement tl}e algorithm is brought into
action whenever a material balance corresponding (to within an interchange
of color) to a class entry in the library is encountered in a board position or
in a variation during a tree search.

Let us inspect the flowchart of the algorithm for using the endgame
library (Fig. 39). The procedures for diagonal symmetry are omitted for the
sake of simplification.

Procedure 4 computes the material balance, which is needed to determine
whether color symmetry exists. All the later procedures assume superiority
or equality of White; the library is constructed on this principle also.
Therefore if Black is superior in the board or search position. a color
symmetry is performed by procedure E, and a solution is found for the
position with the colors reversed. Then procedure U inverts the transforma-
tion, the necessity of which is indicated by the value SC =1 in procedure D.
If the board or search position i1s in equal material balance. the library
position may be sought for either the initial or symmetrized position.
(SC = 2 in procedure C.)

Procedure F brings the initial position into a form suitable for compari-
son with the library entries, i.e., rows of the two-dimensional class matrix.
Here the pieces are sorted and the initial position is coded. Then the class
number is computed by procedure G, and procedure 7 calls the correspond-
ing class into operating memory.

Let us look at procedure G. For every position in a class there exists some
general characteristic, called the template, which defines the concrete re-
lationship of the pieces.

The template for position 4 is an array U with 12 elements: U(1)=1,
U(2) is the number of White Queens in position A4; ... U(12) is the number
of Black Pawns.

The first six elements of the array U, (6) are called the White template;
the second six, U,(6). the Black. These templates are stored for each class
and represent its material characteristic.

Just such a template is prepared for the board or search position. The
search for a class number by matching the templates is depicted in Fig. 40.
This search may employ color symmetrization, depending on the value of
SC.

The coincidence of the template of the initial position with ane-nfq the
class templates yields the number of the class that procedure / calls into
operational memory. R =

Procedure H emr;loys symmetries to produce all possible positions from

the initial position.
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Ci)

1

Compute the material balance ﬂ

White ahead ¢

§ Equal 4 Black ahead

SC=0

o —

SIS Nisom 28] | se=1

Call color
symmetry

£

-

Sort the pieces

]

Find the class number

Y

Apply symmetries as necessary

]

END

Go through the class roster

L,
-

Select next position in class or array

w

Muke inverse
transforms on
score and moves,
as necessary

. Yes

e Yes

Do the positions
coincide after inverse
color symmetry?

No

s the set (array Yes

{ positions been formed?

No

Is there a coincidence
of configurations?

No

the positions in
he class exhausted?

No

-

Construct the array of positions ﬂ——a

Figure 39 Flowchart of the algorithm for using the endgame I]ibra:y (the search for

exact coincidence).
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Class 1
Lumh-:r Templates

I T‘l."!'l'lr"l.lll.' for the
injtial position

30D
31

Figure 40 Schematic diagram for the search for a class number by comparison of
templates.

When control first passes to procedure J, procedures K, L., M, N, and O
carry out a search that is exact to within a color symmetry for a match
between the initial position and the position-symbol of a set in the class
(this is a search for the initial entry point into the two-dimensional table);
when the search is successfully completed, control passes to procedure U,
which reverses the score and first move if necessary.

Let us assume (what is in fact the most probable case) that no exact
match (even taking account of symmetry) is found. Then the test P, which
first takes control, yields a negative answer and passes control to the test R,
which answers the question of the necessity for restoring or establishing a
set with respect to the position symbols, ie., with respect to the library
positions that we have just now dealt with.

In order that a solution exist within the limits of the set for the given
position-class, it is necessary and sufficient that the configuration of the
position coincide with at least one of the symmetrized positions on the
board or in the search. The proof of necessity and sufficiency follows in an
elementary way from the definition of a configuration, the rules for symme-
trization, and the process for forming the set of positions for a given
configuration.

Thus, given a positive outcome of the test R, we have a full g_uarantee that
the array or set of positions will not have been formed in vain (procedure
7). This means that after all the positions in the set formed by procede‘E: x
are tested, control necessarily passes to procedure U because of the positive
outcome of one of the tests K, M, or O. This constitutes the search for the
second entry in the corresponding two-dimensional table.

Note that with the aid of the formulae for decomposition and for

~ correcting the score and the moves, procedure TP‘“"“"E"’*_ o 5“ “_fm“"‘?s
‘with their solutions, which are inscribed in the two final columns of the
 matsix. After the nesessary inverse transformations have been applied (0 the

s Ay

~ score and the move by procedure U, the problem is solved.
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Now assume that the test R yields a negative result. Then control passes
to procedure J; the next position-symbol i1s chosen, and so on.

If we have examined all the position-symbols in the given class and the
test R has not yielded a single positive outcome, the test S gives a positive
result, which means that no exact match exists; accordingly, the desired
position is not to be found in the library. This happens often, since the
library contains relatively few positions and the number of possible
configurations is very large in a technical endgame, even though the number
of pieces may be small. In this case we have recourse to the outreach
method as applied to library positions (see Section A3.10 fT.).

The methods we have just described generate some 14000 positions
(without taking symmetries into account) from a library of 633 positions.

3.9. Examples of the Operation of the Subroutine for
Using the Endgame Library

Our experiments with the technical endgame library had two goals: (1) to
test the efficacy of the subroutine for using the library when called from the
subroutine for searching for moves; (2) to make an analytical test of the
scores corresponding to the embedded information. We also tested the in-
fluence of the boundary effect on the score for the position, together with
the use of the symmetrization mechanism.

After we had finished the chess portion of the work, i.e., after we built the
library itself, we wrote a special subroutine to compute the solution of all
the positions in the technical endgame library (with the aid of the decom-
position formulae—see section 3.4) and printed out all the arrays and the
solutions of each position in the library. One such array is shown in Fig. 41.

The embedded configuration is shown in the computer display. The first
column of the table contains the serial number; the second contains the
position of the White King; the third contains the score for White's move
(“"’"“"- win/lose for White; “ =", a draw); and the fourth contains
White’s move. The name of the piece making the move is omitted; the code
B9-B9 means that the indicated move that solves the position is not
obligatory. The fifth column contains the score if the move is Black’s: and
the sixth contains Black’s move.

These arrays were subjected to examination by tens of strong chess-
Player S. as a result, we eliminated a number of errors, unavoidably present
in the construction of such a large library and of the corresponding
subroutines.

_ Figures 42(a)-42(c) show the output from the subroutine for using the

library. This is the solution of the symmetrized positions obtained from a

single configuration. The interpretation of the captions printed above the
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=
*
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*
*
*

* » [0 »

¥

*

b 3

»

»
2
*

Array = 32
1 A2 = B9-B9 = B9-BY
2: B2 = B9-BY9 = B9-B9
T, Y R — C3-G3 = GH-A6
4 B3I +-~ D3-H3 = Hh-B6
S A4  +— C4-G4 = G7-A7T
5 B ‘v~ DaH4 = H7-B7

Figure 4] An example of an array of positions embedded in the library with their
solutions.

diagrams is as follows:

New Position: A new position generated by the subroutine for analysis: a
*“—"" sign before the piece code indicates a Black piece. The uppermost
diagrams display the starting positions; those in the second row display the
outcome and the position after the first move when White is to play: those
in the third display the corresponding information when Black is to play.

3.10. Outreach for a Library Position

All the foregoing considerations relate only to exact matches between
positions on the board or in the search and positions in the lilf_ﬂ‘a_f-}'- I_“_’t ue
now suppose that a position arising in a game or in some varialion 1n e
search tree is such that no matching library position can be found. -qu
does a chess master act when faced with such a problem, and therefore how
should a program modelling his thought proceed? ;
Capablanca showed {9] that a chess master not only goes over ubrary
positions in his calculations in order to break off a variation, but also tnes

L
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Figure 42 Results of the procedure for using the endgame library.
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to use one or other of the library positions to his own a
program should do the same.

Suppose that the configuration in the starting position has not been found
among the position-symbols in the sets of library classes. Then a position, or
group of positions, in the library that are very near the given position (on
the board or in the search) should be found, and an effort to reach such a
position should be organized, in the following way: When the neighboring
position has a favorable score for our side, we include in the mathematical
model some so-called planned trajectories for the pieces belonging to the
active (target-seeking) side, 1.e.. trajectories leading from the starting posi-
tion to the neighboring position. The active side forms its fields. Here the
algorithm for using the library cooperates with the algorithm for searching
in the starting position. In order to organize the search, we must include in
our mathematical model the trajectories of all the pieces of the passive side
that do not coincide with the library position.

1t is important to note that these trajectories must be “anti-forked” in the
sense that the passive side must move along them only in extreme cases.
Moreover, in contrast to the fundamental principles of the move-search
algorithm in the starting situation, no fields are formed to obstruct the
movement of the passive side’s pieces in the designated trajectories.

dvantage. The

3.11. The Search for Nearby Positions

First we define the following notions:

Two positions 4 and B will be said to be equal in material if U* = U/ for
all i=1.2,...,12, where U and ¢? are the elements of the templates of
positions 4 and B.

The non-coincidence 5,, of two positions 4 and & that are equal in
material is defined as

64
Sip =7 Z s
P=1

 Wheree,=1ifa,=b,0ifa,=b, e
~ Here a, and b, are the programmed codes for the pieces located on the ith -
ﬁgna;em the positions 4 and B. ie., a,= 12 ok

¥ d

s
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22. if the ith square in position 4 contains a Black Pawn,

23. if the ith square in position 4 contains a Black Knight,

24. if the ith square in position 4 contains a Black King,

25. if the ith square in position 4 contains a Black Rook,

26. if the ith square in position 4 contains a Black Bishop
27. if the ith square in position A contains a Black Queen,
0. if the ith square in position 4 is empty,

where i is the linear coordinate.
0 S G SRS AR e be a sequence of trajectories leading from position 4 to

position B (i €., trajectones in which the moves begin at A and end at B).
The difference D,, between positions A and B of equal matenal is
defined as

S48

DB=ZI~,

7=

where /, is the length of the trajectory T in half-moves foranyj=1,2,..., S 5

Two posumns A and B of equal material are said to be neighboring if
S48 < Smaxs Pup < Doy, Where s is the maximum admissible noncoinci-
dence (number of non-coinciding pieces) and D_ . is the maximum admissi-
ble difference in the positions.

As a first approximation it was assumed that the search for neighboring
positions should confine itself to positions of equal material. This means
that the class of position-symbol configurations in the library is uniquely
defined as the class for which the material (taking account of color symme-
try) coincides precisely with the material in the starting position (see Fig.
40). The values of the quantities s, and D,__ _serve as running limits on the
search.

Then the problem is as follows: We have a starting position 4 and wish to
find a group of library positions B,, B,,...,B,, each near 4 in the sense
defined above.

Note that here we are not analyzing the relationship between the score of
A and the scores of the B, B,,..., B,; that analysis will be carried through
later. We do not assume that we shall subsequently organize an effort to
reach all of the B,.

We call the positions B, candidate targets. Obviously, at the outset all
positions in all sets defined by the position-symbols of the given class are
candidate targets.

One of the tasks facmg the search for neighboring positions is to make the
maximum reduction in the number of candidate targets without using an
awe-inspiring machinery for finding the trajectories. We have found a
number of constraints, which we call filters, that allow us to reject a large

number of the sets of library positions by finding positions in the sets that,
although near the starting position, can be rejected at the configuration
level. These filters are of the following types.
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3.12. Filter with Respect to the Pawn Structure

This filter operates only when the starting position (and therefore the library
position also) contains two or more Pawns of either color.

We have the starting position 4 and a position C which typifies the set of
positions belonging to the given configuration. We form the Pawn template
for position 4 as follows: We project the entire Pawn structure on the first
rank and assign to the eight squares the values

SH?” = 0 (if there are no Pawns in the ith file)
—10p) + p! (if the ith file contains a Pawn or Pawns).

where p* is the number of White Pawns in the ith file and p! is the
corresponding number of Black Pawns; i =1,2,...,8.

This process yields an eight-element array SH”. We further select the
non-zero elements by eliminating all zeroes from the left-hand side until we
reach a non-zero element SH” = 0, and from the right-hand side so that the
final element is SH? =0 (j = i). The array SH* so obtained is called the
Pawn template for position 4, and is assigned the length /,= j —i + 1.

The Pawn template SHC, of length /. is constructed in the same way for
position C.

We shall prove the following assertion. There exists no sequence of
trajectories leading from a position 4 to an arbitrary position in the set
characterized by C if: (a) I, = [; or (b) I, = I, but there exists at least one
value of i in the set i =1,2, 7, such that SH = SHf.

Proor. Let C, be one of the positions in the set characterized by the
position-symbol C. Since the positions 4 and C are equal in material, so are
A and C,.

Suppose that one of the conditions (a) or (b) holds.

We assume that our assertion is false, i.e., that there exists a sequence of
trajectories carrying A into C,. Then if either condition holds, at least one
trajectory must change the number of Pawns in some file by at least one
unit. This follows from the fact that if one of the conditions holds. the Pawn
templates do not coincide. But a Pawn can move from one file to another
only by making a capture or captures. This contradicts the fact that 4 and
C, are equal in material, and this result holds for any C, in C. We have
arrived at a contradiction, and therefore the assertion is valid.

If the templates SH* and SH do not completely coincide, all the positions
in the set characterized by C may be excluded from the list of candidate
Largets. s
It is worth noting that all the arguments we have used are valid to 'W*ﬂ““
oK symmetry. This means that if Condition (b) holds, we must form the
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flank-symmetrized Pawn template SHy; by the formula SHs, = SHf _
(i=1,2,...,1-) and test the condition (b) for SH? and SHY.

If Condition (b) is not satisfied, i.e. SH* = SH§ for all i =1,2,.._, l,. the
configuration C is listed among the candidate targets, and the necessity of
performing a flank symmetry is recorded.

Furthermore. if the White and Black material are identical in the given
class. in the chess sense, we must take account of the possibility of a color
symmetry for SH_by means of the formula

0 if SHE = 0;
10p? + pr if SHE =10p" + p’.

The relative Pawn structure filter yields a great reduction in the number
of candidate targets.

i}

SHC e,

ifeo) —

3.13. The “One Color—Different Color” Filter

This filter acts only when each side has a Bishop and they are on diagonals
of opposite colors.

Suppose given an initial position A, and denote the two-dimensional
coordinates of the White Bishop by x . v, and of the Black by x,, y,.

It is clear that if x, y are the two-dimensional coordinates of a square on
the chessboard, the sum x + y is even for any White square and odd for the
Black squares. Therefore the sum Z,=x_+ y_+ x;, + y, is even if the

opposing Bishops occupy squares of the same color and odd for squares of
opposite color.

Clearly no trajectories can lead from the position 4 to a position C if Z,
and Z_ are of opposite parity, i.e. if Z= Z, + Z_ is odd. It is worth noting
that this filter does not require symmetrization, since no symmetrization
performed on C can change the parity of Z_. nor, therefore, the parity of Z.

Thus, after we have initially filtered the list of configurations, we have a
list of candidates C,,C,,...,C,, such that candidate targets can be found
only in the sets of positions characterized by these configurations.

3.14. Filters Within a Set of Positions

We may now proceed directly to the formation of a list of candidate target
positions.

We have an initial position 4 and a sequence of candidate target
configurations C,. All the positions in the set characterized by C, are

candidate target positions. The following constraints (filters) help in reduc-
ing the number of the latter,
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The sy'mmeui.z,?ition algorithm is essential in all phases of the search for
neighboring position. Throughout the remainder of this discussion, however.
we shall not mention it explicitly.

From what we have said in Section 3.12, it follows that the sequential
examination of the list of candidate targets results in the selection of only
those positions in the set for which the files of all the Pawns correspond
exactly with the files of the Pawns in the initial position 4. This is not all.
however. We also require that the coordinates y* of the White Pawns in
position A satisfy the conditions y* < yE, and for the Black Pawns the
conditions y,* = yE. Here the yf are the second coordinates (vertical) of the
corresponding Pawns in the selected position taken from C,. In other words,
no Pawn in the initial position may be further advanced than the corre-
sponding Pawn in the candidate position, else a trajectory would be
required in which a Pawn moved backward, violating the rules of chess.

Again, if there is a Bishop in the candidate position, it must be on a
square of the same color as in position 4.

After all the positions in the set have been filtered, we have the initial list
of candidate target positions.

We must note in the conclusion that the program implementing the
algorithm that searches for neighboring positions does not record the
current candidate target positions, but rather records only the locations, in
the program of the decomposition formulae that generate these positions by
use of the symbols of the corresponding sets.

3.15. Finding a Group of Neighboring Positions

When the list of candidate target positions is small, we can make a direct
test of the nearness of each to the initial position.

First we test to see whether the discrepancy exceeds the maXimum, Sqax-
The list is again greatly reduced. Next, when the number of non-coincident
pieces does not exceed the established limit, we resort to the algorithm fa‘.r
generating trajectories. After having found trajectories for the non-coincid-
ing pieces, i.e. those trajectories that carry the neighboring position into the
initial position, we test to see whether we have exceeded the maximum
allowed distance between the positions D, . Then we may decide whether
to include the candidates in our final group of neighboring positions. which
we denote by B, B,,....B,. ' ' A

Note that the quantities Spax and D, may vary, epending ©
computer’s resources of time and memory. In our opinion, a chess
varies them in the same way. Under time-pressure ol
a world champion does not allow himself large vi
43Tlu= flowchart of the algorithm for near-neigh
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3.16. Implementation of the Outreach Method.
Anti-outreach

Let us again recall what 1s meant by reaching out from an initial position 4
to a neighboring library position B. To organize such an outreach means to
assign priorities to trajectories that lead from 4 to B and include them in
the mathematical model on the basis of information in the technical
endgame library about the score and the decisive moves for the side that has
the move in position B.

The implementation of the method based on outreach toward a library
position may lead to a directed formation of the mathematical model and
the search tree. But as soon as coincidence is established, the handbook
method takes over, based on complete identity of positions: the score is
known, and the variation is broken off.

Let us now introduce the notion of an anti-outreach.

Suppose that in the initial position A4 there is a win for White at some
White node in the search tree (i.e. the move belongs to White), and that for
some neighboring position B the outcome is a draw. Suppose also that for
some reason or other the mathematical model includes trajectories leading
from A to B. Then anti-outreach means the forced lowering of the priorities
for moves in those trajectories. In this sense, anti-outreach enables us to
avoid traps and snares.

3.17. Entry from the Move-Search Routine

Let us now see how the outreach subroutine is entered from the move-search
routine in the original situation. If we were to test for coincidence of the
current position and a library position at every node of the search tree,
much time would be consumed. (Such a procedure is characteristic of the
handbook method.) But if we test for neighboring positions at every node
we are infringing on the algorithm for the inclusion of fields. Before going_ to
an outreach we must determine what additional benefit we would denve,
since every outreach is connected with the inclusion of fields and an
enlargement of the search tree. Therefore we perform our outreaches in the
same sequence as the inclusion of fields, i.e. only during backtracking up the
tree.

We recall that if the mathematical model of the position contains not
even one planned trajectory of the passive side, the outreach to the position

P p—_
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3 18. Outreach and Exact Coincidence

Let us list some observations on the similarities and differences of the
handbook and outreach methods.

From what we have said above it is clear that the search for exact
coincidence of two positions 18 a particular case of the search for neighbor-
ing positions. In fact a library position coir}ciding_ exactly with the initial
position may be described in general as a nmg,hl?onng position.

Suppose given an initial position 4 and a library position B equal in
material to A. Suppose further that 5,, =0 and D,z = 0. Then, firstly, B
coincides exactly with 4, and secondly, by the definition of a neighboring
position, it is a neighbor of A. Therefore a zero discrepancy and distance
between two neighbors implies their exact coincidence.

In this respect the handbook and outreach methods are alike.

The difference between these two methods for using historical experience
lies in the fact that the handbook method, as a particular case of the
outreach method, does not require the use of the search algorithm in the
original situation; more precisely, it does not require the mechanism for
generating trajectories nor does it extend the search tree for variations. For
these reasons the handbook method is simpler, 1n that it requires less
expenditure of the resources of the computer. The same reasons also
account for the order in which we have presented the use of these methods

for building the technical endgame library and the algorithms for exploiting
it.

3.19. The Potential for Wide Use of Library Rules in
PIONEER

In conclusion, we shall deal with a portion of the endgame library that is
not used for complete or incomplete comparison of positions encountered in
the search for variations with those met earlier. This is the so-called library
of rules. In the course of our development of decision theory as applied ©
an arbitrary domain, we elaborated a set of methods usable for scoring a
situation while it is under construction, without further formation of the
tree of possibilities; instead we use certain criteria, or rules. having the
character of strictly proven theorems. In chess, there are no exceptions (@
these rules. The more such rules a chess master knows, the more likely he is
to break off a variation in the search tree rapidly by using them.

The development of any program based on the construction of a tree of
vanations and the use of the minimax procedure on it inevitably raises the
problem of forcing the breakoff of a variation before reaching its limiting
depth, by the use of the various criteria. The first solution to this problem
was developed in PIONEER. The question concerns a breakoff in accor-
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dance with certain library rules, rather than a breakoff connected with
goal of the play (by the search routines in the original situation). It is
obvious that the greater the number of variations we can break off in this
way. the smaller the final size of the search tree. Therefore we quite
naturally wish, first to elaborate and formalize a large number of such
criteria for breaking off a variation, and then to use them at as many nodes
of the search tree as possible.

On the other hand, the time required for solving the problem may grow
very rapidly as the number of nodes at which we use the criteria increases.
The effectiveness of the method is closely dependent on the size of the
search tree itself. Since the test for these criteria at a given node consumes
some time, even though small, i1t 1s clearly senseless to make the test at all
nodes of a large tree. We are speaking here, not of the formal pruning by
the a-B-procedure, but of the use of breakofl criteria connected with a
specific task, in our case with the use of a library of chess rules.

Clearly, the use of a library of rules is of dubious effectiveness for the
majority of the existing chess programs, which are dedicated to the principle
of a full-width search and consequent production of enormous search trees.

The picture is quite different in the development of PIONEER. Here we
have to do with a search tree that is small and, what is extremely important,
narrow—containing some 100 nodes. With the algorithm we have adopted,
the widespread use of library rules is quite possible. Note that there is an
obvious inverse feedback at work here: an effective use of the rules (methods
of play at various stages of the game) allows us to shrink the search tree
even more stringently, which not only speeds the solution of the problem
but qualitatively influences the effectiveness of the solution.

Thus, in the solution of inexact search problems by means of Botvinnik’s
algorithm there is an interaction between the small size of the search tree
and the use of historical experience and accumulated knowledge of the
substance of the investigation, in this case the game of chess.

the

3.20. The Breakofi Criterion Based on the Rule of
the Square

During its many centuries of development the theory of chess hasipmdusaﬂ
an enormous number of methods of play, of all possible types, allowing the
calculation of variations to be shortened.

In the development of PIONEER we found it expedient to embody a

large number of these methods, formalized as criter
variation, in order to increase the effectiveness of the solutons
problem. _ il s
~ As an example, let us consider the formalization and extens
so-called “rule of the square” in a Pawn endin

~ explanation of its Mce.simeltiiw “det:
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texts: it has to do with whether a King can prevent an opposing Pawn from
reaching the eighth rank successfully.

Since PIONEER can play either side, we shall not speak explicitly of
either White or Black, but rather of the (+) and (—) sides. We adopt the
following notation:

K(+ )—King on the { +) side;
P( +)—Pawn on the (+) side;
K(— )— King on the ( — ) side;
P(—)—Pawn on the (—) side.

Absolute Criteria. Material K(+ ), P(+): K(—)

1. If the K(—) is not within the square of the Pawn P(+ ), the side (+)
wins.*

2. If the K(—) is in the square of P(+) and nearer to P(+) than is the
K( +), the game is drawn.

Here, and later, we shall mean by “nearer” that
IK(—)—P(+)| <|K(+)—=P(+),

where the terms on either side denote distances in half-moves between the
corresponding pieces. These distances are computed in an elementary way
from the coordinates of the pieces. The formula is independent of the
assignment of the move.

The First Sufficiency Criterion. Material: K(+ ), P(+); K(—), P(—)

Suppose both Kings are within the squares of the opposing Pawns. In order
that one side may be sure of a draw it is sufficient that his King is closer to
the enemy Pawn than the enemy King is to the same Pawn. For instance, if

(K(+)—P(—)| <|K(—)—P(-)l.

after taking account of the assignment of the move, the ( +) side is sure of a
draw,

Let us prove this assertion. Suppose the given condition holds. If the (+)
side moves only his King, and moves it in the direction of the enemy Pawn
in such a way that the distance decreases with each move (which he can do
because he is within the square of the enemy Pawn), the K( + ) can capture

the enemy Pawn without hindrance before it is promoted. This guarantees a
draw.

*Here, and in what follows, in defining the location of the King in the square of the Pmm
we must take into account the possession of the move. For instance, depending on which side
has the move, the King if on the boundary may be either in or oot of the square.
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Second Sufficiency Criterion. Material: K( + ), P( + ); K(—), P(—)

Let

K(—) be within the square of P(+);

K(+) be no further than K(—) is from P(+) and from its promotion
rank;

P(—) be not on any file between K(+) and P(+ ), inclusive:

K(+) and P(+ ) be not on Rook files or Knight files.

THE TREE OF THE POSITION NUMBER 17
BLACK *KA&6,PNS.
WHITE TO PLAY

PCé6-CT
PHS —H&4
PCT7T-C8BG@
~ PC7-CB8%
PHS—H&
EAG—-87
PCT-CBG
KBT&C8
KHB-G7
PHS-H&4
KGT-Fé&
PH&L-H3
KEF&-F5
PH3I-HZ
KF5~F4
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PH2Z-HiQ
" KF3-F4 -9
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= L. KBTeCS — —i
FETECRQAL .
KHE-G7
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Then

(a) if P(+) is Queened one half-move ahead of P(— ), a draw is guaranteed
for the (+) side;

(b) if P(+) is Queened one-half move behind P(—), a draw is guaranteed
for the ( + ) side provided that P(—) is not Queened with a simultaneous
check and if the appearance of Q(+) is not annihilated by a forked
check. A simple proof of the validity of this criterion is very lengthy,
and we therefore omit it.

It is worth noting that the concepts of “being in the square”, “being no
further away”, “not being on a file”, is Queened”, “earlier”, “Queened
with simultaneous check”, “annihilated by a forked check™, etc. were
precisely formulated in the program, and took account of the assignment of
the move.

As a result of PIONEER’s incorporation of these critenia for breaking off
a variation, based on extended rules of the square, the search tree in the
solution of the problem by Richard Reti (see Fig. 13) took on a certain
“human” profile. Until these rules were introduced, PIONEER developed a
senseless search even in conditions where a human player would long ago
have broken off the variation (see Fig. 44).

We must note that at times the program broke off a vanation after a
move by Black although the final score assumed a response by White. We
may illustrate this by reference to a position occurring in PIONEER’s
solution of Reti’s problem.

In the position shown in Fig. 45, after 3. ... Kb6:c6, a chess player would
break off the variation because of the reply 4. Ke5-f4. The program,
however, did not need to make this move, since the absolute criterion had
already operated. In the same way, in reply to 3. ...h4-h3, the chess player

_

Figure 45 Position from 'Hdm‘ﬁ.-smch N for a problem by Reti: White:
Kh8, Pcé; Black: Ka6, PhS. Draw. AT - a problem by Reti |
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would move 4, Ke-d6, since a draw 15 guaranteed by the second suffciency
criterion.

3.21. Concluston

To sum up, we may say that on of the most important tasks n the
development of a chess program modelled on the thought processes of a
chess master i the construction of a handbook system for recording
historical experience, and the elaboration of algorithms for using this
experience.

We have reason to believe that the use of the handbook and outreach
methods, together with the breaking offof variations by the library method
(as is characteristic of chess masters and PIONEER) can be applied mn
practical control problems in other areas Whee, a in chess, inexact search
and enumeration problems arise.



APPENDIX 4
An Associative Library of Fragments

A. 1. REzNITSKY AND A. D. YUDIN

The handbook method described in Appéendix 3 cannot be used effectively
in the middle game, since at that stage identical positions arise only rarely.
A more suitable method consists in selecting a move in the current position
by reference to similar positions that have arisen in the past, ie. In
reasoning by analogy.

This method of obtaining information by associating the analysand
position with similar positions in the library and using the library data, is
called the associative method, and the corresponding library, which stores
the indicators of similarity between positions, 1s called an associative
library.

The possibility of developing chess algorithms embodying the use of
historical experience by association was mentioned some time ago by
Shannon [2]. As an example, he cited the chess master who

... knows hundreds, perhaps thousands, of standard positions, customary
combinations, and typical maneuvers, which anse frequently in games.
There are, for instance, the standard sacrifices of a Knight at {7 or a
Bishop at h7, standard mates, e.g Philidor's mate, maneuvers connected
with forks, promotions, etc. In a given position he considers many similari-
ties to cases he knows, and this directs his thinking toward the study of
those vanations most likely to succeed.

The associative quality of the chess piayer’s thought appears in his attempts
to apply the experience of past situations to the present situation by finding
some similarities between them.

We have already noted that in Botvinnik's algorithm the mathematical
model of a position is constructed in parallel with the development of the
tree of variations. The conservation of computer resources depends strongly

136
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on the choice of the direction for the search. If we are in a position similar
to one encountered earlier and if our accumulated experience allows us to
obtain an advantageous configuration of our pieces, or execute a standard
combination or maneuver, a further search for variations is unnecessary,
since any we found would be pruned. Thus if the possibility of similar
action exists in similar situations, we may use it to shrink the tree. This
notion was successfully elaborated within the limits of PIONEER and
founded on an algorithm operating in middle-game positions and complex
endgame positions, in cooperation with the move-search algorithm in the
original position.

The method of fragments was developed in order to formalize the notion
of similarity among chess positions; its essence is as follows:

Given a past position in which some specific idea {maneuver, combina-
tion) was successfully exploited, we extract some portion (fragment) of it,
including those pieces whose presence was essential to the implementation
of the idea in question. This fragment is stored in the library, and in the
future all positions (arising in the search) containing it are considered
similar to the position from which it was extracted. It is assumed that in
every such position there is an opportunity for the use of the fundamental
idea.

Let us describe the basic elements of the method of fragments.

A fragment includes only those pieces whose absence would make the
execution of the typical idea impossible. We call these operarional pieces.

They may be divided into two groups. Fixed pieces must be stationed on
uniquely determined squares, called fixation squares. Trajectories must exist
for the remaining pieces (within a predetermined horizon) to other defined
squares, which we call binding squares; the pieces are bound pieces.

The designation of certain operational pieces may be non-uniquely
determined, as for instance when the sole function of the piece is to block a
trajectory of another operational piece.

The division of the operational pieces into the fixed and bound categories
arises from the fact that only one of the players can be interested in the
existence of the typical idea. He may move some of his pieces during the
preparation and execution of the idea. Therefore the operational leﬁs_
belonging to the active player are said to be bound, and their conﬁgntahﬂn
is characterized by a high degree of freedom. The operational plm
belonging to the opposing player are fixed, their pOSIucns ﬁﬁ-ﬂgﬂ‘hw
to examination. gy

We distinguish fragments as being initial or nearly initial, deps
the distance of the bound pieces in the framnt ﬁm the
binding squares. An initial fragment is chara 1ZE
thebound pmmwmhmchmataw 3
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Let n, be the minimal separation of the ith piece from its binding square
(as given in the description of the fragment); let /, be the actual separation
of the ith piece from its binding square (the number of half-moves required
to reach the square); and let k& be the number of bound pieces in the
fragment. Then in order that the position should contain an initial fragment,
it is necessary that (1) each fixed piece be on its fixation square and (2) for
eachi=1,2,...,k, we have [, =n,.

Next, let H, be the limiting horizon and let D be a given integer.

If all the fixed pieces are on their fixation squares, and if the following
system of inequalities is satisfied:

k
n<lIl,<H,, 11 W IS o 2 (l=n;)< D,
i=1
we say that the position contains a nearly initial fragment.

The sum XY(/.— n,) represents the distance between the nearly initial
fragment and the corresponding initial fragment, 1.e. it 1s the minimum time,
in half-moves, required to reach the initial fragment. We call this sum the
depth of association of the fragment in the position being analyzed. For an
initial fragment, the depth is zero. The quantity D is called the limiting
depth of association and is a constraint on the search. It will vary depending
on the extent of the current resources.

The role of the associative method in PIONEER is to allow us to
determine the priority of variations in the search, at the control system
levels in which the pieces contained in the fragment take part in the play,
i.e. it allows us to direct the search. The priority for inclusion of a fragment
in the search depends on the value of the target in the field where the play
occurs in the fragment (the value is recorded in the description of the
fragment) and on the depth of association of the fragment in the position
being analyzed. Thus, the fragments supplement the system of priorities for
the inclusion of fields in the search, which is a subroutine in the move-search
program as applied to the original situation.

; In positions containing a fragment near the initial situation, the active
side may attempt to reach the initial fragment. Then those bound pieces
further away from their binding squares than the minimal distance are
singled out; trajectories leading to the binding squares are computed and
included in the mathematical model. The fields corresponding to the re-
sultant stem trajectories are included in the play (see Appendix 1). The
priorities for the moves in the trajectories included in these fields are
determined in accordance with PIONEER’s priority system.

The preliminary movement of the pieces along the trajectories of these
fields or the trajectories for play in the dependent fields may continue until

either the initial position is reached or it becomes clear that for one of the
following reasons it cannot be reached:

— the configuration of the fixed pieces has been disturbed;
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—a bound piece has been captured;

—the trajectories of some bound piece leading to its binding square
cannot be unblocked.

If at least one of these conditions is satisfied, all the fields included for the
purpose of organizing the outreach to the initial fragment are erased, which
is equivalent to erasure for lack of connection to the operational trajectory
(see Appendix 1).

If the initial fragment is included in the search, the piece making the first
move is identified; the move “according to the fragment” is given highest
priority. This move either reaches the corresponding binding square or
passes along the trajectory leading to it if the minimal distance for the
selected piece is greater than one half-move.

For these reasons, we record the following information for all initial
fragments contained in the library:

(1) for the fixed pieces: the identity of the piece and the location of the
fixation square;

(2) for the bound pieces: the identity of the piece, the location of the
binding square, and the minimal distance from the binding square;

(3) the bound piece making the first move;

(4) the possible amounts of displacement: a vertical or horizontal simulta-
neous translation of all fixed and bound pieces is called a displacement;

(5) the value of the target.

The development of a library of fragments is justifiable only if recourse to
it allows us to save time on the average in our search for strong moves in
those positions that contain library fragments. Therefore one requirement
placed on the subroutine that searches for fragments is that the time spent
in using it must be small in comparison to the mean time spent in analyzing
a position.

To save time in the subroutine, we organized a multi-level search. At each
level we test for certain specific conditions, and a further search is under-
taken only among those fragments that satisfy them. The levels of search
may be regarded as filters that pass only the fragments that the given filtel &
deems capable of being found in the position being analyzed. Foe

Fragments that pass a filter are called candidates. Their identifying
number in the library is recorded in a list of candidates. At each :
search some fragments fail to pass the ﬁltnr, and a nw list of s

passes (mly those fragments that exist in thnp,géx
filters are arrangedmmmmgmdexﬂfﬁm;
ﬁan,sothattheshwtﬁltﬁmnﬁ-mtsﬁ%
Wts. Wuhthmargamzaﬁmg.m'
'__mtheppmmninﬂm
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Let us trace the operation of the subroutine in the flowchart shown in Fig,
46.

The information recorded in the library corresponds to the case in which
the presence of the fragment on the board is advantageous to White. The
recognition subroutine operates on a defined color and finds only those
fragments advantageous 10O that color. Therefore if it i1s looking for a
fragment in favor of Black, as established by test A4, it performs a color
symmetry, via the procedure B.

" Procedure C reflects the analysand position in the vertical axis of the
board, in preparation for a flank-symmetrization. The resultant reflection is
then used in the same way as the analysand, i.e. we tesl for the presence of
library fragments in either the position itself or in the reflection. If a
fragment is contained in the reflection, the a-squares in the trajectories of
the bound pieces are subjected to a flank-symmetrization.

Procedure D is the first filter. Here we test whether all the operational
pieces are present on the board. We form the first list of candidates from
those fragments that survive the filter.

Control then passes to procedure E, the second filter. We test whether the
fixed pieces in the analysand position are in their assigned places. The list of
candidates is reduced.

Procedure F organizes the search for the bound pieces, and prepares the
final list of candidate fragments, namely those that are present in the
analysand position. For each fragment in that list it finds: (1) the a,- and

( starT ) 4 =
Select the fragment with maximal \
priority for inclusion in the search

No

Do a color symmetry B Is priority high enough?
= Yes _
: !
Do a flank symnetry x l Include the fragment in the search \'
* 3
Selacahe candida-te ragments & Cali the algorithm for seeking a move in th &
from the library initial situation and compute the vanation

1

Test for the presence of the w
fixed pieces in the position

s branclhung at =
: the node suspended -

L]

No
Search for the fixed pieces; ; —
Get the list of fragments \< s the roster of candidates

exhausted”

B

contained in the analysand position

1

i s
END )
Figure 46 Flowchart of the program for using the associative library of fragments.
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a,-squares iﬂn the lrajectorijes of the bound pigces leading from the binding
squares _to squares more distant than the minimum distance: (2) the d
of association of the fragment in the analysand. . = Eoph

C.o_mrol passes to prox_:edure G _which _selecls from the final list of
candidates the one with highest priority for inclusion in the search. namel
the fragment for which the function F = (10M — D_) 1s maximal. \:uherg j\;
is the value of the target and D, is the depth of association of the fragment
in the analysand.

After the fragment is chosen, procedure H decides whether to include it in
the search, by reference to PIONEER’s system of priorities. If play accord-
ing to the fragment has the highest priority, control passes to procedure I
which links the recognition algorithm to the move-search algorithm in the
original situation. Here we raise the priority of the *“move according to the
initial fragment”, or if the fragment we have found is nearly initial we
include in the play the trajectories passing through the a-squares that we
have found. In this way procedure / directs the search.

Control now passes to procedure K, the move-search subroutine in the
original situation. We determine the score for the optimal variation. If it is
sufficient for breaking off the branching at the node of the search tree where
the analysand position arose (procedure L decides this), the library is no
longer needed at that node and reference to the library ceases. In the
contrary case we see, via procedure M, whether the list of candidate
fragments has been exhausted, and if not, control returns to procedure G to
test for inclusion of the next fragment on the list. Thus, at some node of the
search tree the cycle G — M will be repeated until a decision is reached to
terminate the branching there or until the list of fragments in the analysand
position is exhausted.

As a typical example, let us consider a combination that has been known
for over 300 years. It begins with a Bishop sacrifice on h7. With this sacrifice

¥
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the attacking side lays bare the position of the King, and then the combined
action of Knight and Queen poses mating threats that often cannot be
parried. ‘

The position of one side, In which this combination occurs, i1s shown in
Fig. 47. After 16. e4-e5 Nf6-d5; 17. Nc3:d5 e6:d5; 18. BgS:e7 Ncb6:e7, all
the conditions have been created for entering the subject combination: 19.
Bbl:h7+ Kg8:h7; 20. Nf3-g5+ Kh7-g6. (A retrecat by the King 20. ... Kg8
would be followed by 21. QhS with an immediate win.) 21. Qdl-g4. White
now has a winning position and in a few moves will carry the game through
to a win.

Now let us define the initial fragment corresponding to this combination:

1. The fixed pieces:

Name of the Piece Fixation Square
King g8
Pawn g7
Pawn h7

2. Bound pieces:

Minimum Distance

Name of the Piece Binding Square from Binding Square
Bishop h7 1
Knight g5 1
Queen h7 3

3. Bound piece making the first move: Bishop.

4. Permissible magnitude of displacement: 0 (displacement not allowed).
5. Value of the target: 200 (value adopted for the King by PIONEER).

Figure 48 A position that might be encountered in an initial fragment.
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One ofthe possile configuration n the inital ragment is shown n Fig
48, The position shown in Fig, 47 contains fragment near the imtial one.
White may reach the inifial fragmen by unblocking the b-square e4 n the
Bishop's rajectory and the ¢-square o§ i the Kaight's trjecory. At east
ovo halkmoves are required, and therefoe the depth o association of the
fragment in the positon shown in Fig, 47 is equal to 2 Afer the move
edee§ and Bgd-e7, White has reached 4 positon containing the 1t
fragment, The first move according to the fragmen, Bb A7+ i included i

the search and leads to  win.
The method of fragments s abl to iret thesearch for a varition in i

Way.
In conclusion, We note that the problem of teaching a decison n smlar

positons is a real one in many control tasks. Met hods modelled on the
thinking of chess masters will in all Hikethood be applicable yarious areas
of the national economy and wil b of a practical value
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Glossary of Terms

Anti-outreach: lowering the priorities of moves in the trajectories included in the
MM when their trajectories lead from an advantageous library position (as
scored) to a less favorable position.

Array of dimension 15X 15 for a given piece: a table of 1515 squares. In each
square a number is inscribed, representing the least number of moves required
to reach that square from the central square on an empty board.

Associative thinking, thinking by analogy (in chess): using known types of ideas for
setting up situations (positions); this arises in attempts to use historical experi-
ence.

Boundary effect: a phenomenon permitting the subdivision of the set of all positions
in a given configuration into non-intersecting subsets; the score, and the first
move for the position, are invariant over the members of each subset.

Branch pruning
upon branching in a sheaf of trajectories: cutting off all further consideration of
moves in the trajectories of the sheaf, at a given node of the search tree;
while moving forward: the a priori rejection of certain moves in every position
while descending the search tree (see Shannon’s Type B method). In PIONEER,
these moves are not included in trajectories;
while backiracking: cutting oflf branching at a node while ascending the search
tree when it is known that further branching there will not change the result of
the minimax procedure. -

Class: a portion of the library of technical endgames character
relationship of material in various positions. o 2L IS P W
pieces in a position, o S BTN e

i a = A
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Glossary of Terms

Control system: a sysiem which gathers information, processes it, and executes the

resulting decision.

Decomposition formulae: formulaec permitting the development of an arbitrary

Depth

position in the set corresponding to a position symbol set.

of association of a nearly initial fragment: the least time, measured in half-moves,
in which the fragment can be reached: the distance between the imtial fragment

and a nearby fragment:
of inclusion of a field: the depth of the node at which the given field is included

in a subtree;
of freezing: the depth of the node at which a given trajectory was frozen for lack

of connection to an active trajectory;
of a node in a subtree: the distance in half-moves between the initial and given

nodes.

Distance of a piece from its binding square

minimal: the length of the shortest trajectory of the bound piece to its binding
square in the initial fragment;
real: the same, but in the position being analyzed.

Difference

maximum allowable (D,.,,): the largest number of differences between two
positions equal in material that is permitted if the two positions are 10 be
regarded as near each other;

between two positions equal in material (Dyp): the sum of the lengths of the
trajectories leading from one (initial) position to the other (library) position.
phspiacentenit: me” tubne o esvaRg.the Jeneth of a traiectorv. | =

Erasure of information on fields: erasure of traces of the corresponding sheaves 0
trajectories, i.e. attaching the corresponding cells to the list of empty cells and
closing the list of filled cells.

Field types: attack, blockade, control, retreat, and deblockade.
Field of play: an ensemble of pieces (both Black and White) and their trajectorie
that are united in support of, and opposition to, an attacking piece.
Fragment: the ensemble of active pieces in the analysand position that is require
for the implementation of a typical idea;
initial: a_!ragment in which every fixed piece is on its fixation square and ever
bound piece is at a given distance (in its trajectory) from its binding square;
near the initial fragmenr: a fragment from which the initial fragment can b
reached in a number of moves not exceeding the depth of association;
Freezing a trajectory
for lack of time: an insufficient value of the parameter 7, prohibits movement ¢
a piece in a denial trajectory in a field;
for lack of connection to an active trajectory: movement of a piece in a trajector
is prohibited when the trajectory on which its own depends satisfies one of th
following conditions— either the piece has moved in the trajectory, or it has nc
yet set foot on the trajectory during the variations developed in the search, ¢
the trajectory is already similarly frozen; L
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because of exit from the a,-square during the backtrack up the tree: prohibits the
movement of a piece in its trajectory when the master trajectory satisfies one of
the following conditions—either the piece itself has left its ay-square during the
backtrack, or the trajectory itself is dependent on a similarly frozen trajectory.

Game tree: a graph in which each node (vertex) except one (the initial node or root)
has an immediate ancestor.

Germ of a field: the trace of the sheaf of stem trajectories at its g -square.

Goal of a game
exact, in chess: the goal of each side is to mate the enemy King:
inexact in a model: to win material (piece values: Pawn, 1; Knight, 3; Bishop, 3;
Rook, 5; Queen, 9; King, 200).

Going along the trail: a procedure for tracing out a subtree below a given node and
gathering information for deciding whether to include the field of play in the
given node.

Half-move: the time unit in chess; the time expended by one side in making a move;
used in measuring the time of movement in a trajectory and the length of a
variation.

Historical experience handbook system: a collection of procedures containing libraries
of openings, middle game fragments, technical endgames, rules, and algorithms
for using these libraries; the store of knowledge about chess used by PIONEER.

Horizon
variable ( H.): the time in half-moves leading to control (blockade) of a square
in the stem trajectory of a field; it depends on the number of a-squares between
the attacking piece and the square to be controlled;
limiting ( H, ): the maximum allowable time in half-moves for a piece to move
in its trajectory, under the assumption that until the given place has completed
its trajectory none of its compatriots may move; 1n essence, the honzon
prescribes the limit to the length of a trajectory.

Improvement of the outcome of a search: a decision on the possible extension of the
MM after analysis of a subtree below a given node, when it is expected that a
new current optimal variation (COV) can be obtained, with a higher score.

Inclusion
of a field in the play: the decision to move pieces in the trajectories of a given
field in a given subtree of a search;
of an initial fragment in the search: including the trajectory of a given bound
piece in the MM.

Limiting length of a variation (depth of truncation of the tree): a number condition-
ally limiting the length of a variation in the search tree (not to be confused with
the horizon H, ).

Linked list: a list in which the several elements are ubitrarﬂymwdiﬁ_the
computer memory and are connected by pointers; the pointer itself is contained
in the element and points to the successor element. - f

Mathematical model of a position: the ensemble of fields of play co:
position at a given point of the game (or search). <
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Method
pranch-and-bound ( alpha-beta cutoff): a method for pruning the search tree by
cutting off branches. It uses a subtree equivalent to the non-pruned subtree but
retaining the same optimal variation;
fragmenits: the method of analogies, based on the notion that in order to
implement a typical idea a particular distribution of the pieces must be present
in a position. This distribution is called a fragment;
Shannon’s Type A: finding a move by forming a full-width tree of the possible
variations in a given position and searching it to a fixed depth, evaluating the
variations by a scoring function, and choosing the best variation by a minimax
procedure,
Shannon’s Type B: as Type A, but the search tree includes only variations that
make sense. The limiting depth of search is significantly increased;
sighting: a method for finding new trajectories in a field during the search, by
noting the sightings (see).

Non-coincidence
maximum admissible (D,,..): a number specifying the maximum number of
non-coinciding pieces in two positions that are equal in material and that are to
be regarded as near each other;
of Pawn templates: a fact allowing the exclusion of a whole set of positions from
a given configuration in a list of candidates for outreach.
of positions equal in material: the number of non-coinciding pieces;

Optimal exchange: the unbroken sequence of captures on a given square, resulting
from a minimax procedure applied to all such sequences on the given square.
Outreach
to a library position: including in the MM a set of planned trajectories for the
pieces on the active side such that the corresponding moves lead from the initial
position to a library position having a favorable outcome: implemented by the
outreach method;
to a target fragment: including in the MM trajectories leading to the bound
squares of those bound pieces whose distances from their binding squares
exceed the minimal distance; implemented in the association method.

Parameters

of a trace: th.e parameters in a thirteen-element list that make up the trace of a
sheaf of trajectories, giving information about the role of the sheaf in the
mathematical model;

of a column: the parameters in an eight-element list giving information about a
given node in the search tree.
Piece

active: a piece and its corresponding configuration that must occur in the
analysand position, if a typical idea is to be implemented;

ag-piece: stands on the initial square of its trajectory;

a,-piece: stands on the terminal square of a stem trajectory;

bound: an active piece that must have a trajectory of given length, not exceeding
the limiting horizon, leading to its binding square;
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demial: a piece that has a denial trajectory;
fixed: an active piece that must be on its fixation square;
stem: a piece that has the stem trajectory in an attack field.

Pasition
analysand (the initial position): a position in the game or in a varation during
the search, presented to the program for analysis:
candidate for outreach: a library position that may at a given stage of the search
become the target of a subsequently organized outreach from the initial
position;
egual in material to the initial position: having exactly the same set of pieces and
Pawns (the template) as the initial position;
library: a position contained in the library of technical endgames, either
explicitly or by means of a decomposition formula;
near the initial position: a position equal to the initial one in material and
satisfying the conditions that the maximum aliowable non-coincidence (s,,,.)
and the maximum allowable distance ( D,,,,) are not exceeded;
symbol: representative of the set of positions in a given configuration; a
position explicitly contained in the library of technical endgames, from which
any position in the set can be obtained by a decomposition formula.

Positional value
The ratio K, /K, where K, and K, are the numbers of squares (in trajectories)
controlled by White and Black, respectively.

Principle
of expectation: every possibility is explored only so long as there is hope of
improvement (attaining the goal);
of maximum gain: a new possibility is taken into account only if it offers a gain
greater than that offered by the possibilities already considered:
of timeliness: a possibility is considered only if the corresponding objects will
have time to take part in the play.

Priority: the order of inclusion of moves in the search tree. It is defined by a linear
function of several variables.

Prognosis: the optimal variation, predicting the extent to which the goal of an
inexact game can be attained.

Pseudosearch: backtracking without a score, along a branch in the tree of the current
variation. It is carried out only for the possible inclusion of new trajectories of
the field in the search.

Recording a sighting: recording information about the trajectory corresponding to a
sighting, i.e. recording the trace of the sheaf at its a,-square, and in particular
recording the germ of a field.

Rule for breaking off a variation: a criterion, contained in a library of rules, which
allows one to break off a variation during a search, with an exact score.

Search for a decision in a search task e
in the initial situation: the search for a decision by forming a search tree;

by assaciation (analogy): the search for a decision by the directed m‘““"““‘f
a tree when the initial situation is like one that had a favo le mmmt’h&

ol
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by purreach: the search for a decision by the directed formation of a tree when
ti:ere is hope of attaining exactly a situation that had no favorable outcome in
the past;

by the handbook method: the search for a decision without forming a search tree,
when the initial situation is precisely the same as one found in the past and for
which the score 1s known.

Scoring function: a function which assigns to every position a real number, called
the score; the scores of the final positions in the several varations in a search
are used to compare the variations by the minimax procedure.

Sheaf of trajectories
Jrom an ag-square to a,-square, of given length and for a given piece: the
ensemble of trajectories leading from the ajy-square to the a,-square, with the
provision that the number of displacements of the piece on any of the
trajectories, on a free board, does not exceed the length of the sheaf;
refreal or deblockade: the set of all one-displacement trajectories of the given
piece.

Sighting: the existence of a trajectory leading from the current location of a piece of
a given color to a square containing a piece of the opposite color. When a piece
is moved during a search new sightings arise.

Square
a-square of a trajectory: one on which a piece moving in the trajectory comes to
rest;
a-square: the initial square of the trajectory;
a,-square: the final (terminal) square of the trajectory;
b-square: one on which the moving piece does not halt;
binding square: the terminal square in the trajectory of a bound piece;

Jixation square: the square on which a fixed piece must remain.

Subsystem

Jirst lepel: a piece and iis trajectories;
second level: a field of play
third level: the mathematical model; the complete system.

Symmetry
color: a iransformation reflecting the position in the horizontal axis of the
board, so that the colors are interchanged;
diagonal: a transformation reflecting the position in either long diagonal al-h8
or hl-ag. It is applied to positions without Pawns:
flank: a transformation reflecting the position in the vertical axis of the board.

Target: the d-piece in an attack feld;
strikable: a vulnerable target for which the stem trajectory consists of a single
move and the move is with the attacking side;
vulnerable: a target in an attack field when all the a-squares in the stem
trajeciory are under the conirol of the attacking side and so also are all the
retreat trajectories of the a,-piece.

Task (problem)
inexact: an enumerative task not soluble exactly but soluble approximately by
forming a restricted search tree in connection with an inexact goal of the task;

exact. an enumerative task soluble by using a Full-width search tree and an
exact goal
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Template

Pawn: an array containing (in general) eight elements, characterizing the
distribution of Pawns in a position;

position: an array of twelve elements, charactenzing the position as to material.

Trace of a sheaf
A cell in a linked list, attached to a given square, and contajm'r;g information
about some sheaf of trajectories passing through the given square.

Trajectory
denial: a non-stem trajectory of a field; its length is bounded by the vanable
horizon H;
first order denial: connected with the stem trajectory of a field;
n-th order denial: a denial trajectory connected with a denial trajectory of order
n-1;
forked: having a portion in common with other trajectories of the same piece;
jointed: consisting of two or more simple trajectories;
planned: moves in this trajectory lead from an initial position to a nearby
library position;
shortest ( for a given piece, from initial to terminal square): having the fewest
moves on a free board among all trajectories leading from the same initial
square to the same terminal square;
simple: the shortest, for all pieces except the Queen, for which it is any
two-move trajectory on a free board;
stem: the basic trajectory of a field, on which the formation of the field begins;
:t is limited in length by the limiting horizon H, .

Translation: the transformation of a position by changing the coordinates of all the
fixed and bound squares of the pieces by the same quantity, called the
magnitude of the translation. |

Two-dimensional table with subordination of entry: a double entry table, one inde-
pendent and the other dependent on the first. \ : .

T.: the thirteenth parameter in a trace. It directs the search for dem:al trajectories
and one type of freezing; it is measured by the number of moves in a trajectory
and depends on the time allotted to a given piece, at a given instant of t'hE pla;,r
in a field, for movement in a denial trajectory of the field; BSSEIItIaHY,‘lt
distributes the time allowed by the variable horizon H, among the denial
trajectories of various orders. .

Typical idea: a maneuver or combination that has been successful in the past.

Unfreezing a trajectory: the inverse of freezing; to undo the freezing of a trajectory
of the same type, on returm to the node where it was frozen. o
Unravelling 2 sheaf: obtaining complete information about a sheaf from its trace. '

~ ek —.
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. Written by a former world chess champion, Computers in Chess:
- Solving Inexact Search Problems isolates and then formalizes
- the algorithm that a chess master uses when searching for a move.
~ The author then applies this to other large-dimensional search
~ problems using computer principles. This book provides insight into
~ important (master-level) chess programs such as PIONEER, which

 willbe of interest to chess enthusiasts. Moreover, it addresses those

_interested in more general aspects of the planmng and control soft-_
-,j-ware for-‘-_complex searches SnoE S s




