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SUMMARY 

This report documents the derivation and definition of a linear aircraft model for a rigid aircraft of constant 
mass fJ.ying over a flat, nonrotating earth. The derivation makes no assumptions of reference trajectory or 
vehicle symmetry. The linear system equations are derived and evaluated along a general trajectory and 
include both aircraft dynamics and observation variables. 

INTRODUCTION 

The need for linear models of aircraft for the analysis of vehicle dynamics and control law design is well 
known. These models are widely used, not only for computer applications but also for quick approximations 
and desk calculations. Whereas the use of these models is well understood and well documented, their 
derivation is not. The lack of documentation and, occasionally, understanding of the derivation of linear 
models is a hindrance to communication, training, and application. 

This report details the development of the linear model of a rigid aircraft of constant mass, flying over a 
flat, nonrotating earth. This model consists of a state equation and an observation (or measurement) equa
tion. The system equations have been broadly formulated to accommodate a wide variety of applications. 
The linear state equation is derived from the nonlinear six-degree-of-freedom equations of motion. The 
linear observation equation is derived from a collection of nonlinear equations representing state variables, 
time derivatives of state variables, control inputs, and flightpath, air data, and other parameters. The linear 
model is developed about a nominal trajectory that is general. 

Whereas it is common to assume symmetric aerodynamics and mass distribution, or a straight and level 
trajectory, or both (Clancy, 1975; Dommasch and others, 1967; Etkin, 1972; McRuer and others, 1973; 
Northrop Aircraft, 1952; Thelander, 1965), these assumptions limit the generality of the linear model. The 
principal contribution of this report is a solution of the general problem of deriving a linear model of a rigid 
aircraft without making these simplifying assumptions. By defining the initial conditions (of the nominal 
trajectory) for straight and level flight and setting the asymmetric aerodynamic and inertia terms to zero, 
one can easily obtain the more traditional linear models from the linear model derived in this report. 

Another significant contribution of this report is the derivation and definition of a linear observation 
(measurement) model. The observation model is often entirely neglected in standard texts. A thorough 
treatment of common aircraft measurements is presented by Gainer and Hoffman (1972), and Gracey (1980) 
provides a detailed discussion of speed and altitude measnrements. However, neither of these references 
present linear models of these measurements. This report relies heavily on these two references and uses their 
results as one of the bases for the nonlinear measurement equations from which the linear measurement 
model is derived. Also included in this report is a large number of other measurements or variables for 
observation that have been found to be useful in vehicle analysis and control law design. 

Duke and others (1987) describe a FORTRAN program called LINEAR that derives a linear aircraft 
model by numerical differencing (Dieudonne, 1978). The program LINEAR produces a linear aircraft model 
(both state and observation matrices) that is equivalent to the linear models defined in this report. 

This report is divided into two main sections that define the reference systems and nonlinear state and 
observation equations (section 1) and derive a linear model presented in the appendixes (section 2). The 
appendixes contain a definition of the linear aerodynamic model used in this report (app. A), a derivation 
of the wind axis translational acceleration parameters ( app. B), generalized linear derivatives of the non
linear state and observation equations ( app. C), and the individual derivatives of the state and observation 
equations (app. D). The details of the principal results of this report are presented in appendix D. 



SYMBOLS 

A total aerodynamic axial force, lb 

a speed of sound, ftjsec 

a11 normal accelerometer output, g 

a11,i output of normal accelerometer not at vehicle center of gravity, g 

ax output of accelerometer aligned with vehicle body x axis, g 

ax,i output of accelerometer aligned with body x axis, not at vehicle center of gravity, g 

ax,k kinematic acceleration in vehicle body x axis, g 

ay output of accelerometer aligned with vehicle body y axis, g 
ay,i output of accelerometer aligned with body y axis, not at vehicle center of gravity, g 
ay,k kinematic acceleration in the vehicle body y axis, g 
az output of accelerometer aligned with vehicle body z axis, g 
az,i output of accelerometer aligned with body z axis, not at vehicle center of gravity, g 
az,k kinematic acceleration in vehicle body z axis, g 
b reference span, ft 
Ce generalized force or moment coefficient 
Cex derivative of generalized force or moment coefficient with respect to arbitrary variable x 

c reference aerodynamic chord, ft 
D total aerodynamic drag, lb 
Dx Iz- Iy 
Dy Ix- Iz 
Dz ly- Ix 
Es specific energy, ft 
F arbitrary force or moment 
fpa flightpath acceleration, g 
g acceleration due to gravity, ft / sec2 

go acceleration due to gravity at sea level, ft/sec2 

h altitude, ft 
h,i altitude measurement not at vehicle center of gravity, ft 
I inertia tensor 
Ix moment of inertia about x body axis, slug-ft2 

Ixy product of inertia in x-y body axis plane, slug-ft2 

Ixz product of inertia in x-z body axis plane, slug-ft 2 

Iy moment of inertia about y body axis, slug-ft2 

Iyz product of inertia in y-z body axis plane, slug-ft2 

Iz moment of inertia about z body axis, slug-ft2 

I1 Ixiz- I;z 
12 Ixylz + Iyzfxz 
h Ixyiyz + Iyixz 
14 Ixiz- I'f:z 
Is I,Jyz + 1xyixz 
I6 Ixiy - f';y 
L total moment about x body axis, ft-lb; or, total aerodynamic lift, lb 
e unit length, ft 
lvf total moment about y body axis, ft-lb; or, Mach number 
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m 
N 
n 

Ps 
p 

Pa 
Ps 
Pt 
q 
ij 

qc 
qc/Pa 
qs 
Re 
Re' 
r 

u 
v 
v 
w 

X a 

Xg 
XT 
X 

y 

Ya 
Yg 
YT 
y 

Za 
Zg 
ZT 
z 
a 

O:,i 

(3 

f3,i 

'Y 
8; 
() 

J1 
p 
<I> 

vehicle mass, slugs 
total moment about z body axis, ft-lb; or, total aerodynamic normal force, lb 
load factor 
specific power, ft /sec 
roll rate (about x body axis), radfsec 
static or free-stream pressure, lb/ft2 

stability axis roll rate, radjsec 
total pressure, lb/ft2 

pitch rate (about y body axis), rad/sec 
dynamic pressure, lb /ft 2 

impact pressure, lb/ft2 

Mach meter calibration ratio 
stability axis pitch rate, rad/sec 
Reynolds number 
Reynolds number per unit length, n-1 

yaw rate (about z body axis), rad/sec 
stability axis yaw rate, rad/sec 
surface area of wing, ft 2 

total angular momentum; or, ambient or free-stream temperature, 0 R 
total temperature, 0 R 
time 
velocity along x body axis, ft/sec 
vehicle velocity, ft/sec 
velocity along y body axis, ftjsec 
velocity along z body axis, ftjsec 
total aerodynamic force along x body axis, lb 
total gravitational force along x body axis, lb 
total thrust force along x body axis, lb 
vehicle position along x earth axis, ft 
total aerodynamic sideforce, lb 
total aerodynamic force along y body axis, lb 
total gravitational force along y body axis, lb 
total thrust force along y body axis, lb 
vehicle position along y earth axis, ft 
total aerodynamic force along z body axis, lb 
total gravitational force along z body axis, lb 
total thrust force along z body axis, lb 
vehicle position along z earth axis, ft 
angle of attack, rad 
angle-of-attack measurement not at vehicle center of gravity, rad 
angle of sideslip, rad 
angle-of-sideslip measurement not at vehicle center of gravity, rad 
flightpath angle, rad 
ith control surface deflection 
pitch angle, rad 
coefficient of viscosity, lb/ft-sec 
density of air, lb/ft3 

arbitrary function 
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Vectors 

bank angle, rad 
heading angle, rad 

a body axis acceleration vector 
E attitude vector of Euler angles 
F total force vector 
f state vector function 
g observation vector function 
H total angular momentum vector 
h sum of higher order terms in Taylor series 
M total moment vector 
R position vector in earth axis system 
u input or control vector 
V vehicle velocity vector 
x state vector 
y observation vector 
h'u perturbation of control vector 
6x perturbation of state vector 
6x perturbation of time derivative of state vector 
n rotational velocity vector 

Matrices 

A state matrix of the generalized state equation, ex = Ax + Bu 
A' state matrix of the state equation, x = A'x + B'u 
B control matrix of the generalized state equation, ex = Ax + Bu 
B' control matrix of the state equation, x = A'x + B'u 
e system matrix of the generalized state equation, ex = Ax + Bu 
F feedforward matrix of the generalized observation equation, y = Hx + Gx + Fu 
F' feedforward matrix of the observation equation, y ;;; H'x + F'u 
G derivative observation matrix of the generalized observation equation, y = H x + Gx + Fu 
H observation matrix of the generalized observation equation, y = llx + Gx + Fu 
II' observation matrix of the observation equation, y JI'x + F'u 
I intertia tensor 
J' scaling matrix for inertia tensor 
Lsv transformation matrix from earth to body axes 
R transformation matrix from earth to body axes 
T angular velocity matrix in the generalized state equation, Tx = f[x(t),x(t), u(t)] 
Onxm n X m matrix of 0 values 
lnxm an n X m matrix with values of 1 on the diagonal 
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Subscripts 

a aerodynamic; or static or, free stream 
b body axis system 
D drag 
g gravitational 
h displacement of altitude instrument 
l~ displacement of altitude rate instrument 
, i not at vehicle center of gravity 
, k kinematic 
L lift 
f rolling moment 
m pitching moment 
n yawing moment 
n orthogonal 
P power plant induced 
s stability axis; or, specific 
T thrust 
t total 
v vehicle-carried vertical axis system 
w wind reference axis system 
x displacement in x body axis 
xy x-y body axis plane 
xz x-z body axis plane 
Y sideforce 
y displacement in y body axis 
yz y-z body axis plane 
z displacement in the z body axis 
0 at sea level, standard day conditions; or, nominal conditions 

Superscript 

T transpose 

1 NONLINEAR SYSTEM EQUATIONS 

The motion of an aircraft as a rigid body can be described by a set of six nonlinear simultaneous second
order differential equations. These equations, representing the translational and rotational motion of the 
vehicle, can be formulated in the notation of Kwakernaak and Sivan (1972) and Dieudonne (1978) as a 
time-invariant system expressed as 

x(t) = f[x(t), u(t)] ( 1-1) 

where x(t) is the 12-dimensional time-varying state vector (t being time), x(t) is the derivative ofx(t) with 
respect to time, u(t) is the k-dimensional time-varying input or control vector, and f is a 12-dimeiLsiunal 
nonlinear function expressing the six-degree-of-freedom rigid body equations. 

Measurements of the vehicle state can be represented by the observation equation 

y(t) = g[x(t), u(t)] ( 1-2) 
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where y(t) is an £-dimensional time-varying observation vector and g is an £-dimensional nonlinear func
tion expressing the relationship of the true vehicle state and control vectors to the observed parameters. 
Typically, the function g characterizes the dynamics and location of the sensors. 

For the aircraft analysis and design problem, both the nonlinear and linear system equations are formu
lated more broadly than just described (Edwards, 1976; Maine and iliff, 1980, 1986). The nonlinear system 
equations include x(t) terms in both the state and observation functions. In fact, in the most extended 
form the state equation is expressed in terms of transformed variables (discussed in section 1.2.1 ). These 
generalized equations form the basis of the analysis in this report. The generalized system equations are 

Tx(t) = f[x(t), x(t), u(t)] 

y(t) = g[x(t), x(t), u(t)] 

where T is a constant 12 X 12 angular velocity matrix. 

1.1 Definition of Reference Systems 

(1-3) 

(1-4) 

While numerous reference systems are used in aerospace applications, this report is limited to four reference 
systems: the body, the wind, the vehicle-carried vertical, and the topodetic reference systems. The stability 
axes are also defined even though this reference system is used only to define the stability axis rotational 
rates (section 1.3.8). 

Within this report the translational equations are referenced to the wind axes, and the rotational 
equations are referenced to the body axes. Measurement equations are primarily referenced to the body 
axes when the use of a reference system is needed. The use of this mixed axis system definition in both 
the nonlinear and linear models is related to the measurability and meaningfulness of quantities. Because 
the aerodynamic forces act in the wind axes, this reference system is used for the translational equations. 
For instance, angle of attack, velocity, and angle of sideslip are either directly measurable or closely related 
to directly measurable quantities, while the body axis velocities ( u, v, and win the x, y, and z directions, 
respectively) are not. The body axis rotational rates are measured by sensors fixed in the body axes; wind 
axis rates can be derived only from these quantities through axis transformations. 

The first reference system to be described is the topodetic reference system, also called the earth-fixed 
reference frame (Etkin, 1972), the earth axes (Thelander, 1965), and the Eulerian axes (Northrop Aircraft, 
1952). The topodetic reference frame is considered fixed in space (and hence, inertial) with the orientation 
of the axes as shown in figure 1; the x axis is directed north, the y axis east, and the z axis down. The 
vehicle position (x andy) and altitude (h) are measured from the origin of this reference system. 

The vehicle-carried vertical axis system (fig. 2; Etkin, 1972) has its origin at the center of gravity of the 
vehicle. The Xv axis is directed north, the Yv axis east, and the Zv axis down. This axis system is obtained 
by a translation of the topodetic axis system to the vehicle center of gravity. The attitude of the aircraft 
(heading, pitch, and bank angles ¢, 0, and ¢>, respectively) is described in terms of the orientation of the 
aircraft body axes with respect to the vehicle-carried vertical axes. 

The origin of the body axis system (fig. 3) is the vehicle center of gravity. The x axis is directed toward 
the nose of the aircraft, the y axis toward the right wing, and the z axis toward the bottom of the aircraft. 
The specific orientation of the actual body axes relative to the vehicle body is somewhat arbitrary. For 
symmetrical aircraft, the x and z axes are in the plane of symmetry; for asymmetrical aircraft, these axes 
are located in a plane approximating what would be the plane of symmetry. The positive direction for the 
body axis rates (roll, pitch, and yaw rates, p, q, and r, respectively), the body axis velocities (u, v, and w), 
and the body axis moments (L, M, and N about the x, y, and z axes, respectively) are shown in figure 3. 

6 



z 
(Down) 

x (North) 

7256 

Figure 1. Topodetic az's system. 

zv (Down) 

z 
(Down) 

Yv (East) 

y (East) 

7257 

Figure 2. Relationship between topode
tic and vehicle-carried vertical axis sys
tems. 

72'Sb 

Figure 3. Body axis system. 
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The relationship between the vehicle-carried vertical and body axes is shown in figure 4. The Euler 
angles ( '1/J, B, and ¢) define the orientation of the body axes with respect to the vehicle-carried vertical 
axes. The rotations required to transform the vehicle-carried vertical axes to the body axes are shown in 
figure 5. The heading angle 'ljJ is a rotation about the z vehicle-carried vertical axis into a new axis system 
(designated (x1, YI, z1) in fig. 5); the pitch attitude() is a rotation about the Yl axis into the (x2, y2, z2 ) 

axes system; the roll attitude ¢ is a rotation about the y2 axis into the body axes. 

7259 

Figure 4· Relationship between vehicle-carried vertical and body axzs systems. 

These rotations are described by 

and the total rotation is described by 

LBv = L'I/;LeLq, = 

8 

[ 

cos 'ljJ - sin 'ljJ 0 l 
L1/J sin 'ljJ cos 'ljJ 0 

0 0 1 

Le = [ co;() ~ si~ () l 
- sin () 0 cos () 

Lq, [ ~ co~¢ - s~n ¢ ] 
0 sin¢ cos¢ 

cos() cos '1/J 

sin ¢ sin () cos '1/J 

-cos¢ sin '1/J 

cos ¢ sin () cos 7}; 

+sin <P sin '1/J 

cos () sin 1/J - sin () 
sin ¢ sin () sin v sin ¢ cos () 

+ cos ¢ cos 1/J 
cos ¢ sin () sin ¢ sin ¢ cos () 

- sin ¢ cos l/J 

(1-.5) 

( 1-6) 

(1-1) 

( 1-8) 
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(a) Rotation through 1/; about zv azis. (b) Rotation through fJ about y1 axts. 

~ / 
/ 

I 
I 

/ 

/ 
I 

I 
I 

I 

/ 
/ 

/ 

I 

/ 
I 

yb 

" / 

(X2, Xb) 6;::",....-----,-------- z2 
......... ~ 

' .......... 

7262 

(c) Rotation through ¢> about Xb axzs. 

Figure 5. Rotation of axes through Euler angles. 
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Because Lsv is a unitary matrix, the transformation from the body axes to the vehicle-carried vertical 
. LT a.xes IS BV· 

The relationships between the body, wind, and stability axes are shown in figure 6. All three axis 
systems have their origin at the center of gravity of the aircraft. The x axis in the wind reference system 
( xw) is aligned with the velocity vector of the aircraft. The angle of sideslip j3 and angle of attack a define 
the orientation of the wind axes with respect to the body axes. (The stability axes are shown in figure 6 
also. This reference system is displaced from the wind axis system by a rotation j3 and from the body axis 
system by a rotation -a.) 

Figure 6. Relationship of body, stability, and wind axes. 

Also shown in figure 6 are the components of the velocity vector V in the body axes ( u, v, and w) 
and the definition of positive rotations for a and /3. It should be noted that j3 is a positive rotation in a 
left-handed coordinate system, whereas the positive sense of all other rotations used in aircraft analysis are 
positive in a right-handed coordinate system. 

The definitions of the body axis velocities (fig. 6) are 

u = V cos a cos j3 

v = V sinf3 

w = V sin a cos j3 

(1-9) 

(1-10) 

(1-11) 

The total velocity V, angle of attack a, and angle of sideslip j3 can be expressed in terms of these body axis 
velocities as 

10 
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j3 = sin-1 ~ 

(1-12) 
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1.2 Nonlinear State Equations 

For the aircraft problem, the state vector xis 12 x 1 vector composed of four 3 X 1 subvectors representing the 
vehicle rotational velocity, the vehicle translational velocity, the vehicle attitude, and the vehicle location: 

where 

X1 = [p q r)T 

X2 = [V a j3)T 

X3 (4> () 7/J)T 
X4 = [h X y)T 

(1-15) 

(1-16) 

( 1-17) 

(1-18) 

(1-19) 

with x 1 , x 2 , x 3 , and x 4 being the rotational velocity, translational velocity, attitude, and position subvectors, 
respectively. The vehicle rotational and translational velocity are defined within the aircraft-fixed axis 
systems. In the formulation of the state used in this report, the vehicle rotations are body axis rates, whereas 
the vehicle velocity terms are stability axis parameters. The vehicle attitude and location parameters are 
earth relative. 

The vector function f, relating the state vector its time derivative, and the control vector to the time 
derivative of the state vector with respect to time, is a 12-dimensional vector function composed of four 
3-dimensional vector subfunctions: 

f(x(t), x(t), u(t)) = [fl fi (f f]']T ( 1-20) 

where f1 , f2 , f3 , and f4 are the vector functions that relate the x(t), x(t), and u(t) vectors to the rotational 
acceleration, translational acceleration, attitude rate, and earth-relative velocity subvectors of x(t). In the. 
following sections, each of these subfunctions will be developed separately. The details of the derivation 
of these subfunctions can be found in any of the standard references on aircraft dynamics (Etkin, 1972; 
McRuer and others, 1973; Thelander, 1965). 

1.2.1 Rotational acceleration.-The subfunction f 1 of f from which the rotational acceleration 
terms in the X. vector are derived is based on the moment equation 

d 
M=-H 

dt 
(1-21) 

where M is the total moment on the vehicle and H is the total angular momentum of the vehicle. This 
expression can be expanded to 

(1-22) 

where 8/ 8t is the time derivative operator in a moving reference frame (such as the vehicle body axis system) 
and the substitution 

H=Ifl (1-23) 

has been used to replace the total angular momentum term with the product of the inertia tensor I and 
the rotational velocity vector n. (The inertia tensor is assumed to be constant with time.) The definition 
of the terms in equation (1-22) follow: 

[ 
"£ L l [ L + LT l M = '£M = M + MT 
EN N +NT 

(1-24) 
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with L, M, and N being the aerodynamic total moments about the x, y, and z body axes, respectively, and 
LT, AfT, and NT the sums of all power-plant-induced moments; 

[ 

Ix 
I= -Ixy 

-Ixz 
(1-25) 

where Ix, Iy, and Iz are the moments of inertia about the x, y, and z body axes, respectively, and Ixy• Ixz, 
and Iyz are the products of inertia in the x-y, x-z, and y-z body axis planes, respectively; and 

Q = Xt = [p q r]T ( 1-26) 

where p, q, and r are the rotational rates about the x, y, and z body axes, respectively. Because it is 
assumed that the inertia tensor is a constant with respect to time, equation (1-22) can be rewritten as 

(1-27) 

This is the vector subfunction for the rotational acceleration. Designating this subfunction as f 1 , the 
following definition applies: 

where 

f1[x(t),x(t), u(t)] := I-1[M- Q X (Iil)] 

:tn = fl[x(t),x(t), u(t)] 

{j n [. . ·)T 
-u = p q r 
Ot 

Since the inverse of the inertia tensor I-1 is given by 

where 

12 

det I = Ixiyiz - Ixi;z - Izf;y - Iyf;z - 2Iyzixzixy 

ft = Iyiz - I;z 

h = Ixyiz + Iyzixz 

h = Ixyiyz + Iyixz 

I4 = Ixiz - f;z 

Is = Ixiyz + Ixyixz 

I6 = Ixiy - I?,Y 

(1-28) 

( 1-29) 

(1-30) 

(1-31) 

(1-32) 

(1-33) 

(1-34) 

(1-35) 

(1-36) 

( 1-37) 

(1-38) 



the expression for the rotational accelerations can be expanded as a set of scalar equations: 

where 

P = de~ I [~L11 + ~M 12 + 'EN I3 - p2(Ixzi2 - fxylJ) + pq(Jxzft - fyzh - Dzh) 

- pr(1xyii + Dyi2- Iyzh) + q2(Iyz11 - Ixyh)- qr(Dxii - 1xyh + Ixzh) 

- r2(Iyzii - Ixz12)] 

q = -1-[~LI2 +'EM I4 +'EN Is- p2(Ixzi4- Ixyis) + pq(Ixzh- Iyzi4- Dzfs) 
det I 

r= 

- pr(Ixy12 + Dyi4- Iyzis) + q2(Iyz12- Ixyis)- qr(Dxh- Ixy14 + 1xzis) 

- r2(1yzi2 - 1xz14)] 

-1-[~Lh + ~M1s + ~N 16- p2(Ixzfs- Ixyh) + pq(Ixzh- Iyzfs- Dzi6) 
det I 

- pr(Ixyi3 + Dyis- lyzi6) + q2(Iyzh- Teyfu)- qr(Dxh- 1xyfs + 1x~h) 
- r2(Iyzi3 - Ixzis)] 

Dx = Iz- Iy 

Dy = Ix- Iz 

Equation (1-3) defines the generalized nonlinear state equations as 

Tx(t) = f[x(t), :k(t), u(t)] 

(1-39) 

( 1-40) 

( 1-41) 

(1-42) 

( 1-43) 

(1-44) 

This equation, although more complicated than the nonlinear equations defined by equation (1-1), allows for 
a more tractable formulation of the state equation by using the matrix T to provide a means of addressing 
the rotational accelerations in a decoupled axis system. 

The derivation of the rotational acceleration terms is based on the moment equation (1-22): 

0 
M = ot (In)+ n x In 

Rearranging terms and assuming that the inertia tensor is constant with respect to time, the equation can 
be written as 

I !...n = M - n x In 
ot 

The rows of this vector equation are now scaled using the following scaling matrix: 

[ 

1/ Ix 0 0 l 
J' = 0 1/ 1y 0 

0 0 1/12 

(1-45) 

( 1-46) 

This matrix, when premultiplying equation (1-27), merely divides the first row by the roll ine1:tia Ix, the 
second row by the pitch inertia Iy, and the third row by the yaw inertia I 2 • Using the definition 

J = J'1 ( 1-4 7) 
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the resulting equation is 

and J can be written as 

J :tn = J'M- J'(n x In) 

[ 

1.0 
J = - Ixy/Iy 

- fxz/ fz 

- fxy/ fx 
1.0 

- fyz/ fz 

Equation (1-48) can be expanded and expressed as 

- fwy/fw 
1.0 

- fyz/fz 

[ 

'£Lflx- rplxy/lx + pqfxz/Ix + rqly/fx + (q:- r:)fyz/Ix- qrlz/Ix l 
= '£M/Iy- rplx/fy + rqlxy/Iy- pqlyz/fy + (r - p )Ixz/Iy + prlz/Iy 

'£N/Iz + qpfx/Iz- qrfxz/Iz + prfyz/Iz + (p2
- q2 )Ixy/Iz- pqfy/fz 

where zi', i/, and r1 are the decoupled rotational accelerations of the vehicle. 

Using the definition of J in equation (1-49), the matrix transformation T can be defined as 

T= 

I I 

J 1 03x3 : 
----1---- 1 06x6 

I I 

03x3 : 13x3 1 -----------L----------1 
I 
I 
I 
I 
I 

(1-48) 

(1-49) 

(1-50) 

(1-51) 

which would be an identity matrix except for the presence of the inertia terms in the upper left-hand corner. 
Thus, the vector subfunctions for the generalized state equation defining vehicle translational acceleration, 
vehicle attitude rates, and earth-relative velocities are the same as those defined for the standard nonlinear 
state equations in sections 1.2.2, 1.2.3, and 1.2.4, respectively. 

1.2.2 Translational acceleration.-Derivation of the translational acceleration vector subfunction 
f2 is based on the force equation 

d 
F = -(mV) 

dt 
(1-52) 

where F is the total force acting on the vehicle and m is the vehicle mass. This expression can be expanded to 

(1-53) 

with the assumption of constant mass with respect to time and the following definitions ofF and V: 

(1-54) 

where '£X, '£Y, and "£ Z are the sums of the aerodynamic, thrust, and gravitational forces in the x, y, and 
z body axes, respectively, and 

V = [u v w]T ( 1-55) 

14 



Rearranging the terms of equation (1-52) gives an expression for the translational acceleration: 

b 1 
-V= -F-!1 XV 
6t m 

(1-56) 

This equation expresses body a..x.is accelerations in terms of body axis forces, angular rates, and velocities. 
However, the desired form of this relation requires the translational accelerations in the wind axis system; 
that is, in terms of the magnitude of the total vehicle velocity V, angle of attack a, and angle of sideslip {3, 
which are expressed by equations (1-9) to (1-11) 

u = V cos a cos {3 

v = V sin{J 

w = V sin a cos {3 

and equations (1-12) to (1-14) 

V = lVI = (u2 + v2 + w2)1/2 

a= tan- 1 
(:) 

(3 = sin - 1 
( ~) 

The wind axis translational acceleration terms (derived in app. B) are summarized as: 

where 

[V a ,B]T = f2[x(t), x(t), u(t)] 

1/ = ...!._ [ - D cos {3 + Y sin {3 + X T cos a cos {3 + YT sin {3 + ZT sin a cos {3 
m 

- mg( cos a cos {3 sin B - sin {3 sin <P cos B - sin a cos {3 cos <P cos B)] 

1 a = V ,6 [- L + ZT cos a- XT sin a+ mg( cos a cos <P cos B +sin a sin B)] 
mcos 

+ q - tan {3 (p cos a + r sin a) 

,B = 
1
V [ D sin {3 + Y cos (3 - X T cos a sin {3 + YT cos (3 - ZT sin a sin {3 

m 

(1-57) 

(1-58) 

(1-59) 

+ mg( cos a sin {3 sin B + cos {3 sin <P cos B - sin a sin {3 cos <P cos B)] + p sin a - r cos a ( 1-60) 

\\'ith D being total aerodynamic drag; Y total aerodynamic sideforce; and XT, YT, and ZT total thrust 
force along the x, y, and z body axes, respectively. 

1.2.3 Attitude rates.-The matrix R that transforms angular velocities in the earth-fixed axis system 
into body axis angular velocities is defined by 

R = [ 0

0

1 co~ <P si~ ;i:o~ B ] 
- sin <P cos <P cos B 

(1-61) 
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where R is derived by Maine and iliff (1986) from the total angular velocity of the aircraft expressed in 
terms of the derivatives with respect to time of the Euler angles ( ¢, iJ, -J;): 

q = 0 + 0 cos </> sin </> iJ + 0 cos </> sin </> 0 1 0 0 
[ 

P l [ ¢ l [ 1 0 0 l [ 0 l [ 1 0 0 l [ cos () 0 - sin () l [ 0 l 
r 0 0 - sin </> cos </> 0 0 - sin </> cos </> sin () 0 cos () ,j; 

[ 
1 0 - sin B l [ J> l 

= 0 cos </> sin </> cos () ~ 
0 - sin </> cos </> cos () 'lj; 

(1-62) 

This transformation from earth-fixed to body axes can be expressed by the equation 

(1-63) 

where E is an attitude vector whose components are the Euler angles: 

(1-64) 

Premultiplying both sides of equation (1-63) by R-1 and rearranging terms yields the equation for the 
attitude rates, 

!£E = R-1n 
dt 

which can be expanded into the scalar equations 

J> = p + q sin </>tan() + r cos</> tan() 

iJ = q cos </> - r sin </> 

,j; = q sin </> sec () + r cos </> sec () 

(1-65) 

(1-66) 

(1-67) 

(1-68) 

1.2.4 Earth-relative velocity.-The matrix LBv that transforms earth axis system vectors into the 
body axis system is defined by equation (1-8) as 

LBv = [ ~~: ~ ~~~n't/J'Ij; ~ l [ co; () 
0 0 1 -sin() 

[ 

cos() cos '1/J 

= sin </> sin () cos 'lj; - cos </> sin 'lj; 
cos </> sin () cos 'lj; + sin </> sin 'lj; 

~ si~ () l [ ~ co~ </> - s~n </> l 
0 cos (} 0 sin </> cos </> 

cos (} sin 'lj; - sin () l 
sin </> sin () sin 'lj; + cos </> cos 'lj; sin </> cos () 
cos</> sin B sin 'lj; - sin </>cos 'lj; cos</> cos() 

The specific relationship between earth-relativ~ velocities and body axis velocities is expressed by 

where R is the earth axis system vector defining the location of the vehicle: 

R = [x y z]T 
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with z =-h. 

The equation for the earth-relative velocity can be formulated as 

d -1 
dtR = LsvV (1-71) 

in which these velocities are expressed in terms of body axis velocities. Using equation (1-72) and the 
defmitions of the body axis velocities in equations (1-12) to (1-14) allows the earth-relative velocities to be 
expressed in terms of V, a, and /3: 

h = V( cos a cos /3 sin() - sin /3 sin</> cos(}- sin a cos /3 cos</> cos 0) 

x = V [ cos a cos f3 cos (} cos ,P + sin /3 (sin </> sin (} cos 1/1 - cos </> sin 1/1) 
+ sin a cos /3( cos</> sin(} cos ,P +sin</> sin ,P )] 

iJ = V[ cos a cos f3 cos(} sin ,P + sin ,8( cos</> cos 1/1 + sin</> sin(} sin 1/1) 
+ sin a cos /3( cos</> sin(} sin ,P - sin</> cos ,P )] 

1.3 Nonlinear Observation Equations 

(1-72) 

(1-73) 

(1-74) 

No standard set of observation variables exists for the aircraft analysis and control design problem. However, 
for any guidance and control problem, the main observation variables generally will be a subset of the state 
variables. Other common observation variables are the vehicle body axis translational accelerations and 
air data parameters. Thus, the dimension of g[x(t), x(t), u(t)] is not fixed and varies from application to 
application. The set of observation variables described in this section was selected to address a wide range 
of problems. The basic composition of the observation vector y as used in this report is given by 

(1-75) 

where x and :X are the state vector and time derivative of the state vector described previously, u is the 
control vector, and y' is defined by 

where 

y~ = [ax,k ay,k Uz,k ax ay Uz an ax,i ay,i Uz,i Un,i n]T 

y~ = [a M Re Re' ij qc qc/Pa Pa Pt T Tt]T 

y~ = b fpa h]T 

y~ = [Es Ps]T 

y~ = [L D N A]T 

y~ = [u v w u v w]T 
I • T 

Y7 = [a,i f3,i h,i h,i] 

Y~ = [T Ps qs rs]T 

(1-76) 

(1-77) 

(1-78) 

( 1-79) 

(1-80) 

( 1-81) 

(1-82) 

(1-83) 

( 1-84) 
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with the elements of y~ being terms related to the vehicle body axis acceleration, the elements of y~ being 
air data terms, the elements of yj being flightpath-related terms, the elements of y~ being terms related to 
vehicle energy, y~ being a vehicle force vector, the elements of y~ being body axis translational rates and the 
time derivatives of those terms, yj being a vector of variables representing measurements from instruments 
not located at the vehicle center of gravity, and the elements of y~ being a collection of miscellaneous terms. 
Obviously, this grouping of terms is somewhat arbitrary and is done primarily to ease the definition of these 
terms in the following sections of this report. This grouping of observation variables parallels that used by 
Duke and others (1987). 

The vector function g relating the state vector, the time derivative of the state vector, and the control 
vector to the observation vector is an £-dimensional function composed of four subfunctions: 

(1-85) 

where x, :X, and u are identity functions on the state vector, time derivative of the state vector, and control 
vector, respectively, and g' is composed of vector subfunctions defining they' vector. 

The state vector, time derivative of state vector, and control vector components of the observation 
vector are not discussed in detail in this section of the report. The equations for the elements of the time 
derivative of the state vector were developed in section 1.1. The observation equations for the state and 
control variables are simply identities. 'The equations for the remaining observation variables are obtained 
from a variety of sources. In addition to the previously cited sources, Clancy (1975), Dommasch and 
others (1967), Gainer and Hoffman (1972), and Gracey (1980) provide the background and derivation of 
the observation equations used in this report. 

1.3.1 Accelerations.-The vehicle body axis accelerations and accelerometer outputs constitute the 
set of observation variables that, after the state variables themselves, are most important in the aircraft 
control analysis and design problem. These accelerations and accelerometer outputs are measured in units 
of g and are derived directly from the body axis forces defined in section 1.2.2. The body axis acceleration 
vector a can be expressed as 

d 6 
a=-V=-V+f2xV 

dt 8t 
(1-86) 

It is important to note here that the u, v, and w body axis velocity rates, derived in appendix B and 
defined by equation (B-1), are not the body axis accelerations. The body axis accelerations contain not 
only the body axis velocity rates but also the rotational velocity and translational velocity cross-product 
terms. Thus, expanding equation (1-86) yields 

[ 

ax,k l [ u + qw- rv l 
a = ay,k = ~ + ru - pw 

az,k w + pv - qu 
(1-87) 

where ax,k, ay,k, and az,k are the kinematic accelerations in the vehicle body x, y, and z axes, respectively. 
Using 

[ 
u l [ (1/m)(XT+Xa+Xg)+rv-qw l 
iJ = (1/m)(YT + Ya + Yg) + pw- ru 

w (1/m)(ZT + Za + Zg) + qu- pv 

(stated as eq. (B-1) in app. B), equation (1-87) can be rewritten as 

[ 

ax,k l [ (1/m)(XT + Xa + Xg) l 
ay,k = (1/m)(YT + Ya + Yg) 
az,k (1/m)(ZT + Za + Zg) 
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where Xa, Ya, and Za are total aerodynamic forces and Xg, Yg, and Zg are total gravitational forces along 
the x, y, and z body axes, respectively. This can be expanded in terms of the gravitational and aerodynamic 
forces to give (in units of g) 

[
ax,kl 1 [ XT-Dcosa+Lsina-gmsinO l 
ayk = -- YT + Y + gmsin¢cos8 
az:k gom ZT- Dsina- Lcosa + gmcos</JcosO 

(1-90) 

where g0 is the acceleration due to gravity at sea level. 

The outputs of body axis accelerometers at the vehicle center of gravity are simply the body axis 
accelerations due to the thrust and aerodynamic forces. The accelerometer output equations can be written 
directly from equation (1-90) as 

[ ::] = oa
1

m [ :: = ;:;:~ ~ :~:::] (1-91) 

where ax, ay, and az are the outputs of accelerometers at the vehicle center of gravity and aligned with the 
vehicle body x, y, and z axes, respectively. Because the normal acceleration an is defined by 

(1-92) 

an expression for this variable can be extracted from equation (1-91): 

an = (-ZT + D sin a + L cos a)/ gom (1-93) 

The equations defining the output of accelerometers aligned with the vehicle body axes but displaced 
from the vehicle center of gravity are derived by Gainer and Hoffman (1972) using the definition of inertial 
acceleration given in equation (1-86) 

and the definition of inertial velocity 
0 

V = otr+ Q X r (1-94) 

The results from Gainer and Hoffman (1972) are reproduced here without rederivation: 

(1-95) 

where ax,i, ay,i, and az,i are outputs at accelerometers aligned with the x, y, and z body axes but not located 
at the vehicle center of gravity; the subscripts x, y, and z refer to the x, y, and z body axes, respectively; 
and the symbols x, y, and z refer to the x, y, and z body axis locations of the sensors relative to the vehicle 
center of gravity. Because the normal acceleration is the negative of the z body axis accelerometer, the 
output of a normal accelerometer not at the vehicle center of gravity but aligned with the z body axis, an,i, 
is given by 

(1-96) 

The final quantity included in the general category of accelerations is load factor n. This quantity is 
defined without inclusion of the z body axis force component as 

L 
n=

mg 
(1-97) 
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1.3.2 Air data parameters.-The air data parameters having the greatest application to aircraft 
dynamics and control problems are the sensed parameters and the reference and scaling parameters. Chosen 
for inclusion as the sensed parameters are impact pressure qc, static or free-stream pressure Pa, total pressure 
Pt, ambient or free-stream temperature T, and total temperature Tt. The selected reference and scaling 
parameters are Mach number M, dynamic pressure ij, speed of sound a, Reynolds number Re, Reynolds 
number per unit length Re', and the Mach meter calibration ratio qc/Pa· The derivation of these quantities 
is treated extensively by Gracey (1980). 

The nonlinear equations defining these quantities are 

a= [ ] 

1/2 
1.4~T 

Po To 

M=v 
a 

Re = pVf 
J.L 

Re' = pV 
J.L 

1 
ij = -pV2 

2 

_ { [(1.0 + 0.2M2
)
3

·
5 

- l.O]Pa 
qc - {1.2M2[5.76M2 /(5.6M 2 - 0.8)]2-5 - l.O}Pa 

(M ~ 1.0) 
(M 2: 1.0) 

qc { (1.0 + 0.2M2)3·5 - 1.0 
Pa = 1.2M2[5.76M2 /(5.6M2 - 0.8)]2·5 - 1.0 

Tt = T(l.O + 0.2M2
) 

(M ~ 1.0) 
(M 2: 1.0) 

( 1-98) 

(1-99) 

( 1-100) 

(1-101) 

(1-102) 

(1-103) 

(1-104) 

(1-105) 

where p is the density of the air, J.L is the coefficient of viscosity, and the subscript 0 refers to sea level, 
standard day conditions. Free-stream pressure, free-stream temperature, and the coefficient of viscosity are 
properties of the atmosphere and are assumed to be functions of altitude alone. 

1.3.3 Flightpath-related parameters.-Included in the observation variables are what might best 
be termed flightpath-related parameters for lack of better nomenclature. These terms include flightpath 
angle ; , flightpath acceleration fpa, and vertical acceleration h. The variables are defined by the following 
equations: 
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v 
fpa =

g 

h = ax,k sin(} - ay,k sin 4> cos(}- az,k cos 4> cos(} 

(1-106) 

(1-107) 

(1-108) 



1.3.4 Energy-related parameters.-Two energy-related parameters are included with the observa
tion variables considered in this report: specific energy Es, and specific power P5 , defined as 

.. y2 
Es = h + 

29 
(1-109) 

Ps = dEs __ h.+ VV 
dt g 

(1-110) 

1.3.5 Force parameters.-The set of observation variables being considered also includes four force 
parameters. These quantities are total aerodynamic lift L, total aerodynamic drag D, total aerodynamic 
normal force N, and total aerodynamic axial force A, defined as 

L = qSCL 

D = qSCo 

N = Lcosa + Dsina 

A = - L sin a + D cos a 

where S is the surface area of the wing, CL coefficient of lift, and Co coefficient of drag. 

(1-111) 

(1-112) 

(1-113) 

(1-114) 

1.3.6 Body axis rates and accelerations.-Because they are of interest in the control analysis and 
design problem, six body axis rates and accelerations are included as observation variables. These include 
the x body axis rate u, the y body axis rate v, and the z body axis rate w .. Also included are the time 
derivatives of these quantities, u, v, and tb, respectively. 

The definitions of the body axis rates are given in equations (1-9) to (1-11) as 

u = V cos a cos f3 
v = V sin f3 
w = V sin a cos f3 

The time derivatives of these terms can be defined using equation (B-1) and equations (B-8), (B-9), (B-10), 
and (1-56) as 

X T - gm sin() - D cos a + L sin a V . f3 V . f3 
u = + r sm - q sm a cos 

m 
(1-115) 

YT + gm sin</> cos() + Y . 
iJ = . + p V sm a cos f3 - r V cos a cos f3 

m 
(1-116) 

ZT + gm cos</> cos() - D sin a - L cos a V f3 V . f3 w = + q cos a cos - p sm 
m 

(1-117) 

1.3. 7 Instruments displaced from the vehicle center of gravity.-The need to include measure
ments from instruments displaced from the vehicle center of gravity arises from the fact that not all aircraft 
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instrumentation is located at the vehicle center of gravity. The most important of these quantities are un
doubtedly the accelerometer outputs treated in section 1.3.1. In this section four additional parameters are 
presented: angle of attack ( a,i), angle of sideslip (/3,i), altitude ( h,i), and altitude rate ( h,i) measurements 
from instruments displaced from center of gravity by some x, y, and z body axis distances. The subscripts 
a, {3, h, and h refer to the displacements of the angle-of-attack, angle-of-sideslip, altitude, and altitude rate 
instruments from the vehicle center of gravity. The equations used to compute these quantities are 

+ 
qxcx -PYa 

a·= a ,t v 

f3 
. _ {3 TXf3 - PZf3 
,t- + v 

h, i = h + X h sin B - y h sin </> COS B - Z h COS </> COS B 

h,i = h + 0( X h cos B + Yh sin</> sin B + zh cos</> sin B) - ¢(Yh cos</> cos B - zh sin</> cos B) 

(1-118) 

(1-119) 

(1-120) 

(1-121) 

1.3.8 Miscellaneous observation parameters.-The final set of observation parameters considered 
in this report is a miscellaneous collection of parameters of interest in analysis and design problems. These 
parameters are total angular momentum T, stability axis roll rate p8 , stability axis pitch rate q8 , and stability 
axis yaw rate r 8 • The equations used to define these quantities are · 

1 2 2 2) T = 2(I!l:p - 2l!l:ypq- 2fxzPT + fyq - 2lyzqT + fzT 

Ps = p cos a + r sin a 

r s = - p sin a + r cos a 

2 LINEAR SYSTEM EQUATIONS 

The standard state equation for a linear differential system has the form 

x(t) = A'x(t) + B'u(t) 

(1-122) 

(1-123) 

(1-124) 

(1-125) 

(2-1) 

where, for a time-invariant system, A' is a constant n x n matrix and B' is a constant n x k matrix. The 
standard output equation has the form 

y(t) = H'x(t) + F'u(t) (2-2) 

where H' is a constant f X n matrix and F' is a constant f x k matrix. The generalized linear system 
equations used with an extended formulation compatible with the generalized nonlinear equations (1-3) and 
(1-4) can be characterized by 

Cx(t) = Ax(t) + Bu(t) 

y(t) = Hx(t) + Gx(t) + Fu(t) 

(2-3) 

(2-4) 

where C and A are constant n X n matrices, B is a constant n x k matrix, H and G are constant f x n 
matrices, and F is a constant f X k matrix. The nonlinear system equations developed in section 1 ( eqs. (1-1) 
to (1-4)) can be linearized about a trajectory, and a linear model can be formulated that is similar to either 
the standard or the generalized linear system equations. 
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2.1 Linearization of the State Equation 

If u0 (t) is given input to a system described by the state differential equation (1-3), and if xo(t) is a known 
solution of the state differential equation, then approximations to the neighboring solutions can be found 
for small deviations in the initial state and in the input by using a linear state differential equation. The 
nonlinear state differential equation (1-3) can be linearized about a general trajectory, as by Kwakernaak 
and Sivan (1972) and Dieudonne (1978), so that xo(t) satisfies 

Txo( t) = f[xo( t), x0( t), uo( t)] 

Assuming that the system is operated at close to nominal conditions with u(t), x(t), and x(t) deviating 
only slightly from uo(t), xo(t), and :X:o(t), the following expressions can be written: 

u(t) = uo(t) + ou(t) 

x(t) = xo(t) + ox(t) 

x(t) = xo(t) + ox(t) 

(2-5) 

(2-6) 

(2-7) 

where ou(t), ox(t), and o:X:(t) are small perturbations to the control, state, and time derivative of the state 
vectors, respectively. 

Substituting equations (2-5) to (2-7) into the nonlinear state differential equation (1-3), expanding in a 
Taylor series about x0(t), x0(t), u0(t), and assuming T constant with respect to x(t) yields 

T[xo(t) + ox(t)] = f[xo(t),xo(t), u(t)] +~!ox+;! ox+~! 6u + h(t) (2-8) 

where ofjox, of/ox, and ofjou are defined in equations (2-9) to (2-11) and h(t) represents the sum of 
the higher order terms in the Taylor series, assumed to be small with respect to the perturbations. The 
matrices used in the Taylor series expansion are defined by the following relationships: 

of ofj 
ox = ox . 

(xo,Xo,uo) 

of ofj a:= a: 
X X (xo,Xo,Uo) 

of ofj 
ou = ou . 

(xo,xo,uo) 

the (i,j)th elements of which are defined as 

(%!) .. = :!j. 
•,J J 

(%!) .. ofi 
ox· t,J 3 

(!!) .. = :!i. 
•,J J 

(2-9) 

(2-10) 

(2-11) 

(2-12) 

(2-13) 

(2-14) 

respectively, where fi is the ith simultaneous equation of the nonlinear state differential function in equa
tion (1-3), Xj the jth element of the state vector, Xj the jth element of the time derivative of the state 
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vector, Uj the jth element of the control vector, and all derivatives are evaluated at the nominal condition 
(xo(t), xo(t), uo(t)). 

Subtracting equation (1-3) from (2-8), rearranging terms and neglecting the higher order terms yields a 
linearized state equation, 

[ ar] . ar ar 
T- ax 6x(t) = ax 6x(t) + au 6u(t) (2-15) 

where the arguments of the matrix functions have been dropped to simplify the notation and where it is 
understood that the matrices are to be evaluated along the nominal trajectory. 

Letting 

equation (2-15) can be written as 

C =T-ar 
ax 

C 6x(t) =A 6x(t) + B 6u(t) 

which is precisely the formulation of the generalized state equation desired. 

(2-16) 

(2-17) 

(2-18) 

(2-19) 

Premultiplying both sides of equation (2-19) by c-1 results in the standard form of the linearized state 
differential equation, 

Letting 

6x(t) =c-IA 6x(t) + c-1 B 6u(t) 

A'= c-1A 

B' = c-1 B 

equation (2-20) can be written in the more usual notation 

ox(t) =A' 6x(t) + B' 8u(t) 

2.2 Linearization of the Observation Equation 

(2-20) 

(2-21) 

(2-22) 

(2-23) 

The technique used in section 2.1 to linearize the state equations can ~e applied to the nonlinear observation 
equation (1-4), 

y(t) = g[x(t), x(t), u(t)] 

Performing a Taylor series expansion about the nominal trajectory (x0 (t), x0 (t), u0 (t)) yields 

Yo(t) + 6y(t) == g[xo(t), xo(t), ~o(t)] + ;: 6x + ;~ 6x + ;: 8u + h(t) (2-24) 

where 

(2-25) 
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8g - 8gl 
[j7=[j7 

X X (xo,:X:o,uo) 

8g - 8gl 
8u = 8u . 

(xo,Xo,uo) 

the ( i, j)th elements of which are defined by 

(
8g) 8gi 
8x · · = 8x 3· t,J 

(~;) .. = z~·-
•• J J 

(
8g) 8gi 
8u · · = 8u· t,J J 

(2-26) 

(2-27) 

(2-28) 

(2-29) 

(2-30) 

respectively, where gi is the ith simultaneous equation of the nonlinear observation equation (1-4). Again, 
all derivatives are evaluated at the nominal condition (x0 (t), :Xo(t), uo(t)). 

Subtracting equation (1-4) from equation (2-24), rearranging terms, and neglecting higher order terms 
results in a linear observation equation, 

8g 8g . 8g 
oy(t) = 8x ox+ ax. ox+ 8u ou 

where the arguments of the matrix functions have been dropped to simplify notation. Letting 

H = 8g 
8x 

G = 8g 
ax 

F = 8g 
8u 

equation (2-31) can be rewritten as 

oy(t) = H ox(t) + G ox(t) + F ou(t) 

which is the generalized linear observation equation desired. 

(2-31) 

(2-32) 

(2-33) 

(2-34) 

(2-35) 

The standard form of the observation equation can be derived by substituting for ox from equation (2-23) 
into equation (2-33). This substitution results in 

which can be written as 

By letting 

equation (2-37) becomes 

oy(t) = H ox(t) + G[A' ox(t) + B' ou(t)] + F ou(t) 

oy(t) = [H + GA'] ox(t) + [F + GB'] ou(t) 

H' = H + GA' 

F' = F+ GB' 

(2-36) 

(2-37) 

(2-38) 

(2-39) 
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by(t) = H' 6x(t) + F' 6u(t) (2-40) 

2.3 Definition of Matrices in Linearized System Equations 

The results of sections 2.1 and 2.2 can be used to define the matrices in the linearized system equations 
in terms of partial derivatives of the nonlinear state and observation functions taken with respect to the 
state, time derivative of state, and control vectors. All derivatives are understood to be evaluated along the 
nominal trajectory. 

Using the nonlinear state equation (1-3), 

Tx(t) = f[x(t), i(t), u(t)] 

the terms in the generalized form of the linearized state equation (2-19), 

can be defined as 

C 6x(t) =A 6x(t) + B au(t) 

A= {)f 
{)x 

B = {)f 
{)u 

The terms in the standard form of the linearized state equation (2-20), 

can be defined as 

8x(t) =A' 8x(t) + B' 8u(t) 

A'= 

B'= 

[
T- {)f] -1 {)f 

{)X. 8x 

[
T- {)f] -1 {)f 

ox 8u 

In a similar manner, the nonlinear observation equation (1-4), 

y(t) = g[x(t),x(t), u(t)] 

can be used to define the terms of the generalized linearized observation equation (2-35), 

8y(t) = H 8x(t) + G 8x(t) + F 8u(t) 

(2-41) 

(2-42) 

(2-43) 

(2-44) 

(2-45) 



as 

H = ag 
ax 

(2-46) 

G = ag 
ax (2-47) 

F = ag 
au (2-48) 

The terms in the standard form of the linearized observation equation (2-40), 

c5y(t) = H' c5x(t) + F' c5u(t) 

can be defined as 

H' = 1Jg + ag [T- af]-1 af 
ax ax ax ax (2-49) 

F' = ag + ag [T- af] -1 af 
au ax ax au (2-50) 

2.4 Elements of the Linearized System Matrices 

The elements of the linearized system matrices derived in sections 2.1 and 2.2 are determined by applying the 
linearization method employed with the vector equations in those sections to the individual scalar equations 
constituting the vector equations that define the time derivatives of the state and observation variables. 
Thus, for a matrix, such as the state matrix A defined by equation (2-42), 

the element occupying the ith row and jth column of A, (A)i,j, can be represented as 

(A)· . = afi 
I,J ax· 

J 
(2-51) 

where fi is the scalar function defining the time derivative of the ith state and Xj is the jth state. The 
individual terms used in the A, B, C, H, G, and F matrices are defined in appendix D based on the 
generalized derivatives derived in appendix C. 

Using the state vector x defined in (1-7) as 

X = [p q r V a {3 rP (} '1/J h X yJT 

the elements of the A matrix can be expressed as 

A= 

o(zl) 1 up o(jl) 1 8q · · · 8(jl) 1 8y 
a(q')l8p 8(q')faq · · · 8(q')IDy 

o(x)fop o(x)faq ... D(x)fDy 
o(iJ)Iop o(iJ)Ioq · · · 8(iJ)foy 

(2-.52) 
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Substituting for these partial derivatives using the terms in appendix D gives 

A= 

(1/Ix)[(qSb2/2Vo)Clp + 8LT/8p 
-Ixyro + Ixzqo] 

(1/Iy)[(qSbc/2Vo)Cmp + 8MT/8p 
-2IxzPo- fyzqo + ro(Iz - Ix)] 

(1/Ix)[(qSbc/2Vo)Cl
9 
+ 8LT/8q + IxzPo 

+2Iyzqo + ro(Iy - Iz)] 
(1/Iy)(qSc2 /2Vo)Cmq + 8MT/8q 

+Ixyro- fyzPo] 
(2-53) 

The elements of the B, C, H, G, and F matrices can be determined in a similar fashion, although some 
care must be taken in determining the elements of the matrices for the observation equation and the C 
matrix. 

To determine the elements of the matrices for the observation equation, one must consider the definition 
of the nonlinear vector function g defining the observation variables (eq. (1-85)), 

and the definitions of the matrices for ~he generalized linear observation equations (2-46) to (2-48) , 

H = og 
ox 

a= og 
{)X. 

F = og 
8u 

These matrices may be expressed using a partitioning based on the vector subfunctions of g as 

H= 

G= 

F= 

28 

ax 
ax 

au ax 

ax 
ax 
au ax 

~ ax 
ax 
au 

ax 
au 

au 
au 

(2-54) 

(2-55) 

(2-56) 



which become 

l12x12 

Ql2Xl2 

H= 
Okx12 

~ 
Q12Xl2 

l12x12 

G= 
Okx12 

~ ax 
012xk 

012xk 

F= 
lkxk 

?Jtr 
upon evaluating the partial derivatives of the identity functions x, :X, and u. 

The C matrix may be viewed as a partitioned matrix as 

C= 

I I 

Cu : C12 : 
----1---- I 06x6 

I I 

03x3: c22 : 
---------L-------1 

I 
I 

Oux6 I 16x6 
I 
I 
I 
I 

where, from equation (1-48), 

and 

[ 

-8(jl)/8V -8(jl)/8a -8(jl)/8/3] 
c12 = -8(i')/8~ -8(i')/8a -8(i')/8~ 

-8(r')/8V -8(r')/8a -8(r')/8(3 [

0 -(qSbcj2Voix)Cca. -(qSb2 /2Voix)Cc13 ] 
= 0 -(qSc2/2Voiy)Cma. -(qSbc/2Voiy)Cm13 

0 -(qSbcj2Voiz)Cna. -(qSb2 /2Vofz)Cn13 

(2-57) 

(2-58) 

(2-59) 

(2-60) 

(2-61) 

(2-62) 
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[ 

1.0- 8(V)f8i; -8(V)f8a -8(V)f8~] 
Czz = -8(a)f8V 1.0- 8(a)f8a -8(a)f8f3 

-8(/3)/8V -8(/3)f8a 1.0- 8(/3)/8/3 

[

1.0 (ijScj2Vom)(cosf3o Cno.- sin/30 Cya.) (ijSbj2Vom)(cosf3o Cn1) l 
= 0 1.0 + (ijScj2V~mcosf3o)CLo. (ijSbj2V~mcosf3o)CL13 (2-63) 

0 (ijScj2V0
2m)(sinf30 Cno. + cosf3o CyJ 1.0- (ijSbj2V~m)(sinf3o Cn13 + cosf3o Cy13 ) 

The inverse of the C matrix, c-1, can be expressed as a partitioned matrix in terms of the matrix subpar

titions of the C matrix as 

c-1 = 

-1 I -1 -1 : 
ell 1-Cll c12c22 I 
---~----------- 1 06x6 

I 1 I 
03x3: c:;2 I _______________ J _________ _ 

06x6 

I 
I 
I 
I 
I 
I 

16x6 

(2-64) 

The elements of the A', B', H', and F' matrices can be determined using the c-1 matrix defined in 
equation (2-64), the A, B, H, G, and F matrices, and the definitions for A', B', H', and F' given in 
equations (2-21), (2-22), (2-38), and (2-39). 

3 CONCLUDING REMARKS 

This report derives and defines a set of linearized system matrices for a rigid aircraft of constant mass, flying 
in a stationary atmosphere over a flat, nonrotating earth. Both generalized and standard linear system 
equations are derived from nonlinear six-degree-of-freedom equations of motion and a large collection of 
nonlinear observation (measurement) equations. 

This derivation of a linear model is general and makes no assumptions on either the reference (nominal) 
trajectory about which the model is linearized or the symmetry of the vehicle mass and aerodynamic 
properties. 

Ames Research Center 
Dryden Flight Research Facility 
National Aeronautics and Space Administration 
Edwards, California, January 8, 1987 
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APPENDIX A-AERODYNAMIC FORCES AND MOMENTS 

The aerodynamic forces and moments acting on an aircraft are the result of multiple factors whose signif
icance varies with flight condition as well as from vehicle to vehicle. In general, these forces and moments 
are nonlinear functions primarily of Mach number, angle of attack, angle of sideslip, altitude, rotational 
rates, and control-surface deflections. For the purposes of this report, the aerodynamic forces and moments 
are assumed to be functions having the following form: 

F = if!(a,/3, V,h,p,q,r,a,/3,6t, ... ,on) (A-1) 

where F is an arbitrary force or moment, if! is an arbitrary function, and the Di are the n control surface 
deflections. These forces and moments are related to the nondimensional force and moment coefficients by 
the equations for the forces, 

and the moments, 

D = ijSCo 

Y = ijSCy 

L = ijSCL 

L = ijSbC'

M = ijScCm 

N = ijSbCn 

where b is reference span and c is reference aerodynamic chord. 

(A-2) 

(A-3) 

(A-4) 

(A-5) 

(A-6) 

(A-7) 

While the nondimensional aerodynamic force and moment coefficients are themselves nonlinear func
tions of the vehicle states, time derivatives of the vehicle states, and the control surface deflections, these 
coefficients are commonly expressed in linear form in terms of partial derivatives of these coefficients with 
respect to the functional variables. These linear equations for the aerodynamic force and moment coeffi
cients are derived in the same way as the linearized system equations (section 2); therefore, this derivation 
will not be repeated here. These linear equations are 

n , 

+ 2:: CL6i Oi + CLpP + CLqq + CLrf +CLad+ CL;,/3 (A-8) 
i=l 

n , 

+ 2:: Co6;0i + CoPP + Coqq + Corf +Goa&+ Co 13 /3 (A-9) 
i=l 

n , 

+ 2:: Cy6; oi + Cypp + Cyqq + CyJ + Cyad + Cy13 /3 (A-10) 
i=l 

n , 

+ 2:: C'-6;6i + CtpP + C,qq + Ctrf + Cead + CeiJ/3 
i=l 

(A-ll) 
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n A 

+ L Cm6i Oi + CmpP + Cmqq + CmJ' + Cm,)r. + Cm;/3 
i=l 

Cn = Cn0 + Cnaa + Cn13 /3 + Cnhh + Cnv V 
n A 

+ L CnCj Oi + CnpP + Cnqq + Cnr r + Cnc.J, + cni3/3 
i=l 

(A-12) 

(A-13) 

where Ceo is the value of the coefficient along the nominal trajectory and the notation Ce:r is defined as 

(A-14) 

with Ce being an arbitrary force or moment coefficient and x being an arbitrary state, time derivative of state, 
or control-related parameter that for the usual derivatives is nondimensional. However, the derivatives with 
respect to altitude and velocity are not taken with respect to a nondimensional quantity. The definitions 
of these nondimensional stability and control derivatives are given in terms of the coefficient Ce. The 
nondimensional stability derivatives are defined as 

_ 8Ce 
Cea = 8a (A-15) 

_ace 
Ce/3 = 8/3 (A-16) 

Cep = ace 
(A-17) 

8(bpj2Vo) 

Ceq= 
8Ce 

(A-18) 
8(cqj2Vo) 

_ ace 
Cer = 8(br/2Vo) (A-19) 

Ceo. 
8Ce 

(A-20) - 8(caj2Vo) 

Ce/3 = aCe 
(A-21) 

8(b/3j2Vo) 

The two other stability derivatives are not nondimensional and are defined as 

(A-22) 

(A-23) 

The control derivatives are defined as 

(A-24) 
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The rotational terms in equations (A-8) to (A-13) are nondimensional versions of the corresponding vari
able with 

A bp 
P = 2Vo (A-25) 

A cq 
q = 2Vo (A-26) 

f= 
br 

(A-27) 
2Vo 

a= ca 
(A-28) 

2Vo 

: b~ 
f3 = 2Vo ( A-29) 

Because the Ceo terms are included, the force and moment coefficients are total force and moment coefficients. 
The state, time derivative of state, and control parameters on the right-hand side of equations (A-8) to 
(A-13) are differentials. 
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APPENDIX B-DERIVATION OF THE WIND AXIS 
TRANSLATIONAL PARAMETERS V, a, AND~ 
The derivation of the wind axis translational acceleration parameters is based primarily on the definitions 
in equations (1-9) to (1-14), the body axis translational acceleration equations (1-56), and the expression 
of the force terms defined in equation (1-53). In the following sections, each of the wind axis transla
tional acceleration terms is derived separately after stating some preliminary definitions applicable to all 
calculations. 

B.l Preliminary Definitions 

Equation (1-56), 
6 1 
-V=-F-nxv 
6t m 

can be expanded, using equations (1-54), (1-55), and (1-26), to 

[
it] [(1/m)(XT+Xa+Xg)+rv qwl 
v = (1/m)(YT + Ya + Yg) + pw- ru 
w (1/m)(ZT + Za + Zg) + qu- pv 

(B-1) 

The body axis aerodynamic forces can be rewritten in terms of the stability axis forces lift L, drag D, and 
sideforce Y: 

X a = - D cos a + L sin a 

Za = - D sin a - L cos a 

The gravitational forces can be resolved into body axis components such that 

Xg = -mgsinlJ 

Yg = mg sin</> cos(} 

Zg = mg cos </>cos 0 

(B-2) 

(B-3) 

(B-4) 

(B-5) 

(B-6) 

(D-7) 

These equations will be used in the derivations of the V, a, and~ equations. Thus, the total forces in the 
body axes can be defined and expanded as 

:EX= XT- Dcosa + Lsina- gmsin(} 

:EY = YT + Y + gm sin</> cos(} 

:EZ = ZT - D sina-L cos a+ gm cos</> cos() 

B.2 Derivation of V Equation 

Beginning with the definition of V in terms of u, v, and win equation (1-12), 

V = (u2 + v2 + w2)1/2 

(B-8) 

(B-9) 

(B-10) 
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the equation for V becomes 

V = !£v = !£(u2 + v2 + w2)1/2 
dt dt 

(B-11) 

which after expanding the derivative and cancelling terms, becomes 

V. 1 ( . . . ) = V uu+ vv+ ww (B-12) 

By substituting the definitions for u, v, and w from equations (1-9) to (1-11) and cancelling terms, equa
tion (B-12) yields 

V = it cos a cos {3 + v sin {3 + w sin a cos {3 

The definitions for it, v, and win equation (B-1) are now used with equation (B-13) to give 

. cos a cos{J 
V = (Xa+Xr+Xg)+cosacos{J(rv-qw) 

m 
sin {3 . + --(Ya + Yr + Yg) + sm{J(pw- ru) 

m 
sin a cos {3 . + (Za + Zr + Zg) + sm a cos {J(qu- pv) 

m 

Expanding (B-14) in terms of equations (B-2) through (B-7) and cancelling yields 

V = ..!._ [ - D cos /3 + Y sin ,6 + X T cos a cos {3 + YT sin {3 + ZT sin a cos {3 
m 

- mg( cos a cos {3 sine - sin {3 sin <P cos e - sin a cos {3 cos <P cos B)] 

+ rv cos a cos {3 - qw cos a cos {3 + pw sin {3 - ru sin {3 

+ qu sin a cos {3 - pv sin a cos {3 

(B-13) 

(B-14) 

(B-15) 

Equation (B-15) can be simplified by recognizing that the terms involving the vehicle rotational rates are 
identically zero, which becomes obvious after substituting for u, v, and w in these terms. Thus, the final 
equation becomes 

1 V = - [ - D cos {3 + Y sin /3 + X T cos a cos {3 + YT sin {3 + ZT sin a cos {3 
m 

- mg( cos a cos /3 sine - sin f3 sin <P cos e - sin a cos f3 cos <P cos 0)] 

B.3 Derivation of a Equation 

The equation for a can be derived from the definition of a in equation (1-13), 

Taking the derivative of a with respect to time, 

• d d -1 w a= -a= -tan -
dt dt u 

then expanding and cancelling terms, the equation becomes 

. 1 ( . . ) a= 2 2 uw- uw 
u +w 
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Substituting the definitions of u and w from equations (1-9) and (1-11) into equation (B-18) gives 

w cos a - u sin a a=-----------v cos/3 
(B-19) 

Using equation (B-1) to substitute for u and w and equations (B-8) to (B-10) to define the forces, 
equation (B-19) becomes, after rearranging terms, 

a= 1 
[- L + ZT cos a - X T sin a + mg (cos a cos <P cos (} + sin a sin (}) J 

Vm cos/3 

1 ( . . ) + qu cos a - pv cos a - rv sm a + qw sm a v cos f3 

which after substituting for u, v, and w from equations (1-9) to (1-11) and combining terms gives 

a= V 
1 

/3[-L+ZTcosa-XTsina+mg(cosacos</JcosO+sinasinO)J 
mcos 

+ q - tan f3 (p cos a + r sin a) 

B.4 Derivation of~ Equation 

The equation for /3 is derived from the definition of f3 as given in equation (1-14), 

f3 = sin-1
; 

Taking the derivative of f3 with respect to time yields 

• d d 1 v 
f3 = dt/3 = dt sin- V 

which becomes, after expanding the derivative, substituting for V, and cancelling, 

(3• 1 [ . . f3 . f3 . . . /3] ;;;;; V - U COS a Sln + V COS - W Sin a Sln 

(B-20) 

(B-21) 

(B-22) 

(B-23) 

Using equation (B-1) to substitute for u, v, and wand equations (B-8) to (B-10) to define the forces, 

1 
m V [ - cos a sin f3 (-D cos a + L sin a + X T - mg sin 0) + cos f3 (Y + YT + mg sin <P cos B) 

- sinasin/3 (-Dsina- Lcosa + ZT + mgcos<jJcosO)] 
1 

+ V[- cosasin/3 (rv- qw) + cosf3 (pw- ru)- sinasin/3 (qu- pv)] (B-24) 

Substituting into equation (B-24) for u, v, and wand rearranging terms yields the final equation 

1 r 

~ = m V [ D sin f3 + Y cos f3 - X T cos a sin ,8 + YT cos f3 - ZT sin a sin ,B 

+ mg( cos a sin f3 sin()+ cos f3 sin <P cos 0- sin a sin f3 cos <P cos 0)] 

+ p sin a - r cos a (B-25) 
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APPENDIX C-GENERALIZED DERIVATIVES 

The equations defining the time derivatives of the state variables (derived in sections 1.2.1 to 1.2.4) and those 
defining the observation variables (presented in sections 1.3.1 to 1.3.8) are used to determine the generalized 
partial derivatives of the quantities with respect to a dummy variable~. The purpose of these generalized 
derivatives is primarily to facilitate the derivation of the terms in the linearized equations presented in 
section 2.4; however, these equations have also proved to be useful for computer programs and were used 
to verify the results obtained using LINEAR (see Duke and others, 1987). 

C.l Generalized Derivatives of the Time Derivatives of State Variables 

Equations (1-39) to (1-41) define the rotational accelerations of the vehicle. These equations are used to 
determine the generalized derivatives of these quantities. 

f:J(p) 1 { f:JL f:JM f:JN f:JLT f:JMT f:JNT 
8~ = det I I1 ae + I2 8~ + I3 ae + I1 ae + I2 ---ar- + I3 ~ 

8p 
- [2p(Ixzi2- Ixyi3)- q(Ixzit - I 11zi2 - Dzi3) + r(Ix11It + D11I2- I 11zi3)] a~ 

f:Jq + (p(Ixzil - I 11zi2 - Dzia) + 2q(I11zil - Ixy1a)- r(Dxft - 1xy12 + Ixyla)] f:)~ 

f:Jr} - (p(Ixyil + Dyi2- Iyzia) + q(DI1- Ixyi2 + Ixzia) + 2r(I11zil- Ixzh)] ()~ 

f:J(q) 1 { 8L 8M f:JN 8LT f:JMT f:JNT 
ae = det I Iz ae + 14 ae + Is {}~ + Iz ae + 14 ---ar- + Is ~ 

f:)p 
- [2p(Ixzi4- 1xyis)- q(1xzi2- 111zi4 - Dzis) + r(Ix11lz + Dy14- Iyzis)] ae 

8q + (p(Ixzi2- I11zi4- Dzfs) + 2q(I11zi2- Ix11 Is)- r(Dx12- Ixyi4 + Ixy1s)] ae 

- (p(Ixyi2 + Dyi4- Iyzis) + q(Dxi2- Ixyi4 + Ixzis) + 2r[I11zi2- Ixz14] ~~} 
8(r) 1 { {}L {)M 8N 8LT f:JMT f:JNT 
ae = det I I3 ae + Is ae + I6 ae + I a ot + Is ~ + I6 {if 

[ op 
- 2p(Ixzis- Ixy16)- q(Ixzla- I 11zis - Dz16) + r(1xy13 + D11 Is - Iyzls)] f:Jt 

oq + (p(Ixzla- Iyzls- Dzi6) + 2q(I11zia- Ixyi6)- r(Dx13- 1x111s + IxziB)] ot 

- (p(1xyfa + Dy15- Iyzi6) + q(Dzfa- Ix11 Is + Ixzi6) + 2r(Iyzi3- Ixzfs)] ~~} 

(C-1) 

(C-2) 

(C-3) 

The quantities 11, 12, fa, I4, Is, I6, Dx, D11 , D!H and det I are defined in equations (1-32) to (1·38) and 
(1-42) to (1-44). 

Equation (1-50) defines the decoupled rotational accelerations of the vehicle (il, q', and ~'), which are 
used to determine the generalized derivatives of the decoupled quantities: 

o(p') 1 [8L {}LT op ---ar- = Ix ot + 7if- (rixy- qixz) ot + (Pixz + ri11 + 2qixz 

or] - (pizy - q111 + 2r Ixz + qiz) ot (C-4) 

39 



8(q') 1 [8M 8MT 8p 8q ---ar- = Iy 8~ + ----ar-- (rlx + qfyz + 2pfxz- rlz) 8~ + (rfxy- plyz) 8~ 
or] -(pix- qfxy- 2rfxz- Plz) 8~ 

8( ~') 1 [8N 8NT 8p 8q ---ar- = Iz 8~ + ~ + ( qlx + r Iyz + 2plxy - qly) 8~ + (Pix - r Ixz - 2qlx.y -ply) 0~ 
· 8r] - (qfxz- pfyz) 8~ 

(C-5) 

(C-6) 

Equations (1-58) to (1-60) define the translational accelerations of the vehicle. These equations are used 
to determine the generalized derivatives of these quantities: 
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8(V) 1 { 8D 8XT , 8Y , 8ZT . 8YT 
{)~ m - cos j3 {if + cos a cos j3 7i[" + sm j3 {)~ + sm a cos f3 {if + sm t3 8~ 

+ [ - X T sin a cos j3 + ZT cos a cos j3 + mg( sin ()sin a cos j3 

oa 
+ cos 0 cos 4> cos a cos /3)] {)~ 

+ [ D sin j3 + Y cos f3 - X T sin j3 cos a + YT cos j3 - ZT sin a sin j3 

+ mg(sin 0 cos a sin t3 +cos 0 sin 4> cos j3- cos 0 cos 4> sin a sin f3)] 0:: 

- mg(- cos() cos 4> sin !3 +cos f) sin 4> sin a cos 13) ~~ 

- mg( cos 0 cos a cos f3 + sin 0 sin 4> sin j3 +sin 0 cos 4> sin a cos /3) ~~} 

a(a) _ 1 ( {)L 8ZT . {)XT) op oq . or 
{)~ - m V cos j3 - 8~ + cos a {if - sm a ~ - tan j3 cos a {)~ + {)~ - tan j3 sm a {)~ 

- { mV/cos,B [-L + ZT cos a- XT sin 0: + mg( cosO COfj </>cos a+ sin 0 sin a)]} ~~ 

+ { V c~s j3 [-ZT sin a - X T cos a - mg (cos 0 cos 4> sin a - sin () cos a) J 

+tan j3 (p sin a - r cos a) } ~~ 

+ { ~n j3 j3 [-L + ZT cos a - X T sin a 
m cos 

+ m g (cos e cos 4> cos a + sin e sin a) J - co:2 j3 (p cos a + r sin a)} : 

(C-7) 

- (vc~sj3cos0sin</>cosa) ~~- [vc~sj3(sin0cos</>cosa-cos0sina)] ~~ (C-8) 



a(iJ) 
----ar- = 

1 [ an ay . axT aYT . . ozT] 
m v sin f3 a~ + cos f3 75[ - cos a sm f3 ----ar- + cos f3 a~ - sm a sm f3 75[ 

ap ar + sin a - - cos a -
a~ ar:, 

- ~2 [ D sin f3 + Y cos f3 - X T cos a sin f3 + YT cos f3 - ZT sin a sin f3 
mV 

+ mg( sin 0 cos a sin f3 + cos 0 sin¢ cos f3 - cos 0 cos¢ sin a sin [3)] ~~ 

+ { - 1
-[X T sin a sin /3- ZT cos a sin /3 + mg(- sin() sin a sin /3 -cos() cos <P cos a sin ,6)] 

mV 

. } 8a + pcosa + rsm a 8~ 

+ -1
-[D cos f3- Y sin f3- XT cos a cos f3- YT sin f3- ZT sin a cos f3 

mV 

+ mg( sin 0 cos a cos f3 - cos() sin 4> sin f3 - cos() cos 4> sin a cos ,B)] : 

+ ~ (cos 0 cos¢ cos f3 + cos() sin¢ sin a sin /3) ~: 

+ ~ (cos 0 cos a sin f3 - sin 0 sin¢ cos f3 + sin 0 cos¢ sin a sin /3) ~~ (C-9) 

Equations (1-66) to (1-68) define the vehicle attitude rates. These equations are used to determine the 
generalized derivatives of these quantities: 

8(¢>) 8p . 8q Dr 8¢ 
~ = a~ + sm <P tan 0 a~ + cos <P tan 0 a~ + ( q cos <P tan 0 - r sin <P tan 0) a~ 

' 

+( q sin¢ sec2 0 + r cos¢ sec2 0) ~~ 

8(0) 8q . 8r . 8¢ 
8~ = cos ¢ 8~ - sm ¢ 8~ - ( q sm ¢ + r cos ¢) 8~ 

a(~) . aq ar . a¢ 
7jf" = sm 4> sec 0 a~ + cos <P sec 0 a~ + ( q cos <P sec 0 - r sm <P sec 0) a~ 

+ ( q sin 4> sec B tan B + r cos 4> sec B tan B) ~~ 

(C-10) 

(C-11) 

(C-12) 



Equations (1-72) to (1-74) define the earth-relative velocities of the vehicle. These equations are used 
to determine the generalized derivatives of these quantities: 
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a~;) = [cos (3 cos a sin () - sin (3 sin <P cos () - cos f3 sin a cos <P cos ()] ~ ~ 

- V( cos (3 sin a sin()+ cos (3 cos a cos¢ cos 0) ~~ 

- V (sin (3 cos a sin () + cos (3 sin ¢ cos () - sin (3 sin a cos ¢ cos ()) ~ 

- v (sin (3 cos <P cos() - cos (3 sin a sin ¢>cos e) ~~ 

+ V (cos (3 cos a cos() + sin (3 sin ¢sin 0 + cos .B sin a cos ¢>sin ()) ~~ 

a~~) = [cos (3 cos a cos() cos '1/J + sin (3 (sin¢> sin() cos '1/J - cos¢> sin '1/J) 

+ cos (3 sin a (cos¢> sin() cos '1/J +sin¢> sin '1/J )] ~~ 

- V [cos (3 sin a cos () cos ,P - cos (3 cos Q (cos </> $in () cos '1/; + sin ¢ sin '1/;)] ~~ 

- V [ sin (3 cos a cos () cos '1/J - cos (3 sin ¢ sin () cos '1/J - cos ¢ sin 1/; 

+ sin (3 sin a (cos ¢ sin 0 cos 1/J + sin ¢ sin 1/;)] ~ 

(C-13) 

+ V[sin (3 (cos¢> sin() cos '1/J +sin¢> sin '1/J)- cos (3 sin a (sin¢> sin() cos '1/J- cos¢> sin'lj; )] ~~ 

- V [cos (3 cos a sin () cos 1/; - sin (3 sin ¢> cos () cos '1/J - cos (3 sin a cos ¢> cos () cos 1/;] ~; 

- V [cos (3 cos a cos () sin 1/; + sin (3 (sin ¢ sin 8 sin 1/; + cos ¢> cos '¢) 

+ cos (3 sin a (cos ¢> sin 8 si~ 1/; - sin ¢> cos '1/J)] ~~ 

8 ~ ~) = [cos (3 cos a cos () sin '1/J + sin (3 (cos ¢ cos 1/; + sin ¢> sin () sin 1/;) 

+ cos (3 sin a (cos¢ sin() sin 1/;- sin¢> cos 1/J )] ~~ 

- V[ cos (3 sin a cos 0 sin 1/; - cos (3 cos a (cos¢> sin() sin 1/; - sin¢> cos 1/J )] ~~ 

- V [ sin (3 cos a cos 0 sin 1/; - cos (3 (cos ¢ cos '1/J + sin ¢ sin () sill'lf)) 

+ sin (3 sin a (cos ¢> sin () sin '1/J - sin ¢ cos 1/;)] ~ 

(C-14) 



- V[sin ,8 (sin 4> cos '1/J- cos 4> sin 0 sin '1/J) +cos ,B sin a (sin <P sin 0 sin '1/J + cos <P cos ,P )] ~~ 
80 

- V( cos ,B cos n sino sin '1/J- sin ,B sin <P cos e sin '1/J - cos ,B sin a cos <P cos 0 sin '1/J) a~ 

+ v [cos ,B cos a cos () cos '1/J - sin ,B (cos <P sin '1/J - sin <P sin e cos '1/J) 

+cos ,B sin a: (cos cjJ sin() cos 1/J +sin 4> sin '1/J )] ~~ (C-15) 

C.2 Generalized Derivatives of the Observation Variables 

The vector equation (1-90) defining the body axis kinematic accelerations is used to determine the gener
a1ized derivatives of the individual body axis accelerations: 

(C-16) 

( C-17) 

1 [8ZT . 8D 8L . 8a 
gom 7ff - Slll a ae -cos ll' ae - ( D cos ll' - L gm ll') ae 

e . "' 84> . 0 "' ae] -gm cos sm '+' f)~ - gm sm cos'+' f)~ (C-18) 

Vector equation (1-91) defines the output of body axis accelerometers at the vehicle center of gravity 
and is used to determine the generalized derivatives of the individual body axis accelerometers: 

8(ax) 1 [f)XT 8D . 8L . 8n] 
[j["" = gom 7i["- cos a 8[ + sm a 8~ + (D sm n + L cos a) f)~ (C-19) 

8(ay) = _1_ (8YT + 8Y) 
8~ gom 8~ 8~ 

(C-20) 

8(az) 1 [8ZT . 8D 8L . 8a] 
[j["" = gom 8~ - sma 8[- cosa 8~- (Dcosa- Lsma) 8~ (C-21) 

Using equation (1-93), the generalized derivative of the output of a normal accelerometer at the vehicle 
center of gravity can be expressed as 

Ban 1 [ 8ZT . 8D 8L . 8a] 
f)~ = gom - 8~ + sm a 8[ + cos a 0~ + ( D cos a - L sm a) 0~ (C-22) 

The vector equation (1-95) defining the output of orthogonal accelerometers aligned with the body axes 
but displaced from the vehicle center of gravity is used to determine the generalized derivatives of these 
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quantities: 

(C-24) 

(C-25) 

Equation (1-96) defines the output of a normal accelerometer aligned with the z body axis but not located 
at vehicle center of gravity, an,i· This equation is used to determine the generalized derivative of an,i: 

(C-26) 

In equations (C-20) to (C-23), the partial derivatives of the vehicle rotational rates with respect to the 
dummy variable ~ are defined by equations (C-1) to (C-3). The partial derivatives of the outputs of the 
body axis accelerometers at the vehicle center of gravity are defined by equations (C-16) to (C-19). In these 
equations, as before, the subscripts x, y, and z refer to the x, y, and z body axes, respectively, and the 
symbols x, y, and z refer to x, y, and z body axis locations of the sensors relative to the vehicle center 
o.f gravity. 

Using equation (1-97), thQ gQnmali!:wd derivative of the load factor can be defined as 

o(n) = _1 _8L 
[)~ mg [)~ 

(C-27) 

Equations (1-98) to (1-105) define the air data parameters of interest for this report. These equations 
are used to determine the generalized derivatives of the air data parameters: 

-14 

D(a) 0.7po 8T 

7if = paTo [1.4(po/ poTo)]112 0~ 
8( M) = 1 8V V oa 

ae ;; ae - a2 ae 
8(Re) = pf 8V + Vf 8p _ pV£ 81-l 

()~ f-l ()~ f-l [)~ f-l2 [)~ 

o(Re') = e. av + v op _ pV al-l 
8~ f-l 8~ f-l [)~ f-l2 [)~ 

o(q) = pV av + V 2 
ap 

[)~ [)~ 2 8~ 

(C-28) 

(C-29) 

(C-30) 

(C-31) 

(C-32) 



[(1.0 + 0.2M2?·5
- 1.0] ~ 

+ 1.4M(l.O + 0.2M2
)

2
·
5pa tyf- (M ~ 1.0) 

(C-33) 

{ ( 
576M2 

)
2

"
5 

2 ( 576M2 )1.5 

+Pa 2.4M 5.6M2 - 0.8 + 3·0M 5.6M2 - 0.8 

[ 
9.216M ] oM} 

(5.6M 2 - 0.8)2 '"lfC (M ~ 1.0) 

1.4M(l.o + 0.2M2)2·5 w- (M ~ 1.0) 

{ ( 
576M2 

)
2

"
5 

( 576M2 )1.5 

2·4M 5.6M2 - o.8 + 3·0M
2 

5.6M2 - 0.8 (C-34) 

[ 9.216M ] } oM 
(5.6M 2 - 0.8)2 '"lfC (M ~ 1.0) 

fJ(Tt) 2 aT fJM 
~ = (1.0 + 0.2M ) 0~ +OAT M 0~ ( C-35) 

In the preceding equations, the generalized derivative of Mach number appears several times. This term 
can be expanded using equation (C-29). 

The definitions of the fl.ightpath-related parameters are presented in equations (1-106) to (1-108). These 
definitions are used to derive the generalized partial derivatives of the flightpath-related parameters: 

o(1 ) 1 [ h ov ah] 
{jf = (V2 _ h,2)1/2 - V f)~ + f)~ (C-36) 

fJ(fpa) 1 av 
~=-go~ 

( C-37) 

o(h) . o¢ 7if ::;:: [ -ay,k COS qy COS(}+ az,k Sill qy COS(}] O~ 

+ [ a.r,k cos(} + a 11 ,k sin¢ sin(} + a,.,k cos¢ sin 8] ~~ 

. oax,k . Oay,k Oaz,k + Sill (} ~ - Sill qy COS(} ~ - COS qy COS() ----ar- ( C-38) 

The partial derivatives of altitude rate h and velocity rate V that appear on the right-hand side of these 
equations are defined in equations (C-13) and (C-7), respectively. The partial derivatives of the body axis 
accelerations appearing in equation (C-38) are defined in equations (C-16) to (C-18). 
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Using equations (1-109) and (1-110), the generalized derivatives of the energy-related parameters are 
defined. The partial derivatives of altitude rate and velocity rate appearing in equation (C-40) are defined 
in equations (C-13) and (C-10), respectively: 

8(Es) V 8V 8h 
---ar- = g 8~ + 8~ 
8(P,.) v 8v v 8v 8h 
---ar- = g 8~ + g 8~ + 8~ 

(C-39) 

(C-40) 

The derivatives of the force parameters, lift (eq. (1-111)) and drag (eq. (1-112)) 1 are defined in sec
tion D.l. The generalized derivatives of the normal force (eq. (1-113)) and the axial force (eq. (1-114)) are 
presented in terms of the generalized derivatives of the lift and drag forces: 

8(N) 8L . 8D . 8a 
~=cos a 8~ + sma 8~ - (Lsma- Dcosa) 8~ 

8(A) . 8L 8D . 8a 
~ = -sma 8~ +cos a 8~ - (Lcosa + Dsma) 8~ 

(C-41) 

(C-42) 

The body axis rates are defined in equations (1-9) to (1-11). The time derivatives of these terms are 
qefined in equations (1-115) to (1-117). These equations are used to derive the generalized derivatives of 
the body axis rates and accelerations: 
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8(u) 8V . 8a . 8{3 
~ = cosacosj3 8~- Vsmacosj3 8~- Vcosasm{3 8~ 

8(v) . av 8{3 
~ = sm {3 8~ + V cos {3 8~ 

8(w) . 8V 8a . . 8j3 
-a[" = sm a cos {3 a~ + v cos a cos {3 ae - v sm a sm {3 ae 
8(u) 1 (8XT 8D . 8L) . 8q . 8r 
~ = m ~- cosa 8~ + sma 8~ - Vsmacos(3 8~ + Vsm(3 8~ 

+(rsin{3-qsinacos(3) ~~ + [!(Dsina+Lcosa)-qVcosacos(3] ~; 
. 8(3 80 

+(rVcos(3+qVcosasm(3) 8~ -gcosfJ 8~ 

8(v) 1 (8YT 8Y) . 8p 8r 7Jf = m 8~ + 8~ + V sm a cos (3 8~ - V cos a cos (3 8~ 

. 8V . 8a 
+(psmacos(3-rcosacos(3) 8~ +(pVcosacosf3+rVsmacos(3) 8~ 

( V . . j3 v . (3) 8!3 8r/J . . A-. 80 - p sm a sm - r cos a sm 8~ + g cos ()cos 4> 8~ - g sm 0 sm 'f' 8~ 

(C-43) 

(C-44) 

(C-45) 

(C-46) 

( C-47) 



o(w) 1 (8ZT . 8D 8L) . 8p &q 
~ = m {if- sma li{- cos a 0~ - V sm{J 0~ + V cos a cos{) 0~ 

+ ( q cos a cos f3 - p sin (3) ~~ - [ ~ ( D cos a - L sin a) + q V sin a cos {3] ~; 

- ( q V cos a sin {3 + p V cos [3) a;: - g cos 0 sin ¢ ~~ - g sin 0 cos ¢ ~~ (C-48) 

The outputs of various instruments displaced from the vehicle center of gravity are defined in equa
tions (1-118) to (1-121). These equations define angle of attack, angle of sideslip, altitude, and altitude rate 
instrument outputs. The generalized derivatives of the quantities are based on these equations: 

8(a,i) - - Ya 8p Xa 8q - (qxOI- PYa) av 8a 
8~ - V {}~ + V 8~ V 2 8~ + {}~ (C-49) 

8(f3,i) __ Zf3 Op Xf3 Or _ (TXf3- PZf3) 8V 8(3 
ae - v 8e + v 8e V 2 8e + 8~ ( C-50) 

8( hi) ( . ) o¢ 8e = -yh cos ¢cosO+ Zh sm ¢cosO 8e 

+(xh cos 0 + Yh sin¢ sin 0 + zh cos ¢sin 0) ~~ + ~~ (C-51) 

{}~t) = [~(Vh sin¢ cos()+ zh cos¢ cos 0) + B(yh em.¢ sin()- zh sin¢ sin 0)] ~: 

+ [- O(xhsinO- yhsin¢cos0- zh cos¢cos0) + ~(Yh cos¢sin0- zhsin¢sin0)] ~~ 

- (Yh cos ¢cos 0- zh sin ¢cos 0) ~~ + (xh cos 0 + Yh sin ¢sin 0 + zh cos ¢sin 0) ~~ 
ah + 8e cc-s2) 

The generalized derivatives of bank angle rate, pitch attitude rate, and altitude rate with respect to the 
dummy variable~ are defined in equations (C-10), (C-11), and (C-13), respectively. 

The final set of observation variables is defined in equations (1-122) to (1-125). These equations, defining 
total angular momentum and the stability axis rotational rates, are used to determine the generalized 
derivatives of these quantities: 

8(T) 8p 8q 8r 
~ = UxP- Ixyq- Ixzr) 8e + (Iyq- IxyP- Iyzr) ae + (Izr- IxzP- Iyzq) 8e 

8(ps) &p . &r . &a ---ar- = cos a 8e + sm a 8e - (p sm a - r cos a) 8e 

8(qs) 8q 
Dr-= at, 

o( r s) . {}p or . {}a --ar- = - sm a ae + cos a ae + (-p cos a - r sm a) ae 

(C-53) 

(C-54) 

(C-55) 

(C-56) 
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APPENDIX D-EVALUATION OF DERIVATIVES 

The generalized partial derivatives presented in equations (C-1) to (C-56) contain partial derivatives of the 
state variables, thrust forces, and total aerodynamic forces and moments with respect to the dummy variable 
e. In this appendix, these partial derivatives are defined with respect to specific state, time derivatives of 
state, and control variables. The derivatives of atmospheric parameters are also discussed. 

D.l Preliminary Evaluation 

First, the partial derivatives of the state variables with respect to the state, time derivatives of state, and 
control variables are considered. All partial derivatives of the state variables with respect to the state 
variables are either equal to zero or unity. Thus, 

ap = aq = or = {)V = a a = aj3 = a¢> = {)() = 81/; = oh = ax ~ oy ;; 1 (D-1) 
tJp tJq tJr bV ba {)(3 fl<f> fJ(} fJ'IjJ fJh fJx oy 

and all other derivatives of state variables with respect to state variables are equal to zero. The partial 
derivatives of the state variables with respect to the time derivatives of the state variables ( 0: and ~' in 
particular) are equal to zero. This is also true of the partial derivatives of the state variables with respect 
to the control variables. 

Second, the partial derivatives of the aerodynamic forces and moments with respect to the state, time 
derivatives of state, and control variables are evaluated. Using the definitions of the force and moment 
coefficients presented in appendix A, the partial derivatives can be explicitly evaluated in terms of the 
stability and control derivatives. 

D.1.1 Rolling moment derivatives.-

/JL _ ijSb2 C 
op - 2v l.p 

8L _ ijSbc C 
aq - 2v l.q 

8L _ ijSb2 C 
or - 2V l.r 

{)L 
aV = SbpVC1. + qSbC1.v 

8L 
{)a = ijSbCI.a 

8L 
oj3 = qSbCt.11 

aL 1 2 ap _ 
{)h = :zSbV Ct fJh + qSbCth 

aL _ qSbcc 
80: - 2V t;, 

~!!!!! ijSb2 C. 
8(3 2V c~ 

IJL 
{)fii = qSbCt6; 

(D-2) 

(D-3) 

(D-4) 

(D-5) 

(D-6) 

(D-7) 

(D-8) 

(D-9) 

(D-10) 

(D-11) 
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D.1.2 Pitching moment derivatives.-

D.1.3 Yawing moment derivatives.-

50 

(D-12) 

(D-13) 

(D-14) 

(D-15) 

(D-16) 

(D-17) 

(D-18) 

(D-19) 

(D-20) 

(D-21) 

(D-22) 

(D-23) 

(D-24) 

(D-25) 

(D-26) 

(D-27) 

(D-28) 

(D-29) 

(D-30) 

(D-31) 



0.1.4 Drag force derivatives.-

{)D _ qSb C 
f}p - 2V Op 

an _ qScc 
8q - 2V Oq 

8D _ qSbC 
or - 2V o~ 
8D 
{)V = SpVCo + qSCov 

8D 
{)a; = qSCo"' 
8D 
{)(3 = qSCo 13 

8D 1 2 8p _ 
oh = 2sv Co 8h + qSCoh 

8D qSc 
8a = 2V Co.:. 

8D _ qSbC 
8/3 - 2V 0 !3 

8D 
- = qSCo6 . 
8si • 

0.1.5 Sideforce derivatives.-

{)Y _ qSb C 
8p - 2V Yp 

8Y _ qScc 
8q - 2V Yq 

{)Y _ qSbC 
8r - 2V Yr 

8Y 
8

V = SpVCy + qSCyv 

8Y 
- = qSCy 
{)a; "' 
{)Y 

813 
= qSCy

13 

{)Y 1 2 8p _ 
8h = 2sv Cy 8h + qSCyh 

fJY qSc 
8a = 2V Cya. 
{)Y _ qSb C 
ali - 2v Y/3 

{)Y 
- = qSCy

6 8si ' 

(D-32) 

(D-33) 

(D-34) 

(D-35) 

(D-36) 

(D-37) 

(D-38) 

(D-39) 

(D-40) 

(D-41) 

(D-42) 

(D-43) 

(D-44) 

(D-45) 

(D-46) 

(D-47) 

(D-48) 

(D-49) 

(D-50) 

(D-51) 
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D.1.6 Lift force derivatives.-

8L qSb 
(D-52) = 2VCLp 8p 

8L qSc 
(D-53) = 2VCLq 8q 

8L qSb 
(D-54) = 

2yCLr 8r 
8L 
8V = SpVCL + ijSCLv (D-55) 

8L 
aa = iiSCL .. (D-56) 

8L 
8(3 = qSCL13 

(D-57) 

8L 1 2 8p ·- (D-58) 
8h 2sv CL oh + qSCLh 
8L qSc 

(D-59) = 2VCLa. 80: 
8L qSb 

(D-60) 
8/3 = 2VCL/3 

8L 
(D-61) {) = qSCL6 

c5i • 

Next, the partial derivatives of the powerplant-induced forces and moments with respect to the state, 
time derivative of state, and control variables are considered. The partial derivatives of the powerplant
induced forces and moments are assumed to be zero except for moments taken with respect to the body 
axis rates (p, q, r ), moments and forces taken with respect to the velocity and velocity orientation terms 
(V, a, (3), and forces taken with respect to the control variables. These terms, assumed to be nonzero, are 
taken as primitives and not evaluated further. Thus, using Fp to represent a powerplant-induced force (XT, 
YT, and ZT) and Mp to represent a powerplant-induced moment (LT, MT, and NT), 

and 

8Fp 
8p 

aMp_ 
a¢ -

8Fp aFp 8FP 8Fp aMP aMp aMp aMP aMp d 8Mp 
8V ' oa ' 8(3 ' 8oi ' op '----riq' ----aT' 8V ' 8a 'an 8(3 

are taken as primitives and not evaluated further. 

(D-62) 

(D-63) 

The final set of partial derivatives to be discussed are the derivatives of atmospheric parameters with 
respect to the state, time derivative of state, and control variables. In this report, all atmospheric parameters 
are assumed to be functions of altitude only. Thus, except for 

&T op 8p &pa 
8h ' 8h' ()h' and ah ' 

all derivatives of ambient temperature, density, viscosity, and ambient pressure are assumed to be equal 
to zero. The nonzero quantities listed previously are dependent on an atmospheric model. Clancy (1975), 
Dommasch and others (1967), Etkin (1972), and Gracey (1980) present discussions of atmospheric models. 
In this report, the quantities will be taken as primitives and not evaluated further. 



D.2 Evaluation of the Derivatives of the Time Derivatives 
of the State Variables 

The generalized derivatives of the time derivatives of the state variables are defined in appendix C, equa
tions (C-1) to (C-15). In this section, these generalized derivatives are evaluated in terms of the stability 
and control derivatives, primative terms, and the state, time derivative of state, and control variables. In 
this section, the notation 8(xi)/8xi is used to represent the more correct notation 8fif8xj that is employed 
in the discussion at the beginning of section 3. This notation is used because there is no convenient no
tation available to express these quantities clearly-particularly not the usual notation employed in flight 
mechanics texts such as Etkin (1972) and McRuer and others (1973). The notation that defines quantities 
such as Lp = 8(zi)f8p and Mq = 8(q)f8q is misleading in this context because the definitions of those terms 
(such as Lp, Mq) are based on assumptions of symmetric mass distributions, symmetric aerodynamics, and 
straight and level flight, and additionally do not include derivatives with respect to atmospheric quantities. 

D.2.1 Roll acceleration derivatives.-

8(p) 1 [ijSb _ 8LT 8MT 8NT 
8P = det I 2Vo (ItbCep + I2cCmp + hbCnp) + 8P + ---ap + 8P 

- 2po(Ixzh - Ixyh) + qo(Ixzit - Iyzi2 - Dzh) - ro(Ixyit + Dyi2 - Iyzi3)] 

8(p) _ 1 [ijSc _ 8LT 8MT 8NT 
8q - deti 2V

0 
(ItbCeq + hcCmq + hbCnq)Bq + 7iq + 8q 

+ PoUxzit - Iyzh- Dzh) + 2qo(Iyzit- Ixyh)- ro(Dxit- Ixyh + Ixzh)] 

8(p) = 1 [ijSb _ 8LT 8MT aNT 
Ot det I 2Vo (It bCtr + hcCmr + I3bCnr) + Dr + --g:;- + a:;:-

- Po{Ixyft - Dyi2- Iyzh)- qo(Dxil - Ixyh + Ixzh)- 2ro{Iyzft - Ixzi2)] 

8(p) 1 [ 
8V = det I ItSb(pVoCe + ijCev) + I2Sc(pV0 Cm + q_Cmv) 

. _ 8LT 8MT 8NT] 
+ hSb(pVoCn + qCnv) +It 8V + I2 8V + I3 8V 

8(p) = 1 [- _ 8Lr 8Mr 8Nr] 
80: det I qS(ItbCta + I2cCma + I3bCna) +It 8 0: + h ~ + h 80: 

8(p) 1 [- _ 8LT 8MT 8NT] 
813 = det I qS(ItbCe13 + I2cCm 13 + I3bCn13 ) +It 

813 
+ h 7fj3 + I3 

813 

a(fJ) = o 
8¢> 

a(fJ) = o 
()() 

8(p) = 0 
{)'lj; 

8(p) 
fJh = 

(D-64) 

(D-65) 

(D-66) 

(D-67) 

(D-68) 

(D-69) 

(D-70) 

(D-71) 

(D-72) 

(D-73) 
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0.2.2 Pitch acceleration derivatives.-

8( q) 1 [ijSb _ 8LT 8MT 8NT 
op = det I 2Vo (I2bC.ep + I4cCmp + fsbCnp) + h 8p + I4 ----ap- + Is 8P 

(D-74) 

(D-75) 

(D-76) 

(D-77) 

(D-78) 

- 2po(I:vzi4- I:vyfs) + qo(Ixzi2- Iyzi4- Dzi5)- ro{Ixyh + Dyi4- Iyzis)] (D-79) 

8(q) 1 [ijSc _ 8LT 8MT 8NT aq = det I 2Vo (hbC.eq + I4cCmq + IsbCnq) + I2 aq + I4 aq +Is 8q 

+ Po(Ixzh- Iyzi4- Dzis) + 2qo(Iyzi2- Ixyfs)- ro(Dxl2- lxyl4 + lxz!s)] (D-80) 

o(q) 1 [ijSb _ 8LT 8MT 8NT 
~ = det I 2Vo (hbC.er + I4cCmr + fsbCnr) + I2 ~ + I4 fir+ fs ---aT 

- Po(Ixyi2- Dyi4- Iyzfs)- qo(Dxi2- Ixyi4 + Ixzis)- 2ro(Iyzh- Ixzi4)] (D-81) 

~cv = de~ I [I2Sb(pVoC.e + ii.Civ) + I4Sc(pVoCm + if.Cmv) 

_ 8LT 8MT {)NT] + IsSb(pVoCn + qCnv) + I2 
8

V + I4 
8

V +Is 
8

V (D-82) 

8(q) 1 [- _ 8LT 8MT {)NT] 
80 = det I qS(I2bC1..,. + !4cCm.,. + I5bC,,.) + h fJu + I4 ----a;;- +Is fJu (D-83) 

8( q) 1 [- · _ 8LT 8MT {)NT] 
{){3 = det I qS(I2bC1.~ + I4cCm~ + IsbCn~) + h 8{3 + I4 7ij3 +Is fJ{3 (D-84) 

fJ(q) = 0 (D-85) 
fJ¢> 

fJ(q) = 0 (D-86) 
80 

o(<i) = o (D-87) 
fJ'IjJ 

8( q) s [ ( 1 2 f) p - ) - ( 1 2 8 p - ) 
8h = det I hb 2 Vo C.e &h + qC.eh + I4c 2 Vo Cm 8h + qCmh 

+ fsb(~Vo2Cn ~~ + if.Cnh)] (D-88) 

8( q) = 0 ox (D-89) 



D.2.3 Yaw acceleration derivatives.-
8(r) 1 [qSb _ 8LT 8MT 8NT 
8p = det I 2Vo (hbClp + fscCmp + I6bCnp) + I3 8p +Is 7fP + I6 8p 

- 2po(Ixzfs- Ixyi6) + qo(Ixzh- Iyzfs- Dzfs)- ro(Ixyh + Dyfs- Iyzi6)] 

8(r) 1 [qSc _ 8LT 8MT {}NT 
8q = det I 2v0 

(hbClq + fscCm 9 + I6bCn9 ) + h 8q +Is aq + fs 8q 

+ Po(Ixzh- Iyz/s- DJ6) + 2qo(Iyzh- Ixzfs)- ro(Dxh- Ixyis + Ixzis)] 

8( r) 1 [qSb _ 8LT {}MT 8NT 
---a:;:- = det I 2Vo (hbClr + IscCmr + fsbCnr) + h Br +Is a:;:-+ fs -a;:-

- Po(/xyi3 + Dyis- Iyzi6)- qo(Dxh- Ixyis + Ixzfs) 

- 2ro(Iyzi3- Ixzis)] 

8(r) 1 [ _ _ _ 
{}V = det I hSb(pVoCl + qClv) + IsSc(pVoCm + qCmv) 

_ 8LT 8MT 8NT] 
+ fsSb(pVoCn + qCnv) + I3 8V +Is {}V + I6 

8
v 

8(r) 1 [- _ 8LT {}MT {}NT] 
8a = deti qS(hbCla + fscCma + I6bCna) + I3 8 a + fs ~ + fs {}a 

8(r) 1 [- _ {}LT 8MT 8NT] 
o(3 = det I qS(hbCtp + fscC,.,..P + fsbCnp) + Ia {}(3 +Is ------aJ3 +I a 

813 
8(f) 
-=0 
8¢ 

8(f) 
-=0 

{}() 
8( r) 
-=0 
8'1/; 

8( r) s [ ( 1 2 8 p _ ) _ ( 1 2 8 p _ ) 
8h = det I I3b 2 V0 Cl 8h + qClh + Isc 2 V0 Cm {}h + qC,.,..h 

8( r) 
-=0 
8x 

8(r) 
-=0 
8y 

(
1 2 8p - )] + fsb 2 Vo Cn {}h + qCnh 

(D-90) 

(D-91) 

(D-92) 

(D-93) 

(D-94) 

(D-95) 

(D-96) 

(D-97) 

(D-98) 

(D-99) 

(D-100) 

(D-101) 

(D-102) 

(D-103) 

(D-104) 

(D-105) 
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(D-106) 

(D-107) 

(D-108) 

D.2.4 Decoupled roll acceleration derivatives.-

(D-109) 

(D-110) 

(D-111) 

(D-112) 

(D-113) 

(D-114) 

(D-115) 

(D-116) 

(D-117) 

(D-ll8) 

(D-1l9) 

(D-120) 

(D-121) 

(D-122) 

(D-123) 

5G 



D.2.5 Decoupled pitch acceleration derivatives.~ 

D.2.6 Decoupled yaw acceleration derivatives.-

(D-124) 

(D-125) 

(D-126) 

(D-127) 

(D-128) 

(D-129) 

(D-130) 

(D-131) 

(D-132) 

(D-133) 

(D-134) 

(D-135) 

(D-136) 

(D-137) 

(D-138) 

(D-139) 

(D-140) 

(D-141) 

(D-142) 
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D.2.7 Total vehicle acceleration derivatives.-

o(V) qSb . ap = 2Vom (- cosf3o CoP+ sm(Jo Gyp) 

o(V) qSc . aq = 2Vom (- cosf3o Coq + smfJo Cy9 ) 

o(V) qSb . --a:;:- = 2Vom (- cosf3o Cor+ sm f3o Cyr) 

o(V) 1 [ _ . _ 
oV = m - S cos f3o (pVoCo + qCov) + S sm (30 (pV0Cy + qCyr) 

8Xr . 8Zr . 8Yr] + cos ao cos f3o av + sm ao cos f3o av + sm f3o av 

8(V) 1 [ . 8Xr 
~ = m - qS cos f3o Co,. + qS sm f3o Cv"' +cos ao cos f3o fJa 

. (3 8 Zr . (3 8Yr X . (3 + sm ao cos o oa + sm o oa - T sm ao cos o 

+ ZT cos ao cos fJo + mg(sin Bo sin a0 cos f3o +cos Oo cos cPa cos ao cos f3o)] 

.58 

(D-143) 

(D-144) 

(D-145) 

(D-146) 

(D-147) 

(D-148) 

(D-149) 

(D-150) 

(D-151) 

(D-152) 

(D-153) 

(D-154) 

(D-155) 

(D-156) 

(D-157) 

(D-158) 



8~~) = ~ [ ijS(- cos {30 Cof3 + sin f3o Co + sin f3o Cy !3 + cos f3o Cy) 

8XT . 8ZT . 8Yy 
+ cos ao cos .6o {) (3 + sm ao cos .6o {) (3 + sm .6o {) (3 

- X T sin f3o cos ao - ZT sin ao sin f3o + YT cos f3o 

+ m g (sin Oo cos ao sin f3o + cos Oo sin 4>o cos f3o - cos Oo cos 4>o sin ao sin f3o)] 

8~~) = g( cos Oo cos 4>o sin f3o - cos Oo sin 4>o sin ao cos f3o) 

81~) ;;;; g(- cos Oo cos ao cos f3o - sin Oo sin <Po sin f3o - sin Oo cos <Po sin no cos f3o) 

8(V) = 0 
a'lj; 

a(v) s [ (1 2 ap _ ) . (1 2 8p _ )] 7ih = m - cosf3o 2V0 Co 8h + qCoh + smf3o 2V0 Cy ah + qCyh 

8(V) = 0 ax 
8(V) = 0 
8y 

a(V) qSc . 
{}a ;;;; 2Vom (- cos f3o Cna. + sm f3o Cv a.) 

o(V) qSb . -.- = -Vi (- cos f3o Co. + sm {30 Cy.) 
8{3 2 om !3 f3 

8(V) iJS . 
-a~ = -(-cos f3o Co6 . + sm {30 Cy6 _) 

ui m • • 

1 ( 8XT . 8YT . 8ZT) 
+ m cos a 0 cos {30 a8i + sm f3o 88i + sm ao cos f3o 88i 

D.2.8 Angle-of-attack rate derivatives.-

8(&.) _ ijSb 
8p 

-
2
v;2 {3 CLp - tan f3o cos ao 

0 m cos 0 

o(a) _ qSc 
~q - 2V:2 {3 CLq + 1.0 u 0 m cos 0 

8(a) -sb 
~ = 

2
v;2 q {3 CLr - tan f3o sin ao 

ur 0 m cos o 

8(it) 1 { _ 8ZT . oXT 
8V = - m Vo cos f3o s(VopCL + qCLv) - cos ao oV + sm ao 8V 

1 
+ Vo [ -ijSCL + ZT cos a0 - XT sin a0 

+ mg( cos Oo cos 4>o cos ao +sin Oo sin ao)]} 

(D-159) 

(D-160) 

(D-161) 

(D-162) 

(D-163) 

(D-164) 

(D-165) 

(D-166) 

(D-167) 

(D-168) 

(D-169) 

(D-170) 

(D-171) 

(D-172) 
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8(a) 1 [- 8ZT . 8XT . -
8 

= - v; {3 qSCLa - cos ao -
8 

+ sm ao -
8 

+ ZT sm ao + X T cos ao 
a m o cos o a a 

+ mg( cos Oo cos <Po sin ao - sin Oo cos ao) 

+ tanf3o (posinao- rocosao)] 

8(a) 1 {- 8ZT . 8XT 
8{3 =- mVocosf3o qSCL/3- cosao 8{3 + smao 8{3 

-tan f3o [ -qSCL + ZT cos ao- XT sin ao 

+ mg( cos Oo cos <Po cos ao + sin Oo sin ao)]} 

-~(Po cos ao +rosin ao) 
COS fJO 

8(a) __ 
8

,;.. - v; g {3 cos 80 sin <Po cos a0 
'1/ 0 cos 0 

8(a) 9 . . 
-
8

n = - v; a (sm Oo cos </>o cos ao- cos 00 sm ao) 
u 0 COS tJO 

8(a) = 0 
81/; 

8( a) s ( 1 2 8 P _ ) 
M = mVocosf3o 2V° CL 8h + qCLh 

8(a) 
a;-= 0 

8(a) = 0 
8y 

8("') s '-< lj c c 
80: = - V

0
2m cos {30 La. 

8(a) qSb c 
8/3 = -2Vimcos{30 L~ 

8(0:) 1 [ _ 8ZT . 8XT] 
8 ~:. = v; a -qSCL6 . + cosao -

0 
- smao -

8 u, m o cos tJO ' S; S; 

D.2.9 Angle-of-sideslip rate derivatives.-

8(/3) qSb . . 
8p = 2v

0
2m (smf3o CoP+ cosf3o GyP)+ sma0 

8(~) if.Sc . 
7iq = 2Vc?m (smf3o Coq + cos{30 Cyq) 

8(~) qSb . --a;-= 2Vim (smf3o Cor+ cosf3o Cyr)- cosao 

GO 

(D-173) 

(D-174) 

(D-175) 

(D-176) 

(D-177) 

(D-178) 

(D-179) 

(D-180) 

(D-181) 

(D-182) 

(D-183) 

(D-184) 

(D-185) 

(D-186) 



8(~) 1 [ . {)V = m Vo S sm f3o (p Vo + ijCov) + S cos {30 (p V0Cy + ijCy v) 

. {3 8XT {3 8YT . . {3 8ZT] 
- cosa:osm o {)V +cos o {)V - smo:osm o {)V 

-
1
v;2 [ ij S (sin f3o Co + cos f3o Cy) - X T cos o:o sin f3o 

m o 
+ YT cos f3o - ZT sin o:o sin f3o] (D-187) 

8(~) 1 [ . . 8XT 8YT oo: = m Vo ij S ( sm f3o Co a + cos f3o Cy a) - cos o:o sm f3o oo: + cos f3o oo: 
. . ~ {} ZT X . . (.1 z . (.1 - sm O!o sm 1-'0 OO! + T sm O!o sm 1-'0 - T cos O!o sm 1-'0 

- mg (sin Oo sin O!o sin f3o + cos Oo cos </>o cos O!o sin f3o)] 

+Po cos o:o +rosin o:o (D-188) 

8(~) 1 { . 
{){3 = mVo ijS[smf3o (Co13 - Cy) + cos{30 (Co+ Cy13 )] 

. {)XT {)YT . . {)ZT 
- cos O!o sm f3o 

0 
{3 + cos f3o 

0 
{3 - sm O!o sm f3o 8 {3 

- X T cos O!o cos f3o - YT sin f3o - ZT sin O!o cos f3o 

+ mg( sin Oo cos ao cos f3o - cos Oo sin </>o sin /3o - cos Oo cos 1>o sin O!o cos !3o)} (D-189) 

0~:) = ~0 (cos Oo cos </>o cos f3o +cos Oo sin </>o sin O!o sin {30 ) (D-190) 

o(~) 9 ( e · (.1 • o · ,~.. (.1 88 = Vo cos o cos O!o sm 1-'0 - sm 0 sm 'I'O cos 1-'0 

+ sin Oo cos </>o sin O!o sin f3o) 

8(~) = 0 
f),P 

o(~) = __£_ [sin f3o 
8h mVo (1 2 op ..: ) (1 2 up _ )] 2V0 Co oh + qCoh + cosf3o 2v0 Cy oh + qCyh 

8(~) = 0 
8x 

8(/3) = 0 
8y 

8(/3) qSc . oa = 2V
02

m (smfJo Goa+ cosf3o Cv") 

8(/3) ijSb . 
-.- = -v;2 (smf3o Co.+ cosf3o Cy.) 

8{3 2 0 m .e .e 

8(/3) 1 [- . . 8XT 8YT 
00i = mVo qS(smf3oCo6 ; +cosf3oCy6)-cosO!osmf3o 

06
; +cosf3o 

86
; 

• • f.l 8ZT] 
- sm O!o sm 1-'0 oo; 

(D-191) 

(D-192) 

(D-193) 

(D-194) 

(D-195) 

(D-196) 

(D-197) 

(D-198) 
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(i2 

D.2.10 Roll attitude rate derivatives.-

8(¢) = 1 
8p 

8( ¢) . 
8q = sm <l>o tan Oa 

8(¢) 8r = cos <l>o tan Bo 

8(¢) = 0 
av 
a(¢) = o 
8a 

a(¢) = o 
8(3 

a(¢) . 
a</> = qo cos <l>o tan Oo - ro sm <l>o tan 00 

8(¢) . 2n A. 20 8lf = qo sm <l>o sec uo + ro cos 'f'O sec o 

a(¢) = o 
{)~' 

8(¢) = 0 
fJh 

a(¢) - o 
ax -

8(¢) = 0 
ay 

a(¢) = o 
a a 
8(~) = 0 
8{3 

a(¢) = o 
86i 

D.2.11 Pitch attitude rate derivatives.-

8(0) = 0 
ap 
0~:) = cos </>0 

8( 0) . 
- = -sm<f>o or 
8(0) = 0 
8V 

(D-199) 

(D-200) 

(D-201) 

(D-202) 

(D-203) 

(D-204) 

(D-205) 

(D-206) 

(D-207) 

(D-208) 

(D-209) 

(D-210) 

(D-211) 

(D-212) 

(D-213) 

(D-214) 

(D-215) 

(D-216) 

(D-217) 



&(iJ) = 0 
&a 

&(iJ) = 0 
8(3 

&( 0) . 
&¢> = -qo sm t/>o - ro cos t/>o 

8(iJ) = 0 
{)() 

&(iJ) = 0 
f}'lj; 

&(iJ) = 0 
&h 

&(0) :::: 0 
&x 

&(0) = 0 
&y 

8(0) = 0 
&a 

8(~) = 0 
f)f3 

&(iJ) = 0 
obi 

D.2.12 Heading rate derivatives.-

&(1},) = 0 
&p 

&( 1},) . aq = sm t/>o sec Oo 

&(1},) a:;:- = cos t/>o sec Bo 

&(1},) = 0 
&V 

&(¢) = 0 
&a 

&(¢) = 0 
&(3 

&(¢) . 
fJ¢> = qo cos tf>o sec Oo - ro sm t/>o sec Oo 

&(¢) . 7f8 = qo sm t/>o sec Bo tan Bo + ro cos t/>o sec Bo tan Oo 

&(¢) :::: 0 
&h 

(D-218) 

(D-219) 

(D-220) 

(D-221) 

(D-222) 

(D-223) 

(D-224) 

(D-225) 

(D-226) 

(D-227) 

(D-228) 

(D-229) 

(D-230) 

(D-231) 

(D-232) 

(D-233) 

(D-234) 

(D-235) 

(D-236) 

(D-237) 
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8(¢) = 0 
8x 

8(¢) = 0 
8y 

fJ(¢) = 0 
a a: 
fJ(~) = 0 
8(3 

8(¢) = 0 
a6i 

D.2.13 Altitude rate derivatives.-

8(h) = 0 
8p 

8(h) = 0 
8q 

8(h) = 0 
or 
0~v = sin 00 cos (30 cos a0 - sin </>0 cos 00 sin (30 - cos </>0 cos Bo cos f3o sin ao 

8~:) = - Vo( cos f3o sin ao sin Bo + cos f3o cos ao cos </>o cos Bo) 

8J ;) = - Vo (sin f3o cos ao sin Bo + cos f3o sin </>o cos Bo - sin f3o sin ao cos </>o cos Bo) 

8J;) = - V0 ( sin f3o cos </>o cos Bo - cos f3o sin ao sin </>o cos Bo) 

8~;) = Vo( cos f3o cos ao cos Bo + sin f3o sin </>o sin Bo + cos f3o sin ao cos </>o sin Bo) 

o(h) = 
0 

81/J 
8(h) = 0 
fJh 

a(iL) = 0 
fJx 

8(h) = 0 
{)y 

8(h) = 0 
a a: 

{)(~•) = 0 
8(3 

fJ(h) = 0 
fJ6i 

(D-238) 

(D-239) 

(D-240) 

(D-241) 

(D-242) 

(D-243) 

(D-244) 

(D-245) 

(D-246) 

(D-247) 

(D-248) 

(D-249) 

(D-250) 

(D-251) 

(D-252) 

(D-253) 

(D-254) 

(D-255) 

(D-256) 

(D-257) 



D.2.14 North acceleration derivatives.-

o(x) 
-=0 
8p 

8(x) = 0 oq 
o(x) 
-=0 or 
a~; = cos (30 cos a0 cos 00 cos 1/Jo + sin (30 (sin ¢0 sin 00 cos 1/Jo - cos ¢0 sin 1/Jo) 

+ cos f3o sin ao (cos ¢o sin Oo cos "-Po + sin ¢o sin "-Po) 
0~:) = Vo[ cos f3o cos ao (cos c/Jo sin Oo cos 1/Jo +sin c/Jo sin 1/Jo) - cos f3o sin ao cos Oo cos 1/Jo] 

0~~) = Vo[ cos f3o (sin c/Jo sin Oo cos 1/Jo -cos c/Jo sin 1/Jo)- sin f3o cos ao cos Oo cos 1/Jo 

- sin f3o sin ao (cos c/Jo sin Oo cos 1/Jo + sin c/Jo sin 1/Jo)] 
0~:) = V0 [ sin (30 (cos c/Jo sin Oo cos 1/Jo + sin c/Jo sin 1/Jo) 

+ cos f3o sin ao (cos c/Jo sin 1/Jo - sin c/Jo sin Oo cos 1/Jo)] 
0~!) = V0 ( sin (30 sin ¢0 cos 00 cos 1/Jo - cos f3o cos ao sin Oo cos 1/Jo 

+ cos f3o sin ao cos c/Jo cos Oo cos 1/Jo) 
0~~) = V0 [- cos (30 cos a 0 cos 00 sin 1/Jo - sin (30 (sin ¢0 sin 00 sin 1/Jo + cos ¢0 cos 1/Jo) 

- cos f3o sin ao (cos c/Jo sin flo sin "-Po - sin ¢o cos 1/Jo)] 
o(x) 
-=0 
8h 

8(x) = 0 
8x 

o(x) 
-=0 
8y 

a(x) 
-=0 oa 
8(x) 
-=0 
8[3 

o(x) 
88i = 0 

D.2.15 East acceleration derivatives.-

o(if) = o 
{)p 

o(if) = o 
oq 

o(iJ) 
-=0 or 

(D-258) 

(D-259) 

(D-260) 

(D-261) 

(D-262) 

(D-263) 

(D-264) 

(D-265) 

(D-266) 

(D-267) 

(D-268) 

(D-269) 

(D-270) 

(D-271) 

(D-272) 

(D-273) 

(D-274) 

(D-275) 
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8
( iJ) = cos (}0 sin '1/Jo cos (30 cos ao + sin f3o (cos c/Jo cos '1/Jo + sin c/Jo sin Bo sin 7/Jo) 

8V 
+ cos (30 sin a0 (cos c/Jo sin Oo sin '1/Jo - sin c/Jo cos '1/Jo) 

8~!) = V0 [ cos f3o cos ao (cos c/Jo sin Oo sin '1/Jo - sin c/Jo cos '1/Jo) 

- cos (30 sin ao cos Oo sin '1/Jo] 
8~~) = V0 [ cos f3o (cos c/Jo cos '1/Jo +sin c/Jo sin Oo sin '1/Jo) - sin f3o cos ao cos Oo sin '1/Jo 

- sin f3o sin a0 (cos c/Jo sin Oo sin '1/Jo - sin c/Jo cos '1/Jo)] 
8~:) = Vo[ sin f3o (cos c/Jo sin Oo sin '1/Jo - sin c/Jo cos '1/Jo) 

- cos (30 sin a0 (sin c/Jo sin Oo sin '1/Jo + cos c/Jo cos '1/Jo)] 

8( iJ) v; ( . f3 . "' (} • ·'· f3 . (} . ·'· 8o = 0 s1n o s1n '1'0 cos o s1n '1'0 - cos o cos ao sm o sm '1-'0 

+ cos f3o sin ao cos c/Jo cos Oo sin '1/Jo) 
8~~ = V0 [ cos (30 cos a 0 cos Oo cos '1/Jo - sin f3o (cos c/Jo sin '1/Jo - sin c/Jo sin Oo cos '1/Jo) 

+ cos f3o sin a 0 (cos c/Jo sin Oo cos '1/Jo + sin c/Jo sin '1/Jo)] 

D.3 Evaluation of the Derivatives of the Observation Variables 

(D-276) 

(D-277) 

(D-278) 

(D-279) 

(D-280) 

(D-281) 

(D-282) 

(D-283) 

(D-284) 

(D-285) 

(D-286) 

(D-287) 

The generalized derivatives of the observation variables are defined in appendix C, in equations (C-16) to 
( C-56). In this section, these generalized derivatives are evaluated in terms of the stability and control 
derivatives, primative terms, and the state, time derivative of state, and control variables. 

D.3.1 Longitudinal kinematic acceleration derivatives.-

qSb ( C . C ) 
2 v; - cos oo Dp + sm ao Lp 

o9om 
(D-288) 

qSc ( c . c ) = 
2
v; - cos ao Dq + sm ao Lq 

o9om 
(D-289) 

-sb 
~ (-cos ao Cor +sin ao CLr) 

2 o9om 
(D-290) 
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D.3.2 Lateral kinematic acceleration derivatives.

fJ( ay,k) = ijSb Cy 
8p 2Vogom p 

8( ay,k) _ ijSc Cy 
aq - 2Vogom q 

8( ay,k) _ ijSb C 
or - 2Vogom y r 

a( ay,k) 1 ( _ 8YT) 
&V = gom SpVoCY + qSCyv + 8V 

8( ay,k) _ 1 ( -sc 8YT) --'7-::...:._:_ __ q y +-aa gom a aa 
8(ay,k) = _1_ (-so 8YT) 

8{3 gom q y I' + af3 
8( ay,k) g 

8<P = 
90 

cos 00 cos <Po 

8( ay,k) = - .!L sin Oo sin <Po 
80 90 

8(ay,k) = 
0 

81/J 

(D-291) 

(D-292) 

(D-293) 

(D-294) 

(D-295) 

(D-296) 

(D-297) 

(D-298) 

(D-299) 

(D-300) 

(D-301) 

(D-302) 

(D-303) 

(D-304) 

(D-305) 

(D-306) 

(D-307) 

(D-308) 

(D-309) 

(D-310) 

(D-311) 
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8(a31 ,k) = _1_ (!sv;2c 8p + q-sc ) 
8h gam 2 a Y 8h Yh 

8(ay,k) = 0 
8x 

8(ay,k) = 0 
8y 

8( ay,k) = ijSc Cy. 
86. 2Vagam a 

8( a~,k) = ijSb Cy. 
{}t3 2Vogom f'J 

8( a31 k) 1 (-sc 8YT) __.:.,.-""""'..;,.., = - q y +-
88i gam 6

; 88i 

D.3.3 Z-body axis kinematic acceleration derivatives.-

8( az k) ijSb . 
8

' = -
2

Vr (smao Cn, + cosao CLp) 
p a9am 

8( az k) ijSc . 
8 

' = -
2
v; (sm aa Coq +cos ao CLq) 

q agom 
&(azk) ijSb (. 

8 ' = -
2
v; sm aa Cor + cos ao CLr) 

r ogom 
8(azk) 1 [ . OZT] 

&V = - gom S sm ao (p VoCo + ijCnv) + S cos ao (p VoCL + ifCLv) - &V 

a(azk) ijS . 1 CJZT 
0

' = --[smao (Cna- CL) + cosao (CLa +Co)]+- -
8 a ~m ~m a 

o(azk) ijS . 1 &ZT 
0~ = - -(sm ao Co 13 +cos ao CLf'J) +-

813 ~m ~m 

&(az,k) g . 
&¢ = -

90 
cos Oo sm r/>a 

8(azk) g . O 
80 = - 9o' sm o cos r/>a 

&(az,k) = O 
81/; 

8(;~k) = 
90

1
m [sin ao (isV0

2Cn ~~ + ijSCnh) +cos ao (isV0
2
CL ~~ + ijSCLh)] 

&(az,k) = O 
ax 

8( az,k) = O 
8y 

o(az,k) ijSc ( . C C ) 
D,;, = 21 , sm aa Da +cos ao La 

""' vagom 
&(azk) ijSb (. C C ) 

8(3
.' = 

2
T, sm aa D . + cos a0 L. vogom {'J {'J 

8(az,k) 1 [- , . &ZT] 
88 

= -- qS(smao Co6 + cosao CL6 )--8.~ 
i gam • • ui 

(D-312) 

(D-313) 

(D-314) 

(D-315) 

(D-316) 

(D-317) 

(D-318) 

(D-319) 

(D-320) 

(D-321) 

(D-322) 

(D-323) 

(D-324) 

(D-325) 

(D-326) 

(D-327) 

(D-328) 

(D-329) 

(D-330) 

(D-331) 

(D-332) 



D.3.4 x body axis accelerometer output derivatives.-

8(ax) ijSb ( C . C ) 
{)p = v; - cos ao Dp + sm ao Lp 

2 ogom 

8(ax) ijSc ( C . C ) 
{)q = v; -cos ao o 9 + sm ao Lq 

2 ogom 

8(ax) ijSb ( . ) -
8
- = v; - cos ao Cor + sm ao CLr 

r 2 ogom 

o(ax) 1 [ . oXT] 
{)V = gom - S cos ao (p VoCo + ijCov) + S sm ao (p VoCL + if.CLv) + {)V 

8
8
( ax) = -

1
- {ijS[- cos ao (Goa - CL) +sin ao ( CLa +Co)]+ 

8
8
XT} 

a g0m a 

8(ax) 1 [- . 8XT] -----rij3 = gom qS(- cos ao Co13 + sm ao CL13 ) + {){3 

8(ax) = O 
84> 

8(ax) = O 
88 

8(ax) = O 
{)'lj; 

0~~x) = 
90

1
m [-cos ao (~sv~Co ~~ + ijSCoh) +sin ao (~sv~CL ~~ + ijSCLh) J 

8(ax) = O 
ax 

8(ax) = O 
{)y 

8( ax) _ ijSc ( C . C ) 
{)O. - 2Vogom - cos ao Do. + sm ao Lo. 

8(ax) ijSb ( C . C ) -
813

. = 
2
v; - cosao D· + smao L· 

ogom P 13 

8(ax) 1 [- . 8XT] -
8

l: =- qS(- cosao Co 6 . + smao CL6 .) + -
8

l: 
ui gom • • ui 

D.3.5 y body axis accelerometer output derivatives.-

8(ay) = qSb Cy 
8p 2Vogom P 

8(ay) _ ijSc Cy 
8q - 2V0gom q 

8(ay) = ijSb C 
8r 2Vogom Yr 

8(ay) 1 ( _ 8YT) 
8V = gom SpVoCy + qSCyv + oV 

(D-333) 

(D-334) 

(D-335) 

(D-336) 

(D-337) 

(D-338) 

(D-339) 

(D-340) 

(D-341) 

(D-342) 

(D-343) 

(D-344) 

(D-345) 

(D-346) 

(D-347) 

(D-348) 

(D-349) 

(D-350) 

(D-351) 
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10 

8(ay) = _1_ (qSOy" + 8YT) 
8a gom 8a 

8(ay) = _1_ (-so 8YT) 
8{3 gom q Y 13 + 8{3 

8(ay) = 0 
8¢ 

8(ay) = 0 
8e 

8(ay) = 0 
87f; 

8(ay) = _1_ (~sv.2o 8p -so ) 
8h gom 2 ° y 8h + q yh 

8(ay) = 0 
8x 

D(ay) = 0 
8y 

8(ay) = qSc Oy. 
80. 2V0gom " 

8(ay) qSb O 
-.-= Y· 

8{3 2Vogom 13 

8(ay) _ 1 (-so 8YT) ---- q y6 +-
OOi gom ; 88i 

D.3.6 z body axis accelerometer output derivatives.-

(D-352) 

(D-353) 

(D-354) 

(D-355) 

(D-356) 

(D-357) 

(D-358) 

(D-359) 

(D-360) 

(D-361) 

(D-362) 

(D-363) 

(D-364) 

(D-365) 

(D-366) 

(D-367) 

(D-368) 

(D-369) 

(D-370) 

(D-371) 

(D-372) 



8(az) = O 
8x 

8(az) = O 
8y 

8( az) qSc ( . C C ) 
8a = - 2Vagam Sin aa De. + cos aa Lc. 

8(az) qSb ( . ) 
-.- =- u sinao Co.+ cosao CL· 

8{3 2 vagam 13 13 

8(az) 1 [- . 8ZT] -
8

, = -- qS(sinaaCo6 . +cosaaCL6 )- -
8

, 
ui gam ' ' ui 

D.3.7 Normal accelerometer output derivatives.-

8( an) _ ijSb ( . C C ) 
8p 

- T T sin a a Dp + cos a 0 Lp 
2 vogam 

8( an) _ qSc ( . C C ) 
8q 

- TT sinao Dq + cosa0 Lq 
2vogam 

8(an) ijSb ( . C C ) 
-8- = 2TT Sin ao Dr+ cos ao Lr 

r vogom 

8(an) 1 [. [JZT] 
8

V =gam sinaa (SpVoCo + qSCov) + cosao (SpVoCL + ijSCLv)-
8

V 

8
8
( an) = -

1
- {qS[sin a 0 (Co., - CL) +cos aa ( CL., +Co)] -

8
8
ZT} 

a gam a 

8(an) 1 [- . 8ZT] 8j3 = gam qS(sin aa Co 13 +cos ao CL13)- 813 

8(an) = O 
84> 

8(an) = O 
8(} 

8(an) = O 
8'lj; 

8(an) 1 [. (1 2 8p _ ) (1 2 8p _ )] ----a;;- = gom sin ao 2SV0 Co 8 h + qSCoh +cos aa 2SVa CL 8 h + qSCLh 

8(an) = O 
8x 

[)(an) = 
0 

8y 

8( an) = ijSc ( . C C ) 
8a 2Vagam sin aa De. + cos aa Lc. 

[)(an) _ ijSb ( . C C ) 
8 /3

. - T T sin a a o . + cos a a L . 
2vogom 6 /3 

[)(an) 1 [- . 8ZT] -
8

, = - qS(sinaa Co6 + cosaa CL6 )- -
0

, 
ui gam • • ui 

(D-373) 

(D-374) 

(D-375) 

(D-376) 

(D-377) 

(D-378) 

(D-379) 

(D-380) 

(D-381) 

(D-382) 

(D-383) · 

(D-384) 

(D-385) 

(D-386) 

(D-387) 

(D-388) 

(D-389) 

(D-390. 

(D-391, 

(D-392) 
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D.3.8 Derivatives of x body axis accelerometer output not at the vehicle center 
of gravity.-

8( ax,i) ijSb 1 
= v; (- cos ao CoP + sin ao CLp) + -( qoYx + rozx) 

~ 2~m ~ 

a( ax;) ijSc C . C ) 1 ( ) --'- - v; (- cos ao Oq + sm ao Lq + - PoYx - 2qozx 
8q - 2 ogom go 

a(a ·) q-sb . 1 
__ x,_z - v; (- cos ao Cor + sm ao CLr) + -(pozx - 2roxx) 

or - 2 ogom Yo 

o(axi) 1 [ ( ) . ) oXT] 8V = gom -S cos ao pVoCo + qCnv + S sm ao (pVoCL + iJCLv + oV 

o(8ax,i) = -
1
- {qs[- cosao (Coa- CL) +sin ao (CLa +Co)]+ ooXT} 

a ~m a 

a(ax,i) 1 [- . oXT] &T = gom qS(-cosaoCo13 +smaoCL13 )+ 8{3 

o( ax,i) = O 
o¢ 

a( ax,i) = 0 
o() 

a( ax,i) = 0 
Dtf; 

o(axi) 1 [ (1 2 op ) . (1 2 op )] -m:--- = gom -cos ao 2SV0 Co oh + qSCoh + sm ao 2SV0 CL oh + ijSCLh 

o( ax,i) = O 
ox 

8(ax,i) = 0 
oy 

o( ax,i) = O 
8p 

a( ax,i) Zx 

~=go 
a( ax,i) _ Yx 
~--90 

o(ax ;) qSc ( . 
-

0 
. ' = 

2
v; - cos ao Coo. + sm a 0 CLo.) 

a ogom 
o( ax;) ijSb 
--.'- = 

2
v; (- cosao Co. + sina0 CL·) 

8{3 ogom /3 /3 

8(ax,i) 1 [ _ . oXT] -
0

s: = - -qS(- cosao Co6 + smao CL6 ) + -
0

, 
Ui gom ' ' Ui 

D.3.9 Derivatives of y body axis accelerometer output not at vehicle center 
of gravity.-

(D-393) 

(D-394) 

(D-395) 

(D-396) 

(D-397) 

(D-398) 

(D-399) 

(D-400) 

(D-401) 

(D-402) 

(D-403) 

(D-404) 

(D-405) 

(D-406) 

(D-407) 

(D-408) 

(D-409) 

(D-410) 

(D-411) 



o(ay,i) _ qSc 1 
Oq 

-
2

v; Cyq + -(poxy + rozy) 
o9om 9o 

o(oay,i) = 2J,Sb Cyr + _!_(qozy- 2roYv) 
r o9om 9o 

o(ay,i) 1 ( _ oYT) ---av- = 
90

m SpVoCy + qSCyv + oV 

o(ay,i) 1 (-sc oYT) --=-q y+-
oa 9om a oa 

o(ay,i) __ 1_ (-sc oYT) 
o(3 - 9om q Y13 + o(3 

o(ay,i) = 
0 

8¢ 
8(ay,i) = 

0 
80 

o( ay,i) = 0 
8¢ 

8(ay,i) = _1_ (~sv,2c 8p -sc ) 
oh 9om 2 ° Y oh + q Yh 

o(ay,i) = 
0 

ox 
o( ay,i) = 

0 oy 
o( ay,i) _ zy 
~--90 

8( ay,i) = 
0 8q 

o(ay,i) = _ xy 
or 9o 

8( ay,i) qSc C 
~ = 2Vo9om Yc. 

8(~,i) = qSb Cy. 
of3 2Vo9om " 

o(ay,i) _ 1 (-sc oYT) ---- q y6 +-
OOi 9om ' o8i 

D.3.10 Derivatives of z body axis accelerometer output not at vehicle center 
of gravity.-

8(az,i) _ 
8p -

o(az,i) _ 
oq -

8(az,i) _ 
8r -

(D-412) 

(D-413) 

(D-414) 

(D-415) 

(D-416) 

(D-417) 

(D-418) 

(D-419) 

(D-420) 

(D-421) 

(D-422) 

(D-423) 

(D-424) 

(D-425) 

(D-426) 

(D-427) 

(D-428) 

(D-429) 

(D-430) 

(D-431) 
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a(azi) 1 [ ( C ) azT] w- = - gom s sin ao (pVoCo + ijCov) + s cos ao pVoCL + ij Lv - av 

a({)az,i) = --1
- {qS[sin ao (Co - CL) +cos ao (CLo +Co)]- aazT} 

a gom a a 

a(azi) 1 [ . azT] ---a;- = - gom ijS(sm ao Co 13 +cos ao CL13)- a(3 

8( az i) 
--'- = 0 

a¢ 
D(az,i) = O 

ao 
o(az,i) = 0 

a'lj; 

8(azi) 1 [. (1 2 8p ) (1 2 8p )] ah = - gom sm ao 2SV0 Co ah + ijSCo" + cos ao 2sv0 CL ()h + qSCL,. 

a(az,i) = 0 
ax 

8(az,i) = O 
8y 

D( az,i) Yz 
~=go 
8(a~,i) Xz 

---rfi}" = - go 

8(az,i) = 0 ar-
a(azi) q_Sc (. ) 
-a .' = 2v; sm ao Coc. + cos a 0 CLc. 

a ogom 
8(azi) ij_Sb . 
--. '- = v; ( sm ao Co . + cos ao CL. ) 

8(3 2 o~m f3 f3 

o(az,i) 1 [- . OZT] -
0

J: = -- qS(sma0 Co 6 + cosao CL6.)- -aJ: 
ui g0 m • • ui 

D.3.11 Derivatives of normal accelerometer output not at vehicle center 
of gravity.-

8( an,i) ij_Sb ( . C ) 1 ( ) 
ap 

= 
2

Vi sm ao Op + cos ao CLP + - 2pozz - roxz 
ogom go 

8( an,i) _ ijSc . 1 
aq 

-
2

Vi ( sm ao Coq + cos ao CLq) + -(2qozz - ToYz) 
ogom go 

a(a ·) q_Sb . 1 
--'--"n''-'- = Vi ( sm ao Cor + cos ao CLr) - -(pox z + qoYz) 
~ 2~m ~ 

D(ani) 1 [ . ( ) ( azT] w- = gom S sm ao p VoCo + ijCov + S cos ao p VoCL + iJCLv) - av 

8( an i) 1 { [ . ( ) )) a ZT } - 8-·- =- ijS smao Co"'- CL + cosao (CL"' +Co - -
8 a gom a 

(D-432) 

(D-433) 

(D-434) 

(D-435) 

(D-436) 

(D-437) 

(D-438) 

(D-439) 

(D-440) 

(D-441) 

(D-442) 

(D-443) 

(D-444) 

(D-445) 

(D-446) 

(D-447) 

(D-448) 

(D-449) 

· (D-450) 

(D-451) 



D.3.12 Load factor derivatives.-

(D-452) 

(D-453) 

(D-454) 

(D-455) 

(D-456) 

(D-457) 

(D-458) 

(D-459) 

(D-460) 

(D-461) 

(D-462) 

(D-463) 

(D-464) 

(D-465) 

(D-466) 

(D-467) 

(D-468) 

(D-469) 

(D-470) 

(D-471) 

(D-472) 
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D.3.13 Speed of sound derivatives.-

a(a) = 0 
ap 

a(a) = 0 
aq 

a(a) = 0 
or 

a(a) = 0 
av 
a(a) = 0 
{)a: 

a(a) = 0 
{){3 

a(a) = 0 
8¢> 

8( a) = 0 ae 
B(a) = 

0 
{)'lj; 

8( a) 0. 7po BT 

Bh = poTo(l.4 Pol poTo)ll2 Bh 

B(a) = 0 ox 
8(a) = 0 
By 

B(a) = 
0 a a 

8(~) = 0 
8{3 

(D-473) 

(D-474) 

(D-475) 

(D-476) 

(D-477) 

(D-478) 

(D-479) 

(D-480) 

(D-481) 

(D-482) 

(D-483) 

(D-484) 

(D-485) 

(D-486) 

(D-487) 

(D-488) 

(D-489) 

(D-490) 

(D-491) 

(D-492) 

(D-493) 



D.3.14 Mach number derivatives.-

a(M) = 0 
{)p 

8(M) = O 
{)q 

8(M) = 
0 or 

a(M) 1 
av-=~ 
8(M) = 

0
. 

&a 
8(M) = 0 

8(3 

a(M) = 
0 

8¢ 
8(M) = 0 

{)() 

8(M) = O 
{)'ljJ 

8(M) V0 [ 0.7po ] 8T 
----ah = - a2 poTo(l.4 Po/ poTo)ll2 8h 

a(M) = 
0 ax 

8(M) = 0 
{)y 

8(M) = O 
&a 

a(lv!) = o 
8(3 

8(M) = O 
{)8i 

D.3.15 Reynolds number derivatives.-

8(Re) = 0 
8p 

&(Re) = 0 
8q 

&(Re) = 0 or 

(D-494) 

(D-495) 

(D-496) 

(D-497) 

(D-498) 

(D-499) 

(D-500) 

(D-501) 

(D-502) 

(D-503) 

(D-504) 

(D-505) 

(D-506) 

(D-507) 

(D-508) 

(D-509) 

(D-510) 

(D-511) 

(D-512) 
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o(Re) pi 
(D-513) --=-ov f..l 

o(Re) = 
0 oa (D-514) 

o(Re) = 
0 of3 

(D-515) 

o(Re) = 
0 

o¢> 
(D-516) 

o(Re) = 
0 ao (D-517) 

o(Re) = 
0 o1/; (D-518) 

o(Re) _ Vol op _ pVof Of..L 
(D-519) m;:--

f..l oh f..L2 ah 
o(Re) = 

0 ox (D-520) 

o(Re) = 
0 oy (D-521) 

o(Re) = 
0 oO: (D-522) 

o(R;e) = 0 (D-523) 
of3 

o(Re) = 
0 

08i 
(D-524) 

D.3.16 Reynolds number per unit length derivatives.-

o(Re') = 
0 op (D-525) 

o(Re') = 0 oq (D-526) 

o(Re') = 0 or (D-527) 

o(Re') p 
--=-ov f..l 

(D-528) 

o(Re') = 0 oa (D-529) 

o(Re') = 
0 of3 (D-530) 

8(Re') = 0 
fJ¢> (D-531) 

o(Re') = 0 8B (D-532) 

o(Re') = 
0 81/; (D-533) 
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D.3.17 

8(Re') Vo 8p pVo 8p 
~ = -;; 8h - p 2 8h 

8(Re') = 
0 ax 

8(Re') = 
0 

8y 
8(Re') = 

0 
8ix 

8(R~') = 0 
8(3 

8(Re') = 
0
-

86i 

Dynamic pressure derivatives.-

8(ij) = 0 
8p 

8(ij) = 0 
8q 

8(ij) = 0 
8r 

8(ii) = pVo 
&V 
&(ij) = 0 
8a 

&(ij) = 0 
&(3 

8(ij) = 0 
84> 

&(ij) = 0 
80 

&(ij) = 0 
&'lj; 

&(ij) Vo2 &p 
8h = 2 8h 

8(ij) = 0 
8x 

&(ij) = 0 
8y 

8(ij) = 0 
&a 

&(~) = 0 
&(3 

&(ij) = 0 
&6i 

(D-534) 

(D-535) 

(D-536) 

(D-537) 

(D-538) 

(D-539) 

(D-540) 

(D-541) 

(D-542) 

(D-543) 

(D-544) 

(D-545) 

(D-546) 

(D-547) 

(D-548) 

(D-549) 

(D-550) 

(D-551) 

(D-552) 

(D-553) 

(D-554) 
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D.3.18 Impact pressure derivatives.-

o(qc) = 0 
op 

o(qc) = 0 
oq 

o(qc) = 0 
or 

l.!Pa M(l.O + 0.2M2)2.5 (M ~ 1.0) 

0~~) = Pa [2.4M ( 5. 7~M2 
) 

2
'

5 

a 5.6M -0.8 

2 ( 5. 76M 2 
) 1.

5 
9.216M ] 

o(qc) = 0 
a a. 

o(qc) = 0 
8(3 

o(qc) = 0 
o<P 

/J(qc) = 0 
[)() 

o(qc) = 0 
o'I/J 

+ 3·0M 5.6M2 - 0.8 (5.6M2 - 0.8)2 (M 2: l.O) 

[
1 2M2 ( 5. 76M2 ) 2.5 - 1.0] f}_b:_ 

' 5.6M2 - 0.8 071: 

_ PaVo [24M ( 5.76M2 
)

2
'
5 

a2 • 5.6M2 - 0.8 

2 5.76M 9.216M ua 
( 

2 ) 1.5 ] £) 

+ 3·
0

M 5.6M2 - 0.8 (5.6M2 - 0.8) 2 lJFi (M 2: 1.0) 

(D-555) 

(D-556) 

(D-557) 

(D-558) 

(D-559) 

(D-560) 

(D-561) 

(D-562) 

(D-563) 

(D-564) 

(D-565) 

(D-566) 

(D-567) 

(D-568) 

(D-569) 



D.3.19 Mach meter calibration ratio derivatives.-

8(qc/Pa) = O 
Dp 

8( qc/ Pa) = O 
8q 

8( qc/ Pa) = O 
or 

8(q~/Pa) _ 
8V 

8(qc/Pa) = O 
8a 

8(qc/Pa) = O 
8(3 

8( qc/ Pa) = O 
8¢> 

8( qc/ Pa) = O 
f)(} 

8(qc/Pa) = O 
8'1/J 

8( qc/ Pa) = O 
8x 

8(qc/Pa) = O 
8y 

8( qc/ Pa) = O 
80: 

8(qc~Pa) = O 
8{3 

8( qc/ Pa) = O 
8oi 

\i4 M(l.O + 0.2M2)2.5 (M ~ 1.0) 

1 [ ( M2 ) 
2

·
5 

~ 2.4M 5.:~~- 0.8 

2 ( 5.76M2 ) t.
5 

9.216M ] 
+ 3·

0
M 5.6M2 - 0.8 (5.6M2 - 0.8) 2 (M;::: 1.0) 

_1.4foM(l.O + 0.2M2) 2 ·5 ~ 
a 

(M ~ 1.0) 

VQ 5.76M TT [ ( 2 ) 2.5 

- a2 
2.4M 5.6M2 - 0.8 

2 ( 5.76M2 
) t.s 9.216M ] 8a ) + 3.0M 5.6M2 - 0.8 (5.6M 2 - 0.8)2 OFi (M ;::: l.O 

(D-570) 

(D-571) 

(D-572) 

(D-573) 

(D-574) 

(D-575) 

(D-576) 

(D-577) 

(D-578) 

(D-579) 

(D-580) 

(D-581) 

(D-582) 

(D-583) 

(D-584) 
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82 

D.3.20 Total temperature derivatives.-

8(Tt) = O 
8p 

8(Tt) = O 
8q 

8(Tt) = 0 
8r 

8(Tt) 0.4 TM 
8V - a 

8(Tt.) = 0 
8a 

8(Tt) = 0 
8{3 

8(Tt) { 2 0.4 TMVo [ 0.7p ] } 8T 
fih = l.O + 0·

2
M - a2 poTo(l.4pof PoToF12 8h 

8(Tt) = 0 
8x 

8(Tt) = O 
8y 

8(Tt) = O 
8& 

8(T_t) = 0 
8{3 

8(Tt) = O 
88i 

D.3.21 Flightpath angle derivatives.-

8(1) = 0 
8p 

8(!) = 0 
8q 

8(!) = 0 
8r 

8(1) ho 
8V = Vo(Vo2 - h6)1/2 

8(1) = 0 
8a 

8(!) = 0 
8{3 

8(!) = 0 
8¢ 

8(!) = 0 
{)() 

(D-585) 

(D-586) 

(D-587) 

(D-588) 

(D-589) 

(D-590) 

(D-591) 

(D-592) 

(D-593) 

(D-594) 

(D-595) 

(D-596) 

(D-597) 

(D-598) 

(D-599) 

(D-600) 

(D-601) 

(D-602) 

(D-603) 

(D-604) 



o( 'Y) = 0 
o'lj; 

o( 'Y) = 0 
oh 

o('Y) = 0 
ox 

o(!) = 0 
oy 

o( 'Y) = 0 
oa 

o(-:) = 0 
of3 

8( 'Y) 1 
oh - (V~ - h6)1/2 

o( 'Y) = 0 
ooi 

D.3.22 Flightpath acceleration derivatives.

o(fpa) = 0 
op 

o(fpa) = 
0 oq 

o(fpa) = 
0 or 

o(fpa) = 
0 ov 

o(fpa) = 0 
8a 

o(fpa) = 0 
8(3 

o(fpa) = 0 
o<P 

o(fpa) = 0 
oe 

o(fpa) = 0 
o'lj; 

o(fpa) = 0 
oh 

o(fpa) = 0 
ox 

B(fpa) = 
0 oy 

o(fpa) 1 
----;w-=-g 

(D-605) 

(D-606) 

(D-607) 

(D-608) 

(D-609) 

(D-610) 

(D-611) 

(D-612) 

(D-613) 

(D-614) 

(D-615) 

(D-616) 

(D-617) 

(D-618) 

(D-619) 

(D-620) 

(D-621) 

(D-622) 

(D-623) 

(D-624) 

(D-625) 
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84 

D.3.23 Vertical acceleratiol} derivatives.-

a(h) iJSb 
!lp = [sin 80(- cos ao CoP + sin ao CLp) 
u 2Vogom 

- sin ¢0 cos Bo Cy P + cos </>o cos Bo (sin ao CoP + cos ao CLP)] 

a(i~) qSc 
~q = [sin 80 (-cos ao Coq +sin ao CLq)- sin </>o cos 80 Cyq 

u 2Vogom 
+ cos </>o cos Bo (sin ao Coq + cos ao CLq)] 

a(h) ijSb 
-- = [sin Bo (-cos ao Cor +sin ao CLr)- sin </>o cos Bo Cyr 
or 2Vogom 

+cos </>o cos Bo (sin ao Cor+ cos ao CLr)J 

a(h) 1 { . [ . axT] oV = gom sm Bo -S cos ao (pVoCo + ijCov) + S Sill ao (pVoCL + iJCLv) + {)V 

-sin ¢0 cos Bo ( S pVoCy + ijSCyv + ~l_J) 

+ cos </>0 cos Bo [ S sin ao (p VoCo + ijCo v) 

+ S cos ao (pVoCL + iJCLv)- ~i]} 
a(h) 1 { . [ . axT] ~ =- sm8o -ijScosao(Coa -CL)+ijSsmao(CL +Co)+ n-
ua ~m a ua 

- sin <Po cos 00 ( qSCy a + a;:) 
+cos <l>o cos Bo [ijs sin ao (CoQ - CL) + ijS cos a0 (CLa +Co)- a :aT]} 

(D-626) 

(D-627) 

(D-628) 

(D-629) 

(D-630) 

(D-631) 

(D-632) 

(D-633) 

o(h) 1 [ . ( _ _ . oXT) . (- oYT) o/3 = gom Sill Bo -qS cos ao Cop + qS sm ao CL13 + a/3 - Sill </>0 cos 00 qSCy 13 + {)(3 

+cos </>o cos Bo ( ijS sin a0 Cop + ijS cos a0 CLf3 + 
8~T)] 

a(h) . 
8¢ = -ayo cos <Po cos Bo + az1 Sill <l>o cos Bo 

a(h) . . . 
~ ;;:: a.,0 cos Bo + ay0 Sill Bo Sill ¢0 + az0 cos </>o sm Bo 

a(h) = 0 
a1/J 

(D-634) 

(D-635) 

(D-636) 

(D-637) 



a(h) 1 { . [ (1 2 ap _ ) . (1 2 ap _ )] f)h = gom sm Oo -cos Go 2SV0 Co fJh + qSCoh + sm Go 2sv0 CL fJh + qSCLh 

a(h) = 0 ax 
a(h) = 0 f)y 

-sin</>ocos8o (~sv~Cy ~~ +qSCvh) 

+cos <l>o cos Oo [sin Go (~SV02Co ~~ + ijSCoh) 

+cos ao (~sv~cL ~~ + ijSCLh) J} 

a(h) ifSc a a = 
2
Vogom [sin Bo (- cos Go Co c. + sin Go CLc.) - sin ¢0 cos (}0 Cy c. 

+ cos </>o cos Oo (sin ao Co c. + cos Go CLc.)] 

a(h) __ ifSb 
>'~{3. v; [sin 8o (- cos Go Co . + sin ao CL, ) - sin </>o cos Oo Cy. 
u 2 ogom 13 f3 f3 

(D-638) 

(D-639) 

(D-640) 

(D-641) 

+ cos<f>o cosOo (sinao Co
13 

+cos Go CL13 )] (D-642) 

a(h) 1 { . [- . fJXT] . (- fJYT) OOi = gom sm Bo qS(- cos ao Coo; + sm ao CL6;) + fJoi - sm </>o cos 00 qSCy61 + Boi 

+co~ </>o cos Bo [ ijS(sin Go Co6, +cos Go CL6,) - ~~~ J} (D-643) 

D.3.24 Specific energy derivatives.-

8(Es) = O 
ap 

8(Es) = O 
fJq 

o(Es) = O 
8r 

o(Es) _ Vo 
fJV - g 

fJ(Es) = O 
[)a 

fJ(Es) = O 
8{3 

fJ(Es) = O 
8</> 

fJ(Es) = O 
80 

8(Es) = O 
fJ'Ij; 

8(Es) = l 
8h 

(D-644) 

(D-645) 

(D-646) 

(D-647) 

(D-648) 

(D-649) 

(D-650) 

(D-651) 

(D-652) 

(D-653) 

85 



8(Es) = O 
8x 

(D-654) 

8(E5 ) = O 
8y 

(D-655) 

8(Es) = O 
8&. 

(D-656) 

8(£_s) = O (D-657) 
8{3 

8(Es) = O 
80i 

(D-658) 

D.3.25 Specific power derivatives.-

8(Ps) = O 
{)p 

(D-659) 

8(Ps) = O 
8q 

(D-660) 

fJ(Ps) = O 
8r 

(D-661) 

8(Ps) V 
-=-av g 

(D-662) 

fJ(Ps) = O 
{)a 

(D-663) 

fJ(Ps) = O 
8{3 

(D-664) 

fJ(Ps) = O 
84> 

(D-665) 

8(Ps) = O 
{)() 

(D-666) 

8(Pa) = O 
81/J 

(D-667) 

8(Ps) = O 
f)h 

(D-668) 

&(Ps) = O 
ax 

(D-669) 

8(Ps) = O 
8y 

(D-670) 

fJ(Ps) V 
(D-671) -. =-

av g 

fJ(Ps) = O 
8&. 

(D-672) 

fJ(J>_s) = O (D-673) 
8{3 

fJ(~s) = 1 (D-674) 
{)h 

86 



D.3.26 Normal force derivatives.-

8(N) ijSb . 
-£}- = l"T( cos ao CLp + sm ao Cop) 

up 2vo 
a(N) q_Sc . 
-£}- = l"T( cos ao CLq + sm ao Coq) 

uq 2vo 
8Cfl) = ij ~rb (cos ao CL,. + sin ao Co,.) 
ur 2vo 

a(N) . 
oV = S[cosao (pVoCL + qCLv) + sm ao (pVoCo + qCov)l 

01:) = qS( cos ao CLa +sin ao Co a - sin ao CL + cos ao Co) 

8(N) . 7J73 = qS(cosao CL13 + smao Cn13 ) 

8(N) = 
0 

8¢ 
8(N) 
88 = 0 

a(N) = 0 
8'1/J 

a( N) [ ( 1 2 a P _ ) . ( 1 2 a P _ ) ] ---a;:;- = s cos ao 2 Vo CL oh + qCLh + sm ao 2 Vo Co oh + qCoh 

8(N) = O 
ox 

a(N) = 0 ay 
a(N) q_Sc . 

oi:x = 2Vo (cos ao CL,. + sm ao Co,.) 

a(~)= q
2
-sv;b(cosaoCL· +sinaoCo.) 

8(3 0 ,13 (3 

a(N) . 
OOi = qS( cos ao CL6, + sm a0 Co6) 

D.3.27 Axial force derivatives.-

8(A) ijSb . --;:;-- = --v-(- sm ao CLp + cos ao Cop) 
vp 2vo 

8(A) ijSc . ---aq- = 2Vo (- sm ao CLq + cos ao Coq) 

o(A) qSb . 
~ = -(- smao CLr + cosao Cor) 
ur 2Vo 

(D-675) 

(D-676) 

(D-677) 

(D-678) 

(D-679) 

(D-680) 

(D-681) 

(D-682) 

(D-683) 

(D-684) 

(D-685) 

(D-686) 

(D-687) 

(D-688) 

(D-689) 

(D-690) 

(D-691) 

(D-692) 

(D-693) 
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88 

a(A) . 
aV = S [- sm ao (p VoCL + qCLv) + cos ao (p VoCo + ijCo v)] 

a(A) _ . . aa = qS(- Slll ao CLa + cos ao Coa - cos O'Q CL - Slll ao Co) 

a(A) . 
8{3 = qS(- Slll ao eLf' +cos ao Co!') 

a(A) = 0 
ac/Y 

a(A) = 0 ()() 

D(A) = 0 
a'I/J 

D(A) [ . (1 2 ap ) (1 2 ap )] 8h = s - Slll ao 2 Va CL ah + ijCLh + cos ao 2 Va Co ah + i]Coh 

a(A) = 
0 ax 

8(A) = 0 
8y 

a(A) -s-
a~x = ~v: (- sin ao CLc. + cos ao Co c.) 

a(A) ijSb . 
-.- = 

2
T/' (-smaoCL· +cosaoCo.) 

0{3 VQ p P 

a(A) . 
a8i = ijS(- sm ao CL6; +cos a 0 C06;) 

D.3.28 x body axis rate derivatives.-

D(u) 
-=0 Dp 
8(u) = 

0 
8q 

a(u) = 0 ar 
a(u) 
DV = cos ao cos f3o 

D(u) . a a = - Vo sm ao cos f3o 

8(u) . a {3 = - Vo cos ao Slll f3o 

o(u) = 0 
acjy 

a(u) = 0 ao 
a(u) = 0 

8'1/J 

(D-694) 

(D-695) 

(D-696) 

(D-697) 

(D-698) 

(D-699) 

(D-700) 

(D-701) 

(D-702) 

(D-703) 

(D-704) 

(D-705) 

(D-706) 

(D-707) 

(D-708) 

(D-709) 

(D-710) 

(D-711) 

(D-712) 

(D-713) 

(D-714) 



o( u) = 0 
oh 

(D-715) 

o(u) = 0 
ox 

(D- 716) 

o(u) = 0 
oy 

(D-717) 

o(u) = 0 
oa 

(D-718) 

o(~) = 0 (D-719) 
o/3 

o( u) = 0 
o6i 

(D-720) 

D.3.29 y body axis rate derivatives.-

o(v) = 0 
f)p 

(D-721) 

o(v) = 0 
oq 

(D-722) 

o(v) = 0 
flr 

(D-723) 

o( v) . f3 
oV = sm 0 (D-724) 

o(v) = 0 
oa 

(D-725) 

0~;) = Vo cos f3o (D-726) 

o(v) = 0 
o<f> 

(D-727) 

o(v) = 0 
oO 

(D-728) 

o(v) = 0 
o'I/J 

(D-729) 

o(v) = 0 
oh 

(D-730) 

o(v) = 0 
ox 

(D-731) 

o(v) = 0 
oy 

(D-732) 

a( v) = 0 
oa 

(D-733) 

o(~) = 0 (D-734) 
of3 

o(v) = 0 
o6i 

(D-735) 
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D.3.30 z body axis rate derivatives.-

8(w) = 0 
8p 

(D-736) 

8(w) = 0 
oq 

(D-737) 

8(w) = 0 or (D-738) 

8(w) . 
av = sm ao cos f3o (D-739) 

8(w) -----a;;- = Vo cos a0 cos f3o (D-740) 

8( w) Vi . . f3 
0 f3 = - o sm ao sm o (D-741) 

8(w) = 0 
8</> 

(D-742) 

8(w) = 0 8(} (D-743) 

&(w) = 0 
81/; 

(D-744) 

8(w) = 0 
8h 

(D-745) 

8(w) = 0 
ox 

(D-746) 

8(w) = 0 
oy 

(D-747) 

8(w) = 0 a a (D-748) 

o(U:) = o (D-749) 
8{3 

8(w) = 0 
8oi 

(D-750) 

D.3.31 x body axis acceleration derivatives.-

o(u) qSb . 
op = 2Vom (-cos ao Cop+ sm ao CLp) (D-751) 

o(u) qSc . . ----aq = 2Vom (-cos ao Coq + sm ao CLq) - V0 sm a0 cos {30 (D-752) 

o( u) -sb 
&:;:- = 2~/om (- cos ao Cor + sin ao CLr) + Vo sin {30 (D-753) 

o(u) 1 { _ . _ axT} 
oV = m S[- cosao (pVoCo + qCov) + smao (pVoCL + qCLv)J + DV 

+rosin f3o - qo sin ao cos f3o (D-754) 
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o(u) 1 [ . . axTJ Ba = m ijS(- cos ao Co"'+ sm ao CL"' + sm ao Co+ cos ao CL) + Ba 

- q0V0 cos ao cos (30 

D(u) 1 [- . axT] 
8(3 = m qS(- cos ao Co13 + sm ao CL13 ) + B/3 

+ To Vo cos f3o + qo Vo cos ao sin f3o 
8(u) 

81> = 0 

8(u) 8e = -g cos Oo 

8(u) = 0 
81/J 

8(u) s [ (1 2 8p _ ) . (1 2 8p )] 
8h = m -cos ao 2V0 Co 8h + qCoh + sm ao 2V0 CL 8h + qCLh 

8(u) = 
0 

8x 
8(u) = 0 
8y 

8( u) ijSc . 
8a = 2Vom (- cosao Coo.+ smao CLa.) 

8(u) qSb . -.- = -
2

Tr (- cosa:o Co.+ sma:0 CL·) 
8(3 vom f3 f3 

8(u) 1 [ . 8XT] 
{)8; = m ijS(- cos ao Co6i + sm ao CL6i) + 88; 

D.3.32 y body axis acceleration derivatives.-

8(v) iJSb . 
op = 2Vom Cy P + Vo sm ao cos f3o 

8(v) = qSc Cy 
8q 2Vom q 

8(v) iJSb 8r = 2Vom Cy r - Vo cos ao cos f3o 

8( v) 1 [ 8YT] . 
8

V = m S(pVoCy + ijCyv) + 
8

V +Po Sin O:o cos f3o- To cos a:0 cos (30 

8(v) 1 (- · 8YT) . 
8a = m qSCy"' + 8a +Po Vo cos ao cos f3o + To V0 sm a 0 cos (30 

8( v) 1 (- 8YT) . . . of3 = m qSCy 13 + 
813 

-Po Vo sm ao sm f3o - To Vo cos ao sm (30 

8(v) 
8

1> = g cos Oo cos r/>o 

a( v) . . 8o = -g sm Oo sm r/>o 

8( v) = 
0 

{)1/J 

(D-755) 

(D-756) 

(D-757) 

(D-758) 

(D-759) 

(D-760) 

(D-761) 

(D-762) 

(D-763) 

(D-764) 

(D-765) 

(D-766) 

(D-767) 

(D-768) 

(D-769) 

(D-770) 

(D-771) 

(D-772) 

(D-773) 

(D-774) 
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8(v) s (1 2 8p _ ) 
8h = m 2V° Cy 8h + qCyh 

8(v) = 0 
8x 

8( v) = 0 
8y 

8(v) _ q_Sc 
0 8&. - 2Vom Yo. 

8(v) q_Sb 
0 -. =-- Y· 

8{3 2Vom f3 

8(v) = .!.. (-sc aYT) 
88i m q Yo; + 88i 

D.3.33 z body axis acceleration derivatives.-

8(w) qSb ( . 0 c ) v; . !3 
Dp = 2Vom -smao Dp- cosao Lp - osm o 

D(w) qSc . 
8q = 

2
Vom (- sm ao Cnq -cos ao CLq) + V0 cos a0 cos {30 

8(w) qSb . 
-
8 

= --v--(- sm ao Cor- cos ao CLr) 
r 2vom 

D(w) 1 [ 8Z ] 
8

V = m -S sin ao (pVoCo + ijCov)- S cos ao (pVoCL + qCLv) + 
0
J 

+ qo cos ao cos f3o Po sin f3o 

8(w) 1 [ . . DZT] 
Da = m ijS(- smao Co"- cosao CLa- cosao Cn + sm ao CL) + 

8
a 

- q0 Vo sin ao cos f3o 

8( w) 1 [- . 8ZT] . 
813 

= ;;; qS(- sm ao CnfJ - cos ao CLfJ) + {){3 - qo Vo cos ao sm f3o -Po Vo cos {30 

o(w) . 
7)";( = - g cos Oo sm </Jo 

D(w) . 758 = - g sm Bo cos <Po 

D(w) 
8'1/J = 0 

D( w) S [ . ( 1 2 8 p ) ( 1 2 8 p ) ] 7ih" = m - smao 2V0 Cn oh + ijCnh - cosao 2V0 CL oh + qCLh 

D(w) 
a;-= 0 

D(w) 
7iY = 0 

D(w) qSc . 
Da = 2Vom (- sm ao Goa.- cos ao CLJ 

D(w) qSb . 
D/J = 2Vom (- sm ao Co~- cos ao CL~) 

(D-775) 

(D· 776) 

(D-777) 

(D-778) 

(D-779) 

(D-780) 

(D-781) 

(D-782) 

(D-783) 

(D-784) 

(D-785) 

(D-786) 

(D-787) 

(D-788) 

(D-789) 

(D-790) 

(D-791) 

(D-792) 

(D-793) 

(D-794) 



8(w) 1 [ 8ZT] -- =- ijS(-sinaoCn6 -cosaoCL6,)+ 8 ~:. 
8fJ; m • u, 

D.3.34 Angle-of-attack sensor output derivatives.-

D.3.35 Angle-of-sideslip sensor output derivatives.-

8(/3,;) Zf3 

7fP- Vo 

8(f3,i) = 0 
8q 

8(f3,;) _ X {3 

----a;- - Vo 

(D-795) 

(D-796) 

(D-797) 

(D-798) 

(D-799) 

(D-800) 

(D-801) 

(D-802) 

(D-803) 

(D-804) 

(D-805) 

(D-806) 

(D-807) 

(D-808) 

(D-809) 

(D-810) 

(D-811) 

(D-812) 

(D-813) 
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94 

8(f3,i) 
av-= 
8(f3,i) = 0 

8a 
8(f3,i) = 1 

8{3 

8(f3,i) = 0 
8¢ 

8(f3,i) = 0 
ao 

a(J3,i) = 0 
81/J 

8(f3,i) = 0 
8h 

8(f3,i) = 0 
ax 

8(f3,i) = 0 
8y 

8(f3,i) = 0 
ao. 

8(f3:i) = 0 
8{3 

8(f3,i) = 0 
88i 

D.3.36 Altimeter output derivatives.-

8(h,;) = 0 
op 

8(h,;) = 0 
oq 

8(h,;) = 0 
8r 

8(h,i) = 0 
av 

8(h,i) = 0 
oa 

o(h,i) = 0 
8{3 

rox f3 - poZf3 
v;2 

0 

B(h,;) = -yhcos¢0 cos00 +zhsin</Jocos0o 
8¢ 

B(h,i) = xh cos 00 + Yh sin <Po sin 00 + Zh cos <Po sin Bo 
8(} 
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D.3.39 Stability axis roll rate derivatives.
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D.3.40 Stability axis pitch rate derivatives.
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D.3.41 Stability axis yaw rate derivatives.-
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