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Preface

How to define rational behavior (practical rationality) is a philosophical problem
of fundamental importance - both in its own right and by virtue of its close con-
nection with the problem of theoretical rationality. The concept of rational be-
havior is equally fundamental to a number of more specialized disciplines: to
normative disciplines such as decision theory (utility theory), game theory, and
ethics; and to some positive social sciences, such as economics and certain, more
analytically oriented, versions of political science and of sociology.

This book presents what I believe to be the first systematic attempt to develop
a conceptually clear, and quantitatively definite, general theory of rational behavior.
No doubt, technically more advanced and philosophically more sophisticated
versions of such a theory will soon follow. In fact, the first version of this book
was completed in 1963, but game theory has been advancing at a very rapid rate
since then, and my own thinking has also been changing. Thus, I have revised this
manuscript several times to bring it more in line with new developments, but this
process must stop if this material is ever to be published. I hope the reader will
bear with me if he finds that this book does not cover some recent results, even
some of my own. In such a rapidly growing subject as game theory, only journal
articles - indeed, only research reports - can be really up to date.

Even if some details of my theory should eventually need modification in the
light of later developments, I will feel my book has achieved its purpose if it can
convince some readers of one basic point: that it is both possible and eminently
desirable to treat decision theory, ethics, and game theory - including the theories
of both cooperative and noncooperative games - as special cases of the same gen-
eral theory of rational behavior.

I wish to express my sincere thanks to the National Science Foundation for its
persistent financial support. I also wish to thank Dr. Lloyd S. Shapley of RAND
Corporation, Professors Robert J. Aumann and Michael Maschler of Hebrew Uni-
versity, Jerusalem, and Professor Reinhard Selten of the University of Bielefeld,
West Germany, for helpful comments. Special thanks are due to Professor Irving
H. LaValle of Tulane University, who read the entire manuscript of an earlier
version of this book, pointed out errors, and suggested improvements. This list

IX
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would not be complete without mentioning my wife, Anne, to whom I am in-
debted not only for her continual moral support but also for many valuable
suggestions.

J. C. H.
Berkeley, California
January, 1977
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Prelirainaries





Bargaining-equilibrium analysis:
a new approach to game theory
and to the analysis of social behavior

1.1 Need for a game-theoretical approach yielding determinate solutions

The purpose of this book is to present a new approach to game theory. Based on a
general theory of rational behavior in game situations, it yields a determinate solu-
tion (i.e., a solution corresponding to a unique payoff vector) for each particular
game and clearly specifies the strategies by which rational players can most effec-
tively advance their own interests against other rational players.

This new approach, it seems to me, significantly increases the scope and the ana-
lytical usefulness of game-theoretical models in the social sciences. It furnishes
sharp and specific predictions, both qualitatively and quantitatively, about the out-
come of any given game and in particular about the outcome of bargaining among
rational players. It shows how this outcome depends on the rewards and penalties
that each player can provide for each other player, on the costs that he would incur
in providing these rewards or penalties, and on each player's willingness to take
risks. Thus it supplies the analytical tools needed for what may be called a
bargaining-equilibrium analysis of social behavior and of social institutions, i.e.,
for their explanation in terms of a bargaining equilibrium (corresponding to the
"balance of power") among the interested individuals and social groups.

This new approach to game theory also has significant philosophical implications,
because it throws new light on the concept of rational behavior and on the relation-
ship between rational behavior and moral behavior.

When von Neumann and Morgenstern first published Theory of Games and
Economic Behavior in 1944, many social scientists expressed very high hopes about
the revolutionary impact that the theory of games would have on the social
sciences. As a matter of fact, many of the conceptual tools developed by von
Neumann and Morgenstern (e.g., the concepts of pure and mixed strategies, payoff
functions, expected-utility maximization, dominance, side payments, coalitions,
and so on) did have a very stimulating influence on the social sciences, as well as on
mathematical statistics, operations research, and related disciplines. But the theory
of games as such so far has not found extensive applications in the sciences of
social behavior.

In my opinion, the main reason for this has been the fact that von Neumann and
Morgenstern's approach in general does not yield determinate solutions for two-
person nonzero-sum games and for ^-person games. To be sure, their approach does
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provide a very convincing determinate solution for two-person zero-sum games - but
it so happens that few, if any, real-life social situations represent games of this
particular kind. Even an all-out war is not really a two-person zero-sum game,
because the two sides always have a common interest in limiting the intensity of
warfare (e.g., by agreeing mutually to refrain from using some particularly destruc-
tive weapons).

This means that for purposes of social-science applications the really important
parts of game theory are the theories of two-person nonzero-sum games and of
n-person games. Thus, in my opinion, in order to maximize the usefulness of game
theory for the analysis of social behavior, we need a game-theoretical approach
yielding determinate solutions for both of these two game classes. Only a theory
providing determinate solutions can suggest reasonably specific empirically testable
hypotheses about social behavior and can attempt to explain and to predict (even
in the sense of merely probabilistic prediction) the outcome of social interaction in
various real-life social situations. Indeed a theory not yielding a determinate solu-
tion cannot even explain how the players can ever agree on any specific outcome at
all, and how any player, bargaining with another player, can rationally decide to
make or not to make any particular concession to him. Likewise only a theory
yielding determinate solutions can supply nontrivial strategy recommendations to
the players in various game situations.

In order to obtain such a theory, I shall adopt a stronger and sharper concept of
rational behavior than the one used by von Neumann and Morgenstern and by most
other game theorists, and shall define this rational-behavior concept by means of a
few additional and more powerful rationality postulates. Analytically the main
function of these postulates will be to determine the kinds of expectations that a
rational player can consistently entertain about other rational players' behavior. I
shall try to show that, once we accept this larger and stronger set of rationality
postulates, we obtain a theory yielding determinate solutions for all classes of
"classical" games1 described in the game-theoretical literature: for two-person and
for ^-person games, for zero-sum and nonzero-sum games, for games with and with-
out transferable utility, for cooperative and noncooperative games, and the like.
The solutions that we shall obtain for all these game classes will be simply special
cases of the same general theory. In terms of more specific social-science applica-
tions, this means that we shall obtain a theory allowing a unified analytical treat-
ment of social situations ranging from, for example, bilateral monopoly (including
collective bargaining), duopoly, and oligopoly, to two-sided and many-sided
political-power situations, competition for social status, and social conflicts of
various kinds.

Of course, in order to obtain determinate predictions for any particular social
situation on the basis of our theory, we must always supply specific factual assump-
tions about the players' utility functions, as well as their strategy possibilities, the
information available to them, and their ability to communicate and to make
binding commitments (binding promises, threats, agreements) to one another. In
my opinion game theory -just as individual decision theory (utility theory) of
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which game theory is a generalization - should be regarded as a purely formal
theory lacking empirical content. Both decision theory and game theory state
merely what will happen if all participants have consistent preferences, and actually
follow their own interests as defined by these preferences, in a fully consistent and
efficient manner. Empirical content is considered only when we make factual
assumptions about the nature of these preferences and about other factual matters
(e.g., when we assume that people prefer more money to less money, or make spe-
cific assumptions about the economic and political resources - and therefore the
strategies - available to the participants in a given social situation).

The advantage of my approach lies in the fact that - once the required factual
assumptions have been made - one obtains unique predictions for all specific eco-
nomic, political, and other social situations on the basis of the same general theory,
without any need for theoretically unjustified arbitrary ad hoc assumptions in
various particular cases.

More specifically the purpose of my theory is to provide clear, definite, and sys-
tematic answers to many important questions arising naturally in the analysis of
social behavior but so far left without any satisfactory resolution in social-science
literature. For example, what are the conditions that will make it possible for two
rational opponents to cooperate in achieving an efficient (Pareto-optimal)
outcome? Or what are the conditions that will at least enable them to avoid a
direct conflict with all the possible heavy costs that it would entail on both sides?
How much cooperation can obtain between two rational opponents who mutually
distrust - perhaps with very good reasons - each other's willingness or ability to
keep agreements?

Again, if the two players do reach an agreement, what conditions will determine
the specific terms on which they will agree? How will agreements based on a ra-
tional pursuit of self-interest by both sides differ from agreements based on
mutually accepted moral values? Indeed, can two rational players cooperate at all
without mutual acceptance of a set of common moral values?

Turning to social situations involving more than two players, when will rational
players form two or more nonoverlapping coalitions, and when will they form a
number of mutually overlapping coalitions, so that each player may be a member of
several different coalitions and may support different coalitions on different issues?
The von Neumann-Morgenstern theory of n-person cooperative games, and - on a
lower level of abstraction - the Marxian theory of class struggle, as well as the
power-blocks theory of international relations, always predict the emergence of two
or more nonoverlapping coalitions. In contrast, pluralistic theories of political
behavior always predict a complicated network of mutually overlapping coalitions,
with the same individual participating in a number of different coalitions or interest
groups.

The theory here proposed takes an intermediate position. It predicts the emer-
gence of different coalition structures in different social situations, depending
mainly on two classes of variables, viz., on the communication possibilities and on
the commitment possibilities available to the players.2 If the communication facil-
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ities of the game encourage negotiations restricted, at least initially, to some subset
of the players, and if the players cannot immediately make irrevokable firm
commitments (e.g., if agreements can be unilaterally denounced by the parties),
then our theory predicts the emergence of two or more nonoverlapping coalitions.
But if the players have unbiased communication facilities and unrestricted commit-
ment power, then our theory predicts a pluralistic network of mutually overlapping
coalitions. Finally, if the communication facilities are biased in favor of negotia-
tions within some sectional group - but, if immediate firm commitments are
allowed - then our theory again predicts a pluralistic network of mutually over-
lapping coalitions. But in this case different coalitions will have unequal status in
the game: The coalitions formed at earlier stages of the game will have a prior claim
to their members' loyalty over all later-formed coalitions; this fact will of course be
reflected in the players' final payoffs.

These predictions about the alternative coalition structures that may emerge in n-
person cooperative games also point to another aspect of our approach. They illus-
trate the fact that a satisfactory definition of a given game according to our theory
will often require a specification of additional parameters to those which by tradi-
tional game theory would be included in the definition of the game. For example,
for our purposes an /i-person cooperative game is not fully defined without exactly
specifying the communication and commitment possibilities available to the players.

We must agree with traditional game theory that, if such parameters are left un-
specified, any given game can have a wide variety of alternative outcomes (even if
we assume fully rational behavior on the part of the players). We differ from the
traditional approach in that we also want to explain why one of these possible out-
comes rather than another will emerge in any given case. This is why we need a
theory that predicts one specific outcome - that is, a theory that yields a determi-
nate solution - for any given game played by rational players, once we are given
enough information about all the basic parameters of the game, including those
neglected by classical game theory.

1.2 Restriction of our systematic analysis to classical games

In order to describe the scope of our analysis in more specific terms, we will intro-
duce a distinction between classical and nonclassical games. In this book our
interest will be largely restricted to those solution concepts that our theory yields
for classical games. Nonclassical games will be considered only incidentally to help
our analysis of classical games.

A game will be called a classical game if it satisfies the following conditions:
1. It must be a game with complete information, where the players have full

knowledge of their own and the other players' payoff functions and strategy
possibilities.3

2. It must be either a fully cooperative or a fully noncooperative game and can-
not be a game of an intermediate status. This means that the players must either be
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permitted to make firm and enforceable agreements before playing the game, or
they must not be permitted to make firm and enforceable agreements in the game
at all.

3. It must be a game that can be adequately represented by its normal form.4
That is, the game must be already given in normal form, or it must be possible to
convert it into normal form without changing it into an essentially different game.

This last condition requires some explanation. We may distinguish between
games with immediate commitment and games with delayed commitment. In the
former the players can freely commit themselves to specific strategies before any
chance move or personal move has taken place in the game, while in the latter they
may be able to do so only after one or more chance moves and/or personal moves
have been completed.5 Games with immediate commitment can always be ade-
quately represented by their normal form. But, as I have shown elsewhere
[Harsanyi, 1968a, p. 334], a game with delayed commitment is often changed into
an essentially different game if it is converted into normal form, so that in this case
the normal form is usually not a valid representation of the game as originally
defined.

We use the term "classical games" to describe games satisfying our three condi-
tions, because - on the surface at least - all games discussed in classical game-
theoretical literature are games of this kind, and all solution concepts of classical
game theory are ostensibly solutions for such classical games.

The actual fact, as we shall argue - one of the most important solution concepts
of classical game theory, von Neumann and Morgenstern's stable set (also known as
the von Neumann-Morgenstern solution for n-person cooperative games) - is really
a solution concept for a certain class of nonclassical bargaining games. These bar-
gaining games are nonclassical games because they are not fully cooperative games.
The players cannot make immediately binding commitments at the beginning of the
game. Rather, any player whose consent is required for a given agreement is free to
upset this agreement (at least during some initial period), if he thinks that he can
benefit by doing so. A "stable set" is meant to represent a set of payoff vectors
(imputations) that are stable in the sense that (under certain assumptions) no player
will have an incentive to upset them in this way, even though the rules of the game
would permit him to do so. (It can be shown technically that any stable set corres-
ponds to a certain family of co-polar equilibrium points in an appropriately defined
bargaining game. See Harsanyi [1974].)

Although we will restrict our attention largely to the solutions that our theory
yields for classical games, in other publications we have also defined solutions,
based on the principles of the theory here described, for various classes of nonclassi-
cal games, such as games with incomplete information and games with delayed
commitment6 [Harsanyi, 1967, 1968a, 1968b, Harsanyi and Selten, 1972; see also
Aumann and Maschler, 1968]. It is my conviction that nonclassical games will have
many important applications in the social sciences. But a systematic discussion of
nonclassical games is beyond the scope of this book.
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1.3 The concept of rational behavior

The fundamental concept of our theory, as of classical game theory, is the concept
of rational behavior or of rational choice.

When on the common-sense level we are speaking of rational choice, we are usu-
ally thinking of a choice of the most appropriate means to a given end. For
example, we may say that it is "rational" to treat pneumonia with modern anti-
biotics, because these have been found to be highly effective in achieving the
desired medical goal; it is "irrational" to use various traditional folk remedies,
because these do not seem to produce the desired result.

Already at a common-sense level, the concept of rational behavior is often a very
powerful explanatory principle, because it can account for a large number of possi-
bly quite complicated empirical facts about people's behavior in terms of the goals
(or ends) that they are trying to achieve. For instance, a long sequence of complex
actions by the patient, his family, and his doctor can often be explained in terms of
the simple hypothesis that all these people pursue the patient's recovery as their
goal (or as one of their goals).

However, it has been an important achievement of classical economic theory to
extend this common-sense concept of rational behavior so that it can cover not
only choices among alternative means to a given end but also choices among alter-
native ends. Under this more general concept of rationality, our choices among
alternative ends are rational if they are based on clear and consistent priorities or
preferences. Formally this means that our choice behavior will be rational if it satis-
fies certain consistency requirements or rationality postulates.

Fundamentally the need for choosing among alternative ends arises because in
most cases we cannot attain all our ends at the same time: If we choose to pursue
one particular end, then we have to forego some others. The loss of some other
ends is the opportunity cost of choosing this particular end. Our choice of any
given end will be rational if it is based on clear awareness and careful evaluation of
the opportunity costs involved.

Classical economic theory has also shown that, if a given individual's (decision
maker's) choice behavior satisfies the appropriate rationality and continuity postu-
lates, then it can be mathematically represented as maximization of a well-defined
utility function. However, the usefulness of simple utility maximization as a defini-
tion of rational behavior is largely restricted to the case of certainty, in which the
outcomes of alternative actions are known to the decision maker in advance,
because they cannot be influenced significantly by chance or by the actions of
other individuals. But this definition is less useful in the cases of risk and of uncer-
tainty , where the outcomes of some or all available actions depend on unpredictable
chance events - with the difference that in the case of risk the decision maker
knows at least the objective probabilities associated with all possible outcomes,
whereas in the case of uncertainty even these objective probabilities are partly or
wholly unknown to him (or perhaps do not exist at all as well-defined numerical
probabilities). Even less useful is this definition in game situations, where the out-
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come depends not only on the actions of one rational decision maker but rather on
the actions of two or more rational decision makers (players) with possibly diverg-
ent interests.

It has remained for modern decision theory to find a more satisfactory definition
for rational behavior in the cases of risk and of uncertainty. This has been accom-
plished by showing that in these cases, if a given decision maker's choice behavior
satisfies the appropriate rationality postulates, then it can be represented as maxi-
mization of his expected utility, i.e., as maximization of the mathematical expecta-
tion of his cardinal utility function. (In order to establish this result in the case of
risk, we need stronger rationality postulates than those used in the case of certainty;
and in the case of uncertainty we still need somewhat stronger rationality postulates.)

In the case of risk the expected utility to be maximized is defined by using as
probability weights the known objective probabilities associated with alternative
possible outcomes. In the case of uncertainty, in which some or all of these objec-
tive probabilities are unknown to the decision maker, these unknown objective
probabilities have to be replaced by his own subjective probabilities as probability
weights. Fundamentally the subjective probabilities that a given decision maker
assigns to different events - in the same way as the utilities he assigns to different
goals - must be inferred from his actual choice behavior. But intuitively they can
be interpreted (at least if the corresponding objective probabilities exist) as the
decision maker's personal estimates of these objective probabilities, whose true
numerical values are unknown to him. On the other hand, these objective probabil-
ities themselves, when they exist, can be interpreted as the long-run statistical fre-
quencies of the relevant random events, which, in principle at least, can always be
measured by appropriate statistical experiments.

For example, the objective probability of throwing a "head" with a given coin
can be interpreted as the long-run frequency of "heads" in a long sequence of trials
conducted with this coin. In contrast, a given individual's subjective probability of
throwing a "head" can be interpreted as his personal estimate of this unknown
long-run frequency. This approach, which defines rational behavior under uncer-
tainty as expected-utility maximization in terms of the decision maker's own sub-
jective probabilities, is often called the Bayesian approach [after the Reverend
Thomas Bayes (1702-1761), an English writer on probability theory].

Whereas the analysis of rational behavior in the cases of risk and of uncertainty is
the task of (individual) decision theory (utility theory), the analysis of rational be-
havior in game situations is of course the task of game theory. (For convenience,
we shall subsume the analysis of rational behavior in the case of certainty, also,
under individual decision theory.) But according to our preceding discussion, tradi-
tional game theory has not provided a sufficiently sharp and specific concept of
rational behavior in game situations; to develop such a concept will be one of our
main purposes in this book.

We have already pointed out that, as we move from the analysis of the less general
cases to the analysis of the more general cases - for example, as we move from cer-
tainty to risk and to uncertainty - we need stronger and stronger rationality postu-
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lates. As game situations represent an even more general case, it is not surprising
that for defining rational behavior in game situations we shall need even stronger
rationality postulates than we need for defining rational behavior in these three
decision-theoretical cases. In effect, in my opinion, the basic weakness of tradi-
tional game theory has been that in defining rational behavior in game situations it
has tried to restrict itself to using rationality postulates which in their logical con-
tent do not go significantly beyond the rationality postulates of individual decision
theory.

Technically our theory of rational behavior in game situations will be a direct
generalization of the Bayesian theory of rational behavior under uncertainty (see
Section 1.4).

In addition to individual decision theory and game theory, we shall add, as a third
branch of the general theory of rational behavior, ethics, dealing with rationality in
making moral choices and particularly in making moral value judgments.

Individual decision theory deals primarily with rational behavior in situations in
which the outcome depends on an individual's (the decision maker's) own behavior.
But it can also handle situations where the outcome does depend on other individ-
uals' behavior - as long as it is assumed that their behavior is governed by well-
defined deterministic or probabilistic laws rather than by their own rational
strategy choices and by their own rational expectations about other participants'
behaviors. The proposed basic difference between decision-theoretical situations
and game situations lies in the fact that the latter involve mutually interdependent
reciprocal expectations by the players about each other's behavior; the former do
not. (Cf. Sections 1.4 and 6.3 concerning the problem posed by these reciprocal
expectations.)

In contrast to individual decision theory, both game theory and ethics deal with
rational behavior in a social setting. But game theory deals with individuals who
rationally pursue their own self-interest (as well as all values, both selfish and unsel-
fish, to which their own utility function assigns positive utility) against other in-
dividuals who just as rationally pursue their own self-interest (as well as all their
other values included in their own utility functions).

On the other hand, ethics deals with a rational pursuit of the interests of society
as a whole.7 The basic concept is that of moral value judgments. As I have stated
in earlier publications [Harsanyi, 1953,1955, 1958], making a moral value judg-
ment is equivalent to comparing different social situations in terms of the arithmetic
mean of all individuals* cardinal utility levels in the society. Thus we may say that
this arithmetic mean is the quantity that we are trying to maximize when we are
making a moral value judgment. (For convenience, I shall briefly restate my argu-
ments in support of this conclusion in Chapter 4.)

To summarize our discussion in this section, we propose to divide the general
theory of rational behavior into two main categories (see Table 1.1).

In any given branch of the theory of rational behavior, the analysis in general
begins with defining the appropriate rational-behavior concept by means of certain
rationality postulates. This definition we shall call the primary definition of the
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Table 1.1 General theory of rational behavior

A. Individual decision theory {utility theory)
Deals with rational behavior of an isolated individual under:
Al. Certainty

The outcome of any possible action is fully predictable.
A2. Risk

The objective probability of any possible outcome is known.
A3. Uncertainty

Some or all of these objective probabilities are unknown or even undefined.
B. Theory of rational behavior in a social setting

Bl. Game theory
Rational pursuit of self-interest and of personal values against other in-
dividuals rationally pursuing their own self-interest and their own personal
values.

B2. Ethics
Rational pursuit of the interests of society as a whole.

relevant rational-behavior concept. Then it is usually shown that the same rational-
behavior concept can also be equivalently characterized by certain mathematical
properties, such as maximizing some specified mathematical quantity or satisfying
some specified equations. This we will call the secondary definition of the relevant
rational-behavior concept.8

For example, in the three decision-theoretical cases of certainty, risk, and uncer-
tainty, this secondary definition of rational behavior is in terms of utility maximiza-
tion or expected-utility maximization. In game theory, this secondary definition
will be given by the specific solution concepts that we shall propose for different
classes of games. In ethics, as we shall argue, this secondary definition is in terms of
maximizing the mean utility level of all individuals in the society.

1.4 Analysis of the players' reciprocal expectations and the bargaining
problem

As we have already indicated, our theory of rational behavior in game situations
will be a direct generalization of the Bayesian theory of rational behavior under
uncertainty. Following the Bayesian approach, we shall assume that any player i
will express his expectations about the behavior of another player / by assigning sub-
jective probabilities to various alternative actions that player/ may possibly take.

Yet, as we are dealing with game situations, when the players are assumed to act
on the expectation of rational behavior by all other players, we have to go beyond
the standard Bayesian approach. Instead of allowing player / to choose his subjec-
tive probabilities in any arbitrary way that may occur to him, we must require that
the subjective probabilities that he assigns to various possible actions by player/
should be consistent with the assumption that player /, like player i himself, will act
in a rational manner in playing the game. We will call this requirement the principle
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of mutually expected rationality. One of the main tasks of our theory will be to
decide what expectations, and more specifically what subjective probabilities, ra-
tional players can reasonably entertain about one another's behavior, in accordance
with this principle.

This problem is particularly important in games in which the outcome is decided
by explicit or implicit bargaining among the players. It is primarily our analysis of
the players' mutual expectations in bargaining situations which enables our theory,
unlike earlier approaches to game theory, to define a determinate solution for each
particular game.

As we will see, in the case of two-person zero-sum games and in other less impor-
tant special cases, the outcome of the game does not depend on bargaining between
the players, and a determinate solution can be defined on the basis of what we shall
Q&][ pay off-dominance relations (which include dominance relations in von Neumann
and Morgenstern's sense, as well as a number of other dominancelike concepts to be
defined later). Intuitively speaking, all payoff-dominance relations are based on the
principle that, other things being equal, rational players will always prefer strategies
(individual strategies as well as joint strategies) that yield higher payoffs.

In most games, however, there is an indeterminacy problem, and more particularly
a bargaining problem, in that pay off-dominance relations in themselves do not
furnish a determinate solution: The outcome of the game must be determined by
explicit or implicit bargaining among the players. Therefore in order to define
determinate solutions for such games we need a clear criterion for rational behavior
in bargaining situations.

The criterion at which we will arrive will be a decision rule first proposed by
Zeuthen [1930, Chap. IV], which we shall call Zeuthen 's Principle. It essentially
says that at any given stage of bargaining between two rational players the next
concession must always come from the party less willing to risk a conflict - if each
party's willingness to risk a conflict is measured by the highest probability of con-
flict that he would be prepared to face rather than accept the terms proposed by
the other party. We shall see that Zeuthen's Principle is the only decision rule con-
sistent with the expectations (subjective probabilities) that rational players can
entertain about each other's bargaining behavior, in accordance with the principle
of mutually expected rationality (and with the formal rationality postulates that we
shall propose as formalizations of this principle).

Zeuthen's Principle will lead us to the concept of risk-dominance relations, which,
as we shall find, will define a determinate solution also for those games for which
payoff-dominance relations by themselves would not achieve this.

More particularly, as in the case of two-person cooperative games, these risk-
dominance relations based on Zeuthen's Principle lead to the Nash solution [Nash,
1950,1953]. In all other cases they lead to natural generalizations of this solution
concept.

In the case of n-person cooperative games with unbiased communication (and
with immediate commitment power) we obtain a solution concept that is a general-
ization not only of the Nash solution but also of the "modified" Shapley value
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[Shapley, 1953; Harsanyi, 1959; Selten, 1960; see also Harsanyi, 1963]. In the
case of ^-person cooperative games with biased communication (and with imme-
diate commitment power) we obtain a closely related, but different, solution concept.

Finally, in the case of noncooperative games, the risk-dominance relations to be
defined will typically select a unique equilibrium point (or a set of equilibrium
points that all yield the same payoff vector) as the solution of the game.

It may be noted that the bargaining problem is not the only indeterminacy prob-
lem to consider; another type of indeterminacy problem is the indifference problem.
It is the problem of making - at least probabilistic - predictions about the strategy
to be chosen by a given player / when he is indifferent between two or more alter-
native strategies, because any one of them would yield him the same payoff. Our
theory requires a solution to this problem, because in general the strategy choice of
every other player/ (/ ¥=  i) will depend on the (deterministic or at least probabilistic)
prediction that game theory can provide for him on player /'s likely strategy choice.
We shall argue that in many cases we can solve this problem by making the assump-
tion that player / will be equally likely to choose any one of the strategies that will
yield the same payoff, while in other cases more complicated probabilistic assump-
tions will be necessary (see Note in Section 6.1).

1.5 Bargaining models versus arbitration models

In the previous section we indicated the proposed distinction between game theory
and ethics and between the game-theoretical and the ethical points of view. Game
theory tries to determine what kind of behavior will best serve the interests of each
particular player in a game played against other players who also are assumed to
promote their own interests in the best possible manner. Here the "interests" of
each particular player are not meant to be necessarily restricted to selfish considera-
tions; rather, they include all objectives and values, both selfish and unselfish, to
which his own utility function assigns positive utility. In contrast, ethics tries to
determine what kind of behavior will best serve the interests of society as a whole.

Thus the formal definition of any solution concept in game theory must be in
terms of game-theoretical rationality postulates, which describe how each player
can best advance his own interests in the game; and no use must be made of moral
postulates expressing moral value judgments. Of course, game situations in which
the players assign positive utility to certain moral values are by no means excluded
from game-theoretical analysis. But if we are taking the game-theoretical point of
view, then such moral preferences must always be incorporated into each player's
utility function (payoff function) instead of used in the formal definition of the
solution. Because all values and objectives in which the players are interested have
already been incorporated into their payoff functions, our formal analysis of any
given game must be based on the assumption that each player has only one interest
in the game - to maximize his own payoff.

This approach not only avoids confusion between game-theoretical problems and
moral problems but also has the advantage of much greater generality: Because it
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makes no use of moral value judgments in the formal definition of the solution, it
can be used also in cases in which different players have highly dissimilar moral
values or possibly pay no attention to moral considerations at all.

In game-theoretical literature that deals with bargaining games a good deal of
regrettable confusion has arisen between arbitration models, based on moral postu-
lates, and bargaining models proper, based on game-theoretical rationality postulates.
Arbitration models, such as those of Raiffa [1953] and Braithwaite [1955], try to
define solutions to satisfy certain moral criteria (e.g., some notion of "fairness").
In contrast, bargaining models envisage bargaining situations where all parties are
interested only in maximizing their own final payoffs. Hence each party will make
a concession to another party only because he thinks it would be too risky, from
his own point of view, not to make this concession - not because he is guided by
moral considerations.

Our own solution concepts (for games involving bargaining among the players)
will always be based on bargaining models (and not on arbitration models) and will
make no use of moral value judgments in defining these solutions.

This confusion that we find in the literature between arbitration models and bar-
gaining models, and more generally between moral considerations and game-
theoretical considerations, has no doubt been largely caused by the mistaken
assumption that in bargaining situations game-theoretical considerations by them-
selves, without the use of moral criteria, would fail to yield determinate solutions.
However, the purely game-theoretical solution concepts that we will develop will
clearly disprove this assumption.

Later we will attempt to show that arbitration models and bargaining models
differ not only in their substantive meaning, in the way just described, but also in
the formal mathematical postulates that they must use. In particular, we will argue
that arbitration models, and indeed ethics and welfare economics quite generally,
have to make essential use of interpersonal comparisons of utility (see Section 4.10,
as well as Sections 4.2 through 4.4). In contrast, bargaining models, and game
theory quite generally, have to define solutions invariant with respect to order-
preserving linear transformations of any particular player's utility function, which
rules out the use of interpersonal utility comparisons (see discussion of Postulate 3
in Section 8.3, as well as the remainder of Chapter 8).

Another, although less important, difference is that arbitration models must use a
stronger form of the joint-efficiency postulate than bargaining models do. From a
moral point of view a given payoff vector u* is always preferable to another payoff
vector u whenever u* dominates u, even if this is only a weak dominance rela-
tion. It is our moral duty to help a given individual /', if we can do this without
harming anybody else - even if our action does not positively benefit any other
individual/ =£ i in the society.

In contrast, in a bargaining game, in general only strong dominance relations
between payoff vectors are effective. For example, suppose that in a two-person
bargaining game a given payoff vector w* = (wi*, u2*) assigns to player 1 a higher
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payoff than another payoff vector u = (u1,u2) does but that both payoff vectors
assign the same payoff to player 2, so that ul*>u1 but u2* = u2. Then player 2
will have no incentive to cooperate in achieving w* rather than u, and so we cannot
in general exclude the possibility that the actual outcome of the game will be u
rather than w* or that it will be some probability mixture of the two (cf. Section 8.1).



2

Rational-choice models
of social behavior

2.1 The rationality assumption

Like other versions of game theory - and indeed like all theories based on some
notion of perfectly rational behavior - regarding its logical mode, our theory is a
normative (prescriptive) theory rather than a positive (descriptive) theory. At least
formally and explicitly it deals with the question of how each player should act in
order to promote his own interests most effectively in the game and not with the
question of how he (or persons like him) will actually act in a game of this particu-
lar type.1 All the same, the main purpose of our theory is very definitely to help
the positive empirical social sciences to predict and to explain real-life human
behavior in various social situations.

To be sure, it has been a matter of continual amazement among philosophers, and
often even among social scientists (at least outside the economics profession), how
any theory of rational behavior can ever be successful in explaining or predicting
real-life human behavior. Yet it is hardly open to doubt that in actual fact such
theories have been remarkably successful in economics and more recently in several
other social sciences, particularly political science, international relations, organiza-
tion theory, and some areas of sociology [see Harsanyi, 1969, and the literature
there quoted].

Needless to say, theories based on some notion of rational behavior (we will call
them rational-behavior or rational-choice theories or, briefly, rationalistic theories),
just as theories based on different principles, sometimes yield unrealistic predictions
about human behavior. Fundamentally, of course, only detailed empirical research
can show us the actual range of social situations for which any specific rationalistic
theory tends to make correct or incorrect predictions.

The point is however, that, in areas in which a given rationalistic theory does
make reasonably realistic predictions, it will often possess extremely high explana-
tory power, in the sense that it may be able to predict a very wide variety of com-
plex empirical facts about people's actual behavior from a very small number of
relatively simple assumptions about their utility functions - that is, about the goals
that they are trying to achieve and about the relative importance that they attach
to each particular goal.

The basic reason for this often quite remarkable explanatory power of rational-
behavior theories lies in a general and fundamental empirical characteristic of
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human behavior, viz., in its goal-directedness, its goal-seeking orientation. In effect,
what we mean by "rational behavior" is essentially behavior showing this goal-
directedness to a particularly high degree and in a particularly consistent manner.
It is behavior highly adapted, within the possibilities available to the person con-
cerned, to successful achievement of his intended goals. Consequently it is behavior
that also admits of explanation to a considerable extent in terms of its intended ob-
jectives rather than in terms of other "less rational" psychological variables.

Once we know that a given agent - whether a human being, a higher animal, an
intelligent organism from another celestial body, or a man-made computer, etc. - is
capable of goal-directed behavior of some complexity over a wide range of task
situations, we can reasonably expect that his behavior will admit explanation to a
large extent in terms of some suitable theory of rational behavior.

To be sure, in spite of this important strain of goal-directedness and rationality in
human behavior, human beings often fall quite short of the perfect rationality
postulated by normative theories of rational behavior. There are at least two major
reasons for this. One lies in the (often unconscious) emotional factors pointed out
by various psychologists from Freud to Festinger. The other is the limited
information-processing ability of the human central nervous system, emphasized by
Simon's theory of "limited rationality."

For example, as Simon and his associates have pointed out, in chess and in some
other parlor games the players are simply unable to use their optimal strategies as
defined by normative game theory, because finding these optimal strategies would
be a computation problem of enormous complexity, far beyond the capabilities of
any human being - and indeed even beyond those of the largest and fastest com-
puters now in existence or likely ever to be built in the future [Newell, Shaw, and
Simon, 1958]. The same may be true of some real-life economic, political, diplo-
matic, military, or other game situations of great complexity.

All the same, as the success of rational-behavior theories in economics and other
social sciences definitely shows, in actual fact these obvious limitations of human
rationality do not generally prevent rational-behavior theories from yielding reason-
ably good approximate predictions about social behavior over a wide range of social
situations. Of course, a good deal of further experimentation with various types of
rational-behavior theories will be needed before we can ascertain how far these
theories can really take us in explaining and predicting empirical social behavior in
each particular field.

In fact, the usefulness of rationalistic theories is not necessarily restricted to situa-
tions where people's behavior shows a relatively high measure of overall rationality
and consequently admits of actual explanation and prediction by such theories with
an acceptable degree of approximation. Even in situations in which rationalistic
theories cannot themselves be directly used as explanatory and predictive theories,
they may still have considerable heuristic value in developing (nonrationalistic)
explanatory and predictive theories of social behavior. This is so because even in
such situations people's behavior will often conform at least to some particularly
compelling norms of rationality. Thus it will often be a good heuristic principle to
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develop behavioral theories consistent with at least certain minimal standards of
rationality relevant to that particular social situation, as specified by an appropriate
normative theory of rational behavior.

In my opinion the heuristic value of a suitable normative theory of rational be-
havior is particularly clear if we want to develop fruitful theoretical hypotheses
about people's behavior ingame situations. The history of duopoly and of bilateral-
monopoly models, proposed by some of the most eminent economists for over a
century and a half, is a good illustration of this point. It shows that even in very
simple game situations (involving only two players and having a rather simple logi-
cal structure in other respects) it may be virtually impossible to suggest reasonable
hypotheses about the players' likely behavior without having a clear systematic idea
of what it means to behave rationally in the relevant class of game situations.
Lacking any clear and consistent definition of rational behavior for these game
situations, even such powerful analytical minds as Cournot, Bertrand, Edgeworth,
and Hicks have been unable to propose satisfactory models of the two players'
behavior and have been unable to avoid the fundamental mistake of ascribing some
quite implausible and patently irrational behavior to their two duopolists or bilateral
monopolists - without any specific empirical or theoretical justification for assuming
such behavior and without even realizing its irrationality.

For example, in Cournot's, Bertrand's, and Edgeworth's duopoly models, the two
duopolists make no attempt to reach a jointly efficient cooperative solution. More-
over, they never learn but rather persist in certain mistaken expectations about each
other's behavior, in spite of continual disappointments. [For detailed discussion
see Fellner, 1960, Chap. II.] On the other hand, in Hicks's [1932] model of collec-
tive bargaining (i.e., of bilateral monopoly on the labor market), neither party will
put forward the threat of a work stoppage (strike or lockout) of a given duration if
such a stoppage would entail positive costs, however small, on him - even if he
could extract much better terms from the other party by making such a threat
because of the heavy costs that the threatened stoppage would impose on the other
party as well. Of course, once a suitable theory of rational behavior in game situa-
tions is available, it becomes merely a matter of ordinary routine care to avoid such
mistakes in constructing analytical models for economic or noneconomic game
situations.

From a slightly different point of view, the heuristic importance of rational-
behavior theories is based on the fact that in most cases we cannot really understand
and explain a person's behavior (or indeed the behavior of another intelligent
organism or even of an intelligent robot) unless we can interpret it either as rational
behavior in this particular situation or as an understandable deviation from rational
behavior. For example, we maybe able to interpret it as an understandable mistake,
as an understandable emotional reaction, or as an understandable intentionally
suboptimal response.2

Thus the heuristic value of a clear normative concept of rational behavior will
often lie in the fact that it confronts us with the question of explaining why people
deviate from this concept of rationality in specific ways in various social situations.
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By trying to offer an explanation for such deviations, we can often make important
advances toward a fruitful explanatory and predictive theory of social behavior in
these situations. Indeed, in the long run, normative theories of rational behavior
may prove at least as important in the analysis of deviations - or apparent devia-
tions - from rational behavior as in the analysis of human behavior closely conform-
ing to our normative standards of rationality.

In fact, we need a clear concept of rationality, not only if our purpose is to explain
and predict human behavior but also if our aim is merely to describe it adequately.
In many cases even a mere description of a given player's (e.g., businessman's, trade
union leader's, politician's, military commander's, diplomat's) behavior will be seri-
ously incomplete if it contains no evaluation of its effectiveness (rationality) in
serving this player's own interests in the relevant game situation; and this evaluation
can be based only on a suitable normative theory of rational behavior. For example,
no satisfactory descriptive historical account of Napoleon's career can fail to men-
tion the brilliance of his military strategies or the incompetence of his foreign policy
in many cases.

Finally, besides the "theoretical" purposes of explaining, predicting, and describ-
ing human behavior, a normative theory of rational behavior can also be used for
the "practical" purpose of providing strategy recommendations for the various
players. Of course, our theory as it stands provides strategy recommendations for
each player only on the assumption that all other players in the game will also
choose their strategies in a rational manner. In cases where this assumption is felt
to be unrealistic, the conclusions of our theory will need appropriate modifications
in order to enable each player to take full advantage of - and at the same time also
take full precautions against - any irrational behavior that he might anticipate on
the part of the other players.

In summary, in the social sciences our theory, and in general all normative theories
of rational behavior, can be used for the following analytical purposes:

1. For conceptual clarification of how to define rational behavior in various
social situations.

2. For explanation and prediction of people's actual behavior (in cases in which
their behavior exhibits high degrees of rationality and therefore admits of explana-
tion in terms of a rationalistic theory).

3. For providing heuristic criteria for (nonrationalistic) explanatory and predic-
tive theories of social behavior (even in cases where this behavior deviates from our
normative concept of rationality).

4. For providing a descriptive standard of evaluation by which to judge the
rationality of people's behavior.

5. For providing rational strategy recommendations for the various participants.

2.2 Conflicting sectional interests as explanatory variables

Sociology as well as cultural and social anthropology are at present largely domin-
ated by functionalist theories, which try to explain social institutions in terms of
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the functional needs of society, i.e., in terms of certain common interests of society
as a whole - with little, if any, use of the mutually conflicting sectional interests of
different social groups as explanatory variables.

We cannot deny that the most general features of a given social institution can
often be explained, up to a point, in terms of certain common social needs. For
example, the very existence and the most basic characteristics of the law-enforcing
agencies in any particular society can be accounted for in terms of a common social
need for maintaining law and order and for enforcing the decisions of lawful public
officials against possible resistance.

It is, however, equally clear that the detailed structure and operation of any given
institution, and its structural and operational differences from similar institutions in
other societies, can be explained only in terms of the social pressures and counter-
pressures by which different social groups have tried to mold this institution in
accordance with their own, often conflicting, sectional interests. For example, we
cannot explain the structure and operation of any law-enforcing agency except by
interpreting the latter as a result of a compromise among citizens demanding
better police protection, taxpayers demanding greater economies in public expendi-
tures, political reformers fighting against corruption and political bias in the judici-
ary and in the police, civil liberty organizations fighting against abuses of police
power, lawyers protecting their own professional interests and policemen protecting
theirs, as well as many other social groups advancing sectional interests of their own.

When we explain institutional changes, rather than the institutional conditions of
a given moment, the important role that conflicts of interest among various social
groups play as explanatory variables becomes even more obvious. [For further dis-
cussion of conflicts of interest as explanatory variables and for further criticism of
functionalist theories, see Harsanyi, 1968c, 1969.]

In effect, in economics, political science, international relations, as well as in
economic, political, and social history, conflicts of interest have always been recog-
nized as major explanatory variables of social behavior. This insight has given rise
to many valuable explanatory theories in these disciplines. Even in sociology and in
anthropology the prevalence of functionalist doctrines has not completely sup-
pressed explanatory theories of this type.

In the past, however, all explanatory theories of this kind have always suffered
from SL fundamental logical defect because of the absence of any clear theoretical
model to yield determinate predictions about the behavior that intelligent individ-
uals, or social groups led by intelligent individuals, are likely to display in conflict-
of-interest situations. Moreover, there has been a tendency to regard the common
interests of society and the divergent sectional interests of various social groups as
alternative and mutually incompatible explanatory variables, and little attempt has
been made to bring both classes of explanatory variables together within the same
theoretical model.

Thus Marxist writers and other social scientists who have stressed the importance
of conflicting class or group interests have found little room in their theories for the
common interests of different social classes or social groups. Conversely, function-
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alists and others stressing the importance of the common interests of society have
found little room for conflicting sectional interests. Indeed, a well-known German
sociologist, Ralf Dahrendorf, has gone as far as explicitly asserting the strange doc-
trine that the general interests of society and the conflicting sectional interests of
various social groups simply cannot be used as explanatory variables within the
same model [Dahrendorf, 1958,p.127].

Our theory of rational behavior in game situations enables us to overcome these
difficulties. It yields determinate predictions about the behavior of intelligent in-
dividuals in all specific conflict-of-interest situations. Moreover, it shows how we
can take account, within the same theoretical model, of any conflicts of interest
that may exist among different players and also of any common interest they may
have in reaching a peaceful agreement and in cooperating to achieve their shared
common objectives.

2.3 The problem of dominant loyalties and the balance-of-power problem

Any interaction among individuals or social groups with partly or wholly divergent
interests always gives rise to two different (although interrelated) problems, which
ought to be clearly distinguished from each other for analytical purposes. One is a
problem of social psychology: Given a free choice, to what extent will people in
various social situations give priority first to their own individual interests in the
narrowest sense; second to the sectional interests of their own family, business cor-
poration, occupational group, social class, ethnic group, national community, or
any other social group to which they belong, and third to the general interests of
human society as a whole? This may be called the problem of dominant loyalties.
From a formal point of view it is essentially a question about the nature of each
individual's (or social group's) utility function - about how much weight this utility
function assigns to individual, to various sectional, and to general interests and
objectives.

The second problem belongs to a different level of analysis. It is assumed that all
participants' utility functions are given, including their tastes for different commod-
ities, their willingness to take risks, their value attitudes, and in particular the pri-
orities that they want to assign to individual, sectional, and general interests. The
question now to be asked is this: Given all parties' utility functions, what factors
will determine the relative influence that each party's utility function (or each
party's interests) will have on the final outcome? This may be called the balance-
of-power problem.

As we have seen, the problem of dominant loyalties is a problem of social psy-
chology.3 In any case, it is not a game-theoretical problem and cannot be solved by
game-theoretical methods, because game theory regards the players' utility func-
tions as given. In contrast, the balance-of-power problem is clearly a game-
theoretical problem and indeed is the central problem of game theory as a whole.
It is, of course, also the central problem for our theory of rational behavior in
game situations.



Rational behavior under certainty,
risk, and uncertainty

3.1 Sure prospects and risky prospects

In Section 1.3 we briefly summarized the main results of individual decision theory
(utility theory). In this chapter we will discuss these results in more detail. Recall
that we speak of certainty when any action that the decision maker can take can
have only one possible outcome, known in advance. We speak of risk or uncer-
tainty when at least some of the actions available to the decision maker can have
two or more alternative outcomes, without his being able to discern which par-
ticular outcome will actually arise in any given case.

More particularly we speak of risk when the objective probabilities (long-run fre-
quencies) associated with all possible outcomes are known to the decision maker.
We speak of uncertainty if at least some of these objective probabilities are un-
known to him (or are not even well defined).

For example, I make a risky decision when I buy a lottery ticket offering known
prizes with known probabilities. In contrast, I make an uncertain decision when I
bet on horses or when I make a business investment, because in the case of horse
races and business investments the objective probabilities of alternative outcomes
are not known.

To describe the expected results of any given human action under certainty, risk,
and uncertainty, we are introducing the concepts of "sure prospects," "risky pros-
pects," and "uncertain prospects." We are also introducing the term "alternatives"
as a common name for sure prospects, risky prospects, and uncertain prospects.

Since in the case of certainty the decision maker knows the actual outcome of
any action that he may take, a sure prospect is simply any specific outcome. There-
fore we shall use the terms "sure prospect" and "outcome" interchangeably.

Thus a sure prospect may involve possession of given amounts of money and/or
physical commodities. It may also involve specification of certain noneconomic
conditions, such as occupying a certain social position or being in a certain state
of health. We shall assume that a sure prospect can always be characterized by
specifying the values of a finite number of variables, i.e., by specifying a vector
with a finite number of components. Therefore the set X of all sure prospects
will be regarded as (a subset of) a finite-dimensional Euclidean space.

In contrast, in the case of risk, if the decision maker takes some particular action,
then in general all that he can predict are the probabilities of alternative possible
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outcomes (sure prospects) that may result from his action. Therefore we have to
define a risky prospect, or more exactly a simple risky prospect, as a probability
distribution over the set X of all sure prospects. If the number of different sure
prospects involved is finite, we shall write

B = (Al,pl;A2,p2-..-. \Ak,pk) (3.1)

This notation is meant to indicate that the risky prospect B consists in having prob-
ability Pi of obtaining A x, having probability p2 of obtaining A2, and so on. A i,
A2 , . . . ,Ak are called the components ofB, while B itself is called a probability
mixture ofA1,A2,. . . ,Ak. The probabilities pt, . . . ,pk of course must always
satisfy the conditions

Pi^O / = 1 , . . . , A ; (3.2)

and

(3-3)

Besides simple risky prospects, whose components are sure prospects, we shall
also consider composite risky prospects, whose components (or at least some of
them) may be themselves risky prospects or uncertain prospects. (See below; the
intuitive meaning of such composite prospects will be discussed in connection with
our notational conventions for risky and for uncertain prospects.) The set of all
risky prospects, both simple and composite, will be called Y.

In the special case where k = 2, we will often use the notation

C=(A,p-B,\-p) (3.4)

For risky prospects we will use the following notational conventions.

Notational conventions for risky prospects

Convention 1. Unity probability. L e t p = l . Then

(A,p,B,\ -p) = (A, \-B,0)=A (3.5)

That is, a risky prospect (say, a lottery ticket) yielding outcome A with probability
1, and yielding any alternative outcome B with probability 0, is the same thing as
the full certainty of obtaining A.

In view of Convention 1 any sure prospects can be formally written as a risky
prospect (A, \\B,Q)=A; thus sure prospects are formally special cases of risky
prospects. Consequently, X C Y.

Convention 2. Commutativity.

(A,p;B,l-p) = (B,l-p;A,p) (3.6)
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That is, it does not matter in what order we list the prizes of a lottery so long as
each prize remains associated with the same probability (say, A with probability
p, and B with probability 1 - p).

Convention 3. Addition of probabilities. Let^4i =A2. Then

(A1,pl\A2,p2;A3,p3\. . . \An,pn) (3.7)

3,p3\. . . ;An,pn)

That is, if A x = A2 , then, by the Addition Law for probabilities, the total proba-
bility of winning Ax is (p i +p2).

Convention 4. Multiplication of probabilities. This is also called the "principle of
two-stage lotteries." Let

C = (AiP',B,l-p) (3.8)

and
E = (C9q;D,l-q) (3.9)

Then

E = (A,pq;B,(l -p)q;D,\ - q) (3.10)

Intuitively E can be interpreted as a two-stage lottery. At stage 1, the holder of
this lottery ticket E will have probability q of winning lottery ticket C and will have
probability (1 - q) of winning prize D. If he wins C, then he will also participate
in stage 2 of the lottery, where he will have probability p of winning prize A and
will have probability (1 - p) of winning prize B. Thus, by the Multiplication Law
for probabilities (assuming that the outcomes of the stage-one and stage-two
lotteries are statistically independent), he will have a total probability pq of win-
ning^, a total probability (1 - p)q of winning/?, and a total probability (1 - q) of
winning/).

Convention 4 really involves two assumptions:
1. It involves the assumption that risky prospects obey the Multiplication Law of

the probability calculus, which we have used in computing the probabilities pq,
(1 - p)q, and (1 - q) associated with the prizes A ,B, and D, respectively.

2. At the same time, Convention 4 also assumes that the decision maker will be
indifferent between a one-stage lottery and a two-stage lottery, as long as both of
them yield him the same prizes with the same probabilities. This assumption fol-
lows from the general principle that the utility of any risky prospect to the decision
maker will depend only on the prizes and the probabilities associated with them
but will not depend on the physical processes used to generate these probabilities.
For example, it does not matter whether a given probability r = pqis generated by
drawing lots, or by turning a roulette wheel, or by casting a die. In the same way
it does not matter whether this probability is generated by one random event
(e.g., by one lottery drawing) or by two random events (e.g., by two lottery draw-
ings, corresponding to the two stages of a composite lottery).
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3.2 Uncertain prospects

In the case of uncertainty, if the decision maker takes some particular action, then
in general all he can predict is that his action will result in one of two or more
alternative outcomes^! ,A2,. . . ,Ak, where the objective probabilities associated
with these alternative outcomes^ j ,A2,. . . ,Ak are not known. We shall use the
notation

B = (A1\e1;A2\e2;...'iAk\ek) (3.11)

to indicate that, under the uncertain prospect B, outcome A x will obtain if event
ei occurs, but outcome A2 will obtain if event e2 occurs, and so on.

For example, B may be a bet in a horse race, yielding prize A t if horse 1 wins,
yielding prize A 2 if horse 2 wins, and so on. We shall require that the events ex,
e2,. .. ,ek should always represent a set of mutually exclusive and exhaustive
possibilities. That is, these k events must be chosen in such a way that always one
and only one of them will occur in any given case. Thus in our example it must
be true that always one and only one of the horses listed will win. (If this is not
true, e.g., because the horse race might be cancelled, then this possibility will have
to be included among the events e±,.. . , ek)

The possible outcomes^ , . . . ,Ak will be called the components of the un-
certain prospect B, while B will be called the contingency mixture of A j , . . . ,Ak
(because it will give rise to one of these outcomes^ 1,. . . ,Ak, contingent on
which of the events ex,. . . , ek will occur). The events elt. . . ,ek will be called
the conditioning events.

We will consider composite uncertain prospects B, whose components Alt. . . ,Ak
(or at least some of them) are themselves uncertain prospects and/or risky pros-
pects. The set of all uncertain prospects, both simple and composite, will be
called Z.

We will also use the term mixed composite prospects, as a common name for
"risky" prospects having "uncertain" prospects as components, and "uncertain"
prospects having "risky" prospects as components. In contrast, composite "risky"
prospects having only "risky" prospects as components, and composite "uncer-
tain" prospects having only "uncertain" prospects as components, will be called
pure composite prospects.

In the special case where k = 2 we will often use the notation

C=(A\e-,B\e) (3.12)

in which e denotes the event consisting in the nonoccurrence of event e\ e is called
the complementary event to e because the two together exhaust all possibilities.
Of course, e = e. That is, if e does not occur, e does occur.

Notational conventions for uncertain prospects

Convention 1 *. Full certainty.

(A\e;A\e)=A (3.13)
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That is, if the same alternative A obtains both if event e does occur and if it does
not occur, then A obtains with full certainty.

In view of Convention 1*, any sure prospect^ can be written formally as an un-
certain prospect, so that sure prospects can be regarded as special cases of uncertain
prospects. Therefore XCZ. Indeed, as A can also be a risky prospect, we also
have YCZ. On the other hand, Convention 1 of Section 3.2 implies that Z CY,
because alternative A in Equation (3.5) can be an uncertain prospect. Conse-
quently Y = Z. Nevertheless, for convenience of exposition we shall go on calling
this set Y = Z sometimes the set of all risky prospects and sometimes the set of
all uncertain prospects, depending on the context.

Convention 2*. Commutativity.

(A\e;B\e) = (B\e;A\e) (3.14)

That is, we can list the components of an uncertain prospect in any order that we
wish, as long as each component remains associated with the same conditioning
event (e.g., A with event e, and B with event e).

Consider the following situation. Suppose that the outcome depends on the
occurrence or nonoccurrence of two different statistically independent events e
and/.1 Thus there are four possible cases, viz., ef, ef, ef, and ef. Let us assume
that these will give rise, respectively, to the outcomes A, B,A*, andi?*. We can
represent this situation by a double-entry table (see Table 3.1).

Table

e

<-f
A
A

3.1

e

B

Table

P
1-P

3.2

e

A
A*

e

B
B*

Convention 3* below asserts that, using our notation for uncertain prospects, the
situation represented by Table 3.1 can be described in three different but equiva-
lent ways.

Convention 3*. Three equivalent descriptions for pure composite uncertain
prospects.

(A\ef\B\ef'9A*\ef;B*\ef) (3.15)

= {(A\e;B\e)\MA*\e;B*\e)\f}

= {(AlfiA*\f)\e;(B\f',B*\f)\e}

Here the first expression lists each element of the matrix separately, together with
the two relevant conditioning events. In contrast, the second expression displays
the two uncertain prospects (A\e;B\e) and (A*\e;B*\e), corresponding to the
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two row vectors (A, B) and (^4*,£*) in the matrix, indicating that the first uncer-
tain prospect will arise if event f does occur while the second will arise if event/
does not occur. Finally, the third expression displays the two uncertain events
(A\f\A*\f) and (B\f;B*\f), corresponding to the two column vectors

A
A* I and I I7 \B*J

in the matrix, indicating that the first uncertain prospect will arise if event e does
occur, while the second will arise if event e does not occur. Convention 3* asserts
that all three expressions are equivalent, because all of them describe the situation
represented by Table 3.1.

Convention 3* enables us to restrict our attention largely to two-component un-
certain prospects, because it shows how we can build up many-component uncer-
tain prospects from two-component ones.

Now let us change our assumptions. Suppose that the situation is like that repre-
sented by Table 3.1, except that the objective probabilities associated with events
/ a n d / are known and are in fact p and (1 - p). But the probabilities associated
with events e and e are again assumed to be unknown (see Table 3.2). Convention
4* below asserts that this situation again admits of two different but equivalent
descriptions.

Convention 4 * Two equivalent descriptions for mixed composite prospects.

{(A\e;B\e),p;(A*\e;B*\e),l-p} (3.16)

= {(A,p\A*,l - p)\e;(B,p;B*,l - p)\e}
Both sides of the equation are mixed composite prospects. More particularly the
expression on the left side is a risky prospect whose two components are the un-
certain prospects (A\e\B\e) and (A*\e;B*\e) corresponding to the two rows of
the matrix. In contrast, the expression on the right side is an uncertain prospect
whose two components are the risky prospects (A,p\A*9 1 - p) and (B,p;B*,
1 - p) corresponding to the two columns of the matrix. Convention 4* asserts
that these two expressions are equivalent, because both of them describe the situa-
tion represented by Table 3.2.

3.3 Utility maximization in the case of certainty

To describe a given decision maker's choice behavior, we shall use the concepts of
"preference" and of "indifference." We shall say that A is preferred (or is strictly
preferred) to B by the decision maker if he always (i.e., with probability 1)
chooses A rather than B whenever he has to choose between them. We shall say
that he is indifferent between^ and B (or that A and B are equivalent for him) if
he is equally likely to choose either (i.e., if he chooses either with probability ^ ) .

Under the idealized model of perfectly rational choice that we will use, clear
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preference and clear indifference will be the only two possibilities. That is, we
will assume that, if A and B are the only two alternatives, then the decision maker
can choose A (or B) only with probability 1,0, or \ . But, e.g., he cannot choose
A (say) with a probability \ , which would represent an attitude intermediate be-
tween clear preference for A and clear indifference between^ and B, indicating
that the decision maker could not consistently make up his mind about the relative
value of A and of B to him, contrary to our concept of perfect rationality.

The following notations will be used: "A > B" will mean* "A is preferred (or
strictly preferred) to B." "A ~ B will mean "A is indifferent (or equivalent) to
Br

Besides "strict preference" and "indifference," we shall also use the concept
of "nonstrict preference," denoted by ̂ . "A Z B" will mean 'VI is at least as
desirable as #," or "A is preferred to B or is at least equivalent to 5 . " More
formally we define

"A>B" means "either A>B or A ~ B" (3.17)

So far we have used "strict preference" and "indifference" as our basic concepts
and have defined "nonstrict preference" in terms of them. Although this is prob-
ably the intuitively more natural approach, for reasons of mathematical con-
venience in our formal analysis we shall reverse this procedure. We shall make
"nonstrict preference" our basic concept and shall define both "strict preference"
and "indifference" in terms of "nonstrict preference." Thus we shall define

"A>B" means "A > B but not B>A" (3.18)

and

"A-<B" means "A>B andflto B > A" (3.19)

If "strict preference" and "indifference" were used as basic concepts, then these
two relations could be characterized by the following three axioms:

Axiom (a). Transitivity of strict preference. Suppose that A>B and B>C. Then

Axiom (b). Transitivity of indifference. Suppose that A ~ B and B ~ C. Then
also ,4 ~C.

Axiom (c). Principle of trichotomy. For any pair of sure prospects A and B, there
are three mutually exclusive possibilities: either A >B oiA ~ B or B>A.

Axioms (a) and (b) are consistency requirements; Axiom (c) expresses the re-
quirement that the decision maker should be able to compare any two sure pros-

*In my manuscript, "A is preferred to B" was denoted as A ^- B, and the notation
"A > #" was reserved for denoting "A is larger than B" In the printed text, both
statements will be expressed by "A > 5 ." The context will make it clear which
meaning is intended.
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pects^4 andi? concerning their relative desirability. If he did not find A preferable
toB,oiB preferable to A, but did not feel indifferent between them, this would
mean he would be simply unable to compare these two alternatives: This is the
case that Axiom (c) is meant to exclude.

To be sure, both everyday observation and laboratory experiments show that
people's actual choice behavior does not always conform to these three axioms.
For example, people sometimes make intransitive choices, choosing A in prefer-
ence to B, choosing B in preference to C, but then choosing C in preference to A.
Again at times they seem unable to determine whether they prefer, for example,
A to B or B to A or are indifferent between the two. Such deviations from our
axioms, of course, do not affect their usefulness as axioms of a normative theory
of rational behavior. We can always take the point of view that deviations from
these axioms simply represent "irrational" behavior attributable, e.g., to various
limitations in people's information-processing ability.

On the other hand, if we want to use these axioms in positive (explanatory or
predictive) theories, then we must recognize that the axioms cannot be taken liter-
ally and are no more than convenient simplifying assumptions. But, as we argued
in Section 2.1, theories based on such simplifying assumptions often do furnish
fairly realistic predictions; and even in situations where this is not the case they
may have considerable heuristic value.

Axioms (a), (b), and (c), which are stated in terms of "strict preference" and
"indifference," are equivalent to the following two axioms, stated in terms of
"nonstrict preference" (cf. Lemma 1 below).

Axiom (a*). Transitivity of nonstrict preference. Suppose that^l 5> B and B 5> C.
Then also A > C.

Axiom (b*). Completeness or connectedness of nonstrict preference. For any
pair of sure prospects A and By either A ^ B or B 5> A (or both). That is,yl and
B must be connected by a nonstrict preference relation at least in one direction
but may be so connected in both directions.

Again Axiom (a*) is a consistency requirement, while Axiom (b*) expresses
the requirement that any two sure prospects^ and B must be comparable as to
their relative desirability.

If a given relation, such as the relation ^ , is both transitive and connected, then
it is called a completepreordering [Debreu, 1959, pp. 7-8]. Thus we can replace
Axioms (a*) and (b*) by the single statement that "nonstrict preference" is a
complete preordering over the set X of all sure prospects.

The logical relationship between our two sets of axioms can be described as
follows:

Lemma 1. Axioms (a), (b), and (c), together with Definition (3.17), imply Axioms
(a*) and (b*). Conversely Axioms (a*) and (b*), together with Definitions (3.18)
and (3.19), imply Axioms (a), (b), and (c).
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Figure 3.1 Figure 3.2

Proof of the lemma is trivial once we replace the relevant relations by their defi-
nitions (in the way indicated in the text of the lemma).

We will now introduce a few more definitions.
Let A be a given sure prospect. Let I(A) be the set of all sure prospects i? such

that A^:B. [Thus I (A) is the set of all sure prospects B inferior or equivalent to
A.] Then I (A) is called the inferior set for A. For example, suppose that there are
only two commodities; let the ^-coordinate represent the decision maker's stocks
of commodity 1, and let the y-coordinate represent his stocks of commodity 2
(see Figure 3.1). The indifference curve A 'A" is the locus of all points (x, y)
equivalent to point A for the decision maker! Then I(A) is the set consisting of
all points lying below and to the left of A 'A " and of all points lying on A fA "
itself.

Similarly let S(A) be the set of all sure prospects C such that C £ A. [Thus
S(A) is the set of all sure prospects C superior or equivalent to C] Then S(A) is
called the superior set for A. S(A) is the set consisting of all points lying above
and to the right of A 'A " and of all points lying on A 'A " itself (see Figure 3.2).

Let U be a real-valued function defined over the set X of all sure prospects, with
the property that

U(A)^U(B) iff A^B in terms of the preferences of (3.20)
individual i

Here "iff" denotes "if and only if." Then Uis called a utility function for in-
dividual /. We shall also say that U is a utility function representing /'s preferences.
It is easy to see that, if U satisfies condition (3.18), then individual /'s choice
behavior will be such as if he tried to maximize this utility function Uby his
choices.

Condition (3.18) is of course completely equivalent to the condition that

U(A)>U(B) iff A>B (3.21)

U(A) = U(B) iff A~B

U(A)<U(B) iff B>A

We now state the following two axioms.
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Axioms for rational behavior under certainty2

Axiom 1. Complete preordering. The relation of "nonstrict preference" is a com-
plete preordering over the set X of all sure prospects. [That is, it satisfies Axioms
(a*) and (b*).]

Axiom 2. Continuity. For any sure pr6spect A, both its inferior set I(A) and its
superior set S(A) are closed sets.

Axiom 2 can also be stated as follows. Suppose that the sequence of pure
prospects Bx, B2 , . . . converges to a given sure prospect Bo, and suppose that
A > Bt for i = 1, 2, Then also,4 > Bo.

Likewise, suppose that the sequence of sure prospects C\ , C2 , . . . converges to
a given sure prospect Co, and suppose that Q ^ A for i = 1, 2 , . . . . Then also
Co* A.

Intuitively Axiom 2 essentially asserts that there is a continuous relationship
between the physical characteristics of a given sure prospect (e.g., the physical
composition of a given commodity basket) and its relative desirability: A small
change in the former will produce only a small change in the latter.

We can now state:

Theorem 3.1. Existence of a utility function. Suppose that the preferences of a
given decision maker among sure prospects satisfy Axioms 1 and 2. Then there
exists a continuous utility function U representing his preferences among sure
prospects, and his choice behavior will be such as if he tried to maximize this
utility function U.

For proof see Debreu [1959, pp. 55-59].
Note that the utility function U whose existence has been established by this

theorem is an ordinal utility function, i.e., it is a utility function unique only up
to order-preserving monotone transformations. That is, let Fbe another function
defined over the set X of all sure prospects. Then V will also be a utility function
representing the same decision maker's preferences if and only if it satisfies an
equation of the form

V(A) = F{U(A)} for all AGX (3.22)

where F is a strictly increasing function (also called an order-preserving monotone
transformation). This is so because, if U satisfies condition (3.20), then so will any
function V defined by an equation of the form (3.22). Thus, if U is a utility func-
tion representing the preferences of a particular individual, then so will be also
V=U3 or V = eu, and so on.

This means that for the purpose of expressing the decision maker's preferences
only those properties of the utility function U that are invariant under order-
preserving monotone transformations are relevant. These are called the
ordinal properties of the utility function U. The term "ordinal utility func-
tion" is used to remind us of the fact that only the ordinal properties of
the utility function f/are relevant.
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3.4 Expected-utility maximization in the case of risk

In the case of risk, our purpose will be to establish the existence of a utility func-
tion having the expected-utility property. We will say that a given utility function
U has this property if it equates the utility of any risky prospect C=(A,p,B,
1 - p) to its expected utility, i.e., to the expected value (mathematical expecta-
tion) of the utility function U for this risky prospect C. In other words, U will
have the expected-utility property if and only if

U{C) = U(A,p;B, \-p)=p- U{A) + (1 - p) • U{B) (3.23)

Obviously, if a given individual / has a utility function U possessing this property,
then his choice behavior will be such as if ho tried to maximize the expected value
of this utility function U. A utility function U having the expected-utility prop-
erty is called a von Neumann-Morgenstern utility function.

If we merely wanted to establish the existence of some utility function for the
decision maker over risky prospects, all we would have to do is extend Axioms 1
and 2 (which we used in the case of certainty) to risky prospects. Among the
axioms that we will use in the case of risk, Axioms 1 * and 2* below are in fact
essentially extensions of Axioms 1 and 2 risky prospects. But to ensure the
existence of a utility function possessing the expected-utility property we will
need a third axiom, Axiom 3*, which has no counterpart among the axioms we
have used in the case of certainty.

We will now state two definitions. First we define the set /* = I*(B,A, C), the
inferior probability set for alternative B with respect to alternatives A and C, as
follows. /* is the set of all probability numbers p satisfying the condition:

BZ(A,p',C,l-p) (3.24)

That is , /* includes all probability numbersp such that the corresponding prob-
ability mixture (A,p\ C, 1 - p) would be inferior, or at best equivalent, to
alternative B from the decision maker's point of view.

Next we define the set S* = S*(B,A, C), the superior probability set for alterna-
tive B with respect to alternatives A and C, as follows. S* is the set of all prob-
ability numbers q satisfying the condition

(A,q;C, \-q)>B (3.25)

That is, S* includes all probability numbers q such that the corresponding proba-
bility mixture (A, q\ C, 1 - q) would be superior, or at worst equivalent, to
alternative B from the decision maker's point of view.

Axioms for rational behavior under risk2

Axiom 1 * Complete preordering. The relation of "nonstrict preference" is a com-
plete preordering over the set Y of all risky prospects.
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Axiom 2*. Continuity. For any alternative B, with respect to any pair of alter-
natives^ and C, both the superior probability set S*(B;A, C) and the inferior
probability set/*(2?;,4, C) are closed sets.

Axiom 2* can also be stated as follows. Suppose that the sequence of probabil-
ity numbers p\ ,p2 , . . . converges to a given probability number p0, and suppose
tha t£> (A9Pi'9C,l - Pi) for i= 1,2, Then alsoB> (A,po;C,l - p0).

Likewise suppose that the sequence of probability numbers ^ i , q2 ,. . . . con-
verges to a given probability number q0, and suppose that (A, qt\ C, 1 - qt) £ B
for i = 1, 2, Then also (A,qo;C,l- q0) £ B.

Intuitively Axiom 2* essentially asserts that the utility value of a risky prospect
D{p) = (A,p;C,l - p) depends continuously on the probability number p. That
is, a small change in p will have only a small effect on the utility value ofD(p).

Axiom 3*. Monotonicity in prizes. Suppose that A*>A and p > 0. Then

(A*,p;B,l - p)>(A,p;B,l - p) (3.26)

Conversely, if relationship (3.26) holds, then^l* >A.
That is, the utility value of a lottery ticket will increase if a given prize A is re-

placed by a preferred prize A *, provided that the probability p of winning A (and
A *) is not 0 (in which case of course it makes no difference whether we replace A
by A* or not). Conversely, if replacing A by A* makes the lottery ticket more
valuable, then A* must be a prize preferable to A for the decision maker.

Note that, instead of this monotonicity principle, as our third axiom we could
also use the substitution principle (which appears as Lemma 1 below). While
the monotonicity principle states that replacing a given prize by a more desirable
prize will increase the value of a lottery ticket (as long as p =£ 0), the substitution
principle asserts that replacing a given prize by an equally desirable prize will leave
the value of the lottery ticket unchanged. We are using the monotonicity principle,
rather than the substitution principle, because of the close connection that the
former has to the dominance principle used in game theory.

Note also that our monotonicity principle is closely related to Savage's sure-
thing principle [Savage, 1954, pp. 21-26]. But the sure-thing principle is a little
weaker because it asserts only that the value of a lottery ticket cannot decrease if
a given prized is replaced by a more valuable prized*. In contrast, our monoton-
icity principle makes the stronger claim that in such a case the value of a lottery
ticket will definitely increase (as long as the probability p of winning A or A* is
larger than 0).

Theorem 3.2. Existence of a utility function with the expected-utility property
for risky prospects.* Suppose that a given decision maker's preferences among
risky prospects satisfy Axioms 1*, 2*, and 3* and are also consistent with the
identity relationships stated by Conventions 1,2, and 3 of Section 3.1. Then
there exists a utility function U = U(A) representing his preferences and having



34 Preliminaries

the expected-utility property. Consequently his choice behavior will be such as if
he wanted to maximize the expected value of this utility function U.

Before proving this theorem, we will first prove 10 lemmas.

Lemma I.5 Suppose that A * ~ A. Then

(A*,p,B,l-p)~(A,p9B,l-p) (3.27)

Conversely, if relationship (3.27) holds, and if p > 0, then A * ~~ A.
Lemma 1 follows directly from Axiom 3*.

Lemma 2.

(A9p9A9l-p)=A (3.28)

That is, if a given risky prospect yields A with probability 1, then it is equivalent to
the full certainty of obtaining^. (Intuitively Lemma 2 expresses the same basic
principle as Convention 1 does. But formally it is a different statement from Con-
vention 1, so we must show that it is implied by our notational conventions.)

Proof. By Conventions 1 and 2,

(B90;A,l)=A (3.29)

Consequently

(A,p\A,l -p)= {(B,Q,A,l)9p\A,l-p} (3.30)

But by Conventions 3 and 4,

{(B9O;A9l)9p9A9l-p} = (B9O9A9l)=A (3.31)

where the last equality follows from (3.29). By (3.30) and (3.31),

(A,p\A9l ~p)=A (3.32)

as desired.

Lemma 3. Suppose that A > B and 0 < p < 1. Then

A>(A,p;B,l-p)>B (3.33)

That is, the utility value of any probability mixture of A and B lies between that of
A and that of B.

Proof. By Axiom 3*, we can write

(A,p;A,l -p)>(A,p,B,l -p)>(B9p\B,\ - p) (3.34)

In view of Lemma 2, however, (3.34) implies (3.33) as desired.

Lemma 4. Suppose that

A>B (3.35)
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and

0<p<q<\ (3.36)

Then

(A,q;B,l-q)>(A,p',B9l-p) (3.37)

That is, the utility value of any probability mixture of two outcomes will increase,
if we increase the probability associated with the more desirable outcome, and de-
crease the probability associated with the less desirable outcome.

Proof. Let

r = - so that p = qr (3.38)
Q

By (3.36) we can write

0 < r < l (3.39)

Let

C=(A,q;B,l - q) (3.40)

By Lemma 3, in view of (3.35),

OB (3.41)

Let

D = (C,r;B, 1 - r) (3.42)

By Lemma 3, in view of (3.41),

OD (3.43)

But, by Conventions 3 and 4, in view of (3.40) and (3.42),

D = {(A,q;B, 1 - q),r,B, 1 - r} = (A,qr,B, 1 - qr) (3.44)

By (3.36), this can also be written as

D = (A,p',B9l-p) (3.45)

By (3.40), (3.43), and (3.45), we can write

C = (A9q;B,l-q)>D = (A,P'9B,l-p) (3.46)

as desired.

Lemma 5. Suppose that A >B > C. Then there exists a probability number p,
with 0 < p < 1, such that

(A9p,C,l-p)~B (3.47)

Moreover, this number p is unique.



36 Preliminaries

Proof Consider the inferior and the superior probability sets /* = I*(B;A, C)
and S* = S*(B,A, C). Neither of these two sets is empty because 0 £ / * and
1 E £*. By Axiom 2*, both /* and S* are closed sets. Moreover, their union is
the whole closed interval [0, 1]. Consequently/* and *S* must have at least
one point p in common, because otherwise /* and S* would represent a decom-
position of the closed interval [0,1] into two disjoint closed subsets, which is
impossible. But, by definitions (3.18), (3.24), and (3.25), this common point
p must have property (3.47), and so a number p having this property does exist.
Also 0 < p < 1, because p = 0 would imply B ~ C, while p = 1 would imply
B ~ A, contrary to our assumption that A > B > C.

Indeed p is the only number having property (3.47). Suppose that there were
two numbers, say,p = p* and p = p**, having this property, with

p * > p * * (3.48)

Then we could write

(A,p*;C, \-p*)~B~(A,p**;C, 1 - p**) (3.49)

Yet, by Lemma 4, in view of (3.48), we could also write

(A,p*;C,l- p*)>(A,p**;C,l -p**) (3.50)

which contradicts (3.49). Thus there can be only one number/? with property
(3.47). This completes the proof.

It may happen that in the set Y of all risky prospects under consideration there is
a most preferred (maximal) prospect Q and there is a least preferred (minimal) pros-
pect R, with

Q>R (3.51)
and with

Q>A>R for all A<EY (3.52)
However, if this is not the case, then we will arbitrarily select some highly de-

sirable prospect and call it Q, and will arbitrarily select some highly undesirable
prospect and call it R, such that Q > R. Let 7* = Y*(Q, R) be the set of all
risky prospects^ such that Q £ A £ R. Thus F* is the set of all risky prospects
lying between Q and R in utility. If the set Y of risky prospects does contain a
maximal and a minimal element, then 7* = Y. Otherwise F* will be a proper
subset of Y.

By restricting our analysis temporarily to set 7* we can simplify our proofs
and can give a direct intuitive interpretation to the expected-utility maximiza-
tion theorem (in terms of "characteristic probabilities" - see below).

Let A be any risky prospect in set Y*. Because Q^ A ^ R and Q >/£, by
Lemma 5, we can always find a unique probability p = pA such that

A (3.53)
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We shall call pA the characteristic probability of this prospect A. We can now
state:

Lemma 6. The function

U{A)=pA for all A G F* (3.54)

is a utility function that represents the decision maker's preferences among risky
prospects in set Y*. Moreover,

U{Q)=PQ = \ and U(R)=pR=0 (3.55)

Proof. We have to show that U(A) = pA satisfies Condition (3.20) [or, equiva-
lently, Condition (3.21)] for all alternatives A in set Y*. That is, we have to show
that

(i) pA =pB implies A ~/?,and
(ii) pA >PB implies A >B, whereas, conversely,

(iii) A ~ B implies pA = pB, and
(iv) A>B impliespA > pB.

Now, in view of Definition (3.53), we can write

A~(Q,PA',R,1-PA) and B~(Q,pB;R,l - pB) (3.56)

Hence pA = pB = p implies^ ~ (Q,P',R, 1 - p) ̂ B, which establishes conclusion
(0-

Next suppose that pA >pB. Then, by Lemma 4, in view of (3.56), we must have
A>B, which establishes conclusion (ii).

Now suppose that A ~ /? . Then we cannot have pA >pB, because, by conclusion
(ii), this would imply A>B. Nor can we have pA <pB, because, by conclusion (ii),
this would imply B>A. Therefore we must havepA = pB, which establishes con-
clusion (iii).

Finally suppose that A>B. Then we cannot have pA =pB, because, by conclu-
sion (i), this would imply A ~ B. Nor can we have pA <pB, because, by conclusion
(ii), this would imply B>A. Therefore we must have pA >pB which establishes
conclusion (iv).

To establish statement (3.55), we note that, by Conventions 1 and 2, Q - (Q, 1;
R, 0), while R = (Q, 0; R, 1). This completes the proof.

Lemma 7. The utility function U(A) -pA has the expected-utility property.

Proof. Let

C=(A,q,B,\-q) (3.57)

We have to show that

PC = QPA + 0 ~Q)PB (3-58)
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where PA>PB, and pc are the characteristic probabilities satisfying

A~{Q,pA;R,\-pA) (3-59)

B~(Q,PB;R,I-PB) (3-60)
and

By Convention 3, in view of (3.57), (3.59), and (3.60), we can write

Q,PB',R,l-PB),l-q} (3-62)

,i\ " Q)PA ~ 0 "
By conclusion (iii) in the proof of Lemma 6, (3.61) and (3.62) together imply

(3.58), as desired.
Lemmas 6 and 7 together establish Theorem 3.2 for the risky prospects belonging

to set 7* = Y*(Q,R). The proof of Lemma 7 also shows that the expected-utility
maximization theorem as restricted to set F* can be written in the form of Equa-
tion (3.58); written in this form it has a very natural intuitive interpretation: It is
a direct consequence of the Multiplication and Addition Laws of the probability
calculus.

We now extend the utility function U to the whole set Y (in case F* ̂  Y) as
follows:

Let A > Q. Then, by Lemma 5, we can always find a unique probability rA
such that

{A,rA;R,\-rA)~Q (3.63)

We now define

U(A) = — (3.64)
rA

Obviously under this definition, if A > Q, then U(A) > U(Q) = 1, since
0<rA<l.

Alternatively let R >A. Then, again by Lemma 5, we can always find a unique
probability tA such that

(A,tA;Q,l-tA)~R (3.65)

We now define

U(A)=\-—  (3.66)
tA

Clearly under this definition, \iR>A, then U(A) < U(R) = 0, since 0 < tA < 1.
It remains to be shown that this extended function U is still a utility function

with the expected-utility property, i.e., that (/still exhibits properties (3.21) and
(3.23).
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Let Q° and R° be two risky prospects such that Q° > Q and R >R°,and let
Y° = Y°(Q°,R°) be the set of all risky prospects,4 with Q° > A > R°. For each
A in Y°, let p% be the unique probability satisfying

A (3.67)

Then we can state:

Lemma 8. The function

U°(A)=pA> (3.68)

is a utility function and has the expected-utility property.

Proof. Lemma 8 directly follows from Lemmas 6 and 7 if we choose Q° as our
prospect Q and choose R° as our prospect R.

Lemma 9. For all,4 G Y°(Q°7R°) we can write

£/°04) = a£/04) + j3 (3.69)

where

a = U°(Q)- U°(R)>0 (3.70)

whereas

p = U°(R) (3.71)

Proo/. We will distinguish three cases.

Case 1: Q° >A>Q. In this case U(A) is defined by (3.63) and (3.64). But, by
Lemma 8, (3.63) implies that

rAUo(A) + (l-rA)U°(R) = U°(Q) (3.72)

which in turn implies (3.69), in view of (3.70) and (3.71).

Case 2: Q>A>R. In this case U(A) is defined by (3.53) and (3.54). But,by
Lemma 8, (3.53) implies that

(3.73)

which in turn again implies (3.69).

Case 3: R>A>R°. In this case U(A) is defined by (3.65) and (3.66). But, by
Lemma 8, (3.65) implies that

tAU°(A) + (1 - tA)U°(Q) = U°(R) (3.74)

which in turn once more implies (3.69).
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Finally the inequality stated in (3.70) follows from the facts that Q >R and that,
by Lemma 8, U° has property (3.21).

Lemma 10. The extended function U is a utility function with the expected-
utility property for all prospects,4 in the set Y°(Q° ,R°).

Proof. In view of Lemma 9, for all./! E Y°(Q° ,R°) we can write

U(A) = a*U°(A) + P* (3.75)

where

a * = l / a > 0 (3.76)

whereas

0* = -jS/a (3.77)

By (3.75) and (3.76), Uis a strictly increasing function of U°. But, by Lemma 8,
U° has property (3.21). Therefore f/must have the same property. Again, by
(3.75), U is a linear transform of U°. But, by Lemma 8, U° has property (3.23).
It is easy to verify that this implies that any linear transform of U° will also have
this property. Therefore (/will have both properties (3.21) and (3.23) over the
whole set Y°(Q°,R°). This completes the proof.

Clearly the prospects Q° and R° mentioned in Lemmas 8 through 10 can be
chosen arbitrarily, so that the set Y°(Q°,R°) can be made to cover as wide a
range of possible utility levels as desired. Consequently Lemma 10 implies that
Theorem 3.2 is true for the whole set Y of risky prospects.

Note: We have seen that in the case of certainty the decision maker's choice
behavior can be analyzed in terms of an ordinal utility function, unique only up
to monotone transformations. [See Equation (3.22) and the subsequent discus-
sion.] This implies that only those properties of his utility function that are in-
variant under all monotone transformations can have a behavioral meaning:
These we have called the ordinal properties of his utility function.

In contrast, in the case of risk, the decision maker's behavior can best be ana-
lyzed in terms of a utility function possessing the expected-utility property (often
called a von Neumann-Morgenstern utility function). Theorem 3.2 establishes the
existence of such a utility function, if the decision maker's choice behavior satis-
fies the appropriate consistency requirements. Such a utility function is unique up
to order-preserving linear transformations and is therefore called a cardinal utility
function. That is, let U and V be two utility functions representing the same de-
cision maker's preferences between risky prospects, and suppose that £/has the
expected-utility property. Then, in order that V should likewise possess the
expected-utility property, it is both sufficient and necessary that V should uni-
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formly satisfy an equation of the form

V(A)=aU(A) + b for all A<EY (3.78)

where a and b are both real-valued constants with a > 0.
To put it differently, suppose that a given decision maker's choice behavior satis-

fies our axioms, and we want to define a utility function U with the expected-
utility property for him. Then we are free to choose a zero point and a utility unit
for U in any way that we wish. But once these two parameters have been chosen,
the utility function U will be uniquely determined. [Choosing a zero point and a
utility unit for £/is, of course, equivalent to choosing two alternatives Q and R,
with Q> R, and assigning the utility value U(Q) = 1 to the former, while assigning
the utility value U(R) = 0 to the latter. We have already seen that once Q and R are
chosen, the utility function Uis uniquely determined by Equations (3.54), (3.64),
and (3.66).]

3.5 Expected-utility maximization in the case of uncertainty

In the case of uncertainty, in accordance with the Bayesian approach, our purpose
will be to establish the existence of a utility function that has the expected-utility
property, not only in terms of objective probabilities known to the decision maker
but also in terms of his own subjective probabilities, which he assigns to events
whose objective probabilities are unknown to him. That is, we want to establish
the existence of a utility function {/defining the utility U(C) of any uncertain
prospect C = (A \ e;B \ e) as

= U(A\e;B\e)=peU(A) + (l-pe)U(B) with 0 < pe ^ I (3.79)

where the quantity pe, called the decision maker's subjective probability for event
e, depends only on event e itself and not on alternatives A and B. That is, for any
other uncertain prospect C* = (A * | e\ B* \ e) with the same conditioning event e we
should be able to write in a similar fashion

U(C*)=U(A*\e\B*\e)=peU(A*) + (\ -pe)U(B*) (3.80)

where pe is the same quantity as in (3.79), regardless of the choice of A* and B*.
The quantity pe = 1 - pe is called the decision maker's subjective probability for
the complementary event e.

Various alternative sets of axioms can be used to establish the existence of a
utility function £/and of subjective probabilities pe, which together satisfy Equa-
tion (3.79). The axioms most commonly used for this purpose were proposed by
Savage [1954]. Under his approach no formal distinction is made between objec-
tive and subjective probabilities. (He actually uses the term "personal probabilities"
to describe what we call "subjective probabilities.") Rather, all probabilities used
by the decision maker are considered to be subjective probabilities, even those that
are based on long-run frequencies known to him. Accordingly Savage's theory does
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not require the assumption that there are any objective probabilities known to the
decision maker at all.

However, there is a price for avoiding this assumption. One of Savage's seven
postulates, Postulate 4, is equivalent to assuming that the decision maker entertains
at least consistent qualitative subjective probabilities for alternative events - in the
sense that in the appropriate choice situations he will act on the basis of his judge-
ment concerning whether a given event e or the complementary event e is more
likely (or whether he feels that they are equally likely). In our notations Savage's
Postulate 4 asserts:

Postulate S4. Existence of consistent qualitative subjective probabilities.6 Suppose
that A > B and A* > B*. Suppose also that

C = (A\e-B\e)>D = (B\e;A\e) (3.81)

Then also

C* = (A*\e',B*\e)ZD* = (B*\e',A*\e) (3.82)

In other words, if the decision maker (nonstrictly) prefers C to D, then he must feel
that e is at least as likely to occur as e is (otherwise he would prefer to associate the
more valuable prize A with e and the less valuable prize B with e, rather than the
other way around). But then he must likewise (nonstrictly) prefer C* to D* for
the same reason. Thus Postulate S4 assumes that, when the decision maker chooses
between C and D or between C* and D*, he will form a qualitative probability
judgment, at least implicitly, about whether event e or event e is more likely to
occur. This judgment will be independent of the prizes A,B,A*, and B*.

To be sure, Postulate S4 assumes only a qualitative probability judgment on the
part of the decision maker and does not explicitly assume any quantitative proba-
bility judgment (about numerical subjective probabilities) on his part - but it comes
dangerously close to doing precisely this. The statement that Prob(e) ^ Prob(e) is
exactly equivalent to the statement that Prob(e) ^ j , while Prob(e) ^ ^, because
Prob(e) + Prob(e) = 1. By means of our axioms we are trying to prove the propo-
sition that the decision maker's choice behavior will be such as if it were based on
judgments concerning numerical subjective probabilities; in my view Postulate S4
comes undesirably close to assuming from the outset the actual proposition that we
are trying to prove.

Anscombe and Aumann [1963], and also Pratt, Raiffa, and Schlaifer [1964],
have shown that Postulate S4 and any similar assumption can be dispensed with if
we are willing to assume that the decision maker knows at least some objective
probabilities. Indeed it is sufficient if he knows the objective probabilities associ-
ated with the behavior of one random mechanism capable of producing all probabil-
ities between zero and unity. This may be, for example, a random mechanism
whose output is a random variable with a uniform continuous probability distribu-
tion (or with any other absolutely continuous probability distribution known to
the decision maker). In fact, from a practical point of view, it may be even a ran-
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dom device that produces a known discrete probability distribution (such as re-
peated throws of a given fair coin), if the latter can at least suitably approximate,
even if it cannot always exactly reach, any probability between 0 and 1).

The random mechanism whose statistical behavior is assumed to be known to
the decision maker will be called the canonical random mechanism, and events de-
fined in terms of possible alternative outcomes of this mechanism will be called
canonical events. (Thus the canonical events are the events whose objective proba-
bilities are assumed to be known to the decision maker.) Finally a risky prospect
(A,p,B, 1 - p) will now have to be interpreted as a situation in which either A or B
will obtain depending on the occurrence or nonoccurrence of some canonical event
e whose objective probability is p. In terms of our notation this means that (A,p;
B, 1 - p) = (A | e; B \ e), where p is the objective probability of e, known to the deci-
sion maker.

The statement that the decision maker knows the objective probability of every
canonical event e can be interpreted as saying that he knows the long-run frequency
of this event. This is the interpretation most convenient to use in many cases. But
we can also use the following interpretation. We may interpret this statement as
saying that in the case of canonical events the decision maker will assess the (quali-
tative) probability of each event in a consistent manner, in accordance with Postu-
late S4. Thus we may say that the main result established by Anscombe and
Aumann, and again by Pratt, Raiffa, and Schlaifer, is the fact that we need not
assume that the decision maker has consistent qualitative subjective probabilities
for all events; rather, it is sufficient to assume that he has such probabilities for
canonical events, possibly representing merely the behavior of one suitably chosen
random mechanism. From this assumption (in conjunction with our axioms and
notational conventions) we can derive as a theorem that our decision maker's be-
havior will have consistent subjective probabilities and will satisfy Postulate S4 with
respect to all events.

We will now state our axioms for uncertainty, which are based on those of
Anscombe and Aumann [1963].

Axioms for rational behavior under uncertainty

Axiom 1 **. Complete preordering. The relation of "nonstrict preference" is a
complete preordering over the set Z of all uncertain prospects.

Axiom 2**. Expected-utility property for risky prospects. The decision maker has
a utility function U which to any risky prospect C=(A,p,B, 1 - p) assigns the
utility

U(C) = U(A,p;B,l-p) = pU(A) + (l-p)U(B) (3.83)

Axiom 2** can also be stated by saying that the decision maker's preferences
among risky prospects satisfy Axioms 1 *, 2*, and 3*, as well as Conventions 1,2,
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and 3. By Theorem 3.2 these axioms and conventions together imply Equation
(3.83).

Axiom 3**, Monotonicity in prizes for uncertain prospects (Sure-thing principle
for uncertain prospects). Suppose that A* <: A. Then

(A*\e-,B\e)>(A\e;B\e) (3.84)

That is, if a given prize A is replaced by a more valuable prize A*, this cannot de-
crease the value of a lottery ticket - even if the probability of winning prize A or
A* is not known. Axiom 3** is obviously a natural analogue to Axiom 3*.

Thus our three axioms for uncertainty do nothing more than reaffirm and ex-
tend our axioms for risk. Axiom 2** merely reaffirms Axioms 1* to 3* for risky
prospects, whereas Axioms 1** and 3** extend Axioms 1* and 3*, respectively,
from risky prospects to uncertain prospects. But none of these axioms involves any
fundamentally new assumption going essentially beyond our axioms for risk.

Lemma 1. Suppose that A * ~ A. Then

(A*\e\B\e)~ (A\e\B\e) (3.85)

That is, if a given prize A is replaced by an equivalent prize A*, this will not change
the value of a lottery ticket. This lemma is obviously a direct analogue of Lemma 1
of Section 3.4 and may be called a substitution principle for uncertain prospects.

Proof In view of Definition (3.19), the lemma directly follows from Axiom 3**.

Lemma 2. Let Ube the utility function defined by the relationship

U(A)=pA (3.86)

where pA is the characteristic probability of prospect A as defined by Condition
(3.53). Let C=(A\e\R\e). Then

= U(A\e-R\e) = pA -U(Q\e;R\e) (3.87)

Proof In view of Lemma 1 and Statement (3.53), we have

(A\eiR\e)~ {(Q,pA',R9l - pA)\e;R\e}

= {(Q9pA;R, 1 - pA)\e;(R,pA;R, 1 " PA)\e} (3.88)

since R = (R, pA ; R9 1 - pA ). But, in view of Convention 4*,

{(& PA >R, 1 - 0A) I e\ (R, pA;R9l- pA)\e]

= {(Q\e;R\e),pA,(R\e;R\e),l-pA}

= {(Q\e;Rle),pA;R,l-pA} (3.89)
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where the last equality follows from the fact that, by Convention 1 *, (R \ e\R \ e) =
R. In view of (3.88) and (3.89), we can write

(A\e;R\e)~{(Q\e]R\e),pA;R, 1 - pA] (3.90)

Taking utilities on both sides and using Axiom 2**, we obtain

U(A\e;R\e)=pAU(Q\e;R\e) + (l-pA)U(R) (3.91)

Because U(R) = 0, this gives us Equation (3.87), as desired.

Theorem 3.3. Existence of a utility function with the expected-utility property in
terms of the decision maker's subjective probabilities. Let us define

pe = U(Q\e;R\e) (3.92)

and

p*=U(Q\e;R\e) (3.93)

We call the quantities pe and pe the decision maker's subjective probabilities for
event e and for event e, respectively. Then

pe+p* = l (3.94)

and

U(A | e\ B | e) = pe • U(A) + p* • U(B) (3.95)

In other words, the utility function U defined by Equation (3.86) has the desired
expected-utility property in accordance with Equation (3.79).

Proof. Equation (3.94) is a special case of Equation (3.95) and can be obtained
from the latter by setting A-B-Q. Therefore it is sufficient to prove Equation
(3.95).

Let us define

C = {(A |e;R \ e), \ ; (R | e; B | e), \] (3.96)

D={{A,\;R,l1)\e;(R^;B,\)\e} (3.97)

D* = {{A,±;R,\)\e;{B,\-R,±)\e} (3.98)

C* = {(A |e;B \e), ±;(R\e;R \e\ i} (3.99)

Now, by Convention 3*, C = D. By Convention 2, D = D*. By Convention 3*,
D* = C*. Consequently C=C*, and so we can write

(3.100)
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Taking utilities on both sides and using Axiom 2* we obtain

\U{A|e\R |e) + \U(R \e\B \e) = \U{A \e\B\e) + \U(R) (3.101)

But U(R) = 0. Moreover, by Lemma 2 and by Equations (3.92) and (3.93), we have

U(A\e;R\e) = pA • U(Q\e;R\e)= U(A) • pe (3.102)

and

U(B\e;R\e)=pB-U(Q\e;R\e) = U(B)-pe (3.103)

Consequently Equation (3.101) can also be written as

pe • U(A) + p* • U(B) =U(A\e;B\e) (3.104)

which is the same as Equation (3.95). This completes the proof.

Note 1: The utility function U(A) = pA used in Theorem 3.3 is the same utility
function as that used in Theorem 3.2. Consequently it is a cardinal utility function
and is unique up to order-preserving linear transformations.

Note 2: Equations (3.92) and (3.93) define the subjective probabilities of events
e and e in terms of the utilities that the decision maker assigns to the uncertain
prospects F = (Q \ e; R \ e) and G = (Q\e,R\e), respectively. But, in view of Equa-
tion (3.86), these utilities themselves are defined in terms of the corresponding
characteristic probabilities, by setting U(F) = pF and U(G) = pG. This means that
the subjective probability pe of any event e is defined as being equal to the objec-
tive probability p = Prob(e*) of some canonical event e*, which satisfies the equiv-
alence relationship

(Q\e',R\e)~(Q\e*',R\e*) = (Q,p-9R,l-p) (3.105)

In other words, we can say that the canonical event e* is, in the decision maker's
judgment, equally likely to event e, because, if we replace e by e* as conditioning
event in the uncertain prospect (Q\ e\R \ e), then this will not change the utility of
the latter to him. Thus the known probability p of a canonical event e* is used to
measure the decision maker's estimate of the unknown probability of event e.

Note 3: Theorem 3.3 defines the subjective probabilities pe and pe of events e
and e in terms of the utilities of the prospects F and G, whose components are the
prospect Q (with utility 1) and the prospect R (with utility 0). But these defini-
tions do not involve the prospects A and B mentioned in the theorem. Thus the
subjective probability pe of any event e is independent of the choice of A and B, in
agreement with Postulate S4. Consequently Theorem 3.3 implies Postulate S4.
However, our proof of the theorem has made no use of the postulate, or of any
similar assumption, with reference to events outside the special class of canonical
events. (We have seen that the assumption that the decision maker knows the
probabilities of canonical events essentially amounts to assuming that his behavior
follows Postulate S4, at least with respect to canonical events e.)
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3.6 Our postulates of rational expectations and the principle of best
information

As we stated in Section 1.4, our theory of rational behavior in game situations will
represent a generalization of Bayesian decision theory. In accordance with the
Bayesian approach, we will assume that each player / will express his expectations
about the behavior of any other player / by assigning subjective probabilities to al-
ternative actions (or alternative strategies) that player; may choose. But, contrary
to the Bayesian approach as it is often interpreted, we shall considerably restrict
player fs freedom in selecting his subjective probabilities. For we require that the
probabilities selected by player i should be consistent with the assumption that
player/, like player / himself, is a rational individual and will act rationally in the
game, pursuing his own interests in an effective manner. This requirement will be
called the principle of mutually expected rationality. In our formal theory this
principle will be stated by way of introducing certain rationality postulates, to be
called postulates of rational expectations, specifying the expectations that an in-
telligent player can rationally entertain about another intelligent player's behavior.

In my opinion, in actual fact this use of the principle of mutually expected
rationality and of the corresponding rationality postulates is in full agreement with
the true meaning of the Bayesian approach. To be sure, if we look only at the
formal axioms and notational conventions of Bayesian decision theory (as stated in
Sections 3.2 and 3.5), then the decision maker is free to choose his subjective prob-
abilities in any way that he desires, as long as his choices are consistent with the
basic laws of the probability calculus (in particular, with the Addition and the Mul-
tiplication Laws). But in any practical application of the Bayesian approach there
is always an implicit recognition of the principle that the decision maker must
choose his subjective probabilities in a rational manner, i.e., in the light of the best
information available to him. We will call this the principle of best information.

Our own principle of mutually expected rationality is essentially a specialization
of this principle of best information. It represents an application of the latter prin-
ciple to game situations in which each player has good reasons to believe, on the
basis of the best information available to him, that the other players are also in-
telligent individuals, likely to display rational behavior in the game.

The main reason that the principle of best information is usually not included
among the formal axioms of Bayesian decision theory is that it is not needed to
establish the main results of the theory. In particular it is not needed to establish
the expected-utility maximization theorem (our Theorem 3.3). Moreover, stating
the principle in a precise and logically satisfactory manner poses some difficult and,
thus far, partly unsolved analytical problems.7

In contrast, as we will see, the more restricted principle of mutually expected
rationality poses no similar problems and can be translated without difficulty into
specific formal rationality postulates. These rationality postulates will play an es-
sential role in establishing the main results of our theory.
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A CONSTRUCTIVE APPROACH

4.1 Disregard of one's personal identity - a model for moral value judgments

In Section 1.3 we divided the general theory of rational behavior into individual
decision theory, ethics, and game theory. In Chapter 3 we summarized the
main results of individual decision theory, following Debreu [1959], Herstein and
Milnor [1953], and Anscombe and Aumann [1963]. In this chapter we will review
the main results of our own work in ethics and will discuss a related result by
Fleming [cf. Harsanyi, 1953,1955, and 1958; Fleming, 1952]. Most of these re-
sults were originally developed for the purposes of welfare economics but will be
discussed here from a more general ethical point of view. The remaining chapters
of this book will deal with game theory.

People often take a friendly (positive) or an unfriendly (negative) interest in other
people's well-being. Technically this means that the utility function of a given in-
dividual i may assign positive or negative utility to the utility level as such of some
other individuals/, or to the objective economic, social, biological, and other con-
ditions determining the latter's utility levels. The question naturally arises: What
factors will decide the relative importance that any given individual's utility func-
tion will assign to the well-being of various other individuals or social groups? We
have called this question the problem of dominant loyalties (Section 2.3). This
question obviously requires a rather complicated answer. But that much is clear
that, according to common experience, people in most cases tend to give lesser
weight to other people's interests than to their own, and tend to give lesser weight
to the interests of complete strangers than to the interests of people close to them.

However, there are occasions when people make, or are at least expected to
make, a special effort to assess social situations from an impartial and impersonal
point of view, giving equal weight to the legitimate interests of each participant.
For example, we expect judges and public officials to be guided by such impartial
criteria when they act in their official capacities as the guardians of unbiased
justice and of general social interests (i.e., of the "public interest"). Indeed every
person is expected to follow such impartial criteria when he makes moral value
judgments.

Since Adam Smith, moral philosophers have often pointed out that the moral
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point of view is essentially the point of view of a sympathetic but impartial ob-
server. It is the point of view of a person taking a positive sympathetic interest in
the welfare of each participant but having no partial bias in favor of any participant.

Originally the moral point of view is that of an outsider, not that of an in-
terested party. Given a conflict of interest between two or more individuals, the
natural inclination of each party will be to judge the situation from his own one-
sided point of view. An impartial moral point of view will be taken only by an
outside observer whose personal interests are not involved - or by such interested
parties who make a special effort to look at the situation with the eyes of an im-
partial observer. Obviously one does not have to be an outsider in order to take
the moral point of view; but one has to make a serious attempt to judge the situa-
tion as if one were a detached outsider: Otherwise one is simply not engaged in the
activity called "making a moral value judgment."

These considerations suggest the following model. Society consists of n individ-
uals, referred to as individuals 1 , . . . , z , . . . , « . Suppose that individual i wants to
make a moral value judgment. This will always involve comparing two or more
social situations concerning their relative merits from a moral point of view. These
social situations may be alternative patterns of social behavior (alternative moral
rules), alternative institutional frameworks, alternative government policies, alter-
native patterns of income distributions, and so forth. Mathematically any social
situation can be regarded as a vector listing the economic, social, biological, and
other variables that will affect the well-being of the individuals making up the
society. Different social situations will be called A, B,.... Let Ut be the von
Neumann-Morgenstern cardinal utility function of individual / ( / = 1 , . . . , « ) .
Thus Ut(A) will denote the (cardinal) utility level that individual i enjoys (or
would enjoy) in social situation A.

Now if individual i wants to make a moral value judgment about the merits of
alternative social situations A, B,. . . ,he must make a serious attempt not to assess
these social situations simply in terms of his own personal preferences and personal
interests but rather in terms of some impartial and impersonal criteria. For ex-
ample, if individual i expresses certain views about how rich men and poor men, or
motorists and pedestrians, or teachers and students, and so on, should behave
toward each other, these views will qualify as true moral value judgments only if
they are not significantly influenced by the fact that he himself happens to be a
rich man or a poor man, a motorist or a pedestrian, a teacher or a student. Like-
wise, for example, if he expresses some views about the merits of alternative
government policies, these views will qualify as true moral value judgments, only
if they are not significantly influenced by the fact that he himself is a member
of the social group directly favored (or disfavored) by these government policies.

Individual /'s choice among alternative social situations would certainly satisfy
this requirement of impartiality and impersonality, if he simply did not know in
advance what his own social position would be in each social situation - so that he
would not know whether he himself would be a rich man or a poor man, a motor-
ist or a pedestrian, a teacher or a student, a member of one social group or a mem-
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ber of another social group, and so forth. More specifically this requirement would
be satisfied if he thought that he would have an equal probability of being put in
the place of any one among the n individual members of society, from the first
individual (say, the one in the best social position) to the «th individual (say, the
one in the worst social position). But then, technically, his choice among alterna-
tive social situations would be a choice among alternative risky prospects. Hence,
by Theorem 3.2, his choice would be rational only if it maximized his expected
utility. Now under our model any given social situations! would yield him the ex-
pected utility

Wt(A) = - t Uj(A) (4.1)
n 7 = 1

because he would have the same \\n chance of being put in the place of each in-
dividual/(/ = 1 , . . . , z , . . . , « ) and therefore of obtaining the utility amount
Uj{A), representing individual;'s utility level in situations!. In other words, in
making moral value judgments individual i would evaluate each social situation A
in terms of the average utility level that the n individual members of society would
enjoy in this situation.

To be sure, in real life, when an individual is making a moral value judgment
about the merits of alternative social situations, he will often have a very clear idea
of what his own social position is or would be in any given social situation. But
his value judgment will still qualify as a true moral value judgment as long as he
judges these social situations essentially in the same way as he would do if he did
not have this information - that is, as long as he judges each situation A in terms of
the quantity Wi(A) defined by Equation (4.1).

This function Wt that individual / will use in evaluating various social situations
from a moral point of view will be called his social welfare function, because it can
be interpreted as indicating the social welfare level associated, in z's opinion, with
each particular social situation. We may also say that Wz- indicates the value that /
ascribes to each social situation from a social or moral point of view. In contrast,
z's own utility function £/,- indicates the value that he ascribes to each social situa-
tion from his personal point of view.

Thus under our model each individual i in effect has two different preference
scales. The preferences expressed by his social welfare function Wf may be called
his moral or social preferences, while those expressed by his utility function £/,-
may be called his personal preferences.l By definition his actual choice behavior
will be governed by his personal preferences, whereas his moral value judgments
will be governed by his moral preferences. Accordingly only his personal prefer-
ences can be called his "preferences" in the strict sense of the word. His moral
preferences are only "conditional preferences," because they indicate merely
what he would prefer z/he gave equal weight to each individual's interests in
choosing between alternative social situations. We may also say that they repre-
sent his preferences only in those - possibly very rare - moments when he is
forcing a very special impartial moral attitude on himself.
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The personal and the moral preferences of a given individual may be quite
dissimilar. An egoist's personal preferences may give little, if any, weight to other
people's interests; his moral preferences, by definition, will give the same weight
to any other individual's interests as to his own. Hence it can easily happen that
his personal and his moral preferences will rank two social situations A and B in
the opposite way. It is quite possible that Uf(A) > Ut(B) but that W;(A) < Wt(B).
For example,^ may be a social situation in which i would have a very high in-
come while most individuals would have very low incomes, whereas i? may be a
social situation in which all individuals, including i himself, would have moder-
ately high incomes. Because i would be personally better off in A than in B, he
may prefers! to B from his own personal point of view but may very well admit
that B would represent the more desirable situation from a social or moral point
of view.

We can now state:

Theorem 4.1. The social-welfare function as the arithmetic mean of individual
utilities. In making moral value judgments, i.e., in judging alternative social situa-
tions from a moral (or social) point of view, a rational individual will rank these
situations according to the arithmetic mean of the utility levels that the individual
members of society would enjoy in this situation.

Note. By Equation (4.1), the social welfare function Wj of all individuals / will
be identical, so that the subscript / can be omitted, and we can write Wj = • • •  =
Wn = W. But this conclusion follows only if:

1. All individuals / have full information about the von Neumann-Morgenstern
utility functions of all individuals/ making up the society.

2. All individuals / agree on how to make interpersonal utility comparisons
among different members/ of society.

3. All individuals / agree on which particular individuals/ are "members of
society" in the sense that their utility functions Uj should enter the definition
of the social welfare function W.

If these conditions are not satisfied (see Sections 4.4 through 4.6), then, of
course, the social welfare function Wt of different individuals i need not be the
same.

4.2 Interpersonal comparisons of utility: consistency requirements

Our model is based on the assumption that, in order to construct his social welfare
function Wz-, each individual i will try to assess the utilities Uj{A) that any other
individual / would derive from alternative social situations A and will try to com-
pare these with the utilities Ut{A) that he himself would derive from these (or from
other) social situations. That is, he will try to make interpersonal utility compari-
sons. Moreover, we have assumed that / will attempt to assess these utilities Uj(A)
by some process of imaginative empathy, i.e., by imagining himself to be put in the
place of individual / in social situation A.
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This must obviously involve his imagining himself to be placed in individual y's
objective position, i.e., to be placed in the objective conditions (e.g., income,
wealth, consumption level, state of health, social position) that; would face in
social situations!. But it must also involve assessing these objective conditions in
terms of y's own subjective attitudes and personal preferences (as expressed by y's
own utility function Uj) - rather than assessing them in terms of/'s own subjective
attitudes and personal preferences (as expressed by his own utility function £/,-).

For example, suppose that/ likes meat and dislikes fish, while / himself has
opposite food preferences. Then it would be clearly absurd for / to assess y's food
consumption in terms of z's own taste and claim that / would be better off if/ had
to eat fish (which/ dislikes) than if he could eat meat (which/ likes) - simply be-
cause / himself happens to like fish and to dislike meat.

This is, of course, merely the familiar principle of consumers' sovereignty, often
discussed in the literature of welfare economics: The interests of each individual
must be defined fundamentally in terms of his own personal preferences and not
in terms of what somebody else thinks is "good for him." In the context of
interpersonal comparisons of utility, this principle can be best described as the
principle of acceptance, because it requires us to accept each individual's own
personal preferences as the basic criterion for assessing the utility (personal
welfare) that he will derive from any given situation. We will argue that this
principle needs certain qualifications. But with appropriate qualifications we
regard it as one of the most important principles of welfare economics, ethics,
and political philosophy.

Now suppose that individual / is trying to make an interpersonal utility compari-
son between the utility Ut(A) that he himself would derive from some social situa-
tions!, and the utility Uj(B) that another individual/ would derive from some
social situation B. (Our discussion is meant to cover both the case in which A = B
and the case in which/! i=B.) Let/I; denote /'s personal position in social situa-
tion/1 (i.e., the objective conditions that would face individual i in social situation
A). Likewise let Bj denote y's personal position in social situation B. In view of
these definitions we can write

Ui(Ai) = Ui(A) and U,{Bj) = Uj{B) (4.2)

Finally, let Pz- andPy denote z's and y's subjective attitudes (including their personal
preferences), respectively.

Then by the principle of acceptance (consumers' sovereignty), when i is trying
to make an interpersonal utility comparison between the utility levels Uf(A) =
Ui(Ai) and Uj(B) - UJ(BJ), this will really amount to trying to decide whether
he himself would prefer to be in the objective position At with his own subjective
attitudes/*/, or rather to be in the objective positioni?y withy's subjective attitudes
Pj (or whether he would be indifferent between these two hypothetical alterna-
tives). In symbols, it would amount to deciding which one he would prefer of the
two hypothetical alternatives [AhPt] and [Bj,Pj\.

Thus let A be a social situation where all individuals' diets consist mainly of fish,
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and let B be a social situation where all individuals' diets consist mainly of meat.
Suppose that individual / has a mild preference for fish, while individual/ has a
very strong preference for meat (with a violent distaste for fish). Then individual
i, his taste Pt being what it is, will obviously prefer fish to meat, which means that
he will prefer [A^Pf] to [BuPt]. But he will presumably also recognize that it
is better (less inconvenient) to eat meat with a mild distaste for meat than it is to
eat fish with a strong distaste for fish. Therefore he will prefer [/?,-,-P,-] to [Aj,Pj].
In terms of the language of interpersonal utility comparison, he will recognize that
/ would derive more disutility (i.e., would derive less utility) from eating fish than
(/) himself would derive from eating meat.

Hypothetical alternatives of the form [AuPt] or [Bj,P}], and so on, will be
called extended alternatives. A given individual's (say, Z's) preferences among such
extended alternatives will be called his extended preferences. (For a similar ap-
proach, see Sen [1970, p. 152].)

No doubt there is an important difference in logical status between an individual's
personal preferences (i.e., his preferences as usually defined in economics) and his
extended preferences. The former are preferences between real alternatives, for
example, between eating meat and eating fish. The latter are preferences between
partly imaginary alternatives, for example, between eating meat with one's actual
taste and eating fish with a taste quite different from one's actual taste. Accord-
ingly an individual's personal preferences will manifest themselves both in his actual
choice behavior and in his verbal statements of preference, whereas in general his
extended preferences can manifest themselves only in his verbal statements.2

More formally the extended alternatives underlying interpersonal utility compari-
sons will be defined as follows. Let Xj be the set of all individual positions^- that
a given individual/(/ = 1 , . . . , / , . . . , « )  can obtain under any possible social
situation^. We will assume that this set Xj is the same for all individuals/. (That
is, in principle any individual/ could be given, e.g., any possible income level and
any possible social position.) Therefore we write X( = • • • = Xn = X. (But for
convenience we will continue to denote the elements of set X by the symbols
Aj,Bj,. . . , with subscript/, when they refer to an individual position occupied
by individual/ - even though, e.g., position Aj of individual / may be the same
objective position as position Bk of individual k is.)

We will also consider risky prospects (probability mixtures) whose components
are different individual positions Aj,Bj,. . . of the same individual/. The set of
all such risky prospects will be called Y. Mathematically Y can be defined as the
set of all probability distributions over set X.

We now define a pure extended alternative as a pair [Aj9Pj], where Aj is an ele-
ment of set X or of set Y, while Pj represents the subjective attitudes of some indi-
vidual / ( /= 1 , . . . , / , . . . , n). The set of pure extended alternatives for all n indi-
viduals will be called <£.

We will also consider risky prospects (probability mixtures) whose components
are pure extended alternatives, possibly belonging to two or more different in-
dividuals, for example, probability mixtures of [Aj,Pj] and [Bk,Pk], These will
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be called mixed extended alternatives, and the set of these latter, ^ . Mathemati-
cally ^ can be defined as the set of all probability distributions over set <$.

These notations make it natural to adopt the following notational convention.

Notational convention for extended alternatives

Convention 1°. Relationship between risky prospects and mixed extended
alternatives.

[(Ahp;Bh 1 - p),Pf] = {[AhPj\ ,p; [BhPj\, 1 - p) (4.3)

Both sides of the equation refer to a situation in which individual/ has the subjec-
tive attitudesPy and is facing the risky prospect (Aj,p,Bj, 1 - p). Therefore they
refer to the same situation.

Our model of moral value judgments (stated in Section 4.1) presupposes that
individual i's extended preferences satisfy the following consistency axioms.

For convenience we will use the phrase "the axioms for rational behavior under
risk" as a short reference to Axioms 1*, 2*, and 3* of Section 3.3, as well as to
Conventions 1,2, and 3 of Section 3.1.

Consistency axioms for extended preferences

Axiom 1°. Rationality of individual Vs extended preferences. Individual /'sex-
tended preferences among mixed extended alternatives in set ̂  satisfy the axioms
for rational behavior under risk.

This axiom is needed to establish that, in making moral value judgments, in-
dividual / will try to maximize the expected utility Wj(A) defined by Equation
(4.1).

Axiom 2°. Agreement between individual i's extended preferences and each in-
dividual 's personal preferences. Let Aj and Bj be two risky prospects in set Y, and
l e t ; b e o n e o f t h e n i n d i v i d u a l s 1 , . . . , / . . . , « .  S u p p o s e t h a t y l y £ Bj i n t e r m s o f
individual /'s personal preferences. Then also [Aj-9Pj] ̂  [Bj,Pj] in terms of in-
dividual i's extended preferences.

In interpreting Axiom 2° we have to distinguish two cases. In the special case
where/ = i, the axiom directly follows from the definition of extended preferences.
To say that individual i prefers [-4 j ,/>,-] to [Bi9Pj\ is the same thing as saying that,
his subjective attitudes Pt being what they are, he prefers position At to position Bt.

In contrast, in the case where/ =£ i, the axiom is not a tautology but rather is a
restatement of the principle of acceptance (consumers' sovereignty). It expresses
the fact that individual i will evaluate the personal position of another individual
/ in terms of/'s own personal preferences.

In view of Axiom 1° we can define an extended-utility function Vf = Vj[Aj,Pj]
for individual i over all extended alternatives [AJ,PJ] wi th / = 1 , . . . , / , . . . , «
and over all probability mixtures of such alternatives, so that Vt will have the
expected-utility property.
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In view of Axiom 2°, for each individual / we can define a utility function Uj
such that

Uj{Aj) = Vt[AhPf] for all AfeY (4.4)

From the fact that Vt has the expected-utility property, and from Equations (4.3)
and (4.4), it follows that Uj will also have the expected-utility property and
therefore will be a von Neumann-Morgenstern utility function for individual/.
This in turn implies that the personal preferences of each individual / among risky
prospects in set Y satisfy the axioms for rational behavior under risk. Thus this
fact need not be assumed as a separate axiom but rather already follows from
Axioms 1° and 2° in conjunction with Convention 1°.

Under our model, in making moral value judgments individual / will treat any
social situation A as if it were an equip rob ability mixture of the n extended alter-
natives [A i, Pi ] , . . . , [An, Pn]. Since Vt has the expected-utility property, to this
probability mixture he will assign the utility value

Wt(A) = - t V{[AhPf] (4.5)

By Equations (4.4) and (4.2) this can be written as

= - f UjiAj) = -±U,iA) (4.6)

which is the same as Equation (4.1).

4.3 Interpersonal comparisons of utility: conversion ratios

The extensive-utility function Vt of a given individual i is indeterminate up to the
choice of a zero point and a utility unit, so that we really have a two-parameter
family of equally acceptable utility functions F/, any one of which can be used to
represent individual I'S extended preferences. By the same token, each individual/
has a two-parameter family of equally acceptable von Neumann-Morgenstern
utility functions Uj, any one of which can be used to represent his personal prefer-
ences. But, of course, if we choose one of these utility functions Vt and one of
these utility functions Uj at random, then the two together in general will not
satisfy Equation (4.4).

However, if a given extended utility function V( of individual / and a given von
Neumann-Morgenstern utility function Uj of some individual / do jointly satisfy
Equation (4.4), then we will call them congruent. Congruence between two
utility functions Vt and Uj has an obvious intuitive interpretation: It means that
they have the same zero point and the same utility unit. [If this were not the case,
they could not have identically the same numerical value for all positions Aj of in-
dividual/ in accordance with Equation (4.4).]

Now suppose that the utility functions Uj and Uk of two different individuals
/ and k are both congruent with the same extended utility function Vt of individual
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i. Then Uj and Uk are themselves also called congruent. This again can be inter-
preted as an indication that (according to individual /'s interpersonal utility com-
parisons) these two utility functions have the same zero point and the same utility
unit.

If Uj and Uk are congruent, then they have the following property. Let Aj and
Bk be individual positions for individuals/ and k, respectively, such that

U,(A,)=Uk(Bk) (4.7)

Then this will be an indication of the fact that individual i feels indifferent between
the corresponding two extended alternatives [AJfPj] and [Bk,Pk]. This is so be-
cause, in view of (4.4), Equation (4.7) can also be written as

PJ'VAB^Pt] (4.8)

which implies that individual / is indifferent between these two extended alterna-
tives. This result can also be stated as follows. If Uj and Uk are congruent-utility
functions, then a numerical equality between two utility levels Uj(Aj) and Uk(Bk)
can be regarded as indicating that (according to individual /'s interpersonal utility
comparisons) these two utility levels represent the "same amount of utility." (This
property, of course, is a direct implication of the fact that the two utility functions
have the same zero point and the same utility unit.)

Let Uj- and Uk again be two congruent utility functions, and let Uk* = Uk + c
where c is a positive or negative constant. Then Uj and Uk* will not be congruent
to each other, but they will still have the same utility unit (while having different
zero points) as judged by individual /.

According to Equation (4.5), individual i should define his social welfare func-
tion Wt in terms of utility functions Ui9. .. ,Un, which are all congruent to the
same extended-utility function Vt and are therefore also congruent to one another.
But this is not really strictly necessary, because, if individual / replaces some utility
function Uj by another utility function Uj* = Uj + c, having a different zero point,
this will merely introduce an irrelevant additive constant cjn into his social-welfare
function Wt and therefore will not affect the ranking of alternative social situations
by W,.

Accordingly all we have to require is that individual / should define Wj in terms
of utility functions Ux,. . . , Un expressed in terms of the same utility unit (as
judged by individual i himself). On the other hand, this requirement is essential: If
in Equation (4.1) he used utility functions Uj expressed in unequal utility units,
then he would change the relative weights that his social-welfare function Wt would
give to the different individuals' interests and in particular would violate the re-
quirement of assigning equal weight to each individual. For example, suppose that
he would choose to express individual /'s utility in terms of a larger utility unit than
he would use for the other individuals' utilities. This would decrease the numerical
value Uj(A) of /'s utility function Uj for any given social situation A and would
therefore make his social-welfare function W( relatively insensitive to /'s personal
interests.
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Thus, when individual i is constructing his social-welfare function Wh the only
way that he is really required to make interpersonal utility comparisons is by trying
to compare the utility units of the different individuals' utility functions Ux,. . . ,
U(,.. . , Un. Suppose that he begins with individual utility functions Ux,. . . ,
U(, . . . , Un expressed in arbitrary (and therefore in general presumably unequal)
utility units. Then his basic task will be to choose conversion ratios qx,.. . ,
Qh - - • > Qn>  which in his best judgment will convert all these utility functions into
the same common utility unit, by setting U\ * = q\ U\, . . . , Un* = qnUn. (Of
course, he can always choose q^ = 1. That is, he need not change the utility unit in
which he is expressing his own utility.)

4.4 Interpersonal comparisons of utility: the question of interobserver
validity

Our model of moral value judgments requires that individual i be able to make in-
ternally consistent interpersonal comparisons of utility in accordance with Axioms
1° and 2°. But it does not require that he be able to make interpersonal compari-
sons of utility possessing interobserver validity, in the sense of being in agreement
with interpersonal comparisons of utility made by other observers. In the ter-
minology that we used in Section 4.3, it is not required that the extended prefer-
ences of different observers should agree between all pairs of extended alternatives
[Aj,Pj] and [Bk, Pk]. For example, individual i may prefer the former to the
latter, while a different observer, individual h, may prefer the latter to the former.
(Agreement is necessary only in the special case in which the two extended alter-
natives in question refer to the same individual so that j = k: In this case, by Axiom
2°, the extended preferences of all observers must go in the same direction, because
they must all agree with individual/'s own personal preferences.)

Let U\,. . . , Uh,. . . , Uj,. .. , Un be again von Neumann-Morgenstern utility
functions representing the personal preferences of individuals 1,. . . , h, . . . ,
/ , . . . , « and expressed in arbitrary utility units. Let W h and Wj be the social-
welfare functions of individuals h and /, respectively. As both h and / must accept
the utility functions Ux,. . . , Un as representing the personal preferences of the
relevant individuals, both social-welfare functions (apart from possible irrelevant
additive constants) must be of the mathematical form

W(A) = - £ qjUf(A) (4.9)
n j = \

However, our model does not necessarily imply that individuals h and / will choose
the same conversion ratios q\, . . . , qn; and, of course, if they do choose different
ratios, then their social-welfare functions Wh and Wf will give different relative
weights to the various individuals' interests.

At the same time, even if our model does not directly require that interpersonal
comparisons of utility should have interobserver validity, most people actually
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making such comparisons would hardly engage in this activity if they did not ex-
pect that their judgments concerning the relative magnitude of two different indi-
viduals' utility levels would have some degree of objective validity. They may very
well admit that such judgments are often subject to considerable margins of error,
and indeed they may tend to feel quite uncertain about their judgments in some
cases. But in many other cases they will feel reasonably confident in their judg-
ment that, e.g., individual/ in situation A would reach a higher utility level than
individual k would reach in situation B; or equivalently they would feel quite sure
that "any reasonable person" would prefer to be in situations! with/'s subjective
attitudes rather than to be in situation B with fc's subjective attitudes. In this
section we would like to investigate whether there is any rational basis for this
feeling that such interpersonal utility comparisons tend to have some degree of "ob-
jective" interobserver validity.

If all individuals' personal preferences were identical, then we could ascribe the
same utility function Uto all individuals and could always make interpersonal
utility comparisons in terms of this common utility function U. Moreover, all
inter personal utility comparison could be reduced to intra personal utility compari-
sons. If we wanted to know whether a given apple would give more utility to Peter
(who just had a heavy meal) than to Paul (who had only a very light meal), we
could simply ask whether Peter himself would derive more utility from an apple
after a heavy meal or after a light meal.3

Of course, in actuality different individuals often have very different personal
preferences and very different utility functions. But the possibility of meaningful
interpersonal utility comparisons will remain, as long as the different individuals'
choice behavior and preferences are at least governed by the same basic psycho-
logical laws. For in this case each individual's preferences will be determined by the
same general causal variables. Thus the differences we can observe between differ-
ent people's preferences can be predicted, at least in principle, from differences in
these causal variables, such as differences in their biological inheritance, in their
past life histories, and in their current environmental conditions. This means that
if Peter had Paul's biological makeup, had Paul's life history behind him, and were
currently subject to Paul's environmental influences, then he would presumably
have the same personal preferences as Paul has now and would ascribe the same
utility as Paul does now to each particular situation.

Let Pj again denote individual/'s subjective attitudes (including his preferences),
and let Rj denote a vector consisting of all objective causal variables needed to ex-
plain these subjective attitudes denoted by Pj. Our discussion suggests that the ex-
tended utility function Vt of each individual / should really be written as Vt =
Vj [Aj, Rj] rather than as Vt = Vt[Aj9Pj]. Written in this form, the utility function
Vt = Vi [Aj, Rj] indicates the utility that individual / would assign to the objective
position Aj if the causal variables determining his preferences were Rj. Because the
mathematical form of this function is defined by the basic psychological laws
governing people's choice behavior, this function V\ must be the same for all indi-
viduals /, so that, for example,

Vh[Aj,Rj]=Vi[Aj9Rj] (4.10)



Morality and social welfare 59

for each pair of individuals h and i. In the special case in which h = /, we can write

Vt[AhRj\ = V,[AhRf] = U,(Rj) (4.11)

That is, individual / (or individual h) would have the same preferences and would
assign the same utility to any objective situation Aj as individual/ now does, if the
causal variables determining his preferences took the same value Rj as do the causal
variables determining / 's preferences.

In other words, even though the "ordinary" utility functions £/,- and Uj of two
individuals i and/ may be quite different, their extended utility functions Vt and Vj
will be identical. This is so because, by the definition of the causal-variables vectors
Rt and Rj, all differences between the two utility functions Ut{A^) = Vt[Ah Rt] and
Uj(Aj) = Vj[Aj,Rj] must be attributed to differences between the vectors/?/ and
Rf and not to differences between the mathematical form of the two functions Vt
and Vj.

Yet, if the two individuals have the same extended utility function Vt = Vj = F,
then we are back in a world of identical utility functions. Hence individual i will be
able in principle to reduce any mferpersonal utility comparison that he may wish to
make between himself and individual/ to an mfra personal utility comparison be-
tween the utilities that he is in fact assigning to various situations and the utilities
that he would assign to them z/the vector of causal variables determining his prefer-
ences took the value Rj (which is the value that the vector of these causal variables
takes in the case of individual /).

For example, if I want to compare the utility that I would derive from a new car
with the utility that a friend would derive from a new sailboat, then I must ask
myself what utility I would derive from a sailboat if I had taken up sailing for a
regular hobby as my friend has done, and if I could suddenly acquire my friend's
expert sailing skill, and so forth. In practice, of course, we may not know the
actual values of some important causal variables for the relevant individuals. For in-
stance, the utility that my friend would derive from a sailboat may depend on cer-
tain of his psychological character traits of which I am unaware. But in principle I
could always determine the values of such causal variables by psychological mea-
surement, historical research, and so forth. In other cases we may know the rele-
vant causal variables but may be unable to predict their actual effect on a given
person's preferences and on his utility function because of our imperfect knowledge
of the relevant psychological laws. For example, I may know that my friend has an
introvert personality but may not know how this fact will affect the utility that he
will derive from a sailboat. But again in principle such questions could be answered
by appropriate experimental tests or by inferences drawn from the general psycho-
logical laws of human behavior, assuming that these laws were known to us.

Therefore, given enough information about the relevant individuals' psychologi-
cal, biological, social, and cultural characteristics, as well as about the general
psychological laws governing human behavior, interpersonal utility comparisons in
principle should be no more problematic than intrapersonal utility comparisons are
between the utilities that the same person would derive from various alternatives
under different conditions.4
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In actuality interpersonal utility comparisons between people of similar cultural
background, social status, and personality are probably, quite reliable and are likely
to show a high degree of interobserver validity - at least if the observers making
these comparisons are familiar with the personal conditions of the people con-
cerned. But, of course, we must reckon with much larger margins of error when we
compare utilities for people of very different backgrounds and personalities. Yet
advances in our theoretical understanding of the general psychological laws that
govern human behavior and in our information about the relevant person's cultural
and personal characteristics will tend to decrease this margin of error for any given
utility comparison. If we knew more about human nature in general and about
Peter and Paul in particular, then we could better judge the influence that differ-
ences in their personalities and their environment will have on their utility
functions.

To conclude, our model of moral value judgments shows an interesting analogy
with the results obtained in individual decision theory. In decision theory we
found that a rational individual will try to base his actions on the objective proba-
bilities of the relevant events. But if these are not known to him, then he will use
his own subjective probabilities for these events - representing his best estimates of
these objective probabilities - formally in the same way as he would use their true
objective probabilities, if these were known to him.

Likewise, under our model of moral value judgments, a rational individual will
try to base his social-welfare function on the "true" conversion ratios between the
various individuals' utility units (i.e., on the conversion ratios that would presum-
ably be used by observers who had full information about these individuals'personal
characteristics and about the general psychological laws governing human behavior).
But if he does not have enough information to ascertain these "true" conversion
ratios, then he will use his best estimates of the latter, formally in the same way as
he would use the "true" conversion ratios, if these were known to him.

4.5 The boundary problem for our "society"
Our model as it stands obviously gives us no criterion to decide who those individ-
uals are whose utility functions ought to be included in our social-welfare function.
It gives no criterion to define the boundaries of the society or moral community
whose members ought to feel direct moral concern for one another's well-being and
ought to feel moral solidarity with one another. This problem we will call the
boundary problem for the society.

Of course, in practice it is often sufficient to say that our society must certainly
include at least all normal human beings now living. But for theoretical reasons,
and in many cases also for practical reasons, we would like to have an operationally
meaningful analytical criterion that could help us to decide whether to include,
e.g., higher animals, human idiots, unborn babies in their mothers' wombs, more
distant future generations - or even to decide under what conditions the inhabi-
tants of other celestial bodies, or man-made robots, would qualify or would fail to
qualify.
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We surely should like to include any agent who is able to enter into some cre-
ative cooperative relationship with us. But even if this criterion could perhaps
serve as a sufficient condition for inclusion, it probably would be too restrictive
as a necessary condition (e.g., most human idiots would fail this test). In any case,
at this stage we are still very far from being able to translate any criterion of this
kind into operationally meaningful behavioral terms.

4.6 The principle of individual self-determination: some qualifications

When a given individual * tries to construct his social-welfare function Wi, he will
often have rather insufficient information about the personal preferences (and,
more fundamentally, about the choice behavior) of some other individuals/. As a
result, even if/ does his best to follow the principle of acceptance and to define the
interests of each individual/ in terms of the latter's own utility function Uj, his ac-
tual estimate Uj of this utility function Uj may differ in important ways from/'s
true utility function Uj. It is, of course, another question whether individual / can
ever have any justification for deliberately replacing/ 's true utility function by
another utility function U/, when he is constructing his social function Wt in ac-
cordance with Equation (4.1).

Consider two cases: In the first case individual / may feel that individual/'s
actual preferences should be disregarded in certain matters, because/'s prefer-
ences are based on factual errors. For example, / may argue that / wants a certain
medicine only because/ has a mistaken belief about the efficacy of this medicine in
curing a particular disease. Or he may argue that / wants to move to New York
only because/ does not know how serious the traffic problem is there, and so forth.
(Thus/'s alleged factual errors may be both about causal - or technical - relation-
ships and about noncausal facts.) Instead of using/'s actual utility function Uj,
which represents /'s actual manifest preferences, / may wish to use a corrected
utility function Uj', representing /'s own estimate of what/'s preferences would
be /// had better information about the relevant facts.

It seems that in many cases the use of corrected utility functions U/ by indi-
vidual / will not be at all inconsistent with the principle of acceptance. Individual
/ can sometimes rightly claim that the corrected utility function U/ will better
represent individual/'s "true" preferences than would the utility function Uj, based
on/'s manifest choice behavior. For example, in many cases it will be reasonable
to assume that what a sick person really wants is not a specific medicine but rather
the best treatment available, even if the latter involves using another medicine than
he actually has in mind.

However, in many other cases this assumption will not be correct. People often
want to be free to make their own mistakes - at least as long as these are not very
costly mistakes. They may prefer to be treated in accordance with their manifest
preferences, even if they are fully aware of the possibility that these preferences
may possibly be based on erroneous factual information. Thus / will be justified in
using a corrected utility function Uj' only if he thinks that/ himself would approve



62 Preliminaries

of this - at least if/ were made aware of the possibility that his actual preferences
were based on factual mistakes and of the likely costs of these mistakes to him.

In the second case individual / may feel that individual /'s preferences should be
disregarded in certain matters, because /'s preferences conflict with /'s own funda-
mental value judgments. Instead of using/'s actual utility function Uj, i may wish
to use a censored utility function Uf that disregards /'s actual preferences in those
matters in which / could not satisfy/'s preferences "with good conscience."

Whereas using a corrected utility function U/, as we have argued, is not neces-
sarily inconsistent with the principle of acceptance, using a censored utility func-
tion Uj" certainly is. But we feel that in this respect the principle has no unquali-
fied validity. In our opinion individual i will be perfectly justified in disregarding
/'s actual preferences in cases where the latter are based on clearly antisocial atti-
tudes, e.g., on sheer hostility, malice, envy, and sadism. After all, the entire basis
for /'s interest in satisfying/'s preferences is human sympathy. But human sym-
pathy can hardly impose on / the obligation to respect/'s preferences in cases where
the latter are in clear conflict with human sympathy. For example, human sym-
pathy can hardly require that / should help sadists to cause unnecessary human
suffering - even if a very large number of sadists could obtain a very high utility
from this activity. [For a contrary view, see Smart, 1961, p. 16.]

This problem is somewhat analogous to the problem of defining boundaries for
the society or moral community to which individual i should extend his moral
sympathy (see Section 4.5). If i uses a censored utility function Uj" for a given
individual/, this is equivalent to excluding certain aspects of/'s personality from
the moral solidarity that / otherwise entertains toward / and toward all other mem-
bers of society. With regard to his antisocial preferences/ will be treated as if he
were not a member of the society at all - though/'s preferences in other matters
will be given the same weight as that given to the preferences of all other members
of society.

4.7 Rule utilitarianism versus act utilitarianism: the concept of critical rule
utilitarianism

So far we have dealt only with the question of how a rational man will judge alter-
native social situations from a moral point of view. But, of course, any theory of
moral value judgments must also answer the question of how a rational man will
judge the moral value of individual human actions as morally right or wrong.

The simplest answer to this question would be to say that a given action a by in-
dividual i will be morally right if a maximizes f s social-welfare function Wt. This
view is called act utilitarianism in the philosophical literature, because as a criterion
of moral value it uses the social usefulness of individual acts. However, this view has
curious implications. Most of us feel that, with the exception of very special cases,
it is morally right to repay our debts and morally wrong not to do so. Yet suppose
that / has borrowed money from a man much richer than himself. Then, by repay-
ing his debt, / would presumably reduce the value of his social-welfare function W,-,
because by doing so he would take away money from himself (who has a high
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marginal utility for it) and would give it to his rich creditor (who probably has a
low marginal utility for it).

The point is, of course, that we must not look at individual acts of debt repay-
ment in isolation. Repaying debts is a common (at least in a high percentage of
cases) and socially useful practice, because it encourages lending, including lending
by rich people to poor people. A common practice of repaying debts - and more
generally a common practice of complying with contractual obligations - is useful
because of its effects on people's expectations and incentives. Thus the proper
question is not whether society will be better off if individual i repays his debts on
one particular occasion. Rather it is whether society will be better off if it accepts
as a general moral rule that (except for cases of extreme hardship and the like)
people should always repay their debts.

In other words, the question we have to ask is: If we were given the task of
choosing a moral rule to regulate people's behavior in a certain type of situation,
which would be the moral rule whose adoption would best serve the social interest
(i.e., whose adoption would maximize our social-welfare function)? UR is this
socially most beneficial moral rule, and if R requires action a in a given situation,
then in this situation doing a will be morally right, and not doing a will be morally
wrong. Thus basically the criterion of social usefulness applies to alternative rules
of behavior and not to alternative individual actions in isolation. In contrast to act
utilitarianism, this view is called rule utilitarianism.

We can state the rule utilitarian position also as follows: When individual / is
considering what to do in a particular situation, he often will not be morally free to
do just anything that he may wish to do because he may have special obligations
toward various other people (arising out of his status as, e.g., a parent, relative,
friend, or citizen, or arising out of voluntary contracts or other commitments that
he had made in earlier periods). Therefore he cannot simply choose the action that
would maximize his social-welfare function W(\ rather he must maximize Wj subject
to the constraint of not violating any of his existing special obligations. For
example, he may not be morally free to give his money to the person who needs it
most - because in many situations he will have to give priority to repaying his
debts, or to maintaining his family, or to paying his taxes, and so on, over mere
philanthropy. But, of course, these special obligations themselves have priority
only because it is assumed that in the long run society as a whole will be better off,
and our social-welfare function will assume a higher value, if people give priority to
fulfilling their special obligations over good deeds of other sorts.

In other words, the rule utilitarianism requires us to apply the yardstick of social
usefulness primarily to social institutions, such as private property, the right to
enter into legally and morally binding contracts, the nuclear family, the state, and
so forth. As far as these institutions pass the test of social usefulness we are
morally bound to comply with the special obligations arising from these institu-
tions: We have to respect private property, fulfill our contractual obligations, care
for our family, and pay our taxes - regardless of whether these acts maximize our
social-welfare function in any given case in the short run.

To sum up, our model of moral value judgments leads to an ethical position
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that clearly belongs to the utilitarian tradition, because it finds the basic criterion
for morality in social welfare or social utility - itself defined in terms of the utilities
of the individual members of society. But our position represents a doubly quali-
fied form of utilitarianism:

1. It represents rule utilitarianism, not act utilitarianism. Social utility is used
primarily as a criterion to judge alternative moral rules and indeed alternative insti-
tutional arrangements for society, rather than to judge individual human actions as
such (though we do apply the criterion of social utility directly to individual ac-
tions within the limits set by the actor's special obligations, given the existing insti-
tutional arrangements of society).

2. We do not always feel obliged to accept other people's utility functions un-
critically but rather feel free to "correct" them for factual errors and even to "cen-
sor" them for antisocial attitudes. Thus our position may be called critical rule util-
itarianism, as distinguished from ordinary rule utilitarianism, which would simply
accept people's utility functions as they are, i.e., which would follow the principle
of acceptance without any qualification.

TWO AXIOMATIC APPROACHES AND CONCLUDING REMARKS

4.8 The first axiomatic approach to an additive social-welfare function

In the first part of this chapter we presented our model for moral value judgments,
which implies that the social-welfare function of a rational individual must take
the form of the arithmetic mean of individual utilities. In this part we present two
sets of axioms which in our view must be satisfied by any reasonable social-welfare
function and which also lead to the conclusion that a social-welfare function must
be a linear combination of individual utilities. A social-welfare function of this
form will be called additive. The arithmetic mean of individual utilities is, of
course, one special type of additive social-welfare functions. The case for an addi-
tive social-welfare function is obviously greatly strengthened by the existence of at
least three essentially independent arguments in its favor.5

To state our axioms we will use the following definitions. Let X* be the set of all
possible social situations. Let F* be the set of all risky prospects (probability mix-
tures) whose components are social situations in set X*. Thus F* is the set of all
probability distributions over set X*. We will again use the phrase "the axioms for
rational behavior under risk" as a short reference to Axioms 1*, 2*, and 3* of
Section 3.4, as well as to Conventions 1,2, and 3 of Section 3.1.

We will again distinguish between a given individual's personal preferences, rank-
ing different alternatives from his personal point of view, and his moral preferences
(or social preferences), ranking these alternatives from a moral (or social) point of
view.

First set of axioms for an additive social-welfare function

Axiom i°°. Rationality of individual i's moral preferences. In choosing among
risky prospects in set F* from a moral (or social) point of view, individual z's
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preferences satisfy the axioms for rational behavior under risk. (That is, if individ-
ual / had to choose among different risky prospects as a guardian of the general
social interest, then he would follow the rules of rational behavior.)

Axiom 2°°. Rationality of each individual's personal preferences. In choosing
among risky prospects in set Y* from his personal point of view, each individual
/ ( / = 1 , . . . , / , . . . , « )  will display preferences consistent with the axioms for ra-
tional behavior under risk.

Axiom 3°°. Positive relationship between the moral preferences of individual i
'and the personal preferences of all individual members of the society. Let A and
B be two risky prospects in set Y*. Suppose that A is (at least nonstrictly) pre-
ferred over B by all individuals/ in the society from their own personal points of
view. Then .4 will also be (at least nonstrictly) preferred over B by individual /
from a moral (or social) point of view.

Among these three axioms only Axiom 3°° represents a moral value judgment -
and even this is a rather weak and noncontroversial value judgment. Axiom 1°°,
even though it is a rationality requirement rather than a moral value judgment, has
been more controversial in the literature. It has been argued that rationality postu-
lates defining rational behavior under risk, and in particular the monotonicity prin-
ciple (our Axiom 3*), apply only to individual choice and do not apply to social
choice. They apply only to the personal preferences of a rational individual but do
not apply to his social (moral) preferences.

In our opinion this argument is quite unconvincing. Axiom 1°° deals with in-
dividual f s social preferences, while Axiom 2°° deals with his (and all other in-
dividuals') personal preferences. Thus Axiom 1°° tells us how he will act if he is
guided by impartial social interests, whereas Axiom 2°° tells us how he will act
when he is guided by his personal interests. Why should he be less bound by the
formal criteria of rationality when he is pursuing general social objectives than
when he is pursuing purely personal objectives? If there is any difference, then, it
seems to me, he is under a stronger obligation to act rationally in the former case.

Perhaps the objections to Axiom 1°° arise from the feeling that "social pref-
erences" are somehow the preferences of some collective entity called "society,"
which is not subject to the same rationality requirements as individual human
beings are. But, of course, we have always been careful to emphasize that under
our definition the "social preferences" or "moral preferences" of individual / are
the preferences of an individual human being, when he is taking a "moral point
of view" and is trying to judge alternative social situations with the eyes of an
impartial but sympathetic observer. They have nothing to do with the hypothetical
preferences of any personified collective entity called "society."

These axioms imply the following theorem:

Theorem 4.2. The social-welfare function as a weighted sum of individual utilities.
The social-welfare function Wt of individual /, representing his moral (or social)
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preferences will have the mathematical form

Wi(A)=£aiUi(A) (4.12)
7 = 1

where ax,. . . ,dj,. . . ,an are positive constants.
Before proving the theorem we shall prove four lemmas.

Lemma 1. The personal preferences of each individual / can be represented by a
utility function Uj, possessing the expected-utility property.

In view of Theorem 3.2, this lemma directly follows from Axiom 2°°.

Lemma 2. The moral preferences of individual / can be represented by a utility
function Wh possessing the expected-utility property (and called his social-welfare
function).

In view of Theorem 3.2, this lemma directly follows from Axiom 1°°.

Lemma 3. Wt is a single-valued function of Ux,. . . , Un.

Proof. We must show that, if two risky prospects^ and B yield the same
utility Uj(A) = Uj{B) to every individual/, then they also yield the same social-
welfare value Wt(A) = Wt(B). But this statement directly follows from Axiom
3°°

Lemma 4. Wt is a linear homogeneous function of Ui, . . . , Un. That is, if we
have

UjiA) = kUj(B) for / = l , . . . , w (4.13)

with the same number k for each Uj, then

Wi(A) = kW,(B) (4.14)

Proof. Let Q be a social situation yielding zero utility for each individual, so that

Uf(Q) = 0 for / = l , . . . , n (4.15)

Since we are free to choose the zero point of the social-welfare function Wj in any
way we wish, we will set

W,(Q) = 0 (4.16)

Consider three cases.

Case I. Suppose that 0 ^ k ^ 1. Let us define

B* = (A,k',Q,l-k) (4.17)

By Lemma 1, we can write

Uj(B*) = kUj(A) + (1 - k) ' 0 = kUj(A) for / = ! , . . . , «  (4.18)
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By Lemma 2, we can write

Wf(B*) = kWt(A) + (1 - k) • 0 = kWt(A) (4.19)

By (4.18), Uj(B*) = Uj(B) for all/. Therefore, by Lemma 3 and Equation (4.19),

W((B) = Wt(B*) = kWt{A) (4.20)

as desired.

Case II, Suppose that k > 1. Let m = 1 jk. Then 0 < m < 1. Then, by our result
in Case I, if we have

for j=l,...,n (4.21)

, . . . , / i (4.22)

^ (4.23)

Hence

H/,(^) = W / ( 5 ) (4.24)

as desired.

Case III. Suppose that k < 0. We could actually omit consideration of Case III
without any real loss of generality, because we could restrict all utility functions
Uj to nonnegative values by choosing the zero prospect Q so as to represent a
low enough utility level for each individual. But for completeness, let us now sup-
pose that k < 0. Let us define

! C l e a r l y 0 < p < l (4.25)

1
V

that

I

then

A ) f\ )
is, if we have

7j(B) = mUi(A)
also

m

for

1 K

Let C be a social situation such that

(C9p'9B, l~p)~Q for all individuals / (4.26)

so that, by Lemma 1,

Uf(Q) = 0 = pUj(C) + (l-p)UJ(B) for / = 1 , . . . , «  (4.27)

By (4.13), (4.25), and (4.27),

Uj(A) = kUj(B) = P-y- Uj{B) = Uj{C) (4.28)

On the other hand, by (4.26) and by Lemma 2,

W,(G) = 0 = pWt(C) + (1 - p) Wt(B) (4.29)
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and therefore

W,(C) = P~y Wt(B) = kW,(B) (4.30)

But since Uj(A) - Uj(C) for each individual/, in view of Lemma 3,
Wi(A)=Wi(C) = kWi(B) (4.31)

as desired, where the last equality follows from (4.30). This completes the proof
for all possible values of k.

Proof of Theorem 4.2. Consider a set of social situations i ? 1 , . . . , Bn, such that
each social situationBy(/ = 1 , . . . , « )  yields the utility Uj(BJ) = 1 to individual/
but yields zero utility to all other individuals. Let us write

Wt(Bj) = aj for / = 1 , . . . , / ! (4.32)

Because individual/ will prefer BJ to Q, while all other individuals will be indif-
ferent between the two, by Axiom 3°°, we must have

Wi(B>') = a/>Wi(Q) = 0 (4.33)

Also consider another set of social situations Cl,..., Cn, such that CJ(j = 1,
. . . ,n)yields the utility

UjiC^^UjiA) (4.34)

to individual/ but yields zero utility to all other individuals. Clearly situation C}

yields Uj(A) times as much utility to each individual/ as situation BJ does. Hence,
by Lemma 4 and by (4.32),

WtiC^^cijUjiA) for / = 1 , . . . , H (4.35)

Finally let D be the equiprobability mixture of the n social situations C 1 , . . . ,
Cn. Then, by Lemma 1 and by (4.34), we can write

Uf(D) = ̂  Uj{d) = ~Uj{A) for / = 1 , . . . , «  (4.36)

On the other hand, by Lemma 2 and by (4.35), we can write

Wt(D) = i ± Wt{d) = i ± a,U,(A) (4.37)
n /=1 n /=1

By (4.36), A yields n times as much utility asD does to each individual/. By
Lemma 4, this implies that

nWi(D) (4.38)

Yet (4.37) and (4.38) imply (4.12). This completes the proof of the theorem.
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Theorem 4.2 is obviously a weaker statement than Theorem 4.1, because it does
not allow the inference that all individuals' utility functions, if they are expressed
in the same utility unit, must be given the same weight in the social-welfare func-
tion. To obtain this conclusion we would have to add a further axiom, such as:

Axiom 4°°. Symmetry. If the n individuals' utility functions Ux, . . . , Un are ex-
pressed in the same utility unit, then the social-welfare function Wt must be a sym-
metric function of these individual utility functions.

If we add Axiom 4°° to our other three axioms, we can then infer that in Equa-
tion (4.12) a i = - • - = an -a. Of course, we are free to choose a = 1/n, in which
case Equation (4.12) will become identical with Equation (4.1).

4.9 A second axiomatic approach to an additive social-welfare function

We will now derive essentially the same conclusion from a different set of axioms,
those of Fleming [1952]. Fleming's approach makes no use of the expected-
utility property of the individual utility functions Uj and of the social-welfare
function Wf and therefore does not need as strong rationality axioms as Axioms
1°° and 2°°. On the other hand, it needs Axiom 4OOO

5 below, which is a stronger
ethical axiom than Axiom 3°°.

For convenience we use the phrase "the axioms for rational behavior under cer-
tainty" as a short reference to Axioms 1 and 2 of Section 3.3. These axioms are,
of course, significantly weaker than the axioms defining rational behavior under
risk. In particular they do not contain the monotonicity principle (or the sub-
stitution principle). Therefore Axioms l o o ° and 2OO°, below, are weaker than
Axioms 1°° and 2°° of the preceding section.

Second set of axioms for an additive social-welfare function

Axiom loo°. Weak rationality of individual i 's moral preferences. In choosing
among alternative social situations A in set X* from a moral (or social) point of
view, individual /'s preferences satisfy the axioms for rational behavior under
certainty.

Corollary. Individual /'s moral preferences can be represented by a continuous
utility function Wt*, called his social-welfare function. Wj* is an ordinal social-
welfare function, unique only up to order-preserving monotone transformations.6

Axiom 2° ° °. Weak rationality of each individual's personal preferences. In
choosing among alternative social situations^ in set X* from a personal point
of view, the preferences of each individual/(/ = 1, . . . , / , . . . , n) satisfy the
axioms for rational behavior under certainty.

Corollary. The personal preferences of each individual/ can be represented by a
continuous utility function £/,-*. For each individual/, Uj* is an ordinal utility
function, unique only up to order-preserving monotone transformations.7
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Axiom 3OO°. This is identical to Axiom 3°° of Section 4.8.

Definition 1. Let A and B be two social situations in set X*. Any individual/ in-
different between A and B will be called unconcerned about the choice between A
and B. In contrast, any individual k who (strictly) prefers A to B, or who (strictly)
prefers B to A, will be called a concerned individual.

Definition 2. By the direction of a given individual's preferences between two
situations A and i? we shall mean the question of whether he (strictly) prefers A
to B, or (strictly) prefers Z? to A, or whether he is indifferent between A and B.

Axiom 4000. Independence of individual i 's moral preferences of the utility levels
of unconcerned individuals. Suppose that individuals/ and k are the only two in-
dividuals concerned with a choice between the two social situations A and B and
that they have opposite preferences in this matter so that

Uf*(A) = aJ>U,*(B) = pj (4.39)

whereas

Uk*(A) = ak<Uk*(B) = pk (4.40)

and

Um*(A) = am = Um*(B) = Pm for all m±j,k (4.41)

Then the direction of individual /'s moral preferences between A and B will depend
only on the utility vectors ajk = (a;-, ak) and fyk = (j3y, j3fc), describing the utility
levels of the two concerned individuals/ and k in these two stiuations, but will not
depend on the utility levels ocm and /3m that the unconcerned individuals m would
enjoy in these two situations.

More particularly suppose that A and B are two other social situations, such that

j j j f Ui*(B) = pf (4.42)

and

Uk*(A) = Uk*(A) = ak Uk*(B) = Uk*(B) = pk (4.43)

Moreover, suppose that

J for all m*j,k (4.44)

so that/ and k are also the only two individuals concerned with a choice between
A and B. Then the direction of z's moral preferences between^ and B will be the
same as the direction of his moral preferences between A and B. This will be true
even if

* ~ $m* ^am = Pm for some or all m^]\k (4.45)
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That is, the direction of /'s moral preferences between A and B will not depend on
the utility levels am * = j3m * that the unconcerned individuals m would derive from
A and B, and, in particular, it will not depend on whether these utility levels
<*m* = Pm* a r e e c l u a l o r unequal to the utility levels am = 0m that these uncon-
cerned individuals would derive from the first two situations^ andB.

In other words, it is assumed that/ and k are the only two individuals con-
cerned with a choice between ,4 and B (and also with a choice between A and B).
Therefore, when individual i is trying to decide whether A or B is morally prefer-
able (or whether A or B is morally preferable), he should consider only the relative
importance of/'s and fc's interest in this matter and should not be influenced by
the utility levels that the other individuals m would assign to A and B (or to A and
B). This is so because by assumption each of these other individuals m would
assign the same utility level am = j3m to A as to B (and would also assign thesame
utility level to A and B), so that in choosing between A and B (or between A and
B) the interests of these individuals m need not be considered.

In assessing the plausibility of Axiom 4OO°, it must be understood that the axiom
is by no means inconsistent with the common practice of judging the "fairness" of
income distribution in one part of society in the light of the income distribution
existing in other parts of the society. For example, it is often argued that it would
be "unfair" to refuse wage increases to workers in industry A after large wage in-
creases were received by workers of comparable skill in other industries.

This argument is not necessarily inconsistent with Axiom 4OO°, because the
latter requires only that our moral value judgment about the utility distribution8

in industry A be independent of the economic conditions in other industries. But
in practice what is directly given to us is the income distribution rather than the
utility distribution in a given industry. Axiom 4OO° does not necessarily imply
that in judging the income distribution in industry A we should disregard the in-
come levels prevailing in other industries, because the utility that each individual
in the industry derives from his income will presumably itself depend on the in-
comes that other individuals of comparable skill and social position receive both
inside and outside the industry. In fact, it is this very relationship that may make
it "unfair" not to give workers in industry^ similar wage increases to those
granted in other industries: They might suffer significant losses in utility (in
psychological satisfaction), if their relative economic position fell significantly
below that of workers of comparable skill in other industries.

Theorem 4.3. Suppose that there are at least three individuals in the society and
that Axioms l o o ° to 4OO° hold. Then there exists a social-welfare function Wf
representing individual /'s moral preferences, and there exist utility functions
Ui, . . . ,Uj,. . . ,Un representing the personal preferences of the individuals
1 , . . . , / , . . . , «  belonging to the society such that

/=!
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for all social situations ,4 in set X*. These functions Ux , . . . , £ / „ and Wt are
cardinal utility and cardinal social-welfare functions, unique up to order-preserving
linear transformations.

The proof of the theorem will be based on actually constructing functions Ui,
. . . ,Un and Wt satisfying Equation (4.46).

Construction procedure. In accordance with the corollaries to Axioms l o o ° and
2OO°, we will assume that some utility function Uj* has already been defined for
each individual/(/ = 1 , . . . , / , . . . , n), and that some social-welfare function Wt*
has already been defined for individual i (whose moral preferences we are con-
sidering). But, of course, in general these functions Uj* and Wt* will not satisfy
Equation (4.46), except by accident, and our task will be to construct new utility
functions Uj and a new social-welfare function Wt that do satisfy the equation.

As part of our construction procedure we will define a set of social situations
Bjm for / = 1,. . . , n, with m ranging over all integers (of either sign), such that
for all values of m

J)=Wi(Bjm) = m (4.47)

while

Uk(Bf
m) = 0 for all k^j (4.48)

We shall also define another set of social situations Cm, with m again ranging over
all integers, such that for all values of m

Ul(Cm)=U1(B1
m) = m (4.49)

U2(Cm)=l (4.50)

Uf(Cm) = UJ(Bl
m) = 0 for / = 3 , . . . , H (4.51)

and

Wi(Cm)=Wi(B1
m + l) = rn + l (4.52)

We now choose two social situations £* and C* such that

*72 *(£*)< */2*(C*) (4.53)

whereas

Uj*(B*) = Uj*(C*) for ; = 1 and / = 3 , . . . , n (4.54)

By Axiom 3°° this implies that

W(*(B*) < W(*(C*) (4.55)

Obviously the new utility and social-welfare functions Uj and Wt to be constructed
will have to preserve the ordinal properties of the old functions Uj* and Wt* and
therefore will have to satisfy relationships similar to (4.53), (4.54), and (4.55).
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(4.56)

(4.57)

1 and / = 3 , . . . , H (4.58)

(4.59)

(4.60)

These definitions obviously ensure that the functions Ul9. . . ,Un and Wt to be
constructed will satisfy Conditions (4.47) to (4.52) for m = 0.

We will now actually define the situations Bf1 ( / = 1 , . . . , « ) and  Cm for positive
values of m. Suppose that Z?/""^/ = 1, . . . , « )  and C m - 1 have already been de-
fined in such a way that they satisfy Conditions (4.47) through (4.52). We now de-
fine B™ for  each individual / ( / = 1, . . . , n) as a social situation such that

Uk*(Bj
m)=Uk*(B*) for all k*j (4.61)

whereas

Wi*(Bf
m)= Wi(Cm'1) (4.62)

Because Uk and Wt- must have the same ordinal properties as Uk* and W* do, we
can write

Uk{Bfn)=Uk(B*) = 0 for all A:^/ (4.63)

and

Wi(Bjm)= Wj(Cm " x ) = (m - 1) + 1 = m (4.64)

where the last equality follows from the fact that Cm~l satisfies Condition (4.52).
Consequently

Wi(Bf
m) = m>Wi(Bf

m-l) = m - 1 (4.65)

whereas, in view of (4.48) and (4.63),

Uk(Bjm)=Uk(Bj
m-1) = 0 for all k^j (4.66)

But (4.65) and (4.66) imply, in view of Axiom 3OO°, that

Uj(Bjm) > Uj(Bjm ~l) = m - 1 (4.67)

Therefore we can set

Uf(Bjm) = m (4.68)
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Next we define Cm as a social situation such that

Ul*(Cm) = U1*(Bl
m) (4.69)

whereas

Uf*(Cm)=Uf*(C*) for / = 2 /i (4.70)

Consequently

Ul(Cm) = U1(Bl
m) = m (4.71)

where the second equality follows from (4.68). Moreover,

U2(Cm) = U2(C*)=l (4.72)

and

Uf(Cm)=Uj(C*) = 0 for / = 3 , . . . , w (4.73)

In view of (4.63), (4.68), (4.71), (4.72), and (4.73),

Uj(Cm)>UJ.(B1
m) for ; = 2 (4.74)

but

Ui(Cm)=UJ(B1
m) for / = 1 and / = 3 , . . . , w (4.75)

Consequently, in view of Axiom 3 O O °, we must have

Wi(Cm)>Wi(Bl
m) = m (4.76)

Therefore we can set
Wi(Cm) = m+ I (4.77)

In view of (4.63), (4.64), (4.68), (4.71), (4.72), (4.73), and (4.77), our defini-
tions of Bm and of Cm satisfy Conditions (4.47) through (4.52).

Once the situations /? / " ( / = 1 , . . . , « ) and C m have been defined, we can define
B™  +1 (for / = 1 , . . . , « ) and  Cm +1 by the same procedure, and so forth.

To define the social situations Bjm and Cm for negative values of m, we proceed
as follows. Suppose that the situationsBjm+1 (for/ = 1 , . . . , « ) and  Cm + 1 have
already been defined in such a way that they satisfy Conditions (4.47) through
(4.52). We now define Cm as a social situation such that

Uf*(Cm) = Uf*(C*) for / = 2, . . . , n (4.78)

and

Wi*(Cm)=Wi*(Bl
m + 1) (4.79)

Consequently

U2(Cm) = U2(C*)=\ (4.80)
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and

Uj.(Cm)=Uf(C*) = O for / = 3 , . . . , f l (4.81)

whereas

Wi(Cm)=Wi(B1
m + 1) = m + \ (4.82)

where the last equality follows from the fact that B1
m + 1 satisfies Condition (4.52).

As Cm + 1 satisfies Equations (4.50) through (4.52), while Cm satisfies Equations
(4.80) through (4.82), we can write

Uj(Cm)=UJ(Cm+1) for / = 2 , . . . , / i (4.83)

but

Wi(Cm) = m+ \<Wi(Cm+1) = m + 2 (4.84)

In view of Axiom 3OO°, this means that we must have

U1(Cm)<U1(Cm + 1) = m+l (4.85)

Therefore we can set

U1(Cm) = m (4.86)

Next we define the social situations B™ , first  for / = 1 and then separately for all
other values of/(/ = 2 , . . . , « ) . We define  Bx

m as a social situation such that

U1*(B1
m)=U1*(Cm) (4.87)

whereas

Uj*(B1
m)=UJ*(B*) fo r ; = 2 , . . . , «  (4.88)

Consequently

Ux{Bx
m) =U1(Cm) = m (4.89)

and

UJ(B1
m) = UJ(B*) = 0 for / = 2 , . . . , / i (4.90)

As i?im + 1 satisfies Conditions (4.47) and (4.48), we can write

U1(B1
m) = m<U1(Bl

m+1) = m + l (4.91)

and

Uj(B1
m) = Uf(B1

m + 1 ) fo r / = 2 , . . . , w (4.92)

By Axiom 3OO°, this means that we must have

PV/(^1
m)<H^/(51

m + 1 ) = m + 1 (4.93)

where the last equality follows from the fact that Bm +1 satisfies Condition (4.47).
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Therefore we can set

Wi(B1
m) = m (4.94)

Finally we define B™  for the other individuals/ = 2, . . . , n as a social situation
such that

Uk*(Bjm)=Uk*(B*) for all k¥=j (4.95)

whereas

Wf*(Bf
m) = Wi*(Bx

m) (4.96)

Consequently

Uk(Bjm)=Uk(B*) = 0 for all fr^/ (4.97)

and

PV/(5/
m) = Wi(B!m) = m (4.98)

As Bjm + 1(j = 2, . . . , « ) satisfies Condition (4.48), we can write

Uk(Bjm) = Uk(Bjm + 1) for all £=£/ (4.99)

but

W,(£/m) = m< Wi(Bjm +1) = m + 1 (4.100)

By Axiom 3OO°, this means that we must have

Uj(Bjm)< Uj(Bjm + l) = m + l (4.101)

where the last equality follows from the fact that Bjm + l satisfies Condition (4.47).
Therefore we can set

Uf(Bj
m) = m (4.102)

In view of (4.80), (4.81), (4.82), (4.86), (4.89), (4.90), (4.94), (4.97), (4.98), and
(4.102), our last definitions of Cm and of B™  (for/ = 1 , . . . , « )  satisfy Conditions
(4.47) through (4.52). Once situations Cm and B™ have been defined, we can  de-
fine situations Cm~l and Bjm~l (/= 1 , . . . , « )  by the same procedure, and so forth.

Finally, for every social situation^ satisfying

U,*(A)=Ui*(B1
m) (4.103)

for given values of/ and m, we define

Uj(A) = UjiB^) = m (4.104)

Likewise, for any social situation A * satisfying

Wi(A*)=Wi*(Bl
m) (4.105)

for some given value of m, we define

Wt(A*)= Wi(Bl
m) = m (4.106)
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These definitions uniquely determine the values of the (n + 1) functions Ux,.. . ,
Un and Wf at all points where these functions take (positive, negative, or zero)
integer values. Our next task is to show that at all points where these functions
have been defined they satisfy Equation (4.46).9

Consider the vector

u = (ul,...,un) (4.107)

where

uf = Uj(A) for ; = 1 , . . . , « (4.108)

We will call u the utility vector for the social situation A and will write

u = U{A) (4.109)

In what follows, unless stated otherwise, we will assume that, for all utility vectors
u, all components Wi,. . . , un are integers.

Lemma 1. Let A and A * be two social situations with the utility vectors u =
{ux, . . . , un) - U(A) and u* = (u{ * , . . . , ww*) = U(A*). Suppose that Uj - 0, and
suppose that w* differs from u only in the fact that its/th and A:th components are
.interchanged, so that

uk* = iij = 0 (4.110)

whereas

u,* = uk (4.111)

and

uh* = uh for all h*j,k (4.112)

Then

Wi(A*)=Wi(A) (4.113)

Proof. We know that the lemma is true at least in the special case where

u h * = u h = 0 f o r al l h ± j , k (4.114)

This is so because, as Uj* - uk is an integer, we can write

uf*=uk = m (4.115)

But, in view of (4.110), (4.114), and (4.115), we can write

U(A)=U(Bk
m) and U(A*)=U(Bf

m) (4.116)

Therefore, in view of Equation (4.47) and Axiom 3OO°, we have

Wi(A)=Wi(Bk
m) = m and W((A*)= Wi(Bf

m) = m (4.117)

which verifies that the lemma is true in this special case.
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However, in view of Equation (4.112), in comparing the two social situations A
and^l*, all individuals h=£j, k must be classified as unconcerned individuals indif-
ferent between these two social situations. Consequently, in view of Axiom 4OO°,
if the lemma is true in the special case in which Condition (4.114) holds, it must be
true also in the more general case where for some or all individuals h^j, k this con-
dition fails to hold [as long as Condition (4.112) does hold].

Lemma 2. Let A and A * be again two social situations with the utility vectors
u = U(A) and w* = U(A*). Suppose that u and u* differ only in their/th and kth
components so that

uf* = u f + l (4.118)

uk = \ (4.119)

(4.120)

±j,k (4.121)

(4.122)

Proof. We know that the lemma is true in the special case where

uh* = uh=0 for all A =£1,2 (4.123)

and where in particular

7=1 and k = 2 (4.124)

To show this, let us write

Ui=m and therefore u1* = m + l (4.125)

Then obviously

U(A)=U(Cm) (4.126)

whereas

U(A*)=U(Bl
rh + 1) (4.127)

Hence, in view of Equation (4.52) and Axiom 3OO°, we can write

W i ( A ) = W i ( C m ) = m + 1 a n d W i ( A * ) = W i ( B l
m + 1 ) = m + l (4.128)

which verifies that the lemma holds in this special case.
Now we propose to show that the lemma holds, even if Condition (4.124) is not

satisfied, as long as Condition (4.123) is satisfied. To show this, let A and A * be
two other social situations, with the utility vectors u = U{A ) and ?7* = U(A *).
Suppose that the utility vector u = U(A ) can be obtained from the utility vector
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u = U(A) by interchanging the first and the/th components and by interchanging
the second and the A:th components. Likewise suppose that u * = (/(A*) can be
obtained from w* = U(A*) by means of the same procedure. Then the social situa-
tions^ and^l * will come under the special case already discussed, and we can
write

(4.129)

On the other hand, by Lemma 1, we have

Wi(A)=Wi(A) and Wt(A*) = Wt(A*) (4.130)

Consequently

(4.131)

which shows that the lemma holds, even if Condition (4.124) is not satisfied.
Finally we will now show that the lemma holds, even if Condition (4.123) also

fails to be satisfied. This is so because in comparing the two situations^ and A*
all individuals hi^j,k must be classified as unconcerned individuals. Hence, by
Axiom 4OO°, Condition (4.123) is irrelevant.

Lemma 3. Let A and A * be two social situations with u = U(A) and u * = U(A *).
Suppose that u and w* differ only in their/th and fcth components so that

"/* = "/ + 1 (4-132)

whereas

u k * = u k - l (4.133)

and
u h * = u h for all h ± j , k (4.134)

Then

WiiA^^WiiA) (4.135)

Proof. First consider the special case where for some particular individual #• =£j,
k we have

ug* = ug = 0 (4.136)

Let.4** be a third social situation with w** = U(A**). Suppose that

Uj** = Uj = uf*- 1 (4.137)

u k * * = u k - \ = u k * (4.138)

ug**=\ (4.139)

and
uh** = uh* = uh for all hi-j,k,g (4.140)
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By Lemma 2, we can write

Wt(A*)= Wf(A**)= W((A*) (4.141)

which shows that the lemma holds in the special case where Condition (4.136) is
satisfied.

However, in comparing A and A *, individual g is an unconcerned individual.
Hence, by Axiom 4 o o o , the lemma holds, even if Condition (4.136) is not
satisfied.

Lemma 4. Let A and A * be two social situations with u = U(A) and w* = U(A *).
Suppose that

Then

Wi{A*)^Wi{A) (4.143)

Proof. The lemma follows from the fact that, in view of (4.142), M* can be ob-
tained from u by repeated one-unit utility transfers satisfying Lemma 3.

Lemma 5. Let A be a social situation for which all u utility values Ux (A),...,
Un(A) are integers. Then

W//(^)=f;c//(^) (4.144)
7 = 1

in accordance with Equations (4.46).

/. Let

jj m (4.145)
7 = 1

Consider the social situation Bx
 m . In view of Equations (4.47) and (4.48), we have

Z Uj(Bl
m) = m=Wi(Bl

m) (4.146)

7 = 1

Consequently, by Lemma 4,
W;04)=ftA(£im) = ™  (4.147)

as desired.

Proof of Theorem 4.3. By using the same procedure we can define the functions
Ui, . . . , Un and Wt at all points where their values are positive, negative, or zero
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multiples of some freely chosen small positive number e and can show that at all
these points Equation (4.46) will be satisfied. By an appropriate limiting process
we can extend the definitions of these functions to all social situations .4 in set
X*. By continuity, Equation (4.46) will be satisfied at all such points A.

Clearly the functions Ux, . . . , Un and Wt satisfying Equation (4.46) are
cardinal utility and cardinal social welfare functions, unique up to order-preserving
linear transformations. This is so because nonlinear transformations would destroy
the property expressed by Equation (4.46). This completes the proof of the
theorem.

Note: Theorem 4.3 looks somewhat stronger than Theorem 4.2, because it
seems to set the coefficients a1, . . . , an of Equation (4.12) equal to unity. But
this fact is merely a consequence of the procedure by which we have defined the
functions Ux, . . . , Un and Wt used in Theorem 4.3. Had we used a slightly dif-
ferent procedure we would have obtained arbitrary positive values for the coeffi-
cients # ! , . . . , an in the same way as we did in Theorem 4.2. Axioms l o o ° to
4OO° as such do not assign any specific values to these coefficients. (However, by
Axiom 3OO°, they all must be positive.) Just as in the case of Theorem 4.2, we
would need an additional axiom (e.g., Axiom 4°° of Section 4.8) if we wanted to
impose the formal requirement on these coefficients that they must take the same
numerical value with ax = • • • = an = a.10

4.10 The unavoidable need for interpersonal comparisons of utility in ethics

We have seen that, if individual i defines his social-welfare function Wf in terms of
Theorem 4.1, then he must make use of interpersonal utility comparisons in order
to ensure that the utility functions Ux, . . . , Uh . . . , Un are all expressed in the
same utility unit. The same is true if he defines his social-welfare function Wt in
terms of Theorem 4.2 or 4.3 in conjunction with Axiom 4°°, because this axiom
also requires that these utility functions be expressed in the same utility unit. How-
ever, it may appear that he can avoid interpersonal utility comparisons if he defines
his social-welfare function Wt in terms of Theorem 4.2 or 4.3 without any use of
Axiom 4°° [that is, if he defines Wt by Equation (4.12) with arbitrary positive co-
efficients ax , . . . , a n ] .

In actuality I propose to show that he cannot avoid interpersonal utility com-
parisons even if he follows this latter approach, as long as he wants to choose the
coefficients ax, . . . ,an of his social-welfare function Wt in a rational manner.
This is so because the only way that individual / can judge how much relative
weight a given set of coefficients ax, . . . , an actually assigns to each individual's
interests is by converting all n individuals' utility functions Ux, . . . , Un into the
same utility unit - which, of course, involves making interpersonal utility com-
parisons. For example, suppose that he originally tentatively defined his social-
welfare function Wt as

f^ajUj{A) (4.148)
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Converting the utility functions Ui, . . . ,Un into the same utility unit, he will ob-
tain the new utility functions

j / = 1 ,« (4.149)

Thus his social-welfare function will take the form

W,(A) = £ ajqjUj{A) = £ af*Uf(A) (4.150)

with
«/*=*/<7/  / = ! , . . . , n (4.151)

Only by computing these normalized coefficients0j * , . . . , a n * can individual i
judge the actual weight that this social-welfare function Wt assigns to each individual
The original coefficients al9 . . . ,anin themselves cannot give him this information.

For instance, suppose that individual /'s moral code requires that he give a much
greater weight to individual f s interests than he would give to any other individual's
interests (which, of course, implies that his moral code is inconsistent with our
Axiom 4°°). This means that, after converting all individuals' utility functions into
the same utility unit, the normalized coefficient ax * ought to be much larger than
the normalized coefficients a2 * , . . . , an * are in his social-welfare function Wt. But
individual / cannot predict the relative sizes of the normalized coefficients al *,
. . . , an * by looking merely at the coefficients ax,. . . , an, without trying to esti-
mate the conversion ratios qx, . . . , qn by means of interpersonal utility
comparisons.

To conclude, whether individual /'s moral code includes our egalitarian Axiom
4°° or not, he cannot define his social-welfare function Wt in a rational manner,
and cannot make moral value judgments in a rational fashion, without attempting
interpersonal utility comparisons. This is, of course, not surprising. Sooner or
later individual / will have to decide whether he should use his scarce resources to
satisfy the needs of one particular individual or another. But he cannot decide this
rationally without paying at least some attention to the question of which in-
dividual's needs have a greater psychological urgency - or equivalently which in-
dividual would derive a higher utility from a satisfaction of his needs. Yet this
will mean making interpersonal utility comparisons.11

4.11 The role of moral attitudes in social conflicts

Although the main subject matter of this book is game theory, our discussion of
some basic problems of ethics serves two main purposes.

On the level of conceptual analysis, because both ethics and game theory are
branches of the general theory of rational behavior, any clarification of the nature
of moral rationality is likely to help us in understanding the nature of game-
theoretical rationality. Both the similarities and the differences between the two
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concepts of rationality will be instructive (cf. Section 1.5). One important dif-
ference that we have already discussed is the unavoidable use of interpersonal
utility comparisons in ethics (Section 4.10), in contrast to their inadmissibility
(as we will argue) in game theory.

On the level of empirical applications, models of social behavior guided by
impersonal and impartial moral criteria can usefully supplement purely game-
theoretical models. It seems that the principal mechanism for resolving con-
flicts of interest in society is bargaining among the directly interested parties;
and the appropriate theoretical tools for the analysis of this mechanism are game-
theoretical bargaining models and game-theoretical models of other types. But
we must not overlook the fact that in such conflict situations the outcome is
often decided by the intervention of more or less "disinterested" third parties
(such as "public opinion"), whose behavior may be guided to a large extent by
impartial "moral" criteria. Moreover, the interested parties themselves may be
influenced to some degree by such "moral" considerations. For this reason an
analytical theory of moral value judgments can throw considerable light on the
various parties' policy goals and on the actual outcome in conflict-of-interest
situations.





Part II
General principles





Some basic concepts of game theory

5.1 Introduction

The main concern of this book is with game situations (situations of strategic inter-
dependence), in which the outcome depends on mutual interaction between two or
more rational individuals, each of them pursuing his own interests (and his own
values) against the other individuals, who are likewise pursuing their own interests
(and their own values). In earlier chapters we discussed situations of individual
independence (certainty, risk, and uncertainty), in which the outcome depends
on the actions of only one individual (and possibly on chance). We also discussed
moral situations, in which the outcome does depend on interaction between two
or more individuals but in which this outcome and these individuals' actions are
evaluated, not in terms of their own individual interests but rather in terms of the
interests of society as a whole - as seen by an impartial but sympathetic observer.
However, all of this was merely a preliminary to our analysis of game situations.

Following von Neumann and Morgenstern [1944] it is customary to analyze
what we call game situations by using parlor games - already existing ones or ones
specially constructed for this very purpose - as analytical models. (More specifi-
cally, what are used as models are games of strategy, where the outcome depends
at least in part on a rational choice of strategy by the participants rather than on
mere physical skill or on mere chance.) Hence the term "game situations" and
the name "game theory," for the theory analyzing such situations, arise.

The actively participating individuals in a game situation (or the actively partici-
pating social groups or organizations if they are regarded as the basic units of the
analysis) are called the players. Depending on the number of players, a game situa-
tion is called a two-person game, a three-person game, and so forth. (Sometimes
what we have called situations of individual independence are also called one-person
games. But unless we indicate otherwise, we will not include these under the con-
cept of "games.") Games with more than two players, called n-person games, give
rise to special problems, absent from two-person games, because of the possibility
that the players may form coalitions, which will be discussed later.

It is often partially a matter of analytical convenience which particular partic-
ipants are regarded as active players and which are regarded as mere passive
participants, who are simply parts of the active players' physical environment,
more or less on a par with the material equipment used by the latter in the game.
In general a given individual can be treated as a mere passive participant not in-
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eluded in the game proper only if his strategy (i.e., his pattern of behavior) is re-
garded as given and if no attempt is to be made to explain his strategy in terms of
game-theoretical rationality considerations. In practice this means that a duopoly
situation or a war, for example, can often be treated as a two-person game, with
the two duopolist entrepreneurs or the two opposing army commanders (or alter-
natively the two duopolist business firms or the two opposing armies as units)
regarded as the sole active players. But this can be done only if the customers
(and employees) of the two duopolists or the soldiers of the two armies follow
some relatively simple and standardized strategies. For instance, the customers
may simply follow the rule of always buying at the cheapest market, without
ever trying to influence the market conditions themselves (e.g., by bargaining
or by forming cooperative purchasing organizations); or the soldiers may simply
obey the orders of their respective army commanders (or disobey these orders
only according to some given statistical laws) without making any attempt to
obtain some independent influence on army policies. But if the customers or the
soldiers follow more independent strategies, then they must be assigned the status
of active players, because, in this case, excluding their strategies from our game-
theoretical analysis would mean assuming away a major part of our analytical
problem.

In any game situation the rules of the game must specify what actions each
player can take at any particular stage of the game, how much information he will
have available to guide his actions, and what the consequences of his actions will
be both for himself and for the other players. A game situation with fully specified
rules is called a game. Thus chess or bridge is a game, but so is a specific war or a
specific duopoly situation.

In real parlor games the rules are essentially matters of arbitrary convention.
But in social situations analyzed as game situations, what the game theorist may
subsume under the "rules of the game" includes:

1. The social conventions observed by the players (e.g., legal or moral rules).
2. The laws of nature (e.g., the physical, chemical, and biological laws governing

the performance of the human body and of the material equipment used).
3. The initial distribution of resources (e.g., bodily strength, economic resources,

military equipment) among the players - including the initial distribution of in-
formation, technological knowledge, and practical skills.

Besides the rules of the game, the description of a game situation must also in-
clude the (cardinal) utility functions of the players. Again, if we want to assume
that the players will act in a certain manner (e.g., that they will abide by agree-
ments made with other players), then it may be a matter of analytical convenience
whether this assumption is included in the rules of the game or is incorporated
into the players' utility functions (by postulating that contrary behavior would
be very costly to them, e.g., because of heavy penalties imposed on violators).

5.2 The extensive form of a game
Deviating somewhat from everyday language, in game theory all of the alternative
"moves" or "actions" among which a given player can choose at a particular
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moment are called his choices. The term move itself is reserved for the set of all
alternative choices among which he can make his selection at that particular stage
of the game. For convenience of exposition (to keep closer to everyday language),
we will also use choice point to refer to the same concept. Thus we will say,
"Player 3 at his second 'move' - or at his second 'choice point' - will have five
alternative 'choices' available."

Both in parlor games and in real-life situations the course of the game at some
points may depend on chance events, i.e., on events whose outcome the players
are unable to predict, while they may or may not know at least the objective
probability distribution of the possible outcomes. For example, in parlor games
the course of the game may depend on a throw of dice or on a deal of cards; in
real-life situations it may depend on the vagaries of the weather, on the chance
events deciding the outcome of a given battle, or on the more-or-less unpredictable
results of technological research.

A chance event influencing the course of the game can be formally treated as
a "move" by an imaginary player personifying chance, who by convention is
always allotted the serial number 0. The rules of the game must specify, when
this player 0 has a "move," his alternative "choices" for a given move (i.e., what
the possible outcomes are of the chance event in question) and the probabilities
associated with each alternative "choice" (i.e., with each alternative outcome).

Chance events (regarded as the "moves" of this imaginary player 0) are called
chance moves, whereas the moves of the other (real) players are called personal
moves.

A particular sequence of choices by the players, from the beginning of the game
to its end, is called a play. Thus a play can be regarded as a full description of how
the game was (or could have been) played on some particular occasion. (In ordi-
nary language we often use the word "game" itself in this sense, e.g., when we
speak of a particular chess "game" that two masters played against each other
on some particular occasion.)

The logical structure of a game can be represented by means of a game tree
(see Figure 5.1).1

The lines of the tree are called branches. Each branch is said to originate from
its lowest point. A point from which two or more branches originate is called a
node. The points at the top, where a branch ends but where no new branch orig-
inates, are called end points.

Each node represents a move or choice point for some player, while the branches
originating from this node represent the alternative choices that he has at that
point. The serial number of the player whose move a given node represents is
indicated by a large number to the right of that node. On the other hand, the
branches (choices) belonging to the same node are numbered by small numbers
to the left of each branch. In the case of branches originating from a node that
belongs to player 0 (i.e., in the case of a node representing a chance move), we
have to indicate the probabilities associated with each branch (each possible out-
come of the chance move). This we have done by writing these probabilities in
brackets after the number 0, to the right of the relevant node. (For instance, at
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b c a d d a

Figure 5.1

the farthest right node the branches 1,2, and 3 are associated with probabilities
^ , \ , £,in that order.)

The game (rather, a given particular "play") starts at the lowest node, called
the starting node, and then gradually moves upward - along a route depending
on the actual choices of the players at each choice point - until an end point is
reached. (Of course, the game tree of almost any real game would be much more
extensive than the one we have drawn for illustrative purposes.) For every end
point of the game tree, the rules of the game must specify the corresponding
outcome, i.e., the specific result that would arise for all players if the game came
to an end at that end point.2 In Figure 5.1 one of the letters a, b, c, or d is written
next to each end point to indicate the corresponding outcome.

The utility function of each player will determine the utility - called the payoff -
that he will derive from any particular physical outcome. (If a given player takes
sympathetic or antipathetic interest in other players' well-being, then the utility
that he derives from any given outcome will depend not only on his own personal
position under this outcome but also on other players' personal positions under it.)
The set of all payoffs (listed in the order of the players' serial numbers3) that the
various players would derive from a given outcome is called a payoff vector.

It is often convenient when drawing a game tree to indicate directly the payoff
vectors associated with each end point instead of indicating the physical outcomes
that underlie these payoff vectors, as we have done.

A game tree can also be used to indicate the amount of information that each
player will have at every particular stage of the game. Depending on the amount
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of information available to the players, we distinguish between games with com-
plete and incomplete information and again between games with perfect and
imperfect information. We speak of a game with complete information if the
players have full information about the rules of the game, which is the same as
saying that they have full information about the extensive form of the game.4 In
particular they must know their own and the other players' strategical possibilities,
and the amount of information available to each player, as well as their own and
the other players' utility functions. If this is not true, then we speak of a game
with incomplete information. We may also say that in a game with incomplete
information the players are not quite sure of the precise nature of the game that
they are playing. In this book we will deal only with games with complete in-
formation (cf. Section 1.2). [On games with incomplete information, see Harsanyi,
1967,1968a, and 1968b; Harsanyi and Selten, 1972.]

On the other hand, even if the players have complete information about the rules
of the game and their utility functions, they may or may not have full information
about the other players' (or possibly even about their own) previous personal
moves and/or about the outcomes of previous chance moves. For example, in
many card games the players often discard their cards face down, so that the
other players will not know which particular cards have been discarded by a given
player, which represents ignorance about these players' personal moves. Likewise
the players will usually have no information about which particular cards have
been dealt out to the other players, which means ignorance about the outcomes
of chance moves. Similarly, in real life the government of a given country may
have little or no information about the war preparations of another country; or
a given firm may have little or no information about the investment and research
plans and even about the results of past research by other firms (which are deter-
mined partly by chance).

We speak of a game with perfect information if each player, at any choice point
when he has to decide on his next move, always has full information about all
personal and chance moves that have already taken place in the game. Otherwise
we speak of a game with imperfect information. Our discussion will cover both
games with perfect and with imperfect information (within the class of games
with complete information).

To sum up, the distinction between games with complete and with incomplete
information refers to the amount of information that the players have about the
basic parameters of the game situation, i.e., about the independent variables (the
rules of the game and the players' utility functions). In contrast, the distinction
between games with perfect and imperfect information refers to the amount of
information that the players have about the past history of this particular play, i.e.,
about the past behavior of the dependent variables (personal and chance moves).

A special case of imperfect information is imperfect recall, which means that
some player(s) may fail to remember even his (or their) own previous moves in
the game. Thus, we speak of a game with perfect recall or of imperfect recall,
depending on whether the players always have full recollection about all their
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own earlier moves or not. Games with imperfect recall are meant to model game
situations in which some of the "players" are in fact teams or organizations con-
sisting of two or more individuals. In such cases, it is often convenient to assume
that this "player" may lack information also about some of his own earlier moves,
in the sense that one individual acting for this "player" may not know the moves
made by other individuals acting for the same "player." For example, in the game
of bridge North and South (and again East and West) act as a team with identical
interests and can be regarded as one "player" who alternates between "remember-
ing" only North's past moves (when he is acting as North) and "remembering"
only South's past moves (when he is acting as South) - although both North's and
South's moves are to be considered as the moves of this one composite "player."

Lack of information about previous moves will have the effect that a given
player, when he has to decide on his next move, will not know what his exact
position is on the game tree, i.e., which of two or more nodes (choice points)
represents his present position. We can indicate this by drawing a dotted line
around those nodes among which the player cannot distinguish. Such nodes form
an information set. For example, on Figure 5.1 we have assumed that if player
1 at the starting choice point (i.e., at the lowest node of the tree) chooses one
of branches 2 ,3 , or 4, then player 2 will not know which branch player 1 has
chosen and therefore will not know which node, of the three nodes at the top of
these branches, represents his own actual position after player l's move. Thus
these three nodes belong to the same information set, which is indicated by the
dotted line around them. On the other hand, we have assumed that player 2 will
always know whether player 1 has chosen branch 1 or has chosen one (but not
which one) of the three other branches. Therefore the node at the top of branch
1 belongs to another information set than the nodes at the tops of branches 2 ,3 ,
and 4.

For each information set / of a given player /, the rules of the game must specify
the number, K, of the alternative choices (physical actions) he can take if he is
in this information set. Suppose we number these alternative choices as 1,. . . ,
k,.. . , K. Then, the game tree must have exactly K branches originating in each
of the nodes belonging to this information set /. Moreover, the branches originating
in each of these nodes must be numbered as 1 , . . . , k,. . . , K to indicate which
branch represents any particular choice k. Branches having the same serial number
k and, therefore, representing the same physical action by player i are called cor-
responding branches.

In case a player at a given choice point knows all previous moves of the play,
he will know exactly which node of the game tree represents his present position,
i.e., he will be able to distinguish this node from all others. Such a node is said
to form a one-node information set, and this is indicated by drawing a separate
dotted circle around it. (Of course, no information sets have to be defined for
the fictitious player 0 who merely personifies chance.)

To conclude, a, game tree is a configuration of nodes and branches running
without any closed loops from its starting node to its end points and indicating:
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1. Which node belongs to which player (the players being numbered as 1,2,
. . . , n and the number 0 being assigned to a fictitious player personifying chance).

2. The probabilities associated with the branches originating from nodes be-
longing to player 0.

3. The information sets into which each (real) player's nodes are divided, and
the corresponding branches at different nodes of the same information set.

4. The physical outcomes associated with each end point of the game tree.
4'. Or alternatively the payoff vectors associated with each end point of the

game tree.
If the game tree indicates only physical outcomes (as stated in 4), then a full

characterization of the game must also include the utility functions of the players.
But if the game tree indicates directly the corresponding payoff vectors (as stated
in 4'), then it will itself fully characterize the game.

Characterization of a game by means of a game tree (such that it indicates payoff
vectors rather than physical outcomes) is called the extensive form of that game.

The game-tree (or extensive-form) representation formally requires that the
players should make their moves in a definite time order, i.e., that two or more
players should never make moves at the same time. (As we will see, this con-
vention is the exact opposite of the convention adopted in the normal-form repre-
sentation of a game, where all players are always assumed to make their choices
at the same time.) But this requirement does not result in any real loss of gen-
erality, if appropriate assumptions are made about the information available to
the players. For example, suppose that, at a given stage of the game, players i
and/ are required to make their moves at the same time. Then, from the stand-
point of game theory, the only important point about this fact is the inability of
either player to know the other player's move when he decided his own. Thus it
does not make any difference if, for the purposes of a game-tree representation,
we formally assume that, e.g., player i moves first and player/ moves second -
as long as we also assume that, in spite of the assumed "time order," player/ will
not know what player /'s move has been when he chooses his own. (Or equiva-
lently we can assume that player/ moves first, as long as we also assume that
player /, now supposedly moving after player /, will not know what player/'s
move has been when he chooses his own move.)

Since the game tree of a given game (if the payoff vectors associated with each
end point are indicated) gives full information about the rules of the game and
also about the players' utility functions (as far as these are relevant for analyzing
the game), we can also define a game with complete information as a game in
which the players know all the information displayed by the game tree.

In particular, in a game with complete information the players will know the
objective probabilities associated with various possible outcomes of any chance
move (chance event) in the game. This means that in such games any chance
event will involve risk rather than uncertainty.

Games involving chance events with probabilities unknown to some or to all
players are always games with incomplete information. In view of Theorem 3.3
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of Section 3.5, rational players will always assign subjective probabilities to the
various possible outcomes of such chance events, which means that games in-
volving uncertain chance events can be analyzed somewhat similarly to games
involving only risky chance events. But there are two important differences:

1. The objective probabilities actually governing the course of the game will
be in general different from the subjective probabilities entertained by the various
players.

2. The subjective probabilities that different players assign to the same event
will also be different in general from one another.

5.3 The normal form of a game

Instead of assuming that every player decides on each move only just before he
has to carry it out, we can also assume that each player decides in advance, before
the game actually starts, what move he will make in any possible situation that
may arise. A full description of what move a given player would make in every
possible situation is called a strategy. Thus a strategy must specify which par-
ticular branch of the game tree a given player would choose at any particular
node representing a choice point of this player - or, more exactly, since he cannot
distinguish between nodes belonging to the same information set, a strategy must
specify which branch (rather, which set of equivalent branches) he would choose
in any particular information set that he has in the game.

More formally let us number the information sets of a given player / as the 1st,
2nd, . . . , rth. Let xx , x 2 , . . . ,xr each be the serial number of some particular
branch that player / may choose while being located in his 1st, 2nd,. . . , rth
information set. Then this sequence of numbers, xx ,x2 , . . . , xr, will be called
a possible strategy (pure strategy) of player i.

We can imagine that the game is played in the following way. The players simul-
taneously (and therefore without knowing the choices of the other players) choose
their strategies. Then the game is played in accordance with the strategies chosen
by the players. Finally all players receive their payoffs as specified by the rules of
the game.

Once the players have chosen their strategies, their payoffs can be computed
even without going through the physical motions of actually playing the game in
accordance with these strategies. For example, it would be quite sufficient for the
players to inform the umpire of their strategy choices, and then the umpire could
compute their final payoffs. Indeed he could simply program a computer to per-
form the necessary computations.

More exactly, if the game contains chance moves, then in general the strategies
chosen by the players will not determine the actual values Uj of the players' payoffs
but rather will determine only probability distributions over these payoffs. For
instance, we may have to conclude that, given this particular choice of strategies by
the players, player 1 may obtain the payoff ux = 2 (with probability ^) or may ob-
tain the payoff ux = 8 (with probability §), depending on the outcome of certain
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chance move(s) in the game. However, in view of Theorem 3.2 of Section 3.4,
each player will be interested only in the expected value of his payoff. Thus in
our example the expected value of player 1 's payoff - called his expected payoff -
would be w x = j * 2 + | -8 = 6; and a strategy combination yielding him this ex-
pected payoff Wj = 6 would be completely equivalent for him to a strategy com-
bination yielding him the actual payoff ut = 6 with full certainty. For this reason
we can regard each player's expected payoff w,- as if it were his actual payoff ut
and can simply denote it by the symbol ut rather than by the symbol ut.

More formally, suppose the strategy combination ox,. . . , oh . . . , on chosen by
the n players can yield player i various alternative payoffs u\,. . . , uf with the
probabilities/?1, . . . ,pk, respectively; then in the normal form of the game we
define player /'s payoff as the expected value

u^Y.piui (5.1)
i = i

Thus we obtain the following model. There are n players. Any given player /
has a choice among m, different strategies.5 At the same time, each player chooses
one of the mt strategies available to him. Let ox, . . . , on be the strategies chosen
by players 1 , . . . , « .  Then the rules of the game will determine the payoff ut of a
given player / as a function of the strategies chosen by himself and by all the other
players; that is

ui = Ui(ol,...,on) (5.2)

We can also write the entire payoff vector u = (ux, . . . , un) as a vector-valued func-
tion of the strategies chosen by the players:

u = U(ol9...,on) (5.3)

The function U = (6^, . . . , Un) is called the payoff function of the game while its
/th component, the function £/,-, is called the payoff function of player i.

This characterization of the game, specifying the number of players, the number
of alternative strategies available to each player, and the payoff function of the
game, is called the normal form of the game. While the use of the extensive form
of a game corresponds to the assumption that the players decide on each move
separately, the use of the normal form corresponds to the model where each
player chooses a full strategy as a whole in advance.

Thus the normal form of the game amounts essentially to reducing a given game -
in which every player may have a large number of consecutive moves - to a simpler
game in which every player has only one move, viz., the choice of a full strategy.
But this simplification is, of course, achieved at a cost. Even for quite simple
games, each particular strategy may be a very complicated logical structure (it will
involve the choice of one particular branch of the game tree for each one of a
possibly very large number of information sets), and the number of alternative
strategies available to a given player may be astronomical.
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This complexity of strategies, as well as their enormous number, in most games
is the essential reason that in practice the players of a game hardly ever choose full
strategies in advance as envisaged by the normal-form model. But, in view of the
theoretical equivalence of the two representations, for the purposes of a general
theory of game situations the use of the normal-form representation has great ad-
vantages in terms of analytical simplicity.6

In the case of two-person games the payoff function for the normal form of the
game can be conveniently represented by means of a double-entry table or matrix
(see Example 1).
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Example 1

Player l's pure strategies are denoted by AX,A2,. . . ,Ak and correspond to the
rows of the matrix, while player 2's pure strategies are denoted by Bx, B2,. . . , Bn
and correspond to the columns.1 The two numbers enclosed in parentheses in each
cell indicate the payoffs that the two players would receive if they used the strate-
gies corresponding to the relevant row and column. (For example, according to our
table, if player 1 used strategy A2 and player 2 used strategy Bx, then player 1
would receive the payoff ux - 0, while player 2 would receive the payoff u2 = 6.)

5.4 Coalitions and strategies

We now introduce a few more game-theoretical concepts that we will need later.
The set of all n players will be denoted by N. Any set S of s different players,

with S C N, will be called a coalition.8 The set S = N - S, consisting of all players
not in S, is called the complementary coalition to S. A "coalition" consisting of
one player / alone, denoted as S = (/), is called a solo coalition. Any coalition
smaller than TV is called a sectional coalition, while N itself is called the all-player
coalition.

Apart from his pure strategies ot as defined in Section 4.6, any player / will be
assumed to be allowed the use of mixed strategies also. A mixed strategy a,- is a
probability mixture of pure strategies, i.e., a decision by player / to assign the
probabilities p\ , . . . , pf to the pure strategies a/ , . . . , of and then to let a
chance mechanism (e.g., a throw of dice) yielding the required probabilities decide
which particular pure strategy oJ(j = 1,...,/:) he will use on any particular
occasion. The vector p = (p1,. . . , pk) is called the probability vector of the
mixed strategy dt. Any pure strategy ot will be identified with that particular
mixed strategy which concentrates all probability on the pure strategy a,-.
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A set os of s (pure or mixed) strategies that contains exactly one strategy ot for
each player / in S, is called a strategy s-tuple, or a joint strategy, of coalition S. If
all component strategies ot are pure strategies, then we call os a pure joint strategy;
if any ot is a mixed strategy, then we call os a mixed joint strategy.

Among mixed joint strategies a 5 we distinguish individually randomized and
jointly randomized strategies. By individual randomization we mean an arrange-
ment under which each player / decides by a separate and independent chance
mechanism which particular individual pure strategy 07 he should use on each
given occasion. That is, an individually randomized joint mixed strategy os is
simply a combination of s independent individual joint strategies of, used by the
s members of coalition S. On the other hand, by joint randomization we mean
an arrangement under which all s players in a coalition S use one and the same
chance mechanism to decide which particular joint pure strategy os they should
use on each given occasion. That is, a jointly randomized joint mixed strategy
os is a probability mixture of various joint pure strategies (os)l,. . . , (os)k of
coalition S as a whole. Thus under individual randomization the individual pure
strategies ot used by the different members i of coalition S are statistically in-
dependent, whereas under joint randomization the players can establish any degree
of statistical correlation among their individual strategies. Consequently in-
dividually randomized strategies can be regarded as that special case of jointly
randomized strategies where the players / in a coalition S decide to have zero
correlation between each other's individual strategies. We will assume that the
players are free to use individually randomized joint strategies both in cooperative
and in noncooperative games but can use jointly randomized joint strategies only
in cooperative games (more precisely, the use of such strategies is restricted to
cooperative games with free communication among the players, which we call
vocal cooperative games).

In the special case in which we deal with a strategy s-tuple of the all-player coali-
tion S =N, and so 5 = n, we speak of a strategy n-tuple oN. If s = 2, we speak of a
strategy pair.

5.5 Dominance

Let w* = (wf, . . . , u%) and u = (ux, . . . , un) be two payoff vectors (utility vectors)
for the n players. We will say that the payoff vector M* strongly dominates the
payoff vector u, if w* assigns higher payoffs to all n players, that is, if uf > ut for
all 1.

On the other hand, we will say that w* weakly dominates u, if w* assigns higher
payoffs to some player(s) and at the same time assigns at least equally high payoffs
to all other players, that is, if ut* > ut for some i, but u* ^ ut for all i.

If in a given setP of payoff vectors there is some payoff vector w* that is not
strongly dominated by any other payoff vector u inP, then w* is called a weakly
efficient payoff vector in P. On the other hand, if u* is not dominated, even
weakly, by any other payoff vector u in P, then u* is called an efficient ( or a
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strongly efficient) payoff vector in P. Obviously any (strongly) efficient payoff
vector is also weakly efficient, but the converse is not true.

Thus for any payoff vector to be weakly (or strongly) efficient in some set P is
the same thing as to be a maximal element in P under the relation of strong domi-
nance (or of weak dominance).

5.6 Payoff space. Payoff conservation laws

The ^-dimensional Euclidean space consisting of all possible utility vectors u =
(ui, . . . , un) for the n players is called the utility space Un.

The set P of all payoff vectors u that the n players of the game can actually
achieve by any joint strategy oN that the rules of the game make available to
them we call the payoff space of the game.9

In a cooperative game (see Section 5.15) where the players are free to use
jointly randomized strategies, the payoff space P of the game is always a convex
set. That is, if w* and M** are two points of P, then any probability mixture of w*
and w**, i.e., any point u - pu* + (1 - p)w**, with 0 ^ p ^ 1, is also in P. Geo-
metrically this means that all points u on the straight-line segment connecting w*
and w** will lie in P.

The set of all strongly efficient (not even weakly dominated) points u in P is
called the upper boundary H of P. The set / /* of all points u that are at least
weakly efficient, i.e., are not strongly dominated (though possibly being weakly
dominated) in P, is called the extended upper boundary of P. Of course, //* D H.
If P is a convex set of n dimensions, then H* (as well as H) will be in general a
hypersurface of (n - 1) dimensions. In the special case n = 2,H (as well asH*)
will be a curve in the utility plane U2 and will be called for obvious geometrical
reasons the upper right boundary (or the extended upper right boundary) of P.

If the sum of all players' payoffs, u = 2w,-, is equal to zero for all points u in the
payoff space P, then we say that the game is zero-sum. Intuitively this means that,
whatever one player wins, the other players must lose, and vice versa - in other
words, the players' utilities in the game follow a certain conservation law, in that
net utility is neither created nor destroyed but is merely transferred from one
player to another. A game in which this is not true is called nonzero-sum.

A game in which the sum of all players' payoffs, u = Huh is equal to a constant
(which may or may not be zero) is called a constant-sum game. The contrary is a
variable-sum game. Any constant-sum game is trivially equivalent to a zero-sum
game, because it can be converted into a zero-sum game by changing the zero
point of any player's utility function. (Alternatively we may say that a constant-
sum game is equivalent to a situation where the players play a zero-sum game and,
in addition, also receive - or have to pay out - certain fixed amounts; this latter
fact has no influence on their strategical possibilities in the zero-sum game
itself.)

Finally consider a game which is not constant-sum but in which all points of the
payoff space satisfy an equation of the form Dtf/M; = const., with constant coeffi-
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cients at > 0. Such a game may be called a constant-weighted sum game. It still
will be trivially equivalent to a zero-sum game, because it can be converted into a
zero-sum game by order-preserving linear transformations of the players' utility
functions.10 Zero-sum, constant-sum, and constant-weighted sum games together
will be called generalized zero-sum games.

Geometrically, since all points u in the payoff space P of a generalized zero-sum
game satisfy an equation of the form D^w, = const., they always lie on an (n - 1)-
dimensional hyperplane H. Since at > 0 for all / = 1, . . . , n, H will cut all positive
axes at obtuse angles. Such a hyperplane is called a hyperplane with positive slopes
in all directions. (Any straight line L orthogonal to such a hyperplane will be
called a straight line with negative slopes in all directions.) In the case of a zero-sum
game proper, or of a constant-sum game, we can take ax = • • •  = an = 1.

Empirically the simplest way in which a generalized zero-sum game can arise is a
situation where the total amount of money or other values possessed by all the
players together is constant, and the game can only redistribute this amount among
them - and where all players' utility functions are linear in money or in these other
values.

But there are also other possibilities. For example, any two-person game can be
treated as a two-person zero-sum game if there are only two possible outcomes for
each player, say, "victory" and "defeat" - with no possibility for "larger" or
"smaller" victories and defeats. In such a case no special linearity assumption is
needed concerning the players' utility functions in order to assure the zero-sum
property, because we can always assign the utility v = +1 to "victory" and the
utility d = -1 to defeat, making their joint payoff u identically zero, as u = v + d -
(+ l )+( - l ) = 0.

On the other hand, if the game also has a third possible outcome, representing
neither a "victory" nor a "defeat" for either player but rather a "draw" between
the two players, the game will not be zero-sum unless we make special assumptions
about the utilities that the two players will assign to this "draw" situation. In
particular we may assume that for each player a "draw" is exactly halfway in
utility between a "victory" and a "defeat" - that is, each player would be indif-
ferent between a "draw" and a fifty-fifty chance of "victory" and of "defeat."
In this case the utility of a "draw" to each player would be d* - (v + d)/2 = 0, so
that in a "draw" situation the two players'joint payoff u would again be zero
since u = 2d* = 0. It is easy to verify that, if the game has more than three pos-
sible outcomes, then even stronger linearity assumptions regarding the players'
utility functions are needed to ensure the zero-sum property.

Some games lacking the zero-sum (and even the generalized zero-sum) property
may satisfy a considerably weaker utility conservation law, the transferable-utility
property. Let G be a game (given in extensive form). Suppose that in G each
player / has moves by which he can transfer any amount of utility that he wishes
to transfer to any other player/ (e.g., by giving him money or commodities) in
such a way that their joint payoff ŵ - = ut + Uj remains constant,/'s utility gain
being exactly equal to /'s own utility loss, without this move having any effect on
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the payoffs uk of the other players k =£ i, j . In this case we say that G is a game
with transferable utility, and the moves described will be called conservative trans-
fer moves.

To put it differently, in a zero-sum game all possible moves by the players are
conservative, because no moves can change the players' joint payoff away from
zero. In contrast, the transferable-utility property does not mean an absence of
nonconservative moves; it means merely a presence of conservative moves, per-
mitting the players to transfer unlimited amounts of utility from one another
without changing their joint payoff.

If G is given in normal form rather than in extensive form, then the transferable-
utility property can be defined as follows: Let u = (wj,. . . , un) and u* =
(wf,.. . , u%) be any two utility vectors corresponding to the same joint payoff
u = Zui = Dwf for the n players. Let S be the set of all players / for whom uf < ut.
Thus S contains those players who would lose utility by moving from u to w*.
Suppose that the n players have some joint strategy o = ( a j , . . . , on) yielding the
payoff vector u - U(o). Then, if G is to have the transferable-utility property, it
must be possible for the players in S to achieve the other payoff vector w* by
switching to some alternative strategies a*. In other words, the n players must
have another joint strategy a* = (a*,. . . , a*) yielding the other payoff vector
w* = U(o*), such that a* = Oj for all players/ not in set S. (That is, in order to
achieve w* only the players S have to change their strategies.)11

Again it is convenient to say that a game has transferable utility in a generalized
sense if it can be converted into a game with transferable utility by applying order-
preserving linear transformations to the players' utility functions (more particu-
larly, by changing the units of measurement for the players' utilities).

Like a zero-sum game, a game with transferable utility most naturally arises in
situations where the players are free to transfer money to one another without
transfer costs (or gains) and where all players' utility functions are linear in money.
However, unlike in zero-sum or constant-sum games, in games with transferable
utility the players in general can make joint utility gains or losses of variable
amounts, depending on the efficiency of their strategies and in particular on the
degree of cooperation between them. (For example, a bargaining game in which
the players can divide $100 among them, if they can agree on how to divide it, but
lose the $100 if they cannot agree, is obviously not a constant-sum game. But it is
a game with transferable utility if the players' utilities are linear in money.)

The payoff space P of a game with transferable utility in a generalized sense is
bounded by two parallel hyperplanes with positive slopes in all directions, called
the upper boundary H and the lower boundary /, and constants of all points of
the utility space Un lying on or between H and / . Both these hyperplanes extend
to infinity in all directions. H will have the equation 2fl,ot/ = C\, at > 0, while /
will have the equation £a;jt/ = c2 with cx > c2. If the game has transferable
utility in the strict sense, then we can write ax = • • •  = an - 1.

In theoretical physics we find that the mathematical theory of a physical sys-
tem is greatly simplified if the system is known to follow certain special conserva-
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tion laws (e.g., the theory of what are called "conservative forces" is much simpler
than the theory of nonconservative forces). Likewise in game theory, games satis-
fying utility-conservation laws, such as zero-sum games and games with transferable
utility, admit analysis in terms of simpler principles than do games of more general
types. It is therefore not surprising that the theory of these games (in particular,
the von Neumann and Morgenstern solution for the two-person zero-sum game and
the Shapley value for the ̂ -person cooperative game with transferable utility) has
earlier reached maturity than has the theory of more general games. But the bar-
gaining models to be discussed in this book will enable us to develop a general
theory not confined to games satisfying these restrictive assumptions.

5.7 Payoff-dominance relations: reply-dominance

Suppose that a given strategy az* can be expected under certain conditions to yield
player / a payoff higher (or at least no lower) than some alternative strategy ot**
would yield him. Then we will say that a/* has payoff-dominance over a,-**. Like-
wise suppose that a given joint strategy o% can be expected under certain condi-
tions to yield each member of coalition S (where S C TV or S = N) a payoff higher
(or at least no lower) than some alternative joint strategy o**s would yield him.
Again we will say that o*s has payoff-dominance over o**s. We will consider sev-
eral types of payoff-dominance relations.12 In this section we define two such rela-
tions, to be called strong and weak reply-dominance.

Consider an «-tuple  of strategies a = (o\,. . . , oi^1, a,-, a,- + 1 , . . . , on). Let ol

denote the (n - l)-tuple that remains if we omit from a its /th component, the
strategy az-. Thus ol = (oi, . . . , oi.l, oi + l,. . . , on). Hence ol denotes a combina-
tion of strategies (i.e., a joint strategy) that the other (n - 1) players use or may use
against player /. We often write the strategy ft-tuple o = (c^, . . . , a,-, . . . , on) itself
in the form

a = (a,-,a/) (5.4)
Likewise (07*, a') will denote the strategy tt-tuple that we obtain from o if we re-
place the strategy ot by the strategy a,*, and so forth.

Let a,-* and a,-** be two strategies of player /, and let o* be a strategy combina-
tion of the other players. We will say that a,-* is a better reply to ol than a,-** is, if
a/* yields player / a higher payoff than a,-** does, if the other players use the
strategy combination ol against him, that is, if

Ui(ai*,at)>U,(al**,al) (5.5)
To be a better reply is obviously a payoff-dominance relation. Therefore in the
case just described we also say that a,-* has strong reply-dominance over a,-**
against ol, or simply that a/* strongly reply-dominates a,-** against ol.

On the other hand, if at least the weak inequality corresponding to (5.5) is
satisfied, then we say that a,-* is at least as good a reply to ol as a/** is, or that a,-*
has weak reply-dominance over a,-**, or that a,-* weakly reply-dominates a,-**,
against ol.
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5.8 Best-reply strategies

Suppose that a given strategy of yields player i the highest payoff among all strate-
gies available to him when the other players use the strategy combination o\ so that

Ufa*, o() = max Ufa, a<) (5.6)

where 2,- is player f s strategy space, i.e., the set of all mixed strategies available to
him. (Note that we regard pure strategies as special cases of mixed strategies.
Therefore player f s pure strategies are also elements of 2/.) Then we shall say that
of is player /'s best reply to ol.

If a,-* is a best reply to ol, this obviously means that player / has no better reply
to ol. In other words, if of is a best reply to o\ then of is a maximal element [cf.
Debreu, 1959, p. 8] in the strategy space 2/, under the relation of strong reply-
dominance as against ol.

If of is the only strategy of player i that satisfies Equation (5.6), then it will
be called player /'s only best reply to ol. If of* has this property, then player i
will not have even a strategy weakly reply-dominating of. In other words, if of
is his only best reply to o\ then a,-* is a maximal element also under the relation

reply-dominance as against ol.

Lemma 1. Let 2/* = 2,-*(al) be the set of all best-reply strategies that player / has
against a given strategy combination ol of all other players. This set 2/* will be
always a convex subset of player fs strategy space 2/.

Proof. We must show that, if of and a,-** are two best replies to o\ then any
probability mixture o = pof + (1 - p)of* of two such strategies will also be a best
reply to ol. Now

Ufa*, ol) = Ufa**, a') = max Ufa, ol) = ut (5.7)
a/GS/

But

aO = ptyfa*. a') + (1 - P) Ufa**, o1) = put + (1 - p) ut = ut (5.8)
This shows that 07 yields the same payoff ut as a,-* and a,-** themselves do against
o1. Hence oy is also a best reply to o\ which is what we wanted to show.

Lemma 2. Let of = pl o^ + • •  •  + pk of® be a mixed strategy of player z, with
pi > 0 for / = 1,. . . , k, and, of course, with 2p7 = 1. Suppose that of is a best
reply to some strategy combination o1 of the other players. Then each pure
strategy o^ used in a,-* with a positive probability pJ is likewise a best reply to ol,
and so is any arbitrary probability mixture a,-** = q^of1^ + • • • + qko(

k of these
pure strategies o^\ . . . , o^kK
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Proof. We have

k
Ufa*, a1') = £ p'UiioM, o() = max Ut{oh ol) = ut (5.9)

7 = 1 CT/G2i

We want to show that

UiioP, a1') = M/ for / = 1, . . . , fc (5.10)

and also that

J:oi
(<i\oi) = ui (5.11)

7 = 1

Now suppose that Equation (5.10) would not hold for all strategies a / " that have
positive probability weights p7 in Oj*. Then, in view of Equation (5.9), we could
find at least one strategy o^ such that

U,(ot<»,o l)>Ui (5.12)

But this would mean that a/* would not be a best reply to a1, contrary to our as-
sumptions. Therefore Equation (5.10) must hold for all strategies o^J\ Finally,
Equation (5.11) follows immediately from Equation (5.10). (Cf. Lemma 1.)

We will now introduce a certain generalization of the concept of best reply, the
subjective best reply. Suppose that player / has no definite expectations about the
strategy combination ol that the other (n - 1) players will use but has only some
subjective probability distribution Pj(ol) over all possible strategy combinations o1

that the other (n - 1) players may follow. Let ol represent that probability mixture
of all possible strategy combinations ol which correspond to this subjective proba-
bility distribution Pi(ol). Mathematically a' will be a jointly randomized joint
strategy of the (n - 1) players other than player i. We will call ol the mean strategy
combination that player / expects the other players to use. Finally let a,-* be that
strategy of player / which would maximize his payoff against ol so that

tyfai*, of'") = max UiiOi.o1) (5.13)

We will call a,* player /'s subjective best reply to the other players' expected mean
strategy combination a1. It differs from an ordinary best-reply strategy in being a
best reply, not to some specific combination ol of the pure or mixed strategies used
by the other players, but rather to some mean strategy combination ol, expressing
the subjective probability distribution Pf(ol) that player / entertains over alternative
possible strategy combinations ol of the other players.

In the same way we can also define the concept of subjective better reply and
say that one strategy a,-* is subjectively a better reply than another strategy a,-** is
to the other players' expected mean strategy combination ol.
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5.9 Equilibrium points

Let o = (<?!, . . . , on) be a strategy «-tuple such that  the strategy Oj of every player /
is a best reply to the strategy combination ol = (ox,. . . , a^-.j, a/ + 1 , . . . , on) used
by the other (n - 1) players. Then a is called an equilibrium point. Any strategy
Oi occurring as a component in some equilibrium point a = (p\,. . . , a/, . . . , on) is
called an equilibrium strategy. The payoff vector u - U(o) that results if all players
use strategies corresponding to a given equilibrium point o is called an equilibrium
payoff vector, and each component ut = Ut{o) of such a vector u = {ux,. . . ,
Ui, . . . , un) is called an equilibrium payoff. For example, consider a two-person
game (see Example 2). This game has two equilibrium points in pure strategies, viz.,
the strategy pairs (Ai, Bx) and (A2,B2). The corresponding equilibrium payoff
vectors are U(Al,B1) = (8,4) and U(A2,B2) = (14, 10). The game also has an
equilibrium point in mixed strategies (jAx + jA2, ^Bx + \B2). This yields the
equilibrium payoffs (8, 10).

B, B2

A2

(8,4) (11, 0)
(2,9) (14,10)

Example 2

Nash [1950a, 1951] proved the following important theorem:

Theorem 5.1. Every finite game has at least one equilibrium point.
An equilibrium point o - (ox,. . . , on) is called strong if each player's equilib-

rium strategy a,- is not merely a best reply to the other players' strategy combina-
tion ol but is in fact the only best reply to o1.13 An equilibrium point that is not
strong is called weak.

In our last example both pure-strategy equilibrium points are strong. For in-
stance, A i is player 1 's only best reply to Bx, and Bx is player 2's only best reply
to A i. In contrast, the mixed-strategy equilibrium point is weak, because ox =
j A! + | A2 is not the only best reply by player 1 to o2 = ^ Bx + | B2, and o2 is
/tctf the only best reply by player 2 to ox. Indeed in this game #«y  strategy of
player 1, whether pure or mixed, is a best reply to o2, and any strategy of player 2,
whether pure or mixed, is a best reply to ox. More generally:

Lemma 1. Any equilibrium point a = (oi, . . . , ot, . . . , on) having one or more
mixed-strategy components ot is a weak equilibrium point.

Proof. Let ot = p1 ot
(l) + • • • +  pkofk) with pj > 0 for/ = 1,. . . , k. Then, by

Lemma 2 of Section 5.8, all the component strategies o^\ . . . , of® as well as all
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their probability mixtures will be best replies to a1'. Hence ot is not the only best
reply to a7, and therefore a is a weak equilibrium point.

An equilibrium point of which all components are pure strategies can be either
strong or weak. We have already seen examples for strong pure-strategy equilibrium
points. In contrast, the equilibrium point (A\, Z?t) is weak in Example 3, because
A i is not the only best reply to Bx (even though Bx itself is the only best reply to
A i). In fact, besides Ai,A2 and all probability mixtures of A x and A2 are best
replies to Bx.

2

B

(2,
(2,

2)
3)

B

(5,
(3,

2

l)
4)

Example 3

5.10 Maximin strategies and maximin payoffs

Let 2 ' be the set of all strategy combinations ol = (ox, . . . , Of.l9 oi+l, . . . , on)
that the other players can use against player /. Clearly 2 ' can also be defined as the
Cartesian product 21' = 5^ X • • • X S/.j X Z,-+1 X • •  • X 2W, where 2 j , . . . , 2W
are the strategy spaces of players 1, . . . , n, respectively.

If player / uses a given strategy a,-, then the very lowest payoff Uj (a,) that he can
obtain is given by

Ufa)** min Ui(oh(j) (5.14)

This payoff Ufad is called player /'s security level for this strategy a,-. The highest
security level that player / can obtain by any strategy ot is given by

Ui~ max Ui(oi)= max min t/,-(a,-, a') (5.15)

This highest security level t/f- is called player /'s maximin payoff horn the game. It
represents the highest payoff that he can count on even under the most pessimistic
expectations about the strategy choices of the other players. Any strategy 6t hav-
ing this payoff M/ as its security level - i.e., any strategy a, satisfying C//(a,-) = ut -
is called a maximin strategy.

In a finite game (and more generally in any game with a compact payoff space)
a maximin payoff «,-,  and one or more maximin strategies a,-, will always exist for
every player /.

If all components 6Y, . . . , 6n of a given strategy «-tuple  b = (6i, . . . , bn) are
maximin strategies, then 6 will be called a maximin point.14
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Lemma 1. The payoff ut = £/,(a) of any player / at an equilibrium point o =
(pi,..., a,-,. . . , on) = (a,-, a1') will be always at least as large as his maximin pay-
off Uj.

Proof. As o is an equilibrium point, oy must be a best reply to a1. Therefore

ui=Ui(ohoi) = max U^o1) (5.16)

Let Oj be a maximin strategy of player /. Then

^ = m i n Ui{di9c?) (5.17)

In view of Equations (5.16) and (5.17),

Ut = Ufa, a') * J7,(5/, a') £ ^ (a , ) = ut (5.18)

This completes the proof.

An equilibrium point a will be called profitable to player / if it yields him a pay-
off higher than his maximin payoff, i.e., if Ut{o) > ut, and will be called unprofit-
able to him if it yields him exactly his maximin payoff, i.e., if Ut{o) - ut. By
Lemma 1, the case Ut(o) < ut cannot occur. An equilibrium point is called uni-
formly profitable if it is profitable to all players. It is called partially profitable if
it is profitable to some players but is unprofitable to some other players.

Lemma 2. The set S/ of all maximin strategies of any given player i is always a
convex set.

Proof Let 6t and 6t be two maximin strategies of player /. We have to show that
any probability mixture

(5.19)

of two such strategies is itself also a maximin strategy. Now

Ui(pi)= min Ui{aucf)^ min [pUi(ai9 o() + (1 - p) Ut(dh a')]

^ p min Ui(di, ol) + (1 - p) min £//(&,-, ol) = put + (1 - p) ut = ut

(5.20)

o'es'

Hence

UtQJdZ&t (5.21)

But we cannot have Ui(pj) > #,-, because by definition

^ = max Ui(Oi) (5.22)
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Consequently f//(a,-) = «,-,  and therefore ot is a maximin strategy of player /, as
desired.

5.11 Simple dominance

It may happen that a given strategy a/* of player i is a better reply than another
strategy a,-** is, not only against a given strategy combination ol of the other
players but rather against all possible strategy combinations a' available to them.
That is, it may happen that

Ufa*, o() > Ui(Oi**, o() for all & G Z1' (5.23)

In this case we shall say that strategy a,-* strongly dominates strategy a,-**.
If no other strategy of player i has strong dominance over a given strategy a,-,

i.e., if a,- is a maximal element in player /'s strategy space S,- under the relation of
strong dominance, then a,- is called a weakly admissible strategy.15

On the other hand, we will say that strategy a,-* weakly dominates strategy
a,-** if a,-* is a better reply to some strategy combinations ol of the other players
and is at least as good a reply to all other strategy combinations ol. That is, we re-
quire that a,-* should satisfy Condition (5.17) for some ol and should satisfy the
corresponding weak inequality for all ol.

Clearly dominance, whether strong or weak, is a payoff-dominance relation. We
will sometimes call it "simple" dominance in order to distinguish it from "joint"
dominance, to be defined below.

If no other strategy of player / has even weak dominance over a given strategy
a,-, i.e., if a,- is a maximal element under the relation of weak dominance, then ot is
called an admissible (or a strongly admissible) strategy. Obviously any (strongly)
admissible strategy is also weakly admissible, but the converse is not true.

5.12 Joint dominance

Let a* and a** be two joint strategies (pure, individually randomized, or jointly
randomized) for the n players. We say that a* has strong joint dominance over a**
if the payoff vector U(o*) strongly dominates16 the payoff vector U(o**\ that is,
if a* yields every player / a higher payoff

Ui(a*) >Ut(o**) (5.24)

than a** does.
We say that a* has weak joint dominance over a** if the payoff vector U(o*)

weakly dominates the payoff vector U(o**)9 that is, if a* yields all players at least
as high payoffs as a** does, and at the same time yields some players definitely
higher payoffs. Clearly, both strong and weak joint dominance are payoff-
dominance relations.

Let D denote the n players'joint-strategy space, i.e., the set of all joint strategies
available to them. In a cooperative game 2 will include jointly randomized joint
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strategies, whereas in a noncooperative game, apart from pure joint strategies, 2
will include only individually randomized joint strategies. Let 2* be any subset
in 2.

Suppose that the joint strategy o is in 2* and that there is no other joint
strategy o in 2* such that o would have strong joint dominance over a. That is,
we are assuming that o is maximal in 2* under the relation of strong joint domi-
nance. Then we say that o is an efficient (or a weakly efficient) joint strategy
in 2*.

If there is not even a strategy o having weak joint dominance over o - i.e., if
o is maximal even under weak dominance - then we say that a is strongly efficient
in 2*.

Reply-dominance (Section 5.8), simple dominance (Section 5.11), and joint
dominance are the main types of payoff-dominance relations that we will use in our
analysis.

5.13 Centroid strategies

Let 2,* be some subset of the space 2,- of all (pure and mixed) strategies available
to player i. Let ot* be the equip rob ability mixture of all strategies ot in this set
2/*. Thus geometrically a,* will be the centroid (center of gravity) of this set
2,-*. We will call ot* the centroid strategy of 2/*.

Let 2/*(a') be the set of all best-reply strategies az- that player i has against the
strategy combination ol of the other {n - 1) players. Let ot* be the centroid
strategy of this set 2/*(aI). Then a,* itself will also be a best reply to ol because,
by Lemma 1 of Section 5.11, the set 2,*(a') is always convex, and therefore its
centroid a,* will be an element of this set. We will call this strategy o* the
centroid best reply to ol.

Let o = (di,. . . , an) be an equilibrium point with the property that every
player's equilibrium strategy a,- is a centroid best reply to the other players' strategy
combination a1. Then a will be called a centroid equilibrium point.

Lemma 1. Every strong equilibrium point a is a centroid equilibrium point.

Proof If a is a strong equilibrium point, then each set 2, *(a') for i= 1 , . . . , «
will contain only the one strategy a,-. Consequently this strategy az- will be the
centroid strategy of 2,*(al).

However, weak equilibrium points in general are not centroid equilibrium points.
Let o = ((Ji,. . . , on) be any equilibrium point. Let ox * , . . . , aM* be the cen-

troid best replies to the strategy combinations o1,. . . , on corresponding to a.
Then in general the strategy H-tuple a* = (ax * , . . . , aw*) will not be an equilibrium
point. Consequently, if a given equilibrium point o = (oi,. . . , on) is not already a
centroid equilibrium point, then in general we cannot transform it into one simply
by replacing each equilibrium strategy a,- with an appropriate centroid-best-reply
strategy a,-*.
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Let a,* be the centroid of the set % of player z"s maximin strategies. Then a,*
itself will also be a maximin strategy, because, by Lemma 2 of Section 5.13, 2,- is a
convex set, and so its centroid will be an element of this set. We will call a,* player
I'S centroid maximin strategy.

5.14 Games with strictly identical interests, with strictly opposite interests,
and with mixed interests

We can distinguish the following main classes of games:
1. Games where the players have strictly identical interests.
2. Games where the players have strictly opposite interests.
3. Games where the players have mixed interests, i.e., where their interests are

partly similar and partly dissimilar.17

In games with strictly identical interests each player's payoff is a strictly increas-
ing function of any other payoff over the entire payoff space P of the game. Hence,
if u and u* are two different payoff vectors in P, then either u must strongly domi-
nate w*, or u* must strongly dominate u. If the players are free to use mixed
strategies, then this condition can be satisfied only if the payoff space P is a segment
of a straight line with a positive slope in all directions (see Figure 5.2).

If the payoff space P of such a game is a compact set (i.e., if it is bounded and
closed), then it will include its own upper boundary point w, and the latter will
strongly dominate all other points u of P and so will represent the only efficient
point of P. Hence, as long as the players are free to coordinate their strategies (see
Section 5.15, below), this point u will obviously represent the only rational out-
come of the game.

While a game with strictly identical interests can have any number of players, a
game with strictly opposite interests can have only two players. This is so because
two players, of course, can have opposite preferences between any two points u and
w* of the payoff space of the game. But a third player would have to be either in-
different between u and w* or agree in his preference with one of the two other
players: He obviously could not have an opposite preference to both of the two
other players at the same time.

, M2

Figure 5.2 Figure 5.3
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Thus a game with strictly opposite interests must be a two-person game. More-
over, each player's payoff must be a strictly decreasing function of the other
player's payoff over the entire payoff space P of the game. If the players are free to
use mixed strategies, then this condition can be satisfied only if P is a segment of a
straight line with a negative slope in the {ux,u2) plane (see Figure 5.3), i.e., if the
game is a generalized two-person zero-sum game (see Section 5.9).

5.15 Cooperative and noncooperative games

In a game with mixed interests the payoff space will not be a line segment but
rather will contain at least three points not lying on the same straight line. Indeed,
if mixed strategies are permitted, then the payoff space will always cover a more-
than-one-dimensional (typically an n-dimensional) connected region of the n
players' n-dimensional joint utility space.

In games with strictly identical or with mixed interests, the players always have
some common interests that they could in principle promote by agreeing on a mu-
tually advantageous joint strategy. But in practice such agreements make sense
only if the players can be reasonably sure that such agreements would be stable,
i.e., would be kept if they were agreed upon. An agreement can be stable for two
reasons.

One reason is that it may be self-enforcing: The payoff function of each player
may be such that it gives him a clear incentive to follow the joint strategy agreed
upon, at least as long as he expects the other players to do the same. Technically
this means that an agreement can be self-enforcing only if the joint strategy agreed
upon is an equilibrium point. Actually we will argue that even equilibrium points
are not always stable (i.e., self-enforcing). While strong equilibrium points (as de-
fined in Section 5.12) always possess full stability, weak equilibrium points do so
only under special conditions.

An agreement may be stable also because it is enforceable: The rules of the
game may be such that they require the players to keep agreements that they have
entered into (even if they could increase their payoffs by breaking them).

In a game with strictly identical interests all efficient agreements are self-
enforcing (because they will be agreements to use strategies corresponding to some
strong equilibrium point). But in the case of games with mixed interests we must
distinguish between games where the rules of the game make agreements always
fully binding and enforceable and games where agreements have no binding force.
The former are cooperative games; the latter are noncooperative games.

More generally we assume that in cooperative games not only agreements be-
tween two or more players, but also unilateral commitments (threats and promises)
made by the players, will be fully binding and strictly enforced. The opposite is
true in noncooperative games.

In empirical situations what may make agreements and other commitments en-
forceable may be special law-enforcing agencies (e.g., courts of law, administrative
officials, police), the pressure of public opinion, prestige and credibility considera-
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tions, or moral attitudes (which can be regarded as internalized penalties for break-
ing agreements).

Finally, in games with strictly opposite interests (i.e., two-person zero-sum
games), no useful purpose could be served by agreeing on some joint strategy, be-
cause the players have no common interests at all which they could promote by
such agreements.

Thus it is convenient to include games with strictly identical interests among
cooperative games and to include games with strictly opposite interests among non-
cooperative games. This gives the following classification:

A. Cooperative games, including
(a) Games with strictly identical interests.
(bj) Games with mixed interests, where agreements and other commitments

are enforceable.
B. Noncooperative games, including

(b2) Games with mixed interests, where agreements and other commitments
are not enforceable.

(c) Games with strictly opposite interests (two-person zero-sum games).

Of course, there are various intermediate cases between fully cooperative and
fully noncooperative games. For example, in some games certain classes of agree-
ments may be enforceable; others may be unenforceable. Or the same agreements
may or may not be enforceable, depending on various specified conditions (e.g.,
only agreements concluded in the last stage of the game may be fully enforceable).
Most of these intermediate cases will not be discussed in this book. (They repre-
sent "nonclassical" games - cf. Section 1.2.) We will discuss, however, the inter-
mediate case of almost-noncooperative games. These are defined as games in which
the players can be trusted to keep agreements or other commitments as long as they
have no positive incentive to break the latter (even though they may have no posi-
tive incentive not to break these agreements or commitments either). This means
that in such games, unlike in fully noncooperative games, not only will strong
equilibrium points be stable but weak equilibrium points will be also. The concept
of almost-noncooperative games can be justified by assuming that in such games
there is a commitment-enforcing agency but that it can impose only very small
fines (not exceeding some very small positive number e) on the players for vio-
lating any agreement or other commitment. This assumption may be described by
saying that in these games agreements and other commitments are e-enforceable.

Our definitions both for cooperative and for noncooperative games are more
general than the customary definitions, which would require free preplay communi-
cation among the players in the case of cooperative games and the absence of any
preplay communication in the case of noncooperative games. We have chosen these
broader definitions, because this will enable us to observe the effects of indepen-
dently varying the two variables of commitment enforceability and of free
communication.
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Our analysis will be based on the following principle, which we will call the
principle of tacit bargaining.18 Assuming that the players are sufficiently intelli-
gent, any payoff-distribution agreement that they could reach by explicit bargain-
ing they can also reach by tacit understanding alone if every player realizes that this
payoff distribution represents the only rational solution of the game.

Thus our definitions of both cooperative and noncooperative games cover both
vocal games, where the players are free to communicate, and tacit games, where
they are not (as well as various intermediate cases).



6

Rationality postulates
for game situations

6.1 Introduction

The rationality postulates (axioms) that we will use in our analysis of game situa-
tions fall into two main classes:

A. Postulates of rational behavior in a narrower sense, stating rationality criteria
for strategies to be used by the players.

B. Postulates of rational expectations, stating rationality criteria for the expecta-
tions that rational players can entertain about each other's strategies.

Postulates of Class A in themselves would not be sufficient. We have defined
game situations as situations in which each player's payoff depends not only on his
own strategy but also on the other players' strategies. If a player could regard the
other players' strategies as given, then the problem of rational behavior for him
would be reduced to a straightforward maximization problem, viz., to the problem
of choosing a strategy maximizing his own expected payoff. But the point is pre-
cisely that he cannot regard the other players' strategies as given independently of
his own. If the other players act rationally, then their strategies will depend on the
strategy that they expect him to follow, in the same way that his own strategy will
depend on the strategies that he expects them to follow. Thus there is, or at least
appears to be, a vicious circle here. The only way that game theory can break this
vicious circle, it seems to me, is by establishing criteria for deciding what rational
expectations intelligent players can consistently hold about each other's strategies.

Our postulates of Class A can be divided into Subclasses A* and A**. Subclass
A* consists of four postulates, all of them asserting in different ways that, other
things being equal, rational players will prefer strategies yielding higher payoffs.
Subclass A** consists of a single postulate stating that, other things being equal,
rational players will be indifferent between strategies yielding equal payoffs, and
will choose between such strategies in a random manner.

Technically all the postulates in Subclass A* are based on pay off-dominance
relations: Postulates A2 and A3 are based on two variants of reply-dominance,
while Postulates Al and A4 are based on two variants of simple dominance1 (al-
though Part II of Postulate A4 can also be interpreted as based on joint domi-
nance). Specifically what Postulates Al, A2, and A3 assert is that a rational player
will choose a strategy that is a maximal element (i.e., one that is undominated)
with respect to the relevant payoff-dominance relation.2 The intuitive meaning
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of this is that a rational player will not be satisfied until he has found a strategy
that cannot be improved upon further, i.e., a strategy maximal in the relevant
sense.

Our four postulates of Subclass A* are closely related to certain axioms and
theorems of individual decision theory (utility theory). Postulates Al and A4 are
essentially specialized forms of the Monotonicity Principle (Sure-Thing Principle)
that appeared as Axiom 3* and as Axiom 3** in Chapter 3. On the other hand,
Postulates A2 and A3 are specialized forms of the utility maximization and of the
expected-utility maximization theorems appearing as Theorems 3.1,3.2, and 3.3.3

Class A** consists of a single postulate, Postulate A5. It envisages a situation in
which a given player / has to choose a strategy a,- from some set 2,* of "equally
good" strategies, all expected to yield him the same payoff. The postulate asserts
that in such a situation he will be equally likely to choose any one of these "equally
good" strategies ot. This means that his behavior will be such as if he chose the
centroid strategy a,-* of this set 2,-*.

This postulate (or some similar postulate) follows from the customary operational
definition of equality between two utilities. For example, let a/ and o/f be two
strategies in set 2,*. If player / were found to choose (say) strategy a/ more often,
i.e., with a higher probability, than he chooses strategy a/', then this would be
taken as an indication that he attaches a higher utility to o- than he attaches to
o". He would not be regarded as attaching the same utility to both strategies
unless he were found to choose them with the same probability.

Note that Postulate A5 does not assert that player /will intentionally choose
the centroid strategy a,-*. Rather it asserts that he will be equally likely to choose
any strategy a,- in set 2,-*, which is, of course, behaviorally equivalent to choosing
the centroid strategy a,-* of this set. If player / intentionally chooses strategy a,-*,
then he would presumably generate the probabilities that a,* assigns to various pure
strategies by using some mechanical chance device, e.g., by flipping a coin. How-
ever, under our assumptions these probabilities will be generated not by a mechan-
ical device of this kind but rather by what amounts to an unconscious chance
mechanism inside player /'s central nervous system.4

Note. It is easy to visualize situations where one may wish to replace our Postu-
late A5 by a more general assumption. For example, suppose that set 2,-* contains
five different strategies, which we shall call Xx,. . . , X5. Let us assume that these
five strategies fall naturally into two different classes, viz., class X°, consisting of
strategies Xx and X2; and class X°°, consisting of strategies, X3, X4, and X5. In
this case all will depend on the specific method by which player / chooses his
strategy. One possibility is that he will disregard the fact that the five strategies
can be divided into two classes and will simply choose one of the five strategies at
random (with any one of them having the same chance of being selected). In this
case each strategy will have probability \ of being chosen, in accordance with
Postulate A5.

However, another possibility is that player / will first choose between classes X°
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and X°° at random (both classes having an even chance). Only then will he choose
a strategy from this class at random (again giving equal chance to all strategies
within the class). In this case the probability of being chosen will be \ for
strategies Xx and X2, and will be £ for strategies X3, X4, and X5.

As this example shows, in general the probability distribution of a given player's
strategy choices over any set 2,* of "equally good" strategies will depend crucially
on the specific nature of the decision-making processes that this player will use in
choosing his strategy - even assuming that these processes do operate in accordance
with some kind of equiprobability principle. Clearly, from a game-theoretical
point of view, the nature of each player's decision-making processes - and the
specific probability distributions generated by them - must be regarded as part of
the data in the same way as each player's utility function must be regarded as part
of the data (independent variables) determining the nature of the game situation.

Thus under our theory every player is characterized by two pieces of information.
One is his utility function, governing his choices between alternatives of unequal
utility. The other is a certain family of probability distributions II/(a,-; 2,-*)
governing his strategy choices in situations where he has to choose a strategy a,
from some set 2,-* of strategies, all of which are expected to yield him the same
payoff (the same utility).

It is reasonable to assume that in many cases player /'s decision-making pro-
cesses will be sufficiently uniform to permit derivation of all these probability dis-
tributions n,(a,-; 2/*) as conditional distributions from one fundamental proba-
bility distribution n,-(a,-) = Il/(a/; 2,-), defined over his entire strategy space 2/.
That is to say, in the very special case where all of player /'s strategies happen to
be "equally good," i.e., where 2/* = 2,-, player /'s strategy choice will be directly
governed by this fundamental probability distribution n^a,-). But in the more
usual case where the set 2,* of "equally good" strategies is a (possibly quite small)
proper subset of player /'s strategy space 2,-, his strategy choice will be governed by
the corresponding conditional probability distributions 11/(af-; 2/*) =
nKaJa, e s,*).

Our Postulate A5 as it stands is equivalent to the assumption that the fundamen-
tal probability distribution IIf(o) - and therefore also all the conditional proba-
bility distributions II/(a,-; 2,-*) - are uniform distributions. But it is easy to verify
that all our results in what follows could be easily restated in such a way that
they would correspond to more general assumptions about the mathematical form
of the probability distributions II/(a,-; 2/*), governing any given player's choices
among "equally good" strategies.

We assume that every game G will be preceded by a bargaining game B(G), in
which the players will try to agree on their payoffs and on specific strategies for
obtaining these payoffs.5 Only after this bargaining game has been completed
will the players play the main game G itself, implementing the agreed-upon
strategies and obtaining the corresponding payoffs. We can analyze this bargaining
game B(G) by assuming that each player / has a bargaining strategy ft that has the
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nature of a decision rule telling him whether to make a concession (i.e., whether to
accept a lower payoff than he has asked for thus far) at any particular stage of the
bargaining game or not. When we speak of "strategies" rather than "bargaining
strategies," we will always mean strategies ot in the main game G.

Suppose that at a given stage of the bargaining game B(G) one of the players
proposes some joint strategy a for use in the main game G. Then the bargaining
strategy ft of every other player i must specify whether he is to agree at this stage
to this proposed joint strategy o or not. By A /(ft) we will denote the set of all
joint strategies o agreeable to player / at a given stage of the bargaining game B{G),
as determined by his bargaining strategy ft.

As we will see, there are games in which a given player / cannot rationally expect
more than his maximin payoff u(. Such games will be called unprofitable to this
player i. All other games will be called profitable to player i.

6.2 The rationality postulates

We will now state our postulates of rational behavior for game situations.

Class A, Postulates of rational behavior in a narrower sense

Subclass A * Postulates of preference for strategies yielding higher payoffs
(pay off dominance postulates)

Al. Maximin postulate. In any game G unprofitable to you, always use a maxi-
min strategy bt. (In other words, if you cannot hope to obtain more than your
maximin payoff M,- anyhow, then use a strategy fully assuring you at least that
much.)

A2. Best-reply postulate. In a game G profitable to you, as far as your binding
agreements with other players allow, always use a strategy ot representing a best
reply to the strategy combination ol used by the other (n - I) players. (This
postulate implies that in a profitable noncooperative game the strategies used by
the players will always represent an equilibrium point. For reasons that we will
discuss, the postulate does not apply to unprofitable noncooperative games.
Finally, in the case of cooperative games the postulate does not limit the players'
choice to equilibrium points, because, as soon as the players agree on any joint
strategy a which is not an equilibrium point, the postulate ceases to be operative.)

A3. Subjective-best-reply postulate (Bayesian expected-utility maximization
postulate). In a bargaining game B(G) associated with a game G profitable to you,
as far as your binding agreements with other players allow, always use a bargaining
strategy ft representing your subjective best reply to the mean bargaining-strategy
combination J31 that you expect the other players to use. [In a bargaining game
B(G) in general the players will not know each other's bargaining strategies in ad-
vance and will have thus to rely on the subjective probabilities that they assign to
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various possible combinations of the other players' bargaining strategies. Hence we
cannot require more than that each player's bargaining strategy ft should be a sub-
jective best reply to the other players' expected mean bargaining-strategy combina-
tion. In contrast, in the main game G itself we can require that the strategy a,- of
each player / should be an actual best reply to the strategy combination used, in
fact, by the other players, because our theory yields sufficiently definite predic-
tions to enable each player to satisfy this stronger requirement in choosing his own
strategy.]

A4. Acceptance-of-higher-payoffs postulate.

Part I. Let o and a* be two joint strategies available to the n players, both of them
consistent with our other rationality postulates. Suppose that a* would yield you
(player /) a higher payoff U;(o*) > Uj(o). Let us assume that, at a given stage of
the bargaining game B(G), the set ^4, (ft) of all joint strategies acceptable to you (as
determined by your bargaining strategy ft) would include the joint strategy o.
Then this set ^4/(ft) must also include the joint strategy a* more favorable to you.
(In other words, if you are willing to agree to some joint strategy a, then you must
be even more willing to agree to another joint strategy a* yielding you a higher
payoff than o would.)

Part II. Letj3 = (j81,. . . , f t , . . . ,pn) and 0* = (fr *, . . . ,ft*, . . . ,ft,*)be two
possible ^-tuples of bargaining strategies for the n players, both of them consistent
with our other rationality postulates, but j3* yielding you (player /) a higher pay-
off than 0 would. Suppose that, in the absence of any special agreement to the
contrary, you and all the other players would use bargaining strategies correspond-
ing to the «-tuple  j3. Then you must be willing to enter into an agreement under
which you and all the other players will shift to bargaining strategies corresponding
to the tt-tuple j3*.

Subclass A**. Postulate of indifference between strategies yielding equal
payoffs

A5. Equiprobability or centroid postulate. Let 2,-* be a subset of player /'s
strategy space 2Z-. Suppose that all strategies ot in this set 2,* would be equally
consistent with our other rationality postulates and that player / expects all of
them to yield him the same payoff ut. Then player / will be equally likely to use
any particular strategy ot in this set 2,*. Hence his behavior will be such as if he
used the centroid strategy ot* of this set 2,-*.

Class B. Postulates of rational expectations

Bl. Mutually expected-rationality postulate. In the same way that you will follow
the present postulates (i.e., Postulates Al through A5 and Bl through B3), if you
are a rational player, you must expect, and act on the expectation, that other
rational players will likewise follow these rationality postulates.
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B2. Symmetric-expectations postulate. You cannot choose your bargaining strat-
egy ft on the expectation that a rational opponent will choose a different bargain-
ing strategy from your own and, in particular, that he will choose a bargaining strat-
egy more concessive than you would choose in the same situation. (That is, if you,
in his place, would refuse a given concession and would regard this refusal as a
rational decision on your own part, then you cannot expect that another player,
no less rational than you are, will take a more accommodating attitude in this
situation.)6

B3. Expected-independence-of-irrelevant-variables postulate. You cannot expect a
rational opponent to make his bargaining strategy j3y dependent on variables whose
relevance for bargaining behavior cannot be established on the basis of the present
rationality postulates. (The purpose of this postulate is to exclude some com-
pletely arbitrary decision rules, e.g., making the players' payoffs proportional to
their telephone numbers. We need the present postulate, because many of these
arbitrary decision rules would be quite consistent with all our other rationality
postulates. The present postulate, however, rules them out on the ground that
there is no reason to regard, e.g., telephone numbers as relevant variables in de-
ciding the players' payoffs.)

In Chapter 8 we will restate Postulate B3 in a more specific and therefore ana-
lytically more useful form by explicitly naming those variables which under our
theory can and those which under our theory cannot rationally influence a*h intel-
ligent player's bargaining behavior. But at this point an unduly long digression
would be required to decide which particular variables belong to either category.

6.3 The postulates of rational expectations: their weaker and their stronger form

We do not always need all three postulates of rational expectations (Class B). In
the analysis of the two extreme cases of games with strictly identical interests and
of games with strictly opposite interests (and in some other rather special cases),
we need only one of these, the postulate of mutually expected rationality (Postu-
late Bl). This is so because, as we will see, the solution of these games is fully
determined by certain payoff-dominance relations: Thus all we have to assume is
that each player himself will act in accordance with these relations and will expect
the other player(s) to do the same. These games will be called games determined
by payoff-dominance relations. Moreover, we will call Postulate Bl our weak
postulate of rational expectations, whereas our postulates of Class A together with
Postulate Bl will be called our weak rationality postulates.

In contrast, in games with mixed interests in general, the payoff-dominance re-
lations existing in the game by themselves will fail to determine a unique solution,
and the outcome of the game will depend on bargaining among the players. Such
games will be said to involve an indeterminacy problem and more particularly a
bargaining problem. Here we will need all three of the postulates of Class B in
order to obtain a unique solution. These three postulates together will be called
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our strong postulates of rational expectations, whereas the latter together with the
postulates of Class A will be called our strong rationality postulates.

We will see that our strong rationality postulates imply a certain rationality
criterion for bargaining behavior, to be called Zeuthen's Principle. This principle
says essentially that in bargaining situations the next concession must always come
from that particular player who can least afford risking a conflict by not making
the next concession. On the basis of Zeuthen's Principle we will define a new class
of dominancelike relations, to be called risk-dominance relations. The term refers
to the fact that they are based on comparing the risks (i.e., the subjective proba-
bilities) of a conflict that different players are willing to face in preference to
making a concession. This fact sets them apart from payoff-dominance relations,
based on comparing the payoffs associated with alternative strategies.

We will find that these risk-dominance relations do select a unique solution even
in games in which the pay off-dominance relations by themselves would not do so.
Such games will be called games determined by bargaining or games determined by
risk-dominance relations.

6 A Analysis of games with strictly identical interests

To illustrate how our rationality postulates can be used in the analysis of games
with strictly identical interests, consider the simple two-person game in Example 1.

Bx B2

(100,100) (200,200)
( 0, 0) (201,201)

Example 1

Even without using any formal rationality postulates, by sheer common sense,
rational players will obviously use the strategy pair (A2,B2), which jointly
dominates any other possible strategy pair and which yields both players the
highest possible payoffs ux = u2 = 201. Formally this conclusion can be estab-
lished as follows: Let (/3X, j32) be a pair of bargaining strategies that would make
the players agree to use the strategy pair (A2 ,B2 ) in the main game. By Part II
of Postulate A4, whatever bargaining strategies the players start with, they will end
up with the bargaining strategies (/^ , j32 ) or with some equivalent bargaining strat-
egies. Therefore they will always agree to use the strategy pair (A2,B2) in the
main game.

Explicitly this reasoning has made no use of the postulates of Class B. But im-
plicitly it does presuppose Postulate Bl. If player 1 did not expect player 2 to act
rationally (i.e., in accordance with our preceding analysis), then player 1 could
not rationally use strategy A 2 . In particular, if he expected player 2 to be mis-
guided enough to use strategy Bx (instead of using strategy B2 , as we would recom-
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mend), then player 1 would be obviously well advised to shift to strategy A x. Thus
his use of strategy A2 does depend on Postulate Bl.

6.5 Analysis of two-person zero-sum games

Consider the two-person zero-sum game in Example 2. (Contrary to the usual prac-
tice, we are indicating both players' payoffs explicitly.)

A2

A3

B

( 5,
( 6,
(-8,

I

-5)
-6)

8)

B

(2,
(0,
0.

2

-2)
0)

-1)

B

( 7 ,
("3,
(10,

3

-7)
3)

-10)

Example 2

The von Neumann-Morgenstern solution for two-person zero-sum games requires
that both players use maximin strategies. (Of course, if we analyzed the game
wholly in terms of player l's payoffs, as is usually done, then a maximin strategy
of player 2 would have to be described as a minimax strategy.) In our example
this means that the players should use the strategy pair (Al9B2 )• Under our
theory the justification of the von Neumann-Morgenstern solution lies in the fol-
lowing facts:

1. A two-person zero-sum game is unprofitable to both players. That is, if the
other player plays rationally, then neither player /(/ =1,2) can hope to obtain
more than his maximin payoff w,-.

2. Therefore, by Postulate Al, both players should use maximin strategies.
To illustrate the first point, in Example 2 player 1 cannot hope to obtain more

than iii =2, because by using strategy B2 player 2 can keep him down to this pay-
off level7 and Mil actually do so if he acts rationally, since it is in his interest to do
so. By the same token, player 2 cannot hope to obtain more than u2 = ~2, because
by using strategy A x player 1 can keep him down to this payoff level8 and will
actually do so if he acts rationally, since it is in his interest to do so.

More formally, by making use of Postulate A2, we can show that a two-person
zero-sum game is unprofitable to both players. In view of this postulate, the
highest payoff that any player can obtain in a noncooperative game, if the other
player or players act rationally, is his highest equilibrium payoff. But in a two-
person zero-sum game the equilibrium payoff that either player / would obtain at
any equilibrium point equals his maximin payoff w,-. Therefore in a two-person zero-
sum game neither player can obtain more than this if his opponent acts rationally,
which means that the game is unprofitable to both players. (By the same reason-
ing, any noncooperative game is unprofitable to a given player if all equilibrium
points of the game are unprofitable to him.)
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Note that in order to show that a two-person zero-sum game is unprofitable to
either player, we must make essential use, at least implicitly, of Postulate Bl. That
is to say, if either player did not expect the other player to act rationally (i.e., to
act in accordance with our rationality postulates), then his maximin payoff would
no longer be the highest payoff that he could rationally hope to achieve. There-
fore it might be no longer true that the best thing for him to do would be to use a
maximin strategy. For instance, if player 1 in Example 2 expected player 2 to be
foolish enough to use strategy B3, then he could rationally expect to obtain the
payoff Mi =10 (much larger than his maximin payoff iii = 2); but in order to
accomplish this he would have to use strategy A 3 . (His maximin strategy A j
would yield him only ux =7.)

Going over to the second point, in order to bring out the intuitive meaning of
Postulate Al, we introduce the concept of the truncated game T(G), which is
defined as follows: We take the payoff matrix on the original game G, eliminate
all payoffs of player 1 exceeding his maximin payoff t / j , and replace them by the
quantity ux. Likewise we eliminate all payoffs of player 2 exceeding his maximin
payoff w2 , and replace them by the quantity ii2 . In our example this procedure
will give us the truncated game in Example 3. (Notice that in general the truncated
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game is no longer a zero-sum game, but this does not matter for our analysis.) The
purpose of constructing the truncated game is to eliminate those payoffs that the
players cannot rationally expect to achieve against a rational opponent and, by
this method, to enable the players to evaluate their various strategies in a more
realistic manner. For example, in the original payoff matrix, for player 1 strategy
A{ does not dominate strategies A2 andv43 (because in the case of strategy A 2,
6 > 5; and in the case of strategy A3, 10 > 7). But in the truncated game, A x does
dominate the other two strategies, because those entries (viz., 6 and 10), where the
other two strategies had an advantage over A x, have been eliminated since these
entries cannot be achieved against a rational opponent. We can now state:

Lemma 1. Let bt be a maximin strategy, and let bt be a nonmaximin strategy, in
the original game G. Then in the truncated game T(G), bj will have (at least) weak
simple dominance over a,-.

Proof. To fix our ideas, suppose that bt = b1 and dj = bx are strategies of player
1. (The case in which they are strategies of player 2 can be treated similarly.) By
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definition, in the original game G, bx will have the security level u1, where ux is
player l's maximin payoff. In contrast, ox will have some security level ux <ux.
Therefore in the truncated game T(G), in the row corresponding to bx, all entries
representing player l's payoff will be equal to U\. On the other hand, in the row
corresponding to ox at least one entry will be U\ <Ux. But all entries U\ in this
row will satisfy ux ^ \i\. Therefore ox will have (at least) weak simple dominance
over o!.

Lemma 2. A given strategy bt will be maximal (undominated) in the truncated
game T{G) with respect to weak simple dominance if and only if bt is a maximin
strategy in the original game G.

Proof. By Lemma 1, if bt is a maximin strategy, it will be undominated by any
nonmaximal strategy ot. (In fact, dominance will go the other way around.) On
the other hand, a, will also be undominated by any other maximin strategy a/,
because, in the rows (or columns) corresponding to both bt and a/, all entries
for player /'s payoff will be ut, so that neither of these two strategies will dominate
the other. Finally bt will be undominated only if it is a maximin strategy, because,
by Lemma 1, every nonmaximin strategy bt is dominated by the maximin strategies
of player /.

Therefore we can state Postulate Al also as follows:

Postulate A1*. In a game G unprofitable to you, always use a strategy bt that is
maximal (undominated) under weak simple dominance the corresponding truncated
game T(G).

6.6 Note on simple dominance

It is often asserted in the game-theoretical literature that a rational player / will
always use some strategy bt undominated by any other strategy o/ of the same
player (in terms of strong or even of weak simple dominance). This statement will
be called the Dominance Principle. Our own theory does not use this principle in
its unqualified form. It uses only two - quite restricted - forms of the principle,
Postulates Al and A4. The former asserts the Dominance Principle about strat-
egies in the truncated game T(G) derived from a game G unprofitable to the rele-
vant player, whereas the latter asserts an essentially similar principle about strat-
egies in the bargaining game B(G). But in general we do not assert the Domi-
nance Principle about strategies in the original game G.

The reason is that we do not regard the principle as a rationality postulate of
general validity. Consider, for instance, the two-person nonzero-sum game in
Example 4. (As we will see, this kind of game is called a Prisoner's Dilemma
game.) By Postulates Al and A2, if this game is played as a noncooperative game,
then its solution must be the strategy pair (A2 ,B2). But if it is played as a co-
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operative game, then, by Part II of Postulate A4, its solution will be the strategy
pair {A x, Bx), which is the only efficient joint strategy in the game. This will be
true even though the strategies A x and Bt are both strongly dominated by strat-
egies A2 and B2 . This example shows that the Dominance Principle, even if re-
stricted to strong simple dominance, has no general validity, at least in the case of
cooperative games: It may be perfectly rational for the players to use strongly
dominated strategies.

In the case of (profitable) noncooperative games it is true, of course, that under
our theory no strongly dominated strategy can be a rational strategy. But this is
true only because, by Postulate A2, a rational strategy must be an equilibrium
strategy, and an equilibrium strategy cannot be strongly dominated by another
strategy. However, in certain cases it will be rational for some players to use
weakly dominated strategies. For example, consider the game in Example 5. In
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this game there are two classes of equilibrium points. Class I consists of the one
strategy pair s* = (A j , Bx), while Class II consists of all strategy pairs of the form
s(p) = (pAi + (1 - p)A2 ,B2) with 0 < p ^ 1. The one equilibrium point 5* in
Class I is strong and is therefore stable. But in Class II, according to the criteria
that we will state later, only the centroid equilibrium point 5** = s(^) = (\ A x +
\ A2 ,B2) is stable. This is true even though s** is weakly dominated by another
equilibrium point in Class II, viz., by 5(1) = (Ax ,B2). Under our theory, if
player 1 expects player 2 to use strategy B2 , then player 1 will use strategies A x
andv42 with equal probabilities. (In other words, the fact that A x would do
better than A 2 would do against .fix -which makes Ax weakly dominate A 2 -
does not matter, since player 1 would expect player 2 to use B2 .)

Of course, if the players' choice is restricted to 5* and 5**, he will choose 5**,
since U(s*) = (1, 1), while U(s**) = (10, 10), and therefore 5** jointly dominates
5*. Consequently the solution of the game is 5**, even though 5** uses the weakly
dominated strategy (^ Ax + \ A2).
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The four basic problems facing
ttie players of a game

7.1 The four basic problems

Playing a game effectively means solving the problem of choosing a rational strat-
egy. It is convenient to divide this problem into several subproblems, which are
in general not independent of one another but are at least logically distinguishable:

1. The enforcement or stability problem. This consists in identifying the stable
joint strategies, i.e., those which can be adopted by means of enforceable or self-
enforcing agreements and therefore, once agreed upon, will in fact be implemented
by the players.

2. The joint-efficiency problem. Let E be the set of all payoff vectors u that can
be achieved by means of stable joint strategies. Then the joint-efficiency problem
consists in finding the set E* of all efficient (undominated) payoff vectors w* in E.

3. The payoff-distribution or bargaining problem. This consists in agreeing on
one particular efficient payoff vector w** of set E*. This problem can be further
subdivided into:

(a) The bargaining problem in a narrower sense.
(b) The threat problem, i.e., the problem of choosing optimal threat strat-

egies for the purpose of strengthening one's own bargaining position
against the other players.

(c) The coalition problem, i.e., the problem of deciding what coalitions one
should try to join in order to strengthen one's bargaining position.

4. The strategy-coordination problem. This consists in agreeing on one par-
ticular joint strategy for achieving the payoff vector «** selected by the players.

In this chapter we offer a brief general overview of how our theory deals with
each of these problems. In the following chapters we will discuss the specific solu-
tion concepts that our theory provides for various classes of games.

7.2 The enforcement or stability problem

Our theory deals with this problem by means of Postulates Al, A2, and A5. We
have already seen that in a cooperative game every possible joint strategy will be
stable as soon as the players have agreed to adopt it. In a noncooperative game,
however, only strong equilibrium points have full stability. If o = (oi,. . . , on) is
a weak equilibrium point, then at least one player i will be able to switch from his
equilibrium strategy ot to some other strategy 7/ without positive penalty, even if

124
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all other players stick to their own equilibrium strategies ox,. . . , a / . j , oi+l, . . . , on.
(Of course, player /cannot achieve any positive gain either by shifting to 77, since-a
is an equilibrium point. But this fact in itself is insufficient to assure full stability.)

To illustrate the reasons that we restrict Postulate A2 to profitable games, con-
sider the two-person noncooperative game in Example 1. The only equilibrium
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point in this game is the strategy pair a* = {A *, B*), where A* = j Ax +^v42 and
B* = \ Bx + \ B2 . But this is a weak equilibrium, and, what is more important for
our present analysis, it is unprofitable to both players, because the payoffs U\ (a*) =
30 and U2(o*) = 36 are only the maximin payoffs of the two players. Each of
them could achieve the same payoff by using his maximin strategy, which is ̂ 4 =
\ Ax + I A2 in the case of player 1 and isB = | By + f B2 in the case of player 2.
Indeed in our opinion each player will be better off actually by using his maximin
strategy A or B than he would be by using his equilibrium strategy A * or B*. For
instance, if player 1 uses strategy A, then he can be absolutely sure of obtaining the
payoff iij = 30. In contrast, if he uses strategy ,4*, then he will obtain the same
payoff 30 only if the other player also uses his equilibrium strategy B*. But if
player 2 uses some other strategy (viz.,B2), then his payoff may fall as low as 8.
Yet player 1 has no reason to expect that player 2 will in fact stick to the equilib-
rium strategy B*, because player 2 will not suffer any kind of penalty if he shifts
to another strategy while player 1 himself uses strategy A*. Accordingly Postulate
Al suggestsrthat in games of this type the players should use maximin strategies
instead of trying to reach an equilibrium point.

Our example also illustrates the fact that weak equilibrium points are in general
unstable.

To illustrate the use of Postulate A5, consider the two-person noncooperative
game in Example 2. In this game all possible pairs of mixed strategies1 are equilib-
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rium points, and all of them are weak equilibrium points. If the game were played
as a cooperative game - or even as an almost-noncooperative game2 - then the
players presumably would agree to use the strategy pair (A 1, Bx), which would
yield them the payoffs u.x = u2 = 3. But we are assuming that this is a strictly non-
cooperative game in which such an agreement would have no binding force. There-
fore, by Postulate A5, each player will be equally likely to use any of his mixed
strategies. Thus his behavior will be such as if he always used his centroid equilib-
rium strategy A* - \AX + \A2 (in the case of player 1) or/?* = \BX + \B2 (in
the case of player 2). Hence we define the solution of the game as the centroid
equilibrium point a* = (y4 *,/?*), which will yield the two players the expected
payoffs ux* = w2* = 2.

More generally we call a uniformly profitable equilibrium point o stable in a
noncooperative game if it is a centroid equilibrium point. (By this definition strong
equilibrium points are always stable because they are always centroid equilibrium
points.)

If an equilibrium point a is partially profitable, i.e., if it is profitable to some
player(s) / but is unprofitable to some other player(s)/, then we call it stable if:

1. For each player i, the strategy ot is his centroid best reply to the strategy com-
bination ol used by the other (n - 1) players.

2. For each player/, the strategy a;- is his centroid maximin strategy.
Here the first requirement is based on Postulates A2 and A5, whereas the second

requirement is based on Postulates Al and A5.
On the other hand, in almost-noncooperative games, all uniformly profitable

equilibrium points are stable, even if they are not centroid equilibrium points,
whereas partially profitable equilibrium points are stable if they satisfy the second
requirement, even if they fail to satisfy the first. This is why we have argued that,
in our example, the players can agree to use the equilibrium point (A x,Bx) if the
game is played as an almost-noncooperative game: In such a game an agreement
of this kind will have binding force.

Many discussions in the literature assume that all equilibrium points are stable
and therefore seem to have in mind almost-noncooperative rather than strictly
noncooperative games. (However, under our theory even in the former class of
games equilibrium points must satisfy some - rather weak - special stability re-
quirements if they are to be stable.)

Note. As we have already stated, under our theory a strong equilibrium point is
always stable. It remains to be shown that this statement is consistent with stabil-
ity conditions (1) and (2), based on Postulates Al, A2, and A5 - even in the case
of strong equilibrium points unprofitable to one or more players. This will be
shown by proving the following two lemmas.

Lemma 1. Let o = (ox,. . . , a;-, . . . , on) be a strong equilibrium point unprofitable
to player/. Then player/'s equilibrium strategy Oj will be a maximin strategy and
will be, in fact, his only maximin strategy in the game.
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Proof. Suppose that oy is not a maximin strategy or that a;- is at least not the
only maximin strategy that player/ has. Then in either case player/ must have at
least one maximin strategy oy different from oy. Let iij be player/'s maximin
payoff. Because o = (o;-, o}) is unprofitable to player/, we have

U}iof,o>') = uf (7.1)

As oy is a best reply to o7, we have

^ a O ^ / l a / V ) (7.2)
As dj is a maximin strategy, we have

Uf{bf,o>')Zuf (7.3)

But (7.1), (7.2), and (7.3) together imply that

Uf(of,o>') = Uf(df,o>') = uj (7.4)

Consequently both Oj and oy are best replies to o7, and therefore o is not a strong
equilibrium, point contrary to our assumptions. Hence both the assumption that
oy is not a maximin strategy and the assumption that o7- is not the only maximin
strategy of player/ lead to contradiction. This proves the lemma.

Lemma 2. Let o be a strong equilibrium point unprofitable to some player(s) /
and (possibly) profitable to some other player(s) /. Then each equilibrium strategy
ot of such a player / will satisfy stability condition (1), and each equilibrium strat-
egy Oj of such a player/ will satisfy stability condition (2). Therefore o will be a
stable equilibrium point.

Proof Since o is a strong equilibrium point, each strategy ot will be player z's
only best reply to the strategy combination ol of the other players and therefore
will be his centroid best reply to ol. On the other hand, by Lemma 1, each strat-
egy oy will be player/'s only maximin strategy and therefore will be his centroid
maximin strategy. But this means that each ot will satisfy condition (1) and that
each Oj will satisfy conditon (2), as desired.

7.3 The joint-efficiency problem

Let P be the payoff space of the game, i.e., the set of all payoff vectors that can
be achieved by any joint strategy available to the players. Let E be the enforceable
set, i.e., the set of all payoff vectors that can be achieved by any stable joint strat-
egy (as defined in Section 7.2). In cooperative games E = P, but in noncooperative
games E will be a subset (usually a very small subset) of P.

By Part II of Postulate A4, rational players will try to achieve an efficient payoff
vector u within this enforceable set/?. (That is, they will try to achieve some pay-
off vector u in E such that it is not dominated, or at least is not strongly domi-
nated, by any other payoff vector u in E) Thus, under our theory, such efficiency
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considerations can operate only within the enforceable set/?. This gives rise to the
Prisoner's Dilemma Paradox:3 The players cannot do any better than obtain some
payoff vector u* €E, even though another mutually preferred payoff vector M G P
but $.E, with u( > W/* for all players /, would be physically available to them.

For instance, consider the game in Example 3 (discussed in Section 6.6). If this
is played as a cooperative game, then the players can enter into a binding agreement
to use the strategy pair (Al,Bi) and can in this way obtain the highest payoffs
physically available to them, viz.,ux = u2 = 10. We will call (A j ,BX) the coopera-
tive solution of the game.
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However, (A x , B x ) is not an equilibrium point; in fact, the strategy pair (A2,B2)
is the only equilibrium point of the game. Therefore, if the game is played as a
noncooperative (or even as an almost-noncooperative) game, then any agreement
to use (A i,Bj) would be unstable and surely would be violated by the players;
both of them know this. Hence the players cannot do any better than to use the
equilibrium strategy pair (A2 ,B2), even though this will give them only the much
lower payoffs u x * = u2 * = 1. [(A 2 , B2 ) is a strong equilibrium point and is there-
fore fully stable.] We will call (A2,B2) the noncooperative solution.

A different type of Prisoner's Dilemma Paradox arises in Example 2 of Section
7.2: There the strategy pair (A x, Bx), representing the cooperative solution, is
actually an equilibrium point. But the players cannot use it in a strictly non-
cooperative game, because it is an unstable equilibrium point. (The coordination
problem in Example 6, to be discussed in Section 7.5, gives rise to a Prisoner's
Dilemma situation of another type. The same is true of the bargaining deadlock
in Example 5, to be discussed in Section 7.4.)

7.4 The payoff-distribution or bargaining problem

The bargaining problem in a narrower sense

A bargaining problem arises whenever two players' preferences between any pair of
efficient payoff vectors w* and w** in the enforceable set E are not identical. This
means that a bargaining problem will arise if:
1. One player prefers w* to w**, while the other player prefers w** to w*.
2. One player has a clear preference between w* and w** (either way), while the
other player is indifferent between them.

But this means:



The four basic problems facing the players of a game 129

Lemma 1. A bargaining problem will arise whenever E contains more than one
efficient payoff vector.

Proof. Let w* and w** be two efficient payoff vectors in E. In order to avoid
both conditions 1 and 2 it would be necessary that either (a) all players should
prefer u* to w**, which would mean that u* > M,-** for all players /; or (b) all
players should prefer w**, i.e., that w,-** > u^ for all players /.

But (a) would mean that w* would strongly dominate w**, so that w** would
not be efficient, whereas (b) would mean that w** would strongly dominate w*,
so that w* would not be efficient. Thus both cases would be inconsistent with
our assumption that both w* and w** are efficient payoff vectors in E. This means
that, if there is more than one efficient payoff vector in E, then condition 1 or
condition 2 (or both) will be satisfied; therefore there will be a bargaining problem
in the game.

As an example, consider the two-person noncooperative game in Example 4. The
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game has three equilibrium points. Two of them, a* = {Ax , 5 ^ and a** = (A2 ,B2),
are in pure strategies and are strong, and therefore stable, equilibrium points. The
third, r = (^§3^1 + fM^2, \BX + jB2), is in mixed strategies and is unstable.
Hence the enforceable set E consists of the two payoff vectors w* = U(p*) = (2,1)
and w** = £/(a**) = (1,2). Both of them are efficient because they do not domi-
nate each other. Player 1 would obviously prefer u*, while player 2 would prefer
w**. Hence the choice between w* and w**, and between the corresponding equi-
librium points a* = 041 ,i?i) and a** = (A2 ,B2), is a bargaining problem.

Luce and Raiffa [1957, p. 110] have argued that, in a game such as this, equilib-
rium point a* will have "psychological dominance" over equilibrium point a**.
Their reasoning is that, in case of a conflict, i.e., if the two players could not agree
on which equilibrium point should be chosen, each player would presumably use
the equilibrium strategy corresponding to the equilibrium point that he would
prefer. Thus player 1 would choose strategy A x, while player 2 would choose strat-
egy B2 . Hence in a conflict the two players' payoffs would be ux =U1(A1,B2) =
-1 and u2 = U2 {A x, B2) = -100. Accordingly player 2 would be much more afraid
of a conflict than player 1 would be, and both players would know this. Therefore
player 2 would be under strong psychological pressure to yield and to accept the
equilibrium point a* preferred by player 1. This is what Luce and Raiffa mean by
the statement that a* would have "psychological dominance" over a**.



130 General principles

As previously stated, our theory deals with the bargaining problem in terms of
Zeuthen's Principle, to be discussed in later chapters. But it may be worth men-
tioning that Zeuthen's Principle leads to the same conclusion as Luce and Raiffa's
analysis does and defines the equilibrium point a* = {A t ,BX) as the solution of
the game. (Indeed Zeuthen's Principle, as applied to small two-person noncooper-
ative games, can be regarded as a mere quantitative reformulation of Luce and
Raiffa's purely qualitative notion of psychological dominance.)

To illustrate certain difficulties that arise in analyzing bargaining problems, let
us consider the two-person noncooperative game in Example 5. This game, like
Example 4, has two stable equilibrium points, viz., a* = {A i ,/?i) and a** = (A2 ,
B2). By similar reasoning as before, the conflict situation would presumably lead
to the strategy pair (AlfB2). But now Ux (A j , B 2 ) = U2 (A i,B2) = -10. Thus
the two players will be "equally afraid" of a conflict and will be under the same
psychological pressure to yield (or not to yield). Hence neither a* nor a** will
have "psychological dominance" over the other.
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Because the game is completely symmetrical between the two players and also
between the two stable equilibrium points, it is clear that no mathematical princi-
ple of any kind (including, of course, Zeuthen's Principle) can help us to choose
one equilibrium point over the other. In cases such as this we say that there is
a bargaining deadlock between the two players (as well as between the two equi-
librium points). Our theory suggests that in such situations the two players cannot
hope to agree on which stable equilibrium point to choose. Since the third equi-
librium point is in mixed strategies and would be unstable, the game must be
classified as unprofitable to both players, and therefore by Postulate Al they
should use their maximin strategies A = Y$AX +^A2 and B = j | Bx + ^B2, even
though these will yield them only their maximin payoffs U\ - ii2 = ^ .

Of course, if the game were played as a cooperative game, then the players could
agree on a jointly randomized joint strategy, e.g., on the use of each stable equi-
librium point with a probability \ , yielding them the expected payoffs ux = u2 =
\\ . But in a noncooperative game the use of jointly randomized joint strategies
is not permitted.

The threat problem

By a threat we mean a binding commitment undertaken by a given player / to
implement some retaliatory strategy or threat strategy Qt E 2/ in case he cannot
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reach an agreement with some other player(s) on the final payoffs of the game.
Thus we are restricting our definition to "serious" threats meant to be implemented
if the relevant situation were to arise, as distinguished from mere "bluffs" involving
no serious intention of implementation. Because binding commitments can be
made only in cooperative games, the problem of choosing the most effective threat
strategies arises only in the latter.

The purpose of a threat is always to increase the costs of a possible conflict to
the opponent(s), in order to make him (or them) more reluctant to risk a conflict.
But any threat will tend to increase the costs of a conflict also to the player making
a threat, because it involves a (conditional) commitment on his part to implement
some threat strategy 0,-, which may be quite a costly operation. Indeed typically
the more damaging a given threat strategy is against the opponent(s), the more
costly it will be to implement.

Yet as far as a given threat commitment increases the conflict costs of the player
so committed, his reluctance to risk a conflict will increase; therefore his bargain-
ing position against his opponent(s) may worsen rather than improve. Thus the
problem of finding an optimal threat strategy in a given game amounts to finding
the best compromise between trying to increase the opponent's conflict costs and
trying to decrease those of one's own.

The problem of defining optimal threat strategies in a two-person cooperative
game has been solved by Nash [1953]. (We will discuss Nash's theory in Chapter 9.
Chapters 11 and 12 will discuss optimal threat strategies in ^-person cooperative
games.)

The coalition problem

This problem arises only in ^-person cooperative games, because these are the
only ones in which coalitions can form.

Both the threat problem and the coalition problem refer to behavior in conflict
situations. But when the players choose threat strategies, they decide how to deal
with their prospective opponents in case of a conflict. In contrast, when they
choose a coalition structure for the game, they decide who will be their allies in
case of a conflict. But both in choosing threat strategies and in choosing coalition
partners, each player's only aim is to strengthen his bargaining position against
those of the other players.

Our treatment of the coalition problem will be based on what we call the Prin-
ciple of Full-Coalition Formation: Under our theory, if there is free and unbiased
communication among the n players, then all the (2" - 1) possible coalitions will
be established by the players. Every possible subset R of the players will have some
common interests against the rest of the players and will form a coalition to protect
these common interests in bargaining with the other players. Thus our model will
closely resemble what political scientists call the pluralistic model of society.

In contrast, starting with von Neumann and Morgenstern [1944], most game-
theoretical approaches so far have been based on the assumption that in any par-
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ticular ^-person cooperative game the players will split into two or more mutually
disjoint coalitions, so that only a small fraction of all possible coalitions will actu-
ally come into existence. Under our own theory such a coalition structure, sup-
pressing some possible coalitions for the sake of others, can arise only if there is
a strong bias in the communication network of the game, which will favor the
emergence of some particular coalitions and hinder the emergence of others.

Our bargaining model for the «-person cooperative game (Chapter 10) will show
that it is perfectly feasible for all the (2n -1 ) possible coalitions to operate at the
same time, and in particular that no logical difficulty arises from the assumption
that each player will be simultaneously a member of a large number of different
and mutually overlapping coalitions and will support different coalitions on dif-
ferent issues, as determined by his own personal interests. Under our model each
coalition R will serve the interests of its members / primarily by guaranteeing them
certain payoffs wR, called "dividends," the final payoff ut of each player * to be
the sum of all dividends wR that he receives from the various coalitions R of
which he is a member. Each member / of a given coalition R will have an interest
in cooperating with the other members in trying to increase thejiividends wR

from this coalition R and in trying to decrease the dividends wR from the com-
plementary coalition R (consisting of all players / not belonging to R). Our model
specifies each player's optimal strategy under these assumptions.

For instance, in a three-person cooperative game, for some purposes players 1
and 2 will be in coalition against player 3; for other purposes players 1 and 3 will
be in coalition against player 2; for still other purposes players 2 and 3 will be in
coalition against player 1. Finally, on issues affecting the common interests of all
three players, all three will act as one grand coalition.

A different and more selective coalition structure can emerge only if there is some
communication bias. For instance, it may happen that coalition (12) will be the
only two-person coalition coming into existence, so that players 1 and 2 will side
on all issues against player 3; but this can happen only if players 1 and 2 can reach
a final cooperative agreement against player 3, before player 3 could intervene and
disrupt such an agreement by offering one of the other two players a higher payoff.
If the communication network is unbiased, then every player will be in a position
to intervene before the other two players have formed an all-purpose alliance
against him, and therefore all such possibly attempted alliances will be unstable.
The only stable arrangement will be a situation where all three possible pairs of
players [viz., (12), (13), and (23)] form coalitions for limited purposes, instead
of one pair of players forming an all-purpose alliance against the third player.

Stated differently, if the communication network of a three-person cooperative
game is symmetric with respect to the three players, then the game will give rise
to a symmetric coalition structure in which none of the three possible two-person
coalitions will have a privileged position. Only if the communication network
itself is asymmetric can the coalition structure be dominated by one of the three
possible two-person coalitions.
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7.5 The strategy-coordination problem

Two strategy ^-tuples o and o are called equivalent if they yield the same payoffs
to all players, i.e., in vector notation, if

U(,a)=U(a) = u = (u1,...,un) (7.5)

Let o and a be two such equivalent strategy /i-tuples. Suppose that the players
will obtain the payoff vector u = U(o) = U(o) not only if all players / use the
strategies ot corresponding to a, or if all of them use the strategies a,- corresponding
to a, but also if some players use the strategies oh while the other players use the
strategies ot. That is, suppose that

U(os,oS) = u for all SCN, where 5= N -S (7.6)

More generally let 2* be a set of any number of equivalent strategy w-tuples
a1, . . . , ak, . . . , all yielding the same payoff vector

u = U(ol)=-- = U(ok)=-" (7.7)

Let ok denote the /th component of ok.
Let f i = (f i , . . . , ?„) be a strategy w-tuple such that f i = a ^ , f2 = a2

m, . . .
where ok, a m , . . . E 2* but where k = or ̂ m. That is, different components f i,
f2 , • • • of f may (but need not) be chosen from different strategy /^-tuples ok,
am, . . . in 2*. Then we can say that f is a recombination of the strategy /i-tuples
a1 , . . . ,a / c , . . . inse tS*.

The strategy n-tuples a1, . . . , ok, . . . in set 2* are strictly coeffective if all their
possible recombinations f yield the same payoff vector

^ ( a i ) = . - - = £/(a*)=--- (7.8)

as the original strategy ^-tuples a 1 , . . . , ok,. . . themselves would yield.
We will say that a given game G involves a nontrivial strategy-coordination prob-

lem, if G contains at least one set 2* of mutually equivalent, but not strictly
coeffective, strategy ^-tuples a 1 , . . . , a*, . . . . The strategy-coordination prob-
lem arises from the fact that, even if all players agreed to try to achieve the payoff
vector u = U(ol) = • •  • = U(ok) = • •  • corresponding to these strategy ^-tuples, in
general they could actually achieve this payoff vector u only if they managed some-
how to coordinate their strategies, i.e., if either all of them chose strategies corre-
sponding to a1, or all of them chose strategies corresponding to o2 , and so forth.
In contrast, if some players / chose strategies a,1 corresponding to a1 while other
players/ chose strategies oy2 corresponding to o2 , and so forth, then they would in
general obtain a payoff vector U(X) different from u.4

A coordination problem can always be easily overcome if the players are free to
communicate, i.e., if the game is played as a vocal game. In this case any one of the
players can propose one particular strategy «-tuple  ok from set 2* as the joint
strategy to be used by the players; and his proposal will be immediately accepted
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by the other players, because they will be indifferent between all the strategy n-
tuples ok in set 2*, yet will realize the need for the same strategy n-tuple to be
used by all players.

However, in a tacit game the players may be unable to overcome a coordination
problem - except to the extent to which they can coordinate their strategies by
reliance on sheer chance, in accordance with Postulate A5 (see below).

Consider the two-person game in Example 6. (Since the two players have strictly
identical interests in this game, under our theory it will always be played as a co-
operative game.) If the players can communicate, they will choose either the strat-
egy pair {A x,By) or the strategy pair (A2 ,B2) - it does not matter which - and
will obtain the payoffs ux =u2 =2.

Bi B2

(2,2) (0,0)
(0,0) (2,2)

Example 6

However, if they cannot communicate, then, according to Postulate A5, each
player / ( / =1,2) will be equally likely to choose either one of his two pure strat-
egies; moreover, the two players' choices will be statistically independent. Hence
their behavior will be such as if they had chosen the centroid-strategy pair s =
\AX + ^A2, \ BI + J B2). In other words, if they try to achieve the payoff vec-
tor U(A1,Bi)= U(A2,B2) - (2, 2), then on the average they will actually achieve
only the payoff vector U(s) = (1, 1). Thus the players will be unable to achieve the
payoff vector (2, 2), even though it appears twice in the payoff matrix of the game.

This suggests the following definition: In a given tacit game G, let 2*(w) be the
set of all stable strategy ^-tuples a yielding a given payoff vector u = U(o). Let
a* be the centroid-strategy «-tuple for D*(w), as defined in Section 5.13. Because
2*(w) in general will not be a convex set, this centroid-strategy «-tuple a* itself
need not be an element of £*(w). Thus it is quite possible that a* will yield a pay-
off vector u different from u so that £/(a*) -u ¥^u.

However, suppose that this centroid-strategy «-tuple a* does yield the same pay-
off vector u = U(o) = U(o*) as the strategy ^-tuples a in set 2*(w) do. In this
case we say that the strategy ^-tuples o in 2*(w) are simply coeffective.

Clearly, if these strategy n-tuples are strictly coeffective (as defined earlier in
this section), then they are also simply coeffective. But the converse is not true.

Finally suppose that (1) The strategy ^-tuples a in 2*(w) are at least simply co-
effective, and that (2) The centroid-strategy n-tuple a* is an eligible (i.e., a stable)
strategy n -tuple in game G.

Then we can say that this centroid-strategy «-tuple a* as well as the corresponding
payoff vector u are accessible to the players. If either or both conditions are not
met, then a* and u are called inaccessible.
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Equivalently we may say that the centroid-strategy a* as well as the correspond-
ing payoff vector u - £/(a*) are accessible if and only if a* itself is also an element
of the set S*(w) of stable equivalent strategy «-tuples.

In the preceding definition, Condition (1) is necessary because, by Postulate A5,
if the players are trying to achieve the payoff vector u, then they will actually
achieve the payoff vector U(o*). Therefore their attempt to achieve u will be un-
successful unless £/(a*) = was Condition (1) requires.

On the other hand, Condition (2) is necessary because the players' actual behavior
will correspond to the centroid-strategy «-tuple a* and not to the various other
strategy «-tuples o in set 2*(w). Therefore Postulate A2 will not be satisfied unless
a* itself is stable. The stability of the strategy ^-tuples o in set D*(w) will not be
sufficient.

Accordingly in tacit games we must replace the enforceable set E by the (usually
smaller) accessible set F defined as the set of all accessible payoff vectors u. Effi-
ciency considerations and (tacit) bargaining between the players must be restricted
to this smaller set F rather than to the set E.

To facilitate the analysis of tacit bargaining in games without free communica-
tion, we use the concept of semivocal games. These are defined as games in which
the players can communicate sufficiently to be able to tell each other when they
are willing to make a concession, i.e., to accept a lower payoff; but they cannot
communicate sufficiently to be able to coordinate their strategy choices when this
would be desirable. This means that the players can choose only accessible payoff
vectors satisfying the definition just given but are not restricted in their bargaining
behavior in any other way.

Our formal theory is limited to fully vocal and to semivocal games and does not
explicitly cover fully tacit games (where verbal communication even for bargaining
purposes is disallowed). But we postulate that the solution that our theory assigns
to a given semivocal game is also the solution for the corresponding fully tacit
game. This assumption is based on what may be called the Tacit-Bargaining Prin-
ciple: Sufficiently intelligent players can reach any agreement that they would
reach by explicit bargaining, also by mere tacit bargaining.5 (To my knowledge,
this principle was first stated by Fellner [1949]. He calls tacit bargaining "quasi-
bargaining" and tacit agreements "quasi-agreements.")

7.6 Formal definition of the solution

In any given game G, any joint strategy o of the n players consistent with our
rationality postualtes is called a rational joint strategy or a particular strategy solu-
tion. The set 2 of all particular strategy solutions a is called the (complete) strat-
egy solution.

Let G be a game profitable to player /. In this case, under our theory all rational
joint strategies o will yield the same payoff ut = Uj(o) to player /, with Uj > uh
where ut is player z's maximin payoff. Now let

u = (U1,...,un) (7.9)
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be a payoff vector defined as follows:

Ui = ut - Ut(o) if G is profitable to player i (7.10a)

Uj = iii if G is unprofitable to player / (7.10b)

We will call u the solution payoff vector or the bargaining equilibrium point of the
game. The payoffs ut themselves will be called the solution payoffs of the various
players.

Finally we define the solution of game G as the ordered pair S = {«, 2 } , where
u is the solution payoff vector and 2 = {a} is the complete strategy solution.

The solution defined in this way has the following properties.

Lemma 1. For any player /, his solution payoff ut satisfies

Proof The game is called "profitable to player /" only if all particular strategy
solutions a have the property that U;(o) = ut > ut. Otherwise the game is called
"unprofitable to player /." But then, by Equation (7.10b), ut = iij. Thus in either
case Uj ̂  Uj.

Lemma 2. Let a be any particular strategy solution. If the game is profitable to
player /, then, by (7.10a), we can write

Ui = Uj(o) (7.12)

But if the game is unprofitable to player z, then (7.12) may not hold. Instead we
may have

ui>Ui(o) (7.13)

Proof To show that (7.13) rather than (7.12) may obtain, consider the two-
person noncooperative game in Example 7. This game has only one equilibrium
point, a* = (jAi + jA2 ,\BX + \B2). It would yield the equilibrium payoffs
ux * = 25 and u2 * = 12. However, this is a weak equilibrium point and therefore
is unstable.

(30,20) (20, 0)
(40, 0) (10,30)

Example 7

Player 1 's only maximin strategy is the pure strategy A = A l, and his maximin
payoff is wx = 20. Player 2's only maximin strategy is the mixed strategy B =
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f # ! + | B2, and his maximin payoff is u2 = \2 = Ui*. (Thus a* is not only weak
but is also unprofitable to player 2, which is a further reason for its instability.)

Because the game has no stable equilibrium point, it is unprofitable to both
players. Therefore, by Postulate Al, the two players should use their maximin
strategies A and B. Thus the only particular strategy solution is the strategy pair
o = (A,B). The solution payoff vector is u- {ux ,u2) = (25, 12). However,
Ui(o) = 26>ul =25. This shows that £/,•((;) may satisfy (7.13) instead of satisfy-
ing (7.12). This completes the proof.

7.7 Discussion: definition of the solution payoffs in unprofitable games

We suggested in Example 7 that the solution payoff of player 1 should be defined
as Wj = ul = 25, even though the only particular strategy solution of the game, the
strategy pair o = (A,B), would yield him the payoff Ux (a) = 26. Perhaps it would
be more appropriate to designate this latter payoff Ut(a) = 26 as player l's solu-
tion payoff, since this is the payoff corresponding to the strategy solution o =
(A,B).

The reason that under our theory this payoff U(o) = 26 cannot be regarded as the
solution payoff lies in the fact that the strategy pair a = (A, B) is highly unstable.
Indeed it is even more unstable than the weak equilibrium point a*, because it is
not an equilibrium point at all, not even a weak one. Therefore the strategy pair
o = (A, B) cannot serve as a focus of stable expectations by the players. In other
words, player 1 cannot act on the firm expectation that player 2 will use strategy
B\ and player 2 cannot act on the firm expectation that player 1 will use strategy
A . This can be shown as follows: If player 1 did confidently expect player 2 to
use B, then he himself would not use A = Ax but rather would use his own best
reply to B, which is the strategy A2. Likewise, if player 2 did confidently expect
player 1 to use A, then he himself would not use B = jBt + fB2 but rather would
use his own best reply to A, which is the strategy B^. Thus the assumption that
the two players will use the strategy pair o = (A ,B) is inconsistent with the assump-
tion that they will firmly expect each other to do so.

The point is that in Example 7 all possible strategy pairs are unstable. The strat-
egy solution o - (A, B) is certainly no exception. This is precisely why our theory
suggests that in such games the players should use maximin strategies. Because all
strategy pairs are unstable, the players simply cannot formulate stable and con-
sistent expectations about each other's strategies. However, the effectiveness of a
player's maximin strategy in securing his maximin payoff is independent of the
strategy (or strategies) that the other player(s) will choose. Thus in order to use
a maximin strategy he does not have to be able to formulate definite expectations
about the other players' strategies. If he uses a maximin strategy, he may obtain
his maximin payoff, or he may obtain a higher payoff than this. But if he cannot
formulate definite expectations (not even definite probabilistic expectations)
about the other players' strategies, then he cannot rationally count on obtaining
more than his maximin payoff. It is for this reason that our theory defines the
solution payoffs as the players' maximin payoffs in such games.
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7.8 The solutions for unprofitable games as "quasi-solutions"

The preceding discussion shows that there is an important conceptual difference
between the solutions that our theory defines for games profitable to all players
and the solutions that it defines for games unprofitable to all players.6 In the
former the solution essentially depends on the expectations that the players enter-
tain about each other's strategies, in accordance with our postulates of Class B
(postulates of rational expectations), while in the latter the solution is independent
of the players' expectations, even more so since in most cases the players will
be unable to formulate stable and consistent expectations about each other's
strategies.

There is also another difference, closely related to the former. In profitable
games any particular strategy solution o represents one possible way in which
the players can rationally cooperate in the game in order to advance their com-
mon interests. Of course, in noncooperative games the scope for rational coopera-
tion among the players is smaller than in cooperative games, because it is restricted
to stable joint strategies.7 Likewise in tacit games the scope for cooperation is
smaller than in vocal games, because it is restricted to strategy ^-tuples posing no
unsurmountable strategy-coordination problems. But as long as the game is profit-
able to some or all players, there is always some possibility of rational cooperation
among these latter players; and the strategy solutions a that our theory defines for
such games will always involve some degree of mutual cooperation.

In contrast, in a game unprofitable to all players, there is simply no possibility
of rational cooperation among the players. Therefore each player must set an ob-
jective for himself that can be attained without any cooperation (and indeed against
any possible resistance) from the other players. Securing at least his own maximin
payoff is such an objective. This is why Postulate Al suggests that in such games
each player should concentrate on securing at least his maximin payoff by using a
maximin strategy.

One may very well take the point of view that only those solutions which are
based on consistent reciprocal expectations - i.e., solutions defined for games prof-
itable to all players or at least to some of the players - are alone true "solutions" in
the full sense of the word. For games unprofitable to all players our theory does
not provide such solutions; rather it shows that for these games no such solutions
can be defined. What our theory suggests is that in such games, as a practical
matter, the players should at least protect their maximin payoffs by using maximin
strategies. But it may be argued that this suggestion does not deserve to be called a
"solution," because it lacks many of the desirable properties of true solutions. It
may be called a "quasi-solution." One may even argue that it is just another way
of saying that such games have no true solutions.

In what follows we will make no terminological distinction between "solutions"
proper and "quasi-solutions." Both will be simply called "solutions," in accordance
with the definition stated in Section 7.8. But the difference in conceptual status
between the two should be kept in mind.



Part III
Solutions for specific classes
of games





8

Two-person simple bargaining
games: the Nash solution

8.1 Definitions and assumptions

We will first consider cnly vocal cooperative games. We make the following assump-
tions. The two players can achieve any payoff vector u = (ux, u2) within the pay-
off space P of the game, if they can agree which particular payoff vector u to adopt,
i.e., if they can agree how to divide the payoffs between them. The players are free
to use jointly randomized mixed strategies, which make the payoff space P a con-
vex set. Moreover,P is assumed to be bounded and closed, i.e., compact. We also
exclude the degenerate case in which the payoff space is a segment of a straight line
with ut = const, for either player z: Any such case will always have to be treated as
a strictly noncooperative game, since player / would have no incentive whatever to
cooperate with the other player.

Among cooperative games we will distinguish two cases, depending on the na-
ture of the conflict situation that would emerge if the two players could not agree
on their final payoffs ux - ux and u2-u2. In a simple bargaining game the rules of
the game themselves fully specify the conflict-payoff vector or conflict point c =
(ci, c2) to which the players would be confined in such a conflict situation. This
means that the players have essentially only one conflict strategy, viz., simple
noncooperation.

In contrast, in a general cooperative game, if a conflict situation arises, then the
players will have a choice between alternative conflict strategies (retaliatory strate-
gies) of different "intensity," with different damaging effects on the opponent but
also with different costs to the user.

Accordingly in a simple bargaining game the disagreement payoffs C\ and c2 are
independent variables regarded as given, whereas in a general cooperative game they
are dependent variables to be predicted by our theory, together with the final pay-
offs u\ and u2.

8.2 The classical approach to the bargaining problem

Classical economic theory cannot make a determinate prediction about the out-
come of a bargaining situation, even in the case of a simple bargaining game. But it
does reach the important conclusion that any agreement concluded between two
rational bargainers must satisfy the following two rationality requirements:

1. Individual rationality. The agreement must represent, for both players, a
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situation at least as favorable as the conflict situation that would emerge in the ab-
sence of any agreement. That is, if ux and u2 are the payoffs to be received by the
players under the agreement, then Ut ^ ct (i = 1, 2). Geometrically the vector u =
(u I > &2 ) must lie at least as high and at least as far to the right as the conflict point
c = (<?!, c2 ). That is, in Figure 8.1, if the payoff space is represented by the en-
closed area, then U must lie in the triangular area cde.

2. Joint rationality (joint efficiency). The agreement will represent a situation
that could not be improved upon any further to both players' advantage (because
rational players would not accept a given agreement if some alternative arrangement
could make both of them better off). Hence the agreement payoff vector u must
be efficient, i.e., it must not be dominated (at least in a strong sense) by any other
payoff vector u in the payoff space. Geometrically this means that u must lie on
the upper right boundary adeb of the payoff space in Figure 8.1. (This upper right
boundary corresponds to Edgeworth's [1881] "contract curve.")

These two requirements together imply that u must lie on the arc de. Thus this
arc de represents the set of possible agreement points u between rational players,
which Luce and Raiffa [1957] call the negotiation set of the game. (It also corre-
sponds to what Pigou [1960] has called the "range of possible bargains.") The end
points d and e of the negotiation set may be called the concession limits of player 1
and player 2, respectively, because they represent the least favorable efficient agree-
ment points that these players might possibly accept. If d were adopted as the
agreement point, then the entire gain achieved by cooperation would go to player
2, while player 1 would be no better off than he would be at the conflict point c.
The converse would be true if e were adopted as the agreement point. Finally
agreement points u lying between d and e would mean dividing the net gain of their
cooperation in some proportion between the two players.

Thus classical economic theory predicts that the agreement point u will lie
within the negotiation set de. But it does not predict the actual position of ii be-
tween the two parties' concession limits d and e. That is, it fails to tell how the net
gain of cooperation will be divided between the two parties. Hence classical eco-

Figure 8.1
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nomic theory does not overcome the indeterminacy problem associated with bar-
gaining situations and does not furnish a determinate solution for the bargaining
problem.

We are now in a position to state the reasons for this. The fundamental reason is
that the two rationality requirements used by classical economic theory do not go
beyond what we have called the weak rationality postulates for game situations,
which do not suffice to overcome the indeterminacy problem.

Moreover, classical economic theory makes no essential use of cardinal utility
functions but rather is based on purely ordinal utility. (Although earlier authors
did sometimes assume cardinal utility, none of their conclusions in positive eco-
nomics essentially depended on the use of cardinal utility.1) But it is easy to see
that no theory based on mere ordinal utility functions can yield a determinate
solution for the bargaining problem.2

This last difficulty is connected with a deeper one. Bargaining by its very na-
ture represents decision making under uncertainty. The two players can reach
agreement only if they make concessions to each other. The fundamental reason
that a rational player will make a concession to his opponent will always be that he
feels that the risk3 (i.e., the subjective probability of a conflict) associated with a
refusal of this concession would outweigh the advantages of holding out for better
terms. Thus logically a determinate theory of rational behavior in bargaining situa-
tions presupposes a sufficiently specific theory of rational behavior under risk
and/or uncertainty. Yet classical economics did not possess such a theory.

Even von Neumann and Morgenstern's Theory of Games and Economic Behavior
[1944] did not furnish a determinate solution for the bargaining problem, because
their analysis, also, was based on "weak" rationality postulates. But their approach
did lay the foundations for further advance in this field by giving game theory the
concepts of cardinal utility functions and of expected-utility maximization under
risk and uncertainty.

8.3 The Nash solution

John Nash [1950b] was the first to realize that von Neumann and Morgenstern's
concept of cardinal utility functions leads to a determinate theory, if we make use
of some very natural additional rationality postulates.

Formally Nash represents the bargaining process between the players by means
of the following bargaining model. Each player i (/ = 1, 2) chooses a real number
Uj, called his payoff demand. The two players have to choose their payoff demands
ux and u2 simultaneously and independently of each other. If the payoff vector
u = (ui, u2) lies in the payoff space P of the game, then we say that the two players'
payoff demands are mutually compatible. And in this case each player i will re-
ceive the payoff ut that he has been asking for. In contrast, if u = (wj, u2) $P ,
then we say that the players' payoff demands are incompatible, which will give rise
to a conflict between them. In this case each player i will receive only his conflict
payoff c,-.
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Nash's bargaining model is obviously a game (a bargaining game) in normal form,
because each player has only one move (consisting in the choice of his payoff
demand), and the two players have to make their moves at the same time and inde-
pendently of each other; there are no chance moves.

Nash's basic assumption is that a bargaining situation has a determinate solution
at least in one special case, viz., in case the situation is completely symmetrical with
respect to the two players. In this case it is a natural prediction that the two
players will agree on equal payoffs to both of them, because neither player will
have any reason to grant to his opponent better terms than the latter is prepared to
grant to him. (For instance, everybody would expect that two duopolists with
exactly the same cost functions, market connections, capital resources, and so
forth, and with exactly similar personalities, would reach an agreement yielding
equal profits to both of them.) In brief, a symmetric game must have a unique
symmetric solution. By adopting this symmetry postulate, Nash goes beyond both
classical economics and the von Neumann-Morgenstern theory.4 Fundamentally
the justification of this postulate is based on the analysis of the two players' mutual
expectations about each other's behavior: In a symmetric game neither player can
rationally expect that a rational opponent will grant him better terms than he him-
self is willing to concede.

At the same time this solution must also satisfy the classical joint-efficiency re-
quirement. Hence the solution (or agreement point) of a fully symmetric bargain-
ing game must lie at the point u where the 45° line drawn through the origin inter-
sects the upper right boundary of the payoff space (see Figure 8.2).

Nash then extends this solution concept also to asymmetric bargaining games by
assuming that the solution must be invariant with respect to certain mathematical
transformations. More particularly Nash's main postulates are as follows:

1. Joint efficiency. The solution u = (u~i, u2) lies on the upper right boundary
H of the payoff space P.

A simple bargaining game is called symmetric if its conflict point c = (cx, c2)
lies on the ux = u2 line and its payoff space P is symmetric with respect to the same
line.

2. Symmetry. The solution u of a symmetric game lies on the line ux = u2.
3. Linear invariance. Let G be a simple bargaining game with solution u. Let

G* be the game that results from G if we subject one player's utility function Ut to
an order-preserving linear transformation T, leaving the other player's utility func-
tion Uj unchanged. Then the solution w * of this new game G* will be the image of
u under this transformation T, i.e., w* = Tu.

4. Independence of irrelevant alternatives (invariance with respect to irrelevant
restrictions of the payoff space). Let G again be a simple bargaining game with pay-
off space P, conflict point c, and solution u. Let G* be a game obtained from G by
restricting the payoff space to the smaller set P* C P, in such a way that c and u re-
main in the new payoff space P*9 c being the conflict point also for G*. Then u
will be the solution also of the new game G*. (For example, in Figure 8.3, if we
exclude the shaded area from the payoff space, the position of the solution u will
not be altered.)
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Figure 8.2 Figure 8.3

Since we have already discussed the first two postulates, we will now comment
only on Postulates 3 and 4.

Postulate 3 says essentially that, if we express the players' payoffs in terms of
money or commodities, and so forth (rather than in utility units), then their pay-
offs will be independent of the unit of measurement and the zero point that we
choose for each player's utility function. Two issues are here involved:

1. Even a cardinal utility function is unique only up to order-preserving linear
transformations. That is, the utility unit and the zero point of utility are always
matters of arbitrary choice. Therefore these two parameters can have no influence
on the outcome in "real" terms (i.e., in terms of the physical or the monetary pay-
offs or more generally in terms of the joint strategy to be agreed upon by the
players).

2. The postulate allows us to choose each player's utility unit (and zero point)
independently of the other player's. This means that the solution is assumed to be
independent of interpersonal comparisons of utility between the players, (If inter-
personal comparisons of utility were not regarded as irrelevant, then we could per-
mit only such utility transformations that would not destroy equality between the
two players' utility units: If we wanted to change one player's utility unit, we
would always have to change the other player's utility unit in a similar way.)

Assumption 2 is motivated by the fact that (at least under our own interpreta-
tion - Nash's own statements are not quite clear on this point) Nash's model is
meant to be a bargaining model, not an arbitration model. Interpersonal compari-
sons of utility, as we saw in Chapter 4, do have an important role in ethical con-
texts. But we are now envisaging a bargaining situation in which ethical considera-
tions play no essential part.

In this bargaining situation each player is assumed to maximize his own ex-
pected utility on the basis of his expectations (i.e., his subjective probability dis-
tribution) concerning his opponent's possible bargaining strategies.5 But if a
person's behavior is guided by expected-utility maximization, then, given his expec-
tations (i.e., given his subjective probabilities), his behavior will be invariant with
respect to order-preserving linear transformations of his utility function: That is, we
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will obtain the same predictions about his behavior regardless of how we choose the
unit and the zero point of his utility.

Each player will not only know that his own behavior has this invariance prop-
erty but will also expect that his opponent's behavior will have the same property.
This means that each player's expectations concerning his opponent's behavior will
be invariant with respect to linear transformations of both his own and his oppo-
nent's utility functions. Yet, if both players' behavior (given their expectations)
and also their expectations possess this invariance property, then the same must be
true about the final outcome that results from their behavior, guided by their mu-
tual expectations.

Thus the outcome will be independent of interpersonal comparisons of utility,
simply because such comparisons do not enter, at any point, into either player's
strategy choice based on expected-utility maximization.

A possible interpretation of Postulate 4 would regard it directly as a rationality
postulate. If we excluded from the payoff space some potential agreement points
that would not be chosen anyhow by the players, this should make no difference to
the final outcome (irrelevance of unchosen alternatives).6

But we prefer Nash's [1953, p. 138] own interpretation of Postulate 4, which
makes it essentially an "institutional" assumption about the bargaining process.
Mathematically the role of the postulate is to make the solution u depend only on
the local properties of the payoff space P (or more exactly on the local shape of the
upper right boundary of P) around the solution point u, so that distant parts of the
payoff space will have no influence on the position of u. This corresponds to the
institutional fact that bargaining by its very nature consists in gradually narrowing
down the set of alternatives under consideration to smaller and smaller subsets of
the original negotiation set. That is, the players by mutual agreement always gradu-
ally replace the original bargaining game G by much smaller bargaining games G*
whose negotiation sets are restricted to smaller and smaller neighborhoods of u.
Hence, in order that a given point u can emerge as the solution of the original game
G, it is necessary that u should also be the solution of these smaller games G*,
which are obtained from G by restricting the original payoff space P of G to smaller
sets P* (without, however, excluding u or t from these new payoff spaces P*).7

Nash [1950b, p. 159] has also shown that a solution point u satisfying Postulates
1 to 4 always exists, is always unique, and can be mathematically characterized as
follows:

Theorem 8.1. The solution u = {ux,u2) is the point satisfying the requirement

( u l - c x ) - ( u 2 - c 2 ) = m a x [(u% - c x ) - (u2 - c2)] (8.1)

uGP (8.1a)

Uj^Ci / = 1 , 2 (8.1b)

where cx and c2 are the constant conflict payoffs specified by the rules of the
game. That is, u = u is the point where the Nash product n(u) = (ux - C\) •
(u2 - c2) is maximized, subject to (8.1a) and (8.1b).
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Figure 8.4

Geometrically this means that the solution u is the unique point of tangency be-
tween the upper right boundary HH of the payoff space P, and a rectangular hyper-
bola/ / asymptotic to the horizontal line ux = cx and to the vertical line u2 = c2
(see Figure 8.4). The equation o f / / i s TI(U) = {ux - cx) • (u2 - c2) = const. = TT(W).
Hence the product n(u) takes the value n(u) only on / / itself; and only in the area
/ / + above the curve / / (as well as in the area / / " below the other branch of the hy-
perbola//) does it take even higher values.

Now suppose that P (i.e., the triangular area cab) is the area where conditions
(8.1a) and (8.1b) are both satisfied. Since P has no point in common with area / / + ,
and since its only point in common with the curve / / itself is w, the point u is the
only point at which the product TT(U) takes the value 7r(i7) over the set P; this is its
maximum value over P.

Proof. Let u - w be the point where product n(u) is maximized subject to (8.1a)
and (8.1b). Because of the compactness of the payoff space P, such a point will al-
ways exist; and because of the convexity of P, it will always be unique.

Let us subject both players' utility functions to order-preserving linear transfor-
mations carrying the conflict point c = (cx, c2) into the origin c* = (0, 0) while
carrying the point u-{ux, u2) into the point u* = (1,1) (see Figure 8.5).

Let P* be the image of the payoff space P under this transformation T. Finally
let G* be the game whose payoff space is P* and whose conflict point is c*.

Consider the Nash product TT*(M*) = ( « I *  - Ci*) * (u2* - c2*) = Ui*u2* for
this new game G*. Suppose that w* = (^i*, u2*) is the image of some given point
u = (ui, u2) of the original payoff space P. Then TT*(U*) = yn(u) where y is the
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Figure 8.5

positive constant

1
(« - cx)(u2 - c 2 )

Hence the transformation simply multiplies the Nash product for every point u by
the same positive constant y. "Consequently, if n(u) took its maximum value at the
point u = u, then 7r*(w*) must take its maximum value at w* = u *, the image of u
under transformation T.

The point £7* = (1, 1) obviously lies on the line wt* + w2* = 2 (line AD of Figure
8.5). This line is the common tangent (or common supporting line) of the curves
H*H* a n d / * / * at the point £7*. Since the set P* is convex, no point w* of P*
can lie above this line AD. Therefore we can always construct a rectangle ABCD
symmetric with respect to the 45° line c*u *, and wholly containing the payoff
space P*, so that the line AD will be the upper right boundary of the rectangle
ABCD.

Let G** be the game whose payoff space is the rectangle ABCD, while its con-
flict point is c*. By Postulates 1 and 2, since G** is a symmetric game, the solution
of G** must be u*. Consequently, by Postulate 4, the point w* must be the solu-
tion also of G*. But then, by Postulate 3, the point u, which is the image of u *
under the inverse of our original transformation T, must be the solution of the
original game G, as desired.
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8.4 Zeuthen's model of the bargaining process

Another important model of the bargaining process was developed by a Danish
economist, Frederik Zeuthen [1930, Chap. IV]. Zeuthen's approach is quite dif-
ferent from that of Nash, but, as we shall see, it is mathematically equivalent to it.
Zeuthen's own analysis was restricted to collective bargaining on the labor market
but can be easily extended to any other bargaining situation.8

Consider a bargaining process between players 1 and 2. If they can reach some
agreements, then they will obtain the corresponding payoffs U\(A) and U2(A).9
If they fail to reach an agreement, then a conflict situation C will develop, and the
two players will obtain the conflict payoffs Ui(C) and U2(C). The bargaining pro-
ceeds in stages. At stage k player 1 has proposed an agreement A\k = Ax to player
2, while player 2 has proposed another agreement A2

k = A2 to player 1. We will
assume that

Ut{C) < Uf(Aj) < Ui(Ai) /,/' = 1, 2 and / =£/ (8.2)

That is, each player / would prefer his own last proposal Aj to his opponent's last
proposal Aj but would prefer either proposal to the conflict situation C.

At the next stage k + 1, each player i has three alternatives:
a: He may simply repeat his last offer Aj.
j3: He may accept his opponent's last offer Aj in full.
7: He may make some new proposal Ajk+ 1 =Ai'i more favorable to the oppo-

nent than his own last offer At but less favorable than the opponent's own last offer
Aj. Thus any new proposal A/ by player i will satisfy

Ul{A,)<Ul{A;)<Ui{Af) (8.3)

If player / chooses alternative j3 or 7, then we say that he is making a concession,
whereas, if he chooses alternative a, then we say that he refuses to make a con-
cession. We will assume that, if at any given stage k, k ^ 2, the players* have not
yet reached an agreement, yet both of them refuse to make concessions; then the
negotiations will break down, and the conflict situation C will arise.

Now the following cases are possible:
aa: Both players choose alternative a, refusing to make a concession. Then a

conflict will occur, and the players will receive the payoffs Ui(C) and U2(C).
aj3: One player, say, player i, chooses alternative a while the other player

chooses alternative 0. This means that the two players will reach an agreement by
accepting player f s last proposal S;. This will yield them the payoffs Ux(At) and
U2(Aj), respectively.

|3j3: Both players choose alternative j3, i.e., both of them express a willingness
to accept the other player's last offer. This means that player 1 is willing to accept
the payoff Ux(A2), while player 2 is willing to accept the payoff U2(A 1). This we
will interpret as an agreement between the two players to accept the payoffs
Ui(A2) and U2(A x) and will assume that the players will, in fact, obtain these
payoffs.10
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ay: One player chooses alternative a, while the other player chooses alternative
7. This means that the players have reached no agreement but that the bargaining
can go on because one player has made a concession. Therefore the bargaining
process will move to stage k + 2.

fiy: One player, say, player /, chooses alternative j3, while the other player
chooses alternative 7. This means that player i would be willing to accept player
/'s previous offer Aj but that, in the meantime, player/ himself has abandoned Aj
in favor of a new offer A/. Thus player / is willing to accept the payoff At(Aj),
whereas player/ is willing to accept the payoff Uj(A-) < UJ(AJ). This makes case
07 somewhat similar to case j3/3. We interpret case 07 as an agreement between
the two players to accept the payoffs Ut{Aj) and Uj(A/) and assume that the
players will, in fact, obtain these payoffs.

77: Both players choose alternative 7. This case is similar to (27: There is no
agreement between the players, but there is no ocnflict either, because both players
have made concessions. Thus the bargaining process can move to stage k + 2.

The question that Zeuthen tries to answer is this: Given the two players' utility
functions Ux and U2, and given their last offers Ax

k = Ax and A2
k =A2 at stage k,

which player will have to make the next concession at stage k + 1 ? Zeuthen argues
that the next concession must always come from the player less willing to face the
risk of a conflict - in order to obtain an agreement on his own terms rather than on
the opponent's terms. But how can we measure a given player's willingness to risk
a conflict rather than accept the opponent's terms? Zeuthen proposes the follow-
ing measure.

Because we want to measure each player's willingness to stick to his own terms
rather than to accept his opponent's terms, we should consider a simplified bargain-
ing situation in which each player / is restricted to a choice between alternatives a
and p - that is, between full insistence on his own last offer, At and full acceptance
of his opponent's last offer, Aj. How can he decide whether to choose a or /3?

If he is a Bayesian expected-utility maximizer, then he must start with assigning
subjective probabilities to the two possible choices that his opponent can make.
Let pji be the subjective probability that / assigns to the hypothesis that/ will
choose alternative a; and let q^ = 1 - pji be the subjective probability that i assigns
to the hypothesis that/ will choose alternative j3.

If player i himself chooses alternative j3, then under our assumptions he will ob-
tain the payoff Uj(Aj) with certainty, regardless of what/ will do. On the other
hand, if/ chooses alternative a, then he may obtain the higher payoff Uj(Aj) >
Uj(Aj), but he may also obtain the lower payoff Uj(C) < Uj(Af). The former possi-
bility will occur with probability q^ - 1 - Pji9 while the latter possibility will occur
with probability Pjt. Consequently, if player / wants to maximize his expected
utility, then he can choose alternative a, i.e., he can stand on his own last offer 4̂,-,
only if

(1 - Pjl) • U,(4,) + Pli • UtOO * U,(Aj) (8.4)
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that is, if

The quantity rt (i= 1, 2) defined by (8.5) is called player / 's risk limit, since it
represents the highest risk (the highest subjective probability of a conflict) that
player i would be willing to face in order to obtain an agreement on his own terms
Ai rather than on his opponent's terms Aj. This is so because, if player * sticks to
his own last offer A,-, then he must expect a conflict to occur with probability Pjt
(this is the probability that his opponent will also stick to his own last offer Aj, so
that neither player will make a concession). But, by (8.5), the highest value of the
probability that Pji that / can face, without switching over to accepting the oppo-
nent's last offer, is Pjt = rt.

In view of Equation (8.2), the quantity rt must always satisfy

O ^ r ^ l (8.6)

The case rt = 0 can occur only if Ut{Ai) = Ut(Aj), which would mean that the two
players have already essentially reached an agreement. On the other hand, the case
rt = 1 can only occur if U^Aj) = Ut(C), which would mean that player/ had made a
completely unacceptable - and therefore unreasonable - offer Aj to player /, giving
the latter no advantage over the conflict situation C.

The quantity rt can also be interpreted as a ratio of two utility differences. The
numerator, the difference £//(/!,•)  - Ut{Aj), is the cost to player / of reaching an
agreement on the opponent's terms instead of an agreement on player z's own
terms. The denominator, the difference £//(/!/) - £/,(C), is the cost to player i of
reaching no agreement at all. In other words, the first difference is the cost of a
total concession, while the second is the cost of a conflict. Therefore the ratio of
these two differences, the quantity rt itself, is a measure of the strength of player
f s incentives for insisting on his own last offer rather than accepting his opponent's
last offer.

To sum up, the quantity rt measures the highest risk that player / is willing to
take rather than to accept his opponent's terms; and it also measures player f s
incentives to take a high risk rather than to accept his opponent's terms. Under
either interpretation rt is exactly the measure that is needed for Zeuthen's purposes.
If ri < rj, this means that player / is less willing than player/ is to risk a conflict and
that he has weaker incentives to do so. Moreover, both players will know that this
is the case. Therefore player / will be under strong psychological pressure to make
the next concession, while player/ will feel he can afford not to make any conces-
sion at this point. On the other hand, if rt - rj, this means that the two players are
equally willing to make a concession, and have equally strong incentives to do so.
Zeuthen argues that in this case both of them will be under psychological pressure
to make concessions in order to avoid a breakdown in their negotiations, which
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would lead to a conflict. Thus Zeuthen proposes the following decision rule, which
we will call Zeuthen ys Principle:

(a) If rx > r2, then player 2 has to make the next concession;
(j3) If rx < r2, then player 1 has to make the next concession;
(7) If rx - r2, then both players have to make some concessions.
In all of these cases the player or players who have to make concessions are free

to make quite small concessions. Within certain limits (which will be discussed) the
bargaining process will lead to the same final outcome, regardless of how large con-
cessions the players will make to each other at each stage, as long as they follow
Zeuthen's Principle in deciding who should make the next concession at each stage
of the bargaining process. More specifically, as we will see in the next section, this
bargaining process will always lead to the Nash solution.

8.5 Mathematical equivalence of Zeuthen's and Nash's theories

We make the following assumptions:
1. Neither player will make concessions going beyond the Nash solution of the

game. That is, if the payoff vector u = (wx, u2) is the Nash solution, then any offer
A1 by either player / will satisfy

Ui(Aj) * ut (8.7)

This is a reasonable assumption because, as we will see, the player can always
achieve the Nash solution. Therefore it would be irrational for him to propose an
agreement giving him a payoff lower than the Nash solution would.

2. If either player makes a concession, the latter must be no smaller than some
minimum size - except when a concession of this size would already take him be-
yond the Nash solution. Thus assumption 1 takes precedence over assumption 2.
For example, if the bargaining is about money, then we may assume that any con-
cession must involve giving up at least one monetary unit (say, 1 cent). More gener-
ally we may assume that any new offer AI be player / must increase the utility pay-
off offered to his opponent at least by e, where e is some small positive number.
That is

UjiAftZUjiAd + e (8.8)

The purpose of this assumption is to ensure that the players' offers will converge to
some agreement after a finite number of stages (i.e., after a finite number of bar-
gaining moves).

Thus assumption 1 sets an upper bound for the size of admissible concessions,
while assumption 2 sets a lower bound to it.

We will now prove the following theorem.

Theorem 8.2. Under assumptions 1 and 2, if the two players follow Zeuthen's
Principle during the bargaining process, then they will eventually reach an agree-
ment corresponding to the Nash solution.
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Proof. According to Zeuthen's Principle, player / (/ = 1, 2) will always make a
concession to the other player/ whenever

_ UjjAd ~ UjjAj) ^ UjjAj) - Uf(At) ^
n UMd - Ut(C) ~ Uj(Aj) - Uj(C) n ( ' ^

This condition is equivalent to

*(A,) = [U,(A,) - U,(Q] •

g [U,(Af) - Ui(C)] •

= n(Ai) (8.10)

That is, player / will always make a concession whenever iriAj), the Nash product
associated with his own last offer At, is smaller than (or is equal to) TT(AJ), the Nash
product associated with his opponent's last offer Aj. This means that player i will
have to make further concessions until he comes to propose an offer At* associated
with a larger Nash product 7r(̂ 4/*) than was the Nash product n(Aj) associated with
his opponent's last offer Aj. At this point player/ will have to take over the task of
making concessions, and so on.

Thus at every stage of the bargaining process, of the two parties' last offers, the
offer corresponding to the smaller value of the Nash product n will always be elimi-
nated, and the offer corresponding to the larger value of n will always be retained
until the next stage. Then at the next stage one of the two parties will introduce a
new offer associated with an even larger ir value than the offer surviving from the
previous stage, and so on. This process will continue until one of the two parties
introduces an offer corresponding to the largest possible value of n; this offer then
will be accepted by both parties (since the other party will not be able to counter
this by an offer corresponding to a still larger value of IT). Hence under Zeuthen's
model the final agreement will be reached at the point where the Nash product n
takes its maximum value - which is the Nash solution point of the game, as desired.

8.6 Derivation of Zeuthen's Principle from our "strong" rationality
postulates

In Zeuthen's original discussion the decision rule, which we have called Zeuthen's
Principle, has the nature of an independent axiom, accepted because of its intrinsic
plausibility. But we now show that this principle, in fact, directly follows from our
"strong" rationality postulates for game situations, being the only possible decision
rule consistent with these rationality postulates.

For convenience, we shall here repeat the five rationality postulates that we will
use to derive Zeuthen's Principle. (For a full list of our eight rationality postulates
for game situations, see Section 6.2)

A3. Subjective-best-reply postulate (Bayesian expected-utility maximization postu-
late). In a bargaining game B(G) associated with a game G profitable to you, as far
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as your binding agreements with the other players allow, always use a bargaining
strategy j3/ representing your subjective best reply to the mean bargaining-strategy
combination /? that you expect the other players to use.

A4. Acceptance-of-higher-payoffs postulate.

Part I. Let o and a* be two joint strategies available to the n players, both of them
consistent with our other rationality postulates. Suppose that a* would yield you
(player /) a higher payoff £//(a*) > £//(a). Let us assume that, at a given stage of
the bargaining game B(G), the set A ((fa) of all joint strategies acceptable to you
would include the joint strategy o. Then this set 4̂,-(j3/) must also include the joint
strategy a* more favorable to you.

Part II Let P = ((3U ... Jh . . . ,&,) and j3* = (ft*,. . . ,ft*, . . .,&,*) be two pos-
sible ^-tuples of bargaining strategies for the n players, both of them consistent
with our other rationality postulates, but j3* yielding you (player i) a higher payoff
than j3 would. Suppose that, in the absence of any special agreement to the con-
trary., you and all the other players would use bargaining strategies corresponding
to the «-tuple  j3. Then you must be willing to enter into an agreement under which
you and all the other players will shift to bargaining strategies corresponding to the
H-tuple |3*.

Bl. Mutually expected-rationality postulate. In the same way as you yourself will
follow the present postulates (i.e., Postulates A3, A4, Bl, B2, and B3), if you are a
rational player, you must expect, and act on the expectation, that other rational
players will likewise follow these rationality postulates.

B2. Symmetric-expectations postulate. You cannot choose your bargaining
strategy |3/ on the expectation that a rational opponent will choose a different bar-
gaining strategy from your own and, in particular, that he will choose a bargaining
strategy more concessive than you yourself would choose in the same situation.

B3. Expect ed-independence-of-irrelevant-variables postulate. You cannot expect a
rational opponent to make his bargaining strategy jfy dependent on variables whose
relevance for bargaining behavior cannot be established on the basis of the present
rationality postulates. (This postulate will be restated presently in a more specific
form.)

Let us again consider a bargaining process (i.e., a bargaining game) subject to the
rules stated in Section 8.4. We first analyze the special case where - for any reason
whatever - each player i restricts his choice to alternatives a and |3. Thus he will
either stick to his own last offer Af or will accept his opponent's last offer Aj in
full. This special case we will call restricted bargaining.

We have already seen that if player / is a Bayesian expected-utility maximizer -
i.e., if he follows our Postulate A3 - then he can choose alternative a only if Con-
dition (8.4) is satisfied. This means that his bargaining behavior will depend only
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on the quantity rt and on the subjective probability p^. Thus player l's behavior
will depend on rx and on p2X, while player 2's behavior will depend on r2 and on
pn. In other words, Postulate A3 makes these four variables relevant for the two
players' bargaining behavior. Careful reading of our rationality postulates will show
that none of our postulates establishes the relevance of any other variables.11 Thus
we can now restate Postulate B3.

B3*. Expected-independence-of-irrelevant-variables postulate - specific form. In
restricted two-person bargaining, we cannot expect a rational opponent to make
his choice between alternatives a and j3 dependent on any other variables than the
four quantities rx, r2, P\2, and p2\.

Returning to Condition (8.5), the latter could serve as a decision rule for player
/, if he could assign a specific numerical value to the probability p^. We will now
try to show that, if he tries to assign such a numerical value to pji9 consistent with
our rationality postulates, then he will necessarily arrive at Zeuthen's Principle.

By Postulate Bl, each player will know that the other player's behavior will also
be guided by Condition (8.5). Hence, for instance, player 1 will know that his
assessment of probability p2X (i.e., his assessment of the probability that player 2
will stick to his last offer A2) will be realistic only if he uses the following p21
values:

p2l =0 if p12 >r2

Pn = 1 ^ Pn<r2 (8.11)

Therefore he will look for a decision rule consistent with (8.11).
On the other hand, player 1 will know that, by the same token, player 2 will

assess the probability pl2 as follows:

Pn =0 if p21 >rl

Pi2 = l if P2i<rl (8.12)

However, Conditions (8.11) and (8.12) together allow only the following three
possible cases:

Either (i)P\2 = 0 and p2X - 1

Or (ii)Pn ~ 1 and p2\ " 0

Or (iii)p12 = r2 and p2i=rl (8.13)

But it still has to be decided when each of these cases will apply.
Now (8.12) makes pl2 a step function of p2l and rx, so that

,rl) (8.14)

Likewise (8.11) makesp2i a s t eP function of pi2 and r-L, so that

r2i=HPi2,r2) (815)
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In view of our symmetry postulate, Postulate B2, the function F in (8.14) must be
the same as the function F in (8.15).

Equations (8.14) and (8.15) are simultaneous in the two unknowns p12 and p2X.
Therefore pn and p2\ must be functions of the variables rx and r2. Indeed, by
Postulate B3*, they must be functions of rx and r2 alone. Therefore we can write

=G(rl9r2)

Pix = (8.16)

Again, by Postulate B2, the function G determining pn must be the same as the
function G determining p2l.

By Part I of Postulate A4, pn must be a nondecreasing function of Ux {A x) if
all the other utilities are kept constant, while p21 must be a nondecreasing function
of U2(A2) if all other utilities are kept constant. Therefore G must be a monotone
nondecreasing function of its first argument.

All functions G satisfying this monotonicity requirement, and also satisfying
the symmetry postulate (Postulate B2), as well as Condition (8.13), must be of the
following form: They must be defined over the square 0 ^ rx ^ 1; 0 ^ r2 < 1.
They must divide this square into three regions corresponding to cases (i), (ii), and
(iii) of Condition (8.13) (see Figure 8.6). Region (i) must include the rx axis, while
region (ii) must include the r2 axis. Region (iii) must include the rx = r2 line and
must be symmetric with respect to this line. Any straight line running parallel to
the rx axis in the positive direction must go through regions (ii), (iii), and (i) in this
order; any straight line running parallel to the r2 axis in the positive direction must
go through them in the opposite order.

Any such function G corresponds to a possible decision rule R for the players to
the effect that:

1. In region (i) player 1 should stick to his last offer A x, while player 2 should
yield.

Figure 8.6
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2. In region (ii) player 2 should stick to his last offer A2, while player 1 should
yield.

3. In region (iii) the players should use mixed strategies so that player 1 is
sticking to his last offer A! with probability rx and is yielding with probability
(1 - rx), while player 2 is sticking to his last offer A2 with probability r2 and is
yielding with probability (1 - r2).

Different functions G, of course, will define different regions (i), (ii), and (iii)
and so will furnish different decision rules R. Let S be the set of all decision rules
R corresponding to some admissible function G. All decision rules R in set S will
be consistent with Postulates A3, Bl, B2, and B3, as well as with Part I of Postulate
A4. But they will not be equally consistent with Part II of Postulate A4, which
requires that the players should use jointly efficient joint strategies in the bargain-
ing game.

Adoption by the players of any decision rule R in set S will give rise to conflicts
between them in region (iii), with probability p = r1r2. Therefore, by the joint-
efficiency requirement imposed by Part II of Postulate A4, they will try to reduce
region (iii) to its smallest possible size, i.e., to the line rx - r2 itself. This means
that all points satisfying rx > r2 will be assigned to region (i), while all points satis-
fying T\ < r2 will be assigned to region (ii). Let us denote this decision rule by R*.
By Part II of Postulate A4, among the decision rules belonging to set S, R* is the
only one that the players can adopt.

However, R* still does not represent a completely efficient joint bargaining
strategy, because in the case T\ = r2 it will still result in conflicts between the
players with probability p = rxr2 = ( r t ) 2 . These conflicts can be avoided if the
players agree that in region (iii), i.e., on the line rx =r2, both of them will always
yield, instead of using mixed strategies. Let us denote this modified form of rule
/?*by7?**.

If we disregarded the qualifying clause in Postulate A3 (viz., "as far as your bind-
ing agreements with other players allow"), then decision rule R ** would be in-
consistent with Postulate A3. This is so because R** requires both players to make
concessions when rx =r2. Yet, if the players choose their bargaining moves by the
criterion of expected-utility maximization, then, as we have seen, Condition (8.4)
follows. Consequently the possibility of simultaneous concessions by both players,
corresponding to pn = p2l = 1, is ruled out (except at the point rx = r2 = 1). In-
tuitively speaking, if the players are trying to maximize their expected utilities,
then each player will make a concession only because he expects the other player
not to make a concession.

However, once we take account of the qualifying clause, decision rule R ** be-
comes consistent with Postulate A3. Consequently, by Part II of Postulate A4, we
can conclude that the players will agree to replace decision rule R* by decision
rule R**9 which will be mutually beneficial by eliminating the possibility of con-
flicts between them. This means that the players will use the expected-utility maxi-
mization criterion in a literal sense in regions (i) and (ii) only, corresponding to the
cases rx > r2 and rx < r 2 . But in region (iii), i.e., in the case T\ =r2, they will shift
to an agreed joint strategy of mutual concessions.



158 Solutions for specific classes of games

Thus our rationality postulates lead to decision rule R **, which requires that:
1. Player 1 should stick to his last offer A i, while player 2 should yield if

r\ >r2.
2. Player 2 should stick to his last offer A2, while player 1 should yield if

r\ <r2.
3. Both players should make concessions if rx = r2.
This decision rule, however, has been obtained under the restrictive assumption

that both players will restrict their choices to alternatives a and j3. Now let us drop
this restrictive assumption. Moreover, let us assume that the two players' last
offers A i and A2 have been such that rx > r2. Then it still will be true that, as long
as neither player makes a new offer, our rationality postulates will require player 2
to make a concession, accepting player l's last offer A i in full. But now player 2
can avoid this extreme move by making a new offer A 2', representing a concession
going beyond player 2's last offer A2 , yet falling short of full acceptance of player
1 's last offer A i. Because player 2 will prefer making a small concession rather
than making a large one, making such a new offer A 2' will be the rational thing for
him to do.

Hence, if rx > r2, then player 2 will have to make the next concession (though he
need not go as far as fully accepting his opponent's last offer).

By similar reasoning, if/^ < r2, then player 1 has to make the next concession;
and if rx =r2, then both players have to make some concessions (but again in
neither case need concessions go as far as full acceptance of the other player's last
offer).

This is the final form of the decision rule that we obtain on the basis of our
"strong" rationality postulates. But this is precisely the decision rule that we have
called Zeuthen's Principle. Hence we can state:

Theorem 8.3. If the two players follow our "strong" rationality postulates (i.e.,
Postulates A3, A4, Bl, B2, and B3*), then their bargaining behavior will conform
to Zeuthen's Principle.

Theorems 8.2 and 8.3 in turn imply:

Theorem 8.4. If the two players follow our "strong" rationality postulates, then
they will agree on terms corresponding to the Nash solution of the game.

We feel that deriving the Nash solution from our rationality postulates by way
of Zeuthen's Principle has some advantages over Nash's own original approach. In
our view, our own rationality postulates possess greater intuitive appeal than Nash's
and represent more fundamental criteria for rational behavior. In particular, our
own approach, based on Zeuthen's model of the bargaining process, explains why
the solution must depend on the two players' cardinal utility functions, defined in
terms of their attitudes toward risk. It also explains why the solution must be in-
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variant with respect to order-preserving linear transformations of either player's
utility function. Under Nash's original approach these properties have to be
assumed without explanation in terms of more basic rationality postulates.

Zeuthen's model makes it clear that the reason for the use of cardinal utility is
that bargaining by its very nature represents behavior in the face of risk (uncer-
tainty). The quantities rx and r2 governing the two players' behavior express their
attitudes toward risk (they represent the highest risk each player is willing to face),
and therefore they must depend on their cardinal utility functions. Moreover, the
solution must be invariant with respect to order-preserving linear transformations
of either player's utility function, because the quantities rt (z = 1, 2) themselves,
governing the two players' behavior, are invariant with respect to such transforma-
tions. For example, if we replace player /'s utility function Ut by the new utility
function Vt = aUt + b with a > 0, then rt will not change, because

- V,(O
Likewise, Zeuthen's model provides the independence-of-irrelevant-alternatives

property (Postulate 4 of Section 8.3) automatically without requiring a special
postulate to this effect.

In actuality the heuristic justification that we proposed in Section 8.3 for Nash's
Postulates 3 and 4 (by our numbering) were equivalent to using Zeuthen's bargain-
ing model in an informal way.

Our rationality postulates also have the advantage of making explicit the depen-
dence of the Nash solution on certain consistency requirements (rationality postu-
lates) regarding the players' expectations (subjective probabilities) about each
other's behavior.

While Zeuthen's model provides a more explicit rationale for the Nash solution,
Nash's results also supplement Zeuthen's results in an important way: They provide
an explicit mathematical characterization of the solution point to which the bar-
gaining process postulated by Zeuthen eventually converges.

8.7 The role of the "strong" postulates of rational expectations

We now propose to give closer consideration to the role that the three rational-
expectations postulates (Postulates Bl, B2, and B3) have played in the proof of
Theorem 8.3.

As we saw in Chapter 6, the postulate of mutually expected rationality (Postu-
late Bl) is an essential assumption not only in the theory of bargaining-determined
games but also in the theory of games determined by payoff-dominance. Even in
the simple cases of games with strictly identical or strictly opposite interests (two-
person zero-sum games), our analysis had to assume this postulate. In effect, one
may argue that the essential difference between game theory and the theory of
individual rational behavior (in situations of individual independence) lies primarily
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in the use of this postulate, which sets up a general rationality requirement for the
players' mutual expectations.

In contrast, the symmetry postulate and the irrelevant-variables postulate
(Postulate B2 and B3) are needed only in the analysis of bargaining-determined
games. The main purpose of the symmetry postulate is to rule out bargaining
strategies based on the expectation that a rational opponent facing a given player
will use a bargaining strategy less rational than this player himself would use in the
other player's position. In particular the postulate serves to point out that one
cannot consistently expect a rational opponent to make a concession in a situation
in which one would oneself refuse such a concession according to one's own criteria
of rational bargaining behavior.

The irrelevant-variables postulate, on the other hand, aims to exclude from the
players' decision rules all variables extraneous to rational decision making based on
expected-utility maximization. If we dropped this postulate, then our remaining
five postulates would not rule out some quite arbitrary, or even quite silly, decision
rules. For instance, it would be fully compatible with our other five postulates that
the players should divide any joint profit in proportion of their telephone numbers,
or in proportion to the logarithm of their waist measurements, and so forth. (You
can easily convince yourself that such rules of division would be symmetric be-
tween the two players; they could be made efficient, and so on, and therefore
would not violate any of our first five postulates.)

The irrelevant-variables postulate is based on the following consideration. If the
two players' behavior is guided fundamentally by the criterion of expected-utility
maximization, and if they mutually expect each other's behavior to be guided by
this criterion, then their behavior will depend only on those variables which enter
into expected-utility maximization. All other variables will be intrinsically irrele-
vant for the players' strategy choices.

In our view the only reason that rational players might introduce into their de-
cision rules additional variables unrelated to utility maximization would be the
impossibility of choosing between alternative possible agreement points on the
basis of rational criteria alone. If all ways of dividing the payoffs were equally
rational, then one could not exclude the possibility that even very rational players
might conceivably agree on a division, e.g., in proportion to their telephone num-
bers. For under this assumption all possible arrangements would be equally rational
or equally arbitrary, and that particular one would be no less rational than alterna-
tive arrangements. But, as we have seen, a bargaining game does have a unique
rational solution based on a decision rule involving only the variables rx and r2 di-
rectly connected with utility maximization. Hence the need for introducing addi-
tional variables into the players' decision rules does not arise.12

More particularly we have seen [Condition (8.5)] that, if the players' behavior is
based on expected-utility maximization, then their behavior will be guided by the
variables r1,r2,Pn, and p2\. But, of these four quantities, only rx and r2 have the
nature of independent variables, since the probabilities pl2 and p2i themselves de-
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pend on rx and r2. (In the case of player 1, for instance, his behavior will depend
on rx, because rx is related to his own utility function U\. Yet his behavior will
also depend on r2, related to his opponent's utility function U2, because player l's
expectations about his opponent's behavior, i.e., the probability p2\, will depend
also on r2.) However, neither player's behavior will depend on other variables,
because there is simply no way for other variables to enter into a rational strategy
choice by either player.

If we examine the proof of Theorem 8.3, we will find that, of the five rationality
postulates that we used, Postulates B2 and B3* (or B3) have been the most im-
portant assumptions. In particular, it is the use of Postulate B3* that distinguishes
our theory from alternative theories of bargaining such as those of Raiffa [1953],
Braithwaite [1955], and Schelling [1960]. In contrast, the use of Postulate B2 -
or, at least, of some symmetry postulate for the two players - is common to all
possible theories of bargaining as a matter of strict logical necessity.

Every theory must make the outcome or "solution" a function of certain inde-
pendent variables, which the theory regards as relevant for characterizing the two
players' bargaining positions - though different theories, of course, will consider a
different set of variables as "relevant." But once the "relevant" variables have been
designated, the solution must be made a symmetric function of all these relevant
variables. That is, if we interchange all relevant variables associated with the two
players, then each theory must predict that the two players' payoffs will also be
interchanged. (This is true by the definition of "relevant" variables: If in such a
case a given theory does not predict a reversal of the two players' payoffs, this must
mean that not all relevant independent variables have yet been interchanged be-
tween the two players.)

Our own theory differs from alternative theories in restricting the set of "rele-
vant" variables to those variables which directly enter into rational choice based on
expected-utility maximization. This is accomplished by Postulate B3*. In con-
trast, Schelling's theory assigns "relevance" in this sense also to certain psychologi-
cal variables that have "prominence" for the players, while Raiffa's and Braith-
waite's theories assign relevance to certain ethical variables. Since our model is
meant to represent bargaining behavior governed only by a rational pursuit of indi-
vidual self-interest (or more generally by a rational pursuit of individual utility13),
we want to exclude all these variables from our model by means of Postulate B3*.

From a formal standpoint it would be very natural to combine Postulates B2
and B3 into one statement having the nature of a symmetry postulate (of course,
it would be a stronger symmetry postulate than Postulate B2 in its present form).
Postulate B2 makes the two players' decision rules, taken in conjunction, a sym-
metric function of the variables associated with the two players, while Postulate
B3 makes these decision rules a function of the "relevant" variables only. The
combined postulate could state as one proposition that these decision rules must
be a symmetric function of the "relevant" variables, containing no other variables.
However, we prefer to state Postulates B2 and B3 as two independent axioms in
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order to make it easier to distinguish between assumptions peculiar to our theory
and assumptions that our theory shares with other theories dealing with bargaining
situations.

8.8 The compressed Zeuthen model

We noted in Section 8.3 that Nash's bargaining model is a bargaining game in normal
form, in which each player has only one move, viz., stating his payoff demand. In
contrast, Zeuthen's model is a bargaining game in extensive form, in which each
player typically has a large number of moves (offers and counteroffers). We now
propose to show that Zeuthen's model can be restated, without major changes,
so that it becomes a much shorter bargaining game in which each player has (at
most) two moves.

The proposed model will be called the compressed Zeuthen model. It is a bar-
gaining game with two stages. In stage 1 each player i (i= 1, 2) makes some offer
Ai to the other player. The two players have to make these offers simultaneously
and independently of each other. We say that these two offers are mutually com-
patible if

both Ul(A2)^Ul(Al) and U2(AX)>U2{A2) (8.18)

If the two players' offers are compatible, then the game com's to an end at stage 1,
and the two players will receive the payoffs U\ = Ui(Ai) and u2 = U2(A2) corre-
sponding to their own offers. In particular, if A i - A2 - A, then they will receive
the payoffs ux = Ui(A) and u2 = U2(A).

If the two players' offers are not compatible, then the game will proceed to
stage 2, where each player / can either repeat his own offer A,- or can accept the
other player's offer Aj, but neither player can propose any new offer A/ ^Aj and
¥=Aj. That is,  at stage 2 each player can choose between what we have called alter-
natives a and ]3 in Section 8.4. Consequently the two players' moves at stage 2 can
give rise to three possible cases, which we have called cases oca, a/3, and j3]3. We
will assume that in each of these three cases the players' payoffs will be as specified
in Section 8 4. This means that:

1. If a given player i accepts his opponent's offer Aj, then he will obtain the
payoff Ui(Aj), regardless of what move his opponent will make at stage 2.

2. If player i repeats his own offer At and the opponent accepts this offer, then
player / will obtain the higher payoff Ui(Ai).

3. If player / repeats his own offer At while the opponent likewise repeats his
own offer Aj, then a conflict will result, and player / will receive the lower payoff

In view of Theorem 8.3, if the two players follow our "strong" rationality postu-
lates, then at stage 2 of the bargaining game they will act in accordance with
Zeuthen's Principle. But, by (8.10), this is the same as saying that at stage 2 each



Two-person simple bargaining games 163

player / will accept his opponent's offer Aj if

n(Ai)^ir(Af) (8.19)

but will repeat his own offer At if

7i(Ai)>n(AJ) (8.20)

where n(Aj) and rr(Aj) are the Nash products associated with At and Aj, respec-
tively.

Therefore we can assume that at stage 2 both players' behavior will be governed
by (8.19) and (8.20) and that both of them will know this already at stage 1. How
will they then choose the offers A x and A2 that they will make to each other at
stage 1?

To answer this question, we consider a constrained bargaining game, in which at
stage 1 each player / is free to choose any feasible agreement A as his offer Aj = A,
but in which at stage 2 he must act according to (8.19) and (8.20).

Lemma 1. In a constrained bargaining game, the maximin strategy of each player /
is to choose an offer At proposing an agreement corresponding to the Nash solution
A so that we can write Aj = A. The maximin payoff of each player / is the payoff
Uj - Uj(A), which he would obtain under the Nash solution.

Proof. By choosing the offer Aj = Aj=A, each player / can assure the payoff
Uj = Ut{Ai) - Uj(A). Two cases are possible. If Aj - Aj is compatible with the
opponent's offer Aj, then the game will end at stage 1, and player 1 will receive the
payoff Uj(Aj) - Ut. UAj is incompatible with Aj, then player / will have to accept
Aj at stage 2, since n(Aj) ^ TT(A2), because Aj is the Nash solution and is therefore
associated with the highest possible Nash product. But if player; accepts,?/, then
player / will again receive the payoff Uj(Aj) - Uj.

On the other hand, player / cannot assure a payoff higher than Uj, whatever
offer Aj he may choose. This is so because player/ may always choose the offer
Aj - A, which will assure him the payoff Uj = Uj(A). Yet if player / obtains the
payoff Uj, then player / cannot obtain a payoff higher than Uj, because the payoff
vector (Uj, Uj) corresponding to the Nash solution is an efficient payoff vector.
Thus player /'s payoff cannot be increased above Uj without decreasing player/'s
payoff below Uj.

Lemma 2. The only equilibrium point in the constrained bargaining game is the
strategy pair (or offer pair) (Al,A2) = {A \,A2), where Ax =A2 =.4 areoffers
corresponding to the Nash solution.

Proof. We first show that (A1,A2) is, in fact, an equilibrium point, i.e., that Ax
and A2 are best replies to each other. Suppose that player/'s offer is Aj. Then, if
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player i chooses the offer Ah the game will end at stage 1, and player i will receive
the payoff Uj(Aj) = W/. On the other hand, if player i chooses some other offer
A( ^Ai, he cannot obtain a payoff higher than ut because by choosing the offer
Aj player/ is assured to obtain at least i7y, which makes it impossible for player i to
obtain more than w,-. Hence At is, in fact, a best reply to Aj for i, / = 1,2 and i =£/,
and so (A i, A2) is an equilibrium point.

Moreover, (A\, A2) is the only equilibrium point in the game. It is easy to verify
that (Ai, A2) is the only offer pair yielding the Nash payoff vector u = (wj, fi2).
Any other offer pair (Ai,A2) will yield at least one of the players a lower payoff
ut < ut. But, in view of Lemma 1 of Section 5.10, no equilibrium point can yield
either player a payoff lower than his maximin payoff w,-. Therefore no other offer
pair (Ai,A2) can be an equilibrium point.

Lemmas 1 and 2 indicate that the constrained bargaining game shows some
similarity to a two-person zero-sum game with a unique equilibrium point (saddle
point) in pure strategies. In particular, the two players' equilibrium strategies have
maximin properties.

Theorem 8.5. If the two players follow our "strong" rationality postulates in the
compressed Zeuthen bargaining model, then both of them will propose the Nash
solution 4̂ already at stage 1 of the game. Hence the game will end at stage 1, and
both players will receive their Nash payoffs ux - Ux (A) and u2 - U2(A).

Proof. By Theorem 8.3, if the two players follow our "strong" rationality postu-
lates, then the compressed Zeuthen model will be equivalent to a constrained bar-
gaining game. But, by Lemmas 1 and 2, the latter will have the nature of an un-
profitable game, since its only equilibrium point is unprofitable to both players,
yielding them only their maximin payoffs. Therefore, by Postulate Al, the players
must use their maximin strategies, i.e., must make the offers^ and A2 at stage 1
of their game. As a result the game will end at stage 1, yielding the players the
Nash payoffs U\ and u2.

Thus the compressed Zeuthen model, like the extensive Zeuthen model, yields
the Nash solution as outcome of the bargaining game.

8.9 Risk-dominance relations

As we saw in Section 8.5, Zeuthen's Principle has the following implication. If the
two players have to choose between two alternative offers A t and A2, they will
always choose that offer A t which corresponds to a higher risk limit rh or equiva-
lently they will choose that offer At which yields a higher Nash product -n(At). We
can express this by saying that Zeuthen's Principle establishes a dominance-like re-
lation between any offer At corresponding to a higher risk limit rt [ or a higher
Nash product 7r(4/)] and any offer Aj corresponding to a lower risk limit rj [or
a lower Nash product 7r(Aj)]. We will call this dominance-like relation risk-
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dominance, as distinguished from the pay off-dominance relations discussed in
Chapter 5.

More formally let u1 = {ux
l, u2

l) = U{AX) and u2 = (ut
2,u2

2) = U(A2) be the
payoff vectors associated with player l's last offer Ax and with player 2's last offer
A2, respectively. In view of (8.2) this means that

ul
1^ul

2^cl and u2
2^u2

l^c2 (8.21)

where cx = UX(C) and c2 = U2(C) are the two players' conflict payoffs.
We will say that ul (i = 1,2) weakly risk-dominates uJ if

ui' - ct uJ - c,

or equivalently if

TT(K') = (« / - c,)  • ( « / - c t) £ (u/ - a) • (uJ - C/) = ff(«') (8.23)

We say that ul strongly risk-dominates uJ if the ^ signs in (8.22) and (8.23) can
be replaced by > signs.

We also introduce the concept of risk-equivalence. We will say that ul and uJ

are risk-equivalent if they mutually risk-dominate each other in a weak sense, i.e.,
if rt = Tj and n(ul) - n(uJ). In this case, as you will recall, Zeuthen's Principle re-
quires both players to make concessions.

It is convenient to extend the concept of risk-dominance also to cases in which
Condition (8.21) is not satisfied. First of all we can replace (8.21) by the weaker
condition

u x
l ^ C l u x

2 ^ c x u 2
l ^ c 2 u 2

2 ^ c 2 (8.24)

We can say that ul risk-dominates uJ if Conditions (8.23) and (8.24) are satisfied.
This means that we no longer require that one player should prefer one payoff vec-
tor under consideration while the other player should prefer the other. Our new
definition covers the case where both players prefer (say) ul to uJ. In this case we
will always have n(ul) ^ 7r(w7), and so ul will risk-dominate uK

Indeed it is sometimes convenient to extend the concept of risk-dominance to
cases where even the weaker Condition (8.24) is not satisfied. In particular let
u = {ux, u2) be a payoff vector such that

Ui<Ci for i= 1,/ = 2, or both (8.25)

Then u can never be accepted by mutual agreement between the players. Therefore
we can say that such a payoff vector u will be strongly risk-dominated by any other
payoff vector u - (ui\u2')¥ zu.

Let a* and a** be two joint strategies yielding the payoff vectors w* = £/(a*)
and w** = U(o**). We will say that a* weakly (or strongly) risk-dominates a**
whenever u* weakly (or strongly) risk-dominates t/**.
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Under this terminology Zeuthen's Principle essentially says that, if the payoff
vector ul proposed by player / is risk-dominated, even if only in a weak sense, by
the payoff vector u] proposed by his opponent, then player / must propose some
new payoff vector (u1)' more favorable to the opponent.

On the other hand, Nash's theory essentially says that in any simple bargaining
game G there is always one payoff vector u = (u~i, u2) with the following proper-
ties:

1. It strongly risk-dominates all other feasible payoff vectors u' in the game.
2. It is itself not risk-dominated, even in a weak sense, by any other feasible

payoff vector u'. Thus u is a maximal element under risk-dominance relations.
This payoff vector £7 is the Nash solution.

8.10 Formal definition of the solution

Formally, we define the payoff solution of a simple bargaining game G as the Nash
solution u = (w"j, u2). We define the strategy solution 2 as the set of all joint strate-
gies a that will yield the Nash solution u so that U(o) = u.
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General two-person
cooperative games

THE PROBLEM OF OPTIMAL THREATS

9.1 Games with and without binding threats

In a general cooperative game the rules of the game do not uniquely determine the
conflict payoffs cx and c2 the players would receive in a conflict situation, if they
could not agree on their final payoffs ux and u2. Instead these disagreement payoffs
will depend on the conflict strategies 6X and 02 which players 1 and 2 would actu-
ally use against each other in case of a conflict. Thus we can write

where Ux and U2 are the two players' payoff functions.
We can distinguish two cases: games with and games without binding threats. In

the former the players will announce their conflict strategies d x and 62 at the be-
ginning of the game; once these have been announced the players are bound to
implement them if they later fail to reach agreement on their final payoffs. Ac-
cordingly 6! and 62 can now be called threat strategies. Since 6 x and 62 would
have to be fully carried out in a conflict situation, they will have the nature of fully
credible threats rather than mere bluffs.

In general each player can implement a threat, i.e., can damage his opponent,
only at a certain cost to himself. In a conflict situation each player would prefer
to save the cost of implementing a threat if he could (unless implementation of this
threat would yield some direct benefit for him). Therefore it is important to know
whether the rules of the game leave him a free choice in this matter.

In a cooperative game it is a natural assumption that the players can make binding
threats which would have to be carried out if a conflict situation arose, for this is
simply an extension of the general assumption that all agreements and promises
made by the players have binding force - the defining characteristic of cooperative
games. We will, however, also briefly consider the alternative case, in which the
players cannot make binding threats.

In a cooperative game with binding threats the players have to choose their
conflict strategies (threat strategies) 6X and 02 at the beginning of the game.
These conflict strategies will then define their disagreement payoffs cx and c2 in
accordance with Equation (9.1). These disagreement payoffs cx and c2 will in

167
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turn determine the final payoffs ux and u2 in accordance with Equation (8.1) of
Section 8.3, which defines the Nash solution. Since both players are assumed to
consider each other as rational individuals, they will have full confidence in being
able to reach agreement. Hence they will expect that their final payoffs will be the
payoffs ux and u2 resulting from such an agreement, which may be called agree-
ment payoffs, rather than the disagreement payoffs C\ and c2 that they would ob-
tain in a hypothetical conflict situation. Consequently, in choosing his threat strat-
egy 6h each player / will try to maximize his agreement payoff w, instead of
trying to maximize his disagreement payoff Q .

We can express the same conclusion also by saying that in a game G with binding
threats the threat subgame G* (in which the two players choose their threat strat-
egies 61 and 62 and thereby determine their disagreement payoffs cx and c2) is a
dependent game, subordinated to the bargaining subgame G** in which the players
agree on their final payoffs (agreement payoffs) u j and u2.

In contrast, in a cooperative game without binding threats, if the negotiations
broke down and a conflict situation arose, the players' freedom of action would
not be restricted by any threats possibly made at earlier stages. Yet once a conflict
situation arose, the agreement payoffs ux and u2 would have been irretrievably
lost to the players. Hence they would concentrate on what still could be saved,
and each of them would choose his conflict strategy 0,- in order to maximize his
disagreement payoff ct.

Thus in a game G without binding threats the conflict subgame G* (in which
the players choose their conflict strategies dx and 02 , and thereby determine
their disagreement payoffs C\ and c2) will be an independent game, not subordi-
nated to the bargaining subgame G** (in which the players agree on ux and u2).
Consequently G* will have the nature of an independent strictly noncooperative
game between the two players, where each player / tries to maximize his payoff
Cj from this game G*. (The solution of G* will be determined by our general
theory of noncooperative games, to be discussed in Chapter 14.) Although rational
players will again expect to reach an agreement and will hope that they will never
have to actually play the conflict subgame G*, their disagreement payoffs in the
bargaining game G** will be the payoffs ct and c2 determined by the solution of
the independent noncooperative game G*. This will be so because the players will
know that, in case they did fail to reach an agreement in G**, they would have to
play the conflict game G* and would obtain the payoffs C\ and c2 resulting from
G*.

In what follows we will concentrate on cooperative games with binding threats.
In an abstract model we can assume that in a conflict situation implementation of
the players' mutual threats would be enforced by the same enforcement agency
which also enforces agreements concluded by the players. In the real world, of
course, the implementation of threats is usually enforced by fear of losing face
and of decreasing the credibility of one's threats in the future in similar situations.

Depending on whether we use Nash's one-bid model or Zeuthen's many-bids
model for analyzing the bargaining subgame G** of the cooperative game, we ob-
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tain two different but equivalent models. Under Nash's model the two players
announce their threat strategies 8X and B2 at the beginning of the game. (It can
be shown that it does not matter whether the two players have to choose their
threat strategies independently of each other, or whether one of them has to
announce his threat strategy//m while the other is allowed to choose his own
threat strategy after learning his opponent's choice.) When both threat strat-
egies have been announced, each player / decides on his demand, specifying the
final payoff Uf on which he insists. Now it is essential that each player should
choose his own demand independently, without knowing his opponent's demand.
(Otherwise the player specifying his demand first would have a great advantage:
Once he had committed himself to any agreement point within the negotiation
set, the other player could not rationally refuse to accept his terms. This would
transform the bargaining game into an ultimatum game - see Section 9,8.) For
instance, we may assume that each player has to put his demand into a sealed
envelope without being able to observe the other player's demand.

Finally the two players' demands are compared. If they are compatible, that is,
if the payoff vector (u j , u2) is a point within the payoff space P, then each player
/ obtains the payoff w,- for which he has asked. On the other hand, if the two
demands are incompatible, then the players are forced to implement their threat
strategies 0x and 02 against each other, which will result in their receiving the dis-
agreement payoffs cx and c2.

If we want instead to use Zeuthen's model (now supplemented with Nash's con-
cept of threat strategies), then again we have to assume that the two players will
announce their threat strategies 0x and 62 at the beginning of the game. But this
will now be followed by a sequence of offers and counteroffers by the two players.
This process will continue until an agreement is reached or alternatively until at
one stage both players refuse to make further concessions, giving rise to a conflict
situation in which both players will have to carry out their threats and will receive
the disagreement payoffs cx and c2 as a result.

Thus we use the same concept of threat strategies in both models. The only differ-
ence is in the nature of the assumed bargaining process. Since Nash's and Zeuthen's
models for a bargaining process are equivalent, this equivalence is, of course, pre-
served if we enlarge both models by adding a threat game of the same nature in
both cases.

9.2 Mutually optimal threat strategies

We have seen that, given the two players' disagreement payoffs cx and c2, the Nash
solution u = (Ui,U2) is defined by maximization of the product TT(U) subject to
certain constraints [Equation (8.1)] . We will first derive an alternative but equiva-
lent definition which is mathematically more convenient for our purposes.

Let H(ux, u2) = 0 be the equation of the upper right boundary of the payoff
space P. Let Hx and H2 be the first derivatives of the function H with respect to
ux and u2 } Using Lagrange's multiplier method we find that the constrained
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maximum problem stated in Equation (8.1) is equivalent to the following three
simultaneous equations:

H(U1,u2) = 0 (9.2)

a, -("i ~Ci) = a2 -(M2 - C 2 ) (9.3)

at =H,Qi l f « 2 ) i = l , 2 (9.4)

In view of the convexity of the payoff space P, the second-order conditions of
maximization are always satisfied. Therefore Equations (9.2) through (9.4) give
a sufficient and necessary condition for the Nash solution.

Since on the upper right boundary H the payoffs ux and u2 are strictly decreasing
functions of each other, the derivatives//! and//2 must always have the same
signs. Without loss of generality we can assume that both are nonnegative. Hence

a^Hi^O i = l , 2 (9.5)

where the sign of equality can possibly apply only at the end points of the upper
right boundary //.

Given his opponent's threat strategy 0y- = Qf, each player / will choose his own
threat strategy Qt = d° in order to maximize his own final payoff M,-, subject to
Equations (9.2) through (9.4), as well as (9.1). Any threat strategy 0° maximizing
u~i subject to these constraints will be called optimal against d°. If 6 i°and 02 °
both satisfy this requirement in relation to each other, then they are called mutu-
ally optimal. Clearly any pair of mutually optimal threat strategies 01° and 62°
will represent an equilibrium point in the threat game G* between the two players
(if we regard G* as a dependent game subordinated to the bargaining game G** -
see Section 9.1).

Nash has shown that in any cooperative game with binding threats such a pair of
mutually optimal threat strategies always exists. The proof is based on Kakutani's
[1941] fixed-point theorem [Nash, 1953]. There may possibly exist several pairs
of mutually optimal threat strategies, but all of them yield the same unique solu-
tion u = (u~i, u2) for the game. Moreover, all pairs of mutually optimal threat strat-
egies are interchangeable: If 0x and 62 are mutually optimal, and if the same is
true for di° and 02°, then 6x and 62° as well as Qx° and 62 will again form
mutually optimal pairs of threat strategies.

Mathematically these convenient properties of mutually optimal threat strategies
are attributable to the fact that a threat game G* is in many ways similar to a two-
person zero-sum game. This is so because the solution w = (w x, w2 ) is always a
point on the upper right boundary H. Hence u x and u2 are decreasing functions of
each other. Consequently, maximizing ux is equivalent to maximizingy x =
U\ - u2 ; whereas maximizing u2 is equivalent to maximizingy2 =u2 - u x. There-
fore we can assume that player 1 tries to maximize yx, while player 2 tries to
maximizey2 . Yet j j + y2 =0, which makes the game a zero-sum game.2

Intuitively an optimal threat strategy in Nash's sense is the threat strategy maxi-
mizing the relative strength of one's bargaining position against the opponent. It
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represents the best possible compromise between trying to maximize the costs of a
conflict to the opponent and trying to minimize the costs of a conflict to oneself.
(Or equivalently it is the best possible compromise between trying to minimize the
opponent's conflict payoff Cj and trying to maximize one's own conflict payoff q.)

We now propose to derive sufficient and necessary mathematical conditions for
mutually optimal threat strategies and by this means to find a mathematical defini-
tion of the Nash solution for the two-person general cooperative game (with bind-
ing threats).

We first prove the following lemma.

Lemma 1. Let

c = (cl,c2)=U(d1°,d2°) (9.6)

and let u = (U1,u2) be the Nash solution corresponding to this disagreement payoff
vector c so that u and c satisfy Equations (9.2) through (9.4).

Then, in order that threat strategy Oj°(i = 1, 2) of player / be optimal against
threat strategy Oj°(j = 1,2 and ¥=  /) of player/, it is both necessary and sufficient
that

aici-ajcj= max k ^ ^ , ^ ) - aM^Sf)] (9.7)
0,-es,

aj,aj = const,

where 2, is the set of all strategies available to player / in the game.

Proof. Take any point w* = (ux *, u2 *) on the upper right boundary H of the
payoff space P. Consider the set C(M*) of all possible disagreement payoffs c* =
(<?! *, c2 *) such that would make this point w* the Nash solution of the game. By
(9.3) and (9.4) the set C(u*) is given by the intersection of the payoff space P and
the straight line L(u*) whose points c* satisfy the linear equation

//,("*) ' ci*=Hf(u*) • Cj*=Ht(u*) ' U* - Hj(u*) - u* = const. (9.8)

Now any point c* will define a unique Nash solution M*. Therefore any point
c* will belong to one and only one set C(w*). Consequently the family of all sets
C(M*), U* ELH, represents a partitioning of the payoff space P into these sets C(M*)
as equivalence classes. Clearly the mapping C of all points w* of H into the family
of all sets C(u*) is continuous, and so is the inverse mapping C"1.

Comparing two possible disagreement payoff vectors c = (ci,c2) and c* =
(<?! *, c2 *), we call c* more favorable than c for player i if

cEC(u) c*GC(w*) (9.9)

and

Uj*>Ui (9.10)
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Figure 9.1

For a graphic interpretation refer to Figure 9.1. Here the line C(u) and the tangent
of the boundary curve H at point u must have equal but opposite slopes, in view of
Equations (9.3) and (9.4). Hence a = 0.

Let C+(u) be the set of all points c* in the payoff space P such that

Ht{u) ' ct* - Hj(u) • cj*>Hi(u) •  Ui - Hj{u) •  M/

or equivalently such that

diCf* ~ djCj* > ajUj - cijUj = djCj - djCj

(9.11)

(9.12)

where the equivalence of (9.11) and (9.12) follows from (9.3) and (9.4). We will
now show that all points c* of C+(u) are for player i more favorable disagreement
payoff vectors than are the points c of C(u).

Choose any point w* = (ux *, u2 *) on the upper right boundary H such that

Since a{ § 0 we can write

By the convexity of P we have

By (9.14) and (9.15),

fl/M/* " djUj* ^ dfh

(9.13)

(9.14)

(9.15)

(9.16)

Hence the point w* must lie either in the set C+(u) or in the set C(u). But it cannot
lie in C(u), because then, in view of (9.8), we would have w* = u, which would be
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inconsistent with (9.13). Consequently

w * < E C » (9.17)

Now for player / the point c* = w* as disagreement payoff vector would be clearly
more favorable than any point c in C(u), because obviously w* G C(w*); and, by
(9.13), Uj* >w,-. But, in view of the continuity of the mapping C"1, by the
Bolzano-Weierstrass theorem, if any point u* of C+(u) is more favorable for piayer
i than are the points c of C(u), then all points c* of C+(u) must be more favorable
than are the points c of C(u).3

Hence if player i had any threat strategy Of yielding a disagreement payoff vec-
tor c* = U(0j*, Of) belonging to C+(u), i.e., satisfying the inequality 0,-c,-* -
cijCj* >atci - djCj, then Of could not be optimal against Of. Thus Of can be
optimal against Of only if it maximizes the expression in square brackets on the
right side of (9.7). This proves the lemma.

Lemma 1 implies:

Lemma 2. In order that Of and Of be mutually optimal against each other, it is
both necessary and sufficient that the point c should satisfy Equations (9.2), (9.3),
(9.4), (9.6), and (9.7), as well as the additional equation

atCi-ajC^ min [a^Of ,0f) - afUf(0f9ef)] (9.18)

di,dj = const,

where 2y is the set of all strategies available to player/.

Lemma 2 follows from the fact that minimizing the expression (fl/C,- - &jcj) is
equivalent to maximizing the expression (djCj - fl/C,-). Since Nash has shown that
a pair of mutually optimal threat strategies always exists, there is always a pair of
strategies Of and Of satisfying Equations (9.2), (9.3), (9.4), (9.6), and (9.18). But
if such a pair exists, then it must have maximin and minimax properties. This
gives:

Lemma 3. Suppose that strategies Of and Of are mutually optimal threat strat-
egies and consequently satisfy Conditions (9.2), (9.3), (9.4), (9.6), (9.7), and
(9.18). Then

aiCi - ajCj = atUtiBf.ef) - a} Uj(0f,6f) (9.19)

= max min [tf/£/;(0;, 0f) - dfUf(0i9 0f)]

di9dj = const.

The lemma remains true even if we reverse the order of the max and the min oper-
ators (i.e., if we use the minimax operator instead of the maximin operator).
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Proof. The proof is based on the fact that Equations (9.7) and (9.18) entail
Equation (9.19). Let

F(6h Qj) = atU^i, 6f) - afUf(dh 0f) (9.20)

Then fox any 0 / £2 |

min F(6h 6j) g F(0h Of) -S max F(0h Of) (9.21)
0 °

(di,6.)

where the last two equalities follow from (9.7) and (9.18). Consequently

F(0f, 6f°) = max min F(Qt, 6f) (9.22)

as desired. We can prove by similar argument that

Fief, df) - min max F(0,., 6f) (923)

This completes the proof of the lemma.

Lemmas 2 and 3 entail the following theorem:

Theorem 9.1. In a general two-person cooperative game with binding threats, the
Nash solution u = (u l, u2) can be defined by the following conditions which are
both necessary and sufficient:

H(u1,U2) = Q (A)

ai = Hi(uhu2) = Hi(u) i = l , 2 (B)

* i " ( « i  -ci) = a2 '(u2 ~c2) ( C )

ci = Ui(e1
o

9e2°) / = 1 , 2 (D)

^ d -a2c2=alul(el
o
9e2

o)-a2u2(e1°9e2
o) (E)

= max min [a, ^ ( 0 1 , 02) -a2U2(Bl J2)]
Q l G E , (92 e. S 2

^1,^2 ~ const,

or equivalently

= m i n m a x [ax 1/^6, , 6 2 ) - a 2 U 2 ( O l , 6 2 ) ]

^1,^2 ~ const.

Instead of Equation (E) we can also take the equivalent condition
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-a2c2 =a1U1(0io,O2O)-a2U2(d1
o,e2°) (E*)

= max [f l 1 t f 1(0 I ,02
o)-f l 2£/2(0, ,0a

o)]

ai ,a2 = const.

= min [« , t / 1 (e1
o ,6l2)-« 2C/2(01

o ,02)]

ax ,a2 = const.

By Lemma 3, Condition (E*) entails (E), and it is easy to verify that the converse
is also true. Therefore any pair of strategies dx° and 62° satisfying (E) or (E*)
must have the nature of mutually optimal threat strategies.

The quantities ax-Hx (u ) and a2 = H2 (u) will be called the weights of the game.
We are always free to multiply the function H by any positive constant, because
this will leave Equation (A) and Inequality (9.5) unaffected. Therefore the weights
ai and a2 are indeterminate up to a positive proportionality factor. To make them
fully determinate, one can normalize them so that ax + a2 = 1. This can be
achieved by replacing Equation (B) by the equation

a,= r T " : { U 1 ^ 1 = 1 , 2 (B*)

This is always legitimate, since H1 and H2 can never be both zero.
Conditions (D) and (E) can be omitted in the special case of simple bargaining

games, where cx and c2 (or equivalently 6x° and 62°) are constants directly speci-
fied by the rules of the game.

Condition (B) assumes the existence of the derivatives Hx and H2 at the solution
point u. To obtain more general conditions which can be used even if u happens to
be a corner point of the upper right boundary H, we state the following theorem:

Theorem 9.2. We obtain an alternative set of sufficient and necessary conditions
for the Nash solution if we replace Conditions (A) and (B) by the new conditions

afk 0 i = l , 2 (AA)

+ a2u2 = max {axux + a2u2) (BB)

ax,a2 = const.

retaining Conditions (C), (D), and (E) unchanged.
Obviously these conditions do not assume the existence of Hx and//2 •
If we want to normalize the weights a x and a2 , then we can now add the further

requirement

tfi+02 = l (F)
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Proof. In case the derivatives Hx and H2 do exist at the point u, the equivalence
of Conditions (AA) and (BB) to Conditions (A) and (B) follows from the convexity
of the payoff space P. In the case where Hx and H2 do not exist at u, we can ex-
tend the theorem by using the approximation method outlined in Footnote 1.

In cases where the payoff functions Ux and U2 of the two players are suffi-
ciently simple we can compute the solution by directly solving the simultaneous
equations of Theorems 9.1 and 9.2. In general, however, their solution requires an
iterative procedure. Note that our simultaneous equations form a nonrecursive
(i.e., circular) system: To compute Ci,c2iu1, and u2 we would have to know ax
and a2; on the other hand, aj and a2 themselves are in general functions of u~\ and
u2 (except when the upper right boundary H is a straight line). But this nonrecur-
siveness is not objectionable,because we know that our simultaneous equations
always have a solution, and indeed this solution is even known to be unique, at
least as far as the vector u = (ux, u2) is concerned. (This follows from Nash's
existence and uniqueness theorems for u.)

9.3 An alternative characterization of mutually optimal threat strategies

We will now propose an alternative mathematical characterization of optimal threat
strategies, which will lead to an alternative definition of the Nash solution.

Lemma 1. Let u = (ux, u2) be the Nash solution, and suppose that u is not a
corner point of the upper right boundary H of the payoff space P. Then, in order
that a given strategy 0° of player / be an optimal threat strategy against some
threat strategy 6° of player/, it is both necessary and sufficient that 0t° should
satisfy the condition

(9.24)

Proof. (See Figure 9.1.) Let c - (c,-, cj) be a point of line C(u), and let c* =
(c,-*, Cy*) be a point in the set C+(u). Then c will satisfy the equation of line
C(u) so that

aiCi - ajCj - a^i - ajUj (9.25)

while c* will satisfy the inequality

atCi* - ajCj* > atUi - a^j (9.26)

Hence we can write

Uj - Cj at Uj - Cj*
-1 L=-<-1 J- (9.27)
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or simply

< - '—  (9.28)

Now from player z's point of view any point c* in set C+(u) would be a more
favorable conflict point than any point c on line C(u) would be, in the sense that
the former would lead to a more favorable Nash solution than the latter would.
Consequently (9.28) is a sufficient and necessary condition to ensure that, from
f s point of view, c* will be a more favorable conflict point than c.

Let

,0/>) (9.29)

The strategy 0° will be optimal against d° if and only if we cannot find an alter-
native threat strategy 6t =£ Of yielding a more favorable conflict point

c* = U(dhdj°) (9.30)

from /'s point of view. But this means that 6j° will be optimal against 6° if and
only if no alternative threat strategy dt would yield a conflict point c* satisfying
(92.8) and (9.29). However, this is equivalent to Condition (9.24). This proves
the lemma.

Lemma 2. Under the assumptions of Lemma 1, two threat strategies 6° and 6°
will be mutually optimal if and only if

urul{ei°,e?)_ r« /--t//(flt,fl/)l— —  - max mmut - UtieP^f) et^i e^Ef [ut - Ui{Bhej) J
where we are free to interchange the order of the max and min operators.

Proof By Lemma 1, 6j° will be optimal against d° if and only if it satisfies Con-
dition (9.24). Again, by Lemma 1, 0° will be optimal against Of3 if and only if

—  } l ' 7 = min M J ' ' ; (9.32)

But Equations (9.24) and (9.32) imply Equation (9.31), as desired.

Lemma 3. If the Nash solution u - (ux, u2 ) is a corner point of the upper right
boundary H, then Equation (9.31) will still remain a sufficient condition for mu-
tual optimality (though in general it will no longer be a necessary condition).

Proof The sufficiency of Condition (9.31) can be established by the approxima-
tion method outlined in Footnote 1. However, Condition (9.31) will no longer be
necessary, because the left side of (9.31) will take different values for different
pairs of mutually optimal threat strategies 6 x° and 62°, corresponding to the dif-
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ferent slopes of the various supporting lines L to the payoff space P at the corner
point u.

Theorem 9.3. An alternative mathematical definition of the Nash solution u -
(M\ , w2) is as follows:

(Ui - Ci) • ( u 2 - c2) = m a x (ui - cx) - (u2 - c2) (a)

u2Zc2
Cj, c2 = const.

ci=Ui(pl°i02°) i = l , 2 (0)

u2 - c2 _u2 - U2{pl
o,62

o)

= max mm

= mm max
02G22 0, EZL

Proof Condition (a) is a restatement of Theorem 8.1. Conditions (|3) and (7)
follow from Lemmas 2 and 3. It makes no difference that Condition (7) is in
general only a sufficient condition for mutual optimality without being a necessary
condition. This means only that by solving Equation (7) we may not obtain all
pairs of mutually optimal threat strategies when u is a corner point. But to com-
pute u, all we need is to find one pair of mutually optimal threat strategies, and
this can be done by solving Equation (7) together with Equations (a) and (j3).

Of course, Conditions (a), (]3), and (7) in general form a nonrecursive system.
Conditions (a) and (fi) enable one to compute u if 6x° and 02° are given, whereas
Condition (7) enables one to compute dx° and 62° if u is given. This means that
in general the three equations must be solved by an iterative procedure.

Equations (a) and (7) involve the same quantities vx =u1 - cx and v2 - u2 - c2 .
But in Equation (a) cx and c2 are regarded as given. Therefore it is natural to
interpret vx and v2 as the two players' net payoffs, i.e., as the amounts that they
will obtain in excess of their conflict payoffs cx and c2 , if they can reach an
agreement.

In contrast, in Equation (7) the quantities ul and u2 are regarded as given.
Therefore it is natural to interpret vx and u2 , in this case, as the two players'
conflict costs, i.e., as the amounts they would lose in a conflict situation com-
pared with what they would obtain in an agreement situation.

Thus Equation (a) may be interpreted as saying that agreement will be reached at
the point where the product of the two players' net payoffs is maximized. On the
other hand, Equation (7) and in particular Equation (9.31), which is equivalent to
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Equation (7), may be interpreted as saying that each player i must choose a threat
strategy that will maximize the ratio of the other player's conflict cost Vj = Uj - Cj
to his own conflict cost vt = ut - ct.

In other words, suppose that player / is considering whether or not he should
switch from one threat strategy 6t to another threat strategy 0/. Equation (9.31)
says that such a switch will be in player fs interest, if it will increase the conflict
cost Vj of his opponent in a higher proportion than it will increase his own conflict
cost Vj. The same will be true if such a switch from 0,- to 0/ will decrease player
z's own conflict cost vt in a higher proportion than it will decrease the opponent's
conflict cost Vj.

Thus in general the relevant comparison is not between absolute increases or de-
creases in the two players' conflict costs; rather it is between proportional increases
or decreases in their conflict costs.

9.4 Conclusion

To conclude, the Nash-Zeuthen solution for the two-person general cooperative
game with binding threats predicts that each player / will achieve a higher final
payoff Uji

1. The greater his own willingness, and the lesser his opponent's willingness,
to risk a conflict in order to obtain better terms, as shown by the two players'
cardinal utility functions. (This can be best seen by considering Zeuthen's model
of the bargaining process.4)

2. The easier it is to transfer utility from the other player to player /, and the
harder it is to transfer it the other way around. (If we increase the marginal rate of
utility transfer -dUj/dUj = aj\at at the solution point u of the game, this will shift
the solution point in favor of player /, as can be seen from Condition (C) of Theo-
rem 9.1.)

3. The greater damage that player i could cause to his opponent in a conflict
situation at a given cost to himself and the lesser damage that the opponent could
cause to player / at a given cost to himself.

The solution is based on the concept of mutually optimal threat strategies. In-
tuitively speaking these represent the best possible compromise between trying to
maximize the damage that one can cause to the opponent in a conflict situation and
trying to minimize the cost of the conflict to oneself.5

The Nash-Zeuthen theory of two-person bargaining games (and more generally
of two-person cooperative games) has applications to a number of economic, politi-
cal, and other social situations, such as commercial transactions, collective bargain-
ing on the labor market, other types of bilateral monopoly, duopoly, or duopsony,
political power situations involving two persons or two social groups, and so forth.
But many important social situations involve bargaining among more than two par-
ties; therefore they have to be analyzed in terms of the theory of ^-person coopera-
tive games, to be discussed in Chapters 10 and 11 - or possibly in terms of the
theory of noncooperative games, to be discussed in Chapter 14.
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COMPOSITE BARGAINING GAMES

9.5 In variance with respect to commensurate changes in the conflict payoffs

The Nash solution has the following important invariance property. Suppose that
in a given game G both players' disagreement payoffs are increased (or decreased)
from cx and c2 to

Ci = cl + Aci and c2 = c2 + Ac2 (9.33)

whereas the upper right boundary H of the payoff space P is left unchanged. Then,
by Equation (C) of Theorem 9.1, the resulting new game G' will have the same solu-
tion u = (u i, u2 ) as did the original game G if and only if

ax - Acx =a2 - Ac2 (9.34)

where ax and a2 are the weights defined by Equation (B) of Theorem 9.1.
and Ac2 satisfy (9.34), then they are called commensurate increments (or decre-
ments) in the conflict payoffs. [In this case, by (9.5), Acx and Ac2 must always
have the same sign.]

This property can be used in the analysis of composite bargaining games.

9.6 Solution of an "embedded" bargaining game

Let G be a composite bargaining game to be played in two stages. In stage 1 the
two players have to agree on some payoff vector u* = (wt*, w2*) chosen from a
given convex and compact set P*. If they cannot agree, then they receive the con-
flict payoffs Ci and c2. Thus stage 1 itself is a bargaining game G* with payoff
space P* and with conflict point c.

In stage 2 the two players have to agree on another payoff vector u = (wt, u2)
now chosen from a larger convex and compact set P, a superset ofP*. If they can-
not agree in stage 2, then they receive the payoffs Ux* and u2* already agreed upon
in stage 1. Thus stage 2 is again a bargaining game G** with payoff space P D P*
and with conflict point u*.

Let H be the upper right boundary of P, and let H* be the upper right boundary
ofP*.

Though under our assumptions game G is actually played in two stages, it is
easy to see that it is strategically equivalent to, and has the same normal form as, a
one-stage bargaining game G with the same payoff space P and the same disagree-
ment point c. Even if G is played in two stages, the players in the end can achieve
any payoff vector u in P if they fully cooperate; if they do not cooperate at all,
then they will be confined to the point c. Therefore the Nash solution u = (ul,u2)
of the two-stage game G is the same as that of the corresponding one-stage game G
and is accordingly defined by Equations (A) through (C) of Theorem 9.1. This
means that, if the players follow our rationality postulates, then in the end (i.e.,
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during stage 2) they must come to adopt the payoff vector u - u defined by these
equations.

Consequently during stage 1 the players must choose a vector w* which will
lead to adoption of u - u as the final payoff vector during stage 2, when this vector
w* will be used as conflict point. That is, the same solution u must be obtained by
using vector w* as conflict point during the second stage of our two-stage game G as
would be obtained in the corresponding one-stage game G with vector c as disagree-
ment point. But by Equation (9.34) these two disagreement points w* and c will
yield the same solution u if and only if

« i - ( « i * - c , )  = « 2 - ( u 2 * - c 2 ) (9.35)

where

a, = / / , ( « , ,  « 2) 1=1,2 (9.36)

On the other hand, efficiency requires that u* should lie on the upper right boun-
dary//* so that

H*(u1*,u2*) = 0 (9.37)

Intuitively this argument amounts to saying that in stage 1 of the game a rational
player / will not agree to a payoff vector w* which would worsen his relative bar-
gaining position in stage 2 with respect to his final payoff ut = W/. Therefore if
both players act rationally, then in stage 1 they will adopt a payoff vector u* which
will leave unchanged their relative bargaining positions with respect to the final out-
come of the game. Consequently in stage 1 they will agree on commensurate
payoff increments Aw,-* = ux* - cx and Aw2* = w2* - c2, in accordance with
(9.34).

Thus if a given bargaining game G* with payoff space P* and with disagreement
point c is embedded as a subgame into a larger composite bargaining game G, then
the solution of G* will be in general different from what it would be if G* were
played as an independent game. In the former case the solution w* of G* will be
defined by Equations (9.35) through (9.37). In the latter case, in view of Equa-
tions (A) through (C) of Theorem 9.1, its solution w* would be defined by the
equations

« i* - (K i* -c , )  = a 2 * - ( « 2 * - c 2 ) (9.38)

at*=H,*(ul*,u2*) i = l , 2 (9.39)

together with Equation (9.37), which applies equally in both cases. The essential
difference is that, if G* were played as an independent game, then its solution w*
would be defined in terms of the weights a^ and a2*, determined by the mathe-
matical properties of the payoff space P* of G* itself. In contrast, if G* is played
as a subgame of the larger game G, then the solution u* of G* will be defined in
terms of the weights ax and a2, depending on the mathematical properties of the
payoff space P of this larger game G. The reason for this difference is that, if G*
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is played as an independent game, then each player's goal will be to maximize his
immediate payoff W/* from G* - whereas if G* is played as a dependent game, then
each player's main goal will be to maximize his final payoff ut = ut from the larger
game G rather than to maximize his payoff ut* from G* itself.

Extension of this analysis to bargaining games played in more than two stages is
straightforward. This gives:

Theorem 9.4. Let G be a composite bargaining game played in k stages. Let P1 C
P2 C • • •  C Pk, where Pj (1 g / ^ k) is the payoff space for stage /, with P = Pk the
payoff space for stage k as well as for the whole game. The /^'s are convex and
compact sets. Let HJ(ui, u2) = 0 be the equation of the upper right boundary H1

ofPJ with Hk = H. In each stage / the two players have to agree on some payoff
vector u} G PJ. We will write uk =u. In stage 1 the conflict point is a given prear-
ranged payoff vector c. In each later stage/ the disagreement point is the payoff
vector ir* ~l> agreed upon in the previous stage. For convenience we write c = u°.
Then in each stagey the players will agree on a payoff vector u1 such that

H\uJ,u2l) = 0 / = l , . . . , * (9.40)

ax - Au1
J' = a2 • Au2

j / = l , . . . , f c (9.41)

where

Aut
j = UJ - up-V / = 1, 2;/ = 1,. . . , * (9.42)

and
a^Hiiu^u^ i= 1,2;/= 1,. . . , * (9.43)

That is, at each stage / the players will agree on commensurate payoff increments
Aui1 and Au2

J. Instead of (9.41) and (9.42) we can also use the equivalent rela-
tionship

*i - O V - C i ) ^ -(u2' -c2) / = l , . . . , f c (9.44)

9.7 Negative embedded bargaining games

Let G* be a bargaining game with disagreement point c. Suppose that the players
agree on some payoff vector w*. Then we may call the quantities Aw1* = w 1 *-c 1
and Au2* = u2* - c2 the players' net payoffs, since they represent the players' net
gains above the payoffs that they would receive in a conflict situation.

We call a bargaining game G* a negative bargaining game if under any possible
agreement at least one player / must necessarily receive a negative net payoff Awz*
from G*. This will be the case if the payoff space P* of G* fails to contain any
point w* satisfying the two conditions ux* ^ cx and u2* ^ c2 at the same time (see
Figures 9.2 and 9.3). Geometrically this means that no point of P* lies as high as,
and at the same time also as much to the right as, the point c itself does. If a nega-
tive bargaining game G* is played as an independent game, then it is quite trivial,
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Figure 9.2

0

Figure 9.3

because neither player will be willing to accept a negative net payoff; therefore the
players will always move to the disagreement point c rather than to any point w* in
setP*.

But the situation is different if a negative bargaining game G* is embedded as a
preliminary stage into a positive bargaining game G, which allows both players to
obtain positive net payoffs Aux = u{ - cx and Au2 = u2 - c2 in the end. For in-
stance, suppose that G is played in two stages. In stage 1, corresponding to a nega-
tive bargaining game G*, the players are asked to agree on some payoff vector
u* GP*. If they do not agree to accept some payoff vector w* in P*, then they re-
ceive the conflict payoffs cx and c2 , and the game ends at this point. But if they
do accept some vector w* in P* (which means that at least one of them has ac-
cepted a reduction in his payoff from ct to some lower level M,-*), then they are free
to play stage 2 of the game. In stage 2 they have to agree on some payoff vector u
chosen from a larger set P (a superset of P*). If they cannot agree on the choice of
u, then they receive the payoffs Ui* and u2 *, already agreed upon in stage 1.

If we consider this composite bargaining game G as a whole, then its payoff
space is again the whole set P, and its disagreement point is c. We assume that P
does contain points u such that both ux> cY and u2> c2, so that G as a whole
(as well as its second stage considered in isolation) is a positive bargaining game.
Under these assumptions it will be worthwhile for the players to accept a temporary
payoffreduction during stage 1, i.e., to choose a payoff vector u* GF* rather than
to choose c - since this is a preliminary condition for being allowed to participate in
stage 2 of the game, where they can increase their payoffs above cx and c2.

Yet for the same reasons as in the case where G* is a positive game (discussed
in Section 9.6), the players will try to agree on payoff reductions which leave un-
changed their relative bargaining positions and therefore also the final solution u-
(ux, u2) of the game. Hence, by Condition (9.34), whose validity is independent of
the signs of Acx and Ac2, the payoffs ux * and u2 * agreed upon by the players dur-
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ing stage 1 of the game must satisfy Equation (9.35). That is, if ax and a2 are the
weights defined by Equation (9.36), then we must have

even though now Aw1* = w 1 * - c 1 < 0 and Aw2* = w2* " c2 <0. [Since G* is a
negative game, at least one of the quantities Awj* and Aw2* must be negative. But
then both must be negative, because, in view of (9.36) and (9.37), they must have
the same sign.6 ]

However, requirement (9.35) may lead to difficulties, because the payoff space
P*, from which w* is to be selected, possibly may not have any point w* in
common with the straight line L defined by Equation (9.35). (In the case where
G* was a nonnegative bargaining game, this difficulty could not arise; then we al-
ways assumed that the point c would lie in the payoff space P*.) To overcome this
difficulty we will assume that either player i is always free to reduce his own payoff
M,-* by any amount, even if the resulting payoff vector w* = {ux *, u2 *) lies outside
the payoff space of the game as originally defined.7 This assumption is equivalent
to replacing the original payoff space P* by a larger extended payoff space P *
which contains all points u* of P* and in addition contains all points w* (at least)
weakly dominated by any point w* of P*. (See Figures 9.2 and 9.3 in which the ex-
tended payoff space P* includes both shaded areas in each figure.)

More formally P* can be defined as follows: For any given utility vector u =
(wi, . . . , un), we define the dominion of u as the set D(u) of all vectors u = (ux,
. . . , un) such that ut ^ ut for all / = 1 , . . . , « .  Thus D(u) includes exactly u itself
as well as all vectors at least weakly dominated by u. For any given set S of utility
vectors u we define the dominion of S, D(S), as the union of all sets D(u), u£S.
The extended payoff space P* can be defined as the dominion of the original pay-
off space P*, i.e., P* = D(P*).

We assume that P* itself is a convex and compact set. Consequently P* will
also be a convex set; but it can never be compact, because it extends to negative
infinity for both coordinates ux and u2 •

We have defined the upper right boundary H* of P* as the set of all strongly
efficient points w* in P* (i.e., as a set of all points w* not subject even to weak
dominance by other points of P*). Clearly the set of strongly efficient points in the
extended payoff space P* will be the same set H*. Therefore H* also will be called
the upper right boundary ofP*. We reach a different conclusion, however, if we
consider the set of weakly efficient points (i.e., the set of all points not subject to
strong dominance, though possibly subject to weak dominance). Let //** be the
set of weakly efficient points in P*, and let H ** be the set of all weakly efficient
points inP*; then always//* C//** CH**. //** will be a much larger set then//*
or //**, because it will result from either of these sets by adding an infinite hori-
zontal and infinite vertical half-ray to H* or //**.8 We will call this infinite boun-
dary curve H ** the extended upper right boundary of the extended payoff space
P*.

The line L defined by Equation (9.35) may not intersect the upper right bound-
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Figure 9.4

ary //* itself, but it will always intersect the extended upper right boundary H **,
at least in the nondegenerate case where ax and a2 =£ 0.9 (See Figure 9.4.) By
efficiency, in this case the vector w* always will lie at least on this extended boun-
dary / /** and will therefore be the point of intersection between the line L and the
extended boundary//**. Hence it is convenient to redefine the function//* in
(9.37) so that Equation (9.37) now becomes the equation of the entire extended
upper right boundary H ** and not only of the shorter curve H* itself. Then, of
course, w* will always satisfy (9.37). We have already seen that u* always satisfies
(9.35) and (9.36); thus in the nondegenerate case the vector u* agreed upon by the
players in subgame G* will be defined by the same three equations, irrespective of
whether G* is a negative or a nonnegative embedded bargaining game.

The degenerate case where at - 0 can arise only when Uj = Cj [this follows from
Equation (C) of Theorem 9.1]. Since the solution u of the main game G must al-
ways lie on the upper right boundary H of the payoff space P for G, this is possible
only if at the point c player/'s payoff cy is already at the highest level that he can
attain in P. Consequently player/ can never obtain a positive net payoff AUJ = Uj -
Cj under any possible agreement, and so G will not be a positive bargaining game.
(Indeed, G will not be a true cooperative bargaining game at all, because player/
cannot possibly benefit from cooperation with the other player.) Thus we can now
state:

Theorem 9.5. Let G* be a negative bargaining game embedded into a composite
positive bargaining game G played in two stages, G* representing the first stage of
G. Then the solution w* of G* will be defined by Equations (9.35) through (9.37),
the same as in the case of an embedded positive bargaining subgame G* (except
that in the case of a negative subgame G* we must allow for the possibility that the
solution w* of G* may lie only on the extended upper right boundary H ** instead
of lying on//*, the upper right boundary proper).
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That is, in an embedded negative bargaining game the players will agree on com-
mensurate payoff reductions, in the same way that in an embedded positive bar-
gaining game they would agree on commensurate payoff increases.

This theorem is, of course, true also in the case where a negative bargaining
game G* is embedded as a subgame into a positive composite bargaining game G
played in several (say, k) stages, G* corresponding to the /th stage (with/ =£ k, since
the last stage of a positive bargaining game must always be itself a positive bargain-
ing game).

Our theory of composite bargaining games, discussed in the previous two sec-
tions, has direct applications to social situations in which two economic or political
units are anxious not only to expand but also to preserve their relative power posi-
tions (e.g., the relationship between two rival imperial powers seeking colonial ex-
pansion). We will use it as an analytical tool in our theory of ^-person cooperative
games (Chapters 11 and 12).

SOME CONCEPTS AND THEORIES RELATED TO
BARGAINING GAMES

9.8 Ultimatum games: the Blackmailer's Fallacy

As Nash has pointed out, any bargaining game in "extensive form," involving a
sequence of offers and counteroffers by the two players, is analytically equivalent
to a game in "normal form," allowing each player only one final offer (or demand).
But this is true only if in the latter case both players have to make their demands
simultaneously or at least independently of each other.

We obtain a very different type of game if we assume that one player (say,
player 1) can irrevocably commit himself to some particular demand, called his
ultimatum, and can inform the other player (player 2) of this fact before the latter
has chosen his own demand. In this case player 2 will have a choice only between
a conflict situation and the full acceptance of player l's terms, on a take-it-or-
leave-it basis. Thus player 1 will be able to force player 2 to accept any agreement
point this side of his concession limit - though he cannot force player 2 to return
to his concession limit itself10 and even less to a point beyond that limit. While in
a true bargaining game the solution will tend to lie in the middle range of the nego-
tiation set (except if the two players' utility functions, i.e., their attitudes toward
risk, are very dissimilar), in an ultimatum game it will always lie very close to one of
the two end points of the negotiation set.

An ultimatum game arises if one player can effectively commit himself to some
particular agreement point before the other player has had the opportunity to make
a similar commitment. For instance, the rules of the game may be such that all
communication is cut between the two players as soon as (say) player 1 has stated
his own demand, making it physically impossible for him to renege on this demand
even if he wanted to. Or player 1 may be able to commit himself under heavy pen-
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alty (e.g., by making a bet with a third person to this effect) not to accept any less
favorable offer, even if communication between the players remains uninterrupted.

Between two rational players an ultimatum game can occur only if the commu-
nication facilities are strongly biased in favor of one of them. It can occur only if
one of the players can commit himself fully to his demand and can inform his op-
ponent about this before the latter could likewise commit himself to his own de-
mand. In contrast, assuming unbiased communication facilities, if the use of ulti-
matums is permitted at all, then both players will put forward ultimatums11 at the
very beginning of the game, because neither party can afford to yield the initiative
to his opponent. But then we are back to Nash's symmetric one-bid bargaining
model. Since the situation is symmetrical, neither party can simply force his own
terms on the other party. Rather, both parties will have strong incentives to mod-
eration, because both of them would lose if they committed themselves to mutually
incompatible ultimatum demands. (Alternatively we can assume that the players
will rule out the use of ultimatums by mutual consent or simply by refusing to con-
sider any ultimatum by the opponent.)

Of course, it may happen that an alert player faced with an unwary opponent
will succeed in transforming a true bargaining game, with equal communication fa-
cilities, into an ultimatum game biased in his own favor. He may achieve this by
manipulating the communication facilities or by merely persuading his opponent to
accept an ultimatum even though the latter would be in a position to resist it.12 But
this can happen only if the second player acts irrationally, i.e., makes a strategic
mistake.

Empirically we also find that in most bargaining situations neither party suc-
ceeds in transforming free bargaining into an ultimatum situation biased in his own
favor. Each party has a strong interest in preventing the other party from doing
this, not only because this would greatly worsen the terms that he would obtain on
this particular occasion but also because a reputation of readily accepting terms
"dictated" by the other party in bargaining situations would greatly weaken a given
party's bargaining position in future negotiations (with the same opponent or with
other opponents). Thus most empirical bargaining situations seem to have the na-
ture of simple bargaining games (or of general cooperative games) rather than ulti-
matum games.

But no doubt there are important situations in which ultimatum games do arise,
even if both parties are proficient players. For example, an asymmetry which may
give rise to ultimatum games is a substantial difference in size between two bargain-
ing units. Suppose that one party is a large economic or political unit which ex-
pects to be involved in many similar bargaining situations, while the other party is a
small unit without similar expectations. Then the larger unit will have a strong in-
terest in creating a reputation of toughness which will tend to improve its bargain-
ing position on many future occasions. This will be the case even if in the short run
this policy tends to result in a few conflicts with smaller units, which could have
been avoided by a more conciliatory policy. Once the reputation of toughness is
firmly established, the larger unit will be able to push its weaker bargaining partners
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very close to their concession limits. Such a larger unit may even refuse to "bar-
gain" at all and may simply set its own condition unilaterally; i.e., it may insist on
playing only ultimatum games formally recognized as such. Since any concession
granted to one trading partner will tend to create a pressure for similar concessions
to others, the larger unit will have an interest in denying concessions even in partic-
ularly "justified" cases (with a possible exception of cases where such concessions
can be kept secret from the other trading partners).

In the analysis of social situations, it is a common mistake to confuse bargain-
ing situations with ultimatum games. For example, suppose that a would-be black-
mailer, B, could cause $ 1000 damage to a certain rich man, R. Then B may argue
that he could extract any ransom short of $1000 from R, who would prefer to pay
even $999 rather than suffer a damage of $1000. But this reasoning would be
clearly fallacious. B could just as well argue that he could get away with any ran-
som, however small, since B would prefer to get even a ransom of $1 rather than
implement his threat and get nothing. Neither argument would have any validity.
They only show that the ransom must lie somewhere between zero dollars and
$1000, but they allow no inference as to where it will lie within this range. In
order to have a more definite prediction we must make use of some specific theory
of bargaining games. For instance, if we use the Nash-Zeuthen theory, then we
obtain the prediction that the size of the ransom - within the range from $0 to
$1000 - will depend mainly on the two parties' attitudes toward risk (assuming that
they have no other conflict strategies or threat strategies than those mentioned,
e.g., assuming that R could not get any effective police protection).

B's argument would be valid only if he could convince R that he has irrevocably
committed himself not to accept anything less than (say) $999, i.e., if he could con-
vert the bargaining game into an ultimatum game. But normally R will have no rea-
son to take seriously any such "commitment" by B - just as B will have no reason
to take seriously a possible claim by R that he himself is "committed" not to pay
more than $1.1 propose to describe the mistake of treating a bargaining game as if
it were an ultimatum game as the Blackmailer's Fallacy.

An ultimatum game can be regarded as a degenerate case of a bargaining game,
where the effective bargaining set is reduced (virtually) to a point. Even if the orig-
inal negotiation set covered a large number of possible agreement points, the effec-
tive negotiation set will shrink to one point once one player has effectively com-
mitted himself not to accept any other point as agreement point. But formally
under our theory an ultimatum game is not a bargaining game at all, precisely be-
cause its one-point negotiation set leaves no room for real bargaining. It is not a
"bargaining-determined game" but is rather a "game determined by payoff-
dominance relations." It can be reduced to a cooperative game in which one payoff
vector strongly dominates all other payoff vectors in the payoff space of the game.

To sum up, since the most interesting analytical problems arise only in
bargaining-determined games, ultimatum games are rather trivial from the viewpoint
of basic theory. But they are a useful conceptual tool for analyzing empirical social
behavior, all the more so because a skillful player can sometimes convert a true bar-
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gaining game into an ultimatum game, by manipulating the communication facili-
ties, by entering into unilateral commitments, and so forth - though this can hap-
pen only if the other party makes a strategic mistake.

We feel that game theory could make an important contribution to the analysis
of empirical social situations if it could make social scientists more conscious of the
distinction between free bargaining games and ultimatum games. Confusion of the
former with the latter - which we have called the Blackmailer's Fallacy - can result
in highly unrealistic predictions and in complete misunderstanding of the relative
bargaining power between the parties.

9.9 The game-independence problem: Hicks's theory

We have seen that a clear distinction must be made between an independent game
G, where each player's goal is to maximize his direct payoff M/(G) from G itself,
and a dependent game G*, where each player's goal is to maximize his payoff
W/(G**) from some other game G** to which G* is subordinated. In the latter case
the players' payoff vector w(G*) from G* is important only insofar as it influences
the payoff vector w(G**) that they will obtain from the main game G**. We have
argued that a bargaining game embedded into a larger composite bargaining game is
a dependent game, and so is a threat game, which is part of a cooperative game with
binding threats.

Even though this distinction between dependent and independent games is ob-
vious enough in theory, it is easy to lose sight of in empirical applications, treating
dependent games as if they were independent. In particular, cooperative games
with binding threats (where the conflict game is a dependent game) are often
treated as if they were cooperative games without binding threats (where the con-
flict game is an independent game). In our view, for instance, Hicks's theory of col-
lective bargaining [1932, Chap. VII] is open to this objection [cf. Harsanyi, 1956,
pp. 154-155].

Hicks's basic assumption is that a labor union will undertake, or will seriously
threaten to undertake, a strike only if this move will cost the unionists less than
accepting a lower wage rate would. Likewise an employer will refuse to grant a
wage increase only if the strike likely to result from his refusal will cost him less
than allowing the wage increases would. This principle will determine how long the
union would be ready to strike rather than accept a given wage rate w: Suppose
that it would be willing to strike for tu(w) time units. The same principle will de-
termine how long the employer would endure a strike rather than grant a given
wage rate w: Suppose that he would endure a strike lasting te(w) time units. If for
a given possible wage rate w we have tu(w) > te(w)', then the employer will be un-
able to refuse w, since his refusal would give rise to a longer strike than he would
be ready to face. On the other hand, if tu(w) < te(w), then the union will be un-
able to refuse w, since it would not be ready to undertake a strike long enough to
extract further concessions from the employer. Hence the two parties must reach
an agreement at the wage rate w where tu(w) = te(w).
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Thus Hicks's theory is based on the assumption that the quantity that each
party tries to maximize is his net conflict payoff - that is, the value of the conces-
sions that he will extract by his conflict strategy less the costs of this conflict to
him. But in our own view this would be an irrational policy objective for either
party, at least if both parties expect to reach an agreement. In this case the quanti-
ties that they should maximize are the payoffs that they will receive under this
agreement, quite irrespective of the payoffs that they would receive in a hypotheti-
cal conflict situation. Their conflict payoffs are important only to the extent that
they influence the strength of the parties' bargaining positions with respect to the
payoffs that they will agree upon (if a conflict situation is avoided).

In order to achieve the strongest possible bargaining position, the correct
strategy for each party is not to maximize his own conflict payoff as such but
rather to choose an appropriate compromise policy between maximizing his own
conflict payoff and minimizing his opponent's conflict payoff - as defined by
Nash's theory of optimal threats (see Sections 9.2 and 9.3).

For instance, let us assume that a labor union asks for wage increases worth
$500,000 up to the end of the contract period. A strike of two months' duration
would cost the union $600,000 in lost wages. Then it may still pay for the union
to commit itself to such a strike in case no agreement would be reached - provided
that this strike would also cost the employer substantially more than $500,000 (the
cost of granting the wage increases). The prospect of an expensive strike may in-
duce the employer to make further concessions (without an actual strike). The
question is only whether such a strike would increase the employer's conflict costs
relatively more than the union's conflict costs, or conversely (cf. Theorem 9.3 in
Section 9.3).

To sum up, if we assume that the parties expect to reach an agreement, then the
value of a conflict strategy (threat strategy) must not be judged in terms of its net
payoff in a conflict situation (where each party would have to implement its
threats). Rather it must be judged in terms of its net payoff in the agreement situ-
ation, i.e., in terms of its effect on the two parties' relative bargaining positions in
case they do reach an agreement and avoid a conflict (in which case they will not
have to implement their threats).

This conclusion, however, is subject to two qualifications:
1. In Nash's model the players are perfectly rational and have full information

about each other's utility functions. Therefore they can have full confidence in
being able to reach an agreement at the Nash solution of the game. But in the real
world there is always some chance that no agreement will be reached because of
lack of information or strategical mistakes. Therefore, if M,- is player f s agreement
payoff and ct is his conflict payoff (disagreement payoff), then he should presum-
ably maximize the quantity W/* = (1 - p)ut + pct rather than the quantity ut itself,
where p is a certain small probability that he assigns to the possibility that no agree-
ment will be reached.

2. In Nash's model the players have no doubts about the opponent's intention
to implement his threats in full in case no agreement is reached. In the real world
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the efficacy of threats will be lessened by some small probability p* that they may
not be fully implemented in a conflict situation. Insofar as p and/or p* > 0, the
real situation is intermediate between a cooperative game with binding threats and
one without binding threats. That is, the conflict game is neither fully dependent
nor fully independent. Yet, insofar as both p and p* are small (as they probably
are in most cases), Nash's model retains its approximate validity. We certainly
cannot assume without further justification that the two parties' choice of conflict
strategies represents an independent game and that they pay no attention to the
threat properties (deterrent properties) of their conflict strategy choices, as seems
to be implied by Hicks's model.

9.10 Bargaining games and arbitration models

Our analysis of moral value judgments in Chapter 4 and of bargaining games in this
chapter now enables us to round off our discussion on the relationship between bar-
gaining games and arbitration models, begun in Chapter 1 (Section 1.5).

Suppose again that players 1 and 2 have to agree on a payoff vector u - (ux, u2)
chosen from some payoff space P. But, instead of trying to reach an agreement by
bargaining, they submit their case to an arbitrator. What payoff vector will the ar-
bitrator choose for the two players? This question cannot be answered without
making specific assumptions about the arbitrator's actual task and power in this
situation.

1. One extreme assumption would be that the arbitrator has absolute power to
impose his own (or society's) moral value judgments on the two parties. In this
case his task will be to choose what he regards as the "morally best" solution, irre-
spective of what the balance of power would be between the two players without
his intervention. (For instance, he need not pay any attention to the threat possi-
bilities available to either player.) He must be guided by "right" rather than by
"might." According to our argument in Chapter 4, this means that the arbitrator
must try to maximize the joint payoff u- ux + u2 of the two parties as his social-
welfare function. (If there are several solutions yielding the same joint payoff u to
players 1 and 2, then the arbitrator may have a free choice among them, or alterna-
tively he may use some subsidiary principle, e.g., symmetry, to decide his choice.)

2. Another extreme assumption would be that the arbitrator has no power
whatever for introducing his own value judgments. The only purpose of the arbitra-
tion process is to save the parties the costs (including the emotional costs) of actual
bargaining. But it is not meant to change the final outcome in any way. Hence the
arbitrator's task is to get as close as he can to the solution that presumably would
have resulted from actual bargaining between the parties. If it is assumed, for in-
stance, that actual bargaining would have led the two players to the Nash solution,
then it will be the arbitrator's task to recommend the Nash solution as agreement
point.

3. Of course, many intermediate assumptions may be suggested. We may as-
sume that the arbitrator is free to follow his own value judgments but has no abso-
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lute power to impose them on the two players. Instead any agreement requires the
consent of all three parties: It must be accepted by both players and also by the ar-
bitrator himself. In this case we have essentially a three-person bargaining game in
which player 1 tries to maximize his own individual payoff ux; player 2 tries to
maximize his own individual payoff u2, whereas the arbitrator tries to maximize
the social-welfare function u3 =U = UI + u2. Under our theory of three-person
(^-person) bargaining games (to be discussed in Chapter 10), the solution of this
game will be at that particular point u = (ui, u2iu3) = (u1,u2,ui + u2), where the
three-person generalized Nash product, n = (ux - C\){u2 - c2)(u3 - c3) = (ux -
Ci)(u2 - c2)(ui +u2 - Ci - c2), is maximized.

Clearly none of these three interpretations of the arbitration process can be
made the basis for a theory of bargaining games. Interpretation 1 would give us a
solution selected on the basis of moral considerations alone, which is quite inde-
pendent of the relative bargaining power of the two parties. In contrast, interpreta-
tions 2 and 3 would give us solutions which do reflect their relative bargaining
power; but these solutions already presuppose some theory of bargaining games and
cannot be used as a basis for constructing such a theory.

Thus our present discussion confirms our previous conclusion that arbitration
models cannot serve as a basis for the theory of bargaining games; and, unless the
task of the arbitrator is conceived in a very narrow sense (as under interpretation
2), the solution furnished by an arbitration model will in general be different from
the solution furnished by the theory of bargaining games.

9.11 Bargaining models and interpersonal utility comparisons

The solution concepts based on ethical criteria, which are usually called "arbitra-
tion models," are usually based on interpersonal utility comparisons. We have seen
that such utility comparisons are quite essential for making moral value judgments
and for constructing a satisfactory social-welfare function. The reason is that, in a
world where economic (and other) resources are scarce, we often have to choose be-
tween increasing one individual's utility level from (say) ux to ux + Aut and in-
creasing another individual's utility level from u2 to u2 + Au2. Therefore we must
be able to compare the importance of utility increment Aux to the first individual
with the importance of utility increment Aw2 to the second individual, in terms of
some impartial moral criteria (presumably somehow related to the relative psycho-
logical intensity of the two individuals' wants and of the satisfactions that they can
derive by gratifying these wants). But it is much more questionable why two bar-
gainers interested in obtaining terms as favorable as possible, rather than interested
in arriving at a morally "fair" solution, should make their bargaining strategies de-
pendent on such interpersonal comparisons of utility.

The interpersonal-utility-comparison concepts used by various arbitration models,
as well as those used by certain theories in ethics and in welfare economics, fall
into two main classes. Some of them are supposed to be based on the intrinsic
psychological nature of the various individuals' utility functions to be compared.
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Following Bishop [1963], these we will call substantive interpersonal comparisons
of utility. Under these approaches, once we establish the "correct" conversion
ratio between two individuals' utility functions, this will be given once for all and
will remain the same in different social situations (in different game situations) as
long as these utility functions themselves remain the same. The utility comparisons
assumed by classical utilitarian moral philosophers are such substantive compari-
sons. The same is true for the utility comparisons that we used in defining a social
welfare function (Chapter 4 throughout but in particular Sections 4.2 through
4.4). Raiffa [1953] also uses intrinsic comparisons in some of his arbitration
models.13

Other concepts of interpersonal utility comparisons are defined in terms of the
game situation itself: Thus they depend not only on the intrinsic nature of the
players' utility functions as such but also on their physical environment - not only
on the subjective intensity of their preferences but also on the objective opportu-
nities available to them. The idea is to select the utility distance between two speci-
fied points of the game's payoff space as the utility unit for each player (e.g., one
may select as the unit the utility distance between the highest and the lowest pay-
off each player can obtain in a given game, and so on). The utility units chosen in
this way for each player are then treated as "equal" utility distances (equal utility
increments) in constructing the solution. Using Bishop's terminology we will call
these concepts ad hoc interpersonal comparisons of utility. Under these concepts
the conversion ratio between two individuals' utility functions will in general vary
from game to game (e.g., because the highest and the lowest possible payoff for a
given player will be different in each game). Some of Raiffa's arbitration models
are based on such ad hoc utility comparisons. The same is true for Braithwaite's
[1955] arbitration model and for some social-welfare concepts criticized by Arrow
[1951].

The Nash-Zeuthen bargaining model is intrinsically independent of interperso-
nal comparisons of utility. It is certainly independent of substantive utility com-
parisons, because the Nash solution is invariant with respect to order-preserving
linear transformations of either player's utility function. Thus the solution remains
invariant if we, for example, double our unit of measurement for player l's utility
function (which will reduce all his utility figures by half), leaving player 2's utility
unit unchanged - even though this will make the two players' utilities incomparable
if they were expressed in comparable units before this transformation. Under
Nash's own approach this invariance property is specifically postulated precisely in
order to make the solution independent of interpersonal utility comparisons.
Under our approach this invariance property follows from the fact that under
expected-utility maximization the players' behavior will depend only on the utility
ratios rx and r2 (which, of course, are invariant with respect to linear utility trans-
formations) and on the subjective probabilities pl2 and p2\ (which themselves again
depend only on rx and r2). (See Section 8.6, as well as our discussion of Postulate
3 in Section 8.3.)

The Nash-Zeuthen solution is also independent of ad hoc utility comparisons:
As you can easily check, we have made no use even of ad hoc utility comparisons in
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deriving the Nash solution from our rationality postulates in Sections 8.4 through
8.8. However, even if this solution does not presuppose ad hoc utility comparisons,
it does establish a certain type of ad hoc utility comparisons between the two
players - once the solution has been defined independently of such comparisons.
This is true in the sense that the equations of Theorem 9.1 (Section 9.2) defining
the Nash solution take a somewhat simpler form if we subject the two players' util-
ity functions to linear transformations which make the weights ax and a2 defined
by Equation (B), or preferably by Equation (B)*, of Theorem 9.1 equal to unity.
(Geometrically, in this case the slope of the upper right boundary H at the solution
point u will become -45°, while the slope of the line connecting the solution u
with the conflict point c will become +45°.) This is equivalent to choosing the two
players' utility units in such a way that, if (starting from the solution point) one
player makes a small side payment to the other player, costing him one unit of util-
ity, this payment will yield the other player, also a one-unit utility gain (i.e., the
marginal rate of utility transfers1* between the two players will be unity). Thus
this procedure establishes some basis for comparing the two players' utilities. But
it will be a purely ad hoc comparison: If the same two players will play a different
bargaining game tomorrow under different conditions (e.g., if tomorrow side pay-
ments between them will be taxed at a different marginal rate), then the conversion
ratio between their utilities, based on this procedure, may be quite different. More-
over, this utility comparison method is a consequence of the Nash solution and is
not a basis for it.

For interpersonal comparisons of utility Zeuthen's model substitutes interper-
sonal comparisons of certain probabilities (the highest probability of a conflict that
each player would be willing to face) which are equal to certain utility ratios rx and
r2 but which are not utilities as such. (Whether we interpret them as probabilities
or as utility ratios, they are pure numbers without dimension.) While the relevance
of these utility ratios for the players' strategy choices follows directly from the
postulate of expected-utility maximization, there is no reason that the players
should be concerned about interpersonal utility comparisons in a game-theoretical
(as distinguished from an ethical) context.

If we go from simple bargaining games to general cooperative games and con-
sider Nash's theory of optimal threats, we again find the same independence of in-
terpersonal utility comparisons. In the case of a threat game it is particularly
tempting to base one's analysis on interpersonal comparisons of utility. Intuitively
it is very natural to argue that my threat will be effective against you only if imple-
menting this threat "would hurt you more than it would hurt me" in some appro-
priate sense. The interesting fact is that Nash's theory does full justice to this intui-
tive feeling without making formal use of interpersonal utility comparisons. It gives
a precise mathematical criterion for measuring the damage that one threatens to
cause to the opponent against the costs of inflicting it, and so for deciding whether
a given threat would strengthen or rather weaken one's bargaining position against
the opponent. But it achieves this without making use of any additional assump-
tion (including utility comparisons). It only assumes that the players know that,
once their threat strategies have determined the conflict point c, the agreement
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point will be given by the Nash solution u of the resulting simple bargaining game,
and that each player will try to maximize his final payoff £7,- on the basis of this
information.

Nash's theory, however, does establish an ad hoc interpersonal utility compari-
son between the two players. If we normalize the two players' utilities so that
ax = a2 = 1, then Nash's optimal-threat criterion will take a particularly simple
form. It will then simply say that it is profitable to intensify one's threats against
the opponent as long as the extra damage done to him "would hurt him more" than
one would be hurt oneself by the extra cost of inflicting it, if both this damage and
this cost are measured in the appropriate normalized utility units (cf. Lemma 1 of
Section 9.2). Thus if utilities are measured in the appropriate units, then the intui-
tive "it-will-hurt-you-more" criterion has quite literal validity under Nash's theory.
But this intuitive criterion will be, in any case, a mere corollary of Nash's results
and will not have to be introduced as a new independent assumption or as an im-
plication of interpersonal utility comparisons.

9.12 Conclusion

In the first section of this chapter we discussed the Nash-Zeuthen solution for two-
person cooperative games with variable threats. (Our results have been summarized
in Section 9.4.) In the next section we extended our results to composite bargain-
ing games. In the final section we discussed some alternative approaches to the bar-
gaining problem and have tried to show that some of them are based on what we
have called the "Blackmailer's Fallacy." Other approaches have been criticized on
the ground that they unnecessarily introduce moral postulates into the analysis of
game-theoretical problems and make use of interpersonal comparisons of utility,
which have no justification in nonethical contexts.
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n-Person simple bargaining gaines

10.1 Introduction

In an n-person simple bargaining game the n players have to choose a payoff vector
u = (ui,. . . , un) from a compact and convex set P of possible payoff vectors,
called the payoff space of the game. The choice of u must be by unanimous agree-
ment of all n players. If they cannot reach unanimous agreement, then they obtain
the conflict payoffs cx, . . . , cn. The payoff vector c = (cx,. . . , cn) is called the
conflict point of the game. We will assume that c GP.

That region P* of the payoff space P which lies in the orthant defined by the n
inequalities ut ^ ch for / = 1 , . . . , « ,  is called the agreement space. Like P itself,
P* is always a compact and convex set.

We will exclude the degenerate case where the payoff (s) of some player(s) is (or
are) constant over the entire agreement space P*. For in this case this player (or
these players) would have no interest in cooperating with the other player(s), and
so the game would not be a truly cooperative game.

The set of all points u in the payoff space P undominated, even weakly, by any
other point w* in P is called the upper boundary H of P. In other words, H is the
set of strongly efficient points in P. In general the payoff space P is a set of n
dimensions. Consequently the upper boundary H is typically a hypersurface of
(n - 1) dimensions.

10.2 Multilateral bargaining equilibrium

In a simple bargaining game G, a given payoff vector u = u will represent the equi-
librium outcome of bargaining among the n players only if no pair of players / and
/ has any incentive to redistribute their payoffs between them as long as the other
players' payoffs are kept constant. Thus we can define multilateral bargaining equi-
librium among the n players by the requirement that there should be bilateral
bargaining equilibrium between any two players / and/.

This means that, in order to define the solution of a given ^-person simple bar-
gaining game G, we have to consider the various two-person bargaining subgames
Gjj in which two particular players / and / bargain with each other about their
final payoffs ut and tij on the assumption that the final payoffs uk of all other
players k ^ /, / are given. The Nash solution of any such subgame Gtj will corre-
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spond to those payoffs ut = ut and Uj = w;- which maximize the Nash product

Kij = (ui-Ci)(urcj) (10.1)

subject to the conditions

u = (ul,. . . ,w,:,. . . ,uh . . . ,un)£P (10.1a)

uikct (10.1b)

Uj^Cj (10.1c)

uk = uk = const, for all k^ij' (10.Id)

c,-,cy = const. (10.le)

Let H(u!,..., ww) = 0 be the equation defining the upper boundary of the pay-
off space P. Then, by Equations (9.2) through (9.4) of Section 9.2, we can define
the solution of G^ also by the sufficient and necessary conditions

H(ul,...,uh...,uf9...,un) = 0 (10.2)

ar(ui-ci) = aj'(UJ-cI) (10.3)

<*m =#m("i>- . . ,5,-,. . . , S / , . . . ,un) m=i,j (10.4)

where Hm is the first partial derivative1 of the function H with respect to its mth
argument.

Since we can form all together n • (n - l)/2 pairs (/,/) among the n players, this
will be the number of subgames G^ that we have to consider. Therefore we obtain
n - (n - l)/2 equations of form (10.3), but out of these only (n - 1) equations will
be independent. Moreover, we obtain n equations of form (10.4) and only one
equation of form (10.2). These equations together imply the following theorem:

Theorem 10.1. The solution u = (ul9. . . , un) of an /7-person simple bargaining
game G is that particular payoff vector u = u which maximizes the ^-person Nash
product

subject to the requirements

M E P (10.5a)

Ut^Ci for all iGN (10.5b)

c,- = const, for all i<EN (10.5c)

This vector u always exists and is always unique.

Proof. Equations (10.2) through (10.4) are the first-order conditions, in terms of
Lagrangean multipliers, for maximizing the product n. The second-order conditions
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are always satisfied because of the convexity of P. The convexity of P also assures
the uniqueness of the vector u which maximizes n. Finally the existence of u fol-
lows from the compactness of P.

The amounts (ut - Cj) we will call the players' net payoffs from the game (as dis-
tinguished from their gross payoffs Uj). By Equations (10.3) and (10.4), the ratios
Pij = ("i ~ ci)l(Mj ~~ cj) °f the players' net payoffs will be determined by the quan-
tities # ! , . . . , an, corresponding to the first partial derivatives of the function H at
the solution point u. Geometrically they are the slope cosini of the hypersurface H
at the point u. These quantities ax, . . . ,an we will call the weights of the game.

Clearly the solution defined by Theorem 10.1 is the most natural generalization
of the two-person Nash solution even in a purely formal sense, because it simply re-
places maximization of a two-factor product by maximization of an analogous n-
factor product. (We will see, however, that this straightforward way of generaliz-
ing the Nash solution is restricted to the special case of simple bargaining games.
In the case of general cooperative games we will need a more complicated model
taking account of the strength of various possible coalitions among the players.)

10.3 Derivation of the solution directly from Nash's postulates

In the previous section we defined our solution concept for ^-person simple bar-
gaining games. Our definition was based on the requirement that the solution must
represent bilateral bargaining equilibrium between any two players / and/. The
concept of bilateral bargaining equilibrium itself was defined in terms of the Nash
solution for two-person bargaining games. But, in view of Theorem 8.3 of Section
8.6, the Nash solution itself can be derived from our "strong" rationality postu-
lates. Thus our derivation of this solution concept for «-person bargaining games
is ultimately based on these rationality postulates.

In this section we will show that the same solution concept can be derived also
from Nash's own postulates (see Section 8.3), if we extend their field of applica-
tion from two-person to n-person simple bargaining games. Nash's postulates then
take the following form:

1. Joint efficiency. The solution u = (u x, . . . , un) of an «-person simple bar-
gaining game lies on the upper boundary H of its payoff space P.

A simple bargaining game is called symmetric if all players have the same disagree-
ment payoff cx = • •  • = cn in the game, and if the payoff space P is symmetric with
respect to all planes ut = Uj for any pair of players / and/.

2. Symmetry. The solution of a symmetric simple bargaining game yields equal
payoffs vii - • • • =  un to all n players.

3. Linear invariance. Let G be a simple bargaining game with solution u. Let
G* be the game that results from G if we subject one player's utility function Ut
to an order-preserving linear transformation T, leaving all other players' utility
functions Uj unchanged. Then the solution w* of this new game G* will be the
image of u under this transformation r,i.e., w* = Tu.

4. Independence of irrelevant alternatives. Let G again be an ^-person simple
bargaining game with payoff space P, conflict point c = (cx, . . . , cn), and solution
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u = (Ui, . . . , un). Let G* be a game obtained from G by restricting the payoff
space to the smaller set P* C P in such a way that c and u remain in the new payoff
space P* and c is also the conflict point for G*. Then u will be the solution also
for the new game G*.

Theorem 10.2. The only payoff vector satisfying Postulates 1 to 4 (the ^-person
analogues of Nash's postulates) is the payoff vector u defined by Theorem 10.1.

Proof. The proof is essentially the same as in the two-person case (i.e., as the
proof of Theorem 8.1 of Section 8.3).

Let u = u be the point at which the product 77, defined by Equation (10.5), is
maximized subject to conditions (10.5a) through (10.5c). We subject all players'
utility functions to order-preserving linear transformations, such that carry the
conflict point c = (c{, . . . , cn) into the origin c* = (0, . . . , 0) while carrying the
point u = (Hi, . . . ,i7^)into the point M* = (1, . . . , 1).

Let P* be the image of the payoff space P under this transformation T. Let //*
be the image of//, the upper boundary of/*. Finally let G* be the ^-person simple
bargaining game whose payoff space is P*, and whose conflict point is c*. Clearly
the upper boundary of P* will be the hypersurface //*. Consider the Nash product
for this new game G*, i.e., the expression

7T*(H*)= n ( « /* - ' «* )=  n "/*
i<EN

In the same way as in the two-person case we can show that 7r*(w*) will take its
maximum value, subject to conditions (10.5a) through (10.5c), at the point w* = w*,
which is the image of u under transformation T.

The point u* = (1, . . . , 1) obviously lies on the upper boundary hypersurface
//*. It also lies on the hyperplane K* whose equation is

Z ui* = n

i<EN

Finally it also lies on the rectangular hyperboloid /* whose equation is

n «/*  = i
/GiV

More particularly the hyperplane K* will be tangential (or will be a support) to both
//* and /* at the point M*. Let K+* be the half-space defined by the inequality

Since P* is a convex set, no point w* of P* can lie above the supporting hyperplane
K*. Therefore P C ^ + * .

Now let us construct a hypersphere S* around w* as center point, with a large
enough radius so that P* C S*. Since P* is a compact set this can always be done.
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Let P** be the half-hypersphere defined by the intersection of K+* and S1*, i.e.,
/>**=£+* OS*, clearly P*C/>**.

Let G** be the n-person simple bargaining game whose payoff space is P** and
whose conflict point is <?*. Obviously G** is a fully symmetric game with respect
to all n players. Consequently, by Postulates 1 and 2, the solution of G** must
be M* = ( 1 , . . . , 1). Therefore, by Postulate 3, the point u* must be the solution
also of G*. But then, by Postulate 3, the point u, which is the image of w* under
the inverse of the original transformation T, must also be the solution of the
original bargaining game G, as desired.

10.4 The ̂ -person bargaining process: risk-dominance relations in the n-person case

Theorem 10.1 defines the solution on the basis of the requirement that it must
give rise to bilateral bargaining equilibrium between every possible pair of players
/ and / if all other players' payoffs are regarded as given. Thus the solution can be
regarded as the end result of a bargaining process of the following kind.

Suppose that the players reach a provisional agreement on accepting the payoff
vector w = (w 1 , . . . ,M n )G/ ) , with ut ^ ct for all players /. But let us assume that
this agreement is purely tentative: Any player / who is dissatisfied with his own
payoff Uj can challenge any other player/ to redistribute his payoff, regarding
all other players' payoffs as given. Thus player / can suggest some alternative pay-
off vector M* = (M j * , . . . , MW *) E P, with uk * = uk for all players k^ij but with
Uj* > Uj and Uj > w;* ^ Cj. According to Zeuthen's Principle [in one of its alter-
native forms, as stated by Condition (8.9) of Section 8.5], player/will have to
make some concession to player / whenever

(«,•  - aXu* - c,) > (u, - c,)(Uj - Cj) (10.6)

Then another player / ' may challenge some other player/' in a similar way, and so
on. The order in which various players can make such moves must be determined
by some suitable rule, but the specific nature of this rule is immaterial for our
purposes (as long as it gives every player opportunities to make moves of this kind
sooner or later). After every such successful challenge the value of the H-person
Nash product TT = U(UJ - ct) will increase, and eventually the players will tend to
converge to the solution where TT takes its maximum value.

This postulated bargaining process suggests the following definition for risk-
dominance relations in the ^-person simple bargaining game: Risk-dominance
relations are defined between two payoff vectors u and w* only ifu and w* have
at least {n - 2)equal components. Suppose,e.g., that uk = uk*{oxallk=hi,j. Then
w* weakly risk-dominates u whenever Inequality (10.6) is satisfied; w* strongly
risk-dominates u whenever we can replace the ^ sign by a > sign in (10.6). Under
this definition the solution payoff vector u is the only payoff vector in P not sub-
ject to risk-dominance by any other payoff vector u in P (either in a weak or a
strong sense). This concept of risk-dominance will be called restricted bilateral
risk-dominance, because it is restricted to payoff vectors agreeing in at least (n - 2)
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components, and because it is based on comparing two-person Nash products. The
corresponding bargaining process will be called multilateral bargaining based on re-
stricted bilateral bargaining.

Of course, once the players realize that this bargaining process will eventually
converge to the solution point u where the «-person Nash product n(u) -  X\{ui - c{)
is maximized, they can considerably speed the whole process by adopting the fol-
lowing bargaining rules:

Suppose again that the players have reached provisional agreement on accepting
the payoff vector u = (ui9. . . , un) GP with Uj ^ Cj for all players/. But any player
/ has the right to suggest an alternative payoff vector u* = (u x * , . . . , un *) E P with

If

-<7)> El (Uj-Cf) = 7T(u) (10.7)

then the players have to accept w* as their new provisional agreement point. A
given payoff vector u will become the final agreement point of the players if no
player can suggest any payoff vector M* GP with Uj ^ Cj such that TT(W*) ^ TT(W).
Clearly this will be the case only when u happens to be the solution of the game,
i.e., the point at which the product n takes its maximum value. A bargaining pro-
cess conducted according to these rules we will call direct multilateral bargaining.

This alternative bargaining model suggests a broader definition for risk-dominance
relations. Let w* and uEP, with ut*,ut ^ ct for all iGTV. Then w* strongly risk-
dominates u if Inequality (10.7) is satisfied; and u* weakly risk-dominates u if
(10.7) becomes true at least after replacing the > sign by the ^ sign. [For con-
venience, we also say that u is (both strongly and weakly) risk-dominated by any
payoff vector a* if ut < ct for at least one player /.] Under this new definition
the solution u is again the only payoff vector in P not subject to risk-dominance
by any other payoff vector u in P. But now, in addition, the solution u itself
strongly risk-dominates all other payoff vectors u in P, which was not true under
the previous definition. This new concept of risk-dominance relations, defined
in terms of ^-person Nash products n, will be called multilateral risk-dominance.

Clearly, whenever some given restricted bilateral risk-dominance relation exists
between two payoff vectors u and w*, the same type of (strong or weak) multi-
lateral risk-dominance relation will also exist between them. But while restricted
bilateral risk-dominance relations are defined only between two payoff vectors
agreeing in at least (n - 2) components, multilateral risk-dominance relations are
not limited in this way. Indeed at least a weak multilateral risk-dominance relation
exists (in one direction or the other) between every pair of payoff vectors u and w*
in P.

These concepts of risk-dominance relations can be extended to the joint strategies
o(u) and a(w*) corresponding to acceptance of the payoff vectors u and u*.

As we will see, in noncooperative (and in almost-noncooperative) games a third
type of risk-dominance concept will be needed - unrestricted bilateral risk-domi-
nance. Under this concept two players / and/ can be engaged in direct bilateral
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bargaining, player i advocating adoption of some payoff vector u and player/
advocating adoption of some other payoff vector w*, even if u and w* do not assign
the same payoffs to the remaining (n - 2) players other than / and/. In a coopera-
tive game such "unrestricted" bilateral bargaining cannot take place, because it
would not remain bilateral. That is, if some given player k is not indifferent be-
tween u and w* because uk ^ uk*, then he will side with one of the two players
/ or /, so that the bargaining between / and / will be transformed into bargaining
between two coalitions (or possibly into bargaining between a coalition on one
side and an individual player on the other side). Yet Zeuthen's Principle in its
original form directly applies only to bargaining between two individual players
i and/.2 In contrast, in a noncooperative game the players cannot form coali-
tions so that every conflict of interest between two players must be settled basi-
cally by bargaining between these two players alone, even if it does affect some
other players' interests as well.

For example, consider the three-person simple bargaining game G where the
payoff space P consists of all payoff vectors u satisfying ux + u2 + u3 ^ 30 and
ut ^ 0 for / = 1, 2, 3. Suppose that the conflict point of G is c = (0,0,0). Clearly
the solution of G is u = (10, 10, 10), where the Nash product IT takes its maxi-
mum value n = 1000. Consider the payoff vector w* = (12,9,9). Under restricted
bilateral risk-dominance, u and w* are not connected by any risk-dominance
relation. Under multilateral risk-dominance, u strongly risk-dominates w* be-
cause 7r(w*) = 972 < n(u) = 1000. Hence in the simple bargaining game G the
players will adopt u rather than w*.

But now suppose that u and w* are not payoff vectors in a cooperative game
but rather are payoff vectors in some noncooperative game G*. More particularly
let u and w* be the payoff vectors corresponding to two stable equilibrium points
in G*. Clearly payoff vector w* (and the corresponding equilibrium point) will
be favored by player 1, while u (and the corresponding equilibrium point) will be
favored by players 2 and 3. We will again assume (as we did in the case of the
cooperative game G) that, if the players cannot reach agreement between adopt-
ing u or u *, then they will receive the payoff vector c = (0, 0, 0). Now if we ana-
lyze this noncooperative game G* in terms of unrestricted bilateral risk-dominance
relations, then w* will strongly risk-dominate £7, rather than the other way around.
That is, since the game is now a noncooperative game, and thus player 1 can bar-
gain separately with each of the other two players, he will be able to get each of
them to agree to w*. For instance, if we consider the bargaining between players
1 and 2, by Zeuthen's Principle player 2 will have to accept w*, because ux * • u2 * -
108 > u~i -u2 - 100. Similarly, if we consider the bargaining between players 1
and 3, player 3 will have to accept u * because Wj* -w3*= 108>i71 -u3 = 100.

Using the alternative version of Zeuthen's Principle [Condition (8.8) of Section
8.5], we of course obtain the same conclusion. The three players' risk limits are

_ u l * - u 1 _ 2 _ 1 _
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2 u2 - c2 10

r3=r2 = .10

Players 2 and 3, bargaining separately with player 1, must yield to him because
r2 = r3 = .10<r! = .17.

To sum up, from a bargaining point of view, the essential difference between a
cooperative and a noncooperative game is this: In a cooperative game the players
with similar interests (e.g., players 2 and 3 in our example) can strengthen their
bargaining position by acting as a coalition. For instance, they may agree that
neither of them will make a concession to the other side without the consent
of his coalition partner. [Intuitively speaking, such an agreement will strengthen
their bargaining position against the other player(s), because it will make them
less likely to grant concessions than they would be if each of them acted inde-
pendently.3 ] In contrast, in a noncooperative game such an agreement would be
ineffective, because it would have no binding force.

For this reason in a noncooperative game all effective bargaining will remain
essentially a two-person affair, taking place between two independent players i
and/. On the contrary, in a cooperative game all bargaining will become in gen-
eral a common concern to all n players and will be guided by multilateral risk-
dominance relations - except in those special cases where all players other than
players / and/ happen to be indifferent between the two alternatives (in which
case the restricted bilateral and the multilateral risk-dominance relations will
coincide).

10.5 The joint-bargaining paradox

We have just concluded that our solution concept is in agreement with our
common-sense expectations in predicting that the players can improve their bar-
gaining positions by forming coalitions which will act in concert during the bar-
gaining process. While this is true in the contexts just discussed, somewhat
paradoxically it turns out not to be true in other contexts. Our purpose in this
section is to discover the reasons for this paradox.

Consider again the three-person simple bargaining game G (discussed in the pre-
vious section) whose payoff space P is defined by the inequalities ux + u2 + u3 ^ 30
and ut ^ 0 for i - 1, 2, 3, and whose conflict point is c = (0, 0, 0). As we have seen
if all three players are regarded as different and independent players, then the solu-
tion is u = (10, 10, 10). But suppose that players 2 and 3 decide to act as one
player and agree that they will split equally the joint payoff that they obtain this
way. Then the game will become a two-person game between coalition (23) and
player 1. Hence each side will obtain a payoff ux = u23 - 15. If players 2 and 3
later split their joint payoff u23 , then the final outcome will become u - (15, 7.5,
7.5). Consequently the fact that players 2 and 3 have joined forces has actually de-
creased their payoffs from 10 to 7.5. Clearly we will obtain a similar result in all
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^-person simple bargaining games if two or more players decide to act as one player
(except in the trivial case in which all n players participate in this agreement). We
call this the joint-bargaining paradox. This paradox is not attributable to some
peculiarity of our solution concept, because any possible solution concept will
show this behavior if it satisfies the symmetry and the joint-efficiency postulates
(which are obviously necessary ingredients of any acceptable solution for simple
bargaining games).

However, we can resolve this paradox if we analyze the situation in greater detail
by means of Zeuthen's Principle. First suppose that all three players act as inde-
pendent players. Then payoff vector u will be a stable agreement point. Suppose
that player 1 tries to exact one more utility unit from (say) player 2, i.e., suggests
the payoff vector uf = (11,9, 10). Then in the resulting bargaining player l's risk
limit will be rx = 1/11, while player 2's risk limit will be f2 = 1/10 > rl = 1/11,
and so player 1 will have to stop pressing his demand.

In contrast, payoff vector u will be unstable. Suppose that player 2 wants to
exact a one-unit concession from player 1, i.e., suggests the payoff vector u' =
(14, 8.5, 7.5) instead of u. Then in the resulting bargaining player l's risk limit
will be r j = 1/15, while player 2 's risk limit will be r2 = 1 /8.5 > r\ = 1/15, and so
player 1 will have to yield.

Next take the case where players 2 and 3 decide to act as one player and agree
to split equally the joint payoff they will obtain. Suppose that the actual bargain-
ing on behalf of coalition (23) will be done by player 2. Now we can make two
alternative assumptions (both of which, however, lead to the same results).

One possibility4 is to assume that, when players 2 and 3 will act as one player,
this means that player 2 will regard any payoff received by his partner as his own
and vice versa, i.e., that both players will act with a view to maximizing their
joint payoff u23

 = u2 + u3. Now payoff vector u will become unstable, and payoff
vector u will become stable. For instance, suppose that the players' provisional
agreement point is abut that player 1 presses for the alternative payoff vector u'.
In the resulting bargaining player 1 's risk limit will still be fx = 1/11. But player
2's risk limit now becomes

_ = ( u 2 + u 3 ) - (U2' + u 3
f ) 2 0 - 1 9 = 1

f 2 (u2 + w 3 ) " ic2 + c 3 ) 2 0 - 0 2 0

In contrast, in the case of independent bargaining, player 2's risk limit was

^u2 - K 2 ' = 1 0 - 9 = 1
Yl " u2 - c2 ~ 1 0 - 0 " 10

Hence now f2 = 1/20 < fx = 1/11, and so player 2, acting now on behalf of coali-
tion (23), will have to yield.

On the other hand, u will now be stable. Suppose that player 2 will suggest
moving from utou'. Then in the resulting bargaining player l's risk limit will
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still be fi = 1/15. But player 2's risk limit now becomes

- Au2' + u3)-(u2 +^3) ^ 16 - 15 = 1
Yl (u2+u3)-(c2 + c 3 ) 1 6 - 0 16

In contrast, in the case of independent bargaining, player 2's risk limit was

= _u2 -u2 _8.5 - 7.5 _ 1
V2~ u2 - c2~ 8 .5 -0 ~8.5

Hence now r2 = 1/16 < Fx = 1/15, and so player 2 will have to drop his demand
for'moving from u to u'.

Comparing the expressions defining f2 and r2 in the two cases, we can see that
the essential difference is in the denominator, which approximately doubles when
player 2 represents not only his own interests but also those of player 3. Intuitively
this means that in this case player 2 will act with greater caution than he would act
if he did not have to represent player 3 as well. Acting with greater caution de-
creases his risk limit (i.e., his willingness to risk a conflict); and therefore, by
Zeuthen's Principle, he will obtain less favorable terms than those which he and
his partner could obtain if they acted independently.

More particularly the reason for player 2's greater caution when he also acts on
player 3's behalf will be this: Since agreement always requires the consent of all
players, an intransigent attitude by any one player can always jeopardize the pay-
offs of all players. But if all players act independently, then each player will care
only about the losses he himself would suffer if no agreement could be reached. In
contrast, if player 2 regards player 3's interests as his own, then he will be equally
concerned about player 3's possible losses, and this will roughly double his reluc-
tance to risk a conflict by refusing a concession - which will make him willing to
accept less favorable terms.

Thus our result is not so paradoxical after all. If two or more players form a
coalition for bargaining purposes, this will tend to strengthen their bargaining
positions if this organizational change strengthens their determination to obtain
better terms and weakens their reluctance to risk a conflict. But if it has the
opposite effect, then by forming such a coalition they will actually weaken their
bargaining positions.

10.6 Bargaining by coalitions

Players 2 and 3 of our example could act as one bargaining unit without worsening
their bargaining positions vis-a-vis player 1, if they took care that the person repre-
senting their coalition should not take a more conservative attitude then they
would take themselves if they acted independently. Formally this can be achieved
if player 2 (or whoever acts on behalf of the coalition) defines the joint payoff
(cardinal utility function) to be maximized for the coalition as u23 * = (u2 - c2) •
(u3 - c3) rather than as u23 = u2 +u3. If player 1 tries to maximize ux while
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player 2 tries to maximize M23 *, then the Nash solution of the resulting two-person
game will be at the point where the product

(ux -cl)(u23*-0) = (ul -Ci)(u2 ~ c2)(u3 - c3)

is maximized - which means that the solution of this two-person game will coincide
with the solution u = u of the original three-person game G. More generally, we
can state the following theorem.

Theorem 10.3. The joint payoff function of a coalition. Let u - u be the solution
of a given n-person simple bargaining game G under individual bargaining. Let
u = M * be the solution of the same game when s players form a coalition S and act
as one bargaining unit (i.e., as one player), so that the original ^-person game is
transformed into an (n - s + l)-person bargaining game G*. Then the solution M*
of G* will be the same as that of G, i.e., we will have w* = M, if coalition S will
act as one player whose payoff function (or cardinal utility function) is

Us(u)= PI (Ui-cd (10.8)

Proof The vector £7* lies at the point where the product

IT*=(us - o) n («/  - ct)

is maximized subject to Conditions (9.5a) through (9.5c). The vector u lies at the
point where the product

tf= n iut~ci)

is maximized subject to the same conditions. But TT* = n. Therefore w* = u.

The following theorem is closely related to Theorem 10.3.

Definitions. Let w* and w** be two payoff vectors in P, satisfying u^ ^ ct and
W/** ̂  ct for all players /. Suppose that all players / in a given coalition S would
prefers* to w**, because ut* >M£-** for all / £ S, whereas all players /in the com-
plementary coalition S = N - S would prefer w** to w* because My** > My* for all
/ G 5'. Let us define the /o/wf payoff functions of 5 and iS as

and

in accordance with (10.8).
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Moreover, let us define the joint risk limits of the two coalitions as

^ =U ( M * ) - U (U**) ^ I 0 9 )

and

which are the risk limits that we would obtain if we regarded the game as a two-
person bargaining game Gs^ between coalition S and coalition S, with the payoff
functions Us and Us. We will say that, in this two-person game between coalitions
S and 5, the payoff vector w* favored by coalition S strongly risk-dominates the
payoff vector w** favored by coalition S, whenever

rs>r^ (10.11)

Now we can state:

Theorem 10.4. The following two statements are equivalent:
1. In the two-person simple bargaining game Gs$ between coalitions S and S the

payoff vector w* favored by coalition S has strong (bilateral) risk-dominance over
the payoff vector w** favored by coalition S.

2. In the original n-person simple bargaining game G payoff vector w* has strong
multilateral risk-dominance over payoff vector w**.

A similar relationship holds also between the corresponding weak risk-dominance
relations.

Proof. Since Us(c) = Us(c) = 0, (9.11) is equivalent to the inequality

Us(u*) • U^(u*) > £/5(w**) • ljS(u**)

This is in turn equivalent to

n(u*)= f [ (u,*-ct)> n ( « ,**-c / ) = 7T(«**)
(GiV iE:N

which is the definition of multilateral risk-dominance.

It is ofsome theoretical interest to redefine the two coalitions' joint risk limits
rs and rs in terms of the members' individual risk limits. This gives the following
theorem.

Theorem 10.5. The joint risk limit of a coalition. Again let w* be a payoff vector
favored by all members / of coalition S, and let w** be a payoff vector favored by
all members / of the complementary coalition S. Then the joint risk limits rs and



208 Solutions for specific classes of games

rs of the two coalitions [defined by (10.9) and (10.10)] can be written as

rs=\- f l ( I - * / ) (10.12)

L-r7-) (10.13)

where rt and rj are the individual risk limits of all players / and /, defined as

rt=Ui J " 1 —  for all iES (10.14)

and

r/ = --H^—— for all  / G S (10.15)

in accordance with Equation (8.4) of Section 8.4.

Proof By (10.9),

,_s_Us(u**)-Us(c)_Us(u**) _ _
Us(u*)-Us(c)

since Us(c) = 0.
Similarly, by (10.10),

On the other hand, by (10.14) and (10.15),

1 - rf- = for all / GS (10.18)

forall /G5 (10.19)

Using the definition of Us and Us in (10.8), in view of (10.16) through (10.19),
Equations (10.12) and (10.13) follow, as desired.

Theorem 8.5 can be regarded as a composition law for the individual risk limits r(
of the members / of a given coalition S. It specifies how the various players' resis-
tance to making concessions is increased when they act together as a coalition.

The theorem can be given an intuitive interpretation in terms of the following
model. (Notice that our proof of Theorem 10.5 is quite independent of this model,
which serves only as a heuristic rationalization of the theorem just proved.)

Suppose that, in bargaining between coalitions S and S, any member / of S can
veto the acceptance, by coalition S, of payoff vector w** favored by the opposing
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coalition S. Likewise any member/ of S can veto the acceptance, by coalition S,
of payoff vector w* favored by coalition S. Suppose also that the highest proba-
bility of player z's using his veto power is r{. Then the highest probability of w**
being rejected by coalition S (because at least one player / in S uses his veto power)
will be

= 1 " Ft 0 -rs =

Thus rs can be regarded as the highest probability of a conflict that coalition S as
a whole is willing to face rather than accept the payoff vector w** favored by the
opposing coalition S. That is, rs can be regarded as the joint risk limit of coalition
S. The joint risk limit rs of the complementary coalition S can be interpreted in
a similar way.

10.7 The joint-bargaining paradox: a second interpretation

Consider again the three-person simple bargaining game G whose payoff space P
is defined by the inequalities Ui + u2 + u3 ^ 30 and ulr § 0 for i = 1,2,3 and
whose conflict point is c - (0, 0, 0). We have seen that, if the three players bar-
gain independently, then the solution of G is u- (10, 10, 10). On the other hand,
if players 2 and 3 bargain as one player vis-a-vis player 3 and later split equally the
joint payoff that they obtain this way, then paradoxically the solution becomes
M = ( 1 5 , 7 . 5 , 7 . 5 ) .

In Section 10.4 we explained this result by the assumption that the player repre-
senting the coalition (say, player 2) will regard the interests of his coalition partner
as his own, and this will make him more cautious in bargaining with player 1 and
will make him willing to accept less favorable terms than he and his coalition part-
ner could obtain if they acted independently.

Now we will show that the same result can also be explained in a different way.
Let us assume that player 2, when he bargains with player 1 on behalf of coalition
(23), will be concerned only with maximizing his own payoff u2 and will not be
concerned with player 3's payoff u3 as such. But of course his behavior will be in-
fluenced by the fact that he is under a commitment to hand over to player 3 half
of any gain resulting from a concession that he may be able to extract from player
1. On the other hand, he can pass over to player 3 half of any loss resulting from
a concession that he may make to player 1. It is easy to verify that this sharing of
gains and losses with his coalition partner will decrease player 2's risk limit r2 in
bargaining with player 1 just as effectively as would the assumption (used in Sec-
tion 10.4) that he was interested in maximizing the joint payoff u23 -u2 +u3,
rather than in maximizing his own payoff u2 alone.

For instance, suppose that player 1 suggests to player 2 that the payoff vector
u- (10,10,10) should be replaced by u\' = (11, 9, 10). In practice this would
now mean replacing u by u " = (11, 9.5, 9.5), because players 2 and 3 would al-
ways split their joing proceeds. Hence in the resulting bargaining player 2's risk
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limit will be

_ 10-9.5 _ .5 _
" 2 = T o - o = i o = 0 5

instead of the risk limit

1 0 - 9 1
10

which player 2 would exhibit if he and his coalition player bargained indepen-
dently. Since player 1 's risk limit will remain rx = 1/11 = .09 > r2 = .05, player
2 will have to yield on behalf of the coalition, and so u will be unstable.

In contrast, suppose that player 2 suggests to player 1 that the payoff vector
u = (15,7.5,7.5) should be replaced by u' = (14, 8.5, 7.5). In practice this would
now mean replacing u by u " = (14, 8, 8), because player 2 must pass on half of the
gain to player 3. Therefore in the resulting bargaining player 2's risk limit will be

.. 8.5 - 8.0 .5 ^

instead of the risk limit

= ̂ zll = ̂ = 122 8 .5 -0 8.5

which player 2 would have under independent bargaining. Since player l's risk
limit will remain rx - 1/15 = .07 > r2 - .06, player 2 will not be able to insist on
the change demanded, and u will be stable.

Compared with the model used in Section 10.4, under our present model, when
player 2 is bargaining on behalf of the coalition (23), this will have the effect of
decreasing the numerator of the expression defining his risk limit r2. In contrast,
under our previous model the effect of this was increasing the denominator of the
same expression. But under both models the end result is the same. The value of
r2 will decrease in the same way. In other words, under our previous model player
2 became more cautious in his bargaining behavior, because he felt responsible not
only for his own losses in case of a conflict with player 1, but also for player 3's
losses: That is, he felt a stronger disincentive against risking a conflict. In contrast,
under our present model he will feel a weaker positive incentive to press for
better terms, since half of the net gain would go to player 3, which, however, leads
to the same end result.

Our new model again suggests a way in which players 2 and 3 could avoid weaken-
ing their bargaining position in case they wanted to act as one bargaining unit. In-
stead of agreeing that player 2 will pass over to player 3 half of any gain that he can
exact from player 1, player 2 could guarantee player 3 the fixed amount of u3 = 10
on the condition that he can keep for himself the remainder of the amount that he
will obtain from player 1.5 In this case player 2 will be able to retain the full
amount of any additional concession that he can extract from player 1. In eco-
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nomic terminology his marginal incentive (marginal private gain) will be equal to
the marginal joint gain of the coalition. Consequently for any pair of possible pay-
off vectors u and w* player 2's risk limit r2 will be the same as in the case of
independent bargaining by each player. Hence the solution will also be the same,
viz.,i7=(10 10,10).

To sum up, we have seen that the symmetry and joint-efficiency postulates entail
the somewhat paradoxical conclusion that, if two or more players form a coalition
and act as one bargaining unit, then this will tend to weaken their bargaining posi-
tion vis-a-vis the remaining players (unless they take special steps to prevent this).
This we have called the joint-bargaining paradox. We have argued that Zeuthen's
Principle suggests two alternative models for explaining this paradoxical result.
One is based on the assumption that the members of the coalition will act as one
player in the full sense of the word and will regard one another's interests as their
own: We have shown that this will make them less willing to risk a conflict and
more willing to accept unfavorable terms. The other model is based on the as-
sumption that each member of the coalition will be concerned only with his own
interests: But, acting as a member of a coalition, he will have less incentive to
press for better terms, because he will have to share with his coalition partners
any concession that he can obtain.



11
n-Person cooperative games
with transferable utility:
the modified Shapley value

11.1 Simple bargaining games with transferable utility

Let G be an ^-person simple bargaining game with transferable utility. Then its pay-
off space P will be defined by an inequality of the form

Let its conflict point be c = (cx, . . . , cn). It is easy to verify that the solution of G
will be the payoff vector u = u where for every player /

n H n j<EN

because this is the point at which the Nash product n(wf- - ct) will be maximized.
(That u must be the solution can also be shown more directly by considering the
fact that G can be transformed into a fully symmetric game if we subject every
player's utility function to the transformation u/ = ut - ct.)

In other words, in a simple bargaining game with transferable utility all players
will receive the same net payoff

ut - ct = Uj - Cj = - (v~ X \ck

If a simple bargaining game with transferable utility has the conflict point c -
(0, . . . , 0), then we call it an elementary game. Clearly an elementary game is al-
ways fully symmetric with respect to the various players.

The payoff space P of a bargaining game with transferable utility is not compact.
But we can always restrict our attention to the agreement space P*, which we have
defined (Section 10.1) as that region ofP which lies in the orthant defined by the n
simultaneous inequalities ut ^ c,- for all iGN. This agreement space P* is always a
compact (and convex) set.

11.2 Characteristic functions

Now we will consider ^-person cooperative games with transferable utility, which in
general are not simple bargaining games, because the rules of the game do not

212
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uniquely specify the conflict payoffs that the players will receive if no agreement is
accepted by all players.

Suppose that the rules of some game G at least specify the joint payoff

Z K/

which the members of any given coalition S CN would achieve if they did cooper-
ate among themselves but did not cooperate with the remaining players. Then the
function v(S) is called the characteristic function of the game, and the game G itself
is called a game given in the characteristic-function form. Clearly the function v(S)
has as its domain all possible coalitions S, i.e., all subsets of the set N of all n players.
(Therefore it is called a set function.) Its range is the set of all possible joint-payoff
values, i.e., the set of all real numbers. Of course, we could specify not only the
joint payoff of each coalition S but also the individual payoffs of the players be-
longing to S. But this would be less appropriate, because we are assuming that G is
a game with transferable utility in which the members of any coalition S can freely
redistribute their joint payoff among themselves. Consequently the individual
payoffs of the various players belonging to a given coalition S are variables under
these players' own (joint) control and are not constants specified by the rules of the
game. Only the joint payoff v(S) of all players in coalition S is a constant directly
determined by these rules. This joint payoff u(S) is called the value of coalition S.1

It is natural to assume that the characteristic function v(S) which specifies the
value of every possible coalition S has the following properties

O (11.3a)

v(RUS)>v(R) + v(S) if R,SCN and R nS = 0 (11.3b)

Here 0 denotes the "empty coalition" (or the "empty set") having no members,
while R U S denotes the union of the coalitions R and S. Property (11.3a) states
that a "coalition" containing no players will obtain zero payoff. Property (11.3b)
states that, if two disjoint coalitions R and S (i.e., two coalitions having no com-
mon members) combine their forces, then the members of these two coalitions
should be able to obtain payoffs at least as high as they could obtain without com-
bining. Because of Property (11.3b) we say that v(S) is a super additive set function.

It is desirable to extend the concept of a characteristic function to all cooperative
games with transferable utility, even if they are given not in characteristic-function
form but rather in the more general normal form [that is, if they are defined by
specifying the payoff function Ut for each player / instead of directly specifying
the characteristic function v(S)]. If we can predict the strategies 6 s = 0o

s and
6 = 6O

S that each pair of complementary coalitions S and S would use against
each other in case of a conflict between them, then we can define

v(s)= Z Ui(eo
s
9eo

s) v(s)= Z Ui(po
s,eo

s)
i<ES i^S
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Von Neumann and Morgenstern [1953, Chap. XI] have argued that in such a con-
flict situation each side should act on the most pessimistic expectations. That is,
coalition S should act on the expectation that coalition S would try to minimize
the joint payoff of coalition S, and conversely. Thus to minimize the other side's
damaging power each coalition should use a maximin strategy 0o

s or 0o
s. Accord-

ingly von Neumann and Morgenstern define

v(S)= Z Ui(po
s,0oS)= max min _ £ Ut(es

9e^) (11.4)
S S ^ 5

where S 5 and 2 5 are the sets of joint strategies available to coalitions S and S, re-
spectively, in the game. They have also shown that the characteristic function v(S)
defined by (11.4) is superadditive, i.e., satisfies (11.3a) and (11.3b).

But this model is open to the following objection: Why should either side expect
the other side to choose the strategy of the highest damaging power irrespective of
the costs to itself? This may be a very natural expectation in a constant-sum game,
where one side's loss is necessarily the other side's gain, and vice versa, so that each
side must cause the highest possible damage to the other side in order to maximize
its own joint payoff. But in a variable-sum game one would rather expect that each
side would try to find a suitable compromise between trying to maximize the costs
of a conflict to the other side and trying to minimize the costs of a conflict to it-
self - in other words, between trying to minimize the joint payoff of the opposing
coalition and trying to maximize the joint payoff of their own coalition. We will
see later how this qualitative idea can be translated into quantitative terms and will
define an alternative characteristic-function concept in Section (11.8).

Apart from constant-sum games, there is another class of games in which the
above objection to the von Neumann-Morgenstern characteristic function has no
application. Suppose that, in case of a conflict between any pair of complementary
coalitions S and S, each side's joint payoff is independent of the other side's joint
strategy and is dependent only on its own joint strategy. Then in case of a conflict
we shall have

£ Ui(Os,d*)= Z U((6S) Z Ui(6s,6*)= Z Ut(Ps)
i<ES i^S i<ES

Hence we can define

v(S)= max
S

In this case the definition is equivalent to (11.4), i.e., to the von Neumann-Morgen-
stern definition. Since now the only damaging action available to either side against
the other is simple noncooperation, the problem of how much damage to inflict on
the other side does not arise.

It is natural to argue that games given in characteristic-function form are really
games of this type. That is, they can be identified with games given in normal form
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such that do not allow other damaging actions than simple noncooperation in con-
flict situations.

More generally the von Neumann-Morgenstern characteristic function will be ap-
propriate in all games possessing the following property (which is satisfied both in
constant-sum games and in games allowing no positive damaging actions): Let S and
S be any two complementary coalitions. Let 6O

S be any possible joint strategy of
coalition S. Then coalition S must always possess some joint strategy 6O

S simulta-
neously maximizing its own joint payoff and minimizing the other coalition's joint
payoff. That is, for every joint strategy 0o

s G S5, there must exist some joint
strategy 6O

S G I>s simultaneously satisfying

= max

and

This statement is true for each pair of complementary coalitions S and S in the
game. Whenever this condition is satisfied, there will be no conflict between trying
to maximize one's own coalition's joint payoff and trying to minimize the opposing
coalition's joint payoff. Thus von Neumann and Morgenstern's definition of a char-
acteristic function [see Equation (11.4)] will be fully appropriate.

11.3 The Shapley value

An intuitively attractive solution concept for ^-person cooperative games with
transferable utility has been proposed by Shapley [1953] and is called the Shapley
value. It is defined in terms of the characteristic function v(S) of the game (for the
time being we will assume that the game is directly given in characteristic-function
form or that, if this is not the case, the problem of defining a satisfactory character-
istic function for the game has already been solved). We denote the Shapley value
of a given game G to player / by U;. It represents the payoff that player / would re-
ceive under this solution concept. (Its interpretation in more specific terms will be
discussed later.)

The Shapley value can be defined by means of the following postulates:
1. Joint efficiency. The n players' payoffs (Shapley values) U\ add up to the

value of the /7-person coalition (which is the highest joint payoff the n players can
achieve within the game). That is,

If a given player / fails to contribute anything to the value of any coalition that he
may join, i.e., if v(S + (/)) = v(S) for every coalition S C N, then he is called a
dummy player. (He may be regarded as a player who belongs to the game in a
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purely formal sense but whose behavior has no effect whatever on the course of the
game.)

2. Zero payoff to any dummy player. If player / is a dummy, then his payoff is
ut = 0.2

Let G be a game given in characteristic-function form. Then G is called a sym-
metric game if the characteristic function remains unchanged when we interchange
any pair of players / and /. Intuitively speaking, in a symmetric game all players
have identical positions.

3. Symmetry. If G is a symmetric game, then all n players will obtain the same
payoffs Ux = • • •  = un.

Let G and G* be two games played by the same n players, with the characteristic
functions u(S) and v*(S). Let G** be again a game played by the same players,
with the characteristic function u**(S) = v(S) + v*(S) for every coalition S. Then
G** is called the sum game of G and G*, while G and G* are called its component
games. We can regard G** as the composite game which results if the same players
play both G and G* (at the same time or one after the other). We will write G** =
G + G*.

If G and G* are not played by the same players, we can define their sum game
G** as follows: Let G be a game played by the n players in set N, and let G* be a
game played by the n* players in set N*. (N and N* may or may not be disjoint
sets.) Then we can formally include in game G as dummy players all players in set
TV* but not in set N, i.e., all players in set (N* - N). Similarly we can formally in-
clude in game G* as dummy players all players in set Nbut not in set N*, i.e., all
players in set (N - N*). Thus we can formally always assume that both games will
be played by all players in the combined set M = N U TV*, which will have m^ n +
n* members. Then we can construct the sum game G** = G -^ G^ according to the
definition already given. The concept of a sum game can be extended in an obvious
way to the case in which there are more than two component games to be added.

We also introduce the concept of a difference game. Let us call G a difference
game of G** and G* and write G = G** - G*, whenever G** = G* + G.

4. Additivity. For any given player /, his payoff M,-** from a sum game G** =
G + G* equals the sum of his payoffs ut and M,-* from the component games G and

In other words, if player / participates in both G and G*, then his total payoff
will be the sum of the payoffs he would obtain from G and from G* if he played
each game separately.

The joint-efficiency and symmetry postulates (Postulates 1 and 3) are familiar to
us and require no further comment. The dummy-player postulate (Postulate 2)
states the obvious fact that a dummy player has no bargaining power against the
other players, because they do not need his cooperation. Thus only the additivity
postulate needs discussion. We will return to it later (Section 11.6).

Shapley has proved the following important theorem:

Theorem 11.1. There is one and only one set of payoffs u x, . . . , un satisfying
Postulates 1 to 4. The payoff M,- (called the Shapley value of the game to player /)
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can be defined as
(s-\)\(n-s)\ v s\(n-s-l)\

v(S)~ 2 . j v(S) (I)
SCN SCN

where s is the number of players in any coalition S.

Thus the Shapley value is a linear combination of the values v(S) of all possible
coalitions S - with positive coefficients in the case of all coalitions S containing
player / and with negative coefficients in the case of all coalitions S not containing
player /.

The proof of Theorem 11.1 is based on the fact that any ^-person cooperative
game G with transferable utility can be obtained as a sum game (or at least as an
algebraic-sum game)3 of a finite number of elementary games Gs - with one ele-
mentary game Gs for every nonempty coalition S [this means (2n - 1) such ele-
mentary games for any ^-person game G].

Let Gs(r]) be an elementary game whose characteristic function vs(R) is defined
as

vs(R) = 0 if R CS

vs(R) = n if R =S
Let S be a subset of TV. We can add all players in TV but not in S as dummy players

to Gs(r}). Then the characteristic function vs(R) must be redefined as

vs(R) = 0 if R£S

vs(R) = n if R^_S

That is, vs(R) = r? if R = S or if R is a superset of 5. Otherwise us(R) = 0.
Before proving Theorem 11.1, we will first prove:

Lemma 1. Let G be an /7-person cooperative game with transferable utility, whose
characteristic function is v(S). For every possible coalition SCN, let r]S be the
quantity

vs = z (-ir»(/?) 01.5)
RCS

where s and r denote the number of players in each coalition S and/?.
Suppose that r\s ^ 0 for all S C TV.
Then G is the sum game of the (2n - 1) elementary games Gs(r]S); that is,

SCN

Proof. We have to prove that

X vR(S) = v(S) for every SCN
RCN
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Since vR (S) = rjR if RCS, while otherwise vR (S) = 0, and, in view of (11.5), we
can write

Z vR(s)= z TJ*= z Z c-irvn
RCN RCS RCS TCR

where t is the number of players in each coalition T. Let T and S be two given co-
alitions such that TCS, and let r be a given positive integer such that t g r ^ s.
Then the number of different r-person coalitions/?, such that TCR CS, will be

(s-t)\
(T-t)\{s-r)\

Hence

Z {) z i ( y ( )
RCN res r=t \r tj

But for every t < s, and so for every TCS, we have

Therefore

Z » R(s) =
RCN

as desired.
For example, consider the three-person game G whose characteristic function is

= 3O

= 40 y((13)) = 40 u((23)) = 80

y((123))=160

This game G can be regarded as the sum game of the seven elementary games G1,
G2, G3, Gn, G13, G23, and G123, whose characteristic functions are defined as

G1: u'Cd)) = ̂ ((12)) = » 1((13)) = » I((123))= 10

but v1((2)) = v1((3)) = v1((23)) = 0

G2 : v2((2)) = u2((12)) = i>2((23)) = u2((123)) = 20

but v2((\)) = v2((3)) = v2((13)) = 0

G3: v3((3)) = ̂ ((13)) = y3((23)) = i>3((123)) = 30

but y3((l)) = i>3((2)) = y
3((12)) = 0

G12: <;12((12)) = « 12((123)) = o((12)) - i>((l)) - »((2)) = 10
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but otherwise vn(S) = 0

G13: .13((13)) = u13((123)) = i<(13)) - .((1)) - .((3)) = 0

and otherwise also v13(S) = 0

G23: i;23((23)) = .23((123)) = .((23)) - .((2)) - .((3)) = 30

but otherwise v23(S) = 0

G123 : .123((123)) = .((123)) - .((12)) - .((13)) - .((23)) + .((1)) + .((2))

+ .((3)) = 60

but otherwise . 1 2 3(S) = 0

It is easy to verify that these elementary games exactly add up to the original
game G, since

.((1)) = . J ( ( l ) ) + *2((1)) + » 3((1)) + i;12((l)) + I>13((1)) + I>2 3((1)) + » 123((1))

= 10 + 7 - 0 = 10
Likewise

.((2)) =20+ 7 -0 = 20

.((3)) = 30 + 7 • 0 = 30

.((12))= 10 + 20 + 0 + 10 + 3-0 = 40

.((13))= 10 + 0 + 30 + 4 0 = 40

.((23)) = 0 + 20 + 30 + 2-0 + 30 + 0 = 80

.((123)) = 10 + 20 + 30 + 10 + 0 + 30 + 60 = 160 as it should be

Lemma 1 as it stands does not apply to cases where some of the quantities rjs

[defined by Equation (11.5)] are negative, since Gs(ris) with a negative T?5 would
not give a legitimate elementary game (because its characteristic function would not
be superadditive and because it would yield negative net payoffs to the players par-
ticipating in it).

We will call any coalition S a negative coalition if 77̂  < 0. For any negative coali-
tion S we define the quantity rjs = | r]S \ = -rjs > 0 and use the elementary game
Gs(rjs) instead of the inadmissible negative game Gs(r)S) itself. Let vs(R) be the
characteristic function of Gs(rjs). Then we can write us(R) = -vs(R).

We will now show that Lemma 1 remains true, even in the case when some coali-
tions S are negative coalitions, if for any negative coalition S we subtract the ele-
mentary game Gs(rjs) instead of adding the elementary game Gs(r}S).

Lemma 2. Irrespective of the sign of the quantities 175, every ^-person cooperative
game with transferable utility can be written in the form

SCN
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provided that in case r\s < 0 the symbol Gs(r}S) is interpreted to mean Gs(r}S) =
s s s s

Proof. We have to prove that the relationship

RCN

is true even if for some coalition R we have 77̂  < 0. The proof of Lemma 1 was
based on the fact that

vR(S) = vs if RCS
whereas otherwise

vR(S) = 0
But this relationship is still true for all nonnegative coalitions/?. Indeed it is also
true for all negative coalitions R, because in this latter case

vR(S)=-vR(S) = -fjs = r]S if RCS

while otherwise

vR(S) = 0 otherwise

Consequently the proof used for Lemma 1 equally applies to Lemma 2.
As an example for a game containing a negative coalition, consider the three-

person game G whose characteristic function is

w((123)) = 85

This is the same game as game G of the previous example, but u((123)) =160 has
now been replaced by v((123)) = 85. The component games G1, G2, G3, G12, G13,
and G23 remain the same as before. However, if we add them up, we obtain

40 9((23)) = 80

u((123))= 100

That is, the value u((123)) = 100 that we obtain for the all-player coalition TV =
(123) is 15 units higher than it should be. We could try to define the seventh com-
ponent game G123 as

Gi23. p i " ( ( 1 2 3 ) ) = -15 and u123((l)) = i>123((2)) = « 123((3))

= y123((12)) = « 123((13)) = u123((23)) = 0
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But this would not give a legitimate game, since vl23(S), as defined above, is not
superadditive [e.g., u((l)) + u((23)) = 0 > u((123)) = -15]. However, we can de-
fine a legitimate game G123 by using the negative of u123 as its characteristic func-
tion. This gives

G123: ?123((123))= 15 and otherwise vl23(S) = 0

If we now subtract G123 from the other six component games we achieve the same
result as if we had added its negative, the "inadmissible" negative game G123. Thus
we can write

G = G1 + G2 + G3 + G12 + G13 + G23 - G123

We can easily check that

v1 ((123)) + u2((123)) + u3((123)) + i>12((123)) + i;13((123)) + u23((123))

-y123((123))= 10 + 20 + 30+10 + 0 + 3 0 - 15 = 85 = u((123))

Using Lemma 2 we can prove Theorem 11.1.

Proof of Theorem 11.1. First consider the case where R is a nonnegative coalition.
Then, by Postulates 1 and 3, every player / belonging to coalition R will obtain
from the elementary game GR(j]R) the payoff

WR = I VR = I £ (- \y-°v(s) (i I.6)
r r SCR

which, by Postulate 4, must be added to the payoffs player i will obtain from the
other component elementary games. We will call the payoff wR player /'s dividend
from coalition/?.

Next consider the case where /? is a negative coalition. Then, by Postulates 1 and
3, every player / belonging to coalition /? will obtain from the elementary game
GR(rjR) the payoff

1 1 1
r n r V r SCR

which, by Postulate 4, now has to be subtracted from the dividends that player /
will obtain from other coalitions /?* ¥=  /?. This is, of course, equivalent to adding
the negative quantity

r r SCR

whose definition is formally the same as the definition of the quantity wR for non-
negative coalitions/?. This (negative) quantity wR we again call player /'s dividend
from coalition/?.
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Finally, any player/ not belonging to a given coalition R will be only a dummy
player in the elementary game GR(rjR) or GR(r]R). Therefore, by Postulate 2, he
will receive the payoff

Wf* = 0

irrespective of whether/? is a nonnegative or a negative coalition.
Consequently, by Postulate 4, the total payoff of any player / will be

RCN R=>i R^i Y SCR
RCN RCN

For SL given coalition S consisting of s players, and for a given positive integer r,
s < r g n, consider all r-player coalitions R such that R 3 i and SCR C TV. (That
is, we require that each coalition R should consist of exactly r players, that it
should contain player / as a member, and that it should contain coalition S as a
subset.) If coalition S itself already contains player i as a member, then the total
number of coalitions/? satisfying these requirements will be

» - s \ (n-s)l
r-s) (r-s)\(n-r)\

If coalition S itself does not contain player i, then the total number of coalitions R
satisfying our requirements will be

(n-s- l)\
(r-s-l)\(n-r)\

Consequently

n i (n - s\ n i fn - s - 1\
* * * * y \ r — v I  _ / ' y \ Y —  V —  1 /

S^i r=s * ' "V S^i s=r »' •*  x/

SCN SCN

= (s - 1) ! (n - s) ! S ! ( K - S - 1 ) !

• «! ^ . «!
5^A^ 5 îV

which is identical with Equation (I) of Theorem 11.1. Hence any set of payoffs
fix, . . . ,un satisfying Postulates 1 to 4 must satisfy Equation (I). It is easy to
verify that the converse is also true: Any set of payoffs ux, . . . , un defined by
Equation (I) will always satisfy Postulates 1 to 4.
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The last equality above follows from the following lemma:

Lemma 3.

J _ M _ ( f - i ) ! " » '
t + k \k) ( « + r)!

Proof. Proof of the lemma is by complete induction. The lemma is obviously
true for m = 1, because then it gives

1 1 ( r - l ) ! 1
t r + l 0 + 1)! r - ( r + l )

Now suppose that the lemma is true for some particular value of ra. We can show
that in this case it will be true also for (m + 1).

If the lemma is true for m, then

L U
We can replace r by (t + 1) and can write

t\m\

A; = 0

Subtracting the last equation from the preceding one, we obtain

But

m\ / m \ ml ml
+ 1 k l ( m - k ) l ( k - 1 ) \ { m - k + 1 ) !

. r,___ ,_ . ^ . ,., ml _ ( m + l ) - m !
J J ^ ! ( m + l - / c ) ! k\(m+l-k)

fm+ \\

k

After substitution we obtain

m
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which shows that the lemma is true also for (m + 1) - if it is true for m. This es-
tablishes the lemma by complete induction for all positive integer values of m.

For instance, again consider the games G and G of our two examples. In game G,
by Equation (I) of Theorem 11.1, the Shapley values of the game to the three
players will be

ux = \ .((1)) + \ .((12)) + \ .((13)) + \ .((123)) - \ .((2)) - \ .((3))

" \ K(23))
= \ • 10 + \  • 40 + \ • 40 + \ • 160 - \  • 20 - \ • 30 - \ • 80 = 35

ii2 = 60

u3 = 65

These Shapley values add up to

ux + u2 + u3 = 35 + 60 + 65 = 160 = .((123))

in conformity with Postulate 1.
Moreover, each player's Shapley value equals the sum of his dividends from the

various coalitions of which he is a member. Thus

ux =w1(1>+w1(12> + w1<13>+

= \ • v(1) + \ ' ??(12) + \ ' r?(13) + \ ' r?(123)

= } • . !((1)) + 1 • .12((12)) + \ • .13((13)) + 1 • .123((123))

= j • 10+ ^ • 10 + ^ - 0 + i -60 = 35

= \ - 2 0 + i • 10 + ^ 30 + ^ -60 = 60

u3 = w3
(3) + w3

(l3) + w3
(23) + w3

( l23 )

= j • 30 + \ • 0 + i • 30 + \ • 60 = 65

Likewise, in game G, by Equation (I), the Shapley values of the game will be

ux = \ • 10 + \  • 40 + £ • 40 + \ • 85 - \ • 20 - \ • 30 - ^ • 80 = 10

w2 = 35

u3 = 40

These Shapley values again add up to

^ + u2 + u3 = 10 + 35 + 40 = 85 = .((123))

Each player's Shapley value is again equal to the sum of his dividends from all co-
alitions of which he is a member. However, in G the coalition (123) is a negative
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coalition and its members (i.e., all three players) receive the negative dividend
w/123> = w2

(123) = w3
(123) = \ v(n3) = i (-15) = -5 . Thus

« ! = { •  10+ ^ - 1 0 + ^ - 0 + ^ -(-15)= 10 + 5 + 0 - 5 = 10

u2 = } -20 + ^ • 10 + ^ -30 + ^ -(-15) = 20 +5 + 1 5 - 5 = 35

u3 = \ - 30 + ^ - 0 + ^ - 3 0 + ^ -(-15) = 30 + 0+ 1 5 - 5 = 40

In other words, in game G the total amount the players can distribute among
themselves is u((123)) = 85. However, when each player has received his dividends
from the one-player and two-player coalitions, then the players will have already
distributed the amount

v2((2)) + .3((3)) + v12((l2)) + v13((\3)) + v23((23)) = 100

among themselves. This will give rise to a "deficit" of 100 - 85 = 15 units, which
the three players will bear equally by each of them accepting a negative dividend
w1

(l23) = w2
(l23)=vv3

(l23) = -5 .
Another possible intuitive interpretation of negative dividends is to regard them

as "entrance fees" that the members of any negative coalition S have to pay in
order to be allowed to play the game at all.

Suppose that the s players belonging to a given set S agree to play an elementary
game Gs(ri) among themselves and agree to raise the prize r? among themselves by
each of them contributing the amount 77/s to a common pool. Clearly this agree-
ment will leave each player's wealth completely unchanged, because he will have to
contribute the amount 17/5 but will receive back exactly the same amount 17/s as his
payoff from the elementary game Gs(r]). We will call such a game a self-financed
elementary game.

Now let G be an ^-person cooperative game containing one or more negative
coalitions S. Suppose that the members of any negative coalition S are allowed to
participate in G only on the condition that they will also play a self-financed ele-
mentary game Gs(rjs) among themselves. (This assumption is admissible because,
as we have seen, a self-financed elementary game does not change the status quo
among the participants.) This means that each member / of a given negative coali-
tion S will have to pay into a common pool the amount w/5 = f]S/s, which may be
regarded as his entrance fee to the game. On the other hand, the original game G
will be replaced by the sum game G = G + G (TJ ) [or if there is more than one
negative coalition S in G, then G will be replaced by the sum game G = G +
2 Gs(rjs)]. The resulting sum game G will contain no negative coalitions. In this
new game G each player / will receive a payoff w, equal to the Shapley value of G to
him, i.e., a payoff equal to the sum of all his positive dividends #/* from various
coalitions R in 6 - or equivalently a payoff equal to the sum of all his positive divi-
dends w/* = $/* from various coalitions R in the original game G itself. However,
player /'s net payoff ut will be equal to ut less the sum of all entrance fees wt

s that
he had to pay before he has been allowed to participate in the game. Consequently
each player's net payoff w, will be equal to his Shapley value for the original game
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G, that is, to the algebraic sum of all his positive and negative dividends wt
R from

all coalitions R in G, because adding the negative dividend wf for any negative
coalition S is equivalent to subtracting the positive entrance fee w/5 = I W/5|.

For instance, in the case of the three-person game G of our previous example, the
three players will have to play the self-financed elementary game G123(l 5). Hence
each of them will have to pay the entrance fee iv/123^ = w2^123^ = w3^123* = 5,
which will yield the total amount 15. This will provide the funds needed to replace
the original game G by the new game G = G + G123(15), in which the value of the
three-player coalition (123) will be increased from u((123)) = 85 to £((123)) = 85 +
15 = 100. The resulting new game & will have the Shapley values

ux=\5 Q2=40 u3=45

But the net payoffs of the players will be only

Mj = 1 5 - 5 u2 = 4 0 - 5 u3 =45 - 5

because of the entrance fees that they had to pay. These net payoffs are equal to
the Shapely values for the original game G, already computed above.4

11.4 The Shapley values as bargaining-equilibrium payoffs

Shapley [1953, pp. 307, 316] himself did not claim that the Shapley values ut of a
given game G will represent the actual payoffs that rational players will tend to
agree upon in game G. He rather interpreted them as reasonable a priori assess-
ments of the players' average payoff prospects (representing the mathematical
expectations of the players' payoffs under certain assumptions) if we lack (or dis-
regard) any information concerning the coalition structure likely to arise in the
game.

Under this interpretation we have no reason to expect that the players of a given
game G will agree on any particular occasion on payoffs corresponding to the
Shapley values of the game. All that we can expect is that, if the same game G is
played on a large number of different occasions (preferably by different sets of
players in order to "average out" any special social relations, such as friendships,
hostilities, and so on among particular groups of players), then the average payoff
of the persons playing the role of some particular player i will closely approach the
Shapley value W/ of the game to player /. We will return to this interpretation of
Shapley values as expected average payoffs in Section 11.7.

We will now discuss a stronger interpretation of the Shapley values, which makes
them the actual payoffs that tend to be agreed upon if the players follow our
rationality postulates.

Let G be an /?-person cooperative game with transferable utility, having the char-
acteristic function v(S). This means that any given individual player / can obtain
the payoff v((i)) by himself without any cooperation with the other players. More
particularly he will be able to obtain this payoff even in the case of a conflict be-
tween himself and all remaining (n - 1) players.
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Likewise any pair of players / and / can obtain the joint payoff v(jj) even in the
case of a conflict between themselves and all other (n - 2) players. But the rules of
the game do not specify how this amount v((if)) will be divided between players /
and/ in this assumed conflict situation: This must be decided by bargaining be-
tween the two players concerned. Suppose that they agree that player z's payoff
would be Uj(lJ\ while player; 's payoff would be u^\ These quantities will be the
two players' conflict payoffs from coalition (if). Since players i and / can achieve
the payoffs w^ and w^ even without cooperating with each other, their net pay-
offs from cooperating in coalition (if) will be only w/1" = M/1" - w^ and wy-^ =
^.0/) - Wj(J\ These net payoffs will be the two players' dividends from coalition (if).
[In the case of a one-person (solo) coalition such as (/), we will define both player
/'s conflict payoff u^ and his dividend w/1* as M/1* = w^ = v ((/)).]

More generally a given sectional coalition S of s players, S C TV, can always
achieve the joint payoff v(S) even in the case of a conflict between this coalition S
and all other (n - s) players. But the actual distribution of this amount v(S) among
the s members of coalition S must be decided by bargaining. The total payoff that
a given player / in S would receive in case of a conflict between coalition S and the
other players will be called his conflict payoff u^ from coalition S. Since coalition
S cannot distribute more than the amount v(S) among its members, we must have

Z UiS*v(S) (11.7)

Of course, joint efficiency implies that the amount v(S) available will be fully dis-
tributed among the members of S, which means that the ^ sign can be replaced by
an = sign in (11.7).

Out of the conflict payoff uf, however, a certain part will represent only player
/'s dividends WjR from various coalitions R which are subsets of coalition S. Thus
player /'s net payoff from coalition S as such will be only

RCS

This net payoff W;S will be called player /'s dividend from coalition S. The previous
equation can also be written in the form

ut
s= Z wf (11.8)

R=> i
RCS

Finally, the all-player coalition N can achieve the joint payoff v(TV). The distribu-
tion of this amount among the n players will again be decided by bargaining. The
share that any given player / will receive will be called his final payoff ut from the
game. Formally it can be regarded as player /'s conflict payoff in a "conflict" be-
tween the all-player coalition N and the empty coalition 0; therefore we can write
Ui = UjN. Since the players'joint payoff cannot exceed v(N), we must have

^ 01.9)
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By the joint-efficiency postulate, the S sign in (11.9) can again be replaced by the
= sign. The net payoff wf

N of any player / from the all-player coalition N can be
defined as the amount by which ut

N exceeds the sum of player /'s dividends wt
R

from all sectional coalitions/? of which he is a member. That is,

RCN

This net payoff W;N is called player /'s dividend from the all-player coalition N.
Thus we can write

ui = ui
N= £ wt

R (11.10)

RCN

That is, every player's final payoff is the sum of the dividends that he receives from
all coalitions/? C TV of which he is a member.

To make our model determinate we need only one further relationship, viz., a
rule predicting the outcome of bargaining among the s players of each coalition S
about their conflict payoffs uf, or equivalently about their dividends w(

s, from
that particular coalition S.

This relationship we obtain by extending our concept of multilateral bargaining
equilibrium, already used for n-person simple bargaining games in Section 10.2, to
all n-person cooperative games (or at least, for the time being, to those which have
transferable utility). We can now define multilateral bargaining equilibrium as a
situation where bilateral bargaining equilibrium exists between every possible pair
of players / and /, if all those payoffs in the game which are not subject to bargain-
ing between players / and/ are regarded as given.

Thus we will consider certain two-person bargaining subgames Gtj between any
pair of players / and / in which these two players have to agree on their final pay-
offs u~i = ut

N and Uj = UjN and also on their conflict payoffs ut
s and UjS from all

sectional coalitions S of which both of them are members. But the final payoffs
Uk = ukN a nd the conflict payoffs uk

s of all other players k are regarded as given;
the conflict payoffs uf of player / himself from all coalitions S of which player
/ is not a member are also regarded as given. And the same is true for the conflict
payoffs UjS of player/ from coalitions S of which player i is not a member. Or
equivalently (and for our purposes, more conveniently) we can define the subgames
Cry as two-person bargaining games where / and/ have to agree on the dividends
WjS and WjS from all coalitions S 3 /,/ and CiV, whereas all dividends wk

s, k ¥=  i, /,
for every coalition S C TV are regarded as given; and so are all dividends wf and wf
for all coalitions S not including both players / and/.

In any given ^-person game G there are altogether 2n~2 possible coalitions S con-
taining both players / and /. For each of these coalitions S the two players will
have to a^ree on a pair of dividends wf and WjS. Thus the two-person bargaining
subgame Gtj can be regarded itself as a composite bargaining game (in the sense
defined in Sections 9.6 and 9.7), consisting of 2n~2 smaller bargaining subgames
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G(j . The purpose of each subgame G,y is to agree on the dividends wf- and Wj
from one particular coalition S. We may assume that these subgames Gti

s will be
played in some particular order (for example, the subgames Gjj corresponding to
larger coalitions S may be played after those corresponding to smaller coalitions S),
so that the various subgames GjjS can be identified with different "stages" of the
composite bargaining game G,y. But the actual order in which we assume that
these subgames G(jS will be played is immaterial for our purposes.

If we consider the composite game G(J as a whole, then player /'s disagreement
payoff c/7 will be the sum of all his dividends WjS from coalitions S not containing
player/; that is

?/"= Z H / (11.11)
S3i

SCN

By the same token, player/'s disagreement payoff will be

'/'"'= Z V (11.12)

The two players can agree on any pair of final payoffs wz- and Uj satisfying

Ui + ujik v(N)~ ]T uk = r] - const.

Hence the equation of the upper right boundary H of the payoff space for game
Gij is

H{uh Uj) = Uj + Uj - ri = Q

Therefore, by Equation (B) of Theorem 9.1 in Section 9.2, we have

ai = aj = Hi{u) = Hj{u)=\
for every point u of the upper right boundary H. Consequently, by Equation (C)
of the same theorem, the solution u^ = (u~j, Uj) of Gtj must satisfy

Ui-c^ = urc/' (11.13)

In view of Equations (11.10) through (11.12), this can also be written as

Z V= Z H/ (11.14)
53 ij

SCN SCN

Now let us consider the smaller subgames G^ into which the game Gz/- is divided.
By Equation (9.41) of Theorem 9.4, in any particular subgame GtjS the two players
will agree on dividends wt

s and WjS such that

WjS = WjS (11 .15)
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This relationship is true for all coalitions S 3 i, /, and CN. In view of Theorem 9.5,
this relationship will hold even if wt

s and WjS are negative dividends.
In other words, in the composite bargaining game Gtj the two players' total net

payoffs,

*i-W= Z ™t s and */-*/'= Z V
SCN SCN

are equal (Intuitively this can be best regarded as a consequence of the fact that
the upper right boundary H of the payoff space in GtJ is a 45° line, and so the game
can be transformed into a symmetric game if we change the zero points of the two
players' utility functions to make the point clJ = (c/J, c/J) our new origin.)

Consequently, according to our theory of composite bargaining games, at any
intermediate stage of the game the two players will agree on such dividends (i.e.,
on such payoff increments or decrements) wt

s and WjS that will preserve this basic
equality in their bargaining power, which means agreeing on equal dividends wt

s

and WjS on each stage.
In view of (11.7) through (11.10), and considering the fact that (11.7) and (11.9)

can be regarded as equalities, we can write

Z Z WiR=v(S) for all SCN (11.16)
RCS i<ER

Consequently

z v = z (-ir*v(s) (n.17)
i<=ER SCR

The proof of this relationship is similar to the proof of Lemma 1 in Section 11.3.
In view of (11.15) and (11.17),

**=- Z (-irXS) (11.18)
r SCR

Finally, in view of (11.10) and (11.18),

^ Z WMS) 01.19)
rr SCR

RCN

which, according to the proof of Theorem 11.1 in Section 11.3, is equal to the
Shapley value of the game to player /, as defined by Equation (I) of the same
theorem. Thus we can state:

Theorem 11.2. Let G be an ^-person cooperative game with transferable utility,
given in a characteristic-function form. Suppose that the members i of every pos-
sible sectional coalition S agree to cooperate in protecting their common interests
in the case of a conflict between coalition S and the other players. Let u =
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(Ui, . . . , un) be a vector consisting of the Shapley values of G. Then u is also
the payoff vector corresponding to multilateral bargaining equilibrium among
the n players.

For this reason we will call u the solution of game G.
Our bargaining model can also be stated in an alternative form, which may

bring out certain aspects of its intuitive content more clearly. Let us assume that
the game is played in two stages. In stage 1 the players belonging to the various
sectional coalitions S agree on the dividends wt

s from these coalitions. In stage 2
all the n players together agree on the final payoffs ut (or equivalently on the
dividends wf* from the all-player coalition N). At the end of stage 1 each player
/ will be guaranteed to receive the payoff

SCN

Hence we can now regard stage 2 of the game as an ^-person simple bargaining
game where the players have to agree on some payoff vector u = {ux, . . . , un),
subject to Xut ^ v(N) and where in case of no agreement they will receive the dis-
agreement payoffs cx , . . . , ( ?„. By Equation (11.1), each player i will have a
stronger bargaining position (i.e., will obtain a higher final payoff w,), the higher
his disagreement payoff Cj (i.e., the higher the dividends wf that he has received
from the various sectional coalitions S of which he is a member).

Thus we can regard the dividends wf from the various sectional coalitions S
as payoffs that the members of each coalition S guarantee one another in order
to improve their bargaining positions vis-a-vis the other players in the last round
of bargaining about the final payoffs ut. This dividend-guaranteeing ability of each
coalition S is based on the fact that the members of S can achieve the joint payoff

i<ES R3i
RCS

even against the resistance of all other players.

11.5 Further discussion of our bargaining model: the nondiscrimination assumption

Our bargaining model discussed in the previous section has been based on the as-
sumption that the members of every possible sectional coalition will fully cooperate
in protecting their common interests against the other players. In particular, in the
case of a conflict between the two coalitions S and S, the members of coalition S
will cooperate in obtaining the highest possible joint payoff that they can obtain
in such a conflict situation, viz., the joint payoff v(S). Technically this assump-
tion has taken the form of assuming that the s members of any coalition S will
make full use of their ability to guarantee one another conflict payoffs ut

s, or
equivalently dividends wt

s, up to the limit defined by the quantity v(S). This
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amounts to the requirement

Z«,- 5=Z Z">iR=v(S) (11.20)
RCS

Thus under our model each player will be the member of a number of mutually
overlapping sectional coalitions. For instance, in a three-person game, for some
purposes (viz., for the purpose of guaranteeing the dividends w^12^ and w2^12^ to
each other) players 1 and 2 will form a coalition against player 3; but for other
purposes (viz., for the purposes of securing the dividends w^13^ and w3^13^)
players 1 and 3 will form a coalition against player 2; for still other purposes
(viz., for the purposes of securing the dividends w2^23^ and w3^23^) players 2 and
3 will form a coalition against player 1. This assumption is a mathematical repre-
sentation of the fact that in social life the same individual may cooperate with a
large number of different social groups, because on some issue he will have com-
mon interests with one social group, on other issues with others. For example,
the fact that a given individual tries to protect the interests of his own city against
the residents of other cities need not prevent him from trying to protect the in-
terests of his own profession against the members of other professions, and again
need not prevent him from trying to protect the interests of his own political party
against the members of other political parties.

In contrast to our own solution concept, most other solution concepts proposed
in the literature for ^-person cooperative games are based on the assumption that
in any given case only a small subset of all possible coalitions will be formed and
that the coalitions actually formed will always be nonoverlapping. The simplest
assumption along these lines would be that the players are divided into two com-
plementary coalitions S and S and that the final payoffs are determined by bar-
gaining between these two coalitions. Each of these coalitions may or may not be
itself partitioned into sub-coalitions. But no coalition will be formed that contains
both S -players and £-players among its members, except for the all-player coalition
TV itself, which represents a combination of the whole coalition S with the whole
coalition S. This means that the members of coalition S will support one another
on all issues against the members of coalition S, and conversely.

In terms of our bargaining model this would have to be interpreted as an agree-
ment by the members of each of the two basic coalitions S and S not to participate
in any other coalition R unless R contained all members of their basic coalition S
or S. More paricularly this would mean that the members of S, and again the mem-
bers of S, would refuse to participate in guaranteeing dividends wt

R for any coali-
tion R, except if R D_ S or R D_S. Any such agreement by the members of a given
coalition S or S will be called a discriminatory agreement against the players not
belonging to that coalition. Accordingly any solution concept based on the as-
sumption that only a limited number of all possible coalitions will be active in the
game will be called a discriminatory solution or biased solution. On the other
hand, our solution, based on active participation by all possible coalitions in the
game, will be called the nondiscriminatory or unbiased solution.5
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The basic argument in favor of what we call discriminatory solutions is the fact
that in many cases, if the members of a given coalition S enter into a discriminatory
agreement against the other players, then they can achieve a higher joint payoff
than if they accept our nondiscriminatory solution. A rather extreme example of
this occurs in a three-person constant-sum game. For instance, consider game G
with the characteristic function v((i)) = 0 for / = 1, 2, 3 and v((\2)) = tf((13)) =
y((23)) = y((123)) = 90. Since the game is completely symmetric for the three
players, the nondiscriminatory solution corresponding to the Shapley values is
u = (30, 30, 30). But any pair of two players can obtain the amount 90 (i.e.,
the highest possible joint payoff in the game) without the help of the third player.
So it seems natural to argue that (say) players 1 and 2 should form a coalition and
should divide the amount 90 between themselves, leaving nothing to the third
player. By symmetry the two players will presumably agree on equal shares. This
will give the discriminatory solution (45,45, 0). If players 1 and 3 or players 2 and
3 form a coalition, we would obtain the discriminatory solutions (45,0,45) and
(0, 45, 45), respectively.

This case is rather extreme because, in order to achieve the highest possible joint
payoff, the two-person coalitions need no cooperation by the third player. Hence
any discriminatory solution will rest on a mere two-player agreement and will
not require the consent of the third player. In contrast, in most three-person
games the three-person coalition can in general achieve higher payoffs than any
two-person coalition can by acting alone. Hence the final payoffs in a discrimina-
tory solution will depend on bargaining between some two-person coalition and the
third player. For instance, consider game G* with the characteristic function
v((i)) = 0 for / = 1, 2, 3; v((\2)) = u((13)) = u((23)) = 42 and u((123)) = 90. The
nondiscriminatory solution will be again u = (30, 30, 30). But now it will not be
true that a two-person coalition acting alone can achieve the same joint payoff
as the three-person coalition can, since the former can achieve only 42 while the
latter can achieve 90. Indeed a two-person coalition acting alone cannot achieve
a joint payoff equal to the joint payoff of the two players concerned under our
nondiscriminatory solution; under the nondiscriminatory solution any pair of two
players would obtain 30 + 30 = 60 > 42.

All the same, one may still argue that any pair of two players can increase their
joint payoff above the nondiscriminatory joint payoff 60 if they reach a discrimina-
tory agreement against the third player. For instance, let us assume that players 1
and 2 agree to guarantee each other the payoffs ux * = u2 * = 42/2 = 21. Then sup-
pose that they try to reach an agreement with player 3 on how to divide the bal-
ance y((123)) - y((12)) = 90 - 42 = 48. This will give rise to a simple bargaining
game among the three players, yielding the payoffs U\ ** = u2 ** = u3 ** = 48/3 =
16. Thus the three players' final payoffs will be ux - u1 * + ux ** = 21 + 16 = 37;
U2 = ui * ~ 21 + 16 = 37; and u3 = u3 ** = 16. Hence we obtain the discriminatory
solution (37, 37, 16), which is more favorable to players 1 and 2 than the nondis-
criminatory solution (30, 30, 30).6 If players 1 and 3 or players 2 and 3 reach a
discriminatory agreement, we would obtain the discriminatory solutions (37, 16,
37) and (16, 37, 37), respectively.
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Both in our constant-sum example G and in our variable-sum example G*, the
discriminatory solutions described can be formally obtained also from our nondis-
criminatory solution model by assuming that two of the three possible two-person
coalitions have been assigned the value zero. For instance, in either example the
discriminatory solution favoring players 1 and 2 can be interpreted as the nondis-
criminatory solution of a new game where the original positive values u((13)) and
u((23)) of coalitions (13) and (23) have been reduced to u*((13)) = u*((23)) = 0,
as a result of player 1 and 2's refusal to join player 3 in any two-person coalition.

Contrary to theories based on what we call discriminatory solutions, we will
consider the nondiscriminatory solution, corresponding to the Shapley value and
its generalizations, to be the basic solution of the ^-person cooperative game. Our
reason is that in our view any discriminatory agreement by the members of a given
sectional coalition S is inherently unstable unless the members of S can finalize
their agreement before the other players can make any counteroffers to them; and
this will be the case only if the communication facilities within the game are
strongly biased in order to discourage communication between the members of
coalition S and the other players, as compared with communication among the
various members of coalition S itself.

For instance, let us again consider our three-person constant-sum game example.
Suppose that players 1 and 2 are negotiating a discriminatory agreement against
player 3, which would result in the discriminatory solution (45,45,0). Then in
case player 3 can intervene in time, he can always disrupt any agreement between
players 1 and 2 by offering either of them a payoff higher than 45. For example,
he will be able to persuade player 1 to join him in a coalition against player 2 if he
offers player 1 the payoff 46 > 4 5 . Of course, by similar reasoning player 1 or
player 2 will also be able to break up any discriminatory agreement by the other
two players if he can intervene and overbid before their agreement has been finally
confirmed.

In other words, even though in our example any two-person coalition can physi-
cally acquire the highest possible payoff (viz., 90) without any help from the
third player, the latter has what amounts to veto power over any agreement con-
cerning the distribution of this amount. Hence he can prevent any discrimination
against him just as effectively as he could if even the acquisition of this amount
did require his cooperation.

Yet once the players realize that none of them can organize a stable discrimina-
tory solution against another player, they will be ready to settle for the nondis-
criminatory solution (30, 30, 30): In other words, the fundamental symmetry of
the game will reassert itself. Suppose that player 3 first realizes that this is the
best solution that he can achieve. Then he can persuade the other two players to
accept this solution in the following way: He can approach (say) player 2 and can
point out to him that he is in a position to prevent any agreement between players
1 and 2 by always offering player 1 a higher payoff than player 2 can offer. Ac-
cordingly he can make the threat of continually using this tactic to disrupt any
agreement between players 1 and 2, unless player 2 agrees not to enter into any
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discriminatory agreement against him with player 1. In return he may also offer
the promise that he himself will not enter into any discriminatory agreement with
player 1 against player 2. But once players 2 and 3 have agreed not to participate
in discriminatory agreements, player 1 will also have to accept the fact that the
best outcome that he can hope for is the nondiscriminatory solution. Thus all
three players will now be ready to accept the latter as the only possible stable
outcome of the game.

More fundamentally no elaborate argument is really needed to show that in a
game defined by a fully symmetric characteristic function, such as both of our
examples, only some asymmetry or bias in the communication network (or pos-
sibly in some other aspect of the game situation) can explain the emergence of
asymmetric discriminatory solutions such as (45, 45,0) or (37, 37, 16). But the
purpose of our discussion here is to identify the actual mechanism which makes
all discriminatory solutions basically unstable in cooperative games with free and
unbiased communication. This mechanism is, of course, in no way restricted in its
operation to games with symmetric characteristic functions.

Under von Neumann and Morgenstern's model [1953] ,7 the payoff vectors that
we have called discriminatory solutions are not subject to this type of instability.
The reason is that under their model the third player could not make an irrevocable
firm offer to either of the two other players. For instance, suppose again that, in
our three-person constant-sum game example, players 1 and 2 are about to agree
on the discriminatory solution (45,45, 0), when player 3 intervenes and offers
player 1 the higher payoff of 46 if the latter joins him in a coalition against player
2. That is, player 3 proposes the outcome (46,0,44). Under von Neumann and
Morgenstern's model it would be unwise for player 1 to accept player 3's offer.
If he did, then at the next move player 2, who has lost everything, would surely
offer player 3 a higher payoff than 44. Even if he offered only 45, corresponding
to the outcome (0,45,45), player 3 would probably accept, and player 1 would
be left with a zero payoff. This risk would tend to stabilize any discriminatory
solution such as (45,45,0) against disruptive offers by the third player.

In contrast, under our definition of cooperative games (as distinguished from
noncooperative games and various intermediate cases) any player can always make
a fully binding enforceable commitment. Hence, for instance, player 3 can always
make a. firm offer of a higher payoff to player 1 (or to player 2 if he so chooses),
which the latter can accept without any risk of being double-crossed by player 3
at some later stage of the game. Consequently any player in danger of being dis-
criminated against can always disrupt any discriminatory coalition directed against
him by making the firm offer of a higher payoff to some member(s) of this coali-
tion - provided that he can intervene in time.

To put it differently, in an «-person cooperative game with free communication,
if the players can make firm offers to each other, then every possible sectional
coalition S is vulnerable to disruption by outsiders who can bribe one or more
members of S into withholding their cooperation from the other members of S.
Since every coalition is vulnerable in this way, no stable agreement can arise,
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unless the players all agree not to use such disruptive tactics against any possible
coalition in the game. More particularly no coalition S can avoid being disrupted
by outsiders if the members of S itself try to reach a discriminatory agreement for
the very purpose of disrupting some other actual or potential coalitions Ri^S. To
take again the example of a three-person game, players 1 and 2 cannot expect
player 3 to refrain from disrupting their own coalition (12), if players 1 and 2
themselves try to prevent player 3 from organizing coalitions (13) and (23), by
concluding a discriminatory agreement against him. Consequently the only way
of achieving a stable situation is to rule out all discriminatory agreements by
mutual consent, which means adopting the nondiscriminatory solution.8

11.6 Interpretation of Shapley's additivity postulate in terms of our bargaining
model

Theorems 11.1 and 11.2 already imply that, for cooperative games with trans-
ferable utility defined in characteristic-function form, Shapley's additivity postu-
late follows from our general rationality postulates. By Theorem 11.2, if the
players act in accordance with our rationality postulates, then they will agree on
payoffs equal to the Shapley values of the game. Yet, by Theorem 11.1, these
payoffs will satisfy all of Shapley's postulates, including the additivity postulate.
But in this section we propose to consider in more specific terms why our general
rationality postulates entail the additivity postulate for games given in character-
istic-function form.

Suppose that the same set N of n players first play some game G* and then play
another game G**, both G* and G** being games with transferable utility, given
in a characteristic-function form. For the sake of simplicity we will assume that
both G* and G** are elementary games [but will allow the possibility that, in the
case of either game (or both), some players i belonging to set TV are only dummy
players]. Let us call G the composite game (sum game) consisting of G* and G**
taken together. Then the additivity postulate essentially says that each player's
total payoff Uj (i.e., his payoff from the composite game G) will be equal to the
sum of the payoffs u* and u** which he would receive [{only game G* were
played or [{only game G** were played.

This postulate can be interpreted as involving two statements:
1. The players will agree on the same payoffs u* in the first game G* as they

would do if G* were not followed by another game G**.
2. The players will agree on the same payoffs M,-** in the second game G** as

they would do if G** had not been preceded by another game G*.
Now statement 2 is a rather natural assumption. When the players play the

second game G**, they do not have to worry about how the outcome of G** will
affect their bargaining positions and payoffs in the first game G*, because by that
time G* will be over and their payoffs from it will have been decided once and for
all. The fact that G** has been preceded by G* will be relevant only because the
payoffs that they have received in G* will affect their initial wealth at the moment
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that they start playing the second game G**. But, since we define the players'
payoff functions in cardinal utility units, their initial wealth (initial utility levels)
will not affect their behavior in the game. This is so because any difference that a
given player's initial wealth may make in his behavior has already been allowed for
when his payoffs have been converted into utility units.

For instance, if a given player has just won $2000 in a previous game, this admit-
tedly may make him more willing (or possibly less willing) to risk $100 for a given
chance of winning a further $1000. Whether this will be the case or not will de-
pend on the shape of his cardinal utility function for money, more particularly on
how his marginal utility for money changes when his wealth increases by $2000.
But any such effect will be fully allowed for when the value of a possible further
$1000 gain to him is expressed in cardinal utility units. Therefore, by the very
definition of our utility concept, a particular player's willingness to risk 100 utility
units for a given chance of winning 1000 utility units will be quite independent of
his present wealth (or utility level) - even if his willingness to risk $100 for a given
chance of winning $1000 does depend quite significantly on his present economic
situation.

Consequently statement 2 directly follows from our definition of utility payoffs.
If we use Nash's solution concept or its ^-person analogue to define the solution of
game G**, then statement 2 also follows from the fact that our solution is invariant
under order-preserving linear transformations (more particularly under any change
of the zero points of the players' utility functions). This implies that we can always
choose each player's present utility level as the. zero point of his utility. Finally
statement 2 also follows from von Neumann and Morgenstern's principle of stra-
tegic equivalence [1953, Sect. 57.5.1].

In contrast, statement 1 is a much stronger assumption than statement 2. In
general it is certainly not true that the outcome of a given game G* will be un-
affected by the fact that G* is to be followed by another game G** among the
same players. In playing G* a rational player will certainly consider the fact that
the outcome of G* may have an important influence on his bargaining position in
the second game G**. Hence the players will play G* as a dependent game, i.e.,
each player's objective will not be to maximize his payoff w,* from G* as such but
will be rather to maximize his total payoff w,- = w,* + M,-** from G* and G**
together. Therefore in general G* will be played in a different manner than it
would be if it were an independent game in which each player's objective would
be only to maximize his payoff wz* from G* itself

In accordance with this general principle, in the case of two-person composite
bargaining games (Sections 9.6 and 9.7) we have found that, if a given game G* is
embedded into a composite game G, then in general the solution of G* will be dif-
ferent from the solution of G* as an independent game. But our results also imply
that in the special case where both G* and G are games with transferable utility
these two solutions of G* will coincide.

Let H*(u i, u2 ) = 0 be the equation of the upper right boundary H* of the pay-
off space P* of the embedded game G*, and let H{ux, u2) - 0 be the equation of
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the upper right boundary H of the payoff space of the composite game G. By
Equations (9.38) and (9.39), if G* were played as an independent game, then its
solution would be defined in terms of the weights af = H^{ux *, u2 *), / = 1,2,
whereas if G* is played as a dependent game embedded into the composite game
G, then, by Equations (9.35) and (9.36), its solution will be defined in terms of
the weights at = H^Ux ,U2),i = 1,2. However,if G and G* are games with trans-
ferable utility, then the upper right boundaries H* and H will have equations of
the form

H*(ul,u2) = u1 + u2 -r?* = 0

H(ul,u2) = ul +u2 - T? = 0

where 77* and r? are certain constants. Hence at every point u of H* we have
ai* = Hi*(u) = 1; and at every point u of// we have at = ///(w) = 1. Consequently
#/* = 0,- for / = 1,2, and the two solution points must coincide.

In the more general case, where G* and G are n-person games, the same conclu-
sion applies, since the ^-person solution is defined in terms of the relevant two-
person bargaining subgames. Let H*(ux,. . . , un) - 0 be the equation of the upper
boundary H* of G*, and let H(u l 5 . . . ,un) - 0 be the equation of the upper bound-
ary of H. If G* were played as an independent game, then, by Equations (10.3)
and (10.4), its solution would be defined in terms of the weights a* = //,*(w); if
it is played as a dependent game, i.e., as a component game of the composite game
G, then its solution will be defined in terms of the weights at = Ht{u). However,
if G* and G are games with transferable utility, then the equations of the upper
boundaries H* and H will have the form

H(ui9. . . ,un)=

Hence af = ///*(w) = a,- = ///(«) = 1 for all / EN. Therefore the "independent" and
the 'dependent" solutions of G* will coincide.

To sum up, Shapley's additivity postulate can be divided into two statements.
Statement 2 follows from our definition of cardinal utility. Statement 1 is a much
stronger assumption. But it nevertheless follows from our theory of composite bar-
gaining games, if we consider the fact that we are dealing here with games with
transferable utility.

11.7 The Shapley values as expected average payoffs
As Shapley [1953, p. 316] has pointed out, the Shapley values ut of a given game
G can be interpreted as the expected average payoffs of the players under the fol-
lowing bargaining model.

Theorem 11.3. Suppose that game G is played in the following way: The players
build up the all-player coalition N by starting with one given player /, then adding
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a second player/, then adding a third player k, and so on until all n players have
been included. The first player i obtains the payoff i>((/))• The second player/
obtains v((ij)) - v((i)). In general a given player m obtains the amount
v(S + (m)) - v(S) if S is the set of all players admitted to the coalition before
player m. Thus each player obtains the amount by which his own entry increases
the value of the coalition (i.e., in economic terminology he obtains the value of his
marginal product). The order in which the various players are admitted to the
coalition is a matter of chance, and each possible order is equally likely.

Then the mathematical expectation of any given player's payoff will be equal to
his Shapley value for game G.

Proof Equation (I) of Theorem 11.1 can also be written as

SCN

But this expression is precisely the mathematical expectation of player /'s payoff
under the above model. The probability that the s players comprising a given set S
will enter the coalition before the remaining (n - s) players isp = [s\(n - s)\]/n\.
The probability that, among these s players, player i will be the last one to be ad-
mitted is \/s. Thus the probability that both of these events will occur is the prod-
uct of these two probabilities; that is p* = [(s - 1) ! (n - s)l] /nl. Hence this ex-
pression gives the probability that player / will obtain exactly the payoff
[v(S) - v(S - (/))]. Consequently the mathematical expectation of his payoff is
given by the expression on the right side of Equation (I*). This completes the
proof of the theorem.

The bargaining model used in Theorem 11.3 gives the Shapley value an intuitive
interpretation that is very useful in various social-science applications (see, e.g.,
Shapley and Shubik [1954]) and also for computation purposes (especially for
finding the Shapley values of games containing a very large number of players).
But if this model is used as the primary rationalization of the Shapley value, then
it is open to the objection that, when a given player joins a coalition, he is unlikely
to be able to obtain the whole increment in the value of the coalition resulting from
his entry; we would rather expect some sort of profit-sharing agreement between
him and the old members of the coalition.9 For this reason we will regard Theorem
11.2, rather than Theorem 11.3, as our primary justification in using the Shapley
value as our solution concept.

11.8 Games with transferable utility, given in normal form: the "modified"
Shapley values

We now consider the question of what characteristic function to use in defining the
Shapley values of the game, if the game is not directly given in characteristic-
function form but is rather given in the more general normal form - that is, if the
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game is defined by specifying its payoff function and not by specifying directly its
characteristic function. In such games Shapley himself has used the von Neumann-
Morgenstern characteristic function u(S) for defining the Shapley values.

We will try to show that a more suitable solution concept can be obtained if we
redefine the Shapley values of the game in terms of a modified characteristic func-
tion v(S). Let Us = ^uf{i E S) be the joint payoff of coalition S in the case of a
conflict between coalition S and the complementary coalition S = N - S. Then the
von Neumann-Morgenstern characteristic function defines the value v(S) of a given
coalition S as the maximin (or minimax) value of this joint payoff Us itself [see
Equation (11.4)]. In contrast, our modified characteristic function will define the
value v(S) of coalition S as that particular value of Us which corresponds to the
maximin (or minimax) value of the difference D^ - Us - Us between the joint
payoff Us of coalition S and the joint payoff Us of the complementary coalition
S. The Shapley values £7,- defined in terms of this modified characteristic function
v(S) will be called modified Shapley values.

Let us use the following model: At the beginning of the game, each possible
sectional syndicate S will announce its threat strategy 6s, i.e., the joint strategy
that the members of coalition S would follow against the members of the com-
plementary coalition S in case of a conflict between coalitions S and S, i.e., in
case the two coalitions could not agree on the final payoffs M,- for the game. The
threat strategies 0s and 6s of any given sectional coalition S and of its complemen-
tary coalition S will determine the quantity

which is the joint payoff that coalition S can distribute among its members. In the
case of the all-player coalition N, we define

= max £ Ui(6N) = v

where 2 ^ is the set of all joint strategies 6N available to the n players.
We assume that, once the quantities v(S) for all coalitions S CN are determined,

the players will agree on all dividends wt
s, on all conflict payoffs U;S, and on all

final payoffs Uj = ut
N, in the way described in Section 9.11. Consequently each

player's final payoff ut will be defined by Equation (I) of Theorem 11.1, which can
also be written as

SCN

Now suppose that all threat strategies 6R for the various sectional syndicates are
given, except for the threat strategy 6s of one particular coalition S. Consider the
final payoff ut of some particular player i in coalition S, as defined by Equation
(I**). The only term depending on the choice of 0s will be the term containing
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the difference Ds = v(S) - v(S). Thus the final payoff ut of every player i in coali-
tion S will be maximized if coalition S tries to maximize the difference Ds by its
choice of threat strategy 6s. By similar reasoning the final payoff Uj of every
player / in the complementary coalition S will be maximized if coalition S tries to
maximize the difference Ds - v(S) - v(S) by its choice ofthreat strategy 6s - or
equivalently if it tries to minimize the difference^5 = -Ds.

Hence the choice of threat strategies 6s and 9s by the two complementary
syndicates S and S can be regarded as a zero-sum subgame, called the threat game
Gs$* between syndicates S and S, in which one side tries to maximize the dif-
ference Ds = v(S) - v(S) while the other side tries to minimize it. This zero-sum
threat game will have a unique solution, corresponding to the maximin (or mini-
max) value of the quantity Ds.

If a given threat strategy 6s = 6O
S is such that it maximizes the final payoff £7/

of every player i in coalition S when all other threat strategies 6O
R foiR ^S but

C TV are kept constant, then 6O
S is called optimal against all these threat strat-

egies 6O
R. If in a given game G each threat strategy 6O

S is optimal against the
other threat strategies 6O

R in the game, then all threat strategies in the game will
be called mutually optimal. We can now state:

Theorem 11.4. Let G be an ^-person cooperative game with transferable utility,
where the players can make binding threats against one another.10 Suppose that
the final payoff u~j of each player / is determined by the Shapley-value expression

S3i
SCN SCN

where each quantity v(S) is itself determined by the threat strategies 6s and 6s

ofS itself and of its complement 5, so that

Then a given strategy^5 = 0o
s of coalition S will be optimal against a given

threat strategy 6s = 6O
S of coalition 5, if and only if

v(S) - v(S) = Us(0o
s, dj) - Us(do

s, 0oS) (II*)

= max [Us(ds,doS)-US(ds,dJ)]

Moreover, if the threat strategies 6O
S and 6O

S are mutually optimal, then

v(s) - d(S) = us(do
s,eo*) - u*(do

s,dos) (ii)

= max min _ [US(6S, 6*) ^ *
s s S s

= min_ max [US(6S, 8*) - U^(ds, 0*)]
5 5 5 S
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We will call the payoff M,-, defined by Equations (I) and (II), the modified
Shapley values of the game. The function v(S) will be called the modified charac-
teristic function.

Let G be a game with transferable utility, having P as payoff space. Let u =
(u~i, . . . , un)GP. Then *7is called an imputation if

(11.21)
u<EP i<EN

and

« /^  M«  = u((0) f o r a 1 1 i e N (11.22)
where v is the von Neumann-Morgenstern characteristic function of the game and
ut is the maximin payoff of player /.

It is natural to require that any solution payoff vector should be an imputation,
because (11.21) is implied by the joint-efficiency postulate, whereas (11.22) is an
individual-rationality requirement for player /: If he is rational, he will never accept
a solution that would give him less than ui9 which he can always assure for himself
without the cooperation (and even against the resistance) of the other players.

It is easy to see that the original (unmodified) Shapley values ut always form an
imputation. They satisfy (11.21) because of Postulate 1. They also satisfy (11.22)
because, by superadditivity, for any coalition S 3i we have

But

SCN

because the coefficients [(s - 1) ! (n - s)\] \n\ add up exactly to unity.
We will now show that the modified Shapley values also have this property

Theorem 11.5. Let G be a game with transferable utility. Let ux, . . . , un be its
modified Shapley values. Then the latter form an imputation.

Proof (11.21) is again satisfied because v(N) = v(N).
A strategy 6t of player / is called a simple maximin strategy if

U^.a^kut (11.23)

for any joint strategy ol of the other (n - 1) players. We call a strategy bt an exact
maximin strategy if it satisfies Condition (11.23) with an equality sign for any
joint strategy ol of the other players. We assume that in game G every player / has
at least one exact maximin strategy oh because the rules of the game always allow
him to reduce his own payoff from any level ut > w,- to ut, so that he can transform
any simple maximin strategy into an exact maximin strategy if he so desires. This



n-Person cooperative games with transferable utility 243

assumption will result in no loss of generality, because the quantities ux,. . . , un,
Ui, . . . ,un, and v(N) = v(N) do not change if we alter the rules of the game to
allow the players to reduce their payoffs to the level of their maximin payoffs w,-.

Let G be the game which results from G if we restrict player /'s strategy space to
the exact maximin strategy bt as his only strategy. Clearly in this new game u(S) -
v(S - (/)) + ut for any S3 i. Consequently in G player f s modified Shapley value
is exactly M,-.

Now compare the original game G with G. Since in G every coalition S3 i will
have a larger joint-strategy space 6s than it has in G, the maximin values
Us - Us = v(S) - v(S) appearing in Equation (II) of Theorem 11.4 cannot de-
crease when we move from G to G. Therefore player z's modified Shapley value
u~i in G cannot be less than his modified Shapley value W/ and G. Hence (11.22) is
also satisfied, which completes the proof.

Luce and Raiffa [1957, pp. 140 and 252] have shown in a numerical example
that the use of the Shapley value in its original form may lead to counterintuitive
results, because the Shapley value does not sufficiently reflect the various players'
threat possibilities in the game. Our modification of the Shapley value overcomes
this difficulty, which is, of course, not surprising, since the modified Shapley value
is based on a characteristic function v(S) defined in terms of the optimal threat
strategies 0o

s that each coalition S has against the other players.
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n -Person cooperative games:
the general case

12.1 Permissible strategies and the payoff space

We will now generalize our solution concept to n-person cooperative games with-
out transferable utility.

We make the usual assumption that in a cooperative game G the n players are
free to use any jointly randomized mixed strategy 0N. The set of all joint strategies
dN available to the n players, i.e., to the all-player coalition W, will be denoted by
HN. In the case of a conflict between two complementary coalitions S and S, it _
will be assumed that each side is free to use a jointly randomized strategy 6s or 6s,
respectively, where now joint randomization is restricted to the members of the
relevant coalition S or S. The set of all joint strategies 6s available to coalition S
will be denoted by 2 5 .

In general we will not assume that the players can make side payments to each
other. But our model does cover games where side payments are allowed: These
payments must be simply regarded as moves to be incorporated in the strategies
available to the players. Moreover, if side payments are allowed, the payee's
utility gain may or may not be equal to the payer's utility loss. That is, in general
we are not assuming transferable utility. Our solution for games with transferable
utility, discussed in Chapter 11, becomes a special case of the solution concept that
we are now going to define. The same is true of our solution for simple bargaining
games (with and without transferable utility), discussed in Chapter 10.

Let P be the set of all payoff vectors u - (u x , . . . , un) that the n players can
achieve by any joint strategy 0N € 2 ^ . P will again be called the payoff space of
the game. Since the players are free to use jointly randomized mixed strategies,P
will always be a convex set. We also assume that P is compact. Moreover, we ex-
clude the case where for any player(s) / all payoff vectors u in P yield M,- = const.,
because such a player / would have no personal interest in cooperating with the
other players; so the game in question would not be a true cooperative game. Thus
in general P will be a set of n dimensions.

Let P = D(P) be the dominion of P as defined in Section 9.7. Thus P is the set of
all points ii = {ux,. . . , un) in the n players' utility space Un, such that u is either
itself a point of/* or is at least weakly dominated by some point u of P. Clearly
PD P. P will be called the extended payoff space. Let us assume that any player
iGN is always free to reduce his own payoff Uj voluntarily by any amount. We

244
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call this the throwaway assumption. It essentially makes the set P the effective
payoff space of the game.1

Let iij be player /'s maximin payoff. Let P* be that subset of/* which remains if
we eliminate all payoff vectors u such that ut < u( for some player (s) /. We will call
P* the agreement space. It is obtained by excluding from P all payoff vectors u
unacceptable to some player / because of yielding him less than his maximin payoff
iii. Accordingly, if u is in P*, then

Ui^ut for all iEN (12.1)

The dominion of P*, the set P* = D(P*)9 will be called the extended agreement
space.

We will assume that the solution u - (ux,. . . , un) will always lie on the upper
boundary H of the agreement space P*, which we will briefly call the upper bound-
ary. We define H as the set of all points u in P* not dominated, even weakly, by
any other point u' of JP*. Thus H is the set of strongly efficient points in P*.

On the other hand, we define the upper boundary H of the extended agreement
space P* as the set of all points u in P* not dominated strongly by any other
point u' of JP*. Thus //is the set of weakly efficient points in P*. We will briefly
call H the extended upper boundary.

Since in general both/** andP* are convex sets of n dimensions, the upper bound-
ary H and the extended upper boundary H are in general hypersurfaces of (n - 1)
dimensions, convex to above. Clearly always H C H. The equation of// (and of
//) will be written as//(wj,. . . ,un) = H(u) = 0.

The first partial derivative of the function H with respect to ut will be denoted
by//,.2

Since at any given point u of H these partial derivatives must all have the same
sign, we can assume without loss of generality that

H^O i=\,...,n (12.2)

At any point u of// at least one of these //,'s must be nonzero. Indeed at any
point u of H itself, except for points on the boundary of//, all of the / / /s must
be nonzero.

The assumption that every player can always reduce his own payoff by any
amount, of course, enlarges not only the payoff space from P to P but also the
strategy spaces HN and 2 5 available to the various coalitions. These larger strat-
egy spaces will be denoted by ltN and Xs. Hence any complete joint strategy
QN £ gTV Qf t^e au_piayer coalition TV can be regarded as an ordered pair 6N =
(6N, pN), where BN is a joint strategy belonging to the original joint-strategy space
HN and pN is a move involving acceptance of certain payoff reduction(s) by
some member(s) / of N. Likewise any complete joint strategy 6s of a sectional
coalition S can be regarded as an ordered pair 6s = (6s, ps), where 6s E S 5 and ps

is a move involving acceptance of certain payoff reduction(s) by some member (s) /
of S. lfdN or 6s involves no acceptance of payoff reductions, then we can write
^ ^ ^ ^
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12.2 The dividend-proportionality rule

Our solution concept will again be based on the assumption that every possible
coalition S C TV of the players will cooperate in protecting their common interests
against the rest of the players. More particularly we will assume that the s mem-
bers of every coalition S C N will guarantee certain payoffs, called dividends, to
one another and that these dividends wf of every player / in S will be additional
to the dividends wR that he may receive from other coalitions R of which he is
a member. Any dividend WjS may be positive, negative, or zero. Any dividend-
guaranteeing agreement requires the unanimous consent of all members of the
relevant coalition.

We also assume that every sectional coalition S C Â  will back its dividend-
guaranteeing agreement by announcing a threat strategy 6s, i.e., a joint strategy
that the members of S would follow against the other (n - s) players (i.e., against
the members of the complementary coalition S) in case they could not reach an
agreement with the latter on the final payoffs ux,. . . , un. In the case of a con-
flict between coalition S and its complement 5, a given member / of S would re-
ceive the payoff

u;s = Ui(ds,dS) (12.3)

which will be called his conflict payoff from coalition S. For notational symmetry
we will write ut = ut

N to denote player /'s final payoff from the game.
Let us again assume that the dividends guaranteed by any given coalition S and

all its subsets R can never exceed the payoffs that coalition S can actually achieve
for its members, even against the resistance of a coalition S =N - S containing all
the other players. Thus we require for every coalition S CN that

J^wf^uf for all iGS (12.4)
R^i

RCS

By the joint-efficiency postulate, the g sign in (12.4) can be replaced by the =
sign. Inequality (12.4) corresponds to Inequalities (11.7) and (11.9), used in the
transferable-utility case. But now, since we are not assuming transferable utility,
we have to use an inequality referring to each player's individual payoff, rather
than to the joint payoff of the relevant coalition as we did in Section 11.4.

To make our model determinate, we need two further relationships: one to
specify how the dividends WjS ,WjS,... of different players /, / , . . . from the same
coalition S are related to one another, and one to define the optimal threat strat-
egies 6s = do

s for the various sectional coalitions S.
To obtain the first relationship, we will use the same concept of multilateral bar-

gaining equilibrium based on bilateral bargaining equilibrium between every pos-
sible pair of players / and y, which we used in Section 11.4. In other words, we
assume that there is bargaining equilibrium among all n players only if no two
players / and/ have an incentive to redistribute their payoffs between them.

More specifically we will consider all possible two-person bargaining subgames
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Gtj in which two particular players / and/ may try to reach agreement on their
final payoffs ut and Uj as well as on their dividends w,- and Wj from all coalitions
S of which both of them are members. We assume that for the purposes of any
such bargaining subgame Gtj the dividends wf and wjS that either player receives
from coalitions S, of which the other player is not a member, are regarded as
given, and that the same is true for all dividends wk

s that any other player k =£ /,
/ receives from any coalition S whatever. Consequently the final payoffs uk of
these other players are also regarded as given.

Each subgame G,; can be regarded as a composite bargaining game, consisting of
smaller subgames Gy in which players i and/ try to reach agreement concerning
only one particular pair of dividends wf and WjS from one particular coalition S
of which both of them are members. Hence the solution of each game G,-v and of
its component games Gy must satisfy Theorems 9.4 and 9.5.

If we consider the composite game Gtj as a whole, then player z's disagreement
payoff c/7 will be the sum of all his dividends wt

s from coalitions S not containing
player/;that is

c/' = Z *iS (12.5)

SCN

Similarly player/'s disagreement payoff will be

c/'= Z H / (12.6)
SBj
S$i

SCN

By Theorem 9.1, the solution ulJ = (uh Uj) of G/;- is defined by the three
equations

H(nl9...9ui9...,uf,...,Un) = O (12.7)

ariui-ch^ariuj-c^) (12.8)

* m = H m ( " l > . . • ,Ui9 . . . , U j , . . . , U n ) m = / , / (12.9)

By Condition (12.4), now regarded as an equality, and by Conditions (12.5) and
(12.6), we can write (12.8) also in the form

*«•  Z Wis=ar Z "jS (12-10)
5 9/,/ S^iJ
SCN SCN

By Theorem 9.4, a similar relationship applies to each pair of dividends wf
s and

WjS taken separately. That is,

aw^ajwf (12.11)

for all coalitions SCN containing both players / and/. By Theorem 9.5, Equation
(12.11) is true even if wt

s and wf are negative. Intuitively Equation (12.11) again
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expresses the assumption that in each component game GtJ- the two players i and
/ will agree on dividends wf and wf such that it will not alter their relative bar-
gaining positions with respect to their final payoffs ut and Uj in the composite game
Gij (and in the main game G itself).

Let R be some other coalition containing both players / and /. Then, of course,
also

where at and dj are again the same quantities as in (12.11). Therefore for all coali-
tions S and R containing both i and / we have

wf ~ wf ~ a,'Mt{u) U 2 1 2 )

Obviously we can derive similar relationships for the dividends of any other pair of
players k and ra, if we analyze the relevant bargaining subgame Gkm. Thus we can
state:

Theorem 12.1. Dividend-proportionality rule. In every coalition S C TV the dis-
tribution of dividends WjS among the members of S is governed by the same pro-
portionality factors ai , . . . , # „ , in accordance with Equations (12.9) and (12.11)
[or equivalently Equation (12.12)].

These quantities ax,. . . , an will be called the weights of the game. They are
the first partial derivatives of the function H at the solution point u = (Uy, . . . , un).
Geometrically they are proportional to the slope cosini of the upper boundary H at
the point u; that is, the ratios ajaj represent the slope, in the appropriate direction,
of the hypersurface H at the point u?

12.3 Generalized Shapley-value expressions

Thus far we have obtained the following requirements for the variables w7- = w/v',
w/^uV^andfl,-:

N
n

N ) = 0 (12.13)

for all / , /G5 and S CN (12.14)

ai = Hi(ul
N\...,un

N) for all i<EN (12.15)

X WiR=UiS forall iGS (12.16)
lBR and all SCN

These equations are the same as (12.7), (12.11), (12.9), and (12.4), except that in
the last one the g sign has been replaced by the = sign.

Since Equation (12.14) remains true if we multiply all weights a i, . . . , an by the
same constant, we can redefine these weights by replacing Equation (12.15) with
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/GAT

This is always permissible because some of the afs must always be nonzero. This
procedure corresponds to "normalizing" the afs so that

Z */=l 02.18)
/GiV

We have all together «  • 2" - 1 variables of form i//5 (if we include the n variables
of form u/* = Uj) the same number of variables of form wf, and «  variables of
form at. This gives a total of « •  (2" + 1) variables. At the same time we have one
equation of form (12.13); (s - 1) independent equations of form (12.14) for each
coalition S C N, which gives all together [1 + (n - 2) • 2n~l] independent equa-
tions of this form;« equations  of form (12.17), replacing (12.15); and n • 2n~l

equations of form (12.16).
Thus we are still short of (2n - 2) equations, that is, of one equation for each

sectional coalition S C N. These missing equations we will obtain in Section 12.4
by defining optimal threat strategies 6s for each sectional coalition S. But first
we will derive some further relationships from (12.14) and (12.16).

Let us define

X atWiS = Ws SCN (12.19)

/G5

and

£ (1(14?= Vs SCN (12.20)

Then in view of (12.16),

X WR = Vs SCN (12.21)
RCS

It is easy to verify that the inverse relationship to (12.21) is

WR= Z (-IY~SVS (12.22)
SC^R

where r and s are the number of players in each coalition R and S, respectively (see
proof of Lemma 1 in Section 11.3). Hence, by (12.19) and (12.22),

aiwi
R=l~WR=- Z (-IY~SVS (12.23)

Y r SCR

By (12.16) and (12.23),

aiUt
N= Z - Z (-iy-sVs (12.24)

R^i
RCN
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As can be seen from the proof of Theorem 11.1, the result of the double summa-
tion is

SCN SCN

- 1 ) ! («-»)!  (vs _ V-S)

n\
SCN

where S = N - S is the complementary coalition to S and where we define

VN=V0=O (12.26)

The right side of Equation (12.25) (in either form) will be called a generalized
Shapley-value expression. It becomes identical to Equation (I) of Theorem 11.1,
defining the Shapley value, if we write a± - • • •  = an = 1, and Vs = v(S).

12 A Optimal threat strategies

In view of Equations (12.3) and (12.20), we can write

Vs = X aiUi(ds
90S) (12.27)

where 6s and 6 s are the threat strategies of coalitions S and S.
Now suppose that the threat strategies 6R of all sectional coalitions R other than

one particular coalition S are given while coalition S itself is free to choose its own
threat strategy 0s. Then, in view of (12.27), all quantities VR, except for R-S,
R=S and R=N, will be fully specified.

Consequently, in view of (12.23), the dividends WjT from any coalition Tthat is
a proper subset of S will also be fully specified. Hence we can define the quantities

wiT f o r a 1 1 iGS (12.28)

TCS

Coalition S must choose its threat strategy 6s in order to satisfy (12.14). In view
of (12.16) and (12.28), this means that 6s must be chosen in a way to satisfy

at • (uf - cf) = aj - {UjS - CjS) for all i,jES (12.29)

Since we are assuming that every player is free to reduce his payoff voluntarily,
(12.29) can always be satisfied by setting4

ut
s = ct

s + - min [af Uj(ds, 6s) - ajcf] (12.30)
ai j(ES

instead of

uf^UiipSj5) (12.31)
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Using Equation (12.30) instead of (12.31) for defining ut
s is tantamount to the as-

sumption that, if the conflict payoffs ut
s defined by (12.31) do not satisfy (12.29),

then the members of coalition S will accept appropriate payoff reductions - the
smallest payoff reductions which will achieve consistency with (12.29).

Let cs be the s-vector consisting of the quantities C(S defined for the s members
/ of S. Let a be the ^-vector a = (flj, . . . , an). We sometimes write (12.30) in the
form

ui
s = Ui

s(8s,dS,cs,a) = ci
s + - nan [af Uf(6s, 6s)-a,c,s] (12.32)

Now let us relax the assumption that the threat strategy 0 of the complementary
coalition S is given while still retaining the assumption that the threat strategy 6R

for every other sectional coalition R ^ S, S is given. Then the choice of threat
strategies 0 and 0 by the two complementary coalitions S and S can be regarded
as a two-person threat subgame G$s* between these two coalitions.

We will assume that this subgame G$s* is played under the following rules:
Each coalition will entrust the choice of its threat strategy to one of its members.
This will be (say) player / in the case of coalition S and will be (say) player/ in the
case of coalition S. Each of these two players will be concerned only with maxi-
mizing his own final payoff ut and My, respectively, in playing Gs$* (but this will
cause no difficulties because, as we will show, all members of coalition S and again
all members of coalition S will have identical interests in Gs$*).

Since for the purposes of subgame Gs$* all threat strategies 0^ for R =£ S, S are
given, the quantities VR are also given, except for R= S,S, and N.

Finally it will be assumed that for the purposes of Gs$* the weights ax, . . . , an
are also regarded as given. The ratio ai\ak for any k =£ /, / is decided in a bargaining
subgame Qik between players i and k, because this ratio determines the distribution
of dividends between these two players in all coalitions^ of which they are both
members. Therefore the ratio aja^ should be regarded as given for the purposes of
the threat subgame between players i and /. Likewise the ratio aj/ak is decided in a
bargaining subgame 6jk between players/ and k and therefore should be regarded
as given for the purposes of the threat subgame between/ and i. But if the ratios
atlak and aj/ak are both given, then the ratio 0,/fly is also given. Hence all ratios
ak/am (k, m EN) are given, and, in view of (12.18), the weightsax,. . . ,an are
fully determined.

Now, according to (12.25), the final payoff M, of any player / in coalition S can
be written as

i £ ( f - l ) ! ( , , - , > ! (
aiRBi n\

RCN

, l

at n\ v ' at n

lt + -(Vs - VE) + -VN (12.33)
0; 0;
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where B and C are positive constants, and Aj is also a constant (of either sign). On
the other hand, the final payoff Uj of any player/ in S can be written as

Uj=Aj + -{Vs - VE) + -VN (12.34)

where B and C are the same positive constants as in (12.33), while Aj is also some
constant (of either sign).

Therefore, as 6s and/or 6s vary, the final payoffs ut of all members / of coalition
S must shift in the same direction; and again the final payoffs Uj of all members/ of
coalition S must likewise shift in the same direction. On the other hand, when the
vector u moves on the hypersurface H, then the final payoffs u x, . . . , un cannot all
increase or decrease together because of (12.2). Hence the final payoffs of the
members of the two opposing coalitions must move in opposite directions.

Consequently any player / in coalition S will maximize his final payoff Uj if he
maximizes the quantity

Ds = i {at u, - a, uj) = Vs - Vs (12.35)

where/ is some player belonging to coalition S. In contrast, any player/ in coali-
tion S will maximize his* final payoff Uj if he maximizes the quantity

Ds = j}(afuf - atud = VE - Vs (12.36)

that is, if he minimizes the quantity Ds = -Ds.
Consequently the threat subgame G$s* can be regarded as a two-person zero-sum

game between the two coalitions S and S, where coalition S will try to choose a
threat strategy 6s in order to maximize the difference Ds = Vs - Vs, whereas co-
alition S will try to choose a threat strategy 6 s in order to minimize the same dif-
ference/)5.

In view of Equations (12.29) and (12.32), the nature of this two-person zero-sum
game can bedeflned in two equivalent ways. Either we can assume that the choice
of 6s and 6s by the two coalitions is subject to (12.29), which means that (12.29)
is a constraint for the maximization or minimization of Ds, or more conveniently
we may assume that the choice of 6 s and 6s is free but that the quantities ut

s and
uf for all iGS and all/ E S are defined by Equation (12.32). Accordingly the
quantity Ds must then be defined as

(12.37)

In view of von Neumann's minimax theorem, this two-person zero-sum game
Gss* will always have a unique solution, corresponding to the minimax (or maxi-
min) value ofDs.
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On the basis of this analysis we can again define a given threat strategy 6 s = 6O
S

for some particular sectional coalition S as optimal against all other threat strategies
6R = 6O

R chosen by the other sectional coalitions R =£ S, if 6O
S maximizes the final

payoff Hi of every player / in S under the assumptions of our model. If every coali-
tion's threat strategy Qo

s is optimal against all other coalitions' threat strategies
6O , then we call these threat strategies mutually optimal. We can now state:

Theorem 12.2. Optimality of threat strategies. In a given ^-person cooperative
game G the threat strategies 0 s = 6O

S of the various sectional coalitions S are mu-
tually optimal if and only if for every pair of complementary coalitions S and S

~ Uf(0o
s,dJ,c*,a) (12.38)

= max X Ui
s(es

96o
s,cs

9a)- Z_Uf
S(es

90o
S\cS,a)

do = const.
S S

c ,c ,a=const.

In view of (12.32), Condition (12.38) can also be written as

s • min [at Ut{8o
s, 6>/) - cf] - (n - s) • min fy Uj(0o

s, oj) - cf] (12.39)

= max{s • min [at Ut{ds, oj) - C?] - (n - s) • min [af Uj(ds', do
E) - c/]}

6O = const,
e

Cj =const., iG
o

CJ =const.,

ai, aj=const., /, j G N

In view of the minimax theorem, we can also write

Ds = As(6o
s,do

E,cs,cE,a)= max min _ AS(QS, 6s, cs, cS, a) (12.40)

s s
c ,c ,a=const.

= min_ max AS(6S, 6s, cs, c^,a)

s s
c ,c ,a=const.

where

As(es,es,cs,cs,a)=
jes
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12.5 The solution

We can now define our solution concept as follows:

Theorem 12.3. The solution. The solution u = (ux,. . . , un) = (uiN,. . ., un
N) of

an ^-person cooperative game G can be defined by the following set of simultaneous
equations

H(Ul
N,...,un

N) = 0 (a)

a,=Hi(ul
N,...,uH

N) i£N 0?)

w,-5 = c/ f+- min [a;Ujid/Jo^-ajcf] SCNjeS (7)

CiS= £ (-iy-r+1 u(
R SCN,ieS (5)

R^i
RCS

at • (ut
N - tt

N) = fl/ • ( < - r^) i, / eTV (e)

Z)5 = X fl/«/ 5 - Z_ «/«/  = A5(9O
5, # / , c*, c5, a) (?)

= m a x m i n _ A S ( 6 S , 6 s , c s , c S , a ) S C N

s s

c ,c ,a=const.

where

A*(0&,0*9cb
9c6

9a)= 2L aici ~ 2^ fl/9* + s • min [fl,-£/,-(fl , flA) - fl/C,- ]
- (w - s) • min [fl;- ̂ -(fl5, fl^) - fl/ cf] SCN (r?)

Of course, instead of Equation (0), we could also use Equation (12.17), which
would subject the tf/s to the normalizing requirement D at = 1.

We have chosen Equation (5) instead of (12.36) to avoid explicit introduction of
the variables w/5. These two equations are, however, equivalent, because the in-
verse relationship to Equation (12.16) is

»>?=  Z (-iy-ru,R (12.41)
OR
RCS

Hence

iBR
RCS

To compute the wf's we can always use Equation (12.41).
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In order to obtain conditions which do not assume the existence of the partial
derivatives Ht at the solution point u, we can replace Equations (a) and (0) by the
requirements

at ^ 0 (QOL)

X N= max X atUi (00)

a/=const.

where «  = ( « ! , . . . ,  w^). Because of the convexity of the agreement space P*9 in
cases where the derivatives Ht do exist at the point u, Conditions (a) and (0) and
Conditions (aa) and (00) are equivalent. In cases where these derivatives do not
exist, the use of Conditions (ceo:) and (00), as well as Conditions (7) through (77) for
defining the solution can be justified by the argument outlined in Footnote 1 of
Section 10.2.

It is easy to see that these conditions contain the equations defining the Nash
solution (Theorem 9.1) and the equations defining the modified Shapley value
(Theorem 11.4 in Section 11.8) as special cases.

In the case of the two-person game, we have only three coalitions, viz., (1), (2),
and (12). We must set u{l) = c{l2) = cx; u2

(2) = c2
(n) = c2 \u^12) = ux; and

u2^12^ = u2. Then our conditions directly yield the Nash solution.
Our solution, like the Nash solution itself, is invariant with respect to order-

preserving linear transformations of the players' utilities. If we disregard the de-
generate case where one or more of the at's are zero, we can always achieve by
appropriate linear transformations to have ax = • • • = an = 1. After these transfor-
mations the close relationship between our solution and the modified Shapley
values becomes even more obvious.

Let G be a cooperative game with or without transferable utility, for which
ax = • • • = an = 1. We can approximate G by a game G with transferable utility as
follows: Let Ut be the payoff function of the original game G. In the new game G,
if all n players cooperate in using a joint strategy 6N, then their joint payoff will be
defined as

VN(0N)= L Ui(6N) (12.42)
/GiV

On the other hand, if only the s members of a given sectional coalition S cooperate
inusing a joint strategy 6s, whereas the other (n - s) players use the joint strategy
6s, then the joint payoff of coalition S will be defined as

Vs(6s, 6s) = Z Uis(ds, 6s, cs, e) (12.43)

where Ut
s is the function defined in (12.32), while e is the ^-vector e = a =

(1, . . . , 1). In the new game G each coalition N or S C TV is assumed to be free to
redistribute its joint payoff VN or Vs among its members in any way desired,
making G a game with transferable utility.
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Thus the modified Shapley values Wj,. . . , un for the new game G will be equal
to the final payoffs u^,. . . , un that our solution defines for the original game G.
Clearly, if the original game G already has transferable utility, then G = G, and the
final payoffs defined by our solution will be simply the modified Shapley values
for G itself.

12.6 Existence of the solution

We will call a game regular if its payoff space and its strategy spaces satisfy the as-
sumptions of Section 9.16 above.

Theorem 12.4. Existence theorem. For every regular ^-person cooperative game G
there exists a solution u = (u~i,. . . , un) defined either by Conditions (aa) and (|3j3),
as well as Conditions (7) through (77), or by a limit process corresponding to these
equations.

Proof. We restrict ourselves to the case where all partial derivatives//!, . . . ,Hn
exist at all points u of the extended upper boundary/7. Our proof can be extended
to the general case by the method mentioned in Footnote 1 of Section 10.2.

Suppose that each of the (2n - 1) coalitions in the game appoints a trustee. The
trustee of the tt-player coalition N will be called "player TV," while the trustee of a
given sectional coalition S will be called "player 5." We will assume that these
(2n - 1) trustees will play a noncooperative game G*(e) among themselves, defined
as follows:

Player TV has the task of selecting a vector a = (al, . . . , an) subject to the condi-
tions

£ « i = l (12.44)
i<EN

and

a)^e for all iGN (12.45)
where e is a small positive number.

Each player S has the task of selecting a joint strategy 6O
S for his own coalition

S C N, subject to

eo
sei:s (12.46)

We now define

i*iS = Ui{0o
s,do

E) for all SCN (12.47)

and all / G S
where S = N- S.

US = (/) has only one member, then we write

uf =ajUiS (12.48)
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whereas, if S has more than one member, then we define

SiS = ct
s + min (af uf - cf) for all / G S (12.49)

where

?iS = Z (-1)"""+1 ut
s forall SCN (12.50)

RCS

and all / G S

Here s and r again stand for the number of players in each coalition S and R, respec-
tively.

Clearly Equations (12.47) through (12.50) provide a recursive definition for the
variables w/5 in terms of the quantities ax, . . . ,an as well as the strategies 6O

S for
all coalitions S CN. This is so because Equations (12.47) and (12.48) define the
variables ut

s for all one-member coalitions S, and then the remaining equations
allow computation of the variables ut

s first for all two-member coalitions, then for
all three-member coalitions, and so on.

We also write

YS = Z "iS f o r a 1 1 S C N (12.51)

r
t
N + max min (afuf ~ CjN)\ for all iGN (12.52)

for all iGN (12.53)

We assume that in this noncooperative game G*(e) each player £ by his choice of
strategy do

s, will try to maximize for his own coalition S the quantity

^ s ^ ys _ Ys (12.54)

In contrast, player N by his choice of vector a will try to maximize the quantity

D* = X (5} - ai*f (12.55)

By Debreu's equilibrium-point existence theorem [1952], this noncooperative
game G*(e) will always have at least one equilibrium point. It is easy to see that
G*(e), for any small positive e, satisfies the continuity and contractibility condi-
tions of Debreu's theorem.

But for any equilibrium point in G*(e) we have

| f l / - f l /* |^e for all iGN (12.56)

Consequently, as e tends to zero, the vectors a and a* will converge to the same
vectors = (a i, . . . ,an). This vector will always correspond to a solution of our
original ^-person cooperative game G.
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We may distinguish the following cases.
A. The nondegenerate case, where ax > 0 for all iGN. In this case all variables

converge to well-defined finite limits as c goes to zero. We can write

;N - c,N)]+ max min (a}Uj - cf) \ (12.57)
M G P *

it? = -u(
s (12.58)

ai

cf^-c? (12.59)

The variables M,-, M,-5, and c/5 defined in this way, together with the quantities
fli,. . . , 0^, will satisfy the defining equations of the solution for the original co-
operative game G.

B. The degenerate case, where for some player(s) / we have at = 0. Any such
player / will be called a zero player. In this case we can still use Equations (12.57)
through (12.59) for the nonzero players. Concerning the zero players, we can dis-
tinguish two subcases:

B*. The nonsingulardegenerate case. In this case for all zero players /we have

qN + max min (aj uj - CjN) = 0 (12.60)
EP* jGN

In view of (12.57), this makes ut indeterminate. Thus we are free to choose the
final payoffs M,- of the zero players /, subject to the condition that these payoffs
Uj, together with the payoffs Uj computed for the nonzero players/, should give a
payoff vector u lying on the upper boundary H. This condition can always be
satisfied.

B**. The singular degenerate case. This case would arise (we do not know for
sure whether it can arise at all) if the left side of (12.60) were negative. (Since
at = 0, the left side of this equation can never be positive.) In this case we must
define the payoff M,- of the relevant zero player / as being minus infinity, ut =-°°.

Formally the payoff vector u defined in this way can still be regarded as a solu-
tion.

But clearly player / can always make sure to obtain at least his maximin payoff
ill (which is, of course, finite, since the payoff space P is a compact set). Indeed,
in order to secure player /'s cooperation, the other players in general will have an
interest in offering him at least the payoff

t*= min ut (12.61)

because they can do this without any cost to themselves. In view of (12.1),
M|* ̂  M/. Thus in the singular degenerate case we redefine the solution as a payoff
vector it = (ux, . . . , un) such that

Ut ^ M,-* for each zero player / (12.62)
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Uj ^ Uj for each nonzero player/ (12.63)

where Uj is the payoff defined by Equation (12.57) and where

wGP* (12.64)

Such a payoff vector u always exists.

12.7 The question of uniqueness

It is known that the solution u is unique at least in the following three special cases:
1. When there are only two players (in which case our solution is identical with

the Nash solution of the game).
2. When the game is a simple bargaining game where the rules of the game

uniquely determine the conflict point c = (ci9. . . , cn) of the game (see Section
10.2).

3. When the upper boundary H of the agreement space P* (or of the payoff space
P as a whole) is a hyperplane. This last case includes all ^-person cooperative games
with transferable utility (in which case the solution consists of the modified Shap-
ley values of the game - see Section 11.8) but is more general than that.

By continuity it is reasonable to assume that this uniqueness property also holds
for games which at least "come close" to satisfying cases 2 or 3. But it is known
from counterexamples that in general the solution is not unique.

For instance, let G be the following three-person cooperative game: Any player
i 0 = 1 , 2, 3) acting alone can obtain only the payoff ut = 0. Players 1 and 2 acting
together can obtain any payoff vector (ui,u2) subject to ux + u2 ^ 2 0 and MX,
u2 ^ 0. Player 3 and either of the other two players (i.e., player /, with / = 1,2)
acting together can obtain any payoff vector (M,-, M3) subject to 3 M,- + u3 ^ 480 and
uh U3 = 0- Finally all three players acting together can obtain any payoff vector
(wi ,u2,u3) subject to 3ux +u2 +M 3 ^ 510; ux + 3w2 + M3 ^ 510; and ui9 u2,
M3 ^ 0. This game G is obviously symmetric with respect to the two weaker
players, viz., 1 and 2.

For this game G the payoff space P and the agreement space P* are identical
(they correspond to pyramid OABCD of Figure 12.1). The upper boundary HofP
(or of P*) consists of the two plane triangles ABD and BCD, as well as the straight-
line segment DB where these two triangles meet. ABD lies in the plane 3ux + u2 +
M3 = 510, while BCD lies in the plane ux + 3M2 +M 3 = 510.

This game has three solutions. One (solution a) lies on face ABD and corresponds
to the weights ax = 3, a2 = 1, and a3 = 1. Another (solution j3) lies on face BCD
and corresponds to the weights ax = l,a2 =3 , and a3 = 1. The third (solution 7)
lies on edge DB and corresponds to the weights ax = a2 =2 and a3 = 1.5 In all
three solutions, of course, uP = w/^ = 0 for / = 1, 2, 3. Hence uf1^ = w^lJK

Solution a. a = (3, 1, 1).
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Figure 12.1

w3
( 1 3 ) =

w2
( 2 3 ) = 120 w 3

( 2 3 ) = 1 2 0
123> = - 2 6 | w2<123> = -80 w3

( 1 2 3 ) = -80

u2 =w2
( 1 2 3 ) = 1 5 + 1 2 0 - 8 0 = 55

u3 = M3(i23) = 240 + 120 - 80 = 280

Solution p. a = (1 , 3, 1). Solution 0 is obtained from solution a if players 1 and 2
are being interchanged. Hence

ux = 5 5 u2 = 58^ w3 = 280

Solution 7. a = (2, 2, 1).

w / 1 2 ) = 10 w2
( 1 2 ) = 10
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w3
(13) = 192

ux =10 + 96 - 4 9 f = 56^

u2 = 10 + 96 - 4 9 | =56^

u3 = 192 + 192-99^ = 284 |

Figure 12.1 shows the position of solution 7 on line DB. (The other two solu-
tions a and j3 lie too close to 7 on both sides of line DB for diagrammatic represen-
tation on a figure on this scale.)

According to our basic theory no solution concept can be fully satisfactory if it
fails to select a unique solution (a unique final payoff vector) for each particular
game. Assuming perfect rationality on the part of the players, if any given game
had two or more solutions u1,. . . , uk, then none of them would be stable. Each
player would try to press for that particular solution which would yield him the
highest payoff, and different players would have different interests in this matter.
For this reason, in the next section we will develop a criterion always selecting a
unique "stable solution" u for any cooperative game.

But in empirical applications it is often desirable to relax the assumption of per-
fect rationality to various extents. If the players are less than perfectly rational,
then any particular solution ul may be stable, because any such solution by defini-
tion satisfies our local equilibrium conditions (as stated in Theorem 12.3), and be-
cause the players may be simply unaware of the existence of alternative solutions,
usually corresponding to quite different weights ax, . . . , an and possibly lying in
very different regions of the payoff space. Thus in the real world games possessing
several solutions, each of them equally satisfying the conditions of Theorem 12.3,
may often be best regarded as social systems with multiple equilibria.

12.8 Definition of a unique "stable solution"

Suppose a given rc-person cooperative game G has two or more solutions ul, u 2, . . .
and that the players are aware of this fact. Let JT2 be the set of all these solutions.
We assume that the players will choose a unique stable solution U for the game by
means of the following procedure, which we shall call the end game G° of the co-
operative game G.

This end game will consist of two stages. In stage 1 the players will agree that
every player i will receive at least that payoff M,-* = uj which the solution W least
favorable to him would grant him, since w,-* can be regarded as the "noncontro-
versial part" of his payoff. Thus we write

u{*= min ut ieN (12.65)



262 Solutions for specific classes of games

In stage 2 the n players have to reach unanimous agreement on the final payoff
vector U = (Ul, . . . , Un) subject to

(12.66)

and to

UGP (12.67)

Condition (12.66) says that each player i must receive at least the amount ut*
agreed upon in stage 1, whereas Condition (12.67) says that the payoff vector U
must be feasible, i.e., must lie in the payoff space P of the game.

In other words stage 2 of the end game G° is an H-person simple bargaining game.
Therefore, by Theorem 10.1, its solution will be that particular payoff vector u-u
which maximizes the ^-person Nash product

n= Z (« , •-«/*) (12.68)
/eTV

subject to/(12.66) and (12.67). This payoff vector u always exists and is always
unique. We will call u the stable solution of the game. If game G has only one solu-
tion w, then w,* = ut for each player i, and so the stable solution is simply this
unique solution, i.e., U = u. We can now state:

Theorem 12.5. The stable solution u always exists and is always unique.
From the viewpoint of our formal theory the stable solution u is the only true

solution, since, according to our previous argument, "perfectly rational" players
will always choose U as the outcome of the game.

For example, in the three-person game discussed in Section 12.7, we have Wj* =
w2* = 55^ and w3* = 280. Hence U = (ul - 55^) (u2 ~ 55§) (u3 - 280). In order
to find the stable solution u = U, we have to maximize this quantity TT, subject to
U\, u2,u3 t 0;3w! + u2 + u3 g 510; and ux + 3u2 + u3 ^ 510. It is easy to verify
that the maximum will be reached at the point u = (561, 561, 283 ^ ) , where n
takes the value n = ( f) (f) ( ^ ) = W = 9 Ji • Thus the strong solution of the game
is

§! =U2 = 5 6 | U3 =2831

Historical note. Shapley first published his definition of the Shapley value (see
Section 11.3) in 1953.6 The "modified" Shapley value (Section 11.8) was intro-
duced by Harsanyi [1959]. The same paper also contained an earlier and less satis-
factory version of our solution for general ^-person cooperative games. The solu-
tion in its present form (as described in this chapter) was first published in Harsanyi
[1963].
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n-Person cooperative games:
discriminatory solutions

13.1 Discrimination in games given in characteristic-function form

Let G be an n-person cooperative game with transferable utility, given in charac-
teristic-function form. The Shapley value of G to player / will be

v (s-\)\(n-s)\ v sl(n-s-l)\
n' S$i n'

SCN SCN

where, for each coalition S, s denotes the number of players in S. By Theorem
11.2, this quantity ut will be player f s payoff from game G.

Let R be an r-person coalition in G, and let R - N - R be the (n - r)-person com-
plementary coalition. Using (13.1), it is easy to verify that the joint payoff uR of
the r players in R will be

where, for each coalition S, s again denotes the number of players in S, whereas s*
denotes the number of players in the set S* = S n R.

Now suppose that the r players in R insist on dividing up the quantity v(R)
among themselves, i.e., they insist on playing an r-person game GR before partic-
ipating in the ^-person game G with the other (n - r) players. In this case we will
say that the r players in coalition R discriminate against the (n - r) players in the
complementary coalition R. Suppose that the payoff of each player / in R from
this game GR will be w,*. Of course,

£ ut* = v(R) (13.3)
iE:R

The (n - r) playersjn R, on the other hand, can likewise play an (n - r)-person
cooperative game GR among themselves, in order to divide up the quantity v(R).
This game GR will have the characteristic function

v(S) for all SCR (13.4)

263
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Again, by Theorem 11.2, each player / in R will obtain his Shapley value uR

for GR as his payoff from GR, where

SCR SCR

After playing the two "sectional" games GR and GR , the n players may play an
^-person simple bargaining game G° in order to divide the remaining balance
A° = [v(N) - v(R) - v(R)] of the total payoff u(N) available for distribution. It
is easy to check that the ^-person Nash solution of this game will give every player
the same net payoff A°/n. Consequently the final payoff u° of each player / will
be

ui°=ui* + -A°=ui* + -[v(N)-v(R)-v(R)] if i^R (13.6)
n n

and

ut° = uf + - A° = u(
R + - [v(N) - v(R) - v(R)] if i GR (13.7)

n n
Therefore, in view of (13.3), the joint payoff uR° of the r players in R will be

() " v(R)] (13.8)

Obviously discrimination by coalition R against coalition R will be profitable
only if uR° > uR . But even if such behavior would be profitable, as we have
argued in Section 11.9, the members of coalition R will be unable to discriminate
against the other players unless the communication network of the game is biased
in favor of coalition R, allowing the r players in R to negotiate with one another
and to agree on a joint strategy before their agreement could be disrupted by the
other players making counteroffers to them. That is, the members of R must be
able to talk to one another and reach an enforceable agreement before talking to
the other players.

Of course, any agreement by the players in R to discriminate against the other
players must specify how the joint profit A = (uR° - uR) achieved by this dis-
crimination will be divided up among the members of R. Bargaining about the
division of this quantity A will represent an r-person simple bargaining game
among the members of R. The r-person Nash solution of this game will give the
same net payoff A/r to every member of R, in addition to the Shapley value ut
that he would receive in the absence of discrimination against the other players.
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Consequently the final payoff u° of each player / in R will satisfy

u,o=u, + ̂ (uR°-uR) (13.9)

In view of (13.1), (13.2), and (13.8), this implies that for each player / inR we can
write

SCN

SCN

In contrast, in view of (13.5) and (13.7), for each player / in R we have

_ \(s- 1) ! (n - r- s)l

•,?, L—sr^ii—
s . ( , , - r - , - l ) .

yrl r ) . J

We will call the payoff vector u° - (ux°, . . . , un°) defined by (13.10) and
(13.11) the discriminating solution of game G, based on discrimination by coalition
R against the complementary coalition R.

Finally we are now in a position to compute the payoffs u^ that the members
of coalition R will obtain from the sectional game GR . The members of R must
agree on such payoffs w,-* from GR that will give rise to the final payoffs u° de-
fined by (13.10). In view of (13.5) and (13.7), this means that the payoffs u^
must be

ui* = ui + ±;[v(R)-uK] (13.12)

This result can be interpreted as follows: If the r players in R play the r-person
game GR among themselves, then they will obtain the joint payoff v(R) and the
individual payoffs it;*. In contrast, if they participated in the ^-person game G
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without discriminating against the other (n - r) players, then they would obtain
the joint payoff uR and the individual payoffs ut. Thus by playing game GR

rather than playing game G without discrimination, their joint gain (or their joint
loss) will be [v(R) - uR ] . Equation (13.12) says that the r players inR will divide
this joint gain (or joint loss) equally among them, so that for each player / in R
we have M£-* - ut = [v(R) - uR ] \r.

In view of (13.6) and (13.10), we can also express the payoffs u^ as

SCN

SCN

We shall now summarize our main result as:

Theorem 13.1. If coalition R discriminates against the complementary coalition
R = N - R in an ^-person cooperative game G with transferable utility, given in
characteristic-function form, then the players' final payoffs will correspond to the
discriminatory solution u° = (ux °, . . . , un°)9 where for each player i in R his pay-
off w/9 is defined by (13.10), whereas for each player / in R his payoff u° is de-
fined by (13.11).

13.2 Discrimination in games with transferable utility, given in normal form

Let G be an n-person cooperative game with transferable utility, given in normal
form. Then in the absence of discrimination each player / will still receive a pay-
off Uj defined by (13.1) if we set

v(S)= Z Ui(°oS,Qo^) (13.14)

where 6s and 9s are the optimal threat strategies of the two complementary coali-
tions S and S, defined by the optimality condition

= max min

= min max
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By the same token, any coalition R will still receive the joint payoff uR defined
by (13.2), if we interpret the quantities v(S) in accordance with (13.14) and
(13.15).

Now suppose that the r players in R decide to discriminate against the other
(n - r) players, i.e., they decide to play an r-person game GR among themselves
in order to divide up the quantity v(R). As we argued in Section 13.1, if this _
happens, then the remaining (n - r) players will play an (n - r)-person game GR

among themselves in order to divide up the quantity v(R). Finally all n players
will play an n -person game G° in order to divide up the quantity A° = v(N) -
v(R) - v(R).

In order to make the quantities v(R) and v(R) determinate we assume that,
before playing the games GR and GR, the two complementary coalitions R and
R will announce some threat strategies 0oo

R and 0oo
R against each other. More-

over in order to make the game GR determinate, we have to specify the quantities
v(S) for all S C R. Thus we assume that each pair of coalitions SCR and S =
R - S will announce some threat strategies 0oo

s and 6OO
S against each other. As

we will see, the optimality conditions for all these threat strategies will be dif-
ferent from Condition (13.15), which applies in the nondiscrimination case. Thus
we define

v(R)= Z Ui(PooR,0oo*) 03.16)

v(R)= Z_Ui(6oo
R

ieoo
R) (13.17)

and /

»(S)=Z Woo*.On*jj)  (13.18)

Under these assumptions the final payoff ut° of each player / inR will be defined
by Equation (13.9), whereas the final payoff u° of each player / in R will be de-
fined by Equation (13.11). In both equations the quantities v(R),v(R), and v(S)
are the quantities defined by (13.16) through (13.18) and not the quantities de-
fined by (13.14) and (13.15).

By (13.9) and (13.11), each player / in R will maximize his own final payoff u°
by choosing the threat strategy 6OO

R of coalition R in a way to maximize the
quantity

DR = Ql v(R) - ^ j - ^ v(R) (13.19)

_
i<ER
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In contrast, each player/ in R will maximize his own final payoff u° by choosing
the threat strategy 0oo

R of coalition R in a way to minimize the same quantity

Consequently the choice of the threat strategies 6OO
R and 0oo

R by coalitions R
and R will have the nature of a two-person zero-sum game GRR between these two
coalitions. Any pair of threat strategies 6OO

R and 6OO
R will be optimal against each

other if they represent optimal strategies in this game GRR. Accordingly opti-
mality requires that

DR = lL) Z Woo*, Boo*) - (—) Z_  Utfoo*,Bo,*) (13.20)
\ r I i<ER \ n r' i(ER

= max

= jnin max

rj le \n - rj 5

[(7) Z ) Z_

At the same time, by (13.11), each player / in any coalition SCR will maximize
his own final payoff M,-° by choosing the threat strategy 6OO

S of coalition S in a
way to maximize the quantity

DS= Z Ui(pR
9os,es)- Z ut(eR

9es
9es) (13.21)

whereas each player / in the corresponding coalition S = R - S will maximize his
own final payoff u° by choosing the threat strategy 0oo

s of coalition S so as to
minimize the same quantity Ds.

Accordingly, for any pair of coalitions SCR and S = R - S, their threat strategies
6OO

S and 6OO
S will be optimal against each other if they satisfy

Z ut(0oo
R,eoo

s,ej) - Z u^doo11,eoo
s,ej) (13.22)

= max min v f

= minw max

where 6R is a strategy satisfying (13.20).
Thus both optimality conditions (13.20) and (13.22) have forms different

from (13.15). The former applies the maximin operator to the quantity
[v(R)/r - v(R)/n - r] rather than to the quantity [v(R) - v(R)], as (13.15) owuld
do. On the other hand, (13.22) applies the maximin operator to [v(S) - v(S)],
rather than to [v(S) - v(S)], where S = R- S, while S = N- S.
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We can now state:

Theorem 13.2. In a game G with transferable utility, given in normal form, the
discriminating solution u° = (ux°,. . . , un°) based on discrimination by coalition
R against coalition/? is defined by (13.9) and (13.11), if the quantities v(R),
v(R ), and v(S) are interpreted in accordance with (13.16) through (13.18), (13.20),
and (13.22).

13.3 Discrimination in the general case

We again assume that G is an ^-person cooperative game given in normal form
without, however, assuming that utility is freely transferable in G. Instead we
assume, as we did in Chapter 12, that every player / is free to reduce his own pay-
off voluntarily by any desired amount. (This "throwaway assumption" is needed
to enable the players always to agree on payoffs satisfying the dividend propor-
tionality rule - see below.)

As in Sections 13.1 and 13.2, let us assume that at first the two complementary
coalitions R and R will separately play the sectional games GR and GR, respec-
tively, and then all n players will join in playing the «-person simple bargaining
gameG°.

GR will have the nature of an r-person simple bargaining game, where the con-
flict payoff of each player i in R is the payoff ut that he would receive from game
G if G were played without discrimination. Hence, by Theorem 12.5 of Section
12.8, we must write

u( = Ui for all iGR (13.23)

where ut is player /'s payoff corresponding to the (nondiscriminatory) stable solu-
tion of game G. We can write the payoff Uj* of each player /, i G R, from GR as

ui* = ui + wi
R (13.24)

and can call wt
R player z's dividend from coalition/?.

In contrast, GR will have the nature of an (n - r)-person general cooperative
game, rather than that of a simple bargaining game. Consequently, in accordance
with the model proposed in Chapter 11 and 12, in game GR each player / in R will
receive a dividend wf from every coalition S C R containing him as member.
Thus the payoff uR of each player / in R from game GR will have the form

"/* = Z WiS fora11 ^ (
SCR

Finally G° will have the nature of an ^-person simple bargaining game. The net
payoff wt

N of each player / from G° will be called his dividend from the all-player
coalition N. Hence the final payoff u° of each player / will be of the form

ut
o = ut* + wiN = ut + WtR + w/* if / G R (13.26)
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and

UiO=UjK+WiN= £ WiS+wf
N if iGR (13.27)

S3J_
SCR

Let H be the extended upper boundary of the extended agreement space P* as
defined in Section 12.1. We will write the equation of H as

H(u1,...,un)=H(u) = 0 (13.28)

Ht will denote the first partial derivative of//with respect to ut. We will write

a i = H i ( u l ° , . . . 9 u n ° ) = H(u°) i = 1 , . . . , / ! (13.29)

By the same reasoning that we used in Chapter 12, in game G° any pair of players
i and / will be in bargaining equilibrium only if

aiwi
N = ajwj

N i,jEN (13.30)

Moreover, the two sectional games GR and GR must be regarded as dependent
games with respect to game G°. This is so because the players' main objective
will be to maximize their final payoffs u°, which will be decided in game G°,
rather than to maximize the payoffs M/* and uR that they will obtain from GR and
from GR , respectively. Consequently any pair of players / and /, if both / and / are
members of coalition R, will be in bargaining equilibrium only if

aiWiR=afWjR if i,jER (13.31)

Likewise any pair of players / and /, if both / and/ are members of some coalition
S, where S C R, will be in bargaining equilibrium only if

atwf^ajWj8 if iJES and SCR (13.32)

Using the terminology that we used in Chapter 12, we will call (13.30) through
(13.32) together the dividend-proportionality rule^

Again we assume that, before the games GR ,GR, and G° are played, coalitions
R and R will announce some threat strategies 6OO

R and 0oo
R against each other.

Similarly each pair of coalitions^ and S, where SCR and S = R - S, will announce
some threat strategies 6s and 0s. It is easy to verify that the optimality conditions
for these threat strategies are the direct analogues of (13.20) and (13.22), except
that the maximin (or minimax) operators have to be constrained by Conditions
(13.31) and (13.32). By reasoning similar to that used in Sections 12.4 and 12.5,
we can show that the discriminating solution u° = (ui°,. . . , un°) can be defined
by the following requirements:

= Hi(u1°,...,un°) for all iGN (0°)
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us = cs + I m i n [djUjidoo5,6OO
S) - afCfS] for all iGS (y°)

ai j<ES

and for all SCR

as well as for S = R
Here a = (ai,.. . ,an), while cs is the vector consisting of the quantities c,-5 for all
ies.

CiS= Z (- l)5" r + 1« / r f o r a 1 1 ' G S (5°)
TBi —
r e 5 and for all 5C.R

for all /ei^ (e°)

for all /

for all /

-c?*) for all z,/e7V

, cR, ĉ ~, a) = max jnin_ A*(0R,6*,cR,cR
9a)

^ R R R

where

AR(dR,eR,cR,cR,a)=(-) Z *i"iR -(—) L a,u, R

min
i<ER

- min

R R n S ft $ rS
°oo 5 °oo t uoo 5 c 5

= max min ^ As(doo
R,6s,6$,cs,c§,a) for all SC

c ,c ,a = const.

where
As(6R,es,eS,cs,cs,a)= D a,u,s- ^ a,u,s = ^

R6s- (n - r - i) min [a,-Uf(eR, 6
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In Equations (i°) and (X°) the order of the max and the min operators can be
interchanged.

In order to obtain requirements which do not assume the existence of the
partial derivatives/// at the solution point u°, we can replace (oc°) and (j3°) by

fl/^0 for all i<EN (

and

X agut
o = max £ m

/(ETV u<EP*i<EN
ai = const.

Thus we can state:

Theorem 133. In the general case the-discriminating solution u° = (ul°,. . . , un°),
based on discrimination by coalition R against the complementary coalition R, is
defined by requirements (ocot°)9 (P&°), and (y°) through (//°).

The existence of this solution u° can be shown by the method used in Section
12.6. Again in general this solution u° is not unique. But we can construct a
unique "stable discriminatory solution" u°° essentially in the same way that we
constructed the nondiscriminatory stable solution u in Section 12.7.
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Noncooperative and
almost-noncooperative games

14.1 Introduction

In this chapter we will define a solution for noncooperative and for almost-
noncooperative games (both two-person and ^-person). In Section 5.17, we defined
a (strictly) noncooperative game as a game in which no agreement between the
players has any binding force: Thus any player is free to violate any agreement even
if he obtains no positive benefit by doing so. In contrast, we defined an almost-
noncooperative game as a game in which the players are bound by any agreement
that they are making as long as they cannot obtain any positive benefit by violating
it, though they are free to disregard any agreement if they can achieve a positive
gain (however small) by doing so.

Accordingly, whereas in a cooperative game any possible strategy «-tuple (and
any possible probability mixture of such strategy ^-tuples) will be stable once the
players have agreed to adopt it, in a noncooperative or almost-noncooperative game
only strategy ^-tuples satisfying certain special stability requirements - which we
call eligible-strategy ^-tuples - have sufficient stability to be used by rational
players. A strategy w-tuple can be eligible only if it is an equilibrium point or a
maximin point (see Sections 5.12 and 5.13). As we have argued, in a strictly non-
cooperative game a profitable equilibrium point will be eligible only if it is a strong
equilibrium point or a centroid equilibrium point, while in an almost-noncooperative
game a profitable equilibrium point is always eligible.

More exactly our conclusion has been as follows (see Section 7.2): In a strictly
noncooperative game an equilibrium point o = (oi, . . . , on) is eligible if it satisfies
the following conditions:

1. It must be profitable to at least one player. That is, for at least one player /
we must have Uj(o) > ii/, where w,- is player /'s maximin payoff.

2. If a is profitable to a given player /, then /'s equilibrium strategy a, must be a
centroid best reply to the other (n - 1) players' strategy combination ol = (ax, . . . ,
°7-i> °i + i, • • •  , On)-

3. If a is unprofitable to a given player/, then /'s equilibrium strategy a;- must be
a centroid maximin strategy.

In an almost-noncooperative game an equilibrium point o is eligible if it satisfies
conditions 1 and 3 (but it need not satisfy condition 2). On the other hand, a
maximin point is always eligible.

273
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As we saw in Section 7.7, in tacit and semivocal noncooperative and almost-
noncooperative games, the strategy-coordination problem further restricts the
players' strategy choice to accessible strategy ^-tuples. A maximin point is always
accessible, because a maximin strategy a,- will always secure player i his maximin
payoff W/, without any strategy coordination with the other players. In contrast,
an equilibrium point will be accessible only if it satisfies the following condition:

Let a = (oi,... , on) be an eligible equilibrium point in a noncooperative or an
almost-noncooperative game, yielding the payoff vector u = U(o). Let Z*(w) be
the set of all eligible equilibrium points yielding the same payoff vector u, and let
a* be the centroid «-tuple of this set 2*(w). Then a will be called an  accessible
equilibrium point if and only if o = a*. Clearly, the set F of accessible strategy
^-tuples is always a subset of the set E of eligible-strategy ^-tuples.

In the next few sections we will define our solution concept for vocal noncooper-
ative and almost-noncooperative games. {Tacit and semivocal games will be dis-
cussed in Section 14.10.)

14.2 Comparison between Nash's and our own solution concepts for
noncooperative games

The concept of noncooperative games was introduced by Nash [1951]; he was also
the first to define a solution concept for this class of games, based on the concept
of equilibrium points, which also underlies our theory. Our approach, however,
does differ from that of Nash in the following respects:

1. In the special case of unprofitable games (where for one reason or another
the players cannot rationally expect to obtain more than their maximin payoffs),
we consider maximin points to have greater stability than equilibrium points do.
(Our reasons for this view were stated in Section 7.2.)

2. Unlike Nash, we distinguish between strictly noncooperative and almost-
noncooperative games. Whereas in the latter all profitable equilibrium points are
stable, in the former some additional conditions are required to assure stability.

3. Under Nash's definition, noncooperative games are characterized both by un-
enforceability of agreements and by lack of communication between the players.
Our aim is to study the implications of these two assumptions separately. There-
fore we define noncooperative games solely in terms of unenforceability of agree-
ments and then distinguish vocal and tacit (as well as semivocal) games both among
cooperative and noncooperative (or almost-noncooperative) games.

4. Nash's solution for noncooperative games exists only in special cases, viz.,
when all equilibrium points in the game are mutually interchangeable. In contrast,
our solution always exists (although in the case of unprofitable games it is merely
a "quasi-solution" - see Section 7.8).

5. This last difference itself exists because Nash makes no use of joint-efficiency
and of bargaining considerations in defining his solution - presumably because he
regards such considerations to be relevant only in cooperative games. In contrast,
under our theory both efficiency and bargaining considerations play important
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roles also in noncooperative (and in almost-noncooperative) games, but their appli-
cation is restricted to the set E of eligible joint strategies whereas in cooperative
games no such restriction is necessary.1

14.3 Efficiency and bargaining considerations

To illustrate point 5, consider the three games in Examples 1 through 3. In Exam-
ple 1 there are three equilibrium points, viz., the strategy pairs (A x, Bx), (A2, B2),
and (\A i + \ A2, \ Bx + \ B2). All three are eligible,2 but (Ax, Bx) has strong
joint dominance over the other two. Therefore under our theory by the joint-
efficiency postulate the players will choose (Ax,Bi), which is (according to the
terminology of Section 7.8) the only "rational joint strategy" or the only "particu-
lar strategy solution" of the game.
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In Example 2 there are only two eligible equilibrium points,3 viz., a1 = (Ai,Bx)
and o2 =(A2, B2). [There is also a third equilibrium point, viz., a3 = (\ A i +
i A2, -fj Bx + | j B2). But this is unprofitable to player 1. And, since strategy
\ A i + \ A2 is not a maximin strategy for him, this equilibrium point is ineligible.]
Obviously player 1 will prefer equilibrium point a1, while player 2 will prefer equi-
librium point o2. If both players used their strategies associated with their own
favorite equilibrium points, player 1 using strategy A i while player 2 using strategy
B2, then player 1 would suffer a much heavier loss (in relation to the payoff differ-
ence for him between the two equilibrium points), because Ul(Al9B2) =-10 while
U2(Al,B2) = -1 only. Hence it is natural to argue that player 1 will be more afraid
to use strategy A i in defiance of player 2's using strategy B2, than player 2 will be
afraid to use strategy B2 in defiance of player 1 's using strategy A i. Moreover,
both players will know this - which will further discourage player 1 from using
strategy A j and will further encourage player 2 to use strategy B2. Hence in the
end both players will settle down at equilibrium point o2 = (A2, B2), preferred by
player 2.

This type of relationship between two equilibrium points has been pointed out by
Luce and Raiffa [1957, p. 110]. Under their terminology equilibrium point o2 will
have "psychological dominance" over equilibrium point a1. But their discussion is
purely heuristic and qualitative. Our theory will attempt to furnish a general quan-
titative criterion for this relationship.
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Under our theory, the choice between equilibrium points a1 and o2 will be a mat-
ter of bargaining between players 1 and 2 and therefore will be subject to Zeuthen's
Principle. If the two players try to maximize their expected utilities, then player 1
will stick to strategy A i as long as the subjective probability that he attaches to the
possibility that player 2 will use strategy B2 is no greater than

_Ul(A1,Bl)-Ui(A2>B2)_ 1 =
ri U1(Al,B1)-U1(Ai,B2) 12 "

Likewise player 2 will stick to strategy B2 as long as the subjective probability that
he attaches to the possibility that player 1 will stick to strategy A\ is no greater
than

_U2(A2,B2)-U2(Al,Bl)=l =

"2 U2(A2,B2)-U2(Ai,B2) 3 •

Thus, in the terminology of Section 8.4, the two players' risk limits are rt = .08 and
r2 = .33. By Zeuthen's Principle, since the first number is smaller, player 1 must
yield and accept the equilibrium point a2 = (A2, B2) preferred by his opponent.
Accordingly we can say that equilibrium point o2 will have (strong) risk-dominance
over equilibrium point a1. Thus our concept of risk-dominance in noncooperative
and in almost-noncooperative games is essentially a quantitative restatement and
generalization of Luce and Raiffa's concept of "psychological dominance."

Example 3 is usually called a Prisoner's Dilemma game (cf. Section 7.3). There is
only one equilibrium point, viz., (A2, B2), and this is eligible.4 But strategy pair
(A i, Bx) has strong joint dominance over (A2, B2) and indeed over all other possi-
ble strategy pairs in the game. Hence if this game were played as a cooperative
game, i.e., if the players could make binding agreements, then {Ax, Bx) would be
the only rational joint strategy for them. Yet if the game is played as a noncooper-
ative or as an almost-noncooperative game, then either player will be ill-advised to
use his "cooperative" strategy A\ or Bx. Even if he did use his "cooperative"
strategy, the other player would still use (and indeed, in our example, would all the
more use) his own "noncooperative" strategy A2 or B2. This is what we mean by
saying that strategy pair (A i, Bx) would be unstable and is therefore ineligible to
rational players. Thus joint-efficiency (as well as bargaining) considerations can
operate only within the set E of eligible strategies.

14.4 Defining rational behavior in Prisoner's Dilemma situations

Our theory stands on a middle ground between two alternative approaches. Nash's
theory disregards all possibilities of cooperation (and therefore disregards all joint-
efficiency and bargaining considerations) in "noncooperative" games in which agree-
ments are not enforced and have no binding force, while our theory merely restricts
cooperation among the players to the set E of eligible joint strategies. On the other
hand, other authors deny that such "noncooperative" games necessarily require a
standard of behavior different from cooperative games at all, or that the players' in-
ability to conclude binding agreements necessarily prevents them from attaining a
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cooperative solution (even if the latter corresponds to a joint strategy outside of
what we call the eligible set).

For instance, Rapoport [1966a, p. 94] argues that in a Prisoner's Dilemma game
"rational decision theory does not lead to unique, definitive solutions . . . ." In his
view such a game possesses two different but equally admissible standards of ratio-
nality. One is individual rationality, corresponding to what we call the noncoopera-
tive solution [e.g., strategy pair (A2, B2) in Example 3 ] ; the other is joint rational-
ity, corresponding to what we call the cooperative solution [strategy pair (A i, Bx)
in Example 3 ] . Both represent equally valid concepts of rationality, so that no
choice can be made between them on purely theoretical grounds. All that we can
do is to observe empirically under what conditions people do actually follow one or
the other. Thus the nature of the game situation itself (whether or not the players
can enter into binding agreements) does not uniquely determine which of these two
standards of rationality is appropriate in any given case.

The difference between Rapoport's approach and ours may be to a large extent
terminological, but this does not make it unimportant. It is a matter of how to de-
fine rational behavior in Prisoner's Dilemma games in order to maximize the ana-
lytical usefulness of this concept of rationality for theoretical and practical pur-
poses. The question concerns what concept of rationality to use in situations where
the players have good reasons to expect that the other players would not adhere to
mutual agreements (and where each player may know very well that he himself
may not adhere to them either).

We fully agree with Rapoport that in practice in a given empirical situation it may
often be quite difficult to decide whether a cooperative or a noncooperative stan-
dard of rationality is appropriate. The players may not know the other players'
utility functions (including their moral attitudes) and their social environment (e.g.,
the likely reactions of law-enforcing agencies and of public opinion) sufficiently to
predict how strong incentives their fellow players would have to maintaining agree-
ments. Thus they may find it very difficult to decide the extent to which the theo-
retical condition of agreement enforceability5 differentiating between cooperative
and noncooperative games is satisfied in any given case.

Our point is, however, that given this information there is always a unique stan-
dard of rationality - cooperative or noncooperative (or some combination of the
two6) as the case may be - appropriate for each particular situation. Indeed, even
when this information is not available, our theory at least suggests what the rele-
vant information would be for deciding the issue between the two standards of
rationality. To put it differently, in order to maximize the explanatory and policy-
evaluating value of game-theoretical models we must use models explaining why a
cooperative standard of rationality is appropriate in one situation and why a non-
cooperative standard is appropriate in another.

Admittedly it will not solve our entire problem of theoretical explanation if we
know that the choice between these two standards of rationality depends on the
existence of effective law-enforcing agencies and of spontaneous attitudes favorable
to keeping agreements, since we still have to explain why such agencies or attitudes
are present in one case and are absent in another. But it will be at least a first step
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toward an explanatory theory if we know that security of agreements is the central
issue in distinguishing between cooperative and noncooperative situations.

Likewise in practical policy making our theory can obviously supply only part of
the answer. In many situations it will tell us that, since our opponents cannot be
trusted to keep agreements, we can use only a noncooperative standard of rational-
ity in dealing with them, at least in the short run. But in most of these cases the
really important policy problem will be the long-run problem of transforming this
noncooperative game situation into a cooperative one that is to the mutual advan-
tage of all participants. Our theory will tell us that this can be achieved only by es-
tablishing effective law-enforcing agencies and/or by inculcating on both (or on all)
sides attitudes more favorable to spontaneous law observance; but it does not tell us
how such agencies can be best established and how such attitudes can be best im-
parted. To answer these questions we need a dynamic theory incorporating the
laws of individual and social learning and containing our present static theory of
game situations as a special case. But in the meantime we feel that it is very impor-
tant both from a theoretical and from a practical policy-making point of view to
admit that there are truly noncooperative game situations, where a prudent decision
maker (on either side) cannot put much confidence in his opponents' willingness to
keep agreements and has to choose his own policies in full awareness of this. If we
want to transform a noncooperative game situation of justified mutual distrust into
a cooperative game situation of warranted mutual trust, then the first step must be
to recognize that, as things are at present, rationality does require making use of a
noncooperative solution - because only if we recognize this can we find out what
factors have to be changed in order to make the cooperative solution acceptable
and attractive to rational participants.7

To sum up, a theory of rational behavior in game situations will achieve its
highest usefulness both in theoretical analysis and in practical policy making only
if it supplies a unique well-defined standard of rationality, i.e., a unique determi-
nate solution, for every possible game situation - at least when we know the
players' utility functions and the "rules" of the game, specifying the players'
strategy possibilities and their access to information and communication. Among
other things this means that our theory of rational behavior must make it clear when
a cooperative and when a noncooperative standard of rationality is appropriate.8

14.5 Different types of Prisoner's Dilemma situations

To bring out more clearly the treatment of the Prisoner's Dilemma problem under
our theory, see Examples 4 through 6. These are Prisoner's Dilemma situations,
different from Example 3 of Section 14.2. (They have all been discussed earlier.)
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In Example 4 all possible strategy pairs o = (ox, o2) are equilibrium points, where
Oi may be any mixture of A x and A2, while o2 may be any mixture of Bx and B2.
Equilibrium point (A x, Bx) has (strong or at least weak) joint dominance over all
the others. Consequently if the game is played as an almost-noncooperative game
(and, of course, even more so if it is played as a cooperative game), the players will
choose the strategy pair (Ax, Bx), and no Prisoner's Dilemma problem will arise.
But if the game is played as a strictly noncooperative game, then (A x, Bx) will be
unstable, because it will involve an indifference problem for each player. That is,
even if player 2 did stick to strategy Bx, player 1 could deviate from strategy Ax
without penalty; and player 2 could deviate without penalty from Bx even if player
1 did stick to A x. The only stable and therefore eligible equilibrium point now is
(\ A i + \ A2,\B\ + \ B2)in which the two players' strategies are centroid-best-
reply strategies to each other. Hence under our theory this is the strategy pair that
the players will choose if the game is strictly noncooperative. But then this will
represent a Prisoner's Dilemma situation (of a type different from Example 3),
because this strategy pair is subject to strong joint dominance by the ineligible
equilibrium point (A i, Bx).

In Example 5 there are three equilibrium points, viz., a1 = (A x, Bx), a2 = (A2,
B2), a3 = (^ A i + \ A2, \ B\ + \ B2). The first two have strong joint dominance
over the third. Moreover, the latter is unprofitable to both players, and so under
our definition it is not eligible as an equilibrium point. But it is also a maximin
point; as such it is, of course, a member of the eligible set E. Player 1 will obvi-
ously prefer equilibrium point a1, while player 2 will prefer o2. Thus it would be
natural to try to decide between them by means of Zeuthen's Principle. Unfortu-
nately Zeuthen's Principle will give no criterion to choose between them, since

^ 1 ( 1 , l ) 1 ( 2 , 2 ) ^
Tx UMB^UMx.B^ 3

- U2(Al9Bl) = 2
Vl U2(A2iB2)-U2(AliB2) 3 r i

Indeed, in view of the complete symmetry of the game, no conceivable rational
criterion could decide between a1 and o2. In such a case we say that there is a
bargaining deadlock between a1 and o2. In cases such as this we can apply part of
Zeuthen's Principle (see Section 8.4), which says that, if rx = r2, then both players
have to make concessions. That is, player 1 must be ready to accept a payoff less
than Ui(ol) = 3, and player 2 must also be ready to accept a payoff less than
U2(o2) = 3. The eligible set E contains only one strategy pair yielding both players
less than 3, viz., the maximin point a3 which gives both players the payoff Ux (a3) =
U2(o3) = 2 < 3. Hence a3 will be the strategy solution of the game. Intuitively
speaking this means that, since the players will not be able to decide between a1

and o2 and since they cannot adopt a jointly randomized mixed strategy repre-
senting a probability mixture of a1 and o2 as a compromise (this is allowed only in
a cooperative game), they will have to accept the less desirable strategy pair a3 as
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compromise solution. However, this will involve a Prisoner's Dilemma paradox,
because a3 is strongly dominated both by a1 and by o2.

Example 6 has three equilibrium points, viz., a1 = (A x, Bx), a2 - (A2, B2), and
a3 = (^ A i + \ A2, \ Bx + \ B2). The first two again have strong joint dominance
over the third. Moreover, the latter is unprofitable to both players and is eligible
only as a maximin point. If the game is played as a vocal game, then the players
will obviously choose o1 or o2 (they will not care which). But if the game is played
as tacit or semivocal game, then the players will be unable to coordinate their
strategy choices, and each of them will play both of his pure strategies with equal
probability, which will give rise to a3. But since a3 is strongly dominated by a1

and by a2, this will represent a kind of Prisoner's Dilemma situation. As the choice
of a3 will be a result of the players' inability to make a coordinated choice between
a1 and o2 in the absence of communication, we can describe Example 6 as a coor-
dination deadlock (coordination problem) between a1 and o2.

To sum up, a Prisoner's Dilemma situation arises whenever the players have to use
some strategy «-tuple o in spite of the fact that another strategy «-tuple a* would
yield higher payoffs to all of them. The reason may be that a* is not an equilibrium
point at all; that it is an equilibrium point not satisfying the stability requirements
for eligibility; that it is at a bargaining deadlock with another equilibrium point; or
(in the case of a tacit or a semivocal game) that it is at a coordination deadlock with
another equilibrium point.

14.6 The direct and the extended risk functions

Let o = (a,-, ol) and r = (T,-, T1) be two eligible equilibrium points in a vocal nonco-
operative or almost-noncooperative game.9 Suppose that f/,-(a) > t/,-(r) so that
player i would prefer equilibrium point o to equilibrium point r. But suppose that
all other players prefer r to o or at least have expressed their willingness to settle
for r. If now player / tells the other players that he is likewise willing to settle for
r and to use strategy r,-, then the other players; will immediately agree to use the
strategies r;-; and so player / will obtain the payoff C/,-(r) with certainty. But if he
insists on using strategy ot in order to obtain the higher payoff Ut{o), then he may
in fact obtain Ut(o), because the other players may in the end come around to
using the strategies oy. Yet he also runs the risk of obtaining only U^Oj, T1), be-
cause the other players; may just as possibly stick to their original intention of
using the strategies Tj, even if player /himself does use strategy ot.

We define player /'s risk limit rt as the highest subjective probability that he can
assign to the other players' using the strategies ry-, without himself being deterred
from using strategy a,-. Assuming that player / is trying to maximize the mathemati-
cal expectation of his utility payoff, this risk limit will be

Uj{6) - Uj{r)
Uf(o) - Ui(ai9 T1)

The function Qt itself will be called player /'s direct risk function.
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Obviously player / will take no risk whatever for the sake of achieving o if he does
not prefer o to r. Therefore we will write

G/(a,7) = 0 if UiW^Uiir) (14.2)

Let TJ(T) be the set of all eligible equilibrium points f such that £/,-(f) < £/,-(r).
Thus r,-(r) is the set of all equilibrium points f more favorable than, or equally
favorable to, equilibrium point r from player /'s point of view, including r itself.

We can say that player / is uniformly willing to take risk rt in order to achieve a
given eligible equilibrium point o rather than any equilibrium point f in set r,-(r) if

ft(a,J-)£/v for all f e r ^ r ) (14.3)

The largest number rt satisfying (14.3) is obviously the quantity

ri=Ri(o9T)= min QfaS) (14.4)

Thus /?/(a, r) is the highest risk that player i would be uniformly willing to face in
order to achieve a rather than r, or any equilibrium point f even less favorable than
T (or just as unfavorable as r). We call the quantity Ri(o, r) player z's uniform-risk
limit. The function /?,- itself will be called player /'s extended-risk function.

Clearly 7?z- has the monotonicity property

Ri(o,T)=Ri(o,T*) whenever £/,-(T) ^ £/,-(r*) (14.5)

where a, r, and r* are eligible equilibrium points.
We now propose to show that, for the application of Zeuthen's Principle in non-

cooperative and in almost-noncooperative games and for the definition of risk-
dominance relations, the proper risk function to use is the extended risk function
Ri(o9 T) rather than the direct risk function Qi(a, r).

In Section 8.6, one of the rationality postulates used in deriving Zeuthen's Princi-
ple has been the Acceptance-of-Higher-Payoffs Postulate (Postulate A4). By Part I
of this postulate, if player / is ready to accept a given equilibrium point f as the out-
come of the game, then he must be even more ready to accept any other equilib-
rium point r yielding him a higher payoff £/,(r) > £/,•(£) than f would yield him.
This postulate makes it necessary for us to replace the direct risk function Qt by the
extended risk function Rt as defined by (14.4).

Intuitively a risk function such as Q,-(a, r) or R((o, r) is meant to measure the
strength of player fs opposition to some equilibrium point r as an alternative to a
preferred equilibrium point a. Definition (14.4) expresses the requirement that /'s
opposition to r cannot be any stronger than his opposition to an even less favorable
(or to an equally unfavorable) equilibrium point f would be. The monotonicity
property (14.5) expresses the same requirement in a slightly different form.

More formally, if we interpreted Zeuthen's Principle in terms of any risk function
Ri lacking property (14.5) - for example, if we used the direct risk function Rt = Qt
for this purpose - then we would often obtain conclusions directly violating the
Acceptance-of-Higher-Payoffs Postulate. In this case it could easily happen that
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Ri(o, r) would take a high value, whereas Rj(o, f) would take a low value, even
though Ui(r) ^ Ui($)> Hence, if we applied Zeuthen's Principle to this risk func-
tion Rj, then we would have to conclude that player i would refuse accepting equi-
librium point T as the outcome of the game, yet would be willing to accept equilib-
rium point f as the outcome, even though f would yield him a lower payoff than r
would. Such a conclusion would clearly violate the Acceptance-of-Higher-Payoffs
Postulate.

14.7 Primary risk-dominance relations

In terms of the extended risk function Rh we can define risk-dominance relations -
to be called primary risk-dominance relations - as follows: Let o and r be eligible
equilibrium points. We will say that o strongly risk-dominates r at risk level r* (in
the sense of primary risk-dominance) if

r* = max Rj(o, r) > max RJ(T, O) = r** (14.6)
/GiV j<EN

In other words, among those players who prefer o to r, r* is the highest uniform
risk that any player would take in order to achieve a; and, among those players who
prefer r to a, r** is the highest uniform risk that any player would take in order to
achieve r. We say that o strongly risk-dominates r if the former risk level r* is
higher than the latter risk level r**. By Zeuthen's Principle, other things being
equal, if o strongly risk-dominates r, then the players favoring r will have to yield
to the players favoring a, so that o will have a stronger claim than r will have to
being accepted as the solution.

We can say that o weakly risk-dominates r at risk level r* (in the sense of primary
risk-dominance) if

r* = max Rt(o, r) ^ max RJ(T, O) = r** (14.7)
mN /GAT

If o and r satisfy (14.6) or at least satisfy (14.7), then that particular player (or
those particular players) i = i* for whom

Rt*(o, T) = max Rj(o, r) = r* (14.8)

will be called the decisive player(s) against r, because it is his (or their) opposition
to r which makes r to be (strongly or weakly) risk-dominated by a.

We will also write

H(o, T) = r* if a has strong or weak primary risk-dominance over r at (14.9)
risk level r*

and

H(o, r) = 0 if a has neither strong nor weak risk-dominance over r (14.10)
at any risk level r* at all

If o = r, then we will always write H(o, r) = 0.
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It will be convenient to use the following terminology: Suppose that a given eligi-
ble equilibrium point a has a certain property (say, strong or weak risk-dominance)
with respect to all other eligible equilibrium points r. Then we say that o has this
particular property with respect to the game (as a whole).

Lemma L A given equilibrium point o will have strong primary risk-dominance
over the game if and only if o has (at least) weak primary risk-dominance over the
game and is the only eligible equilibrium point having this property.

Proof. Let E* be the set of all eligible equilibrium points, and let oGE*. We
have to show that we have

H{G,T)>H{T,O) for all T^o,reE* (14.11)

if and only if

H(a9T)^H(T9a) for all T^O,T£E* (14.12)

with o being the only equilibrium point in E* satisfying (14.12).
Now clearly (14.11) implies (14.12). Moreover, (14.11) also implies that only o

can satisfy (14.12), because, if another equilibrium point o =£ o also satisfied
(14.12), then we would have

H(o,o')=H(o',o) (14.13)

which would be inconsistent with (14.11). Conversely, if o is the only equilibrium
point satisfying (14.12), then there cannot be any equilibrium point o ¥=  o satis-
fying (14.13). Consequently (14.12) will always be satisfied as a strong inequality,
which implies (14.11). This completes the proof.

A given eligible equilibrium point o will be called the solution of the game if o has
strong primary risk-dominance over the game. In view of Lemma 1, this is equiva-
lent to saying that o will be called the solution if o has weak primary risk-
dominance over the game, provided that a is the only eligible equilibrium point
with this property.

Lemma 2. Let a and r be eligible equilibrium points, and suppose that

UJ{O)^UJ{T) for all jEN (14.14)

Then r will have at least weak primary risk-dominance over o.

Proof. By (14.2), (14.4), and (14.14),

RJ(T,O) = 0 for all j'EN (14.15)

Consequently

max/?,-(a, r) ̂  max/?7(r, a) = 0 (14.16)
iGN j<EN

This proves the lemma.
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In other words, if a and r are equivalent, or if o has at least weak joint dominance
over r in terms of the corresponding payoff vectors, then o will have at least weak
primary risk-dominance over r.

14.8 Secondary risk-dominance relations

We have defined the solution in the special case where some eligible equilibrium
point o has strong primary risk-dominance over all other eligible equilibrium points.
But the difficulty is that in general - at least if the game contains more than two eli-
gible equilibrium points - none of them will have strong primary risk-dominance
over all the others. This fact makes it necessary to introduce secondary risk-
dominance relations. For example, suppose that a given game G contains three eli-
gible equilibrium points, f, a, and r, such that:

1. f has strong primary risk-dominance over o at risk level H($, a) = r, player i
being the decisive player against o.

2. o has strong primary risk-dominance over r at risk level H(o, r) = r < r, player
/ being the decisive player against r.

3. r in turn has strong primary risk-dominance over f at risk level //(r, f) = r" <
r < r, player k being the decisive player against f.

That is, in this game each of the three eligible equilibrium points strongly risk-
dominates another eligible equilibrium point but is itself strongly risk-dominated
by still another eligible equilibrium point. But f is risk-dominated only at the low
risk level r, whereas o and r are risk-dominated at the higher risk levels r or r".
Accordingly we will argue that f should be regarded as the solution of the game.
This conclusion can be justified as follows:

By Zeuthen's Principle, in view of the relevant risk-dominance relations, player /
is in a position to veto equilibrium point a, whereas player; is in a position to veto
equilibrium point r, and player k is in a position to veto equilibrium point f. But
if all three players made actual use of these veto powers, then no solution could be
agreed upon. Thus at least one of them must forgo using his veto power, and it
must be decided by bargaining which one of the three should do so. This bargain-
ing can be decided by using Zeuthen 's Principle for a second time: Player k will
have to refrain from using his veto power, because the risk level r" at which he
opposes f is lower than the risk levels r and r at which the other two players
oppose o and r, respectively. In other words, that equilibrium point which arouses
the least intensive opposition on the part of the players will be accepted as the solu-
tion - if the intensity of opposition to any equilibrium point r is measured by the
highest uniform risk that any player is willing to face in order to defeat this particu-
lar equilibrium point r (as well as other equilibrium points no more favorable
than r).

More generally let

K(o) = max //(J, a) (14.17)



Noncooperative and almost-noncooperative games 285

Let o and r be two eligible equilibrium points. Then o has strong secondary risk-
dominance over r if

K(O)<K(T) (14.18)

We say that o has weak secondary risk-dominance over r if

K(O)^K(T) (14.19)

We will call a given eligible equilibrium point o the solution of the game if a has
strong secondary risk-dominance over the game. Or equivalently we will call o the
solution if o has weak secondary risk-dominance over the game and is the only eli-
gible equilibrium point with this property. (The equivalence of these two state-
ments can be shown by a similar argument to that used in the proof of Lemma 1
of Section 14.7.)

Lemma 1. In any finite game G in which the set E* of eligible equilibrium points
is not empty, there is always at least one equilibrium point with weak secondary
risk-dominance over the game.

Proof. We have to show that the function K(o) always reaches a minimum value
K(o) = Ko over the set E* if E* is not empty.

1. The case of strictly noncooperative games. In this case the lemma follows
from the fact that E* is a finite set. This fact itself can be verified. In a finite game
G a given player / can have only a finite number of centroid-best-reply strategies.
This is so because the set 2/(CJ') of all the best replies Oj that player / has against
any given strategy combination ol - {px,. . . , ot_ x, oi+ {,. . . , on) of the other
(n - 1) players, is always a convex set spanned by a finite number of his pure strat-
egies. Therefore, if player i has k pure strategies, then he cannot have more than
(2k - 1) different centroid-best-reply strategies, since the number of different sets
2/(a*) cannot be more than that.

2. The case of almost-noncooperative games. If game G has only a finite number
of equilibrium points, then E* will again be a finite set, and we are done. So we
only have to consider the case where G has infinitely many equilibrium points.
(This can happen even if G is a finite game.) Let £** be the closure of E*. We
extend the function K(o) to all points of £** in the obvious way. As E** is a com-
pact set, the function K(o) will always reach a minimum value K(p) = Ko over E**.
It is easy to verify that, for every point o where K(o) =KO, a G E*. Therefore
K(o) will reach the value Ko already within E*. This completes the proof.

Lemma 2. Let a be an eligible equilibrium point having strong primary risk-
dominance over the game. Then o will also have strong secondary risk-dominance
over the game.

Proof By assumption

H(O,T)>0 and H(T,O) = 0 for all T^o,TeE* (14.20)
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Consequently, by (14.17),

K(T)>0 for all T^o,TeE* (14.21)

whereas

K(o) = 0 (14.22)

Therefore

K(O)<K(T) for all T±O,TGE* (14.23)

which proves the lemma.

Lemma 2 shows that our first definition of the solution (in terms of primary risk-
dominance) is a special case of our second definition (in terms of secondary risk-
dominance).

Let £2 be the set of all eligible equilibrium points having weak secondary risk-
dominance over the game. Let ̂  be the set of all equilibrium points o in 12 such
that they are not subject to joint dominance (whether weak or strong) by any other
equilibrium point r in 12. That is, a given equilibrium point o in 12 belongs to *f? if
and only if there is no equilibrium point r in S2 such that

Ui(T)>Ui(o) for all iGN (14.24)

and

Ui(T)>Ui(o) for some iGN (14.25)

In other words, "if is the set of all strongly efficient elements of 12.
A given nonempty set of equilibrium points will be called admissible if it contains

only one equilibrium point - or if it does contain two or more equilibrium points,
yet all of them are equivalent (i.e., all of them yield the same payoff vector).

So far we have defined a solution only for games where 12 contains only one equi-
librium point. But we can easily extend our definition to all games where 12 is ad-
missible - and indeed to all games where at least set \^ is admissible. As the latter
case contains the former as a special case (since if 12 is admissible then 12 = ^ ) , it is
sufficient to discuss the case where ^ is admissible. This is so because:

1. Efficiency considerations (cf. Part II of Postulate A4) require the players to
restrict their strategy choice to set ^ .

2. We are now considering vocal noncooperative and almost-noncooperative
games: But in vocal games the players will never have any difficulty in choosing be-
tween equivalent-strategy «-tuples  (cf. Section 7.5).

Accordingly, if the set ̂  is admissible, then we can define the complete strategy
solution as ̂  itself and can define each equilibrium point a in ̂  as a particular
strategy solution. The payoff vector U(o) uniformly associated with every equilib-
rium point o in ̂  can be designated as the payoff solution.
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14.9 Bargaining deadlocks: final definition of the solution

Now suppose that ^ contains two or more nonequivalent equilibrium points a,
a ' , . . . . Since the function K will take the same minimum value Ko = K(o) =
K(o') = • • •  at all of these equilibrium points, Zeuthen's Principle will not enable
us to choose among them. Neither will efficiency considerations or any other ratio-
nality requirements. Consequently Part (7) of Zeuthen's Principle (as stated in
Section 8.4) will apply, forcing the players to choose some eligible equilibrium
point associated with a higher value K{T) >KO of the function K. For example,
consider the game in Example 7. Suppose that this game is played as a strictly
noncooperative game. Then only the three pure strategy equilibrium points, f =
(A 1, Bi), o = (A 2, B2), and 7 = (A 3, B3), are eligible, since none of the four mixed-
strategy equilibrium points are centroid equilibrium points. We have

H(p, T) = \

Consequently AT(f) = K(o) = ±, while #(7) = §.

B\ B2 B3

Al

A2

A3

(6,
(0,
(0,

4)
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(0,
(0,
(2,

0)
0)
3)

Example 7

Thus the set £2 consists of f and a. Moreover, ^ = 12. But the set ^ = 12 is inad-
missible, since f and o are not equivalent: Player 1 would prefer f, while player 2
would prefer o. As K($) = K(o), the two players are in equally strong bargaining
positions. Therefore Part (7) of Zeuthen's Principle will apply: Both players have
to make a concession, accepting the third eligible equilibrium point r, which ac-
cordingly becomes the solution of the game [even though both £/(f) = (6, 4) and
U(o) = (4, 6) strongly dominate the payoff vector U(j) = (2, 3)].

More generally let £2*(z) be the set of all eligible equilibrium points o with
K(o) = z. Let ^*(z) be the set of all equilibrium points o in £2*(z) such that no
equilibrium point r in £2*(z) has properties (14.24) and (14.25) with respect to
these a's. In other words, ^*(z) is the set of all strongly efficient elements of
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Let Z be the set of all numbers z for which the set \^*(z) is not empty. Let Z* be
the set of all numbers z for which the set ^*(z) is admissible. If this set Z* is not
empty, then it will always contain a smallest number z-zo, because Z* is a closed
subset of the interval [0, 1].

We now define the complete strategy solution as the set \^*(zo). Each equilib-
rium point o in ^*(zo) will be a particular strategy solution, and U(o) will be the
solution payoff vector.

Intuitively speaking the set ^*(zo) again is the set of those eligible equilibrium
points which arouse least opposition among the players, subject to efficiency con-
siderations and to the need of avoiding bargaining deadlocks.

The definition that we proposed in Section 14.8 is of course a special case of our
present definition. It amounted to defining the complete strategy solution as the
set ^ = ̂ *(zo o) , where zoo is the smallest number in set Z, provided that zoo EZ*.
As Z* C Z, if zoo G Z*, then zoo = zo, and so tf = **(zoo) = **(zo).

Finally, if the set Z* is empty - or if already the set E* of eligible equilibrium
points is empty - then we define the complete strategy solution as the set M of all
maximin points. Each maximin point will be a particular strategy solution. The
solution payoff vector will be the vector u = (wj,. . . , iin), where ux, . . . , un are
the players' maximin payoffs. (In the terminology of Section 7.8, in this case the
solution just defined will be a mere "quasi-solution.")

14.10 Tacit and semivocal games

This solution concept can be extended to tacit and semivocal noncooperative and
almost-noncooperative games without any difficulty, if in the preceding discussion
the term "eligible" is everywhere replaced by the term "accessible" and in particu-
lar the set E* of all eligible equilibrium points is replaced by the set F* of all acces-
sible equilibrium points. Note that any admissible set of accessible equilibrium
points will always contain only one equilibrium point, because, if o and r are acces-
sible equilibrium points and U(o) = U{r) then, by the definition of accessibility,
o = r. This means that our solution will never create problems of strategy coordina-
tion, because in profitable games it assigns to every player a unique rational strategy
Or

As you will recall, in deriving our solution we have assumed that the players can
bargain with one another about the equilibrium point to be used. Actually under
our assumptions this bargaining can really occur only in vocal and in semivocal
games. But the solution defined for semivocal games can be extended to tacit
games, by virtue of the Principle of Tacit Bargaining (see Section 7.5).
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Conclusion

In the preceding chapters I have tried to propose a precise definition - or more
exactly a family of precise definitions - for the concept of rational behavior. In the
case of individual pragmatic decisions I have argued that rational behavior can be
defined in terms of utility maximization, or expected-utility maximization, in ac-
cordance with modern decision theory (and modern economic theory). In the case
of moral decision I have suggested the utilitarian criterion as the appropriate ratio-
nality criterion, involving maximization of the average utility of all individuals in
the society.

Finally, in the case of game situations I have argued that we need a concept of
rational behavior yielding a determinate solution (i.e., a unique solution payoff
vector) for each specific game. For various classes of cooperative and of nonco-
operative games I have suggested a number of solution concepts, all related to the
Nash-Zeuthen bargaining solution, to the modified Shapley value, and to their
various generalizations. Though the solution concepts suggested for different game
classes have differed in specific detail, all have been based on the same general
rationality postulates. My discussion, however, has been restricted to what I have
called "classical" games (i.e., to games with complete information, either fully
cooperative or fully noncooperative in character, and admitting of representation
by their normal form) - even though, as I have shown in other publications, one
can extend this analysis also to certain classes of "nonclassical" games (e.g., to
games with incomplete information [Harsanyi, 1967, 1968a, 1968b; Harsanyi and
Selten, 1972]).

Eventually it may be possible to derive the various specific solution concepts dis-
cussed in this book from one general solution concept, equally applicable to "clas-
sical" and to "nonclassical" games. But this will require significant further develop-
ments in our analytical tools.

Our preceding discussion shows that, in a cooperative game, it is almost always
possible for rational players to reach an efficient (Pareto-optimal) outcome. In a
noncooperative game in general this is not possible, because of the Prisoner's
Dilemma problem; but, even so, a surprising amount of cooperation is possible
in most cases. This result is in sharp contrast with the view taken by many social
scientists, who seem to assume (apparently without even noticing that they are
making a strong and very questionable assumption) that, whenever there is a con-
flict of interest between two players, this is a sufficient explanation for a behavioral

289
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conflict between them - as if no explanation were needed for the players' inability
to reach a peaceful compromise agreement that would benefit both (or all) of
them. In my view any major deviation from Pareto-optimality always requires a
specific explanation, such as unenforceability of agreements, unsurmountable
barriers to communcation, ignorance, and so on.

Our analysis also shows that in a cooperative game, without special reasons to
the contrary, all possible subsets of the players will form coalitions to protect their
common interests against all other players, so that the game will become a com-
plicated network of (typically) a large number of mutually overlapping coalitions,
in agreement with the pluralistic model of society. Therefore any significant depar-
ture from this model requires a special explanation. This special explanation is
required (for instance, in terms of the communication network among the players)
if we find that society partitions itself into two or more disjoint major coalitions,
with little or no sectional coalition formation across the boundaries between these
major coalitions, as predicted, e.g., by Marxist theory.

Our theory also identifies the major factors determining each player's bargaining
strength in any given game, such as the extent to which he is willing to risk a con-
flict rather than to accept unfavorable terms (as determined by his cardinal utility
function); his ability, individually or in various coalitions, to inflict high damages
on the opposing players, without high costs to himself or to his coalition partners;
the costs and the difficulty of organizing coalitions favorable to him.

As I have argued before, the present theory greatly increases the usefulness of
game-theoretical models in the social sciences by defining a determinate solution
for any specific game. The solution concepts described in this book have already
been used for analyzing social power [Shapley and Shubik, 1954; Harsanyi, 1962a,
1962b], social status [Harsanyi, 1966b] international politics [Harsanyi, 1965],
and also for pointing out some common fallacies in analyzing bargaining situations
[Harsanyi, 1956,1961b]. No doubt many other social-science applications will
be found if more social scientists can be interested in using the analytical tools
discussed in this book.



Notes

Chapter 1 Bargaining-equilibrium analysis: a new approach to game theory
and to the analysis of social behavior

1 Subject only to some rather mild regularity requirements. For a definition of
"classical" games, see Section 1.2.

2 A more comprehensive theory, of course, will have to introduce many addi-
tional variables, e.g., the costs of organizing and enforcing various coalitions,
the reaction speeds of different players in accepting offers and in making
counter offers, and the degree of mutual trust among various subsets of the
players.

3 The distinction between games with complete and with incomplete informa-
tion must not be confused with the distinction between games with perfect
and with imperfect information (see Section 5.2). Under our definition, a
classical game must involve complete information, but it may involve either
perfect or imperfect information.

4 For definition of the normal form, see Section 5.3.
5 According to this definition, any fully cooperative game will be necessarily

a game with immediate commitment, because one way in which the players
can commit themselves to certain strategies before playing the game is to
reach a firm agreement with one another to use particular strategies. In con-
trast, noncooperative games, and games which are neither fully cooperative
nor fully noncooperative, can be either games with immediate commitment
or games with delayed commitment.

6 It happens that the analysis of a game with incomplete information can often
be reduced to the analysis of an equivalent game with delayed commitment,
so that any solution defined for the latter will also be a solution for the former
and conversely [Harsanyi, 1968a, p. 334].

7 Under this definition, welfare economics becomes a subdivision of ethics,
dealing with a rational pursuit of the economic interests of society as a whole.

8 However, in some cases the primary definition of the relevant rational-behavior
concept is not based on a set of rationality postulates but is based rather on
some analytical model that reduces the rational-behavior concept in question
to another rational-behavior concept already defined. Thus one way in which
we will analyze moral value judgments (case B2) will be to propose an analyt-
ical model that reduces them to rational choice under risk (case A2). (See
Chapter 4.)

Chapter 2 Rational-choice models of social behavior
1 However, our theory is not normative in the sense in which moral and political

philosophy are normative disciplines: It is not concerned with the question of
how any player should act in order to achieve any particular moral (or polit-
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ical) values (see Section 1.5). Thus the word "should" italicized in the text is
not a moral "should" but rather is what moral philosophers call a purely pru-
dential "should."

2 We speak of an understandable intentionally suboptimal response when the
decision maker intentionally chooses a reasonably effective but, strictly
speaking, nonoptimal response, because finding a truly optimal response would
entail prohibitive computation costs or would be beyond the decision maker's
intellectual capacity altogether. An example would be choosing a reasonably
effective but nonoptimal strategy in chess - which is, of course, in practice
the best thing that any human chess master or any chess-playing computer
program can do in any case.

3 An interesting simple psychological model for the analysis of what we call the
problem of dominant loyalties has been proposed by Homans [1950, 1961 ] .
His model is based on the assumption that the liking that an individual A has
for some other individual B, and the friendly interest that A takes in B's
well-being, are an increasing function of the amount of common activity and
of verbal and nonverbal interaction (communication) that A and B have had
with each other - and in particular they are an increasing function of the
extent to which this common activity and this interaction have been pleasant
experiences for A.

Chapter 3 Rational behavior under certainty, risk, and uncertainty

1 At this point we have not yet assigned probabilities (whether objective or
subjective) to the events e and / . Therefore we cannot define their statistical
independence in terms of the relevant probabilities in the usual way. Instead
we have to define it as an absence of any significant causal interaction between
e and/(as judged by the decision maker).

2 For easier reference we shall use the term "Axiom" to describe the rationality
postulates that we are using in individual decision theory (Chapter 3) and in
ethics (Chapter 4) and shall reserve the term "Postulate" for the rationality
postulates that we will use in game theory (Chapters 6 ff.).

3 These axioms are essentially identical to those proposed by Herstein and
Milnor [1953].

4 This theorem is often called the (weak) expected-utility maximization the-
orem. (The "strong" expected-utility-maximization theorem is a generaliza-
tion of the former to uncertain prospects; see below.)

5 Lemma 1 is often called the Substitution Principle.
6 "Postulate S4" indicates "Savage's Postulate 4."
7 Any proposal of systematic criteria for a rational choice of subjective prob-

abilities (more particularly of prior probabilities) can be regarded as an attempt
to restate the principle of best information in a more precise and more specific
manner. Classical probability theory tried to use the principle of insufficient
reason (principle of indifference) to define prior probabilities, but we now
know that this approach often yields inconsistent or indeterminate results.
More sophisticated criteria for defining prior probabilities were suggested by
Jeffreys [ 1939], Carnap [1950], and other authors, but thus far no fully
satisfactory solution to this problem exists. Our theory, of course, deals
only with the much narrower problem of how to assign prior probabilities
rationally to alternative strategies available to an intelligent opponent in
game situations.
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Chapter 4 Morality and social welfare
1 In Section 4.2 we shall define a third preference scale, representing what we

shall call individual f s extended preferences. As we shall see, a person's ex-
tended preferences in some way have an intermediate position between his
personal preferences and his moral preferences.

2 More exactly a morally sensitive individual / may assign high positive utility
to achieving social situations associated with high values of his social welfare
function Wj. Under our model his extended preferences will play an impor-
tant role in defining his social welfare function W(. Thus, through this causal
channel, his extended preferences may have a significant indirect effect on
his behavior.

3 Here we are assuming that this common utility function U would be a von
Neumann-Morgenstern cardinal utility function, which allows intraperson
comparisons between the utility increments (utility differences) that the
same person would enjoy in two different situations. Let A and B stand
for having a heavy meal with and without an apple, respectively. Let C
and D stand for having a light meal with and without an apple. We want
to compare the utility differences AU =U(A)- U(B) and A*U = U(C) - U(D).
We can accomplish this comparison by a direct experimental test. Let E and
F denote the risky prospects E = (A, \\D, A) andF = (£, \\C, \). If the
decision maker prefersE to F, then U(E) = ±U(A)+% U(D) > U(F) =
£ U(B) + \ U(C), which implies that AU =U(A)- U(B) > A*U = U(C) -
U(D). By the same token, if he is indifferent between E and F, then AU =
A*U9 whereas if he prefers F to E, then AU<A*U.

4 Rothenberg [ 1961, pp. 268-269] has criticized my model of moral value
judgments, because it requires that individual i "should put himself in the
place" of other individuals and should try to judge the world partly in terms
of these other individuals' utility functions. He argues that, if / assesses various
social situations partly in terms of other individuals' utility functions, then we
can no longer say that in choosing among these social situations he is trying
to maximize his own expected utility. Actually, according to our preceding
analysis, the utility that i would assign to a given social situation A if he were
"put in the place" of another individual / remains "individual fs utility" in the
required sense, because it is the utility that i himself would assign to situation
A under certain hypothetical conditions, viz., if he had the same taste and
the same personal characteristics (the same "causal variables") that / has.

There is admittedly something seemingly paradoxical in asking individual
/ to assess a given situation through the preferences and the utility function
of another individual /. But, as we have seen, this requirement - which we have
called the principle of acceptance (consumers' sovereignty) - is inherent in the
nature of interpersonal utility comparisons, which all of us are making con-
tinually in everyday life. It is not the task of ethics or of welfare economics
to deny this obvious fact. Rather their task is to explain what it means, and
in what sense it is possible, for one individual to judge another individual's
well-being through the latter's own utility function. This is precisely what
our theory attempts to do.

5 I have presented all three arguments in Harsanyi [ 1955 ] . However, some
critics of my concept of an additive social welfare function have apparently
failed to notice the fact that in order to refute my conclusions they would
have to refute all three arguments. Criticizing one or two of our arguments
will not do, because, as long as any one of these arguments stands, so do
my conclusions.
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6 However, as we will see, from this family of ordinal social-welfare functions
Wj*9 our four axioms together will select a two-parameter family of cardinal
social-welfare functions W; for individual i.

7 However, as we will see, from this family of ordinal utility functions Uj*, our
four axioms together will select a two-parameter subfamily of cardinal utility
functions Uj for each individual/.

8 By the utility distribution in a given industry we mean the utility levels of
workers, managers, shareholders, consumers, and so forth.

9 It may be noted that our construction procedure so far has made use only of
Axioms lo o°, 2OO°, and 3OO°. But the lemmas below will make essential use
also of Axiom 4OO°.

10 Even if we do impose this requirement, it will be a matter of taste whether we
choose to set a\ = • •  * = an - \\n as we did in Equation (4.1) or choose to set
ai = • • • = an = 1 as we did in Equation (4.46). In the former case the social-
welfare function Wj will be the arithmetic mean of individual utilities, while
in the latter case it will be their sum.

11 Axiom 4°° would require that individual i base his decision completely on
interpersonal utility comparisons. We are trying to show that, even if he
does not accept Axiom 4°°, he will have to pay some attention to such
comparisons.

Chapter 5 Some basic concepts of game theory

1 For a more detailed and more formal discussion, see Luce and Raiffa [1957,
Chap. 3] . My own exposition is indebted to theirs and to Kuhn's [1953].

2 Note that, besides the technical sense just defined, we are using the term
"outcome" also informally in its everyday meaning, e.g., when we speak of
the outcome of a chance event, or when we speak of the outcome of a bar-
gaining process so that it includes not only the physical outcome in the
above technical sense but also the utility payoffs of the players. In fact we
will use the term "outcome" in this technical sense only in Section 5.2,
where we discuss the game-tree representation of the game.

3 Omitting, of course, the fictitious player 0, who receives no payoff.
4 Actually it is usually sufficient if the players have full information about

the normal form of the game, which abstracts from some less essential fea-
tures of the extensive form (see below).

5 A game in which all players have only a finite number m; of different (pure)
strategies is called finite; if at least one player has infinitely many (pure)
strategies, we speak of an infinite game. In an infinite game a player's
strategies may range not only over a denumerable set (e.g., the set of all
positive integers) but even over a continuum (e.g., over the set of all real
numbers, as when in economic games a given firm can buy or sell any
nonnegative amount of a given commodity) or even over a function space
(e.g., when the game involves several moves, each of which itself ranges over
a continuum).

6 At the same time, both from the viewpoint of empirical applications and from
a pure theoretical standpoint, considerable interest attaches also to a more
direct study of the players' strategical possibilities in games stated in their
extensive form (or in forms intermediate between the full extensive form
and the one-move normal form). Even a more systematic "translation" of
certain conclusions of the theory of normal-form games, into the language
of extensive-form games, will often considerably increase our understanding
of empirical game situations.
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For example, Schelling [1960, especially Chap. 5] has obtained suggestive
results about the effects of threats, promises, delegation of decision making,
and so forth, in two-person game situations, by considering matrix games,
which differ from standard normal-form models only in allowing the players
one or two communication moves (with or without the possibility of making
irrevocable commitments prior to choosing a final strategy). Although his
conclusions can be easily restated in terms of strict normal-form models,
his use of more flexible matrix-game models has been of evident heuristic
value.

Recent work on computer programs for playing chess and other games of
strategy [e.g., Newell, Shaw, and Simon, 1958] is another important step
toward a better understanding of the players' strategical possibilities in games
in extensive form.

The bargaining models that we will discuss are also at levels of abstraction
intermediate between the normal-form and the full extensive-form represen-
tation, ranging from Nash's bargaining model with threats, where each player
has two moves, to Zeuthen's bargaining model, where he can have any number
of moves.

7 In other words, when subscripted roman capital letters are used to denote
strategies, the subscripts will be used to distinguish different strategies of
the same player. Thus A i ,A2,A3 will be different strategies of player 1.
In contrast, when subscripted lowercase Greek letters are used, then the
subscripts will identify the players whose strategies we are discussing. Thus
°i, #2, °3 wiH be strategies of players 1,2, and 3, respectively. In this
notation different strategies of the same player will be distinguished by
superscripts or by asterisks, and so forth. Thus different strategies of
player 1 will be denoted as O\ *, O\ 2, . . . , or as Qj, Oi *, and so forth.

8 In earlier publications I used the term "syndicate," rather than von Neumann
and Morgenstern's term "coalition," to emphasize the distinction between
their and my assumptions concerning the coalition structures of cooperative
games. But in this book I will use the term "coalition" in common use in
game-theoretical literature.

9 In earlier publications I used the term "prospect space." However, in this
book the term "prospect" itself refers not to a utility vector (payoff vector)
but to a physical result (sure prospect) or to certain concepts defined in terms
of such physical results (risky and uncertain prospects). Therefore it seems
less appropriate to call a set of payoff vectors a "prospect space."

10 As the players' cardinal utility functions are unique only up to order-
preserving linear transformations, it is natural to adopt the postulate that
such transformations will not affect the players' strategical possibilities
within the game. But in fact the equivalence of constant-sum and
constant-weighted-sum games to zero-sum games does not have to be
established by a special postulate but rather follows automatically from
the general rationality postulates that we will use.

11 It is often convenient to say that a given game G has the transferable-
utility property even though, in general, the second payoff vector u*
cannot be achieved by the players in S by individually switching to
alternative strategies a,* - provided that u* can be achieved by these
players by switching to some jointly randomized mixed strategy o%s.

Under this wider definition, transferable utility may arise, e.g., as
follows: Suppose that the game can have n possible outcomes when
each of the n players in general prefers a different outcome. The
players can agree on any single outcome or on any probability mixture
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of these outcomes, the probability weights assigned to different outcomes
to be decided by bargaining among the players. This game will have trans-
ferable utility under the wider definition. Interestingly, utility transfers
between the players in this game will not involve transfers of money or
other "real" commodities but will rather involve concessions regarding
the probabilities associated with various outcomes. This model can be
used in the analysis of political power [Harsanyi, 1962a, 1962b].

12 Apart from various payoff-dominance relations, later we will also intro-
duce dominancelike concepts of a different kind, which will be called
risk-dominance relations.

13 With apologies to Bob Aumann, who has used the term "strong equilib-
rium point" in a different sense in Aumann [1959]. I could not find a
convenient alternative name for the concept for which this term will be
used in this book.

14 The term "maximin point" is meant to indicate that such strategy H-tuples
play a role somewhat similar to equilibrium points in our theory.

15 This terminology expresses the fact that "not being strongly dominated"
is a weaker property than "not being (even) weakly dominated" is, in
the sense that the latter implies the former, while the former does not
imply the latter.

16 "Strong dominance" and "weak dominance" between payoff vectors were
defined in Section 5.5.

17 Cf. Schelling [ 1960, p. 89] for a similar classification of games.
18 To my knowledge the first clear statement of the principle of tacit bar-

gaining is in Fellner [1949] (in an economic rather than an explicitly
game-theoretical context). He calls tacit bargaining "quasi-bargaining"
and calls tacit agreements "quasi-agreements."

Chapter 6 Rationality postulates for game situations
1 More particularly Postulate Al is based on simple dominance in what we shall

call the truncated game (see Section 6.5), whereas Postulate A4 is based on
simple dominance in the bargaining game (see further in this section; see also
Section 6.6 for further discussion of both postulates).

2 We could have also phrased Postulate A4 to assert the relevant maximality
property, viz., that a rational player's bargaining strategy will be such that
he will accept the highest possible payoff that may be offered to him. Actu-
ally, for reasons of analytical convenience, the postulate has been phrased
in a manner that makes no explicit reference to this maximality property.
But this property does follow from the postulate.

3 Of course, in decision theory it is important to show that the utility and
the expected-utility maximization theorems can be derived from more
fundamental axioms (see discussion in Chapter 3). But here we can take
this for granted and for convenience will treat Postulates A2 and A3 as if
they were axioms in their own right.

4 More exactly, in general these probabilities will be generated by random
processes inside player / together with an external mechanical device used
by him. If the strategy a,- that he chooses from set 2/* happens to be a
mixed strategy, then he will presumably use a mechanical device for gener-
ating the probabilities prescribed by this mixed strategy (7/. However, his
choice of this strategy a,- itself from the set 2/* of "equally good" strategies
will be governed by random processes inside his brain.

5 However, if the main game G is a two-person zero-sum game in which there
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is no scope for cooperation or for agreements between the players, the bar-
gaining game B(G) will be empty: It will be a "game" without moves.
For further discussion of the symmetric-expectations postulate, see
Harsanyi [1961b].
There is no payoff higher than 2 for player 1 in column B2 of the payoff
matrix.
There is no payoff higher than ~2 for player 2 in row A i of the payoff
matrix.

Chapter 7 The four basic problems facing the players of a game
1 We are considering a pure strategy as a special case of mixed strategies.
2 See Section 5.15.
3 The name arose from the first example displaying this paradox, suggested

by A. W. Tucker: the story involved two prisoners [cf. Luce and Raiffa,
1957, p. 95].

4 You may object that it does not matter if the recombinations f of the strategy
rc-tuples a1, a2, . . . yield higher payoffs £//(?) >Ui(o1) = £/,-(o2) = . . . than
these strategy ft-tuples themselves would yield. What matters is only the
possibility that these recombinations may yield lower payoffs. Actually
there will be a strategy coordination problem in either case. If the f's yield
higher payoffs, then the players will find it advantageous to avoid coordi-
nating their strategies and will try to choose their strategies from different
strategy rc-tuples ok in set 2*. But this will be just as much of a problem as
trying to choose their strategies from the same strategy n-tuple ok.

5 As Schelling [1960, Chaps. 3 and 4] has pointed out, intelligent players
may be able to guess each other's intentions even without explicit communi-
cation and may be able to coordinate their strategies in a much higher pro-
portion of all cases than mere chance would allow. But for the purposes
of a formal theory such guessing games can be regarded as involving some
kind of "implicit communication" and thus coming under the category of
(fully or partially) vocal games. On a less formal level of analysis, of course,
the question remains: Under what conditions, and to what an extent, do
physically tacit games allow successful "implicit communication" so that
they can be treated as if they were vocal games? For a discussion of this
question refer to Schelling [1960].

6 Solutions for games profitable to some of the players but unprofitable to the
other players have an intermediate status. But since in such games our theory
requires that the players use strategies corresponding to equilibrium points
satisfying two stability requirements, in these games the players are able to
form stable expectations so that the solutions of such games are basically
similar to solutions for games profitable to all players. Even in games un-
profitable to all players, the players are able to form stable expectations
in those special cases where the centroid-maximin-strategy rc-tuple
(which our theory recommends for use by the players) happens to be an
equilibrium point.

7 In fact, the term "noncooperative game" is rather misleading, because it
seems to suggest that in such games there is no scope for rational cooper-
ation among the players, which is quite incorrect. An alternative term, such
as "games without commitments," may be preferable, but the term "non-
cooperative games" is now so well entrenched that it would be hard to replace
it by another name.
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Chapter 8 Two-person simple bargaining games: the Nash solution
1 In welfare economics they did sometimes use cardinal utility (more partic-

ularly the assumption of decreasing marginal utility for income) in an essen-
tial way, in order to support a demand for a more equal income distribution
(e.g., for progressive taxation). [Cf. Harsanyi, 1953.]

2 This is so because, if a purely ordinal theory furnished a unique agreement
point u, then this point u would have to be invariant under all monotone
transformations of the two players' utility functions. But this is impossible.

For instance, let triangle OAB be the payoff space of the game, and let O
be the conflict point (see Figure 8.7). Suppose that a given theory defines
w"as the unique agreement point. Then it is clearly always possible to find
(continuous) monotone transformations of the two players' utility func-
tions, such that carry the triangle OAB into itself but carry the point u
into some other point u' on the upper right boundary AB, which means that
zTwill not be invariant under these transformations.

0 —>~  A

Figure 8.7
The term "risk" is used here in a more general sense so that it includes both
"risk" and "uncertainty" in the sense of Chapter 3; i.e., it includes both risks
corresponding to known objective probabilities and risks corresponding to
subjective probabilities.
Let u = (Hi, ^2 )> with vi\ = u2 , be the symmetric solution of a symmetric
game (see Figure 8.7). This symmetry in general will not be invariant under
monotonic transformations; i.e., it will not be an ordinal property. This is
so because we can easily construct monotonic transformations of the two
players' utility functions, which will map the symmetric payoff space BOA
onto itself, preserving its symmetry, but will at the same time map the
symmetric point £7into an asymmetric point u' -: (tli', u2'), with w"i' =£ u2'.

This means that our symmetry postulate will lead to self-contradiction un-
less the two players are assumed to possess cardinal utility functions, per-
mitting only linear monotonic transformations. (It is easy to verify that
any linear monotonic utility transformation that preserves the symmetry of
the payoff space BOA will map the symmetric point iTinto a symmetric
point u' in the transformed payoff space so that U\' = u2 '.)
We will analyze the players' choice of bargaining strategies, based on
expected-utility maximization, in greater detail when we discuss Zeuthen's
model of the bargaining process in Sections 8.4 through 8.6.
The postulate of independence of irrelevant alternatives was first introduced
by Arrow [ 1951 ] in welfare economics and in the analysis of social decision
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making. It has since been used also in many other contexts. The telling
name, irrelevance of unchosen alternatives, was suggested by Jacob Marschak
for the postulate.

7 In Sections 8.4 and 8.5 we will see that the Nash solution can be derived
from our own "strong" rationality postulates also by using Zeuthen's bar-
gaining model, without making use of Nash's Postulates 3 and 4 (in our own
numbering) just discussed. Thus these postulates are not essential for our
theory.

8 Zeuthen's original treatment also made use of various restrictive assump-
tions which, however, can be easily relaxed. For example, he assumed that
two parties will maximize their expected money payoffs, instead of assuming
that they will maximize their expected utility payoffs (which will be our
own assumption). He also restricted his discussion to symmetric bargaining
situations. Finally his treatment, unlike that of Nash [ 1953], was restricted
to what we call simple bargaining games.

9 Mathematically an agreement A may be interpreted as a joint strategy
(possibly as a jointly randomized mixed strategy) agreed upon by the two
players, provided that two joint strategies yielding the same payoff vector
are regarded as representing the same agreement. Or we may interpret an
agreement A simply as a payoff vector agreed upon by the two players.

10 Of course, in case (|3/3) many alternative assumptinos could be made. For
example, we could assume that the two players would flip a coin to decide
between proposals A i and A2 , which would yield each player / (i = 1, 2) the
expected payoff M,- = \ Ut(A i) + j Ut{A2), and so on. But it can be shown
that most of these alternative assumptions would lead to the same solution
concept, though they would make some of our mathematical proofs a little
more complicated.

11 Of course, besides the quantities rl,r2,pl2, and p2l, the quantities Ux(Ai),
Ux {A 2), Ux (C), U2 (A i), U2 (A 2 ) , and U2 (C), have also played essential roles
in our analysis. But the point is that, as Condition (8.5) shows, these latter
quantities will influence the players' behavior only through their effects on
rt and r2 - and possibly onp1 2 and p2l.

12 Thus Postulate B3* on the one hand, and Theorems 8.3 and 8.4 on the other,
provide mutual logical support for each other. We need Postulate B3* to
prove Theorems 8.3 and 8.4. But, conversely, we would not accept Postulate
B3* if it did not enable us to prove Theorems 8.3 and 8.4 - that is, if it did not
enable us to show that the two variables rx and r2 , without introducing any
additional variables, are, in fact, sufficient to furnish a well-defined decision
rule for the players and to specify a unique solution for the game. Of course
this situation is not at all unusual: Our acceptance of rationality postulates
(and of other axioms) always depends on their yielding reasonable implications.

13 Regarding the distinction between behavior guided by self-interest and be-
havior guided by individual utility (which may possibly give some weight to
altruistic considerations), see Section 1.5. For further discussion of Schelling's
theory and his criticism of our symmetry postulate, see Harsanyi [ 1961b].

Chapter 9 General two-person cooperative games
1 We assume, wherever convenient, that the function H possesses these first

derivatives everywhere, i.e., that the upper right boundary H has no corner
points. This will result in no loss of generality, since our results can easily
be extended to any game G, in which H does have corner points, by making
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G a limit of a sequence of certain games Gx, G2, . . . in which H has no corner
points and in which these first derivatives exist everywhere.

2 This is true only for a two-person cooperative game with binding threats.
If the players cannot make binding threats, then their conflict game G*,
played as an independent game, will be in general nonzero-sum, because
cl and c2 need not add up to zero.

3 The Bolzano-Weierstrass theorem states that a continuous function y =f(x)
cannot take the values yx = f(xx) and y2 = f(x2) at the points x = xx and
x = x2, unless at some point x = xo lying between xx and x2 it also takes a
given value yo = f(xo) intermediate between yx and y2 . In our case this implies
that we cannot move from a point c* more favorable than the points c of the
line C(u) to a point c** less favorable than the latter without crossing the
line C(u) itself. Therefore, since the whole set C+(w) lies on the same side
of C(w), the points c* in set C+(w) must be either all of them more favorable
or all of them less favorable than the points lying on the line C(u) itself.

4 For instance, as far as a progressive income tax makes high-income taxpayers
less willing to take risks, our theory predicts that they will also become readier
to make concessions in bargaining situations, e.g., in collective bargaining with
labor unions. This prediction seems to be borne out by experience.

5 The formal definition of our solution concept for the general cooperative
game is a direct extension of the definition given in Section 8.10 for the
two-person simple bargaining game and need not be described here.

6 We are disregarding the degenerate case in which ax = 0 and so Aw*2 =0,
or where a2 = 0 and so Au*x = 0.

7 If physical limitations in the situation do not allow a given player i to reduce
his payoff w/* physically to the required extent, then we will assume that the
players will agree to act in later stages of the game as if this reduction had been
achieved, i.e., to disregard that part of player Vs payoff which is in excess of
the theoretically required equilibrium level.

8 If the boundary of the original payoff space P* contains no horizontal and
vertical segments on top and on the right side, then H** = H*. Otherwise
H* * will consist of H* itself and of these finite straight-line segments
adjoining it.

9 To show this, it is sufficient to show that the intersection K of the line L
and the extended payoff space P is never empty. In this case since the point
c itself always lies on the line Z and always lies outside the set P*, the line L
must cross the boundary line H of P at some point u*.

Take any point u = (ux, u2) of the original payoff space P*. Let

Awx = ux - cx Au2 = u2 - c2

and

u~i = c,- + — *  min {a x • Awj, a2 • Au2) i, / = 1, 2

Clearly the point u- (ux, u2) lies in D(u), the dominion of u and therefore
also in the set P = D(P*). Moreover, tTlies on the line L. Therefore tTlies
in K = P^ O L. Consequently the set K is not empty, and thus L must inter-
sect H at some point w*.

10 If player 2 agreed to return to his concession limit, he would be no better
off than if he became involved in a conflict with player 1. Thus he will have
no reason to do this.
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Therefore in an ultimatum game the player who can use an ultimatum has
no strictly optimal strategies but has only e-optimal strategies: He can insist
on terms very close to his opponent's concession limit but cannot insist on
terms coinciding with this concession limit. But for practical purposes
e-optimal strategies are just as good as optimal strategies. Moreover, if we
introduce indivisibilities (e.g., an indivisible smallest monetary unit), then
we obtain optimal strategies even in the stricter sense (e.g., "Ask for 1 cent
less than your opponent's concession limit.").

11 Here we are using the term "ultimatum" informally. Strictly speaking, we
will not call a given final demand an "ultimatum" if both players can
simultaneously state their final demands. Technically we define an ulti-
matum as a final demand to which one player has fully committed himself
before the other player could make a contrary commitment. Only when this
is possible do we call the resulting game an ultimatum game.

12 Schelling [1960, Chap. 2] discusses many interesting examples of how a
clever player may be able to create an ultimatum situation if he catches his
opponent off guard.

13 Social scientists and philosophers questioning the possibility of interpersonal
utility comparisons have been questioning the possibility of substantive com-
parisons. Nobody denies the possibility of purely ad hoc comparisons (see
the next paragraph in the text), since this means only the possibility of
adopting certain conventions of measurement for various individuals' utility
functions. But it is, of course, controversial whether such ad hoc utility com-
parisons involve anything more than conventions of measurement, e.g.,
whether they have any ethical or game-theoretical significance.

14 The marginal rate of utility transfers (MRUT) is then defined as the number
of utility units that player 1 has to give up in order to increase player 2's
utility level by one unit. At any point u of the upper right boundary H,
MR UT = H2 (u)IHx (u). If a x = a2 = H x (u)=H2(u) = \, then at the solu-
tion point u the MR UT = 1.

In case the players can transfer money to each other free of transfer costs
of any kind (e.g., freedom from income tax), then we can always achieve
MR UT = 1 by choosing utility units which equalize their marginal utilities
for money (e.g., by making each player's utility for $1 equal to unity).

Chapter 10 n-Person simple bargaining games
1 We will assume, wherever convenient, that the derivatives Hi, . . . , Hn exist

at all points u of the upper boundary H. Our results can be easily extended
to games G where the upper boundary H has corner points by making any
such game G the limit of a sequence of games G\, G2, . . . , in which H has
no corner points.

2 This is so because the derivation of Zeuthen's Principle from our rationality
postulates was based on the assumption that the bargaining strategies of
players i and / will depend only on these two players' potential payoffs uti
Uj, uf, Uj*, ch and Cj. But if either player i or/ (or both) act as members of
a coalition, then their bargaining strategies in general will necessarily depend
also on their coalition partners* interests, i.e., on the payoffs uk, uk*, and
ck for some k =£ /,/. Hence Zeuthen's Principle will have no direct application.

3 This intuitive idea will be restated more formally in Theorem 10.5 of Section
10.6 and in the subsequent discussion.

4 An alternative model will be discussed in Section 10.7.
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5 More exactly, to keep player 2's disagreement payoff constant at the level
c2 = 0, we must assume that player 2 has to pay player 3 the full amount
u3 = 10 only if he himself can obtain from player 1 at least the same amount
u23 = 10. Thus we shall assume that player 2 will have to hand over to player
3 the amount

u3 = u23 if he obtains u23 = 10 from player 1

but has to hand over

u3 = 10 if he obtains u23 > 10 from the latter

Chapter 11 ^-Person cooperative games with transferable utility: the modified
Shapley value

1 It is customary to denote the set or coalition S having player z as its only
member by S = (z) and to denote the set or coalition S having players i
and / only as its members by S = (//), and so on. Accordingly the value of
coalition S = (i) must be written as v(S) - v((i)), while the value of coalition
S = {ij) as v{S) = v((ij)), and so on.

2 Under Shapley's [1953] original approach, our Postulates 1 and 2 are com-
bined into one postulate. This is motivated by the fact that in effect our
Postulate 2 also expresses a joint-efficiency requirement (similar to Postu-
late 1) from the standpoint of the non-dummy players. They do not need,
and have no use for, cooperation by a dummy player. Therefore, if they
act efficiently in terms of their own interests, then they will not grant a
dummy player any positive payoff. We state the two postulates as separate
axioms merely in order to make more explicit the assumptions underlying
the Shapley value.

3 By an algebraic-sum game we mean a game obtained from a finite num-
ber of component games by means of the "sum" and the "difference"
operations. Any algebraic-sum game can always be written as the dif-
ference of two sum games; e.g., G = G\ - G2 + G3 - G4 can be written
as G = (Gi +G3)~ (G2 + G4).

4 Our preceding discussion concerning negative dividends is meant to serve
only heuristic purposes. Our formal justification for negative dividends
will be in terms of our bargaining model for the Shapley value and in par-
ticular in terms of our theory of composite bargaining games (see Section
11.4).

5 Since the terms "discriminatory" and "nondiscriminatory" solutions have
been used by von Neumann and Morgenstern [1953] in a different sense,
we will employ the adjectives "biased" and "unbiased" as our "official"
technical terms. However, where no danger of confusion with von Neumann
and Morgenstern's terminology arises, we will feel free to use the more sug-
gestive terms "discriminatory" and "nondiscriminatory" for our own pur-
poses in the sense just defined. In this sense, of course, even the imputa-
tions belonging to the nondiscriminatory solutions of von Neumann and
Morgenstern are "biased" or "discriminatory" solutions, because they
assume that only a limited number of all possible coalitions will come into
existence. For instance, under this theory in a three-person game only one
of the three possible two-person coalitions will be formed by the players
in any given case.

6 An alternative assumption would be that the amount u((123)) - v{{\2)) = 48
would be divided not in a f/zree-person game among players 1,2, and 3 but
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rather in a fwo-person simple bargaining game between coalition (12)
(regarded as one player) and player 3. Under this model, coalition (12) and
player 3 would each receive the amount 48/2 = 24. Accordingly player 3
would obtain the final payoff 24, while players 1 and 2 would each obtain
the final payoff 21 + 24/2 = 33. But in our view the model suggested in
the text is preferable, because there is no reason to assume that coalition
(12) would act as one player in bargaining with player 3.

7 The same is true, and for the same reason, under Aumann and Maschler's
"bargaining set" model [1964].

8 Discriminatory solutions for n-person cooperative games with biased com-
munication will be discussed in Chapter 13.

9 According to economic theory it is true only under perfect competition
that each participant receives the full value of his marginal product. Of
course, in a bargaining situation, such as the one assumed under Theorem
11.3, there is no perfect competition.

10 Even in the case of games without binding threats, one may wish to define
the Shapley values in terms of a characteristic function different from that
of von Neumann and Morgenstern. In such games it is natural to regard the
conflict strategies 6s and 0s of two complementary coalitions as corre-
sponding to equilibrium points in a nonzero-sum noncooperative game be-
tween the two coalitions, where each side would try to maximize its own
joint payoff, v(S) or v(S). Cf. our discussion for the two-person case in
Section 9.1.

Chapter 12 n-Person cooperative games: the general case
1 As will become clear later, the purpose of the throwaway assumption is to

enable us to use our theory of composite bargaining games with possibly
negative bargaining subgames (as defined in Sections 9.6 and 9.7), for the
analysis of bargaining between any two players / and /.

2 See Footnote 1, Section 10.1.
3 If u happens to be a corner point, then the afs will be the slope cosini

of one particular supporting hyperplane going through w"(see below).
4 We are here disregarding the degenerate case where at = 0.
5 These weights correspond to the slope cosini of the supporting plane

2wj + 2u2 + u3 =510, which contains the line DB. (It is the only plane
which both contains DB and has an equation symmetric in ul and u2 .)

6 The present writer discovered the Shapley value independently in 1953.

Chapter 14 Noncooperative and almost-noncooperative games
1 Indeed in tacit and semivocal noncooperative and almost-noncooperative

games their application is further restricted to the set F of accessible strategy
^-tuples.

2 This is true irrespective of whether this game is played as a strictly noncoop-
erative or as an almost-noncooperative game.

3 See Footnote 2.
4 See Footnote 2.
5 For the purposes of empirical applications it may be more appropriate to call

this theoretical condition "security of agreements" rather than "enforceability
of agreements," since it is meant to cover situations where compliance with
agreements is secured by the players' spontaneous inner attitudes (e.g., by
their interiorized moral standards) rather than by external penalties from
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law-enforcing agencies. However, in abstract theory the term "enforceability"
is quite appropriate, because such inner attitudes can be represented in the
payoff matrix by assuming that the players assign high disutilities to viola-
tions of agreements, in the same way as if these violations were subject to
heavy external penalties.

6 Between the two extremes of fully cooperative and fully noncooperative
games, our theory deals explicitly only with one intermediate case, viz., that
of almost-noncooperative games. Most other intermediate cases (e.g., cases
where law enforcement exists but is uncertain) can be treated formally as
special cases of noncooperative (or of almost-noncooperative) games. (For
instance, uncertain penalties can be represented in the payoff matrix by
taking their actuarial disutility values.) However, future research providing
a more explicit analysis of such intermediate cases would be very desirable.

7 On the dangers of dismissing noncooperative behavior in international life
(e.g., wars) simply as irrational behavior, instead of considering how to
eliminate the conditions which can make such behavior quite rational, see
my review article on Lewis F. Richardson's work [Harsanyi, 1962c, esp. pp.
696-699].

8 We should like to stress again that what we call "noncooperative" standard
of rationality, corresponding to our solution concept for noncooperative
games, does not completely exclude cooperation among the players but
merely restricts it to the set of eligible joint strategies. Thus the term
"noncooperative" must not be taken literally but must be understood as
a technical term having a meaning as defined above.

9 In a tacit or semivocal game o and r would have to be accessible equilib-
rium points. Moreover, in all of our subsequent discussion, the term
"eligible" would have to be replaced by the term "accessible" (see Section
14.10).
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